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ABSTRACT 

Traumatic brain injury (TBI) is a significant public health concern as one of the leading causes of 

death and disability in the United States. TBI is due to the head forcibly contacting another 

object, or other mechanisms causing displacement of the brain within the skull. TBI is a complex 

multimodal disease process associated with high heterogeneity in outcomes, which suggests 

significant influence by genetic factors. Recent studies implicate the apolipoprotein E (APOE) 

gene in modulating TBI outcomes in an isoform-specific manner, specifically with inheritance of 

the APOE4 allele conferring worse outcome. The isoform-specific effect may be modulated by 

ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein that mediates the 

transport of lipids and cholesterol onto APOE, impacting its lipidation and stability.  

First, we examined whether there is an APOE isoform-specific response to TBI using 

mice expressing human APOE3+/+ or APOE4+/+ isoforms. At 3-months-old, TBI-treated mice 

received a craniotomy followed by a controlled cortical impact in the left hemisphere, whereas 

sham-treated mice received only a craniotomy. We found that both isoforms demonstrated 

similar cognitive impairments and transcriptional profiles following moderate TBI. We then 

examined the impact of ABCA1 deficiency on the response to traumatic brain injury using 

human APOE3+/+ and APOE4+/+ targeted replacement mice with only one functional copy of the 

Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). We observed a common transcriptional response to TBI 
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among the genotypes – E3/Abca1+/+, E4/Abca1+/+, E3/Abca1+/-, E4/Abca1+/- – however, 

E4/Abca1+/- had the highest proportion of unique transcripts. Additionally, we found that Abca1 

haploinsufficiency increased the expression of microglia sensome genes among only APOE4 

injured mice. Our results suggest that the APOE4 isoform is more susceptible to the 

consequences of Abca1 haplodeficiency.  

To identify modules, or interconnected gene clusters, correlated to TBI, APOE isoform, 

and Abca1 haplodeficiency, we performed Weighted Gene Co-expression Network Analysis 

(WGCNA). We determined that the module most correlated to TBI, regardless of APOE isoform 

or Abca1 deficiency, represented “immune response” with major hub genes including microglia-

specific genes Trem2, Tyrobp, and Cd68. Unique modules were also associated with APOE 

isoform, and Abca1 haplodeficiency. Our results identify genes with a potential to become useful 

targets for future research. 
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1.0  INTRODUCTION 

1.1 TRAUMATIC BRAIN INJURY 

Traumatic brain injury (TBI) is an acquired injury that results from the head forcibly contacting 

another object, or other mechanisms causing displacement of the brain within the skull (e.g. 

inertia) [80]. TBI is one of the leading causes of death and disability in the United States. It is 

estimated that 2 million people in the U.S. have suffered a TBI, and over 50,000 TBI-related 

deaths occur each year [31,72]. In the recent decade, the number of hospitalizations and 

emergency department visits increased by 11% and 70%, respectively. While the overall death 

rate has decreased, TBI remains a contributing factor in a third of all injury-related deaths [42].  

TBI is a significant public health problem adversely impacting the individual, families, 

and the economy. Approximately 2% of the U.S. population suffer from a TBI-related disability, 

and the rate of TBIs continues to rise in vulnerable populations, including children, the elderly, 

contact-sport athletes, and military personnel [123,32]. Compounding the issue further is the lack 

of existing treatment; patients are only given supportive care for which there is a large societal 

toll. Caregivers face a higher burden of distress, and depression, in addition to deterioration of 

the family unit [4]. There is also a great economic toll of TBI; in 2010, direct and indirect 

medical costs totaled over $76 billion, at $11.5 billion and $64.8 billion respectively [25]. To 

date, potential TBI treatments from preclinical studies have not translated into successful 
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outcomes in clinical trials. A better understanding of the pathophysiology of traumatic brain 

injury and the modifying factors will facilitate the development of successful therapeutics. 

1.1.1 The pathophysiology of traumatic brain injury 

TBI is a complex multimodal disease process, not a single pathophysiological event. Structural 

and functional deficits are the result of both primary and secondary injury mechanisms. The 

primary injury is the immediate result of the impact, as seen through the mechanical stress on 

cells and tissues, including contusion, hemorrhage, shearing of axons, and perforations in cells 

and membranes [143]. The primary injury occurs immediately after the moment of impact, and 

as a result is not treatable, only preventable. 

The secondary injury develops over the next minutes, can extend up to years after the 

injury, and contributes to additional damage and cell death beyond the initial site of injury [18]. 

The secondary injury is comprised of a number of pathways and signaling cascades, involving 

metabolic, molecular, and cellular events. These include glutamate excitotoxicity, perturbed 

cellular calcium homeostasis, lipid peroxidation, oxidative stress, mitochondrial dysfunction, and 

neuroinflammation [125,8,112]. Collectively, the cascade of the secondary injury events results 

in neuronal and glial cell death, as well as white matter degeneration [143].  The prolonged 

nature of the secondary injury provides an opportunity for pharmacological intervention, 

however, understanding the mechanisms of the secondary injury will be necessary for the 

development of successful therapeutics. 
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1.1.2 Inflammation is a key pathological feature of TBI 

Inflammation is a major component of the secondary injury and has been a recent focus of 

research as a means of developing therapies and improving outcomes after TBI. Inflammation is 

present in every case of TBI, developing within minutes, and can persist for many years 

following the injury [2]. It is closely associated with neuronal death, impaired cell proliferation, 

and severity of outcomes. [37]. Additionally, inflammation can be linked directly or indirectly to 

all other alterations of the secondary injury [99].  

The interaction between the molecular and cellular branches of the inflammatory 

response may in turn perpetuate the inflammatory state of the brain [52]. The molecular 

component, consisting of multiple inflammatory molecules upregulated by TBI, serve to recruit 

and orchestrate the immune reaction, as well as contribute to neuronal cell death and blood brain 

barrier dysfunction. Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), chemokine C motif 

ligand 2 (Ccl2), and chemokine CX3C motif receptor 1 (Cx3cr1) are among those that have been 

intensely studied for their impact on brain pathology following TBI [36,43,51,59]. Studies have 

primarily shown that the expression levels of these inflammatory factors are associated with 

severity of injury, outcome in TBI patients, neurobehavioral impairments, as well as the survival 

rates in rodent models [91,144]. 

Microglia are the resident macrophage cells of the central nervous system and are the 

brain’s main form of immune response to infection, disease, and injury. In normal conditions, 

microglia survey their surroundings for inflammatory cues, phagocytose damaged cells, but also 

contribute to neuronal survival and synaptic remodeling [98].  Microglia rapidly respond to 

injury; microglial activation in TBI patients has been shown as early as 3 days, with animal 

models demonstrating increased microglial activation as early as 24-hours [127]. Microglia are 
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capable of contributing to neurotoxicity by releasing pro-inflammatory cytokines, and reactive 

oxygen species (ROS). Activated microglia can persist for years after TBI and are often co-

localized with areas of neuronal degeneration and axonal abnormalities, suggesting a role for 

microglia in the progression and long-term consequences of TBI [39].   

1.1.3 Prognosis of TBI 

According to the criteria outlined in the Diagnostic and Statistical Manual of Mental Disorders, 

5th edition, TBI is accompanied by at least one of the following: loss of consciousness, amnesia, 

disorientation, and/or neurological signs, such as neuroimaging indicating an injury, onset of 

seizures, or visual field cuts [7].  

TBI can lead to temporary and permanent impairments in cognitive, behavioral, 

emotional and physical functions. Impairments can present days, months and even years after the 

initial injury. Impairments in cognitive functions are a common result of TBI, and include 

difficulties with memory, attention, learning, and sleep disturbances [133]. In the long-term, the 

majority of TBI patients experience changes in personality, language and communication 

problems, anxiety, and depressive-like behaviors [49,105,117]. 

TBI is also associated with the delayed development of psychological and neurological 

disorders, which may contribute to long-term impairment and disability. Post-traumatic epilepsy 

and seizures, depression, and post-traumatic stress disorder are common examples of these 

disorders. Additionally, TBI is strongly linked with increased risk of developing 

neurodegenerative dementias, including chronic traumatic encephalopathy and Alzheimer’s 

disease (AD) [109,27]. 
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1.1.4 Factors influencing TBI outcomes 

There are a number of factors that contribute to the variability in presentation of symptoms, as 

well as influence long-term consequences of TBI. Symptoms can vary based on location, 

severity and nature of the injury. However, individual characteristics, such as age, health, gender, 

and drug use, also influence the heterogeneity of the secondary injury and increase the variability 

in TBI outcomes. Additionally, the high level of variability in outcomes suggests a significant 

role for genetic influence on brain susceptibility and recovery [40,141]. 

1.2 APOLIPOPROTEIN E:  A GENETIC MODIFIER OF TBI OUTCOMES 

1.2.1 Apolipoprotein E Structure and Function 

The Apolipoprotein E (APOE) gene encodes a 34 kDa glycoprotein consisting of 299 amino 

acids [81,82]. There are 3 different alleles that can be inherited at the single locus (19q13.2) for 

APOE; ε2, ε3 and ε4 (APOE2, APOE3 and APOE4, respectively). APOE2 is present at the 

lowest frequency in humans, followed by APOE4, then APOE3 at approximately 8.4%, 13.7% 

and 77.9% [84]. The alleles differ at 2 amino acid positions, 112 and 158; APOE2 has cysteine 

present at both positions (Cys-112 and Cys-158), and APOE4 has arginine present at both 

positions (Arg-112 and Arg-158). The APOE3 allele has a cysteine at the 112 position (Cys-122) 

and an arginine at the 158 position (Arg-158) [60]. The difference in amino acid sequence, due to 

inheritance of any allele over the other, affects protein stability and domain region conformation.  
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The structure consists of two structural domains, the N-terminal domain and the C-

terminal domain, connected by a 20 to 30 amino acids that may serve as a flexible hinge. The C-

terminal domain (approximately amino acids 225-299) contains the critical region (amino acids 

244-272) for lipid binding [83]. The N-terminal domain, consisting of amino acids 1-191, forms 

an extended four-helix bundle. It also contains the region (amino acids 136-150) that interacts 

with the ligand binding domain of members of the low density lipoprotein (LDL) receptor 

family. The amino acid differences at the 158 position among the isoforms affects receptor 

binding activity, with ApoE3 and ApoE4 binding normally, and ApoE2 binding is markedly 

reduced [139]. Whereas the arginine present at the 112 position in ApoE4 has no effect on 

binding activity, it causes a difference in conformation of the arginine at the 61 position (Arg-

61). The Arg-112 in ApoE4 causes the Arg-61 side chain to extend away from the four-helix 

bundle, which leads to an interaction with a glutamate residue at the 255 position (Glu-255), 

resulting in a compact structure. In contrast, due to the Cys-112 in both ApoE2 and ApoE3, the 

Arg-61 side chain remains tucked between the helices; therefore, no interaction can occur with 

the Glu-255, resulting in a more extended structure [138,150]. 

The brain is the most cholesterol-rich organ in the body, containing 20% of the entire 

body’s cholesterol [15]. Within the brain, cholesterol and phospholipids are necessary for the 

formation and maintenance of healthy cells and synapses [106,75]. APOE is the major 

cholesterol and lipid transporter in the central nervous system [108]. APOE, produced primarily 

by astrocytes, serves as the scaffold for formation of high-density lipoprotein (HDL) particles 

that are responsible for trafficking of cholesterol and phospholipids throughout the brain 

[107,82]. APOE binds, with high affinity, to members of the low-density lipoprotein (LDL) 

receptor family, including the LDL receptor and the very low-density lipoprotein (VLDL) 
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receptor, which then internalize the lipoprotein particles, allowing for lipid and cholesterol 

uptake [54]. 

Inheritance of APOE4 is associated with higher instability, increased likelihood of 

proteolytic degradation, and the protein is present at lower levels in plasma and brain [9,29,150]. 

The stability of the N-terminal domain is isoform-dependent, with ApoE4 being the least stable, 

and ApoE2 being most stable [92]. Additionally, ApoE4 preferentially binds VLDL, whereas 

ApoE2 and ApoE3 preferentially associate with phospholipid-rich HDL, possibly due to the 

domain interaction affecting the structure [150]. The decreased binding preference of ApoE4 for 

HDL could result in less effective transportation of lipids that are required for neuronal 

maintenance and repair.  

1.2.2 APOE and its isoform specific role in TBI 

TBI is characterized by considerable damage to neurons and axons. Regenerative processes are 

highly dependent on the supply of cholesterol and phospholipids, which are delivered to neurons 

by APOE-containing HDL-like particles. Differences between the APOE isoforms’ stability and 

function may influence TBI outcome, specifically with APOE4 conferring worse outcome after 

injury. However, there is uniform agreement that more studies are needed to clarify the role of 

APOEε4 allele in TBI. Numerous studies have demonstrated that APOE4 carriers experience 

worse outcomes after TBI, including worse memory performance, slower recovery rate, and 

increased risk of posttramautic seizures [34,38,6]. These results are supported by numerous 

animal studies demonstrating APOE4 plays a significant role in determining the pathology and 

recovery following TBI, however, the majority were conducted in AD mouse models [12,86,14].  
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In contrast, numerous in vivo data did not find or confirm a role for APOE4 in TBI 

[86,87,90,142]. For example, in adult patients with moderate to severe TBI assessed at multiple 

time-points, APOE4 patients did not have poorer cognitive performance, or slower improvement 

[110]. In vitro data also supports these results, with one study demonstrating that cognitive 

outcomes after TBI in APOE-TR mice were not influenced by APOE4 status [85]. These 

contradictory results emphasize the need for more research on APOE and TBI. 

1.2.3 ATP-binding Cassette Transporter A1: An important regulator of APOE 

ATP-binding cassette transporter A1 (ABCA1) plays a key role in cholesterol efflux and 

homeostasis through its effect on APOE lipidation. After secretion, APOE is always associated 

with lipids, and is predominantly found as a component of HDL-like particles; however, APOE 

is secreted as nonlipidated apolipoprotein [41]. The generation of lipidated APOE is controlled 

exclusively by ABCA1, and depends on efficient cholesterol efflux [69]. ABCA1 is a member of 

the superfamily of ABC transmembrane transporters, and is expressed in all brain cell types [70].  

ABCA1 is comprised of two transmembrane domains, composed of 6 transmembrane helices, 

and two extracellular domains, connected by intramolecular disulfide bonds [94,101]. ABCA1 

regulates the efflux of cholesterol and phospholipids to lipid-free apolipoproteins, including 

Apolipoprotein A-I and APOE [128]. ABCA1 translocates lipids on the plasma membrane by an 

ATP-dependent mechanism. After reserving sufficient phospholipids and cholesterol, ABCA1 

undergoes conformational changes and dimerizes [94]. Lipid-free apolipoproteins can then bind 

the extracellular domains of the ABCA1 dimer, after which the apolipoprotein accepts the lipids 

translocated by ABCA1. The nascent APOE is lipidated first by ABCA1, which transfers 

cholesterol and phospholipids to the protein to form a discoidal HDL particle. ABCG1 then 
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transfers additional lipids onto the discoidal particle. The APOE-containing particle is then 

trafficked throughout the brain, both accepting and releasing lipid cargo [70]. 

1.2.4 APOE, ABCA1 and neuroinflammation 

APOE modulates the inflammatory response in an isoform specific manner, with the APOE4 

isoform eliciting a stronger pro-inflammatory response than APOE3 [68,115]. APOE4 may 

induce a more robust pro-inflammatory reaction from microglia and may suppress anti-

inflammatory signaling, a potential mechanism for worse outcomes after TBI [77,10,79,73]. The 

isoform-dependent effect of APOE is possibly driven by lipidation status, which has been shown 

to affect its stability and degradation rate, and is regulated by ABCA1.  

The effect of ABCA1 on inflammation could occur through its functional role in 

mediating cholesterol efflux onto lipid-poor APOE. It was previously shown that the loss of 

ABCA1 function results in a reduction of APOE, and data from experimental animals show that 

Abca1 deficiency abolishes the lipidation of APOE [71]. However, ABCA1 may directly 

modulate the inflammatory response after TBI. Mice lacking brain ABCA1 saw increased 

inflammatory gene expression, and the microglia cultured from these mice demonstrated an 

increased pro-inflammatory response, as seen by higher levels of TNFα secretion and lower 

phagocytic activity, in response to lipopolysaccharide administration [65]. 
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1.3 DISSERTATION OBJECTIVES 

In this proposal, we plan to address the role of APOE, and its physiological regulation by 

ABCA1, in the outcomes of traumatic brain injury. Our first study will use mice expressing 

human APOE isoforms to characterize the relationship between the isoforms and TBI outcomes. 

We aim to determine if an interaction between APOE isoform and TBI impacts the phenotype 

and the transcriptome. We hypothesize that there is an APOE-isoform specific response to 

injury, with APOE4 mice exhibiting worsened cognitive outcomes and higher inflammatory gene 

expression after TBI. Our second study will examine the effect of Abca1 haplodeficiency on the 

TBI response in APOE targeted replacement mice. Our goal is to identify differences in the 

transcriptional response to TBI due to Abca1deficiency.  

To date, there is not a published study exploring the effect of Abca1 deficiency and 

human APOE isoforms on outcomes after TBI. Additionally, these studies are the first to 

transcriptionally profile human APOE expressing mice following TBI using Next Generation 

Sequencing.  

 



 11 

2.0  MATERIALS & METHODS 

2.1 MOUSE MODELS 

All animal experiments were approved through the University of Pittsburgh Institutional Animal 

Care and Use Committee and carried out in accordance with PHS policies on the use of animals 

in research. Male and female mice on the C57BL/6 background were used for all experiments. 

Experimental mice were kept on a 12 h light-dark cycle with ad libitum access to normal mouse 

chow diet and water. 

2.1.1 Transgenic lines 

Human APOE4+/+ (B6.129P2-Apoetm3(APOE*4)Mae N8) and APOE3+/+ (B6.129P2-Apoetm3(APOE*3)Mae N8) 

targeted replacement mice were originally purchased from Taconic (Germantown, NY). In these 

lines, the endogenous mouse Apoe gene is entirely replaced, however the human APOE gene 

remains under control of the murine Apoe regulatory sequences.  

ABCA1 heterozygous knockout (ABCA1+/-) mice (DBA/1-Abca1tm1Jdm/J) were originally 

purchased from The Jackson Laboratory on a C57BL/6 × DBA/1 background. They were 

crossbred to pure C57BL/6 background in our laboratory for 10 generations. 
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2.1.2 Breeding 

Abca1−/− mice were bred to human ApoE4+/+ and ApoE3+/+ targeted replacement mice to generate 

ApoE4+/+/Abca1+/+ (E4) and ApoE4+/+/Abca1+/- (E4/Abca1+/-); as well as ApoE3+/+/Abca1+/+ (E3) 

and ApoE3+/+/Abca1+/- (E3/Abca1+/-).  

2.2 CRANIOTOMY AND CONTROLLED CORTICAL IMPACT SURGERY 

CCI model of brain injury was performed according to previous published methods [19]. 

Anesthesia was induced using 5% isoflurane, after which it was maintained at 1.5% isoflurane. 

The head was secured using a stereotaxic frame, and core body temperature was held at 37°C 

using a heating pad. After shaving the heads, two separate iodine - alcohol washes were 

performed to sterilize the surgical site. A 50% mixture of bupivacaine and lidocaine was applied 

to the area and ophthalmic ointment was applied to the eyes. The scalp was opened with a 

midline incision exposing the dorsal aspect of the skull and the skull leveled. A 4.5 mm diameter 

craniotomy was performed over the left parietal cortex using a dental drill. Once the bone flap 

was removed, mice in the CCI group received a single impact at 1.0 mm depth with a 3.0 mm 

diameter metal tip onto the cortex (3 m/s, 100 ms dwell time; Impact One, Leica). Sham mice 

received identical anesthesia and craniotomy, but did not receive impact and are considered 

negative controls. 

Following the impact, the surgical site was sutured, triple antibiotic cream applied, 

Buprenex (0.1 mg/kg; IP) provided for analgesia, and sterile saline administered for rehydration. 
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Mice were allowed to recover on heating pad, until freely mobile, before returning to their home 

cage. 

2.3 BEHAVIORAL TESTING 

2.3.1 Elevated Plus-maze test 

The elevated plus maze (EPM, San Diego Instruments) test was performed 4 days post-injury as 

described previously [137]. The maze consists of 4 arms in the shape of a “+”. All arms are the 

same length (30.5 cm) with a central square (10x10 cm); 2 arms are open on the sides, and 2 

have 16 cm high walls. The entire maze is raised 40 cm off the ground. The elevated plus maze 

tests anxiety-related behavior by utilizing rodent’s fear of open and elevated spaces. Mice are 

placed into the maze within the center square facing a closed arm and are allowed to explore for 

5 min. Percent time spent in each arm was tracked using the ANY-maze software (Stoelting Co.) 

from a camera positioned over the maze. 50% of body area within an arm was established in 

ANY-maze for definition of entry.  

2.3.2 Morris Water Maze test 

Spatial navigational learning and memory retention were assessed using Morris water maze 

(MWM) as described previously [44,76]; with testing performed on days 6-12 post-injury. 

Briefly, in a circular pool of water (diameter 122 cm, height 51 cm, temperature 21 ± 1°C), we 

measured the ability of mice to form a spatial relationship between a safe but invisible platform 
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(submerged 1 cm below the water level; 10 cm in diameter) and several visual extra maze cues 

surrounding the pool of water. On day 6 post-injury, mice received a habituation trial, during 

which the animals were allowed to explore the pool of water without the platform present. 

Beginning the next day, they received four daily hidden platform training (acquisition) trials with 

5-min inter-trial intervals for five consecutive days (days 7-11 post-injury). The platform 

remained in the center of one of the four quadrants of the pool (target quadrant). Animals were 

allowed 60 s to locate the platform and 20 s to remain there. Mice that failed to find the platform 

were lead to the platform by the experimenter and allowed to rest there for 20 s. Performance 

was recorded using Any-maze software (Stoelting Co.) during all trials. During the acquisition 

trials, escape latency (time to reach the platform) was subsequently used to analyze and compare 

the performance between all groups.  

2.4 ANIMAL TISSUE PROCESSING 

Fourteen days post-injury, mice were anesthetized using Avertin (250 mg/kg of body weight, 

i.p.) and perfused transcardially with 20mL of cold 0.1M PBS pH 7.4, following a blood draw 

from the right atrium [95]. Brains were rapidly removed and a 1.5 mm coronal section of the 

brain, including the injury site, was taken by slicing the brain at -2.5 mm and -4.0 from bregma. 

Within the coronal slice, the hemispheres were separated, and the subcortical tissue was 

dissected out; hippocampal and cortical tissue were snap-frozen together for mRNA-seq and RT-

qPCR analysis. The remaining anterior of the brain was fixed in formalin for 

immunohistochemistry. 
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2.5 TRANSCRIPTOME ANALYSIS 

2.5.1 RNA Isolation, RT-qPCR and Sequencing 

All procedures were performed as before [95]. Four APOE3 and APOE4 male and female mice 

per sham and CCI injured group were used for mRNA-seq. RNA was isolated from frozen 

cortices and hippocampi at the injury site and purified using RNeasy kit (Qiagen) according to the 

manufacturer recommendations. Quality control of all RNA samples was performed on a 2100 

Bioanalyzer instrument and samples with RIN > 8 were further used for library construction 

using mRNA Library Prep Reagent Set (Illumina). Libraries were generated by PCR enrichment 

including incorporation of barcodes to enable multiplexing. The libraries, were sequenced on 

Illumina HiSeq2000. For RT-qPCR, first strand cDNA was synthesized from 1 μg of total RNA 

using EcoDry™ Premix, Random Hexamers (Clontech). Next Generation Sequencing of libraries 

was performed by the Next Generation Sequencing Center (University of Pennsylvania, 

http://fgc.genomics.upenn.edu/) on HiSeq 2500 machine. Following initial processing and quality 

control, the sequencing datasets were further analyzed for differential gene expression, which in 

all cases was calculated using Subread/featureCounts (v1.5.0; 

https://sourceforge.net/projects/subread/files/subread-1.5.0/) for read alignment and 

summarization and statistical package edgeR (v3.14.0; 

https://bioconductor.org/packages/release/bioc/html/edgeR.html). Lists of differentially 

expressed genes are further analyzed as described in the following section.  
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2.5.2 Principle Component Analysis 

Principle component analysis (PCA) was performed to determine the principle components, 

which account for the highest sources of variance in the dataset, using R (v. 3.3.2) packages and 

visualized using “ggbiplot2” (v2.1.0, https://github.com/vqv/ggbiplot) [132].  

2.5.3 Functional Pathway Analysis 

We performed functional annotation clustering using the Database for Annotation, Visualization 

and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/version6.7) and Gene set 

enrichment Analysis (GSEA, v2.2.2, https://www.broadinstitute.org/GSEA) [89,126]. 

2.5.4 Weighted Gene Co-expression Network Analysis 

After obtaining the RNA-seq libraries, the datasets were used to construct gene co-expression 

networks as described in previous studies with some modifications. Following sequencing, the 

FASTQ files containing the reads were aligned to the mouse genome using the Subread package. 

The resulting alignment bam files were used to construct gene co-expression networks by using 

the WGCNA v1.51 package in R environment (v3.2.4). A raw count exclusion was performed 

where any gene expression average <5 reads per million are discarded to eliminate noise. The 

program then clusters the remaining animals by gene expression enabling the detection of 

outliers. If sample outliers occur, they are removed from the source files and the networks are 

recreated. A scale free topology model was applied to the data, determining the power. Modules 

were generated automatically using a soft thresholding power, β=10, and definition parameters 

https://github.com/vqv/ggbiplot
http://david.abcc.ncifcrf.gov/version6.7)
https://www.broadinstitute.org/GSEA
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included a minimum module size of 100 genes and a minimum module merge cut height of 0.25. 

Modules were named by conventional color scheme and then correlated with trait data (Age 

group, ApoE isoform, Injury). Statistical significance was determined by student’s t-test, p<0.05.  

All the modules were summarized by module eigengenes (ME), the first principle 

component of each module that was calculated as a synthetic gene representing the expression 

profile of all the genes within a given module. Within the modules, hub genes were identified by 

its module membership (MM) value, which is its strength of correlation to the ME, against its 

intramodular connectivity. Heatmaps for modules were generated for genes represented within 

the module across the samples, with corresponding ME value. Gene-association networks were 

visualized for each module using Cytoscape 3.3.0 at a threshold of 0.02. The relationships 

between the modules was analyzed by heatmap generation using only the top 500 expressed gene 

overlaps. 

2.6 WESTERN BLOT 

Frozen cortices and hippocampi were homogenized in TBS homogenization buffer (250 mM 

sucrose, 20 mM Tris base, 1 mM EDTA, and 1 mM EGTA, 1 ml per 100 mg of tissue) and 

protease inhibitors cocktail (Roche) as described previously. For WB, RIPA extracted proteins 

were used detection of apoE, ABCA1, CLU, FYN and β-ACTIN. Thirty microgram of proteins 

were resolved on 4-12 % SDS-PAGE gels and transferred onto nitrocellulose membranes. Used 

were the following primary antibodies: Anti-ABCA1 (Ab7360, Abcam), anti-ApoE (178479, 

Calbiochem), anti-FYN (sc-16, Santa Cruz), and anti-CLU (sc-6419, SantaCruz). 
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2.7 IMMUNOHISTOCHEMISTRY & QUANTIFICATION 

All procedures were as reported previously [47,61,121]. Briefly, OCT-embedded hemibrains 

were cut in the coronal plane at 20 μm sections and stored in a glycol-based cryoprotectant at 

−20°C. Five sections starting at -0.20 from Bregma, separated by 500 μm were used for staining. 

Sections were washed in PBS and antigen retrieval performed with Reveal Decloaker at 100°C 

for 30 min in a water bath. Quenching of endogenous peroxidases, blocking with 5% normal 

donkey serum and avidin-biotin blocking followed antigen retrieval.  Sections were incubated in 

TREM2 primary antibody (1:100, AF179, R&D Systems) overnight at 4 °C, followed by 

washing in PBS and labeling with biotinylated secondary antibody (1:1000, donkey α sheep; 

A16045) and developed with Vectastain ABC Elite kit (Vector Laboratories) and DAB substrate. 

Sections for GFAP and Iba1 staining were blocked in 5% serum of the requisite host and 

incubated in primary antibody overnight (anti-GFAP: 1:1000, Z0334, Dako; Iba1: 1:200, 19-

19741, WAKO). Secondary antibodies with conjugated fluorophores were applied as 

appropriate. Sections were mounted on charged slides and coverslipped with Permount. All 

slides were examined using the Nikon Eclipse 90i at 10× magnification and percent positive 

staining was defined as the percent area covered by staining using NIS Elements software (Nikon 

Instruments Inc.). The percent positive straining was determined by setting a threshold within the 

software. The threshold was determined using negative and positive controls to identify only 

stained tissue. Once set, the threshold was applied to all sections and then the ipsilateral and 

contralateral hemispheres were traced separately to identify the area.  The software then 

calculates the amount of staining per area. Unless otherwise stated, analysis was conducted for 

ipsilateral hemispheres only. Contralateral hemispheres were identified using a pinhole made 

before sectioning. 
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2.8 STATISTICS 

All results are reported as means ± S.E.M. To determine statistical significance between groups 

in EPM, we used two-way ANOVA with a Sidak's multiple comparison post hoc test. To analyze 

MWM data, a three-way ANOVA was used. Unless otherwise indicated, all statistical analyses 

were performed in GraphPad Prism, version 7.0, or R, version 3.3.2 and differences were 

considered significant where p<0.05. All differential gene expression analysis was performed by 

edgeR. 
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3.0  GENE CO-EXPRESSION NETWORKS IDENTIFY TREM2 AND TYROBP AS 

MAJOR HUBS IN HUMAN APOE EXPRESSING MICE FOLLOWING TRAUMATIC 

BRAIN INJURY 

The data presented in this chapter is published in Neurobiol Dis. 105: 1-14 (2017). 
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3.1 ABSTRACT 

Traumatic brain injury (TBI) is strongly linked to an increased risk of developing dementia, 

including chronic traumatic encephalopathy and possibly Alzheimer’s disease 

(AD). APOEe4 allele of human Apolipoprotein E (APOE) gene is the major genetic risk factor 

for late onset AD and has been associated with chronic traumatic encephalopathy and 

unfavorable outcome following TBI. To determine if there is an APOE isoform-specific response 

to TBI we performed controlled cortical impact on 3-month-old mice expressing human APOE3 



 21 

or APOE4 isoforms. Following injury, we used several behavior paradigms to test for anxiety 

and learning and found that APOE3 and APOE4 targeted replacement mice demonstrate 

cognitive impairments following moderate TBI. Transcriptional profiling 14 days following 

injury revealed a significant effect of TBI, which was similar in both genotypes. Significantly 

upregulated by injury in both genotypes were mRNA expression and protein level of ABCA1 

transporter and APOJ, but not APOE. 

To identify gene-networks correlated to injury and APOE isoform, we performed 

Weighted Gene Co-expression Network Analysis. We determined that the network mostly 

correlated to TBI in animals expressing both isoforms is immune response with major hub genes 

including Trem2, Tyrobp, Clec7a and Cd68. We also found a significant increase of TREM2, 

IBA-1 and GFAP protein levels in the brains of injured mice. We identified a network 

representing myelination that correlated significantly with APOE isoform in both injury groups. 

This network was significantly enriched in oligodendrocyte signature genes, such 

as Mbp and Plp1. Our results demonstrate unique and distinct gene networks at this acute time 

point for injury and APOE isoform, as well as a network driven by APOE isoform across TBI 

groups. 

3.2 INTRODUCTION 

Traumatic brain injury (TBI) is one of the leading causes of death and disability in the United 

States. Approximately 2 million people sustain a TBI and 50,000 TBI-related deaths occur in the 

United States every year. Currently, there is no treatment for TBI, patients are only given 

supportive care for which the cost is approximately $60 billion annually. TBI can either be 
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caused when the head violently impacts with another object or when an object pierces the skull 

and enters the brain tissue. Studies show that following the acute phase, over the long-term, 

patients may develop changes in cognition, and increases in both anxiety and depression 

[105,49]. The high level of variability in injury outcomes suggests, to a significant extent, a 

strong role for genetic influence on brain susceptibility and recovery [40,141].  

TBI is strongly linked to increased risk of developing dementia, including chronic 

traumatic encephalopathy and possibly Alzheimer’s disease (AD) [62,63,88]. The APOEe4 allele 

of human apolipoprotein E (APOE) gene is the major genetic risk factor for late onset AD and 

has been associated with chronic traumatic encephalopathy and unfavorable outcome following 

TBI. Multiple studies have identified worse outcomes following TBI based on the inheritance of 

APOEe4 allele [6,38]. The role of APOE in neuronal survival and repair and in overall response 

to TBI, however, is not well understood. It has been suggested that APOE4 is less stable and 

catabolically degraded more quickly than the other APOE isoforms, possibly due to its lower 

lipidation level [68]. In mice, studies have identified APOE-genotype and brain-region specific 

genomic changes using mRNA microarrays after controlled cortical impact (CCI) [33]. Patients, 

carriers of APOEe4, experiencing TBI demonstrated worse memory performance in a verbal 

learning test and verbal fluency measured 6 months post-injury [34]. In contrast, other in vivo 

data did not find or confirm a role for APOE4 in TBI [86,87,90,142]. For example, in adult 

patients with moderate to severe TBI assessed 3, 6 and 12 months post-injury, APOE4 patients 

did not have poorer cognitive performance, functional outcome or slower improvement [110]. 

There is a uniform agreement that more studies are needed to clarify the role of APOEe4 allele in 

TBI. Mechanical stress placed on the brain due to the impact is considered the primary injury. 

Following the impact, a secondary injury occurs leading to additional damage and cell death, 
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worsening the outcome. Mechanisms of secondary injury include neuronal excitotoxicity, edema, 

oxidative stress, and neuroinflammation. The inflammatory state in the brain can persist for 

many years following the injury; chronic neuroinflammation following TBI was closely 

associated with neuronal death and impaired cell proliferation both immediately adjacent to, and 

locations more distant from, site of injury [2]. Multiple inflammatory molecules are upregulated 

after TBI and are believed to contribute to these processes, as well as blood brain barrier 

dysfunction. Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), chemokine C motif ligand 

2 (Ccl2), and chemokine CX3C motif receptor 1 (Cx3cr1) are among those that have been 

intensely studied for their impact on brain pathology following TBI [36,43,51,59]. Studies have 

shown that the expression levels of the majority of those inflammatory factors are associated 

with severity of injury and outcome in TBI patients, the reduction of neurobehavioral 

impairments and injury volume as well as the survival rates in rodent models [91,144]. 

To our knowledge, transcription profiling of APOE expressing mice following TBI using 

Next Generation Sequencing has not yet been performed. The aim of this study was to determine 

if there is an interaction between APOE isoform and the response to TBI affecting phenotype 

and the transcriptome. We performed controlled cortical impact on 3-month-old mice expressing 

human APOE3 or APOE4 isoform and following the injury, tested for anxiety and learning. 

Transcriptional profiling of hippocampal and cortical tissue from the injury site was performed 

using mRNA-sequencing (mRNA-seq). We hypothesized that there is APOE isoform-specific 

response to injury and APOE4 mice would have worse cognitive outcomes and higher 

inflammatory gene expression following TBI. We found that APOE genotype, while a significant 

variable in both behavioral tests, did not modulate the changes in transcriptome seen two weeks 

post injury. To correlate the transcriptome to the phenotype we used network-based approach 
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and applied Weighted Gene Co-expression Network Analysis (WGCNA). This analysis not only 

connects the genes within networks and identifies the most connected members of a given 

pathway, but elucidates the relevance of the networks to the experimental findings. Thus, we 

identified that TBI significantly affected immune response, with Trem2 and Tyrobp being highly 

ranked within the interconnected gene network.  

3.3 METHODS 

3.3.1 Animals 

All animal experiments were approved through the University of Pittsburgh Institutional Animal 

Care and Use Committee and carried out in accordance with PHS policies on the use of animals 

in research. We used human APOE4+/+ and APOE3+/+ targeted replacement mice on a C57BL/6 

background [46]. Experimental male and female APOE3 or APOE4 mice were kept on a 12 h 

light-dark cycle with ad libitum access to food and water. Mice at 3 mo of age were randomly 

assigned to either sham or controlled cortical impact (CCI) experimental group and initially were 

handled for 2 days (5 min per day). Following surgical procedures, mice were allowed to recover 

for 3 days before starting behavioral testing. All materials were purchased through Thermo 

Fisher Scientific, unless otherwise noted. 
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3.3.2 Controlled Cortical Impact 

CCI model of brain injury was performed according to previous published methods [19]. 

Following induction of anesthesia with 5% isoflurane, the mouse was moved to the stereotaxic 

frame, where the head was secured, core body temperature maintained at 37°C using a heating 

pad and anesthesia continued with 1.5% isoflurane. The head was shaven, surgical site sterilized 

with two separate iodine - alcohol washes, a 50% mixture of bupivacaine and lidocaine applied 

to the surgical site and ophthalmic ointment applied to the eyes. The scalp was opened with a 

midline incision exposing the dorsal aspect of the skull and the skull leveled. A 4.5 mm diameter 

craniotomy was performed over the left parietal cortex using a dental drill. Once the bone flap 

was removed, mice in the CCI group received a single impact at 1.0 mm depth with a 3.0 mm 

diameter metal tip onto the cortex (3 m/s, 100 ms dwell time; Impact One, Leica). Sham mice 

received identical anesthesia and craniotomy, but did not receive impact and are considered 

negative controls. Following the impact, the surgical site was sutured, triple antibiotic cream 

applied, Buprenex (0.1 mg/kg; IP) provided for analgesia, and sterile saline administered for 

rehydration. Mice were allowed to recover on heating pad, until freely mobile, before returning 

to their home cage. 

3.3.3 Elevated-Plus Maze 

The elevated plus maze (EPM, San Diego Instruments) test was performed 4 days post-injury as 

described previously [137]. The maze consists of 4 arms in the shape of a “+”. All arms are the 

same length (30.5 cm) with a central square (10x10 cm); 2 arms are open on the sides, and 2 

have 16 cm high walls. The entire maze is raised 40 cm off the ground. The elevated plus maze 
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tests anxiety-related behavior by utilizing rodent’s fear of open and elevated spaces. Mice are 

placed into the maze within the center square facing a closed arm and are allowed to explore for 

5 min. Percent time spent in each arm was tracked using the ANY-maze software (Stoelting Co.) 

from a camera positioned over the maze. 50% of body area within an arm was established in 

ANY-maze for definition of entry.  

3.3.4 Morris Water Maze 

Spatial navigational learning and memory retention were assessed using Morris water maze 

(MWM) as described previously [44,76]; with testing performed on days 6-12 post-injury. 

Briefly, in a circular pool of water (diameter 122 cm, height 51 cm, temperature 21 ± 1°C), we 

measured the ability of mice to form a spatial relationship between a safe but invisible platform 

(submerged 1 cm below the water level; 10 cm in diameter) and several visual extra maze cues 

surrounding the pool of water. On day 6 post-injury, mice received a habituation trial, during 

which the animals were allowed to explore the pool of water without the platform present. 

Beginning the next day, they received four daily hidden platform training (acquisition) trials with 

5-min inter-trial intervals for five consecutive days (days 7-11 post-injury). The platform 

remained in the center of one of the four quadrants of the pool (target quadrant). Animals were 

allowed 60 s to locate the platform and 20 s to remain there. Mice that failed to find the platform 

were lead to the platform by the experimenter and allowed to rest there for 20 s. Performance 

was recorded using Any-maze software (Stoelting Co.) during all trials. During the acquisition 

trials, escape latency (time to reach the platform) was subsequently used to analyze and compare 

the performance between all groups.  
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3.3.5 Animal Tissue Processing 

Fourteen days post-injury, mice were anesthetized using Avertin (250 mg/kg of body weight, 

i.p.) and perfused transcardially with 20ml of cold 0.1M PBS pH 7.4, following a blood draw 

from the right atrium [95]. Brains were rapidly removed and a 1.5 mm coronal section of the 

brain, including the injury site, was taken by slicing the brain at -2.5 mm and -4.0 from bregma. 

Within the coronal slice, the hemispheres were separated, and the subcortical tissue was 

dissected out; hippocampal and cortical tissue were snap-frozen together for mRNA-seq and RT-

qPCR analysis. The remaining anterior of the brain was fixed in formalin for 

immunohistochemistry. 

3.3.6 Immunohistochemistry 

All procedures were as reported previously [47,61,121]. Briefly, OCT-embedded hemibrains 

were cut in the coronal plane at 20 μm sections and stored in a glycol-based cryoprotectant at 

−20°C. Five sections starting at -0.20 from Bregma, separated by 500 μm were used for staining. 

Sections were washed in PBS and antigen retrieval performed with Reveal Decloaker at 100°C 

for 30 min in a water bath. Quenching of endogenous peroxidases, blocking with 5% normal 

donkey serum and avidin-biotin blocking followed antigen retrieval.  Sections were incubated in 

TREM2 primary antibody (1:100, AF179, R&D Systems) overnight at 4 °C, followed by 

washing in PBS and labeling with biotinylated secondary antibody (1:1000, donkey α sheep; 

A16045) and developed with Vectastain ABC Elite kit (Vector Laboratories) and DAB substrate. 

Sections for GFAP and Iba1 staining were blocked in 5% serum of the requisite host and 

incubated in primary antibody overnight (anti-GFAP: 1:1000, Z0334, Dako; Iba1: 1:200, 19-
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19741, WAKO). Secondary antibodies with conjugated fluorophores were applied as 

appropriate. Sections were mounted on charged slides and coverslipped with Permount. All 

slides were examined using the Nikon Eclipse 90i at 10× magnification and percent positive 

staining was defined as the percent area covered by staining using NIS Elements software (Nikon 

Instruments Inc.). The percent positive staining was determined by setting a threshold within the 

software. The threshold was determined using negative and positive controls to identify only 

stained tissue. Once set, the threshold was applied to all sections and then the ipsilateral and 

contralateral hemispheres were traced separately to identify the area.  The software then 

calculates the amount of staining per area. Unless otherwise stated, analysis was conducted for 

ipsilateral hemispheres only. Contralateral hemispheres were identified using a pinhole made 

before sectioning. 

3.3.7 RNA isolation and mRNA sequencing 

All procedures were performed as before [95]. Four APOE3 and APOE4 male and female mice 

per sham and CCI injured group were used for mRNA-seq. RNA was isolated from frozen 

cortices and hippocampi at the injury site and purified using RNeasy kit (Qiagen) according to the 

manufacturer recommendations. Quality control of all RNA samples was performed on a 2100 

Bioanalyzer instrument and samples with RIN > 8 were further used for library construction 

using mRNA Library Prep Reagent Set (Illumina). Libraries were generated by PCR enrichment 

including incorporation of barcodes to enable multiplexing. The libraries, were sequenced on 

Illumina HiSeq2000. For RT-qPCR, first strand cDNA was synthesized from 1 μg of total RNA 

using EcoDry™ Premix, Random Hexamers (Clontech). Next Generation Sequencing of libraries 

was performed by the Next Generation Sequencing Center (University of Pennsylvania, 
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http://fgc.genomics.upenn.edu/) on HiSeq 2500 machine. Following initial processing and quality 

control, the sequencing datasets were further analyzed for differential gene expression, which in 

all cases was calculated using Subread/featureCounts (v1.5.0; 

https://sourceforge.net/projects/subread/files/subread-1.5.0/) for read alignment and 

summarization and statistical package edgeR (v3.14.0; 

https://bioconductor.org/packages/release/bioc/html/edgeR.html). Lists of differentially 

expressed genes are further analyzed as described in the following section.  

3.3.8 Principle Component analysis 

Principle component analysis (PCA) was performed to determine the principle components, 

which account for the highest sources of variance in the dataset, using R (v. 3.3.2) packages and 

visualized using “ggbiplot2” (v2.1.0, https://github.com/vqv/ggbiplot) [132].  

3.3.9 Functional Pathway analysis 

We performed functional annotation clustering using the Database for Annotation, Visualization 

and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/version6.7) and Gene set 

enrichment Analysis (GSEA, v2.2.2, https://www.broadinstitute.org/GSEA) [89,126].  

3.3.10 Weighted Gene Co-expression Network Analysis 

Network analysis was performed using WGCNA (v.1.49) [149]. Libraries are clustered by gene 

expression enabling the detection of outliers and the power is determined by scale free topology 

https://github.com/vqv/ggbiplot
http://david.abcc.ncifcrf.gov/version6.7)
https://www.broadinstitute.org/GSEA
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model. Modules were generated automatically using a soft thresholding power, β=10, a 

minimum module size of 33 genes and a minimum module merge cut height of 0.25. Modules 

were named by conventional color scheme and then correlated with trait data (APOE isoform, 

Injury). Each trait was converted individually into a binary factor, (e.g. Sham=0, TBI=1; 

APOE3=0, APOE4=1). The modules were then correlated to the group phenotype (e.g. all 

APOE3 Sham mice = 0, 0; all APOE3 TBI = 0, 1) using Pearson’s correlation. Statistical 

significance was determined by student’s t-test, p<0.05. All modules were summarized by 

module eigengenes (ME), the first principle component of each module that was calculated as a 

synthetic gene representing the expression profile of all genes within a given module.  

3.3.11 Western blot 

Frozen cortices and hippocampi were homogenized in TBS homogenization buffer (250 mM 

sucrose, 20 mM Tris base, 1 mM EDTA, and 1 mM EGTA, 1 ml per 100 mg of tissue) and 

protease inhibitors cocktail (Roche) as described previously. For WB, RIPA extracted proteins 

were used detection of apoE, ABCA1, CLU, FYN and β-ACTIN. Thirty microgram of proteins 

were resolved on 4-12 % SDS-PAGE gels and transferred onto nitrocellulose membranes. Used 

were the following primary antibodies: Anti-ABCA1 (Ab7360, Abcam), anti-ApoE (178479, 

Calbiochem), anti-FYN (sc-16, Santa Cruz), and anti-CLU (sc-6419, SantaCruz). 

3.3.12 Statistical Analyses 

All results are reported as means ± S.E.M. To determine statistical significance between groups 

in EPM, we used two-way ANOVA with a Sidak's multiple comparison post hoc test. To analyze 
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MWM data, a three-way ANOVA was used. Unless otherwise indicated, all statistical analyses 

were performed in GraphPad Prism, version 7.0, or R, version 3.3.2 and differences were 

considered significant where p<0.05. 

3.4 RESULTS 

3.4.1 TBI causes anxiety-related changes and spatial learning deficits 

To examine the effect of APOE isoforms on cognitive performance following TBI, we used mice 

expressing human APOE3 or APOE4 isoform. As a model of brain injury, we used CCI, 

performed on 3 months old mice. First, the mice were tested for anxiety-related behavior in the 

elevated plus maze (EPM), 4 days post injury. As shown on Fig. 1A, the injured mice of both 

genotypes showed an increased time spent in the open-arms of the EPM when compared to their 

sham counterparts. We found significant main effects of genotype and TBI, but no interaction. 

Due to the acute time-point at which this test was performed, increased time spent in the open 

arms can be interpreted as an increased risk-taking or impulsive behavior by the injured animals. 

We employed Morris Water Maze (MWM) to examine the effect of TBI on spatial 

learning. The result shown on Fig. 1B demonstrates that for both APOE genotypes, TBI 

significantly increased escape latency time in APOE3 mice (compare blue open and closed 

circles) and in APOE4 mice (compare red open and closed squares). As seen from Fig. 1B, 

APOE4 mice in both groups performed significantly worse than APOE3 mice confirming 

previous data from our and other groups showing a significant memory impairment at baseline in 



 32 

APOE4 mice [46,114,45]. The conclusion from these experiments is that TBI significantly 

worsens spatial learning and increases impulsive behavior in both APOE isoforms.  

 

 

Figure 1. TBI significantly affected behavior performance in mice expressing human APOE3 and APOE4 
isoforms. 

Three months old APOE3 and APOE4 targeted replacement mice underwent CCI and their behavior performance 
was tested using Elevated Plus Maze (A) and Morris Water Maze (B) paradigms. (A) EPM was performed 4 days 
post injury. For both APOE isoforms, TBI significantly increased the time spent in the open arms of the maze 
compared to sham (p<0.0001). Statistics is by two-way ANOVA. There is no interaction between genotype and 
injury but there are significant main effects of genotype (F(1, 53) = 4.967, p=0.03) and injury (F(1, 53) = 26.36, 
p<0.0001). Sidak’s multiple comparison test showed a significant difference between APOE3-Sham vs APOE3-TBI 
(p<0.05) and APOE4-Sham vs APOE4-TBI (p<0.001). (B)  Acquisition of spatial memory was examined in APOE3 
(blue) and APOE4 mice (red) on 7-11 days post injury by MWM. Time to find the hidden platform is shown for all 
days of training. Statistics is by three-way ANOVA. There was no interaction between any of the factors, but 
significant main effects of all three, training, injury and genotype. (For training: F(4, 4) = 21.35, p<0.0001; for injury: 
F(1, 4) = 59.94, p<0.0001; for genotype: F(1, 4) =17.8, p<0.0001) 

3.4.2 Changes in transcriptome induced by TBI reflect stimulated immune response and 

decreased neuronal functionality 

To examine how TBI affects brain transcriptome, we performed mRNA-seq using total RNA 

isolated from the brains of the mice tested for cognitive performance and perfused 14 days post 

injury. For this analysis, we used hippocampal and cortical tissue from around the injury site. 

The PCA was used to calculate the principal components, which account for the sources of 
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highest possible variance in the transcriptome. The result from the PCA shown on Fig. 2A 

demonstrates that the mRNA-seq data for TBI animals from both genotypes clustered together 

and the same was observed for sham treated mice. Thus, the result of the PCA suggests that the 

variance between gene expression levels in TBI vs Sham was higher than between gene 

expression level in APOE3 vs APOE4 transcripts. 

An expression-by-expression plot [136] using the lists of differentially expressed genes 

(Fig. 2B) demonstrates the high number of significantly expressed transcripts in all sham versus 

all TBI animals. We then compared the effect of TBI on transcriptome separately for each 

genotype. As shown on Fig. 2C and D, a significant number of differentially expressed genes 

was identified in both APOE groups (genes lists shown on Table 2A and B in Suppl. Materials). 

We were interested whether there was a similarity between the biological processes affected by 

TBI in APOE3 and E4 mice. Top up-regulated categories in both genotypes were highly 

consistent and were associated with “Immune System Process”, “Innate Immune Response” and 

“Inflammatory Response” (Table 3A and B; Suppl. Materials). Top down-regulated categories in 

both genotypes were also similar, including “Regulation of Ion Transmembrane Transport”, and 

“Potassium Ion Transport” (Table 4A and B; Suppl. Materials). To further identify enriched 

pathways commonly affected by TBI in both isoforms, we applied Gene Set Enrichment 

Analysis (GSEA) [126] and compared all mice in the TBI group (E3-TBI+E4-TBI) to all sham 

mice (E3-sham+E4-sham). The analysis confirms the top up-regulated categories by TBI (Fig. 9; 

Suppl. Materials).  

We were particularly interested in two genes significantly up-regulated in brains of both 

APOE genotypes - Abca1 transporter (fold change=3.46) and Clusterin (Clu/APOJ, fold 

change=1.66). As shown on Fig. 2E and F, the protein level of ABCA1 and CLU was 
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significantly increased. In contrast, Apoe mRNA and APOE protein level were unaffected by 

TBI. Thus, these experiments confirm and validate our mRNA-seq results. 

 

 

Figure 2. TBI significantly affected the transcriptome demonstrating increases in immune response and 
decreases in neuronal functionality. 

mRNA-seq was performed on RNA isolated from the hippocampi and cortex of APOE3 and APOE4 mice shown on 
Fig. 1, N=8 mice per group. (A) Principle component analysis used to calculate the principal components that 
account for the highest possible variance in the transcriptome. N= 8 mice/group and all transcripts from each mouse.  
PCA plot of the transcriptome shows distinct separation based on TBI but not on APOE isoform. (B) Scatterplot for 
genes comparing sham and TBI reads per million. (C-D) Volcano plots representing the mRNA-seq results. 
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Differential gene expression analysis between sham and injured mice using EdgeR identified: in APOE3 (C): 2853 
up- (red) and 2307 down-regulated genes by TBI (blue), and in APOE4 (D): 2065 up- and 1045 down-regulated 
genes at p<0.05 cutoff. For C and D, statistics is by edgeR, p<0.05. (E) Western blot results for APOE3 sham versus 
TBI animals for ABCA1, CLU, APOE, and β-ACTIN validate mRNA-seq results. (F) Western blot results for 
APOE4 sham versus TBI animals for ABCA1, CLU, APOE, and β-ACTIN validate mRNA-seq results. Proteins are 
normalized to levels of β-ACTIN. 

3.4.3 Transcriptome analysis demonstrates a higher expression of markers for resident 

microglia versus peripheral macrophages 

Due to the nature of the CCI model, the blood brain barrier is damaged, which allows entry to 

peripheral cells not normally present in the brain, such as monocytes and peripheral 

macrophages. We were interested in identifying which cell type was responsible for the 

inflammatory response in the brain at 14 days post injury. To do this, we referred to Hickman et 

al. (2013)[55], who demonstrated that microglia have a unique transcriptomic signature with 

several genes separate from that of peripheral macrophages. Thus, our RNA sequencing data 

point to a significant portion of genes that are considered microglia “sensome” genes (86 of 100; 

Fig. 3A-B), or cellular receptors involved in the microglial function of sensing the brain 

environment. Several of those genes had a significantly higher expression in resident 

macrophages (microglia) when compared to peripheral macrophages, including Gpr34, Trem2, 

Siglech, and P2ry12. Additionally, a number of those genes are unique to microglia, including 

Cx3cr1, Tmem119 and Slco2b1. We also looked at other receptor families involved in immune 

response, including the purinergic receptors (Fig. 3C-D) and sialic acid binding immunoglobulin 

lectins (Siglecs; Fig. 3E-F). Several of those were identified as being expressed at significantly 

higher levels in microglia compared to peripheral macrophages, including P2rx7, P2ry6, P2ry12, 

P2ry13 and Siglech. As seen from Fig. 3A-F, all these groups of genes was significantly 

upregulated by TBI in both APOE3 and APOE4 mice. In contrast, several genes characteristic of 
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peripheral macrophages, such as Alox15, Fabp4, Fcna, Slp1 and Serpinb2 were not found (data 

not shown) or expressed at a very low level (P2rx4). We conclude that whereas the peripheral 

macrophages invade in the initial days following TBI and are likely to remain present in CNS at 

low levels, the resident microglia are the predominant source of inflammatory response in the 

brain 14 days post injury [51,56,67]. 
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Figure 3. mRNA-seq data reveal that microglia are predominant source of inflammation. 
Average expression according to mRNA-seq results for several inflammatory markers modulated by TBI were 
calculated as the fold of Sham reads per million for each gene. (A-B) Several microglial specific transcripts are 
significantly upregulated by TBI in both (A) APOE3 and (B) APOE4 mice. (C-D) Purinergic receptors in (C) 
APOE3 and (D) APOE4 mice, as well as (E-F) Siglecs in (E) APOE3 and (F) APOE4 mice were also upregulated 
following TBI. Statistics is by edgeR; *p<0.05, **p<0.01, ***p<0.001. 
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3.4.4 Integrated system approach identifies correlated gene networks associated with TBI 

To identify gene networks affected by TBI, we employed Weighted Gene Co-expression 

Network Analysis (WGCNA) [147,113]. We used datasets of the same APOE3 and APOE4 

expressing mice, shown on Fig. 2 and 3. WGCNA clusters genes based on expression profiles 

into functional groups (referred to as modules) and the average expression profile is represented 

as a ‘module eigengene’ (ME), which is given an arbitrary color name. MEs were then correlated 

to the phenotype of each experimental group, namely APOE3-TBI, APOE4-TBI, APOE3-Sham 

and APOE4-Sham, allowing identification of the networks associated with them. We found no 

significant gender difference, therefore male and female mice were analyzed together. The 

relationship table (Fig. 4A) shows the Pearson correlation of each module to the phenotype. 

Additionally, the table visualizes the overall direction of expression for the genes within each 

module for each phenotype. We were most interested in modules that correlated significantly 

with either injury in both APOE isoforms or with APOE isoform. Thus, we chose to further 

characterize two networks that correlate to TBI (ME Brown and ME Green), and two to APOE 

genotype (ME Darkred and ME Salmon). Correlations between the modules are shown in Fig. 

10; Suppl. Materials. 
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Figure 4. WGCNA identified modules that correlated to TBI and or APOE isoform. 

WGCNA was used to determine the correlation of module eigengenes to Injury and APOE genotype. Each cell 
shows the correlation between the module eigengene (rows) and group (columns) with p-value. Red denotes a 
positive and blue is a negative correlation. Modules of interest are differentially expressed between trait conditions. 
Brown, and Green are modules associated with TBI, Darkred and Salmon – with APOE genotype. 

 

ME Brown positively correlated to APOE3-TBI (r=0.54, p=0.002) and APOE4-TBI 

groups (r=0.47, p=0.007) and negatively correlated to sham treated mice. The interpretation of 

the positive correlation is that TBI increases the expression of genes, members of this module in 

mice expressing either isoform. This network is enriched with transcripts functionally associated 
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with “Immune Response” and “Innate Immunity” (Table 1). As seen in Fig. 11C and D; Suppl. 

Materials, the correlation between Module membership and Gene significance for genes within 

this network demonstrates that they strongly relate to the biological processes associated with 

this module. The expression levels for all genes in the network and for each sample are shown on 

Fig. 5A (heatmap and bar plot). The network (Fig. 5B) was built using hub genes associated with 

immune response and phagocytosis, such as Trem2 (Triggering Receptor Expressed on Myeloid 

Cells 2), Tyrobp, Clec7a, Cd68, Cx3cr1 and the transcripts connected to them. Hub genes of this 

network are highly enriched in microglia signature genes (fold enrichment 8.95), including 

Grp34, Fcrls, Tmem119 and Cx3cr1. In the hub gene list, there were also astrocyte-specific 

genes such as Gfap, Aqp4, Clu (fold enrichment 8.69).  

 

Table 1.  Gene-network modules represent various biological functions associated with injury and APOE 
isoform. 

Module Name Effect PValue Gene Count GO Terms Enrichment Pvalue 

Brown Injury 1.0E-10 2639 Immune response 9.97E-41 

 
 

  
Innate immune response 1.16E-28 

    Phagocytosis 2.61E-05 
Green Injury 5.0E-06 854 Transport 1.98E-04 

    Phospholipid transport 0.0016 
Darkred Genotype 1.0E-23 31 Innate immune response 0.0428 

    Complement Activation 0.0471 
Salmon Genotype 0.001 65 Myelination 3.73E-05 

    Oligodendrocyte differentiation 1.06E-04 

Networks of interest include ME Brown and ME Green, which are associated with injury, and ME 
Darkred and ME Salmon, which are associated with APOE isoform. 
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Figure 5. ME Brown correlates to TBI and is associated with Immune Response. 
(A) Expression barplot shows the gene expression and eigengene expression within each sample. Within the 
heatmap, the rows denote genes and the columns correspond to samples, with the corresponding module eigengene 
value for each sample shown in the bar plot below. Red denotes over-expression and green under-expression of the 
gene within the sample. (B) Network of genes connected to hub genes Trem2, Tyrobp, Clec7a, Cd68, Cx3cr1 
representing immune response. Size of each gene was determined by modular membership value, and the weight 
determined edge width. (C-D) Average expression according to mRNA-seq results of genes modulated by TBI in 
“Immune response” category for (C) APOE3 and (D) APOE4 mice. The average expression was calculated as fold 
of Sham reads per million for each gene. Statistics is by edgeR, p<0.05.  (E-F) Validation of mRNA-seq results for 
Trem2, Tyrobp, Cx3cr1, Tgfb1, Tgfbr1 for (E) APOE3 and (F) APOE4 mice by qPCR. Statistics was determined by 
t-test. 
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To validate the mRNA-seq results shown on Fig. 5C and D, we performed RT-QPCR for 

several genes - Trem2, Tyrobp, Cx3cr1, Tgfb1, Tgfbr1 (Fig. 5E and F). To confirm that mRNA 

expression levels correspond to an increase in the levels of the respective proteins, we chose 

three genes highly affected by TBI – Trem2 and Aif1/Iba-1 expressed in microglia and Gfap 

expressed in astrocytes. Trem2 encodes a transmembrane protein that is expressed on myeloid 

lineage cells, including microglia and recent studies have shown that Trem2 variants affect 

microglial functionality [30]. To analyze the impact of TBI on the protein level of TREM2, 

AIF1/IBA-1 and GFAP, we performed immunohistochemistry on brain sections from the same 

mice. As seen in Fig. 6A, sham animals showed relatively low-to-no TREM2 immunostaining. 

In contrast, TBI significantly increased presence of TREM2 around the injury site in both 

APOE3 (Fig. 6B) and APOE4 (Fig. 6C) mice (p<0.05). IBA1 staining shown on Fig. 12; Suppl. 

Materials, is consistent with the increased intensity of TREM2 around the injury site and 

confirms microglia activation after TBI. For both TREM2 and IBA-1 staining, there was no 

significant difference between APOE3 and APOE4 injured animals. To validate the increased 

mRNA expression of GFAP, we performed immunohistochemistry against GFAP. As visible 

from Fig. 6E, sham animals show evenly distributed low levels of GFAP staining. In contrast, 

TBI animals show significantly higher levels of GFAP staining in both APOE3 and APOE4 

when compared to their sham counterparts (Fig. 6F-G). As with TREM2 and IBA-1, there was 

no significant APOE isoform dependent difference in GFAP staining of either sham or TBI 

groups. The high levels of astrocytosis and microgliosis present at the injury site demonstrate a 

recruitment of these cells types to the injury. 
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Figure 6. TREM2 protein level and Astrocytosis are increased by TBI. 
Immunohistochemistry with anti-TREM2 antibody or anti-GFAP was performed in both sham and TBI mice 
(n=3/group). Percent intensity of Trem2 staining or GFAP staining was determined in the ipsilateral hemispheres. 
(A) Sham animals had low to no levels in Trem2. (B) APOE3 TBI and (C) APOE4 TBI animals had significantly 
higher levels of Trem2 when compared to their sham counterparts (p<0.01 for both APOE3 and APOE4). (D) 
Analysis of object area fraction demonstrates a significant main effect of injury (p<0.001), but not APOE isoform in 
Trem2 levels. Statistics is by Two-way ANOVA with post-hoc Tukey’s multiple comparisons test. (E) Sham 
animals demonstrated low GFAP staining levels. (F) APOE3 and (G) APOE4 TBI animals show increased GFAP 
staining compared to their sham counterparts, particularly near the injury site (APOE3: p<0.01; APOE4: p<0.001). 
Insets taken from the injury visualize the increased staining at higher magnification (20X). (H) Analysis of object 
area fraction demonstrates a significant main effect of injury (p<0.001), but not APOE isoform in GFAP levels. 
There was no significant difference between APOE3 and APOE4 animals, regardless of injury. Statistics is by Two-
way ANOVA with post-hoc Tukey’s multiple comparisons test. 
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The conclusion from these data is that, in both APOE isoforms, TBI affects resident 

microglia genes functionally related to immune response and phagocytosis, as well as astrocyte 

specific genes. 

ME Green is negatively associated with injury suggesting that genes, members of this 

module are downregulated by TBI (Fig. 13; Suppl. Materials). The related biological process that 

represents this network (module size = 854) was associated with GO category “Transport” and is 

represented by Camk2b, Pik3r2 and Pld3 for which genetic variants are associated with an 

increased risk of Alzheimer’s disease [57,134] and functionally have a role in hippocampal 

plasticity, phospholipid metabolism, brain development, and APP processing [35]. 

3.4.5 Networks associated with expressed APOE isoform 

As shown on Fig. 4, ME Darkred (Fig. 7, Fig. 14; Suppl. Materials) and Salmon (Fig. 8, Fig. 14; 

Suppl. Materials) are significantly associated with APOE isoform regardless of injury. On Fig. 

7A, the heat-map and bar plot representing ME Darkred demonstrate an increased expression of 

genes associated with this network in APOE4 mice (TBI+Sham) and a decreased expression in 

APOE3 mice (TBI+Sham). The biological process associated with ME Darkred network (module 

size = 31) was the GO term “Innate immunity” (Fig. 7B). The heatmap (Fig. 7C) shows the 

highest 50 upregulated genes when comparing APOE3 and APOE4 mice. We were interested 

and further validated one of the hub genes associated with BP “Innate Immunity” - Fyn (Fyn 

proto-oncogene, Src family tyrosine kinase). Fyn is a major regulator of pro-inflammatory 

processes, specifically microglia mediated neuroinflammation [103]. mRNA-seq (Fig. 7D) and 

protein expression level for Fyn are shown on Fig. 7E and F. Three of Serpina3 genes 

(Serpina3m, Serpina3f and Serpina3h) have been also identified as hub genes in this network. 
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ME Salmon positively correlated to APOE4-TBI mice and negatively to APOE3-TBI 

(r=0.41, p=0.01). Functionally, this module (module size = 65) is enriched in genes connected to 

the BP “Myelination” (Fig. 8 and Table 1). The network is significantly enriched with 

oligodendrocyte signature genes (18 genes out of 64 were oligodendrocyte specific). The 

representative network (Fig. 8B) was built using the hub genes Car2, F2ah, Mbp and Plp1 that 

are all coding for major components of myelin [5,21] and together with cholesterol, are 

particularly important for myelin formation and remodeling in the context of axonal loss and 

repair after TBI [119,120]. Mutations in the majority of the genes within the network lead to 

demyelination and hypomyelinating inherited disorders [28,120,122,131], or have been 

implicated in neurodegeneration, including Alzheimer’s Disease. Alternatively, the high 

presence of myelin related proteins, including Mag, myelin associated glycoprotein, could be 

indicative of the formation of a glial scar [145,116]. Chronically, a glial scar could prevent 

axonal regeneration and potentially explain a worse outcome in APOE4 TBI mice. mRNA-seq 

results between APOE4 TBI and APOE3 TBI for selected hub genes are shown on Fig. 8C.  
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Figure 7. ME darkred correlates to APOE isoform and is associated with innate immunity. 
(A) The expression bar plot shows the gene expression and eigengene expression within each sample. (B) Network 
of genes connected to the chosen hub gene Fyn representing innate immunity. (C) Heatmap of top 50 upregulated 
genes in comparing APOE3 to APOE4 mice. (D) mRNA-seq results for important genes within the network. The 
average expression was calculated as fold of APOE3 reads per million for each gene. Statistics is by edgeR, p<0.05.  
(E) Validation of mRNA-seq results by qPCR.  Statistics was determined by t-test. (F) Western blot results for 
APOE3 TBI versus APOE4 TBI animals for FYN and β-ACTIN validate mRNA-seq results. Proteins are 
normalized to levels of β-ACTIN and presented as fold of APOE3. 
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Figure 8. Gene-network module salmon correlates to APOE isoform in injury groups and is associated with 
myelination. 

(A) The expression barplot shows the gene expression and eigengene expression within each sample. (B) Network 
of genes connected to hub genes Car2, F2ah, Mbp and Plp1 representing myelination. (C) mRNA-seq results for 
important genes within the network. The average expression was calculated as fold of APOE3 TBI reads per million 
for each gene. Statistics is by edgeR, p<0.05. (D) Validation of mRNA-seq results by qPCR for Mbp and Plp1. The 
average expression was calculated as fold of all APOE3 TBI mice. Statistics was determined by t-test. 

3.5 DISCUSSION 

We examined the role of human APOE isoforms in the response to TBI in mice. Our study was 

designed with the goal to identify differences in cognitive performance, brain transcriptome and 

genome-wide correlated gene networks in adult (3-month-old) APOE targeted replacement mice, 

following CCI model of brain injury. We found that TBI significantly worsened performance in 

the anxiety-related EPM and the spatial learning task MWM, but the results showed no 

interaction of injury with APOE isoform. At baseline, animals expressing APOE4 had pre-
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existing deficits compared to APOE3 animals, but both groups displayed similar responses to 

injury although in general APOE3 mice performed better. In mice expressing either isoform, TBI 

significantly changed the transcriptome, particularly increasing the expression of genes related to 

immune response and phagocytosis, such as Trem2, Tyrobp, Clec7a, Cd68, Cx3cr1, with low to 

no expression of peripheral macrophage genes, such as Alox15 and P2rx4. We analyzed the 

effect of TBI on the transcriptome within each genotype and found similar biological processes 

affected, regardless of the genotype. The GO terms downregulated by TBI were also similar, 

with the top processes being regulation of transmembrane ion transport and potassium transport. 

We did identify an APOE isoform effect on the brain transcriptome in TBI mice, but this effect 

was entirely separate from the effect of injury. 

Using WGCNA we identified correlated gene networks associated with TBI. We 

determined differential effects of two traits – genotype and type of injury, and identified gene 

networks throughout the entire genome, that correlated with injury and with the expressed APOE 

isoform. To a very significant extent, WGCNA results confirmed the GO terms identified 

through pathway analysis using the lists of differentially expressed genes in response to TBI. 

Most highly affected by TBI network was represented by “Immune Response”. Importantly, 

neither APOE3 or APOE4 isoform had a specific modulatory effect on this network: validations 

of several genes by RT-qPCR, including Trem2 by IHC, found no differences between mice 

expressing APOE3 or APOE4 (Fig. 5 & 6). This network was highly enriched in microglia 

signature genes; among those, Trem2, Clex7a and Hexb were identified as hub genes suggesting 

that at our chosen time-point – 14 days post injury, the elevated immune response in the brain 

was predominantly a result of activated microglia and astrocytes, which was confirmed by 

immunohistochemistry and is consistent with TREM2 localization. Recently, human TREM2 has 
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come under scrutiny for its role in inflammation and neurodegeneration. TREM2 is expressed 

solely in cells of myeloid lineage, including microglia, and TREM2 mutations or mutations in the 

gene TYROBP, coding for its adaptor protein (aka DAP12) are linked to Nasu-Hakola disease 

[13]. Although its natural ligands are unknown, binding of TREM2 to negatively charged lipids, 

results in TYROBP phosphorylation, activation of intracellular spleen tyrosine kinase SYK, and 

thus SYK-RAS-ERK signaling pathway, actin remodeling and calcium mobilization needed for 

phagocytosis [30]. Using fluid percussion model of injury in Trem2 deficient mice Lamb’s group 

has recently shown that in injured mice there was a reduction of infiltrating macrophages, 

reduced inflammatory cytokines, less hippocampal volume loss and a rescue of spatial memory 

deficits [118]. Yet, a different study found that Trem2-/- mice had decreased phagocytosis after 

stroke and worsened neurological outcomes [66]. Obviously, the contradictory results of these 

studies point to the need of standardized study designs and data collection to understand the role 

of TREM2 in the response to TBI and subsequent repair. 

The “Transport” network, ME Green, was significantly affected and down-regulated by 

injury in both genotypes. The hub genes of this network include Camk2b, which is important for 

both hippocampal-dependent learning and long-term potentiation [17]. The kinase transcribed by 

Camk2b is necessary for the proper targeting of CAMK2a at the synapse for promotion of 

dendritic spines and synapse formation. Pld3 is another gene in the “Transport” network, which 

is highly expressed in the brain and may be involved in synaptic transmission and signal 

transduction [35]. A rare missense variant of PLD3 was linked to an increased risk of late onset 

AD and since a decreased expression of PLD3 is associated with higher levels of extracellular 

Aβ, PLD3 may have some role in APP processing [102]. 
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In injured mice “Innate immunity” was the network of genes differentially affected by 

APOE isoform. The network was built of transcripts connected to Fyn and Serpina3. Since tau 

and Fyn have been shown to co-localize in dendrites, not surprisingly, recent studies have 

suggested a pathogenic role for Fyn in AD, [74]. FYN interacts with Aβ, which possibly serves 

as a critical step in triggering downstream neuronal pathology. Moreover, it has been suggested 

that binding of Aβ oligomer species to the neuronal membrane receptors at the post-synaptic 

terminal may activate FYN by phosphorylation, resulting in N-methyl-D-aspartate (NMDA) 

receptor phosphorylation, dendritic spine loss and tau phosphorylation [100]. Serpina3m, 

Serpina3f and Serpina3h - Serpina3 genes identified as hub genes in ME Darkred, reside on 

mouse chromosome 12 (12F1 locus) and code for isoforms of the plasma protease inhibitor α1-

antichymotrypsin [48]. Initially, SERPINA3 binding to Aβ peptide and subsequent deposition of 

this complex in amyloid plaque has been linked to the progression of Alzheimer’s disease (see 

[1] for review). Genetic variants of α1−antichymotrypsin have been considered as increasing the 

risk of LOAD, or a modifier of the risk imposed by APOE4 [50,64]. Results of more recent 

studies, however, have demonstrated a neuroprotective effect of the protein SERPINA3 in in 

vitro and in vivo models of multiple sclerosis, as well as accelerated tissue repair in a diabetic 

mouse model [58,53]. 

The “myelination” network represented by ME salmon was differentially affected by 

APOE isoform within only the injury groups. ME Salmon was upregulated in APOE4 TBI mice 

and downregulated in APOE3 TBI mice, and not significant in sham groups. The network was 

built on several myelin related proteins, such as Car2, F2ah, Mbp and Plp1, and was also highly 

enriched in oligodendrocyte specific markers. The presence of oligodendrocytes after injury is 

not surprising, as myelin and cholesterol would both be necessary components for axonal repair 
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and regeneration [119,120]. However, myelin related proteins, particularly Mag, which was 

identified as a hub gene within the network, have been associated with inhibited axonal 

outgrowth and the formation of a glial scar [145]. The role of this network in repair and scar 

formation could provide a mechanism for worse outcome in APOE4 isoform after TBI that is 

temporally dependent. 

The underlying molecular mechanisms by which human APOE isoforms, globally 

expressed in a mouse, affect the outcome of TBI are not clear, and in general are poorly 

understood. While controversial in their findings and final interpretation, many studies have 

suggested, so far, that the inheritance of APOE4 allele in humans or the expression of APOE4 in 

animal models would result in a worse outcome following brain injury. Several human studies, 

however, have shown that APOE4 had no effect on outcome of TBI [26,90]. In contrast, the 

majority of animal studies, mostly in AD mouse models expressing human APP, have 

demonstrated APOE4 plays a significant role in determining the pathology and recovery 

following TBI, possibly in an age dependent manner [12,86,14]. The animal models of TBI 

obviously do not, and cannot, represent all aspects of brain pathology as a response to brain 

trauma at molecular, cellular and organ levels. Moreover the lack of standardized study design 

and data collection makes it extraordinarily difficult to compare the results of the studies 

performed so far and to draw definitive conclusions. The results of our study did not suggest a 

major role for APOE3 or APOE4 isoforms in modulating the response to TBI. We identified, 

however, networks of genes in brains of APOE3 and APOE4 injured mice that have clearly 

pointed out to genes, and thus their proteins, with a potential to become useful and rational 

targets for future research and drug discovery relevant to TBI. 
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The major physiological role of APOE, as a principal apolipoprotein of HDL-like 

particles in brain, is to transport cholesterol and phospholipids in brain interstitial space/fluid. 

Thus, it is reasonable to assume that other genes/proteins, involved in brain cholesterol 

metabolism with a regulatory role in APOE expression or in the brain cell type specific transport 

of cholesterol may play an equally significant, if not a larger role in the response to injury. In our 

sequencing datasets and validation assays we found that following injury Abca1 mRNA and 

ABCA1 protein levels were increased. An increased ABCA1 protein level in a rat model of TBI 

has already been reported [22]. Thus, the elevated expression of ABCA1 following TBI could be 

a response to the increased demand for cholesterol and phospholipids, necessary for axonal 

repair. The hub genes in ME Salmon provide additional support that a correlated response to TBI 

includes upregulation of network of genes relevant to cholesterol transport and myelin formation. 

While in normal conditions in adult, developed brain oligodendrocytes synthesize cholesterol 

and do not depend on cholesterol transported by APOE particles, they express LDL-R and 

receptor mediated endocytosis of lipoproteins, APOE included, is a very important transport 

mechanism for cholesterol supply in traumatized brain areas with axonal damage and undergoing 

myelination/myelin remodeling. APOE mediated stimulation of Neural Stem Cells and enhanced 

oligodendrogenesis, which require sufficient amounts of cholesterol and phospholipids, and to 

some extent APOE/LDL-R interaction for activation of downstream signaling cascades, most 

probably have an important role for improved myelination and axonal restoration as part of the 

recovery process. 

In conclusion, we found that APOE3 and APOE4 targeted replacement mice demonstrate 

similar cognitive impairment following moderate TBI with differences reflecting the preexisting 

deficits in APOE4 mice at baseline. Transcriptional profiling 14 days following TBI revealed a 
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clear separation between sham and injured animals without a difference based on APOE isoform. 

Top up-regulated categories in both genotypes were highly consistent and were associated with 

Immune System, Innate Immune and Inflammatory Responses. Ion and Potassium Transport 

categories were downregulated, similarly in both genotypes. Using WGCNA, we determined that 

TBI and APOE affected separate networks independently. Immune Response was the most 

affected network driven by TBI in both genotypes, while both sham and injured animals were 

differentially affected by APOE isoform, with increased expression of genes associated with 

functional groups/modules representing Innate Immunity. The network representing Myelination 

was affected by APOE isoform across the injury groups, demonstrating a difference in response 

to injury between APOE3 and APOE4 mice. The results of this study indicate that distinct 

cellular pathways/networks drive the APOE isoform specific phenotype and the response to TBI 

at this acute time point. 

3.6 SUPPLEMENTAL MATERIALS & FIGURES 

3.6.1 TBI consistently affects biological processes in both APOE isoforms 

Table 2a-b show several genes of interest differentially expressed between TBI versus Sham, as 

well as APOE4 versus APOE3. We were interested if there was a similarity between the 

biological processes affected by TBI in APOE3 and E4 mice. Top up-regulated categories in 

both genotypes were highly consistent and were associated with “immune system process”, 

“innate immune response” and “inflammatory response”(Table 3a-b). Top down-regulated 

categories in both genotypes were also similar including “regulation of ion transmembrane 
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transport”, and “potassium ion transport” (Table 4a-b). Interestingly, one category down-

regulated by TBI in APOE4 mice was associated with cholesterol and lipid metabolism including 

genes such as 3-Hydroxy-3-Methylglutaryl-CoA Reductase (Hmgcr) and NPC1 like intracellular 

cholesterol transporter 1 (Npc1l1). In APOE3 mice, categories also affected were “regulation of 

synaptic plasticity” and “long-term potentiation”. 
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Table 2. Differentially expressed genes of interest and their corresponding coefficients. 

A. TBI versus Sham 
 

B. APOE4 versus APOE3 
   Gene APOE3  APOE4  

 
  Gene Sham TBI 

 

U
p 

in
 T

B
I 

Abca1 1.78 1.83 
 

U
p 

in
 A

PO
E4

 

Abca7 0.12 nf 
 ApoD 1.02 0.96 

 
Plp1 0.14 0.32 

 Axl 0.72 0.71 
 

Ptprh 3.15 2.78 
 Cd33 1.25 1.36 

 
Serpina3f 2.80 2.07 

 Cd68 2.22 1.96 
 

Serpina3h 4.37 3.73 
 Clec7a 5.26 5.84 

 
Serpina3m 4.45 2.59 

 Clu 0.79 0.70 
 

Wnt3 0.36 0.88 
 Cx3cr1 0.94 0.94 

 
Fyn 0.69 0.59 

 Gfap 2.29 2.24 
 

Kirrel2 0.88 1.06 
 Itgam 1.16 1.11 

 
Mag nf 0.42 

 Itgax 4.15 4.05 
 

Mbp 0.23 0.34 
 Ly86 1.87 1.67 

 
Mog 0.22 0.31 

 Spi1 1.47 1.65 
 

Picalm nf 0.13 
 Tgfb1 0.95 0.93 

 

D
ow

n 
in

 A
PO

E4
 Wnt2 -0.54 -0.52 

 Tgfbr1 0.81 0.61 
 

Pcdh11x -0.40 nf 
 Trem2 2.03 1.79 

 
Gpr68 -0.34 -0.57 

 Treml2 2.99 2.81 
 

Celf1 -0.12 nf 
 Tyrobp 1.84 1.69 

 
Celf2 -0.12 nf 

 

D
ow

n 
in

 T
B

I 

Atp1b1 -0.17 -0.18 
 

Apoc1 -0.45 nf 
 Bdnf -0.77 -0.58 

      Egr1 -0.95 -0.72 
      Epha1 -0.47 -0.32 
      Grin2a -0.70 nf 
      Ldlr -0.63 -0.37 
      Stx1a -0.28 -0.32 
      a Several significant transcripts both up- and down-regulated are shown beside corresponding coefficients for 

APOE3 mice, TBI versus sham and APOE4  mice, TBI versus sham. b Several significant transcripts both up- and 
down- regulated in APOE4 are shown beside corresponding coefficients for Sham, APOE4 versus APOE3 and TBI, 
APOE4 versus APOE3. 
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Table 3. TBI increases the expression of genes related to immune response and inflammation in both APOE3 
and APOE4 mice. 

A. Term Count % PValue FE Benjamini 
GO:0002376~immune system process 97 19.52 1.51E-71 10.63 3.28E-68 
GO:0045087~innate immune response 85 17.10 3.60E-55 8.83 3.91E-52 
GO:0006954~inflammatory response 62 12.47 3.51E-35 7.42 2.53E-32 
GO:0006955~immune response 50 10.06 1.17E-25 6.53 6.36E-23 
GO:0051607~defense response to virus 37 7.44 3.05E-24 9.20 1.32E-21 
GO:0009615~response to virus 24 4.83 2.33E-18 11.79 8.40E-16 
GO:0006935~chemotaxis 27 5.43 3.68E-18 9.56 1.14E-15 
GO:0030593~neutrophil chemotaxis 21 4.23 2.22E-16 12.18 6.02E-14 
GO:0071346~cellular response to interferon-gamma 19 3.82 1.92E-14 11.67 4.63E-12 
GO:0071222~cellular response to lipopolysaccharide 30 6.04 6.89E-14 5.72 1.49E-11 
GO:0019886~antigen processing and presentation of 

exogenous peptide antigen via MHC class 
II 10 2.01 4.20E-12 29.84 8.27E-10 

GO:0050729~positive regulation of inflammatory 
response 16 3.22 2.57E-11 10.28 4.65E-09 

GO:0070374~positive regulation of ERK1 and ERK2 
cascade 25 5.03 3.58E-11 5.44 5.96E-09 

 

B. Term Count % PValue FE Benjamini 
GO:0002376~immune system process 100 20.12 3.38E-75 10.94 7.14E-72 
GO:0045087~innate immune response 82 16.50 9.21E-52 8.50 9.73E-49 
GO:0006954~inflammatory response 68 13.68 2.81E-41 8.12 1.98E-38 
GO:0051607~defense response to virus 40 8.05 1.56E-27 9.92 8.27E-25 
GO:0006955~immune response 50 10.06 1.30E-25 6.51 5.51E-23 
GO:0009615~response to virus 26 5.23 8.36E-21 12.75 2.95E-18 
GO:0006935~chemotaxis 29 5.84 2.31E-20 10.24 6.98E-18 
GO:0030593~neutrophil chemotaxis 22 4.43 1.35E-17 12.73 3.56E-15 
GO:0050729~positive regulation of inflammatory 

response 19 3.82 8.30E-15 12.18 1.96E-12 
GO:0071222~cellular response to lipopolysaccharide 28 5.63 3.05E-12 5.33 6.45E-10 
GO:0071346~cellular response to interferon-gamma 17 3.42 4.16E-12 10.42 8.00E-10 
GO:0070374~positive regulation of ERK1 and ERK2 

cascade 26 5.23 5.85E-12 5.64 1.03E-09 
GO:0042742~defense response to bacterium 26 5.23 8.28E-12 5.56 1.35E-09 

Top upregulated functional annotation terms were determined using DAVID for a APOE and b APOE4 sham versus 
injury mice using a gene list with a cut-off at p<0.05. Common GO terms between the genotypes are listed in bold. 
FE, fold enrichment. 
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Table 4. TBI decreases the expression of genes related to transport and ion transmembrane transport in 
APOE3 and APOE4 mice. 

A. Term Count % PValue FE Benjamini 
GO:0034765~regulation of ion transmembrane transport 26 5.24 4.32E-16 8.42 9.17E-13 
GO:0006813~potassium ion transport 25 5.04 1.60E-15 8.48 1.60E-12 
GO:0071805~potassium ion transmembrane transport 21 4.23 1.16E-14 10.16 8.02E-12 
GO:0006811~ion transport 49 9.88 1.78E-14 3.64 9.17E-12 
GO:0042391~regulation of membrane potential 16 3.23 6.35E-09 7.10 2.62E-06 
GO:0055085~transmembrane transport 26 5.24 1.37E-06 3.08 4.73E-04 
GO:0048791~calcium ion-regulated exocytosis of 

neurotransmitter 8 1.61 2.65E-06 12.30 7.81E-04 
GO:0007612~learning 11 2.22 2.65E-06 7.18 6.85E-04 
GO:0035556~intracellular signal transduction 27 5.44 3.21E-06 2.86 7.36E-04 
GO:0048167~regulation of synaptic plasticity 9 1.81 4.60E-06 9.23 9.49E-04 
GO:0060291~long-term synaptic potentiation 9 1.81 1.52E-05 7.91 2.86E-03 
GO:0007156~homophilic cell adhesion via plasma 

membrane adhesion molecules 15 3.02 2.72E-05 3.96 4.67E-03 
GO:0006810~transport 69 13.91 4.90E-05 1.63 7.75E-03 
GO:0060052~neurofilament cytoskeleton organization 5 1.01 5.34E-05 21.53 7.85E-03 

 

B. Term Count % PValue FE Benjamini 
GO:0034765~regulation of ion transmembrane transport 23 4.66 3.79E-13 7.50 7.73E-10 
GO:0006813~potassium ion transport 20 4.05 9.54E-11 6.83 9.74E-08 
GO:0006695~cholesterol biosynthetic process 11 2.23 1.53E-09 14.91 1.04E-06 
GO:0008202~steroid metabolic process 15 3.04 6.86E-09 7.74 3.50E-06 
GO:0006811~ion transport 38 7.69 2.33E-08 2.84 9.50E-06 
GO:0016126~sterol biosynthetic process 9 1.82 7.97E-08 15.01 2.71E-05 
GO:0071805~potassium ion transmembrane transport 14 2.83 1.21E-07 6.82 3.52E-05 
GO:0008203~cholesterol metabolic process 12 2.43 6.10E-06 5.85 1.56E-03 
GO:0008299~isoprenoid biosynthetic process 6 1.21 3.10E-05 15.31 7.00E-03 
GO:0006694~steroid biosynthetic process 9 1.82 8.36E-05 6.30 1.69E-02 
GO:0051480~regulation of cytosolic calcium ion 

concentration 7 1.42 1.11E-04 8.93 2.05E-02 
GO:0006629~lipid metabolic process 25 5.06 1.78E-04 2.36 2.98E-02 
GO:0042391~regulation of membrane potential 10 2.02 3.96E-04 4.47 6.04E-02 
GO:0006816~calcium ion transport 12 2.43 4.23E-04 3.69 5.99E-02 

Top downregulated functional annotation terms were determined using DAVID in a APOE3 and  b APOE4 sham 
versus injury mice using a gene list with a cut-off at p<0.05. Common GO terms between the genotypes are listed in 
bold. FE, fold enrichment. 
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3.6.2 Gene Set Enrichment Analysis identifies biological processes commonly effected by 

injury in both isoforms 

To further identify enriched pathways commonly affected by TBI in both isoforms, we used 

Gene Set Enrichment Analysis (GSEA) assessing all transcripts without a cutoff [126]. To 

examine the effect of injury on transcriptome, we combined the results for both isoforms in TBI 

group (E3-TBI+E4-TBI) and compared them to sham treated (E3-sham + E4-sham). The bubble 

plot shown on Fig. 9a visualizes the biological process categories upregulated by TBI and 

amongst them are “Immune System Response”, “Receptor Activity”, “Cysteine Type 

Endopeptidase Activity”, “G Protein-coupled Receptor Binding” and “Chemokine Receptor 

Binding”. Top downregulated categories are “Synaptic Transmission” and “Potassium Ion 

Transport” but they were not statistically significant.  

On Fig. 9 are shown the enplots and heatmaps for the top upregulated categories by TBI 

namely “Immune System Response” (NES=1.60, p<0.002, Fig. 9b-c) and “Receptor Activity” 

(NES=1.55, p<0.013, Supplementary Fig. 9e-f), as well as the RNA-seq results on chosen genes 

from these categories (Supplementary Fig. 9d and g). To confirm the results we validated several 

of these genes by qPCR or Western blotting.  
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Figure 9. Gene set enrichment analysis of injury. 
 Compared are all TBI mice (APOE3-TBI+APOE4-TBI) versus all Sham mice (APOE3-Sham + APOE4-Sham). a 
The bubble plot shows top ranked GO terms affected by the injury. Color indicates normalized p value and size of 
bubble indicates the number of genes assigned to the GO term. b Heatmap and c enrichment score curve (enplot) 
provided by the GSEA analysis for “Immune System Process”. The upregulated genes are represented in red and 
downregulated genes are represented in blue. d RNA-seq results for selected genes from the GO term “Immune 
System Process” are shown as normalized to the average of sham. e Heatmap and f enplot provided by the GSEA 
analysis for “Receptor Activity”. g RNA-seq results for selected genes from the GO term “Receptor Activity” are 
shown as normalized to the average of sham. 
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3.6.3 WGCNA identifies correlations between modules 

Fig. 10A depicts a hierarchical clustering dendrogram of the eigengenes indicating modules with 

similar expression profiles. The heatmap represents the adjacency between modules (Fig. 10B).  

 

 

 

 

Figure 10. (Related to Fig. 4) WGCNA identified correlations between modules. 
a Hierarchical clustering dendrogram of the eigengenes showing the level of similarity and dissimilarity of 
eigengenes. b Heatmap of modules showing level of adjacency, with red indicating high level and blue indicating 
low level. 
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3.6.4 ME brown strongly correlates with injury regardless of APOE isoform 

In Fig. 11a and b, the scatterplot showing the correlation between connectivity and Gene 

significance (GS) is shown for each isoform. This demonstrates the functional relationship 

between the genes within the module. As seen in Fig. 11c and d, the correlation between Module 

membership (MM) and GS for genes within ME brown demonstrates how strongly they relate to 

the biological process the module represents, “immune response and “innate immune response” 

for each isoform. The bar plot of module significance for each isoform demonstrates the ME 

brown is strongly associated with injury regardless of APOE isoform (Fig. 11e and f). 

3.6.5 Microglia localize to the injury site in TBI brains 

To visualize recruitment of microglia to the site of injury, we performed immunohistochemistry 

against Iba1 (Fig. 12). Sham mice showed little Iba1 staining in both APOE3 (Fig. 12a) and 

APOE4 (Fig. 12b) isoforms. In comparing between TBI and sham, both APOE3 (Suppl. Fig. 

12c; p=0.04) and APOE4 (Fig. 12d, p=0.007) mice had significantly higher levels of Iba1 

staining. These results demonstrate the significant microglia presence around the injury site, 

consistent with TREM2 localization. 
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Figure 11. (Related to Fig. 5) Module related to injury was identified by relationship between gene 
significance and module membership. 

a Scatter plot showing the correlation between connectivity and gene significance (GS) for the brown module for 
APOE3-TBI mice. Correlation value and p value are indicated in the plot. b Scatter plot for brown module for 
APOE4-TBI mice.  c Scatter plot for brown module showing the correlation between module membership (MM) 
and GS for APOE3-TBI mice. The degree of association between MM and GS was evaluated by Pearson 
correlation. Correlation value and p value are indicated in the plot. d Scatter plot showing the correlation between 
MM and GS brown module for APOE4-TBI mice. e Bar plot of module significance (MS) for all module eigengenes 
for APOE3-TBI mice. MS denotes mean of the absolute value of gene significance across modules for APOE 
isoform. f Bar plot of MS for all module eigengenes for APOE4-TBI mice. 
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Figure 12. Microglia are significantly higher in TBI animals and concentrated at the injury site. 
Immunohistochemistry with anti-Iba1 antibody was performed in both sham and TBI mice (n=3/group). Percent 
intensity of Iba1 staining was determined in the ipsilateral hemisphere. a APOE3 and b APOE4 sham animals 
demonstrated low Iba1 staining levels. c APOE3 and d APOE4 TBI animals show increased GFAP staining 
compared to their sham counterparts, particularly near the injury site (APOE3: p=0.049; APOE4: p=0.007). Insets 
taken from the injury visualize the increased staining at higher magnification (20X). e Analysis of object area 
fraction demonstrates a significant main effect of injury (p=0.0005), but not APOE isoform in Iba1 levels. There 
was no significant difference between APOE3 and APOE4 animals, regardless of injury. Statistics is by Two-way 
ANOVA with post-hoc Tukey’s multiple comparisons test. 
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3.6.6 Gene-network associated with ‘transport’ is downregulated in injured mice 

We found that ME green is negatively associated with injury suggesting that genes members of 

this module are downregulated in TBI. As seen in Fig. 13a, module eigengene expression is 

consistently downregulated in TBI animals. The related biological process that represents the 

genes within this network (module size = 854) was associated with GO category “transport”.  We 

were most interested in hub genes connected to this network such as calcium/calmodulin-

dependent protein kinase 2B (Camk2b), and phosphatidylinositol 3-kinase regulatory subunit 2 

(Pik3r2) (Fig. 13b).  Interestingly, the network also includes the gene phospholipase D family 

member 3 (Pld3), for which several variants are associated with an increased risk of Alzheimer’s 

disease [57,134]. RNA-seq results for important genes within the network are shown (Fig. 13c). 

3.6.7 ME Darkred and ME Salmon both correlate with APOE isoform 

Fig. 14a shows the bar plot of module significance (MS) for all groups. MS denotes mean of the 

absolute value of gene significance across modules for APOE isoform. Darkred and Salmon 

module show the highest gene significance, implying that gene expression of these modules is 

strongly associated with APOE isoform. Scatter plots are shown for the correlation between 

connectivity and GS of ME darkred (Fig. 14b) and ME salmon (Fig. 14c) for all mice. 

Additionally, scatter plots showing the correlation between MM and GS are shown for ME 

darkred (Fig. 14d) and ME salmon (Fig. 14e).   
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Figure 13. Gene-network module green is downregulated in TBI animals and reflects biological process 
“transport”. 

The green module is downregulated in correlation with TBI. a The expression barplot shows the gene expression 
and eigengene expression within each sample. b Network of genes connected to hub genes Pik3r2 and Camk2b. c 
RNA-seq results for important genes within the network. The average expression was calculated as fold of Sham 
reads per million for each gene and sample to which the TBI animals are normalized. Statistics is by edgeR, p<0.05. 
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Figure 14. (Related to Figure 7-8). Modules related to APOE isoform were identified by relationship between 
gene significance and module membership. 

a Bar plot of module significance (MS) for each Module eigengene (ME). b Scatter plot showing the correlation 
between connectivity and gene significance (GS) of ME darkred for all mice. Correlation value and p value are 
indicated in the plot. c Scatter plot for ME salmon.  d Scatter plot for ME darkred module showing the correlation 
between module membership (MM) and GS. The degree of association between MM and GS was evaluated by 
Pearson correlation. Correlation value and p value are indicated in the plot. e Scatter plot showing the correlation 
between MM and GS of ME salmon. 
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4.0  ABCA1 HAPLODEFICIENCY AFFECTS THE BRAIN TRANSCRIPTOME 

FOLLOWING TRAUMATIC BRAIN INJURY IN MICE EXPRESSING HUMAN APOE 

ISOFORMS 

The data presented in this article has been accepted to Acta Neuropathol Commun. (2018). 
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4.1 ABSTRACT 

Expression of human Apolipoprotein E (APOE) modulates the inflammatory response in an 

isoform specific manner, with APOE4 isoform eliciting a stronger pro-inflammatory response, 

suggesting a possible mechanism for worse outcome following traumatic brain injury (TBI). 

APOE lipidation and stability is modulated by ATP-binding cassette transporter A1 (ABCA1), a 

transmembrane protein that transports lipids and cholesterol onto APOE. We examined the 

impact of Abca1 deficiency and APOE isoform expression on the response to TBI using 3-

months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement 
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mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene 

(E3/Abca1+/-; E4/Abca1+/-). TBI-treated mice received a craniotomy followed by a controlled 

cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same 

surgical procedure without the impact. We performed RNA-seq using samples from cortices and 

hippocampi followed by genome-wide differential gene expression analysis. We found that TBI 

significantly impacted unique transcripts within each group, however, the proportion of unique 

transcripts was highest in E4/Abca1+/- mice. Additionally, we found that Abca1 haplodeficiency 

increased the expression of microglia sensome genes among only APOE4 injured mice, a 

response not seen in injured APOE3 mice, nor in either group of sham-treated mice. To identify 

gene networks, or modules, correlated to TBI, APOE isoform and Abca1 haplodeficiency, we 

used weighted gene co-expression network analysis (WGCNA). The module that positively 

correlated to TBI groups was associated with immune response and featured hub genes that were 

microglia-specific, including Trem2, Tyrobp, Cd68 and Hexb. The modules positively correlated 

with APOE4 isoform and negatively to Abca1 haplodeficient mice represented “protein 

translation” and “oxidation-reduction process”, respectively. Our results reveal E4/Abca1+/- TBI 

mice have a distinct response to injury, and unique gene networks are associated with APOE 

isoform, Abca1 insufficiency and injury. 

4.2 INTRODUCTION 

Traumatic brain injury (TBI) is a significant public health concern; it is a major cause of death 

and disability in the United States, and its occurrence is highest among multiple vulnerable 

populations, including the elderly, young adults, and military personnel [42]. No treatment 
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currently exists for the approximately 2 million cases of TBI sustained each year in the United 

States, and the costs of medical care for 2010 were estimated at $76.5 billion annually [25].  

TBI is caused by an initial external force, whether a physical object or inertia, contacting 

the head [80]. The impact and initial mechanical stress placed on the cells constitute the primary 

injury, whereas the secondary injury occurs after the inciting traumatic event, and involves 

multiple pathways and signaling cascades that can cause further damage [125,8,37]. 

Inflammation is a major component of the secondary injury. Inflammation is present in every 

case of TBI and may be a driving force for secondary pathology [37]. Chronic 

neuroinflammation following TBI was closely associated with neuronal death and impaired cell 

proliferation in locations both immediately adjacent to, and more distant from, the site of injury 

[3]. Many studies have shown that levels of inflammation and inflammatory molecules are 

strongly correlated with multiple measures of outcome in patients, including neurobehavioral 

impairments and survival rates [91,144]. Microglia are the brain’s main form of immune 

response to infection, disease, and injury, as well as the source of inflammation. As such, 

inflammation and microglia have been recent concentrations of research as a means of 

developing therapies and improving outcomes of TBI. 

Outcomes of TBI include possible changes in cognition, behavior, emotion, and sensory 

processing, all of which are influenced by injury severity and location [105,49,11]. Additionally, 

research has linked TBI to the risk of developing neurodegenerative diseases, including chronic 

traumatic encephalopathy and Alzheimer’s disease (AD) [109]. The high level of heterogeneity 

in outcomes suggests a significant role for genetic influence on brain susceptibility and recovery 

[40,141]. The apolipoprotein E (APOE) gene has been frequently studied to determine its role in 

TBI and its isoform-dependent impact on outcome. The APOEε4 allele is the strongest genetic 
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risk factor for late onset AD, and is thought to confer worse outcome after TBI [6]. APOEε4 

carriers have been found to have slower recovery, increased risk of posttraumatic seizures, and 

worse memory performance after TBI [38,34,6]. However, multiple studies also show that 

APOEε4 carriers did not differ from non-carriers in cognitive performance, functional outcomes 

or recovery after TBI [111,26]. The contradictory results so far emphasize the need for more 

research on APOE and TBI. 

APOE is involved in several pathways after a TBI occurs, including inflammation [68]. 

Inheritance of the APOEε4 allele is associated with increased inflammatory responses, including 

after TBI [86]. APOE4 may induce a more robust pro-inflammatory reaction from microglia and 

may suppress anti-inflammatory signaling [77,10,79,73]. This may be a result of decreased 

stability and faster catabolic degradation of APOE4, compared to the other isoforms, which is 

possibly due to its lower lipidation levels [68]. APOE is secreted as nonlipidated apolipoprotein, 

cholesterol and phospholipid efflux to lipid-poor APOE is mediated by ATP Binding Cassette 

Transporter A1 (ABCA1) [20]. Abca1 deficiency results in decreased APOE lipidation and 

APOE levels [71,46]. ABCA1 may also play a role in modulating the inflammatory response in 

the brain. Mice lacking brain ABCA1 saw increased inflammatory gene expression, and the 

microglia cultured from these mice exhibited an increased pro-inflammatory response, as seen by 

higher levels of TNFα secretion and lower phagocytic activity, in response to lipopolysaccharide 

administration [65]. It is not known how Abca1 haploinsufficiency may influence TBI. 

We recently performed transcriptional profiling of APOE expressing mice after TBI 

using Next Generation Sequencing [24]. Using a network-based approach, we were able to 

identify distinct modules correlated to injury and APOE isoform, as well as a module driven by 

APOE isoform across TBI groups. The aim of this study was to examine the effect of Abca1 
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haploinsufficiency on gene expression induced by TBI in APOE targeted replacement mice using 

transcriptional profiling and a network-based approach. We used 3-month-old mice expressing 

human APOE3+/+ and APOE4+/+ isoforms (E3/Abca1+/+ and E4/Abca1+/+, respectively), and 

compared them to their Abca1 haploinsufficient counterparts (E3/Abca1+/- and E4/Abca1+/-, 

respectively), after performing a controlled cortical impact. Transcriptional profiling of 

hippocampal and cortical tissue from the injury site was performed using RNA-sequencing 

(RNA-seq). E4/Abca1+/- mice had higher expression levels of the common up-regulated 

transcripts after TBI, which included genes related to the immune response and inflammatory 

response. We then examined how ABCA1 insufficiency impacted expression of the microglia 

sensome genes, and found that E4/Abca1+/- TBI mice expressed these genes higher than 

E4/Abca1+/+ TBI mice, whereas no difference was found when comparing sham Abca1+/- to 

Abca1+/+ mice of either isoform. There was no effect of Abca1 haploinsufficiency on the 

expression of microglia genes in APOE3 TBI mice. We were able to correlate the transcriptome 

to each phenotype using a network-based approach, Weighted Gene Co-expression Network 

Analysis (WGCNA). We found that the immune response module, although correlated positively 

to all TBI groups regardless of APOE isoform or Abca1 copy number, consisted of genes 

expressed at higher levels in E4/Abca1+/- TBI mice, and featured microglia-specific hub genes, 

including Trem2, Tyrobp, Hexb, and Cd68. Our results demonstrate an effect of ABCA1 

deficiency on microglia gene expression after TBI in APOE4 mice. 



 72 

4.3 MATERIALS & METHODS 

4.3.1 Animals 

All animal experiments were approved through the University of Pittsburgh Institutional Animal 

Care and Use Committee and carried out in accordance with PHS policies on the use of animals 

in research. Human APOE3+/+ and APOE4+/+ targeted replacement mice (referred to as 

E3/Abca1+/+ and E4/Abca1+/+) were bred to Abca1+/- mice to generate APOE3+/+/Abca1+/- and 

APOE4+/+/ Abca1+/- (referred to E3/Abca1+/- and E4/Abca1+/-, respectively) [23,46]. All mice 

were on the C57BL/6 genetic background and experimental groups consisted of both genders. 

Experimental mice were kept on a 12 h light-dark cycle with ad libitum access to food and water. 

At 3 months of age, these mice were randomly assigned to either sham or controlled cortical 

impact (CCI) experimental group. Mice were handled for 2 days (5 min per day) prior to surgical 

procedures. All materials were purchased through ThermoFisher Scientific, unless otherwise 

noted. 

4.3.2 Traumatic Brain Injury 

CCI model of brain injury was performed as previously described [24]. Anesthesia was induced 

using 5% isoflurane, after which it was maintained at 1.5% isoflurane. The head was secured 

using a stereotaxic frame, and core body temperature was held at 37°C using a heating pad. After 

shaving the heads, two separate iodine - alcohol washes were performed to sterilize the surgical 

site. A 50% mixture of bupivacaine and lidocaine was applied to the area and ophthalmic 

ointment was applied to the eyes. The scalp was opened with a midline incision exposing the 
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dorsal aspect of the skull and the skull leveled. A 4.5 mm diameter craniotomy was performed 

over the left parietal cortex using a dental drill. Once the bone flap was removed, mice in the 

CCI group received a single impact at 1.0 mm depth with a 3.0 mm diameter metal tip onto the 

cortex (3 m/s, 100 ms dwell time; Impact One, Leica). Sham mice received identical anesthesia 

and craniotomy, but did not receive impact and are considered negative controls. Following the 

impact, the surgical site was sutured, triple antibiotic cream applied, Buprenex (0.1 mg/kg; IP) 

provided for analgesia, and sterile saline administered for rehydration. Mice were allowed to 

recover on heating pad, until freely mobile, before returning to their home cage. 

4.3.3 Tissue Processing 

Fourteen days post-injury, mice were anesthetized using Avertin (250 mg/kg of body weight, 

i.p.) and perfused transcardially with 20mL of cold 0.1M PBS pH 7.4 [95,24]. Brains were 

rapidly removed and a 1.5 mm coronal section of the brain, including the injury site, taken by 

slicing the brain at -2.5 mm and -4.0 mm from bregma. Within the coronal slice, the hemispheres 

were separated, and the subcortical tissue was dissected out; hippocampal and cortical tissue 

were snap-frozen together for RNA isolation and RNA-seq. 

4.3.4 RNA Isolation and RNA Sequencing 

All procedures were performed as before [96,24]. CCI and sham mice consisting of both genders 

for each genotype were used for RNA-seq. RNA was isolated from frozen cortices and 

hippocampi at the injury site and purified using RNeasy kit (Qiagen) according to the 

manufacturer recommendations. Quality control of all RNA samples was performed on a 2100 
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Bioanalyzer instrument (Agilent Technologies) and samples with RIN > 8 were further used for 

library construction using RNA Library Prep Reagent Set (Illumina). Libraries for Next 

Generation Sequencing were generated by PCR enrichment including incorporation of barcodes 

to enable multiplexing. Sequencing was performed by the Next Generation Sequencing Center 

(University of Pennsylvania, https://ngsc.med.upenn.edu/) on HiSeq 2500 machine. Following 

initial processing and quality control, the sequencing datasets were further analyzed for 

differential gene expression, which in all cases was calculated using Subread/featureCounts 

(v1.5.0; https://sourceforge.net/projects/subread/files/subread-1.5.0/) for read alignment and 

summarization and statistical package edgeR (v3.14.0; 

https://bioconductor.org/packages/release/bioc/html/edgeR.html). Lists of differentially 

expressed genes are further analyzed as described in the following section.  

4.3.5 Weighted Gene Co-expression Network Analysis (WGCNA) 

Network analysis was performed using WGCNA (v.1.51; https://cran.r-

project.org/web/packages/WGCNA/index.html) [149,97]. Libraries are clustered by gene 

expression enabling the detection of outliers and the power is determined by scale free topology 

model. Modules were generated automatically using a soft thresholding power, β=10, a 

minimum module size of 18 genes and a minimum module merge cut height of 0.25. Modules 

were named by conventional color scheme and then correlated with trait data using Pearson’s 

correlation (APOE isoform, Injury, Abca1 copy number). Statistical significance was determined 

by student’s t-test, p<0.05. All modules were summarized by module eigengenes (ME), the first 

principle component of each module that was calculated as a synthetic gene representing the 

expression profile of all genes within a given module.  

https://ngsc.med.upenn.edu/
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
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Representative networks were built using hub genes and the transcripts connected to 

them. Hub genes were identified using cutoffs of their interconnectivity within the module 

(module membership, >0.8), and the correlation between expression level and trait (gene 

significance, >0.2). Once the hub genes are selected, the connections to other transcripts are 

sorted by weight, with the first 150 connections used for visualization. Gene-association 

networks of interest were visualized using Cytoscape (v3.3.0).  Unsupervised hierarchical 

clustering was performed on ME turquoise using pheatmap (v1.0.10; https://cran.r-

project.org/web/packages/pheatmap/index.html) to identify 2 sub-modules. A representative 

network was built for each sub-module consisting of only genes within the sub-module. 

4.3.6 Functional Pathway Analysis 

Functional annotation clustering was performed using the Database for Annotation, Visualization 

and Integrated Discovery (DAVID v6.8, https://david.ncifcrf.gov) [78].  

4.4 RESULTS 

4.4.1 TBI induces changes to the transcriptome that are common among both Abca1+/+ 

and Abca1+/- mice expressing human APOE isoforms 

To examine the effect of TBI on gene expression in the brains of Abca1+/- and Abca1+/+ mice 

expressing human APOE isoforms (E3/Abca1+/-, E4/Abca1+/-, E3/Abca1+/-, E4/Abca1+/+),   we 

collected hippocampal and cortical tissue from the injury site at 14 days post-injury. Total RNA 

https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://david.ncifcrf.gov/
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was isolated from these tissues and used for RNA-sequencing. As shown in Fig. 15A-D, TBI 

significantly affected the transcriptome within each genotype. We highlighted several genes of 

interest on the scatterplots increased by TBI, and while they were differentially expressed within 

all the groups, the group with the highest CPM values was the E4/Abca1+/- TBI mice. To 

determine what similarities existed among the affected biological processes, we examined the 

differentially expressed genes that were significant and common among the 4 genotypes. The 

expression levels of the top 100 up- and down-regulated genes are shown in the heatmap (Fig. 

15E). Although the genes are common, the E4/Abca1+/- mice show the highest expression levels 

of the upregulated genes.  Fig. 15F shows the biological processes associated with the common, 

upregulated genes. There were 1,196 up-regulated genes common to all the groups and the top 

Gene Ontology (GO) terms derived from these genes were “immune system process”, “innate 

immune response”, and “inflammatory response”. In comparison, Fig. 15G shows the biological 

processes associated with the common, downregulated genes. There were 579 downregulated 

genes common to the groups, and these genes were functionally associated with “regulation of 

ion transmembrane transport”, and “potassium ion transport”.  
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Figure 15. TBI increases the expression of genes associated with immune response, and decreases the 
expression of genes connected to ion transmembrane transport. 

RNA was isolated from the hippocampal and cortical tissues collected 14 days after injury from Abca1+/- and 
Abca1+/+ mice of both APOE isoforms and was then used to perform RNA-seq, N=6-8 mice per group of both 
genders. (A-D) Scatter plots represent the RNA-seq results for differentially expressed genes. EdgeR analysis 
between sham and injured mice identified significant affected transcripts in (A) APOE3/Abca1+/-, (B) 
APOE4/Abca1+/-, (C) APOE3/Abca1+/+ and (D) APOE4/Abca1+/+ mice. Red denotes up-regulated, and blue denotes 
down-regulated genes, p<0.05. (E) Heatmap of the top 100 upregulated and downregulated genes by TBI is shown. 
(F) A table shows the top annotated GO terms derived from the common, upregulated genes (total = 1,215 genes). 
(G) A table shows the top annotated GO terms derived from the common, downregulated genes (total = 531 genes). 
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4.4.2 TBI significantly alters the expression of transcripts unique to each genotype, with 

the highest proportion of unique transcripts among E4/Abca1+/- mice  

We were interested in whether the response to TBI was specifically influenced by each genotype, 

particularly by Abca1 haplodeficiency in conjunction with APOE4 isoform. To do this, we 

determined the proportion of genes that were differentially expressed, either in common among 

several of the groups or were uniquely expressed in only one group. These proportions are shown 

for each genotype in the donut plots in Fig. 16. As seen in Fig. 16A, E4/Abca1+/- mice have a 

higher proportion of unique transcripts (26%) that are up-regulated by TBI than the other 

genotypes (E3/Abca1+/-: 5.5%; E3/Abca1+/+: 10%; E4/Abca1+/+: 5.0%). The biological processes 

derived from the unique genes of the E4/Abca1+/- mice, include “positive regulation of neuroblast 

differentiation” and “positive regulation of apoptotic process”.  The biological functions 

associated with the unique, upregulated genes within each group differ greatly; the other top 

terms include “determination of left/right symmetry”, “negative regulation of cell proliferation”, 

and “inner dynein arm assembly” for E3/Abca1+/-, E3/Abca1+/+, E4/Abca1+/+ respectively. 

Expression plots show the distinct upregulation in E4/Abca1+/- TBI mice of several genes, 

including Plekho1, which has been shown to promote apoptosis (Fig. 16C) [148].   

E4/Abca1+/- mice, again, have a higher proportion of unique, significant down-regulated 

transcripts (30%) than the other genotypes (E3/Abca1+/-: 10%; E3/Abca1+/+: 13%; E4/Abca1+/+: 

9.4%) (Fig. 16B). The top GO terms derived from the unique down-regulated genes for each 

group are “transcription, DNA-templated”, “covalent chromatin modification”, “GPI anchor 

biosynthetic process”, and “Protein K63-linked ubiquitination” for E3/Abca1+/-, E4/Abca1+/-, 

E3/Abca1+/+, E4/Abca1+/+, respectively.  
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Figure 16. TBI affects a greater proportion of unique genes in E4/Abca1+/- mice. 
(A-B) Donut plots for each genotype indicate the proportion of significantly (A) up- or (B) down-regulated genes 
that are either expressed in common among 2 or more groups (black), or unique to that group (A: red and B: blue). 
The total number of genes are shown within the center of the plot for each genotype. The top 3 GO terms for the 
unique genes in each genotype are shown to either side. (C) Expression plots for unique transcripts upregulated in 
E4/Abca1+/- mice are shown. 
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4.4.3 Abca1 haploinsufficiency upregulates microglia sensome genes in injured APOE4 

mice 

To determine if there was any effect of Abca1 haploinsufficiency on gene expression changes 

induced by injury, we examined the expression of microglial sensome genes. Although a clear 

effect of TBI is present in the differential expression of the microglia sensome by Abca1 

genotype, the heatmap also shows that E4/Abca1+/- TBI mice have higher expression levels of 

microglial sensome genes than the other groups (Fig. 17A). In contrast, there is no effect of 

Abca1 copy number on synaptic transmission genes (Fig. 17B), although an injury effect on 

expression is still visible. We examined the expression levels of the microglia sensome genes 

within each APOE isoform, separated by injury status, for the effect of Abca1 genotype. Sham 

mice in both APOE isoforms (Fig. 17C-D) and injured APOE3 mice (Fig. 17E) have no 

significant changes in microglia sensome gene expression due to Abca1 haploinsufficiency. In 

comparison, the injured E4/Abca1+/- mice demonstrate significant expression of the microglia 

sensome compared to E4/Abca1+/+ TBI mice (Fig. 17F). In conclusion, these results demonstrate 

an effect of Abca1 haploinsufficiency on the microglia sensome in APOE4 mice after TBI. 

 

 



 81 

 

Figure 17. Abca1 deficiency affects the microglial response to TBI in an APOE isoform-dependent manner. 
(A-B) Heatmaps were generated using normalized Abca1+/- versus Abca1+/+ CPM values for each group for (A) 
microglia sensome genes and (B) synaptic transmission genes. Red denotes higher expression values, and blue 
denotes lower expression values. n=6-8 per group, including both males and females. (C, E) Selected genes from the 
microglia sensome of APOE3/Abca1+/- and APOE3/Abca1+/+ mice are compared separately for (C) sham (black bars) 
and (E) TBI groups (green bars). Shown are the Log2-fold change values for each gene. (D, F) Selected genes from 
the microglia sensome of APOE4/Abca1+/+ and APOE4/Abca1+/- mice are compared separately for (D) sham (orange 
bars) and TBI groups (purple bars). Shown are the Log2-fold change values. *: p<0.05. 
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4.4.4 WGCNA reveals interconnected gene clusters associated with each trait of interest- 

APOE isoform, Abca1 copy number, and injury status 

To identify interconnected gene clusters, or modules, associated within each trait of interest, we 

employed WGCNA. We were interested in the modules that were differentially expressed across 

our traits of interest - injury status, APOE isoform and Abca1 copy number. The relationship 

table (Fig. 18A) shows the MEs of interest and the corresponding correlation coefficients per 

group.  

ME tan (module size=182 genes) correlated across the groups depending on APOE 

isoform, regardless of either injury status, or Abca1 copy number. It positively correlated to 

APOE4 groups and negatively with APOE3 groups. As seen in the module heatmap (Fig. 18A; 

far right), the gene members are generally increased in APOE4 mice and decreased in APOE3 

mice. The GO terms associated with the module genes were “tRNA aminoacylation for 

translation”, “RNA processing”, and “translation”. We built a representative network using the 

hub genes associated with “tRNA aminoacylation for translation”, such as Yars, Gars, and Nars, 

which are aminoacyl-tRNA synthetases.  

ME pink correlated with injury status, however, it negatively correlated to TBI groups 

and positively correlated with sham groups. The biological processes associated with ME pink 

(module size=518 genes) included “synaptic vesicle docking”, “long-term synaptic potentiation”, 

and “chemical synaptic transmission”, which suggests that injury decreases synaptic 

transmission. The representative network (Fig. 18C) was built around several hub genes related 

with synaptic transmission, including Stx1a, Snap25, and Lamp5, which are all associated with 

synaptic vesicle docking and neurotransmitter release. Lamp5, in particular, is associated with 
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GABAergic synaptic transmission and short-term synaptic plasticity [129]. Another hub gene is 

Prkcz, which is necessary for long-term potentiation in hippocampal CA1 pyramidal cells [135]. 

ME grey60 correlated with Abca1 copy number, specifically, it negatively correlated with 

Abca1+/- mice and positively correlated with Abca1+/+ mice, regardless of injury or APOE 

isoform. As seen in Fig. 18D, the network was built around hub genes, which represented GO 

terms “oxidation-reduction process”, “transport”, and “aging”. These hub genes included a 

number of the NADH hydrogenase subunits, such as ND1, ND2, ND4, ND5 and ND6. Other hub 

genes were COX1, Atp5j2, and CYTB. All of these hub genes are involved in the mitochondrial 

respiratory chain [146]. 

 

 



 84 

 

Figure 18. WGCNA identified modules correlated to TBI and Abca1 haploinsufficiency. 
WGCNA was used to determine the correlation of module eigengenes to Injury and Abca1 genotype. (A) The 
relationship tables shows the correlation between the module eigengene (rows) and group (columns) with p-value. 
Red denotes a positive, and blue is a negative correlation. Modules of interest are differentially expressed between 
trait conditions. MEs turquoise and pink correlated with TBI in opposite directions, ME tan correlated with APOE 
isoform, and ME grey60 with Abca1 genotype.  Top assigned GO terms and their log10 of the p-values are shown to 
the right of the table, aside heatmaps of the genes within each module, for each animal. Red denotes higher 
expression values, and blue denotes lower expression values. (B-D) Representative networks for (B) ME tan, (C) 
ME pink, and (D) ME grey60 were built using module hub genes. Hub genes are identified in red font. Size of the 
nodes represents the module membership value and width of the edge, the interaction between genes shown as 
connecting lines, represents the weight of the connection. 
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ME turquoise strongly correlated with injury status, however, unlike ME pink, it 

correlated positively to TBI groups and negatively to sham groups. The genes within ME 

turquoise are strongly connected and related to the module biological process, as seen in the 

module membership and gene significance scatterplot (Fig. 19A). Due to the size (module size = 

3860 genes), we were interested in further separating the module. To do this, we ran a pheatmap 

function on the genes within the module, which aggregates the genes using hierarchical 

clustering. As shown in Fig. 19B, the pheatmap separated the module into 2 distinct clusters 

based on injury status and direction of expression. Additionally, the pheatmap shows the 

expression for all the genes in ME turquoise and the eigengene expression for each sample. The 

first cluster, Cluster 1, (size = 2605 genes) consisted of genes upregulated in TBI groups and 

downregulated in sham groups. The pheatmap suggests a stronger response of the cluster 1 genes 

within the E4/Abca1+/- mice, which is consistent with the correlation of ME turquoise to this 

group in the relationship table. The GO terms derived from Cluster 1 were “immune system 

response”, “innate immune response”, and “inflammatory response”. Additionally, among the 

top 10 GO terms was “lipid metabolic process”. The representative network (Fig. 19C) was built 

around hub genes associated with immune response, such as Clec7a, C1qc, and microglia-

specific genes, Trem2, Tyrobp, Hexb, and Cd68.  

The second cluster, Cluster 2, (size = 1111 genes) featured genes downregulated in the 

TBI mice, upregulated in the sham mice. Functionally, this cluster is enriched in genes connected 

to the GO term “transport”, other transport-associated terms, such as “vesicle-mediated 

transport”, but also GO terms “sterol biosynthetic process” and “cholesterol biosynthetic 

process”. The network (Fig. 18D) built for Cluster 2 excluded any genes from Cluster 1, and 

functionally represents transport, however, while hub genes, Gabrb2, Gabrg2, and Atp1b1 all 
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relate directly to the transport of ions across the membrane, through this mechanism, these genes 

are also strongly associated with synaptic transmission. In conclusion, ME turquoise strongly 

correlated to injury status, but hierarchical clustering of the genes revealed two distinct clusters 

associated with the gene expression direction. Cluster 1 was larger and featured genes related to 

immune response and was more strongly upregulated in E4/Abca1+/- mice, while cluster 2 

featured genes downregulated in TBI groups and represented transport, but functionally are also 

involved in synaptic transmission. 
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Figure 19. ME turquoise consists of two sub-modules correlated to injury status. 
(A) Scatter plot for ME turquoise module showing the correlation between module membership and gene 
significance. The degree of association between MM and GS was evaluated by Pearson correlation. Correlation 
value and p value are indicated in the plot. (B) The pheatmap shows normalized gene expression values beside 
module eigengene expression values for each sample for ME turquoise. The pheatmap function aggregated the 
module into 2 sub-modules (Cluster 1 and Cluster 2) by hierarchical clustering. (C-D) Tables of top assigned GO 
terms are shown above representative networks for (C) cluster 1 and (D) cluster 2. Hub genes are identified in red 
font. Size of the nodes represents the module membership value and width of the edge represents the weight of the 
connection. 
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4.5 DISCUSSION 

We examined the impact of Abca1 deficiency and APOE isoform expression on the response to 

traumatic brain injury. Our goal was to identify differences in the transcriptional response and 

trait-associated genome-wide correlated gene networks between Abca1+/+ and Abca1+/- mice 

following a controlled cortical impact in human APOE3+/+ and APOE4+/+ targeted replacement 

mice. We found that the four groups within our study -E3/Abca1+/-, E4/Abca1+/-, E3/Abca1+/+, 

and E4/Abca1+/+ - had common and distinct responses to TBI. E4/Abca1+/- mice had the highest 

proportion of unique transcripts affected by TBI, suggesting that E4/Abca1+/- mice are more 

disposed to changes in gene expression by TBI than the other groups, and demonstrate possible 

pathways that could be associated with worsened outcome, such as downregulated genes 

associated with learning. The common, up-regulated genes were associated with biological 

processes related to immune response, innate immune response and inflammatory response. 

While, these genes were common among the four groups, the E4/Abca1+/- mice had higher 

expression levels of the genes upregulated by TBI compared to the other groups, suggesting a 

role for APOE isoform and ABCA1 in the expression of inflammatory genes after TBI. 

Consequently, we examined the effect of Abca1 insufficiency on microglia sensome genes by 

injury status and APOE isoform. When comparing injured Abca1+/- to Abca1+/+ mice, we found 

E4/Abca1+/- TBI mice had increased expression of the microglia sensome genes. In contrast, 

there was no effect of Abca1 copy number in APOE3 mice, sham or TBI. These results suggest 

that Abca1 haploinsufficiency may influence the inflammatory response following TBI, 

particularly through an impact on microglia and their gene expression. This effect is seen only 

among APOE4 mice, not APOE3 mice; this response may be related to the isoform-specific 

effect on inflammation. Additionally, the APOE4 isoform may be more vulnerable to the 



 89 

consequences of Abca1 haploinsufficiency due to a gene-gene interaction, a result also 

demonstrated by data from AD-model mice [46]. These results suggest a possible mechanism for 

worse outcome after TBI associated with APOE4 isoform.  

Using WGCNA, we identified modules associated with each trait – injury, APOE isoform 

and Abca1 copy number. ME tan was associated with APOE isoform; the module positively 

correlated with APOE4 mice and negatively correlated with APOE3 mice, regardless of Abca1 

copy number or injury status. The representative network was associated with the GO term 

“tRNA aminoacylation for translation”, and included hub genes Yars, Gars, and Nars, which are 

aminoacyl-tRNA synthetases. Mutations in these genes are associated with Charcot-Marie-Tooth 

disease, one of the most commonly inherited neurological disorders [16]. Additionally, a 

metabolomics study on AD patient CSF and plasma found that a pathway significantly affected 

in plasma by AD severity was aminoacyl-tRNA biosynthesis, however, the mechanisms 

associated with altered aminoacyl-tRNA synthetases and AD remain unknown [130]. 

The “synaptic transmission” module, ME pink was significantly correlated and down-

regulated by injury across the groups. The network represented GO terms “synaptic vesicle 

docking”, “long-term synaptic potentiation”, and “chemical synaptic transmission”. The hub 

genes featured in the representative network, included Stx1a, Snap25, and Lamp5, which are all 

associated with synaptic vesicle docking and neurotransmitter release. Lamp5 localizes in the 

synapse, where it may play a regulatory role in GABAergic synaptic transmission [129]. Another 

hub gene in this network, Prkcz, has an important role in hippocampal long term potentiation and 

learning [135]. Its expression mediates the storage of specific forms of long term memory [124]. 

The negative association between this network and injury is consistent with the impact that TBI 

is known to have on memory. 
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The network representing ME grey60 was associated with “oxidation-reduction process” 

and “aging”. This module was differentially expressed dependent on Abca1 copy number; the 

module was downregulated in Abca1+/- mice, and upregulated in Abca1+/+ mice. The network was 

built around hub genes involved in the mitochondrial respiratory chain, including a number of 

the NADH hydrogenase subunits, such as ND1, ND2, ND4, ND5 and ND6, as well as, COX1, 

Atp5j2, and CYTB. Mitochondrial dysfunction and dysfunctional energy metabolism are early 

pathological features of multiple neurological diseases, including Alzheimer’s disease, 

Parkinson’s disease and Huntington’s disease [146,104]. Perturbations in the mitochondrial 

respiratory chain results in decreased ATP synthesis, the generation of free radicals and oxidative 

damage resulting in neuronal dysfunction and apoptosis [93]. HDL and HDL-associated lipids 

play key roles in the regulation and preservation of mitochondrial function [140]. ABCA1 is an 

essential mediator of HDL formation, which may explain the negative correlation between 

Abca1+/- mice and this network. 

ME turquoise correlated with the groups by injury status, however, the module separated 

into distinct gene clusters representing unique biological processes. Using the pheatmap 

function, we were able to separate ME turquoise into 2 sub-modules by hierarchical clustering. 

The clusters were separated based on injury status and the direction of gene expression. The first 

cluster was larger and consisted of genes upregulated by injury. This cluster represented the 

“immune response” and the network was built from several microglia-specific genes including 

Trem2, Tyrobp, Hexb, and Cd68. Although there was no specific modulatory effect of APOE 

isoform or Abca1 copy number on the module, the expression of the module genes was much 

higher in E4/Abca1+/- injured mice, which is consistent with our other results.  
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ABCA1 is a major regulator of cholesterol transport and an essential mediator of high 

density lipoprotein generation [70]. ABCA1 may have a crucial role in the response to TBI by 

providing essential cholesterol and phospholipids required for repair. However, ABCA1 may 

also influence the TBI response through its modulatory effects on the inflammatory response. 

Mice lacking brain ABCA1 exhibit increased neuroinflammation, and in particular have an 

increased microglial pro-inflammatory response [65]. The effect of ABCA1 on inflammation 

could also occur through its functional role in mediating cholesterol efflux onto lipid-poor 

apolipoprotein, including APOE. It was previously shown that the loss of ABCA1 function 

results in a reduction of APOE, and data from experimental animals show that Abca1 deficiency 

abolishes the lipidation of APOE [71]. The isoform-dependent effect of APOE is possibly driven 

by lipidation status, which has been shown to affect its stability and degradation rate. Our study 

shows that ABCA1 haploinsufficiency increased expression of the microglia sensome genes in 

an APOE isoform dependent manner, which suggests gene-gene interactions as a possible 

mechanism for worsened outcomes after TBI in APOEε4 carriers.  

4.6 CONCLUSIONS 

Our results suggest a possible role for Abca1 haplodeficiency on the response to TBI in APOE4 

TBI mice at a transcriptional level. When we compared Abca1+/+ mice to Abca1+/- mice by injury 

status and isoform, we found that the lack of one copy of Abca1 significantly increased the 

expression of microglia sensome genes only in APOE4 TBI mice. This was consistent with the 

higher expression of the common, upregulated genes, which were associated with immune 

response. Furthermore, E4/Abca1+/- showed the highest expression of the immune response gene 
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network, which also included microglia-specific hub genes, Trem2, Tyrobp, Hexb, and Cd68. 

Our results suggest that gene-gene interactions can modify the response of APOE4 mice to 

harmful effects. 
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5.0  FINAL CONCLUSIONS 

5.1 GENERAL SUMMARY  

Our original hypothesis was that there was an isoform-specific response to TBI, specifically that 

mice expressing human APOE4 would have worsened outcomes and would be modulated by 

Abca1 deficiency. We addressed this hypothesis through two separate aims. In the first aim 

(Chapter 3), we examined the role of human APOE isoforms in the response to TBI [24]. We 

examined cognitive performance, brain transcriptome and genome-wide correlated gene 

networks in 3-month old APOE-TR mice. We found that TBI significantly worsened anxiety and 

spatial learning, as seen through the elevated plus maze and Morris Water Maze tests, however 

there was no interaction with APOE isoform. TBI significantly impacted the transcriptome, 

particularly increasing genes related to the immune response, including Trem2, Tyrobp, Cd68, 

and Cx3cr1. We examined what cell type was responsible for the inflammatory response in the 

brain at 14 days post-injury by comparing expression of microglia sensome genes to those of 

peripheral macrophages, and determined that resident microglia are the predominant source of 

the inflammatory response in the brain at this time point. Overall, the effect of TBI on the 

transcriptome was similar between the genotypes, with similar biological processes affected. 

Although there was an APOE isoform effect on the brain transcriptome in TBI mice, this effect 

was entirely separate from the effect of injury.  
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Using WGCNA, we identified correlated gene networks associated with each trait, injury 

and genotype. The results largely confirmed the GO terms identified through pathway analysis. 

The gene network that correlated most with TBI represented the immune response, and 

importantly, there was no isoform-specific modulatory effect on this network. We did identify 

one network that was differentially affected by APOE isoform within only the injury groups. 

This network represented the biological process “myelination” and featured several myelin 

related proteins, included Mbp and Plp. Additionally, the network was also highly enriched in 

oligodendrocyte specific markers. While myelin and cholesterol would both be necessary 

components for axonal repair and regeneration, several myelin related proteins have been 

associated with the formation of a glial scar and inhibited axonal outgrowth [119,120,145]. The 

positive correlation of this network with APOE4 injured mice could provide a potential 

mechanism for worse outcome after TBI that is temporally dependent.  

In the second aim (Chapter 4), we compared mice expressing human APOE isoforms to 

their Abca1 haplodeficient counterparts. We examined differences in the transcriptional response 

to injury between Abca1+/+ and Abca1+/- mice following a controlled cortical impact in human 

APOE3+/+ and APOE4+/+ targeted replacement mice. Our results suggested a role for Abca1 

haploinsufficiency on the transcriptional response to TBI in APOE4 mice. E4/Abca1+/- mice had 

the highest proportion of unique transcripts affected by TBI than the other groups, suggesting 

that these mice are more vulnerable to changes in gene expression induced by TBI and 

identifying possible pathways associated with worsened outcome, such as the downregulated GO 

term “learning”. The common, upregulated genes were associated with immune response, and 

inflammatory response, however, several of these genes were expressed at higher levels in 

E4/Abca1+/- TBI mice. As a result, we examined whether ABCA1 insufficiency influenced the 
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expression of microglia sensome genes in either isoform. When comparing Abca1+/+ and 

Abca1+/-  mice by injury status and isoform, we found that Abca1 haplodeficiency significantly 

increased the expression of microglia sensome genes in APOE4 TBI mice, but not in APOE3 

TBI mice, nor either sham group. Our results suggested a possibly mechanism for worsened 

outcomes after TBI in APOEε4 carriers. 

In both studies, the immune response and inflammatory response were strongly 

upregulated after TBI. These processes were the most significant as determined by functional 

pathway analysis and the associated modules were also the most strongly correlated to injury 

status. In both studies, the “immune response” module featured microglia-specific genes as the 

hub genes, including Trem2, Tyrobp, Cd68, and Hexb. Although there was no isoform-specific 

effect on these genes in the first study, which was also validated by immunohistochemistry for 

TREM2 and IBA1, our second study demonstrated a significant effect of Abca1 deficiency on 

the expression of microglia sensome genes in APOE4 mice. Our results confirm the significant 

role of microglia and inflammation after TBI, and future research in needed to analyze the role of 

ABCA1 in modulating the inflammatory response in APOE isoforms.  

5.1.1 Strengths and Limitations 

To our knowledge, we are the first to perform transcriptional profiling of APOE expressing mice 

using Next Generation Sequencing. We are also the first to examine the effect of Abca1 

haplodeficiency on the gene expression induced by TBI in APOE-TR mice. Additionally, using 

WGCNA, we were able to correlate gene networks to each phenotype, identifying genes, and 

thus their proteins, with a potential to become useful and rational targets for future research and 

drug discovery relevant to TBI. 
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One limitation of our studies is the lack of multiple time-points. TBI patients commonly 

develop symptoms months, and even years, after the injury occurred. While the differential 

effects of the APOE-ABCA1 interaction may occur at early stages of brain injury, 

characterization of both short- and long-term consequences is likely necessary to design and 

implement therapeutic strategies. Our studies featured only a single time-point and it is acute. At 

an entirely different time-point, these mice could demonstrate different cognitive outcomes, and 

transcriptional profiles. Having multiple time-points would allow for a more complete 

characterization of the impact of APOE isoform and Abca1 deficiency on TBI outcomes. 

More research is needed to fully determine the role of APOE, and in particular, its 

regulation by ABCA1, on TBI outcomes. The pathophysiological heterogeneity of TBI is due to 

a wide array of factors, including injury location, and severity, as well as individual 

characteristics, such as age, gender, health and genetics. Animal models of TBI are designed to 

produce a homogenous injury, with all other factors well controlled. As such, the animal models 

of TBI do not recapitulate all aspects of brain pathology as a response to brain trauma. Moreover 

the lack of standardized study design and data collection makes it extraordinarily difficult to 

compare the results of the studies performed so far and to draw definitive conclusions. Our 

results suggest a complex relationship between APOE isoform and TBI that is potentially 

modulated by ABCA1, however, further research in necessary to fully characterize this 

relationship.  
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