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Denis Sauré, PhD, Assistant Professor

Jayant Rajgopal, PhD, Professor

Bo Zeng, PhD, Associate Professor

Dissertation Director: Oleg A. Prokopyev, PhD, Professor

ii



Copyright c© by M. Hosein Zare

2018

iii



BILEVEL LINEAR PROGRAMS: GENERALIZED MODELS FOR THE

LOWER-LEVEL REACTION SET AND RELATED PROBLEMS

M. Hosein Zare, PhD

University of Pittsburgh, 2018

Bilevel programming forms a class of optimization problems that model hierarchical re-

lation between two independent decision-makers, namely, the leader and the follower, in a

collaborative or conflicting setting. Decisions in this hierarchical structure are made sequen-

tially where the leader decides first and then the follower responds by solving an optimization

problem, which is parameterized by the leader’s decisions. The follower’s reaction, in return,

affects the leader’s decision, usually through shaping the leader’s objective function. Thus,

the leader should take into account the follower’s response in the decision-making process.

A key assumption in bilevel optimization is that both participants, the leader and the

follower, solve their problems optimally. However, this assumption does not hold in many im-

portant application areas because: (i) there is no known efficient method to solve the lower-

level formulation to optimality; (ii) the follower either is not sufficiently sophisticated or does

not have the required computational resources to find an optimal solution to the lower-level

problem in a timely manner; or (iii) the follower might be willing to give up a portion of

his/her optimal objective function value in order to inflict more damage to the leader.

This dissertation mainly focuses on developing approaches to model such situations in

which the follower does not necessarily return an optimal solution of the lower-level problem

as a response to the leader’s action. That is, we assume that the follower’s reaction set may

include both exact and inexact solutions of the lower-level problem. Therefore, we study a

generalized class of the follower’s reaction sets. This is arguably the case in many application
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areas in practice, thus our approach contributes to closing the gap between the theory and

practice in the bilevel optimization area.

In addition, we develop a method to solve bilevel problems through single-level reformu-

lations under the assumption that the lower-level problem is a linear program. The most

common technique for such transformations is to replace the lower-level linear optimization

problem by its KKT optimality conditions. We propose an alternative technique for a broad

class of bilevel linear integer problems, based on the strong duality property of linear pro-

grams and compare its performance against the current methods. Finally, we explore bilevel

models in an application setting of the pediatric vaccine pricing problem.

Keywords: Bilevel optimization, Mixed integer programming, Follower’s reaction set, Opti-

mistic bilevel optimization, Pessimistic bilevel optimization, Single-level reformulations.
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1.0 INTRODUCTION

The decision-making processes in many practical settings are carried out through a hier-

archical interaction between two or more autonomous parties. While they work toward their

own objectives in a collaborative or a competitive fashion, each participant’s action influ-

ences the other’s decisions. Bilevel programming models such hierarchical processes between

two independent decision-makers, namely, the leader and the follower, and provides a flexi-

ble framework to model decentralized decision-making in Stackelbergh games [31, 108] and

many important application domains. These areas include transportation [60], energy [15],

interdiction [101, 111], military [27], revenue management [40], cybersecurity [7], computa-

tional biology [28, 92] and defense [27]. For more details on bilevel optimization we refer the

reader to [38] and the references therein.

The decisions in bilevel programs are performed sequentially in which the leader, the

upper-level decision-maker, decides first. Consequently, to attain the best response, the fol-

lower or the lower-level decision maker, solves an optimization problem which is parame-

terized by the leader’s decision. This setting suggests that, while the leader is able to act

strategically by anticipating the follower’s (optimal) reaction, the follower’s role is rather

reactionary. The follower’s response, on the other hand, affects the leader’s decision, mainly

through shaping the leader’s objective function and/or constraints. Thus, the leader should

always take into account the follower’s response in the course of decision-making process.

There are two approaches for modeling the follower’s response in bilevel programs [38]:

the optimistic formulation assumes that if there are multiple optimal solutions to the lower-

level problem for a given decision by the leader, then the follower selects the solution that

is the most favorable for the leader. On the contrary, the pessimistic formulation assumes
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that the follower selects the least favorable solution for the leader. One should note that in

the case of max-min (or min-max) problems optimistic and pessimistic cases coincide.

These two approaches can be generalized via strong-weak bilevel problems [1, 31, 115],

where the leader’s objective function is a convex combination of the leader’s objective func-

tions in the optimistic and pessimistic problems. Thus, the corresponding coefficients in the

leader’s objective function can be interpreted as the probabilities of cooperation or non-

cooperation of the follower, respectively.

A key assumption in bilevel optimization is that both the leader and follower have the

computational means to solve the upper- and lower-level formulations optimally, respectively.

However, in many important application areas, one has that either: (i) there is no known

efficient method to solve the lower-level formulation to optimality (for a given set of upper-

level decisions); or (ii) the follower either is not sufficiently sophisticated or does not have

the computational resources necessary to find an optimal solution to the lower-level problem

in a timely manner. In both cases, the follower typically resorts to using computationally-

tractable heuristic/approximate algorithms. Moreover, the follower might be willing to give

up a portion of his1 optimal objective function value, i.e., select a suboptimal solution in

order to inflict more damage to the leader. Such situations may arise in adversarial and

interdiction settings where the objectives of the leader and the follower are conflicting, e.g.,

military and law-enforcement applications. Thus, the leader should be more conservative or

guarded when she faces the follower in such situations.

This dissertation mainly focuses on developing approaches to model situations in which

the follower does not necessarily return an optimal solution of the lower-level problem as

a response to the leader’s action. That is, we assume that the follower’s reaction set may

include both exact and inexact solutions of the lower-level problem, and thus, we study a

generalized class of the follower’s rational reaction sets. This is arguably the case in many

application areas in practice, thus this work contributes to closing the gap between the theory

and practice in the bilevel optimization area.

1In the remainder of the dissertation we use “her” and “his” whenever we refer to the leader and the
follower, respectively.

2



The remainder of this dissertation is organized as follows. In Chapter 2, we consider a

class of bilevel linear mixed-integer programs (BMIPs), where the follower may be willing to

give up a portion of his optimal objective function value, and thus may select a suboptimal

solution, in order to inflict more damage to the leader. To handle such adversarial settings

we consider a modeling approach referred to as α-pessimistic BMIPs. The proposed method

naturally encompasses as its special classes pessimistic BMIPs and max-min (or min-max)

problems. Furthermore, we extend this new modeling approach by considering strong-weak

bilevel programs, where the leader is not certain if the follower is collaborative or adversar-

ial, and thus attempts to make a decision by taking into account both cases via a convex

combination of the corresponding objective function values.

In Chapter 3, we study a broad class of bilevel optimization problems where the follower

might not react optimally to the leader’s actions. In particular, we present an approach in

which the leader considers that the follower might use one of a number of known algorithms to

solve the lower-level problem either approximately or heuristically. We assume that the leader

does not know upfront the algorithm to be used by the follower, but knows that it belongs to

a known finite set of algorithms. Thus, the leader is enabled to hedge against the follower’s

use of suboptimal solutions. In addition, we study the impact of incorporating this realistic

feature through numerical experiments in the context of the defender-attacker problem.

A typical method to solve bilevel programs, including those presented in Chapters 1

and 2, is to replace the lower-level problem by Karush-Kuhn-Tucker (KKT) optimality con-

ditions and reformulate it as a single-level problem. This technique is basically applied if

the lower-level optimization problem is convex, e.g., a linear program. Alternatively, one

can attempt applying the strong duality (SD) property of linear programs to perform such a

transformation. In Chapter 4, we exploit this idea for BMIPs where the upper-level variables

are integers. Specifically, we describe two SD-based reformulations and compare the perfor-

mance of an off-the-shelf MIP solver with these reformulations against the KKT-based one.

Furthermore, in Chapter 5, we explore bilevel models in the application setting of the pe-

diatric vaccine pricing problem. We consider a bilevel model of this problem where a vaccine

manufacturer (the leader) controls the prices of a set of vaccines and a healthcare provider

(the follower) decides whether to purchase a vaccine from the manufacturer or his/her com-

3



petitors. Assuming that the competitors’ prices are not known exactly and are given by an

uncertainty set, we present different robust bilevel formulations of this pricing problem. We

describe an exact solution approaches for this class of problems.

Finally, Chapter 6 concludes the dissertation and presents our final remarks. We also

outline promising directions for future research.
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2.0 ON A CLASS OF BILEVEL LINEAR MIXED-INTEGER PROGRAMS

IN ADVERSARIAL SETTINGS

2.1 INTRODUCTION

In this chapter we focus on a broad class of bilevel linear mixed-integer programs (BMIPs):

[BMIP] : “ max
x

” c>x+ d>1 y

subject to x ∈ X,

y ∈ argmax
y

d>2 y

subject to Ax+By ≤ h,

y ∈ Rn2
+ ,

where X ⊆ Zn1−k
+ ×Rk

+, A ∈ Rm2×n1 , B ∈ Rm2×n2 , h ∈ Rm2 , c ∈ Rn1 , d1 ∈ Rn2 and d2 ∈ Rn2 .

The leader’s and the follower’s decisions variables are denoted by x and y, respectively. The

leader’s problem is a linear mixed-integer program (MIP).

In the remainder of this chapter we make the following assumptions that are relatively

standard in the bilevel optimization literature:

A1: X 6= ∅ and X = X̂ ∩
(
Zn1−k

+ × Rk
+

)
, where X̂ is a polytope.

A2: For every feasible leader’s decision x ∈ X the corresponding follower’s feasible set is

non-empty, i.e., {y ∈ Rn2
+ : By ≤ h− Ax} 6= ∅ for any x ∈ X, and bounded.

Following the notation used in some of the bilevel optimization literature [42], we use

“max” (with quotes) in the leader’s objective function of BMIP to emphasize that there are

5



two possible cases of the bilevel program. Indeed, the pessimistic formulation of BMIP is

given by:

[BMIPpes] max
x∈X

{
c>x+ min

y∈H(x)
d>1 y

}
, (2.1)

where H(x) = argmax{d>2 y : Ax+By ≤ h, y ∈ Rn2
+ }, (2.2)

and H(x) denotes the lower-level (follower’s) rational reaction set for a given x. Note that

(2.1) involves a minimization problem over optimal solutions of the follower’s problem for a

given leader’s decision.

On the other hand, the optimistic BMIP is formulated by simply eliminating the min

operator from the objective function (2.1) that is:

[BMIPopt] max
x∈X, y∈H(x)

c>x+ d>1 y (2.3)

Given the leader’s decision x, we denote by f(x) and fp(x) the optimistic and pessimistic

objective function values of the leader, respectively. Similarly, we denote by f ∗ and f ∗p ,

the optimal objective function values of the leader in the optimistic and pessimistic cases,

respectively.

Note that if k = n1, then BMIP reduces to a bilevel linear program (BLP). Bilevel

programming, in particular, BMIPs and BLPs, where for a given leader’s decision the

corresponding follower’s problem reduces to a linear program (LP) as in (2.2), is a well-

studied area of optimization with a host of algorithmic and theoretical developments; see,

e.g., [8, 10, 12, 38, 41]. In particular, it is known that, in contrast to polynomially solvable

single-level LPs, BLPs are NP -hard optimization problems [46]. Furthermore, due to the

fact that the follower’s problem in (2.2) is an LP, BMIPs can be reformulated as single-level

linear MIPs [9], which consequently can be solved either via standard MIP solvers or by

using some specialized approaches [10, 38, 41]. Bilevel problems that involve integrality re-

strictions for the follower’s variables, see, e.g., some recent results in [34, 45, 104], are outside

the scope of this chapter.

In view of the brief discussion above, our contributions in this chapter are as follows:

• First, we consider computational complexity of BLPs in the context of optimistic and

pessimistic solutions (see Section 2.2). In particular, we establish that even if an optimal

6



optimistic (or pessimistic) solution to BLP is known, then the problem of finding an op-

timal pessimistic (or optimistic) solution to the same BLP remains an NP -hard problem.

Moreover, we show that even if one of the optimal solutions (either pessimistic or optimistic)

to BLP is known, then it is still an NP -hard problem to identify a leader’s solution that

is, first, optimal for both optimistic and pessimistic BLPs, and, second, provides the same

objective function value in both cases (if such solution exists).

• Second, we propose a generalization of pessimistic BMIPs, where the follower might

willingly give up a portion of his optimal objective function value, and thus select a subopti-

mal solution in order to inflict more damage to the leader (see Section 2.3). We refer to our

proposed models as α-pessimistic BMIPs, where parameter α controls the sub-optimality

level of the follower and mimics constant-factor approximation ideas that are often used

in the literature, see, e.g., [54, 106]. Clearly, such situations may arise in adversarial and

interdiction settings, e.g., military and law-enforcement applications, which is the main moti-

vation behind this study. (We illustrate our results with an example of the defender-attacker

problem in Section 2.5.2.) Thus, the leader should be more conservative or guarded when

faces a follower that is α-suboptimal. Our model naturally encompasses as its special classes

both pessimistic BMIPs and max-min (or min-max) problems. In particular, for α = 1 the

proposed approach corresponds to pessimistic BMIPs, while the case of α = 0 reduces α-

pessimistic BMIPs to max-min problems. The latter corresponds to the worst-case scenario

for the leader, where the follower completely disregards his objective function and is focused

on disrupting the leader’s performance. Therefore, the proposed model can be viewed as an

approach for the leader to balance her level of conservatism through the value of parameter

α in adversarial settings where the leader is not completely confident regarding the follower’s

commitment to his objective function. We refer the reader for more detailed discussion on

these issues in Section 2.3. We study the structural properties of α-pessimistic BMIPs and

illustrate its relationships with optimistic and pessimistic BMIPs.

• Third, we incorporate the proposed model of a sub-optimal adversarial follower into

the context of strong-weak BMIP models [1, 31, 119], which is an extension of the ideas

behind optimistic and pessimistic BMIPs (see Section 2.4). Specifically, in a strong-weak

approach we model a partially collaborative follower by assuming that the leader’s objective

7



function is a convex combination of the leader’s objective functions in the optimistic and

pessimistic cases. Furthermore, the coefficients in this summation can be interpreted as the

probabilities of cooperation or non-cooperation of the follower, respectively. That is, the

leader is not certain if the follower is either collaborative or adversarial, and thus attempts

to make a “robust” decision by taking into account both situations. Our approach, referred

to as the strong-α-weak model, can be viewed as a natural generalization of the strong-weak

model from [31, 119] as it assumes that the follower may be α-pessimistic, which allows us

to consider more general types of adversarial followers including those that completely disre-

gard their objective functions. Thus, our approach naturally links optimistic, pessimistic and

max-min models within a unified framework. Another related question when comparing the

strong-α-weak model against either purely optimistic or pessimistic cases of BMIP is that

how much the decision-maker (i.e., the leader) “loses” in terms of the obtained objective

function value if the follower is, in fact, either optimistic or α-pessimistic, respectively. In

Section 2.4 we derive some bounds for such “losses.”

Finally, in Section 2.5 we consider an application of BMIPs, namely, a class of defender-

attacker models. We illustrate our theoretical results from Sections 2.3 and 2.4 with numer-

ical examples and provide some insights into the links between optimistic, pessimistic and

strong-weak modeling approaches.

2.2 COMPUTATIONAL COMPLEXITY: OPTIMISTIC VS. PESSIMISTIC

CASES

It is well-known that any linear mixed 0–1 programming problem can be reduced to a BLP

instance [9]. Therefore, BLPs are strongly NP -hard [61]. We refer the reader to [46], which

provides a brief survey on computational complexity of BLPs, in particular, with respect to

issues related to polynomially solvable classes of the problem and inapproximability results.

BLPs are among the simplest classes of bilevel programs, which implies that the computa-

tional complexity results established in this section hold for more general bilevel optimization

problems. Specifically, our main focus is on the following research questions:
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• If the decision-maker knows an optimistic (pessimistic) solution to a BLP, does it simplify

the problem of finding a pessimistic (optimistic) solution to the same BLP?

• How difficult is it to identify a leader’s solution that is optimal to both optimistic and

pessimistic cases (assuming that such solution exists) when one of the optimal solutions

(either pessimistic or optimistic) is known?

In our derivations below we exploit the SUBSET SUM problem that is known to be

NP -complete [54].

SUBSET SUM: Given a set of positive integers S = {s1, s2, . . . , sn}, and a positive integer

K, does there exist a subset S ′ ⊆ S such that
∑

i: si∈S′ si = K ?

Next, consider the following BLP instance:

“ min
x

”
n∑
i=1

sixi +Kxn+1 +
n∑
i=1

vi +Mu (2.4a)

s.t.
n∑
i=1

sixi +Kxn+1 ≥ K, (2.4b)

0 ≤ xi ≤ 1, i = 1, . . . , n+ 1, (2.4c)

(v, u) ∈ argmax
v,u

n∑
i=1

vi + (u− vn+1) (2.4d)

s.t. vi ≤ 1− xi, i = 1, . . . , n, (2.4e)

vi ≤ xi, i = 1, . . . , n, (2.4f)

0 ≤ u ≤ xn+1, (2.4g)

u− vn+1 ≤ 1− xn+1, (2.4h)

u− vn+1 ≤ xn+1, (2.4i)

vi ≥ 0, i = 1, . . . , n+ 1. (2.4j)

where M is a sufficiently large positive constant parameter.

Lemma 1. The following statements hold for model (2.4):

(i) x∗ = (0, . . . , 0, 1)>, u∗ = v∗1 = . . . = v∗n+1 = 0 is an optimal optimistic solution, and

f ∗ = K.
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(ii) f ∗p = K iff the answer to the considered instance of the SUBSET SUM problem is

“yes.”

(iii) there exists a leader’s decision x∗ such that f ∗ = f(x∗) = fp(x∗) = f ∗p = K, i.e., x∗ is

optimal for both optimistic and pessimistic cases, iff the answer to the considered instance

of the SUBSET SUM problem is “yes.”

Proof.

(i) Observe that f ∗ ≥ K due to (2.4b). Then it is easy to check that x∗1 = . . . = x∗n =

0, x∗n+1 = 1, and u∗ = v∗1 = . . . = v∗n+1 = 0 is an optimal optimistic solution with

f ∗ = K.

(ii) ⇐= Suppose the answer to the SUBSET SUM problem is “yes.” Consider the leader’s

solution, where x̄n+1 = 0, and x̄i = 1 if si ∈ S ′ or x̄i = 0, otherwise, for i = 1, . . . , n.

From (2.4e), (2.4f) and (2.4g), ū = v̄1 = . . . = v̄n = v̄n+1 = 0 is the respective solution

of the follower, and so f ∗p = K. =⇒ Let f ∗p = K and x̄ be an optimal pessimistic

solution of the leader. Then, from (2.4a) and (2.4b), ū = v̄1 = . . . = v̄n = 0. Therefore,

x̄1 . . . , x̄n ∈ {0, 1}. Note that if x̄n+1 > 0 then the follower implements the solution that

maximizes the leader’s objective, that is ū = x̄n+1 > 0 and v̄n+1 = ū−min{1−x̄n+1, x̄n+1},

which is a contradiction. Therefore, x̄n+1 = 0. The required result follows if we let si ∈ S ′

iff x̄i = 1, i = 1, . . . , n.

(iii) From (ii), f ∗ = f ∗p = K iff the answer to the SUBSET SUM problem is “yes.” Note

that the same solution of the leader, i.e., x̄n+1 = 0, and x̄i = 1 if si ∈ S ′ or x̄i = 0,

otherwise, for i = 1, . . . , n, is constructed in both directions of (ii), and this solution is

also optimal in the optimistic case.

Note that constraints of the form (2.4e)-(2.4f) are often used for linking lower- and upper-

level variables while proving theoretical results in bilevel programming [9, 61]. For example,

in [61] such constraints are exploited for showing that linear max-min programs are strongly

NP -hard. The main novelty of our reduction is in using constraints of the form (2.4g)-(2.4i)

and the corresponding additional terms in the objective functions (2.4a) and (2.4d), which

allows us to obtain the following results based on Lemma 1:
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Proposition 1. The problem of finding an optimal pessimistic solution of BLP remains

NP -hard even if an optimal optimistic solution of the same BLP is known.

Proposition 2. Checking whether there exists leader’s decision x∗, that:

(a) is optimal for both optimistic and pessimistic cases of BLP, and

(b) simultaneously provides the same objective function values for both cases,

is NP -complete even if an optimal optimistic solution is known.

Proposition 3. Checking whether the BLP has multiple optimal optimistic solutions is NP -

hard.

In order to extend Proposition 1 we also analyze complexity of BLP when an optimal

pessimistic solution is known. Consider another instance of BLP given by:

“ min
x

”
n∑
i=1

sixi + (K +M)xn+1 +
2M

n

n∑
i=1

(vi + ui) (2.5a)

s.t.
n∑
i=1

sixi +Kxn+1 ≥ K, (2.5b)

0 ≤ xi ≤ 1, i = 1, . . . , n+ 1, (2.5c)

(v, u) ∈ argmax
v,u

n∑
i=1

(ui − vi) (2.5d)

s.t. ui − vi ≤ 1− xi, i = 1, . . . , n, (2.5e)

ui − vi ≤ xi, i = 1, . . . , n, (2.5f)

0 ≤ vi ≤ 1− xn+1, i = 1, . . . , n, (2.5g)

ui ≥ 0, i = 1, . . . , n, (2.5h)

where M is a sufficiently large positive constant parameter.

Another interesting observation from Lemma 1 (i) is given in the following remark.

Remark 1. Consider an instance of BLP given by (2.4) and let the follower be adversarial,

while the leader makes a decision x∗1 = . . . = x∗n = 0, x∗n+1 = 1 by assuming a cooperative

follower, i.e., an optimistic case. In response, the adversarial follower would implement u =

vn+1 = 1. Thus, fp(x∗) = K +M , while f ∗p = K by Lemma 1. Consequently, fp(x∗)− f ∗p =

M , which is a positive constant parameter. Therefore, if the leader assumes an optimistic
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case of BLP, while the follower is adversarial, i.e., the considered BLP is pessimistic, then the

difference in the objective function values of the obtained solutions can be arbitrarily large.

Lemma 2. The following statements hold for model (2.5):

(i) x̄ = (0, . . . , 0, 1)>, v̄1 = . . . = v̄n = ū1 = . . . = ūn = 0 is an optimal pessimistic solution

with f ∗p = K +M .

(ii) f ∗ = K iff the answer to the considered instance of the SUBSET SUM problem is

“yes.”

Proof.

(i) Let x̄ be a feasible solution of the leader with x̄n+1 = 1. Then, it is optimal for the

leader to set x̄1 = . . . = x̄n = 0. Thus, fp(x̄) = K + M . Similarly, let x̃ be a feasible

solution of the leader with 0 ≤ x̃n+1 < 1. Then, in the pessimistic case, the follower

can set vi = 1− x̃n+1 for all i = 1, . . . , n, while having (2.5e)-(2.5f) satisfied. Therefore,

fp(x̃) ≥ K +Mx̃n+1 + 2M(1− x̃n+1) = K + 2M −Mx̃n+1 > K +M , which implies the

necessary result.

(ii) ⇐= Suppose the answer to the instance of the SUBSET SUM problem is “yes.” Con-

sider the leader’s solution, where x∗n+1 = 0, and x∗i = 1 if si ∈ S ′ and x∗i = 0, otherwise,

for i = 1, . . . , n. In the optimistic case, the follower sets u∗i = v∗i = 0 for all i = 1, . . . , n.

Thus, f ∗ = f(x∗) = K. =⇒ Let f ∗ = K and x∗ be the corresponding optimal optimistic

solution of the leader. Then, from (2.5a) and (2.5b), we conclude that x∗n+1 = 0 and

the follower’s optimistic solution is u∗1 = . . . = u∗n = v∗1 = . . . = v∗n = 0. Therefore,

x∗1, . . . , x
∗
n ∈ {0, 1}. Finally, the required statement follows by setting si ∈ S ′ iff x∗i = 1,

i = 1, . . . , n.

Based on Lemma 2 we immediately obtain the following result:

Proposition 4. The problem of finding an optimal optimistic solution of BLP remains NP -

hard even if an optimal pessimistic solution of the same BLP is known.
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Another observation from Lemma 2 is similar in spirit to the earlier remark. Specifically:

Remark 2. Suppose that the follower is collaborative, i.e., BLP is optimistic, but the leader

makes a decision x̄1 = . . . = x̄n = 0, x̄n+1 = 1 by assuming an adversary follower, i.e.,

pessimistic BLP. In response to the leader’s decision, the collaborative follower implements

u∗i = v∗i = 0 for all i = 1, . . . , n. Thus, f(x̄) = K + M . Assume that the answer to the

considered instance of the SUBSET SUM problem is “yes.” Consequently, f ∗ = K and

f(x̄)−f ∗ = M , which implies that if the leader assumes a pessimistic BLP while the follower

is collaborative, then the difference in the objective function values of the obtained solutions

can be arbitrarily large.

2.3 SUBOPTIMAL RESPONSE TO THE LEADER’S DECISION:

ADVERSARIAL FOLLOWER

Constraint (2.2) requires that the follower always implements one of his optimal solutions

in response to each leader’s decision. In this section, we consider a more general non-

cooperative (adversarial) setting, where the follower, in order to inflict more “damage” to the

leader, can give up a portion of his optimal objective function value by selecting a suboptimal

solution. Specifically, we propose modeling such settings by defining a suboptimal lower-level

reaction set for a given leader’s decision x of the following form:

Hα(x) = {y′ ∈ Rn2
+ : d>2 y

′ ≥ αd>2 y + (1− α)L, y ∈ H(x), Ax+By′ ≤ h}, (2.6)

where parameter α ∈ [0, 1] controls the suboptimality level of the follower. In (2.6) we

assume that the follower’s objective function is bounded from below by a fixed constant L

for any decision of the leader. Then, the pessimistic BMIP generalizes to:

[α-BMIPpes] max
x∈X

{
cTx+ min

y∈Hα(x)
d>1 y

}
, (2.7)

which is referred to as α-pessimistic BMIP. By comparing (2.1) and (2.7), observe that

the α-pessimistic BMIP is obtained from the pessimistic BMIP by enlarging the follower’s

reaction set. Specifically, if y ∈ H(x), then y ∈ Hα(x) for any α ∈ [0, 1] due to the
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assumption on L. Therefore, H(x) ⊆ Hα(x) for any leader’s decision x ∈ X. In general,

Hα1(x) ⊆ Hα2(x) for any α1 ≥ α2 and α1, α2 ∈ [0, 1]. Simply speaking, by introducing

set Hα(·), which is a generalization of the lower-reaction set H(·), we allow the follower to

have more flexibility than in standard pessimistic BMIPs to select a solution that is more

damaging to the leader’s objective function value.

One of the main motivations behind the proposed definition of Hα(·) is to mimic constant-

factor approximation ideas that are often used in the literature, see, e.g., [54, 106]. For

example, the reaction set of the form (2.6) naturally arises when L = 0 (e.g., the follower’s

objective function is non-negative) and the follower applies an α-approximation algorithm

instead of an exact method. (In Section 2.4 we exploit such ideas to provide some approxi-

mation guarantees in the context of the strong-weak model.)

Our modeling framework allows for two possible interpretations. In the first one, the

follower sets the value of α, which is also known to the leader, and optimizes against the

leader’s objective while also ensuring that his decision achieves α-optimality with respect to

his own objective function. In the other interpretation, the follower does not set α, but when

making the upper-level decisions, the leader takes into account the case where the follower

may select an α-suboptimal solution. Thus, α is set by the leader to make conservative or

guarded upper-level decisions in anticipation of the follower’s suboptimal response.

Observe that if α = 1, then H1(x) = H(x) and α-pessimistic BMIP reduces to standard

pessimistic BMIP, where the follower responds to the leader’s decision optimally. Con-

versely, if α = 0, then the follower completely disregards his own objective function, and

merely focuses on minimizing the leader’s benefit. In this case, α-pessimistic BMIP re-

duces to a standard max-min problem, where both decision-makers have the same objective

function, but their goals are in opposite directions, i.e.,

max
x∈X

{
c>x+ min

y∈Rn2+

{d>1 y : Ax+By ≤ h}
}

(2.8)

Max-min problems of the form (2.8) arise in a variety of application domains [38, 81]. For

example, the classical shortest path network interdiction problem, see, e.g., [68], is a special

class of (2.8), where the leader (interdictor) selects a decision (e.g., removes a set of nodes

and/or edges) in order to maximally increase the length of the shortest path for the follower
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(evader), who travels on a given network between two fixed nodes, i.e., an origin and a

destination node.

The discussion above implies that the α-pessimistic BMIP contains both the pessimistic

BMIP and the max-min problem as its special cases, and thus can be viewed as their natural

generalization. More importantly, we believe that the proposed modeling approach can be

leveraged to address the following issues:

• In adversarial settings the standard max-min approach given by (2.8) is used to provide

the worst-case analysis for the decision-maker. This approach is commonly used in the related

literature including the defender-attacker, attacker-defender and interdiction models. Such

analysis assumes that the follower’s sole objective is to disrupt the leader’s performance to

the maximum possible extent. On the other hand, the proposed α-pessimistic approach

allows to capture settings where, in addition to disrupting the leader’s objective function the

follower has an alternative goal. For example, in the defender-attacker models the follower

may want to maximize his probability of survival after the attack. Clearly, he may sacrifice

some of this objective in order to inflict more damage to the leader and the parameter α

allows the leader to control this trade-off.

• The max-min model given by (2.8) often arises in the symmetric data/information

scenarios. For example, in interdiction applications such assumption implies that both the

leader and the follower have the same cost parameters. On the other hand, the pessimistic

BMIP is capable of modeling more general assymetric scenarios, see, e.g., [17], which, in

turn, can be exploited by the leader to improve her objective function value in comparison

to the conservative max-min approach that captures the worst-case scenario for the leader.

However, in practice the leader may not be completely confident about the objective function

of the follower. Thus, the parameter α allows the decision-maker, i.e., the leader, to control

her level of conservatism.

• In practice it is also conceivable that the follower may not be a rational decision-

maker or have bounded rationality and thus, he may implement a suboptimal solution. The

parameter α allows the leader to control her level of conservatism in such cases. Admittedly,

the actual value of α may be unknown to the leader. However, by performing the sensitivity
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analysis with respect to α, the leader can obtain deeper insights into her possible solution

strategies. Furthermore, we also explore potential leader’s “losses” when α is misspecified,

see our further discussion at the end of this section.

Next, we provide some theoretical results in the context of the proposed modeling ap-

proach. Let x∗ and x̄α be the leader’s optimal solutions in the optimistic (2.3) and α-

pessimistic (2.7) BMIP formulations, respectively. Given the leader’s decision x ∈ X, let

w(x), yp(x) and yα(x) be the corresponding follower’s decisions in the optimistic, pessimistic

and α-pessimistic cases, respectively. Thus, w(x) ∈ H(x), yp(x) ∈ H(x) and yα(x) ∈ Hα(x).

Also, denote by fpα(x) the objective function value of the leader in the α-pessimistic case

and let f ∗α = fpα(x̄α). Note that fp1 (x) = fp(x) and f ∗1 = f ∗p ; furthermore, f ∗0 is the optimal

objective function value of (2.8).

Proposition 5. f ∗ ≥ f ∗p ≥ fp(x̄α) ≥ f ∗α for any α ∈ [0, 1].

Proposition 6. f ∗α and fpα(x) are non-decreasing in α ∈ [0, 1].

The proofs of the above two propositions are omitted as they hold by the definitions

(2.2) and (2.6), which imply that H(x) ⊆ Hα(x).

Proposition 7. fpα(x) is convex in α ∈ [0, 1] for any x ∈ X.

Proof. Consider α = θα1 + (1 − θ)α2 for θ ∈ [0, 1]. Let ỹ = θyα1(x) + (1 − θ)yα2(x) for

x ∈ X. Observe that ỹ ≥ 0 and

Ax+Bỹ = Ax+B (θyα1(x) + (1− θ)yα2(x))

= θ (Ax+Byα1(x)) + (1− θ) (Ax+Byα2(x)) ≤ θh+ (1− θ)h = h.

Furthermore, let y ∈ H(x). As yα1(x) ∈ Hα1(x) and yα2(x) ∈ Hα2(x), then:

d>2 ỹ = θd>2 y
α1(x) + (1− θ)d>2 yα2(x)

≥ θ
(
α1d

>
2 y + (1− α1)L

)
+ (1− θ)

(
α2d

>
2 y + (1− α2)L

)
= αd>2 y + (1− α)L,

which implies that ỹ ∈ Hα(x) and d>1 ỹ ≥ d>1 y
α(x). Therefore:

fpα(x) =c>x+ d>1 y
α(x) ≤ c>x+ d>1 ỹ = c>x+ d>1 (θyα1(x) + (1− θ)yα2(x))

=θ
(
c>x+ d>1 y

α1(x)
)

+ (1− θ)
(
c>x+ d>1 y

α2(x)
)

= θf pα1
(x) + (1− θ)fpα2

(x),

which concludes the proof.
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Corollary 1. f ∗α is convex in α ∈ [0, 1].

Proof. It follows directly from the fact that x̄α ∈ X and f ∗α = fpα(x̄α).

Corollary 2. For α ∈ [0, 1] and x ∈ X, fpα(x) ≤ αf p1 (x) + (1−α)fp0 (x) and f ∗α ≤ αf ∗p + (1−

α)f ∗0 .

Next, we define ∆α as

∆α = f ∗α − fpα(x∗), (2.9)

i.e., the leader’s “loss” when she implements optimal optimistic solution x∗, while the follower

is α-pessimistic. In other words, the leader can be viewed as “over-optimistic” about the

follower’s response to her decisions. Clearly, by its definition ∆α ≥ 0. The above properties of

α-pessimistic solutions allow us to establish some additional lower and upper bounds on ∆α.

Proposition 8. Let 0 ≤ α1 ≤ α2 ≤ 1 and α = θα1 + (1− θ)α2 for θ ∈ [0, 1]. Then:

max
{

0, θ∆α1 + (1− θ)∆α2 − (1− θ)(f ∗α2
− f ∗α1

)
}
≤ ∆α ≤ ∆α1 + (1− θ)(f ∗α2

− f ∗α1
). (2.10)

Proof. Recall that x∗ denotes an optimal optimistic solution for the leader. From Propo-

sitions 6 and 7:

∆α =f ∗α − fpα(x∗) ≥ f ∗α1
− θf pα1

(x∗)− (1− θ)fpα2
(x∗)

=θ∆α1 + (1− θ)f ∗α1
− (1− θ)fpα2

(x∗) = θ∆α1 + (1− θ)∆α2 − (1− θ)(f ∗α2
− f ∗α1

).

Recall that ∆α is nonnegative by its definition. Thus, the left inequality in (2.10) follows.

By using Propositions 6 and Corollary 1, we have the following:

∆α =f ∗α − fpα(x∗) ≤ θf ∗α1
+ (1− θ)f ∗α2

− fpα1
(x∗)

=∆α1 − (1− θ)f ∗α1
+ (1− θ)f ∗α2

= ∆α1 + (1− θ)(f ∗α2
− f ∗α1

),

which provides the right inequality in (2.10).

Corollary 3. ∆α ≤ ∆0 + α(f ∗p − f ∗0 ) for any α ∈ [0, 1].
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In general, ∆α is not monotone in α. However, from Propositions 7 and Corollary 1, it

follows that ∆α is equal to the difference of two convex functions, i.e., ∆α is a d.c. func-

tion [65].

Next, for 0 ≤ α1 ≤ α2 ≤ 1 we define δα1,α2 as

δα1,α2 = f ∗α2
− fpα2

(x̄α1), (2.11)

i.e., the leader’s “loss,” who implements optimal α1-pessimistic solution x̄α1 , while the fol-

lower is α2-pessimistic. In other words, the leader can be viewed as conservative and “over-

pessimistic” about the follower’s response to her decisions. The dependence of δα1,α2 on x̄α1

can be omitted if x̄α1 is either unique or provides the same value of fpα2
and the latter is

assumed below.

Proposition 9. Let 0 ≤ α1 < α2 ≤ 1. Then

0 ≤ δα1,α2 ≤ f ∗α2
− f ∗α1

≤ α2 − α1

1− α1

·
(
f ∗p − f ∗α1

)
. (2.12)

Proof. By definition δα1,α2 ≥ 0. Next, from Propositions 5 and 6 along with Corollary 1,

we have the following inequalities:

δα1,α2 = f ∗α2
−fpα2

(x̄α1) ≤ f ∗α2
−f ∗α1

≤
(

1− α2

1− α1

)
f ∗α1

+

(
α2 − α1

1− α1

)
f ∗p−f ∗α1

≤ α2 − α1

1− α1

·
(
f ∗p − f ∗α1

)
.

Corollary 4. δ0,α ≤ f ∗α − f ∗0 and δα,1 ≤ f ∗p − f ∗α for any α ∈ [0, 1].

In this section, we mostly focus on the “max-max” BMIPs, i.e., both the leader’s and

the follower’s optimization problems involve maximization objectives. For other possible

cases of BMIPs, the structural results obtained in this section should be modified by simple

adjustments, which are rather straightforward in view of the provided derivations.

For example, in the case of “min-max” BMIPs the definition of ∆α and δα1,α2 should be

changed to ∆α = fpα(x∗) − f ∗α and δα1,α2 = fpα2
(x̄α1) − f ∗α2

, respectively. The corresponding

bounds in Propositions 8 and 9 as well as their corollaries can be modified accordingly. Fi-

nally, we note that some additional discussion on this issue is also provided in Section 2.5,

where we describe an application example of BMIP that involve “min-max” problems.
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To illustrate some basic properties of α-pessimistic BMIP developed in this section, we

consider the following example:

max
x∈{0,1}2

f(x, y) = 15x1 + 10x2 + 2y1 + y2 (2.13a)

subject to x1 + x2 ≤ 1, (2.13b)

y ∈ argmax
y∈R2

+

{y1 + y2 : 3x1 + 6x2 ≤ y1 + y2 ≤ 10x1 + 12x2, y1 ≥ 3x2} (2.13c)

Observe that in (2.13) the leader has only three feasible actions given in Table 1. The

corresponding follower’s feasible regions are illustrated in Figure 1. Furthermore, Table 1

provides optimal solutions in the optimistic, pessimistic and α-pessimistic cases, where we

assume that L = 0 in the definition of Hα(x) given by (2.6).

Table 1: The follower’s decisions and the leader’s objective function values for each leader’s

decision. We assume L = 0 in (2.6). Note that for α = 0, i.e., the max-min problem, the

leader implements x3.

Solution
optimistic pessimistic α–pessimistic

w(x) f(x) yp(x) fp(x) yα(x) fpα(x)

x1 = (0, 0)> (0, 0)> 0 (0, 0)> 0 (0, 0)> 0

x2 = (1, 0)> (10, 0)> 35 (0, 10)> 25

{
(0, 3)>,
(0, 10α)>,

18, 0 ≤ α < 0.3
15 + 10α, 0.3 ≤ α ≤ 1

}

x3 = (0, 1)> (12, 0)> 34 (3, 9)> 25

{
(3, 3)>,
(3, 12α− 3)>,

19, 0 ≤ α < 0.5
13 + 12α, 0.5 ≤ α ≤ 1

}

According to Figure 2(a), the leader’s optimal α–pessimistic decision is x3 for 0 ≤ α ≤ 0.4

and x2 for 0.4 ≤ α ≤ 1. This figure also shows that for α = 1, both decisions result in the

same objective function value, which corresponds to an optimal pessimistic solution. In
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Figure 2(b) the leader’s optimal objective function value in optimistic, pessimistic and α–

pessimistic cases is depicted; furthermore, we provide the value of αf ∗p + (1− α)f ∗0 , which is

an upper bound for f ∗α according to Corollary 2.
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Figure 1: Follower’s feasible region for leader’s decisions x2 and x3. Note that x1 = (0, 0)>

and w(x1) = yp(x1) = yα(x1) = (0, 0)>.

Figure 2(c) illustrates the value of δ0,α, i.e., the “loss” of a conservative decision-maker,

who implements optimal 0-pessimistic solution x̄0 (i.e., a solution of the max-min problem,

where the follower’s objective function is completely ignored), while the follower is, in fact,

α-pessimistic. It is intuitive that for smaller values of α this “loss” is reasonably small. How-

ever, it is interesting to observe that for values of α close to 1, the “loss” of the leader’s is also

rather small, which illustrates the fact that the value of δα1,α2 does not necessarily increase

if the difference α2−α1 increases. In Figure 2(c) we also depict the value of f ∗α−f ∗0 , which is

an upper bound for δ0,α according to Corollary 4. For smaller values of α the quality of this

upper bound is rather good; however, as α increases its quality deteriorates. Both of these

observations are rather intuitive as f ∗α is a non-decreasing function (see Proposition 6), while

by its definition δα1,α2 should be relatively small for sufficiently small values of α2−α1 (recall

that δα,α = 0).
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(b)

(d)(c) 

(a) 

Figure 2: Illustration of structural results for a BMIP example given by (2.13).

Figure 2(d) is similar in spirit to Figure 2(c). Specifically, we first depict the value of

δα,1 = f ∗1 −f
p
1 (x̄α) = f ∗p −fp(x̄α), i.e., the “loss” of the conservative decision-maker, who im-

plements optimal α-pessimistic solution x̄α, while the follower is, in fact, simply pessimistic.

Figure 2(d) demonstrates that in the considered example, the decision-maker does not lose

anything by being conservative as δα,1 = 0 for all values of α. Clearly, this is not necessarily

the case in general. In Figure 2(d) we also provide the value of f ∗p − f ∗α, which is an upper

bound for δα,1 according to Corollary 4. The quality of this upper bound is relatively poor

for smaller values of α, but improves as α gets closer to 1. Such behavior is intuitive if

one recalls the definition of δα,1 in (2) and observes that the value of 1 − α decreases as α

increases. Some additional numerical illustrations of the developed theoretical results are

provided in Section 2.5, where we consider an application example of BMIP.

21



Concluding this section, we note that our approach has connections to ε-regularized

version of general bilevel problems, see, e.g., [75], where the follower’s response is assumed

to return an objective function value that is within ε from optimal. However, such studies

typically consider more general functional forms of the upper- and lower-level optimization

problems (not linear as in our case) and they primarily derive stability and existence results.

Thus, the motivation behind studying such classes of problems is different from ours.

2.4 STRONG-α-WEAK RESPONSE TO THE LEADER’S DECISION

The optimistic and pessimistic (also often referred to as strong and weak, see [31]) for-

mulations of BMIP model two extreme cases of possible relationships between the leader and

the follower. As discussed in detail in Section 2.1, the leader assumes that the follower is

fully cooperative in the optimistic formulation; whereas in the pessimistic formulation, the

leader expects an adversarial response from the follower.

To generalize these two approaches, Aboussoror and Loridan [1] define the term strong-

weak Stackelberg problem to model partial cooperation between the leader and the follower.

They integrate the optimistic and pessimistic formulations through a weighted summation

of the leader’s objective functions in the optimistic and pessimistic cases. The coefficients

in this summation are set by the leader and can be interpreted as the probabilities of co-

operation or non-cooperation of the follower, respectively. In a similar manner, Cao and

Leung [31] describe a BLP with partial cooperation for the linear version of the strong-

weak Stackelberg problem. They reformulate the bilevel model into a single-level model

using penalty coefficients, and present a numerical example, where the follower’s optimal

approach is to cooperate partially. In other words, in some cases the follower could achieve

the optimization of his interests when he partially cooperates with the leader [31]. Zheng et

al. [119] show that the leader’s optimal value function is piece-wise linear and monotone in

the weight coefficient measuring the follower’s level of cooperation (see our related discussion

of Propositions 10 and 11 below). They also present an exact penalty method to solve the

strong-weak BLP for every fixed weight.
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In this section, we generalize the strong-weak BLP by considering an α-pessimistic fol-

lower considered in Section 2.3. Similar to the strong-weak approach described in the previ-

ous paragraph, we also use a weight coefficient to integrate those two extremes. Specifically,

given α ∈ [0, 1] and cooperation coefficient γ ∈ [0, 1], the leader solves the following opti-

mization problem:

[(γ, α)-BMIP] max
x∈X

{
c>x+ (1− γ) min

y∈Hα(x)
d>1 y + γ max

y∈H(x)
d>1 y

}
, (2.14)

where at one extreme the follower might fully cooperate with the leader, see the last term

in (2.14), but at the other extreme, he might give up 1− α portion of his optimal objective

function value in order to inflict more damage to the leader, see the second term in (2.14).

It is important to note that (γ, α)-BMIP contains as its special cases the max-min

problem (2.8) as well as the pessimistic and optimistic models given by (2.1) and (2.3), re-

spectively. Formally, if α = 1 then (γ, α)-BMIP reduces to the strong-weak formulation

from [31, 119], where (0, 1)-BMIP corresponds to the pessimistic BMIP, while (1, α)-BMIP

reduces to the optimistic BMIP for any α ∈ [0, 1]. On the other hand, if α = 0, then the

second term in the objective function of (γ, α)-BMIP, namely, the one that optimizes over

y ∈ Hα(x), corresponds to the solution of the max-min problem (2.8). Thus, the proposed

approach, further referred to as the strong-α-weak problem, can be viewed as a natural gen-

eralization of the strong-weak approach, where we consider more general types of adversarial

followers by using α ∈ [0, 1].

Let x̄αγ be the leader’s optimal solution to (γ, α)-BMIP. Recall from Section 2.3 that x∗

and x̄α are the leader’s optimal solutions in the optimistic and α-pessimistic formulations,

respectively. Thus, x̄α1 = x∗ and x̄α0 = x̄α. Furthermore, denote by f ∗γ,α the optimal objective

function value of (γ, α)-BMIP, that is f ∗γ,α = fγ,α(x̄αγ ). Next, we analyze basic properties

of f ∗γ,α.

Proposition 10. For any α ∈ [0, 1], f ∗γ,α is non-decreasing in γ ∈ [0, 1].

Remark 3. It is rather straightforward to show that for any γ1 and γ2, such that 1 ≥ γ1 ≥

γ2 ≥ 0, we have

f ∗ ≥ f ∗γ1,1 ≥ f ∗γ2,1 ≥ f ∗p .
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Therefore, if there exists a leader’s optimal solution x̃ that is optimal for both optimistic

and pessimistic cases of BMIP and ensures that f ∗ = f(x̃) = fp(x̃) = f ∗p , then this solution

is obtained by solving (γ, α)-BMIP for any γ ∈ [0, 1] and α = 1. Thus, f ∗ = f ∗γ,1 = f ∗p for

any γ ∈ [0, 1]. On the other hand, if the decision-maker solves the optimistic and pessimistic

cases of BMIP separately, then it is not guaranteed that such solution is obtained. In

other words, the equality f ∗ = f ∗p can be checked by solving the optimistic and pessimistic

cases of BMIP separately. However, the corresponding leader’s solutions x∗ and x̄1 are not

necessarily optimal for BMIPpesand BMIPopt, respectively. This observation can be viewed

as another advantage of the strong-weak approach, in particular, when the decision-maker

is not aware if the follower is collaborative or adversarial.

Proposition 11. For any α ∈ [0, 1], f ∗γ,α is convex in γ ∈ [0, 1].

Proof. Let 0 ≤ γ1 ≤ γ2 ≤ 1, and γ = θγ1 + (1− θ)γ2 for θ ∈ [0, 1]. Then:

f ∗γ,α = c>x̄αγ + (1− γ)d>1 y
α(x̄αγ ) + γd>1 w(x̄αγ )

= θ
(
c>x̄αγ + (1− γ1)d>1 y

α(x̄αγ ) + γ1d
>
1 w(x̄αγ )

)
+

(1− θ)
(
c>x̄αγ + (1− γ2)d>1 y

α(x̄αγ ) + γ2d
>
1 w(x̄αγ )

)
≤ θ

(
c>x̄αγ1 + (1− γ1)d>1 y

α(x̄αγ1) + γ1d
>
1 w(x̄αγ1)

)
+

(1− θ)
(
c>x̄αγ2 + (1− γ2)d>1 y

α(x̄αγ2) + γ2d
>
1 w(x̄αγ2)

)
≤ θf ∗γ1,α + (1− θ)f ∗γ2,α,

which implies the required result.

If α = 1, then, as mentioned earlier, the proposed strong-α-weak model given by (γ, α)-

BMIP reduces to the strong-weak model from the literature, and the structural results

derived in Propositions 10 and 11 are equivalent to those shown in [119]. However, our

derivations demonstrate that these results, namely, the non-decreasing and convexity prop-

erties of f ∗γ,α, also hold for the case when the follower is α-pessimistic for any α ∈ [0, 1].

Furthermore:

Proposition 12. For any γ ∈ [0, 1], f ∗γ,α is convex in α ∈ [0, 1].
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Proof. Let 0 ≤ α1 ≤ α2 ≤ 1, and α = θα1 + (1 − θ)α2 for θ ∈ [0, 1]. Let ỹ = θyα1(x̄αγ ) +

(1 − θ)yα2(x̄αγ ). As in the proof of Proposition 7, we can show that ỹ ∈ Hα(x̄αγ ) and d>1 ỹ ≥

d>1 y
α(x̄αγ ). Then,

f ∗γ,α =c>x̄αγ + (1− γ)d>1 y
α(x̄αγ ) + γd>1 w(x̄αγ ) ≤ c>x̄αγ + (1− γ)d>1 ỹ + γd>1 w(x̄αγ )

= θ
(
c>x̄αγ + (1− γ)d>1 y

α1(x̄αγ ) + γd>1 w(x̄αγ )
)

+

(1− θ)
(
c>x̄αγ + (1− γ)d>1 y

α2(x̄αγ ) + γd>1 w(x̄αγ )
)

≤θf ∗γ,α1
+ (1− θ)f ∗γ,α2

,

which concludes the proof.

One natural question that arises when comparing the strong-α-weak model against either

optimistic or pessimistic cases of BMIP is that how much the leader “loses” in terms of the

obtained objective function value if the follower is, in fact, either optimistic or α-pessimistic,

respectively. Next, we provide bounds on these differences. First, we derive an upper bound

for the difference between f ∗, i.e., the optimal objective value of the leader in the optimistic

formulation, and f(x̄αγ ), i.e., the objective value of the leader if she implements x̄αγ in the

optimistic case.

Proposition 13. For any γ ∈ [0, 1] and α ∈ [0, 1], f ∗−f(x̄αγ ) ≤ (1−γ)
(
d>1 w(x∗)− d>1 yα(x∗)

)
Proof.

f(x̄αγ ) = c>x̄αγ + d>1 w(x̄αγ )

= c>x̄αγ + γd>1 w(x̄αγ ) + (1− γ)d>1 y
α(x̄αγ ) + (1− γ)d>1 w(x̄αγ )− (1− γ)d>1 y

α(x̄αγ )

≥ c>x∗ + γd>1 w(x∗) + (1− γ)d>1 y
α(x∗) + (1− γ)d>1 w(x̄αγ )− (1− γ)d>1 y

α(x̄αγ )

≥ c>x∗ + γd>1 w(x∗) + (1− γ)d>1 y
α(x∗)

= c>x∗ + d>1 w(x∗)− (1− γ)
(
d>1 w(x∗)− d>1 yα(x∗)

)
= f ∗ − (1− γ)

(
d>1 w(x∗)− d>1 yα(x∗)

)
,

where the last inequality follows from the fact that d>1 w(x̄αγ ) ≥ d>1 y
α(x̄αγ ).

Moreover, our next result shows that if c and d1 are nonnegative, then x̄αγ provides a γ-

approximate solution to the optimistic BMIP. In other words, the decision-maker has some

guaranteed quality of the obtained solution if the follower turns out to be collaborative.
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Corollary 5. If c ∈ Rn1
+ and d1 ∈ Rn2

+ , then f(x̄αγ ) ≥ γf ∗.

Proof.

f(x̄αγ ) ≥f ∗ − (1− γ)
(
d>1 w(x∗)− d>1 yα(x∗)

)
≥ f ∗ + (1− γ)

(
−d>1 w(x∗)

)
≥ f ∗ + (1− γ)

(
−d>1 w(x∗)− c>x∗

)
= f ∗ + (1− γ)(−f ∗) = γf ∗.

Next, we consider an adversarial follower. In particular, we derive an upper bound for

the difference between f ∗α, i.e., the optimal objective function value of the leader in the α-

pessimistic formulation, and fpα(x̄αγ ), i.e., the objective function value of the leader if she

implements x̄αγ in the α-pessimistic case.

Proposition 14. For 0 ≤ α, γ ≤ 1 we have that f ∗α − fpα(x̄αγ ) ≤ γ
(
d>1 w(x̄αγ )− d>1 yα(x̄αγ )

)
.

Proof.

fpα(x̄αγ ) = c>x̄αγ + d>1 y
α(x̄αγ )

= c>x̄αγ + γd>1 w(x̄αγ ) + (1− γ)d>1 y
α(x̄αγ ) + γd>1 y

α(x̄αγ )− γd>1 w(x̄αγ )

≥ c>x̄α + γd>1 w(x̄α) + (1− γ)d>1 y
α(x̄α) + γd>1 y(x̄αγ )− γd>1 w(x̄αγ )

= c>x̄α + d>1 y(x̄α) + γd>1 w(x̄α)− γd>1 yα(x̄α) + γd>1 y
α(x̄αγ )− γd>1 w(x̄αγ )

≥ f ∗α − γ
(
d>1 w(x̄αγ )− d>1 yα(x̄αγ )

)
,

where the last inequality follows from the fact that d>1 w(x̄α) ≥ d>1 y
α(x̄α).

Note that finding x̄αγ is an NP -hard problem. However, given x̄αγ the values of d>1 w(x̄αγ )

and d>1 y
α(x̄αγ ) can be computed by solving linear programming problems. Therefore, the

upper bound for f ∗α − fpα(x̄αγ ) given by Proposition 14 can be obtained in polynomial time

after finding x̄αγ .

Corollary 6. If c ∈ Rn1
+ and d1 ∈ Rn2

+ , then fpα(x̄αγ ) ≥ f ∗α − γf(x̄αγ ) ≥ f ∗α − γf ∗.

Proof. It follows from Proposition 14 that

fpα(x̄αγ ) ≥ f ∗α − γ
(
d>1 w(x̄αγ )− d>1 yα(x̄αγ )

)
≥ f ∗α + γ

(
−d>1 w(x̄αγ )

)
≥ f ∗α + γ

(
−d>1 w(x̄αγ )− c>x̄αγ

)
= f ∗α − γf(x̄αγ ) ≥ f ∗α − γf ∗,

which concludes the proof.
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For the example given by (2.13), Figure 3 illustrates the bounds obtained in Proposi-

tion 14 and Corollary 6. Clearly, the quality of the former bound is better, which is not

surprising given the provided derivations. On the other hand, it is also worth mentioning

that the quality of the bounds improves as α and γ approach one and zero, respectively. This

observation is rather intuitive as (0,1)-BMIP corresponds to the pessimistic case of BMIP.
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Figure 3: Illustration of Proposition 14 and Corollary 6 for a BMIP example given by (2.13).

Assume that there exist a positive lower bound L∗α for f ∗α and a finite upper bound U∗

for f ∗, that is,

0 < L∗α ≤ f ∗α ≤ f ∗ ≤ U∗ < +∞. (2.15)

Then we have the following result, which is similar in spirit to Corollary 5:

Corollary 7. If c ∈ Rn1
+ , d1 ∈ Rn2

+ and f ∗α > 0, then for a given γ̄ ∈ [0, 1], define γ =

(1− γ̄)L
∗
α

U∗
. Then fpα(x̄αγ ) ≥ γ̄f ∗α and f(x̄αγ ) ≥ γf ∗.

Proof. By using Corollary 6, we have

fpα(x̄αγ ) ≥ f ∗α − γf ∗ = f ∗α − (1− γ̄) · L
∗
α

U∗
· f ∗ ≥ f ∗α − (1− γ̄) · L∗α ≥ f ∗α − (1− γ̄) · f ∗α = γ̄f ∗α,

where we use (2.15) in the obtained inequalities.

27



The above results provide the leader with some estimates of her loses in cases when the

follower is either optimistic or α-pessimistic. In particular, under some assumptions x̄αγ pro-

vides simultaneously a γ-approximate solution to the optimistic BMIP and γ̄-approximate

solution to the α-pessimistic BMIP. Note that the relationship between γ and γ̄ through

some lower and upper bounds for f ∗α and f ∗ is rather intuitive given our earlier observations

in Remarks 1 and 2.

2.5 NUMERICAL ILLUSTRATIONS

In this section, we provide additional illustrations of the proposed modeling approach

using a class of defender-attacker problems. In our numerical experiments we solve single-

level reformulations of our models using CPLEX 12.4 [67].

2.5.1 Single-level Reformulations

We reformulate BMIPopt, BMIPpes, α-BMIPpesand (γ, α)-BMIP as single-level mixed-

integer programs with constraints that enforce primal feasibility, dual feasibility, and com-

plementary slackness for the follower’s linear program. It is a standard approach in the

bilevel optimization literature, which can be applied as long as the follower’s problem is an

LP, see, e.g., [9] for more detailed discussion in the case of optimistic bilevel programs. The

fact that both α-BMIPpes and (γ, α)-BMIP admit single-level MIP reformulations can be

viewed as another advantage of the proposed modeling approach.
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For completeness of the discussion we first present the standard single-level formulation

for BMIPopt, see, e.g., [9]:

[BMIPopt] : max c>x+ d>1 y (2.16a)

s.t. x ∈ X (2.16b)

By ≤ h− Ax (λ) (2.16c)

By ≥ h− Ax−Mλ(e− uλ) (2.16d)

λ ≤Mλuλ (2.16e)

B>λ ≥ d2 (y) (2.16f)

B>λ ≤ d2 +My(e− uy) (2.16g)

y ≤Myuy (2.16h)

uλ ∈ {0, 1}m2 , uy ∈ {0, 1}n2 , y, λ ≥ 0, (2.16i)

where e is the vector of all ones of appropriate dimensions, i.e., e = (1, . . . , 1)>, while Mλ and

My are sufficiently large positive constants. Constraints (2.16c)-(2.16i) ensures that y ∈ H(x)

by enforcing primal feasibility, dual feasibility, and complementary slackness conditions for

the follower’s LP given the leader’s decision x. In particular, λ is the set of dual variables

corresponding to constraints (2.16c) in the follower’s LP, while 0–1 variables uλ and uy are

used to linearize the complementary slackness conditions.
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Next, we present the single-level reformulation for (γ, α)-BMIP:

[(γ, α)-BMIP] : max c>x+ γd>1 y + (1− γ)d>1 y
′ (2.17a)

s.t. (2.16b)− (2.16i)

By′ ≤ h− Ax (µ) (2.17b)

By′ ≥ h− Ax−Mµ(e− uµ) (2.17c)

µ ≤Mµuµ (2.17d)

d>2 y
′ ≥ αd>2 y + (1− α)L (ζ) (2.17e)

d>2 y
′ ≤ αd>2 y + (1− α)L+Mζ(1− uζ), (2.17f)

ζ ≤Mζuζ , (2.17g)

d2ζ −B>µ ≤ d1, (y′) (2.17h)

d2ζ −B>µ ≥ d1 −My′(e− uy′), (2.17i)

y′ ≤My′uy′ , (2.17j)

uµ ∈ {0, 1}m2 , uy′ ∈ {0, 1}n2 , uζ ∈ {0, 1}, y′, µ, ζ ≥ 0, (2.17k)

where Mµ, Mζ , My′ are sufficiently large positive constants. Constraints (2.17b)-(2.17k)

impose that the follower chooses a solution y′ ∈ Hα(x) that provides the minimum d>1 y
′ for

the leader. The main ideas behind formulation (2.17) is similar to those used in deriving

(2.16). In particular, y and y′ are variables representing the optimistic and the α-pessimistic

responses of the follower, respectively. Also, ζ and µ are the dual variables corresponding to

constraints in Hα(x), see (2.6), given the leader’s decision x.

If γ = 0 and α = 1 in formulation (2.17), then we obtain a single-level reformulation

for the pessimistic BMIP. Furthermore, if γ > 0 and α = 1, then we obtain a single-level

reformulation for the strong-weak bilevel linear program [31]. Note that Zeng [116] provides

similar reformulations for the strong-weak BMIP. Thus, model (2.17) generalizes the formu-

lations presented in Zeng [116] by considering follower’s α-suboptimal response to the leader,

i.e., the strong-α-weak approach considered in Section 2.4.
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2.5.2 Defender-Attacker Problem (DAP)

There are a number of defender-attacker models proposed in the related literature, see

some examples in [27] and the references therein. In this section we consider a class of such

models, where the defender (leader) runs a set of facilities J . Facility j ∈ J has a certain

value (e.g., capacity) given by cj and can be fully protected by spending kj units of the de-

fender’s resource. The total defense budget is K units. The attacker (follower) can destroy

yj ∈ [0, 1] portion of the facility j by spending bjyj units. The attacker’s goal is to minimize

the leader’s total value after the attack (i.e., maximize damage) subject to a budget con-

straint of B units. If yj portion of the facility value is destroyed, then the defender has to

spend rjyj units to recover its full value. The defender’s objective is to minimize the total

recovery cost. We formulate the considered class of pessimistic DAPs as:

[pes-DAP] min
x∈X

max
y∈H(x)

∑
j∈J

rjyj

subject to H(x) = argmax

{∑
j∈J

cjyj : y ∈ Y, yj ≤ 1− xj, j ∈ J

}
,

where X ⊆ {x ∈ {0, 1}|J | :
∑

j∈J kjxj ≤ K} and Y = {y ∈ [0, 1]|J | :
∑

j∈J bjyj ≤ B}. The

leader’s decision variable, xj, is equal to 1 iff facility j is protected and 0, otherwise. The

follower’s decision variable, yj ∈ [0, 1], represents the destroyed portion of facility j. Given

α ∈ [0, 1] and γ ∈ [0, 1], (γ, α)–DAP can be formulated as:

[(γ, α)-DAP] min
x∈X

{
(1− γ) max

y∈Hα(x)

∑
j∈J

rjyj + γ min
y∈H(x)

∑
j∈J

rjyj

}
,

where the suboptimal reaction set of the attacker is defined as:

Hα(x) = {y′ ∈ Y :
∑
j∈J

cjy
′
j ≥ α

∑
j∈J

cjyj, y ∈ H(x), y′j ≤ 1− xj, j ∈ J}.

Next, we illustrate some of the structural properties derived in Sections 2.3 and 2.4.

We consider a DAP instance with 10 facilities. Parameters of the instance include the

recovery cost vector r = [19 21 25 29 31 35 36 40 43 58]>, the capacity vector c =

[10 10 10 9 8 7 6 5 4 3]>, facility protection cost kj = 1 and destruction cost bj = 1

for all j = 1, . . . , 10, the total defense budget K = 2 and the attacker’s budget is B = 1.
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Furthermore, the defender has two additional logical constraints of the form: x1 +x2 +x3 ≤ 1

and x9 ≤ x1, which are incorporated into the constraint set defining X.

Recall that our example (2.13) is a “max-max” BMIP. On the other hand, the con-

sidered class of DAPs involves minimization of the leader’s objective function. As briefly

discussed in Section 2.3, some simple adjustments are necessary when we apply the results

from Sections 2.3 and 2.4 to the considered class of DAPs. For example, f ∗α is non-increasing

with respect to α instead of non-decreasing as stated in Proposition 6. Alternatively, one

could obtain maximization version of DAP by simply changing the signs of rj’s, and thus,

directly apply the results of Sections 2.3 and 2.4.

Figure 4 illustrates various structural properties established in Section 2.3. In particular,

it is interesting to observe in Figure 4(a) that the value of ∆α decreases as α increases. This

result is rather intuitive if one recalls that Hα1(x) ⊆ Hα2(x) for α1 ≥ α2, i.e., the follower

has more flexibility in making the decision less favorable for the leader for smaller values of

α. Figure 4(b) depicts ∆α along with its upper and lower bounds derived in Proposition 8

and Corollary 3. Figures 4(c) and 4(d) are analogous to Figures 2(c) and 2(d), respectively.

Figure 5 illustrates Propositions 13 and 14 established in Section 2.4. The obtained

graphics match the intuition behind (γ, α)-BMIP model and the derived results. For ex-

ample, in Figure 5(a) the depicted functions coincide for γ = 1, which, in fact, should be

expected as (1, α)-BMIP corresponds to optimistic BMIP for any α ∈ [0, 1]. Similarly,

in Figure 5(b) the depicted functions also coincide for γ = 0 as (0, α)-BMIP corresponds

to α-pessimistic BMIP. Finally, the quality of the bounds from Propositions 13 and 14 is

better for larger and smaller values of γ in Figures 5(a) and 5(b), respectively. These obser-

vations are natural if one recalls the motivation behind (γ, α)-BMIP model, in particular,

the fact that the objective function of (γ, α)-BMIP is a convex combination of the follower’s

optimistic and α-pessimistic responses to the leader’s decision.
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Figure 4: Illustration of structural results with a DAP instance from Section 2.5.2. Note

that the leader’s problem involves minimization, which requires some minor adjustments

in the corresponding statements of Section 2.3, see related discussion in Sections 2.3 and

2.5.2. The term “LB” in Figure 4(b) stands for the lower bound of ∆α in Proposition 8.

Figures 4(c) and 4(d) are analogous to Figures 2(c) and 2(d), respectively.

2.6 CONCLUDING REMARKS

In this chapter we study relationships between optimistic and pessimistic BLPs and

BMIPs, where the follower’s optimization problem is a linear program. First, we focus on

theoretical computational complexity issues for BLPs. Perhaps, the most interesting com-

plexity result obtained is the fact that even if an optimal optimistic (or pessimistic) solution

of BLP is known, then the problem of finding an optimal pessimistic (or optimistic) solution

for the same BLP remains an NP -hard problem. Second, we propose a generalization of
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Figure 5: Illustration of Propositions 13 and 14 with a DAP instance from Section 2.5.2 for

α = 0.7. Note that the leader’s problem involves minimization.

pessimistic bilevel linear problems, referred to as α-pessimistic BMIPs, where the follower

might willingly give up a portion of his optimal objective function value, and thus select a

suboptimal solution in order to inflict more damage to the leader. It is important to note

that our techniques allow the decision-maker to consider more general types of adversarial

followers. In particular, α-pessimistic BMIPs naturally encompasses as their special classes

both pessimistic BMIPs and max-min (or min-max) problems. Furthermore, we incorporate

the proposed approach into a class of strong-weak models that capture settings, where the

leader is not certain if the follower is either collaborative or adversarial, and thus attempts

to make a robust decision by taking into account the follower’s response in both situations.

Finally, we study structural properties of the proposed mathematical models and illustrate

the obtained results using insightful numerical examples.
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3.0 ON BILEVEL OPTIMIZATION WITH INEXACT FOLLOWER

3.1 INTRODUCTION

Motivation. In bilevel optimization, a leader solves an upper-level formulation whose

objective function depends on a set of lower-level decisions, which in turn are made by a

follower in reaction to the leader’s (upper-level) decisions ([12, 38]).In this framework, the

upper-level decisions might affect the lower-level objective function and/or feasible region,

and are considered as an input by the follower, who is traditionally assumed to react optimally

to them. The outlined setting suggests that, while the leader is able to act strategically by

anticipating the follower’s (optimal) reaction, the follower’s role is rather reactionary. For

this reason, bilevel optimization is typically used to, for example, model Stackelberg games

([50]), and has been also applied in many areas to model the interaction between rational

agents that make decisions sequentially.

A key assumption in bilevel optimization is that both the leader and follower have the

computational means to solve the upper- and lower-level formulations optimally, respec-

tively. However, in many important application areas, one has that either: (i) there is no

known efficient method to solve the lower-level formulation to optimality (for a given set

of upper-level decisions); or (ii) the follower either is not sufficiently sophisticated or does

not have the computational resources necessary to find an optimal solution to the lower-

level problem in a timely manner. In both cases, the follower typically resorts to using

computationally-tractable heuristic/approximate algorithms.

In particular, for a given leader’s decision the lower-level optimization problem may cor-

respond to a medium- or large-sized instance of an NP -hard problem: while exact algorithms

may be available, they often take prohibitively large computing time to produce optimal solu-
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tions. A concrete and, perhaps, the simplest example of such a lower-level formulation is the

linear 0–1 knapsack problem, which is NP -hard ([54]). In the bilevel optimization literature,

problems that involve knapsack-like constraints at the lower level are known as bilevel knap-

sack problems (see [18, 26, 32, 86]). Exact algorithms for single- and multi-dimensional 0–1

knapsack problems aim at intelligent enumeration of feasible solutions, e.g., based on branch-

and-bound schemes (see [64, 76]), dynamic programming (see [64, 105]). While a number of

such algorithms are specially tailored to solve large-scale instances (see, e.g., [11, 47, 73, 77]),

in the worst case it takes them an exponential running time to find an optimal solution.

In general, when faced with such “hard” optimization models, a common approach in

many practical settings is to resort to either heuristic or approximation algorithms that find

good solutions in reasonable time. For example, many such algorithms have been proposed

to find approximate solutions for the linear 0–1 knapsack problem, including a simple greedy-

based 1/2-approximation algorithm (see, e.g., [73]) and more complex fully polynomial-time

approximation schemes (see [66]). We refer the reader to [78] and [73] for detailed overviews

of exact and approximation algorithms for different types of knapsack problems.

Objectives and assumptions. In this chapter, we depart from the assumption of a

resourceful follower and study bilevel optimization in settings where the follower might use

one of many algorithms to react to the upper-level decisions. In particular, we assume that

the leader does not know upfront the algorithm to be used by the follower, but knows that

it belongs to a known finite set of algorithms, which is denoted by H. We refer to the

uncertainty about the follower’s choice of an algorithm from H as the lower-level algorith-

mic uncertainty or simply, the lower-level uncertainty. It is important to point out that in

contrast to the stochastic and robust optimization methods that consider uncertainty issues

related to the problem parameters and input data, our framework deals with uncertainty on

the solution method used by the lower-level decision-maker, i.e., the follower.

Specifically, in our first modeling approach, we assume that the leader takes a conserva-

tive approach towards the lower-level uncertainty. That is, the leader assumes that, given

an upper-level decision, the follower uses the algorithm from H that produces the most

damaging (to the leader) lower-level decision.
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In our second modeling approach we follow a less conservative method and assume that

the follower instead selects the algorithm that produces a lower-level decision that is the

Γ-th least damaging to the leader, where Γ ∈ {1, . . . , |H|} is a parameter pre-defined by the

decision-maker, i.e., the leader. Clearly, if Γ = |H|, then both models coincide. By changing

the value of Γ, the leader can control her level of conservatism, which is somewhat similar

to the classical robust optimization approach of [21, 22] for dealing with data uncertainty in

mathematical programming.

In our third modeling approach, we assume that the leader has prior information about

the likelihood that the follower would use one of the algorithms, which is represented by

a probability distribution over the set of possible algorithms. Using this information, the

leader minimizes the expected value of her objective function, where the expectation is taken

with respect to the follower’s choice of an algorithm.

In developing our results we make several assumptions that are rather common in the

bilevel optimization literature. In particular, we assume that the upper-level decisions are

irrevocable and fully observed by the follower before selecting the lower-level decisions, and

that the lower-level problem is well defined (i.e., it has a non-empty and bounded feasible

region) for any possible set of upper-level decisions.

Furthermore, we assume that the leader knows the set of algorithms, H, that might be

used by the follower. Recall that in the standard bilevel optimization framework the leader

has full information about the follower’s optimization problem. Thus, it is reasonable to

assume that the leader should be able to construct a set of algorithms H that contains one

of the solution methods used by the follower. In this regard, traditional bilevel optimization

can be seen through the lens of our framework when the follower always uses an exact

algorithm that is, H consists of this algorithm and thus, |H| = 1. Moreover, the optimistic

and pessimistic models as well as the strong-weak approach ([31, 115]) of the standard

bilevel optimization can also be viewed as special cases of our framework, see the discussion

in Section 3.2.2.

Main contributions. Our contribution can be summarized as follows. First, we propose

a framework that relaxes the assumption that the follower reacts optimally to the leader’s

decisions. This ought to fit settings where the follower either does not have the computational
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resources or is not sufficiently sophisticated to implement an exact approach to solve the

lower-level problem. This is arguably the case in many application areas in practice, thus

the approach contributes to closing the gap between the theory and practice in the bilevel

optimization area. To the best of our knowledge, [103] is the only study in the bilevel

optimization literature that studies a bilevel setting with an “inexact” follower, although

in their network interdiction setting the follower uses one specific heuristic method, i.e.,

|H| = 1, as opposed to selecting it from a set.

In this regard, we propose an approach to deal with the lower-level algorithmic uncer-

tainty. We propose three different models to handling lower-level uncertainty that differ in

their degree of conservatism and use of prior information on the likelihood of the use of any

given algorithm by the follower. Furthermore, we propose different metrics to evaluate the

(leader’s) loss in the upper-level objective function due to the lower-level algorithmic uncer-

tainty, that can be used to compare different approaches. In particular, we present a series

of results that interconnect the different approaches towards uncertainty and the different

metrics alluded above. These results allow quantifying and/or bounding upfront the leader’s

loss due to the lower-level uncertainty, and thus might be used in practice for selecting an

appropriate approach to handling said uncertainty.

Second, we provide a prescriptive approach to the lower-level algorithmic uncertainty for

a broad class of bilevel knapsack problems. In particular, we formulate the leader’s (upper-

level) problem when it is known that the follower selects its algorithm from a family of greedy

approaches or implements an exact solution approach (see Section 3.4.2 for more details).

We show that, in general, the upper-level problem remains NP -hard even when the follower

is known to use a greedy method for solving the lower-level problem. Also, we provide a

single-level mixed integer programming (MIP) formulation to the leader’s decision problem.

Single-level formulations of bilevel programs are common in settings where the lower-level

problem admits a linear programming (LP) formulation. Remarkably, we obtain such a

representation when the follower applies a greedy solution approach.

Finally, we illustrate our findings through numerical experiments on a specific class of

bilevel knapsack problems. In particular, we consider a class of non-linear defender-attacker

problems, which can be casted through the bilevel modeling framework (see [27] and refer-
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ences therein). We consider settings where the attacker might have limited computational

resources and uses either an exact approach or one of two greedy-like approaches. Thus, our

results illustrate the use of the proposed framework to help the leader in hedging against the

lower-level algorithmic uncertainty in the context of defender-attacker problems.

Organization of this chapter. The next section provides some background material

on bilevel optimization and presents the proposed modeling framework to address the lower-

level algorithmic uncertainty, while Section 3.3 analyzes the leader’s loss in performance.

Section 3.4 presents our prescriptive approach to a broad class of bilevel knapsack problems.

Section 3.5 presents a numerical study for the case of the defender-attacker model when the

defender (leader) does not know the solution approach taken by the attacker (follower) but

knows that it belongs to a family of greedy approaches. Finally, Section 3.6 presents our

conclusions and final remarks.

3.2 MODELING FRAMEWORK FOR INEXACT FOLLOWER

In this chapter we consider a general class of bilevel mixed integer programs of the form

[BMIP] min
y∈Y

f(y,x) := g(y)>x + t(y) (3.1a)

subject to x ∈ R(y) := argmax
{
c(y)>x̂ | x̂ ∈ X(y)

}
, (3.1b)

where Y ⊆ {0, 1}n1−k1 × Rk1
+ denotes the leader’s feasible region, while g, c : Y → Rn2 and

t : Y → R. Set X(y) ⊆ {0, 1}n2−k2 ×Rk2
+ denotes the follower’s feasible region given leader’s

decision y ∈ Y .

We refer to the minimization in (3.1a) as the upper-level problem, which is solved by the

leader, and to the maximization on the right-hand-side of (3.1b) as the lower-level problem,

which is solved by the follower. For each y ∈ Y , the set R(y) ⊆ {0, 1}n2−k2 ×Rk2
+ is known

as the follower’s rational reaction set. The leader’s and the follower’s problems are general

mixed integer programs (MIPs). Furthermore, if k1 = n1 and k2 = n2, g and c are constant

vectors of appropriate dimensions, t(y) is a linear function, and Y × X(y) is a polyhedral
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set, then BMIP reduces to a bilevel linear program (BLP). In contrast to the classical linear

programming (LP) solvable in polynomial time, BLPs are NP-hard [38, 46].

In the remainder of this chapter we assume that:

Assumption A1: Y is non-empty and bounded.

Assumption A2: X(y) is non-empty and bounded for any y ∈ Y .

Assumptions A1 and A2 are typical in the bilevel optimization literature [38]. When-

ever the lower-level problem has multiple optimal solutions for a given leader’s decision,

a “collaborative” follower might implement the solution that is the most favorable to the

leader; on the other hand, an “adversarial” follower might select the most disadvantageous

(to the leader) solution. These two situations are respectively referred to as the optimistic

and pessimistic formulations of bilevel problems [38].

3.2.1 Inexact Follower

As outlined in Section 3.1, a key assumption in most studies in the bilevel optimization

literature is that the follower’s rational reaction set includes only optimal solutions of the

lower-level problem (3.1b), see, e.g., some recent results in [18, 34, 45, 104]. However, in

many application areas, given a leader’s decision y ∈ Y , the resulting lower-level problem is

NP -hard, which means that, in practice, an exact solution might not be found in a timely

manner. Hence, in such settings the follower might use an approximate or heuristic solution

instead, that are typically much faster to find.

Consider, for example, the aforementioned case of bilevel knapsack problems, where the

lower-level problem takes the form of the linear 0–1 knapsack problem. Specifically, assume

that for a given upper-level decision y ∈ Y , the lower-level problem is of the form:

max
{∑

i

cixi |
∑
i

wixi ≤ b, x ∈ {0, 1}n2
}
. (3.2)

While there exist multiple exact solution methods for the linear and nonlinear integer knap-

sack problems (e.g., dynamic programming or branch-and-bound based algorithms), there

are also various approximation and heuristic methods [73]. One example is the popular greedy
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method that simply sorts the items in the non-increasing order of the ratio ci/wi, and selects

the items prioritizing them according to said ratio, subject to the budgetary constraint. 1

While heuristic and approximate approaches (as the greedy method above) for NP -hard

problems (like knapsack problem) are ubiquitous in practice (see, e.g., examples in [55, 89]),

most of the research studies in bilevel optimization typically ignore the follower’s practical

considerations. More importantly, ignoring such a choice might prevent the leader from

anticipating the follower’s actions and thus have profound consequences. To illustrate this

point, we provide the following example.

Example 1. Consider a simple bilevel problem, which is an instance of BMIP:

min
y∈{0,1}2

f(y,x) = y1 +My2 + x1 + 2Mx2

subject to y1 + y2 = 1

x ∈ argmax
x̂∈{0,1}2

{2Mx̂1 +Mx̂2 : Mx̂1 + x̂2 ≤My1},

where M is a sufficiently large constant. Observe that the leader has two feasible solutions

given by y1 = (1, 0)> and y2 = (0, 1)>. If the follower solves his problem to optimality,

then the leader’s optimal solution is y1 = (1, 0)>, which triggers the follower’s reaction

x1 = (1, 0)>, resulting in the upper-level objective function value f(y1,x1) = 2. Next,

consider a scenario where the follower uses the greedy heuristic based on the cost-to-weight

ratio. If the leader implements y1 = (1, 0)>, then the follower’s response is x2 = (0, 1)>.

Consequently, the upper-level objective function value is f(y1,x2) = 1 + 2M . On the other

hand, if the leader is aware of the fact that the follower applies the greedy heuristic, then she

implements y2 = (0, 1)> resulting in the upper-level objective function value f(y2,x3) = M ,

where x3 = (0, 0)>. Note that f(y1,x2)− f(y2,x3) = M + 1 and this difference between the

resulting objective functions values can be made arbitrarily large.

In the remainder of this chapter, we assume that to find a solution to the lower-level

problem the follower uses one of the algorithms from a pre-defined set H . Formally, algo-

rithm h ∈ H maps upper-level decisions to lower-level decisions and hence, is characterized

1It is worth mentioning that while the worst-case performance guarantee for the greedy method can be
made arbitrarily close 0, a small variation of the algorithm provides a 1/2-approximation. [73, Chapter 2.5]
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by the set of responses it produces (thus, two algorithms that reacts in the same way to all

upper-level decisions are indistinguishable). Specifically:

Definition 1. Follower’s reaction algorithm h ∈ H is given by function xh(·) : Y → Rn2

that maps an upper-level decision y ∈ Y to a feasible lower-level decision xh(y) in X(y).

Note that by its definition, algorithm h ∈ H returns a unique feasible solution to the

lower-level problem for every y ∈ Y , which is consistent with assumption A2. A key assump-

tion in this work, which we formalize next, is that the leader does not know the algorithm

that is used by the follower, but knows that it belongs to set H (recall our detailed discussion

on justification of this assumption in Section 3.1).

Assumption A3: The reaction algorithm, h, used by the follower is not known to the

leader in advance. However, the leader is aware of the set of possible reaction algorithms,

H, that is h ∈ H.

Furthermore, in what follows, we make the distinction between exact and inexact algo-

rithms. We say that h ∈ H is an exact algorithm if for any y ∈ Y it returns an optimal

solution to the lower-level problem, i.e., xh(y) ∈ R(y). Similarly, we say h ∈ H is an inex-

act algorithm if it might return a suboptimal solution to the lower-level problem, i.e., there

exists y ∈ Y such that xh(y) 6∈ R(y). For the linear knapsack 0–1 problem, for example,

the aforementioned greedy method is, in general, an inexact algorithm. In addition, we say

that algorithm h is distinct from h′ if they return different solutions to some instance of the

lower-level problem, i.e., there exists y ∈ Y such that xh(y) 6= xh
′
(y). Note that both h and

h′ might be exact but distinct at the same time, which is possible whenever R(y) is not a

singleton, for some y ∈ Y .

3.2.2 Approaches to the Lower-level Algorithmic Uncertainty

Next, we introduce modeling methods to handle the lower-level algorithmic uncertainty.

Robust Model (RBP). In this approach, the leader anticipates the worst possible outcome

over H. That is, the leader assumes that for any given upper-level decision, an adversarial

follower uses the algorithm that damages the leader the most. Thus, the leader solves

[RBP] z∗H := min
y∈Y

max
h∈H

f(y,xh(y)) = g(y)>xh(y) + t(y). (3.3)
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Note that RBP can be viewed as a generalization of the pessimistic and optimistic cases

of the standard bilevel optimization. For example, let h and h′ be both exact algorithms

for the follower’s problem and assume that, for every y ∈ Y , algorithm h yields solutions

that are most favorable for the leader, while h′ returns the least favorable one: by setting

H = {h} and H = {h′} in (3.3) we reduce RBP to either optimistic or pessimistic bilevel

problems, respectively.

Γ-Robust Model (Γ-RBP). The approach in RBP can be seen as too conservative,

especially when set H contains several solution methods. Next, we propose a more flexible

model that enables the leader to control her level of conservatism. Let Γ be a positive

integer representing the number of algorithms that the leader wishes to “hedge” against,

i.e., Γ ∈ {1, . . . , |H|}. Then for a fixed value of Γ, the leader solves

[Γ-RBP] z∗Γ := min
S⊆H,y∈Y,z

{
z : f(y,xh(y)) ≤ z, ∀h ∈ S, |S| = Γ

}
. (3.4)

Note that in contrast to RBP, here the leader anticipates the Γ-th smallest realization

among the follower’s algorithms. Thus, RBP is a special case of Γ-RBP with Γ = |H|.

In other words, the leader minimizes the Γ-th smallest objective function among all values

generated by the algorithms in H. For example, for Γ = 1, the leader is effectively selecting

the algorithm that the follower uses, while for Γ = |H|, the leader anticipates that the fol-

lower uses the algorithm that hurts her the most, for any given upper-level decision. Simply

speaking, in the Γ-RBP model the leader hedges against Γ algorithms from H and ignores

|H| − Γ worst possible outcomes for her.

Hence, Γ-RBP can be re-written as the following mathematical program:

z∗Γ := min ρ (3.5a)

subject to ρ+M(1− σh) ≥ f(y,xh(y)) ∀h ∈ H, (3.5b)

|H|∑
h=1

σh = Γ, (3.5c)

y ∈ Y , σh ∈ {0, 1} ∀h ∈ H, (3.5d)
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where M is a sufficiently large constant parameter, e.g., M := max
h∈H,y∈Y

{f(y,xh(y))}. In (3.5)

we assume that such M exists. Note that the expression f(y,xh(y)) might not be readily

available and itself might be the solution to a mathematical program.

Γ-RBP model is inspired by the robust optimization approach to matrix-data uncer-

tainty in [21, 22]. In their works, the decision-maker hedges against any change to the

matrix-data as long as it involves at most Γ changes to uncertain elements in the data

matrix. In our work, the decision-maker instead hedges against the lower-level algorithmic

uncertainty. In particular, in the Γ-RBP model, for a given upper-level decision, the leader

anticipates that the follower uses the Γ-th most favorable (to her) algorithm in H. According

to intuition, the next result shows that the solution to Γ-RBP is non-decreasing in Γ.

Proposition 15. The optimal objective function value of Γ-RBP, z∗Γ, is non-decreasing in

Γ.

Proof. Given integer Γ, 1 ≤ Γ ≤ |H|, and any leader’s feasible decision y ∈ Y , define

zΓ(y) := min
S,z

{
z : f(y,xh(y)) ≤ z ∀h ∈ S, S ⊆ H, |S| = Γ

}
,

and z∗Γ := min
y∈Y
{zΓ(y)}. Also, let y∗Γ ∈ Y denote the optimal solution to Γ-RBP, so that

z∗Γ = zΓ(y∗Γ). It follows that z∗Γ ≤ zΓ(y∗Γ+1). Note now that, for every S ⊆ S ′, one has that

min
{
z : f(y,xh(y)) ≤ z ∀h ∈ S

}
≤ min

{
z : f(y,xh(y)) ≤ z ∀h ∈ S ′

}
.

Thus, zΓ(y∗Γ+1) ≤ zΓ+1(y∗Γ+1) = z∗Γ+1. The result follows from combining the above.

Proposition 15 formalizes the intuition that the leader’s optimal objective function value

deteriorates as she hedges against an increasing number of algorithms. As mentioned earlier,

Γ = |H| corresponds to the most conservative follower, which is formalized by the following

corollary.

Corollary 8. For any integer Γ such that 1 ≤ Γ ≤ |H|:

z∗Γ ≤ z∗|H| = z∗H
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Example 2. Consider the following instance of a bilevel knapsack problem (see further

discussion in Section 3.4):

min
y∈R4

+

(5− y1)x1 + (6− y2)x2 + (12− 1.5y3)x3 + (17− 2y4)x4

subject to y1 + y2 + y3 + y4 ≤ 10

x ∈ argmax
x̂∈{0,1}4

(3M − y1)x̂1 + (100− 0.5y2)x̂2 + (90− y3)x̂3 + (20− y4)x̂4

subject to Mx̂1 + 50x̂2 + 30x̂3 + 21x̂4 ≤M + 50

Note that for a given leader’s decision y, the lower-level problem reduces to a knapsack

binary problem of the form (3.2). Let H={h1, h2, h3} be three algorithms that the follower

might use, where h1 is an exact algorithm and h2 is a greedy algorithm for solving 0–1

knapsack problem based on the ci/wi ratio (recall our earlier discussion in Section 3.1);

furthermore, h3 is also a greedy algorithm but the follower prioritizes items based on the

value of wi.

For sufficiently large value of M , regardless of the upper-level decision, the response of

each algorithm in H is given by xh1 = (1, 1, 0, 0)>, xh2 = (1, 0, 1, 0)> and xh3 = (0, 1, 1, 1)>.

Thus, for upper-level decision y1 = (10, 0, 0, 0)> we have that f(y1,xh1(y1)) = 1, f(y1,xh2(y1)) =

7 and f(y1,xh3(y1)) = 35. Similarly, upper-level decision y2 = (0, 0, 10, 0)> results in

f(y2,xh1(y2)) = 11, f(y2,xh2(y2)) = 2 and f(y2,xh3(y2)) = 20. According to the RBP model,

y2 is a better solution for the leader compared with y1 because max
h
{f(y2,xh(y2))} = 20 ≤

max
h
{f(y1,xh(y1))} = 35. If the leader applies the Γ-RBP model for Γ = 2, then zΓ(y1) = 7

and zΓ(y2) = 11, which implies that y1 is a better solution than y2 for Γ = 2 in Γ-RBP.

The optimal solution of RBP is y∗H = (0, 0, 1, 9)>, z∗H = 15.5 and z∗Γ for different values

of Γ is as follows: z∗Γ=1 = 1, z∗Γ=2 = 5 and z∗Γ=3 = z∗H. As expected from Proposition 15 and

Corollary 8, we have: z∗Γ=1 ≤ z∗Γ=2 ≤ z∗Γ=3 = z∗H.

Probabilistic model (PBP). In RBP and Γ-RBP the leader does not use any prior

information about the likelihood that the follower uses a particular algorithm. This type of

information, if available, may help the leader to identify a better solution. Next, we suppose

that the likelihood that the follower applies any given algorithm is available to the leader.
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We assume that the leader uses this information to minimize her expected objective function

value. That is, the leader solves

[PBP] z∗p = min
y∈Y

Eh[f(y,xh(y))] :=
∑
h∈H

phf(y,xh(y)), (3.6)

where ph denotes the known probability that the follower uses algorithm h ∈ H, i.e.,

0 ≤ ph ≤ 1 and
∑

h∈H ph = 1.

Recall our earlier observation that the optimistic and pessimistic models of BMIP can

be viewed as special cases of RBP. A similar generalization holds for PBP. Specifically, let

methods h and h′ be both exact algorithms for the follower’s problem, but suppose that while

h returns the solution that is most favorable for the leader, h′ returns the least favorable one;

then, for H = {h, h′} model PBP corresponds to a bilevel model, where the leader optimizes

a convex combination of the leader’s objective functions in the optimistic and pessimistic

cases. Such setting has been considered in the bilevel optimization literature, mostly for

bilevel linear programs, and is known as a strong-weak bilevel problem [1, 31, 115, 119].

In a sense, the strong-weak approach attempts to model settings with a partially col-

laborative follower, where the decision-maker knows the probabilities of cooperation or non-

cooperation of the follower, respectively, i.e., the leader is not certain if the follower is either

collaborative or adversarial, and thus attempts to make a robust decision by taking into

account both situations. We note that the strong-weak model is a special case of PBP.

Proposition 16. Let z∗H and z∗p be the optimal values of RBP and PBP, respectively. Then

z∗p ≤ z∗H.

Proof. We have that

z∗p = min
y∈Y

Eh∈H[f(y,xh(y))] ≤ Eh∈H[f(y∗H,x
h(y))] ≤ max

h
f(y∗H,x

h(y)) = z∗H,

which implies the result.
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Example 3. Let p = (ph1 , ph2 , ph3) = (0.3, 0.2, 0.5) in Example 2. Then, y∗p = (0, 0, 10, 0)>

and z∗p = 13.7. Thus, we have z∗p = 13.7 ≤ z∗H = 15.5 which is aligned with Proposition 16.

The results of Proposition 16 have a simple intuitive interpretation. If the leader has

some initial information (i.e., ph for all h ∈ H), then this information can be used to decrease

her expected objective function value in comparison to the case when she needs to hedge

against the worst possible outcome for her.

3.3 QUANTIFYING LEADER’S LOSS

In this section we explore the consequences, for the leader, of making erroneous assump-

tions about the follower’s reaction method. For this, below we formally define the notion of

the leader’s loss and then explore its properties.

Let yh denote the leader’s optimal decision when the follower uses algorithm h, and let

f ∗h be the leader’s corresponding objective function value, i.e,

yh ∈ argmin
y∈Y

{f(y,xh(y))}, f ∗h := f(yh,xh(yh)).

Definition 2. The leader’s loss for a decision y ∈ Y and algorithm h ∈ H, is given by:

∆h(y) := f(y,xh(y))− f ∗h (3.7)

Note that ∆h(y) ≥ 0 and ∆h(y
h) = 0. Also, we define ∆hh′ as the leader’s loss when the

leader acts assuming that the follower uses algorithm h while he instead uses algorithm h′.

That is,
∆hh′ := ∆h′(y

h).

Using Definition 2, we can think of PBP as a model in which the leader minimizes her

expected total loss. Indeed, we have that

min
y∈Y

Eh∈H[∆h(y)] = min
y∈Y

Eh∈H[f(y,xh(y))− f ∗h ] = min
y∈Y

∑
h∈H

phf(y,xh(y))−
∑
h∈H

phf
∗
h , (3.8)
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which is equivalent to PBP as the second term in the right-hand side of (3.8) is a constant

that is independent of the upper-level decision.

An alternative view of the leader’s loss follows from comparing the realized upper-level

objective function value with that anticipated by the leader.

Definition 3. The ex-post (leader’s) loss ∆A
hh′ from anticipating the use of algorithm h ∈ H

when the follower’s response is actually computed using algorithm h′ ∈ H is given by

∆A
hh′ = max

{
f(yh,xh

′
(yh))− f ∗h , 0

}
(3.9)

Loosely speaking, the ex-post loss compares the objective function value attained with

that expected. Thus, in some situations the follower might not react as anticipated but this

results in an improvement in the leader’s objective function value (relative to the value that

would have been obtained were the follower to react as anticipated). In such situations the

ex-post loss ∆A
hh′ is zero. This situation is illustrated in the next example.

Example 4. Table 2 reports the leader’s and the follower’s optimal solutions for Example 2

given the same set of possible follower’s solution methods. We compute the values of ∆A
hh′

and ∆hh′ and represent them in matrices ∆A and ∆. For example, we have that yh1 =

(10, 0, 0, 0)>, xh2(yh1) = (1, 0, 1, 0)>, and f(yh1 ,xh2(yh1)) = 7. Thus, ∆A
h1h2

= 7 − 1 = 6,

and ∆h1h2 = 7− 2 = 5. Furthermore:

∆A =


0 6 34

9 0 18

0 2 0

 ; ∆ =


0 5 20

10 0 5

10 15 0

 .

The following lemmas establish some logical relationships between loss and ex-post loss.

Lemma 3. For any pair of algorithms h, h′ ∈ H one has that f ∗h ≥ f ∗h′ ⇔ ∆A
hh′ ≤ ∆hh′, and

f ∗h ≤ f ∗h′ ⇒ ∆A
hh′ ≥ ∆hh′.
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Table 2: Optimal solutions for different follower’s reaction methods in Example 2.

h xh yh f ∗h

h1 (1, 1, 0, 0)> (10, 0, 0, 0)> 1

h2 (1, 0, 1, 0)> (0, 0, 10, 0)> 2

h3 (0, 1, 1, 1)> (0, 0, 0, 10)> 15

Proof. (⇒) First, consider the case when f ∗h ≤ f(yh,xh
′
(yh)). In this case we have that

f(yh,xh
′
(yh)) − f ∗h′ ≥ f(yh,xh

′
(yh)) − f ∗h ≥ 0, which implies directly that ∆A

hh′ ≤ ∆hh′ .

Suppose now that f(yh,xh
′
(yh)) ≤ f ∗h . Then ∆A

hh′ = 0, and the results follows from the fact

that ∆hh′ ≥ 0.

(⇐) First, consider the case when ∆A
hh′ > 0: we have that

∆A
hh′ ≤ ∆hh′ ⇒ f(yh,xh

′
(yh))− f ∗h ≤ f(yh,xh

′
(yh))− f ∗h′ ⇒ f ∗h′ ≤ f ∗h .

Suppose now that ∆A
hh′ = 0, then f(yh,xh

′
(yh)) ≤ f ∗h and we have that f ∗h′ ≤ f ∗h because of

the optimality of yh
′
. With regard to the second assertion in the statement of the lemma,

we have

∆A
hh′ ≥ f(yh,xh

′
(yh))− f ∗h ≥ f(yh,xh

′
(yh))− f ∗h′ = ∆hh′ ,

where the first inequality holds by the definition of ∆A
hh′ and the second inequality follows

from the assumption that f ∗h ≤ f ∗h′ .

Lemma 4. For any pair of algorithms h, h′ ∈ H, if ∆A
hh′ = 0, then f ∗h′ ≤ f ∗h and ∆hh′ ≤

f ∗h − f ∗h′.

Proof. If ∆A
hh′ = 0, then f ∗h′ ≤ f(yh,xh

′
(yh)) ≤ f ∗h which proves the first part of the lemma.

The second part follows directly from this and the definition of ∆hh′ .

Lemma 4 provides an upper bound for ∆hh′ when the upper-level objective function value

is not larger than anticipated. Note that ∆A
hh′ = 0 does not necessarily imply ∆hh′ = 0,
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which is illustrated further in Example 5 below. In other words, if the leader obtains the

value smaller or equal to what anticipated, then this does not imply that the leader has

implemented the best possible decision.

The next proposition provides a bound on the objective function value attained by the

leader when implementing the solution prescribed by RBP for |H| = 2.

Proposition 17. Suppose that H = {h, h′}. Then

z∗H ≤ min
{
f ∗h + ∆A

hh′ , f
∗
h′ + ∆A

h′h

}
. (3.10)

Moreover, if ∆A
hh′ = 0, then z∗H = f ∗h .

Proof. Let y∗H denote an optimal solution to RBP. We have that

z∗H = min
y∈Y

max
{
f(y,xh(y)), f(y,xh

′
(y))

}
≤ max{f ∗h , f(yh,xh

′
(yh))},

where the inequality follows as yh ∈ Y . Recalling that z∗H = max{f(y∗H,x
h(y∗H)), f(y∗H,x

h′(y∗H))},

we have that

f(y∗H,x
h′(y∗H)) ≤ z∗H ≤ max{f ∗h , f(yh,xh

′
(yh))} = f ∗h + ∆A

hh′ ,

where the last equality holds by the definition of ∆A
hh′ . With regard to the second assertion

in the statement, we have (from above) that f(y∗H,x
h(y∗H)) ≤ z∗H. Because ∆A

hh′ = 0, we

obtain f(yh,xh
′
(yh)) ≤ f ∗h from the first part of this proof. Hence, we have that

f(y∗H,x
h(y∗H)) ≤ z∗H ≤ max

{
f ∗h , f(yh,xh

′
(yh))

}
= f ∗h ≤ f(y∗H,x

h(y∗H)),

and the result follows.

Proposition 17 allows us to compare RBP with BMIP when |H| = 2. In particular,

we see that when ∆A
hh′ = 0 both problems have the same optimal objective function value.

However, if ∆A
hh′ > 0, then inequality (3.10) reduces to f(y∗H,x

h′(y∗H)) ≤ f(yh,xh
′
(yh)).

Thus, if the follower uses algorithm h′, then the leader is better of implementing an optimal

solution of RBP, y∗H rather than yh. This observation is rather natural as it is implied

by the intuition behind model RBP. Note that Example 5 below illustrates the fact that
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z∗H = f ∗h does not necessarily indicate that f ∗h = f ∗h′ . Also, some of the structural properties

are illustrated in this example.

The next corollary, which we state without proof, establishes an upper bound for z∗H in

terms of ∆hh′ instead of ∆A
hh′ .

Corollary 9. Suppose that H = {h, h′}. If ∆A
hh′ ≥ 0 and ∆A

h′h ≥ 0, then

z∗H ≤ min {f ∗h′ + ∆hh′ , f
∗
h + ∆h′h} .

Example 5. Based on the information provided in Table 2 and Example 4, f ∗h1 ≤ f ∗h2 and

∆A
h1h2
≥ ∆h1h2 . This is consistent with Lemma 3. Moreover, ∆A

h3h1
= 0 and ∆h3h1 = 10

which reflects the fact that ∆A
h3h1

= 0 does not necessarily result in ∆h3h1 = 0. In addition,

∆h3h1 = 10 ≤ f ∗h3 − f
∗
h1

= 15 − 1 and it illustrates Lemma 4. Next, we show that z∗H = f ∗h1

does not necessarily imply that f ∗h1 = f ∗h2 . Let H = {h1, h2}, and if the coefficient of x3 in

the leader’s objective function is changed from (12 − 1.5y3) to (6 − 1.1y3), then ∆A
h1h2

= 0

and z∗H = f ∗h1 = 1. However, f ∗h2 = 0 6= f ∗h1 .

Finally, for H = {h1, h2} in Example 2, y∗H = (6, 0, 4, 0)> and z∗H = 5. According

to Proposition 17, f(y∗H,x
h2(y∗H)) ≤ f ∗h1 + ∆A

h1h2
, i.e., 5 ≤ 1 + 6, and f(y∗H,x

h1(y∗H)) ≤

f ∗h2 + ∆A
h2h1

, i.e., 5 ≤ 2 + 9. Similarly, based on Corollary 9, f(y∗H,x
h2(y∗H)) ≤ f ∗h2 + ∆h1h2 ,

i.e., 5 ≤ 2 + 5, and f(y∗H,x
h1(y∗H)) ≤ f ∗h1 + ∆h2h1 , i.e., 5 ≤ 1 + 10.

The results in Proposition 17 can be extended for the optimal solution of PBP, as shown

next.

Proposition 18. Suppose that H = {h, h′} and that ph′ > 0 and ph > 0. We have that

z∗p ≤ ph′(f
∗
h′ + ∆hh′) + ph(f

∗
h + ∆h′h) (3.11)

Proof. Let y∗p denote an optimal solution of PBP. First, note that both terms ph

(
f(y∗p,x

h(y∗p))−

f ∗h

)
and ph′

(
f(y∗p,x

h′(y∗p))− f ∗h′
)

are non–negative. Therefore, we have that

ph′
(
f(y∗p,x

h′(y∗p))− f ∗h′
)
≤ ph

(
f(y∗p,x

h(y∗p))− f ∗h
)

+ ph′
(
f(y∗p,x

h′(y∗p))− f ∗h′
)
.
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From the optimality of y∗p to (3.8), we have that

ph

(
f(y∗p,x

h(y∗p))− f ∗h
)

+ ph′
(
f(y∗p,x

h′(y∗p))− f ∗h′
)

≤ ph

(
f(yh,xh(yh))− f ∗h

)
+ ph′

(
f(yh,xh

′
(yh))− f ∗h′

)
= ph′∆hh′ ,

which implies ph′
(
f(y∗p,x

h′(y∗p))− f ∗h′
)
≤ ph′∆hh′ , that is, f(y∗p,x

h′(y∗p)) ≤ f ∗h′ + ∆hh′ . The

result follows from exchanging the role of h and h′ above and considering the weighted sum.

3.4 BILEVEL KNAPSACK PROBLEM

In this section we apply the framework developed in Sections 3.2 and 3.3 to a special class of

BMIP known as the bilevel knapsack problem (BKP), which can be written in the following

form:

[BKP] min
y

f(y,x) :=

n2∑
i=1

(
gi0 +

n1∑
j=1

gijyj
)
xi +

n1∑
j=1

tjyj (3.12a)

subject to y ∈ Y := {y : Ay ≤ b,y ∈ {0, 1}k ×Rn1−k
+ }, (3.12b)

x ∈ R(y) := argmax
x̂∈{0,1}n2

{
n2∑
i=1

(
ci0 +

n1∑
j=1

cijyj
)
x̂i : w>x̂ ≤ d

}
, (3.12c)

where A ∈ Rm×n1 , b ∈ Rm×1, w ∈ Rn2×1
>0 , d ∈ R1

>0. Note that the functions gi(·), ci(·) and

t(·) are affine with respect to y, where gi0, gij, ci0, cij, tj ∈ R for all i ∈ {1, . . . , n2} and

j ∈ {1, . . . , n1}. In order to simplify the notation, our definition of BKP contemplates a

single constraint in the follower’s knapsack problem. However, the prescriptive approach

offered in this section admits a rather straightforward generalization to multiple constraints.

BKP is used to illustrate the proposed framework for two reasons. First, the bilevel knap-

sack problem (3.12) and its variants form a well-known class of bilevel optimization problems

(see, e.g., [18, 26, 32, 33, 43, 86]). In particular, our numerical examples in Section 3.5 are

based on a special class of BKP that has military and law-enforcement applications in the
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context of the defender-attacker models. The second reason is that, for any upper-level deci-

sion y ∈ Y , the follower’s problem reduces to a linear 0–1 knapsack problem, which is known

to be NP -hard [54]. The 0–1 knapsack problem is one of the most studied combinatorial

optimization problems, mainly because of its simple integer programming formulation, its

recurrent appearance in the study of more complex problems, and its capability of represent-

ing various real-life decision situations [78]. More importantly, in practical settings, the 0–1

knapsack problem is often solved by applying greedy heuristic approaches (recall our earlier

examples in the previous sections): see Section 3.4.2 for a detailed discussion.

In what follows, we assume that each algorithm in H fulfills minimum local optimality

conditions.

Assumption A4: For any h ∈ H we have that: (i) if the ith component of c(y)

is non-positive, then xhi (y) = 0, i = 1, . . . , n2; and (ii) if xhi (y) = 0, then x̃h(y) =

(xh1 , . . . , x
h
i−1, 1, x

h
i+1, . . . , x

h
n2

) is infeasible, i.e., w>x̃h(y) > d.

Assumption A4 states that algorithms in H do not pack items with clearly unfavorable

costs, and do not generate solutions that can be easily improved by adding a single item.

Next, we show that when Assumption A4 holds, BKP remains NP -hard even if the follower

applies an inexact solution algorithm from H.

Proposition 19. BKP remains NP–hard when the maximization on the r.h.s. of (3.12c)

is solved using any algorithm h for which A4 holds.

Proof. Consider the SUBSET SUM problem, which is known to be NP -complete [54].

Given a set of positive integers S = {s1, . . . , sn} and a positive integer k ≤
∑n

i=1 si, the

SUBSET SUM problem consists of deciding whether or not there exists a subset S̃ ⊆ S such

that
∑

i∈S̃ si = k. Consider the following instance of BKP:

f ∗ = min
y∈{0,1}n

f(y,xh(y)) = −
n∑
i=1

siyix
h
i (y), (3.13)

where xh(y) denotes a solution provided by algorithm h for

max
x∈{0,1}n

{ n∑
i=1

siyixi :
n∑
i=1

sixi ≤ k
}
.
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The follower’s constraint implies that f ∗ ≥ −k. If SUBSET SUM problem has a solution,

i.e., there exists subset S̃ ⊆ S such that
∑

i∈S̃ si = k, then the leader’s optimal solution is

yi = 1 for all i ∈ S̃ and yi = 0, otherwise. In this case, under Assumption A4, the follower’s

response, based on any algorithm h ∈ H, is xhi = 1 if i ∈ S̃ and xhi = 0, otherwise.

On the other hand, if an optimal solution of (3.13) results in f ∗ = −k, then S̃ = {si :

yi = xi = 1} corresponds to a “yes” answer of the SUBSET SUM problem. Thus, SUBSET

SUM problem has a solution iff f ∗ = −k.

It is worth noting that Proposition 19 holds for any set of approximation and heuristics

algorithms, as long as Assumption A4 holds. This result can be extended to the other

proposed formulations. We formalize this in the following corollary, which we state without

proof.

Corollary 10. RBP, PBPand BMIP for any fixed Γ ∈ {1, . . . , |H|}, are NP -hard.

Next, we introduce a family of greedy algorithms for solving the linear 0–1 knapsack

problem and present a single-level formulation of BKP for selecting the upper-level decisions

when the follower uses one of such greedy methods. Before that, we briefly discuss the case

when the follower uses an exact algorithm to solve the lower-level problem (we use such a

model in the numerical experiments in Section 3.5).

3.4.1 BKP with an exact follower

Consider the case of an exact follower, i.e., we assume that H = {h}, with h exact.

We briefly describe a cutting plane algorithm for solving BKP based on its single-level

relaxation. Specifically, the latter is given by the problem of the form:

[SKP] min
y,x

f(y,x) :=

n2∑
i=1

(
gi0 +

n1∑
j=1

gijyj
)
xi +

n1∑
j=1

tjyj

subject to Ay ≤ b,

w>x ≤ d,

y ∈ {0, 1}k ×Rn1−k
+ , x ∈ {0, 1}n2 ,
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where a single decision-maker controls both sets of decision variables and the follower’s

objective function is completely disregarded. Thus, SKP is a single-level mathematical

program and referred to as a single-level relaxation of BKP.

Clearly, the optimal objective function value of SKP provides a lower bound for the

optimal objective function value of BKP. Note that solution approaches based on exploiting

single-level relaxations as bounding mechanisms are among the most common approaches in

the bilevel optimization literature, see, e.g., a recent example in [34] for solving bilevel linear

integer problems. In this section, we demonstrate an application of this approach for a class

of nonlinear bilevel problem given by BKP.

In particular, we observe that SKP is a nonlinear mixed integer problem due to the

presence of nonlinear terms yjxi in its objective function. However, these terms can be

linearized by introducing new variables zij and additional set of linear constraints (see,

further details and discussion in [2]):

{
(xi, yj, zij) : zij = yjxi, xi ∈ {0, 1}, yLj ≤ yj ≤ yUj

}
={

(xi, yj, zij) : xi ∈ {0, 1}, zij ≤ yUj xi, zij ≤ yj + yLj xi − yLj , zij ≥ yLj xi, zij ≥ yj + yUj xi − yUj
}
,

where we assume that the lower (yLj ) and upper (yUj ) bounds on yj for each j ∈ {1, . . . , n1}

are either readily available or can be easily computed. (The bounds exist due to Assumption

A1: note that tighter bounds could improve solution times). Hence, SKP can be re-written

as an equivalent linear MIP that can be solved by a standard solver. This observation also

implies that SKP has a finite optimal solution.

The pseudo-code of the exact cutting-plane based approach for solving BKP is provided

in Algorithm 1, whose convergence is established in the next result.

Proposition 20. Algorithm 1 outputs an optimal solution of BKP in a finite number of

iterations.

Proof. Because x̌ is a binary vector, the number of cuts of the form presented at Step 3

is finite. Thus, it is sufficient to show that a cut at Step 3 is never regenerated.

Let (ŷκ, x̂κ) be the optimal solution of SKP after adding the κ-th cut and x̌κ be the fol-

lower’s optimal solution for y = ŷκ. If
∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷj
)
x̌i =

∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷj
)
x̂i,
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Algorithm 1 Exact Algorithm for solving BKP

Step 1. Solve SKP and denote by (ŷ, x̂) its optimal solution.

Step 2. Solve linear binary problem (3.12c) for y = ŷ. Let x̌ and z∗f denote its optimal

solution and the optimal objective function value, respectively.

if z∗f =
∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷj
)
x̂i then

(ŷ, x̂) is an optimal solution of BKP; STOP.

end if

if z∗f >
∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷj
)
x̂i then

Go to Step 3.

end if

Step 3. Add a linear constraint of the form:∑n2

i=1

(
ci0 +

∑n1

j=1 cijyj
)
xi ≥

∑n2

i=1

(
ci0 +

∑n1

j=1 cijyj
)
x̌i to SKP and go to Step 1.

then Algorithm 1 stops according to Step 2. Otherwise, we add
∑n2

i=1

(
ci0 +

∑n1

j=1 cijyj
)
xi ≥∑n2

i=1

(
ci0 +

∑n1

j=1 cijyj
)
x̌κi to SKP. Let (ŷκ+1, x̂κ+1) be its optimal solution in the next

iteration. Then we have two possible situations:

(i) If ŷκ+1 = ŷκ, then
∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷ
κ
j

)
x̂κ+1
i ≥

∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷ
κ
j

)
x̌κi . We also

know that x̌κ is the follower’s optimal solution for y = ŷκ, i.e.,
∑n2

i=1

(
ci0+

∑n1

j=1 cij ŷ
κ
j

)
x̂κ+1
i ≤∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷ
κ
j

)
x̌κi . Thus,

∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷ
κ
j

)
x̂κ+1
i =

∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷ
κ
j

)
x̌κi .

That is (ŷκ+1, x̂κ+1) is an optimal solution for BKP and the algorithm stops.

(ii) If ŷκ+1 6= ŷκ, then let x̌κ+1 be the follower’s optimal solution for y = ŷκ+1.

We have
∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷ
κ+1
j

)
x̂κ+1
i ≤

∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷ
κ+1
j

)
x̌κ+1
i and

∑n2

i=1

(
ci0 +∑n1

j=1 cij ŷ
κ+1
j

)
x̂κ+1
i ≥

∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷ
κ+1
j

)
x̌κi . Thus, if x̌κ+1 = x̌κ, then

∑n2

i=1

(
ci0 +∑n1

j=1 cij ŷ
κ+1
j

)
x̂κ+1
i =

∑n2

i=1

(
ci0 +

∑n1

j=1 cij ŷ
κ+1
j

)
x̌κ+1
i , which implies that (ŷκ+1, x̂κ+1) is an

optimal solution of BKP and the algorithm stops. Otherwise, x̌κ+1 6= x̌κ and the algorithm

generates a new cut.

Exact solution approaches based on single-level relaxations along with cutting plane

and/or branch-and-bound based ideas are very common in the bilevel literature (see, e.g.
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[8, 10, 34, 45]). While the vast majority of such approaches focus on linear or linear mixed

integer bilevel problems, our model contains nonlinear terms. More importantly, this cutting

plane algorithm can be extended to solve models from Section 3.2.2, see our discussion next.

3.4.2 BKP with a greedy follower

3.4.2.1 The greedy follower. The 0–1 knapsack problem, one of the most studied

combinatorial problems, can not be solved in polynomial time (unless P = NP ). However,

because of its relevance to practice, multiple exact and approximate solution algorithms have

been proposed, many of which are used in practice.

In this section, we focus our analysis on a simple version of the greedy algorithm, see [73].

In its simplest form, the greedy algorithm first ranks the available alternatives (referred to as

items in the context of knapsack problems) based on their cost-to-weight ratio ci/wi, where

ci ≡ ci(y) = ci0 +

n1∑
j=1

cijyj,

and then goes through the ranking (in decreasing order, so items with greater ranking are

preferred), selecting items if their inclusion does not violate the capacity constraint w>x ≤ d.

More generally, the follower may use different rating functions (besides the cost-to-weight

ratio) in a hierarchical fashion to rank items (so that ties in the overall ranking are broken

using ratings hierarchically), see, e.g., [63]. In what follows, we use such a generalization of

the greedy algorithm.

Specifically, we say that a rating function r := (ri(ci, wi), i = 1, . . . , n2) ∈ Rn2 assigns

rating ri ≡ ri(ci, wi) ∈ [0, 1] to item i, which is a function of its cost and weight. We consider

a set of rating functions {r1, . . . , rK} for some positive integer K. Define K := {1, . . . , K}

and

kij := argmax{k : r`i = r`j for all ` < k, k ∈ K} (3.15)

for any pair of distinct items (i, j), where r0
i = 0 for all i.

Let “�” denote the preference relation among items, i.e., i � j denotes that i is preferred

(regarding selection) over j. The preference relationship is such that

r
kij
i > r

kij
j ⇐⇒ i � j.
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Note that by (3.15) there may exist a tie in rankings between i and j if and only if kij = K

and rKi = rKj . For simplicity of exposition we assume that such scenarios do not occur.

The above discussion implies that ratings are used in a lexicographic fashion to define

the overall ranking. That is, rankings r1, . . ., rK are ordered according to the follower’s

preferences. With the above, we assume that, for y given, the follower solves (3.12c) using

the Greedy Heuristic described below.

Algorithm 2 Greedy Heuristic

Step 1: Order items according to “�.” Relabel items so that i � i + 1 for all i. Let

i← 1.

Step 2: Pick item i if its selection does not violate the knapsack constraint. Let i← i+1.

Step 3: If i ≤ n2, go to Step 2. Otherwise, return the obtained solution.

3.4.2.2 Single-level MIP reformulation. Single-level reformulations for bilevel pro-

grams are common in settings where the lower-level problem admits an LP formulation (see,

e.g., [9] and [114]). In particular, the strong duality property of LPs is usually exploited

to derive single-level MIP reformulations that can be handled by standard MIP solution

methods. For more complex lower-level problems (e.g., general MIPs at the lower level)

single-level reformulations are not typically available (at least not polynomially sized) when

the follower uses an exact algorithm. Next, we leverage the structure of the follower’s greedy

heuristic to provide a single-level reformulation of BKP with irrational follower.

Decision variables. Let N = {1, . . . , n2}. For item i ∈ N , let binary variable xi represent

the selection of item i, i.e.

xi =

1 if item i selected,

0 ∼ .

We consider following binary variables for distinct items i and j: αij represents whether

i � j; qij denotes if i � j and item i is selected; and zkij signals whether there is a tie in the

k-th rating function between items i and j. This is,
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αij =

1 if i � j,

0 ∼,
, qij = αij xi, zkij =

1 if rki = rkj ,

0 ∼ .

Constraints. First, we force preferences to align with the set of rating functions. Thus, we

begin ordering items using ranking function r1 by considering the following set of constraints.

r1
i ≤ r1

j + αij ∀i, j ∈ N (3.16a)

αij + αji = 1 ∀i, j ∈ N (3.16b)

qij ≤ αij ∀i, j ∈ N (3.16c)∑n

j=1
qij ≤ nxi ∀i ∈ N (3.16d)

αij + xi ≤ qij + 1 ∀i, j ∈ N (3.16e)

Constraints (3.16a)-(3.16b) provide consistency to the value of αij, when r1
i 6= r1

j . Constraints

(3.16c)–(3.16e) assure that qij is equal to xi when i � j, and zero otherwise.

When r1
i = r1

j , we require αij to be consistent with the remaining rating functions. We

do this via the following set of constraints.

− (1− zkij) ≤ rki − rkj ≤ (1− zkij) ∀i, j ∈ N, k ∈ K (3.17a)

rkj − rki ≤
∑k−1

h=1
(1− zhij) + zkij + (1− αij)− δk ∀i, j ∈ N, k ∈ K (3.17b)

zkij = zkji ∀i, j ∈ N, k ∈ K, (3.17c)

where δk = min{|rki − rkj | s.t. rki 6= rkj }. Note that zkij = 1 in (3.17a) implies that rki = rkj .

Moreover, if rki = rkj and k < kij, then (3.17b)-(3.17c) imply that zkij = 0 is infeasible. Also,

note that (3.17b)-(3.17c) are trivially satisfied for k ≥ kij because zhij = 1 for some h < kij.

Finally, we consider the knapsack constraints limiting item selection.

∑n

i=1
wixi ≤ d (3.18a)

wi ≤ d−
∑n

t=1
t6=i

wtqti +M(1− xi) ∀i ∈ N (3.18b)

wi +Mxi ≥ d−
∑n

t=1
t6=i

wtqti + δ ∀i ∈ N, (3.18c)
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where M is a sufficiently large constant. Constraint (3.18a) ensures that item selection

satisfies the follower’s knapsack constraint. In addition, constraints (3.18b)-(3.18c) enforce

item i to be selected when there is enough space left by the selection of items preferred to i.

In this constraint, we have that δ = min
i
{wi − ui} and ui is as follows:

ui = max
S
{d−

∑
t∈S

wt : 0 ≤ d−
∑
t∈S

wk < wi} ∀S ⊆ N, i 6∈ S.

As an example, if wi is integer for all i ∈ N , then we can simply set δ = 1.

The next proposition formalizes the correctness of the formulation (we omit its proof as

it is embedded in the above discussion).

Proposition 21. For any fixed y, x is a greedy solution if and only if it is a feasible solution

of inequalities (3.16a)-(3.18c).

From Proposition 21, BKP with a greedy follower admits the following single-level re-

formulation:

[g-BKP] min
y,x,α,q,z

f(y,x) :=

n2∑
i=1

(
gi0 +

n1∑
j=1

gijyj
)
xi +

n1∑
j=1

tjyj

subject to (3.16a)− (3.16e),

(3.17a)− (3.17c),

(3.18a)− (3.18c),

αij, qij, z
k
ij, xi ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ K

3.4.2.3 BKP with exact and greedy followers. From the above derivations, we con-

clude that if set H includes only greedy-like algorithmic methods, then we can reformulate

RBP and Γ-RBP as a single-level MIP problem. In addition, if H also includes an exact

method, then model (3.5) and Algorithm 1 can be exploited to find solutions for RBP and

Γ-RBP.

Specifically, assume, for example, that H in Γ-RBP includes an exact (optimistic)

method, h1, and several greedy approaches, h2, . . . , h|H|. We define extra binary vari-

ables xh for all h ∈ H. To solve Γ-RBP, we need to add the following constraints to

problem (3.5): the leader’s constraint (3.12b), inequalities (3.16a)–(3.18c) for xh2 , . . . , xh|H| ,
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and w>xh1 ≤ d. Because xh1 reflects the follower’s exact method, then we simply apply

Algorithm 1, where in Step 1 we solve the modified problem (3.5) as a single-level relaxation

of the original problem. In Step 2 the stopping criteria is evaluated to verify whether xh1

is an exact solution of the follower’s problem. Finally, in Step 3 we add cuts to ensure that

the algorithm converges to the appropriate values of xh1 , i.e., an optimal follower’s solution

given leader’s decision y.

3.5 NUMERICAL ILLUSTRATION

In this section we illustrate the modeling framework and structural results established

in Sections 3.2 and 3.3 by a series of numerical experiments.

3.5.1 Defender-Attacker Problem (DAP)

In this section we consider a class of the defender-attacker problems that can be for-

mulated as BKP and apply the solution techniques described in Section 3.4. DAP is an

important and well studied problem in bilevel optimization, see, e.g. [27], [115] and refer-

ences therein. Interesting results on this class and other related classes of bilevel problems

can be found in [25, 58, 98].

We consider a DAP variant in which a defender, as the leader, allocates defensive re-

sources among the various facilities in a set I to reduce a total restoration cost (subject

to a defense budget B), and the attacker, as the follower, selects facilities to attack. More

precisely, on the upper level the defender incurs on a cost of gi0 − gi · yi to restore facility

i ∈ I after an attack, where gi0 represents the cost of restoring facility i if unprotected when

attacked, gi denotes a marginal cost reduction per unit of defensive resource, and yi denotes

the defensive resources allocated to facility i ∈ I. In addition, we denote by bi the marginal

cost of allocating a unit of defensive resource to facility i. The defender’s objective is to

minimize the total recovery cost.
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On the lower level, for a given defensive resource allocation, the attacker selects targets

among the same various facilities, so as to maximize the total damage inflicted by attacking

said facilities; the damage inflicted by attacking facility i ∈ I (as perceived by the attacker)

is given by ci0−ciyi, where ci0 denotes the base damage inflicted to an unprotected facility i,

and ci is a marginal damage reduction per unit of defensive resource. The attacker aims at

maximizing the total damage inflicted, subject to a total budget on attacking resources. In

this regard, we let wi denote the amount of said resources necessary to attack facility i ∈ I,

and K the overall budget on attacking resources.

Assuming a rational follower (in the sequel, we refer to the defender (attacker) and leader

(follower) interchangeably), the DAP described above can be formulated as follows.

[DAP] min
y∈Y

f1(y,x) :=
∑
i∈I

(gi0 − giyi)xi (3.20a)

subject to x ∈ X := argmax
x̂∈{0,1}|I|

{
f2(y, x̂) =

∑
i∈I

(ci0 − ciyi)x̂i |
∑
i∈I

wix̂i ≤ K

}
, (3.20b)

where Y := {y ∈ R|I|+ : gi0 − giyi ≥ 0, ci0 − ciyi ≥ 0 ∀i ∈ I,
∑

i∈I biyi ≤ B} denotes

the feasible region of possible defensive resource allocations, while the follower’s (attacker’s)

decision variable, x̂i, is equal to 1 if and only if facility i attacked.

In our computational experiments we use randomly generated instances of DAP where

all parameters are integers generated as follows: gi0 ∼ U [0, 100], ci0 ∼ U [0, 50], gi, ci ∼

U [0, 2], bi, wi ∼ U [0, 20] for all i ∈ I, where U [·, ·] denotes a discrete uniform distribution.

Furthermore, we let B =
∑

i∈I bi and K = 0.5
∑

i∈I wi. All experiments are conducted on an

Intel Xenon PC with 3.7 GHz CPU and 32 GB of RAM, and MIPs are solved using CPLEX

12.4 ([67]).

3.5.2 Results and Discussion

Note that for a given upper-level decision (i.e., a defensive resource allocation), the at-

tacker’s problem in DAP reduces to the standard 0-1 knapsack problem. The attacker,

solves his problem either exactly or by using a greedy approach outlined in Section 3.4.2.
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Specifically, in our experiments the attacker’s set of alternative solution methods, H, con-

sists of an exact method, h1, and two Greedy Heuristics, h2 and h3. Thus, |H| = 3. We

assume that for h2 the rating functions are given by r1
i (ci, wi) = ci and r2

i (ci, wi) = wi, while

for h3 the rating functions are r1
i (ci, wi) = ci/wi (i.e., the classical cost-to-weight ratio) and

r2
i (ci, wi) = wi, where i ∈ I.

Exploring Γ-RBP and RBP. In this set of experiments we explore how the leader’s

optimal decisions both under Γ-RBP or RBP and the follower’s responses affect the ob-

jective function values at both levels. Specifically, we consider three instances of DAP with

|I| = 15. The results of our experiments are depicted in Figures 6(a)-(i).

The results for the first instance of DAP are given in Figures 6(a)-(c). Specifically,

Figure 6(a) displays the leader’s objective function values, f1, when the leader implements

y∗Γ, Γ ∈ {1, 2, 3}. The follower responds using methods h1, h2 and h3; thus, for each y∗Γ there

are three bars in Figure 6(a), each corresponding to one of the follower’s solution methods.

Similarly, Figure 6(b) depicts the follower’s objective function values, f2, given his responses

via one of the methods. The leader’s loss values, ∆h(y
∗
Γ), are illustrated in Figure 6(c) for

Γ ∈ {1, 2, 3} and different methods h1, h2 and h3.

Recall that by the definition of Γ-RBP, the defender takes into account only Γ out of

|H| possible solution methods of the attacker. Thus, for Γ = 1 in Figure 6(a), the defender

takes into account only method h2 and disregards h1 and h3. Consequently, as the defender’s

hedges only against the best possible outcome, her objective function attains the best possible

value, zΓ=1, if she implements y∗Γ=1 and the attacker responds using h2. Note that in this

case, the defender’s loss, ∆h2(y
∗
Γ=1), is equal to zero. On the other hand, if the defender’s

guess about the attacker’s response is incorrect (i.e., the attacker’s uses either h1 or h3)

then her losses can be rather substantial, which can be observed by comparing ∆h1(y
∗
Γ=1)

and ∆h3(y
∗
Γ=1) against ∆h2(y

∗
Γ=1) in Figure 6(c). Also, it is quite intuitive that the attacker

obtains his best possible objective function values (i.e., he inflicts the most damage to the

defender) whenever the leader has an incorrect assumption about the attacker’s method, see,

e.g., the values of f2 with h1 and h3 for Γ = 1 in Figure 6(b).
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In Figure 6(a) for Γ = 2 the defender takes into account two out of three of the possible

solution methods used by the attacker, which, in this instance, turn out to be h1 and h3. The

defender’s objective function value, zΓ, increases, which is consistent with Proposition 15.

The case of Γ = |H| = 3 corresponds to the most conservative defender, where Γ-

RBP reduces to RBP as she hedges against all three possible solution methods used by the

attacker. Clearly, as the defender hedges against all three solution methods her objective

function in the worst case for y∗Γ=3 is better than the worst cases of y∗Γ=1 and y∗Γ=2. Note

also that Corollary 8 is illustrated in Figures 6(a), as for any value of Γ ∈ {1, 2, 3}, z∗Γ ≤

z∗H = z∗Γ=3.

Figure 6(c) depicts losses ∆h(y
∗
Γ), h ∈ {h1, h2, h3}. These losses are caused by lower-

level uncertainty. Thus, we can interpret these values as the “value of information” for the

defender regarding lower-level uncertainty.

Finally, the other two instances are illustrated in Figures 6(d)-6(f) and Figures 6(g)-6(i),

respectively. These results are consistent with those depicted in Figures 6(a)-6(c). Recall

that whenever the defender solves model Γ-RBP, she does not hedge against a fixed subset

of the attacker’s methods, but rather ensures that Γ out of them are taken into account,

while |H| − Γ worst outcomes for the defender are discarded. Thus, it is worth pointing out

that for the same value of Γ ∈ {1, 2} in Figures 6(a), 6(d) and 6(g) the defender takes into

account different subsets of the attacker’s solution methods.

The leader’s loss analysis. In this set of experiments, we provide a more detailed

exploration of the defender’s losses under different scenarios. In Figure 7(a) we depict the

defender’s loss ratio, ∆h(y)/f ∗h , where the attacker selects a method from h1, h2 or h3 to

respond to the defender’s decision, y. The latter is assumed to be computed based on one of

the following six methods. In the first three, the defender assumes that the attacker always

selects a specific method h and thus, she implements yh. In the next three, she decides based

on the Γ-RBP model, where Γ ∈ {1, 2, 3} and implements y∗Γ. Furthermore, Figure 7(b),

depicts the defender’s ex-post average loss ratio, ∆A
h′h/f

∗
h , for h, h′ ∈ {h1, h2, h3}. The results

for both figures are obtained for ten DAP instances, where |I| = 15 and |H| = 3, and the

average loss ratio is reported. In each figure the error bars represent the smallest and largest

loss ratios.

64



In Figure 7(a) the first three bars, for each of the defender’s solution method h1, h2 and

h3, represent the leader’s loss ratio due to her incorrect guess about the attacker’s response.

If her guess is correct, then by definition, ∆h(y
h) = 0 (see Definition 2), and consequently her

loss ratio is zero. For example, in Figures 7(a), there is no “blue bar” for attacker’s method

h1, meaning that when the defender implements yh1 and the attacker responds based on

method h1, then the defender’s loss ratio is zero. Otherwise, the defender’s loss can be

rather significant when her guess about the attacker’s behavior is incorrect. For example,

see the “blue bar” for h2 in Figures 7(a) which represents ∆h2(y
h1)/f ∗h2 .

On the other hand, Figures 7(a) illustrates how employing Γ-RBP to hedge against

all attacker’s potential responses, influences the defender’s loss ratio. Note that, because in

Γ = 1 the defender ignores two possible responses, her loss still can be large. See, for example

the “gray bar” for methods h1 and h3. However, her loss ratio decreases by increasing the

value of Γ to Γ = 2 and Γ = 3. For example, for any attacker’s method, the defender’s loss

ratio for Γ = 3, “green bar,” is among the smallest values of loss ratios.

Finally, Figures 7(b) displays the leader’s ex-post loss ratio, ∆A
h′h/f

∗
h , under different

situations. If the attacker applies a method which is anticipated by the defender, then by

definition the defender’s ex-post loss value is zero (see Definition 3). Note that, defender’s

ex-post loss ratio can be larger than her actual loss ratio. For example, compare the “red bar”

in Figures 7(b), for attacker’s method h1, with the corresponding value in Figures 7(a). In

other words, even when the defender’s objective functions is much smaller than she expected,

in fact, her actual losses are not necessarily that substantial.

Comparing RBP, Γ-RBP and PBP. Finally, in the last set of our experiments, we

compare the defender’s expected loss value, see (3.8), when she applies one of the PBP,

Γ-RBP (for Γ = 2) or RBP models, i.e., she implements as her decisions y∗p, y∗Γ=2 or y∗Γ=3,

respectively. These experiments illustrate the effect of incorporating ph into our framework,

on reducing the defender’s expected loss value. In other words, if the leader has some

additional information, then she can exploit it to implement decisions that potentially reduce

her expected losses. In our context, this information consists of probabilities of implementing

a particular solution method by the attacker.
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We use a specific instance of DAP in which |I| = 15 and H = {h1, h2, h3}. The param-

eters of the defender’s problem are g0 = [110 30 35 3.5 . . . 3.5 5 10]>, g = [3 3 2 . . . 2 5]>,

bi = 1 for all i ∈ I and B = 5. In addition, for the attacker’s problem we have c0 =

[15M 15M 5000 720 605 500 405 320 245 180 125 80 45 20 0], c = [0 0 0 12 11 10 9 8 7 6 5 4 3 2 0]>,

w = [M M + 1 5000 60 55 50 45 40 35 30 25 20 15 10 5]> and K = M + 5001, where M is a

sufficiently large constant. The defender’s optimal solutions for different attacker’s responses

is presented in Table 3.

Table 3: Leader’s optimal solution and her corresponding objective function value for follower’s
different solution methods for the DAP instance used in Figure 8

h yh f ∗h

h1 yh1 = (0 5 0 . . . 0)> 50

h2 yh2 = (5 0 . . . 0)> 130

h3 yh3 = (0 . . . 0 5)> 135

The defender’s expected loss value, Eh[∆h(y)], is illustrated in Figures 8(a)-(f) as a

function of ph, h ∈ {h1, h2, h3}, where we fix the value of ph for a specific method in each

figure. For a fixed defender’s decision y, the value of f(y,xh(y)) can be computed for any

method h ∈ H, and then Eh[∆h(y)] is a linear function of ph, see equation (3.8). Note that

for Γ-RBP and RBP, the defender’s decisions do not depend on the information available

to PBP, i.e., the probability distributions. Thus, given decisions y∗Γ=2 and y∗Γ=3, in Γ-RBP

and RBP, the defender’s expected losses are linear function of ph, which can be observed in

Figures 8(a)-(f).

On the other hand, for the PBP model the defender incorporates this additional in-

formation into her decision making, and thus, the value of y∗p changes for different values

of ph, h ∈ H. Consequently, Eh[∆h(y)] is a piece-wise linear function of ph in PBP, see

Figures 8(a)-(f).
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Furthermore, compared to Γ-RBP, model PBP always results in smaller values of ex-

pected losses. This observation is not surprising, given that the defender’s objective function

in PBP is equivalent to minimizing the expected loss value, see (3.8). This reduction in

the expected losses can be interpreted as the value of additional information available to the

defender.

Recall that for Γ-RBP, only Γ methods out |H| are taken into account by the defender.

In Figure 8, for the Γ-RBP model, we set Γ = 2, and thus, one of the attacker’s solution

methods is disregarded by the defender. Consequently, whenever the probability of imple-

menting this method is sufficiently high (small), the expected losses of RBP are smaller

(higher) than those of Γ-RBP.

For example, in Figure 8(c), Γ-RBP hedges against h1 and h2, while h3 is disregarded.

The value of ph1 = 0 in Figure 8(c). Thus, when the value of ph2 is sufficiently small, 0 ≤

ph2 ≤ 0.4, the corresponding probability of implementing h3 is rather high. Consequently,

the expected losses of Γ-RBP are worse than those of both the RBP and PBP models. On

the other hand, as the value of ph2 increases, given that ph1 = 0, the value of ph3 decreases

resulting in better and worse expected losses for Γ-RBP and RBP, respectively.

3.6 CONCLUSION

One of the key assumptions in the standard bilevel optimization modeling framework is

that the follower solves his problem optimally. However, there are many practical application

settings where this assumption is not likely to hold. In this chapter, we propose an approach

for addressing this issue. By assuming that a set of possible follower’s solution methods

is known, we propose three modeling approaches, namely, RBP, Γ-RBP and PBP, that

allow the leader to hedge against different response scenarios at the lower level, which we

refer to as the lower-level algorithmic uncertainty.

Among the proposed approaches, the RBP model is the most conservative one as it

hedges against all possible follower’s solution methods. On the other hand, the Γ-RBP

model allows the leader to control the level of her conservatism through a fixed parameter Γ.
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Finally, the PBP model assumes that some additional probabilistic information is available

to the leader, who exploits it in the decision-making process.

We explore theoretical properties of the proposed models, and illustrate its application

using a broad class of the bilevel knapsack problems in the context of the defender-attacker

model. Our results indicate that the proposed approaches allow the leader to substantially

reduce her losses whenever the follower’s actual behavior is not known precisely.

With respect to the future research directions, it would be valuable to derive additional

single-level reformulations of bilevel problems with irrational followers where the lower-level

algorithmic uncertainty extends beyond the use of greedy heuristics. Another interesting

direction includes settings where the leader and the follower interact repeatedly over time,

and hence the leader might infer information regarding the method used by the follower

based on his response to the leader decisions.
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Figure 6: Illustration of Proposition 15 and Corollary 8 for three DAP instances where |I| = 15

and |H| = 3. The results for the first instance are given in Figures 6(a)-(c). Specifically, the

defender implements y∗Γ, Γ ∈ {1, 2, 3}, and the attacker responds using methods h1, h2 and h3.

Figures 6(a) and 6(b) depict the defender’s and the attacker’s objective function values, f1 and

f2, respectively, for each follower’s method (thus, three different bars) given leader’s decision y∗Γ,

Γ ∈ {1, 2, 3}. The leader’s loss values, ∆h(y∗Γ), are illustrated in Figure 6(c) for Γ ∈ {1, 2, 3} and

different methods h. The value of z∗Γ for Γ ∈ {1, 2, 3} is shown in Figure 6(a). Figures 6(d)-6(f)

and Figures 6(g)-6(i) display the same information for two additional instances of DAP.
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Figure 7: Illustration of the (defender’s) loss ratios, ∆h(y)/f∗h and ∆A
h′h/f

∗
h , under different situ-

ations. The defender’s loss is considered for each possible solution method of the attacker, i.e., h1,

h2 and h3. In (a) for each attacker’s solution approach, the defender’s decision, y, is assumed to be

computed based on one of the following six methods (depicted in different colors). In the first three,

the defender assumes that the attacker always selects a specific method h and thus, she implements

yh. In the next three, she decides based on the (γ, α)-BMIP model, where Γ ∈ {1, 2, 3} and thus,

she implements y∗Γ. In (b) we depict the defender’s ex-post average loss ratio ∆A
h′h/f

∗
h (relative to

her expectations). The results are obtained for ten DAP instances where |I| = 15 and |H| = 3.

The error bars represent the smallest and largest loss ratios.
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Figure 8: Illustration of the defender’s expected loss value as a function of ph, h ∈ H for a DAP

instance with |I| = 15 and |H| = 3. For Γ-RBP, Γ = 2. Thus, the expected losses values are

displayed for defender’s decision y∗p, y∗Γ=2 and y∗Γ=3, i.e., when she uses PBP, Γ-RBP and RBP,

respectively. In each figure, ph is fixed for a specific method h and the defender’s expected loss

values for different approaches are compared.
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4.0 ON LINEARIZED REFORMULATIONS FOR A CLASS OF BILEVEL

LINEAR INTEGER PROBLEMS

4.1 INTRODUCTION

In this chapter we consider a class of bilevel linear integer problems (BLIPs) where the

leader’s and follower’s objective functions and constraints are affine functions of the decision

variables. Such bilevel problems encompass many applications across different fields, includ-

ing economics, energy, defense, pricing, among others, see [38, 41, 81] and the references

therein. Formally, we focus on BLIPs of the form:

ζ∗ = max
x,y

{
a>x+ d>y : x ∈ X, y ∈ argmax

ŷ
{c>ŷ : ŷ ∈ Y (x)}

}
, (4.1)

where X = {x ∈ Zq+ : Hx ≤ h} and Y (x) = {y ∈ Rn
+ : F y + Lx ≤ f} denote the

leader’s and the follower’s feasible sets, respectively, with a ∈ Rq, d ∈ Rn, H ∈ Rp×q,

h ∈ Rp, F ∈ Rm×n, L ∈ Rm×q and f ∈ Rm. BLIPs given by (4.1) are clearly NP -hard

as linear mixed-integer problems form a special class of (4.1). Furthermore, bilevel linear

problems (BLPs) obtained by relaxing the integrality restrictions in X are also known to

be NP -hard [61, 71]. Bilevel problems that involve integrality restrictions at the lower

level [45, 104] are outside the scope of this note.

Arguably, the most common methods of solving bilevel problems are based on reformu-

lating them as single-level problems by replacing a linear problem (LP) at the lower level

by its optimality conditions, e.g., Karush-Kuhn-Tucker (KKT) optimality conditions. From

this single-level reformulation, BLPs and BLIPs of form (4.1) can be further reformulated as

linear mixed-integer problems (linear MIPs), see, e.g., [9, 10, 48]. From the implementation

perspective, such linear MIP reformulations have important advantages, as they provide the
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opportunity for application of off-the-shelf MIP solvers. Unfortunately, the typical KKT-

based MIP reformulation introduces a new binary variable for each complementary slackness

condition at the lower level, and as a consequence, might not be scalable for many practical

instances of bilevel problems.

To address this drawback, in this note we explore MIP reformulations of BLIPs that

exploit the strong duality (SD) property of LPs. Simply speaking, this approach replaces

the complementarity slackness constraints that result from the KKT conditions, by a single

quadratic constraint derived from the strong duality property. Under the assumption that

the upper-level variables are integer, this quadratic constraint can be linearized by consider-

ing the binary decomposition of the integer variables and applying classical 0–1 linearization

approaches (see e.g., [56, 57, 79, 109]).

Specifically, in this note we describe two alternative linearization methods of the strong

duality constraint. In contrast to the KKT-based counterpart, the number of required new

binary variables in SD-based reformulations is independent from the number of lower-level

variables and constraints. Particularly, if the upper-level variables are restricted to be binary,

then the reformulations do not introduce new discrete variables. In a more general setting,

where the upper-level variables are integer, these reformulations introduce O(q log(U)) new

binary variables, where q is the number of upper-level variables and U is a valid upper

bound for all upper-level variables. However, the introduction of fewer binary variables in

the SD-based reformulations comes at the price of introducing more continuous variables,

and potentially, more linear constraints.

To the best of our knowledge the considered SD-based linearized models of (4.1) are

new except one of them for the case of binary variables, see further details and references

in subsection R2 of Section 4.2. As mentioned earlier we describe two alternative ways of

linearizing the strong duality constraint, and each of them can handle both general integer

and binary cases. It should be noted that the discussed reformulations are fairly straightfor-

ward and are based on combinations of two classical ideas from the MIP literature, namely,

(i) the linearization approach of a product of two variables given that at least one of them

is binary and (ii) the binary representation that uses a logarithmic number of variables

in terms of the problem’s primitives. In particular, the former idea is a building block
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for linearized models of many nonlinear (e.g., quadratic and fractional) binary problems,

see [3, 56, 57, 102, 109, 112] and the references therein. Detailed discussions of the latter

idea can be found in [4, 107]. Approaches based on their combinations have also been used

for linearizing fractional 0–1 and mixed integer bilinear problems [24, 59].

Finally, we are not aware of any systematic studies that perform the computational

comparisons between KKT- and SD-based reformulations of BLIPs. More importantly, in our

experiments we observe that for many test instances the SD-based reformulations are orders

of magnitude faster than KKT-based one. This speed-up is more noticeable for BLIPs that

involve a lower-level problem with sufficiently more variables and constraints than the upper-

level problem, which is intuitive given the sizes of the obtained linearized models. We believe

that this observation is an important contribution to the bilevel optimization literature.

4.2 MIP REFORMULATIONS

In this section we consider BLIPs given by (4.1), where it is assumed that set X is

nonempty and bounded and for any leader’s solution x ∈ X, set Y (x) is also nonempty and

bounded. Therefore, there exists an optimal solution of (4.1). Furthermore, we also assume

that the bilevel model (4.1) follows the optimistic approach, which implies that when facing

with multiple lower-level optimal solutions, the follower picks the one that favors the leader

most, i.e., the leader and follower are cooperative. All of the above assumptions are standard

in the bilevel optimization literature [38].

Next, we present three possible linear MIP reformulations of (4.1) and compare their

sizes in terms of the number of variables (both continuous and discrete) and the number

of constraints. We note that without any additional assumptions, these reformulations are

not comparable in terms of their LP relaxation quality. That is, in general no reformulation

is better than the others in terms of their LP relaxation quality. Particularly, as shown in

our experiments in Section 4.3, there are different relationships between the quality of the

relaxations that depend on the structure and the data of the bilevel problem.
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Reformulation 1 (R1). The first reformulation referred to as R1, replaces the lower-

level problem by its optimality conditions and then linearizes the resulting optimization

problem by applying the big-M method. This approach is the most common in the bilevel

optimization literature and has been studied in a number of papers, see, e.g., [9, 10, 13, 14,

23, 29, 48, 72, 117].

Specifically, replacing the lower-level problem in (4.1) by its KKT conditions yields a

single-level nonlinear problem given by:

ζ∗ = max
x,y,θ

a>x+ d>y (4.2a)

subject to Hx ≤ h (4.2b)

F y + Lx ≤ f (4.2c)

− F>θ ≤ −c (4.2d)

(f − F y −Lx)>θ = 0 (4.2e)

(F>θ − c)>y = 0 (4.2f)

x ∈ Zq+, y ∈ Rn
+, θ ∈ Rm

+ . (4.2g)

In the problem (4.2a)–(4.2g), the dual variables of the lower-level LP are denoted by

θ1, . . . , θm, where its primal and dual feasibility constraints are given by (4.2c) and (4.2d),

respectively. The complementary slackness constraints of the lower-level problem are given by

equations (4.2e) and (4.2f). Therefore, a point (y, θ) ∈ Rn
+×Rm

+ satisfies the equations (4.2c)-

(4.2f) if and only if it satisfies the KKT optimality conditions of the lower-level problem given

the leader’s decision x.

Let (x∗, y∗, θ∗) be an optimal solution of (4.2). Let M and M̃ be sufficiently large con-

stants such thatM ≥ max{‖f−F y∗−Lx∗‖∞, ‖θ∗‖∞} and M̃ ≥ max{‖F>θ∗−c‖∞, ‖y∗‖∞},

where ‖b‖∞ = maxi=1,...,`{bi} for any vector b ∈ R`. Then, by introducing new binary vari-

ables u ∈ {0, 1}m and v ∈ {0, 1}n, nonlinear constraints (4.2e) and (4.2f) can be linearized,

which implies that problem (4.2) is equivalent to:

(R1) ζ∗ = max
x,y,θ,u,v

a>x+ d>y (4.3a)

subject to (4.2b)− (4.2d) (4.3b)
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f − F y −Lx ≤Mu (4.3c)

θ ≤M(1− u) (4.3d)

F>θ − c ≤ M̃v (4.3e)

y ≤ M̃(1− v) (4.3f)

x ∈ Zq+, y ∈ Rn
+, θ ∈ Rm

+ (4.3g)

u ∈ {0, 1}m, v ∈ {0, 1}n, (4.3h)

where 1 denotes vectors of all ones of appropriate dimensions. Constraints (4.3c)-(4.3d)

and constraints (4.3e)-(4.3f) are the linearized versions of the nonlinear constraints (4.2e)

and (4.2f), respectively. Because u is a binary variable, the right-hand side in either of in-

equalities (4.3c) or (4.3d) is zero and thus, equation (4.2e) holds. By the same arguments,

it follows that the constraints (4.3e)-(4.3f) are equivalent to constraint (4.2f).

The main advantage of this MIP reformulation is that it is valid even if the upper-level

variables are allowed to take continuous values, i.e., the integrality restrictions in X are

relaxed. However, it assigns a new binary variable to each constraint and variable in the

lower-level problem.

Reformulation 2 (R2). We can also apply the strong duality property of LPs to replace

the lower-level problem and achieve a single-level problem. To the best of our knowledge, this

technique has been used only for some specific classes of bilevel problems where the upper-

level decision variables are required to be binary, or where the structure of the problem

allows for simple linearizations of the product of certain decision variables, see [6, 7, 16, 19,

52, 53, 82–84, 87, 88, 91, 93, 97, 113]. However, this approach can be used to develop a

single-level reformulation, even if the upper-level variables are general integers. For more

details on these types of linearizations we refer the reader to [3] and the references therein.

In the specific bilevel problem presented in (4.1), the strong duality property results in

c>y = (f − Lx)>θ, which involves the product of variables x and θ through the expression

x>L>θ. Accordingly, problem (4.1) is equivalent to the following reformulation:

ζ∗ = max
x,y,θ

a>x+ d>y (4.4a)
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subject to (4.2b)− (4.2d) (4.4b)

c>y = (f −Lx)>θ (4.4c)

x ∈ Zq+, y ∈ Rn
+, θ ∈ Rm

+ , (4.4d)

which includes nonlinear constraint (4.4c). In such situations, the binary expansion of the

integer variables xi, i ∈ I = {1, 2, . . . , q}, can be employed to obtain a linear MIP [49, 59,

109]. Let Ui be an upper bound on the value of xi, i ∈ I, then xi can be written as

xi =
∑
r∈Ri

2r−1zir, (4.5)

where Ri = {1, 2, · · · , blog2(Ui)c + 1} for all i ∈ I, and zir ∈ {0, 1} for all r ∈ Ri, i ∈ I.

Hence, the nonlinear term in constraint (4.4c) can be rewritten as

x>L>θ =
∑
k∈K

∑
i∈I

xiLkiθk =
∑
k∈K

∑
i∈I

∑
r∈Ri

2r−1Lkizirθk, (4.6)

where K = {1, . . . ,m}.

For any i ∈ I, r ∈ Ri and k ∈ K, define virk = zirθk. Note that virk is a continuous

variable and we have virk = θk if zir = 1 and virk = 0, otherwise. The variables virk can

replace the products zirθk in equation (4.6), while the constraints virk = zirθk can be enforced

through the following linear inequalities [3, 57, 79, 109]:

virk ≤ θUk zir ∀i ∈ I, r ∈ Ri, k ∈ K (4.7a)

virk ≤ θk + θLk zir − θLk ∀i ∈ I, r ∈ Ri, k ∈ K (4.7b)

virk ≥ θLk zir ∀i ∈ I, r ∈ Ri, k ∈ K (4.7c)

virk ≥ θk + θUk zir − θUk ∀i ∈ I, r ∈ Ri, k ∈ K, (4.7d)

where θUk and θLk are upper and lower bounds, respectively, on θk for any k ∈ K. For any

i ∈ I and r ∈ Ri, constraints (4.7a) and (4.7c) enforce that if zir = 0, then virk = 0 for all

k ∈ K; otherwise, constraints (4.7b) and (4.7d) ensure that virk = θk for all k ∈ K. Because

θk is a nonnegative variable for all k ∈ K, we can also replace θLk by zero and consequently

remove constraint (4.7c). Therefore, problem (4.1) can be reformulated as follows:

(R2) ζ∗ = max
x,y,θ,z,v

a>x+ d>y (4.8a)
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subject to (4.2b)− (4.2d) (4.8b)

(4.7a)− (4.7d) (4.8c)

xi =
∑
r∈Ri

2r−1zir ∀i ∈ I (4.8d)

c>y +
∑
k∈K

∑
i∈I

∑
r∈Ri

2r−1Lkivirk = f>θ (4.8e)

x ∈ Zq+, y ∈ Rn
+, θ ∈ Rm

+ (4.8f)

zi ∈ {0, 1}|Ri|, vi ∈ R|Ri|×m ∀i ∈ I, (4.8g)

which is the desired reformulation. In contrast with Reformulation R1, the number of new

binary variables in R2 does not depend on the size of the follower’s linear problem but only

on the number of leader’s variables and their upper bounds. Furthermore, if the leader’s

variables in X are binary, then this approach does not introduce new binary variables. How-

ever, this reformulation is not valid if there are no integrality restrictions for the upper-level

variables.

Reformulation 3 (R3). This reformulation presents an alternative approach to linearize

equation (4.6) and to the best of our knowledge it has not been used before in the bilevel

optimization literature. By linearizing the products between the upper-level binary decom-

position variables and a linear combination of the lower-level dual variables, this method

results in a significant reduction in the number of additional variables and constraints. Note

that equation (4.6) can be rewritten as follows:

x>L>θ =
∑
i∈I

∑
r∈Ri

2r−1zir
∑
k∈K

Lkiθk. (4.9)

For any i ∈ I and r ∈ Ri we define a continuous variable vir = zir
∑

k∈K Lkiθk. Therefore,

in the new reformulation the linearization constraints (4.7a)-(4.7a) become the following

inequalities, see [3, 56]:

vir ≤ ΘU
i zir i ∈ I, r ∈ Ri (4.10a)

vir ≤
(∑
k∈K

Lkiθk

)
+ ΘL

i zir −ΘL
i i ∈ I, r ∈ Ri (4.10b)

vir ≥ ΘL
i zir i ∈ I, r ∈ Ri (4.10c)
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vir ≥
(∑
k∈K

Lkiθk

)
+ ΘU

i zir −ΘU
i i ∈ I, r ∈ Ri (4.10d)

where ΘL
i and ΘU

i are lower and upper bounds, respectively, on the value of
∑

k∈K Lkiθk.

The idea behind (4.9) and inequalities (4.10a)-(4.10d) is similar to that of inequalities (4.7a)-

(4.7d), see further discussions in [3, 56]. For any i ∈ I and r ∈ Ri, the constraints (4.10a)

and (4.10c) ensure that if zir = 0 then vir = 0; otherwise, if zir = 1, then the con-

straints (4.10b) and (4.10d) enforce that vir = θk.

Therefore, problem (4.1) can be written as follows:

(R3) ζ∗ = max
x,y,θ,z,v

a>x+ d>y (4.11a)

subject to (4.2b)− (4.2d) (4.11b)

(4.10a)− (4.10d) (4.11c)

xi =
∑
r∈Ri

2r−1zir ∀i ∈ I (4.11d)

c>y +
∑
i∈I

∑
r∈Ri

2r−1vir = f>θ (4.11e)

x ∈ Zq+, y ∈ Rn
+, θ ∈ Rm

+ (4.11f)

zi ∈ {0, 1}|Ri|, vi ∈ R|Ri| ∀i ∈ I. (4.11g)

As mentioned at the beginning of the section, the relaxation quality of the reformulations

are not comparable (see also Section 3). However, under certain stringent conditions on the

data and the value of the big-M constants, we have the following relationship between R2

and R3.

Proposition 22. Suppose that Lki ≥ 0 for all k ∈ K and i ∈ I. If ΘU
i ≥

∑
k∈K Lkiθ

U
k and

ΘL
i ≤

∑
k∈K Lkiθ

L
k for all i ∈ I, then R2 is at least as strong as R3 in terms of its LP

relaxation quality.

Proof. Let x̂, ŷ, θ̂, ẑ and v̂ be a feasible solution in the LP relaxation of R2. We claim there

exist x, y, θ, z, v feasible in the relaxation of R3 that attain the same objective function

value. Set x = x̂, y = ŷ, θ = θ̂, z = ẑ and for any i, r, set vir =
∑

k∈K Lkiv̂ikr. Then it can

be readily verified that x, y, θ, z, v are feasible for the LP relaxation of R3 since L ≥ 0,

79



ΘU
i ≥

∑
k∈K Lkiθ

U
k and ΘL

i ≤
∑

k∈K Lkiθ
L
k for all i ∈ I. Moreover, this point attains the

same objective function value as x̂, ŷ, θ̂, ẑ and v̂ do in R2.

Sizes of the Reformulations. We compare the sizes of reformulations R1-R3 in terms of

the numbers of discrete and continuous variables as well as the number of constraints. This

information is provided in Table 4 for x ∈ Zq+ and x ∈ {0, 1}q where R̄ =
∑

i∈Iblog2(Ui)c+q.

Note that when the upper-level decision variables are enforced to be binary, then there is

no need to use the binary representation and this reduces the number of constraints and

variables in R2 and R3.

Table 4: The sizes of the proposed reformulations, where p/q and m/n represent the numbers of

leader’s and follower’s constraints/variables, respectively. Parameter R̄ is equal to
∑

iblog2(Ui)c+q,

where Ui is a valid upper bound for the value of xi.

Formulation
# Continuous

variables
# Discrete

variables
# Linear
constraints

x ∈ Zq+
R1 n+m q + n+m p+ 3m+ 3n
R2 n+m+mR̄ q + R̄ p+m+ n+ 4mR̄+ q + 1
R3 n+m+ R̄ q + R̄ p+m+ n+ 4R̄+ q + 1

x ∈ {0, 1}q
R1 n+m q + n+m p+ 3m+ 3n
R2 n+m+mq q p+m+ n+ 4mq + 1
R3 n+m+ q q p+m+ n+ 4q + 1

4.3 COMPUTATIONAL EXPERIMENTS

In this section we describe our computational experiments aimed at exploring the numer-

ical performance of the reformulations from Section 4.2. Specifically, we reformulate three

different classes of bilevel problems as single-level MIPs according to R1-R3 and then solve
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them with CPLEX 12.4 [67]. All experiments are performed on the same machine, i.e., an

Intel Xenon PC with 3.7 GHz CPU and 32 GB of RAM.

For each instance size of each problem, we generate ten test instances and report the

average running time of the solver (in the column denoted by “Time”) along with the LP

relaxation quality (in the column denoted by “LP Qual”), see Tables 6-9, 11, 12, 15 and

16. The LP relaxation quality is given by ζ∗LP/ζ
∗, where ζ∗LP denotes the optimal objective

function value of the LP relaxation. For each test class we also report the sizes of their MIP

reformulations, see Tables 5, 10 and 13. The time limit is set to 10800 seconds (3 hours).

4.3.1 Bounded Bilevel Linear Integer Problem (BBLIP)

The first considered problem contains explicit bounds on the values of the lower-level

variables:

[BBLIP] max
x∈X

a>x+ d>y (4.12a)

subject to Hx ≤ h (4.12b)

y ∈ argmax
ŷ∈Rn+

{c>ŷ : F̃ ŷ + L̃x ≤ f̃ , I ŷ ≤ 1}, (4.12c)

where H ∈ Rp×q, L̃ ∈ Rm̃×q, F̃ ∈ Rm̃×n and I is an n × n identity matrix. In (4.12)

we consider both binary and integer settings, where X = {0, 1}q or X = Zq+, respectively.

Observe that BBLIP can be framed in terms of problem (4.1) by setting F =
[
F̃
I

]
, L =

[
L̃
O

]
,

and f =
[
f̃
1

]
, where O is an n× q matrix of zeros. Thus, in this case m = m̃+n. In Table 5

we show the reformulation sizes for both integer and binary cases.

The coefficients for all matrices and vectors in (4.12) are randomly generated from a uni-

form distribution U [1, 100]. Thus, all their entries are non-zero. For any leader’s constraint

`, ` ∈ {1, . . . , p}, we have h` = 0.75
∑

i∈I H`i. For the first set of the follower’s constraints

we have f̃k = 0.25
(∑

i∈I L̃ki +
∑

j∈J F̃kj
)
, where k ∈ {1, . . . , m̃} and J = {1, . . . , n}. The

performance of the proposed formulations are presented in Tables 6 and 7 for problems with

X = Zq+ and in Tables 8 and 9 for problems with X = {0, 1}q. In contrast to Tables 7 - 9,

we do not include the last two rows in Table 6, because none of the proposed reformulations

can solve these problem sizes within the time limit.
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Table 5: The sizes of the proposed reformulations for BBLIP, where p and q represent the leader’s

number of constraints and variables, respectively, m̃ is the number of constraints given by matrices

F̃ and L̃, and n is the number of the follower’s variables. Parameter R̄ is equal to
∑
blog2(Ui)c+ q,

where Ui is a valid upper bound for the value of xi.

Formulation
# Continuous

variables
# Discrete

variable
# Linear
constraints

x ∈ Zq+
R1 2n+ m̃ q + 2n+ m̃ p+ 3m̃+ 6n
R2 2n+ m̃+ m̃R̄ q + R̄ p+ q + m̃+ 2n+ 4m̃R̄+ 1
R3 2n+ m̃+ R̄ q + R̄ p+ q + m̃+ 2n+ 4R̄+ 1

x ∈ {0, 1}q
R1 2n+ m̃ q + 2n+ m̃ p+ 3m̃+ 6n
R2 2n+ m̃+ m̃q q p+ m̃+ 2n+ 4m̃q + 1
R3 2n+ m̃+ q q p+ m̃+ 2n+ 4q + 1

The results reported in Tables 6-9 show that R2 and R3 perform better than R1 in

terms of their running times for most instances (except some cases in Tables 6 and 7). In

particular, when the value of m̃ increases to 10 or 15, R1 is unable to find an optimal solution

for most instances, while both R2 and R3 are capable of handling these instances.

When comparing R2 and R3 we observe that for both cases x ∈ Zq+ and x ∈ {0, 1}q, the

running time of R3 is better than the running time of R2. This difference becomes more

noticeable when the value of m̃ increases, which can be explained by comparing the sizes of

the reformulations in Table 5.

The quality of LP relaxation in R1 is typically better than the quality of LP relaxations

of R2 and R3. The required conditions of Proposition 22 do not hold in Tables 6-9. That is,

ΘU
i ≤

∑
k∈K Lkiθ

U
k for some i ∈ I. However, the results in these tables suggest that there is

no significant differences between R2 and R3 in terms of the quality of their LP relaxations.

4.3.2 BLIPs with Interdiction Constraints (BLIPI)

In this section we consider a class of BLIPs, where the leader’s actions are restricted to

“interdict,” (i.e., block) a subset of the follower’s variables. There are several variations of

this class of problems including classical problems such as finding the k-most vital arcs of a
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Table 6: Results for BBLIP with X = Zq+ and p = 1: the average running times (in seconds)

and the LP relaxation quality given by ζ∗LP /ζ
∗. The value in bold represents the best result for

each row across all reformulations and symbol ‘-’ indicates that an optimal solution was not found

within the time limit for at least one of the instances.

R1 R2 R3
q, n, p, m̃ Time LP Qual. Time LP Qual. Time LP Qual.

10-100-1-5 28 1.300 57.1 1.301 16.5 1.301
10-100-1-10 5188.4 1.278 89.5 1.282 20.2 1.282
10-100-1-15 - 1.289 144.8 1.292 24 1.292

10-150-1-5 107.3 1.335 124.5 1.342 52.8 1.342
10-150-1-10 - 1.398 193.9 1.405 62.2 1.405
10-150-1-15 - 1.376 388.1 1.382 89.8 1.381

10-200-1-5 824.4 1.368 210.5 1.369 108.2 1.367
10-200-1-10 - 1.409 377.2 1.417 126.4 1.417
10-200-1-15 - 1.428 425.7 1.434 109.6 1.434

15-100-1-5 20.9 1.227 4448 1.232 1959.1 1.233
15-100-1-10 5142 1.267 9347.1 1.272 3496.4 1.273
15-100-1-15 - 1.237 - 1.242 4495.1 1.241

15-150-1-5 235 1.305 - 1.311 5344.6 1.311
15-150-1-10 - 1.295 - 1.202 6863.9 1.301
15-150-1-15 - 1.337 - 1.342 7773.3 1.343

15-200-1-5 1194.8 1.315 - 1.335 5987.9 1.321

network (see, e.g., [39, 51]), as well as more recent examples in defending critical infrastruc-

ture [27], matching interdiction in bipartite graphs [118], and bilevel knapsack problems with

interdiction constraints [32, 44]. Here, we consider two versions of BLIPI, where the lower-

level problem is an LP, while the upper-level decision variables are either general integers or

binary. Formally, the formulation of the problem is given by:

[BLIPI] min
x∈X

a>x+ d>y (4.13a)

subject to Hx ≥ h, (4.13b)

x ≤ u, (4.13c)

y ∈ argmax
ŷ∈Rn+

{c>ŷ : F̃ ŷ ≤ f̃ , I ŷ ≤ Ũx} (4.13d)
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Table 7: Results for BBLIP with X = Zq+ and p = 10: the average running times (in seconds)

and the LP relaxation quality given by ζ∗LP /ζ
∗. The value in bold represents the best result for

each row across all reformulations and symbol ‘-’ indicates that an optimal solution was not found

within the time limit for at least one of the instances.

R1 R2 R3
q, n, p, m̃ Time LP Qual. Time LP Qual. Time LP Qual.

10-100-10-5 23.8 1.429 1.9 1.436 1.9 1.435
10-100-10-10 - 1.444 3.9 1.451 1.9 1.450
10-100-10-15 - 1.402 6.2 1.401 2.5 1.406

10-150-10-5 217.4 1.412 2.9 1.420 2.4 1.416
10-150-10-10 - 1.421 4.7 1.428 2.6 1.425
10-150-10-15 - 1.474 8.5 1.482 3.3 1.480

10-200-10-5 1651.1 1.496 4.2 1.505 3.2 1.500
10-200-10-10 - 1.519 6.8 1.528 3.6 1.525
10-200-10-15 - 1.489 10 1.497 3.6 1.494

15-100-10-5 41 1.315 349.3 1.320 194.5 1.321
15-100-10-10 - 1.309 598.3 1.312 186.2 1.313
15-100-10-15 - 1.301 723.6 1.305 225.1 1.305

15-150-10-5 419.5 1.416 661.9 1.422 248.4 1.422
15-150-10-10 - 1.428 1136.9 1.435 433.8 1.434
15-150-10-15 - 1.370 1421.7 1.375 439.8 1.375

15-200-10-5 2875.8 1.417 593.2 1.426 337.6 1.422
15-200-10-10 - 1.458 1358 1.465 470.7 1.463
15-200-10-15 - 1.500 1771 1.507 448.4 1.506

where H ∈ Rp×n and F̃ ∈ Rm̃×n. If it is assumed that X = Zn+, then Ũ is an identity matrix;

if X = {0, 1}n, then Ũ is a diagonal matrix whose j-th entry provides an upper-bound on

the value of yj, j ∈ J . Clearly, BLIPI can also be framed in terms of problem (4.1) with

q = n and m = m̃+ n.

In Table 10 we compare the size of the proposed reformulations for both integer and

binary versions. In this problem, however, it is readily seen that K = I ∪ {1, . . . , m̃} and∑
k∈K Lkiθk = −θi for all i ∈ I in the integer case, while

∑
k∈K Lkiθk = −Ũiiθi for the binary

case. Thus, reformulations R2 and R3 are equivalent as the linear combination
∑

k∈K Lkiθk

consists of a single variable.
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Table 8: Results for BBLIP with X = {0, 1}q and p = 1: the average running times (in seconds)

and the LP relaxation quality given by ζ∗LP /ζ
∗. The value in bold represents the best result for

each row across all reformulations and symbol ‘-’ indicates that an optimal solution was not found

within the time limit for at least one of the instances.

R1 R2 R3
q, n, p, m̃ Time LP Qual. Time LP Qual. Time LP Qual.

10-100-1-5 14.6 1.417 0.5 1.425 0.1 1.425
10-100-1-10 - 1.452 0.8 1.461 0.3 1.460
10-100-1-15 - 1.400 1.1 1.507 0.7 1.501

10-150-1-5 81 1.533 0.8 1.544 0.3 1.543
10-150-1-10 - 1.481 0.8 1.488 0.4 1.488
10-150-1-15 - 1.549 1.5 1.557 0.5 1.557

10-200-1-5 794.8 1.540 0.8 1.551 0.8 1.550
10-200-1-10 - 1.556 1.1 1.566 0.5 1.565
10-200-1-15 - 1.553 1.6 1.561 0.9 1.561

15-100-1-5 20.2 1.403 5.2 1.410 1.4 1.411
15-100-1-10 - 1.400 7.2 1.406 2.7 1.401
15-100-1-15 - 1.406 8.8 1.412 3.1 1.412

15-150-1-5 82.8 1.419 6 1.427 3.5 1.427
15-150-1-10 - 1.436 9.7 1.443 5.1 1.443
15-150-1-15 - 1.536 14.3 1.543 6.2 1.543

15-200-1-5 1451 1.483 6.6 1.494 4.4 1.494
15-200-1-10 - 1.506 11.2 1.515 7 1.515
15-200-1-15 - 1.476 17.6 1.485 8.3 1.485

All elements of a, d, H , F̃ , f̃ , and c in the test instances are randomly generated from a

uniform U [1, 50] distribution, and as such all entries are non-zero. For any leader constraint

`, ` = 1, . . . , p, we have h` = 3
∑

i∈I H`i for x ∈ Zn+ and h` = 0.4
∑

i∈I H`i for x ∈ {0, 1}n.

Moreover, for any follower’s constraint k = 1, . . . , m̃ we have f̃k =
∑

j∈J F̃kj for x ∈ Zn+,

and f̃k = 2
∑

j∈J F̃kj for x ∈ {0, 1}n. We assume an upper bound on the leader’s variables

of 10 in the integer case, i.e., ui = 10 for all i ∈ I, while in the binary case ui = 1 for all

i ∈ I. Moreover, we assume that Ũii = 1000 for all i ∈ I. The performance of the proposed

formulations is compared in Tables 11 and 12 for the integer and binary cases, respectively.

85



Table 9: Results for BBLIP with X = {0, 1}q and p = 10: the average running times (in seconds)

and the LP relaxation quality given by ζ∗LP /ζ
∗. The value in bold represents the best result for

each row across all reformulations and symbol ‘-’ indicates that an optimal solution was not found

within the time limit for at least one of the instances.

R1 R2 R3
q, n, p, m̃ Time LP Qual. Time LP Qual. Time LP Qual.

10-100-10-5 16.9 1.440 0.5 1.448 0.6 1.447
10-100-10-10 - 1.420 1 1.427 0.3 1.427
10-100-10-15 - 1.437 0.8 1.443 0.6 1.442

10-150-10-5 62.5 1.454 0.6 1.463 0.4 1.462
10-150-10-10 - 1.529 1.1 1.537 0.7 1.536
10-150-10-15 - 1.532 1.6 1.540 0.9 1.540

10-200-10-5 1084.7 1.506 1.3 1.516 0.5 1.515
10-200-10-10 - 1.530 1.2 1.539 0.4 1.537
10-200-10-15 - 1.516 2.1 1.523 0.9 1.523

15-100-10-5 21.8 1.440 4.7 1.447 1.3 1.447
15-100-10-10 - 1.473 7.5 1.479 2.5 1.479
15-100-10-15 - 1.445 10.9 1.451 3.8 1.451

15-150-10-5 126.1 1.484 6.8 1.494 3.3 1.494
15-150-10-10 - 1.490 9.9 1.497 5.3 1.497
15-150-10-15 - 1.478 14.1 1.486 6.5 1.485

15-200-10-5 1551.4 1.512 7.1 1.522 4.2 1.521
15-200-10-10 - 1.425 12 1.534 6.4 1.533
15-200-10-15 - 1.500 17.5 1.508 8.1 1.508

From the results reported in Table 11, it can be seen that the running time of R1 for

m̃ = 70 is significantly larger than its running time for m̃ = 15 and m̃ = 30. This observation

follows from the fact that the number of constraints and discrete variables in R1 grows as

the value of m̃ increases, see Table 10. In contrast, the number of discrete variables in R2

is independent from m̃. Also, we note that in Table 11 the qualities of LP relaxations of R1

and R2 are rather close. Therefore, R2 outperforms R1 with respect to the running time

as m̃ increases to 70 in Table 11.

Similar observations hold for Table 12 for smaller values of n. However, for n = 80 the

quality of the LP relaxation of R2 is much worse than that of R1. Consequently, the per-
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Table 10: The sizes of the proposed reformulations for BLIPI, where p and n represent the leader’s

number of constraints and variables, respectively, m̃ is the number of constraints given by matrices

F̃ and L̃, and n is the number of the follower’s variables. Parameter R̄ is equal to
∑
blog2(Ui)c+ q,

where Ui is a valid upper bound for the value of xi.

Formulation
# Continuous

variables
# Discrete

variable
# Linear
constraints

x ∈ Zn+
R1 2n+ m̃ 3n+ m̃ p+ 3m̃+ 7n
R2 2n+ m̃+ R̄ n+ R̄ p+ m̃+ 4n+ 4R̄+ 1

x ∈ {0, 1}n R1 2n+ m̃ 3n+ m̃ p+ 3m̃+ 7n
R2 3n+ m̃ n p+ m̃+ 7n+ 1

formance of R2 significantly deteriorates in terms of the running time, and R1 outperforms

R2 for n = 80 in Table 12. Moreover, R2 cannot solve the last two problem sizes in Table 12

within the time limit, while R1 can handle those.

4.3.3 Bilevel Facility Location Problem (BFLP)

We consider a version of the facility location problem in a decentralized manufacturing

setting, see [30]. A firm that produces a set of products given by G can place new facilities

in the locations given by I = {1, . . . , q}. The leader chooses the facilities placement, while

the follower must determine the fraction of each product’s demand that each facility pro-

cesses. The firm incurs a cost of a
(1)
i for each facility opened at location i ∈ I, and incurs an

opportunity cost of a
(2)
i for each unused production capacity of any plant in location i ∈ I

after it is opened. The follower faces a cost of c
(1)
i for using a unit of capacity at a facility in

location i ∈ I, and a cost of c
(2)
ig associated with the transportation of g ∈ G from a facility

in location i ∈ I.

Let xi be the number of facilities to open at location i, and let yig be the fraction of the

demand for product g that the plants in location i process. If dg denotes the demand for g,

rig is the units of capacity needed to make product g at a facility in location i, and Ci is
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Table 11: Results for BLIPI with X = Zn+: the average running times (in seconds) and the LP

relaxation quality given by ζ∗LP /ζ
∗. The value in bold represents the best result for each row across

both reformulations.

R1 R2
n, p, m̃ Time LP Qual Time LP Qual

25-5-15 2.1 0.723 8.5 0.723
25-5-30 3.4 0.668 9.8 0.6668
25-5-70 34 0.751 10.5 0.751

25-15-15 3.1 0.699 14.2 0.699
25-15-30 5.9 0.736 19.8 0.736
25-15-70 200.1 0.667 15.2 0.667

40-5-15 3.9 0.681 326.4 0.679
40-5-30 10.7 0.688 652.5 0.684
40-5-70 765.6 0.668 290.9 0.661

40-15-15 17.2 0.741 1356.6 0.687
40-15-30 160 0.752 1903.2 0.714
40-15-70 2176.6 0.748 829.4 0.646

55-5-15 11.7 0.757 2481.8 0.683
55-5-30 182.9 0.705 2369.9 0.669
55-5-70 3685 0.700 2177.4 0.656

55-15-15 49.6 0.713 4136.8 0.682
55-15-30 1041.4 0.698 4405.8 0.698
55-15-70 9475 0.680 6227.5 0.680

the capacity of a plant at location i, then the firm facility location problem is given by the

following bilevel problem:

[BFLP] min
x∈X

∑
i∈I

a
(1)
i xi +

∑
i∈I

a
(2)
i

(
Cixi −

∑
g∈G

dgrigyig

)
(4.14a)

subject toxi ≤ Q ∀i ∈ I (4.14b)

y ∈ argmin
∑
i∈I

∑
g∈G

(c
(1)
i rig + c

(2)
ig )dgŷig (4.14c)

s.t.
∑
i∈I

ŷig = 1 ∀g ∈ G (4.14d)

∑
g∈G

dgrigŷig ≤ Cixi ∀i ∈ I (4.14e)
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Table 12: Results for BLIPI with X = {0, 1}n: the average running times (in seconds) and the

LP relaxation quality given by ζ∗LP /ζ
∗. The value in bold represents the best result for each row

across all reformulations and symbol ‘-’ indicates that an optimal solution was not found within

the time limit for at least one of the instances.

R1 R2
n, p, m̃ Time LP Qual. Time LP Qual.

55-5-15 7.3 0.271 14.6 0.191
55-5-30 178.1 0.301 28.9 0.218
55-5-70 401.8 0.336 26.9 0.225

55-15-15 24 0.261 56.8 0.195
55-15-30 296.1 0.307 78.2 0.224
55-15-70 1207.4 0.319 56.5 0.216

65-5-15 6.7 0.326 222.3 0.192
65-5-30 132.7 0.365 521 0.200
65-5-70 1541 0.422 325.7 0.222

65-15-15 24.6 0.327 481.4 0.206
65-15-30 340.8 0.346 504.5 0.202
65-15-70 3753.6 0.388 1314.9 0.228

80-5-15 7.1 0.435 642.6 0.183
80-5-30 186.1 0.451 2595.6 0.205
80-5-70 2344.9 0.503 3680.2 0.204

80-15-15 42.4 0.442 4974.2 0.214
80-15-30 1239.4 0.453 - 0.195
80-15-70 6625.9 0.488 - 0.210

∑
g∈G

ŷig ≤ Gxi ∀i ∈ I (4.14f)

ŷig ≥ 0 ∀i ∈ I, ∀g ∈ G, (4.14g)

where in equation (4.14b) X can be either Zq+ or {0, 1}q, Q is the maximum number of

facilities that can be opened at any given location (Q = 1 if X = {0, 1}q) and G = |G|.
Let Q̄ = blog(Q)c + 1. Observe that in this problem p = 0 if X = {0, 1}q and p = q,

otherwise. Furthermore, m = G+ 2q, n = qG and R̄ = qQ̄. The sizes of the reformulations

are summarized in Table 13.

We generate instances with the number of locations q given by 20, 30, and 40, while the

number of products G take values G = qs, with s = 1, . . . , 6. For the integer case we assume
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Table 13: The sizes of the proposed reformulations for BFLP, where q represent the number of

potential locations (the number of leader’s variables) and G is the number of products, respectively.

Parameter Q̄ is equal to blog(Q)c + 1 where Q is the maximum number of facilities that can be

opened at any given location.

Formulation
# Continuous

variables
# Discrete

variable
# Linear
constraints

x ∈ Zq+
R1 q(G+ 2) +G q(G+ 3) +G q(3G+ 7) + 3G
R2 q(G+ 2 +GQ̄+ 2qQ̄) +G q(1 + Q̄) q(G+ 4 + 4GQ̄+ 8qQ̄) +G+ 1
R3 q(G+ Q̄+ 2) +G q(1 + Q̄) q(G+ 4 + 4Q̄) +G+ 1

x ∈ {0, 1}q
R1 q(G+ 2) +G q(G+ 3) +G q(3G+ 6) + 3G
R2 2q(G+ q + 1) +G q q(5G+ 8q + 2) +G+ 1
R3 q(G+ 3) +G q q(G+ 6) +G+ 1

that the maximum number of facilities that can be opened at any location is Q = 5. The

remaining parameter values are drawn from discrete uniform distribution U [1, D], where the

upper bounds D are summarized in Table 14.

Table 14: Upper bounds D of the uniform random variables that are used to generate the

parameters of BFLP.

Model/Parameter a
(1)
i a

(2)
i Ci dg c

(1)
i c

(2)
ig

x ∈ Zq+ 500 5 10 40 5 5

x ∈ {0, 1}q 50 5 10 20 10 5

Given the test instances described above, Tables 15 and 16 provide the results of our

experiments. For both general integer and binary cases, reformulation R3 is the best one

with respect to average running times, being orders of magnitude better than R1, and also
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Table 15: Results for BFLP with X = Zq+: the average running times and the LP relaxation

quality given by ζ∗LP /ζ
∗. The value in bold represents the best result for each row across all

reformulations and symbol ‘-’ indicates that an optimal solution was not found within the time

limit for at least one of the instances.

R1 R2 R3
q, G Time LP Qual. Time LP Qual. Time LP Qual.

20-20 0.6 0.688 2.4 0.688 0.4 0.688
20-40 3.9 0.538 3.8 0.538 0.8 0.538
20-60 7.2 0.496 4.2 0.496 0.6 0.496
20-80 13.5 0.568 8.4 0.568 0.8 0.568
20-100 25.9 0.609 11.2 0.609 1 0.609
20-120 43.2 0.668 8.2 0.668 0.9 0.668

30-30 2.1 0.671 4.6 0.671 0.1 0.671
30-60 25.7 0.521 16.9 0.521 0.8 0.521
30-90 27.9 0.554 16.7 0.554 1 0.554
30-120 78.6 0.634 27.6 0.634 2 0.634
30-150 255.5 0.606 37.1 0.606 3.3 0.606
30-180 1106.2 0.697 48.7 0.697 3 0.697

40-40 5.9 0.594 11.6 0.594 0.8 0.594
40-80 29.9 0.596 43.6 0.596 1.8 0.596
40-120 112.9 0.590 43.7 0.590 2.6 0.590
40-160 465 0.584 113.8 0.617 6 0.617
40-200 - - 242.3 0.555 11.6 0.555
40-240 - - 392 0.634 22.5 0.634

far better than R2. In particular, the superiority of R3 and R2 with respect to R1 can

be explained by the fact that R3 and R2 have far less discrete variables than R1, see Ta-

ble 13. In addition, we observe that the LP relaxation qualities associated with each of the

reformulations are fairly similar (R2 and R3 being slightly better than R1).

Finally, we observe that the constraints in (4.14f) can be replaced by the constraints

yig ≤ xi for all i ∈ I and g ∈ G; such a ‘disaggregated’ formulation gives a stronger LP

relaxation to all the reformulations. In our experiments, however, we use the aggregated

version as this is the formulation that is originally presented in [30].

Note that in the disaggregated problem, reformulation R1 adds new binary variables

to account for the linearization of the new complementary slackness constraints. As a con-
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sequence, in this reformulation there is a tradeoff between the strength of formulation and

the number of auxiliary binary variables that need to be introduced. In contrast, the disag-

gregated versions of R2 and R3 do not add any new constraints or variables (besides the

disaggregated constraints).

Table 16: Results for BFLP with X = {0, 1}q: the average running times (in seconds) and the

LP relaxation quality given by ζ∗LP /ζ
∗. The value in bold represents the best result for each row

across all reformulations and symbol ‘-’ indicates that an optimal solution was not found within

the time limit for at least one of the instances.

R1 R2 R3
q, G Time LP Qual. Time LP Qual. Time LP Qual.

20-20 0.9 0.331 0.8 0.458 0.2 0.458
20-40 4.6 0.253 1.9 0.316 0.2 0.316
20-60 74.1 0.352 2.5 0.446 0.4 0.446
20-80 41.3 0.312 3.4 0.456 0.9 0.456
20-100 56.2 0.253 3.9 0.271 1 0.271
20-120 74.6 0.417 5.3 0.421 1.1 0.421

30-30 6.5 0.306 3.2 0.340 0.4 0.340
30-60 35.2 0.438 5.1 0.483 0.6 0.483
30-90 771.8 0.424 11.6 0.510 1.1 0.510
30-120 - - 13.4 0.427 2.5 0.427
30-150 269.7 0.397 15.6 0.461 2.3 0.461
30-180 2447.9 0.355 15.9 0.503 3.1 0.503

40-40 23.1 0.378 5.3 0.386 0.8 0.386
40-80 157.4 0.359 9.5 0.417 1.6 0.417
40-120 638.6 0.300 14.1 0.347 3.2 0.347
40-160 1334.4 0.281 47.3 0.392 5.5 0.392
40-200 - - 57.8 0.399 8.3 0.399
40-240 - - 100.5 0.477 20.3 0.477
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4.4 CONCLUSION

In this note we considered single-level reformulations of a class of bilevel linear integer

programs. Along with applying KKT optimality conditions, strong duality can be employed

for deriving such reformulations under the assumption that the upper-level variables are

discrete. In some settings these SD-based reformulation may reduce the number of variables

and constraints significantly with respect to the KKT-based reformulation, and more im-

portantly, make the number of binary variables independent of the size of the lower-level

problem. We performed numerical experiments with three classes of bilevel problems to

explore the performances of an off-the-shelf MIP solver with these reformulations. Our ex-

periments show that the SD-based reformulations (in particular, R3) can lead to orders of

magnitude reduction in computational times for certain classes of problems.

We note that there are several factors that play a role in the speed at which an MIP is

solved, with two of the most important ones being the size of the problem (the number of

variables and constraints), and the tightness of the linear programming relaxations. In the

instances where the SD-based reformulations outperform the KKT-based reformulations,

the reformulations have somewhat comparable LP relaxation qualities, but the SD-based

reformulations have clearly fewer discrete variables. We believe that this difference is the

key factor that may reduce the computational times of the SD-based reformulations.

Although our experiments are limited to particular instances, given the above obser-

vations, we believe that the considered SD-based formulations can be useful in problems

where the KKT-based reformulation introduces significantly more discrete variables than

the SD-based ones. In particular, this holds true for bilevel problems where the number

of constraints and variables of the lower-level problem is much larger than the number of

variables of the upper-level problem.
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5.0 ON BILEVEL MODELS FOR PEDIATRIC VACCINE PRICING

PROBLEM

5.1 INTRODUCTION

Routine vaccination is a crucial factor for preventing pediatric infectious diseases from

spreading. With the goal of protecting public health and safety in the United States, the

Centers for Disease Control and Prevention (CDC) prescribes relevant immunization guide-

lines to ensure timely and accurate vaccine administration, see, e.g., [37]. In particular, the

Advisory Committee of Immunization practices (ACIP) of the CDC, along with American

Academy of Pediatrics (AAP) and American Academy of Family Physicians (AAFP), annu-

ally publishes the recommended childhood immunization schedule (RCIS) [37]. This schedule

is designed to protect infants and children from serious diseases and specifies the age range

when each vaccine is recommended [35].

The robustness and reliability of the pediatric vaccine market is an essential element to

keep immunization coverage at appropriate levels. Vaccine manufacturers play a principal

role in this market by providing the required supply in a timely manner. However, be-

cause of the challenging nature of the pediatric vaccine industry, only a few pharmaceutical

companies actively participate in vaccine production and distribution in the United States

market. Moreover, limited demands and rising participation costs make this industry less

attractive and as a result many companies have left the pediatric vaccine market in the

United States [96]. Therefore, because of the importance of immunization coverage to na-

tional public health, many experts argue that vaccine manufacturers must receive financial

incentives to remain in the market [62, 80, 85, 90].

94



In particular, in [80] the author proposes an economic model for the vaccine pricing

problem and incorporates different financial incentives for manufacturers into the model.

Similarly, [5] considers different incentives for manufacturers and consumers in order to

motivate them to cooperate in the vaccine market. A pricing model is proposed in [62] which

sets the prices of vaccines based on their societal values before their production. Furthermore,

[74] develops a model that maximizes the net profit of all pharmaceutical companies involved

and minimizes their total costs. A mixed integer nonlinear program for the vaccine pricing

problem is developed in [94] that assures a minimum profit level for all manufacturers.

Moreover, a game theory approach is developed in [20] and [95] to explore different pricing

strategies in the vaccine market.

To ensure proper vaccine coverage for a single child and public health protection, health

care providers purchase and administer pediatric vaccines based on the RCIS. This is a

complex encounter because new diseases are added to the RCIS each year and also, new

multivalent vaccines are designed by manufacturers to protect children against more pe-

diatric diseases. Indeed, during the past 25 years, RCIS has significantly changed and it

requires now that children receive multiple injections. In this regard, [69] and [110] develop

an integer program to find a set of vaccines that minimize the cost to fully immunize a child

according to a given RCIS. This set is called the minimum cost formulary. In addition, [100]

and [99] develop a mechanism to compute a vaccine’s maximum inclusion price. This is the

maximum price at which a vaccine is included in the minimum cost formulary. A similar

study is presented in [70].

The most relevant study to our work in this chapter is presented in [96], where the authors

model the pediatric vaccine pricing problem as a bilevel nonlinear program. They model the

pricing problem from the perspective of a single manufacturer who sets the prices to maximize

its profit in an oligopolistic market, assuming that the prices of vaccines produced by the

competitors are given. In this chapter we study the pediatric vaccine pricing problem in a

setting similar to [96]. Specifically, we formulate the problem as a mixed-integer nonlinear

bilevel program, where at the upper level, the manufacturer sets the the prices of vaccines

and at the lower level, a potential purchaser, e.g., health care providers, seeks to minimize

the cost of satisfying a given RCIS. That is, the purchaser have to decide whether to buy
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vaccines from the manufacturer or other producers in the market, i.e., competitors. The

presence of binary variables in the lower-level problem along with the nonlinear term in the

upper- and lower-level objective functions, make this bilevel program difficult to solve.

Our main contribution in this chapter is to model and solve the pediatric vaccine pricing

problem in a setting where the prices of vaccines produced by the competitors are nonde-

terministic. In the related literature, see, e.g., [96], it is assumed that the prices of vaccines

produced by the competitors are known exactly in advance. However, in reality these values

may involve uncertainties. We propose two robust formulations for the pediatric vaccine

pricing problem, where the market prices of vaccines manufactured by competitors are given

by some uncertainty sets. Furthermore, we present an exact solution approach for this class

of problems and illustrate the results. Our approach finds an optimal solution of the problem

developed in [96]. Note that, the latter study describes only heuristic solution approaches.

Our numerical results shows that, compared to the existing approaches in the literature, our

robust models may improve the manufacturer’s profit in nondeterministic settings, where

the vaccine prices of competitor manufacturers are not precisely known.

The remainder of this chapter is organized as follows. In Section 5.2 we describe robust

bilevel formulations for the pediatric vaccine pricing problem. In Section 5.3 we develop an

exact solution method to solve the proposed robust models. Then in Section 5.4 we provide

our numerical experiments and discuss the results obtained. Finally, Section 5.5 includes our

final remarks and conclusion.

5.2 PROBLEM STATEMENT

Different forms of the Pediatric Vaccine Pricing Problem (PVPP) are studied in the

literature [20, 62, 95]. We consider this problem from a single manufacturer’s point of view

and formulate it as a mixed-integer nonlinear bilevel program. This bilevel formulation

is originally developed in [96] where the authors propose different heuristic algorithms as

solution methods. The leader in this bilevel problem is a manufacturer who controls the prices

of a set of vaccines to maximize her/his profit. When the prices are set, the purchaser, i.e., the

96



follower, decides who to buy vaccines from, with the goal of minimizing the vaccination cost

to satisfy a given RCIS. First, we introduce the necessary notation to present the model (we

follow the notation from [96]).

Parameters:

T = {1, 2, . . . , τ}: set of time periods for a given RCIS.

D = {1, 2, . . . , δ}: set of diseases which require immunization.

V = {1, 2, . . . , υ}: set of vaccines produced by the manufacturer.

V̄ = {1, 2, . . . , ῡ}: set of vaccines produced by the competitors.

nd: number of vaccine doses needed for immunization against disease d ∈ D in RCIS.

cv: cost of producing vaccine v ∈ V .

k: injection cost incurred by health care provider.

fv: vaccine-specific cost incurred by provider to administer vaccine v ∈ V .

f̄v: vaccine-specific cost incurred by provider for vaccine v ∈ V̄ .

qv: price of vaccine v ∈ V̄ sold by other manufacturers.

Ivd: binary parameter indicating if vaccine v ∈ V immunizes against disease d ∈ D.

Īvd: binary parameter indicating if vaccine v ∈ V̄ immunizes against disease d ∈ D.

Jtv: binary parameter indicating if vaccine v ∈ V can be administered at time t ∈ T .

J̄tv: binary parameter indicating if vaccine v ∈ V̄ can be administered at time t ∈ T .

Sdjt: binary parameter indicating if in time t, a vaccine may be administered to satisfy

the j-th dose required for disease d ∈ D, j = 1, 2, . . . , nd.

Qtv: binary parameter indicating if a purchaser must pay for vaccine v ∈ V to be admin-

istered in time period t ∈ T . Note that Qtv = 1 for most vaccines v, except for a special

situation where purchaser does not need to pay for a vaccine.

Q̄tv: binary parameter indicating if a purchaser must pay for vaccine v ∈ V̄ to be admin-

istered in time period t ∈ T .

Decision variables. Let pv be the price of vaccine v ∈ V , determined by the manufac-

turer (the leader). Once the prices are set, the customer (the follower), e.g., health care

provider, purchases and administers vaccines based on the specified schedule in RCIS. Let
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xtv be the customer’s binary decision variable which is 1 iff vaccine v ∈ V is administered at

time period t ∈ T . Similarly, ytv is 1 iff vaccine v ∈ V̄ is administered in time period t ∈ T .

Thus, PVPP can be modeled as the following bilevel nonlinear mixed-integer program:

[PVPP] : max
p∈R|V |+

f(p,x) =
∑
t

∑
v∈V

(pv − cv)Qtvxtv (5.1a)

subject to x,y ∈ argmin
x̂,ŷ

∑
t

(∑
v∈V

(pv + fv + k)Qtvx̂tv +
∑
v∈V̄

(qv + f̄v + k)Q̄tvŷtv

)
, (5.1b)

subject to 1−
∑
t

Sdjt

(∑
v∈V

IvdJtvx̂tv+∑
v∈V̄

ĪvdJ̄tvŷtv

)
≤ 0, ∀ d ∈ D, j = 1, . . . , nd, (5.1c)

gi(x,y) ≤ 0 ∀ i ∈ N, (5.1d)

xtv, ytv ∈ {0, 1} ∀ t ∈ T, v ∈ V ∪ V̄ (5.1e)

The manufacturer’s goal is to maximize the profit per child completing a given RCIS.

This profit is represented by (5.1a), where pv − cv is the marginal profit obtained from

vaccine v ∈ V . Note that, due to the presence of competitors in the vaccine market, the

manufacturer’s objective function is bounded. That is, for any vaccine v ∈ V , there exists

a competing formulary in the market which prevents pv − cv from being unbounded. The

healthcare provider minimizes the total cost of purchasing a formulary which satisfies the

RCIS. The follower’s total cost, (5.1b), includes the costs of purchasing vaccines produced

by the manufacturer and the competing manufacturers. The health care provider’s main

constraint is to satisfy the required specifications given by the RCIS. This constraint is

represented in (5.1c) and it assures that the required dosages of all vaccines are administered

on time. In addition, (5.1d) represents a set of side constraints specific to a vaccine formulary.

For instance, this constraint prevents the health care provider from administration of two

specific vaccines in the same time period.

Bilevel programs are in general quite challenging to solve. Indeed, in their simplest form,

where both the upper- and lower-level problems are linear, bilevel problems are NP -hard [46,

61]. Thus, due to the presence of bilinear terms at both levels of PVPP and also because of
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binary variables xtv and ytv, it is a difficult problem to solve. In [96] it is shown that PVPP

is an NP -hard problem.

A primary assumption in [96] is that the manufacturer (the leader) is aware of the

vaccine prices set by the other manufacturers. That is, the value of qv is known in advance

for all vaccines v ∈ V̄ . In this case, the bilevel formulation (5.1) reduces to the problem

discussed in [96]. We refer to this form of PVPP as Deterministic Pediatric Vaccine Pricing

Problem (DPVPP) and accordingly denote its upper-level objective function by fd(p,x).

The aforementioned assumption may be violated, in reality, as the competitors in oligopolis-

tic markets change their prices. In this chapter we study PVPP in a setting where qv, for all

vaccines v ∈ V̄ , is a nondeterministic parameter and given by some uncertainty sets. That

is, we assume that qv is not known for the manufacturer and it can take any value within an

uncertainty set. In order to incorporate this uncertainty into our model, we exploit an idea

similar to the classical robust optimization approach presented in [21, 22] and develop two

robust models.

Let p̄v be a lower bound on the price of vaccine v ∈ V̄ , i.e., qv ≥ p̄v, referred to as the nom-

inal price of vaccine v ∈ V̄ . Moreover, let δv be an upper bound on the price deviation of vac-

cine v ∈ V̄ from its nominal value, i.e., qv− p̄v ≤ δv. In our first robust approach, we assume

that the total price deviation from the nominal values over all vaccines v ∈ V̄ , is bounded by

a given value ∆, i.e.,
∑

v∈V̄ (qv− p̄v) ≤ ∆. Thus, we define the first uncertainty set as follows:

Ω1 = {qv | 0 ≤ qv − p̄v ≤ δv,
∑
v∈V̄

(qv − p̄v) ≤ ∆, v ∈ V̄ },

where p̄v and δv are known in advance for all vaccines v ∈ V̄ . Obviously, if δv = 0 for vaccine

v ∈ V̄ , then qv is equal to p̄v and there is no uncertainty involved for vaccine v.

By definition of Ω1, we can reformulate PVPP as the following robust bilevel program:

[RI-PVPP] : max
p

min
q∈Ω1

f1(p,x) =
∑
t

∑
v∈V

(pv − cv)Qtvxtv

subject to x,y ∈ R(p,q),
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where p = (p1, . . . , p|V |)>, q = (q1, . . . , q|V̄ |)
> and R(p,q) represents the follower’s rational

reaction set for fixed values of q and p. Therefore, for given p and q, set R(p,q) includes

the lower-level decisions x and y, which satisfy constraints (5.1b)-(5.1e).

Note that this robust model generalizes formulation PVPP in a sense that, for ∆ = 0,

it reduces to PVPP. Furthermore, by increasing the value of ∆, set Ω1 includes more values

for qv which enables the manufacturer to take into account more uncertain scenarios with

respect to the market prices. That is, a conservative manufacturer may hedge against more

potential scenarios by considering a large value of ∆.

In the second robust approach, we assume that the prices of only a limited number

of vaccines are deviated from their nominal values. Accordingly, we propose the second

uncertainty set as follows:

Ω2 = {qv | 0 ≤ qv − p̄v ≤ δvzv,
∑
v∈V̄

zv ≤ Γ, v ∈ V̄ },

where Γ is a fixed parameter and zv is a binary variable.

Then we reformulate our second robust bilevel model of PVPP as follows:

[RII-PVPP] : max
p

min
q∈Ω2

f2(p,x) =
∑
t

∑
v∈V

(pv − cv)Qtvxtv

subject to x,y ∈ R(p,q)

This robust formulation is another generalization of PVPP as it reduces to PVPP for

Γ = 0. Note that 0 ≤ Γ ≤ |V̄ | and by increasing the value of Γ, set Ω2 can include more un-

certain cases. That is, a conservative manufacturer may consider a larger value of Γ to ensure

hedging against more possible scenarios. Therefore, both proposed robust formulations are

generalized forms of the pediatric vaccine pricing problem developed in [96]. These models

enable the manufacturer to take into account the uncertainty involved in the vaccine prices

and make a more reliable pricing decision. Our uncertainty sets are motivated by approaches

from the robust optimization literature, see [21, 22]. Naturally, other uncertainty sets are

possible and we leave as a possible topic for future research.

Finally, we note that, for a fixed value of q ∈ Ω1 ∩ Ω2, RI-PVPP, RII-PVPP and

DPVPP result in the same pricing decisions.
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Proposition 23. Let f ∗d be the optimal objective function value of PVPP for fixed value of

q ∈ Ω1, f ∗1 and f ∗2 be the optimal objective function value of RI-PVPP and RII-PVPP,

respectively. Then we have that:

f ∗1 ≤ f ∗d and f ∗2 ≤ f ∗d

.

The proof is straightforward and omitted for brevity. In the next section, we propose an

exact solution approach to obtain optimal solutions of these robust programs.

5.3 SOLUTION METHOD

Problem DPVPP is solved in [96] by applying different heuristic solution approaches

that do not necessarily result in an optimal solution. In this section, first we propose an

exact solution method to find the optimal solution of DPVPP and then, we extend this

approach to solve robust models RI-PVPP and RII-PVPP. In the reminder of the chapter

we assume the optimistic cases of the considered bilevel models.

5.3.1 Deterministic PVPP

Arguably, the most common methods of solving bilevel problems are based on refor-

mulating them as single-level problems by replacing the linear problem (LP) at the lower

level by its optimality conditions, recall our discussion in Chapter 4. However, this trans-

formation is not applicable to (5.1) as binary variables x and y appear at the lower-level

problem. Therefore, we exploit an idea similar to the exact iterative Algorithm 1 introduced

in Section 3.4.1. Based on this algorithm, in each iteration we solve single-level relaxations of

bilevel problem (5.1), check the optimality condition and then add a valid cut if the obtained

solution is not optimal.
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The single-level relaxation of (5.1) results from removing the follower’s objective function,

(5.1b), from PVPP and is given by the following problem:

[SPVPP] : max
p,x,y

∑
t

∑
v∈V

(pv − cv)Qtvxtv

subject to (5.1c)− (5.1e)

We observe that SPVPP is a mixed-integer bilinear problem as nonlinear term pvxtv

appears in the leader’s objective function. However, it can be linearized by introducing new

variable utv and additional set of linear constraints (see further details and discussion in [2]):

{
(xtv, pv, utv) : utv = pvxtv, xtv ∈ {0, 1}, pLv ≤ pv ≤ pUv

}
={

(xtv, pv, utv) : xtv ∈ {0, 1}, pLv xtv ≤ utv ≤ pUv xtv, pv + pUv xtv − pUv ≤ utv ≤ pv + pLv xtv − pLv
}
,

where we assume that the lower (pLv ) and upper (pUv ) bounds on pv for each v ∈ V are

either readily available or can be easily computed. Hence, SPVPP can be re-written as an

equivalent linear MIP that can be solved by a standard solver.

We employ exact Algorithm 3 to solve DPVPP. At each iteration, the algorithm solves

SPVPP and checks whether or not the solution is bilevel feasible. It stops when a bilevel

feasible solution is achieved. Otherwise, if the obtained solution of SPVPP is not bilevel

feasible, the algorithm adds a valid cut to the problem and continues. The pseudo-code of

the exact approach for solving DPVPP is provided in Algorithm 3 whose convergence is

established in the next result.

Proposition 24. Algorithm 3 finds an optimal solution for DPVPP in a finite number of

iterations.

We skip the proof as it is similar to the proof of Proposition 20, see Section 3.4.1. To

compare the performance of Algorithm 3 against the heuristic methods developed in [96], we

apply it to solve the test instances of [96] and present the results in Section 5.4.
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Algorithm 3 Exact Algorithm for solving DPVPP

Step 1. Solve SPVPP and denote by (p̂, ŷ, x̂) its optimal solution.

Step 2. Solve linear binary problem (5.1b)-(5.1e) for p = p̂. Let (x̌, y̌) and z∗f denote its

optimal solution and the optimal objective function value, respectively.

if z∗f =
∑

t

(∑
v∈V (p̂v + fv + k)Qtvx̂tv +

∑
v∈V̄ (qv + f̄v + k)Q̄tvŷtv

)
then

(p̂, ŷ, x̂) is an optimal solution of ; STOP.

end if

if z∗f <
∑

t

(∑
v∈V (p̂v + fv + k)Qtvx̂tv +

∑
v∈V̄ (qv + f̄v + k)Q̄tvŷtv

)
then

Go to Step 3.

end if

Step 3. Add a constraint of the form:∑
t

(∑
v∈V (pv+fv+k)Qtvxtv+

∑
v∈V̄ (qv+f̄v+k)Q̄tvytv

)
≤
∑

t

(∑
v∈V (pv+fv+k)Qtvx̌tv+∑

v∈V̄ (qv + f̄v + k)Q̄tvy̌tv

)
to SPVPP and go to Step 1.

5.3.2 Robust PVPP

Next, we extend the developed exact solution approach to robust models RI-PVPP and

RII-PVPP. Note that both of these problems can be viewed as three-level problems and,

thus, Algorithm 3 cannot be simply employed as a solution method. Therefore, to apply Al-

gorithm 3 for solving these robust problems, we first need to reformulate them as bilevel pro-

grams. This can be done by using the KKT optimality conditions or the strong duality prop-

erty of linear programs, recall our discussion in Chapter 4. Thus, we reformulate RI-PVPP

and RII-PVPP as bilevel mixed-integer programs and then apply Algorithm 3 as a solution

method. Consider the inner bilevel problem in RI-PVPP for a fixed upper-level variable p:

min
q

∑
t

∑
v∈V

(pv − cv)Qtvxtv (5.5a)

subject to 0 ≤ qv − p̄v ≤ δv ∀v ∈ V̄ , (5.5b)∑
v∈V̄

(qv − p̄v) ≤ ∆, (5.5c)

x,y ∈ R(p,q)
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Because no discrete variable appears in constraints (5.5b)-(5.5c), we can replace the

problem (5.5a)-(5.5c) by its optimality conditions, i.e., the KKT optimality conditions or the

strong duality property. Consequently, the three-level problem RI-PVPP reduces to a bilevel

reformulation. In particular, the KKT optimality conditions of problem (5.5) is as follows:

qv ≥ p̄v ∀v ∈ V̄ , (5.6a)

qv ≤ p̄v + δv ∀v ∈ V̄ , (5.6b)∑
v∈V̄

qv ≤ ∆ +
∑
v∈V̄

p̄v, (5.6c)

πv − θv − λ ≤ 0 ∀v ∈ V̄ , (5.6d)

(qv − p̄v)πv = 0 ∀v ∈ V̄ , (5.6e)

(p̄v + δv − qv)θv = 0 ∀v ∈ V̄ , (5.6f)

(∆ +
∑
v∈V̄

(p̄v − qv))λ = 0, (5.6g)

(θv + λ− πv)qv = 0 ∀v ∈ V̄ , (5.6h)

πv, θv, λ ≥ 0, (5.6i)

where πv, θv λ represent the corresponding dual decision variables. We note that, constraints

(5.6e)-(5.6h) needs to be transformed to a linear set of constraints. This can be implemented

by introducing new binary variables rv, sv, zv, t ∈ {0, 1}, for v ∈ V̄ , as follows:

qv ≤ p̄v +M1rv ∀v ∈ V̄ , (5.7a)

πv ≤M1(1− rv) ∀v ∈ V̄ , (5.7b)

qv ≥ p̄v + δv − M̂1sv ∀v ∈ V̄ , (5.7c)

θv ≤ M̂1(1− sv) ∀v ∈ V̄ , (5.7d)∑
v∈V̄

(qv − p̄v) ≥ ∆− M̄1t, (5.7e)

λ ≤ M̄1(1− t), (5.7f)

πv ≥ θv + λ− M̃1zv ∀v ∈ V̄ , (5.7g)

qv ≤ M̃1(1− zv) ∀v ∈ V̄ , (5.7h)
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whereM1, M̂1, M̄1 and M̃1 denote sufficiently large constants. Therefore, problem RI-PVPP

can be reformulated as the following mixed-integer bilevel program:

max
p∈R|V |+

f1(p,x) =
∑
t

∑
v∈V

(pv − cv)Qtvxtv

subject to (5.6a)− (5.6d)

(5.7a)− (5.7h)

qv, πv, θv, λ ∈ R+, rv, sv, zv, t ∈ {0, 1},

x,y ∈ R(p,q)

Because of the existence of nonlinear terms pvxtv and qvytv this problem is nonlinear.

The linearization technique, proposed in this section, can be used to replace these nonlinear

terms by variables utv and wtv, respectively.

We could alternatively replace problem (5.5a)-(5.5c) by applying the strong duality prop-

erty. In this case, RI-PVPP is equivalent to the following mixed-integer bilevel program:

max
p∈R|V |+

f1(p,x) =
∑
t

∑
v∈V

(pv − cv)Qtvxtv

subject to (5.6a)− (5.6d)∑
v∈V̄

p̄vπv −
∑
v∈V̄

(p̄v + δv)θv − (∆ +
∑
v∈V̄

p̄v)λ =
∑
t

∑
v∈V

(pv − cv)Qtvxtv, (5.9a)

qv, πv, θv,∈ R|V̄ |+ , λ ∈ R+,

x,y ∈ R(p,q),

where constraint (5.9a) represents the strong duality property of problem (5.5a)-(5.5c).

Therefore, RI-PVPP can be reformulated as a mixed-integer bilevel program by applying

the KKT optimality conditions or the strong duality property.

The same idea can be exploited to reformulate robust problem RII-PVPP as a mixed-

integer bilevel problem. That is, by applying either the KKT optimality conditions or the

strong duality property, the three-level robust problem RII-PVPP can be reformulated as
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a mixed-integer bilevel problem. For instance, by applying the strong duality property, we

achieve the following mixed-integer bilevel reformulation of RII-PVPP:

max
p∈R|V |+

f2(p,x) =
∑
t

∑
v∈V

(pv − cv)Qtvxtv

subject to qv ≥ p̄v ∀v ∈ V̄ , (5.10a)

qv ≤ p̄v + δvzv ∀v ∈ V̄ , (5.10b)∑
v∈V̄

zv ≤ Γ, (5.10c)

πv − θv ≤ 0 ∀v ∈ V̄ , (5.10d)

δvθv − λ ≤ 0 ∀v ∈ V̄ , (5.10e)∑
v∈V̄

p̄vπv −
∑
v∈V̄

p̄vθv − Γλ =
∑
t

∑
v∈V

(pv − cv)Qtvxtv, (5.10f)

qv, πv, θv,∈ R|V̄ |+ , λ ∈ R+, zv ∈ [0, 1],

x,y ∈ R(p,q)

Thus, both three-level robust problems RI-PVPP and RII-PVPP can be reformulated

as mixed-integer bilevel problems. This transformation enables us to exploit the idea of

Algorithm 3 and propose an exact solution approach for these problems. With this approach,

in order to solve RI-PVPP and RII-PVPP, we first reformulate them as a mixed-integer

bilevel problem. Then, we apply a modified version of Algorithm 3 where instead of solving

SPVPP in the first step, we solve single-level relaxation of RI-PVPP or RII-PVPP.

Proposition 24 assures that these robust formulations can be solved exactly after a limited

number of iterations.

5.4 NUMERICAL EXPERIMENTS

In this section we describe our computational experiments aimed at exploring the nu-

merical performance of Algorithm 3 and the reformulations from Section 5.2. We employ the

106



same set of test instances used in [96] where each of three major pediatric vaccine manufac-

turers in the United States market, GlaxoSmithKline, Merck and Sanofi Pasteur, act as the

leader. In addition, the 2014 Recommended Childhood Immunization Schedule (RCIS) [35]

and 2014 private sector market prices [36] are used in this set of instances. Similar to [96],

the time periods of interest in our study includes: birth, 2-month, 4-month, 6-month, 12-18

months and 4-6 years.

Our experiments are conducted on an Intel Xenon PC with 3.7 GHz CPU and 32 GB

of RAM, and MIPs are solved using CPLEX 12.4 [67]. As reported in [96], the heuristic

methods of [96] are coded in C++ and the lower-level problem, for any set of pv-variables,

is solved using CPLEX 12.5. All runs in [96] are implemented on a PC having an AMD

Athlon II X2 215 processor with 2.7 GHz CPU and 4 GB of RAM.

Running time analysis. First, in Table 17, we study the performance of Algorithm

3 in terms of its running time. Three forms of heuristic algorithm, denoted by H1, H2 and

H3, are developed in [96] to solve DPVPP. In each of these heuristic methods, the value

of parameter ψ represents the number of selected points for the pv-variables within a given

sampling region. We apply Algorithm 3 to solve the same set of test instances used in [96]

to compare its running time against the reported running time of the best three variants of

heuristic methods developed in [96].

Table 17 demonstrates that, although these three heuristic methods are not guaranteed

to achieve an optimal solution, they result in relatively good pricing decisions. In particular,

the third heuristic variant, ψ = 1000, obtains an optimal solution in all test instances. This

can be observed by comparing the manufacturer’s profit obtained by the heuristic methods

against the optimal profit obtained by exact Algorithm 3.

However, from the running time point of view, these heuristic methods are slower than

Algorithm 3. Indeed, Algorithm 3 reaches an optimal solution, in all test instances, signifi-

cantly faster than the heuristic approaches, see the bolded values in Table 17.

Note that, as the gap between the profit from the heuristic methods and the optimal

profit in Algorithm 3 decreases, the running time of these heuristic algorithms increases.

That is, the best heuristic method in [96], in terms of reaching a good solution, ψ = 1000, is

the slowest one. However, Algorithm 3 reaches an optimal solution quickly, see, Section 5.3.

107



Table 17: The running times (in seconds) of solving DPVPP instances, by three variants

of the heuristic methods developed in [96] and Algorithm 3. The running times of heuristic

methods are taken from [96] for each row. The value in bold represents the best result across

all methods. The value in parenthesis shows the number of iterations in Algorithm 3.

Manufacturer k ($) Heuristic H3 Algorithm 3
ψ = 10 ψ = 100 ψ = 1000

GlaxoSmithKline 6.79 profit 264.32 298.44 298.44 298.44
time 32 375 4340 2 (10)

9.31 profit 298.44 298.44 298.44 298.44
time 30 543 3559 3 (10)

11.83 profit 298.44 298.44 298.44 298.44
time 30 243 3100 4 (11)

14.35 profit 298.44 302.47 302.47 302.47
time 27 332 3277 3 (11)

16.87 profit 298.44 312.55 312.55 312.55
time 32 326 2105 3 (10)

Merck 6.79 profit 93.7 93.7 93.7 93.7
time 15 137 1250 3 (5)

9.31 profit 93.7 93.7 93.7 93.7
time 14 131 1945 3 (5)

11.83 profit 93.7 93.7 93.7 93.7
time 11 142 1260 2 (5)

14.35 profit 83.7 93.7 93.7 93.7
time 13 146 1399 2 (4)

16.87 profit 93.7 93.7 93.7 93.7
time 13 136 1431 2 (4)

Sanofi Pasteur 6.79 profit 220.6 245.1 251.04 251.04
time 30 261 2432 3 (7)

9.31 profit 220.6 238.39 248.52 248.52
time 97 278 3488 3 (7)

11.83 profit 220.6 238.39 246 246
time 23 254 2715 2 (7)

14.35 profit 220.6 238.39 243.48 243.48
time 23 273 2529 3 (7)

16.87 profit 220.6 239.39 240.96 240.96
time 23 270 2590 3 (7)
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Comparing robust formulations and DPVPP. To study the advantages and limita-

tions of proposed robust models in different situations, in this set of experiments we provide

a detailed comparison between these models and DPVPP. We consider the manufacturer’s

profit in different settings where the value of qv is known, for all vaccines v ∈ V̄ , or is given

by uncertainty sets Ω1 or Ω2. For each setting, we explore the obtained profit when the

manufacturer implements a robust solution or an optimal solution of DPVPP. Throughout

our experiments, the values of parameter p̄v, in robust models, and qv, in DPVPP, are set

to the market prices used in [96] for all vaccines v ∈ V̄ .

In Table 18 we evaluate the manufactures’ profit in a nondeterministic setting where the

value of qv, for all vaccines v ∈ V̄ , is given by the uncertainty set Ω1 with ∆ = 20 and

δv = 8. Let (p∗1,x
∗
1) be the optimal solution of RI-PVPP. Then, we denote by f ∗1 (p∗1,x

∗
1),

the corresponding optimal objective function value of RI-PVPP. Furthermore, we report

the profit obtained when the manufacturer ignores the uncertainty in the market prices and

implements an optimal solution of DPVPP, denoted by p∗d, see the values of f1(p∗d,xd)

in Table 18, where xd is the lower-level response to the upper-level decision p∗d. Thus,

f1(p∗d,xd) is the manufacturer’s objective function value if upper-level decision p∗d is plugged

into problem RI-PVPP.

The optimal objective function value of RI-PVPP, f ∗1 (p∗1,x
∗
1), in Table 18, shows the

manufacturer’s worst profit if she/he takes the uncertainty into consideration and sets the

vaccines prices through solving RI-PVPP. If the manufacturer implements solution p∗d,

which is not necessarily an optimal decision in this nondeterministic setting, then the ob-

tained profit is smaller, see the values of f ∗1 (p∗1,x
∗
1) and f1(p∗d,xd) in Table 18. The value

of the profit reduction is reported for all instances in Table 18. For example, in the first

two instances, if the manufacturer implements p∗d, then the resulting profit can be zero in

the worst case. However, in these two instances, if an optimal solution of RI-PVPP is

implemented, then the profit is at least 90.09 and 62.66, respectively.

Table 19 displays the manufactures’ profit in a different setting where the value of qv is

known for all vaccines v ∈ V̄ . The profit is reported when the manufacturer makes use of ex-

tra information about market prices and sets the prices through solving deterministic model

DPVPP, see f ∗d (p∗d,x
∗
d). Moreover, we compute the profit if the manufacturer implements
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Table 18: Obtained profit in a nondeterministic setting when the manufacturer implements

either an optimal solution of RI-PVPP or DPVPP. An optimal solution of RI-PVPP

is denoted by (p∗1,x
∗
1) and f ∗1 (p∗1,x

∗
1) is the corresponding optimal objective function value.

The value of p∗d represents an optimal solution of DPVPP and f1(p∗d,xd) is the objective

function value of RI-PVPP when the manufacturer implements p∗d. We set ∆ = 20 and

δv = 8, for all vaccines v ∈ V̄ .

Manufacturer k f∗1 (p∗1,x
∗
1) f1(p∗d,xd)

f∗1 (p∗1,x
∗
1)

−f1(p∗d,xd)
f∗1 (p∗1,x

∗
1)−f1(p∗d,xd)

f∗1 (p∗1,x
∗
1) × 100%

GlaxoSmithKline 6.79 90.09 0 90.09 100
9.31 62.66 0 62.66 100
11.83 90.09 66.76 23.33 26
14.35 127.94 66.76 61.18 48
16.87 132.98 66.76 66.22 50

Merck 6.79 78.83 68.77 10.06 13
9.31 65.52 57.76 7.76 12
11.83 65.52 57.76 7.76 12
14.35 65.52 57.76 7.76 12
16.87 65.52 57.76 7.76 12

Sanofi Pasteur 6.79 61.05 17.57 43.48 71
9.31 23.05 15.05 8.00 35
11.83 20.05 12.53 7.52 38
14.35 53.59 10.01 43.58 81
16.87 36.29 7.49 28.80 79

an optimal decision of RI-PVPP, denoted by p∗1, in this deterministic setting, see fd(p
∗
1,x1).

As expected, compared with the value of f ∗d (p∗d,x
∗
d), the resulting profit in the second case

is smaller. We can interpret this difference in Table 19 as “the value of information” for

manufacturers in an oligopolistic vaccine market.

By applying robust model RI-PVPP in a nondeterministic setting, a manufacturer con-

siders the worst-case scenarios with respect to the value of qv, see f ∗1 (p∗1,x
∗
1) in Table 18.

That is, for any set of qv ∈ Ω1, the manufacturer’s profit is equal to or greater than the value

of f ∗1 (p∗1,x
∗
1). This can be observed through comparing the values (p∗1,x

∗
1) in Tables 18 with

f ∗d (p∗1,x1) in Table 19 where the values of qv are fixed for all vaccines v ∈ V̄ .
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Tables 20 and 21 present similar information where the manufacturers apply model RII-

PVPP to achieve a robust pricing decision. The corresponding uncertainty set in RII-PVPP

is represented by Ω2 where Γ = 2 and δv = 8, for all vaccines v ∈ V̄ .

Table 19: Obtained profit in a deterministic setting when the manufacturer implements

either an optimal solution of DPVPP or RI-PVPP. An optimal solution of DPVPP is

denoted by (p∗d,x
∗
d) and f ∗d (p∗d,x

∗
d) represents the corresponding optimal objective function

value. The value of p∗1 represents an optimal solution of RI-PVPP and fd(p
∗
1,x1) is the

objective function value of DPVPP when the manufacturer implements p∗1. We set ∆ = 20

and δv = 8, for all vaccines v ∈ V̄ .

Manufacturer k f∗d (p∗d,x
∗
d) fd(p

∗
1,x1)

f∗d (p∗d,x
∗
d)

−fd(p∗1,p1)
f∗d (p∗d,x

∗
d)−fd(p∗1,p1)

f∗d (p∗d,x
∗
d) × 100%

GlaxoSmithKline 6.79 298.47 90.09 208.38 70
9.31 298.47 149.57 148.90 50
11.83 298.47 155.57 142.90 48
14.35 302.47 181.26 121.21 40
16.87 312.594 245.54 67.05 21

Merck 6.79 93.7 78.83 14.87 16
9.31 93.7 65.52 28.18 30
11.83 93.7 65.52 28.18 30
14.35 93.7 65.52 28.18 30
16.87 93.7 65.52 28.18 30

Sanofi Pasteur 6.79 251.057 61.15 189.90 76
9.31 248.537 58.63 189.90 76
11.83 246.017 56.11 189.90 77
14.35 243.317 53.59 189.72 78
16.87 240.977 53.59 187.387 78
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Table 20: Obtained profit in a nondeterministic setting when the manufacturer implements

either an optimal solution of RII-PVPP or DPVPP. An optimal solution of RII-PVPP

is denoted by (p∗2,x
∗
2) and f ∗2 (p∗2,x

∗
2) is the corresponding optimal objective function value.

The value of p∗d represents an optimal solution of DPVPP and f2(p∗d,xd) is the objective

function value of RII-PVPP when the manufacturer implements p∗d. We set ∆ = 20 and

δv = 8, for all vaccines v ∈ V̄ .

Manufacturer k f∗2 (p∗2,x
∗
2) f2(p∗d,xd)

f∗2 (p∗2,x
∗
2)

−f2(p∗d,xd)
f∗2 (p∗2,x

∗
2)−f2(p∗d,xd)

f∗2 (p∗2,x
∗
2) × 100%

GlaxoSmithKline 6.79 144.82 90.92 53.90 37
9.31 98.92 90.92 8.00 8
11.83 98.92 90.92 8.00 8
14.35 127.94 66.76 61.18 48
16.87 180.62 132.98 47.64 26

Merck 6.79 74.84 49.53 25.31 34
9.31 65.53 49.53 16.00 25
11.83 65.53 49.53 16.00 25
14.35 65.53 49.53 16.00 25
16.87 65.53 49.53 16.00 25

Sanofi Pasteur 6.79 25.59 17.57 8.02 31
9.31 23.05 15.05 8.00 35
11.83 17.79 12.53 5.26 29
14.35 17.79 10.53 7.26 40
16.87 17.79 15.09 2.70 15
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Table 21: Obtained profit in a deterministic setting when the manufacturer implements

either an optimal solution of DPVPP or RII-PVPP. An optimal solution of DPVPP is

denoted by (p∗d,x
∗
d) and f ∗d (p∗d,x

∗
d) represents the corresponding optimal objective function

value. The value of p∗2 represents an optimal solution of RII-PVPP and fd(p
∗
2,x2) is the

objective function value of DPVPP when the manufacturer implements p∗2. We set ∆ = 20

and δv = 8, for all vaccines v ∈ V̄ .

Manufacturer k f∗d (p∗d,x
∗
d) fd(p

∗
2,x2)

f∗d (p∗d,x
∗
d)

−fd(p∗2,p2)
f∗d (p∗d,x

∗
d)−fd(p∗2,p2)

f∗d (p∗d,x
∗
d) × 100%

GlaxoSmithKline 6.79 298.47 167.07 131.40 44
9.31 298.47 171.07 127.40 43
11.83 298.47 175.07 123.40 41
14.35 302.47 177.07 125.40 41
16.87 312.59 181.07 131.52 42

Merck 6.79 93.70 74.84 18.86 20
9.31 93.70 65.52 28.18 30
11.83 93.70 65.52 28.18 30
14.35 93.70 65.52 28.18 30
16.87 93.70 65.52 28.18 30

Sanofi Pasteur 6.79 251.05 61.15 189.90 76
9.31 248.53 58.63 190.38 76
11.83 246.01 17.79 228.22 93
14.35 243.31 17.79 225.52 93
16.87 240.97 17.79 223.18 93
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5.5 CONCLUSION

In this chapter we consider the pediatric vaccine pricing problem in the US oligopolistic

market. We formulate this problem as a mixed-integer nonlinear bilevel program, where at

the upper level the manufacturer sets the vaccine price and at the lower level, a potential

purchaser, e.g., a health care provider, seeks to minimize the cost of vaccination. That is,

the purchaser has to decide whether to purchase a vaccine from the manufacturer or from

the other producers in the market, i.e., competitors.

In contrast to the previous works in the literature, see [96], we study this problem in

a nondeterministic setting, where the price of vaccines produced by the competitors are

given by some uncertainty sets. Specifically, we extend [96] by proposing different robust

formulations for situations where the market prices of vaccines are not known exactly in

advance. Furthermore, we develop an exact solution method for the presented formulations.

For future research, it would be valuable to develop a model that takes into account

both private and public market prices. Another interesting direction includes extending

this model to incorporate settings, where different financial incentives for manufacturers are

provided by the government. Furthermore, it would be beneficial to consider this problem

in settings where vaccine prices are given by different types of uncertainty sets.
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6.0 CONCLUSION

One of the key assumptions in the standard bilevel optimization modeling framework is

that the follower solves the lower-level problem optimally. However, there are many practical

application settings where this assumption is not likely to hold. In this dissertation we

address this issue by proposing different modeling approaches where the follower’s reaction

set includes exact and inexact solutions of the lower-level problem. Moreover, we develop

solution methods to solve the proposed bilevel models and demonstrate their performance

through extensive numerical experiments.

Chapter 2 considers a general class of pessimistic bilevel linear problems, referred to as

α-pessimistic BMIPs, where the follower might select a suboptimal solution, to worsen the

leader’s situation. We incorporate the proposed approach into a class of strong-weak mod-

els, where the leader is not certain if the follower is either collaborative or adversarial. The

advantages and limitations of the proposed approaches are illustrated by using insightful nu-

merical experiments. Moreover, we consider some related computational complexity issues.

In particular, the most interesting observation obtained is the fact that even if an optimal

optimistic (or pessimistic) solution of BLP is known, then the problem of finding an optimal

pessimistic (or optimistic) solution for the same BLP remains an NP -hard problem. Future

research directions may include issues related to generalizations of the proposed models for

bilevel problems that involve integrality restrictions for the follower’s decision variables and

more general classes of objective functions at both levels.

Chapter 3 considers different modeling approaches for situations where the leader does

not know upfront the algorithm used by the follower to solve the lower-level problem, but

knows that it belongs to a known finite set of algorithms. Three approaches are proposed

that allow the leader to hedge against different response scenarios at the lower level. Our
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results indicate that the proposed approaches allow the leader to substantially reduce her

losses whenever the follower’s actual behavior is not known precisely. An interesting future

extension of our work may include settings where the leader and the follower interact repeat-

edly over time, and hence the leader might infer information regarding the method used by

the follower based on his response to the leader decisions.

Chapter 4 studies single-level reformulations of bilevel problems, including those pre-

sented in Chapters 2 and 3. We propose a new reformulation method for this reformulation

based on the strong duality property of linear optimization problems under the assump-

tion that the upper-level variables are integer. Compared to the KKT-based reformulation,

SD-based reformulation may reduce the number of variables and constraints significantly in

some settings. We perform extensive numerical experiments to explore the performances of

an off-the-shelf MIP solver with these reformulations. Our experiments show that the SD-

based reformulations can lead to orders of magnitude reduction in computational times for

certain classes of problems.

Chapter 5 explores bilevel models in the application setting of the pediatric vaccine pric-

ing problem. We present different robust bilevel formulations of this problem, assuming that

the competitors’ prices are nondeterministic. Moreover, we develop an iterative exact solu-

tion method where the MIP single-level relaxation models are solved in each iteration. Our

numerical results demonstrate that compared to the existing approaches in the literature,

our robust models may improve the manufacturer’s profit.
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[72] J. J. Júdice and A. Faustino. The solution of the linear bilevel programming problem
by using the linear complementarity problem. Investigação Operacional, 8(1):77–95,
1988.

[73] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. 2004. Springer, Berlin,
2003.

[74] B. Lunday and M. J. Robbins. Informing pediatric vaccine procurement policy via
the pediatric formulary design, pricing, and production problem. IIE Transactions,
48(12):1112–1126, 2016.

[75] L. Mallozzi and J. Morgan. ε-Mixed strategies for static continuous-kernel Stackelberg
games. Journal of Optimization Theory and Applications, 78(2):303–316, 1993.

[76] S. Martello and P. Toth. An upper bound for the zero-one knapsack problem and a
branch and bound algorithm. European Journal of Operational Research, 1(3):169 –
175, 1977.

[77] S. Martello and P. Toth. A new algorithm for the 0-1 knapsack problem. Management
Science, 34(5):633–644, 1988.

[78] S. Martello and P. Toth. Knapsack problems. Wiley and Sons, Chichester, England,
1990.

[79] G. P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part I–convex underestimating problems. Mathematical programming, 10(1):147–175,
1976.

[80] T. G. McGuire. Setting prices for new vaccines (in advance). International Journal of
Health Care Finance and Economics, 3(3):207–224, 2003.

[81] A. Migdalas, P. M. Pardalos, and P. Värbrand. Multilevel optimization: algorithms
and applications. Norwell: Kluwer Academic Publishers, 1998.

[82] J. M. Morales, P. Pinson, and H. Madsen. A transmission-cost-based model to estimate
the amount of market-integrable wind resources. IEEE Transactions on Power Systems,
27(2):1060–1069, 2012.

122



[83] A. L. Motto. On the exact solution of a class of stackelberg games. In Proceedings of
the 2005, American Control Conference, 2005., pages 249–250. IEEE, 2005.

[84] A. L. Motto, J. M. Arroyo, and F. D. Galiana. A mixed-integer LP procedure for the
analysis of electric grid security under disruptive threat. IEEE Transactions on Power
Systems, 20(3):1357–1365, 2005.

[85] W. A. Orenstein, R. G. Douglas, L. E. Rodewald, and A. R. Hinman. Immunizations
in the united states: Success, structure, and stress - A complex collaboration involv-
ing government, industry, providers, academe, professional societies, and third-party
payers. Health Affairs, 24(3):599–610, 2005.
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