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MOTOR CORTICAL ACTIVITY RELATED TO THE COMBINED

CONTROL OF FORCE AND MOTION

Scott Kennedy, PhD

University of Pittsburgh, 2018

Using tools, writing, and eating are all important behaviors that involve manipulating ob-

jects. Successful manipulation requires the control of both the force exerted on the object

and its resultant motion. Both have been associated with neural activity in the motor cortex

and we are interested in the extent to which neural firing rates in this brain region are related

to their combined control. The mechanical relation between force and motion is impedance

and we hypothesized that motor cortical activity encodes an impedance signal that reflects

the force and motion demands of behavior. We examined this possibility with a paradigm

in which subjects manipulated a handle that moved along a track. The handle was locked in

place until the subject exerted enough force to cross a specific threshold; it was then released

and moved along the track. We hypothesized that this ballistic-release task would encourage

subjects to modify their arm impedance in anticipation of the upcoming movement.

We modeled the behavior as a physical dynamical system and found that one component

of model impedance, stiffness, varied in a way that matched the behavioral demands of the

task and that stiffness could be dissociated from changes in force and displacement. We

recorded activity from a population of motor cortical neurons and found that the temporal

and time-averaged neural responses encoded information about motion and force. We also

could decode model impedance parameters that we then used to approximate the time-

varying force exerted on the handle. The force exerted on the handle and the model stiffness

depended on muscle activity and we found components of muscle activity related to both

force and model stiffness. Additional components of motor cortical activity were also related

iv



to both force and stiffness, suggesting a possible parceling of muscle-related representations

in motor cortical activity. In addition to extending current models of neural activity to

include manipulations, this study may be helpful in understanding how information encoded

in motor cortical activity might be transformed into muscle activity during object interaction.
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1.0 INTRODUCTION

Object manipulation is a fundamental human behavior that underlies many aspects of com-

munication, tool use, and activities of daily living. These tasks often involve using the arm

and hand to move an object. Tool use and handwriting have played especially important

roles in the specialization of the arm as a manipulator, propelling the development of human

culture and knowledge. Simple machines arose from the manipulation of simple objects,

making it possible for early humans to break free from the limitations of the physical body.

Handwriting supports art, math, and medicine, and the handwritten signature is still a defin-

ing aspect of a person’s identity. Furthermore, daily activities such as brushing teeth, getting

dressed, and eating with utensils all depend on the ability to manipulate objects. Infants, in

the first months of life, start exploring how their actions can change the environment around

them: dropping cups, smearing food, banging toys, etc. Later in life, motor deficits caused

by stroke and other neurological disorders make it difficult to accomplish the most mundane

tasks and navigate a typical day’s activities.

The importance of object manipulation in human behavior is paralleled by the complex

anatomy that supports it. Dexterous mechanics in the arm are essential for exerting forces

to ensure precision, accuracy, and stability (Hogan, 1985a). Flexible biomechanics in the

musculoskeletal system ensure successful manipulation under a wide variety of environmental

conditions (Latash, 2018). Vast neural and, more specifically, cortical areas devoted to

the arm hint at the information bandwidth needed to control the system (Shadmehr and

Krakauer, 2008; Kalaska, 2009; Schwartz, 2016). Although there has been considerable

progress in understanding how the individual aspects of musculoskeletal biomechanics and
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cortical neural activity relate to object manipulation, a thorough investigation of a control

framework that can unify these pieces is missing and would be an important goal to better

understand fundamental human behavior.

1.1 MECHANICS

Moving an object to perform a task requires that force acts upon the object. Isaac Newton

described the Laws of Motion as (Newton, 1962):

1. an object at rest will stay at rest and an object in motion will stay in motion unless

forces act upon it;

2. change in an object’s motion is proportional to the force acting on the object;

3. for every action there is an equal and opposite reaction; or, the mutual actions of two

objects upon each are always equal and directed in opposite directions.

The first law is important in this study because it describes how the manipulative motion

can be achieved: namely, by exerting force on the object. The third law is also important

because it emphasizes that the force exerted on the object will act on the hand in the

opposite direction, i.e. the physical interaction between the hand and object is fundamentally

bi-directional.

1.2 BIOMECHANICS

The musculoskeletal system supports the mechanics of manipulation. Muscles govern the

forces we use to affect the world around us, with muscle fibers contracting as actin and

myosin proteins create cross bridges between the fibers and creep past each other. The

movement causes the ends of the muscles to move closer together, pulling on bones that

rotate about joints. The bones provide the rigid structures that effectively transfer forces

from muscles to an object.
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A large number of muscles and bones are involved in most manipulations. The force

exerted on the object is governed by rotational forces at the joints called joint torques,

which in turn are governed by muscle forces. Many different combinations of muscle forces

can produce the same joint torques, and many different combinations of joint torques can

exert the same force on the object. The result is immense flexibility in the pattern of muscle

forces and joint torques that could perform a manipulation task (Bernstein, 1967; Latash,

2018).

The combinations of muscle forces and joint torques used to manipulate various objects

have been described by biomechanists using engineering principles (Todorov, 2000; Scott

et al., 2015) and have contributed to advanced prosthetics and robots (Dollar and Herr,

2008; Clites et al., 2018). However, there remain significant challenges for describing manip-

ulation in the real world, i.e. a world where change and uncertainty are prevalent. In fact,

by the time most children start school, they are more capable of sophisticated real-world ma-

nipulation than advanced robots. To close the gap between engineered robot manipulations

and dexterous manipulations of young children, we need to gain a better understanding of

how the nervous system controls the musculoskeletal system.

1.3 NEUROSCIENCE

Muscle contractions are activated by alpha motor neurons in the spinal cord, each of which

is embedded within a local spinal circuit. Spinal circuits receive sensory feedback from the

periphery, as well as supra-spinal structures, with some remote structures projecting directly

to alpha motor neurons (e.g. cortico-motoneuronal projections) (Rathelot and Strick, 2006).

The motor cortex is a cortical region that sends direct and indirect output to alpha motor

neurons (Phillips and Porter, 1977).

Electrical excitation of the motor cortex elicits muscle contractions, leading to the his-

torical establishment of the motor cortex as a primary source of information about motor

behavior (Fritsch and Hitzig, 1870; Ferrier, 1886). However, the flexibility of the muscu-

loskeletal system, the complex anatomical connections contributing to muscle activation,
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and poorly understood control strategies make it difficult to describe the role of the motor

cortex in controlling behavior. Motor cortical activity has been shown to encode: muscle ac-

tivity (Morrow and Miller, 2003), the displacement and torque of single joints (Evarts, 1968;

Thach, 1978), the displacement and torque of multiple joints (Reina et al., 2001; Kurtzer

et al., 2006), the displacement and force of the hand (Georgopoulos et al., 1986; Kalaska

et al., 1989), and many other motor signals. However, the majority of these studies were

conducted with the subject performing a task that isolated either force or motion. Behavioral

information within motor cortical activity could support a wide variety of control strategies

and, because object manipulation often involves the combined control of both force and mo-

tion, it is unclear to what extent motor cortical activity encodes different control strategies

in the context of object manipulation.

1.4 CONTROL STRATEGIES

The effective control of object manipulation involves appropriate motor commands being

sent by the central nervous system to the musculoskeletal system, and appropriate inter-

active behavior between the musculoskeletal system and the object. These two aspects of

control can be described in terms of a “signal processing” approach in the case of motor

commands and an “energy processing” approach in the case of interaction (Hogan, 2014).

Importantly, these two approaches are not mutually exclusive and often are complementary

during behavior.

Conventional feed-back control is an example of a signal processing approach, where

the system is composed of three processing components: a controller, a plant, and a sensor

(Figure 1.1). This conventional feed-back control loop has been successful in describing

many aspects of human behavior (Scott, 2004; Diedrichsen et al., 2010; Scott et al., 2015;

Schwartz, 2016). In this case, the intended arm movement might be the input signal x̂ with

the actual arm movement as the output signal x. The actual arm movement is compared

to the intended arm movement and a discrepancy would be sensed by the sensory systems

(sensor) and sent as a feed-back signal to a sensory integrator which generates an error
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signal e. The motor system (controller) would then process the error signal to send motor

commands (control signal) to the musculoskeletal system (plant), which corrects the error

by generating actual arm movement as the output.

However, the difficulty lies in the delays of the signal transmission. Because of conduction

delays in the nervous system and excitation/contraction delays in the muscles, the feedback

sensory signal is delayed and degraded and the motor commands generate movement at a

delay. The delays could be compensated, for example, by an internal model (Shadmehr and

Mussa-Ivaldi, 1994; Lackner and Dizio, 1994) that predicts the future sensory signals from

current motor commands, but the internal model depends on learning the dynamics of the

musculoskeletal system and the environment.

A compliment to the signal processing approach is the energy processing approach, which

can be considered as a feed-forward strategy and is particularly important for object manip-

ulation because it emphasizes the physical interaction between the components of the system

(Hogan, 2014). Therefore, when the arm and hand interact with an object during manipula-

tion, the control strategy would be to regulate the combined dynamics of the musculoskeletal

system and the object. Because this approach emphasizes the physical interaction, it is sub-

ject to Newton’s third law which states that for every action between physical components

there is an equal and opposite reaction. The interaction can be described in terms of the

energy exchanged between the arm and the object, with the rate of energy exchanged being

power. In simpler terms, the interaction involves force and motion (velocity), where mechan-

ical power is force multiplied by velocity. The end result can be viewed as the arm exerting

force and the object moving with some velocity. The mechanical relation between force and

velocity is impedance.

1.4.1 Impedance control

Impedance control emphasizes the physical interaction between components of a system,

making it suitable for object manipulation where the arm (one component) exerts force

to move an object (a second component). A critical aspect of this approach is the bi-

directionality of the interaction, where the object exerts an equal and opposite force on the
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Figure 1.1: Feedback control. The user supplies an input x̂ at time t that is compared

with at some delay τ with the feedback from the sensor xt−τ . Discrepancies between the

input and output signals result in an error signal e that is sent to the controller, which

determines a control signal u that will reduce the error and sends the signal to the plant.

The plant executes the control signal and the output x is fed back by a sensor and becomes

xt−τ , completing the loop.
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hand and the hand/object move in coupled motion. The energy flow during this interaction

occurs with no delay, making it especially relevant when it is difficult for an internal model

to predict the arm/object dynamics and the interaction is susceptible to errors caused by

signal delays. This type of difficulty is present when first contacting an object and when

manipulating an unfamiliar or unstable object. The physical interaction between the arm

and the object leads to the primary postulate of impedance control, which states:

It is impossible to devise a controller which will cause a physical system to present an
apparent behavior to its environment which is distinguishable from that of a purely physical
system (Hogan, 1985c).

An intuitive understanding of impedance control can be gained by describing a physical

system with multiple individual components, which collectively are referred to as impedance

components (Figure 1.2). Although a strict definition of mechanical impedance would de-

scribe the mapping of velocity to force, it might also be important to consider position and

acceleration variables. Therefore, we refer to impedance as the general mapping between

motion, as input, and force, as output. The impedance component associated with position

is similar to the stiffness K of a spring, where x0 is one end of the spring (reference position),

x is the other end (attached to the object), and F is the force exerted by the spring on the

object.

F = K(x0 − x)

When interaction with the object causes the spring to stretch away from its reference position,

the spring’s stiffness maps the displacement to force. Similarly, the impedance component

associated with velocity is like a damper that exerts force to reduce velocity.

F = −Dẋ

Finally, the impedance component associated with acceleration is like a mass that exerts

force to reduce acceleration.

F = −Aẍ

The net effect of these constitutive relations are described in equation 1.1, where F is the

force exerted on the object; K,D,A are coefficients related to stiffness, damping, and inertia,

collectively referred to as impedance; x0 is the reference position; and x, ẋ, ẍ are the actual
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position, velocity, and acceleration. The reference position x0 is called the zero-force position

because zero force is exerted on the object when it is at rest in this position. In other words,

the force F exerted on the object will drive it toward the position x0 in a way that depends

on the impedance coefficients K,D,A. In essence, the controller is operating as a physical

system composed of a spring, damper, and mass whose motion is perturbed when it interacts

with the object.

F = K(x0 − x)−Dẋ−Mẍ (1.1)

Under impedance control, the interaction between the arm and the object is of primary

interest. When the object causes the arm to deviate from the zero-force position, the arm

exerts force on the object. When the object’s position matches the zero-force position, zero

force is exerted on the object. If the zero-force position is stationary, the arm exerts force

to maintain the attached object at a steady position according to the impedance coefficients

and the motion error as described in equation 1.1. If the zero-force position flows along a

trajectory, then the arm exerts force to direct the object along that trajectory.

Critically, combined force-motion control is achieved by changing the impedance coef-

ficients and the zero-force position. With extremely high impedance, motion is controlled

accurately. Small deviations from the specified zero-force position map to large corrective

forces, reducing error. Low impedance corresponds to force control. Large deviations from

the specified zero-force position map to small forces, leading to a mismatch between the ac-

tual and controlled position. In this case, the zero-force position is merely an abstract value

used to control force. Importantly, impedance is continuously valued and directional, making

it possible to modulate the force/motion emphasis in different directions as the behavioral

context changes.

In this study, we focused on impedance control to regulate the physical interaction be-

tween the arm and the object. We made this decision because we are interested in short time

scales where the signal delays in conventional feed-back control might produce errors, such

as initially contacting an object. Additionally, impedance control more easily accommodates

a variety of object and environment dynamics by conceptually separating the object from

the arm (in conventional feed-back control, the object is part of the plant/arm). In prac-

tice, it’s likely that some form of feed-back control, in combination with an internal model,
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would be used to send motor commands to set the arm’s impedance. However, because we

are interested in fast time scales and variable object dynamics, we decided that impedance

control would be the relevant control strategy for object manipulation in this study.
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Figure 1.2: Impedance control. Impedance control emphasizes the physical interaction

between the arm and object. (A) The arm is modeled as a physical system consisting of a

spring with stiffness K, a damper with damping D, and a mass with inertia A. Collectively,

these components describe the impedance of the arm. The arm exerts force on the object

when the object’s position x causes the physical system to deviate from its reference position,

x0. (B) This is a control diagram summarizing the physical model. The impedance of the

arm and the intended movement (reference position) are set by the motor commands. The

impedance dynamics describe the physical interaction with energy exchanged via force and

motion at no delay.
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1.5 MECHANICS, BIOMECHANICS, NEUROSCIENCE, CONTROL

Humans manipulate objects in an unpredictable world, often relying on the spring-like prop-

erties of muscles to quickly react to unpredictable interactions and collisions (Franklin and

Wolpert, 2011). This type of control can be described as a physical system composed of

a spring, mass, and damper. One particular advantage of this description is the combined

control of force and motion, critical for many cases of tool use and activities of daily living.

Impedance control is executed by the musculoskeletal system, whose rigid bones and

force-producing muscles exert force on the object (Hogan, 1984b). The muscles behave like

the spring and damper in the physical system. The bones and body segments behave like

the mass. Using different combinations of muscle activations and assuming different arm

configurations, the arm can behave like a wide range of physical systems, depending on the

goals of the task at hand.

The nervous system provides the motor commands that dictate the impedance of the arm

(Latash, 2008). Co-activating antagonist muscles changes the effective stiffness and damping

of the arm. Changing the configuration of the arm also affects stiffness by changing muscle

length (overlap of the myofibers: shorter length, more overlap, higher stiffness). These

factors depend on the activation of the muscle by the alpha motor neurons in the spinal

cord. The alpha motor neurons are part of spinal networks influenced by the motor cortex,

which encodes high-level information about task goals, such as object motion. In this project

we probe the premise that the motor cortex contributes to this impedance framework during

object interactions.

1.6 CONTRIBUTIONS

The long-term goal of the project is to develop models of neural activity during object manip-

ulation that will expand our understanding of the control strategies employed by the motor

system. A step toward that goal, and the objective of this thesis, is to describe the role

of the motor cortex in combined force-motion control. Our central hypothesis is that motor
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cortical activity encodes an impedance signal and a motion signal that vary according to task

conditions. The hypothesis was based on two sets of relations. First, that M1 activity is

closely related to motion and the musculoskeletal system. Second, that the musculoskeletal

system governs arm impedance. The results presented in this thesis contribute to an under-

standing of how the motor cortex participates in combined force-motion control, extending

the flexibility of neural encoding models to more closely resemble the control observed dur-

ing healthy behavior. These models can be used in brain-machine interfaces to investigate

cortical principles of learning and performance during many activities of daily living.

The objective of this thesis was achieved by addressing three specific aims:

1. Establish conditions under which force and impedance were modulated inde-

pendently.

2. Develop neural encoding models that describe information about impedance

and motion.

3. Determine the extent to which separate components of muscle activity and

neural activity are related to force and stiffness.

We adopted a behavioral paradigm to study impedance as a primary factor in the com-

bined control of force and motion during object interaction. In addition, by exploiting this

paradigm, we found signs of a strategy used for the combined control of force and motion.

These results will help form a neural framework for understanding object manipulation. Such

a framework is expected to advance the field by making it possible to study neural principles

involved in regulating interaction dynamics, as detailed in the following chapters.

• Chapter 2 describes the details of the experimental design, equipment fabrication, and

surgical procedures.

• Chapter 3 presents the validation of the experimental paradigm and the development of

a novel method for relating muscle activity to arm impedance.

• Chapter 4 develops neural encoding models that capture impedance and motion infor-

mation and predict time-varying behavior using minimal parameters.

• Chapter 5 explores the possibility that the relation between motor cortical activity and

muscle activity depends on the functional role of the muscle activity.

12



• Chapter 6 discusses the context of the results, limitations of the current study, and

opportunities for improvement in future work.
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2.0 DETAILED METHODS

This chapter provides detailed information about the overall thesis experiment and methods,

augmenting the individual methods sections of the following chapters. An initial experiment

was conducted on five human subjects, four men and one woman between the ages of 20 and

40. All subjects were right handed and had no known neurological deficits. The protocol

was approved by the University of Pittsburgh’s Institutional Review Board. We used the

human experiment to address any issues in the experimental equipment and design before

conducting the experiment on two rhesus monkeys. Monkey I weighed 14 kg and monkey S

weighed 12 kg. The protocol was approved by the University of Pittsburgh’s Institutional

Animal Care and Use Committee. Most experimental parameters remained the same across

all subjects, but some were modified and are noted in the text.

2.1 BEHAVIORAL PARADIGM AND EXPERIMENTAL DESIGN

The objective of this thesis was to describe the role of the motor cortex in combined

force-motion control. Our central hypothesis was that motor cortical activity encodes an

impedance signal and a motion signal that vary according to task conditions. To test this

hypothesis, we needed an experimental paradigm to dissociate force, motion, and impedance.

We adopted a pre-loaded, ballistic-release task where subjects were required to overcome

four force thresholds and move their arm to one of four different target zones (Viviani and

Terzuolo, 1973; Elliott et al., 1999).
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Subjects were seated with their torsos restrained to minimize extraneous movement dur-

ing the task. A linear manipulandum was mounted in front of the subject at shoulder height

(Figure 2.1A/D). The manipulandum consisted of a handle mounted on a sled that could be

moved along a straight track. The device was oriented in the frontal plane with the starting

end of the track aligned to the subject’s left shoulder. An electromagnet (Rectangular, 12V

DC, 8W, McMaster-Carr) was activated to lock the sled in place with a microcontroller

(Mega 2560, Arduino) using custom software (dragonfly-msg.org). A start button was near

the subject’s right shoulder (see Figure 2.1A/D)

Each subject was instructed to (1) use their right hand to press the start button and

then reach to grasp the handle, (2) pull on the handle with enough force to unlock it, and (3)

position the handle within a specified target zone. Real-time feedback about the handle’s

location and the target zone was displayed on a monitor in front of the subject. However,

the subject did not receive any direct feedback about the pulling force exerted on the handle

or about the force necessary to unlock the handle.

To be successful, the subject needed to pull with enough force to unlock the handle and

hold it in the specified target zone for 300 ms (Figure 2.1B/E). Exiting the target zone before

300 ms had elapsed caused the trial to fail. An auditory cue indicated success or failure.

The subject then returned the handle to the lock position and initiated the next trial by

pressing the start button.

For human subjects, successful and unsuccessful trials were both included in the analyses.

For monkey subjects, only successful trials were included. Subjects were given 6 seconds to

unlock the handle. The trial was aborted if the subject failed to move the handle in this

period and the trial was re-initiated by pressing the start button. These incidents were not

counted as a failure nor included in the analyses.

In the task, subjects were required to arrest their movement in one of four target zones

and to overcome one of four force thresholds. In theory, an efficient strategy would be similar

to attaching a spring to the locked handle and stretching the other end of the spring (the

zero-force position) to the target zone; when the handle released, it would come to rest at

the zero-force position (Feldman, 1966, 1986; Polit and Bizzi, 1979). For the same target

zone/zero-force position, the force exerted on the handle could be increased by increasing the
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spring’s stiffness (arm impedance). Thus, the zero-force position and arm impedance could be

preset for a given target zone and force threshold, eliminating the need to rely on corrective

interventions during the movement. Instead of emphasizing corrective interventions, this

simple paradigm focuses on the anticipatory control that is likely to take place during object

manipulation.

2.1.1 Force thresholds

Four force thresholds were chosen for each subject (Table 1). To cross the threshold,

only force along the movement direction was considered. Force in the vertical and ante-

rior/posterior directions was left unconstrained. Because of hardware limitations, there was

an unavoidable random 10-30 ms delay between threshold detection and magnet release.

This delay was not measured by the recording system, leading to the decision to align time

on movement onset (see Section 2.4).

Table 1: Force thresholds

Subject Force threshold

Lowest Highest

Human (% MVF) 5 20 35 50

Monkey I (N) 10 14 17 21

Monkey S (N) -5 10 20 30

The four force thresholds for each human subject were chosen as a percentage of the

subject’s maximum voluntary force (MVF) (Table 2). At the beginning of the experimental

session, each subject was asked to grasp the handle and pull as hard as possible while the

handle was locked in place. We measured the maximum force along the direction of motion.

Force thresholds for the monkeys were determined during training. The highest threshold

was set at the highest level for which the monkey could still reliably succeed at all task condi-

tions. The remaining force thresholds were spaced to provide approximately even sampling.
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Table 2: Maximum voluntary force

Maximum Voluntary

Subject Force (N)

Human subject 1 160

Human subject 2 100

Human subject 3 160

Human subject 4 200

Human subject 5 200

The negative force threshold for monkey S ensured that the handle was unlocked before the

monkey grasped the handle, serving as a control condition where the handle immediately

started to move and no force threshold needed to be crossed.

2.1.2 Target zones

Four target zones (Table 3) were displayed on a monitor at eye-level in front of the subject

(Figure 2.1A/D). The target was shown as soon as the start button was pressed.

For the human subjects, all four target zones began at the same start position, near the

lock position of the handle, and the end of the four targets were spaced along the track.

The target zones were chosen to have different widths because we wanted to encourage the

subjects to modulate arm impedance and arm impedance has been shown to increase with

positional accuracy (Gribble et al., 2003; Selen et al., 2006).

The target zones for the monkey subjects were originally the same as the human subjects.

However, whereas the humans tended to stop the handle in the middle of the target zone,

the monkeys tended to stop the handle in the same position, regardless of the target zone.

Therefore, four target zones were selected with the same width but different center positions.
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Table 3: Target zones

Subject Target Zones (cm)

Closest Farthest

Human 2.50 - 5.00 2.50 - 7.50 2.50 - 12.50 2.50 - 22.50

Monkey I 2.50 - 10.00 6.25 - 13.75 10.00 - 17.50 13.75 - 21.25

Monkey S 2.50 - 8.75 6.88 - 12.50 10.63 - 16.88 15.00 - 21.25

2.1.3 Task conditions

A single task condition was composed of a force threshold and a target zone. There were

four force thresholds and four target zones, resulting in 16 task conditions (Figure 2.1C/F).

The task conditions were presented in blocks of repeated trials. The order in which the task

conditions were presented remained the same for each subject.

For the human subjects, each task condition was composed of 20 repeated trials. The task

conditions began with the lowest threshold and farthest target. This block was followed by

another with the same threshold, but with the second-farthest target. Two more blocks were

completed with targets that moved progressively closer to the handle’s lock position. The

next lowest threshold was then presented for the farthest target and the pattern continued.

The last task condition was the highest threshold and the closest target.

For the monkey subjects, each task conditions was composed of 30 and 20 repeated trials

(monkey S and I). The task conditions also began with the lowest threshold and farthest

target. However, this block was followed by another with the same target, but with the

second-lowest threshold. The last task condition was again the highest threshold and the

closest target. Grouping the task conditions by target zone made it easier for the monkeys

to adjust to the transition between new task conditions because the transition between

different targets was more difficult than the transition between different thresholds.
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All subjects were able to rest whenever necessary to prevent fatigue. In addition, a 30-

second rest period was given between task conditions. A longer 60-second rest was given

between every fourth task condition.
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Figure 2.1: Behavioral paradigm. (A-C) Human subjects. (A) The subject was

seated in front of a handle with the torso restrained. A monitor displayed the position of

the handle along a track (vertical blue line) and a target zone (green rectangle). To initiate

a trial, the subject first pressed the start button (to the subject’s right) and then grasped

the handle. The subject pulled on the handle while it was locked in place until the force

threshold was crossed. The handle was then unlocked to move freely along the track and the

subject had to stop and hold the handle within the target zone for 300 ms. (B) Time-series

of force and position were measured for each trial (a single representative trial is displayed

here). At time 0, the handle was unlocked and free to move along the track. The dashed

line on the force plot was the force threshold and the pair of dashed lines on the position

plot were the near and far boundaries of the target zone. (C) A single task condition was

composed of a force threshold and a target zone. (D-F) Monkey subjects. The structure

of each panel is the same as the human subjects.
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2.2 SIGNAL MEASUREMENT

During the task, we measured: (1) the real-time position of the handle; (2) the force exerted

on the handle; (3) the 3D position of optical markers placed on the handle and the subject’s

hand, lower arm, upper arm, and torso; (4) the electromyographic (EMG) activity of muscle

groups or individual muscles; and, for the monkey subjects, (5) neural activity in the motor

cortex.

2.2.1 Real-time position signal

The handle’s real-time position along the track was represented on the monitor as a blue

bar. The handle’s position was measured by a microcontroller (Mega 2560, Arduino) that

sampled a linear potentiometer (SoftPot 300.00mm, Spectra Symbol) at 100 Hz. The voltage

output of the linear potentiometer changed as a wiper, attached to the sled, moved along

the potentiometer’s surface. The mapping from voltage to position was approximately 6.25

mV/cm.

2.2.2 Force signals

Force was measured using a six degree-of-freedom force transducer (Delta FT, ATI Industrial

Automation, Inc.) and sampled at 100 Hz. The transducer was mounted between the handle

and the sled. In the following text, we refer to “force” as the linear force component exerted

by the hand on the handle in the direction co-linear with the track.

2.2.3 Motion tracking

Motion was measured using a passive, infrared motion tracking system (Nexus 1.8.5, Vicon,

Inc.) that sampled at 100 Hz. The system consisted of twelve cameras and eighteen markers

that were either 5 or 10 mm in diameter. One marker was placed on either the handle or

the sled. The remaining markers were placed on the subject.
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For the human subjects, four markers were on the subject’s torso at the right acromion,

left acromion, jugular notch, and xyphoid process. A set of three markers was placed as a

rigid triangle on the lateral side of the upper arm, another set on the lateral side of the lower

arm, and the final set on the dorsal side of the hand.

For both monkey subjects, a set of three markers was placed as a rigid triangle on the

torso (approximately at the xyphoid process), another set attached to the lateral side of the

upper arm, another set attached to the lateral side of the lower arm, and the final set was

placed on the dorsal side of the hand.

Although the handle’s real-time position was displayed to the subject using the signal

from the linear potentiometer, this signal was noisy. For the human subjects and monkey I,

the marker location on the handle was used for analysis. However, there was some bending

of the handle (on the order of mm) for high forces, and the marker was moved to the sled

for monkey S.

2.2.4 EMG signals

Bipolar EMG activity was recorded in two different ways. Surface EMG was recorded from

the human subjects and from monkey I. Epimysial EMG was recorded from monkey S.

The surface EMG system (AMT-8; Bortec Biomedical) included a DIO card (DAQ-2208,

ADLink Technology Inc.) and MATLAB (Mathworks). The raw surface signal was bandpass

filtered at 10-1000 Hz and sampled at 2000 Hz. The epimysial EMG system consisted of

a wireless transceiver and neural signal processor (Mira Link and Grapevine, Ripple). The

raw epimysial signal was low pass filtered at 500 Hz and sampled at 2000 Hz.

For the human subjects, eight bipolar surface EMG signals were recorded using sixteen

electrodes (Pediatric electrodes, Vermed Inc.). Two electrodes were placed over the following

muscle groups: wrist flexors, wrist extensors, elbow flexors, elbow extensors, anterior del-

toid, posterior deltoid, pectoralis major, and rotator cuff. The electrodes were placed using

anatomical landmarks and verified by displaying the signal on an oscilloscope and asking the

subject to activate the different muscle groups. A global reference electrode was placed on

the back of the right hand.
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For monkey I, six bipolar surface EMG signals were recorded using twelve electrodes

(Pediatric electrodes, Vermed Inc.). Two electrodes were placed over the following muscle

groups: wrist flexors, wrist extensors, elbow flexors, elbow extensors, anterior deltoid, and

posterior deltoid. A global reference electrode was placed on the distal, posterior area of the

right rib cage.

For monkey S, thirty-two raw epimysial EMG signals were recorded using separate elec-

trodes (see Section 2.6 for details). A pair of electrodes were placed over individual muscles

in the lower arm, upper arm, and torso. Bipolar epimysial EMG signals were obtained by

subtracting the two channels on each muscle off-line. Separate ground and global references

were positioned subcutaneously on the distal, posterior area of the right rib cage.

2.2.5 Neural signals

For the monkey subjects, neural activity was recorded from two micro-electrode arrays placed

in the arm/hand area of the motor cortex. The neural recording system included a headstage,

amplifier, and neural signal processor that high-pass filtered the raw signal at 200 Hz and

sampled at 40 kHz (Cerestage, DigiAmp, OptiPlex; Plexon Inc.).

Both monkeys had a 96-channel array placed on the pre-central gyrus (Utah array, Black-

rock Microsystems). In addition, monkey I had a 64-channel and monkey S had a 128-channel

array placed anterior to the rostral bank of the central sulcus (MatrixHD array, NeuroNexus).

Prior to recording, channel thresholds were initially set at -4 times the standard deviation

of a 10-second recording of the signal and some channels were adjusted to help discriminate

waveforms. Afterward, all thresholds remained set throughout recording. For each channel,

we recorded the time of each threshold crossing and an 800 micro-second waveform, beginning

200 micro-seconds before the threshold crossing.
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2.3 DATA PREPROCESSING

2.3.1 EMG

For each muscle, the bipolar EMG signals were high-pass filtered at 100 Hz. They were then

mean-centered and scaled by their standard deviation across time (z-scored). Finally, each

signal was squared, low-pass filtered at 30 Hz, square-root transformed, and multiplied by 2

(to recover the signal power). The resulting signal envelopes were down-sampled to 100 Hz.

2.3.2 Motion tracking

The motion tracking markers were manually labeled offline. For the human subjects and

monkey S, gaps in each marker’s trajectory were filled using spline or source-fitting tools

available in the system software (Nexus 1.8.5 and Nexus 2.6.1; Vicon, Inc.). For monkey I,

gaps in each marker’s trajectory were filled using a custom Kalman filter.

The reference frame of the track was defined according to the principal components of

the handle’s 3-D position in the motion tracking reference frame. The first component was

the direction along the track and the remaining components were ordered so that the second

dimension pointed away from the subject and the third dimension pointed upwards. The

origin of the reference frame was the handle/sled’s start position.

Time derivatives were calculated from position using successive application of a Savitzky-

Golay filter with a window length of 7 time bins, a polynomial order of 3, and a derivative

order of 1 (scipy.signal.savgol filter).

2.3.3 Joint angles

Joint angles were calculated using musculoskeletal modeling software (OpenSim) (Delp et al.,

2007) and a generic musculoskeletal model of a human torso (Holzbaur et al., 2005) and

a monkey torso. First, the appropriate generic model was scaled for each subject using

markers placed on bony landmarks. The marker positions were recorded during a single static
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recording period. Markers were placed on the following bony landmarks: right acromion, left

acromion, jugular notch, and xyphoid process; medial and lateral condyles of the humerus;

radial and ulnar styloid processes.

Next, joint angles were calculated using OpenSim’s inverse kinematics algorithm and the

marker positions recorded during the behavioral task. In brief, the algorithm found the joint

angles that minimized the error between the measured marker positions and a set of virtual

marker positions placed on the model. Joint centers were calculated using the joint angles

and the scaled model.

2.3.4 Neural firing rates

Offline, the threshold crossings of triggered voltage waveforms on each channel were sorted

into neural units. Cross-channel artifacts were removed by identifying threshold crossings

that occurred at the same time on 60% of the channels. Waveforms on each channel were

aligned to the minimum voltage and algorithmically sorted (Valley seek sort, Offline Sorter;

Plexon Inc, Dallas, TX). Principal component analysis (PCA) was performed on the temporal

dimensions of the waveforms and sorting was manually adjusted using the distribution of

the waveforms in PCA space.

Spike times were converted to fractional-interval firing rates with 10 millisecond time

bins (Schwartz, 1992). The same neural unit was identified across recording sessions (Fraser

and Schwartz, 2012).

2.4 BEHAVIOR ALIGNMENT

2.4.1 Force ramp

Each trial included a time period when the subjects exerted force isometrically on the handle,

which we refer to as the force ramp. The force ramp began when the force exerted on the

handle rose above 1 N for the last time and ended at movement onset. Movement onset

began when velocity rose above 10% of the trial’s maximum velocity for the first time.
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For the human subjects, the duration of the force ramp varied primarily as a function of

the force threshold, with lower thresholds having a shorter duration than longer thresholds.

To compare task conditions with the same force threshold and different target zones, we

averaged the force ramp duration across trials with the same force threshold and scaled the

duration of each trial’s force ramp to match the average using a piecewise cubic hermite

interpolating polynomial. The task condition’s trial-averaged data during the force ramp

were then used in the analyses.

For the monkey subjects, the force ramp was consistent across all task conditions, al-

though considerably shorter in duration than the human subjects. Because of the consistency,

the force ramp duration for each trial was matched to the average force ramp duration across

all trials using a piecewise cubic hermite interpolating polynomial. Trials with a prolonged

force ramp that started before the trial-averaged force rose above 1 N were excluded

2.4.2 Movement

Behavior following movement onset was not scaled in time because of the importance of

the position time derivatives in the impedance analysis. The impedance hypothesis predicts

that, in this task, the zero-force position is where the handle position will be stopped and

held, making the hold position an important factor in our stiffness analyses. For the monkey

subjects, movement ended when velocity remained below 2.5 cm/s for 100 ms. The hold

position was the handle’s position at the end of movement.

Although the human subjects were instructed to hold the handle within the target zone

for 300 ms, it was common for them to return the handle to the start position without

holding for unsuccessful trials. In addition, the wide human target zones made it possible

for the human subjects to enter the target zone and begin to return the handle to the start

position while still remaining in the target zone for 300 ms (a successful trial). Because both

successful and unsuccessful trials were included in the human analyses, these unanticipated

behaviors made it difficult to consistently evaluate the estimated zero-force position across

all task conditions.

26



To address this difficulty, we examined the position trajectory when the human subjects

did hold the handle at a final position and found that the position when velocity first changed

sign, which we call the arrest position, was a close approximation to the hold position.

When the handle asymptotically approached the hold position, the arrest position was nearly

identical to the hold position. When the handle oscillated slightly toward the end of the

movement, the arrest position was slightly farther from the start position than the hold

position. Therefore, the arrest position was used for the human subjects to evaluate the

zero-force position and to determine the effect of movement constraints on stiffness.

2.5 PHYSICAL DYNAMICAL SYSTEM

We modeled the behavior of the arm as an equivalent physical dynamical system with

impedance components that exert force proportional to position and its time derivatives.

Figure 2.2 is a graphical depiction of a specific form of the model with three impedance

components. A spring with stiffness K exerts force proportional to position, a damper with

damping D exerts force proportional to the first derivative of position, and a mass with

inertia A exerts force proportional to the second derivative of position.

The model makes it possible to describe specific characteristics of how the arm interacts

with the handle. The arm exerts force on the handle when the zero-force position x0 is

different than the handle position x. Equation 2.1 describes the force exerted by the arm

on the handle, where F is force; K,D,A, J are impedance coefficients related to stiffness,

damping, inertia, and a third-order term; x, ẋ, ẍ,
...
x are the handle’s position and its first

3 time derivatives; and x0 is the zero-force position, assumed to be constant. Because we

were unable to measure the impedance of the arm directly, the impedance coefficients are

related to, but not necessarily accurate, representations of the stiffness, damping, and inertia

of the arm. The third-order impedance component (not shown in the graphical model) was

included to help explain variability in force due to time derivatives of position higher than

second order.

F (t) = K(x0 − x(t))−Dẋ(t)− Aẍ(t)− J ...
x (t) (2.1)
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The motion of the handle depends on the difference between the force exerted by the

arm and the force Fext exerted by the magnet. When the magnet locks the handle in place,

x = ẋ = ẍ =
...
x = 0 and F (t) depends only on x0 and K. After the magnet unlocks the

handle, the exerted force depends on the motion, with zero force exerted when the handle is

held at the zero-force position.

The free parameters of the model are x0, K,D,A, J and can be found by fitting the

force and motion data after movement onset to equation 2.1. However, it’s possible that

the data could be better explained using a first-, second-, or higher-order model. Equation

2.1 can be reduced with fewer terms or expanded with additional terms corresponding to

additional time-derivatives of position. The best model can be selected by comparing the

cross-validated error of the different models.

2.5.1 Model selection

Eight different models were tested for the humans and nine different models for the monkeys

according to equation 2.1 with order ranging from 1 to 10. Each model was trained and

tested on 200 ms of data for the humans and 500 ms of data for the monkeys, beginning

at movement onset and using four-fold cross-validation. The data averaged across trials for

one fold was used for testing and the data averaged across the remaining trials was used for

training. Across all folds, the model parameters were fit to the training data and then used

with the motion test data to predict force. Each model was evaluated using the root mean

squared error between the predicted and actual force across folds, conditions, and time.

Higher-order models can often explain more variance in the data, reducing the error.

However, some of this variance is noise. If the model parameters are fit to noise in the training

data, then the error in the testing data will be high. The errors in figure 2.3 generally follow

this trend, reaching a minimum at model order 8 or 9, indicating that variability explained

by higher order models is likely noise. However, decreases in the human error after order 3

are modest, suggesting that a third-order model is sufficient to explain most of the variance

while retaining a simple, interpretable form. Although the monkey error does not exhibit

the same plateau, the advantages of an eighth-order model are outweighed by the difficulty
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of interpretation. A third-order model provides terms related to stiffness, damping, and

inertia, in addition to a higher-order term. For the monkeys, the terms related to stiffness,

damping, and inertia were qualitatively similar between the third- and ninth-order models.

Furthermore, the third-order model provided a good qualitative fit (Figures 2.4 and 2.5,

example from one subject and one fold of the testing data).
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Figure 2.2: Arm modeled as a physical dynamical system. The arm is modeled as

a physical dynamical system composed of a spring with stiffness K, damper with damping

D, and mass with inertia A. Moving the zero-force position x0 causes the system to exert

force on the handle. The motion of the handle depends on the difference between the force

exerted by the arm and the force Fext exerted by the magnet.
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Figure 2.3: Prediction error for model selection. Each model was evaluated using

four-fold cross validation.
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Figure 2.4: Human model predictions match the data. Example model predictions

and testing data for one human subject and one fold. Predictions were made using 200 ms

of data, beginning at movement onset.
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Figure 2.5: Monkey model predictions match the data. Example model predictions

and testing data for one monkey subject and one fold. Predictions were made using 500 ms

of data, beginning at movement onset.
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2.6 EMG ELECTRODES

Subcutaneous, epimysial electrodes recorded the EMG signal for monkey S (Figure 2.6).

These electrodes were custom made according to (Perel, 2012), adapated from (Loeb and

Gans, 1986) and (Miller et al., 1993). Individual muscles were selected in the lower arm,

upper arm, and torso according to previous literature and the relevance of the muscle’s

mechanical action to the task (Table 4).

2.6.1 Fabrication

From monkey S, the bipolar EMG from each muscle was recorded using an electrode patch

with two leads. The distance from the proposed transceiver location in the back to each

muscle was measured and two leads (AS632, Cooner Wire) were cut per muscle, with an

additional 10% added to ensure the leads would not limit arm mobility. The ends of the

leads were exposed using hot tweezers (Meisei Corp.) and threaded through a silastic patch

(SH-21001-007, Bioplexus) (Figure 2.7a). Patch size was either 15 x 15 mm (large) or 10

x 10 mm (small). The exposed wire was 5 mm for the large patches and 3 mm for the

small patches. Spacing between the leads was also 5 mm for the large patches and 3 mm

for the small patches. Large patches were used for the torso muscles and small patches were

used for the remaining muscles. After the exposed leads were threaded through the patch,

the ends were folded back and a small amount of silicone adhesive (A-100, Factor II) was

placed on the back of the patch and covered with a second, thin silastic layer (SH-20001-002,

Bioplexus) to secure and insulate the leads. After the glue was allowed to dry, the leads were

twisted together, secured, and allowed to rest until the twist was set. Electrode impedance

was tested by placing each patch into a saline bath and connecting the two leads to an

impedance meter (1 kHz sine wave, Model IMP-1, BAK Electronics). Typical impedance

values were between 1-5 kΩ.

The electrodes were connected to a transceiver (Mira Link, Ripple) that wirelessly trans-

mitted the signal through the skin. The transceiver leads were exposed using a scalpel and

hot tweezers. The stainless steel leads were soldered together using silver solder and liq-
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Table 4: Individual muscles from which EMG was recorded

Torso Upper arm Lower arm

Pectoralis Triceps lateral head Extensor digitorum communis

Latissimus dorsi Triceps medial head Extensor carpi unlaris

Anterior deltoid Biceps short head Extensor carpi radialis longus

Posterior deltoid Brachialis Flexor carpi radialis

Infraspinatus Palmaris longus

Flexor digitorum superficialis

Abductor pollicis longus

uid flux (Stay-brite silver bearing solder kit, Harris Products Group) (Figure 2.7b). The

corrosive flux was thoroughly removed (Flux-Off Rosin, Chemtronics). The solder joint was

strengthened and insulated with super glue and a curing accelerator (4014 and 7452, Loctite),

and then covered with bio-compatible silicone adhesive (A-100, Factor II).

2.6.2 Surgical procedures

The electrodes were placed beneath the skin via small incisions 1.5-3 cm in length and

oriented proximal-distal. Care was taken to minimize the number of incisions by placing

them where multiple muscles could be accessed, but not directly over any muscle where an

electrode would be placed. A blunt metal rod, 30 cm long and 1 cm in diameter, was used

to tunnel between the incisions and pass the electrodes proximally to distally.

Beginning distally, the muscles were identified anatomically and by electrical stimulation

(1 mA/V, 1V pulse, 200 µs, 2.5 Hz). The corner of each electrode patch was sutured (3-0

silk) to the epimysium and oriented so that the long-axis of the muscle fiber spanned the

two electrodes. The incisions were closed subcutaneously (3-0 polysorb).
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Figure 2.6: Epimysial EMG electrodes. Patch electrodes were sutured to the epimysium

of each muscle. Electrode leads were spliced to a wireless transmitter in the back that sent

the signals through the skin to a receiver.
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(a) Patch electrode (b) Solder joint

Figure 2.7: EMG leads and patch electrodes. Patch electrodes were stainless steel

wires threaded through a plastic patch. The leads of the electrodes were soldered to the

transmitter and covered for biocompatibility.

2.7 NEURAL ELECTRODES

Two micro-electrode arrays were placed in the arm/hand area of the motor cortex (left

hemisphere) for each monkey (Figure 2.8). A 96-channel array was placed in the gyrus of

the arm/hand area of the motor cortex. A second array was placed near the central sulcus

of the arm/hand area of the motor cortex and was designed to penetrate along the rostral

bank of the central sulcus.

2.7.1 Array design

Both monkeys had a 96-channel array (Utah array, Blackrock Microsystems) that was a grid

of 10 x 10 shanks, each 1.5 mm long. The array was 4 mm on each side with 400 µm between

each shank and a platinum recording site at the tip of each shank.
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Figure 2.8: Array placement

Monkey I had a 64-channel array (MatrixHD array, NeuroNexus) that had six shanks

arranged in two rows of three. The outer two shanks on each row were 8 mm long with 10

recording sites that were 703 µm2 and spaced 500 µm apart. The middle shank on each row

was similar to the outer shanks, except for a trio of 121 µm2 recording sites 2.5 mm from

the tip of the shank. The three shanks on each row were spaced 900 µm apart and the two

rows were spaced 300 µm apart.

Monkey S was implanted with a 128-channel array (MatrixHD array, NeuroNexus) that

had 16 shanks arranged in four rows of four. Two rows had shanks that were 2 mm long

with 8 recording sites that were spaced 100 µm apart. The two other rows had shanks that

were 5 mm long with 8 recording sites that were spaced 150 µm apart. Shanks were spaced

200 µm apart with recording sites of 703 µm2. All rows were spaced 300 µm apart. The two

rows with the 2 mm shanks were placed rostrally to the two rows with the 5 mm shanks.

The intention was that this configuration would provide recording sites in the rostral bank

of the central sulcus.
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2.7.2 Surgical procedures

The center of the craniotomy was located 11 mm anterior of the ears and 17 mm lateral of

the midline with approximate dimensions 2.5 cm anterior/posterior and 2 cm medial/lateral.

The Utah array was placed on the pre-central gryus in the arm/hand region of the motor

cortex. It was inserted into the cortex using a pneumatic inserter (Blackrock Microsystems).

The MatrixHD array was inserted just anterior to the rostral bank of the central sulcus.

The sub-surface shape of the sulcus was inspected using an MRI of each monkey and the

insertion was planned so that the recording sites would be located along the rostral bank of

the central sulcus. The orientation of the MatrixHD array was set using a motion tracking

system (Brainsight Veterinary, Rogue Research Inc.) for monkey I and a stereotax micro-

manipulator (Kopf Instruments) for monkey S. Both arrays were inserted using a micro drive

with a speed between 0.1 and 0.4 mm/s (IST Motor, NeuroNexus).
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3.0 IMPEDANCE AS A CONTROL FACTOR DURING OBJECT

MANIPULATION

This chapter was submitted for publication to the Journal of Neurophysiology and published

as a preprint on bioRxiv.

Scott D. Kennedy, Andrew B. Schwartz. Stiffness as a control factor for object manipulation.

bioRxiv 339101, doi: 10.1101/33910.

Note: Here we refer to the zero-force position as the equilibrium position. They are concep-

tually the same, but the equilibrium position was used here because we decided later that

the zero-force position was a more descriptive name.

3.1 ABSTRACT

We act on the world by producing forces that move objects. During manipulation, force is

exerted with the expectation that an object will move in an intended manner. This prediction

is a learned coordination between force and displacement. Mechanically, impedance is a way

to describe this coordination. As an efficient control strategy, object interaction could be

anticipated by setting impedance before the hand moves the object. We examined this

possibility with a paradigm in which subjects moved a handle to a specific target position

along a track. The handle was locked in place until the subject exerted enough force to cross

a specific threshold; then the handle was abruptly released and could move along the track.

We hypothesized that this ballistic-release task would encourage subjects to modify their arm
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impedance in anticipation of the upcoming movement. If we consider the handle as an object,

this paradigm loosely approximates the uncertainty encountered at the end of a reach when

contacting a fixed object. We found that one component of arm impedance, stiffness, varied

in a way that matched the behavioral demands of the task and we were able to dissociate

stiffness from changes in force and displacement. We also found separate components of

muscle activity that corresponded to stiffness and to changes in force. Our results show

that subjects used a robust and efficient strategy to coordinate force and displacement by

modulating muscle activity in a way that was behaviorally relevant in the task.

3.2 INTRODUCTION

Manipulating objects is fundamental to human behavior and requires flexible, coordinated

control of both force and movement (Kawato, 1999; Wolpert and Ghahramani, 2000; Flana-

gan et al., 2006; Franklin and Wolpert, 2011). Identifying a control scheme that takes place

during this behavior would be a step toward detecting and understanding the brain signaling

underlying the way we interact with objects. Depending on the task conditions, multiple

strategies can be used to achieve this coordination. The most challenging behaviors are those

in which rapid, precise manipulation takes place. While humans perform these movements

with great skill, the control principles underlying this behavior is a topic of interest for both

scientists and engineers.

Roboticists use control schemes that utilize rapid feedback to monitor ongoing changes in

displacement and force. To manipulate an object, motion of the robotic effector is controlled

precisely by exerting the force needed to achieve the movement. In real-world conditions, this

can be problematic when unexpected collisions take place or if interaction with the object

leads to large changes in force – for instance, when displacement is measured inaccurately.

The generation of these large forces makes robots dangerous in the workplace, less than ideal

for tasks that rely on rapid and precise object interaction, and renders robots unsuitable for

interaction with humans.
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In contrast, human manipulative behavior can be complex, precise and rapid- despite

noisy sensory information, long feedback delays and muscles with slow, nonlinear dynamics.

How this takes place despite these biological constraints is an open question. For slow move-

ments, a feedback strategy could be used to continuously monitor the object’s movement and

to adjust the exerted force (Kalaska and Crammond, 1992; Scott, 2004; Scott et al., 2015).

If interaction with the object is predictable, then fast movements could be performed using

a feedforward strategy to plan the time-varying forces that produce the desired movement

(Kawato, 1999). However, there is always some amount of uncertainty when interacting with

an object (Shadmehr and Mussa-Ivaldi, 1994; Burdet et al., 2001; Rancourt and Hogan, 2001;

Takahashi et al., 2001; Milner and Franklin, 2005).

Modulating the arm’s mechanical impedance by coordinating force and kinematics has

been proposed as a strategy for handling uncertain interaction dynamics between the hand

and external forces (Bizzi et al., 1982, 1984; Hogan, 1984c; Flash and Hogan, 1985). Me-

chanical impedance is the force which opposes changes in movement, i.e., position, velocity,

acceleration, etc. (Hogan, 1984a, 1985b). The current length and activation of the mus-

culotendon tissue, specified by ongoing neural activity, has intrinsic stiffness and damping

that exerts force instantaneously to impede changes in position (Hill, 1950; Joyce and Rack,

1969; Rack and Westbury, 1974; Nichols and Houk, 1976). Additionally, changing the con-

figuration of the arm changes muscle length and the distribution of mass, affecting stiffness,

damping, and inertia (Trumbower et al., 2009). A compliant arm and hand that yields pre-

dictably upon object interaction may minimize the need for moment-by-moment updates to

a control signal. This type of control is likely a contributing factor to the fast and robust

movements characteristic of human manipulation.

Arm impedance has been studied in a variety of experimental conditions. In posture-

control paradigms, subjects held a manipulandum at an equilibrium position to resist ran-

domly imposed displacements (Mussa-Ivaldi et al., 1985). When instructed to “resist” or

“not resist” the displacements, subjects modulated their arm impedance to generate the

required force needed to return to the equilibrium position (Lacquaniti et al., 1982). In

addition, subjects could modulate arm impedance when instructed to co-activate different

groups of antagonist muscles (Gomi and Osu, 1998; Osu and Gomi, 1999). However, it is
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unclear how the results of these studies can be extrapolated to real-world movements in

which both posture and the equilibrium position change (Gomi and Kawato, 1997; Darainy

et al., 2007).

A variation of the posture-control paradigm required subjects to exert an isometric force.

Under this paradigm, it was found that subjects adopted an arm impedance that was pro-

portional to force (McIntyre et al., 1996). Again, different values of arm impedance could

be achieved by co-activating different groups of antagonist muscles (Gomi and Osu, 1998),

but the range of this modulation was constrained by the level of isometric force (Perreault

et al., 2002).

In addition to posture maintenance, arm impedance can also be used to constrain the

arm spatially along an equilibrium trajectory as it moves toward a target (Bizzi et al.,

1982, 1984; Hogan, 1984c; Flash and Hogan, 1985). A path toward the target would consist

of a series of equilibrium positions. An arm following this trajectory would be resistant to

perturbations away from these positions. If the equilibria were specified sequentially, the arm

would be propelled toward the target by the continuous change in impedance. In this way,

the control strategy could be modeled as a spring-mass-damper (stiffness-inertia-damping)

that moves along the equilibrium trajectory, exerting force to pull the object along behind it.

In subsequent studies testing this hypothesis, subjects were instructed to relax their arms as

much as possible and, although it was found that arm impedance varied during movement,

the equilibrium trajectories were complex (Gomi and Kawato, 1996, 1997). In later studies,

subjects moved their arms through unstable force fields with varying amounts of uncertainty

(Takahashi et al., 2001; Perreault et al., 2002; Osu et al., 2003; Milner and Franklin, 2005).

Again, the subjects were able to modulate the impedance of their arms to complete the

movements successfully. The finding that impedance could be steered to compensate for

directionally-specific instability (Burdet et al., 2001; Franklin et al., 2007; Kadiallah et al.,

2011) was taken as evidence for an explicit impedance controller with an internal model of

environmental instability (Franklin et al., 2007).

In general, internal models are invoked to explain how predictions can be made to account

for the inherent delays of the motor system. In particular, setting a value of impedance in

anticipation of object interaction could be useful in minimizing the effect of these delays.
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Evidence that subjects change their impedance during a task to anticipate object contact

was found using a task in which subjects caught a falling ball (Lacquaniti et al., 1993).

Pseudorandom force pulses were used to measure arm impedance throughout the task and

it was found that subjects changed the direction and magnitude of that impedance shortly

before the ball made contact with the hand.

In order to further characterize anticipatory changes in impedance, we designed a ballistic

release paradigm that required subjects to pull on a handle with different levels of force and

move the handle to various target positions. We found that our arm model’s impedance

varied with task conditions in a way that could be separated from its linkage to force. In

addition, the model’s impedance and force were related to separate components of muscle

activity. Not only do these results support the conclusions of previous studies showing

that impedance is controlled explicitly, they suggest that it may be specified before an

expected object interaction takes place. The preset impedance allows the forces following

the perturbation to direct the arm and hand to an intended target.

3.3 METHODS

3.3.1 Subjects

Five subjects – four men and one woman between the ages of 20 and 40 – performed a

ballistic-release task with their right arm. All subjects provided written and informed consent

and the protocol was approved by the University of Pittsburgh’s Institutional Review Board.

3.3.2 Behavioral paradigm and Experimental design

Each subject was instructed to (1) use their right hand to press a start button and then reach

to grasp a handle, (2) pull on the handle with enough force to unlock it, and (3) position

the handle within a specified target zone (Figure 3.1). To be successful, the subject needed

to exert enough force to unlock the handle, then move and hold the handle in the specified

target zone for 300 ms. In theory, an efficient strategy would be similar to attaching a spring

43



to the locked handle and stretching the other end of the spring (the equilibrium position) to

the target zone; when the handle released, it would come to rest at the equilibrium position

(Feldman, 1966, 1986; Polit and Bizzi, 1979). For the same target zone and equilibrium

position, the force exerted on the handle could be increased by increasing the spring’s stiffness

(arm impedance). Thus, the equilibrium position and arm impedance could be preset for a

given target zone and force threshold, eliminating the need to rely on corrective interventions

during the movement. See section 2.1 for more details.

3.3.3 Data collection

During the task, we measured three signals: (1) the force exerted on the handle; (2) the 3D

position of optical markers placed on the handle and the subject’s hand, lower arm, upper

arm, and torso; and (3) the surface electromyographic (EMG) activity of 8 muscle groups.

All data were synchronized in time and analyzed at 100 Hz. Data from individual trials were

aligned on movement onset. See sections 2.2, 2.3, and 2.4 for more details.

3.3.4 Physical dynamical model

To characterize how arm impedance varied with task conditions, we estimated arm impedance

by modeling the behavior as an equivalent physical dynamical system with impedance com-

ponents that exert force proportional to position and its first 3 time derivatives (equation

2.1):

F (t) = K(x0 − x(t))−Dẋ(t)− Aẍ(t)− J ...
x (t),

where F is the force exerted on the handle, x0 is the equilibrium position, x, ẋ, ẍ,
...
x is position

and its first 3 time derivatives, and K,D,A, J are impedance coefficients. The model maps

a motion signal to the force exerted on the handle. The equilibrium position is the reference

position for the model and represents the steady state of the system, which can be interpreted

as the hold position in this task. The impedance components represent the transition from

the initial state to the steady state and make it possible to exert different forces while keeping

the equilibrium position (hold position) constant. See section 2.5 for more details.
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Figure 3.1: Behavioral paradigm (A) To initiate a trial, the subject first pressed the

start button (to the subject’s right) and then grasped the handle. The subject pulled on the

handle while it was locked in place until the force threshold was crossed. The handle was

then unlocked to move freely along the track and the subject had to stop and hold the handle

within the target zone for 300 ms. (B) Time-series of force and position were measured for

each trial (a single representative trial is displayed here). (C) A single task condition was

composed of a force threshold and a target zone.
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3.3.5 EMG analysis

We were interested in characterizing the EMG pattern that correlated with arm stiffness,

which can increase when antagonist muscle groups co-activate. When this is the case, EMG

can change without a change in the force exerted on the handle. In our analysis, we dis-

tinguished between changes in the EMG pattern that were most correlated with changes

in force (potent EMG activity) from those patterns that were less correlated (null EMG

activity).

3.3.5.1 Regressing force against EMG We regressed force against EMG during the

force ramp using trial-averaged force and EMG signals from the 16 task conditions. We first

fit the linear model according to equation 3.1

F (t) = β0 +W · EMG(t), (3.1)

where F is force exerted along the track, EMG is muscle activity from 8 muscle groups, W

is the coefficient vector, and β0 is a constant offset. We then used this model to fit force to

EMG for each task condition.

3.3.5.2 Separating potent EMG and null EMG We isolated the EMG pattern that

most correlated with changes in force using singular value decomposition (SVD) (Kaufman

et al., 2014) on the [1 x M] coefficient vector in equation 3.1,

U,Σ, V = SV D(W ),

where V is an [M x M] rotation matrix, Σ is a [1 x M] scaling matrix, U is a [1 x 1] matrix,

and M is the number of muscle groups. EMG projected onto the first dimension (row) of V

was most correlated with changes in force. We called this the “potent EMG” activity:

EMGpotent(t) = Vpotent · EMG(t),

where Vpotent is a [1 x M] vector that is the first row of V . If the relation between EMG and

force was perfectly linear, then EMG projected onto the remaining 7 dimensions, i.e. rows 2

through M of V , would not be correlated with changes in force. We summarized this EMG
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activity by performing principal components analysis on the non-potent EMG and found the

single dimension that captured the most variance. EMG was projected onto this dimension

and the result was considered “null EMG”:

EMGnull(t) = Ppc1 · Vnull · EMG(t),

where Vnull is a [M-1 x M] matrix that is rows 2 through M of V and Ppc1 is a [1 x M-1]

eigenvector of Vnull · EMG(t).

3.3.6 Testing the effect of arrest position on the regression of stiffness on force

threshold

Although it is known that stiffness depends on force (McIntyre et al., 1996), the impedance

control hypothesis predicts that stiffness would also depend on position. We tested this

hypothesis using the partial F-test, which determines if additional parameters improve the

explanatory power of a regression model. It employs two nested models, a full model and a

restricted model. The restricted model consists of a subset of the parameters from the full

model.

The two models’ residual sum of squares are compared according to

F =
RSSr −RSSf

RSSf

n− Pf
Pf − Pr

,

where F is the F-statistic, RSSf and RSSr are the residual sum of squares of the full

and restricted model, n is the number of observations, and Pf and Pr are the number of

parameters in the full and restricted model. A higher F-statistic indicates more explanatory

power in the full model. The null hypothesis assumes a value of 0, indicating that the

full model does not have more explanatory power than the restricted model. Statistical

significance is tested using the F-distribution with (Pf − Pr, n) degrees of freedom.

The partial F-test was used to test the hypothesis that adding the arrest position as

a parameter would improve the regression of stiffness on force threshold. Equation 3.2

describes the full model and equation 3.3 describes the restricted model,

K = β0 + β1Threshold+ β2AP + β3(Threshold)(AP ) (3.2)
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K = β0 + β1Threshold (3.3)

where, across all task conditions, K is stiffness, Threshold is the force threshold, AP is the

arrest position (defined as the position after movement onset when velocity falls below 10%

of the maximum), and β are constants.

3.4 RESULTS

Five subjects performed a ballistic-release task that required them to pull on a handle with

different levels of force and then move the handle to different target zones. Successful tri-

als were achieved by exerting enough force to unlock the handle while still controlling the

subsequent movement. Below, we highlight the results from subject 1 and include the re-

maining subjects in the supplementary material. Summary statistics across all subjects are

also presented.

3.4.1 Force and motion varied with the four force thresholds and four target

zones

The subject pulled on the handle with four levels of force and moved the handle to four

target zones (Figure 3.2). Movement onset began at time 0 and, at this time, force for the

same threshold was similar across targets (Figure 3.2A). At or near the end of the movement,

500 ms after movement onset, position was separated across targets for the same threshold

(Figure 3.2B).

For each signal and task condition, we found the median and 95% confidence interval of

the trial-averaged data. We used a bootstrap to re-calculate the trial average 1,000 times.

Each calculation used a random sample of the trials, with replacement.

For this subject, force increased rapidly and began to plateau as it approached the

threshold. This pattern was more pronounced for higher thresholds and closer targets. The

plateau suggests that the subject could approximate the force that would unlock the handle
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but was unable to accurately predict the exact timing of when the handle would be unlocked.

After movement onset, the force decreased rapidly, falling below 0 to slow the handle and

then approaching 0 as the movement of the handle reached a steady position. This trend

was consistent across all subjects (Supplementary Figure 3.9). The MVF for this subject

was 160 N.

For this subject, the movements were usually arrested around the center of the target,

after some initial overshoot. The overshoot remained in the target zone, except for the

closest target and the highest threshold combination, where it often extended beyond the

target zone, reflecting the extreme difficulty of this task condition. The overshoot was

more pronounced for closer targets and higher thresholds which corresponds to a physical

dynamical system having various values of impedance. Before movement onset, the position

of the handle was fixed at 0, with some handle bending (on the order of millimeters) for high

thresholds. Because all trials were included in the analysis, there was substantial across-

subject variability in the positions of the handle at the end of the trial (Supplementary Figure

3.9). For a given subject and task condition, the across-trial variability of the positions was

small, suggesting that the subject had selected a consistent movement strategy for that

condition.

The timing of the maximum velocity was similar across all task conditions (Figure 3.2C).

However, the magnitude of the maximum velocity depended on both the target zone and the

force threshold, increasing for targets farther from the lock position and for higher thresholds.

As expected, the magnitude of the maximum acceleration depended on the force thresh-

old (Figure 3.2D). The initial acceleration values are inaccurate due to the numerical dif-

ferentiation of position. For a pre-loaded release, the initial acceleration should be nearly a

step function and begin at time 0. The initial deceleration was similar across target zones

with the same force threshold.

Task conditions varied from extremely easy to nearly impossible (Table 1, statistics across

subjects). The first four task conditions began with the lowest threshold and farthest target

(top left element in Table 1 and proceeding down). Success rates for these initial conditions

were lower than expected because of some occasional confusion about the exact requirements

of the task. However, after a few trials, the subjects moved quickly and smoothly (Figure
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3.2B and Supplementary Figure 3.9), although the 95% confidence interval was slightly

wider for the handle position during these first four task conditions (different targets with

the lowest threshold) compared with the remaining the task conditions.

3.4.2 Arm model impedance varied with force and motion

We modeled the arm as a physical dynamical system consisting of an equilibrium position

and four impedance components. For each task condition, we averaged the force exerted on

the handle and the handle’s movement across trials. We then used least-squares optimization

to find the model parameters that minimized the difference between the actual and predicted

force over 200 ms beginning at movement onset (see Methods, equation 2.1).

The equilibrium position (EP) of the physical model represents the position of the handle

for which zero force would be exerted. In the context of this task, the EP can be considered

the position where the handle would come to rest and could reflect the intended hold position

(Figure 3.3 and Supplementary Figure 3.10). The following describes the results from Subject

1. We observed that the distance to the EP increased for arrest positions farther from the

handles lock position (Figure 3.3). However, the distance to the EP was consistently shorter

than the distance to the arrest position. The difference between the arrest position and

the EP is suggestive of an under-damped system. Although individual subjects sometimes

arrested their movements at locations that were outside the specified target zones, the match

between EP and the arrest position followed the general trend displayed by this subject (see

also Supplementary Figure 3.10).

The task was designed so that the same target was specified for different force thresh-

olds. If the EP depended on the target, then the different force thresholds could be crossed

by selecting different arm impedances. This would be an efficient control strategy for the

ballistic-release task. We found that the model’s stiffness remained consistent across trials

for each task condition (Supplementary Figure 3.12) and that stiffness increased with force

threshold for a given target zone (Figure 3.4 and Supplementary Figure 3.12), consistent with
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Figure 3.2: Behavioral results. The data are trial-averaged from one subject. Shading

represents the median and 95% confidence interval. Each plot depicts four target zones

with the same force threshold. Movement onset began at time 0 (solid vertical line). (A)

Force varied across thresholds. For a given threshold, force was similar across targets. (B)

Position varied across targets. Subjects tended to overshoot the target zone as the threshold

increased and the target moved closer. (C) Velocity varied with target and threshold. The

maximum velocity was related to both target and threshold. (D) Acceleration varied with

threshold. For a given threshold, initial deceleration was similar across targets. Results for

the remaining subjects are shown in Supplementary Figure 3.9.
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Table 5: Success rate for each task condition. On successful trials, the subject moved

the handle into the target zone and remained there for 300 ms. Exiting the target zone

before 300 ms caused the trial to fail. The difficulty of the task generally increased as the

force threshold increased and as the distance to the target zone decreased. The order of the

task conditions started in the upper left element and proceeded down the column. Entries

are mean ± standard error across subjects.

Lowest threshold Highest threshold

Farthest target 91.4% ± 2.4 100% ± 0 100% ± 0 100% ± 0

97% ± 1.8 99% ± 0.9 99% ± 0.9 94% ± 3.6

82.4% ± 7.6 95% ± 2.0 77.3% ± 10.8 54% ± 16.5

Closest target 71% ± 15.4 68.3% ± 7.8 39% ± 14.4 5% ± 3.5

previous results (McIntyre et al., 1996). Although this relation was approximately linear for

a given target zone, across all task conditions there was distinct structure in the effect of

target zone on the relation between stiffness and force threshold.

For each subject, we quantified the target-dependent structure by comparing the linear fit

of two nested regression models using a partial F-test (Figure 3.5). The full model regressed

stiffness on both threshold and arrest position (grey lines in Figure 3.4). The restricted model

regressed stiffness on threshold alone (black lines in Figure 3.4). Adding the arrest position

to the regression increased the predictive power as evidenced by the F-statistics p-value,

which was below 0.05 for every subject: 0.004, 0.002, 0.008, 0.03, 0.0006; F-distribution with

(2, 12) degrees of freedom.

Although the model’s first- and second-order impedance coefficients generally increased

with force threshold, there was not a consistent relation between these impedance compo-

nents and target zone (Figure 3.4). When stiffness increases more than damping, the physical

dynamical system can become under-damped and tend to oscillate, which may explain the

target overshoot and movement oscillations seen in Figure 3.2.
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data are from subject 1. The distance to the EP increased as the distance to the arrest
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position. This pattern was consistent across all subjects (Supplementary Figure 3.10) and
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Figure 3.4: Model stiffness co-varied with both force threshold and arrest position.

The data are from subject 1. Although the model’s stiffness was proportional to threshold for

a given target, across all task conditions the linear fit that included arrest position was better

able to explain stiffness. The dashed grey lines represent the linear fit of the full regression of

stiffness on force threshold and arrest position. The dashed black line represents the linear

fit of the restricted regression of stiffness on force threshold alone. The model’s first- and

second-order impedance coefficients increased with force threshold. However, there was not

a strong relation between these impedance components and the arrest position. Error bars

indicate median and 95% confidence interval. The physical dynamical model was fit using

200 ms of data beginning at movement onset.
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3.4.3 Arm posture before movement did not vary across task conditions

Although we suspected that subjects might vary their arm posture for different task condi-

tions (Trumbower et al., 2009), we found the arm’s configuration to be remarkably consistent.

For subject 1, the deviation of the joint centers during the 200 ms before movement onset

across all task conditions were as follows: torso 0.98 cm [0.21, 1.99], shoulder 1.23 cm [0.33,

2.39], elbow 1.1 cm [0.27, 2.57], wrist 0.75 cm [0.29, 1.49]; median [95% confidence interval].

Similar values were found for the other subjects (not reported).

Figure 3.1A is representative of the arm posture before movement onset. Specifically,

the joint center positions for subject 1 during the 200 ms before movement onset across all

task conditions were as follows: jugular notch (11.34 cm, -31.62 cm, -7.3 cm), right shoulder

(32.72 cm, -33.23 cm, -6.86 cm), right elbow (27.37 cm, -13.13 cm, -20.27 cm), and right wrist

(4.78 cm, -0.11 cm, -10.01 cm). The origin was the handle’s lock position, the +x-direction

pointed to the subject’s right, +y-direction pointed ahead of the subject, and +z-direction

pointed upward. Similar values were found for the other subjects (not reported).

3.4.4 EMG patterns co-varied with force threshold and with target zone

We recorded bipolar surface EMG from 8 muscle groups in the arm and shoulder (Figure 3.6)

and found that muscle activity gradually ramped up before movement onset at time 0 (solid

vertical line in Figure 3.6), particularly for task conditions with the highest force threshold.

Additionally, EMG activity of most muscle groups was elevated before and after movement

onset, suggesting a level of co-activation of antagonist muscle groups. For each muscle and

task condition, we found the median and 95% confidence interval of the trial-averaged data.

We used a bootstrap to re-calculate the trial average 1000 times. Each calculation used a

random sample of the trials, with replacement.

The elbow flexor, posterior deltoid, and rotator cuff were particularly active before move-

ment onset, i.e., while the subject was increasing the force they exerted on the handle. The

activity of these muscle groups, and their biomechanical actions, suggest that they might be

acting to exert force to cross the force threshold and accelerate the handle along the track.

56



The elbow extensor, anterior deltoid, and pectoralis activity showed a distinct burst

about 70 ms after the handle started to move (dashed vertical line in Figure 3.6), consistent

with a stretch reflex and the functional use of these muscles to decelerate the handle after it

started to move.

The wrist flexor and extensor were the muscle groups most consistently modulated across

task conditions. One possibility for this modulation is that the co-activation of these antag-

onist muscle groups would stiffen the wrist joint and improve the force transfer from the arm

to the handle. Another possibility is that this activity may reflect how tightly the subject

squeezed the handle, and this may also stiffen the linkage. With our current data, we cannot

distinguish between these possibilities.

There are oscillations in the EMG before and after the handle was released. These tend

to increase with larger force thresholds (e.g., posterior deltoid). These oscillations and those

in the force and acceleration traces are evident in Figures 3.2 A and D and appear to be

phase-locked to movement onset. The acceleration pulse occurring at movement onset is in

phase with the preceding oscillations, suggesting that they may play a role in overcoming

the force threshold.

Comparing a muscle group’s EMG across the force thresholds shows that muscle activity

increases with force. In addition, there is a tendency for greater muscle activity for near

targets (especially evident at high force thresholds). For a given threshold, the exerted force

is similar for different target zones (Figure 3.2A), despite different EMG patterns, suggesting

that the subject was modulating the co-activation of antagonist muscle groups.

3.4.5 EMG decomposed into potent and null dimensions

We regressed force on EMG during the force ramp and found that a linear model could

explain much of the variance (RMSE = 11.68 N ± 1.44, mean ± sem across subjects, Sup-

plementary Figure 3.13). Because there were more dimensions of EMG (8 muscle groups)

than dimensions of force (only one along the movement direction), the mapping from EMG

to force was redundant. If the mapping from EMG to force was perfectly linear, there would
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Figure 3.6: Time-varying EMG across task conditions. The data are from subject

1. Each plot depicts four target zones with the same force threshold. Movement onset was

at time 0 (solid vertical line). Some muscles exhibited a strong burst about 70 ms after

movement onset (dashed vertical line). The wrist and elbow muscle groups appeared to co-

activate, particularly for task conditions that included the highest force threshold. Shading

represents the median and 95% confidence interval.
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be one direction (i.e., muscle combination) in the multiple-dimensional EMG space that

correlated with changes in force. EMG orthogonal to this direction, i.e. in the remaining

dimensions of EMG space, would not correlate with force changes.

Using the regression coefficient matrix (equation 3.1), we found a rotation in the multi-

dimensional EMG space that maximized EMG-force correlation in a single dimension. We

called EMG projected onto this dimension “potent EMG.” EMG projected onto the remain-

ing 7 dimensions, i.e., dimensions that theoretically did not correlate with changes in force,

were summarized using principal component analysis and called “null EMG.”

We found that potent EMG accounted for 21.28% ± 4.35 of the total variance (mean ±

sem across subjects). The remaining non-potent variance occupied the dimensions that did

not correlate as well with changes in force. Null EMG accounted for 77.93% ± 2.44 of the

non-potent variance and 61.71% ± 4.41 of the total variance (mean ± sem across subjects).

We designed the null-space analysis under the assumption that balanced changes in the

EMG of antagonist muscles produce changes in EMG without concomitant changes in net

force. Increases in this type of balanced muscle activation should correspond to changes in

stiffness. Although we found that force was generally related to the arm model’s stiffness

(Figure 3.4), we hypothesized that the model’s stiffness would likely be better related to null

EMG than to potent EMG. We tested this by regressing the time-averaged potent and null

EMG (Supplementary Figure 3.14) against the model’s stiffness and compared the slopes,

re-sampling the data 1000 times, with replacement. The median values, displayed in figure

3.7, show that increases in stiffness corresponded to greater increases in null EMG compared

to potent EMG for 4 out of the 5 subjects (EMG offsets were matched to highlight the

slope). This was further confirmed by a histogram of the difference between the null EMG

slope and the potent EMG slope (Figure 3.8).
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EMG. Each plot depicts the time-averaged EMG for all sixteen conditions. Error bars are

the median and 95% confidence interval. EMG offsets were matched to highlight the slope.

Subject 1 shows the most distinct difference between null and potent EMG, while subject

2 shows no difference. The potent EMG was the direction in EMG space that was most

correlated with force. The null EMG was the orthogonal direction that captured the most

variance in the non-potent dimensions.
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3.5 DISCUSSION

Successfully interacting with an object relies on the ability to coordinate the movement of,

and the force exerted on, an object. Modulating arm impedance could be an efficient strategy

for this type of control. We have designed a ballistic-release paradigm that encourages this

strategy while making it possible to dissociate the relations between arm impedance, force,

and motion. We modeled the arm as a physical dynamical system and, of the model’s

impedance components studied, stiffness was the only one that varied consistently across

both force threshold and target zone. Other studies have shown that stiffness co-varies

with force (McIntyre et al., 1996; Gomi and Osu, 1998; Perreault et al., 2002). However, in

our task, the linear force-stiffness relation had structure that was target-dependent. Model

stiffness was related to the target specified before the movement began and was larger for

targets that required shorter movements. Our method for relating EMG to stiffness found

that separate components of muscle activity varied with force and with stiffness. In designing

this study, our aim was to emphasize the use of impedance control as a way of completing

a task. These results, from the ballistic-release paradigm, expand upon studies of arm

impedance that investigated the isolated effect of force (McIntyre et al., 1996; Gomi and

Osu, 1998; Perreault et al., 2002) or motion (Gomi and Kawato, 1997; Burdet et al., 2001;

Darainy et al., 2007; Franklin et al., 2007; Piovesan et al., 2013) and extend the concept

that impedance can be specified predictively for object interaction (Lacquaniti et al., 1993;

Damm and McIntyre, 2008).

3.5.1 Arm impedance estimation

We found model stiffness values that were higher than those reported previously from move-

ments with slower arm speeds and smaller forces (Gomi and Kawato, 1997; Darainy et al.,

2007). Higher forces and arm speeds are both known to increase stiffness (Latash and Got-

tlieb, 1991; McIntyre et al., 1996). In a study with similar arm speeds, values of stiffness are

similar to the values we report (Piovesan et al., 2013).
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Typically, arm impedance is estimated by perturbing the arm in a way that is external

to the task, either by applying a force pulse (Gomi and Kawato, 1996, 1997; Piovesan et al.,

2013) or a position displacement (Mussa-Ivaldi et al., 1985; Burdet et al., 2001; Darainy

et al., 2007; Franklin et al., 2007). In these studies, it is assumed that subjects do not

intervene during the perturbation. Arm impedance can be estimated by measuring the force

exerted on the object when the arm’s movement is perturbed away from its equilibrium

position. However, this method relies on accurately estimating equilibrium positions. In

posture maintenance paradigms, position, velocity, and acceleration are zero at this position

(Mussa-Ivaldi et al., 1985; Gomi and Osu, 1998; Perreault et al., 2002). It is more difficult

to estimate impedance during movement (Gomi and Kawato, 1997; Darainy et al., 2007).

Our task was designed so that the force perturbation, unlocking the handle, was a specific

component of the task. Instead of using movement perturbations interspersed throughout

the task, we modeled the arm as a physical dynamical system (Viviani and Terzuolo, 1973;

Gomi and Kawato, 1997; Burdet et al., 2001; Darainy et al., 2007) based on the force exerted

on the handle and the initial displacement of the hand as it was released. Impedance, in

our model, was calculated with the assumption that the equilibrium position (the target)

was constant, and that at this position, velocity and acceleration were both zero (Polit and

Bizzi, 1979). This assumption was also used in a similar ballistic-release paradigm (Viviani

and Terzuolo, 1973).

For a given force threshold, the force exerted toward the subject was correlated with

model stiffness (Supplementary Figure 3.15). The directional nature of stiffness and force

makes it highly unlikely that the off-axis force was causal to the modulation of on-axis

stiffness. Instead, a simple correlation can be described (Supplementary Figure 3.16). Two

imaginary muscles could exert force in opposite directions along the track, but in the same

direction toward the subject. If the projection of the two muscle forces along the track

canceled out, then the on-axis force would be zero and the force exerted toward the subject

would be non-zero. Proportional modulation of the muscle forces would increase both the

stiffness along the track and the force exerted toward the subject. For this reason, the
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definition of potent and null EMG also considered only force along the track. Considering

force in all three dimensions would have prevented certain behavioral strategies and was not

part of the instructions to the subjects.

3.5.2 Muscle-related stiffness during the ballistic movement

Reaching toward a target is composed of an initial rapid stereotypic movement followed

by a homing phase composed of multiple small submovements (Woodworth, 1899; Meyer

et al., 1988). The initial phase is considered too rapid for concurrent corrections (Elliott

et al., 2010) and the arm effectively behaves as a spring-mass-damper system (Viviani and

Terzuolo, 1973; Hogan, 1985a). Upon release, our subjects moved in a way that was similar

to this initial reaching phase in that the task constraints encouraged a behavior that was

ballistic. This is consistent with a control strategy characterized by preset stiffness and

damping.

The first 200 ms following movement onset took place in the absence of corrective inter-

ventions to the movement. Since those movements depended on threshold and target, it is

likely that the combination of muscle activations were pre-adjusted to reflect the behavioral

conditions of the task, as muscle activation contributes to both the force exerted on the

handle and to arm impedance (Hogan, 1985a). During this time window, it is likely that

feedback-related changes in EMG take place, as evidenced by the EMG response we saw at

70 ms (Figure 3.6). These responses may be composed of spinal and cortical reflexes and

could contribute to both stiffness and damping at a time delay. These responses are known to

change with task requirements (Kurtzer et al., 2009; Dimitriou et al., 2013; Pruszynski et al.,

2014) and could be preset by the nervous system to control the arm during the movement.

However, further analysis will be needed to detail the differences between force responses

that occur at a time delay because of sensory feed-back and force responses that occur at no

time delay because of arm impedance.
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3.5.3 Impedance control

Results from a similar paradigm suggest that the equilibrium position is set before the

force begins to increase (Elliott et al., 1999). In that study, the handle was unlocked in

random catch trials before or after the force threshold was crossed. Since force increased

continuously before the handle was released, a pure force-dependent strategy would result in

shorter displacements for earlier releases. However, the handle’s displacement was not related

to the time of release in the catch trials, showing that a simple predictive force strategy was

probably not used in the task. Furthermore, force at high magnitudes is susceptible to

signal-dependent noise (Harris and Wolpert, 1998; Franklin et al., 2004), making it difficult,

as in our task, to predict when force would cross the threshold and unlock the handle, again

arguing against the idea of a scheme relying only on predictive force control.

Although our model results suggest that arm impedance is set before the movement takes

place, in theory, subjects could perform the ballistic-release paradigm without changing

impedance. If a subject could predict when the handle would be unlocked, it would not

be necessary to change impedance for different targets. Instead, a set of muscles could be

activated to generate the force needed to unlock the handle, followed by the activation of a

different set that would generate the precise force needed to decelerate the handle to stop

in the target zone. In contrast to co-activation, this type of control would be energetically

efficient (Franklin et al., 2004) and could be implemented using implicit and/or explicit

knowledge of the physical plant’s mechanics (i.e., mapping activation to force) along with

the object’s properties (i.e. the force needed to unlock the handle). The subject’s internal

model would encompass this knowledge and could be used to precisely control the transition

from isometric force to movement control. Although this would be energetically efficient,

precise timing would be required. The additional details needed for this scheme would

increase information loading in the system and could result in slower movement.

Our results suggest that subjects chose to control both force and movement together via

impedance control, an idea consistent with other studies which found impedance control to

be preferred when the relation between force and movement is uncertain (Thoroughman and

Shadmehr, 1999; Takahashi et al., 2001; Franklin et al., 2003). These concepts also fit under
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the umbrella of the equilibrium point hypothesis (Feldman, 1966, 1986) and its extensions

(Bizzi et al., 1984; Hogan, 1985a; Flash, 1987). In this framework, the force exerted on the

handle in our task is controlled only indirectly. It depends on the desired movement, the

actual movement imposed by the object on the arm, and the preset impedance.

3.5.4 Conclusion

The ballistic-release paradigm used in this task encouraged subjects to adopt a strategy in

which they simultaneously activated their muscles, creating a virtual spring that arrested a

fast arm movement in a specified target. The physical model of the arm suggested that sub-

jects adjusted impedance to achieve the desired displacement for each combination of force

threshold and target zone. By modeling the arm’s impedance in the short interval following

release, we found that model stiffness changed in a way that anticipated the displacement

needed to reach the target. We assessed the relation between model impedance and muscle

activation, finding EMG patterns that were less correlated with changes in force. This “null”

component was, instead, correlated with stiffness, suggesting that subjects used their mus-

cles to modulate arm impedance without changing force. The ability to separate changes of

force, position, and stiffness, and the manner in which these variables are associated with

different components of muscle activation, suggests that anticipatory changes in impedance

may be a cardinal feature of manipulative control. Because this paradigm demonstrates this

aspect of control, it will be useful for studying the relation between cortical neural activ-

ity and impedance (Humphrey and Reed, 1983). Future enhancement of this paradigm to

include multiple directions (Darainy et al., 2007) and time-varying estimates of impedance

(Lacquaniti et al., 1993; Piovesan et al., 2013) will make it possible to generalize the control

of object interaction to a wider range of behaviors.
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Figure 3.9: Behavioral data for all subjects. Movement varied considerably across

subjects. However, across-trial variability was much less. For some conditions, the subjects

returned the handle to the start position without holding the handle in place (see Subject

4, highest threshold). Additionally, Subject 2 adopted the strategy for the highest threshold

of arresting the handle in the same position, regardless of the target. The data are trial-

averaged and shading represents the median and 95% confidence interval. Each plot depicts

four target zones with the same force threshold. Movement onset began at time 0 (solid

vertical line). The maximum voluntary force (MVF) for Subject 2-5 was 100, 160, 200, and

200 N.
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Figure 3.10: Equilibrium position for all subjects. The distance to the equilibrium

position (EP) was similar to the distance to the arrest position, suggesting that the physical

dynamical model could describe important aspects of the behavior. The distance to the EP

was generally a little less than the distance to the arrest position, especially for Subject 5,

which could be explained by an underdamped physical system and result in the position

overshoot observed in Supplementary Figure 1. Markers are the median and 95% confidence

interval.
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Figure 3.11: Stiffness across trials for all subjects and task conditions. Subjects

did not appear to modulate their stiffness consistently across trials for a given condition.

However, variability within a given condition did increase with stiffness, suggesting signal-

dependent noise that could be linked to similar signal-dependent noise in muscle force.
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Figure 3.12: Stiffness depended on both force and movement. Stiffness exhibited a

strong linear relation with force threshold, particularly for Subjects 3 and 5. However, the

slope and offset of the linear relation depended on the target. Error bars indicate median and

95% confidence interval. The dashed grey lines represent the linear fit of the full regression

of stiffness on force threshold and arrest position. The dashed black line represents the linear

fit of the restricted regression of stiffness on force threshold alone. The physical dynamical

model was fit using 200 ms of data beginning at movement onset.
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Figure 3.13: EMG approximates force. Time-varying force during the force ramp was

regressed on the EMG from all 8 muscles. The linear model was able to consistently capture

variability across all subjects. The data displayed are the median predicted and actual values

from the bootstrap. The dark black line is the unity line representing a perfect fit. Although

the small deviations from the unity line cold be due to the non-linear relation between EMG

and force, a linear model is a good approximation.
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Figure 3.14: Example of time-averaged EMG for subject 1. There was a single value

of stiffness for each task condition. To determine the effect of stiffness on potent and null

EMG, we averaged EMG across time before movement onset. The result was a single potent

and null EMG value for each task condition that was first averaged across trials and then

averaged across time. The confidence intervals were calculated by resampling 1000 times

from the 20 trials per condition. The colored data are the time series EMG for a single

sample and the large black dots are the averages.
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Figure 3.15: Force in all 3 dimensions. Although force exerted along the track did

not vary across conditions with the same force threshold, force exerted toward the subject

increased as the target moved closer to the start position. The correlation between the force

exerted toward the subject and stiffness was likely due to the biomechanics of the arm, where

modulation of off-axis muscle force enabled modulation of on-axis co-activation.
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Figure 3.16: Off-axis forces could correlate with on-axis stiffness. Two imaginary

muscles exert force on the handle according to the labeled vectors. If the magnitude of the

muscle forces are equal, then the sum of the two muscle forces would result in zero force

along the track and a non-zero force toward the subject. In addition, increasing the muscle

force would increase both the force toward the subject and the stiffness along the track,

without changing the force along the track.
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4.0 NEURAL ENCODING MODELS FOR COMBINED FORCE-MOTION

CONTROL

4.1 ABSTRACT

Combined force-motion control is important for manipulating objects flexibly in various

contexts. Neural control of the musculoskeletal system is particularly effective at performing

this type of behavior. Cortical activity in the motor cortex has been found to encode force

and motion signals, but the extent to which combined force-motion control is encoded is

unclear. We leveraged a ballistic-release task that systematically varied the control of force

and motion while recording from a population of motor cortical neurons. We found that the

temporal and time-averaged neural responses encoded information about both motion and

force. By assuming the structure of the physical system used to produce the movement, we

could decode impedance parameters and approximate the time-varying force exerted on an

object. This suggests that impedance is a component of neural signaling that makes the

motor control of object manipulation efficient.

4.2 INTRODUCTION

Manipulating objects to perform activities of daily living necessitates the combined control

of force and motion (Rancourt and Hogan, 2001; Burdet et al., 2001). Combined control is

particularly important as a unified framework that achieves both motion in the free space and

interaction force upon contact (Hogan, 1985c). The established representation of force (Ashe,

1997) and motion (Schwartz, 2016) in motor cortical (M1) activity makes this brain region
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a likely source of information related to object manipulation. Although the representation

of individual force or motion signals in M1 has been extensively studied, the representation

of the combined control of force and motion has yet to be thoroughly investigated.

When M1 is stimulated by electrical impulses, muscles contract and limbs move (Fritsch

and Hitzig, 1870; Ferrier, 1886). The connection between M1 and motor behavior was first

established anatomically via electrical excitation (Leyton and Sherrington, 1917; Phillips

and Porter, 1977; Asanuma and Rosen, 1972) and later via viral tracing (Rathelot and

Strick, 2006, 2009). Subsequent studies further established the functional connection by

recording M1 activity from awake behaving monkeys (Evarts, 1968; Thach, 1978; Cheney

and Fetz, 1980; Georgopoulos et al., 1982, 1986; Kalaska et al., 1989; Georgopoulos et al.,

1992; Schwartz, 1994; Moran and Schwartz, 1999; Kakei et al., 1999; Sergio et al., 2005;

Griffin et al., 2015).

Monkeys were trained to move their hand to various spatial targets using their whole

arm. M1 activity was modulated with the direction of hand motion (Georgopoulos et al.,

1982) and the relation was broadly tuned so that a unique direction could only be specified

by incorporating the directional information from a population of neurons (Georgopoulos

et al., 1986). Combining the directional information across time traced a continuous motion

trajectory that predicted the actual motion of the hand (Schwartz, 1994). The speed with

which the hand traveled along this trajectory was also found to be represented in the M1

population activity (Moran and Schwartz, 1999). Neural encoding models developed from

these results have made it possible to predict the intended trajectory of hand motion in free

space during reaching and drawing.

In other studies, monkeys were trained to exert force on a manipulandum in various

contexts. In one context, external loads were applied to aid or hinder the manipulandum’s

motion, dissociating force and motion. M1 activity was found to reflect the change in force

more than the motion (Evarts, 1968; Kalaska et al., 1989). In another context, hand motion

was eliminated altogether and monkeys were trained to exert isometric force on a stationary

handle (Georgopoulos et al., 1992). The force was mapped to the motion of a cursor and M1

activity was again found to be related to the change in force. Finally, Sergio et al. (2005)
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found that M1 activity reflected the change in force direction when moving inertial loads.

The consistency of these results across various contexts indicates that force information is

encoded in M1 activity.

Combined, these studies highlight the representation of both force and motion in M1

activity. Furthermore, these representations are similar, maintaining a strong directional

component; M1 activity for a given neuron is often maximal in the same direction for both

force and motion (Kalaska et al., 1989). This has led to a possible interpretation that M1

activity is a combination of the two representations, with a potential gain modulation in

different contexts (Kalaska et al., 1989; Georgopoulos et al., 1992). We interpret this dual

representation as potential for M1 to encode information about the combined control of force

and motion. However, this hypothesis proves difficult to test because previous task designs

emphasized either force or motion control. To explore the extent to which combined force-

motion control is encoded in M1 activity, task conditions would need to systematically vary

the parameters of force and motion.

We designed an experimental paradigm, based on impedance control, to emphasize the

interaction between force and motion (Hogan, 1984c, 2014). Conceptually, impedance control

is similar to stretching a spring, where one end of the spring is called the zero-force position

and the other end of the spring is attached to an object. Stretching the spring (displacing

the zero-force position away from the object) causes the spring to exert force on the object

according to both the displacement and the stiffness. In this task, motor commands could be

sent to the musculoskeletal system to set a zero-force position and an impedance, which is the

generalization of stiffness to the time derivatives of position. The force exerted by the arm on

the object would drive the actual position toward the zero-force position, just like when one

end of the spring pulls the object toward the other. For motion in free space, displacement

from the zero-force motion should be minimal and the controlled behavior resembles motion

control. However, interactions with an object typically displace the position from the zero-

force position, causing the manipulator to exert force on the object.

Despite the advantages of impedance control, relatively little is known about how it could

be encoded in cortical activity. One barrier is the difficulty in estimating the zero-force po-

sition. Indirect estimates of the zero-force position have been found using two approaches.
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First, the interaction force and arm impedance have been used to estimate the zero-force

position for both simulated (Katayama and Kawato, 1993) and real arm movements (Gomi

and Kawato, 1996). Second, because arm impedance generates interaction force in response

to displacements from the zero-force position, the force exerted on the object is zero when

the object position equals the zero-force position. To test the second approach, subjects

were instructed to grasp a manipulandum and reach to different spatial targets (Hodgson

and Hogan, 2000). The manipulandum’s trajectory was iteratively adjusted to minimize the

interaction force. Importantly, the subjects were instructed to maintain the same motor

commands for the original reach and not to adjust to the manipulandum’s iterative trajec-

tories. The final position trajectory was then estimated as the zero-force position trajectory

associated with the original, unperturbed reach. Although both approaches provide com-

pelling estimates of the zero-force position, the author of the second approach suggested that

it may be possible to record the motor commands directly from M1 (Hodgson and Hogan,

2000).

Another barrier to determining how cortical activity is related to impedance control is the

difficulty in measuring arm impedance. Typically, arm impedance is measured by perturbing

the arm in a way that is external to the task, either by applying a force pulse (Gomi and

Kawato, 1996, 1997; Piovesan et al., 2013) or a position displacement (Mussa-Ivaldi et al.,

1985; Burdet et al., 2001; Darainy et al., 2007; Franklin et al., 2007). Again, this approach

depends on subjects not intervening during the perturbation.

Our goal was to employ a task that did not involve an external perturbation, but instead

leveraged a ballistic-release paradigm that encouraged behavior that could be modeled as

a physical dynamical system (see Chapter 3). We estimated arm impedance based on the

force exerted on the object and the initial motion of the object as it was released. We

hypothesized that M1 activity could encode a zero-force position and impedance signal that

could be used in impedance control. We found that the temporal and time-averaged neural

responses encoded information about both motion and force. Additionally, we were able to

decode impedance parameters that made it possible to estimate time-varying force using few

parameters.
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4.3 METHODS

4.3.1 Subjects

Two rhesus monkeys were trained to perform a ballistic-release task with their right arm.

All procedures were approved by the University of Pittsburgh’s Institutional Animal Care

and Use Committee.

4.3.2 Behavioral paradigm and Experimental design

Each monkey was trained to (1) use its right hand to press a start button and then reach

to grasp a handle, (2) pull on the handle with enough force to unlock it, and (3) position

the handle within a specified target zone (Figure 4.1). To be successful, the monkey needed

to pull with enough force to unlock the handle and hold the handle in the specified target

zone for 300 ms. An effective control strategy would be similar to modeling the arm as a

third-order physical system, where the arm would move to the correct target zone if the

zero-force position was within the target zone (Feldman, 1966, 1986; Polit and Bizzi, 1979).

For the same target zone and zero-force position, the changes in force on the handle would

correspond to changes in impedance. Thus, a zero-force position and arm impedance could

be preset for a given task condition (target zone and force threshold), obviating the need for

corrective interventions during the movement. See section 2.1 for more details.

4.3.3 Data collection

During the task, we measured: (1) the force of the monkey pulling on the handle; (2) the 3D

position of optical markers placed on the handle and the monkey’s hand, lower arm, upper

arm, and torso; and (3) neural activity in the motor cortex. All data were synchronized in

time and analyzed at 100 Hz. Data from individual trials were aligned on movement onset.

See sections 2.2, 2.3, and 2.4 for more details.
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Figure 4.1: Behavioral paradigm (A) To initiate a trial, the monkey first pressed the

start button (to the monkey’s right) and then grasped the handle. The monkey pulled on

the handle while it was locked in place until the force threshold was crossed. The handle

was then unlocked to move freely along the track and the monkey had to stop and hold

the handle within the target zone for 300 ms. (B) Time-series of force and position were

measured for each trial (a single representative trial is displayed here). (C) A single task

condition was composed of a force threshold and a target zone.
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4.3.4 Physical dynamical system

To estimate impedance, we modeled the behavior of the arm as an equivalent physical

dynamical system with a zero-force position and 4 impedance components that exert force

proportional to position and its first 3 time derivatives (equation 2.1):

F (t) = K(x0 − x(t))−Dẋ(t)− Aẍ(t)− J ...
x (t),

where F is the force exerted on the handle ; x, ẋ, ẍ,
...
x is position and its first 3 time deriva-

tives; x0 is the zero-force position, and K,D,A, J are impedance coefficients. Although this

model describes the arm’s behavior, it does not directly probe arm impedance, meaning that

the first- and second-order impedance components are related to, but not measurements of,

damping and inertia. The model was fit to the trial-averaged data for each task condition

during the first 500 ms after movement onset.

The model maps a motion signal to the force exerted on the object. The zero-force

position is the reference position for the model and governs where the handle would eventually

come to rest, which can be interpreted in this task as the hold position. The impedance

coefficients govern the transition period and make it possible to exert different forces while

keeping the zero-force position (hold position) constant. When provided with the actual

motion as input, the physical model can provide an estimated force as output, according to

equation 2.1. See section 2.5 for more details.

4.3.5 Model stiffness fit to force threshold and hold position

We have previously demonstrated in humans that variability in the model’s stiffness can be

explained by force and motion task parameters (Section 3.4.2). We replicate this finding in

monkeys by fitting model stiffness to force threshold and hold position according to equation

4.1

K = β0 + β1Threshold+ β2HP + β3(Threshold)(HP ), (4.1)
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where K is a [1 x C] matrix of model stiffness values (C is the number of task conditions),

Threshold is a [1 x C] matrix of force thresholds, HP is a [1 x C] matrix of hold positions

(defined as the position corresponding to the time when velocity remained below 2.5 cm/s

for 100 ms), and β0,1,2,3 are regression constants.

4.3.6 De-mixed principal components analysis

The firing rates of individual motor cortical neurons in a population often vary together,

and the different modes of shared variability can be interpreted as different common drivers

influencing each neuron in the population. The effect of the common drivers on the shared

variability can be measured by performing principal components analysis (PCA). In this

task, force threshold and/or target zone might be common drivers and the shared variability

explained by each task parameter would then be a measure of the extent to which the task

parameters are encoded in the population. However, the common drivers revealed by PCA

typically represent a mixture of task parameters, making it difficult to determine how much

of the shared variability can be attributed to force threshold or target zone.

De-mixed PCA (dPCA) is an approach to measuring the shared variability that empha-

sizes the contribution of different parameters (Kobak et al., 2016). We performed dPCA by

smoothing the firing rates to remove high-frequency noise using a Gaussian filter with a 30

ms standard deviation, averaging the firing rates across successful trials, and then z-scoring

the firing rates of each neural unit across time and task conditions. We separated different

parameters by grouping the result according to the 4 force thresholds and 4 target zones,

resulting in a data matrix that was [R x F x P x T], where R represents the number of neural

units, F represents the 4 force thresholds, P represents the 4 target zones, and T represents

the number of 10 ms time bins. The middle two parameters, F and P, represent the 16 task

conditions.

The effect of either force threshold or target zone on the shared variability can be isolated

by averaging across different parameters. The population response that is independent of

force threshold and target zone, i.e. only driven by time, is isolated by averaging across both

the force threshold and target zone parameters. The population response driven by force
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threshold is isolated by removing the time response and then averaging across the target zone

parameter. Likewise, the population response driven by target zone is isolated by removing

the time response and then averaging across the force threshold parameter. Finally, the

population driven by the interaction of force threshold, target zone, and time is isolated by

removing the time, threshold, and target responses and then averaging across time.

The dPCA algorithm uses a special form of reduced-rank regression to reconstruct the

population response driven by the time, force threshold, target zone, and interaction pa-

rameters while at the same time maximizing the shared variability. The algorithm returns

scores that correspond to the shared variability driven by each parameter and the percent

of the total variance explained by each parameter. The scores summed across parameters

approximate the scores corresponding to the first principal component in traditional PCA.

Likewise, the percent variance explained summed across parameters approximates the per-

cent variance explained by the first principal component in traditional PCA. The algorithm

was performed using code from http://github.com/machenslab/dPCA. We report dPCA

results for 1 component separated into the parameters of time, force threshold, target zone,

and interaction. The algorithm default returns time-independent threshold/target terms

and threshold/target-time interaction terms. Because we expected all neural components to

change with time, the time-independent and threshold/target-time interaction terms were

combined according to the algorithm’s documentation.

4.3.7 Encoding model for force threshold and target zone

The task conditions were constant across time and we were interested in how the responses

of each neural unit varied across task conditions. Therefore, to aid the comparison, we

averaged each unit’s raw firing rate over a time window that began when the monkey grasped

the handle (30 or 90 ms before movement onset) and ended 500 ms after movement onset

(monkey S and I). Averaging across trials and then across time resulted in an average rate

for each neural unit per task condition that maintained large time-scale features that would

influence the average.
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The task parameter encoding model was defined as

FR = β0 + β1Threshold+ β2Target, (4.2)

where FR is a [R x C] matrix of the average firing rate of a single neural unit per task

condition (R is the number of neural units), Threshold is a [1 x C] matrix of force thresholds,

Target is a [1 x C] matrix of target zones, and β1,2 are each [R x 1] matrices of regression

coefficients, and β0 is a [R x 1] of constant offsets. The model was fit for each neural unit

across the 16 task conditions. Each unit’s firing rate was first averaged across trials and

then across time. To compare the coefficients across neural units, the average firing rates,

the force thresholds, and the target zones were z-scored across the 16 task conditions.

Coefficients were deemed different from zero using a bootstrap distribution. The trials

per unit per task condition were re-sampled, with replacement, 1000 times and the target

and threshold coefficients were calculated across task conditions for each re-sample. A tuned

neural unit had at least one of the target or threshold coefficients whose distribution did not

include zero (p < 0.05). To help distinguish between the influence of each task parameter,

coefficients whose distribution included zero were set to zero (p < 0.05).

4.3.8 Decoding the physical model parameters

The physical model maps the motion of the handle to the force exerted on the handle.

Therefore, the time-varying force exerted on the handle can be estimated by decoding the

physical parameters and then using them to map the actual motion to force.

The physical parameters were decoded using an optimal linear estimator (OLE) and

evaluated using leave-one-condition-out cross-validation. Because the variance of the phys-

ical parameters differed dramatically (see figure 4.4), they were first z-scored across task

conditions.

Because the physical parameters were constant across time per task condition, each

neural unit’s firing rate per task condition was first averaged across trials and then across

time to yield an average rate per neural unit per task condition. The decoder was trained

by fitting a planar encoding model

FR = µ+ β1x0 + β1K + β2D + β3A+ β4J (4.3)
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using least-squares regression, where FR is a [R x C] matrix of average firing rates; x0 is a [1

x C] matrix of the z-scored zero-force positions; K,D,A, J are each [1 x C] matrices of the

z-scored impedance coefficients corresponding to position and its first three time derivatives;

β are each [R x 1] matrices of regression coefficients; and µ is a [R x 1] matrix of constant

offsets.

To invert the encoding model, the regression coefficients β were fit to the firing rates

using weighted least-squares regression. We used weighted least-squares regression because

it out-performs ordinary least-squares regression when the variance of the errors is non-

constant. It follows the same procedure as ordinary least-squares regression, but with an

added weight to the errors to balance the difference in variance. The weights W were an [R

x R] diagonal matrix of the inverse variance of the residuals from the encoding model.

The decoder consisted of a [5 x R] coefficient matrix θ that mapped the [R x C] matrix of

trial- and time-averaged firing rates FR to a [5 x C] matrix of z-scored physical parameters

Z according to

Z = θ(FR− µ), (4.4)

where θ = (βTWβ)−1βTW and µ, β are from the encoding model in equation 4.3. The

decoder was evaluated using the root-mean-squared prediction error (RMSE) across the

5 z-scored physical parameters and 16 task conditions using leave-one-condition-out cross

validation.

The time-varying force was estimated by first transforming the decoded z-scored physical

parameters back to the original units. The actual motion during a 500 ms time window,

beginning at movement onset, was then mapped through equation 2.1 using these parameters,

estimating the force exerted on the handle. The estimated force was evaluated using the

RMSE across the 16 task conditions and fifty 10 ms time bins.
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4.4 RESULTS

We trained two monkeys to control force and motion during a ballistic-release task. Data

were recorded across 11 days for each monkey, with at most 2 days between recording sessions.

Monkey S completed 4030 successful trials and monkey I completed 2347 successful trials.

Trial data were aligned on movement onset and averaged across successful trials for each

task condition. Bootstrapped confidence intervals were calculated by re-sampling the data

1000 times, with replacement, from the successful trials per condition.

4.4.1 Force and motion control varied according to force threshold and target

zone

To complete the task, the monkeys pulled on the handle with enough force to cross the force

threshold and then moved and held the handle within the target zone (Figure 4.2). The task

conditions dissociated force and position by evoking similar position trajectories for each of

the force thresholds and similar force trajectories for each of the target zones. Movement

onset began at time 0. Signals were very consistent across trials for a given task condition.

The monkeys pulled on the handle quickly, crossing the force threshold in 30 ms and 90

ms on average (monkey S and I). Monkey S tended to initially exert force in the direction

opposite motion when it grasped the handle, quickly reversing the force direction to cross

the threshold. Both monkeys increased the exerted force rapidly to the threshold with no

plateau or apparent anticipation of threshold crossing.

The monkeys moved to the hold position smoothly, overshooting the hold position by a

small distance but still staying within the target zone, typical of an arm impedance that is

slightly under damped. Task conditions with near targets or high thresholds were associated

with larger absolute overshoot, suggesting that arm impedance was modulated across task

conditions.

Greater maximum velocities and longer positive velocity durations were associated with

farther target zones. However, the time of maximum velocity was similar across targets,

with a slightly longer time till maximum velocity for farther targets. Maximum velocity for
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monkey S was also positively correlated with force threshold. This might have been a result

of the higher force thresholds for monkey S and was also seen in the human subjects, who

had relatively high force thresholds (see Figure 3.2).

As expected, maximum acceleration was positively correlated with force threshold. Al-

though the maximum was also slightly related to target zone, the initial decrease in acceler-

ation was similar across targets. Shortly after movement onset the acceleration values were

negative, mirroring the force values and indicating that the handle was being slowed.

4.4.2 Physical dynamical model fit transient and steady-state behavior

The arm was modeled as a physical dynamical system according to equation 2.1 and fit to the

behavior using 500 ms of data, beginning at movement onset. The physical model consisted

of 5 free parameters: a zero-force position and 4 impedance coefficients corresponding to

position and its first 3 time derivatives.

4.4.2.1 Zero-force position matched hold position In the context of this task, the

zero-force position can be interpreted as an estimate of the hold position. We found that

the zero-force position matched the hold position across task conditions (RMSE = 0.37 cm

[0.34, 0.41] and 0.97 cm [0.93, 1.01], monkey S and monkey I), indicating that the physical

model estimated the end of the movement well (Figure 4.3).

The variance in hold position for a given target was slightly less for monkey S compared

with monkey I (Figure 4.2). This consistency was also reflected in the zero-force position.

Monkey S moved more rapidly and, for the given 500 ms time window, reached the hold

position sooner than monkey I. This provided better data for the model fit, which could

explain why the zero-force position more accurately matched the hold position for monkey

S compared with monkey I.
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Figure 4.2: Force and Kinematics. Both monkeys crossed the force threshold and moved

smoothly to each target zone. The force and position profiles varied with force threshold

and target zone, respectively, while the velocity and acceleration changes were related to

the combination of force threshold and target zone. Movement onset is designated as time

0 and data were averaged across successful trials. Shading represents the median and 95%

confidence interval.
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4.4.2.2 Model impedance depended on both force and motion Whereas the zero-

force position describes the steady-state behavior of the physical model, the impedance

coefficients describe the transition from the initial state to the steady state. For a given

target zone, the zero-force position was expected to be similar across force thresholds and

we expected impedance to increase as the release force increased.

We found that, for a given target zone, the model’s stiffness was approximately linearly

related to force threshold (Figure 4.4). However, the slope and offset of the linear relation

depended on the motion, showing that, although stiffness depended on force, it also was

modulated by movement distance. A regression model (equation 4.1) that fit stiffness to

force threshold, hold position (offset), and an interaction term (slope), was able to explain

much of the variance (R2 = 0.96, 0.90 monkey S and I), providing good evidence that the

model’s stiffness was related to both force and position in this task.

Although the model’s first- and second-order impedance coefficients increased with the

force threshold, they did not exhibit a consistent pattern across target zones. Because

the task requirements emphasized handle position, we expected stiffness to be the primary

task-related component of impedance. Although the monkeys were restrained in a chair,

they were able to rotate their body slightly. Qualitatively, monkey S tended to rotate its

body toward the handle’s lock position for more difficult task conditions, while monkey

I maintained a more consistent body orientation across task conditions. This could have

accounted for the model’s unexpectedly large second-order impedance values for monkey S,

although additional quantitative analyses are needed to confirm this. The model’s second-

order impedance coefficient values of 0 for both monkeys at the lowest force threshold could

be a result of the combination of low threshold (minimal pre-loading) and inaccuracies in

the model fit. The model’s second-order impedance coefficient dominates the initial motion,

when the load is suddenly released and acceleration is high, and the lower acceleration values

for the lowest threshold may have not fit the model well.
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Figure 4.4: Model stiffness depended on both force threshold and hold position.

The model’s impedance values were generally proportional to force threshold. However,

stiffness was also related to motion. A regression model that fit stiffness to force threshold

and hold position explained much of the variance across task conditions (dashed grey lines).

Error bars represent the median and 95% confidence interval.
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4.4.3 Neural firing rates showed general trends that reflected task parameters

Two micro-electrode arrays were chronically implanted in the arm/hand region of motor

cortex (M1). From these arrays, we recorded the time and triggered voltage waveforms of

96-192 channels of neural activity. Waveforms were sorted offline into 213 neural units for

monkey S and 127 neural units for monkey I. Although effort was taken to record from

both the pre-central gyrus and the anterior bank of the central sulcus, relatively few neural

units were identified near the sulcus (14 and 9, monkey S and I). However, no differences in

responses were identified and therefore we will not distinguish between units recorded from

the gyrus and the bank of the sulcus.

For monkey I, activity on the lateral array during a passive exam was related to the

face/lips (Figure 4.13a). Therefore, we performed additional analyses on the different chan-

nels and neural units from this array for monkey I to confirm that the results were consistent

with those found from monkey S (Figures 4.13b and 4.14).

Each unit was tracked across recording sessions and spike times were first converted to

fractional interval firing rates in 10 ms time bins and then averaged across successful trials

per condition (Figure 4.5). Most units were tracked for 1-3 sessions, but a handful were

tracked for the full 11 sessions.

4.4.3.1 Time-varying neural responses Firing rates of individual units varied across

time and task conditions (Figure 4.6). Rates were smoothed using a Gaussian filter with

30 ms standard deviation. Temporal profiles could be bell-shaped, inverted bell-shaped,

decreasing, or increasing. Although the temporal profiles of some individual firing rates

were related to task parameters (motion-top row, force-middle row), most firing rates were

complex and not readily interpretable.

We measured the extent to which a given task parameter influenced the population using

de-mixed principal components analysis (dPCA). The shared variability of the population

that was driven by different parameters is shown as a time-varying score in figure 4.7. Each

panel consists of 16 traces corresponding to the 16 task conditions.
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The time score (Figure 4.7, first row) represents shared variability that was independent

of task condition, i.e. driven only by time, and explained 36.1% [35.4, 36.8] and 33.2% [31.5,

34.9] of the total variance (monkey S and I). Unsurprisingly, this had the largest relative

influence on the population and likely reflected the temporal focus of the behavior around

movement onset (time 0).

The threshold score (Figure 4.7, second row) represents shared variability that was driven

by force threshold and explained 2.6% [2.3, 3.0] and 2.3% [1.5, 3.6] of the total variance

(monkey S and I). The scores for task conditions with the same force threshold varied

together tightly, but there was some mixture of the scores for the lowest two force thresholds

for monkey S and toward the end of movement for monkey I. The relatively low representation

of the threshold score in the population makes it difficult to determine if this mixture reflected

a particular signature of neural activity or was merely an artifact of noise.

The target score (Figure 4.7, third row) explained 15.9% [15.3, 16.6] and 6.8% [5.9, 8.0] of

the total variance (monkey S and I). The target zone’s influence was much stronger than the

force threshold’s, particularly for monkey S. Other than the closest two targets for monkey

I, all target zones were well separated across time. The relative stability of the scores across

time, particularly for monkey S, could be representative of the zero-force position, which was

assumed constant across time.

The interaction of target, threshold, and time was represented by the interaction score

(Figure 4.7, fourth row) and explained 1.5% [1.3, 1.8] and 5.0% [3.3, 6.9] of the total variance

(monkey S and I). There was quite a bit of differences between the two monkeys, with monkey

S having stable scores across time but which explained little variance, while monkey I had

scores that explained more variance but were dynamic across time. In either case, the scores

are not particularly interpretable for force threshold, target zone, or a combination of the

two.

The summation of scores across parameters, represented by the total score (Figure 4.7,

bottom row), approximates the scores corresponding to the first principal component for

traditional principal components analysis and explained 56.1% [55.4, 57.0] and 47.5% [45.5,

49.4] (monkey S and I). The time profile of these scores have the same general shape as
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the time score, reflecting the strong contribution of that parameter. Additionally, the gen-

eral organization of scores by target zone for monkey S indicates the particularly strong

contribution of the target score.

4.4.3.2 Time-averaged neural responses Four broad categories of neural responses

were found by comparing the coefficients of equation 4.2. The trial-averaged firing rates

were averaged across time and regressed against the task parameters. A target response

(1), shown in the top row in figure 4.8, is one whose variability can be explained by target

zone (colors), but not by force threshold (x-axis). A force response (2), shown in the middle

row, is one whose variability can be explained by force threshold, but not by target zone.

A stiffness response (3), shown in the last row, is one whose variability can be explained

by a combination of force threshold and target zone. For monkey S, the firing rates in the

last row increased as the distance to the target zone decreased and as the force threshold

increased, a pattern consistent with a positive correlation to stiffness (compare with figure

4.4). In contrast, the response in the last row from monkey I shows a pattern consistent with

a negative correlation to stiffness. Both positive and negative correlations were considered

stiffness responses. An other response (4), is one whose response was tuned but did not fall

into the other three categories.

The target and stiffness responses were most represented in the tuned units for both

monkeys. Monkey S had 176 tuned units of the 213 recorded and monkey I had 101 tuned

units of the 127 recorded. A tuned unit had an encoding model with at least one of the

target or threshold coefficients in equation 4.2 different from zero (p < 0.05). The tuned

responses were further categorized according to the coefficients by setting coefficients with

p > 0.05 to 0. Figure 4.9 shows the coefficient values for each unit, highlighting the target

response (green), threshold response (orange), and stiffness response (purple) from figure 4.8.

There were 73 and 49 target responses, and 27 and 13 threshold responses (monkey S and

I). Perhaps most striking, of the 76 and 39 responses tuned to both target and threshold, 59

and 29 were stiffness responses (monkey S and I). These results indicate a salient motion and

stiffness signal encoded in the population and suggest appropriate signaling for impedance

control.
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Figure 4.7: De-mixed PCA revealed shared variability driven by force threshold

and target zone. De-mixed PCA found the shared variability of the population that was

driven by different parameters. Each panel contains 16 traces corresponding to 16 task

conditions. The percent of the total variability explained by the first four rows is reported.

The bottom row is the summation across parameters and approximates the scores from the

first traditional principal component; its percent variance explained is the sum of the first

four rows.
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Error bar represent the median and 95% confidence interval.
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4.4.4 Neural encoding and decoding models for physical model parameters and

force

In a task where the primary success criterion is the position of the object, it might not be

surprising that a motion signal is strongly encoded in the neural population. However, it

is also true that the judge of many object manipulation tasks is the motion of the object.

Despite the importance of motion, mechanics dictate that an object can only move if an

external force is exerted on it. A mapping from the motion signal to the exerted force is

described under impedance control by the physical model in equation 2.1. This motivated us

to use an optimal linear estimator (OLE) to decode the physical model parameters. Using

these, we then calculated the force estimated by the physical model.

We estimated the physical model parameters for one condition using a decoder trained on

the remaining conditions (leave-one-condition-out cross-validation). The zero-force position

and model impedance coefficients were calculated for each task condition and z-scored across

conditions. Data from the 15 training conditions were used to find parameters for each unit’s

encoding model (equation 4.3). The decoder was found by inverting the encoding model

according to equation 4.4 and tested by providing the firing rates from the test condition as

input and returning the decoded physical model parameters as outputs.

The result of this process was 5 decoded physical model parameters for each of the 16

conditions (Figure 4.10). The decoding results were slightly better for monkey S than for

monkey I (RMSE = 0.68 and 0.71), but both monkeys had values that were clustered around

the unity line. The physical parameters with lower values were generally over-estimated and

the physical parameters with higher values were generally under-estimated. This could

have been because the encoding model fit 5 parameters from just 16 observations. More

observations would be possible with time-varying estimates of the physical parameters and

would likely have resulted in a more confident encoding model and improved the decoding

accuracy and precision.
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Figure 4.10: Physical model parameters were decoded from motor cortical firing

rates. The physical parameters were z-scored and used to train an OLE decoder. The

cross-validated decoded parameters approximated the actual values across all 5 parameters

and 16 task conditions. The decode for monkey S was slightly more accurate than monkey

I, perhaps because of the additional neural units recorded from monkey S.
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The decoded z-scored physical model parameters were transformed back to their original

units and used, with the actual motion, to estimate force after movement onset according

to equation 2.1. The estimated force matched the actual force for both monkeys (RMSE =

3.35 N and 1.56 N, monkey S and I) across time, task conditions, and for both low and high

values (Figure 4.11).

Furthermore, the match was consistent across task conditions, capturing the rapid de-

crease in force following movement onset, the negative force that slowed the handle, and the

plateau that held the handle in the target zone (Figure 4.12). The dramatic exception was

the lowest threshold and farthest target for monkey S (top left panel). This was the one

instance when the decoded physical model parameters were unrealistic (negative stiffness).

This problem can be addressed in future work.
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Figure 4.11: Estimated force from decoded physical model parameters. The decoded

physical model parameters were used to estimate force during the 500 ms after movement on-

set according to the physical model. The decoded force matched the actual force consistently

for both low and high magnitudes.
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reflected the same initial decrease, subsequent negative values, and final plateau as the actual

force trajectory. Time 0 was movement onset.
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4.5 DISCUSSION

We leveraged a behavioral paradigm that emphasized the combined control of force and

motion to reveal a motion and impedance signal encoded in motor cortical activity. The

behavior was modeled as a physical dynamical system and the model’s impedance and zero-

force position were decoded and used within the impedance control framework to estimate

a time-varying force that closely approximated the actual force exerted on the object. This

approach synthesized existing neural encoding models of either force (Evarts, 1968; Kalaska

et al., 1989; Georgopoulos et al., 1992; Kalaska et al., 1989; Sergio et al., 2005) or motion

(Georgopoulos et al., 1982, 1986; Schwartz, 1994; Moran and Schwartz, 1999) with a suc-

cessful force-motion control framework (Hogan, 1985a, 2014) to estimate the force exerted

on an object by mapping motor cortical activity to the parameters of a physical dynamical

system.

4.5.1 Ballistic-release behavior

The reported results are for a ballistic-release task that involved little to no intervention

during the movement (Viviani and Terzuolo, 1973; Polit and Bizzi, 1979; Elliott et al., 1999).

In impedance control, this assumes that the model’s zero-force position and impedance

remained constant throughout the movement. The physical interaction between the arm

and handle was described so that the motion of the handle determined the time-varying

force exerted by the arm on the handle, similar to stretching a spring. These conditions

encourage the musculoskeletal system to be pre-set to a state that will accomplish the task

when the handle is unlocked. Although manipulations that are composed of a ballistic

phase followed by a homing phase (Meyer et al., 1988) might demonstrate different patterns

of neural activity, the general framework explored in this study would still be realizable

(Hogan, 1985a).

Both monkeys performed the task very quickly, crossing the force threshold in less than

100 ms. This was much quicker than was observed in the human study (Chapter 3). The

short duration of the force ramp could indicate that the monkey was planning its strategy
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even before the handle was grasped. In this case, it would be difficult to dissociate neural

activity related to reaching for the handle from neural activity related to pre-setting the

musculoskeletal system. Future experiments could improve the task design by requiring the

monkey to maintain force above the threshold for a random period of time. This would

provide a clear time window within which to search for force-related cortical signals and

could encourage a slower, more controlled behavior during the force ramp.

4.5.2 Physical dynamical system

Modeling the arm as an equivalent physical dynamical system that changes according to the

demands of the behavior assumes that the nervous system is capable of setting the effective

impedance of the arm (Hogan, 1984c). Arm stiffness is linked to force (Perreault et al., 2002),

but additional stiffness can be modulated by co-activating antagonist muscles in the arm

and shoulder (Hogan, 1985a; Lacquaniti et al., 1982; Gomi and Osu, 1998). Mechanically,

damping and inertia are related to stiffness through the damping ratio, which describes the

transient response of the system (under-, over-, and critically damped). Correspondingly,

some modulation of damping and inertia was expected to vary with large changes in stiffness.

Damping is affected by muscle activity (Joyce and Rack, 1969; Rack and Westbury, 1974;

Nichols and Houk, 1976) and inertia could be modulated by changing the configuration of the

arm (Mussa-Ivaldi et al., 1985; Trumbower et al., 2009). However, the additional modulation

of stiffness with target zones appeared to be independent of damping and inertia. These

concepts generally fall within the equilibrium point hypothesis (Feldman, 1966, 1986) and

its extensions (Bizzi et al., 1984; Hogan, 1985a; Flash, 1987).

4.5.3 Information encoded in neural activity

We found that a motion and stiffness signal were more strongly represented in motor cortical

activity than a force signal. The relatively weak force signal could be a result of the short

duration of the force ramp or a consequence of the few neural units recorded from the rostral

bank of the central sulcus (Kalaska et al., 1989; Rathelot and Strick, 2009). However, we did

record force levels orders of magnitude higher than previous studies (Evarts, 1968; Kalaska
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et al., 1989; Georgopoulos et al., 1992; Sergio and Kalaska, 2003; Sergio et al., 2005), and

it may have been expected that such high force levels would have resulted in a large force

signal. Ultimately, the short duration of the force ramp prevents any strong conclusions

about the force signal encoded in the neural activity.

The shared variability in the population driven by force threshold and target zone were

revealed by demixed PCA (dPCA). The algorithm is capable of identifying the transient

variability driven by a transient stimulus, and the sustained variability driven by a sustained

stimulus (Kobak et al., 2016). The shared variability driven by the target zone in our task was

separated across targets at the beginning of the force ramp and sustained that separation

throughout the movement. Although not definitive, this could reflect a sustained motion

signal driving the motor cortical population, indicative of the movement’s ballistic nature

and consistent with impedance control. It should also be noted that dPCA was performed

on trial-averaged neural responses that were not recorded simultaneously. While a valid

application of the algorithm, a more nuanced description of the shared variability could be

achieved with trial-by-trial responses from a simultaneously recorded population.

The neural units were categorized into target, threshold, and stiffness responses accord-

ing to the coefficients of the task parameter encoding model. We found that the target

and stiffness responses were most prevalent in the recorded population for both monkeys.

However, the category of an individual neural unit should be interpreted with care. The

temporal responses were complex and it’s possible that a more nuanced temporal analysis

would have yielded slightly different conclusions about individual units. Instead, our goal

was to convey the general prevalence of population information that could be related to each

category.

The zero-force position and impedance coefficients of the physical dynamical model were

decoded from the population activity. The impedance coefficient for position, stiffness,

is generally related to the co-activation of antagonist muscles (Hogan, 1984b; Gomi and

Osu, 1998). Stiffening the wrist by co-activating flexor and extensor muscles was found

to correlate with the activity of a sub-population of motor cortical neurons (Humphrey

and Reed, 1983); the activity of this population decreased when the same muscles were

reciprocally activated. A similar functional tuning of some motor cortical neurons for fixating
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muscle activity was observed by Griffin et al. (2015). Our ability to decode the impedance

coefficients is likely related to these results, but more studies are needed to determine how

the different impedance coefficients might be represented within individual neurons in the

motor cortex.

We should emphasize that our results describe information contained within motor cor-

tical activity and do not claim a specific function of the motor cortex. The motor cortex is

one of several neural structures influencing the spinal network that ultimately controls mus-

cle activity and behavior (Phillips and Porter, 1977; Lemon, 2008). Future work would be

needed to narrow down the potential influence of motor cortical activity on muscle activity

and arm configuration that mechanistically modulate the behavior of the arm and hand.

4.5.4 Conclusion

The combined control of force and motion was systematically explored using a ballistic-

release paradigm and neural activity from the motor cortex was recorded, an area of the brain

canonically related to both force and motion. The combination of rich behavior and neural

recordings enabled us to synthesize traditional neural encoding models with an established

control theory framework. We found a strong motion and stiffness signal and could decode

physical system parameters that efficiently approximated the force exerted on an object.

Extensions of this work will be useful for more detailed models of neural activity during

object manipulation in a variety of contexts. It will also add to the versatility of brain-

machine interfaces, potentially providing people who are paralyzed the ability to manipulate

objects and perform many activities of daily living.
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Figure 4.13: The lateral array for monkey I was sub-divided into individual recording chan-

nels. (A) A passive exam revealed that some channels exhibited activity related to the face

and lips. However, the medial portion of the array contained channels that were related to

the shoulder, arm, and hand. (B) For each channel, the shading represents the highest R2

on that channel from the regression for equation 4.2. The medial portion of the array, cor-

responding to the arm and hand area, had regression fits that were consistent with monkey

S (see figure 4.9)
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Figure 4.14: The target and threshold coefficients did not depend on the laterality

of the neural units recorded from monkey I. Each dot represents one neural unit from

monkey I and corresponds to the target and threshold coefficients from the task parameter

encoding model regression in equation 4.2. The color corresponds to the laterality of the

recording channel, with 1 representing the medial-most corner of the array and 0 representing

the lateral-most corner of the array (see Figure 4.13).
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5.0 MUSCLE ACTIVITY AND MOTOR CORTICAL ACTIVITY RELATED

TO FORCE AND STIFFNESS DURING OBJECT MANIPULATION

5.1 ABSTRACT

To simultaneously control force and motion during object manipulation, muscle activity in

the arm exerts force to move the object and changes stiffness to prevent unwanted motion.

We explored the extent to which separate components of muscle and motor cortical activity

were related to force and stiffness during a ballistic-release task that dissociated these two

parameters. We found components of muscle activity and motor cortical activity related to

force; different components of muscle activity and motor cortical activity were related to

stiffness. A second set of analyses regressed muscle activity against motor cortical activity

and revealed two strong components that accounted for most of the correlation between the

two. These results support the possibility of a functional mapping between the force and

stiffness components of M1 and muscle activity and related experiments could help shed

light on the context-dependent nature of connectivity between motor cortex and muscles.

5.2 INTRODUCTION

A key aspect of manipulating an object is the control of both force and motion (Rancourt

and Hogan, 2001; Burdet et al., 2001). Executing combined force-motion control often

involves activating muscles in the arm to simultaneously exert force on the object while

setting stiffness to restrict the resulting motion (Hogan, 1984b, 1985a,c). Motor cortical

(M1) activity may contain signals related to both components of muscle activity and this
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signaling likely changes with the functional role of the muscles (Griffin et al., 2015). However,

the extent to which these components might affect the relation between M1 activity and that

of muscles during object manipulation is an open question.

Muscles can be described in terms of the force they exert on an object, where antagonist

muscles exert force in opposite directions. The temporal activation pattern of antagonist

muscles govern both the force exerted on the object and the stiffness of the arm. The net

difference between the force produced by antagonist muscles determines the force exerted

on the object: reciprocal activation exerts reciprocal force (Hoffman and Strick, 1990). In

contrast, the balanced force produced by antagonist muscles determines arm stiffness: co-

activation stiffness the arm (Hogan, 1984a). Experiments show that subjects can readily

adopt strategies in which either type of muscle component is used. While exerting isometric

force on a handle, subjects changed the activity of multiple muscles in their arm to match

an instructed activity pattern across muscles (Gomi and Osu, 1998; Osu and Gomi, 1999)

or to match an instructed stiffness (Perreault et al., 2002).

Because of the complex geometry of the musculoskeletal system, each muscle can be

involved in multiple functional roles. The same muscle might be activated to accelerate an

object in one direction, decelerate an object moving in the opposite direction, compensate for

unwanted forces induced by other active muscles, and/or to stiffen the arm for stabilization.

Neuronal projections from M1 contain patterns of activity that may be related to the different

functional roles of recipient muscles (Griffin et al., 2015), suggesting that M1 signaling may

govern the partitioning of muscle activity for these roles.

In addition to the studies of M1 activity related to the force exerted on objects, at least

one study has looked at the ways M1 firing rates are related to arm stiffness. During a center-

out reaching task, an artificial neural network was trained to decode muscle activity from

M1 (Heliot et al., 2010). The muscle activity was then applied to a musculoskeletal model

that estimated stiffness and kinematics (Kim et al., 2007). The estimations matched the

actual kinematics well and provided a reasonable qualitative fit for stiffness. The framework

was discussed in terms of combined force-motion control in different dynamic environments,

but follow-up studies were not conducted and a direct relation between M1 and stiffness was

not explored.
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In perhaps the most direct study of functional components of muscle and M1 activity

related to force and stiffness, monkeys were trained to control the position of the wrist

against perturbing sinusoidal forces of different frequencies (Humphrey and Reed, 1983).

For low frequencies, the monkeys reciprocally activated flexor and extensor muscles, exerting

reciprocal force to resist the perturbations. In contrast, for high frequencies, the monkeys

co-activated antagonist muscles, increasing stiffness to resist the perturbations. During both

conditions, M1 activity was recorded and the activity of a specific spatial population of M1

neurons was related to the co-activation of antagonist muscles but not reciprocal activation.

The specificity of this population was interpreted as a control signal in M1 which could be

used to control stiffness. The functional tuning in muscle and M1 activity (Humphrey and

Reed, 1983; Griffin et al., 2015) and the ability to decode muscle activity to estimate stiffness

(Heliot et al., 2010) represent promising results, but more studies are needed to explore the

details and limitations of these results in the context of object manipulation.

The objective of this study was to determine the extent to which separate components of

muscle activity and M1 activity are related to exerting force on an object and stiffening the

arm during combined force-motion control. A ballistic-release paradigm dissociated force

and stiffness, making it possible to fit muscle activity and M1 activity to both parameters.

Separate components of muscle activity and M1 activity were related to force and stiffness,

demonstrating that signals for both types of signaling were contained in the motor cortical

activity.

5.3 METHODS

5.3.1 Subjects

Two rhesus monkeys were trained to perform a ballistic-release task with their right arm.

All procedures were approved by the University of Pittsburgh’s Institutional Animal Care

and Use Committee.
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5.3.2 Behavioral paradigm and Experimental design

Each monkey was trained to (1) use its right hand to press a start button and then reach to

grasp a handle, (2) pull on the handle with enough force to unlock it, and (3) position the

handle within a specified target zone (Figure 5.1). To be successful, the monkey needed to

pull with enough force to unlock the handle and hold the handle in the specified target zone

for 300 ms.

This behavior is similar to stretching a spring, where one end of the spring is attached

to the handle and the other end of the spring is called the zero-force position. If the handle

is located at the zero-force position, the spring is relaxed and exerts no force on the handle.

Stretching the spring to the target zone (displacing the zero-force position away from the

handle) causes the spring to exert force on the handle according to both the displacement

and the stiffness. When the handle is unlocked, the force exerted on the handle moves it to

stop at the zero-force position, providing the control to move the handle to different target

zones. For the same target zone and zero-force position, the force exerted on the handle

could be increased by increasing stiffness. Thus, a zero-force position and stiffness could be

preset for a given task condition (target zone and force threshold), preventing the need for

corrective interventions during the movement. See section 2.1 for more details. Importantly,

this behavior would dissociate force and stiffness. Changing the spring’s zero-force position

would cause different amounts of force to be exerted for a given stiffness value.

5.3.3 Data collection

During the task, we measured: (1) the force of the monkey pulling on the handle; (2) the 3D

position of optical markers placed on the handle and the monkey’s hand, lower arm, upper

arm, and torso; (3) the epimysial electromyogram (EMG) of 16 individual muscles (monkey S,

names in Table 6) or the surface EMG of 6 muscle groups (monkey I; wrist flexor/extensor,

elbow flexor/extensor, anterior/posterior deltoid, pectoralis/rotator cuff); and (4) neural

activity in the motor cortex. All data were synchronized in time and analyzed at 100 Hz.

Data from individual trials were aligned on movement onset. See sections 2.2, 2.3, and 2.4

for more details.
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Figure 5.1: Behavioral paradigm (A) To initiate a trial, the monkey first pressed the

start button (to the monkey’s right) and then grasped the handle. The monkey pulled on

the handle while it was locked in place until the force threshold was crossed. The handle

was then unlocked to move freely along the track and the monkey had to stop and hold

the handle within the target zone for 300 ms. (B) Time-series of force and position were

measured for each trial (a single representative trial is displayed here). (C) A single task

condition was composed of a force threshold and a target zone.
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Table 6: Individual muscles and their abbreviations from which epimysial EMG was recorded

in monkey S.

Muscle name Abbreviation

Pectoralis Pec

Latissimus dorsi Lat

Anterior deltoid Adelt

Posterior deltoid Pdelt

Infraspinatus Infsp

Triceps lateral head Tril

Triceps medial head Trim

Biceps short head Bics

Brachialis Bra

Extensor digitorum communis Edc

Extensor carpi unlaris Ecu

Extensor carpi radialis longus Ecrl

Flexor carpi radialis Fcr

Palmaris longus Pl

Flexor digitorum superficialis Fds

Abductor pollicis longus Apl
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5.3.4 Physical dynamical system

To estimate stiffness, we modeled the behavior of the arm as an equivalent physical dynamical

system with a zero-force position and 4 impedance components that exert force proportional

to position and its first 3 time derivatives (equation 2.1):

F (t) = K(x0 − x(t))−Dẋ(t)− Aẍ(t)− J ...
x (t),

where F is the force exerted on the handle ; x, ẋ, ẍ,
...
x is position and its first 3 time deriva-

tives; x0 is the zero-force position, and K,D,A, J are impedance coefficients. Although

this model describes the arm’s behavior, it does not directly measure arm impedance, and

the first- and second-order impedance coefficients are related to, but not measurements of,

damping and inertia. The model was fit to the trial-averaged data for each task condition

during the first 500 ms after movement onset.

The model maps a motion signal to the force exerted on the object. The zero-force

position is the reference position for the model and governs where the handle would eventually

come to rest. In this task, the zero-force position would be related to the target zone.

Changing the impedance coefficients for a given zero-force position (target zone) would

change the force exerted on the handle. See section 2.5 for more details.

5.3.5 Ridge regression

In this study, multiple linear regression was used to relate components of muscle activity and

M1 activity to force and stiffness. However, performing multiple linear regression with many

independent variables (number of muscles or neural units) has a tendency to over fit noise

in the dependent variable (force or stiffness). This tendency can be reduced by adding a

regularization term that penalizes the magnitude of the coefficients. A large penalty shrinks

the coefficients and emphasizes the bias. A small penalty permits large coefficients that

reduce error but tend to fit noise (variance) in the dependent variable. Ridge regression is a

form of regularized regression that balances this bias-variance trade-off.
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Linear regression fits the independent variables to the dependent variable by minimizing

error according to

n∑
i=1

(Yi − Ŷi)2 = min
β∗
0 ,W

∗
(
n∑
i=1

(Yi − (β∗
0 +W ∗ ·Xi))

2)

Ŷ = β0 +W ·X

where Y is the dependent variable, Ŷ is the fitted value, X is a [P x 1] matrix of the

independent variables (P is the number of variables), W is a [1 x P] coefficient matrix, β0 is

a constant offset, and n is the number of observations.

Ridge regression adds an extra penalty for the coefficient magnitudes so that the mini-

mization becomes

n∑
i=1

(Yi − Ŷi)2 = min
β∗
0 ,W

∗
(
n∑
i=1

(Yi − (β∗
0 +W ∗ ·Xi))

2 + α
P∑
j=1

W ∗
j
2)

where α is the regularization constant.

5.3.5.1 Regressing force on muscle and neural activity Ridge regression was used

to find the regression of force on muscle activity during the first 200 ms after movement

onset according to

F (t) = β0 +WF · EMG(t), (5.1)

where F is a [1 x T] matrix of force, EMG is a [M x T] matrix of muscle activity, WF is a

[1 x M] coefficient matrix, and β0 is a constant offset (M is the number of muscles and T is

the number of 10 ms time bins stacked across task conditions). The regularization constant

α was determined by minimizing the prediction error using leave-one-condition-out cross

validation.

The same procedure was used to find the regression of force on firing rates during the

first 200 ms after movement onset according to

F (t) = β0 +WF · FR(t), (5.2)

where FR is a [R x T] matrix of firing rates, WF is a [1 x R] coefficient matrix, and β0 is a

constant offset (R is the number of neural units).
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5.3.6 Output-potent and output-null dimensions in linear regression

Although position constraints can dissociate force and stiffness, the two are often related.

We wanted to find separate components of muscle and M1 activity that were related to force

and stiffness. Toward that end, we leveraged the output-potent and output-null properties of

multiple linear regression. In linear regression with multiple independent X variables and a

single dependent Y variable, there is a single direction, or component, of X that best corre-

lates with Y . This direction in the multi-dimensional space spanned by X can be considered

an output-potent axis and X variability along this axis, which we call Xoutput−potent, maps to

variability in Y . In contrast, directions orthogonal to the output-potent axis are considered

output-null, and X variability along these axes, which we call Xoutput−null, does not map to

variability in Y .

5.3.6.1 Force-potent and stiffness-potent muscle activity In Chapter 3 we con-

sidered the mapping from muscle activity (EMG) to force exerted on the handle. The

output-potent axis described EMG variability that mapped to force variability, which we

call force-potent EMG. The output-null axis described EMG variability that did not map to

force variability, which we call force-null EMG. Additionally, we found that force-null EMG

was related to stiffness.

Here we again find force-potent EMG and force-null EMG. Force-potent EMG is a [1 x

T] matrix defined as

EMGF−potent(t) = VF−potent · EMG(t)

where EMG is a [M x T] matrix of muscle activity (M is the number of muscles and T

is the number of 10 ms time bins stacked across task conditions) and the force-potent axis

VF−potent is a [1 x M] vector from the first row of the [M x M] matrix V , defined as

U,Σ, V = SVD(WF )
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where WF is the coefficient matrix mapping EMG to force in equation 5.1 and SVD is singular

value decomposition. Because the force-potent EMG is simply as scaled version of the fitted

values from equation 5.1, we refer to force-potent EMG and the fitted values interchangeably.

Force-null EMG is a [M-1 x T] matrix defined as EMGF−null(t) = VF−null · EMG(t) where

the force-null axes VF−null are a [M-1 x M] matrix from rows 2 through M of V .

We explicitly find the force-null axis that best correlates with model stiffness and call

the [1 x C] matrix of force-null EMG variability along this axis stiffness-potent EMG:

EMGK−potent = VK−potent · EMGF−null

where EMGF−null is a [M-1 x T] matrix of force-null EMG, and the stiffness-potent axis

VK−potent is a [1 x M-1] matrix from the first row of the [M-1 x M-1] matrix V , defined as

U,Σ, V = SVD(WK)

where WK is the coefficient matrix mapping force-null EMG to stiffness in

K = β0 +WK · EMGF−null (5.3)

where K is a [1 x T] matrix of model stiffness values, with repeated values for each of the 10

ms time bins in a task condition, and β0 is a constant offset. Again, the stiffness-potent EMG

is simply as scaled version of the fitted values from equation 5.3, so we refer to stiffness-potent

EMG and the fitted values interchangeably.

In summary, we regressed force against EMG. Based on the assumption that variability in

muscle activity in the absence of variability in force would be related to the model stiffness

in equation 2.1, we performed an analysis that separated combinations of EMG activity

that were related to the absence of variability in force (force-null EMG) from the single

combination that best corresponded to the variability in force (force-potent EMG). Since

only a subset of force-null EMG was likely to be related to stiffness, we used the same

procedure to find the single component in the subset best related to variability in stiffness

(stiffness-potent EMG).
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5.3.6.2 Force-potent and stiffness-potent neural activity We apply this same pro-

cedure to motor cortical activity, considering the mapping from M1 firing rates (FR) to force

exerted on the handle. Force-potent FR was a [1 x T] matrix defined as

FRF−potent(t) = VF−potent · FR(t)

where FR is a [R x T] matrix of motor cortical firing rates (R is the number of neural units)

and the force-potent axis VF−potent is a [1 x R] matrix from the first row of the [R x R] matrix

V , defined as

U,Σ, V = SVD(WF )

where WF is the coefficient matrix mapping FR to F in equation 5.2. Force-potent FR and

the fitted values from equation 5.2 are scaled versions of each other and used interchangeably.

Force-null FR is a [R-1 x T] matrix defined as

FRF−null(t) = VF−null · FR(t)

where the force-null axes VF−null are a [R-1 x R] matrix from rows 2 through R of V .

We find the force-null axis that best correlates with model stiffness and called the [1 x

C] matrix of force-null FR variability along this axis stiffness-potent FR:

FRK−potent = VK−potent · FRF−null

where FRF−null is a [R-1 x T] matrix of force-null FR, and the stiffness-potent axis VK−potent

is a [1 x R-1] matrix from the first row of [R x R] matrix V , defined as

U,Σ, V = SVD(WK)

where WK is the coefficient matrix mapping force-null EMG to stiffness in

K = β0 +WK · FRF−null (5.4)

where K is a [1 x T] matrix of model stiffness values, with repeated values for each of the

10 ms time bins in a task condition, and β0 is a constant offset. Stiffness-potent FR and the

fitted values from equation 5.4 are scaled versions of each other and used interchangeably.
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5.3.7 Reduced-rank regression

We examined the possibility that there might be a structured mapping of information trans-

mitted from M1 to the muscles of the arm. Specifically, we were interested in whether M1

could signal a pattern of muscle activity related to exerting force or stiffening the arm. Al-

though the previous analysis would reveal partial correlations to force or stiffness present in

muscle and M1 activity, those correlations might account for very little of the total corre-

lation between the two signals. An alternative would be to begin with a total correlation

between muscle and M1 activity and then determine if that correlation could be pared down

to functional components.

The total correlation between M1 activity and muscle activity can be found using linear

regression and then systematically restricted to reduce the number of components that map

M1 variability to muscle variability. This approach, called reduced-rank linear regression, is

similar to canonical correlation analysis but has the added benefit of being able to reduce

the number of mapping components and then calculating the cross-validated prediction error

for different numbers of components.

Reduced-rank regression is a variation of traditional linear regression that conditions the

coefficient matrix to have a certain number of components, or matrix rank. In the context of

this task, traditional linear regression uses the full number of correlated components (a full-

rank coefficient matrix) to map motor cortical firing rates (FR) to muscle activity (EMG):

EMG(t) = β0 +W · FR(t) (5.5)

where EMG is a [M x T] matrix of muscle activity, FR is a [R x T] matrix of motor cortical

firing rates, W is a full-rank [M x R] coefficient matrix, and β0 is a [M x 1] matrix of

constant offsets. The rank of W describes the independent components, or communication

components, and is equal to the minimum dimensions in FR and EMG. In this case M < R

and the full-rank version of W describes M communication components.
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Reduced-rank regression assumes that a small number of communication components

can explain a relatively large percentage of the variance. The number of communication

components, governed by the rank of W , can be manipulated by pre-multiplying W by

another coefficient matrix, U , where U is a [M x M] matrix with rank K ≤M .

EMG(t) = β0 + U ·W · FR(t) (5.6)

U is defined as
K∑
k=1

(uTk · uk)

where uk is a [1 x M] eigenvector, sorted so that u1 explains the most variance of

Σmr · Σ−1
rr · Σrm

where Σmr is the [M x R] cross-covariance matrix between EMG and FR, Σrr is the [R x R]

covariance matrix of FR, and Σrm is the [R x M] cross-covariance matrix between FR and

EMG. We evaluated the reduced-rank regression using the prediction error of equation 5.6

using leave-one-condition-out cross-validation for each rank K = {1, . . . ,M}.

5.4 RESULTS

We were interested in muscle activity and motor cortical activity related to the force exerted

on an object and the stiffness of the arm during object manipulation. We trained two

monkeys to control force and position during a ballistic-release task and recorded the force

exerted on a handle, the position of the handle, muscle activity, and motor cortical activity

from the same experimental sessions as Chapter 4. To briefly summarize, the data were

recorded across 11 days for each monkey: monkey S completed 4030 successful trials and

monkey I completed 2347 successful trials. Trial data were aligned on movement onset (time

0) and averaged across successful trials for each task condition. Bootstrapped confidence

intervals were calculated by re-sampling the data 1000 times, with replacement, from the

successful trials per condition.
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5.4.1 Force and position varied with task conditions

The monkeys exerted enough force on the handle to cross the force threshold and then moved

and held the handle within the target zone (Figure 5.2). Force and position were dissociated:

a given target zone evoked similar position trajectories across force thresholds, a given force

threshold evoked similar force trajectories across target zones.

Both monkeys pulled on the handle quickly, with monkey S crossing the force threshold

in 30 ms on average and monkey I crossing the force threshold in 90 ms on average. Both

monkeys increased the exerted force rapidly to the threshold with no apparent anticipation

of threshold crossing, suggesting that the monkeys had pre-planned a behavioral strategy

before exerting force on the handle.

The monkeys moved the handle to the hold position smoothly and typically overshot the

hold position by a small distance, staying within the target zone, suggestive of a slightly

under-damped system. Task conditions with near targets or high thresholds were associ-

ated with larger overshoot, indicating a change in the impedance coefficients across task

conditions.

5.4.2 Model stiffness depended on both force threshold and target zone

Because force is often related to stiffness (McIntyre et al., 1996; Perreault et al., 2002), it was

important to dissociate these variables before they were related to muscle and motor cortical

activity. We modeled the arm as a physical dynamical system (equation 2.1) consisting of 5

free parameters: a zero-force position and 4 impedance coefficients corresponding to position

and its first 3 time derivatives. The force was fit to the motion during a 500 ms time window,

beginning at movement onset (equation 2.1). The zero-force position was where the handle

would come to rest according to the physical model and co-varied with target zone (RMSE =

0.37 cm, 0.97 cm, monkey S and I, Figure 5.3, top row). Stiffness was the model’s impedance

coefficient corresponding to position and, for a given zero-force position (target zone), model

stiffness co-varied with force threshold. Importantly, the same value of stiffness was found for

different force thresholds by varying the target zone. For example, for monkey S, a similar
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stiffness value was observed for the 10 N force threshold and closest target zone, the 20 N

force threshold and second closest target zone, and the 30 N force threshold and second

farthest target zone. See chapter 4 for more detailed results.

5.4.3 Muscle activity was modulated with force threshold and target zone

Muscle activity was recorded as the epimysial electromyogram (EMG) from 16 muscles in

monkey S and as the surface EMG from 6 muscle groups in monkey I (Figures 5.4 and 5.5).

Across all muscles, the EMG values started at elevated levels and increased to a maximum

value around movement onset (time 0, solid vertical line). The initial elevated values were

likely because of the rapid movement from the start button to the handle. After movement

onset, the EMG values decreased to sub-initial values, indicating a more relaxed muscle state

toward the end of movement than at the beginning of the force ramp.

For monkey S, maximum EMG values across time were related primarily to force thresh-

old and, to a lesser extent, target zone (Figure 5.4, muscle name abbreviations in Table 6).

Across most muscles, the EMG values at movement onset were strongly modulated with

force threshold, but converged to similar values 200 ms after movement onset, verifying that

the recorded muscles were active in this task and likely used to exert force.

EMG patterns clearly changed across different target zones. Some muscles (Pec, Bra,

Bics, Tril, Ecu, Fds, Pl), changed before movement onset, supporting the idea that a move-

ment strategy was pre-planned. Shortly after movement onset, the decreasing EMG values

of some muscles depended on target zone (Pec, Lat, Adelt, Pdelt, Infsp, Trim, Edc, Ecrl,

Fcr, Pl, Apl). This activity was most evident 25-50 ms after movement onset (shaded region

in figure 5.4), a latency consistent with spinal feedback responses. Additionally, the EMG

values for most of these muscles decreased less quickly over time for farther targets (exclud-

ing Pec and Pl), suggesting that, even though EMG was decreasing, the muscles were being

used to propel the handle toward the target.

Two muscles exhibited an especially strong target relation sustained across the 200 ms

after movement onset (Pec and Pl). Further examination showed that this muscle activity

returned to a baseline level approximately 300-400 ms after movement onset (Supplementary
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Figure 5.11), near the end of movement (Figure 5.2). The timing suggests that these muscles

were involved in stopping the handle in the target zone. This was further supported by the

higher EMG values over time for closer target zones, task conditions that required increased

force to stop the handle quickly.

For monkey I, the effects of task condition on EMG was similar to monkey S, but less

pronounced (Figure 5.5). The main differences were the lack of strong EMG modulation

across time and slightly less EMG variability across target zones. Although it’s possible that

this could have been because of different behavioral strategies employed by the two monkeys,

it seems likely that a large contributor was the lower spatial specificity of the surface EMG

electrodes for monkey I compared with the epimysial EMG electrodes for monkey S.

The epimysial EMG recorded from monkey S was modulated more across time and

was more consistent across trials compared with the surface EMG recorded from monkey

I. The distance between the muscle and the surface electrode, as well as the intervening

tissue, makes it likely that the signal recorded by the surface EMG represented the combined

activity of many muscles and may have contributed to the reduced modulation across time.

Additionally, the surface EMG electrodes were replaced each recording session and small

deviations across sessions in the electrode placement and the electrical conductivity of the

tissue/electrode interface may have contributed to the inconsistencies across trials. Although

these considerations limit the interpretation of the present results for monkey I, the strong

epimysial EMG recorded from monkey S suggests that future experiments would be better

served by epimysial or percutaneous EMG recordings.

5.4.4 Force-potent and stiffness-potent muscle activity

The modulation of EMG and the dissociation of force and stiffness made it possible to find

separate components of EMG related to force and stiffness. We used ridge regression to fit

EMG to force during the first 200 ms after movement onset (equation 5.1) and found a good

fit across task conditions for both monkeys (R2 = 0.90, 0.82, monkey S and I, Figure 5.6).

The force-potent EMG captured the rapid increase before movement onset (time 0), the

decrease after movement onset, and the modulation of maximum force with force threshold.

128



0

1

2

P
ec

Lowest Threshold Highest Threshold

0.0

2.5

5.0

La
t

0

2

A
de

lt

0

2

4

6

P
de

lt

0

2

4

6

In
fs

p

0

5

10

Tr
il

0.0

2.5

5.0

7.5

Tr
im

0

5

10

B
ic

s

0

5

10

B
ra

0

1

2

3

E
dc

0

1

2

E
cu

0

2

4

E
cr

l

0

5

10

Fc
r

0

1

2

3

P
l

0.0 0.2

Time (s)

0.0

2.5

5.0

7.5

Fd
s 

E
M

G
 (a

u)

Farthest target
 
 
Closest target

0

2

4

A
pl
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For monkey I’s closest target, the maximum force at movement onset did not match the

force-potent EMG as well as for farther targets, particularly for the higher force thresholds.

The closest target had high values of stiffness that may have been associated with additional

muscle activity from unrecorded muscles (Figures 5.3 and 5.5). The coarse spatial specificity

of surface EMG combined with the potential overall increase in muscle activity in the arm

could have contributed to a force-potent EMG for these task conditions that was noisier

than the other task conditions, supported by the higher signal-to-noise ratio in the epimysial

EMG recordings from monkey S and the better match.

The greater number of EMG dimensions (16 muscles and 6 muscle groups, monkey S

and I) compared with force dimensions (only one along the track) meant that the mapping

from EMG to force was redundant. Mathematically, the redundancy describes a force-potent

component of muscle activity whose variability mapped to force variability (equation 5.1) and

a force-null component of muscle activity whose variability did not map to force variability

(redundant variability). Conceptually, the force-potent component is similar to reciprocal

muscle activation and the force-null components are similar to co-activation of antagonist

muscles.

Based on previous studies (Chapter 3), we suspected that force-null EMG would be re-

lated to stiffness. We regressed the force-null EMG during the first 200 ms after movement

onset against model stiffness (equation 5.3) and found a good fit for monkey S (R2 = 0.78).

The average of the stiffness-potent EMG across time captured stiffness variance across all

task conditions for monkey S (Figure 5.7). It should be noted that this regression assumed

a constant model stiffness value across time, and the goodness of fit indicates that this as-

sumption was reasonable. However, the fit between force-null EMG and stiffness for monkey

I was not as good (R2 = 0.26) The inferior fit was most likely due to the inferior EMG

signal recorded from the surface EMG electrodes. Although not as likely, it may also have

been because the assumption of a constant stiffness value across time may have been less

appropriate for monkey I.
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Figure 5.7: Time-averaged stiffness-potent EMG explained the variance in model

stiffness. Force-null EMG was fit to model stiffness using ridge regression and the average

stiffness-potent EMG across time matched stiffness well across all values for monkey S, but

did not fit stiffness as well for monkey I. The difference was likely because of the superior

quality of the EMG signals for monkey S.
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Force-potent EMG and stiffness-potent EMG described separate components of muscle

activity correlated with the force exerted on the handle and model stiffness. These com-

ponents are concurrent and reflect muscle activity modulated to exert force and stiffen the

arm, two important factors for the control needed to perform this task.

5.4.5 Force-potent and stiffness-potent motor cortical activity

We were interested in the analogous possibility of separate components of motor cortical

(M1) activity that could correspond to force and model stiffness. Two micro-electrode arrays

were implanted in the arm/hand region of motor cortex. The data were previously reported

in Chapter 4. The fractional interval firing rates were calculated from 213 neural units

for monkey S and 127 neural units for monkey I. Each unit was tracked across days and

firing rates were averaged across successful trials per condition. The same procedure used

to identify force-potent and stiffness-potent EMG was used to identify force-potent and

stiffness-potent firing rates during the first 200 ms after movement onset.

M1 firing rates (FR) explained much of the variance in force during the first 200 ms after

movement onset (equation 5.2) for both monkeys (R2 = 0.77, 0.90, monkey S and I, Figure

5.8). Except for the sharp peak values, the force-potent FR matched the actual force profiles

quite well. The force-potent EMG matched the actual force better, and may mean that the

FR signaling of force (at least for these samples) is less informative than that for EMG.

The force-null FR was regressed against model stiffness (equation 5.4) and explained

much of the stiffness variance (R2 = 0.99, 0.94, monkey S and I). The average of the stiffness-

potent FR across time was a very close match for the stiffness values (Figure 5.9), likely

because of the large number of neural units in the regression. Again, the model stiffness

values were assumed constant across time and monkey I’s goodness of fit suggests that this

assumption was reasonable and the poor fit for stiffness-potent EMG was because of the

poor quality of the EMG signal.
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Figure 5.9: Time-averaged stiffness-potent FR explained the variance in model

stiffness. Force-null FR was fit to model stiffness using ridge regression and the average

stiffness-potent FR across time matched stiffness very well across all values for monkey S,

likely because of the large number of neural units in the regression.
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5.4.6 Communication components between motor cortex and muscles

The possibility of separate components of muscle and motor cortical activity dedicated to

exerting force and stiffening the arm suggests distinct communication components between

M1 firing rates (FR) and muscle activity (EMG). We define a communication component

as correlated components in FR and EMG. To investigate the number of communication

components, we first established a functional relationship between EMG and FR during the

first 200 ms after movement onset using ridge regression (equation 5.5) and found that FR

could explain much of the EMG variance (R2 = 0.93, 0.87, monkey S and I). We then used

reduced-rank regression to test different numbers of communication components between FR

and EMG (equation 5.6) and found evidence for at least two communication components

(Figure 5.10). A coefficient matrix of rank two mapped two components of M1 activity

to two components of muscle activity and closely approximated the prediction error of a

full-rank coefficient matrix (16 or 6 components, monkey S and I) (Figure 5.10). Although

we were unable to characterize the correlated components of M1 and muscle activity, this

result supports the possibility of functional components of M1 activity mapping to functional

components of muscle activity.
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Figure 5.10: Two communication components approximated the prediction er-

ror of the full number of components. A communication component represents an

independent dimension in the coefficient matrix mapping FR to EMG. We calculated the

cross-validated prediction error for different numbers of communication components (rank

of the coefficient matrix) and found that two communication components approximated the

prediction error of the full number of components, equal to the number of recorded muscles

(16 and 6, monkey S and I).
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5.5 DISCUSSION

Muscle activity and motor cortical activity were recorded during a ballistic-release task that

dissociated force and stiffness. We found a component of muscle activity correlated with

force and a different component of muscle activity correlated with model stiffness. Analogous

force and stiffness components were found in the population-based motor cortical activity

and these can be considered separate and parallel signals. A second set of analyses examined

the correlation between the population of recorded neural units and the simultaneous EMG

activity of the sampled muscles. These results showed that there were two strong components

that accounted for most of the correlation between M1 activity and muscle activity.

5.5.1 EMG modulation related to task conditions

Muscle activity was used to exert enough force to cross the force threshold, accelerate the

handle toward the target zone, and then decelerate and stop the handle within the target

zone. Additional muscle activity stiffened the arm, likely contributing to the small oscillation

in position as the handle neared the hold position, characteristic of an under-damped physical

system. The temporal pattern of EMG found in this study matched that of a similar ballistic-

release task (Terzuolo et al., 1973) and is consistent with previous findings that EMG can be

independently modulated to accelerate and decelerate the hand (Hoffman and Strick, 1993).

5.5.2 Force-potent and stiffness-potent components of muscle and M1 activity

Force-potent and stiffness-potent components of muscle and motor cortical activity were

found using linear regression models and singular value decomposition. We assumed a linear

model because it was a simple model that could still explain much of the variance. However,

the relation between force and muscle activity in this task was likely non-linear and there

may be aspects of the EMG-force relation that are not captured in this type of model.

In addition to the changes in stiffness and force due to muscle activity, both also depend

on the arm’s skeletal configuration (Milner, 2002; Hu et al., 2012). As a result, the force-

potent and stiffness-potent components of EMG should be interpreted as only a partial
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accounting of arm stiffness. The same is true for the relation between force and M1 activity.

Nonetheless, our results demonstrate that the linearity assumption is reasonable and that

skeletal configuration does not obscure the M1 and muscle relation to stiffness.

The physical model used to estimate stiffness assumed a constant stiffness value across

time. We have previously discussed that the model’s ability to explain the time-varying force

suggests that this assumption is reasonable (Chapter 3). Here, we also made the assumption

of constant stiffness values across time for the regression of stiffness against muscle and

M1 activity. The goodness of fit in these regressions further supports the constant stiffness

assumption in this task and provides an information-efficient strategy for signaling force and

motion control in muscle and M1 activity.

5.5.3 Communication components between motor cortex and muscles

We found evidence for two components of correlation linking motor cortical activity to muscle

activity. There are many connections between motor cortex and muscles that could support

correlated components (Phillips and Porter, 1977; Muir and Lemon, 1983; Lemon, 2008).

Direct, cortico-motoneuronal connections have been found to depend on the functional role

of the muscle (Griffin et al., 2015) and distinct spatial populations have been found to be

active depending on the functional role of the muscles (Humphrey and Reed, 1983).

It has been proposed that the motor cortex can be divided into “new” and “old” re-

gions (Rathelot and Strick, 2006, 2009). Old motor cortex is associated with the rostral

region of M1 and contains cortico-spinal projections that mainly synapse onto interneurons

in the intermediate zone of the spinal cord and can only influence muscle activity indirectly.

In contrast, new motor cortex is associated with the caudal region of M1 in the anterior

bank of the central sulcus and contains a relatively higher density of cortico-spinal pro-

jections that synapse directly onto alpha motor neurons in the ventral horn of the spinal

cord (cortico-motoneuronal connections) and can influence muscle activity directly. New M1

and the cortico-motoneuronal connections are a hallmark of mammals capable of advanced

manipulative behavior.
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The rostral-caudal organization of M1 has also been reported in terms of force (Kalaska

et al., 1989). Neurons in the caudal region of M1 were more sensitive to the force exerted

during reaching movements than neurons in the rostral region of M1. By interpreting muscles

as the actuators that exert force, it is possible to connect the force sensitivity of caudal

M1 with the cortico-motoneuronal connections in this same area. Thus, cauadal M1, and

especially the part of M1 in the anterior bank of the central sulcus, seems to be the most likely

location for functional representations of muscle activity in M1. Although our recordings

were primarily in the rostral region of M1, future studies could detail the rostral-caudal

distribution of force and stiffness components and how they relate to similar components in

muscle activity.

5.5.4 Conclusion

Our findings contribute to the understanding of potential functional components of activity

in muscles and the motor cortex. The force-potent and stiffness-potent components of ac-

tivity in M1 and muscle activity could be mixed to control force and motion during object

manipulation. The potential for communication components dedicated to these functional

components could represent a parceling of muscle-related representations in M1 activity.

These concepts will not only be useful for understanding the context-dependent nature of

connectivity between motor cortex and muscles, but also for understanding how information

encoded in motor cortical activity might be transformed into muscle activity.
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Figure 5.11: Extending time reveals muscle activity likely related to stopping the

handle. Each plot depicts four target zones with the same force threshold. The EMG values

were separated across target zones for approximately 300-400 ms after movement onset (time

0), after which the values converged to a baseline level. The timing corresponded with the

end of movement and made it likely that these muscles were used to exert force to stop the

handle within the target zone. Shading represents the median and 95% confidence interval.
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6.0 DISCUSSION

The objective of this thesis was to describe the role of the motor cortex in combined force-

motion control. The ability to control the force exerted on, and the resultant motion of, an

object is critical to successfully manipulating the object. We hypothesized that modulating

arm impedance could be an efficient strategy for this type of control and that information

about arm impedance would be encoded in motor cortical activity. To dissociate force,

motion, and impedance, we adopted and validated a ballistic-release task and used it to

characterize anticipatory changes in impedance. We modeled the behavior of the arm as a

physical dynamical system and found that, in this task, the model’s stiffness was the only

impedance component that varied consistently across both force and position constraints.

By relating the force and position constraints to motor cortical activity, we revealed position

and stiffness information encoded in motor cortical activity. Impedance and a zero-force

position were decoded and used within the impedance control framework to estimate a time-

varying force that closely approximated the actual force exerted on the object. We also

found separate components of muscle activity and motor cortical activity correlated with

force and stiffness.

These results emphasized the anticipatory behavior of a ballistic-release task and ex-

plored behavioral, muscular, and neural strategies that could be pre-set to achieve the task

goals. The task emphasized the control of both force and motion, highlighting the role

of arm impedance in object manipulation. This approach unified existing neural encoding

models of force (Evarts, 1968; Kalaska et al., 1989; Georgopoulos et al., 1992; Sergio and

Kalaska, 2003; Sergio et al., 2005) and motion (Georgopoulos et al., 1982, 1986; Schwartz,

1994; Moran and Schwartz, 1999) with a successful control framework (Hogan, 1985a, 2014).
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Finally, it provided a rich behavioral context within which to explore distinct, functional

representations of muscle activity in the motor cortex dedicated to controlling force and

stiffness.

6.1 DIRECTIONS OF FORCE, POSITION, AND STIFFNESS

In this ballistic-release task, stiffness depended on both force and position constraints and

could be used as an anticipatory strategy to control the motion of the handle. Importantly,

all descriptions of stiffness, force, and motion were in the same direction: parallel with the

shoulders. Stiffness is inherently a three-dimensional property (Mussa-Ivaldi et al., 1985)

and although stiffness can be modulated in different directions (Kadiallah et al., 2011), the

extent to which it can be modulated depends on direction (Perreault et al., 2002). Future

enhancement of this paradigm will need to include multiple directions (Darainy et al., 2007)

to determine the direction dependency of these results and the effect of different combinations

of force and motion constraints in different directions.

6.2 TIME-VARYING ESTIMATIONS OF THE ZERO-FORCE POSITION

AND IMPEDANCE COMPONENTS

The physical dynamical system used to model behavior assumed constant values across time

for the zero-force position and impedance components, and could explain most of the variance

in force. Although the impedance components were constant, their contributions to the

force exerted on the handle varied in time according to the motion. The stiffness component

contributed the most force across time at the moment of movement onset, as movement

toward the zero-force position caused the stiffness component to exert decreasing force.

Similarly, the second-order impedance component also contributed the most force across

time at the moment of movement onset, when the pre-loaded initial conditions caused the

acceleration to be at its maximum value. However, the stiffness and second-order impedance
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components exerted force in opposite directions at movement onset, a key feature of the

dynamic response of the system. The first-order impedance component described changes in

force that increased and decreased with velocity.

Although we found that a model with impedance coefficients that were constant across

time could describe the behavior during the ballistic-release task, it is possible that the

impedance coefficients could vary across time for other types of object manipulation. The

voluntary modulation of arm stiffness and damping change on the order of 200 ms (Lacquaniti

et al., 1982) and inertia changes instantaneously as the arm configuration changes. Time-

varying estimates of arm impedance (Lacquaniti et al., 1993; Piovesan et al., 2013) in future

experiments would make it possible to generalize the control of object manipulation to a

wider range of behaviors and could increase the explanatory power of impedance variables.

6.3 ARM, JOINT, AND MUSCLE IMPEDANCE

This thesis has been focused on arm impedance. However, impedance is an additive property,

meaning that the joint impedance of multiple joints add together to contribute to arm

impedance and the muscle impedance of multiple muscles add together to contribute to joint

impedance (Hogan, 1985b). The arm is a complex system of muscles and joints and the model

impedance described in this thesis is similar to the equivalent impedance of the multiple

individual components. Ultimately, it is the net effect of all the impedance components

that governs the interaction with the object. However, new insights might be gained by

considering the way that individual muscles change impedance (Rack and Westbury, 1974;

Kurtzer et al., 2009) or the way that multiple muscles act together to change the impedance

of individual joints (Osu and Gomi, 1999; Perreault et al., 2001).
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6.4 CONCLUSION

Using a ballistic-release paradigm, this thesis systematically explored the combined control

of force and motion. The combination of rich behavior and neural recordings enabled the

blending of traditional neural encoding models with an established control theory framework.

Our findings contribute to the understanding of motor cortical activity and muscle activity

that could be used to control both force and motion. These concepts will not only be

useful for understanding the role of the motor cortex in object manipulation, but also for

understanding how information encoded in motor cortical activity might be transformed into

muscle activity. Extensions of this work will help elucidate more detailed models of neural

activity in a variety of contexts, particularly for anticipatory changes relevant for object

manipulation. It will also add to the versatility of brain-machine interfaces, providing a

scientific foundation to leverage new engineering technology that could help people who are

paralyzed manipulate objects and perform many activities of daily living.
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APPENDIX

FORMATTED DATA

The data from each session were collected as individual data sources (task, force, EMG,

motion, neural). Offline, the motion-tracking markers were labeled and the 3D positions

were extracted; the neural activity was sorted into neural units. Each source of data was

aligned in time using a hardware sync pulse and stored in a Matlab storage file according to

the following structured format.

Data

Tags

regular

[1xT logical]: True for regular trials

catch

[1xT logical]: True for catch trials

TaskStateMasks

InterTrial

[1xT logical]: Between trials.

ForceRamp

[1xT logical]: After the start button is pressed and before the force threshold

is crossed.

Move
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[1xT logical]: After the force threshold is crossed and before the handle enters

the target.

Hold

[1xT logical]: After the handle enters the target and before the trial is a success.

Reward

[1xT logical]: When the reward is being given.

Return

[1xT logical]: After the end of the trial and before the next trial. Return the

handle to the start position.

EndTrial

[1xT logical]: End of the trial.

Adjusted

Reach

[1xT logical]: After the start button is pressed and before the force remains

above 1 N.

ForceRamp

[1xT logical]: After the force rises and stays above 1 N and before the

speed rises above 10% of max trial speed.

Move

[1xT logical]: After the speed rises about 10% of max trial speed and before

the handle enters the target.

Hold

[1xT logical]: 300 ms beginning when the handle enters the target.

OutcomeMasks

Success

[1xT logical]: True if trial was a success.
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ManualSuccess

[1xT logical]: True if the experimenter manually succeeded the trial.

ManualProceed

[1xT logical]: True if the experimenter manually proceeded through a task

state.

Failure

[1xT logical]: True if the trial was a failure.

Canceled

[1xT logical]: True if the trial was canceled.

Attempt

[1xT logical]: True if the subject did not attempt the trial.

DidNotStart

[1xT logical]: True if the trial did not proceed through enough task states to

start.

Force

data

[6xT double]: Values for the 6 dimensions of force: linear xyz and rotational

xyz. +X toward subject, +Y along track, +Z upwards. Optional: after a

rotation is applied.

raw

[6xT double]: Values for the 6 dimensions of force before any (if any) rotation

was applied.

threshold

upper

[6xT double]: Upper force threshold.

lower
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[6xT double]: Lower force threshold.

normLower

[6xT double]: Upper force threshold divided by the maximum voluntary

force.

normData

[1xT double]: Values along the track divided by the maximum voluntary force.

Target

pos id

[1xT double]: Denso position id. Not used.

Kinematics

MarkerNames

{1xM cell}: Name for each marker.

MarkerIds

MarkerPos

[MxT double]: 3D position (mm) for each marker. XYZ for each marker stacked

along 1st dimension. +X along track, +Y away from subject, +Z upward.

Origin is the position of the HNDL marker when the handle is locked.

TargetWindows

[2xT double]: Position along the track (mm) of the near and far edges of the

target zone.

JointAngle

[JxT double]: Joint angles (deg) as described in the OpenSim model.

JointNames

{1xJ cell}: Name for each joint.

JointCenters
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[12xT double]: 3D position (mm) of select joint positions. XYZ for each joint

stacked along the 1st dimension.

JointCenterNames

{4 cell}: Name for select joint centers.

Muscle

EMG

[MxT double]: Z-scored and filtered EMG values.

MuscleNames

{1xM cell}: Muscle names

Raw

[MxT double]: Raw bipolar EMG values.

normEMG

[MxT double]: EMG values divided by the 99.9% percentile, excluding intertrial

periods.

Spikes

SpikeTS

{Sx1 cell}: Spike times for each neural unit.

FiringRate

[SxT double]: Firing rates for each neural unit.

AverageWaveform

{Sx1 cell}: The average waveform for each neural unit.

Channel

[Sx1 double]: Recording channel number

Unit

[Sx1 double]: Unit label for a given channel

ArrayNames
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{1xA cell}: Name of the micro-electrode array

StartStopArrayChannelNums

[2A]: The start and stop channel numbers for each array.

Time

[1xT double]: Time in seconds

TrialNo

[1xT int32]: Trial number

BlockNo

[1xT int32]

ComboNo

[1xT int32]

Dt

double: Time (s) between observations

Version

string: Dragonfly version

Build

string: Dragonfly build date

ConfigName

string: Configuration filename for Dragonfly

SessionNo

int32: Session number

Subject

string: Subject’s name
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