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BRINGING HALO MODELING TOWARD PRECISION COSMOLOGY
Antonio S. Villarreal, PhD

University of Pittsburgh, 2018

The study of cosmology is entering an era of higher quality and higher quantity data that
shifts us from limitations due to raw statistics of our data to limitations due to the accuracy
of our underlying physical models. A specific set of models where this problem is prominent
is the use of halo models to connect the invisible world of dark matter to the visible world
of stars and galaxies. Most of these halo models make their predictions by taking the
mass of dark matter halos as the sole parameter. The literature has demonstrated that
secondary halo properties can have enhanced clustering compared to the general population
of dark matter halos, in an effect that is referred to as “halo assembly bias.” Neglecting halo
assembly bias from our models can result in severe biases. I add to the literature by making
the first detailed study on the choice of halo definition on common measures of halo assembly
bias. I utilize non-traditional halo definitions seeking a choice that minimizes the impact of
environmental effects which may drive halo assembly bias. I find that halo assembly bias
is a strong function of halo definition for the properties of halo concentration, halo shape,
and halo spin. I demonstrate that the impact of halo redefinition is primarily caused by the
changing host halo populations, as neighboring halos are demoted to substructure. I further
show that these results are consistent with those of the “halo splashback radius”; however,
halo splashback radius does not increase halo sizes sufficiently to remove halo assembly
bias for most scales or masses. I discuss how these results give us insight to the relevant
scales of what might be driving these relations and how they give a better understanding of
galaxy formation and galaxy evolution. I conclude by laying out a course for the future with

multiple paths to better understanding halo assembly bias and constraining how it impacts
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the models as well as utilizing it as a probe of galaxy formation.
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1.0 INTRODUCTION

Cosmology is the study of the evolution, content, and inevitable fate of the universe. It
is a field of study that has gone through an enormity of changes over the last century;
we have moved from being a field that was contemplating whether distant nebulae were
truly extragalactic objects (Hubble, 1929) to one that has been rapidly narrowing in on a
single model for explaining the universe with a mere six parameters (cite LCDM review
papers + early LCDM papers here). In modern times, the rapid increase in data quality
and quantity has allowed us to determine these parameters to greater and greater precision
(Riess et al., 1998; Planck Collaboration et al., 2016). Yet the model of the universe that
we have developed has many unanswered questions that require further study. What is the
dark energy necessary to explain the accelerating expansion of the universe at recent times
(Mortonson et al., 2014)? What is the dark matter that fits the extra gravitational force
that we observe from the rotation curves of galaxies (Garrett & Duda, 2011)? Why do we
have tensions between cosmological parameters such as the Hubble parameter at early times
versus late times (Freedman, 2017)? Do we see signals of modified gravity or does general
relativity continue to hold in our observations (Clifton et al., 2012)7

These unanswered questions have only served to raise the need for more advanced
and precise experiments in a search for answers; and where our current data is potentially
insufficient for teasing out the answers we desire, the future is very promising! There are
many funded experiments that may shed light on some of these unanswered questions. The
Large Synoptic Survey Telescope (LSST) will be able to take images of the entire night sky
once every three nights and gather petabytes of data over ten years of operation (LSST Sci-
ence Collaboration et al., 2009; LSST Dark Energy Science Collaboration, 2012). The James
Webb Space Telescope (JWST) (Gardner et al., 2006) and Wide Field Infrared Survey Tele-



scope (WFIRST) (Spergel et al., 2015) will gather high quality data without the troublesome
properties of the Earth’s atmosphere, with image quality only limited by their optics. We
are even starting to see the Universe in new ways that were previously just the limits of our
imagination, with gravitational waves being observed multiple times by the ever-improving
Laser Interferometry Gravitational-Wave Observatory (LIGO) (Abbott et al., 2017).

As data quality and quantity continues to increase within the field of observational
cosmology, we find that the statistical limitations on our cosmological parameter constraints
continue to decline. For some fields, this is a foray into a new era of precision cosmology; we
now find ourselves in a situation where, rather than our ability to learn about our universe
being limited by the raw statistics of our datasets, we are instead limited by how accurately
we can model the underlying physics. This is a stark reversal of the past few decades, in
which the observational errors far exceeded the theoretical! In fact, it has been shown that for
a project such as LSST, the systematic error can lead to a significant bias in the cosmology
parameters of interest (Eifler et al., 2015). This makes understanding of the underlying
models that we are working with a critical problem of modern cosmology.

A valuable approach to handling these upcoming problems in modern cosmology is
that of cosmological simulations. These computer simulations model the universe at early
times and propagate these initial conditions forward to today. This allows us higher precision
at smaller scales where most analytic approaches break down. In addition, it potentially
allows us to battle a problem known as “cosmic variance.” In short, cosmic variance is the
noise caused by random fluctuations in the early universe. Even an individual cosmological
simulation can be limited by this fact, making direct interpretation difficult with regards to
rare objects and events; this problem is most prominent for those simulations which are too
computationally expensive to run many iterations. For most purposes though, simulations
have the advantage of giving us a unique look at many different cosmological models and
serves the form of experiment in lieu of being able to create an experiment in a laboratory.
By drawing comparisons between these simulations and the observable universe, we can gain
a better understanding of the world around us.

Roughly, these simulations break into two broad groups. The first is numerical



simulations only containing gravitational physics'. These simulations then trace the behavior
of massive particles of collisionless dark matter from a set of initial conditions drawn from
our understanding of the early universe to the future. These dark matter particles can be
seen to cluster together under the force of gravity based on these early density fluctuations;
commonly, we attempt to identify these clumps of dark matter as units known as “halos”.

The resulting clustering of dark matter can be seen to behave much like the visi-
ble matter in our observable universe. Dark matter halos merge hierarchically into large
structures that match the “cosmic web”. It has even been shown that some of the largest
structures, such as the Great Wall (Vogeley et al., 2004; Gott et al., 2005) feature in the
Sloan Digital Sky Survey (SDSS) can be reproduced in sufficiently sized dark matter only
simulations (Park et al., 2012). However, the ultimate limitation with dark matter only sim-
ulations is their inability to directly connect the structures of dark matter to the observable
universe of stars and galaxies; for that step, some secondary modeling or assumptions need
to be made.

This leads naturally to the other major approach: fully hydrodynamic simulations.
These simulations use laborious calculations to solve the coupled differential equations that
the baryonic particles of the universe obey. Computational advances have made this far more
feasible in the last few years, allowing us to create galaxies that are comparable to those
witnessed in the observed universe (Nelson et al., 2015; Schaye et al., 2015; Feng et al., 2016).
There exist two primary limitations to this approach. The first is the fact that the complex
calculations that must be solved still require state of the art computational resources and
vast amounts of computing time. This has three major consequences: it makes it difficult
to battle cosmic variance through large sample sizes, it makes it difficult to sample for
many different sets of cosmological parameters, and it makes very large box sizes potentially
unfeasible.

The second problem is perhaps more insidious: the limited mass and spatial reso-
lution of these simulations forces us to consider “subgrid physics”. Consider for a moment

that the masses of these particles are typically many orders of magnitude larger than that

!This is generally treated to be standard Newtonian gravity with an effective potential to account for
expansion, although simulation frameworks utilizing modified gravity or including full general relativity are
being explored in the field.
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Figure 1 The large scale distribution of dark matter in the Millennium Run (Springel et al.,

2005). Note the distinct “cosmic web” features, with many qualitative similarities to the

Great Wall feature in SDSS.



of an individual star; however, the feedback driven by supernovae may have a significant
impact on the formation of low mass galaxies (Katz, 1992; Smith et al., 2018, e.g.). In order
to capture these effects which are smaller than the scales that we are able to simulate, we
have to effectively add in the end result of the physics by hand. As of the time of this
writing, there is no strong consensus in the field on how to include these subgrid models,
nor is there a consensus on which subgrid physics can potentially be excluded or is most
important, nor is there a consensus on how well different simulations should agree with each
other considering different implementations. This leaves us with what is essentially a fine
tuning problem; different choices of subgrid models and their input parameters may end up
converging on the same resulting observables and may obscure the real galaxy formation
physics or bias our cosmological predictions.

In lieu of being able to fully model all the necessary physics of galaxy formation,
models must be developed in order to connect us from the density peaks of dark matter
or our definitions of dark matter halos to the galaxies that we observe in the night sky.
These range from more physically motivated to more empirically motivated, but typically are
grouped together under the description of the “galaxy-halo connection.” The more physically
motivated models include cases such as semi-analytic models (Benson, 2012; Croton et al.,
2016, e.g.); these effectively use the knowledge that we have gained on the evolution of the
density peaks over the history of the universe and galaxy formation. We add on a combination
of analytic models and empirical relations for the underlying physics of star formation, gas
cooling, feedback, and more. The more empirically motivated models focus more on the
structures we refer to as dark matter halos and relating those directly to galaxies; for example,
Halo Abundance Matching populates the most massive halos with the most massive galaxies
(Hearin et al., 2013, 2014; Klypin et al., 2013; Desmond & Wechsler, 2017, e.g.), while the
Halo Occupation Distribution takes a probabilistic view at populating individual dark matter
halos with galaxies (Berlind & Weinberg, 2002, e.g.). These models, though fairly simplistic
and seemingly naive, reproduce many of the general clustering relations that we observe in
the real universe, showcasing the strength of such techniques.

We group those models that create a direct link between dark matter halos to the

observed galaxies as “halo models”. These models typically make two common assumptions



that are worth further consideration. The first is that all dark matter in the universe collapses
into the halo structures that we observe. The second is that clustering and occupation of
halo is a function of halo mass alone. But just how well do these two assumptions hold up
in practice?

The former assumption deals more directly with a fundamental question I have left
unanswered: “What is a dark matter halo?” The exact specifications as to how we choose to
define a halo are left to be discussed in a further chapter, but there are broadly two classes
of halo definition algorithms. It should be noted that implementations exist which are
variants on these two general approaches? and many additional details exist on the specifics
of individual halo finding algorithms.

The first is the “Friends-of-Friends” approach of halo finding. In this case a sep-
aration distance is chosen, called a linking length, by which dark matter particles can be
separated by and still be considered a single halo object. Dark matter particles are then
linked together in chains by this distance or smaller in order to generate large halos of ir-
regular size and shape. Smaller halos, as might be expected with hierarchical formation,
can be found by looking at smaller linking lengths within an existing group of dark matter
particles. The resulting dark matter halos will have a halo mass determined by the number
of linked particles (and the mass of the particle) and may have a considerably non-spherical
shape. Note that halos generated using this method are highly sensitive to the choice of
linking length; one can imagine a linking length which connects all particles as a single halo
or entirely misses structure on the fringes of the halo. A known problem with this method is
the identification of substructures within larger halos. This algorithm can easily artificially
identify overdensities which are not gravitationally bound as the linking length is reduced.
As these objects are merely transient structures, this may bias halo statistics, particularly
for the least massive halos.

The second is the “Spherical Overdensity” approach of halo finding. Peaks are
identified in the underlying matter density field; for each peak above a threshold height, a
spherical halo is created such that the encompassed mass results in an average density that

is a multiple, A, of the mean matter density or critical density of the simulated universe. In

2Including the ROCKSTAR method discussed in our methodology.



this case, substructure is identified by having a halo center within the radius of a larger halo.
The main advantage to this technique is a direct link to models of spherical collapse, where
analytic calculations can be computed. For an Einstein-de Sitter universe, the resulting
value of A for a gravitationally bound object is 178 with respect to the critical density of
the universe (Mo et al., 2010, e.g.). A common halo definition used in the literature chooses
the different value of A = 200 with respect to the mean matter density of the simulation
(Miyatake et al., 2016; Paranjape et al., 2018, e.g.). This methodology carries the advantage
of being easily linked to the multitude of properties associated with spherical halos, including
that of the Navarro-Frenk-White (NFW) (Navarro et al., 1997) profile for the distribution
of halo mass.

Note now that neither halo definition adequately addresses the question of “does all
dark matter mass reside in dark matter halos”. Work has been done to demonstrate that
potentially considerable amounts of matter reside outside of spherically defined halos (van
Daalen & Schaye, 2015). One interpretation is that significant matter density exists inside of
filamentary structures connecting halos; another is that traditional spherical halo definitions
simply miss a large amount of matter on scales larger than the virial radius. But while a
spherical overdensity method may miss matter, a FOF approach runs the risk of linking
together halos in an artificial manner.

I note the arbitrary nature of the cutoff of what defines a halo as a particular point
of interest to us. While the Spherical Overdensity method is more physically motivated, note
that the fiducial choice of A is considerably different from the analytic result of an Einstein-
de Sitter universe (a value of A = 178) or even the ACDM universe that we reside in (a value
of A = 337. Changing this value of A can considerably change the definition of the halo
radius and thus the contained dark matter and the measured distribution; this could impact
any number of halo properties of interest. In fact, different analysis groups in the field choose
to look at different definitions simply due to matters of convenience and little attention has
gone into the careful analysis of how halo definition matters. This makes it exceedingly
difficult to compare the results of studies at the level of precision necessary to address future
high-quality data. I will refer back to this problem to motivate our methodology of halo

redefinition in later chapters.



I now draw attention to the second assumption: that at fixed halo mass, halos are
self-similar (with some scatter). Setting aside the matter that the measured halo mass is
a function of your choice of halo definition, it has been shown in the literature extensively
that this assumption is false. In fact, the clustering of halos has been shown to depend on
halo formation time (Gao et al., 2005; Harker et al., 2006; Wechsler et al., 2006; Gao &
White, 2007; Croton et al., 2007; Zentner, 2007; Dalal et al., 2008; Li et al., 2008; Lacerna &
Padilla, 2011), halo concentration (Wechsler et al., 2006; Faltenbacher & White, 2010), and
other halo properties (Bett et al., 2007; Hahn et al., 2007b,a, 2009; Faltenbacher & White,
2010; Hester & Tasitsiomi, 2010; Lacerna & Padilla, 2012; van Daalen et al., 2012; Fisher
& Faltenbacher, 2016; Sunayama et al., 2016; Chaves-Montero et al., 2016). But with such
a wealth of the literature pointing toward this seeming breakdown in the halo model, why
even persist with such a method?

One reason is that it is clear that halo mass is the dominant variable in determining
halo clustering and occupation (Efstathiou et al., 1990; Bond et al., 1991; Cole & Lacey,
1996; Zentner, 2007). Another reason is that the halo model is important in providing us
a physical intuition for how to connect the underlying matter power spectrum of the early
universe to the observed universe around us. The hierarchical formation of structure in dark
matter simulations has motivated much of our current understanding of how galaxies form.
Understanding the connection between dark matter and galaxies helps us to gain further
insight, even using empirical models with the currently identified flaw.

However, ignoring this breakdown of our assumptions could lead to unexpected con-
sequences. As such, it is important to study the impact of this; the most common method is
to look at the “halo assembly bias”, measured as the difference in clustering that is demon-
strated as a function of a secondary halo property. I study the impact of halo assembly bias
as a function of halo definition (and necessarily halo size in terms of the halo radius) for halo
concentration, halo spin, and halo shape. I extend the choice of halo definition outside the
bounds of the customary definitions in order to explore just how much impact this can have
on measure of halo assembly bias and as an attempt to find a potentially more physically
motivated halo definition that minimizes assembly bias. This provides the first detailed look

in the literature on how our choice of halo definition can drastically change how we identify



halo assembly bias and how it may be impacting our predictions. An additional benefit is a
firm understanding of the relationship between measured halo bias and halo definition allows
us to better compare the results of previous authors from each other.

A halo definition free from assembly bias would be applicable to all of our previous
halo models without needing to involve additional parameterizations. I motivate drastically
different choices of the overdensity parameter A based on the fairly arbitrary choices that
have become the fiducial definitions in the literature and explore these for the first time. I
focus on halo definitions that yield significantly larger halo radii than traditional choices in
the literature, in the hope of encompassing changes driven by the local environment. I also
examine the physically motivated “splashback” definition, in which infalling material clumps
in caustics. I look at this both in a broad statistical sense using a fitting function, as well
as with the more computationally expensive methods of assigning splashback radius to each
halo individually.

In the remainder of this thesis, I go into further detail on each of these topics. In
Chapter 2, I look into further detail on the definition of common halo models and their
application in the field. I further demonstrate how halo assembly bias is defined and has
been measured in the existing literature. In Chapter 3, I discuss the simulations that I utilize
in my analysis and the ROCKSTAR halo finder used in my halo identification. I additionally
discuss two common measures of halo assembly bias: the correlation function (or two-point
autocorrelation function) and the marked correlation function. In Chapter 4, I show our
detection of halo assembly bias in my simulation suite as a function of four distinct halo
properties. In Chapter 5, I examine how changing halo definition can directly impact the
measure of halo assembly bias and how this, itself, is dependent on which halo property
is examined. In Chapter 6, I study if the “splashback radius” explains the differences in
halo assembly bias as a function of halo redefinition. This is also tested as a possible more
physically motivated definition that may be free of these problems. In Chapter 7, [ narrow
down on the technical results and how they compare to existing results in the literature. In
Chapter 8, I discuss the larger context of those results within cosmology and what my future

aims are for developing a better understanding of these models for cosmological predictions.



2.0 DARK MATTER AND HALO MODELING

In the previous chapter, I briefly mentioned one of the fundamental mysteries of modern
cosmology: “What is dark matter?” As this work focuses on the nature of how dark matter
structures evolve in the universe and how we can utilize our knowledge of dark matter
clustering and occupation in order to push cosmology forward, this enigma merits close
examination. The history of this question can ultimately be traced back to the early work
by Fritz Zwicky, who identified that the velocity dispersions of seven galaxies in the Coma
cluster implied a gravitational mass that was significantly more than the observed stellar
mass (Zwicky, 1933). This extra matter received the name “dunkle Materie”, rather than
being simply described as something along the lines of missing matter. This work soon
expanded to the Virgo cluster (Smith, 1936), though with significant amounts of room for
error due to the methodologies of the time.

The following years would unveil more hints of the presence of dark matter. Galaxy
rotation curves were measured to higher precision and larger distances by independent groups
within the literature (Freeman, 1970; Bosma, 1978; Rubin et al., 1980). The general result
was the measurement of a flattened rotation curve out to large distances from the center
of the galaxy; this observation is exceedingly difficult to reconcile with the observed mass,
leading to two competing conclusions. The first conclusion is that the inability to resolve the
difference between the observed mass and gravitational interaction implies a breakdown in
our understanding of gravity; this motivates the field of modified gravity within the literature
as one starting point. The other conclusion is that there is some source of mass invisible to
the electromagnetic spectrum: “dark matter”. Turner et al. (1984) additionally demonstrate
that structure cannot develop fast enough to produce the galaxies that we observe today with

baryonic matter alone; one solution suggested is the existence of a relic particle such as dark
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matter.

I choose to examine dark matter in a phenomenological sense throughout this work.
Specifically, I am less interested in dark matter on the level of individual particles!, but
rather I focus on the bulk behavior of the dark matter. With regards to this, I consider the
most common model of cold dark matter. These particles are cold in that their velocities are
significantly smaller than the speed of light and dark in the sense that they are not observed
electromagnetically. I note this is not the only possible model: warm dark matter has enjoyed
some popularity due to the ability to help explain the density profiles of dark matter that
are inferred (Bode et al., 2001; G6tz & Sommer-Larsen, 2003) and some annihilating or
interacting dark matter models can produce Standard Model particles that could potentially
be observed (Bertone et al., 2005, for a thorough review of the particle approach). As of the
time of writing, constraints tend to favor the CDM model (Inoue et al., 2015; Yeche et al.,
2017); it does remain an active discussion within the literature, however.

For the paradigm of cold dark matter, there has been extensive work carried out in
the literature to study the behavior with computer simulations. This work was carried out
with analog computers for galaxies as early as 1941, where the flux of light bulbs was used to
measure the gravitational potential (Holmberg, 1941). From there, simulations were made
digital alongside the development of the cold dark matter model itself. The rapid acceleration
of computational power, known as Moore’s Law, has lead us to an era where we carry out
simulations of unprecedented resolution year after year. For models with only dark matter
and their gravitational interactions in consideration, we have the Millennium Simulation
(Springel et al., 2005) and the Bolshoi Cosmological Simulation (Klypin et al., 2011). Far
more complicated simulations take into account baryonic physics such as star formation and
feedback from Active Galactic Nuclei (AGN) in simulations such as the Illustris Simulation
(Vogelsberger et al., 2014) or the BLUETIDES Simulation (Feng et al., 2016). However, this
field of hydrodynamic simulations still requires significant progress to be made to converge
to agreements between simulations (Scannapieco et al., 2012). As such, I focus on the results

of dark matter only simulations and their interpretation.

'If it is indeed a particle...
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2.1 HALO MODELS

Consider the endpoint of a numerical, dark matter only simulation: a collection of particle
positions and velocities. This is a far cry from the observations that we make of the galaxies
on a night sky! The ways we can make the connection between the two range from the

semianalytic to the phenomenological, but most take the following broad form:

1. Identify collections of dark matter particles referred to as “halos”.
2. Calculate properties of the dark matter halos.

3. Use these properties to populate dark matter halos with galaxies.

The first step requires us to identify some collection of dark matter as “halos” A
major motivation for this approach is the ease at connecting this to early analytic approaches.
One can make the assumption that non-linear objects form from a spherically symmetric
collapse starting from density perturbations in the early universe (Gunn & Gott, 1972). For
an Kinstein-de Sitter universe, this calculation can be carried out analytically, resulting in

determining that a virialized object in the universe has a density equal to

Ay = 91_7: x 8 x 4 = 187 ~ 178 (2.1)
times the background density of the universe at the time of virialization (Cooray & Sheth,
2002, for a derivation). This calculation can be carried out for the ACDM universe and
yields Ay &~ 337. The idea of following spherical collapse was developed into the formalism
of Press & Schechter (1974) and extended (Bond et al., 1991; Bower, 1991; Kauffmann et al.,
1993; Lacey & Cole, 1993) to allow the prediction for the clustering of dark matter halos
and the evolution of the halo mass function, a measure of the number density of halos of a
given mass in the universe.

These results motivate one of the common methods of identifying halos in simula-
tions: “spherical overdensity” (SO) identification. One of the most prominent early uses of
this method rests on Lacey & Cole (1994), where the method was used as a numerical test
as to the accuracy of their Extended Press-Schechter formalism from Lacey & Cole (1993).
These halo finders comb through the density field, identify local density peaks that exceed
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this required limit to be virialized, and creates a spherical halo around these points. In
particular, the Klypin & Holtzman (1997) algorithm to carry out this calculation remains in
extensive use to this day.

A complementary approach is the “Friends-of-Friends” (FOF) method of halo find-
ing, which chooses to identify halos through a linking length parameter, b. This tunable
parameter serves as a length by which particles in a simulation are connected together; all
connected particles constitute a single halo (Davis et al., 1985). While this approach has a
weaker connection to the underlying analytical theory, it serves as a powerful approach for
dealing with the real data which is both highly non-spherical and asymmetric.

The overwhelming majority of halo finding algorithms utilized by the field build
off the work of these two approaches. For a specific example, Behroozi et al. (2013b) pro-
vides the ROCKSTAR halo finding algorithm. This approach identifies the equivalent to FOF
groups inside of a 6D phase space before calculating halo properties in spherical overdensity
apertures. Overall, while many halo finders struggle to identify substructure, these phase
space oriented halo finders are able to resolve substructure down to a small number of par-
ticles (Knebe et al., 2011), though a larger number of particles is often needed to accurately
determine the properties of these smaller halos (Onions et al., 2012).

A particular quantity of interest to anybody carrying out calculations from dark
matter halos is that of the halo mass function, or the number of halos of a given mass in the
universe. While analytic methods do exist of estimating this function (Linke et al., 2017),
these functions are typically determined from simulation. By far the most common halo mass
function in the literature is that of Tinker et al. (2008), reproduced as Fig. 2. Note the shape
of the halo mass function; there exist many more halos of small mass than halos of large
mass. As the universe advances through time, these small halos merge to form more massive
halos, pushing this distribution toward higher mass. Note also that very high mass objects
become increasingly rare, especially past the visible turnover in the halo mass function. Even
more modern advances in the study of the halo mass function remain rooted in the study
of simulation; it is now popular to generate emulators which are able to interpolate between
the results of many halo simulation boxes in order to generate even more robust estimates

of the halo mass function as a function of cosmology (McClintock et al., 2018).
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Figure 2 The halo mass function from Tinker et al. (2008) as the number density of galaxies in

bins of logarithmic mass. Note that the function monotonically declines, with the beginning

of a turn-over to a more rapid decline visible at the highest mass bins.
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Once a dark matter halo has been defined, there are a number of properties that
are of interest for studying. The first (and potentially one of the more varying) property to
be considered is that of the halo mass. Once a decision has been made on which particles
belong in a halo, it is a simple matter of addition to determine the total mass of dark matter
particles contained in the halo. It is often beneficial to assign a “halo radius” to a given
object; for a spherical overdensity halo a common choice is to define the radius as the scale
such that the average density within a sphere of that radius exceeds some multiple of the
background. As the halo size increases, the expectation is for the average density to decrease,
leading to a threshold size. Other properties include: “halo concentration”, which provides
a measure of how a characteristic scale in the density profile of dark matter compares to the
total size of the halo; “halo shape”, which is a measure of how much the halo deviates from
the assumption of a perfect sphere; and “halo spin”, which measures how much energy is
stored in angular momentum for the halo, often with very different normalization between
chosen definitions. These properties are all able to be directly pulled from the simulation
data at the particle level and serve as our input parameters to various models.

With our dark matter halo properties, we can now move to populate these dark
matter halos with galaxies and get a sense of how both halos and the objects that they live
in cluster together. This connection is motivated by the work of White & Rees (1978), which
proposed that dark matter halos are occupied by galaxies as luminous cores. The simplest
property that one might connect from halo to galaxies is that of halo mass. The intuition
behind this is fairly straightforward; a sufficiently massive halo will have a gravitational
potential that will attract more matter. This will cause the halo to effectively evolve faster
(undergoing more mergers at earlier times) and gather more material in the early universe
(increasing the baryonic mass within). In fact, one can observe this in simulation fairly
straightforwardly; the clustering of halos at a given mass can be enhanced from a uniform
distribution in what is referred to as the halo bias. I show this in Fig. 3 using the fitting
function provided in Tinker et al. (2010); here the halo bias is determined from simulation
as

b (k) = Pu(k)/Pin (k) (2.2)

where the bias is a ratio of the halo power spectrum to the linear dark matter power spectrum.
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As the halo bias is a very strong function of the halo mass and we expect that galaxies
trace the underlying dark matter population, we can infer the following: the most clustered
galaxies tend to populate the most massive dark matter halos. This idea allows us to link
together our understanding of dark matter halos and their clustering to the study of galaxy
formation and galaxy clustering in a fundamental way:.

This motivates further methods such as the Halo Occupation Distribution (HOD)
(Mo & White, 1996; Berlind et al., 2003; Kravtsov et al., 2004; Zheng et al., 2005, 2007) to
that of Halo Abundance Matching (Hearin et al., 2013, 2014; Klypin et al., 2013; Desmond
& Wechsler, 2017). These models can often match observables such as the galaxy-galaxy
clustering quite well and serve as a valuable first step for gaining insight into both the
formation of galaxies and their connection to the underlying dark matter halos. As a result
of this strong connection, many models have been generated that assume that only halo
mass matters for the halo-galaxy connection or even halo-halo clustering. This assumption
is bolstered by the fact that many of the halo properties discussed are strongly correlated
with halo mass. The breakdown of this assumption is often referred to as “halo assembly
bias” (when referring to halo-halo clustering) or “galaxy assembly bias” (when referring to
how this might impact the halo-galaxy connection). As of the time of writing, the topic of
how failure to address assembly bias impacts various observation remains a source of heated
debate. In the next chapter, I will detail what progress has been made and where the field

currently stands.

2.2 HALO ASSEMBLY BIAS

In the previous section, I discussed the matter of halo models that are focused on halo
mass as the most important and (often) only parameter. Early work by Gao et al. (2005)
demonstrated that the clustering of dark matter halos exhibited dependence on an additional
property: halo age. This sparked the study of the excess clustering of dark matter halos as
a result of a secondary halo property, typically referred to as “halo assembly bias.” Halo

assembly bias has been detected in association with halo formation time (Harker et al.,
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Figure 3 The large scale halo bias as measured by the ratio (P,/Py,)"/? using the Tinker
et al. (2010) halo bias fitting function, assuming a A = 200m halo definition.
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2006; Wechsler et al., 2006; Gao & White, 2007; Croton et al., 2007; Zentner, 2007; Dalal
et al., 2008; Li et al., 2008; Lacerna & Padilla, 2011), halo concentration (Wechsler et al.,
2006; Faltenbacher & White, 2010), and other halo properties (Bett et al., 2007; Hahn et al.,
2007b,a, 2009; Faltenbacher & White, 2010; Hester & Tasitsiomi, 2010; Lacerna & Padilla,
2012; van Daalen et al., 2012; Fisher & Faltenbacher, 2016; Sunayama et al., 2016; Chaves-
Montero et al., 2016). For an example of what halo concentration driven assembly bias can
look like, 1 present Fig. 4, which demonstrates halo assembly bias when the halo sample
is split in half based on high or low concentration at fixed halo mass. Those halos with
higher concentrations at fixed mass have enhanced clustering, while those halos of lower
concentrations at fixed mass have decreased clustering.

The impact halo assembly bias has on existing results in the literature remains
unknown. Gallart et al. (2015) suggests that the difference between dwarf galaxy types can
be linked to the impact of halo assembly bias. Mao et al. (2015b) notes that halo assembly
bias can have an impact on subhalo abundances that should be observable in future deep
surveys, allowing for the possibility of halo assembly bias being verified observationally.
Wang et al. (2018) demonstrates that while halo mass is the primary driving force between
galaxy quenching in their sample, there remains a residual environmental dependence which
can be modeled out as halo assembly bias. The ability of halo assembly bias, which is
unsurprisingly difficult to determine through direct observation, to impact galaxy formation
and observation is more than ample motivation to study the impact of it in depth. Yet even
more motivation exists! It has been demonstrated that as we move to higher quality, higher
quantity, and deeper cosmological surveys, we begin to enter a regime in which not accounting
for halo assembly bias will hamper your ability to measure cosmological parameters correctly:
in particular dark energy (e.g., Croton et al., 2007; Wu et al., 2008). A better understanding
of halo assembly bias will be critical to being able to mitigate any potential systematic biases
that this might introduce.

In the next chapter, I will detail our own procedure of detecting halo assembly bias.
Our prescription is similar to that of Wechsler et al. (2006), with modifications to removing
the underlying secondary halo property to halo mass relations. I go into detail on the dark

matter only simulations that were utilized in this analysis. I discuss our choice of halo finding
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Figure 4 The 2-point correlation function measured for host halos in the L0250 simulation.

The blue line contains all host halos in the sample, while the red (green) line contains the

50% highest (lowest) concentration halos at fixed halo mass.
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algorithm and cuts on our overall halo sample to assure that properties are well resolved. I
finally discuss the actual mathematics of halo assembly bias, in particular the less familiar

“Marked Correlation Function.”

20



3.0 METHODOLOGY

In this chapter I shall discuss in detail the methods utilized in our analysis. In Section 3.1, I
cover the Diemer & Kravtsov (2015) simulations that have been provided to me for analysis
and their cosmology in detail. In Section 3.2, I describe the ROCKSTAR halo finding algorithm
that I run on our simulations for different choices of halo definition. I further describe the
various halo properties that are utilized in the analysis and how these properties are deter-
mined by ROCKSTAR. In Section 3.3, I discuss how I measure halo assembly bias, both with
more traditional correlation functions and the potentially more powerful marked correlation

functions.

3.1 SIMULATIONS

I make use of three cosmological N-body simulations in order to study the impacts of halo
assembly bias throughout this work. These simulations are a subsample of the Diemer &
Kravtsov (2015) simulations that have been performed using cosmological parameters of
Qv = 0.32, Qp = 0.68, hg = 0.67, 0z = 0.834, and n, = 0.9624. This cosmology was chosen
due to its close resemblance to the Planck best-fit cosmology as presented in Planck Col-
laboration et al. (2014). The initial matter power spectrum was generated using the CAMB
code for this set of cosmological parameters (Lewis & Bridle, 2002). Each simulation further
has initial conditions generated using the second-order Lagrangian perturbation theory code
2LTPCy¢ (Crocce et al., 2006) from a starting redshift of z = 49. This initial redshift is suffi-
ciently high to avoid potential transient effects that are present with simpler approximations

at low initial redshifts (Crocce et al., 2006). In addition, I focus on the z = 0 redshift snap-
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shots for this study. The force solving algorithm used in these simulations is the GADGET2
code from Springel et al. (2005).

Together, the simulations cover box sizes of 125, 250, and 500 A~ !Mpc respectively; I
refer to them throughout this work as L0125, L0250, and L0500 from now on. Each contains
10243 particles, leading to particle masses of 1.6 x 108, 1.3 x 10%, and 1.0 x 10'0h~1M,, in
each simulation volume. For purposes of this study, the key difference between simulation
boxes is the mass resolution available. L0125 contains few massive halos, but a large number
of small mass halos; L0500 is incapable of resolving the least massive halos, but has many
more of the most massive halos. This allows me to do a comprehensive study of the potential
impacts of halo assembly bias as a function of halo mass. Each simulation also contains a
slightly different force softening length as a result of different particle loading; 2.4, 5.4, and
14h~'kpc from smallest box size to largest. I note that these lengths are significantly smaller

than the physical scales of interest.

3.2 HALO FINDING

The matter of identifying dark matter halos is a very non-trivial part of this analysis.
It is clear that while halo finders asymptote to agreement on most statistical properties,
the specifics between a FOF halo finder versus a Spherical Overdensity halo finder can be
considerably different. 1 identify dark matter halos in the simulation snapshots using the
ROCKSTAR halo finder from Behroozi et al. (2013a), which uses a variant approach to the
latter. Schematically, the approach of ROCKSTAR is as follows:

1. Divide the simulation volume into rough Friends-of-Friends groups, using some set linking
length, 0.

2. Inside of each FOF group, normalize member positions and velocities by the group po-
sition and velocity.

3. Adaptively link particles together in the 6D phase-space such that 70% of particles are
linked together into smaller groups.

4. Repeat this to find more levels of substructure until new levels cannot be found.
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5. Place seed halos inside the lowest level of substructure and assign nearby particles in
phase-space membership to these halos.
6. Remove any unbound particles and calculate halo properties using their member parti-

cles.

This particular algorithm has several advantages over the more basic algorithms
discussed previously in the text. The first is that phase-space algorithms are exceptionally
good at being able to identify substructures (Knebe et al., 2011). The second is that the
this analysis combines the easily interpreted SO halo properties with the more robust halo
identification of FOF halo finding. Note that I have chosen the linking length for our analysis
as a relatively large linking length of 0.4. I have varied this choice and found that it makes

no qualitative difference in the following analysis.

3.2.1 Halo Properties

As briefly mentioned above, ROCKSTAR calculates halo properties primarily through spherical
overdensity methods. This addresses an issue in which FOF groups will often be grouped to-
gether well in advance of SO halos (Klypin et al., 2011). I detail below the specific procedure
by which ROCKSTAR handles each given property that is of interest in this work.

3.2.1.1 Halo Masses and Radii The definition of halo mass, on the exterior, is a
fairly straightforward calculation. One needs to merely add up the total number of particles
belonging to a dark matter halo; since one knows the mass of each individual particle, the
mass of the dark matter halo is trivially known. However, the size of a dark matter halo is
not necessarily a simple choice to make.

In practice, for SO halos, we determine the halo size with respect to a multiple of

the mean background density, pu:

p(Ra) = Apn. (3.1)

Here, A is a (typically) integer multiple and p(R) is the mean density inside a sphere of given

radius, R. I choose to mark our numerical choices of A with an “m” if the value is with
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respect to the mean background density and a “c” if it is with respect to the critical density.
This choice of A directly relates to earlier discussion of spherical collapse and has lead to a
common choice in the literature of A = 200m for most studies related to halo assembly bias.
However, this decision is not universal; ranges of values from A ~ 178m to A ~ 340m are
fairly common in the literature. Even the choice of choosing the mean background density is
not without consequence, as some analysis is done using the critical density instead (roughly
resulting in A = 200c &~ 625m). Another common choice is the virial overdensity (Bryan
& Norman, 1998), which comes out to A = 100c &~ 300m. Outside of the field of assembly
bias, even larger values of A are chosen to focus on the innermost regions of galaxy clusters,
sometimes reaching values as high as A = 625m. Once a halo size is defined using this
overdensity definition, calculating the halo mass is straightforward; Fig. 5 demonstrates how
the choice of halo size impacts the determination of halo mass.

I provide a toy diagram in Fig. 6 to provide an intuition on how the choice of
halo definition could have significant impact on halo mass. In this cartoon, the solid lines
correspond to a traditional halo definition with A = 200m and the dashed lines correspond
to a significantly extended halo of A = 20m. Note that the drastically increased halo
definition will lead to a halos C and D to cease to be distinct “host” halos in the larger halo
definition; their inclusion in the halo mass calculation could considerably change this and

other properties.

3.2.1.2 Halo Positions and Velocities ROCKSTAR follows an approach by which the
center of the halo is measured by following the density peaks rather than through averaging.
It first determines the inner substructure of the halo such that the expected Poisson error,
0,/V/N is minimized. This central substructure then has its particles utilized to calculate
the halo center. The velocity of the halo is then calculated averaging the velocities of those

particles within the innermost 10% of the halo radius.

3.2.1.3 Halo Concentrations I investigate two distinct definitions of halo concentra-
tion. Halo concentration comes out of the NF'W profile that describes the spatial distribution

of dark matter halos in simulation. While this is known not to match up with observations
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Figure 5 The ratio of halo properties as a function of A in the L0250 catalog. The sample
contains all host halos with masses greater than Mg, > 7.1 x 10!, The black (dark gray)
line shows the median value of the ratio of the halo mass (halo radius) at a value of A to
the value at A = 200m. The error bars contain 68% of values of this ratio for the sample.

These ratios are very mild functions of mass, but all masses are stacked in this plot.
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Figure 6 A qualitative illustration of the choice of halo definition. The figure shows five
halos, labeled by the letters A-E. Halo A is the largest halo in the illustration. The solid halo
boundaries correspond to the halo radii defined with respect to an overdensity of A = 200m,
namely Rogom. The dashed boundaries correspond to the halo radii defined with respect to
an overdensity of A = 20m, Rsg,. In all cases, halos become larger as A decreases. Halos
A and E are host halos according to both halo definitions. Halo B is a subhalo of halo A
according to both halo definitions. Halos C and D are distinct host halos according to the
A = 200m halo definition, but they are reclassified as subhaloes of halo A according to the
A = 20m halo definition.
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(the so-called “cusp-core” problem (de Blok, 2010, e.g.)), it serves as a useful tool for many
semianalytic models. As such, halo concentration is defined with respect to the density

profile of the halo,

plr) = —0 (3.2)

T T 2

F(s)
where pg is a density scale and rg is the scale radius, both of which vary from halo to halo.
The latter parameter is of interest for halo concentration as it represents where the profile

transitions from a steep “cuspy” profile to that of an isothermal sphere. Halo concentration

is traditionally defined as
R

S

(3.3)

CNFW =

As such, this can be calculated with the inclusion of the scale radius, r, which is determined
by ROCKSTAR by binning halo particles and carrying out a maximum-likelihood analysis to
find a best fit NFW profile.
[ further choose to use a “velocity-defined” halo concentration (Prada et al., 2012;
Klypin et al., 2016),
Vinax

= 3.4
Cy VA ) ( )

where V. is the maximum circular velocity of the halo and V, is the velocity of the halo

at the halo radius, Ra. Both of these values are calculated from the quantity /GM (r)r—1;

the shallow dependence of this function on radius means there is minimal error due to finite
sampling. This quantity, ¢y has the advantage of being non-parametric and is more robust
to halo density profile parameterization and fitting procedures. It is directly related to the
NFW profile; if this profile is assumed, the halo concentrations can be related as:

In (1 + CNFW) _ 1 -1/
CNFW 1 + envw .

cv = 0.465 (3.5)

For considering halo assembly bias, halo concentration is a useful parameter for
many reasons. Halo concentration is known to be highly correlated with halo environment
in standard halo definitions (Lee et al., 2017, e.g.). It is further of interest for modeling
galaxy clustering and gravi