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ENERGY DISSIPATION IN TURBULENCE

Ali Pakzad, PhD

University of Pittsburgh, 2018

The accurate simulation of turbulent flows is a central computational challenge in many

important applications, including global climate change estimation, environmental science,

ocean and atmosphere dynamics, energy efficiency improvement and optimization of in-

dustrial processes. As an example, turbulence predictions are key to limiting damage of

hurricanes (estimated to be hundreds of billions of dollars in 2017). These are fundamen-

tally non-linear problems that probed in this thesis through numerical computations and

supporting mathematical analysis. The accuracy of turbulence models depends on their tur-

bulent dissipation. The dissipation is studied and it is utilized to validate results with the

Statistical Equilibrium Law as the benchmark:

• In Chapter 3, the energy dissipation in a turbulence model discretized on an under-

resolved mesh is delineated. This is the first connection between computational experi-

ence and mathematical analysis in this direction [63].

• It is rigorously proved in Chapter 4 that the over-dissipation (wrong accuracy) of a

turbulence model can be corrected using van Driest damping [62]. This had been an

open question (e.g. [5] p. 78) since 1963.

• The temperature in natural convection is uniformly bounded in time. Although the

problem has been studied for a long time, no better bounds for the approximate tem-

perature than an exponential growth in time were obtained e.g. [78, 79, 87]. In Chapter

5, it is proved that the temperature approximation is bounded sub-linearly in time by

introducing a new interpolation [19].
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1.0 INTRODUCTION

The accurate simulation of turbulent flows is a central computational challenge in many

important applications, including global climate change estimation, environmental science,

ocean and atmosphere dynamics, energy efficiency improvement and optimization of indus-

trial processes. As two examples, turbulence predictions are key to limiting damage of

hurricanes (estimated to be hundreds of billions of dollars in 2017). In addition, 85% of

the energy in the US is generated by combustion for which accurate simulation of turbulent

mixing is critical for energy efficiency optimization.

One of the most fascinating features in turbulent flows is the emergence of complicated

chaotic structures involving a wide range of length scales behind which typical flow patterns

are still recognizable [73]. The state of motion is too complex to allow for a detailed descrip-

tion of the fluid velocity and experimental or numerical measurements. One of the main

challenges in fluid dynamics is thus the derivation of quantitative statements on turbulent

flows to validate a result from a model. In this thesis the time-averaged energy dissipation

rate is employed as a benchmark (e.g. [58] and [35]) to check the results’ accuracy and

validate the model’s simulation. The classical Statistical Equilibrium Law is based on

the concept of the energy cascade. Considering U and L as the global velocity and length

scales, time-averaged energy dissipation rate 〈ε〉 scales as (Kolmogorov 1941)

〈ε〉 ' U3

L
.

Saffman 1968 [70] addressed this estimate and wrote:

This result is fundamental to an understanding of turbulence and yet still lacks theoretical

support.
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As was predicted by Richardson [69] and Kolmogorov [43], in turbulent flows and in the

limit of the high Reynolds number, the energy dissipation rate is often observed to approach

a limit independent of the viscosity [20]. In the 1990s, Doering and Constantin [15] and

Doering and Foias [17] estimated the energy dissipation rigorously and directly from the

equations of motion, 〈ε〉 ≤ C U3

L
. Similar estimations have been proven by Marchiano [53],

Wang [85] and Kerswell [42] in more generality. There are many numerical (e.g. [7] and [61])

and experimental (e.g. [81] and [75]) evidence to support the Statistical Equilibrium Law.

These are the fundamentally non-linear problems that have been probed in this thesis

through numerical computations and supporting mathematical analysis. The accuracy of

turbulence models depends on their turbulent dissipation. This dissipation is investigated

here and it is utilized to validate results with the Statistical Equilibrium Law as the bench-

mark.

Although all chapters are related conceptually, each chapter is written such that it can

be read independently.

In Chapter 2, we introduce some fundamental concepts and motivations used extensively

in this thesis.

In Chapter 3, upper bounds are derived on the computed time-averaged energy dissipation

rate, 〈ε(uh)〉, for an under-resolved mesh h for turbulent shear flow [63]. Because of the

limitations of computers, we are forced to struggle with the meaning of the under-resolved

flow simulation. Turbulence models are introduced to account for sub-mesh scale effects,

when solving fluid flow problem numerically on an under-resolved spatial mesh size h [47].

One key in getting a good approximation for a turbulence model is to correctly calibrate

the energy dissipation ε(u) in the model on the under-resolved mesh and understand how

the energy dissipation rates for different scales depend on the physical parameters [46]. The

energy dissipation rates of various turbulence models have been analyzed assuming infinite

resolution (i.e. for the continuous model e.g. [15], [45], [46], [53], [62] and [85]), but not

coarse resolution. The unexplored question is: What is the time-averaged energy dissipation

rate 〈ε(uh)〉, when uh is an approximation of u on a coarse mesh h, associated with the

computational cost?

In Chapter 4, we study the time-averaged energy dissipation rate 〈εSMD(u)〉 for the

2



combination of the Smagorinsky model and a damping function. The Smagorinsky model is

well known to over-damp [71]. One common correction is to include damping functions that

reduce the effects of model viscosity near walls [67]. There has been many numerical tests

but no analytic support of this fact since 1956 (cited in [5] p.78). Mathematical analysis

is given in Chapter 4 that allows the evaluation of 〈εSMD(u)〉 for any damping function.

Moreover, the analysis motivates a modified van Driest damping. We rigorously prove that

the combination of the Smagorinsky model with this modified damping function does not

over dissipate and is also consistent with Kolmogorov phenomenology [62].

In Chapter 5, we improve the stability estimates for the velocity, temperature and pres-

sure approximation in the natural convection problem. Natural convection of a fluid driven

by heating a wall is a classical problem in fluid mechanics that is still of technological and

scientific importance (e.g. [11] and [26]). The temperature in natural convection problems

is, under mild data assumptions, uniformly bounded in time. This property has not yet been

proven for the standard finite element method (FEM) approximation of natural convection

problems with nonhomogeneous Dirichlet boundary conditions, e.g., the differentially heated

vertical wall and Rayleigh-Bénard problems. However, when this often analyzed problem is

approximated by standard FEM, all available stability bounds for the temperature exhibit

exponential growth in time, e.g. [78,79,87]. Even in the stationary case, stability estimates

can yield extremely restrictive mesh conditions h = O(Ra−10) [12], when Ra is the dimen-

sionless Rayleigh number. We prove that provided the first mesh line in the finite element

mesh is within O(Ra−1) of the heated wall, the computed velocity, pressure, and temper-

ature in the natural convection problems are stable allowing for sub-linear growth in time

[19].
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2.0 BACKGROUND

In this chapter we are going to provide mathematical preliminaries on the Navier-Stokes

equations. We briefly describe the Richardson energy cascade, and from there, we discuss

the motivation behind a turbulence model in Large Eddy Simulation. We end the chapter

by introducing the most classical turbulence model in LES, the Smagorinsky model.

2.1 THE NAVIER-STOKES EQUATIONS

Consider the flow of an incompressible fluid with the kinematic viscosity ν. The velocity

and pressure (u, p) satisfy the Navier-Stokes equations for 0 < t < ∞ in the bounded and

regular flow domain Ω in R3

ut + u · ∇u− ν∆u+∇p = f(x, t) and ∇ · u = 0 in Ω, (2.1.1)

subject to the no-slip condition on ∂Ω, initial conditions and pressure normalization condi-

tions

u = 0 on ∂Ω× (0,∞), u(x, 0) = u0(x) in Ω and

∫
Ω

p(x, t)dx = 0. (2.1.2)

Here f(x, t) ∈ L∞(0,∞;L2(Ω)3) is the force and u0 ∈ L2(Ω)3 is a weakly divergence-free

initial condition. The Navier-Stokes equations (NSE) which describe the motion of viscous

Newtonian fluids should be solved forward in time for u(x, t) and p(x, t), starting from

an initial divergence-free velocity field u0(x). Moreover, (2.1.1) is nothing more than the

Newton’s second law of motion when ut + u · ∇u is acceleration of a fluid element and

ν 5 u−∇p is the force per unit mass density due to the neighboring elements [15].
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Although there has been considerable progress since the NSE was presented in 1840

by French engineer Claude Louis Marie Henri Navier, a number of fundamental questions

about its solutions remain, and several constitute grand challenges for the mathematics

community. Indeed, it is not known whether the three-dimensional Navier-Stokes equations

possess unique smooth solutions at high Reynolds number. This problem is one of the seven

most important open problems in mathematics for which the Clay Mathematics institute

has offered a one-million-dollar prize for a proof or a counterexample.

2.1.1 Mathematical Preliminaries, Notations and Definitions

We use the standard notations Lp(Ω),W k,p(Ω), Hk(Ω) = W k,2(Ω) for the Lebesgue and

Sobolev spaces respectively. The inner product in the space L2(Ω) will be denoted by (·, ·)

and its norm by || · || for scalar, vector and tensor quantities. Norms in Sobolev spaces

Hk(Ω), k > 0, are denoted by || · ||Hk and the usual Lp norm is denoted by || · ||p. The

symbols C and Ci for i = 1, 2, 3 stand for generic positive constant independent of ν, L and

U . In addition,∇u is the gradient tensor (∇u)ij =
∂uj
∂xi

for i, j = 1, 2, 3. D(u) := 1
2
(∇u+∇u>)

denotes the deformation tensor. L is the characteristic length of the domain and U is the

characteristic velocity. The Reynolds number is defined as

Re =
UL

ν
.

In fluid dynamics, the Reynolds number plays an important role to help predict similar flow

patterns in different fluid flow situations. It is roughly defined as the ratio of inertial forces

to viscous forces. If Re is small, then the viscous forces are dominant and the flow tends to

be smooth and move slowly (laminar flow). For very large Re the flow is dominated by the

inertial forces and featured by instabilities and chaotic small-scales motions (turbulence).

The following function spaces will be used to define the weak solution of the NSE in

Definition 2.1.3.

H(Ω) := {v ∈ L2(Ω); ∇ · v = 0 and v · n̂ = 0 on ∂Ω},

5



Q := L2
0 = {q ∈ L2(Ω);

∫
Ω

q dx = 0},

V := {v ∈ H1
0 ; (q,∇ · v) = 0 ∀q ∈ Q},

L2(0, T ;V ) := {v(t) : [0, T ]→ V ;

∫ T

0

‖∇v‖2 <∞},

L∞(0, T ;H(Ω)) := {v(t); [0, T ]→ H(Ω); ess sup0<t<T‖v‖ <∞}.

Definition 2.1.1. (Energy Dissipation Rate) The energy dissipation rate per unit vol-

ume of the flow at time t is

ε(u) :=
ν

|Ω|
‖∇u(·, t)‖2,

and the time-averaged of the quantity g is

〈g〉 := lim sup
T→∞

1

T

∫ T

0

g(·, t)dt.

The time-averaged energy dissipation rate per unit mass is

〈ε(u)〉 := lim sup
T→∞

1

T

∫ T

0

ε(u)dt =
ν

|Ω|
lim sup
T→∞

1

T

∫ T

0

‖∇u‖2dt =
ν

|Ω|
〈‖∇u‖2〉. (2.1.3)

The energy dissipation rate is one of the most critical quantities in the theory of turbu-

lence. Upper bounds yield estimates on the small length scales in the solutions. Moreover,

the system’s global attractor, if it exists, is also controlled by this quantity [85]. The work

done by forces such as drag are balanced by the energy dissipation rate in steady-state prob-

lems. Upper bounds for the energy dissipation rate are applied to estimate length scales

and, in particular, overall complexity of turbulent flow simulation [46]. Moreover, it is usual

to compute time-averaged flow statistics in practical simulations of fluid dynamic and match

them against benchmark averages; see, e.g. [34] or [35].

Definition 2.1.2. (Trilinear from) Define the trilinear form b on H1 ×H1 ×H1 as,

b(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).
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2.1.2 Variational Formulation and Continuous-in-Time Finite Element Discretiza-

tion of NSE

The weak solutions of NSE, introduced by Leray [48], satisfies not only the Navier-Stokes

equations in the weak sense but also the energy inequality (for details on the distinction

between weak and strong solution see [13]).

Definition 2.1.3. (Weak solution of NSE) Let u0 ∈ H(Ω), f ∈ L2(Ω × (0, T )). A

measurable function u(x, t) : Ω× [0, T ]→ Rd is a weak solution of NSE if

1. u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H(Ω)),

2. u(x, t) satisfies the integral relation

∫ T

0

(ut, v) + ν(∇u,∇v) + (u ·∇u, v)− (p,∇· v) dt =

∫ T

0

(f, v) dt ∀v ∈ C∞0 (Ω× (0, T )),

3. u(x, t′) satisfies the energy inequality for all t ∈ [0, T ]

1

2
||u(t′)||2 + ν

∫ t

0

||∇u(t′)||2 dt′ ≤ 1

2
||u0||2 +

∫ t

0

(u(t′), f(t′)) dt′,

4. limt→0 ||u(t)− u0|| = 0.

These are integrated versions of equations (2.1.1) that make sense for velocity fields

u(x, t) that may not be smooth enough to be differentiated as required to satisfy the partial

differential equations (2.1.1) pointwise in space and time. The basic idea behind the con-

struction of weak solutions is to start with an appropriately regularized approximation to

the Navier-Stokes equations to which solutions may be shown to exist for all times and then

consider the limit of these approximate solutions as the regularization is removed [15]. In

two dimensions, it is known that a weak solution exists and is unique. In 3d, it is proven

that weak solution exist, Leray [48], but it is not known if weak solutions are unique.

To discretize the NSE, let Th be a quasiuniform tetrahedral or 3-D rectangular mesh of

Ω with mesh size h ∈ (0, 1). Consider Xh ⊂ H1
0 (Ω) be the Lagrange finite element space

including continuous piecewise linear functions associated with the mesh Th. We shall assume

throughout the thesis that the pressure finite element space Qh ⊂ L2
0(Ω) is conforming, has

7



approximation properties typical of finite element spaces commonly in use and satisfies the

following discrete inf-sup condition where βh > 0 uniformly in h as h→ 0

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
||∇vh||||qh||

≥ βh > 0. (2.1.4)

The approximate velocity and pressure are maps: uh : [0, T ] −→ Xh, ph : (0, T ] −→ Qh

satisfying

(uht , v
h) + ν(∇uh,∇vh) + b(uh, uh, vh)− (ph,∇ · vh) = (f, vh) ∀vh ∈ Xh,

(∇ · uh, qh) = 0 ∀qh ∈ Qh,

(uh(x, 0)− u0(x), vh) = 0 ∀vh ∈ Xh.

(2.1.5)

By choosing a basis for (Xh, Qh) and expanding (uh, qh) in terms of the basis, the above

equations (2.1.5) reduce to a nonlinear system of ODE’s in t with a linear side condition.

Then approximate velocities and pressures can be computed by using a time stepping method

(for more details see [27] or [29]). Under the inf-sup condition (2.1.4) the pressure can be

eliminated temporarily from the system by restricting vh in (2.1.5) to the space of discretely

divergence free function V h

V h := {vh ∈ Xh : (qh,∇ · vh) = 0, ∀qh ∈ Qh}.

Moreover, under the discrete inf-sup condition (2.1.4), system (2.1.5) is equivalent to: find

uh : [0, T ] −→ V h which satisfies

(uht , v
h) + ν(∇uh,∇vh) + b(uh, uh, vh) = (f, vh) ∀vh ∈ V h. (2.1.6)

Remark 2.1.1. The inf-sup condition (2.1.4) plays the key role of ensuring that, given a

unique velocity, there is a corresponding pressure. It is also critical to bounding the fluid

pressure and showing the pressure is stable [23].
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2.2 ENERGY CASCADE

Turbulent flow is observed to consist of a cascade of three-dimensional eddies of various sizes.

The picture of the energy cascade was first described by Richardson [69] as follows. Energy

is input into the largest scales of the flow. The large eddies are unstable and break up. There

is an intermediate range (inertial range) in which non-linearity drives energy into smaller

scales and conserves the global energy because dissipation is negligible. These smaller eddies

undergo a similar break up process, and transfer their energy to yet smaller eddies. This

energy cascade, in which energy is transferred to successively smaller and smaller eddies,

continues until the Reynolds number is sufficiently small and dissipation is non negligible.

The molecular viscosity is then effective in dissipating the kinetic energy and the energy in

those smallest eddies decays to zero exponentially fast (Figure 1). E(K) and K are kinetic

energy and wave number respectively in Figure 1. The data were gathered from 17 different

flow by Saddoughi and Veeravalli (1994) are perfectly consistent with the described energy

cascade and Figure 1 (see p. 235 of [67]).

Solutions of the NSE exhibit this energy cascade. This fact has been understood since

the work of L. F. Richardson and A. N. Kolmororov and is based on a few fundamental

properties of solutions of the NSE (see the details on [47]). One reason that the above

description is of importance is that it places dissipation at the end of a sequence of processes.

Therefore, the rate of dissipation is determined by the first process in the sequence, which

is the transfer of energy from the largest eddies. These largest eddies have energy of order

U2 and timescale τ = L
U

, so the rate of transfer of energy can be scaled as U
τ

= U3

L
. This

implies the Equilibrium Dissipation Law for time-averaged energy dissipation rate 〈ε〉

(Kolmogorov 1941); 〈ε〉 ' U3

L
.

2.3 LARGE EDDY SIMULATION

In Kolmogorov’s description of the eddies in turbulent flow in 1941, the large eddies are

deterministic in nature. Those below a critical size die quickly due to viscous forces [20].
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Figure 1: A diagram of the energy cascade at very high Reynolds number.

This critical length scale, Kolmogorov microscale, is η = O(Re− 3
4 ) and O(Re− 1

2 ) in three

and two dimensions respectively. To simulate properly the persistent eddies in a three-

dimensional flow, O(Re 9
4 ) mesh points in space per time-step are required. For example for

a small airplane with Re = 2 × 107, 1016 mesh points are required. This number increases

to at least 1020 mesh points for an atmospheric flow. Such a procedure is called a direct

numerical simulation (DNS) and is not practical (at the present time!) for many interesting

flows.

One approach to the simulation of turbulent flow is called Large Eddy Simulation (LES).

The aim is to simulate accurately the motion of those eddies of size ≥ δ. From the numerical

point of view, δ is associated with the mesh size h (' computational cost). Once a coarse

mesh (� Kolmogorov microscale) is selected, the mean effects of small eddies (smaller than

the coarse mesh size) on the large eddies should be modeled. Regarding the energy cascade,

small eddies act to drain energy from the large eddies. Therefore, it is required to model the

energy lost to the resolved scales.
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2.3.1 Models in Large Eddy Simulation

According to the LES and from the point of view of applications, only those flow structures

above a certain length scale δ = O(h) can be computed or represented. The mathematical

derivation of any LES model from the NSE proceeds as follows. Consider the length scale

δ > 0 and a smooth function g(x) = ( 6
π
)
3
2 exp(−6|x|2). The mollifier gδ(x) is defined by:

gδ(x) := δ−3 g(
x

δ
).

The local spacial filter is defined by convolution with gδ. Given u(x) define:

ū(x) := (gδ ? u)(x) =

∫
R3

gδ(x− y)u(y)dy,

where u is extended by zero outside of Ω. This convolution eliminates any local oscillations

smaller than O(δ). Ignoring boundaries for the moment and averaging the incompressible

Navier-Stokes equations (2.1.1) with constant filter width δ (i.e. take gδ? NSE(u)) gives:

ūt + ū · ∇ū− ν∆ū+∇p̄ +∇ ·R(u, u) = f̄ and ∇ · ū = 0 in Ω, (2.3.1)

where R(u, u) denotes the sub-filter scale stress tensor

R(u, u) := uu− ū ū.

Since R is a function of u and ū, system (2.3.1) is not closed. The simplest closure assump-

tion is that the turbulent stress is a linear function of the large scale’s deformation tensor

D(ū) [67]. This assumption denotes the Eddy Viscosity Hypothesis and is quite old in fluid

mechanics. It is based on the energy cascade and the fact that ”the small eddies act to drain

energy from the large eddies.” This model is given by:

∇ ·R(u, u) ∼ −∇ · (2νTD(ū)), (2.3.2)

where νT is the turbulent viscosity coefficient and is required to be modeled 1.

1The substitution (2.3.2) is not strictly correct. In fact, R must be split into two parts

R =
(
R− 1

3
trace(R)I

)
+

1

3
trace(R)I.
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2.3.2 The Smagorinsky Model

In 1963 Joseph Smagorinsky 2 proposed the following model for the turbulent viscosity

coefficient,

νT = (Csδ)
2|D(u)|. (2.3.3)

In (2.3.3) Cs is the standard model parameter whose correct value is still under debate [5].

Using Körn’s inequality for 1 < p <∞ [31], it can be shown that ‖D(u)‖p ' ‖∇u‖p. There-

fore, for simplification in the energy calculation, one can replace ∇· (2(Csδ)
2|D(u)|D(u)) by

∇ · ((Csδ)2|∇u|∇u) in the model. Although in this thesis we focus on the following version

of the Smagorisky model, the analysis herein holds for both by the same argument.

ut + u · ∇u− ν∆u+∇p−∇ · ((Csδ)2|∇u|∇u) = f. (2.3.4)

In general, the eddy viscosity term ∇·((Csδ)2|∇u|∇u) with δ = O(h) is added to the Navier-

Stokes equations to model the extra dissipation which cannot be captured by the NSE viscous

term on an under-resolved mesh. The Smagorinsky model has proved to be the workhorse in

the large eddy simulation of flow. The model was used in 1967 to develop the first coupled

atmosphere - ocean climate models for studies of global warming, emphasizing the important

differences between the equilibrium and transient responses to increasing carbon dioxide.

The average of the stresses, 1
3 trace(R)I, is incorporated into the turbulent pressure in (2.3.1). i.e.

p̄+
1

3
trace(R)I =⇒ p̄.

The trace free part of R is then modeled by the turbulent diffusion,

∇ ·
(
R− 1

3
trace(R)I

)
∼ −∇ · (2νTD(ū)).

2Joseph Smagorinsky was a leader in the 1950’s in using numerical methods and mathematical models
to predict trends in weather and climate. He was the first to show that practical forecasting could really be
done by solving the Navier-Stokes equations.
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3.0 ANALYSIS OF MESH EFFECTS ON TURBULENT FLOW

STATISTICS

Because of the limitations of computers, we are forced to struggle with the meaning of

under-resolved flow simulations. Turbulence models are introduced to account for sub-mesh

scale effects, when solving fluid flow problems numerically. One key in getting a good

approximation for a turbulent model is to correctly calibrate the energy dissipation ε(u) in

the model on an under-resolved mesh [46]. The energy dissipation rates of various turbulent

models have been analyzed assuming infinite resolution (i.e. for the continuous model e.g.

[15], [45], [46], [53], [62] and [85]). The question explored herein is: What is the time-averaged

energy dissipation rate 〈ε(uh)〉, when uh is an approximation of u on a given mesh h (fixed

computational cost) for the Smagorinsky model?

Numerical simulations of turbulent flows include only the motion of eddies above some

length scale δ (which depends on attainable resolution). The state of motion in turbulence is

too complex to allow for a detailed description of the fluid velocity. Benchmarks are required

to validate simulations’ accuracy. Two natural benchmarks for numerical simulations are the

kinetic energy in the eddies of size > O(δ) and the energy dissipation rates of eddies in size

> O(δ) (e.g. [58] and [35]). Motivated from here, we focus on the calculation of the time-

averaged energy dissipation rates of motions larger than δ. In the large-eddy simulation

(LES), predicting how flow statistics (e.g. time-averaged) depend on the grid size h and the

filter size δ is listed as one of ten important questions by Pope [66].

ut + u · ∇u− ν∆u+∇p−∇ · ((Csδ)2|∇u|∇u) = 0,

∇ · u = 0 and u(x, 0) = u0 in Ω.
(3.0.1)
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Figure 2: Shear flow boundary condition.

Consider the Smagorinsky model (3.0.1) subject to a boundary-induced shear (3.0.2) in

the flow domain Ω = (0, L)3,

In (3.0.1) u is the velocity field, p is the pressure, ν is the kinematic viscosity, δ is

the turbulence-resolution length scale (associated with the mesh size h) and Cs ' 0.1 is

the standard model parameter (see Lilly [50] for more details). We consider shear flow,

containing a turbulent boundary layer, in a domain that is simplified to permit more precise

analysis. L-periodic boundary conditions in x and y directions are imposed. z = 0 is a fixed

wall and the wall z = L moves with velocity U (Figure 2),

L− periodic boundary condition in x and y direction,

u(x, y, 0, t) = (0, 0, 0)> and u(x, y, L, t) = (U, 0, 0)>.
(3.0.2)

To disregard the effects of the time discretization on dissipation, we consider (3.0.1)

continuous in time and discretized in space (see (3.1.6)) by a standard finite element method
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Figure 3: Dissipation vs. h and Re.

since the effects of the spatial discretization, and not the time discretization, on dissipation

is the subject of study here. In Theorem 3.2.1, we first estimate 〈ε(uh)〉 for fine enough

mesh that no model to be necessary (h < O(Re−1)L). Since models are used for meshes

coarser than a DNS, we next investigate (3.0.1) on an arbitrary coarse mesh. Theorem 3.2.3

presents the analysis of 〈ε(uh)〉 on an under-resolved mesh. The results in Theorems 3.2.1

and 3.2.3 can be summarized as,

〈ε(uh)〉
U3/L

'


1 + ( csδ

L
)2Re2 for h < O(Re−1)L

1
Re

L
h

+ (Cs δ
h

)2 + L5

(Csδ)4 h
+ L

5
2

(Cs δ)4
h

3
2 for h ≥ O(Re−1)L

. (3.0.3)

Considering δ = h in (3.0.3), which is the common choice in LES [66], we speculate that

〈ε(uh)〉
U3/L

varies with Re and h as depicted qualitatively in figure 3.

Remark 3.0.1. Shear flow has two natural microscales. The Kolmogorov microscale is η '

Re− 3
4 L, and describes the size of the smallest persistent motion away from walls. The second
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length is Re−1 L which denotes the turbulent boundary layer. Our analysis here, and (3.0.3),

indicates this latter scale is the more important one for shear flow.

In (3.0.3), 〈ε(uh)〉 scales as U3

L
as predicted by Richardson and Kolmogorov. For the fully-

resolved case, this estimate is consistent as Re → ∞ and δ = h ' O(Re−1) with the rate

proven for the Navier-Stokes equations in [15]. On the other hand, the weak Re dependence

in the under-resolved case (that vanishes as Re → ∞) is consistent with Figure 4, adopted

from [20]. This figure shows how the dissipation coefficient varies with Reynolds number

for a circular cylinder based on experimental data quoted in [82]. Tritton [82] observed

that the dissipation coefficient behaves as Re−1 for small Re, and at high Reynolds number

stays approximately constant independent of the viscosity. Theorem 3.2.3 is also consistent

with the recent results in [56] derived through structure function theories of turbulence.

Corollaries 3.2.6 and 3.2.8 show that the estimate (3.0.3) suggests over-dissipation of the

model for any choice of Cs > 0 and δ > 0. In other words, the constant Cs causes excessive

damping of large-scale fluctuation, which agrees the computational experience (p.247 of

Sagaut [71]). There are several model refinements to reduce this over-dissipation such as the

damping function [62].

In Sections 3.1, we collect necessary mathematical tools. In Section 3.2, the major results

are proven. We end this chapter with numerical illustrations and conclusions in Sections 3.3

and 3.4.

3.0.1 Motivation and Related Works

In turbulence, dissipation predominantly occurs at small scales. Once a mesh (of size h) is

selected, an eddy viscosity term ∇· ((Csδ)2|∇u|∇u) in (3.0.1) with δ = O(h) is added to the

Navier-Stokes equations (NSE), Cs = 0 in (3.0.1), to model this extra dissipation which can

not be captured by the NSE viscous term on an under-resolved mesh.

Turbulence is about prediction of velocities’ averages rather than the point-wise velocity.

One commonly used average in turbulent flow modeling is time-averaging. Time averages

seem to be predictable even when dynamic flow behavior over bounded time intervals is

irregular [20]. Time averaging is defined in terms of the limit superior (lim sup) of a function
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Figure 4: Variation of dissipation coefficient with Reynolds number for circular cylinder.

as,

〈ψ〉 = lim sup
T→∞

1

T

∫ T

0

ψ(t) dt.

The classical Statistical Equilibrium Law is based on the concept of the energy

cascade. Energy is input into the largest scales of the flow, then the kinetic energy cascade

from large to small scale of motions. When it reaches a scale small enough for the viscous

dissipation to be effective, it dissipates mostly into heat (Richardson 1922, [69]). Since

viscous dissipation is negligible through this cascade, the energy dissipation rate is related

then to the power input to the largest scales at the first step in the cascade. These largest

eddies have energy 1
2
U2 and time scale τ = L

U
, this implies the equilibrium dissipation law

for time-averaged energy dissipation rate 〈ε〉 (Kolmogorov 1941),

〈ε〉 = O(
U2

τ
) ' Cε

U3

L
,

with Cε = constant. Saffman 1968 [70], addressing the estimate of the energy dissipation

rates, 〈ε〉 ' U3

L
, and wrote that,

This result is fundamental to an understanding of turbulence and yet still lacks theoretical

support.
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Figure 5: Cε versus Re, adopted from [60].

Information about Cε carries interesting information about the structure of the turbulent

flow. Therefore mathematically rigorous upper bounds on Cε are of high relevance. There

are many analytical ([15], [53] and [85]), numerical [7] and experimental [75] evidence to

support the equilibrium dissipation law; some of them are mentioned below.

Taylor [81] considered Cε to be constant for geometrically similar boundaries. His work

led to the question ”If Cε depends on geometry, boundary and inlet conditions”. Since

then, a multitude of laboratory experiments [75] and numerical simulations [7] concerned

with isotropic homogeneous turbulence seem to confirm that Cε is independent of Reynolds

number in the limit of high Reynolds number, but are not conclusive as to whether Cε is

universal at such high Reynolds number values. In fact, the high Reynolds number values

of Cε seem to differ from flow to flow. The first results in 3D obtained for turbulent shear

flow between parallel plates by Howard [33] and Busse [10] under assumptions that the

flow is statistically stationary. There is an asymptotic non-zero upper bound, Cε ' 0.01 as

Re → ∞, first derived by Busse [10] (Joining dashed line in Figure 5). The lower bound

on Cε is already given for laminar flow by Doering and Constantin, 1
Re ≤ Cε (solid slanted

18



straight line in Figure 5). Rigorous asymptotic Re→∞ dissipation rate bounds of the form

〈ε〉 ≤ Cε
U3

L
, with Cε ' 0.088 (topmost horizontal solid line in Figure 5), were derived for

a number of boundary-driven flows during the 1990s (Doering and Constantin [15]). The

residual dissipation bound like this appeared for a shear layer turbulent Taylor-Couette flow-

where L was the layer thickness and U was the overall velocity drop across the layer. The

upper bound has been confirmed with higher precision in [61] as Cε ' 0.01087 (Heavy dots

in Figure 5). The corresponding experimental data measured by Reichardt [68] for the plane

Couette flow (Triangles in Figure 5) and by Lathrop, Fineberg, and Swinney [44] for the

small-gap Taylor-Couette system (Circles in Figure 5).

3.0.2 Why the Eddy Viscosity model and not the Navier- Stokes Equations?

A shear flow is one where the boundary condition is tangential. The flow problem with the

boundary condition like (3.0.2) becomes very close to the flow between rotating cylinders.

Flow between rotating cylinders is one of the classic problems in experimental fluid dynamics

(e.g. [20]).

Consider the Navier Stokes equations, Cs = 0 in (3.0.1), with the boundary condition

(3.0.2). The difficulty in the analysis of the energy dissipation of the shear flow appears due

to the effect of the non-homogeneous boundary condition on the flow. The classical approach

is required to construct a careful and non-intuitive choice of background flow Φ known as

the Hopf extension [32].

Definition 3.0.1. Let Φ(x, y, z) := (φ(z), 0, 0), where,

φ(z) =

 0 if z ∈ [0, L− h]

U
h

(z − L+ h) if z ∈ [L− h, L]
. (3.0.4)

The strategy is to subtract off the inhomogeneous boundary conditions (3.0.2). Consider

v = u − Φ, then v satisfies homogeneous boundary conditions. Substituting u = v + Φ in

the NSE yields,

vt + v · ∇v − ν∆v +∇p+ φ(z)
∂v

∂x
+ v3φ

′(z)(1, 0, 0) = νφ′′(z)(1, 0, 0), (3.0.5)

∇ · v = 0.
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The key idea in making progress in the mathematical understanding of the energy dissipation

rate is the energy inequality. Taking inner product (3.0.5) with v = (v1, v2, v3) and integrating

over Ω gives,

1

2

∂

∂t
||v||2 + ν||∇v||2 +

∫
Ω

(
φ(z)

∂v

∂x
· v + v1v3φ

′(z)
)
dx =

∫
Ω

νφ′′(z)v1 dx. (3.0.6)

However the NSE are rewritten to make the viscous term easy to handle, the nonlinear

term changes and must again be wrestled with. To calculate the energy dissipation, the

non-linear terms should be controlled by the diffusion term. Since both terms are quadratic

in u, considering current tools in analysis, this control is doable only by assuming h in

Definition 3.0.1 being small. Doering and Constantin [15] used the NSE to find an upper

bound on the time-averaged energy dissipation rate for shear driven turbulence, assuming

h ' Re−1. Similar estimations have been proven by Marchiano [53], Wang [85] and Kerswell

[42] in more generality. For the semi-discrete NSE, John, Layton and Manica [39] show that

assuming infinite resolution near the boundaries, computed time-averaged energy dissipation

rate 〈ε(uh)〉 for the shear flow scales as predicted for the continuous flow by the Kolmogorov

theory,

〈ε(uh)〉 ' U3

L
.

Now the question arises: How to find 〈ε(uh)〉 for shear driven turbulence without any

restriction on the mesh size? With current analysis tools, the effort seems to be hopeless.

Therefore the p-laplacian term,

∇ · (|∇u|p−2∇u), (3.0.7)

was added to the NSE. This modification will lead to the pth− degree term on the left side

of the energy inequality. Then applying appropriate Young’s inequality on the non-linear

term, we will absorb it on the pth− degree term without any restriction on h. Herein, we

focus on p = 3 (the Smagorinsky model (3.0.1)), but the analysis for p > 3 remains as an

interesting problem.
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3.1 MATHEMATICAL PRELIMINARIES, NOTATIONS AND

DEFINITIONS

We use the standard notations Lp(Ω),W k,p(Ω), Hk(Ω) = W k,2(Ω) for the Lebesgue and

Sobolev spaces respectively. The inner product in the space L2(Ω) will be denoted by (·, ·)

and its norm by || · || for scalar, vector and tensor quantities. Norms in Sobolev spaces

Hk(Ω), k > 0, are denoted by || · ||Hk and the usual Lp norm is denoted by || · ||p. The

symbols C and Ci for i = 1, 2, 3 stand for generic positive constant independent of the ν, L

and U . In addition, ∇u is the gradient tensor (∇u)ij =
∂uj
∂xi

for i, j = 1, 2, 3.

The Reynolds number is Re = UL
ν

. The time-averaged energy dissipation rate for model

(3.0.1) includes dissipation due to the viscous forces and the turbulent diffusion. It is given

by,

〈ε(u)〉 = lim sup
T→∞

1

T

∫ T

0

(
1

|Ω|

∫
Ω

ν|∇u|2 + (csδ)
2|∇u|3dx) dt. (3.1.1)

Definition 3.1.1. The velocity at a given time t is sought in the space

X(Ω) := {u ∈ H1(Ω) : u(x, y, 0) = (0, 0, 0), u(x, y, L) = (U, 0, 0),

u is L-periodic in x and y direction}.

The test function space is

X0(Ω) := {u ∈ H1(Ω) : u(x, y, 0) = (0, 0, 0), u(x, y, L) = (0, 0, 0),

u is L-periodic in x and y direction}.

The pressure at time t is sought in

Q(Ω) := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
qdx = 0}.

And the space of divergence-free functions is denoted by

V (Ω) := {u ∈ X(Ω) : (∇ · u, q) = 0 ∀q ∈ Q}.

Lemma 3.1.1. Φ in Definition 3.0.1 satisfies,

‖Φ‖∞ ≤ U ,a) ‖∇Φ‖∞ ≤
U
h

,b) ‖Φ‖2 ≤ U2L2h
3

,c)

‖∇Φ‖2 ≤ U2L2

h
,d) ‖∇Φ‖3

3 ≤
U3L2

h2
,e) ||∇Φ||33

2

= U3L4

h
.f)
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Proof. They all are the immediate consequences of the Definition 3.0.1.

Remark 3.1.2. Φ extends the boundary conditions (3.0.2) to the interior of Ω. Moreover, it

is a divergence-free function. h ∈ (0, L) stands for the spatial mesh size.

Using a standard scaling argument in the next lemma shows how the constant C` in the

Sobolev inequality ||u||6 ≤ C`||∇u||3 depends on the geometry in R3.

Lemma 3.1.3. Consider the Sobolev inequality ||u||6 ≤ C`||∇u||3, then C` is the order of L
1
2

when the domain is Ω = [0, L]3, i.e.

||u||6 ≤ C L
1
2 ||∇u||3.

Proof. Let Ω = [0, L]3, Ω̂ = [0, 1]3 and for simplicity x = (x1, x2, x3) and x̂ = (x̂1, x̂2, x̂3).

Consider the change of variable η : Ω̂ −→ Ω by η(x̂) = L x̂ = x. If u(Lx̂) = û(x̂), using the

chain rule gives,

d

dx̂i
(û(x̂)) =

d

dx̂i
(u(Lx̂)) = L

du

dxi
(Lx̂),

for i = 1, 2, 3 and since Lx̂ = x we have,

1

L

dû

dx̂i
=

du

dxi
. (3.1.2)

Using (3.1.2) and the change of variable formula, one can show,

||∂ui
∂xj
||33 =

∫
Ω

|∂ui
∂xj
|3 dx =

∫
Ω̂

1

L3
|∂ûi
∂x̂j
|3 L3dx̂ = ||∂ûi

∂x̂j
||33,

therefore,

||∇u||33 =
3∑

i,j=1

||∂ui
∂xj
||33 =

3∑
i,j=1

||∂ûi
∂x̂j
||33 = ||∇̂û||33. (3.1.3)

Again by applying the change of variable formula, we have,

||u||L6(Ω) = (

∫
Ω

|u|6dx)
1
6 = (

∫
Ω̂

L3 |û|6dx̂)
1
6 = L

1
2 ||û||L6(Ω̂),

using the Sobolev inequality and also inequality (3.1.3) on the above equality leads to,

||û||L6(Ω̂) = L−
1
2 ||u||L6(Ω) ≤ L−

1
2C`||∇u||3 = L−

1
2C`||∇̂û||3, (3.1.4)

therefore as claimed C` = O(L
1
2 ).
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We will need the well-known dependence of the Poincaré -Friedrichs inequality constant

on the domain. A straightforward argument in the thin domain Oh implies Lemma 3.1.4.

Lemma 3.1.4. Let Oh = {(x, y, z) ∈ Ω : L − h ≤ z ≤ L} be the region close to the upper

boundary. Then we have

‖u− Φ‖L2(Oh) ≤ h‖∇(u− Φ)‖L2(Oh). (3.1.5)

Proof. The proof is standard. For details see Lemma 4.1.3.

3.1.1 Variational Formulation and Discretization

The variational formulation is obtained by taking the scalar product v ∈ X0 and q ∈ L2
0 with

(3.0.1) and integrating over the space Ω.

(ut, v) + ν(∇u,∇v) + (u · ∇u, v)− (p,∇ · v) + ((Csδ)
2|∇u|∇u,∇v) = 0 ∀v ∈ X0,

(∇ · u, q) = 0 ∀q ∈ L2
0,

(u(x, 0)− u0(x), v) = 0 ∀v ∈ X0.

(3.1.6)

To discretize the SM, consider two finite-dimensional spaces Xh ⊂ X and Qh ⊂ Q

satisfying the following discrete inf-sup condition where βh > 0 uniformly in h as h→ 0,

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
||∇vh||||qh||

≥ βh > 0. (3.1.7)

The inf-sup condition (3.1.7) plays a significant role in studies of the finite-element approxi-

mation of the Navier-Stokes equations. It is usually taken as a criterion of whether or not the

families of finite-element spaces yield stable approximations. In the other words, it ensures

given the unique velocity, there is a corresponding pressure. It is also critical to bounding

the fluid pressure and showing the pressure is stable [29].

Consider a subspace V h ⊂ Xh defined by:

V h := {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

Note that most often V h 6⊂ V and ∇ · uh 6= 0 for any uh ∈ V h. Thus we need an extension

of the trilinear from (u · ∇v, w) as follows.
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Definition 3.1.2. (Trilinear from) Define the trilinear form b on X× X× X as:

b(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

Lemma 3.1.5. The nonlinear term b(·, ·, ·) is continuous on X×X×X (and thus on V ×V ×V

as well). Moreover, we have the following skew-symmetry properties for b(·, ·, ·),

b(u, v, w) = (u · ∇v, w) ∀u ∈ V and v, w ∈ X,

Moreover,

b(u, v, v) = 0 ∀u, v ∈ X.

Proof. The proof is standard, see p.114 of Girault and Raviart [27].

The semi-discrete/continuous-in-time finite element approximation continues by selecting

finite element spaces Xh
0 ⊂ X0. The approximate velocity and pressure of the Smagorinsky

problem (3.0.1) are uh : [0, T ] −→ Xh and ph : (0, T ] −→ Qh such that,

(uht , v
h) + ν(∇uh,∇vh) + b(uh, uh, vh)− (ph,∇ · vh) + (Csδ)

2|∇uh|∇uh,∇vh) = 0 ∀vh ∈ Xh
0 ,

(∇ · uh, qh) = 0 ∀qh ∈ Qh,

(uh(x, 0)− u0(x), vh) = 0 ∀vh ∈ Xh
0 .

(3.1.8)
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3.2 THEOREMS AND PROOFS

In this section, we present upper bounds on the computed time-averaged energy dissipation

rate for the Smagorinsky model (3.0.1) subject to the shear flow boundary condition (3.0.2).

Theorem 3.2.1 considers the case when the mesh size is fine enough h < O(Re−1)L. The re-

striction on the mesh size arises from the mathematical analysis of constructible background

flow in finite element space.

On the other hand, Theorem 3.2.3 investigates 〈ε(uh)〉 for any mesh size 0 < h < L. We

then take a minimum of two bounds to find the optimal upper bound in (3.0.3) with respect

to current analysis.

Theorem 3.2.1. (fully-resolved mesh) Suppose u0 ∈ L2(Ω) and mesh size h < (1
5
Re−1)L.

Then 〈ε(uh)〉 satisfies,

〈ε(uh)〉 ≤ C
[
1 + (

csδ

L
)2Re2

] U3

L
.

Proof. Let h = γL in Definition 3.0.1 for 0 < γ < L. Take vh = uh − Φ ∈ Xh
0 in (3.1.8).

Since b(·, ·, ·) is skew-symmetric (Lemma 3.1.5) and ∇ · Φ = 0, we have,

(uht , u
h − Φ) + ν(∇uh,∇uh −∇Φ) + b(uh, uh, uh − Φ) + ((Csδ)

2|∇uh|∇uh,∇uh −∇Φ) = 0,

and integrate in time to get,

1

2
‖uh(T )‖2 − 1

2
‖uh(0)‖2 + ν

∫ T

0

‖∇uh‖2dt+

∫ T

0

(

∫
Ω

(Csδ)
2|∇uh|3dx)dt = (uh(T ),Φ)

− (uh(0),Φ) +

∫ T

0

b(uh, uh,Φ)dt+ ν

∫ T

0

(∇uh,∇Φ)dt+ (Csδ)
2

∫ T

0

(|∇uh|∇uh,∇Φ)dt.

(3.2.1)

Using the Cauchy-Schwarz-Young’s inequality and Lemma 3.1.1 for h = γL to bound

the right-hand side of the above energy equality:

(uh(T ),Φ) ≤ 1

2
‖uh(T )‖2 +

1

2
‖Φ‖2 =

1

2
‖uh(T )‖2 +

U2γL3

6
. (3.2.2)

(uh(0),Φ) ≤ ‖uh(0)‖‖Φ‖ =

√
γ

3
UL

3
2‖uh(0)‖. (3.2.3)
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ν

∫ T

0

(∇uh,∇Φ)dt ≤ ν

2

∫ T

0

‖∇uh‖2 + ‖∇Φ‖2dt =
ν

2

∫ T

0

‖∇uh‖2dt+
ν

2

U2L

γ
T. (3.2.4)

Next, the nonlinear term b(·, ·, ·) in (3.2.1) can be rewritten as,

b(uh, uh,Φ) = b(uh − Φ, uh − Φ,Φ) + b(Φ, uh − Φ,Φ)

=
1

2
b(uh − Φ, uh − Φ,Φ)− 1

2
b(uh − Φ,Φ, uh − Φ)

+
1

2
b(Φ, uh − Φ,Φ)− 1

2
b(Φ,Φ, uh − Φ).

(3.2.5)

Each term in (3.2.5) is estimated separately as follows using Lemma 3.1.4 and the Cauchy-

Schwarz-Young’s inequality. For the first term in (3.2.5) we have,

b(uh − Φ, uh − Φ,Φ) ≤ ‖Φ‖L∞‖uh − Φ‖L2‖∇(uh − Φ)‖L2 ≤ γLU‖∇(uh − Φ)‖2
L2

≤ γLU‖∇uh −∇Φ‖2
L2 ≤ ULγ(‖∇uh‖+ ‖∇Φ‖)2 ≤ ULγ(2‖∇uh‖2 + 2‖∇Φ‖2)

≤ ULγ(2‖∇uh‖2 + 2
U2L

γ
) = 2ULγ‖∇uh‖2 + 2U3L2.

(3.2.6)

For the second term we have,

b(uh − Φ,Φ, uh − Φ) ≤ ‖∇Φ‖L∞‖uh − Φ‖2 ≤ U

γL
γ2L2‖∇(uh − Φ)‖2

≤ γ2L2 U

γL
(2‖∇uh‖2 + 2

U2L

γ
) = 2γLU‖∇uh‖2 + 2U3L2.

(3.2.7)

The third one is estimated as,

b(Φ, uh − Φ,Φ) ≤ ‖Φ‖L∞‖∇(uh − Φ)‖L2‖Φ‖L2 ≤ U

√
U2γL3

3
(‖∇uh‖+ ‖∇Φ‖)

≤ U

√
U2γL3

3
(‖∇uh‖+

√
U2L

γ
) ≤ U2γ

1
2L

3
2

√
3
‖∇uh‖+

U3L2

√
3

= [
U

3
2L√
3

] [(UγL)
1
2‖∇uh‖] +

U3L2

√
3
≤ (

U3L2

6
) +

1

2
ULγ‖∇uh‖2 +

U3L2

√
3

=
1

2
ULγ‖∇uh‖2 + (

√
3

3
+

1

6
)U3L2.

(3.2.8)
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And finally the last one satisfies,

b(Φ,Φ, uh − Φ) ≤ ‖Φ‖L∞‖∇Φ‖L2‖uh − Φ‖L2 ≤ U

√
U2L

γ
γL‖∇(uh − Φ)‖L2

≤ U2γ
1
2L

3
2 (‖∇uh‖+ ‖∇Φ‖) ≤ U2γ

1
2L

3
2 (‖∇uh‖+ (

U2L

γ
)
1
2 )

= U2γ
1
2L

3
2‖∇uh‖+ U3L2 = [U

3
2L] [(ULγ)

1
2‖∇uh‖] + U3L2

≤ 1

2
(U3L2) +

1

2
ULγ‖∇uh‖2 + U3L2 =

1

2
ULγ‖∇uh‖2 +

3

2
U3L2.

(3.2.9)

Use (3.2.6), (3.2.7), (3.2.8) and (3.2.9) in (3.2.5) gives the final estimation for the non-linear

term as below,

|b(uh, uh,Φ)| ≤ 5

2
ULγ‖∇uh‖2 +

19

6
U3L2. (3.2.10)

Finally, using Hölder’s inequality and Young’s inequality for p = 3
2

and q = 3 and lemma

3.1.3 on the last term gives,

|(|∇uh|∇uh,∇Φ)| ≤
∫

Ω

|∇uh|2 · ∇Φ dx

≤ (

∫
Ω

|∇uh|3)
2
3 (

∫
Ω

|∇Φ|3)
1
3

≤ 2

3
(

∫
Ω

|∇uh|3) +
1

3
(

∫
Ω

|∇Φ|3) ≤ 2

3
(

∫
Ω

|∇uh|3) +
1

3

U3

γ2
.

(3.2.11)

Inserting (3.2.2), (3.2.3), (3.2.4), (3.2.10) and (3.2.11) in (3.2.1) implies,

(
ν

2
− 5

2
γLU)

∫ T

0

‖∇uh‖2dt+
1

3

∫ T

0

(

∫
Ω

(Csδ)
2|∇uh|3dx)dt ≤ 1

2
‖uh(0)‖2 +

1

6
U2γL3

+

√
γ

3
UL

3
2‖uh(0)‖+

19

6
U3L2T +

ν

2γ
LU2T +

1

3
(Csδ)

2U
3T

γ2
.

(3.2.12)

Dividing (3.2.12) by T and |Ω| = L3 and taking limsup as T →∞ lead to,

min{1

2
− 5

2

γLU

ν
,
1

3
}〈ε(uh)〉 ≤ 19

6

U3

L
+

ν

2γ

U2

L2
+

1

3
(Csδ)

2 U3

γ2L3
.

Let γ < 1
5
Re−1, then min{1

2
− 5

2
γLU
ν
, 1

3
} > 0 and the above estimate becomes,

〈ε(uh)〉 ≤ C
[
1 + (

Csδ

L
)2Re2

] U3

L
,

which proves the theorem.
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Remark 3.2.2. The kinetic energy, 1
2
‖uh‖2, is not required in the proof to be uniformly

bounded in time since it was canceled out from both sides after inserting (3.2.2) in (3.2.1).

The estimate in Theorem 3.2.1 goes to U3

L
for fixed Re as Cs δ → 0, which is consistent

with the rate proven for NSE by Doering and Constantin [15]. But it over dissipates for

fixed δ as Re→∞ as derived for the continuous case by Layton [46]. To fix this issue, one

can suggest a super fine filter size δ ' 1
Re which is not practical due to the computation cost.

From here, we are motivated to study the following under-resolved case.

Theorem 3.2.3. (under-resolved mesh) Suppose u0 ∈ L2(Ω). Then for any given mesh

size 0 < h < L, 〈ε(uh)〉 satisfies,

〈ε(uh)〉 ≤ C

[
1

Re
L

h
+ (

Cs δ

h
)2 +

L5

(Csδ)4 h
+

L
5
2

(Cs δ)4
h

3
2

]
U3

L
.

Proof. The proof is very similar to the one of Theorem 3.2.1, except the estimation on the

nonlinear term. Let h ∈ (0, L) be fixed from the beginning. The strategy is to subtract off the

inhomogeneous boundary conditions (3.0.2). The proof arises as well by taking vh = uh−Φ

in the finite element problem (3.1.8). Then after integrating with respect to time, we get

(3.2.1). The proof continues by estimating each term on the right-hand side of (3.2.1). Using

Lemma 3.1.1 and the Cauchy-Schwarz-Young’s inequality, the first three terms on the RHS

of the energy equality (3.2.1) can be estimated as,

(uh(T ),Φ) ≤ 1

2
‖uh(T )‖2 +

1

2
‖Φ‖2 =

1

2
‖uh(T )‖2 +

1

6
L2U2h. (3.2.13)

(uh(0),Φ) ≤ ‖uh(0)‖‖Φ‖ =

√
h

3
UL‖uh(0)‖. (3.2.14)

ν

∫ T

0

(∇uh,∇Φ)dt ≤ ν

2

∫ T

0

‖∇uh‖2 + ‖∇Φ‖2dt =
ν

2

∫ T

0

‖∇uh‖2dt+
ν

2

U2L2

h
T. (3.2.15)

Next applying the Young’s inequality,

ab ≤ 1

p
ap +

1

q
bq,
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for conjugate p = 3
2

and q = 3 on a = |∇uh|2 and b = |∇Φ| gives,

|
∫

Ω

|∇uh| ∇uh∇Φ dx| ≤
∫

Ω

|∇uh|2 |∇Φ| dx ≤
∫

Ω

(2

3
|∇uh|3 +

1

3
|∇Φ|3

)
dx

≤ 2

3

∫
Ω

|∇uh|3dx+
1

3

U3L2

h2
.

(3.2.16)

Inserting (3.2.13), (3.2.14), (3.2.15) and (3.2.16) in (3.2.1) implies,

1

2
‖uh(T )‖2 − 1

2
‖uh(0)‖2 + ν

∫ T

0

‖∇uh‖2dt+ (Csδ)
2

∫ T

0

(

∫
Ω

|∇uh|3dx)dt

≤ 1

2
‖uh(T )‖2 +

1

6
L2U2h+

√
h

3
UL‖uh(0)‖+

ν

2

∫ T

0

‖∇uh‖2dt+
ν

2

U2L2

h
T

+

∫ T

0

b(uh, uh,Φ)dt+
2

3
(Csδ)

2

∫ T

0

(

∫
Ω

|∇uh|3dx)dt+
1

3
(Csδ)

2U
3L2

h2
T.

(3.2.17)

Finally the nonlinear term b(uh, uh,Φ) is estimated as follow. First from Definition 3.1.2,

we have,

|b(uh, uh,Φ)| ≤ 1

2
|(uh · ∇uh,Φ)|+ 1

2
|(uh · ∇Φ, uh)|. (3.2.18)

The first term on (3.2.18) can be estimated using Hölder’s inequality1 for p = 3, q = 6 and

r = 2,

|(uh · ∇uh,Φ)| ≤
∫

Ω

|uh∇uh Φ|dx ≤ ||∇uh||3 ||uh||6 ||Φ||2,

then applying the following Young’s inequality 2 for conjugate exponents p = 3 and q = 3
2
,

ab ≤ ε

3
a3 +

ε−
1
2

3
2

b
3
2 , (3.2.19)

when a = ||∇uh||3, b = ||uh||6 ||Φ||2 and ε = (Csδ)2

4
leads to,

1
∫

Ω
|f g h|dx ≤ ||f ||p ||g||q ||h||r for 1

p + 1
q + 1

r = 1.

2More generally, for conjugate ( 1
p + 1

q = 1) exponents a ≥ 0, b ≥ 0 : ab ≤ ε
pa

p + ε
− q

p

q bq for any ε ≥ 0.
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|b(uh, uh,Φ)| ≤ 1

12
(Csδ)

2||∇uh||33 +
2

3
(
(Csδ)

2

4
)−

1
2 ||Φ||

3
2
2 ||uh||

3
2
6 .

From Lemma 3.1.3 we have ||uh||6 ≤ C L
1
2 ||∇uh||3, it follows that

|b(uh, uh,Φ)| ≤ 1

12
(Csδ)

2||∇uh||33 +
2

3
(
(Csδ)

2

4
)−

1
2 ||Φ||

3
2
2 CL

3
4 ||∇uh||

3
2
3 .

Again apply the general Young’s inequality for conjugate exponents p = 2 and q = 2 to the

second term of the above inequality when ε = (Csδ)2

6
,

|(uh · ∇uh,Φ)| ≤ 1

6
(Csδ)

2||∇uh||33 +
1

12
(Csδ)

2||∇uh||33 + C
8

3
L

3
2 (Csδ)

−4||Φ||32.

Use ||Φ||32 = (h
3
)
3
2L3U3 from the Lemma 3.1.1 on the above inequality and then,

|(uh · ∇uh,Φ)| ≤ 1

6
(Csδ)

2||∇uh||33 + C L
3
2 (Csδ)

−4h
3
2L3U3. (3.2.20)

The second term |(uh ·∇Φ, uh)| on (3.2.18) can be bounded first using Hölder’s inequality

for p = 6, q = 3
2

and r = 6,

|(uh · ∇Φ, uh)| ≤
∫

Ω

|uh∇Φuh|dx ≤ ||∇Φ|| 3
2
||uh||26.

Using ||uh||6 ≤ L
1
2 ||∇uh||3, Lemma 3.1.3, we have:

|(uh · ∇Φ, uh)| ≤
∫

Ω

|uh∇Φuh|dx ≤ ||∇Φ|| 3
2
L ||∇uh||23,

then use Young’s inequality (3.2.19) with a = ||∇uh||23 and b = ||∇Φ|| 3
2
L for p = 3

2
, q = 3

and ε = 3
16

(Csδ)
2,

|(uh · ∇Φ, uh)| ≤ (Csδ)
2

8
||∇uh||33 +

16

27

1

(Csδ)4
||∇Φ||33

2
L3.

Since ||∇Φ||33
2

= U3L4

h
, Lemma 3.1.1, the above inequality turns to be,

|(uh · ∇Φ, uh)| ≤ (Csδ)
2

8
||∇uh||33 +

16

27

U3 L7

(Csδ)4 h
. (3.2.21)
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Combining (3.2.20) and (3.2.21) in (3.2.18), we have the following estimate on the non-

linearity,

|b(uh, uh,Φ)| ≤ 7

24
(Csδ)

2||∇uh||33 +
U3 L7

(Csδ)4 h
+
L

3
2h

3
2L3U3

(Csδ)4
. (3.2.22)

Inserting (3.2.22) in (3.2.17) yields:

1

2

∫ T

0

ν‖∇uh‖2dt+
1

2

∫ T

0

(

∫
Ω

(Csδ)
2|∇uh|3dx)dt ≤ 1

2
‖uh(0)‖2 +

1

6
L2U2h

+

√
h

3
UL‖uh(0)‖+

ν

2

U2L2

h
T +

1

3
(Csδ)

2U
3L2

h2
T +

U3 L7

(Csδ)4 h
T +

L
3
2h

3
2L3U3

(Csδ)4
T.

(3.2.23)

Note that the above inequality can justify the fact that the computed time-averaged

of the energy dissipation of the solution (3.0.1) is uniformly bounded and hence 〈ε(uh)〉 is

well-defined.

Dividing both sides of the inequality (3.2.23) by |Ω| = L3 and T , taking lim Sup as

T −→∞ leads to,

1

2
〈ε(uh)〉 ≤ 1

2

νU2

hL
+

1

3
(Csδ)

2 U
3

h2L
+

L4 U3

(Csδ)4 h
+
h

3
2 L

3
2 U3

(Csδ)4
,

which can be written as

〈ε(uh)〉 ≤ C

[
1

Re
L

h
+ (

Cs δ

h
)2 +

L5

(Csδ)4 h
+

L
5
2

(Cs δ)4
h

3
2

]
U3

L
, (3.2.24)

and the theorem is proved.

Remark 3.2.4. The estimate in Theorem 3.2.3 is for a coarse mesh h ≥ O(Re−1)L. For the

fully-resolved case h→ Re−1 (or equivalently Csδ → 0), the other estimate in Theorem 3.2.1

takes over. Moreover, the estimate is independent of the viscosity at high Reynolds number.

It is also dimensionally consistent.
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Figure 6: Level Sets.

The value of 〈ε(uh)〉 in Theorem 3.2.3 depends on three discretization parameters; the

turbulence resolution length scale δ, the Smagorinsky constant Cs and the numerical reso-

lution h. These affect 〈ε(uh)〉, but have no impact on the underlying velocity field u(x, t),

and hence they have no effect upon 〈ε(u)〉.

Consider the upper bound on 〈ε(u
h)〉

U3/L
in (3.2.24) as function of (Csδ) and h, when Re� 1

and L are being fixed. The expression includes three main terms. The terms in the estimate

are associated with physical effects as follows,

1. λ1(h,Csδ) = 1
Re

L
h

=⇒ Viscosity,

2. λ2(h,Csδ) = (Csδ
h

)2 =⇒ Model Viscosity,

3. λ3(h,Csδ) = L5

(Csδ)4 h
+ L

5
2

(Cs δ)4
h

3
2 =⇒ Non-linearity.

Tracking back the proof of Theorem 3.2.3, λ1, λ2 and λ3 correspond to the viscosity term

ν∆u, model viscosity ∇· ((Csδ)2|∇u|∇u) and non-linear term u ·∇u respectively. The three

level sets of λ1 = λ2, λ2 = λ3 and λ1 = λ3 are respectively denoted by the curves ζ1, ζ2 and

ζ3 in the Figure 6, which are calculated as,
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1. ζ1 : λ1 = λ2 =⇒ Csδ = Re− 1
2 L ( h

L
)
1
2 ,

2. ζ2 : λ2 = λ3 =⇒ Csδ = L
[
( h
L

)
7
2 + h

L

] 1
6 ,

3. ζ2 : λ1 = λ3 =⇒ Csδ = Re 1
4L
[
1 + ( h

L
)
5
2

] 1
4 .

Remark 3.2.5. In Figure 6, consider the horizontal axis to be h
L

and the vertical one to be

Csδ. The three level sets divide the ( h
L

) (Csδ) - plane into the four regions. The four regions

I, II, III and IV are identified with respect to the comparative magnitudes of λ1, λ2 and λ3

on the ( h
L

) (Csδ) - plane. After comparing the magnitude of these three functions on each

separate region, it can be seen that below the curve ζ2 (regions I and II) the effect of non-

linearity term u · ∇u on the energy dissipation, corresponding to λ3, dominates the other

terms. But above the curve ζ2 (regions III and IV) the model viscosity term, corresponding

to λ2, dominates. Surprisingly, the viscosity term ν∆u is never bigger than the other two

terms for any choice of h, δ and Cs.

The Smagorinsky coefficient Cs can be calibrated for a given class of flows. Its value varies

from flow to flow and from domain to domain (see e.g. Page 23 of Galperin and Orszag [22]

who quote a range 0.000744 ≤ Cs ≤ 0.020). In the next corollary the optimal value, with

respect the current analysis, of Cs in the Theorem 3.2.3 is investigated, considering δ = h

which is a common choice [66].

Corollary 3.2.6. Let δ = h ≥ O(Re−1)L be fixed. Then for any choice of Cs > 0, the upper

estimate on 〈ε(u
h)〉

U3/L
in the Theorem 3.2.3 is larger than the dissipation coefficient Cε in Figure

5.

Proof. Letting δ = h, Theorem 3.2.3 suggests,

〈ε(uh)〉
U3/L

' 1

Re
L

h
+ Cs

2 +
1

C4
s

[
(
L

h
)5 + (

L

h
)
5
2

]
. (3.2.25)

Solving the minimization problem (Cs)min = arg minCs F (Cs), the minimum of the function,

F (Cs) =
1

Re
L

h
+ Cs

2 +
1

C4
s

[
(
L

h
)5 + (

L

h
)
5
2

]
, (3.2.26)

occurs at

Fmin =
1

Re
L

h
+ 2
[
(
L

h
)5 + (

L

h
)
5
2

] 1
3 , (3.2.27)
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Figure 7: Theorem 3.2.3 vs experimental results in Figure 5.

for (Cs)min = 6
√

2 [(L
h

)5 + (L
h

)
5
2 ]

1
6 , assuming O(Re−1) < h

L
< 1 is fixed. This minimum

amount (3.2.27) dramatically exceeds the range of Cε in Figure 5 for any typical choice of h

in LES.

Remark 3.2.7. Corollary 3.2.6 indicates over-dissipation of 〈ε(uh)〉 for any choice of Cs > 0.

As an example, let h
L

= 0.01, then Fmin ' 2000 in (3.2.27) as Re → ∞. It is much larger

than the experimental range of Cs in Figure 5, 1
Re ≤ Cε ≤ 0.1, see Figure 7.

However δ is taken O(h) in many literature [66], the relationship between the grid size h

and the filter size δ has been made based on heuristic instead of a sound numerical analysis

(p.26 of [5]). Therefore for an LES of fixed computational cost (i.e. fixed h) and fixed

length scale L, one can ask how the artificial parameter Cs δ should be selected such that the

statistics of the model be consistent with numerical and experimental evidence summarized

in Figure 5. To answer this question, the inequality (3.2.24) takes over in the next corollary

for under-resolved spatial mesh h ≥ O(Re−1)L, since no model is used when (at much
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greater cost) a DNS is performed with h
L
' Re−1.

Corollary 3.2.8. Let the mesh size h ≥ O(Re−1)L be fixed. Then for any choice of Cs > 0

and δ > 0, the upper estimate on 〈ε(uh)〉
U3/L

in the Theorem 3.2.3 is larger than the dissipation

coefficient Cε in Figure 5.

Proof. Solving the minimization problem (Csδ)min = arg minCsδ G(Csδ), the minimum of the

function,

G(Csδ) =
1

Re
L

h
+ (

Cs δ

h
)2 +

L5

(Csδ)4 h
+

L
5
2

(Cs δ)4
h

3
2 , (3.2.28)

occurs at,

Fmin =
1

Re
L

h
+ 2
[
(
L

h
)5 + (

L

h
)
5
2

] 1
3 ,

for (Csδ)min = 6
√

2h [(L
h

)5 +(L
h

)
5
2 ]

1
6 assuming h and L are fixed. This minimum amount which

is much larger than the experimental range of Cε,
1
Re ≤ Cε ≤ 0.1, leads to over-dissipation

of the model, Figure 7.

Remark 3.2.9. The extra dissipation in the Corollary 3.2.6 and 3.2.8, which is consistent

with experience with the Smagorinsky model (e.g., Iliescu and Fischer [35] and Moin and

Kim [57]), can laminarize the numerical approximation of a turbulent flow and prevent the

transition to turbulence.

Remark 3.2.10. In the limit of high Reynolds number and for a fixed computational cost

h ≥ O(Re−1)L, the estimate in Theorem 3.2.3 is the function of Csδ,

〈ε(uh)〉
U3/L

' (
Cs δ

h
)2 +

1

(Csδ)4
[
L5

h
+ L

5
2 h

3
2 ],

which consists of two major parts. First,

λ2 = O((Csδ)
2)

is derived from the eddy viscosity term and is quadratic in (Csδ). The latter,

λ3 = O((Csδ)
−4)

35



is derived from the non-linearity term and is inversely proportional to (Csδ)
4. Therefore, the

behavior of the graph 〈ε(u
h)〉

U3/L
in Figure 7 is decided by the competition between the increasing

function λ2 and the decreasing function λ3. This observation suggests model over-dissipation

is due to the action of the model viscosity, which is also consistent with [45]. Analysis in

[45] suggested that the model over-dissipation is due to the action of the model viscosity in

boundary layers rather than in interior small scales generated by the turbulent cascade.

3.3 NUMERICAL SIMULATIONS

The test is a comparison between simulation of the NSE and the Smagorinsky model for

two dimensional time-dependent shear flow between two cylinders, motivated by the classic

problem of flow between rotating cylinders. The domain is a disk with a smaller center

obstacle inside. The flow is driven by the rotational force at the outer circle in the absence

of body force, with no-slip boundary conditions suppressed on the inner circle. Note that in

the absence of body force here, most of the interesting structures are expected to be due to

the interaction of the flow with the boundaries. The tests were performed using FreeFEM++

[30], with Taylor-Hood elements (continuous piecewise quadratic polynomials for the velocity

and continuous linear polynomials for the pressure) in all tests. The under-resolved mesh is

parameterized by the number of mesh points m = 60 around the outer circle and n = 20

mesh points around the immersed circle and extended to all of the domain as a Delaunay

mesh, Figure 8. We take Re = 3000, final time T = 10 and time step ∆t = 0.01. The initial

condition u0 is generated by solving the steady Stokes problem with the same condition

described above on the same geometry, this gives an initial condition that is divergence

free and satisfies the boundary conditions. The Backward Euler method is utilized for time

discretization.

In the NSE (Figure 9), as it is expected, flow does not approach a steady state and the

chaotic behavior of the velocity field especially near the boundaries can be seen. To verify

the code works properly, Cs = 0.00001 (i.e. Cs → 0) is considered once in the SM. The same

chaotic behavior as the NSE is observed in this scenario and the result is quite identical,
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which is consistent with the fact that SM → NSE as Cs → 0 (Figure 10).

To run the test on the Smagorinsky model, providing all other conditions hold, consider

Cs = 0.17 [50]. Motivated by Corollaries 4.2.2 and 4.2.4, consider δ = h (Figure 11 )

and δ = h
1
6 (Figure 12). In all cases, the model predicts the flow will quickly reach a

nonphysical equilibrium, which is clearly over-dissipated. This extra dissipation laminarizes

the approximation of the flow and prevents the transition to turbulence.

3.4 CONCLUSION

We investigate the computed time-averaged energy dissipation 〈ε(uh)〉 here for shear flow

turbulence on the under-resolved mesh. 〈ε(uh)〉 scales as the equilibrium dissipation law,

U3

L
, for an under-resolved mesh independent of ν at high Reynolds number being considered.

The upper bound in Theorem 3.2.3 does not give the correct dissipation for any choice of the

Smagorinsky constant Cs > 0 and filter size δ > 0, which is consistent with the numerical

evidence. In addition, it is shown that the viscosity term ν∆u does not affect 〈ε(uh)〉 for

any choice of discretization parameters. The next important step would be analyzing the

computed energy dissipation rate for other turbulent models, e.g. dynamic subgrid-scale

model, on an under-resolved spatial mesh.

The analysis here indicates that the model over-dissipation is due to the action of the eddy

viscosity term ∇ · ((Csδ) |∇u| ∇u). The classical approach to correct the over-dissipation of

the Smagorinsky model is to multiply the eddy viscosity term with a damping function. The

mathematical analysis in [62] shows that the combination of the Smagorinsky with a modified

van Driest damping does not over dissipate assuming infinite resolution (i.e. continues case).

The unexplored question is: What is the statistics of this combination on an under-resolved

mesh size?

In this report, the Smagorinsky model is used instead of the NSE. One can try to calculate

the energy dissipation rate for the discretized NSE on the coarse mesh. The key part of the

success is to prove the boundedness of the kinetic energy of the approximate velocity, ||uh||2,

for the NSE without any restriction on the mesh size h.
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Figure 8: Coarse mesh with 60 mesh points on the outer and 20 points on the inner circle.
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Figure 9: NSE; Chaotic velocity field near the boundary.
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Figure 10: SM → NSE as Cs → 0.
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Figure 11: SM where δ = h for any Cs > 0; Flow reaches nonphysical equilibrium.
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Figure 12: SM where δ = h
1
6 for any Cs > 0; Flow reaches nonphysical equilibrium.
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4.0 DAMPING FUNCTIONS CORRECT OVER-DISSIPATION OF THE

SMAGORINSKY MODEL

Experience with the Smagorinsky model (SM) indicates it over dissipates (p.247 of Sagaut

[71]). This extra dissipation can laminarize the numerical approximation of a turbulent

flow and prevents the transition to turbulence (p.192 of [47]). Model refinements aim at

reducing model dissipation occur as early as 1975 [72] and continues with dynamic parameter

selection (Germano, Piomelli, Moin and Cabot [24] and Swierczewska [80]), structural sensors

(Hughes, Oberai and Mazzei [34]) and near wall models (e.g., Piomelli and Balaras [65], John,

Layton and Sahin [40] and John and Liakos [41]). The classical approach is to multiply the

turbulent viscosity with damping function β(x) (such as van Driest damping [83]) with

β(x)→ 0 as x→ walls. There have been many numerical tests but little analytic support of

this combination. This paper analyzes this combination of the SM with damping function

β(x) in the flow domain Ω = (0, L)3,

ut + u · ∇u− ν∆u+∇p−∇ · (β(x)(Csδ)
2|∇u|∇u) = 0 and ∇ · u = 0 in Ω. (4.0.1)

In (4.0.1) u is the velocity, p is the pressure, ν is the kinematic viscosity, δ << 1 is a model

length scale and Cs ' 0.1 is the standard model parameter (Lilly [50]). To evaluate the effect

of a damping function in the near wall region, we study the time-averaged energy dissipation

rate of (4.0.1) for shear flow. L-periodic boundary conditions in x and y directions are

imposed. z = 0 is a fixed wall and the wall z = L moves with velocity U (Figure 13),

u(x, y, 0, t) = (0, 0, 0)> and u(x, y, L, t) = (U, 0, 0)>. (4.0.2)
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The Reynolds number is Re = UL
ν

. The time-averaged energy dissipation rate for model

(4.0.1) includes dissipation due to the viscous forces and turbulent diffusion reduced by the

damping function β(x). It is given by

〈εSMD(u)〉 = lim sup
T→∞

1

T

∫ T

0

(
1

|Ω|

∫
Ω

ν|∇u|2 + (csδ)
2β(x)|∇u|3dx) dt. (4.0.3)

This chapter estimates 〈εSMD(u)〉 (Theorem 4.2.1) for a damping function β(x) in terms of

its integral on an γ = O(Re−1) strip along the moving wall as

〈εSMD(u)〉 ≤
[
C1 + C2 (

Csδ

L
)2Re3 1

L

∫ L

L−γL
β(z) dz

] U3

L
.

For an algebraic approximation of van Driest damping, Corollary 4.2.2 shows

〈εSMD(u)〉 ≤
[
C2 + C2 (

Csδ

L
)2Re2

] U3

L
.

The above estimate goes to U3

L
for fixed Re as δ → 0, but blows up as Re → ∞ for fixed

δ, suggesting over-dissipation. On the other hand, damping with a classical mixing length

formula (4.2.19) of Prandtl, we obtain in Corollary 4.2.4

〈εSMD(u)〉 ≤ C
U3

L
,

which is consistent with Kolmogorov phenomenology.
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Figure 13: Shear flow.

4.0.1 Related Work

In the theory of turbulence, the time-averaged energy dissipation rate is a fundamental

quantity (Sreenivasan [76], Pope [67], Lesieur [49], and Frisch [20]) determines the small-

est persistent length scales and the dimension of any global attractor [46]. Moreover, the

smallest length scale of turbulent flow simulation can be estimated by using upper bounds

of the energy dissipation rate. In turbulent flows, the energy dissipation is often observed

to approach a limit independent of the viscosity [43]. No rigorous proof of this fact has

been given. For shear flow between parallel plates, Busse [10] and Howard [33] estimated

〈ε(u)〉 under the assumption that the flow is statistically stationary. Doering and Constantin

[15] proved an upper bound on the time-averaged energy dissipation rate for general weak

solutions of the Navier-Stokes equations (NSE), 〈ε(u)〉 ≤ C U3

L
. Similar estimates have been

proven by Marchiano [53], Wang [85] and Kerswell [42] in more generality.

The Smagorinsky model [77], β(x) ≡ 1 in (4.0.1), is a common turbulence model used in
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Large Eddy Simulation (e.g., [5], [71], [38], [59], [64] and [25]). The extra term with respect

to the NSE can be generally justified as follows. In turbulence, dissipation occurs non-

negligibly only at very small scales, smaller than the typical mesh. The balance between

energy input at the largest scales and the energy dissipation at the smallest is a critical

selection mechanism for determining the statistics of turbulent flows. To get an accurate

simulation, once a mesh is selected, an extra dissipative term must be introduced to model

the effect of the unresolved fluctuations, which are smaller than the mesh width, upon the

resolved velocity.

The energy dissipation rate of the Smagorinsky model for shear flow with boundary layers

was estimated in [45] as:

〈εs(u)〉 ≤ [1 + C2
s (
δ

L
)2(1 +Re)2]

U3

L
. (4.0.4)

This estimate blows up for δ fixed as Re → ∞, which is consistent with the numerical

evidence (e.g., Iliescu and Fischer [35] and Moin and Kim [57]). Surprisingly, it was shown

in [45] that the energy dissipation rate of the Smagorinsky model in the absence of boundary

layers satisfies:

〈εs(u)〉 ≤ C
U3

L
. (4.0.5)

Comparing these two results (4.0.4) and (4.0.5) suggests that the model over-dissipation

is due to the action of the model viscosity in boundary layers rather than in interior small

scales generated by the turbulent cascade. To reduce the effect of model viscosity in the

boundary layers damping functions β(x), which go to zero at the walls, are often used (Pope

[67]). In this case most of the tools of analysis, such as Körn’s inequality, the Poincaré-

Friederichs inequality, and Sobolev’s inequality, no longer hold. Thus, the mathematical

development of the SM under no-slip boundary conditions with damping function is cited in

[5] p.78 as an important open problem.
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4.1 MATHEMATICAL PRELIMINARIES

We use the standard notations Lp(Ω),W k,p(Ω), Hk(Ω) = W k,2(Ω) for the Lebesgue and

Sobolev spaces respectively. The inner product in the space L2(Ω) will be denoted by (·, ·)

and its norm by || · || for scalar, vector and tensor quantities. Norms in Sobolev spaces

Hk(Ω), k > 0, are denoted by || · ||Hk and the usual Lp norm is denoted by || · ||p. The

symbols C and Ci for i = 1, 2, 3 stand for generic positive constant independent of the ν, L

and U . In addition, ∇u is the gradient tensor (∇u)ij =
∂uj
∂xi

for i, j = 1, 2, 3.

Definition 4.1.1. The velocity at a given time t is sought in the space

X(Ω) := {u ∈ H1(Ω) : u(x, y, 0) = (0, 0, 0)>, u(x, y, L) = (U, 0, 0)>,

u is L-periodic in x and y direction}.

The test function space is

X0(Ω) := {u ∈ H1(Ω) : u(x, y, 0) = (0, 0, 0)>, u(x, y, L) = (0, 0, 0)>,

u is L-periodic in x and y direction}.

The pressure at time t is sought in

Q(Ω) := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
qdx = 0}.

And the space of divergence-free functions is denoted by

V (Ω) := {u ∈ X(Ω) : (∇ · u, q) = 0 ∀q ∈ Q}.

Definition 4.1.2. (Trilinear from) Define b : X×X×X→ R as b(u, v, w) := (u · ∇v, w).

Lemma 4.1.1. The nonlinear term b(·, ·, ·) is continuous on X×X×X (and thus on V ×V ×V

as well). Moreover, we have the following skew-symmetry property for b

b(u, v, v) = 0 ∀u ∈ V, v ∈ X.

Proof. The proof is standard and the one with zero boundary conditions can be found in

p.114 of Girault and Raviart [27].
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Figure 14: The background flow.

4.1.1 Construction of Background Flow

One key step to the upper bound on 〈εSMD(u)〉 is to construct an appropriate background

flow, Φ ∈ X(Ω), following Hopf [32] and Doering and Constantin [15]. This is a divergence-

free function extending the boundary condition (4.0.2) to the interior of Ω. Moreover, u−Φ ∈

X0(Ω) and will be used as a test function in the weak form (4.2.1). The choice of γ ∈ (0, 1)

will be determined by the needs of the estimates in (4.2.16) and it will be chosen to be

γ = 1
5.1

(Re)−1.

Definition 4.1.3. (The background flow) Define Φ(x, y, z) := (φ(z), 0, 0)>, where

φ(z) =

 0 if z ∈ [0, L− γL]

U
γL

(z − (L− γL)) if z ∈ [L− γL, L]
.

φ(z) is sketched in Figure 14. We collect two properties for Φ in Lemmas 4.1.2 and 4.1.3.

Lemma 4.1.2. Φ satisfies
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‖Φ‖∞ ≤ U,a) ‖∇Φ‖∞ ≤
U
γL
,b) ‖Φ‖2 ≤ U2γL3

3
,c) ‖∇Φ‖2 ≤ U2L

γ
.d)

Proof. They all are the immediate consequence of the Definition 4.1.3. We show (c) here as

an example.

‖Φ‖2 = L2
∫ L

0
|φ(z)|2dz = L2

∫ L
L−γL

U2

(γL)2
(z − (L− γL))2dz = U2γL3

3
.

We will need the well-known dependence of the Poincaré -Friedrichs inequality constant

on the domain. A straightforward argument in the thin domain OγL implies Lemma 4.1.3.

Lemma 4.1.3. Let OγL = {(x, y, z) ∈ Ω : L− γL ≤ z ≤ L} be the region close to the upper

boundary. Then we have

‖u− Φ‖L2(OγL) ≤ γL‖∇(u− Φ)‖L2(OγL). (4.1.1)

Proof. First let v be a C1 function on OγL that vanishes for z = L. Then component-wise

(i = 1, 2, 3), we have

vi(x, y, z) = vi(x, y, L)−
∫ L

z

dvi
dξ

(x, y, ξ)dξ.

Observing that vi(x, y, L) = 0, squaring both sides, and using the Cauchy-Schwarz inequality,

we get

v2
i (x, y, z) ≤ γL

∫ L

L−γL
(
dvi
dξ

(x, y, ξ))2dξ.

Integrating both sides with respect to z gives

∫ L

L−γL
v2
i (x, y, z)dz ≤ (γL)2

∫ L

L−γL
(
dvi
dξ

(x, y, ξ))2dξ.

Then integrating with respect to x and y and summing from i = 1 to 3, we obtain

‖v‖2
L2(OγL) ≤ (γL)2‖∇v‖2

L2(OγL).

This proves the lemma for v ∈ C1. Finally use a density argument and take v = u− Φ.
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4.1.2 The Kinetic Energy

Before proving the main theorem, we prove boundedness of the kinetic energy, 1
2
||u||2, and

that 〈εSMD(u)〉 is well-defined. The proof of the model (4.0.1) is similar to the NSE case

first presented in Hopf [32]. We need the following proposition first.

Proposition 4.1.4. Let ∇v ∈ Lp(OγL) and 0 < p <∞. If v(x, y, L, t) = 0 then

||v(x, y, z)

L− z
||Lp(OγL) ≤

p

p− 1
||∂v
∂z

(x, y, z)||Lp(OγL).

Proof. Using B. Hardy’s inequality (P.313 of Brezis [8]) when z ∈ [L−γL, L] for fixed x and

y gives

||v(x, y, z)

L− z
||Lp([L−γL,L]) ≤

p

p− 1
||∂v
∂z

(x, y, z)||Lp([L−γL,L]).

Raising both sides to power p, then taking a double integral with respect to x and y for

x, y ∈ [0, L] implies the result,

||v(x, y, z)

L− z
||pLp(OγL) ≤ (

p

p− 1
)p ||∂v

∂z
(x, y, z)||pLp(OγL) ≤ (

p

p− 1
)p ||∇v||pLp(OγL).

Lemma 4.1.5. The kinetic energy and the time averages of the energy dissipation of the

solution to (4.0.1) with the boundary conditions (4.0.2) are uniformly bounded in time, i.e.

sup
t∈(0,∞)

||u(t)|| ≤ C <∞ and sup
t∈(0,∞)

1

T

∫ T

0

(
1

|Ω|

∫
Ω

ν|∇u|2+(csδ)
2β(x)|∇u|3dx) dt ≤ C <∞.

Proof. The strategy is to subtract off the inhomogeneous boundary conditions (4.0.2). Con-

sider v = u−Φ, then v satisfies homogeneous boundary conditions. Substituting u = v + Φ

in the equation (4.0.1) yields

vt + v ·∇v− ν∆v+∇p+φ(z)
∂v

∂x
+ v3φ

′(z)(1, 0, 0)−∇· (β(x)(Csδ)
2|∇(v+ Φ)|∇(v+ Φ)) = 0,

(4.1.2)

∇ · v = 0.
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with boundary conditions

v(x, y, 0, t) = (0, 0, 0)> and v(x, y, L, t) = (0, 0, 0)>, (4.1.3)

and

v(x+ L, y, z, t) = v(x, y, z, t) and v(x, y + L, z, t) = v(x, y, z, t). (4.1.4)

Taking the inner product with v = (v1, v2, v3) and integrating over Ω give

1

2

∂

∂t
||v||2+ν||∇v||2+

∫
Ω

(
φ(z)

∂v

∂x
·v+v1v3φ

′(z)
)
dx+(β(x)(Csδ)

2|∇(v+Φ)|∇(v+Φ),∇v) = 0.

(4.1.5)

Since any integral containing φ and φ′ will be zero outside the strip OγL, by integrating by

parts we have a

∫
Ω

φ(z)
∂v

∂x
· v dx =

1

2

∫
OγL

φ(z)
∂

∂x
|v|2 dx =

1

2

∫
OγL

∂

∂x
(φ(z)|v|2) dx− 1

2

∫
OγL

φ′(z)|v|2 dx

= −1

2

U

γL

∫
OγL
|v|2 dx.

(4.1.6)

Inserting this identity in (4.1.5) and using the triangle inequality on the last term gives

∂

∂t
||v||2 + 2ν||∇v||2 +

U

γL

∫
OγL

(
2v1v3 − |v|2

)
dx+ 2

∫
Ω

β(x)(Csδ)
2|∇v|3 dx

≤ 4

∫
Ω

(β(x)(Csδ)
2|∇v|2 |∇Φ| dx+ 2

∫
Ω

(β(x)(Csδ)
2|∇v| |∇Φ|2 dx.

(4.1.7)

The rest of analysis requires approximating various terms in the above. Let p = 2 in

Proposition 4.1.4 and the two terms on the LHS of (4.1.7) can be bounded above as

U

γL

∫
OγL
|v|2 dx =

U

γL

∫
OγL

d(z)2| v
d(z)
|2 dx ≤ U

γL
(γL)2

∫
OγL
| v
d(z)
|2 dx

≤ 2UγL

∫
OγL
|∇v|2 dx ≤ 2UγL||∇v||2.

(4.1.8)
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Similarly
U

γL

∫
OγL

2|v1v3| dx ≤ 4UγL||∇v||2. (4.1.9)

To bound the two terms on the RHS of (4.1.7), use Hölder’s inequality and Young’s inequality

||fg||L1 ≤ ||f ||Lp ||g||Lq ≤ ε
p
|f ||pLp + ε

− qp

q
||g||qLq . Consider the first term, for p = 3

2
, q = 3 and

ε = 0.6 we have

4

∫
Ω

(β(x)(Csδ)
2|∇v|2 |∇Φ| dx ≤ 4(Csδ)

2
( ∫

Ω

β(x)|∇v|3 dx
) 2

3
( ∫

Ω

β(x)|∇Φ|3 dx
) 1

3

≤ 1.6

∫
Ω

β(x)(Csδ)
2|∇v|3 dx+ 4

∫
Ω

β(x)(Csδ)
2|∇Φ|3 dx.

(4.1.10)

The second term is estimated exactly like the last term for p = 3, q = 3
2

and ε = 0.6 as

2

∫
Ω

(β(x)(Csδ)
2|∇v| |∇Φ|2 dx ≤ 2(Csδ)

2
( ∫

Ω

β(x)|∇v|3 dx
) 1

3
( ∫

Ω

β(x)|∇Φ|3 dx
) 2

3

≤ 0.4

∫
Ω

β(x)(Csδ)
2|∇v|3 dx+ 2

∫
Ω

β(x)(Csδ)
2|∇Φ|3 dx.

(4.1.11)

Inserting these last four estimates into the energy inequality (4.1.7) for v gives

∂

∂t
||v||2 + (2ν − 6UγL)||∇v||2 ≤ 6

∫
Ω

β(x)(Csδ)
2|∇Φ|3 dx.

Thus, if γ is chosen small enough that

γ <
1

3
(Re)−1,

then (2ν − 6UγL) becomes positive. Applying the Poincaré-Friedrichs inequality ||v|| ≤

C||∇v|| gives

∂

∂t
||v||2 + C||v||2 ≤ 6

∫
Ω

β(x)(Csδ)
2|∇Φ|3 dx.

Since RHS is uniformly bounded in time, a standard Grönwall’s inequality shows that

sup
t∈(0,∞)

||v(t)|| ≤ C <∞,
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which proves the boundedness of the kinetic energy, 1
2
||u||2. From this and standard argu-

ments it follows that

1

T

∫ T

0

(
1

|Ω|

∫
Ω

ν|∇u|2 + (csδ)
2β(x)|∇u|3dx) dt ≤ C <∞,

which means 〈εSMD(u)〉 is well-defined.

4.1.3 van Driest Damping

To modify the mixing-length model van Driest proposed [83], with some theoretical support

but mainly as a good fit to data (p.77 of Wilcox [86]), that the mixing length ` should be

multiplied by the damping function so that `(x)→ 0 as x→ wall. The van Driest damping

function is

fw(z) = 1− e
−z+
A+ , (4.1.12)

where A+ = 26 is the van Driest constant and z+ is the non-dimensional distance from the

wall (p.76 of Wilcox [86])

z+ =
uτ (L− z)

ν
, (4.1.13)

which determines the relative importance of viscous and turbulent phenomena. uτ is the

wall shear velocity given by

uτ =

√
ν
∂u

∂z

∣∣∣∣
wall

. (4.1.14)

uτ is still unknown, the analysis herein will require a specific value for uτ . To this end, it

can be estimated as follows. Near the wall ∇u ' ∂u
∂z

, then

uτ =

√
ν
∂u

∂z

∣∣∣∣
wall

'
√
ν ∇u|wall = 4

√
ν2(∇u|wall)

2 ' 4
√
ν〈ε̄w〉, (4.1.15)

where ε̄w is a spatial-average energy dissipation rate near the wall. After assuming a non-zero

fraction occurs in near-wall region [83] and therefore neglecting the effects of viscosity far

from the boundary layer, dissipation occurs mainly in the boundary layers near the bottom

and top walls which both have a volume of L3 γ. Hence

〈ε〉 = 2
1

L3
(L3 γ)〈ε̄w〉 = 2γ〈ε̄w〉.
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On the other hand, based on the statistical equilibrium 〈ε〉 = U3

L
, therefore

〈ε〉 =
U3

L
= 2γ〈ε̄w〉.

Using γ = O(Re−1) gives

〈ε̄w〉 '
1

2

U4

ν
. (4.1.16)

Then uτ is estimated by inserting (4.1.16) in (4.1.15) to be

uτ '
U
4
√

2
. (4.1.17)

Hence van Driest damping function is approximated as (Figure 15)

fw(z) ' 1− exp(
−U(L− z)

26 4
√

2 ν
). (4.1.18)

Using Taylor series to approximate (4.1.18) in the boundary layer OγL gives

fw(z) '
k∑

n=1

[
1

26 4
√

2n!
Re (1− z

L
)]n +O(Rek+1 (1− z

L
)k+1). (4.1.19)

Note that the above approximation (4.1.19) is valid when the reminder Re (1− z
L

) is less

than 1, and this occurs when L − γL ≤ z ≤ L. Moreover, approximation (4.1.19) suggests

(Re)α(1 − z
L

)α for α ≥ 1 as a damping function only on the top layer. Thus (4.1.20) is an

algebraic approximation to the van Driest damping on the whole symmetric domain (Figure

16, for α = 2).

βw(z) =


(Re)α( z

L
)α if z ∈ [0, γL]

1 if z ∈ [γL, L− γL]

(Re)α(1− z
L

)α if z ∈ [L− γL, L]

. (4.1.20)

Remark 4.1.6. βw plays the role of β in (4.0.1).
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Figure 15: van Driest.

Figure 16: Algebraic approximation of van Driest.
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4.2 ANALYSIS OF THE SMAGORINSKY WITH DAMPING FUNCTION

Theorem 4.2.1. Suppose u0 ∈ L2(Ω) and let 1 γ = 1
5.1
Re−1 , then for any positive damping

function β(z) ∈ L1(Ω), 〈εSMD(u)〉 satisfies

〈εSMD(u)〉 ≤
[
C1 + C2 (

Csδ

L
)2Re3 1

L

∫ L

L−γL
β(z) dz

] U3

L
.

Proof. The weak form of (4.0.1) is obtained by taking the scalar product v ∈ X0 and q ∈ L2
0

with (4.0.1) and integrating over the space Ω:

(ut, v) + ν(∇u,∇v) + b(u, u, v)− (p,∇ · v) + (β(x)(Csδ)
2|∇u|∇u,∇v) = 0 ∀v ∈ X0,

(∇ · u, q) = 0 ∀q ∈ L2
0,

(u(x, 0)− u0(x), v) = 0 ∀v ∈ X0.

(4.2.1)

Take v = u−Φ in (4.2.1). Using the skew-symmetry of b(·, ·, ·) (Lemma 4.1.1) and ∇·Φ = 0

gives:

(ut, u− Φ) + ν(∇u,∇u−∇Φ) + b(u, u, u− Φ) + (β(x)(Csδ)
2|∇u|∇u,∇u−∇Φ) = 0,

which is equivalent to the following

1

2

d

dt
‖u‖2 + ν‖∇u‖2 + (Csδ)

2(β(x)|∇u|∇u,∇u) =
d

dt
(u,Φ) + b(u, u,Φ) + ν(∇u,∇Φ)

+ (Csδ)
2(β(x)|∇u|∇u,∇Φ).

(4.2.2)

Integrating with respect to time from above equation gives

1

2
‖u(T )‖2 − 1

2
‖u(0)‖2 + ν

∫ T

0

‖∇u‖2dt+

∫ T

0

(

∫
Ω

(Csδ)
2β(x)|∇u|3dx)dt = (u(T ),Φ)

− (u(0),Φ) +

∫ T

0

b(u, u,Φ)dt+ ν

∫ T

0

(∇u,∇Φ)dt+ (Csδ)
2

∫ T

0

(β(x)|∇u|∇u,∇Φ)dt.

(4.2.3)

1In fact γ can be κ( 1
5Re

−1) for any κ ∈ (0, 1). Without loss of generality, γ is taken to be 1
5.1Re

−1 for
simplicity in calculations.
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The proof continues by bounding, term by term, each term on the right-hand side of the

energy equality (4.2.3). Using the Cauchy-Schwarz-Young’s inequality and Lemma 4.1.2, the

first three terms are estimated as follows.

(u(T ),Φ) ≤ 1

2
‖u(T )‖2 +

1

2
‖Φ‖2 =

1

2
‖u(T )‖2 +

U2γL3

6
. (4.2.4)

(u(0),Φ) ≤ ‖u(0)‖‖Φ‖ =

√
γ

3
UL

3
2‖u(0)‖. (4.2.5)

ν

∫ T

0

(∇u,∇Φ)dt ≤ ν

2

∫ T

0

‖∇u‖2 + ‖∇Φ‖2dt =
ν

2

∫ T

0

‖∇u‖2dt+
ν

2

U2L

γ
T. (4.2.6)

For the nonlinear term b(·, ·, ·) in (4.2.3) add and subtract terms and then use skew-

symmetry. This gives

b(u, u,Φ) = b(u− Φ, u− Φ,Φ) + b(Φ, u− Φ,Φ)

=
1

2
b(u− Φ, u− Φ,Φ)− 1

2
b(u− Φ,Φ, u− Φ)

+
1

2
b(Φ, u− Φ,Φ)− 1

2
b(Φ,Φ, u− Φ).

(4.2.7)

To estimate the four terms in (4.2.7), use Lemma 4.1.2, Lemma 4.1.3, the Cauchy-Schwarz-

Young’s inequality. Moreover, apply the fact that b(u, u,Φ) is an integration on OγL since

supp(Φ) = OγL. For the first term in (3.7) we have

b(u− Φ, u− Φ,Φ) ≤ ‖Φ‖L∞(OγL)‖u− Φ‖L2(OγL)‖∇(u− Φ)‖L2(OγL) ≤ γLU‖∇(u− Φ)‖2
L2(OγL)

≤ γLU‖∇u−∇Φ‖2
L2 ≤ ULγ(‖∇u‖+ ‖∇Φ‖)2 ≤ ULγ(2‖∇u‖2 + 2‖∇Φ‖2)

≤ ULγ(2‖∇u‖2 + 2
U2L

γ
) = 2ULγ‖∇u‖2 + 2U3L2.

(4.2.8)

For the second term we have

b(u− Φ,Φ, u− Φ) ≤ ‖∇Φ‖L∞(OγL)‖u− Φ‖2
L2(OγL) ≤

U

γL
γ2L2‖∇(u− Φ)‖2

L2(OγL)

≤ γ2L2 U

γL
(2‖∇u‖2 + 2

U2L

γ
) = 2γLU‖∇u‖2 + 2U3L2.

(4.2.9)
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The third one is estimated as

b(Φ, u− Φ,Φ) ≤ ‖Φ‖L∞(OγL)‖∇(u− Φ)‖L2(OγL)‖Φ‖L2(OγL) ≤ U

√
U2γL3

3
(‖∇u‖+ ‖∇Φ‖)

≤ U

√
U2γL3

3
(‖∇u‖+

√
U2L

γ
) ≤ U2γ

1
2L

3
2

√
3
‖∇u‖+

U3L2

√
3

= [
U

3
2L√
3

] [(UγL)
1
2‖∇u‖] +

U3L2

√
3
≤ (

U3L2

6
) +

1

2
ULγ‖∇u‖2 +

U3L2

√
3

=
1

2
ULγ‖∇u‖2 + (

√
3

3
+

1

6
)U3L2.

(4.2.10)

And finally the last one satisfies

b(Φ,Φ, u− Φ) ≤ ‖Φ‖L∞(OγL)‖∇Φ‖L2(OγL)‖u− Φ‖L2(OγL) ≤ U

√
U2L

γ
γL‖∇(u− Φ)‖L2(OγL)

≤ U2γ
1
2L

3
2 (‖∇u‖+ ‖∇Φ‖) ≤ U2γ

1
2L

3
2 (‖∇u‖+ (

U2L

γ
)
1
2 )

= U2γ
1
2L

3
2‖∇u‖+ U3L2 = [U

3
2L] [(ULγ)

1
2‖∇u‖] + U3L2

≤ 1

2
(U3L2) +

1

2
ULγ‖∇u‖2 + U3L2 =

1

2
ULγ‖∇u‖2 +

3

2
U3L2.

(4.2.11)

Using (4.2.8), (4.2.9), (4.2.10) and (4.2.11) in (4.2.7) gives the final estimation for the non-

linear term as below.

|b(u, u,Φ)| ≤ 5

2
ULγ‖∇u‖2 +

19

6
U3L2. (4.2.12)

Finally the last term on the RHS of (4.2.3) can be estimated as the follows. Using

Hölder’s inequality and Young’s inequality for p = 3
2

and q = 3 gives

|(β(x)|∇u|∇u,∇Φ)| ≤
∫

Ω

|β(x)||∇u|2|∇Φ|dx

=

∫
Ω

(β
2
3 |∇u|2) (|β|

1
3 |∇Φ|)dx

≤ [

∫
Ω

β|∇u|3dx]
2
3 [

∫
Ω

β|∇Φ|3dx]
1
3 ≤ 2

3

∫
Ω

β|∇u|3dx+
1

3

∫
Ω

β|∇Φ|3dx.

(4.2.13)
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Inserting (4.2.4), (4.2.5), (4.2.6), (4.2.12) and (4.2.13) in (4.2.3) implies

1

2
‖u(T )‖2 − 1

2
‖u(0)‖2 + ν

∫ T

0

‖∇u‖2dt+ (Csδ)
2

∫ T

0

(

∫
Ω

β(x)|∇u|3dx)dt ≤ 1

2
‖u(T )‖2

+
U2γL3

6
+

√
γ

3
UL

3
2‖u(0)‖+

5

2
ULγ

∫ T

0

‖∇u‖2dt+
19

6
U3L2T +

ν

2

∫ T

0

‖∇u‖2dt

+
ν

2

U2L

γ
T +

2

3
(Csδ)

2

∫ T

0

(

∫
Ω

β(x)|∇u|3dx)dt+
1

3
(Csδ)

2

∫ T

0

(

∫
Ω

β(x)|∇Φ|3dx)dt.

(4.2.14)

Since the kinetic energy is bounded (Lemma 4.1.5), the above inequality becomes

(
1

2
− 5

2ν
γLU)

∫ T

0

ν‖∇u‖2dt+
1

3
(Csδ)

2

∫ T

0

(

∫
Ω

β(x)|∇u|3dx)dt ≤ 1

2
‖u(0)‖2 +

1

6
U2γL3

+

√
γ

3
UL

3
2‖u(0)‖+

19

6
U3L2T +

ν

2γ
LU2T +

1

3
(Csδ)

2

∫ T

0

(

∫
Ω

β(x)|∇Φ|3dx)dt.

(4.2.15)

Finally dividing both sides of (4.2.15) by T and |Ω| = L3 and taking the limit superior leads

to

min{1

2
− 5

2

γLU

ν
,
1

3
}〈εSMD(u)〉 ≤ 19

6

U3

L
+

ν

2γ

U2

L2
+

1

3

1

L3
(Csδ)

2

∫
Ω

β(x)|∇Φ|3dx. (4.2.16)

The above inequality leads to the last step when C1 and C2 are positive and independent of

viscosity, diam(Ω) and lid velocity. Take γ = 1
5.1
Re−1, then (1

2
− 5

2ν
γLU) becomes positive

and therefore

〈εSMD(u)〉 ≤ C1
U3

L
+ C2

1

L3
(Csδ)

2

∫
Ω

β(x)|∇Φ|3dx. (4.2.17)

Because the background flow Φ vanishes on (Ω\OγL), we have

∫
Ω

β(x)|∇Φ|3dx = (
U

γL
)3

∫ L

0

∫ L

0

∫ L

L−γL
β(x, y, z)dxdydz =

U3

γ3L

∫ L

L−γL
β(z)dz. (4.2.18)

Inserting (4.2.18) in (4.2.17) proves Theorem 4.2.1.

59



4.2.1 Evaluation of Damping Functions

Theorem 4.2.1 is the starting point for the evaluation of damping functions. It is next applied

to two damping functions in Corollaries 4.2.2 and 4.2.4 and the results will be compared.

Corollary 4.2.2. For the algebraic approximation of the van Driest damping function, βw(z)

in (4.1.20), we have

〈εSMD(u)〉 ≤
[
C1 + C2

1

α + 1
(
Csδ

L
)2Re2

] U3

L
.

Proof. The result is a direct calculation by applying βw(z) in (4.1.20) to the Theorem 4.2.1.

The upper bound in Corollary 4.2.2 is a function of the global velocity U , domain di-

ameter L, the eddy size δ, and surprisingly, the Reynolds number. Moreover, it blows up as

Re → ∞. Due to this fact one can propose the following modification to βw(z). Consider

βd(z) ∈ C1(Ω) in (4.2.19) which is based on a connection of the algebraic damping near the

wall smoothly to the no damping in the interior by Hermite interpolation. It is given by

βd(z) =



( z
L

)α(1− z
L

)α if z ∈ [0, γL]

a1(z − γL)3 + b1(z − γL)2 + c1(z − γL) + d1 if z ∈ [γL, 2γL]

1 if z ∈ [2γL, L− 2γL]

a2(z + 2γL− L)3 + b2(z + 2γL− L)2 + 1 if z ∈ [L− 2γL, L− γL]

( z
L

)α(1− z
L

)α if z ∈ [L− γL, L]

,

(4.2.19)

where α ≥ 0 and a1, a2, b1, b2, c1 and d1 are constant such that

• a1 = −2
γ3L3 + 1

L3αγ
α−3(1− γ)α−1(1− 2γ) + 2

L3γ
α−3(1− γ)α,

• b1 = 3
γ2L2 − 2

L2αγ
α−2(1− γ)α−1(1− 2γ)− 3

L2γ
α−2(1− γ)α,

• c1 = 1
L
αγα−1(1− γ)α−1(1− 2γ),

• d1 = γα(1− γ)α,

• a2 = −a1,

• b2 = − 3
γ2L2 + 1

L2αγ
α−2(1− γ)α−1(1− 2γ) + 3

L2γ
α−2(1− γ)α.
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Figure 17: Proposed damping function (3.19).
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Remark 4.2.3. All the constants above are calculated such that βd(z) ∈ C1. βd, which plays

the role of β in (4.0.1), is sketched in Figure 5 and compared to βw. They both are symmetric,

bounded and vanish at z = 0 and z = L. Moreover, they are almost 1 on the whole domain

except on the thin boundary layers.

Corollary 4.2.4. Suppose u0 ∈ L2(Ω) and βd given by (4.2.19) with 2 ≤ α ∈ N. Then, for

any Re ≥ 1 we have

〈εSMD(u)〉 ≤
[
C1 + C2(

Csδ

L
)2
] U3

L
.

Proof. Considering βd is symmetric on the whole domain implies

∫ L

L−γL
βd(z)dz =

∫ γL

0

(
z

L
)α(1− z

L
)αdz.

Now applying the Binomial Theorem on (1− z
L

)α and then taking the integral gives

∫ L

L−γL
βd(z)dz = Lγα+1

( 1

α + 1
− 1

α + 2
αγ +

1

α + 3

α(α− 1)

2
γ2

+ ...+ (−1)α
1

2α
αγα−1 + (−1)α

1

2α + 1
γα
)
.

(4.2.20)

After dropping negative terms, since γ = 1
5.1

(Re)−1 � 1 the RHS of (4.2.20) can be bounded

above by a constant, Cα, which depends on α. Therefore

∫ L

L−γL
βd(z)dz ≤ CαLγ

α+1, (4.2.21)

Using γ = 1
5.1

(Re)−1 and inserting the above in the Theorem 4.2.1 imply

〈εSMD(u)〉 ≤
[
C1 + C2 (

Csδ

L
)2 (

1

5.1
)3Cα γ

α−2
] U3

L
.

Use the assumptions α ≥ 2 and γ = 1
5.1

(Re)−1 � 1 imply γα−2 ≤ 1 and now the corollary is

proved.
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Corollary 4.2.4 is in accordance with the Kolmogorov theory of turbulence. It establishes

that the combination of SM with damping function βd(z) given by (4.2.19) does not over

dissipate, and the energy input rate U3

L
is balanced by 〈εSMD(u)〉. This estimate is consistent

with the rate proven for the NSE in [15] and [17]; it is also dimensionally consistent.

The assumption α ≥ 2 is a significant one in the analysis. When α = 1 we obtain the

following corollary.

Corollary 4.2.5. Suppose α = 1 in Corollary 4.2.4, then

〈εSMD(u)〉 ≤
[
C1 + C2(

Csδ

L
)2Re

] U3

L
.

Proof. The proof follows that of α ≥ 2 in the Corollary 4.2.4 except the inequality (4.2.21)

is modified to ∫ L

L−γL
βd(z) dz ≤ C L (Re)−2,

for α = 1.

4.3 CONCLUSION

The key parameter is α = the order of contact of the damping function at the wall. Com-

paring 〈εSMD(u)〉 ' U3

L
for α ≥ 2 in Corollary 4.2.4 with 〈εSMD(u)〉 '

[
C1 +C2(Csδ

L
)2Re

]
U3

L

for α = 1 in Corollary 4.2.5 suggests that the model over dissipates flows for α = 1. If the

upper bounds are sharp (an open problem), the accurate simulation would need α ≥ 2. The

next logical step is to study 〈εSMD(uh)〉 after discretization by fixed mesh h and extend the

results in this paper, especially when the mesh does not resolve the boundary layers.
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5.0 A DISCRETE HOPF INTERPOLANT AND STABILITY OF THE

FINITE ELEMENT METHOD FOR NATURAL CONVECTION

Natural convection of a fluid driven by heating a side wall or the bottom wall is a classic

problem in fluid mechanics that is still of technological and scientific importance [11]. The

temperature in this problem is uniformly bounded in time (‖T (t)‖ ≤ C < ∞) under mild

data assumptions. However, when this often analyzed problem is approximated by standard

FEM, all available stability bounds, e.g. [78,79,87], for the temperature exhibit exponential

growth in time unless the heat transfer through the solid container is included in the model,

e.g. [6]. Moreover, even in the stationary case, stability estimates can yield extremely

restrictive mesh conditions (h = O(Ra−30/(6−d))), e.g. [12].

In this chapter we prove that, without the aforementioned restrictions, the temperature

approximation is bounded sub-linearly in terms of the simulation time t∗ provided that the

first mesh line in the finite element mesh is within O(Ra−1) of the heated wall; that is,

‖T nh ‖ ≤ C
√
t∗ [19]. In practice, numerical simulations are carried out on a graded mesh

[11,36,52,55] due to the interaction between the boundary layer, which is O(Ra−1/4) in the

laminar regime [26], and the core flow. In particular, several mesh points are placed within

the boundary layer, which encompasses the internal core flow. Although our condition is

more restrictive, this may be due to a gap in the analysis and, nonetheless, it is indicative

of the value of graded meshes for stability as well as accuracy.

Consider natural convection within an enclosed cavity. Let Ω ⊂ Rd (d=2,3) be a convex

polyhedral domain with boundary ∂Ω. Here n denotes the usual outward normal, ξ = g/|g|

denotes the unit vector in the direction of gravity, Pr is the Prandtl number, and Ra is the

Rayleigh number. Further, f and γ are the body force and heat source, respectively. The

boundary is partitioned such that ∂Ω = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = ∅ and |ΓH ∪ ΓN | = |Γ1| > 0.
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Given u(x, 0) = u0(x) and T (x, 0) = T 0(x), let u(x, t) : Ω×(0, t∗]→ Rd, p(x, t) : Ω×(0, t∗]→

R, and T (x, t) : Ω× (0, t∗]→ R satisfy

ut + u · ∇u− Pr∆u+∇p = PrRaξT + f in Ω, (5.0.1)

∇ · u = 0 in Ω, (5.0.2)

Tt + u · ∇T −∆T = γ in Ω, (5.0.3)

u = 0 on ∂Ω, T = 1 on ΓN , T = 0 on ΓH , n · ∇T = 0 on Γ2. (5.0.4)

In Sections 5.1 and 5.2, we collect necessary mathematical tools and present common

numerical schemes. In Section 5.3, the major results are proven. In particular, it is shown

that provided the first mesh line in the finite element mesh is within O(Ra−1) of the heated

wall, then the computed velocity, pressure, and temperature are stable allowing for sub-linear

growth in t∗ (Theorems 5.3.1 and 5.3.2). Conclusions are presented in Section 5.4.

5.1 MATHEMATICAL PRELIMINARIES

The L2(Ω) inner product is (·, ·) and the induced norm is ‖ · ‖. Moreover, for any subset

Ω 6= O ⊂ Rd we define the L2 inner product (·, ·)L2(O) and norm ‖ · ‖L2(O). Define the Hilbert

spaces,

X := H1
0 (Ω)d = {v ∈ H1(Ω)d : v = 0 on ∂Ω}, Q := L2

0(Ω) = {q ∈ L2(Ω) :

∫
Ω

qdx = 0},

WΓ1 := {S ∈ H1(Ω) : S = 0 on Γ1}, W := H1(Ω), V := {v ∈ X : (q,∇ · v) = 0 ∀q ∈ Q}.

The explicitly skew-symmetric trilinear forms are denoted:

b(u, v, w) =
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v) ∀u, v, w ∈ X,

b∗(u, T, S) =
1

2
(u · ∇T, S)− 1

2
(u · ∇S, T ) ∀u ∈ X, T, S ∈ W.

They enjoy the following useful properties.
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Lemma 5.1.1. There are constants C1 and C2 such that for all u, v, w ∈ X and T, S ∈ W ,

b(u, v, w) and b∗(u, T, S) satisfy

b(u, v, w) = (u · ∇v, w) +
1

2
((∇ · u)v, w),

b∗(u, T, S) = (u · ∇T, S) +
1

2
((∇ · u)T, S),

b(u, v, w) ≤ C1‖∇u‖‖∇v‖‖∇w‖,

b∗(u, T, S) ≤ C2‖∇u‖‖∇T‖‖∇S‖.

Proof. See Lemma 18 p. 123 of [47].

5.1.1 Finite Element Preliminaries

Consider a regular mesh Ωh = {K} of Ω with maximum triangle diameter length h. Let

Xh ⊂ X, Qh ⊂ Q, Wh ⊂ W , and WΓ1,h ⊂ WΓ1 be conforming finite element spaces consisting

of continuous piecewise polynomials of degrees j, l, j, and j, respectively. Furthermore, we

consider those spaces for which the discrete inf-sup condition is satisfied,

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖qh‖‖∇vh‖

≥ β > 0, (5.1.1)

where β is independent of h. The space of discretely divergence free functions is defined by

Vh := {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}

and accompanying dual norm

‖w‖V ∗h = sup
vh∈Vh

(w, vh)

‖∇vh‖
.

The continuous time, finite element in space weak formulation of the system (5.0.1) - (5.0.4)

is: Find uh : [0, t∗]→ Xh, ph : [0, t∗]→ Qh, Th : [0, t∗]→ Wh for a.e. t ∈ (0, t∗] satisfying:

(uh,t, vh) + b(uh, uh, vh) + Pr(∇uh,∇vh)− (ph,∇ · vh) = PrRa(γTh, vh) + (f, vh) ∀vh ∈ Xh,

(5.1.2)

(qh,∇ · uh) = 0 ∀qh ∈ Qh, (5.1.3)

(Th,t, Sh) + b∗(uh, Th, Sh) + (∇Th,∇Sh) = (γ, Sh) ∀Sh ∈ Wh,Γ1 . (5.1.4)
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5.1.2 Construction of the Discrete Hopf Extension

The mesh condition h = O(Ra−30/(6−d)) from [12] arises from the use of the Scott-Zhang

interpolant of degree j. To improve upon this condition, we develop a special interpolant for

the upcoming analysis. We construct it as follows:

Step one: Consider those mesh elements K such that K ∩ Γ1 6= ∅. Enumerate these

mesh elements from 1 to l′.

Step two: ∀ 1 ≤ l ≤ l′, let {φlk}d+1
k=1 be the usual piecewise linear hat functions with

supp φlk ⊂ Kl .

Step three: Fix l, select those φlk such that φlk(x) = 1 for x ∈ Kl ∩ Γ1.

Step four: Define ψi such that {ψi}i′i=1 = {φlk}
k′,l′

k,l=1.

Step five: Define τ =
∑i′

i=1 T̃
iψi where −∞ < T̃min ≤ T̃ i ≤ T̃max < ∞ are arbitrary

constants.

Then,

Theorem 5.1.2. Suppose T̃ : Γ1 → R is a piecewise linear function defined on Γ1. The

discrete Hopf extension τ : Ω→ R satisfies

τ(x) = T̃ on Γ1,

τ(x) = 0 on Ω− ∪l′l=1Kl.

Moreover, let δ = max1≤l≤l′ hl. Then, the following estimate holds: ∀ε > 0, ∀(χ1, χ2) ∈

(Xh,Wh)

|b∗(χ1, τ, χ2)| ≤ Cδ
(
ε−1‖∇χ1‖2 + ε‖∇χ2‖2

)
. (5.1.5)

Proof. The properties are a consequence of the construction. For the estimate (5.1.5), it

suffices to consider |b∗(χ1, T̃
iψi, χ2)| where T̃ i = T̃ (xi) is the corresponding nodal value of T̃ .

For each ψi there is a corresponding mesh element Kl such that supp ψi ⊂ Kl. Let K̂ ⊂ Rd

be the reference element and FKl : K̂ → Kl the associated affine transformation given by

x = FKlx̂ = BKlx̂ + bKl . We will utilize the operator norm ‖ · ‖op and the Euclidean norm

| · |2 below.

67



Figure 18: The discrete Hopf interpolant on one mesh element.

Consider 1
2
|(χ1 · ∇T̃ iψi, χ2)|, the estimate for 1

2
|(χ1 · ∇χ2, T̃

iψi)| follows analogously.

Transform to the reference element, use standard FEM estimates, the Cauchy-Schwarz in-

equality, and equivalence of norms. Then,

1

2
|(χ1 · ∇T̃ iψi, χ2)| = |T̃

i||det(BKl)|
2

|
∫
K̂

χ̂1 ·B−TKl ∇̂ψ̂iχ̂2dx̂| (5.1.6)

≤ |T̃
i||det(BKl)|

2
‖B−TKl ‖op|∇̂ψ̂i|2

∫
K̂

|χ̂1|2|χ̂2|dx̂

≤ Chd−1
l ‖χ̂1‖L2(K̂)‖χ̂2‖L2(K̂)

≤ Chd−1
l ‖∇̂χ̂1‖L2(K̂)‖∇̂χ̂2‖L2(K̂).

Consider ‖∇̂χ̂2‖L2(K̂) and ‖∇̂χ̂1‖L2(K̂). Transforming back to the mesh element and using
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standard FEM estimates yields

‖∇̂χ̂2‖2
L2(K̂)

= |det(B−1
Kl

)|
∫
Kl

BT
Kl
∇χ2 ·BT

Kl
∇χ2dx (5.1.7)

≤ |det(B−1
Kl

)|‖BT
Kl
‖2
op‖∇χ2‖2

L2(Kl)

≤ Ch2−d
l ‖∇χ2‖2

L2(Kl)

≤ Ch2−d
l ‖∇χ2‖2,

‖∇̂χ̂1‖2
L2(K̂)

≤ Ch2−d
l ‖∇χ1‖2. (5.1.8)

Use (5.1.7) and (5.1.8) in (5.1.6) and Young’s inequality. This yields

1

2
|(χ1 · ∇T̃ iψi, χ2)| ≤ Chl

(
ε‖∇χ1‖2 + ε−1‖∇χ2‖2

)
.

Summing from i = 1 to i = i′ and taking the maximum hl yields the result.

Remark: If we allow the interpolant to be constructed with the basis elements of Wh, we

can reconstruct any function υh ∈ Wh exactly on the boundary Γ1 with the same properties.

Remark: For square and cubic domains we can define such an interpolant explicitly, e.g.,

τ(x) =


1
2δ

(2δ − xα) 0 ≤ xα ≤ δ,

1
2

δ ≤ xα ≤ 1− δ,

1
2δ

(1− xα) 1− δ ≤ xα ≤ 1,

where α is in the direction orthogonal to the differentially heated walls or in the direction

of gravity for the differentially heated vertical wall problem and Rayleigh-Bénard problem,

respectively. This function was introduced first by Hopf [32] and has been useful in estimating

the energy dissipation rates for shear-driven flows and convection [16].
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5.2 NUMERICAL SCHEMES

In this section, we consider the following popular temporal discretizations: BDF1, linearly

implicit BDF1, BDF2, and linearly implicit BDF2; see [3, 37] regarding linearly implicit

variants. Let η(χ) = a−1χ
n+1 + a0χ

n. Denote the fully discrete solutions by unh, pnh, and T nh

at time levels tn = n∆t, n = 0, 1, ..., N , and t∗ = N∆t. Given (unh, T
n
h ) ∈ (Xh,Wh), find

(un+1
h , pn+1

h , T n+1
h ) ∈ (Xh, Qh,Wh) satisfying, for every n = 0, 1, ..., N − 1, the fully discrete

approximation of the system (5.0.1) - (5.0.4) is

BDF1 and linearly implicit BDF1:

(
un+1
h − unh

∆t
, vh) + b(η(uh), u

n+1
h , vh) + Pr(∇un+1

h ,∇vh)

− (pn+1
h ,∇ · vh) = PrRa(ξη(Th), vh) + (fn+1, vh) ∀vh ∈ Xh, (5.2.1)

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh, (5.2.2)

(
T n+1
h − T nh

∆t
, Sh) + b∗(η(uh), T

n+1
h , Sh) + (∇T n+1

h ,∇Sh) = (γn+1, Sh) ∀Sh ∈ Wh,Γ1 , (5.2.3)

where BDF1 is given by a−1 = a0 + 1 = 1 and linearly implicit BDF1 by a−1 + 1 =

a0 = 1. Moreover, given (un−1
h , T n−1

h ) and (unh, T
n
h ) ∈ (Xh, Qh,Wh), find (un+1

h , pn+1
h , T n+1

h )

∈ (Xh, Qh,Wh) satisfying, for every n = 1, 2, ..., N − 1, the fully discrete approximation of

the system (5.0.1) - (5.0.4) is

BDF2 and linearly implicit BDF2:

(
3un+1

h − 4unh + un−1
h

2∆t
, vh) + b(η(uh), u

n+1
h , vh) + Pr(∇un+1

h ,∇vh)− (pn+1
h ,∇ · vh)

= PrRa(ξη(Th), vh) + (fn+1, vh) ∀vh ∈ Xh, (5.2.4)

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh, (5.2.5)

(
3T n+1

h − 4T nh + T n−1
h

2∆t
, Sh) + b∗(η(uh), T

n+1
h , Sh) + (∇T n+1

h ,∇Sh) = (γn+1, Sh) ∀Sh ∈ Wh,Γ1 ,

(5.2.6)

where BDF2 is given by a−1 = a0 +1 = 1 and linearly implicit BDF2 by 1−a−1 = a0 = −1.
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5.3 NUMERICAL ANALYSIS

We present stability results for the aforementioned algorithms provided the first meshline in

the finite element mesh is within O(Ra−1) of the heated wall.

5.3.1 Stability Analysis

Theorem 5.3.1. Consider BDF1 or linearly implicit BDF1. Suppose f ∈ L2(0, t∗;H−1(Ω)d),

and γ ∈ L2(0, t∗;H−1(Ω)). If δ = O(Ra−1), then there exist C > 0, independent of t∗, such

that

BDF1:

1

2
‖TNh ‖2 + ‖uNh ‖2 +

N−1∑
n=0

‖T n+1
h − T nh ‖2 +

N−1∑
n=0

‖un+1
h − unh‖2 +

∆t

4

N−1∑
n=0

‖∇T n+1
h ‖2

+
Pr∆t

4

N−1∑
n=0

‖∇un+1
h ‖2 ≤ Ct∗,

linearly implicit BDF1:

1

2
‖TNh ‖2 + ‖uNh ‖2 +

N−1∑
n=0

‖T n+1
h − T nh ‖2 +

N−1∑
n=0

‖un+1
h − unh‖2 +

∆t

4

N−1∑
n=0

‖∇T n+1
h ‖2

+
Pr∆t

8

N−1∑
n=0

‖∇un+1
h ‖+

Pr∆t

8
‖∇uNh ‖2 ≤ Ct∗.

Further,

β∆t
N−1∑
n=0

‖pn+1
h ‖ ≤ C

√
t∗.

Proof. Our strategy is to first estimate the temperature approximation in terms of the ve-

locity approximation and data. We then bound the velocity approximation in terms of data

yielding stability of both approximations. Denote θn+1
h = T n+1

h − τ . Consider BDF1. Let

Sh = θn+1
h ∈ WΓ1,h in equation (5.2.3) and use the polarization identity. Multiply by ∆t
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on both sides, rewrite all quantities in terms of θkh, k = n, n + 1, and rearrange. Since

(∇τ,∇θn+1
h ) = 0 we have,

1

2

{
‖θn+1

h ‖2 − ‖θnh‖2 + ‖θn+1
h − θnh‖2

}
+ ∆t‖∇θn+1

h ‖2 = −∆tb∗(un+1
h , θn+1

h + τ, θn+1
h ) (5.3.1)

+∆t(γn+1, θn+1
h ).

Consider −∆tb∗(un+1
h , θn+1

h + τ, θn+1
h ). Use skew-symmetry and apply Lemma 5.1.1,

−∆tb∗(un+1
h , θn+1

h + τ, θn+1
h ) = −∆tb∗(un+1

h , τ, θn+1
h ) ≤ C∆t δ

(
ε−1

1 ‖∇un+1
h ‖2 + ε1‖∇θn+1

h ‖2
)
.

(5.3.2)

Use Cauchy-Schwarz-Young’s on ∆t(γn+1, θn+1
h ),

∆t(γn+1, θn+1
h ) ≤ ∆t

2ε2
‖γn+1‖2

−1 +
∆tε2

2
‖∇θn+1

h ‖2. (5.3.3)

Using (5.3.2) and (5.3.3) in (5.3.1) leads to

1

2

{
‖θn+1

h ‖2 − ‖θnh‖2 + ‖θn+1
h − θnh‖2

}
+ ∆t‖∇θn+1

h ‖2 ≤ C∆t δ
(
ε−1

1 ‖∇un+1
h ‖2 + ε1‖∇θn+1

h ‖2
)

+
∆t

2ε2
‖γn+1‖2

−1 +
∆tε2

2
‖∇θn+1

h ‖2.

Let ε1 = 1
2Cδ

and ε2 = 1/2. Regrouping terms leads to

1

2

{
‖θn+1

h ‖2 − ‖θnh‖2 + ‖θn+1
h − θnh‖2

}
+

∆t

4
‖∇θn+1

h ‖2 ≤ 2C2∆t δ2 ‖∇un+1
h ‖2 + ∆t‖γn+1‖2

−1.

Sum from n = 0 to n = N−1 and put all data on the right hand side. This yields bounds on

the temperature approximation in terms of the velocity approximation and data as follows,

1

2
‖θNh ‖2 +

1

2

N−1∑
n=0

‖θn+1
h − θnh‖2 +

∆t

4

N−1∑
n=0

‖∇θn+1
h ‖2 ≤ 2C2∆t δ2

N−1∑
n=0

‖∇un+1
h ‖2 (5.3.4)

+∆t
N−1∑
n=0

‖γn+1‖2
−1 +

1

2
‖θ0

h‖2.
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Next, let vh = un+1
h ∈ Vh in (5.2.1) and use the polarization identity. Multiply by ∆t on

both sides and rearrange terms. Then,

1

2

{
‖un+1

h ‖2 − ‖unh‖2 + ‖un+1
h − unh‖2

}
+ Pr∆t‖∇un+1

h ‖2 = ∆tPrRa(ξ(θn+1
h + τ), un+1

h )

(5.3.5)

+∆t(fn+1, un+1
h ).

Use the Cauchy-Schwarz-Young’s and Poincaré-Friedrichs inequalities on ∆tPrRa(ξ(θn+1
h +

τ), un+1
h ) and ∆t(fn+1, un+1

h ), in addition note that ‖ξ‖L∞ = 1,

∆tPrRa(ξθn+1
h , un+1

h ) ≤
∆tPr2Ra2C2

PF,1C
2
PF,2

2ε3
‖∇θn+1

h ‖2 +
∆tε3

2
‖∇un+1

h ‖2, (5.3.6)

∆tPrRa(ξτ, un+1
h ) ≤ ∆t

2ε4
Pr2Ra2‖τ‖2

−1 +
∆tε4

2
‖∇un+1

h ‖2, (5.3.7)

∆t(fn+1, un+1
h ) ≤ ∆t

2ε5
‖fn+1‖2

−1 +
∆tε5

2
‖∇un+1

h ‖2. (5.3.8)

Using (5.3.6), (5.3.7), and (5.3.8) in (5.3.5) leads to

1

2

{
‖un+1

h ‖2 − ‖unh‖2 + ‖un+1
h − unh‖2

}
+ Pr∆t‖∇un+1

h ‖2 ≤
∆tPr2Ra2C2

PF,1C
2
PF,2

2ε3
‖∇θn+1

h ‖2

+
∆tPr2Ra2

2ε4
‖τ‖2

−1 +
∆t

2ε5
‖fn+1‖2

−1 + (ε3 + ε4 + ε5)
∆t

2
‖∇un+1

h ‖2.

Let ε3 = ε4 = 4ε5 = Pr/2. Then,

1

2

{
‖un+1

h ‖2 − ‖unh‖2 + ‖un+1
h − unh‖2

}
+
Pr∆t

4
‖∇un+1

h ‖ ≤ ∆tPrRa2C2
PF,1C

2
PF,2‖∇θn+1

h ‖2

+ ∆tPrRa2‖τ‖2
−1 +

∆t

Pr
‖fn+1‖2

−1.

Summing from n = 0 to n = N − 1 and putting all data on r.h.s. yields

1

2
‖uNh ‖2 +

1

2

N−1∑
n=0

‖un+1
h − unh‖2 +

Pr∆t

4

N−1∑
n=0

‖∇un+1
h ‖ ≤ ∆tPrRa2C2

PF,1C
2
PF,2

N−1∑
n=0

‖∇θn+1
h ‖2

+
∆t

Pr

N−1∑
n=0

(
Pr2Ra2‖τ‖2

−1 + ‖fn+1‖2
−1

)
+

1

2
‖u0

h‖2. (5.3.9)
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Now, from equation (5.3.4), we have

∆tPrRa2C2
PF,1C

2
PF,2

N−1∑
n=0

‖∇θn+1
h ‖2 ≤ 8C2C2

PF,1C
2
PF,2PrRa

2 δ2 ∆t
N−1∑
n=0

‖∇un+1
h ‖2

+ 4PrRa2C2
PF,1C

2
PF,2∆t

N−1∑
n=0

‖γn+1‖2
−1 + 2PrRa2C2

PF,1C
2
PF,2‖θ0

h‖2. (5.3.10)

Using the above in (5.3.9) with δ = 1
8C CPF,1CPF,2

Ra−1 leads to

1

2
‖uNh ‖2 +

1

2

N−1∑
n=0

‖un+1
h − unh‖2 +

Pr∆t

8

N−1∑
n=0

‖∇un+1
h ‖

≤ 4PrRa2C2
PF,1C

2
PF,2∆t

N−1∑
n=0

‖γn+1‖2
−1 + 2PrRa2C2

PF,1C
2
PF,2‖θ0

h‖2

+
∆t

Pr

N−1∑
n=0

(
Pr2Ra2‖τ‖2

−1 + ‖fn+1‖2
−1

)
+

1

2
‖u0

h‖2. (5.3.11)

Thus, the velocity approximation is bounded above by data and therefore the tempera-

ture approximation as well; that is, both the velocity and temperature approximations are

stable. Adding (5.3.4) and (5.3.11), multiplying by 2, and using the identity T nh = θnh + τ

together with the triangle inequality yields the result.

Next, consider linearly implicit BDF1. We apply similar techniques as in the above.

This leads to

1

2
‖θNh ‖2 +

1

2

N−1∑
n=0

‖θn+1
h − θnh‖2 +

∆t

4

N−1∑
n=0

‖∇θn+1
h ‖2 ≤ (5.3.12)

4C2∆tδ2

N−1∑
n=0

‖∇unh‖2 + ∆t
N−1∑
n=0

‖γn+1‖2
−1 +

1

2
‖θ0

h‖2,

and

1

2
‖uNh ‖2 +

1

2

N−1∑
n=0

‖un+1
h − unh‖2 +

Pr∆t

8

N−1∑
n=0

‖∇un+1
h ‖+

Pr∆t

8
‖∇uNh ‖

≤ 4PrRa2C2
PF,1C

2
PF,2∆t

N−1∑
n=0

‖γn+1‖2
−1 + 2PrRa2C2

PF,1C
2
PF,2‖θ0

h‖2

+
∆t

Pr

N−1∑
n=0

(
‖τ‖2

−1 + ‖fn+1‖2
−1

)
+

1

2
‖u0

h‖2 +
Pr∆t

8
‖∇u0

h‖. (5.3.13)
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The result follows. We now prove stability of the pressure approximation. Consider (5.2.1),

isolate (
un+1
h −unh

∆t
, vh), let 0 6= vh ∈ Vh, and multiply by ∆t. Then,

(un+1
h − unh, vh) =−∆tb(η(uh), u

n+1
h , vh)−∆tPr(∇un+1

h ,∇vh)

+ ∆tPrRa(ξη(Th), vh) + ∆t(fn+1, vh).
(5.3.14)

Applying Lemma 5.1.2 to the skew-symmetric trilinear term and the Cauchy-Schwarz and

Poincaré-Friedrichs inequalities to the remaining terms yields

| −∆tb(η(uh), u
n+1
h , vh)| ≤ C1∆t‖∇η(uh)‖‖∇un+1

h ‖‖∇vh‖, (5.3.15)

| −∆tPr(∇un+1
h ,∇vh)| ≤ Pr∆t‖∇un+1

h ‖‖∇vh‖, (5.3.16)

|∆tPrRa(ξη(Th), vh)| ≤ PrRaCPF,1∆t‖η(Th)‖‖∇vh‖, (5.3.17)

|∆t(fn+1, vh)| ≤ ∆t‖fn+1‖−1‖∇vh‖. (5.3.18)

Apply the above estimates in (5.3.14), divide by the common factor ‖∇vh‖ on both sides,

and take the supremum over all 0 6= vh ∈ Vh. Then,

‖un+1
h − unh‖V ∗h ≤ C1∆t‖∇η(uh)‖‖∇un+1

h ‖+ Pr∆t‖∇un+1
h ‖

+ PrRaCPF,1∆t‖η(Th)‖+ ∆t‖fn+1‖−1.
(5.3.19)

Reconsider equations (5.2.1). Multiply by ∆t and isolate the pressure term,

∆t(pn+1
h ,∇ · vh) = (un+1

h − unh, vh) + ∆tb(η(uh), u
n+1
h , vh) + Pr∆t(∇un+1

h ,∇vh)

− PrRa∆t(ξη(Th), vh)−∆t(fn+1, vh).
(5.3.20)

Apply (5.3.15), (5.3.16), (5.3.17), and (5.3.18) on the r.h.s terms. Then,

∆t(pn+1
h ,∇ · vh) ≤ (un+1

h − unh, vh) +
(
C1∆t‖∇η(uh)‖‖∇un+1

h ‖+ Pr∆t‖∇un+1
h ‖

+ PrRaCPF,1∆t‖η(Th)‖+ ∆t‖fn+1‖−1

)
‖∇vh‖.

(5.3.21)

Divide by ‖∇vh‖ and note that
(un+1
h −unh ,vh)

‖∇vh‖
≤ ‖un+1

h − unh‖V ∗h . Take the supremum over all

0 6= vh ∈ Xh,

∆t sup
06=vh∈Xh

(pn+1
h ,∇ · vh)
‖∇vh‖

≤ 2
(
C1∆t‖∇η(uh)‖‖∇un+1

h ‖+ Pr∆t‖∇un+1
h ‖

+ PrRaCPF,1∆t‖η(Th)‖+ ∆t‖fn+1‖−1

)
.

(5.3.22)
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Use the inf-sup condition (5.1.1),

β∆t‖pn+1
h ‖ ≤ 2

(
C1∆t‖∇η(uh)‖‖∇un+1

h ‖+ Pr∆t‖∇un+1
h ‖

+ PrRaCPF,1∆t‖η(Th)‖+ ∆t‖fn+1‖−1

)
.

(5.3.23)

Summing from n = 0 to n = N − 1 yields stability of the pressure approximation, built on

the stability of the temperature and velocity approximations.

Theorem 5.3.2. Consider BDF2 or linearly implicit BDF2. Suppose f ∈ L2(0,∞;H−1(Ω)d),

and γ ∈ L2(0,∞;H−1(Ω)). If δ = O(Ra−1), then there exists C > 0, independent of t∗, such

that

BDF2:

1

2
‖TNh ‖2 +

1

2
‖2TNh − TN−1

h ‖2 + ‖uNh ‖2 + ‖2uNh − uN−1
h ‖2 +

N−1∑
n=1

‖T n+1
h − 2T nh + T n−1

h ‖2

+
N−1∑
n=1

‖un+1
h − 2unh + un−1

h ‖2 +
∆t

2

N−1∑
n=1

‖∇T n+1
h ‖2 +

Pr∆t

2

N−1∑
n=1

‖∇un+1
h ‖2 ≤ Ct∗.

linearly implicit BDF2:

1

2
‖TNh ‖2 +

1

2
‖2TNh − TN−1

h ‖2 + ‖uNh ‖2 + ‖2uNh − uN−1
h ‖2 +

N−1∑
n=1

‖T n+1
h − 2T nh + T n−1

h ‖2

+
N−1∑
n=1

‖un+1
h − 2unh + un−1

h ‖2 +
∆t

2

N−1∑
n=1

‖∇T n+1
h ‖2 +

Pr∆t

2

N−1∑
n=1

‖∇un+1
h ‖2

+
Pr∆t

2

(
‖∇uNh ‖2 + ‖∇uN−1

h ‖2
)
≤ Ct∗.

Further,

β∆t
N−1∑
n=0

‖pn+1
h ‖ ≤ C

√
t∗.
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Proof. We follow the general strategy in Theorem 5.3.1. Consider linearly implicit BDF2

first. Let Sh = θn+1
h ∈ WΓ1,h in equation (5.2.6) and use the polarization identity. Multiply

by ∆t on both sides, rewrite all quantities in terms of θkh, k = n, n+1, and rearrange. Then,

1

4

{
‖θn+1

h ‖2 + ‖2θn+1
h − θnh‖2

}
− 1

4

{
‖θnh‖2 + ‖2θnh − θn−1

h ‖2
}

+
1

4
‖θn+1

h − 2θnh + θn−1
h ‖2

+ ∆t‖∇θn+1
h ‖2 = −∆tb∗(2unh − un−1

h , τ, θn+1
h ) + ∆t(γn+1, θn+1

h ). (5.3.24)

Consider −∆tb∗(2unh−un−1
h , τ, θn+1

h ) = −2∆tb∗(unh, τ, θ
n+1
h )+∆tb∗(un−1

h , τ, θn+1
h ). Use Lemma

5.3.2, then

−2∆tb∗(unh, τ, θ
n+1
h ) ≤ C δ∆t

(
4ε−1

6 ‖∇unh‖2 + ε6‖∇θn+1
h ‖2

)
, (5.3.25)

∆tb∗(un−1
h , τ, θn+1

h ) ≤ C δ∆t
(
ε−1

7 ‖∇un−1
h ‖2 + ε7‖∇θn+1

h ‖2
)
. (5.3.26)

Use above estimates and (5.3.3) in equation (5.3.24). Let ε6 = ε7 = 1
4Cδ

and ε2 = 1/4. This

leads to

1

4

{
‖θn+1

h ‖2 + ‖2θn+1
h − θnh‖2

}
− 1

4

{
‖θnh‖2 + ‖2θnh − θn−1

h ‖2
}

+
1

4
‖θn+1

h − 2θnh + θn−1
h ‖2

+
∆t

4
‖∇θn+1

h ‖2 ≤ 16C2∆t δ2 ‖∇unh‖2 + 4C2∆t δ2 ‖∇un−1
h ‖2 + 2∆t‖γn+1‖2

−1. (5.3.27)

Sum from n = 1 to n = N − 1 and put all data on the right hand side. This yields

1

4
‖θNh ‖2 +

1

4
‖2θNh − θN−1

h ‖2 +
1

4

N−1∑
n=1

‖θn+1
h − 2θnh + θn−1

h ‖2 +
∆t

4

N−1∑
n=1

‖∇θn+1
h ‖2

≤ 16C2∆t δ2

N−1∑
n=1

‖∇unh‖2 + 4C2∆t δ2

N−1∑
n=1

‖∇un−1
h ‖2 + 2∆t

N−1∑
n=1

‖γn+1‖2
−1

+
1

4
‖θ0

h‖2 +
1

4
‖θ1

h − θ0
h‖2. (5.3.28)

Now, let vh = un+1
h ∈ Vh in (5.2.4) and use the polarization identity. Multiply by ∆t on

both sides and rearrange terms. Then,

1

4

{
‖un+1

h ‖2 + ‖2un+1
h − unh‖2

}
− 1

4

{
‖unh‖2 + ‖2unh − un−1

h ‖2
}

+
1

4
‖un+1

h − 2unh + un−1
h ‖2

+ Pr∆t‖∇un+1
h ‖2 = ∆tPrRa(ξ(2θnh − θn−1

h + τ), un+1
h ) + ∆t(fn+1, un+1

h ). (5.3.29)
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Use the Cauchy-Schwarz-Young’s and Poincaré-Friedrichs inequalities on ∆tPrRa(ξ(2θnh −

θn−1
h + τ), un+1

h ),

2∆tPrRa(ξθnh , u
n+1
h ) ≤

4∆tPr2Ra2C2
PF,1C

2
PF,2

2ε8
‖∇θnh‖2 +

∆tε8
2
‖∇un+1

h ‖2, (5.3.30)

−∆tPrRa(ξθn−1
h , un+1

h ) ≤
∆tPr2Ra2C2

PF,1C
2
PF,2

2ε9
‖∇θn−1

h ‖2 +
∆tε9

2
‖∇un+1

h ‖2. (5.3.31)

Using (5.3.7), (5.3.8), (5.3.30), and (5.3.31) in (5.3.29) leads to

1

4

{
‖un+1

h ‖2 + ‖2un+1
h − unh‖2

}
− 1

4

{
‖unh‖2 + ‖2unh − un−1

h ‖2
}

+
1

4
‖un+1

h − 2unh + un−1
h ‖2

+ Pr∆t‖∇un+1
h ‖2 ≤

2∆tPr2Ra2C2
PF,1C

2
PF,2

ε8
‖∇θnh‖2 +

∆tPr2Ra2C2
PF,1C

2
PF,2

2ε9
‖∇θn−1

h ‖2

+
∆t

2ε4
‖τ‖2

−1 +
∆t

2ε5
‖fn+1‖2

−1 +
∆t

2
(ε4 + ε5 + ε8 + ε9)‖∇un+1

h ‖2.

Let 2ε4 = 2ε5 = ε8 = ε9 = Pr/2. Then,

1

4

{
‖un+1

h ‖2 + ‖2un+1
h − unh‖2

}
− 1

4

{
‖unh‖2 + ‖2unh − un−1

h ‖2
}

+
1

4
‖un+1

h − 2unh + un−1
h ‖2

+
Pr∆t

4
‖∇un+1

h ‖2 ≤ 4∆tPrRa2C2
PF,1C

2
PF,2‖∇θnh‖2 + ∆tPr2Ra2C2

PF,1C
2
PF,2‖∇θn−1

h ‖2

+
2∆t

Pr
‖τ‖2

−1 +
2∆t

Pr
‖fn+1‖2

−1.

Summing from n = 1 to n = N − 1 and putting all data on r.h.s. yields

1

4
‖uNh ‖2 +

1

4
‖2uNh − uN−1

h ‖2 +
1

4

N−1∑
n=1

‖un+1
h − 2unh + un−1

h ‖2

+
Pr∆t

4

N−1∑
n=1

‖∇un+1
h ‖2 ≤ ∆tPrRa2C2

PF,1C
2
PF,2

N−1∑
n=1

(
4‖∇θnh‖2 + ‖∇θn−1

h ‖2
)

+
2∆t

Pr

N−1∑
n=1

(
‖τ‖2

−1 + ‖fn+1‖2
−1

)
+

1

4
‖u1

h‖2 +
1

4
‖2u1

h − u0
h‖2. (5.3.32)

Now, from equation (5.3.28), we have

∆tPrRa2C2
PF,1C

2
PF,2

N−1∑
n=1

‖∇θn+1
h ‖2

≤ 64C2C2
PF,1C

2
PF,2PrRa

2 δ2 ∆t
N−1∑
n=0

(
‖∇unh‖2 + ‖∇un−1

h ‖2
)

+ 8PrRa2C2
PF,1C

2
PF,2∆t

N−1∑
n=1

‖γn+1‖2
−1 + PrRa2C2

PF,1C
2
PF,2

(
‖θ1

h‖2 + ‖2θ1
h − θ0

h‖2
)
.

(5.3.33)

78



Add and subtract Pr∆t
8

∑N−1
n=1 ‖∇unh‖ and Pr∆t

8

∑N−1
n=1 ‖∇u

n−1
h ‖ in (5.3.32) and use the above

estimate with δ = 1
16
√

2C CPF,1CPF,2
Ra−1. Then,

1

4
‖uNh ‖2+

1

4
‖2uNh −uN−1

h ‖2+
1

4

N−1∑
n=1

‖un+1
h −2unh+un−1

h ‖2+
Pr∆t

8

N−1∑
n=1

‖∇un+1
h ‖+Pr∆t

8
‖∇uNh ‖

+
Pr∆t

8
‖∇uN−1

h ‖ ≤ 8PrRa2C2
PF,1C

2
PF,2∆t

N−1∑
n=1

‖γn+1‖2
−1+PrRa2C2

PF,1C
2
PF,2

(
‖θ1

h‖2+‖2θ1
h−θ0

h‖2
)

+
2∆t

Pr

N−1∑
n=0

(
‖τ‖2

−1 + ‖fn+1‖2
−1

)
+

1

4
‖u1

h‖2 +
1

4
‖2u1

h − u0
h‖2 +

Pr∆t

8
‖∇u1

h‖+
Pr∆t

8
‖∇u0

h‖.

(5.3.34)

The result follows. Applying similar techniques as in the above and Theorem 5.3.1 yields

the result for BDF2. Pressure stability follows by similar arguments in Theorem 5.3.1.

5.4 CONCLUSION

The coupling terms b∗(η(uh), T
n+1
h , Sh) and PrRa(ξη(T ), vh) that arise in stability analyses

of FEM discretizations of natural convection problems with sidewall heating are the major

source of difficulty. The former term forces the stability of the temperature approximation

to be dependent on the velocity approximation and vice versa for the latter term. Standard

techniques fail to overcome this imposition, in the absence of a discrete Grönwall inequality.

The authors introduced a new discrete Hopf interpolant that was able to overcome this

issue. Fully discrete stability estimates were proven which improve upon previous estimates.

In particular, it was shown that provided that the first mesh line in the finite element mesh

is within O(Ra−1) of the nonhomogeneous Dirichlet boundary, the velocity, pressure and

temperature approximations are stable allowing for sub-linear growth in t∗.

A uniform in time stability estimate was not able to be achieved due to the term

PrRa(ξτ, vh), which arises when an interpolant of the boundary is introduced. The au-

thors conjecture that the results proven herein may be improved, owing to a gap in the

analysis. Open problems include: Is it possible to improve the current results with a
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less restrictive mesh condition? Moreover, can these results be improved to uniform in time

stability? An important next step would be reanalyzing stability for natural convection

problems, with sidewall heating, where a turbulence model is incorporated.
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6.0 CONCLUSIONS AND FUTURE WORK

In turbulence, dissipation occurs non-negligibly only at very small scales, smaller than a

typical mesh [67]. Turbulence models are introduced to account for sub-mesh scale effects,

when solving fluid flow problems numerically [47]. One key in getting a good approximation

for a turbulence model is to correctly calibrate the energy dissipation in the model on an

under-resolved mesh [46]. The energy dissipation rate is a fundamental quantity in the theory

of turbulence ([76], [67], [49], and [20]), which is employed as the benchmark to investigate

the accuracy of a turbulence model (e.g. [58] and [35]). In this thesis, we presented the

analysis and numerical analysis of the energy dissipation rate of a turbulence model. In

this direction, this research is the first connection between computational experience and

mathematical analysis.

Analytic estimates of the energy dissipation rates of a few turbulence models have re-

cently appeared (e.g. [15]. [16], [17], [46] and [45]), but none (yet) study energy dissipation

restricted to resolved scales, i.e. after spatial discretization with h ≥ Kolmogorov micro-

scale. Since turbulence models are considered to model the energy lost from resolved to

under-resolved scales h, the practical question is: What is the energy dissipation rate associ-

ated with the coarse mesh size h. In this direction in Chapter 3, upper bounds are derived on

the computed time-averaged energy dissipation rate, for an under-resolved mesh for turbu-

lent shear flow. The Smagorinsky model is used as the turbulence model. The upper bound

is independent of the viscosity at the high Reynolds number (as Re → ∞), in accord with

the Statistical Equilibrium Law. The analysis indicates that the turbulent boundary layer

is a more important length scale for shear flow than the Kolmogorov microscale. Moreover,

this estimate suggests over-dissipation for any model’s artificial parameters, consistent with

numerical evidence on the effects of model viscosity. Therefore the next natural question is:
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How to fix the over-dissipation of the model? This question was answered in Chapter 4.

Experience with the Smagorinsky model indicates it over dissipates [71]. This extra

dissipation laminarizes the numerical approximation of a turbulent flow and prevents the

transition to turbulence [47]. Motivated from Chapter 3 and comparing results in [46] and

[45] suggests that the model over-dissipation is due to the action of the model viscosity in

boundary layers rather than in interior small scales generated by the turbulent cascade. To

reduce the effect of model viscosity in the boundary layers damping functions β(x), which

go to zero at the walls, are often used (Pope [67]). In this case most of the tools of analysis,

such as Körn’s inequality, the Poincaré-Friederichs inequality, and Sobolev’s inequality, no

longer hold. Thus, the mathematical development of the Smagorinsky model under no-slip

boundary conditions with damping function is cited in [5] as an important open problem.

Mathematical analysis was given in Chapter 4 that allows evaluation of statistics of the

turbulence model for any damping function. Moreover, it was proven that the combination

of the Smagorinsky model with the van- Driest damping function does not over dissipate

and is also consistent with Kolmogorov phenomenology.

In this line of research there are many questions and challenges which are still open. The

following are a few ideas for future research.

• 3D simulation: 3D simulation is required to verify the result in Chapters 3 and 4.

• Other modern turbulence models: Following this research, one can calibrate the

dissipation of a modern turbulence model used in engineering. The dissipation for the

model can be investigated for both continuous and discrete cases. The goal is not only

to understand the dissipation of the model on the under-resolved mesh, but also to find

a sufficient condition on the model’s artificial parameters in order to get the correct

amount of a dissipation.

• Fully discrete case: Extending the results and investigating the properties of the

energy dissipation rate for the fully discrete turbulence models is an important problem.

Natural convection of a fluid driven by heating a wall is a classical problem in fluid

mechanics that is still of technological and scientific importance (e.g. [11] and [26]). Calcu-

lating the dissipation of the fully discrete Natural Convection is a very interesting problem.
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Motivated from here, we study the stability of fully discrete Natural Convection Problems

in Chapter 5. The temperature in natural convection problems is, under mild data assump-

tions, uniformly bounded in time. This property has not yet been proven for the standard

finite element method approximation of natural convection problems with nonhomogeneous

partitioned Dirichlet boundary conditions, e.g., the differentially heated vertical wall and

Rayleigh-Bénard problems. For these problems, only stability in time, allowing for possible

exponential growth of ‖T nh ‖, has been proven using Grönwall’s inequality (e.g. [78, 79, 87]).

In Chapter 5, we proved that the temperature approximation can grow at most sub-linearly

in time provided a mild restriction on the first mesh line in the finite element mesh. In this

line, there are many interesting questions remain to be answered.

• Is it possible to improve the current results with a less restrictive mesh condition?

• Can the results be improved to uniform in time stability?

• What is the stability for natural convection problems, with sidewall heating, where a

turbulence model is incorporated?
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