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Over the past few decades, Magnetic Resonance Imaging (MRI/MR) has proven to be one of the 

most resourceful diagnostic tools to non-invasively exam various parts of the human body.  As 

MRI technology improved, research scanners were developed at greater field strengths to offer 

greater resolution and improved tissue contrast in comparison to clinical MR machines. In late 

2017, the FDA approved the first clinical 7 Tesla (T) MR scanner, Siemens MAGNETOM Terra.  

The FDA’s approval met the scientific demand for 7T MR imaging and ultra-high field (UHF) (≥ 

7 Tesla) imaging’s growing capability to detect human disease and tissue damage within the 

human body.    While these machines offer promise, there are several issues experienced at higher 

field strengths that hinder its clinical feasibility.  UHF MRI is presented with challenges such as 

1) magnetic field (B1
+) homogeneity, 2) increased global/local specific absorption rate (SAR) in 

biological tissue, and (3) addressing concerns regarding the unclear RF safety assurance due to 

temperature rise at UHF. 
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            To address these challenges, the work of this dissertation develops tools to characterize RF 
 
coil designs for RF engineers.  These tools are realized through hardware and other software 
 
 methodologies for the evaluation of RF coil designs.  

The results and the broad conclusion will support our long-term goal of achieving 

homogeneity and minimized RF power absorption at 7T in-vivo and further the UHF MRI 

community’s understanding of 7T imaging.  Thus, progress in this proposed work strengthens 7T’s 

potential clinical feasibility and its ability to detect human disease and premature symptoms of 

brain damage.  
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the absolute electric field distribution based on each phantom is shown in (B).
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1.0 INTRODUCTION 

Magnetic Resonance Imaging (MRI/ MR) is a versatile, noninvasive medical imaging technique 

used to image human anatomy (1). Almost 45 years ago, the first MRI machine was implemented 

and developed by Paul Lauterbur (2) to image the human finger and since then, it has transformed 

the field of medical imaging to be more versatile in disease detection through the MR system’s 

anatomical in-vivo analysis.  Today medical imaging plays an important role in the early diagnosis 

of neurodegenerative diseases, organ damage, or diseases and other ailments within the human 

body. In comparison to other diagnostic medical imaging, MRI uses non-ionizing radiation, and 

government MR safety regulations to regulate its clinical machines.  Over time, whole-body MRI 

systems of lower field strengths (≤ 1.5T) have become commercially and clinically available.  

In recent decades, not only have ultra-high field (UHF) systems (≥ 7T) become 

commercially available (2) for researchers due to an increase in scientific demand, but also to 

explore UHF systems clinical feasibility in the study, detection, or treatment of diseases and 

various ailments within the human body.  UHF MRI enhances the field of MRI and offers 

improved signal-to-noise ratio (SNR) (3), improved tissue contrast due to its magnetic 

susceptibility, greater chemical shift dispersion (4), and in some instances, a reduced scan time 

(with a use of higher acceleration) (1). These benefits significantly enhance the contrast in the 

visualization of human tissue, and at times may result in a quicker MR experience for the patient 

being imaged. However, these benefits are compromised by UHF MRI’s challenges. 
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In this dissertation, all experimental imaging studies are performed on the Siemens 7T 

MAGNETOM® MRI scanner at the University of Pittsburgh.  In 2007, this MR system was 

installed and at that time was one of less than ten 7T MRI scanners in the world.  Since that time, 

several 7T MRI machines have been built to meet the scientific demand and popularity of 7T MRI.  

In 2015, Siemens announced the development of the first FDA approved 7T MRI scanner, 

MAGNETOM Terra (5), which was cleared in late 2017.   

UHF MRI scanners are currently used only for research due to the challenges experienced 

at higher field strengths.  For example, current clinical MR machines provide uniformity within 

the magnetic field under acceptable government regulations.  The uniformity experienced in 

clinical MR machines allows radiofrequency (RF) engineers to only have to design receive coils 

since the scanners (3T and below) are equipped with a whole-body transmit coil. As the field 

strength increases, the electromagnetic fields become less uniform.  Most UHF MRI scanners are 

not equipped with a whole-body transmit coil, like lower and high field MR machines; thus, it is 

essential to develop UHF RF instrumentation to address the challenges of UHF MRI.  

The goals of this dissertation are to 1) design and fabricate a realistic anthropomorphic 

heterogeneous head phantom, and 2) develop and implement tools in order to characterize MRI 

RF coil instrumentations and designs using a) electromagnetic simulations and validation 

experiments, and b) temperature simulations and validation experiments.  The studies are 

performed using in-vivo human heads and utilizing the newly developed anthropomorphic 

heterogeneous head phantom.  

The context of Chapter 1.0 focuses on the motivation behind this dissertation and the 

objectives set in order to achieve the results of this dissertation work.  
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1.1 MOTIVATION 

The benefits of UHF MRI systems to the MR community are attracting scientists, engineers, and 

clinicians to explore its challenges so that ultimately healthcare may improve. Various UHF 

neuroimaging studies (6, 7) indicate that the detection of the onset of various neurodegenerative 

diseases and superb visualization of neurological anatomy is through UHF MRI’s spatial and 

temporal resolution.  For example, researchers in a schizophrenic study can visualize structures of 

the hippocampus in schizophrenic patients (8). The visualization of the dentate granule cells in the 

hippocampus are not visible in 3T images. Recent findings (9) show that researchers have been 

able to visualize amyloid plaques within the brain in Alzheimer disease patients due to the spatial 

resolution of 7T.  These studies and others are supportive examples of the difference in structural 

visualization at 7T that 3T does not offer.  

However, RF inhomogeneity and elevated RF power deposition, quantified by specific 

absorption rate (SAR), (5) are known challenges to the use of UHF MRI systems. These challenges 

limit UHF MRI systems from being fully utilized.  To explore feasible solutions to these 

challenges, MR safety protocols and multi-transmission methods (i.e. RF shimming) and 

minimized SAR techniques must be further researched for their more clinical applications.  

Realistic phantoms (10-14) will lead to more accurate solutions; however, the current MR 

community uses basic phantoms in its current MR protocol.  Improved RF shimming and 

minimized SAR techniques of various works (2, 15-17) have the potential to minimize 

inhomogeneity of the RF field further and reach achievable SAR absorption in various coils.  The 

proposed work within this dissertation is therefore significant because our results show promise 

in being a solution to enhancing the safety of 7T MRI and aiding the MR community with 
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applications designed to improve the early detection and prevention of human diseases or organ 

damage.   

As an outcome of this dissertation, we expect that the utilization of the realistic phantom 

would be a valuable resource in enhancing MR safety and the homogeneity of the magnetic field 

distribution within UHF systems.  Resources that improve the RF homogeneity at 7T can improve 

the SNR and be one of the factors to improving the visibility of human anatomy.  Ultimately, 

higher SNR yields better tissue contrast, which is more visible in smaller voxels, than 3T offers.  

The improved SNR will enhance the visibility (3) of the structural anatomy of the human head that 

will then improve applications to areas such as neurological disease detection and evaluation.  As 

a result, this dissertation is expected to aid in improving the clinical feasibility of 7T and other 

UHF MRI systems. 

1.1.1 Challenges of UHF MRI Systems: Basic Phantoms 

The design and evaluation of MRI anthropomorphic head phantoms is one approach to improve 

the challenges of UHF MRI machines for continuous evaluation of its clinical potential.  MRI 

phantoms are used to analyze, evaluate, and calibrate the MRI machine and its instrumentation 

before conducting tests on humans.  Commercially available phantoms (such as spherical or 

cylindrical phantoms) are appropriate for analysis and evaluation of lower field MRI machines and 

their instrumentation since the wavelength of the RF signal that propagates into human tissue is 

long.  At higher magnetic field strengths, accurate anatomical phantoms are needed because the 

wavelength of an RF signal propagating through any tissue becomes smaller than the electric size 

of the human head.  The RF wavelength affects the homogeneity of the magnetic field and the 
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construction of the current distribution that determines the behavior of the specific absorption rate 

(SAR) (1).  

Recent findings show how researchers and engineers use anatomical phantoms in 

numerical and experimental studies to help investigate the behavior of the interaction of RF pulses 

and biological tissue(s) at higher electromagnetic frequencies.  The most recent findings of a 

physical, realistic, multi-tissue anthropomorphic human head phantom for MRI only and ultra-

high field MRI are by Graedel et al. (14) and the RF Research Facility (15, 18).  These findings 

(14, 15, 18) build on the development of previous realistic phantoms (19-23), and these findings 

have comparable results of the designed phantom’s simulations and experiments.  Before these 

findings, the CHEMA (24) phantom was the most anthropomorphic phantom because of its shape 

and single compartment representative of averaged dielectric properties of all tissues in the human 

head at 7T. 

To our knowledge, recent findings of realistic phantoms (14, 22) do not make phantom MR 

comparisons to the MR images from which the phantom evolved. Our recent work (18) is the only 

work that we are aware of that makes such comparisons. 

1.1.2 Challenges of UHF MRI Systems: RF Inhomogeneity and Elevated Specific 

Absorption Rate and Local Temperature Rise 

The challenges with UHF MRI are 1) the inhomogeneity in the magnetic (RF/B1) field and 2) 

elevated specific absorption rate (SAR) and local temperature rise. There are two leading causes 

of these challenges: 1) the wavelength shortens, and 2) the skin depth decreases.  In UHF MRI 

systems as the static field (B0) increases at various frequencies, the wavelength of the RF field 
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within biological tissues shortens (approximately 11-13 cm at 7T) and becomes comparable to the 

size of the body itself (4, 16).  The RF field becomes more reliant on its interaction with biological 

tissues.  At higher frequencies, the electrical size of the head is much larger than its electrical size 

at lower field strengths. The RF field must travel through multiple wavelengths to travel the entire 

human anatomy at UHF compared to lower field strengths (1-4, 17, 25).  At UHF systems, the 

penetration of the RF field into tissue significantly decreases, and the tissue is more conductive 

(26, 27).  Thus, an inhomogeneous RF field distribution exists and achieving uniformity becomes 

more challenging (2).  Inhomogeneous RF fields affect the tissue contrast in UHF systems, which 

impedes the ability of the researcher to identify biological tissues and anatomical structures 

properly. It is essential to note that inhomogeneous RF fields are not harmful; however, electric 

fields (inhomogeneous or homogeneous) that exceed SAR regulations are harmful.  As the RF 

power absorption elevates in UHF MRI systems, it becomes a safety concern (28, 29).  It is 

essential to minimize the SAR values equivalent to or below the government’s (IEC/ FDA) 

regulated SAR criteria. Researchers identified that achieving a more uniform RF distribution is 

mutually exclusive to achieving minimal SAR and temperature rising at UHF systems (13, 30). As 

the technology of UHF MRI evolves, hardware must be developed to overcome these challenges 

so that the benefits and applications of UHF MRI may improve healthcare.  

1.2 SPECIFIC AIMS OF THIS DISSERTATION 

The main goal of this dissertation is to develop and provide resources as solutions through 

hardware and software to further the research that is focused on increasing the chances of UHF 
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MRI’s clinical use and mastering the understanding of its limitations. The specific aims of this 

dissertation are: 

Aim 1: Develop an Anthropomorphic Heterogeneous Human Head Phantom that is 

Evaluated and Characterized through Experimental MRI Studies at 7T.  Hypothesis: 

Researchers in the MR community that use an anthropomorphic heterogeneous human head 

phantom instead of a basic spherical phantom will find it easier to evaluate RF head coils. 

1. Design an anthropomorphic heterogeneous human head phantom from an MR 

dataset. 

2. Construct a computer-aided design (CAD) model that yields a physical model of 

an anthropomorphic heterogeneous human head phantom with a total of eight tissue 

compartments, specifically six refillable and two non-refillable compartments. 

3. Model and measure electromagnetically equivalent biological tissue properties 

(i.e., conductivity, permittivity, spin-lattice (T1) relaxation times) at 7T for the head 

phantom. 

4. Test the designed phantom with an RF head coil by performing experimental 

studies of the designed head phantom and other basic phantom. 

Aim 2: Evaluate the Performance and Characterization of the Anthropomorphic 

Heterogeneous Human Head Phantom using Several RF Coils through Simulation and 

Experimental Studies at 7T.  Hypothesis:  Researchers in the MR community that are equipped 

with an anthropomorphic heterogeneous human head phantom during experimental scans are able 

to accurately characterize the performance of RF coils when compared to using basic or 

homogeneous phantoms. 
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1. Use Finite-Difference Time-Domain (FDTD) EM and thermal modeling to 

evaluate the anthropomorphic heterogeneous human head phantom model, 

segmented in-vivo human head model, anthropomorphic water-doped 

homogeneous head phantom model, anthropomorphic brain-doped homogeneous 

head phantom model, and a commercial homogeneous water-doped spherical 

within two RF coils. 

2. Evaluate the EM characterization (i.e., S-matrices, B1
+ distribution, B1

+ efficiency, 

local and global SAR, relative absorbed power efficiency) of the anthropomorphic 

heterogeneous human head phantom to the various head and phantom models 

positioned within the transverse electromagnetic (TEM) Resonator at 3T and 7T.   

3. Evaluate the thermal characterization of the perfusionless anthropomorphic 

heterogeneous human head phantom to the perfused segmented in-vivo human head 

model through thermal heating methods using numerical and experimental studies 

at 3T and 7T. 

4. Evaluate the EM performance of various RF coils through an experimental study 

by comparing and analyzing an anthropomorphic heterogeneous human head 

phantom and in-vivo human subject centered within various RF coils at 7T. 

 

At the completion of this dissertation, it is expected that the combination of results 

collected from the specific aims will further advance the UHF MRI community’s understanding 

of 7T imaging.  To date, the inhomogeneity of the magnetic field and elevation of local/average 

SAR are major challenges that compromise the advantages of 7T over (1.5T/3T) clinical MRI 

machines.  The results of specific aims 1 and 2 will be shared as resources to the MR community 
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and other communities that desire to understand the interaction of human biological tissue and 

electromagnetic waves at higher frequencies.  Progress in this proposed work will allow the UHF 

MR community to have improved resources to enhance their ability to study, detect, or evaluate 

human diseases.     

1.3 OUTLINE OF THIS DISSERTATION 

A chapter-by-chapter review of this dissertation is provided in this section.  In addition, peer-

reviewed publications and any other peer-reviewed work are listed under the respective chapter 

from which the work evolved.  The work of this dissertation was supported by the National 

Institutes of Health (NIH) through grants to myself and the RF Research Facility lab’s Principal 

Investigator, Tamer S. Ibrahim, PhD, (NIH’s Ruth L. Kirschstein F31 award F31EB019872, NIH’s 

R01MH111265, R01EB009848, and R01NS062065) and the University of Pittsburgh’s Provost 

Development Fund Doctoral Fellowship award. 

Chapter 1.0 the purpose, significance, and motivation of this PhD dissertation.  This 

chapter describes both the benefits and challenges of UHF MRI as it relates to this dissertation.  

Lastly, the overview of the dissertation by chapter is listed along with works that were produced 

as a result of the work conducted during the PhD study. 

Chapter 2.0 offers an in-depth review of the relevant literature and terminology of UHF 

MRI which provides the background and foundation of this dissertation.  The chapter overviews 

basic electromagnetic theory and MR physics and RF safety about MRI.  The current literature 

and work relating to anthropomorphic phantoms are highlighted to share the history of these 

phantoms, their application and the difference that our work will have in this focus area.  A review 
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of the history of RF coils at UHF is provided.  The application of numerical methods such as the 

FDTD method are described, and its application in computational electromagnetics and thermal 

heating using Penne’s bioheat equation are reviewed.  Thermal heating methods are described 

including thermal simulations and validation using thermal probe measurements within the 

designed head phantom.  Lastly, this chapter reviews and analyzes the use of nonlinear algorithms 

as a technique to design novel RF excitation pulses by mitigating the RF inhomogeneity while 

managing reduced SAR and power. 

Chapter 3.0 highlights a detailed explanation of the development of the eight-

compartment anthropomorphic heterogeneous human head phantom developed in our lab.  The 

robustness of the head phantom’s design was measured by its performance of its numerical 

analysis in relation to its experimental study.  Comparisons of the head phantom to the studies of 

the volunteer’s head, from which the phantom was designed, were conducted.  The head phantom 

was also used for B1 mapping, SAR analysis, and echo planar imaging (EPI) stability to explore 

its application further.  The following peer-reviewed journal articles and conferences papers were 

a result of the work in this chapter: 

• Wood, S., Krishnamurthy, N., Santini, T., Raval, S. B., Farhat, N., Holmes, J. and 

Ibrahim T. S., “Design and Fabrication of a Realistic Anthropomorphic 

Heterogeneous Head Phantom for Various Electromagnetic Applications,” PloS 

ONE, 12(8), August 2017. 

• Wood, S., Krishnamurthy N.,  Zhao, Y., Raval, S.,  Zhao, T., Holmes, J.A. and 

Ibrahim, T.S., “Anatomically Detailed Human Head Phantom for MR Testing 

Purposes,” In Proc. of the 22nd International Society of Magnetic Resonance in 

Medicine Annual Meeting, Milan, Italy; 2014, May 10-16. 



11 

• Wood, S., Krishnamurthy N.,  Zhao, Y., Zhao, T., Raval, S., Holmes, J.A. and 

Ibrahim, T.S., “Anatomically Detailed Human Head Phantom,” in The 2nd 

Pittsburgh Imaging Community Retreat - Bench to Bedside MRI, Pittsburgh, PA 

October 2013. 

Chapter 4.0 takes a further exploration of the designed phantom described in Chapter 3.0 

interaction of the electromagnetic fields.  A transverse electromagnetic (TEM) resonator is used 

to generate electromagnetic fields in the designed phantom at 3T and 7T. The assessment of the 

fields at various field strengths are made through S-parameters, B1 mapping, SAR analysis, and 

temperature rise to highlight the importance of having a designed head phantom.  The following 

peer-reviewed journal articles and conferences papers are/will be a result of the work in this 

chapter: 

• Wood, S., Santini, T., Krishnamurthy N., Martins, T., and Ibrahim, T.S., “A 

Comprehensive Evaluation of an Advanced MRI Anthropomorphic Head Phantom, 

NMR Biomedicine, NMR Biomedicine, In Revision. 

• Wood, S., Santini, T., Krishnamurthy,N., Martins, T., Ibrahim, T.S., “Comparison 

of Electric and B1
+ Fields for Heterogeneous and Homogeneous Anthropomorphic 

Phantoms and Anatomical Models: Numerical Simulations and Experimental 

Findings,” In Proc. of the 26th International Society of Magnetic Resonance in 

Medicine Annual Meeting, Paris, France; 2018, June 16-21. 

• Wood, S., Krishnamurthy, N., Santini, T., Raval, S., and Ibrahim, T. S., 

“Evaluation of an Anthropomorphic Phantom with In-Vivo Using Quantitative 

MRI,” In Proc. of the 25th International Society of Magnetic Resonance in 

Medicine Annual Meeting, Honolulu, Hawaii, USA; 2017, April 21-27.  
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Chapter 5.0 reviews the evaluation of the characterization and performance of the 

anthropomorphic heterogeneous human head phantom using various UHF RF coils or arrays 

through numerical and experimental studies.  Evaluation and characterization of the 

anthropomorphic heterogeneous human head phantom are conducted through specified evaluation 

criteria — scattering parameters (S-Matrix), B1 mapping, SAR, and temperature assessment. A 

demo is shown of the S-Matrices of the designed phantom positioned in various RF coils.   

An assessment was made of the temperature rise within the designed head phantom 

described in Chapter 3.0 using the in-house developed Tic-Tac-Toe (TTT) coil.    The experimental 

temperature analysis was validated by the numerical temperature studies of the anthropomorphic 

heterogeneous human head phantom and the segmented in-vivo human head within the TTT coil.  

•  Wood, S., Santini, T., Farhat, N., Martins, T., Krishnamurthy, N., Ibrahim, T.S., 

“B1
+ and Temperature Analysis in Two UHF RF Coils”, In Proc. of the 26th 

International Society of Magnetic Resonance in Medicine Annual Meeting, Paris, 

France; 2018, June 16-21. 

• Wood, S., Martins, T., Santini, T., Ibrahim, T.S., “An electrically conductive SLA 

resin used for the Design of Anthropomorphic Phantoms,” In Proc. of the 26th 

International Society of Magnetic Resonance in Medicine Annual Meeting, Paris, 

France; 2018, June 16-21. 

Chapter 6.0 is a summary of the results of this dissertation and future work proposed by 

the author that is extended as recommendations to the UHF MR community.  In this chapter, the 

contributions of this dissertation are elaborated and specifically address the MR community as to 

how these developed resources can be used in the exploration for the benefits and overcoming the 

challenges to making UHF MRI clinical. 
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Appendix C reviews the development of the mimicked biological tissues outlined in Table 

3.1.  There are two methods used in this dissertation to develop the mimicked biological tissues. 

One method is used to capture electromagnetic measurements and the other method is used to 

capture thermal measurements.  These methods are described in greater detail in this appendix 

chapter. 

Appendix A reviews the electromagnetic measurements in Virtual Family v1.0 (31) Duke 

model.  Since Duke is referenced in Chapters 3.0-5.0, it is necessary to provide the electromagnetic 

measurements of this model.  Additional electromagnetic models and their electromagnetic 

characterization are shown to demonstrate the impact of the constitutive parameter beyond the 

results presented in Section 4.2. 

Appendix C reviews the development of a nonlinear algorithm that develops novel RF 

pulses for various RF coils at 7T.  Validation of the RF shimming toolbox was shown through 

experimental studies and previous works from the University of Pittsburgh’s RF Research Facility.  

The following peer-reviewed journal articles and conferences papers were a result of the work in 

this exploratory aim: 

• Santini, T., Zhao, Y., Wood, S., Kim, J., Farhat, N., Krishnamurthy, N., Zhao, T., 

Ibrahim, T.S., “Experimental and numerical evaluations of simultaneously 

excitable Eigenmodes in a 20-channel transmit RF array for 7 Tesla human MRI”, 

In Proc. of the 26th International Society of Magnetic Resonance in Medicine 

Annual Meeting, Paris, France; 2018, June 16-21.  

• Santini, T., Wood, S., Krishnamurthy, N., Zhang, Y., Farhat, N., Vinjamuri, N., 

Koo, M., Aizenstein, H., Ibrahim, T.S., “New optimization strategies for RF 
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shimming at UHF MRI”, In Proc. of the 26th International Society of Magnetic 

Resonance in Medicine Annual Meeting, Paris, France; 2018, June 16-21. 

• Santini, T., Kim, J., Wood, S., Krishnamurthy N., Raval, S., and Ibrahim, TS, “A 

new RF coil for foot and ankle imaging at 7T MRI”, In Proc. of the 25th 

International Society of Magnetic Resonance in Medicine Annual Meeting, 

Honolulu, Hawaii, USA; 2017, April 21-27.  

• Raval, S., Santini, T., Wood, S., Krishnamurthy, N., Ibrahim, TS., “In-vivo (8x4) 

32-ch Tx-only Body Array for UHF MR”, In Proc. of the 25th International Society 

of Magnetic Resonance in Medicine Annual Meeting, Honolulu, Hawaii, USA; 

2017, April 21-27.  

• Santini, T., Krishnamurthy, N., Wood, S., Raval, S., Zhao, Y., Fischetti, A., Koo, 

M., Aizenstein, H., and Ibrahim, TS., “A 64-channel Double-Octagon Tx Head Coil 

for 7T Imaging”, In Proc. of the 25th International Society of Magnetic Resonance 

in Medicine Annual Meeting, Honolulu, Hawaii, USA; 2017, April 21-27.  

• Ibrahim, T. S., Santini, T., Raval, S., Krishnamurthy, N., Wood, S., Kim, J., Zhao, 

Y., Wu, X., Yacoub, E., Aizenstein, H., Zhao, T., “Towards Homogeneous 7T 

Neuro Imaging: Findings and Comparisons between 7T TTT and NOVA RF Coil 

Systems”, In Proc. of the 25th International Society of Magnetic Resonance in 

Medicine Annual Meeting, Honolulu, Hawaii, USA; 2017, April 21-27.  

• Raval, S. B., Zhao, T., Smith, D., Britton, C., Krishnamurthy, N., Santini, T, Wood, 

S, Ibrahim, TS., and Gorantla, V. “Ultra-high resolution non-contrast imaging for 

chronic rejection monitoring and procedural planning in reconstructive 
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transplantation,” 26th International Congress of the Transplantation Society. Hong 

Kong, China; 2016, August.  

• Zhao, Y., Krishnamurthy, N., Wood, S., Zhao, T., Raval, S. B., and Ibrahim, TS., 

“3D Eigenmodes Optimizations for 3D Imaging at 7T”, In Proc. of the 23rd 

International Society of Magnetic Resonance in Medicine Annual Meeting, 

Toronto, Canada, 2015, May 30- June 5. 

• Raval, S. B., Zhao, T., Krishnamurthy, N., Zhao, Y., Wood, S., Bae, KT., and 

Ibrahim, TS., “Initial Results: Ultra-High Field 32-ch Tx Body Array with Bright 

Centers,” in Proc. of the 23nd International Society of Magnetic Resonance in 

Medicine Annual Meeting, Toronto, Canada, 2015, May 30- June 5.  

• Krishnamurthy, N., Zhao, Y., Raval, S. B., Kim, J., Wood, S., Santini, T.,  Zhao, 

T., and Ibrahim, TS., “7T Multi-slab Whole-Head Homogenous and Low SAR T2 

Acquisitions with Limited RF Power Amplifiers Capabilities,” In Proc. of the 23nd 

International Society of Magnetic Resonance in Medicine Annual Meeting, 

Toronto, Canada, 2015, May 30- June 5. 

• Krishnamurthy, N., Zhao, Y., Zhao, T., Raval, S., Wood, S., Santini, T., Kim, J., 

and Ibrahim, TS., “Homogeneous and Low SAR Acquisitions at 7T”, in The 3rd 

Pittsburgh Imaging Community Retreat - Bench to Bedside MRI, Pittsburgh, PA, 

USA, 2014 October.  

• Krishnamurthy, N., Wood, S., Kim, J., Zhao, Y., Raval, S. B., Zhao, T., Ibrahim, 

TS., “Transmit Array Performance across Subjects at 7T MRI: Simulations and 

Experiments,” The International Society for Magnetic Resonance in Medicine 22nd 

Annual Meeting Competition; Milan, Italy, 2014 May 10-16;. 
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• Ibrahim,  TS., Wood, S., Zhao, Y., “Coils, RF Shimming & SAR” Sunrise 

Educational Course: Nuts& Bolts of Advanced Imaging. The 

23rd International Society of Magnetic Resonance in Medicine Annual Meeting, 

Toronto, Canada,  2015, May.  http://www.ismrm.org/15/program_files/S09a.htm. 

• Ibrahim, TS., Zhao, Y., Wood, S., “Break-Out Groups to Work on Exercises on 

Reconstruction or Parallel Transmission” Sunrise Educational Course: Nuts & 

Bolts of Advanced Imaging. The 22nd International Society of Magnetic 

Resonance in Medicine Annual Meeting, Milan, Italy, 2014, May.  

http://www.ismrm.org/14/program_files/S10c.htm. 

Zhao, Y., Krishnamurthy, N., Wood, S., Zhao, T., and Ibrahim, TS., “Simultaneous 

Excitation of Distinct Electromagnetic Modes using a Tx Array,” in Proc. of The 

21st International Society of Magnetic Resonance in Medicine Annual Meeting, 

Salt Lake City Utah, 2013, April. 

http://www.ismrm.org/14/program_files/S10c.htm
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2.0 BACKGROUND 

This chapter provides the reader with the proper context to understand the work within this 

dissertation.  First, the history of MRI is covered to demonstrate the evolution of MR clinical and 

research applications.  Over the last few decades, the field of MR has evolved; and before delving 

into its complexity, it is important to review the basic theory of electromagnetics (Section 2.1) and 

basic physics of MRI (Sections 2.2.1 to 2.2.4).  MRI is an excellent diagnostic tool for human 

imaging and to ensure RF safety; it is regulated by government standards and guidelines. The 

importance of RF safety is further elaborated in Section 2.4 to support Section 1.1.2 that presents 

quantifying high SAR values as one of the challenges of UHF MRI. 

It is critical to abide by the regulated procedures and guidelines for MR safety and patient 

scans.  However, numerical modeling is an assessment tool to verify and validate experimental 

studies for MRI and RF coil developments. Thus, the remainder of this chapter overviews some 

tools that are used to perform RF safety through hardware and software developments.  Finite-

difference time-domain (FDTD), a numerical method used for validation of electromagnetic and 

thermal applications, is reviewed by highlighting the background, motivation, and formulation of 

FDTD.  Thermal heating assesses the RF heating in MR applications.  The various methods to 

assess thermal heating and methods of thermal heating validation are covered.  FDTD studies often 
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require patient-specific modeling or phantoms, and Section 2.7 covers the use of anthropomorphic 

models within MRI.  Lastly, the use and theory of and nonlinear algorithms in MRI is reviewed as 

a tool for producing uniform RF fields that meet RF safety guidelines. 

2.1 ELECTROMAGNETIC WAVES 

Electromagnetic waves are electrical charges with an applied magnitude of the applied force 

through a given medium.  Basic physics emphasizes that two charges create a field or force 

between each other.  These fields are known to be either the electric field or the magnetic field. 

When both the electric and magnetic field of a given charge are in oscillation, the electromagnetic 

(EM) wave is generated.  The EM wave oscillates at the resonant frequency through a given 

medium until dissipated by a medium or redirected by an alternate force (32). 
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Figure 2.1. The electromagnetic spectrum is indicating the ranges and applications of electromagnetics 

at a specified frequency. The frequency is either categorized as ionizing or non-ionizing radiation (33).   

 

Electromagnetic theory can span across a variety of different applications in focus areas 

such as radar, remote sensing, transmission lines, microwave devices, X-Rays, ultraviolet 

radiation, MRI and several other applications.  While the electromagnetic spectrum has range 

spans from 1 to 1024 Hz, this chapter and dissertation will only focus on the application of non-

ionizing radiation - being MRI. 
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2.2 MAGNETIC RESONANCE IMAGING 

The first Magnetic Resonance Imaging (MRI) system developed in 1973 by Lauterbur (2) 

transformed the field of medical imaging to be more versatile in disease detection through the 

system’s anatomical in-vivo analysis.  Over time, whole-body MRI systems of lower field strengths 

(≤ 1.5T) have become commercially and clinically available.  In recent decades, ultra-high field 

(UHF) systems (≥ 7T) have become available in the marketplace (2) for researchers to explore the 

clinical feasibility of UHF MRI’s capacity to diagnose, study, or detect diseases and various 

ailments.  UHF MRI enhances the field of MRI and offers improved signal-to-noise resolution 

(SNR), improved contrast-to-noise resolution (CNR) due to magnetic susceptibility, a greater 

chemical shift dispersion (29), and reduced scan time (with the use of higher acceleration).  These 

benefits impact the overall quality of the image, enhance the contrast in the visualization of the 

tissue, and may result in a quicker experience for an imaged patient.  In order for researchers and 

scientists to improve the MR community, the RF hardware instrumentation, compatible software, 

and MR safety protocols must be improved for UHF MRI systems to meet clinical standards. 

The basic elements of MRI are covered in the subsections below. 

2.2.1 Macroscopic Magnetization and Atomic Model 

All variations of medical imaging can manipulate atoms within biological tissue.  While some 

imaging modalities observe the atom’s radioactivity, MRI focuses on the charge and moments of 

the atom.  Every atom has a charge, a spin, and an angular momentum.  In NMR and MRI, nuclei 

with an odd number of protons and neutrons are imaged.  1H, 13C, 19F, 31P, and 23Na are some of 
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the most prevalent nuclei in biological systems and proteins with detectable signals. The nucleus 

charges and its moment are shown in Figure 2.2.    

 

Figure 2.2. Microscopic View of an Atomic Model: an atom and its nucleus aligned to the external 

magnetic field, B0. 

 

Assume there is a positive charge on the nucleus as shown in Figure 2.2. The angular 

moment of the atom is  

 μ = γB0 (2.1) 

where µ (A/m2) is the magnetic moment, B0 is the applied external magnetic field, and γ (MHz/T) 

is the gyromagnetic constant given by 

 γ =
γ

2π
 (2.2) 

The atom does not have a net magnetic field because the microscopic fields cancel each 

other out.  Therefore, once an external magnetic field is applied, the atom in Figure 2.1 has a net 

magnetic field.  In MRI, B0 is the applied external magnetic field along the z-direction. 

+ 
+ 

+ 
+ + 

µ 

B0 
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Figure 2.3. Macroscopic View of Atomic Model: an atom and its nucleus with an external magnetic 

field applied.  

 
 
 

Figure 2.3 represents the macroscopic view of an atom within a voxel of tissue where an 

external magnetic field, B0, is applied.  Mathematically, the magnitude of the magnetic moment of 

µ is a sum of moments shown as 

  �⃗⃗⃗� = ∑ 𝜇𝑛
𝑁𝑖
𝑛=1  (2.3) 

where M represents the magnitude of the moment of the atom, µ is the magnetic moment, Ni is the 

total number of moments, and n is the index for the moments.   When M is parallel to the external 

magnetic field, B0, M reaches equilibrium, M0.  Mathematically, the magnitude of M0 at 

equilibrium is shown as       

 𝐌0
⃗⃗ ⃗⃗  ⃗ =

𝐵0𝛾2ℎ2

4𝑘𝑇
𝑃𝐷   (2.4) 

where k is the Boltzham constant, T is the temperature, PD is proton density. 

In MRI, M is a function of time (1).  As time increases the magnetic moment precesses 

until it reaches its equilibrium state once parallel to B0. During the time of precession, the magnetic 

moment experiences an external magnetic field, B0, applied perpendicularly to experience a torque, 

also known as the angular momentum, J.   

+ 
+ 

+ 
+ + 

M 
B0 
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 𝑑𝐽(𝑡)

𝑑𝑡
= �⃗⃗⃗� (𝑡) × �⃗⃗� (𝑡)  (2.5) 

where J(t) is the angular momentum varying with time, M(t) is the magnetic moment varying with 

time, and B(t) is the magnetic field varying with time. 

The atom precesses at the Larmor frequency,  ω (MHz) written as:  𝜔 = 𝛾𝐵0 

 

Figure 2.4. Precession of an atom around the applied external magnetic field, B0, on a rectangular 

coordinate system. 

2.2.2 Static Field (B0) 

In a given medium, the direction and spin of the nuclei are randomly arranged. The random 

direction and individual force of each nuclei can result in an minimal or net force magnitude.  MRI 

systems utilize an external and static magnetic force, B0, that is applied to the nuclei of all media 

in the +z-direction (34).  Thus, the magnitude and direction of B0 is given mathematically as: 

 𝑩𝟎
⃗⃗⃗⃗  ⃗ = 𝑩𝟎𝒂�̂� (2.6) 

where 𝐵0 is the magnitude of the static magnetic field and 𝑎�̂� is the unit vector in the +z-direction.   

B0 

ω 

+X 

+Y 

+ + 
+ 

+ 
+ 

M 

+Z 
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Commercial MRI and low field systems have operational frequencies of 0.5T, 1.5T, and 

3.0T.  High field (HF) MRI systems operate at operational frequencies of 4.0T. UHF systems 

operate at operational frequencies of 7.0 T, 8.0 T, 9.4 T, and 11 T and are primarily research 

systems.  These classifications of categorized field strengths have evolved as higher field strengths 

become clinical.  

2.2.3 Radiofrequency Field (B1) 

The transmission of the RF field, B1, is transmitted into a patient or load via an RF coil (35).  The 

origin of the RF pulse is in the transverse (x-y) plane view, and it is tuned to the resonant frequency.  

At a given point in time (t), the 𝑩𝟏
⃗⃗⃗⃗  ⃗  is represented as a complex magnetic field on a rectangular 

coordinate system as 

 𝑩𝟏
⃗⃗⃗⃗  ⃗(𝑡)  =  𝐴(𝑡)𝑒𝑖𝜃   

where B1 (µT) is the magnitude of the RF field represented as a complex number, A is the 

amplitude at a given point in time, and θ (rad) is the phase at a given point in time. 

2.2.4 Free Inductance Decay (FID) 

Free inductance decay (FID) is the emitted, detectable NMR signal that is produced from an RF 

pulse forcing the net magnetization to precess around the static field.  An FID is detectable as long 

as an RF pulse is applied and there is a non-zero component in the longitudinal magnetization 

(Mxy) direction.  An ideal FID is produced from a 90° RF pulse, but truly any RF pulse with any 

flip angle produces some detectable FID.  The FID that is produced provides an oscillating voltage 

for receiving in an RF coil.  MR researchers and developers use a simple FID for multiple instances 

(2.7) 
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such as characterizing an RF coil (i.e., tuning, amplitude, phase, etc.) and optimization of MR 

sequences.  The FID sequence is used in this dissertation to perform RF heating in the 

anthropomorphic heterogeneous head phantom. 

2.2.5 RF Pulse Design and Sequences 

The formation of an RF pulse is covered in subsections 2.2.3 and 2.2.4.  By placing an RF current 

through an RF coil, the magnitude of the magnetization vector M is controlled.  The nuclei are 

excited by the representation of any magnitude of the B1 field and adjusts the system to no longer 

be in equilibrium. 

The nuclei precess along the +z-direction until the system reaches equilibrium.  The MR 

image is generated from Mo precessing around B1.  An RF pulse sequence combines RF pulses 

and gradient pulses to obtain the desired MR image.  The combination of RF pulses and gradient 

pulses is dependent on the desired tissue contrast. 

MR sequences are the result of an echo signal detected that followed RF pulses over a time 

interval known as the echo time (TE). MR sequences are categorized as spin echo or gradient echo 

sequences (30). The difference between these two RF sequences is the use of RF pulses with low 

flip angles, which are produced by gradients.  

2.2.5.1 Types of Contrast Mechanisms in MR Imaging Protocols 

The concepts presented in previous sections revealed that transverse magnetization Mxy(t) generate 

the MR signal.  To observe contrast in the tissues, the value and signal of Mxy(t) must vary for 

each tissue.  Generating various tissue contrast is controlled by the tissue properties and the RF 
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pulse sequence parameters and can be categorized as proton density weighted, T1-weighted, and 

T2-weighted. 

2.2.6 B1 Mapping 

B1 mapping is a technique used to quantify the homogeneity of the RF distribution within an RF 

coil in an MR environment. B1 mapping is a method used to analyze the RF field distribution and 

RF homogeneity in the designated field of view (FOV).  There are a variety of B1 mapping methods 

(36, 37) that are used to analyze the RF field in two-dimensional (2D) and three-dimensional (3D) 

views. Ultimately, researchers are determined to use a relatively quick acquisition time sequence 

with low SAR.  At ultrahigh field (UHF), fewer B1 methods can be used because of the challenges 

with SAR at higher fields.   To avoid these challenges at UHF, some studies (38) prefer SatTFL 

as the preferred B1 methodology because SatTFL uses minimal SAR and has a quicker acquisition 

time in comparison to other B1 methods.  Thus, in this dissertation our B1 mapping technique is 

SatTFL. 

2.2.6.1 Saturated Turbo Flash (SatTFL) 

SatTFL is a B1 mapping technique that uses ultrafast GRE sequences with six different flip angles.  

The results are fitted to the cosine function and post-processing is performed to generate the final 

B1 map. 
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2.2.7 Thermal Heating in MRI 

Thermal heating (sometimes called RF heating) in MRI is a technique used to capture the variation 

of temperature or electrical fields within a load inside an RF coil.  The technique is used to validate 

and ensure that RF safety is considered in all experiments according to the necessary SAR and 

temperature-rise guidelines. There are several temperature mapping techniques used by 

researchers to determine the change in temperature. These methods include MR thermometry 

(capturing the phase before, during and after a heating experiment (39, 40)), using fiber thermal-

optic probes (14, 39, 41, 42), and computational electromagnetic simulations that generate SAR  

and thermal maps.  Recently, using numerical simulations to generate SAR maps has become more 

popular by researchers in the MRI field (40). However, increased and high SAR is not the concern 

for RF safety, it is the temperature increase and rise in the imaged load that is an RF safety concern. 

Proton resonance frequency (PRF) MR thermometry (43) is a well-known method in MRI 

to visualize the temperature elevation; however, it is not widely used in ultrahigh field applications 

due to limited human studies at the time and challenges with inhomogeneous electric fields.  

Although PRF MR thermometry is not used for in-vivo human studies at UHF scanners, there are 

experimental UHF studies (44) that utilize phase mapping by constructing the phase difference 

between the baseline GRE phase map and post-RF-heating phase map. 
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2.3 MRI SYSTEM AND MR INSTRUMENTATION 

There are many components that allow an MR scanner to successfully operate.  The MR scanner 

is one of many components within the MR system.  Most commercial and research scanners have 

a similar MR room setup to the configuration in  Figure 2.5.

 

 

Figure 2.5. An example and visual representation of the conventional MR system and set-up with MR 

components (45). 
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Figure 2.6. An illustration of the MRI scanner and its core MR instrumentation that includes its 

hardware and software (45). 

 

The MR scanner requires the main magnet, RF shielding, gradient coils, magnet shielding, 

patient table, RF coil, T/R switch, RF transmitter, RF receiver, and the computer or console.  The 

control room in an MR system holds the hardware that drives components of the MR system. 

2.3.1 MR scanner 

The MR scanner is a superconducting magnet at low- to UHF systems and housed inside of a 

scanner room.  Figure 2.6 illustrates the instrumentation and equipment that is required to operate 

an MR scanner.  MR scanners can operate as an open or closed bore.  Closed bore scanners are 

used more for clinical high field MR systems and research UHF MR systems.  Superconducting 

magnets need liquid helium to operate.  The magnet experiences a ramp up performed by technical 
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MR field experts to allow the magnetic field strength of the magnet to be reached.  Various devices 

are connected to the scanner to monitor the helium levels to avoid quenching. Quenching occurs 

when the superconductivity of the magnet is lost, the field becomes close to zero, and large 

amounts of helium are released as gas. 

2.3.2 Gradient Coils 

The RF field produces the B1 field from the RF transmitter and the gradient coil.  The gradient coil 

is a set of three individual magnets.  The gradient coil dictates the location in all Cartesian 

directions and frequency of the imaged load.  The gradient coils surround the bore of the MR 

scanner.  Gradient coils are responsible for the spatial encoding within an MR sequence.  The 

gradients produce the loud knocking when activated during a scan; thus, patients must protect their 

hearing during scans to prevent any ear damage. 

2.3.3 Computer System and Console 

The MR system is controlled and operated through the console shown in Figure 2.6.  in this 

dissertation, the console uses Siemens’ syngo.via MR VB17A operated through Microsoft 

Windows XP platform installed on the operating workstation.   

2.3.4 Radiofrequency Coils 

Radiofrequency (RF) coils are hardware devices (antennas) used in MRI to transmit, receive, or 

transmit and receive the RF signal by the resonating proton of interest to the Larmor frequency in 
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order to acquire an MR dataset (46-48).  The RF coils’ function is known and can respectively be 

labeled as transmit (TX) coil, receive (RX) coil, or transmit/ receive (TX/ RX) coil.  To achieve 

maximum signal and an adequate MR image, RF coil designers tune the coils to the Larmor 

frequency (ω) or operational frequency of the magnet and match the coil equivalent or very close 

to 50Ω.  The magnitude of the Larmor frequency can be found by scaling the gyromagnetic ratio 

(γ) by the magnetic field strength of the MRI, ω= γB0. At 7 Tesla, the Larmor or operational 

frequency is 297.2 MHz.  Also, the impedance of the RF coil must match the impedance of the 

receiver. 

A multi-turn solenoid was the first RF coil and was developed for NMR experiments (49, 

50).  RF coils are often referred to as RF resonators.  The resonant frequency is expressed as a 

function of 

 f =  
1

2π√LC
 (2.8) 

where f (Hz) is the resonant frequency, L (H) is the inductance, and C (F) is the capacitance of the 

coil.  When a coil is designed, not only are its inductance and capacitance values of importance 

but also the RF coils geometry is critical and dependent on the desired application.  RF coils can 

be categorized as surface coils or volume coils (51).  Ackerman et al. (52) developed the first 

surface coil in 1980.  Its advantage and benefit was its high sensitivity and in localized regions.  

Therefore, surface coils are preferred for applications that require high magnetization on the 

surface of the imaged volume.  They are widely used for spectroscopy and great to image small 

animals such as mice. In human imaging, surface coils are ideal for imaging surfaces and the 

exteriors of the desired volume.     

 Biot-Savart’s law determines the sensitivity in the design of the surface coil. The principle 

of Biot-Savart is the larger the region of interest (ROI), the deeper the signal may penetrate through 
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a given medium (48). However, an increased in the signals penetration in a given volume will 

increase noise.  Thus, surface coils are designed by developing a coil that yields a desired 

penetration to the media.  

Through the last few decades, RF coil design became more complex for high field strength 

applications.  As the field strength of MR magnets increased volume coils that varied in geometry 

became a necessity to image throughout an entire volume.  Similar to the design of surface coils, 

the design of volume coils applies the theory of sensitivity to decrease the noise of the MR image.  

Multiple loops are designed close together to combine the transmit field magnitude and decrease 

noise. Volume coils are used for transmission and obtaining homogeneity in a given volume.   

Hayes et al. (53) developed the first birdcage resonator in 1984 while working within the 

General Electric (GE) Research and Development Center.  The birdcage resonator is a popular 

commercial coil and coil design used in many commercial coils for clinical MR systems at 1.5T 

and 3T due to its ability to provide highly uniform circularly polarized (CP) magnetic fields at 

these fields strengths.  Double tuned coils were later developed using the birdcage theory to have 

the coil resonate to two protons.  Roschmann (54) later introduced the transmission line resonator. 

2.3.4.1 History of UHF RF Coils 

In the early 2000s, researchers began to explore the possibilities of MRI beyond 4T.  Many 

research facilities began to develop their own RF coils for purely MR research testing and 

evaluation (55-61).   Initially, birdcage and TEM coils were the popular UHF MR coil designs and 

their variants would later follow. Vaughan et al. (62) built on the developments of Roschmann’s 

transmission line resonator (54) to produce the TEM resonator with 16 transmission line resonators 

within a resonant cavity.  TEM resonators are characterized by improved homogeneity, higher Q 
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factor, multiple frequencies of operations, and not very significant dropping in SNR.  The TEM 

volume design was later constructed and used at UHF for body, head, and extremities. 

 The goal of RF coil designers at UHF has always been to develop coils that take advantage 

of the benefits and minimize the challenges of UHF MRI.  At UHF, there is no body coil to transmit 

the RF field.  Thus, RF coil designers and simple RLC circuits are not useful because the EM fields 

are nonlinear.  RF coil designers design separate transmit and receive coils or a combined transmit 

and receive coil for the desired physiological region. 

In various chapters of this dissertation, namely Chapters 3.0 to 5.0, RF coils developed in 

our laboratory are verified and compared to commercial RF coils applied at 7T for UHF brain 

imaging.  

2.4 RADIOFREQUENCY SAFETY 

Patient safety is a priority for researchers and clinicians in all human medical imaging systems. In 

MRI, each successful scan is motivated by a common goal to minimize risk to the patient.  MRI 

safety is categorized into several focus areas; yet, those safety regulations most relevant to this 

dissertation work are thermal heating and MRI artifacts(63).  

As expressed, tissue heating is a concern in MRI and is a bioeffect of RF absorption.  SAR 

assesses the safety of RF exposure to the biological tissue.   Mathematically, SAR is given by the 

following: 

 𝑆𝐴𝑅 =
𝜎|𝑬|⃗⃗ ⃗⃗  ⃗2

𝜌
 (2.9) 
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where σ is the conductivity of the tissue (S/m), ρ is the mass density of the tissue (kg/m3), and E 

is the electric field (V/m).  SAR is computed for any 1g or 10gm of tissue.  Numerical studies 

predict SAR and MR scanners monitor SAR during experimental MR scans.  The SAR is 

monitored by the predicted electric field per patient, the RF pulse of the MR sequence, and the 

patient’s characteristics such as weight and height (since the patient’s exact constitutive parameters 

are not readily known.  It is vital to accurately determine the patient’s weight and height to allow 

the scanner to perform safe SAR predictions throughout the MR protocol that are within safety 

guidelines.  The US Food and Drug Administration (FDA) and International Electrotechnical 

Commission (IEC) regulate guidelines for RF exposure to humans in the United States and Europe, 

respectively.  The SAR limits regulated by the scanner are calculated over time Table 2.1 shows 

the guidelines of these federal agencies.  

 

Table 2.1. Regulations of IEC and FDA guidelines on SAR and RF heating in human experimental 

studies for volume and local transmit RF coils (64, 65)  

 

Limit 

Volume Transmit  
Coils 

Local Transmit  
Coils 

Whole-Body Head Head, 
Trunk 

Extremities 

Average Average Local  Local 

IEC (6-minute average time)         
   Normal (all patients) 2 W/kg 

(0.5°C) 
3.2 W/kg 10 W/kg 20 W/kg 

   First level (supervised) 4 W/kg 
(1°C) 

3.2 W/kg 20 W/kg 40 W/kg 

   Second level (IRB approval) > 4 W/kg 
(>1°C) 

>3.2 
W/kg 

>20 W/kg >40 W/kg 

   Localized heating limit 39°C  
in 10 g 

38°C  
in 10 g 

-- 40°C in 10 g 

FDA 4 W/kg for 3.2 W/kg 
for 

8 W/kg in 
1g 

12 W/kg in 1g 

15 min 10 min for 10 
min 

for 5 min 
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SAR is an indicator of the magnitude of the temperature rising in a given voxel of tissue and can 

be computed based on it is dependence on bioheat equations. 

Because the SAR value is patient dependent, it is a tremendous challenge to predict patient-

specific SAR.  Electric fields become heterogeneous at 3T, and the electric field’s inhomogeneity 

increases with stronger field strengths.  While MRI machines calculate the patient SAR during the 

scan, the value computed is inaccurate.  The work of Bottomley demonstrates that in a 3T 

experimental study, there was a difference in the value of the thermal SAR and the SAR provided 

by the scanner(66). The thermal SAR was much lower than the scanner SAR. The manufacturers 

of the MRI system made the value much higher so that various clinical studies are considered safe.  

However, this presents an issue to researchers studying the effect of implanted devices in MRI 

systems where the exact SAR value is desired (67).  

SAR is monitored within several MR safety applications.  In this dissertation, the SAR 

calculations are explicitly focused on its calculations within commercial or in-house developed RF 

coils and inside the human head that is loaded within the coil.  SAR is a useful tool to measure the 

thermal heating within the imaged load.  Thermal heating can occur within an RF coil from the 

coupling of EM fields, physiological tissue thermal parameters, and patient factors such as tattoos 

and implants.  Patients are screened to ensure that they are MR compatible.  RF coils are assessed 

using SAR and thermal heating through various experimental validations such as measurements 

with fiber optic probes, MR thermometry, comparison to B1
+ maps, and measurement of SAR (68). 



36 

2.5 MODELING ELECTROMAGNETIC FIELDS 

Decades ago, modeling electromagnetic fields was a technique used to understand the phenomena 

of what was occurring between the induced currents in the load from an RF coil and the reception 

of RF fields in the receive antenna.  The application of modeling electromagnetic fields has grown 

broadly and become a useful technique. 

Today, researchers model electromagnetic fields in more applications than when MRI was 

initially developed.  The technique is used to evaluate RF coils, RF safety, optimizing sequences, 

and parallel reception.  

2.5.1 Designing and Evaluating RF Coils 

At lower field strengths the RF coil and load have significantly smaller electrical sizes in 

comparison to the RF wavelength.  It is easier to perform circuit analysis using Kirchhoff’s law 

and Biot-Savart law at lower field fields.  However, at higher field strengths, modeling 

electromagnetic fields is a critical process in the analysis and performance of designing the RF 

coil. The magnetic field can no longer be calculated using Biot-Savart at higher field strengths. 

Instead, Maxwell’s equations with applied boundary conditions must be used to figure out what 

the magnetic field distributions within the coil are respective to a load. 

Modeling the electromagnetic fields allows the researcher to understand how the design of 

the coil works.  The resonant modes generated by the electrical currents are modeled.  The 

magnetic fields from each of these resonant modes are modeled.  It is also important to note how 

the RF field distributions interact with the load, the quantified SAR, and SNR.  All of these features 

are important characteristics of the RF coil. 
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2.6 FINITE-DIFFERENCE TIME-DOMAIN 

2.6.1 Background 

Numerical modeling is a prevalent technique used to solve unknown equations in various 

electromagnetics applications.  MRI researchers use numerical modeling to determine the 

parameters required in the experimental setup before MRI scans and to assist in the design of MR 

instrumentation.  The electromagnetic fields are accurate in determining the RF coil design and 

configuration (69) and RF safety analysis of an MR experiment.  Finite-difference time-domain 

(FDTD), finite element method (FEM), the method of moments (MM), or various hybrid 

techniques are some of the more popular numerical methods used today. 

In 1966, Kane Yee introduced the numerical method, FDTD (70). FDTD solves the 

solutions to time and space-dependent Maxwell equations.  FDTD is a full-wave model used to 

predict the electromagnetic fields of a single system RF coil and load (71) or design the MR 

instrumentation.  The technique uses a discretized version of Maxwell’s equations in the time 

domain for a given number of iterations of time and space. FDTD uses the central finite-difference 

approximation to discretize the second order Maxwell’s equations.  In this dissertation, FDTD is 

applied to a 3-dimensional space for a single system RF coil and various loads. 

2.6.2 Motivation for Choosing Finite-Difference Time-Domain 

FDTD is used because of its ability to calculate a greater quantity of unknown parameters in a 

volume or surface while utilizing less memory in comparison to other numerical methods.  As the 

electric and magnetic fields are computed for each time step, the field arrays are updated for each 
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iteration, and the memory is conserved by replacing the current time step values with the previous 

time step values. Other numerical methods that are commonly used such as the finite element 

method (FEM) and the method of moments (MM) do not have this capability.  FEM and MM 

require the solutions to the matrix equations to be given, but FDTD does not have this requirement 

(28).  

An in-house FDTD code (71), which was developed in our lab, is used to perform the 

numerical calculations needed to solve the number of unknowns regarding the electric and 

magnetic fields in the system.  The code uses a combination of C programming language and 

MATLAB (The MathWorks, Inc., Natick, MA, USA) to model an array of the dielectric properties, 

the RF coil, the load, electric field, and magnetic fields at a given frequency.  The RF coil and the 

load models one system like other works (13, 72).  This system is defined as the computational 

grid of the model.  The FDTD code is set to the resonant frequency of 297.2 MHz (7T) or 128 

MHz (3T) in this dissertation.  To ensure that the proper frequency is applied to the system, the 

Discrete Fourier Transform (DFT) is applied at each time step within the system.  Formulation of 

the FDTD method is shown below for two equations used in this dissertation: Maxwell’s Equations 

(Subsection 2.6.3) and Penne’s Bioheat Transfer Equation (Subsection 2.6.4). 

2.6.3 Formulation of Finite-Difference Time-Domain with Maxwell’s Equations 

Maxwell’s equations (73) are linear, non-dispersive, and isotropic and are written below: 

 𝛁 ×�⃗⃗� = −
𝝏�⃗⃗� 

𝝏𝒕
− 𝝈𝒎�⃗⃗⃗�  (2.10) 

 ∇ ×H⃗⃗ =
∂D⃗⃗ 

∂t
+J  (2.11) 

 ∇ ∙D⃗⃗ = ρe (2.12) 
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 ∇ ∙B⃗⃗ = ρm  (2.13) 

where equations (2.10) to (2.13) are a function of space and time.  While the magnitude of the 

magnetic field �⃗⃗�  and the electric field �⃗⃗�  in a linear, nondispersive, and isotropic material are 

defined as:  

 B⃗⃗ = μH⃗⃗  (2.14) 

 D⃗⃗ = ϵE⃗⃗  (2.15) 

where the variables in equations (2.10) to (2.15) are defined as with their respective units: 

�⃗⃗�  - Magnetic Flux Density [Webers/ meters2], 

�⃗⃗�  - Electric Field [Volts/ meter], 

�⃗⃗⃗�  - Magnetic Field [Amperes/ meter], 

�⃗⃗�  - Electric Flux Density [Coulombs/ meter2], 

𝑱  - Electric Current Density [Amperes/ meters2], 

σ – Electric conductivity [Siemens/ meter], 

ϵ – Electric Permittivity [Farads/ meter], 

µ - Magnetic Permeability [Henrys/ meter],  

ρe - Electric Charge Density [Coulombs/ meter3]  

ρm - Magnetic Charge Density [Weber/ meter3].  

 

To derive the FDTD equation for a lossy medium, Maxwell’s equations are needed in 3D.  

The difference equation is appropriately centered so that E⃗⃗   and H⃗⃗  fields are offset in time and 

space. Assuming that the equation is sourceless, the equations derived from Faraday’s law and 

Ampere’s law are seen below. 
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Assuming all  ∂

∂t
 
∂

∂t
 are finite, then FDTD must solve for Hx, Hy, Hz, Ex, Ey, and Ez.  

Expansion of (2.10) in the rectangular coordinate system yields matrices in the form of 

∇ ×�⃗⃗� = (

𝑎𝑥⃗⃗⃗⃗ 𝑎𝑦⃗⃗⃗⃗ 𝑎𝑧⃗⃗⃗⃗ 
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐸𝑥 𝐸𝑦 𝐸𝑧

)          and   ∇ ×�⃗⃗⃗� = (

𝑎𝑥⃗⃗⃗⃗ 𝑎𝑦⃗⃗⃗⃗ 𝑎𝑧⃗⃗⃗⃗ 
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐻𝑥 𝐻𝑦 𝐻𝑧

) 

Expansion of the vector components of each matrix of the curl operators of (2.10) and 

(2.11) yield six coupled scalar equations. The matrix (∇ × H⃗⃗ ) is separated in each direction in the 

rectangular coordinate system for H⃗⃗ .   

In the x-direction: 

 𝑎�̂�:  𝜇
𝜕𝐻𝑥

𝜕𝑡
= 

𝜕𝐸𝑧

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑦
− 𝜎𝑚𝐻𝑥   (2.16) 

In the y-direction: 

 aŷ: μ
∂Hy

∂t
=

∂Ez

∂x
-
∂Ex

∂z
-σmHy  (2.17) 

In the z-direction: 

 aẑ: μ
∂Hz

∂t
=

∂Ex

∂y
-
∂Ey

∂x
-σmHz (2.18) 

The matrix (∇ × E⃗⃗ ) is separated in each direction in the rectangular coordinate system for 

E⃗⃗ .  

In the x-direction: ax̂: ε
∂Ex

∂t
=

∂Hz

∂y
-
∂Hy

∂z
-σeEx  (2.19) 

In the y-direction: aŷ: ε
∂Ey

∂t
=

∂Hx

∂z
-
∂Hz

∂x
-σeEy (2.20) 

In the z-direction: aẑ: ε
∂Ez

∂t
=

∂Hy

∂x
-
∂Hx

∂y
-σeEz  (2.21) 

Equations (2.16) to (2.21) are scalar equations and are discretized using Yee’s notation.   A 

point in space represents (𝑥𝑖, 𝑦𝑖
, 𝑧𝑖,) = (𝑖, 𝑗, 𝑘) and a function representative of both time and space 
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takes the form 𝐹(𝑥𝑖, 𝑦𝑖
, 𝑧𝑖,𝑡𝑛) = 𝐹𝑛(𝑖, 𝑗, 𝑘).  The function and vector �⃗⃗�  is a component of a vector 

where �⃗⃗� =  (𝐹𝑥, 𝐹𝑦, 𝐹𝑧,).  The discretized scalar equations yield 

𝐻𝑥(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖,𝑡𝑛) = 𝐻𝑥
𝑛(𝑖, 𝑗, 𝑘); 𝐻𝑦(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖,𝑡𝑛) = 𝐻𝑦

𝑛(𝑖, 𝑗, 𝑘); 𝐻𝑧(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖,𝑡𝑛) = 𝐻𝑧
𝑛(𝑖, 𝑗, 𝑘); 

𝐸𝑥(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖,𝑡𝑛) = 𝐸𝑥
𝑛(𝑖, 𝑗, 𝑘); 𝐸𝑦(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖,𝑡𝑛) = 𝐸𝑦

𝑛(𝑖, 𝑗, 𝑘); 𝐸𝑧(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖,𝑡𝑛) = 𝐸𝑧
𝑛(𝑖, 𝑗, 𝑘); 

𝜎𝑚 

 
→ 𝜎𝑚(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) = 𝜎𝑚(𝑖, 𝑗, 𝑘); 𝜎𝑒 

 
→ 𝜎𝑒(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) = 𝜎𝑒(𝑖, 𝑗, 𝑘); 𝜀𝑟 

 
→ 𝜀𝑟(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) = 𝜀𝑟(𝑖, 𝑗, 𝑘);  

The space-time elements discretized formulas of finite difference have superscripts and 

subscripts for every element to distinct space and time. The subscript “i” corresponds to the spatial 

step in the + x-direction; the subscript “j” corresponds to the spatial step in the + y-direction; a, 

and subscript “k” corresponds to the spatial step in the + z-direction.  The spatial step size is 

determined by the resolution of the selected image.  The superscript “n” corresponds to the time 

step.  

According to Yee’s (70) algorithm and theory, it is important to remember that the �⃗⃗�  field 

and �⃗⃗⃗�  field should be staggered in space, but not time.  By applying the central difference theorem, 

the discretized equations (2.16) to (2.21) have perfectly conducting boundary conditions and yield 

In the x-direction: 

𝑎�̂�:  𝐸𝑥
𝑛+1 (𝑖 +

1

2
, 𝑗, 𝑘) = (

2𝜀−𝜎𝑒∆𝑡

2𝜀+𝜎𝑒∆𝑡
) 𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑘) + [

2∆𝑡

2𝜀+𝜎𝑒∆𝑡
] {

1

∆𝑦
[𝐻𝑧

𝑛+
1

2 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) −

𝐻𝑧

𝑛+
1

2 (𝑖 +
1

2
, 𝑗 −

1

2
, 𝑘)] −

1

∆𝑧
[𝐻𝑦

𝑛+
1

2 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1

2 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)]} (2.22) 

In the y-direction: 

𝑎�̂�:  𝐸𝑦
𝑛+1 (𝑖, 𝑗 +

1

2
, 𝑘) = (

2𝜀−𝜎𝑒∆𝑡

2𝜀+𝜎𝑒∆𝑡
)𝐸𝑦

𝑛+1 (𝑖, 𝑗 +
1

2
, 𝑘) + [

2∆𝑡

2𝜀+𝜎𝑒∆𝑡
] {

1

∆𝑧
[𝐻𝑥

𝑛+
1

2 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) −

𝐻𝑥

𝑛+
1

2 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)] −

1

∆𝑥
[𝐻𝑧

𝑛+
1

2 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+
1

2 (𝑖 −
1

2
, 𝑗 +

1

2
, 𝑘)]} (2.23) 
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In the z-direction: 

𝑎�̂�:  𝐸𝑧
𝑛+1 (𝑖, 𝑗, 𝑘 +

1

2
) = (

2𝜀−𝜎𝑒∆𝑡

2𝜀+𝜎𝑒∆𝑡
)𝐸𝑦

𝑛+1 (𝑖, 𝑗, 𝑘 +
1

2
) + [

2∆𝑡

2𝜀+𝜎𝑒∆𝑡
] {

1

∆𝑥
[𝐻𝑦

𝑛+
1

2 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1

2 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)] −

1

∆𝑦
[𝐻𝑥

𝑛+
1

2 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑥

𝑛+
1

2 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)]} (2.24) 

In the x-direction: 

𝑎�̂�:  𝐻𝑥

𝑛+
1

2 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) = (

2𝜇−𝜎𝑚∆𝑡

2𝜇+𝜎𝑚∆𝑡
)𝐻𝑥

𝑛−
1

2 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) + [

2∆𝑡

2𝜇+𝜎𝑚∆𝑡
] {

1

∆𝑧
[𝐸𝑦

𝑛 (𝑖, 𝑗 +

1

2
, 𝑘 + 1) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)] −

1

∆𝑦
[𝐸𝑧

𝑛 (𝑖, 𝑗 + 1, 𝑘 +
1

2
) − 𝐸𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)]} (2.25) 

In the y-direction: 

𝑎�̂�:   𝐻𝑦

𝑛+
1

2 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) = (

2𝜇−𝜎𝑚∆𝑡

2𝜇+𝜎𝑚∆𝑡
)𝐻𝑦

𝑛−
1

2 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) + [

2∆𝑡

2𝜇+𝜎𝑚∆𝑡
] {

1

∆𝑥
[𝐸𝑦

𝑛 (𝑖 +

1, 𝑗, 𝑘 +
1

2
) − 𝐸𝑦

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)] −

1

∆𝑧
[𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 + 1) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)]} (2.26) 

In the z-direction: 

𝑎�̂�:     𝐻𝑧

𝑛+
1

2 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) = (

2𝜇−𝜎𝑚∆𝑡

2𝜇+𝜎𝑚∆𝑡
)𝐻𝑦

𝑛−
1

2 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) + [

2∆𝑡

2𝜇+𝜎𝑚∆𝑡
] {

1

∆𝑦
[𝐸𝑥

𝑛 (𝑖 +

1, 𝑗 +
1

2
, 𝑘) − 𝐸𝑥

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)] −

1

∆𝑥
[𝐸𝑦

𝑛 (𝑖 + 1, 𝑗 +
1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)]}  (2.27) 

where µ, σe, and σm are material parameters. 

Yee’s algorithm is used to compute the electric and magnetic fields concerning time and space 

while using the coupled Maxwell curl equations.  Thus, the  �⃗�   field should be surrounded by 4 �⃗⃗�   
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field and vice versa.  The �⃗�  and �⃗⃗�   field are a function of time, which demonstrates a ‘leapfrog’ 

effect as shown in Figure 2.7.   

 

 

Figure 2.7. Yee space lattice (70) – The electric and magnetic field components in space. The �⃗⃗�  field 

components are represented by the blue arrows and placed in the middle of the Yee space and the H-

components are represented by orange and placed in half steps on the center faces.  

 
 
At a given space and time, all �⃗⃗�  field components are computed and stored in memory 

while using the previous stored  �⃗⃗⃗�   data. 

Next, the  �⃗⃗⃗�  field in that given space are computed and stored in memory using the 

previously stored �⃗⃗� .    It would continue to compute the next �⃗⃗�  with the recently computed �⃗⃗⃗� .  

Once the final time step is reached, the cycle would end. 

The equations are central-difference of second-order accuracy. The equations are then 

converted to a discrete point in the grid and discrete point in time so that the algorithm can be 

developed and MATLAB friendly.  

x 

z 

y 
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2.6.3.1 Boundary Conditions 

Boundary conditions are needed to create a finite domain for the computer to be able to run Yee’s 

algorithm.  Having perfectly matching boundary conditions ensure that the tangential components 

of the electric field and the normal component of the magnetic field vanish.  Creating a finite 

domain is important because it is impossible to calculate the equations for an infinite time.  Thus, 

the values are made finite so that the equation is solvable.  

2.6.3.2 Stability Criterion 

There are properties of linear time-invariant systems, in which stability is required.  The given grid 

must have space elements such that the electric field does not increase dramatically. Thus, the 

dimensions of x, y, and z are equal.  Also, the rectangular dimension of the lattice space must be 

an incremental fraction of the wavelength. To have a rigorous stability criterion,  

 √(∆𝒙)𝟐 + (∆𝒚)𝟐 + (∆𝒛)𝟐 >  𝒄∆𝒕 = √
𝟏

𝜺𝝁
∆𝒕  (2.28) 

where c is the light’s velocity. If cmax is the maximum of the light’s velocity (2.28) becomes  

 √(∆x)2 + (∆y)2 + (∆z)2 > cmax∆t (2.29) 

Chapters 4.0 to 5.0 of this dissertation discusses how the FDTD method is used to assist 

MRI experimental studies. 

2.6.4 Formulation of Finite-Difference Time-Domain with Penne’s Equations 

Penne’s bioheat transfer equation (74) is written below: 

 ρcp
dT

dt
= ∇ ∙ (k∇T) + A0-B(T-Tb) + ρSAR  (2.30) 
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where Cp (J/kg ºC) denotes the specific heat (the amount of heat per unit mass required to raise the 

temperature by one degree Celsius), K (J/m s ºC) denotes the thermal conductivity (the property 

of a material that indicates its ability to conduct heat), Ao (J/m3 s) denotes the basal metabolic rate 

(the minimum calorific requirement needed to sustain life in a resting individual), and B (J/m3 s 

ºC) denotes the blood perfusion coefficient.  The initial body temperature Tb was set to 37°C for 

the perfused segmented in-vivo human head model and 18.00°C for all phantoms models. 

A point in space represents(xi, yi, zi,) = (i, j, k) and a function representative of both time 

and space takes the formT(xi, yi
, zi,tn) = Tn(i, j, k).  The spatial steps in the discretized bioheat 

equation are represented as: 

 Δx = Δy = Δz = Δ (2.31) 

The bioheat equation (2.30) are central-difference of second-order accuracy.  The equation 

(2.30) is converted to a discrete point in the grid and discrete point in time as shown through the 

equations below:  

∇2T(i, j, k) =
∂T(i,j,k)

∂x2 +
∂T(i,j,k)

∂y2 +
∂T(i,j,k)

∂x2  

=
1

Δ2 [T(i + 1, j, k) + T(i-1, j, k) + T(i, j + 1, k) + ∆T(i, j-1, k) + 

 T(i, j, k + 1) + T(i, j, k-1)-6T(i, j, k)] (2.32) 

By applying equation (2.32) into equation (2.30), the equation now yields the following 

equation: 

ρ(i, j, k) × c(i, j, k)
Tn+1(i,j,k)-Tn(i,j,k)

∆t
 = 

=
K(i,j,k)

∆2 [Tn(i + 1, j, k) + Tn(i-1, j, k) + Tn(i, j + 1, k) + Tn(i, j-1, k) + 

Tn(i, j, k + 1) + Tn(i, j, k-1)-6Tn(i, j, k) + A0(i, j, k)  

-B(i, j, k) × (Tn(i, j, k)-Tb) + p(i, j, k) × SAR(i, j, k)] (2.33) 
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To solve Tn+1(i, j, k), equation (2.34) is transformed to yield the following equation: 

Tn+1(i, j, k) = [1-
6K(i,j,k)Δt

ρ(i,j,k)Cp(i,j,k)×(∆)2
-

B(i,j,k)Δt

ρ(i,j,k)×Cp(i,j,k)
]Tn(i, j, k) 

+
ΔtK(i,j,k)

ρ(i,j,k)×Cp(i,j,k)(∆)2
[Tn(i + 1, j, k) + Tn(i-1, j, k) + Tn(i, j + 1, k) 

+Tn(i, j-1, k) + Tn(i, j, k + 1) + Tn(i, j, k-1)] 

 +
Δt

ρ(i,j,k)×Cp(i,j,k)
[A0(i, j, k) + B(i, j, k)Tb + p(i, j, k) × SAR(i, j, k)]  (2.34) 

2.6.4.1 Boundary Conditions 

As mentioned in Section 2.6.3.1, boundary conditions are set to make the bioheat differential 

equation solvable.  When performing numerical temperature studies, the three mechanisms of heat 

transfer are considered being convection, conduction, and radiation.  For our application.  The 

boundary conditions applied to the bioheat equation listed in (2.35) is: 

 k
dT

dn
(x, y, z) = -Ha(Tx,y,z-Ta)  (2.35) 

where Ha is the convection transfer coefficient that is valued at 20 J/m2 s °C (75).  Ta is the ambient 

temperature and has a value of 18°C from an averaged ambient temperature inside of the bore 

throughout the calendar year at our research facility. 

To obtain the minimum boundary along x-direction, equation (2.36) is discretized as 

 K(imin + 1, j, k) ×
T(imin,j,k)-T(imin+1,j,k)

∆x
= -HaT(imin, j, k) + TaHa (2.36) 

Equations (2.33) and (2.31), T(imin, j, k) is written as: 

 T(imin, j, k) =
K(imin+1,j,k)×T(imin+1,j,k)

K(imin+1,j,k)+Ha∆
+

TaHa∆

K(imin+1,j,k)+Ha∆
  (2.37) 

All directions of the boundary conditions are represented in equations (2.38) to (2.42) and 

are presented below: 
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 T(imax, j, k) =
K(imax-1,j,k)×T(imax-1,j,k)

K(imax-1j,k)+Ha∆
+

TaHa∆

K(imax-1,j,k)+Ha∆
  (2.38) 

 T(i, jmin, k) =
K(i,jmin+1,k)×T(i,jmin+1,k)

K(i,jmin+1,k)+Ha∆
+

TaHa∆

K(i,jmin+1,k)+Ha∆
  (2.39) 

 T(i, jmax, k) =
K(i,jmin-1,k)×T(i,jmin-1,k)

K(i,jmin-1,k)+Ha∆
+

TaHa∆

K(i,jmin-1,k)+Ha∆
  (2.40) 

 T(i, j, kmin) =
K(i,j,kmin+1)×T(i,j,kmin+1)

K(i,j,kmin+1)+Ha∆
+

TaHa∆

K(i,j,kmin+1)+Ha∆
  (2.41) 

 T(i, j, kmax) =
K(i,j,kmax-1)×T(i,j,kmax-1)

K(i,j,kmax-1)+Ha∆
+

TaHa∆

K(i,j,kmax-1)+Ha∆
  (2.42) 

2.6.4.2 Stability Criterion 

Numerical stability is a necessity to ensure equation (2.30) is solvable.  Thus, the time step Δt is 

used to satisfy equation (2.43) (76) 

 ∆t ≤
2ρCp∆2

12K+b∆2 (2.43) 

The value of the time step is set by the air. 

2.7 ANATOMICALLY DETAILED HEAD MODELS/ PHANTOMS 

The use of anthropomorphic phantoms was necessary as early as the 1960’s to assess the safety of 

ionized imaging techniques (77, 78) and as time progressed researchers realized the need to have 

imaging phantoms for other imaging modalities.  Recent findings show how researchers and 

engineers use anatomical phantoms in numerical and experimental studies to help investigate the 

behavior of the interaction of RF pulses and biological tissue(s) at higher electromagnetic 

frequencies.  The most recent findings of a physical, realistic, multi-tissue anthropomorphic human 

head phantom for MRI only and ultra-high field MRI is by Graedel (14). This work builds on the 
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development of previous realistic phantoms (14, 22, 79) and has comparable simulations and 

experiments.  Before these works, the CHEMA (24) phantom was the most anthropomorphic 

phantom by its shape and single compartment representative of averaged dielectric properties of 

all tissues in the human head at 7T.  Previous works (79) and most commercial whole-body 

scanners provide a one compartment cylindrical or a spherical phantom that may be filled with 

water or a soluble solution as shown in Figure 2.8.  It should be noted that these works (14, 22, 

79)  did not have comparable simulations to the in-vivo high field and ultra-high field human 

experiments because these studies chose not to incorporate in-vivo comparison. It can be concluded 

that the path forward to understanding the challenges of ultra-high field MRI are to further the 

research of most recent works (14). 

 

Figure 2.8. Basic spherical and cylindrical MRI loading phantoms at General Electric Healthcare (80). 

 
The development of a physical multi-compartment head phantom with more than four 

compartments, to-date, is not known.  Therefore, the proposed eight compartment head phantom 
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and our preliminary work (9) presents an expansion in the research and development of MR safety 

protocol and phantom head design. Unlike most realistic phantoms, the proposed work is 

segmented and prototyped from the T1-weighted MR images of a volunteer, and the final phantom 

will be compared to the same volunteer. Other realistic phantoms do not make phantom MR 

comparisons to the MR images on which the phantom evolved.  The initial prototype used liquids 

instead of gels to represent the desired compartments’ electromagnetic properties. The benefit of 

using liquids over gels is that the project is more versatile.  However, the gels were used for the 

thermal studies in Chapters 3.0 and 5.0. 

However, the uniqueness in the design of the head phantom of this dissertation is that the 

phantom has eight (22) chambers that include more compartments of the human head than previous 

work (14) and are comparable to the volunteer from which the phantom was modeled.  This novel 

design is far more relative to the real-life applications of the interaction of the RF fields and the 

human head than what one or four tissue phantoms do.  

2.8 NONLINEAR ALGORITHMS FOR RF SHIMMING 

Linear and nonlinear problems use numerical analysis to solve an equation for a set of unknown 

variables.  Nonlinear problems are either unconstrained or constrained. In this dissertation, 

nonlinearly constrained algorithms are used in Appendix C (on page 256) to optimize the 

inhomogeneity in the magnetic field and minimize the SAR.  The number of unknowns to the 

problem is large with several variables that can be altered. Thus, it is easier to solve the problem 

by constraining it to a set of problems that can be solved. 
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minimize f(x)  

subject to  hi(x) = 0,     i =  1,2, …m  

   gi(x) ≤ 0,    j =  1,2, … r  

 x ∈ S 

X is an n-dimensional of unknown variables (i.e. x – (x1, x2, x3… xn) and f, hi and gj are 

real-valued functions of the n-dimensional x variables.  The function f(x) is the objective function 

and other equations are the functional constraints. A solution in x that satisfies the constraints is 

said to be feasible.   

The goal of the minimization optimization is to find a local minimum. If the functional 

constraints are active, then the local minimum is found in the domain of x. 

In this dissertation, the objective function is defined by the user in the parallel transmission 

RF toolbox (Appendix C on page 256) to minimize the magnetic field while constraining the SAR 

and power.  The function chooses a mathematical operation to alter the total magnetic field in the 

selected region of interest where the magnitude of each voxel of tissue is based on the RF 

excitations of active sources in the RF coil.  The constraints are set by the user to constrain the 

magnitude of the selected voxels of tissues. The object function and constraints are written as 

functions in MATLAB. 

 There are a variety of nonlinear algorithms that are chosen based on the criteria of the 

problem.  In this dissertation, MATLAB’s library of nonlinear algorithms is used to optimize the 

magnetic fields and minimize the SAR. 

(2.44) 

Typical nonlinear constrained problems are of the form  
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3.0 DEVELOP AN ANTHROPOMORPHIC HETEROGENEOUS HEAD 

PHANTOM THAT IS EVALUATED AND CHARACTERIZED THROUGH 

EXPERIMENTAL MRI STUDIES AT 7T 

 

The work within this chapter was published and featured as a first author in PLoS One on 14th 

August 2017.  

3.1 INTRODUCTION  

Phantoms are numerical and/or physical models that represent the characteristics of some specified 

human anatomy (81-84). Phantoms are an inexpensive approach to testing several electromagnetic 

applications, specifically various medical diagnostic imaging tools and wireless communication 

applications (83, 85, 86).  Recent studies demonstrate how researchers use anthropomorphic 

phantoms in numerical and experimental studies as one of the many resources that help investigate 
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the behavior of the interactions of electromagnetic (EM) fields and biological tissue(s) at varying 

electromagnetic frequencies (39).  While electromagnetic numerical modeling has been the 

greatest resource to understand and analyze the interaction of electromagnetic fields and biological 

tissue(s) (13, 71, 87-90), in the last few years, experimental phantoms are increasingly becoming 

a useful resource in conjunction with EM modeling (14, 85).   

The design of physical phantoms has evolved over the years to verify the mimicry of a real 

patient or customer environment with the electromagnetic device in order to minimize the error in 

modeling the physical experiment.  While the evolution and usage of physical phantoms is endless 

in electromagnetic applications, in this chapter, we will narrow our focus on how to develop and 

test a physical and realistic head phantom using magnetic resonance imaging (MRI/MR).  We 

recommend a method to design and fabricate a physical anthropomorphic heterogeneous head 

phantom using 3D printing technology. 

3.1.1 MRI Phantoms 

MRI phantoms are used to analyze, evaluate, and calibrate the MRI system and its instrumentation 

prior to conducting tests on humans.  MRI phantoms also allow researchers to understand the 

phenomena of the interaction of electromagnetic waves and biological tissues most especially at 

high field strengths where these interactions are difficult to measure and to interpret (72, 87).    

3.1.2 Prior Work in Developing Electromagnetically-Equivalent Head-Phantoms  

Most designed and commercial phantoms are typically homogenous, simple in shape, and 

containing homogenous liquid.  Today, most commercial whole-body MRI scanners provide a 
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one-compartment spherical phantom filled with saline water.  While studies supported by MR 

companies find homogeneous commercial phantoms to offer an acceptable quality assurance (QA) 

to test the MRI system, anthropomorphic shaped phantoms are typically needed to go beyond QA 

such as mimicking a human experiment.  Furthermore, while commercially available homogenous 

phantoms are suitable resources for analysis and evaluation of lower field MRI systems, they are 

not typically viable for characterizing the electromagnetic-biological interactions at higher field 

strengths.  At higher field strengths, the electromagnetic fields produced by MRI radiofrequency 

(RF) antennas become much more dependent on their interactions with biological tissues due to 

the higher operational frequency and consequently, the RF wavelength is shortened (91).    

In the early 2000s, studies (20, 24, 92) designed and used electromagnetic anthropomorphic 

homogenous head phantoms.  An anthropomorphic homogenous head phantom, Specific 

Anthropomorphic Mannequin (SAM) (92), is a commonly used head phantom in many wireless 

communication application studies.  The CHEMA (24) phantom and SAM were the most common 

physical anthropomorphic homogeneous phantoms used to quantify a real-life comparison of RF 

absorption.  Safety protocols and standards of various electromagnetic committees within 

professional societies have approved physical homogeneous phantoms.  Nonetheless, there is a 

need to research the feasibility of designing more anthropomorphic heterogeneous phantoms for 

applications that require accurate specific absorption rate (SAR) testing, analysis of the interaction 

of RF fields and biological tissue(s), and direct comparisons with in-vivo studies.  IEEE Standards 

Association’s (IEEE-SA) standards and recommendations of IEEE SA - 1528-2013 (92) 

recommends the criteria for the design of an anthropomorphic head phantom.  Although study (92) 

states that heterogeneous head models are difficult to construct, studies (14, 15, 86) indicate the 

feasibility of constructing an anthropomorphic heterogeneous head phantom and build on the 
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development of previous realistic heterogeneous phantoms (19, 22, 23, 93, 94).  The results of 

studies (14, 15, 86) support the finding (92) that heterogeneous phantoms are more accurate.  Thus, 

various electromagnetic applications/ safety protocols/ standards will benefit from 1) describing 

the methodology of developing and 2) validating the results associated with, anthropomorphic 

heterogeneous head phantoms that can be tailored to a specific research lab and/ or an industry 

application.  

Although to our knowledge the findings from Graedel et al. (14) is the most comparable to 

this proposed work, the comparison of an anthropomorphic heterogeneous phantom to human head 

on which the phantom was prototyped does not exist.  To further research the comparison 

mentioned above, this chapter shares the findings of such a comparison with an increased number 

of compartments filled with biologically equivalent electromagnetic liquids.  While the findings 

of studies (14, 24, 86) are helpful, there is a critical need to further develop anthropomorphic 

heterogeneous head phantoms so that researchers make realistic findings in various 

electromagnetic medical applications at varying frequencies.  

3.1.3 3D Printing a Tool for Physical Phantom Construction 

3D printing is becoming an attractive tool within the fields of medicine, science and engineering 

in a variety of applications.  Specifically, within the bioengineering field, 3D bioprinting is 

commonly used in tissue and organ engineering (94); and in the construction of bioprinted organs 

and anthropomorphic phantoms (95) of the human anatomy.  Various imaging modalities (X-Ray, 

CT, MRI, etc.) can be incorporated to examine human anatomy and help in producing a physical 

model of the imaged tissue.  Computer-aided design (CAD) software can also be used to accurately 
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reproduce the imaged tissues from a file that contains the surface meshes and contours of the 

imaged tissues.  

In this chapter, we propose a methodology that develops a realistic anthropomorphic 

heterogeneous head and upper shoulder phantom through 3D printing that will be used as an 

application to various electromagnetic applications. The methodology is successfully evaluated on 

a Siemens MAGNETOM® (Erlangen, Germany) 7T whole-body scanner with the head phantom 

centered within an RF head coil and compared to other phantoms and the in-vivo volunteer from 

which it evolved. In addition, this chapter highlights a methodology to evaluate the performance 

of the designed phantom through numerical and experimental studies performing specific 

electromagnetic applications — scattering parameters (S-Matrix), B1 mapping and EPI 

applications.  An anthropomorphic heterogeneous head phantom results are compared to a 

spherical and anthropomorphic homogeneous head phantom filled with water and a soluble, 

mimicked brain solution. 

3.2 MATERIALS AND METHODS 

The design of the anthropomorphic heterogeneous head phantom follows a workflow shown in 

Figure 3.1.  The workflow is intended to be used for designing an anthropomorphic heterogeneous 

phantom of any physiological representation.  This section outlines each step within the general 

workflow. 
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Figure 3.1. A General Workflow to Design and Fabricate an Anthropomorphic Heterogeneous Head 

Phantom Using 3D Printing.   

 
 
 

Step 1. Acquiring 3D images of the human head.  The physical phantom’s application and 

functionality determines the choice of using a single or a combination of imaging modalities (i.e. 

MRI, CT, X-Ray, etc.)   

Step 2. Segmentation.  Segmentation – a design approach used to classify tissues within 

the imaged dataset – requires the developer to have the guidance of an expert in physiology or a 

physiological atlas in order to properly classify the tissues.  Software that offers automatic 

segmentation algorithms should be used through most of the segmentation process.  To obtain a 

geometric mesh of the classified tissues, the segmented data should be in a proper format that is 

compatible with CAD software and 3D printing software.   
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Step 3.  Modifying the design of the phantom for suitable 3D printing.  Specifications of 

3D printing such as type and resolution should be considered during the design process to achieve 

a rapid prototype with limited errors.  

Step 4.  Analyzing 3D printing techniques.  Issues regarding the 3D printing technology 

that is most suitable for the phantom should be considered.  These include cost, material durability, 

compatibility of the material with the phantom’s application, and material printing resolution.  

Table 3.1 within study (96) provides a helpful summary of various 3D printers and each 3D 

printing materials’ corresponding characteristics.   

Step 5. Physical assembly of the head model.  Adequate steps for facilitating the design 

and assembly in the CAD software can minimize the extensive manual assembly efforts of the 

physical phantom. 

The following represents the developmental steps for developing our anthropomorphic 

heterogeneous human head phantom. 

3.2.1 Images Acquired 

An MR dataset is acquired using 3D magnetization-prepared rapid gradient-echo (MPRAGE) 

sequence because of its ability to offer excellent structural contrast in order to appropriately 

segment various tissue (93, 97, 98).  The MR images were acquired from a healthy adult, male, 

human volunteer using a Siemens MAGNETOM TIM Trio® 3T whole-body scanner (Erlangen, 

Germany) at University of Pittsburgh Medical Center.  The images are isotropic, T1-weighted with 

the following parameters: FOV: 320 x 320 mm2; TE: 2.62 ms; TR: 2110 ms; TI: 1100 ms; FA: 8⁰; 

BW: 200 Hz/pixel; Resolution: 1.0 x 1.0 x 1.0 mm3). 
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3.2.2 Phantom Segmentation, Design and Fabrication 

An eight-tissue compartment head phantom was segmented and developed from the 3T MRI 

dataset as shown in Figure 3.2.  To obtain an anatomically detailed human head model, tissues 

were labeled and automatically segmented using iSeg (ZMT Zurich MedTech AG, Zurich, 

Switzerland) segmentation software.  To achieve accurate labeling, a human head atlas (97) was 

used to properly classify the tissues and segment the dataset as shown in Figure 3.2.  The head 

phantom compartments consist of eight grouped classified tissues namely: brain, brainstem, eyes, 

air cavities, cerebellum, cerebrospinal fluid (CSF), muscle, and the remainder volume being a 

combination of the fat, bone, and skin.  The classification of the tissues was distinguished by 

relatively similar constitutive parameters and the ability to fabricate the model.    We combined, 

for instance, the white matter, grey matter and the CSF—in the vicinity of the grey and white 

matter—and classified the grouped tissue as “brain”. Similarly, we used the same logic for the 

“eye”, which is a combination of the physiological tissues known as the lens, vitreous humor, 

cornea and sclera.  Once classified, the tissues were exported from iSeg as surface mesh objects in 

STereoLithography (STL) format and voxel matrices in MATLAB (mat) format. 
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Figure 3.2. Medical Data Acquisition and Segmentation.  A 3T MRI scan with 1.0 x 1.0 x 1.0 mm3 

resolution was segmented and divided into eight individual tissues.  Each segmented tissue is listed with the 

corresponding tissue segmentation color within the tissue legend.  The pictured MRI dataset and segmented 

tissues are shown in the mid axial, coronal and sagittal views. Table 3.1 lists the physiological tissues that were 

used to classify the tissues in the legend. 
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Figure 3.3. Phantom Design and Fabrication of Physical Phantom Model.  Views of the shelled CAD 

files (A-C) which were developed in order to make volumetric cavities of the designated biological tissues that 

were segmented from a 3T MRI dataset.  Views of the rapid prototype model (D) show the head phantom 

printed with stereolithography (SLA) resin.  The physical head phantom dimensions are 304.8 mm tall, 254.0 

mm long and 140.0 mm wide.  The filling-ports are highlighted by arrows indicating the locations at which the 

fluids, resembling various tissue types, enter the phantom.  

 
 
 

Using 3D CAD software (Geomagic Studios 2012 (Geomagic, Morrisville, North 

Carolina)), each compartment was designed to reserve the mixture of the desired tissue over time 
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as seen in Figure 3.3A– Figure 3.3C. The wall thickness of each tissue compartment and the 

molding compartment - combination of fat, bone and skin - were rendered and later printed using 

stereolithography (SLA) resin (DSM Somos® WaterShed® XC 11122 (Elgin, Illinois)) with the 

3D Systems ViperTM si2 3D printer (3D Systems, Valencia, California).  Six compartments are 

refillable with fluid through chambers that were positioned within each of the designated tissue 

compartments. The other two compartments are the molding compartment and the air cavities. 

The cured SLA resin material is hydrophobic and durable to external and internal pressures.  

Among all of the 3D printing materials available, the DSM Somos® WaterShed® XC 11122 best 

fits the need to preserve the liquid with time.  We tried polycarbonate material in the fabrication 

of a single-compartment, anthropomorphic homogeneous head phantom. The polycarbonate 

material is not hydrophobic, and it is porous. With time, the liquid evaporated from the inside and 

crystalized on the exterior of the model.  This material, however, was useful for the study (15) that 

utilized ABS material and a waterproof spray coating or other studies that used agar to mimic the 

biological tissues.  In contrast, an application of waterproof spray coating is unnecessary with the 

SLA material used in this study. 

The physical head phantom model was designed and printed in five separate parts in order 

to manually remove the inner structural supports that come out with 3D printing.  Leaving the 

structural supports inside of the model is undesired because it causes artifacts and bubbles within 

each tissue compartment leading to less accurate approximation of the electromagnetic fields 

produced in biological tissues.  
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3.2.3 Physical Assembly 

Once the model was 3D printed, manual mechanics were applied to each printed part. After the 

structural inserts were removed, each part was manually smoothed by sanding in areas where the 

printed parts do not mesh well.  Using a combination of sandpaper and the Dremel tool (Robert 

Bosch Tool Corporation, Mt. Prospect, Illinois) is typically necessary.  The overall print time of 

the phantom took almost a week in hours. 

To make the physical model fully airtight, various engineering designs were considered 

and the final phantom design incorporated epoxy adhesive, plastic latches, nylon screws and 

threads, and rubber foam.  A well-designed CAD model and plentiful resources can reduce manual 

construction.  Various sealants were researched for their electromagnetic compatibility as well as 

MR signal.  Materials with metallic components were avoided. An epoxy adhesive (DP100 Plus 

Clear, 3MTM Scotch-WeldTM, St. Paul, Minnesota) was applied to various halves to bind the 

physical 3D printed model parts together.  Epoxy adhesive was only used on parts that would not 

be reopened.  For parts that required reentry, the silicone rubber was applied as a sealant and then 

doubled on contacting surfaces to act as a rubber gasket.  Latches were strategically mounted on 

the physical phantom model to apply pressure to the foam as sealant, which prevents the filling 

liquids from leaking at these junctions. 

The filling ports were manually designed based on the CAD model and the ease of filling 

the designated liquid per compartment.  Each refillable liquid has at least two ports: one for filling, 

while the other for releasing air bubbles that may accumulate during the filling process. 
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3.2.4 Preparation of the Phantom Tissue and Phantom Filling 

In this study, the tissues in Table 3.1 were classified as biological tissues that are grouped together 

based on the location and constitutive parameters of the tissue.  These groups were chosen to 

represent tissues of the phantom without running into the complications of having an overly 

detailed and ineffective design with diminished structural integrity. While the physical model is 

realistic, some assumptions were made to match the constitutive properties of the human tissues 

listed by Gabriel et al. (98). These values are based on calculations of the constitutive parameters 

while being a function of the physiological tissues density that make up each group.  The air 

cavities are representative of the nasal cavities, sinuses and esophagus.  The brain tissue composes 

of the gray matter, white matter, blood vessels in the brain, Dura and the CSF in between and 

surrounding the brain.  The brainstem is representative of the pons, medulla oblongata and the 

spinal cord.  The constitutive parameters of the brainstem tissue match those of the spinal cord 

listed in (98).  The internal CSF is representative of the actual CSF inside of the ventricles and 

lateral horns—lateral gray columns of the spinal cord—and the CSF that surrounds the exterior of 

the spinal cord. The cerebellum is representative of the actual cerebellum. The eye tissue is a 

composition of the vitreous humor, cornea, eye sclera, nerves and the blood vessels within the eye.  

The muscle is representative of the continuity of muscle and tendons in the head (including the 

tongue), neck and upper shoulders. The bone is representative of the bone, cartilage, bone marrow 

and bone cortical throughout the head, neck and upper shoulders.   Since the bone possesses 

relatively lower values in terms of conductivity and permittivity and the fat is a discontinuous 

tissue with similar electromagnetic characteristics, the phantom combines both the bone, fat, and 

skin (not considered in this study) into one tissue.  This combined tissue is physically and 

electromagnetically representative of the SLA resin material due to each corresponding low 
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loss/permittivity (with the exception of the skin).  The skin was too thin to be properly segmented 

and 3D printed into a separate tissue for filling. 
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Table 3.1 provide values that were achieved by calculations using studies (93, 98).  The 

conductivity (σ) and permittivity (ϵr) volumes were developed by in-house mixtures of distilled 

water, sodium chloride (NaCl), and/or denatured ethanol (C2H6O) at room temperature (elaborated 

in Appendix A on page 247).  The in-house mixture must have a relatively low viscosity while 

remaining soluble; thus, the selected chemicals are used for a relatively inexpensive in-house 

mixture. The constitutive parameters of each tissue shown in Table 3.1 (98) were measured using 

a dielectric probe (SPEAG DAK (AG SPE, Zurich, Switzerland)) with measurements calibrated 

between a spectrum window of 295 MHz and 300 MHz.  Distilled water was chosen as a base for 

the solution within the six compartments. Various studies (98, 99) demonstrate that the permittivity 

value of water decreases as concentrations of solvents with lower permittivity values are mixed 

into the solution. NaCl was used to control the conductivity (100) and C2H6O was used to adjust 

the permittivity of the developed solution.  Various concentrations of NaCl and C2H6O were used 

to match the values that are listed in (98).  Using the dielectric probe, the values reported in Table 

3.1 were measured several times (n=10, σ=0.01) to ensure stability over time.  The prepared liquids 

with constitutive parameters shown in Table 3.1 were used to fill the phantom. 

3.2.5 Network Analyzer Measurements 

Workbench analysis of the three phantoms and an in-vivo volunteer centered in an RF coil were 

measured with a network analyzer (Agilent E5602A, Keysight Technologies, Santa Rosa, 

California).  Scattering parameters indicate to an RF engineer how well tuned a coil is to the present 

load and the measurements of transmission and reflection per channel.  Using the scattering 

parameters, each phantom and the volunteer were characterized through the reflection coefficient 
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(S11) of one representative channel and therefore the input impedance of an in-house built RF 

volume coil (a 16-strut transverse electromagnetic (TEM) resonator) (62, 101). 
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3.2.6 7T MRI Experiments 

Experimental B1 mapping of the anthropomorphic heterogeneous head phantom, anthropomorphic 

homogeneous head phantom, spherical phantom and the in-vivo volunteer (with signed consent 

form approved by the Institutional Review Board at the University of Pittsburgh) within the TEM 

coil were acquired using Siemens MAGNETOM® 7T whole-body scanner (Erlangen, Germany).   

The volunteer has given a written informed consent (as outlined by PLoS ONE consent form) to 

publish the details in this manuscript and dissertation. The anthropomorphic homogeneous head 

phantom (the designed phantom) and the spherical phantom were filled with a solution that has 

conductivity = 0.41 S/m and relative dielectric constant = 79.  The in-vivo study was performed by 

acquiring images with the head centered within the TEM coil.   The sequence used for B1 mapping 

was SAT TurboFLASH with the following parameters: Pulse: rectangular RF pulse of 1ms at 

500V; FOV: 64 x 64 mm2; TE: 1.16 ms; TR: 2000 ms; FA: 6⁰; BW: 1502 Hz/pixel; and Resolution: 

3.1 x 3.1 x 2.0 mm3.    

The stability of the head phantom and in-vivo volunteer were measured using similar 

stability QA protocols methods used at lower field strengths (102).  The RF shielding in this 

particular TEM resonator produces ghosting effects and is very distorted; thus, another 

commercially available RF head coil was used to properly evaluate echo planar imaging (EPI) 

stability scans.   Experimental 2D EPI images of the anthropomorphic heterogeneous phantom and 

the in-vivo volunteer were acquired by centering the head phantom and the volunteer within the 8-

channel RAPID coil (Rapid Biomedical, Wurzburg, Germany).  The sequence for EPI acquisition 

used the following parameters: FOV: 148 x 148 mm2; TE: 20 ms; TR: 2500 ms; FA: 65⁰; BW: 
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1778 Hz/pixel; Acquisitions: 10; Slices: 86; Scan Plane: Axial; and Resolution: 1.5 x 1.5 x 1.5 

mm3.   QA data was analyzed quantitatively through fBIRN (NA-MIC, Bethesda, MD, USA) and 

Matlab (The MathWorks Inc., Natick, MA, USA). In this work, we monitored the stability through 

the signal-to-ghosting ratio (SGR) and fluctuation indicated by Friedman and Glover (103, 104) 

in one comparative slice for 9 acquisitions (similar to typical fMRI analysis, the first acquisition 

was removed from the analysis).  The SGR is computed using eq. (2) in Simmons (105) and 

Weisskoff (102) and the fluctuation using eq. (5) in Simmons (105) is applied. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Results 

3.3.1.1 Fabrication of Head Phantom 

The phantom was successfully fabricated as shown in Figure 3.3D which demonstrates the 

feasibility of using 3D printing technology to develop an anthropomorphic heterogeneous head 

phantom. The in-house mixtures were made with low viscosity and it requires no more than an 

hour to fill the entire phantom with limited air bubbles.  Emptying the phantom is much quicker; 

however, there are multiple methods to empty the phantom.  Both ports must be open and the 

liquid can be poured out or suctioned out based on preference. 
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3.3.1.2 S-Matrix Simulation and Experimental Measurements of the Phantoms to the In-Vivo 

Volunteer 

The scattering parameters of each phantom were successfully measured and shown in Figure 3.4.  

The reflection coefficients and load of each phantom (Figure 3.4A to C) and in-vivo volunteer 

(Figure 3.4D) at 297.2 MHz are listed respectively: -23.33 dB, -18.96 dB, and -24.87 dB.  The 

resonant frequency of 297.2 MHz is indicated by marker 1.  

Figure 3.4B to D represent the shift in resonance of the heterogeneous phantom, in 

comparison to the in-vivo volunteer through markers 2 and 3.  The homogeneous head phantom 

shifts (0.1 MHz) to the left and the spherical phantom (0.8 MHz) shifts to the right. The bench 

measurements indicate that the heterogeneous head phantom is most similar in bench 

measurements to the in-vivo volunteer. 

3.3.1.3 Verification of Congruent Slices to the In-Vivo Volunteer 

The experimental B1 mapping statistics and distributions of both head phantoms, spherical 

phantom and the in-vivo volunteer are captured for one axial, coronal and sagittal slice at a 

comparable location in the volunteer, spherical phantom and the two head phantoms Figure 3.5.  
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Figure 3.5. Comparison of the Magnetic Field Distribution Experimentally Mapped using a B1 Map at 

7T MRI in All Planes.  Congruent slices of each phantom in comparison with the human volunteer are shown 

in all planar views.  The color bar ranges from 0 to 48.9µT per 500V. The maximum B1 intensity level is set by 

the highest pixel value among each of the phantoms and the volunteer. 

3.3.1.4 Experimental Study of the Various Phantoms to the In-Vivo Volunteer 

The results shown in Figure 3.5 represent a preliminary evaluation of the electromagnetic behavior 

of the three phantoms and the in-vivo volunteer.  Each B1 map is computed by B1= θ
γt

, where θ is 

the flip angle, γ is the gyromagnetic ratio at 42.58 MHz/T, B1 is the RF field (at 7T or 297 MHz) 
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and t is the pulse width. The corresponding values for each pixel indicate the field strength required 

to make the B1 at that pixel perpendicular to the magnetic field strength (B0).  The B1 was acquired 

and scaled to a voltage of 500V for a rectangular pulse duration of 1ms.  The scaling per 500V of 

the B1 is due to power limits. The scanner is limited to produce 8kW of power from the power 

amplifier after power losses from the cables and other electronic components; thus, the maximum 

voltage delivered through the power amplifier is 500V.  Qualitative/quantitative analysis were 

conducted along congruent slices of each phantom in comparison with the human volunteer.  The 

contours span the same range in terms of values.   

When compared to the other two phantoms, the anthropomorphic heterogeneous head 

phantom possesses the most comparable B1 field distribution to the in-vivo volunteer.  The other 

phantoms have a higher magnetic intensity per volt when compared to the anthropomorphic 

heterogeneous head phantom and the human volunteer. 

3.3.1.5 Magnetic field distributions and EPI testing of the various phantoms and the in-vivo 

volunteer. 

The results shown in Figure 3.6 represent an evaluation of EPI stability scans of all the 

anthropomorphic phantom, spherical phantom, and the volunteer.  The stability parameters such 

as the signal-to-ghosting ratio (SGR), fluctuation, and stability are shown in Table 3.2.  
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Table 3.2. Stability Parameters of Phantoms and the Volunteer for the EPI Stability Scans. 

 

Stability 

Parameter 

Head 

Phantom 
Volunteer 

SGR 423.8 47.1 

SNR 1097.9 276.6 

Fluctuation (%) 0.05 4.16 
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Figure 3.6. Comparison of Phantom to in-vivo Volunteer during an EPI Stability Scan at 7T MRI.    
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3.3.2 Discussion  

This chapter aims to address the challenges associated with phantom design and fabrication and 

offers a methodology to design, fabricate and evaluate the development of a realistic 

anthropomorphic heterogeneous head phantom for various electromagnetic applications. The 

design and construction of the head phantom differs from homogeneous (24, 106, 107) phantoms 

and recent anthropomorphic heterogeneous (19, 20, 22, 23, 86) phantoms as it is more comparable 

to a volunteer from whom it was developed. The design is one solution to the challenge of making 

a heterogeneous physical phantom. 

3.3.2.1 Fabrication of Head Phantom 

The fabrication of the designed head phantom required adequate resources in technology and 

funding.  We determined to voxelize and print the phantom at a higher printing resolution.  It was 

determined that smoothening the CAD models as an automated process was not desired since it 

would remove the detail of the phantom and lessen the accuracy of the electromagnetic comparison 

to the volunteer. Thus, the physical assembly of the phantom took a few months to complete and 

requires extensive planning. 

3.3.2.2 S-Matrix Measurements of the Phantoms to the In-Vivo Volunteer 

The bench analysis demonstrates that the anthropomorphic phantom is capable of being a usable 

tool for RF engineers to conduct loading analysis for RF coil developments.  From the current 

measurements, the anthropomorphic phantom appeared more realistic than the spherical phantom 

in comparison to the transmission and reflection coefficients of the volunteer.  However, this 

chapter and dissertation is not intended to provide a full analysis to the respective S-matrices.    
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3.3.2.3 Magnetic Field Distributions of the Various Phantoms and the In-Vivo Volunteer 

The B1 field distribution for each phantom and the volunteer does not have uniform distribution in 

any planar view. The B1 maps highlight the phenomena of a shorter RF wavelength at higher field 

strengths (3, 91, 108, 109). The B1 mapping results demonstrate that the anthropomorphic 

heterogeneous head phantom is the most realistic phantom to mimic and model the in-vivo 

volunteer.  While our anthropomorphic heterogeneous head phantom does not offer full accuracy 

in its comparison of the electromagnetic fields to the in-vivo volunteer, it is considerably more 

comparable than the spherical, anthropomorphic homogenous head phantom or other fabricated 

heterogeneous phantom studies (14, 86).  The magnetic field distribution of the spherical 

homogenous phantom is most comparable to the anthropomorphic homogenous head phantom.  

The B1 intensity values are higher in the phantoms due to having differing constitutive parameters 

for the skin tissue resulting in higher RF penetration and therefore higher B1 values. That being 

said, the heterogeneous phantom is the most comparable to the in-vivo volunteer in terms B1 

distribution and intensity.  As noted, while the anthropomorphic homogeneous head phantom has 

the same molding and contours as the anthropomorphic heterogeneous head phantom, it uses the 

same constitutive parameters as the spherical phantom.  More evaluations need to be conducted in 

order to determine how the phantom’s anatomy and the thickness of the compartment shells affect 

the electromagnetic field distributions. 

3.3.2.4 EPI testing of the various phantoms and the in-vivo volunteer  

Short acquisitions are usually carried out to demonstrate stability testing.  We have compared the 

stability parameters in Table 3.2 of the anthropomorphic heterogeneous head phantom and the 

volunteer. As expected, the fluctuation indicates that the phantom’s signal is stable compared to 

the volunteer. The difference between the mean SGR of the head phantom and volunteer are about 
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112%. Because the phantom does not offer comparable bold contrast to the volunteer, the signal 

intensity is much higher in the phantom. 

Although, we achieved success segmenting, designing and fabricating the phantom, the 

phantom design presents limitations to some electromagnetic applications.  The representation of 

the fat, bone and skin as one tissue is a limitation.  Due to this limitation, the particular tissue will 

have an artificially lower SAR.  In various telecommunications applications, the SAR is observed 

to be the highest in the ear for adult models.  The electromagnetic properties of the physiological 

skin and ear are more conductive than the SLA resin material.  The exact comparison and 

measurement of this limitation can be evaluated in future investigations.   

3.3.2.5 Future Phantom Applications 

Our study has the potential to span and benefit many EM applications prior to any device’s 

interaction with a patient/ human. While numerical EM modeling is still a helpful resource for 

various EM applications, our study indicates that there is a benefit to further developing physical 

phantoms to study the interaction of EM waves and biological tissue in the real experimental 

environment. 

There is an opportunity to evolve this study further to assess the benefit of using a realistic 

physical phantom in MR applications. There are a variety of MR applications that would benefit 

from using a physical phantom.  Perhaps, the most beneficial applications are those that involve a 

true assessment of RF safety.  Future studies using the designed phantom will include MR 

thermometry, RF coil design, and implanted devices. 

As previously mentioned, SAM is a commonly used head phantom in many wireless 

communication application studies.  Many studies (85, 110-112) use the SAM phantom along with 
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a hand phantom to evaluate the emitted RF signals of a wireless RF antenna (i.e. a cell phone, 

Bluetooth device, Google glasses, etc.) and the SAR within the tissue in relation to government 

regulated standards for health concerns. From the results of our study and other studies (14, 15, 

86), we recommend utilizing heterogeneous phantoms to conduct RF testing.   

Although we designed the phantom for MR purposes, the design and fabrication of the 

phantom can be used for various EM applications. 

3.4 CONCLUSION 

In conclusion, an anthropomorphic heterogeneous head phantom based on in-vivo MR dataset was 

developed, tested and compared to a human head.   The hypothesis in Specific Aim 1 was proven 

accurate in determining that using an anthropomorphic heterogeneous human head phantom was 

easier and more accurate to evaluate the RF head coil instead of the basic spherical phantom. 
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4.0 ELECTROMAGNETIC AND THERMAL CHARACTERIZATION OF THE 

ANTHROPOMORPHIC HETEROGENEOUS HEAD PHANTOM USING A TEM 

RESONATOR AT 3T AND 7T 

Part I-A of this chapter is currently under review for journal publication as a first author.  

4.1 INTRODUCTION 

The purpose of this chapter is to evaluate and compare the performance of a six-compartment, 3D-

printed anthropomorphic heterogeneous head phantom (fabricated in Chapter 3.0) to an in-vivo 

volunteer’s human head in a real MR environment and through EM and thermal simulations.  The 

designed phantom (15, 18, 113) is evaluated for EM and thermal characterization of this phantom 

using a TEM resonator tuned and matched to two field strengths, 3T (~ 128 MHz) and 7T (~300 

MHz).   

 The work of Chapter 3.0 supports the findings of studies (14, 24, 86) that anthropomorphic-

shaped and, furthermore, heterogeneous phantoms are most helpful for several EM 

characterization.  While exploring these findings at 7T, there is a critical need to develop 

anthropomorphic heterogeneous head phantoms further so that researchers make realistic findings 



82 

in various EM medical applications at varying frequencies.  To-date, 3T is the current gold 

standard for high-resolution clinical MR imaging.  In 1991, the first 3T clinical scanner was 

produced and in 1999 the Food and Drug Administration (FDA) approved the first 3T whole-body 

MR scanner.  The FDA recently approved (114) the first whole-body 7T MR clinical scanner — 

18 years after 3T’s approval.  Now, there is a stronger need for MR researchers to make a 

comparison at both field strengths to prove 7T’s clinical value beyond research.  This chapter aims 

to make this comparison through an RF homogeneity assessment and MR safety evaluations.  The 

results are shown in three-tiered sections organized within Part I (Sections 4.2-4.4) and Part II 

(Section 4.5) of this chapter.   

Part I of this chapter highlights the EM characterization by performing specific EM 

measurements and calculations of S-Matrix, B1
+ fields, and electric fields at both field strengths in 

Part I-A and Part I-B and comparing the results in Part I-C (Section 4.4).  The EM characterization 

was conducted through numerical and experimental studies at 7T (Section 4.2) and only numerical 

studies at 3T (Section 4.3).  Five numerical phantom models (Subsections 4.2.2.1.1 and 4.3.2.1.1) 

were developed, simulated, and validated with the same positioning within the TEM resonator 

(shown in Figure 4.1.B and Figure 4.1.E).  The constitutive and thermal properties of each model 

are presented in Subsections 4.2.2.1.5, 4.3.2.1.4, and 4.5.2.1.1 at both field strengths.  EM 

characterization assessments and comparisons are organized within the chapter as follows: 

1)  The numerical scattering parameters at 7T (Subsection 4.2.3.1.1) and 3T (Subsection 

4.3.3.1.1) are compared in Subsection 4.4.4.1.  

2) The B1
+ fields at 7T (Subsection 4.2.3.1.2) and 3T (Subsection 4.3.3.1.2) are compared 

in Subsection 4.4.4.2.    
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3) The electric fields at 7T (Subsection 4.2.3.1.3) and 3T (Subsection 4.3.3.1.3) are 

compared in Subsection 4.4.4.3. 

Part II of this chapter highlights each model’s thermal characterization by performing and 

comparing the specific thermal measurements and calculations of SAR, and RF heating at both 

field strengths.  The thermal characterization was performed on two thermal models being the 1) 

perfused segmented in-vivo human head model and 2) the perfusionless anthropomorphic 

heterogeneous head phantom.   The assessments were evaluated using the same TEM resonator 

and model positioning as Part I.  Part II highlights the thermal characterization conducted through 

numerical studies at 7T and 3T.  The thermal characterization assessments and comparisons are 

organized within the chapter as follows: 

1)  The numerical SAR simulations at 7T (Subsection 4.5.3.1.1) and 3T (Subsection 

4.5.3.1.3) are compared in the discussion (Subsection 4.5.3.2).  

2) The numerical thermal simulations at 7T (Subsection 4.5.3.1.2) and 3T (Subsection 

4.5.3.1.4) are compared in the discussion (Subsection 4.5.3.2).  

The entire chapter provides a robust evaluation and comparison of the need and benefits of 

using an anthropomorphic heterogeneous phantom at 3T and 7T.  Recommendations from the 

results and discussion are summarized in the summary of this chapter (Section 4.6). 
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4.2 PART I-A: ELECTROMAGNETIC CHARACTERIZATION OF THE 

ANTHROPOMORPHIC HETEROGENEOUS HEAD PHANTOM USING A TEM 

RESONATOR AT 7T 

4.2.1 Introduction 

MR researchers use phantoms for a wide range of MR applications such as improving the design 

and performance of radiofrequency (RF) coils and MR instrumentation, evaluating MR safety, 

optimizing MR sequences, and assessing the interaction between biological tissue and 

electromagnetic (EM) waves (48). Characterization of MR instrumentation using numerical and 

experimental phantoms is critical at higher field strengths since the EM wavelength shortens with 

increased operational frequency and becomes smaller than the tissue’s size (2, 25).  For example, 

the RF field must propagate further electrical distances to cover the entire human head at ultrahigh 

field (UHF) strengths when compared to lower field strengths (25, 26, 75, 115-117).  The 

wavelength for proton imaging is ~11-13 cm at 7T, and the human head length in the anterior to 

posterior (AP) direction is ~18-22 cm.  At UHF frequencies (~300 MHz and higher), the 

penetration of the RF field into tissue significantly decreases (23, 108) than at lower field strengths.  

Hence, inhomogeneous RF field distributions exist which causes a wide variety of performance 

and safety issues.  Experimental phantoms (similar to that shown in Figure 4.1.A and Figure 2.8 

(82, 118, 119)) could be more resourceful in high and UHF systems; yet, current experimental 

phantom studies (14, 24, 120)  and are not necessarily representative of human studies. 
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Figure 4.1. View of the Phantoms and Healthy Volunteer Positioned in the TEM Resonator. A 

commercial spherical phantom of 170.00 mm diameter and the fabrication of the head phantom (18) (physical 

head phantom dimensions are 305.00 mm tall, 254.00 mm long and 140.00 mm wide) are shown in (A), and (D), 

respectively.  The volunteer, based on which the phantom was designed, is shown in (G) along with the 

experimental setup in (H).  The anthropomorphic head phantom is loaded inside of the TEM resonator as 

shown in the numerical model (E), and experimental setup (F).  Similarly, the spherical water-doped phantom 

is loaded in the TEM resonator as shown in the numerical model (B) and the experimental setup (C). 

4.2.1.1 Current Studies Comparing Numerical and Experimental Electromagnetically-

Equivalent Head-Phantoms 

Numerical modeling is a necessary technique used to validate experimental MR studies (12, 13), 

as it measures the RF field distribution, potentially minimizing safety concerns in patient MR 

studies through quantifying the specific absorption rate (SAR) and the temperature rise in tissue(s).   
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In recent studies (12, 13, 121), MR researchers successfully compared numerical EM modeling to 

corresponding experimental studies to evaluate the performance and characterization of various 

RF coils using a numerical and physical, spherical phantom or a numerical, anthropomorphic head 

phantom.  While few studies (122) measured SAR in patients through MR thermometry 

techniques, the bulk of the RF studies in MRI (71, 123-128) have relied heavily on numerical 

modeling to be an accurate predictive indicator of what occurs electromagnetically during MRI in-

vivo studies.  Recent studies (14, 22, 89, 129) have used physical, anthropomorphic phantoms to 

perform quantitative EM measurements by evaluating the temperature, magnetic susceptibility, 

and permittivity.  Shmueli et al. (22) found the magnetic susceptibility of the anthropomorphic 

heterogeneous phantom comparable to a healthy human volunteer.  As of today, there is limited 

information as to which extent physical anthropomorphic heterogeneous head phantoms are 

electromagnetically comparable to what subjects’ experience during an MRI session.  

The importance of the interaction of the biological tissue and electromagnetic field at 

increasing frequencies projects understanding of EM fields and MR safety.  This section of the 

chapter views the electromagnetic field at 7T using the anthropomorphic head phantom with a 16-

strut/4-port TEM resonator. The purpose of this Part I is to evaluate and compare the performance 

of a six-compartment, 3D-printed anthropomorphic heterogeneous head phantom to a volunteer’s 

human head in a real MR environment.  The designed phantom (15, 18, 113) is evaluated through 

numerical and experimental studies performing specific EM measurements and calculations of S-

Matrix, B1
+, and electric fields.  Prior works have used the finite-difference time-domain (FDTD) 

(69, 70, 130, 131) method to yield a realistic approximation of the electromagnetic interactions 

between the subject and the RF coil in an MR environment.  This work provides numerical and 

experimental electromagnetic comparisons between a spherical phantom, anthropomorphic head 
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phantom filled with homogeneous media, anthropomorphic heterogeneous head phantom, and in-

vivo. 

4.2.2 Materials and Methods 

4.2.2.1 Numerical Studies 

4.2.2.1.1 FDTD Simulations and Numerical Models at 7T 

Using the FDTD method (70), a validated in-house numerical simulation software (13, 59, 71, 101, 

132), with an accurate transmission line model for the excitation mechanism, generates output 

time-domain and frequency domain data.  The software utilizes an isotropic spatial resolution of 

~1.59 mm3 and temporal resolution of ~3.00ps.  The output data is read by MATLAB (The 

MathWorks, Inc., Natick, MA, USA) in order to produce the electric and magnetic fields and the 

scattering parameters (S-parameters).    

A first-order differentiated Gaussian pulse was used to excite the coil and load.  The pulse 

has a 5.8 ns period that ran for 100,000-time steps, which was enough time to yield a stable steady 

state time domain solution.   

Before generating the EM fields, the numerical system is properly tuned and matched to 

297.20 MHz (7T) using the Virtual Family v1.0 (31) Duke head to shoulder model.  Five numerical 

models are used in this particular study namely: 1) a 10-tissue segmented in-vivo head model 

(252*252*287 Yee-cells in the respective x, y, and z-direction), 2) an anthropomorphic 

heterogeneous head phantom (252*252*287 Yee-cells), 3-4) anthropomorphic homogeneous 

water-doped and brain-doped head phantom (252*252*287 Yee-cells), 5) a basic (diameter = 
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170.00 mm) spherical water-doped phantom (252*252*231 Yee-cells).  The numerical models  

(shown in Figure 4.1.B and 4.1.E) are positioned within the RF coil similar to experiments (shown 

in Figure 4.1.C, 4.1.F, and  4.1.H). 

4.2.2.1.2 RF Coil and S-Matrix  

16-strut/4-port TEM resonator (62) is utilized as the RF coil. The computational domain of all 

head models includes the anatomy of the entire head, neck, and shoulders.  The coil is driven in 

the circularly polarized (CP) mode by combining all four channels to be driven in quadrature. The 

S-matrix and load impedance of each model are shown in Figure 4.2 with a frequency span of

100.0 MHz within the center frequency of 297.2 MHz.  This coil is 228.6 mm long and has an 

outer diameter of 355.6 mm and an inner diameter of 279.4 mm diameter. 

4.2.2.1.3 FDTD Calculations of the B1+ Field  

The B1
+

 field intensity per volt (V) is obtained using the simulated input pulse amplitude, which is 

determined by the Fast Fourier transform (FFT) of the Gaussian pulse in the time domain at ~297.2 

MHz.  The B1
+ field is scaled to 1 Watt (W) of input power that is equivalent to applying 10.0 V 

as an input peak voltage.  The B1
+ field is analyzed by capturing the mean B1

+ field intensity and 

the coefficient of variation (CV) within each model.  The mean B1
+ field intensity is determined 

by the mean in the Region of Interest (ROI), and the CV is determined by the quotient of the 

standard deviation in the ROI and the mean in the ROI.  Our study uses three ROIs being all fillable 

compartments in the head phantom 1) above and including the cerebellum, 2) brain (excluding the 

Midbrain), and 3) Midbrain. 
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The numerical absolute electric field is computed for all models using the following equation: 

𝐸(𝑖,𝑗,𝑘) = √(𝑬𝑥(𝑖,𝑗,𝑘)
𝟐 + 𝑬𝑦(𝑖,𝑗,𝑘)

𝟐 + 𝑬𝑧(𝑖,𝑗,𝑘)
𝟐 )  (4.1) 

where i, j, k are the indices in a 3D Cartesian coordinate system (m) and E (V/m) is the electric 

field (direct output from the FDTD code).  Comparison of each phantom’s absolute electric field 

is made to the respective values of the segmented in-vivo human head model.  For all head models, 

the numerical absolute electric field is shown for fillable compartments from the entire head to 

shoulders to visualize peak values within the tissue. 

4.2.2.1.5 Phantom Generation and Fabrication 

A physical, anthropomorphic heterogeneous head phantom (18) (shown in Figure 4.1.D) was built 

to accurately access the interaction of EM waves and biological tissues in an MR environment. 

The constructed phantom comprises of eight different classified tissue types with corresponding 

constitutive parameters as described in Table 4.1.  The tissues are grouped and averaged based on 

physiological tissues nearby in the region with similar constitutive parameters. The tissues that are 

representative of various phantom models are labeled according to the legend in Table 4.1.  The 

classified tissues were made in-house using distilled water as a base and varying concentrations of 

sodium chloride (NaCl), and denatured ethanol (C2H6O) at room temperature to achieve the 

desired permittivity and conductivity in Table 4.1. C2H6O was used due to its low viscosity and 

ease in refilling the phantom during its prototype state with minimal artifacts. The in-house tissue 

mixtures were verified with a dielectric probe SPEAG DAK (AG SPE, Zurich, Switzerland) 

4.2.2.1.4 FDTD Calculations of the Electric Field Analysis 
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constitutive parameters are close to the weighted average of these tissues combined (7T: 

conductivity = 0.17 S/m, relative dielectric constant = 16.17, and density = 1223.49).   

The designed phantom has six-compartments that are filled with various homogeneous and 

heterogeneous solutions.  The homogeneous solution is either the water-doped solution (7T: 

conductivity = 0.46 S/m and relative dielectric constant = 79.00) or the brain-doped solution (7T: 

conductivity = 0.55 S/m and relative dielectric constant = 51.98) as described in Table 4.1.  The 

heterogeneous solution comprises of various tissue-mimicking shown in Table 4.1.  A commercial 

spherical phantom (shown in Figure 4.1A), 170.00 mm in diameter, is water-doped.   

 

calibrated at 297.2 MHz.  The stereolithography (SLA) resin (DSM Somos® WaterShed® XC 

11122 (Elgin, Illinois)) material is representative of the combination of the fat, bone, and skin. It’s 
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4.2.2.2 Experimental Studies 

4.2.2.2.1 MR Instrumentation and Experimental Setup 

All MR images are acquired using a Siemens MAGNETOM® (Siemens Healthcare, Erlangen, 

Germany) 7T whole-body scanner that has a 60-cm horizontal patient bore and is used in the 

combined mode to connect to the 16-strut/4-port TEM resonator.  The MR computer system uses 

Siemens’ syngo.via MR VB17A through Microsoft Windows XP platform.  The 16-strut/4-port 

TEM resonator (13, 62) with a centered and fixed 14ch receive (133) is connected to the single 

mode transmission of the scanner.  A 4-way Wilkinson power splitter together with phase shifters 

provides the quadrature excitation to transmit power to the coil’s four excitation ports, where each 

channel of the 16-strut/4-port TEM resonator has a similar amplitude of the signal, and the phases 

alter in 90° increments in the clockwise direction. The 16-strut/4-port TEM resonator was 

constructed using an acrylic cylinder with coil dimensions outer diameter of 355.6 mm, an inner 

diameter of 279.4 mm, and 228.6 mm long.  A thin copper shield was placed inside the acrylic and 

the top ring.   The rods of the TEM resonator have a diameter of 6.77 mm.  Similar to the 

simulation, the 16 elements are separated equally 22.5° apart around the cavity between two 

circular rings.   

4.2.2.2.2 Volunteer and Informed Consent 

One healthy human volunteer MR scan was performed (with a signed informed consent form 

approved by local Institutional Review Board) by acquiring B1
+ field maps with the head resting 

within the TEM resonator.  The volunteer has, also, given written informed consent to publish the 

details of this study in this dissertation. 
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4.2.2.2.3 Experimental B1
+ Field Mapping 

Each phantom and the volunteer are positioned in the TEM resonator (shown in Figure 4.1.C, 

4.1.F, and 4.1.H) to acquire experimental 3D B1
+ field maps using the saturated TurboFLASH 

(SatTFL) (38) MR sequence normalized to 1ms rectangular RF pulse per 500.0V.  The MR 

protocol image parameters are: input peak voltage = 300V; FOV = 64 x 64 mm2, TE = 1.16 ms, 

TR = 2000 ms, FA = 6⁰, BW = 1502 Hz/pixel, resolution = 3.13 x 3.13 x 2.00 mm3. The SatTFL 

output is fit into a cosine function and normalized for 1-Watt input power.  The B1
+ field for 1-

Watt input power is computed by scaling the B1
+ field map per 500.0 V in the designated ROI. To 

compute region-specific information and eliminate the noise of the SLA resin, masks for each 

phantom were segmented using ITK-SNAP (134) software. 

4.2.3 Results and Discussion 

4.2.3.1 Results 

4.2.3.1.1 Numerical Scattering Parameters Measurements at 7T. 

Numerical results show the calculated frequency response (S11) and Smith chart for one 

representative port of the TEM resonator loaded with the numerical segmented in-vivo human head 

model (Figure 4.2.A) and each phantom model (Figure 4.2.B-E) at 297.2 MHz.  The S-matrix and 

load impedance values for all other ports are also included in (Figure 4.2).  Note that the simulated 

coil is originally tuned and matched to the Virtual Family v1.0 Duke head model and is not retuned 

for any of the different models utilized in this work. 
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A demo of the frequency response of one channel, S11, is shown in Figure 4.2 for a span 

of 100 MHz from 297.2 MHz and 5.0 dB for a span of 5.0 dB to -45.0 dB. The S11 is shown in 

magnitude log (top) and the Smith chart (second from top) and reflects the voltage and current in 

the frequency domain in the chosen port’s transmission line.  The reflection coefficient to reach 

port and coupling between channels is shown in the S-matrix (second from bottom).  The load 

impedance of each port is shown (bottom) for each model. 

Port 1’s load impedance with the segmented in-vivo human head model (Figure 4.2.A) is 

50.84 – 7.64 Ω (baseline).  An evaluation of the percentage change in the value of the reflection 

coefficient was performed in all five models.  For port 1, the percentage change from the 

segmented in-vivo human head model is calculated as follows: spherical water-doped phantom 

(45.53%), anthropomorphic homogeneous water-doped head phantom (16.93%), 

anthropomorphic homogeneous brain-doped head phantom (6.12%), and the anthropomorphic 

heterogeneous head phantom (1.61%).  While these values hold true for port 1, the average of all 

channels is as follows: spherical water-doped phantom (41.58%), anthropomorphic homogeneous 

water-doped head phantom (14.06%), anthropomorphic heterogeneous head phantom (7.74%), 

and anthropomorphic homogeneous brain-doped head phantom (4.63%). 

4.2.3.1.2 Numerical B1
+ Field Mapping Measurements and Verifications of 

Experimental Measurements at 7T. 

 
Figure 4.3.A-O show the numerical and verified experimental measurements of the B1

+ field maps 

for 1) each phantom and 2) the segmented in-vivo human head model and the in-vivo volunteer for 

matching axial, sagittal and coronal slice locations.  The positions of the spherical phantom slices 

are chosen to match that associated with the head phantoms, the segmented in-vivo human head 



97 

model, and the in-vivo volunteer.  All numerical B1
+ field maps are scaled to the same magnitude 

scale (0 to 1.33 µT/√𝑊), and all experimental B1
+ field maps are scaled to the same magnitude 

scale (0 to 1.20 µT/√𝑊).  The loss experienced by the coil plugs, splitters, cables and coil 

components total to a value  of 10%.  The experimental B1
+ field maps are scaled for 1W of input 

RF power.  The B1
+ field maps are masked to all fillable compartments in the head phantom, the 

segmented in-vivo human head model and the in-vivo volunteer in order to eliminate the B1
+ field 

in the SLA resin, which produces low MR signal. 
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Table 4.2 highlights the numerical and experimental the B1

+ field statistics for each 

phantom and the in-vivo volunteer in three different brain regions for each head phantom and the 

in-vivo volunteer.  The mean B1
+ field intensity is highest in the Midbrain region given that the 

TEM resonator is driven in quadrature for all five models. A general observation (Figure 4.3) for 

this specific coil on all the different loads, the quadrature excitation produces the highest B1
+ field 

intensity in the middle region of the phantoms/models/in-vivo, but the B1
+ field intensity 

considerably drops in the periphery in a semi-radial pattern away from the load’s center.  Upon 

excluding the Midbrain region for the anthropomorphic homogeneous water-doped head phantom 

and the full spherical water-doped phantom, Table 4.2 illustrates that the quantitative average B1
+

 

field intensity values of various anthropomorphic head phantoms are comparable to that of the 

segmented in-vivo human head model and the in-vivo volunteer.  
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Table 4.3 tabulates a comparison of the numerical and experimental CV of the B1
+ field 

distributions of three brain regions for each head phantom and the in-vivo volunteer.  In all models, 

the B1
+

 field map is most uniform in the Midbrain region (smaller in volume).    Figure 4.3 

qualitatively demonstrates that the anthropomorphic heterogeneous phantom’s B1
+ distribution is 

most comparable to the in-vivo volunteer and segmented in-vivo human head model.  Table 4.3, 

however, illustrates that the quantitative CV values of the B1
+

 field distribution of the 

anthropomorphic heterogeneous phantom and the anthropomorphic homogeneous brain-doped 

head phantom are comparable to that of the segmented in-vivo human head model and the in-vivo 

volunteer.  A similarity in CV values is observed for the anthropomorphic homogeneous water-

doped head phantom and the spherical water-doped phantom. 
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4.2.3.1.3 Numerical Electric Field Distribution and Intensity Analysis at 7T. 

 
Figure 4.4 and Figure 4.5 shows the absolute electric field in all phantom and segmented in-vivo 

human head models scaled from a minimum of 0 V/m to the maximum absolute electric field 

among all models being the anthropomorphic homogeneous water-doped phantom model.  In each 

anthropomorphic head phantom model, the resin material has a higher absolute electric field than 

the segmented in-vivo human head model (baseline).  When excluding the SLA resin regions 

(fat/bone/skin),  the anthropomorphic water-doped head phantom model is highest among other 

head phantom models with a peak absolute electric field value positioned at 3.00 cm above the 

ventricles.  Figure 4.6 indicates the percent change in each anthropomorphic head phantom 

model’s absolute electric field distribution/intensity in comparison to that of the segmented in-vivo 

human head model.  The overestimation and underestimation of the absolute electric field are 

shown to visualize physiological regions where the absolute electric field is most or least 

overestimation or underestimated.  Table 4.4 shows the calculations to Figure 4.6 for specified 

threshold values.    The calculations highlight the deviation in the accuracy of the absolute electric 

field within each anthropomorphic phantom model in comparison to the segmented in-vivo human 

head model.  The calculations demonstrate that the anthropomorphic head phantom models 

generally predict the global absolute electric field well.  However, the anthropomorphic 

heterogeneous head phantom model provides a better maximum deviation in the accuracy of the 

absolute electric field in the baseline model, which is supported by Table 4.4 demonstration of 

thresholds to a 50% and higher percentage change. 
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Figure 4.5. Numerical Absolute Electric Field Distribution in Four Models in Coronal and Sagittal 

View. The numerical absolute electric field is shown for each head model in the head and upper shoulders to 

the 16-strut/4-port TEM resonator based on a scale to the highest peak in the midbrain region of the 

anthropomorphic homogeneous water-doped head phantom.   
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4.2.3.2 Discussion 

4.2.3.2.1 Numerical Scattering Parameters Measurements at 7T. 

While the following results could be coil (TEM resonator) or field strength (7T) specific, Figure 

4.2 indicates that the spherical water-doped phantom (Error! Reference source not found..E) 

does not have similar loading effects to either the anthropomorphic head phantoms (Figure 4.2.B-

D) or the segmented in-vivo human head model (Figure 4.2.A).  The numerically calculated S-

parameters shown in  Figure 4.2 indicate that the coil load impedance and reflection coefficients 

are mostly comparable to the segmented in-vivo human head model with anthropomorphic 

heterogeneous head phantom (7.74% difference), anthropomorphic homogeneous brain-doped 

head phantom (4.63% difference) than with the anthropomorphic homogeneous water-doped head 

phantom (14.06% difference) and spherical water-doped phantom (41.58% difference).   

It is most advantageous to assess the RF loading of the coil via S-matrix and frequency 

response using an anthropomorphic head phantom filled with appropriate conductive media 

(homogeneous or heterogeneous) instead of a homogeneous spherical water-doped phantom.  

4.2.3.2.2 Numerical B1
+ Field Mapping Measurements and Verifications of 

Experimental Measurements at 7T. 

Figure 4.3 compares B1
+ field distributions of the various phantoms to the segmented in-vivo 

human head model/in-vivo.  Figure 4.3 demonstrates that the spherical water-doped phantom is 

not comparable to the in-vivo volunteer and that the anthropomorphic heterogeneous and 

homogeneous brain-doped head phantoms are better comparisons to the in-vivo volunteer.  A 

previous work (23) has shown similar RF characteristics indicating that the RF travels a further 



113 

electrical distance in water-doped phantoms because the RF wavelength is shorter (dielectric 

constant is 50% higher than the homogeneous brain-doped and heterogeneous models as shown in 

Table 4.1).  Among the anthropomorphic head phantoms, the results of Figure 4.3 and Table 4.2 

to 4.3 indicate that anthropomorphic homogeneous brain-doped head phantom and 

anthropomorphic heterogeneous head phantom provide the most comparable magnetic field 

behavior to that associated with the in-vivo volunteer and the segmented in-vivo human head 

model.  This finding indicates that the B1
+ field distribution is generally more sensitive to the load’s 

geometry and physical dimensions at 7T.  

Table 4.3 shows a robust comparison of the anthropomorphic head phantom models to the 

segmented in-vivo human head model / in-vivo volunteer numerically and experimentally in select 

brain regions. While the B1
+ field can be analyzed in each selected region, the cerebellum was not 

chosen because the B1
+ field intensity is too low for this coil and the comparison is not meaningful.  

Figure 4.3 visually demonstrates the difference in the center brightness of the various loads, 

specifically the Midbrain region. The quantitative B1
+ field intensity values indicate that in the 

Midbrain, the anthropomorphic homogeneous water-doped head phantom model is very different 

(50.5%) from the in-vivo volunteer. From a B1
+ perspective, the anthropomorphic homogeneous 

brain-doped head phantom model is similar to the anthropomorphic heterogeneous head phantom 

model.   

Figure 4.3.A, 4.3.F, and 4.3.K illustrate that the change in the B1
+ field distribution of the 

numerical model and experimental in-vivo measurements are due to the segmented in-vivo human 

head model being an assumption of the volunteer’s anatomy.  Similarly, Zhang et al. (135) 

observed that the comparison of the Virtual Family v1.0 Duke model to in-vivo differed slightly 

due to pathological changes in the human anatomy of Duke and the human subject.  Although the 
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segmented in-vivo human head model and in-vivo B1
+ field slightly vary in our study, it is much 

more imperative to notice the precise matching of the physical dimensions of the segmented in-

vivo human head model and the in-vivo volunteer.  

In summary, the results show that an RF coil designer can use either an anthropomorphic 

heterogeneous or homogeneous brain-doped head phantoms for accurate magnetic field 

comparisons to that obtained in-vivo. 

4.2.3.2.3 Numerical Electric Field Distribution and Intensity Analysis at 7T. 

One method to monitor MR safety is to measure temperature rise during MR scans.  Numerical 

modeling, however, is the most utilized resource for predicting MR safety in a real MR 

environment, and EM numerical modeling was the only available resource to assess the MR safety 

of each phantom model in this study.   

SAR is directly proportional to the electric field squared; thus, an elevation in the electric 

field intensity can be harmful if temperature rise occurs and exceeds safety limits.  It is difficult to 

directly assess SAR and/or electric field dependence; a high SAR value does not directly indicate 

high electric field because SAR is scaled by the conductivity as well. Our study assesses the 

absolute electric field distribution in various loads, and Figure 4.4, Figure 4.5, and Table 4.4 is an 

illustration of each absolute electric field distribution with respect to the four phantom/head 

models.   

The anthropomorphic homogeneous water-doped head phantom model has the highest 

absolute electric field intensities within the fillable compartments.  Even more, all 

anthropomorphic head models have the highest absolute electric field distribution in the SLA resin 

material.  Since the goal of this study is not to compare the absolute electric field in the SLA resin, 

the absolute electric field distribution is only shown in the fillable regions of the four phantom/ 
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head models.  However, the SLA resin material was strategically chosen to represent the 

combination of fat, bone, and skin that is similar to the weighted averaged of these tissues.  As a 

result, the SLA resin material represents the electric field behavior of the fat and bone well.  The 

fat and bone tissues are low conductive media, and the absolute electric field is much higher in 

these tissues in comparison to the skin.  While it is ideal to use a conductive resin that is 

representative of the skin, the skin is too thin to accurately 3D print currently and its relatively 

high conductivity is difficult to achieve in a resin material. 

 

Figure 4.7. Absolute Electric Field in Four Phantom/ Head Models at 297.2 MHz. A comparison is 

shown between the absolute electric field distribution in the segmented in-vivo human head model (A) to the 

absolute electric field distribution in the SLA resin in the anthropomorphic head models (B-D).  

 
 
 

The segmented in-vivo human head model (Figure 4.4.A) represents how the electric field 

is relatively low in the skin and increases in value as the EM wave propagates through the bone 

and fat.  The designed phantom utilizes a resin material with conductivity = 0.11 S/m, which is 

similar to the averaged conductivity (0.17 S/m) of the fat, bone, and skin.  Although the 

conductivity and permittivity of media in the phantom’s fillable compartments are altered due the 

presence of the SLA resin, this phantom offers similarities of what occurs at the boundaries of air 
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cavities and physiological tissue in human anatomy.  The designed anthropomorphic head phantom 

model (Figure 4.7.B-D) offers a realistic mimicry to the segmented in-vivo human head model 

specifically for the electric field interactions within the nasal cavities, ear canal, and eyes.  The 

absolute electric field is highest in these areas because the conductivity value is relatively low.  As 

a result, the comparison of Figure 4.4 and Figure 4.5 are most essential for MR safety applications. 

Figure 4.4 and Figure 4.5 shows that the absolute electric field distribution in the 

anthropomorphic head phantom models are more comparable to the segmented in-vivo human 

head model as opposed to the spherical water-doped phantom model. While the anthropomorphic 

head phantom models are most comparable to the segmented in-vivo human head model, Figure 

4.5 and Table 4.4 further highlight that there are subtle differences in the absolute electric field 

distributions and emphasizes that the anthropomorphic heterogeneous head model offers a better 

indication in the accuracy of the peak absolute electric field intensities of the segmented in-vivo 

human head model.   

While the anthropomorphic homogeneous brain-doped head phantom is sufficient to 

predict the B1
+ field distribution and S-matrix obtained in-vivo, more differences are noted in the 

absolute electric field distribution when compared to the anthropomorphic heterogeneous head 

phantom.  These differences are most apparent in the designed anthropomorphic head phantom’s 

brain region, the cerebellum, and the muscle as indicated by the yellow arrows in Figure 4.6.A.  

Of all head phantoms, the anthropomorphic homogeneous water-doped head phantom model 

offers the highest differences from the segmented in-vivo human head model.  Notice in Figure 

4.4, the absolute electric field in the anthropomorphic homogeneous water-doped head phantom 

model is higher in the fillable regions because the dielectric constant primarily in the brain region 

is 50% higher than the other models. 



117 

An overestimation of the absolute electric field may lead to high SAR and increased 

temperature rise.  Nevertheless, both anthropomorphic homogeneous phantom models 

overestimate the electric field of the segmented in-vivo human head model; however, brain-doped 

media would be a better choice over water-doped media because a lower dielectric constant offers 

a more comparable absolute electric field.  Overall, the anthropomorphic heterogeneous head 

phantom and its model overestimates/underestimates the electric field the least. 

4.2.4 Summary 

Using parameters such as the B1
+ and the absolute electric field distributions/intensities and S-

parameters, a quantitative analysis was performed to compare the in-vivo volunteer to 1) the 

designed anthropomorphic head phantom with different various media contents in its 

compartments and 2) the spherical water-doped phantom.  In summary, our findings indicate that 

the designed anthropomorphic phantom is a highly useful tool for RF coil evaluation and testing.  

The S-parameters and B1
+ field distributions/intensities are comparable to that associated with the 

in-vivo volunteer or the segmented in-vivo human head model when the anthropomorphic head 

phantom and its models are filled with homogenous brain-doped or heterogeneous solutions.  

However, when comparing the absolute electric field distribution/intensity, the anthropomorphic 

heterogeneous head phantom is most comparable to the segmented in-vivo human head model by 

having the smallest deviation in accuracy of the absolute electric field intensities.  The results also 

indicate that accurate numerical modeling is still an effective and efficient predictive resource for 

an EM analysis as shown in Figure 4.3.  

While previous RF safety studies (136) conclude that using a physical spherical phantom 

to approximate an in-vivo experiment is a good approximation of the electric field and SAR, our 
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study is a pilot to indicate the need for further exploration of the designed anthropomorphic head 

phantom as a more accurate comparison (specifically at 7T) to in-vivo studies.  Future work will 

be explored to see if the anthropomorphic head phantom is essential at different field strengths (3T 

is shown in Part I-B) and with different RF coils (shown in Chapter 5.0). 

4.3 PART I-B: ELECTROMAGNETIC CHARACTERIZATION OF THE 

ANTHROPOMORPHIC HETEROGENEOUS HEAD PHANTOM USING A TEM 

RESONATOR AT 3T 

4.3.1 Introduction 

This section presents the same study and methodology as Part I-A (Section 4.2) but is performed 

at 3T.  As the science of 7T MRI advances, 3T will be compared as 7T’s closest MR competitor 

as it relates to technology and standards.  7T will need to undergo robust RF technical 

developments and MR safety to have a true chance of being an operable and desirable clinical 

human MR machine — just as 3T did nearly two decades ago.  Part I-A (Section 4.2) demonstrates 

that using an experimental anthropomorphic heterogeneous head phantom and its numerical model 

is advantageous and comparable to an in-vivo volunteer for the TEM Resonator at 7T.  Part I-B 

aims to observe numerically if the anthropomorphic heterogeneous head phantom model is also 

advantageous and comparable to the segmented in-vivo human head model at 3T. 

It is known that inhomogeneous RF field distributions exist at 7T and cause a wide variety 

of performance and safety issues.  The wavelength for proton imaging is ~26-28 cm at 3T (25), 

and the human head length in the anterior to posterior (AP) direction is ~18-22 cm.  At HF 
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frequencies (~128 MHz to less than ~297 MHz), the penetration of the RF field into tissue does 

not decrease as quick as ultrahigh field strengths.  The challenges of 3T are similar yet different 

than the challenges of 7T.  At 3T, there are challenges in areas such as the susceptibility, chemical 

shift, pulse sequences and RF inhomogeneity in larger body regions like the torso.  Since 3T is 

known to have a more homogeneous RF field distribution than 7T, experimental phantoms (similar 

to that shown in Figure 4.1.A (82, 118, 119) and Figure 2.8) have been the gold standard.  Various 

works (137-139) used anthropomorphic head phantoms at 3T to address some of its challenges 

and limitations such as chemical shift (137), validation of segmentation to replicate in-vivo T1 

signal intensity (139), and the SNR degradation within a receive coil (138).  However, our designed 

experimental anthropomorphic head phantom may appear to be most resourceful when analyzing 

RF safety and addressing the other challenges at 3T beyond what works (137-139) covered.   Thus, 

Part I-B addresses the need of using the anthropomorphic heterogeneous head phantom model at 

3T through performing the methods of Part I-A numerically at 3T. 

4.3.2 Materials and Methods 

4.3.2.1 Numerical Studies 

4.3.2.1.1 FDTD Simulations and Numerical Models at 3T 

A similar method to Subsection 4.2.2.1.1 is used to produce the electric and magnetic fields and 

the scattering parameters (S-parameters).   The software utilizes the same isotropic spatial and 

temporal resolution to Subsection 4.2.2.1.1.  A first-order differentiated Gaussian pulse (5.8 ns 

period and 150,000-time steps) was used to excite the RF coil and various loads.   
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Before generating the EM fields, the TEM resonator is properly tuned and matched to 128.0 

MHz (3T) by loading the Virtual Family v1.0 Duke head to shoulder model with its respective 

constitutive parameters at this operational frequency.  The same five numerical models (used in 

Subsection 4.2.2.1.1) were simulated at 3T with the identical positioning within the TEM resonator 

(shown in Figure 4.1.B and 4.1.E) and to have its corresponding constitutive properties shown in 

Table 4.5.   

4.3.2.1.2 RF Coil and S-Matrix.  

16-strut/4-port TEM resonator (62) is utilized as the RF coil and tuned and matched to 128.0 MHz. 

The computational domain and coil dimensions are the same as 7T.  The coil is also driven in 

quadrature.  The S-matrix and load impedance of each phantom and head model are shown in 

Figure 4.8 with a frequency span of 100.0 MHz within the center frequency of 128.0 MHz.  

4.3.2.1.3 FDTD Calculations at 3T 

The FDTD calculations were computed using the same methods as shown in Subsections 4.2.2.1.3 

and 4.2.2.1.4 at 128.0 MHz.  Methods to compute and analyze the EM fields are as follows: 1) 

calculate the B1
+ field referenced in Subsection 4.2.2.1.3 and 2) calculate the absolute electric field 

referenced in Subsection 4.2.2.1.4.   

4.3.2.1.4 Numerical Phantom Models  

A physical, anthropomorphic heterogeneous head phantom (18) (shown in Figure 4.1.D) was built 

as described in Subsection 4.2.2.1.5 and only the numerical models are used in this study. The 

tissues were labeled according to the respective phantom models in the legend of Table 4.5.  The 

stereolithography (SLA) resin (DSM Somos® WaterShed® XC 11122 (Elgin, Illinois)) material 

is representative of the combination of the fat, bone, and skin and its constitutive parameters are 
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close to the weighted average of these tissues combined (3T: conductivity = 0.18 S/m, relative 

dielectric constant = 25.94, and density = 1223.49).   

In this study, the anthropomorphic head phantom has six-compartments that are filled with 

various homogeneous and heterogeneous solutions.  The homogeneous solution is either the water-

doped solution (3T: conductivity = 0.51 S/m and relative dielectric constant = 76.56) or the brain-

doped solution (3T: conductivity = 0.47 S/m and relative dielectric constant = 63.80) as described 

in Table 4.5.   A commercial spherical phantom (shown in Figure 4.1.A), 170 mm in diameter, is 

water-doped with the homogeneous solution at 3T.   
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4.3.2.2 Experimental Studies 

Experimental studies were not performed at 3T due to limited resources. 

4.3.3 Results and Discussion 

4.3.3.1 Results 

4.3.3.1.1 Numerical Scattering Parameters Measurements at 3T. 

Numerical results show the calculated frequency response (S11) and Smith chart for one 

representative port of the TEM resonator loaded with the numerical segmented in-vivo human head 

model (Figure 4.8.A) and each phantom model (Figure 4.8.B-E) at 128.0 MHz.  The simulated 

coil is tuned and matched once to the Virtual Family v1.0 Duke head model at 128.0 MHz (as done 

in Subsection 4.2.3.1.1) and was not re-tuned for any of the different models/ loads.  As a demo, 

using the same single port (Port 1) on the 16-strut/4-port TEM resonator for both frequencies, each 

model’s numerical S11 is assessed for its frequency response, Smith chart, S-Matrix, and load 

impedance. 
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The S11 frequency response and Smith chart is shown in Figure 4.8 for all five models 

loaded within a 16-strut/4-port TEM resonator at 128.0 MHz.  Despite the media content, the S11 

frequency responses were relatively similar for all four phantom models. The anthropomorphic 

head phantom models were valued at an amplitude of ~11 dB; the spherical water-doped phantom 

model had an amplitude of -13.39 dB; and the segmented in-vivo human head model had an 

amplitude of -14.11 dB.   

Port 1’s load impedance with the segmented in-vivo human head model (Figure 4.2A) is 

38.01 – 13.08 Ω (baseline).  An evaluation of the percentage change in the value of the reflection 

coefficient was performed in all five models.  For Port 1, the percentage change from the 

segmented in-vivo human head model is calculated as follows: anthropomorphic homogeneous 

brain-doped head phantom model (20.90%), anthropomorphic homogeneous water-doped head 

phantom model (20.60%), anthropomorphic heterogeneous head phantom model (18.90%), and 

spherical water-doped phantom model (13.16%).  While these values hold true for Port 1, the 

average percent change of all channels is as follows: anthropomorphic homogeneous brain-doped 

head phantom model (20.80%), anthropomorphic homogeneous water-doped head phantom model 

(20.10%), the anthropomorphic heterogeneous head phantom model (18.90%), and spherical 

water-doped phantom model (13.31%).   

The S-Matrix indicates that all phantom models load similarly regardless of the port and 

the phantom’s media and geometry at 3T. It is difficult to distinguish the phantom model type by 

referring only to the S-Matrix.  The load impedance of the spherical water-doped phantom model 

is in closest agreement to the segmented in-vivo human head model’s S-Matrix measurements and 

load impedance values.  In the case of the anthropomorphic head phantom models, the load 

impedance values are relatively similar per port regardless of the media inside of the 
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anthropomorphic head phantom model.  The S-Matrix measurement of the coupling between ports 

for the segmented in-vivo human head model is in close agreement with the coupling of the other 

various phantom models. 

4.3.3.1.2 Numerical B1
+ Field Mapping Measurements at 3T 

Figure 4.9 shows the numerical B1
+ field measurements to each phantom and the segmented in-

vivo human head model at 3T with corresponding planar view and slices to Figure 4.3 at 7T.  All 

numerical B1
+ field maps are scaled to the maximum magnitude scale of the five models (0 to 

1.60µT/√𝑊).  The B1
+ field maps are masked to all fillable compartments to exclude the B1

+ field 

within the SLA resin, which produces low MR signal.  
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Table 4.6 highlights the numerical mean B1
+ field intensity evaluation parameters for each 

phantom model and the segmented model in three different brain regions.  The mean B1
+ is highest 

within the midbrain region given that the TEM resonator is driven in quadrature for all five 

numerical models.  Figure 4.9  demonstrates the B1
+ field maps are very homogeneous at 3T despite 

the changes in the media used to fill the phantom or the phantom’s geometry.  Figure 4.9  illustrates 

the phantoms with the SLA resin. The phantom and segmented in-vivo human head models become 

less homogeneous below the brain ROI compared to a more uniform field throughout the brain as 

shown in Figure 4.10.  
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Table 4.7 highlights the numerical CV of the B1
+ field distributions of three brain regions 

for each phantom head model.  In all models, the B1
+

 field map is most uniform in the Midbrain 

region (smaller in volume) since the coil was driven in quadrature mode.  Table 4.7, however, 

indicates that the anthropomorphic head model’s various ROIs are quantitatively homogeneous.  

In comparison to all models, the anthropomorphic head models are most homogeneous and 

comparative to the segmented in-vivo human head model.   The spherical water-doped phantom is 

not as homogeneous as the anthropomorphic head phantom models as proven quantitatively 

through Table 4.7.  In the other regions, the anthropomorphic heterogeneous and homogeneous 

brain-doped head phantom models are most similar in the three ROIs to the segmented in-vivo 

human head model.  The phantom models filled with the water’s constitutive parameter have a 

small divergence from the segmented in-vivo human head model, but it is not significant.  For the 

fillable compartment ROI, the water-doped phantom models are ~0.003 to 0.05 CV units higher 

than the segmented in-vivo human head model. 

4.3.3.1.3 Numerical Electric Field Distribution and Intensity Analysis at 3T 

Figure 4.11 and Figure 4.12 shows the absolute electric field in all phantom models and the 

segmented in-vivo human head model scaled from a minimum of 0 V/m to the maximum absolute 

electric field among all models.  In each anthropomorphic head phantom model, the resin material 

has a higher absolute electric field than the segmented in-vivo human head model (baseline).  When 

excluding the SLA resin regions (fat/bone/skin), the anthropomorphic head phantom models have 

the highest peak electric field value among the four numerical models with the peak positioned in 

the periphery of the lower muscle region surrounding the lower brain region.  Note the absolute 

field is shown only in the models most comparative to the segmented in-vivo human head model. 
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Figure 4.12. Numerical Absolute Electric Field Distribution in Four Models in Coronal and Sagittal 

View at 3T.  The numerical absolute electric field is shown for each model in the head and upper shoulders to 

the 16-strut/4-port TEM resonator based on a scale to the highest peak in the lower muscle region surrounding 

the lower brain region within the anthropomorphic head phantoms at 3T.   

 

Figure 4.12. indicates the percent change in each phantom model’s electric field distribution/intensity 

in comparison to that of the segmented in-vivo human head model.  The overestimation and 

underestimation of the electric field are shown to visualize the physiological regions where the 

electric field is most or least overestimated or underestimated.  Figure 4.13 shows the percent 

volume change calculations for the specified threshold percentages. 
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Table 4.8 is organized to show the comparison of phantom models in rows and the 

threshold percentages in columns.  The comparisons highlight the percent volume change in the 

electric field within each anthropomorphic head phantom model and the deviation of accuracy (or 

error) from  segmented in-vivo human head model.  The threshold percentages range from 25% to 

100% in intervals of 25%.  A threshold percentange indicates the volume of absolute electric field 

intensities in the model comparison that are above the threshold percentange.  The calculations 

demonstrate that the anthropomorphic head phantom models generally predict the global absolute 

electric field well.  The anthropomorphic head phantom models have a high absolute electric field 

in the SLA resin due to the conductivity being close to air.  However, the anthropomorphic 

heterogeneous head phantom model provides a better maximum deviation in the accuracy of the 

absolute electric field from the baseline model and shows the least amount of volume change with 

a significant error, which is supported by demonstration where significant error is defined as 

beyond the 100% threshold and volume change.  

4.3.3.2 Discussion 

4.3.3.2.1 Numerical Scattering Parameters Measurements at 3T 

While the following results could be coil (TEM resonator) or field strength (3T) specific, Figure 

4.8 indicates that all phantom models (Figure 4.8.B-E) have similar loading effects to the 

segmented in-vivo human head model (Figure 4.8.A). The numerically calculated S-parameters 

shown in Figure 4.8 indicate that the coil load impedance and reflection coefficients are mostly 

comparable to the segmented in-vivo human head model with the anthropomorphic heterogeneous 

head phantom model (18.9% difference) than with the anthropomorphic homogeneous water-

doped head phantom model (20.1% difference), the anthropomorphic homogeneous brain-doped 
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head phantom model (20.8% difference), and spherical water-doped phantom model (13.3% 

difference).   

While the reflection coefficients are relatively comparable, the spherical water-doped 

phantom is most similar to the segmented in-vivo human head model but not by much of a 

difference is observed otherwise.  Thus, it is most advantageous to assess the RF loading of the 

coil via S-matrix and frequency response using an anthropomorphic head phantom model filled 

with appropriate conductive media (homogeneous or heterogeneous) or the spherical water-doped 

phantom at 128.0 MHz.  

4.3.3.2.2 Numerical B1
+ Field Mapping Measurements at 3T 

Figure 4.9 compares B1
+ field distributions of the various phantoms to the segmented in-vivo 

human head model.  Figure 4.9 demonstrates that the anthropomorphic head phantom models are 

better comparisons to the segmented in-vivo human head model than the spherical water-doped 

phantom model.  Among the anthropomorphic head phantom models, the results of Figure 4.9,  

Figure 4.10, Table 4.6, and Table 4.7 indicate that any anthropomorphic head phantom model 

provides comparable magnetic field behavior to that associated with the segmented in-vivo human 

head model.  This finding indicates that the B1
+ field distribution is generally more sensitive to the 

load’s geometry and physical dimensions than media at 3T.  

Table 4.7 shows a robust comparison of the anthropomorphic head phantom models to the 

segmented in-vivo human head model numerically in select brain regions to assess B1
+ 

homogeneity.  Figure 4.9 visually demonstrates that there is not much difference in the B1
+ 

distribution in the various loads. The quantitative B1
+ field intensity values indicate that the 

Midbrain is the most homogeneous brain region within each head model.  
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In summary, the results show that an RF coil designer can use any phantom models for 

accurate magnetic field comparisons to that obtained in a segmented in-vivo human head model 

and likely in-vivo.  If physiological region-specific head measurements are desired, the 

anthropomorphic (heterogeneous or homogeneous) head phantom models are most suitable. 

4.3.3.2.3 Numerical Electric Field Distribution and Intensity Analysis at 3T. 

Numerical modeling is the most utilized resource for predicting MR safety in a real MR 

environment, and EM numerical modeling is a resource to assess the MR safety of each phantom 

model in this study.   

Part I-A states that SAR is directly proportional to the electric field squared; thus, an 

elevation in the electric field intensity can be harmful if temperature rise occurs and exceeds safety 

limits.  Our study assesses the absolute electric field distribution in various loads, and Figure 4.11 

and Figure 4.12 are an illustration of each absolute electric field distribution concerning the four 

phantom/head models.   

The absolute electric field is highest in the periphery of the lower muscle region 

surrounding, the lower brain region within the anthropomorphic head phantoms at 3T.  When 

considering all compartments in the phantom, all anthropomorphic head models have the highest 

absolute electric field distribution in the SLA resin material.   As a result, the SLA resin material 

represents the electric field behavior of the fat and bone well.   The fat and bone tissues are low 

conductive media, and the absolute electric field is much higher in these tissues in comparison to 

the skin.  As mentioned in Subsection 4.2.3.2.3 in Part I-A, using a conductive resin that is 

representative of skin is ideal; however, the skin is too thin to accurately 3D print, and its relatively 

high conductivity is difficult to achieve in a resin material. 
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Figure 4.14. Absolute Electric Field in Four Phantom/ Head Models at 128.0 MHz. A comparison is 

shown between the absolute electric field distribution in the segmented in-vivo human head model (A) to the 

absolute electric field distribution in the SLA resin in the anthropomorphic head models (B-D). 

 

The segmented in-vivo human head model (Figure 4.14.A) represents how the electric field 

is relatively low in the skin and increases in value as the EM wave propagates through the bone 

and fat.  The designed anthropomorphic head phantom model utilizes a resin material with 

conductivity = 0.006 S/m, which is not as comparable to the averaged conductivity (0.18 S/m) of 

the fat, bone, and skin.  Although the conductivity and permittivity of media in the 

anthropomorphic head phantom’s fillable compartments are altered due the presence of the resin, 

this phantom offers similarities of what occurs at the boundaries of air cavities and physiological 

tissue in human anatomy.  The designed anthropomorphic head phantom model (A) represents 

how the electric field is relatively low in the skin and increases in value as the EM wave propagates 

through the bone and fat.  The designed anthropomorphic head phantom model utilizes a resin 

material with conductivity = 0.006 S/m, which is not comparable to the averaged conductivity 

(0.18 S/m) of the fat, bone, and skin.  Although the conductivity and permittivity of media in the 

anthropomorphic head phantom’s fillable compartments are altered due the presence of the resin, 

this phantom offers similarities of what occurs at the boundaries of air cavities and physiological 
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tissue in human anatomy.  The designed anthropomorphic head phantom model (Figure 4.14.B-

D) offers a realistic mimicry to the segmented in-vivo human head model specifically for the 

electric field interactions within the nasal cavities, ear canal, posterior mid-cerebellum, and eyes.  

The absolute electric field is highest in these areas because the permittivity value is relatively low.  

As a result, the comparison of Figure 4.11 and Figure 4.12 are most essential for MR safety 

applications. 

Figure 4.12 shows that the absolute electric field distribution in the anthropomorphic head 

phantom models are most comparable to the segmented in-vivo human head model as opposed to 

the spherical water-doped phantom model.  While the anthropomorphic head phantom models are 

most comparable to the segmented in-vivo human head model, Figure 4.11 and Figure 4.12 further 

highlights that there are subtle differences in the absolute electric field distributions and 

emphasizes that the anthropomorphic heterogeneous head phantom model offers a better indication 

in the accuracy of the peak absolute electric field intensities of the segmented in-vivo human head 

model .   

While any featured phantom is sufficient to predict the B1
+ field distribution and S-matrix 

to the segmented in-vivo human head model, more differences are noted in the absolute electric 

field distribution in the anthropomorphic head phantom models when compared to the 

anthropomorphic heterogeneous head phantom model.  These differences are most apparent in the 

designed anthropomorphic head phantom’s classified tissues being the cerebrospinal fluid, eyes, 

and the muscle.  Of all head phantom models, the anthropomorphic homogeneous water-doped 

head phantom model offers the larger deviation in peak absolute electric field intensities from the 

segmented in-vivo human head model.  Notice in Figure 4.11 and Figure 4.12, the absolute electric 

field in this phantom is the least high in the fillable regions.    
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An overestimation of the absolute electric field may lead to high SAR and increased 

temperature rise.  Nevertheless, both anthropomorphic homogeneous head phantoms 

underestimate the absolute electric field of the segmented in-vivo human head model; however, 

brain-doped media would be a better choice over water-doped media because a lower dielectric 

constant offers a more comparable absolute electric field to in-vivo.  Overall, the anthropomorphic 

heterogeneous head phantom overestimates/underestimates more accurately the absolute electric 

field of the segmented in-vivo human head model because it produces the least amount of volume 

change with a significant error from the absolute electric field intensity of the segmented in-vivo 

human head model. 

4.3.4 Summary 

Using parameters such as the B1
+ and the absolute electric field distributions/intensities and S-

parameters, a quantitative analysis was performed to compare the segmented in-vivo human head 

model to any phantom model with different various media contents in its compartments and 

geometry shapes at 3T.  In summary, our findings indicate that based on the numerical results the 

designed anthropomorphic head phantom would be a highly useful tool for RF coil evaluation and 

testing at 3T.  The S-parameters and B1
+ field distributions/intensities are comparable to that 

associated with the segmented in-vivo human head model when using any anthropomorphic head 

phantom model or spherical water-doped phantom model.  However, when comparing the absolute 

electric field distribution/intensity, the anthropomorphic heterogeneous head phantom is most 

comparable to the segmented in-vivo human head model by determining its accuracy absolute 

electric field intensities.  The results also indicate that accurate numerical modeling is still an 
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effective and efficient predictive resource for an EM analysis.  Future work will be explored to see 

if the study can be validated through experiments at 3T. 

4.4 PART I-C: COMPARISON OF ELECTROMAGNETIC CHARACTERIZATION 

OF THE ANTHROPOMORPHIC HETEROGENEOUS HEAD PHANTOM USING A 

TEM RESONATOR AT 3T AND 7T 

4.4.1 Introduction 

This section compares the numerical electromagnetic characterization of the anthropomorphic 

head phantom models shown in Part I-A (Section 4.2) and Part I-B (Section 4.3).  Part I-A and I-

B revealed that the designed anthropomorphic head phantom is a highly useful tool for RF coil 

evaluation and testing at 3T and 7T.  Part I-A showed that the anthropomorphic heterogeneous 

head phantom was the most comparable to the in-vivo volunteer when assessing the B1
+ and 

electric field distributions/ intensities.  Although the B1
+ distribution is very homogeneous at 3T, 

the electric field distribution is not.  The results of Part I-B indicate that the designed 

anthropomorphic head phantom model is most useful assessing the electric field at 3T.  In order to 

adequately observe the differences and similarities of Part I-A and Part I-B, the electromagnetic 

characterization shown in this section considers the loss and uses 1-Watt of accepted power instead 

of 1-Watt of input power. 
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4.4.2 Materials and Methods 

The methods are the same from Part I-A (4.2.2) and Part I-B (4.3.2).  

4.4.3 Results 

The results were presented in Part I-A (4.2.3.1) and Part I-B (4.3.3.1) of this chapter.  For the 

comparison, the field distributions are shown in the discussion for 1-Watt of input power. 

4.4.4 Discussion and Recommendations 

4.4.4.1 Numerical Scattering Parameters Measurement Comparison at 3T and 7T. 

Figure 4.15 highlights the loading effects in all models loaded within the 16-strut/4-port TEM 

resonator at both field strengths.   As a demo, using the same single port (Port 1) on the 16-strut/4-

port TEM resonator for both frequencies, each model’s numerical S11 is assessed for the frequency 

response.  
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Figure 4.15. S-Parameters Measurements of Five Numerical Models Loaded in the 16-strut/4-port 

TEM Resonator at 3T and 7T.  The frequency response is modeled for the segmented in-vivo human head model 

(A) and each phantom (B-E) model.  A demo of the frequency response of one channel, S11, is shown.  

 
 
 

All models are appropriately tuned to the respective field strength.  The TEM resonator at 

3T is appropriately tuned but not matched as well as 7T.  The difference in matching is shown 

visually in Figure 4.15.   The impedance values are not entirely matched to 50Ω for each load 

within the TEM resonator at both field strengths.  At 7T, the models were matched better because 

an experimental validation was conducted with the actual TEM resonator at 7T.  In addition, the 

differences in matching at 7T are also due to the model being matched to the Virtual Family v1.0 

Duke model and not being retuned or matched for the five numerical models.  At 3T, the matching 

is not nearly as close to 50Ω because the loading at 3T was only for illustration and comparison to 

7T, not an experimental validation.     
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Figure 4.15 indicates the RF loading of the coil and the phantom preference at 3T and 7T.  

At 3T, any phantom media and geometry is a useful comparison to the RF loading in a human 

head.  In contrast, realistic human RF loading cannot be achieved using a spherical water-doped 

phantom at 7T.  It is most advantageous to use an anthropomorphic head phantom (heterogeneous 

or homogeneous) to offer comparable RF loading to a human head at 7T and to use any phantom 

media and geometry at 3T. 

At 3T, any phantom media and geometry is a useful comparison to the RF loading in a 

human head.  In contrast, realistic human RF loading cannot be achieved using a spherical water-

doped phantom at 7T.  It is most advantageous to use an anthropomorphic head phantom 

(heterogeneous or homogeneous) to offer comparable RF loading to a human head at 7T and to 

use any phantom media and geometry at 3T. 

4.4.4.2 Numerical Analysis Comparison of B1+ Field Mapping at 3T and 7T. 

Since the RF wavelength decreases as the operational frequency increases, the B1
+ field maps are 

more homogeneous at 3T than 7T as shown in Figure 4.16.  Table 4.1 and Table 4.5 supports this 

observation by comparing the wavelengths of the tissues.  In Figure 4.16, the matching losses per 

load were accounted for in the comparison of the numerical B1
+ field maps using the TEM 

resonator at both frequencies.  All numerical B1
+ field maps are scaled to the same magnitude scale 

(0 to 1.90 µT/√𝑊) and are scaled to the maximum B1
+ for 1 Watt of transmitted power in all 

models.  At 3T, there does not appear to be considerable quantitative difference in the B1
+ 

homogeneity of the anthropomorphic models.  By accounting for the losses and using the 

transmitted power, a better qualitative comparison of the B1
+ field distribution is observed.  This 

observation indicates that changes in B1
+ field distribution at 3T are subtle, but are more sensitive 

to the load’s geometry and media at 7T. 



149

 

Fi
gu

re
 4

.1
6.

 B
1+ 

fie
ld

 D
is

tr
ib

ut
io

ns
 w

ith
in

 th
e 1

6-
st

ru
t/4

-p
or

t T
E

M
 R

es
on

at
or

 a
t 3

T
 a

nd
 7

T
. T

he
 B

1+  f
ie

ld
 d

ist
ri

bu
tio

n 
fo

r 
ea

ch
 n

um
er

ic
al

 

m
od

el
 is

 s
ho

w
n 

an
d 

co
m

pa
re

d 
to

 th
e 

m
od

el
’s

 n
um

er
ic

al
 B

1+  
m

ap
pi

ng
 m

ea
su

re
m

en
ts

 a
t 7

T
 in

 th
e 

sa
gi

tt
al

, a
xi

al
, a

nd
 c

or
on

al
 v

ie
w

s 
(A

-O
). 

 T
he

 

nu
m

er
ic

al
 m

od
el

s 
ar

e 
sc

al
ed

 to
 1

W
 a

cc
ep

te
d 

po
w

er
 s

up
pl

ie
d 

by
 th

e 
R

F 
sy

st
em

. T
he

 c
ol

or
 b

ar
 is

 s
ca

le
d 

fr
om

 0
 to

 th
e 

m
ax

im
um

 n
um

er
ic

al
 B

1+  

va
lu

es
.  

  



150 

 
 
  

Fi
gu

re
 4

.1
6 

(C
on

tin
ue

d)
 



151 

 
Fi

gu
re

 4
.1

6 
(C

on
tin

ue
d)

 



152

 

T
ab

le
 4

.9
. 

D
et

ai
le

d 
C

om
pa

ri
so

n 
of

 M
ea

n 
B

1+ 
Fi

el
d 

In
te

ns
ity

 C
ha

ra
ct

er
is

tic
s 

of
 F

iv
e 

M
od

el
s 

th
ro

ug
h 

N
um

er
ic

al
 S

tu
di

es
 a

t 
3T

 a
nd

 7
T

. 
 A

 

co
m

pa
ri

so
n 

of
 n

um
er

ic
al

 B
1+ 

ch
ar

ac
te

ri
st

ic
s h

ig
hl

ig
ht

in
g 

th
e m

ea
n 

B
1+  f

ie
ld

 in
te

ns
ity

 fo
r 1

W
 o

f a
cc

ep
te

d 
po

w
er

 (µ
T

/ √
𝑾

)  
in

 th
re

e 
br

ai
n 

re
gi

on
s o

n 
in

te
re

st
 

(a
ll 

fil
la

bl
e 

co
m

pa
rt

m
en

ts
 in

 th
e 

he
ad

 p
ha

nt
om

 a
bo

ve
 a

nd
 in

cl
ud

in
g 

th
e 

ce
re

be
llu

m
), 

br
ai

n 
(e

xc
lu

di
ng

 th
e 

M
id

br
ai

n)
, a

nd
 M

id
br

ai
n)

. 

 

S
e

le
c
te

d
 R

e
g
io

n
s
 o

f 
In

te
re

s
t 
in

 A
ll 

M
o
d

e
ls

 

H
e
a

d
 M

o
d

e
ls

 
B

a
s
ic

  
P

h
a

n
to

m
 

M
o

d
e

l 

S
e

g
m

e
n

te
d
  

In
-V

iv
o

 H
e
a
d

 
M

o
d

e
l/
 

 I
n

-V
iv

o
 

V
o

lu
n

te
e

r 
 

 

A
n

th
ro

p
o
m

o
rp

h
ic

 
H

e
te

ro
g
e

n
e
o

u
s
  

P
h

a
n
to

m
 M

o
d
e

l  
 

A
n

th
ro

p
o
m

o
rp

h
ic

 
H

o
m

o
g
e

n
e

o
u

s
  

(B
ra

in
-D

o
p

e
d

) 
 

P
h

a
n
to

m
 M

o
d
e

l  
 

A
n

th
ro

p
o
m

o
rp

h
ic

 
H

o
m

o
g
e

n
e

o
u

s
  

(W
a
te

r-
D

o
p
e

d
) 

 
P

h
a

n
to

m
 M

o
d
e

l  
 

S
p

h
e

ri
c
a

l 
 

(W
a
te

r-
D

o
p
e

d
) 

 
P

h
a

n
to

m
 

M
o

d
e

l  
 

7
T

 
3

T
 

7
T

 
3

T
 

7
T

 
3

T
 

7
T

 
3

T
 

7
T

 
3

T
 

A
ll 

F
ill

a
b

le
 

C
o
m

p
a

rt
m

e
n

ts
 i
n

 
H

e
a

d
 P

h
a
n

to
m

 
A

b
o

v
e

 &
 I
n

c
lu

d
in

g
 

th
e

 C
e

re
b

e
llu

m
 

0
.5

0
1
 

1
.3

0
4
 

0
.5

1
1
 

1
.4

5
2
 

0
.5

1
7
 

1
.4

7
5
 

0
.5

2
3
 

1
.5

0
2
 

0
.6

9
5
 

1
.3

2
8
 

B
ra

in
 (

e
x
c
lu

d
in

g
 t

h
e

 
M

id
b

ra
in

) 
0

.5
0
3
 

1
.3

1
3
 

0
.5

1
4
 

1
.4

6
0
 

0
.5

1
8
 

1
.4

8
3
 

0
.5

2
1
 

1
.5

1
1
 

--
 

--
 

M
id

b
ra

in
 

0
.7

3
0
 

1
.4

7
5
 

0
.7

0
3
 

1
.5

4
9
 

0
.7

6
6
 

1
.5

6
4
 

0
.9

5
0
 

1
.6

2
0
 

--
 

--
 



153 

Table 4.9 highlights the numerical B1
+ field statistics for each phantom in three different 

brain regions for each head phantom.  The mean B1
+ field intensity is highest in the Midbrain 

region given that the TEM resonator is driven in quadrature for all five models at both field 

strengths.  Figure 4.16 and Table 4.9 highlights the mean B1
+ field intensity is higher at 3T than 

7T.  A general observation for this specific coil on all the different loads, the quadrature excitation 

produces the highest B1
+ field intensity in the middle region of the phantoms/models, but the B1

+ 

field intensity considerably drops in the periphery in a semi-radial pattern away from the load’s 

center at 7T.  At 3T, a similar center-brightness is observed in the middle region, and the B1
+ field 

intensity considerably drops at a slower rate in the periphery.  Upon excluding the Midbrain region 

for the anthropomorphic homogeneous water-doped head phantom model and the full spherical 

water-doped phantom, Table 4.9 illustrates that the quantitative average B1
+

 field intensity values 

of various anthropomorphic head phantom models are comparable to that of the segmented in-vivo 

human head model at both field strengths. 
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Table 4.10 tabulates a comparison of the numerical CV of the B1
+ field distributions of 

three brain regions for each head phantom.  In all models, the B1
+

 field map is most uniform at 

each frequency in the Midbrain region (smaller in volume).  Figure 4.16 qualitatively demonstrates 

that the anthropomorphic heterogeneous phantom model’s B1
+ distribution is most comparable to 

the segmented in-vivo human head model at both field strengths.  Table 4.10, however, illustrates 

that the quantitative CV values of the B1
+

 field distribution of the anthropomorphic heterogeneous 

phantom model and the anthropomorphic homogeneous brain-doped head phantom model are 

comparable to that of the segmented in-vivo human head model.  A significant divergence in CV 

values is observed for the anthropomorphic homogeneous water-doped head phantom model and 

the spherical water-doped phantom model at 7T.  There is not much of a significant difference in 

CV values from the segmented in-vivo human head model at 3T; however, the anthropomorphic 

heterogeneous phantom model and the anthropomorphic homogeneous brain-doped head phantom 

model are most comparable in CV value within all brain regions. 

In summary, the results indicate that an anthropomorphic (heterogeneous or homogeneous) 

head phantom models are useful for accurate magnetic field comparisons to that of the segmented 

in-vivo human head model at both field strengths.  Although the various models have similar CV 

values at 3T, the mean B1
+ field intensity of the anthropomorphic (heterogeneous or homogeneous) 

head phantom models and spherical water-doped phantom are most accurate to that of the 

segmented in-vivo human head model. 

4.4.4.3 Numerical Absolute Electric Field Analysis and Comparison at 3T and 7T. 

As mentioned, EM numerical modeling is a resource to assess the MR safety of each phantom 

model in this study.  Part I-B determined that assessing MR safety was the greatest advantage of 

using an anthropomorphic head phantom model at 3T.  The coil’s losses in each load were 
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accounted for to make an adequate comparison of the absolute electric field.   Figure 4.17 and 

Figure 4.18 shows the absolute electric field in all phantom models and segmented in-vivo human 

head model are scaled from a minimum of 0 V/m to the maximum absolute electric field among 

all models being the anthropomorphic water-doped head.  Figure 4.17 and Figure 4.18  

demonstrates that the behavior of the absolute electric field is not uniform at different field 

strengths.  The summation of the absolute electric field per model is unique to the coil and field 

strength.   

As observed in Part I-A and Part I-B, the resin material within each anthropomorphic head 

phantom model has the highest absolute electric field, much higher than the segmented in-vivo 

human head model (baseline).  Thus, when determining the absolute electric field range, the SLA 

resin regions (fat/bone/skin) is excluded and the peak absolute electric field value is positioned 

3.00 cm above the ventricles in the anthropomorphic homogeneous water-doped head model at 

7T.  At 3T, the absolute electric field is highest in the middle of the head (periphery of the brain 

and middle muscle).   The absolute electric field is highest in the anthropomorphic homogeneous 

water-doped head phantom model at both field strengths in what appears to be inverse peak 

regions. 

 When assessing the baseline absolute electric field distribution, the absolute electric field 

is greater in the segmented in-vivo human head model at 7T than at 3T.  The absolute electric field 

has high peaks in the right shoulder at 7T; yet, the high absolute electric field peaks are not 

observed in the shoulders of the segmented in-vivo human head model at 3T.  This observation is 

similar and seen in all anthropomorphic head models (Figure 4.17.B-D).  At 3T, the absolute 

electric field is far greater around the nasal cavities and ear canal than its respective absolute 

electric field at 7T. 
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Figure 4.18. Comparison of Absolute Electric Field in Four Models in the Coronal and Sagittal Views 

for 1-Watt of Accepted Power at 7T and 3T.  The numerical absolute electric field is shown for each model in 

the head and upper shoulders to the 16-strut/4-port TEM resonator based on a scale to the highest peak in the 

midbrain region of the anthropomorphic homogeneous water-doped head phantom model at 7T. 

 

Figure 4.19 indicates the percent volume change in each phantom model’s absolute electric 

field distribution/intensity in comparison to that of the segmented in-vivo human head model and 

indicates it is the more preferable model to predict in-vivo absolute electric field behavior.  The 

overestimation and underestimation of the absolute electric field are shown to visualize 
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physiological regions where the absolute electric field is most or least overestimation or 

underestimated.   The anthropomorphic head phantom model appears useful for analyzing 

unknown deviations in  absolute electric field regions at 3T.  When this coil is driven in quadrature, 

the peak absolute electric field is in a deep location of the Midbrain region and mouth at 3T.   

 

Figure 4.19. Percent Change Comparison of Absolute Electric Fields in Four Models for 1-Watt of 

Accepted Power at 7T and 3T.  The percent change of each phantom model in Figure 4.17.B-D and Figure 

4.18.B-D is compared to the segmented in-vivo human head model in Figure 4.17.A and Figure 4.18.A.  The 

images are scaled to a maximum of 190% based on the anthropomorphic water-doped head phantom model.  

The SLA resin material is removed to focus on the absolute electric field distribution in the fillable 

compartments. The overestimation of the absolute electric field distribution based on each phantom is shown 

in (A).  The underestimation of the absolute electric field distribution based on each phantom is shown in (B). 
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Figure 4.19 (Continued) 

 

In contrast, the greatest errors in the absolute electric field changes at 7T appears to cover more 

physiological brain regions, neck, and shoulder in the head.  Table 4.11 shows the corresponding 

calculations to Figure 4.19 for specified threshold percentages.  Table 4.11 is organized to show 

the comparison of phantom models in rows and the threshold percentages in columns.  The 

threshold percentages range from 25% to 100% in intervals of 25% and the threshold percentages 

represents the percentage of absolute electric field intensities within the model comparison that are 

above the threshold percentage.  The threshold percentage correspond to the values 0 to ± 100% 

along the colorbar in Figure 4.19.  Table 4.11 shows the percentage volume change per model at 
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3T and 7T for each corresponding threshold percentage and accuracy deviation from the baseline 

model. 

Table 4.11. Percent Volume Change in the Absolute Electric Field Models Beyond the Percent 

Threshold at 7T and 3T.   Calculations compare the percent volume change of each phantom model in Figure 

4.17.B-D and Figure 4.18.B-D to the segmented in-vivo human head model in Figure 4.17.A and Figure 4.18.A.  

The percentage volume change represents the deviation in accuracy from the segmented in-vivo human head 

model. 

 

 

 

Figure 4.19.B demonstrates that the anthropomorphic head model is still an estimation of 

the segmented in-vivo human head model, even though, the anthropomorphic heterogeneous or 

homogeneous brain-doped head phantom model are more desirable than other models.  Table 4.11 

supports this finding at both frequencies, yet the table provides a clear indication of how great 
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these differences quantitatively are per model comparison based on the field strength and percent 

volume change above the threshold percentage.  For instance, the first row in Table 4.11 shows 

the percentage volume change in the absolute electric field between the anthropomorphic 

heterogeneous head phantom model and the segmented in-vivo human head model at 3T and 7T 

with corresponding thresholds.  The comparison volume is beyond the 25% threshold by 19.31% 

and 9.66% at 3T and 7T, respectively.  This comparison indicates that the percent volume change 

is greater at 3T as oppose to 7T.  While exploring the table, the values indicate that 99.12%, at 7T,  

and 97.22%, at 3T, of the volume change in the absolute electric field intensities, are less than a 

50% error of the baseline absolute electric field intensity.  The anthropomorphic heterogeneous 

head phantom model has the least amount of volume change with a significant error in the absolute 

electric field intensities in the segmented in-vivo human head model at both frequencies.  A 

significant error is defined as 100% of the baseline model or less. The anthropomorphic 

homogeneous brain-doped head phantom model offers a lesser percent volume change in absolute 

electric field intensities of 50% or less than the anthropomorphic homogeneous water-doped head 

phantom model.  In an assessment of the anthropomorphic homogeneous brain-doped head 

phantom model, 16.89%, at 3T, and 7.37%, at 7T, of the total volume change has an error of 25% 

or less and this comparison is lower than the anthropomorphic heterogeneous head phantom model 

at both field strengths. However, the anthropomorphic heterogeneous head phantom model has a 

better indication beyond 75%, which indicates the error in accuracy.  The anthropomorphic 

homogeneous brain-doped head phantom model can be chosen if a lack of resources are available 

and a desire to reduce the complexity of the phantom’s fabrication.  However, the absolute electric 

field can result in peak SAR or peak temperature rise in these regions.     



163 

In summary, the anthropomorphic heterogeneous head phantom model is most useful to 

conduct MR safety analysis and produces the least amount of percent volume change with a 

significant error from the baseline model’s absolute electric field intensities at 3T and 7T.   

4.5 PART II: THERMAL AND SAR CHARACTERIZATION OF THE 

ANTHROPOMORPHIC HETEROGENEOUS HEAD PHANTOM USING A TEM 

RESONATOR AT 3T AND 7T 

4.5.1 Introduction 

Radiofrequency (RF) exposure and RF heating are a challenge for ultrahigh field (UHF) imaging 

applications (140-142) in humans and has become a widely researched topic in MR safety at UHF 

fields (68).  RF power deposition is quantified by the specific absorption rate (SAR) and is used 

as one method to quantify MR safety.  In MR safety, RF heating becomes an issue at 3T and the 

issue is enhanced at field strengths of 7T and higher.  This observation is supported by the results 

of Part I-C (4.4) where the electric fields are heterogeneous at 3T and 7T despite the phantom’s 

geometry and media.  At higher field strengths, the tissues’ dielectric properties increase at higher 

frequencies (98), and tissues with high conductivity may yield higher quantified SAR.   

In MR experiments, RF exposure is monitored by government regulated SAR limits (64, 

65) and temperature rise in specified human body regions through MR scanners.  SAR limits are 

regulated through the Food and Drug Administration (FDA) and IEC.  The FDA recommends that 

any averaged SAR within the head ≥ 3.2 W/kg per any gram is considered a significant risk when 

quantified beyond 10 minutes at any static magnetic field strength (65).  The IEC limits local SAR 
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≤ 10 W/kg over any 10g within the human head.   The IEC limits local temperature rise to ≤ 1°C.  

The scanner computes these values as a function of the scanner’s power hardware, the RF coil, 

and subject-specific information.  However, scanners are not currently equipped to have subject-

specific physiological information or fast solvers to compute subject-specific SAR (68).  As a 

result, patient-specific SAR is model-based and computed offline.  The current methods to predict 

and monitor SAR are through the MR scanner and are based on the power transmitted into the 

body.   

Thermal simulations are resourceful in monitoring subject-specific RF exposure through 

various bioheat equations and have been widely used at 3T and higher fields strengths to assess 

and model RF heating.  RF heating is measured numerically and simulated through various bioheat 

equation methods, i.e., Penne’s bioheat transfer equation (BHTE) (74).  Penne’s bioheat equation 

correlates temperature rise based on the power deposited into the human body and the 

physiological parameters (i.e., specific heat, thermal conductivity, basal metabolic rate, density, 

perfusion, etc.) of the human body.  While works (44, 143-148) have proven that bioheat models 

are resourceful, thermal simulations are too time-consuming to conduct during experimental MR 

scans and the results are rarely compared in real-time to in-vivo studies. 

Various studies have offered varying techniques to monitor RF safety during human scans 

by using animal models (143, 149, 150), phantoms (14), and thermal simulations.  Limited studies 

compare the phantom temperature rise at UHF MR safety applications.  While Graedel et al. (14) 

attempted to monitor experimental RF safety through a realistic head phantom, the realistic head 

phantom offered limited compartments and did not offer comparable thermal simulations to their 

designed head phantom.   Since the field of MRI is moving further towards making 7T clinical, 

there is a stronger need to evolve technical resources that determine safe and predictable RF safety 
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and temperature rise in human tissue.  Our studies (18, 151, 152) and Part I of this chapter have 

shown our designed experimental anthropomorphic heterogeneous head phantom to be a useful 

tool for UHF MR applications, and there is a need to explore its thermal characteristics through 

MR safety assessments further by expanding on Part I. 

The purpose of Part II is to make a realistic numerical RF safety assessment of the 

numerical perfusionless anthropomorphic heterogeneous head phantom model and compare its 

results to a numerical perfused segmented in-vivo human head model.   Two numerical thermal 

models are developed and compared using only numerical thermal simulations to offer a thermal 

characterization of the numerical anthropomorphic heterogeneous head phantom model at 7T 

MRI.  Since the experimental anthropomorphic heterogeneous head phantom does not have 

perfusion, the numerical anthropomorphic heterogeneous head phantom (153) does not have 

perfusion in its model.  However, the numerical segmented in-vivo human head model (from Part 

I) has perfusion because the human body has perfusion.  The numerical thermal heating within 

both models is compared to assess the impact of the performance of the phantom at both field 

strengths, 3T and 7T.  The numerical perfused segmented in-vivo human head model determines 

how similar or different the thermal heating of the experimental anthropomorphic head phantom 

might be to an actual human subject.     
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4.5.2 Materials and Methods 

4.5.2.1 Numerical Studies 

4.5.2.1.1 Constitutive and Thermal Properties of Phantom Models at 3T and 7T 

Two numerical thermal models were developed for the numerical temperature calculations: 1) a 

perfused segmented in-vivo head model (baseline) and 2) a perfusionless anthropomorphic 

heterogeneous head phantom model.  The perfused segmented in-vivo head model is the thermal 

model of the segmented in-vivo head model in Part I of this chapter.  This model offers 10 different 

tissue types.  The perfusionless anthropomorphic heterogeneous head phantom model is the 

thermal model of the numerical anthropomorphic heterogeneous head phantom model in Part I of 

this chapter.  This model has six fillable tissues, air, and SLA resin, which represents the 

combination of fat, bone, and skin.  Both models have an isotropic spatial resolution of ~1.59 mm3 

as mentioned in subsection 4.2.2.1.1 of Chapter 4.0.  Wolf et al. (154) and other works (155-158) 

indicated that modeling the head only developed unreal SAR elevations localized in the neck 

region.  It was determined that modeling the head to shoulders was enough; thus, our perfused 

segmented in-vivo human head model and head phantom model include the head to shoulders and 

exclude the remainder of the body as shown in Figure 4.20 to Figure 4.22.  The thermal properties 

of the models were based on thermal and constitutive properties provided in works ((31, 98, 153, 

159-164) including the Virtual Family v1.0 Duke (31, 165)) and are reflected in Table 4.12 and 

Table 4.13 for 3T and 7T.   

 



167

 

T
ab

le
 4

.1
2.

 S
eg

m
en

te
d 

In
-V

iv
o

 H
um

an
 H

ea
d 

M
od

el
 a

nd
 A

nt
hr

op
om

or
ph

ic
 H

et
er

og
en

eo
us

 H
ea

d 
Ph

an
to

m
 M

od
el

’s
 C

on
st

itu
tiv

e 
Pr

op
er

tie
s 

(P
er

m
itt

iv
ity

, 
C

on
du

ct
iv

ity
) 

an
d 

T
he

rm
al

 P
ro

pe
rt

ie
s 

(B
as

al
 M

et
ab

ol
ic

 R
at

e,
 S

pe
ci

fic
 H

ea
t, 

B
lo

od
 P

er
fu

sio
n 

C
oe

ff
ic

ie
nt

, 
T

he
rm

al
 C

on
du

ct
iv

ity
) 

at
 

29
7.

2M
H

z.
  D

er
iv

ed
 fr

om
 th

e 
C

ite
d 

L
ite

ra
tu

re
 (3

1,
 9

8,
 1

59
-1

64
). 

 

 

Ph
an

to
m

 
Ti

ss
ue

 
C

la
ss

ifi
ca

tio
n/

 
M

od
el

s 

G
en

er
al

 
Bi

ol
og

ic
al

 
Ti

ss
ue

 
C

la
ss

ifi
ca

tio
n 

Ba
sa

l 
M

et
ab

ol
ic

 
R

at
e 

Sp
ec

ifi
c 

   
 

H
ea

t 
Bl

oo
d 

Pe
rfu

si
on

 
C

oe
ffi

ci
en

t 

Th
er

m
al

 
C

on
du

ct
iv

ity
 

C
on

du
ct

iv
ity

  
R

el
at

iv
e 

Pe
rm

itt
iv

ity
 

D
en

si
ty

 

A
0 

C
 

B
 

K
 

σ 
ε 

ρ 
(J

/ (
m

3  s)
) 

(J
/ k

g 
°C

) 
(J

/ (
m

3  s 
°C

) 
(J

/m
 s 

°C
) 

(S
/m

) 
 

(k
g/

m
3 ) 

A
ir 

Si
nu

se
s, 

Es
op

ha
gu

s 
0.

00
00

 
10

03
.6

70
0 

0.
00

00
 

0.
02

74
 

0.
00

00
 

1.
00

00
 

1.
25

00
 

Br
ai

n 
(W

M
/G

M
) 

W
hi

te
 M

at
te

r, 
G

ra
y 

M
at

te
r, 

Ex
te

rn
al

 
C

SF
, D

ur
a 

71
00

.0
00

0 
36

43
.4

71
8 

30
64

5.
30

22
 

0.
51

64
 

0.
55

00
 

51
.9

80
0 

10
40

.0
00

0 
0.

00
00

 
42

00
.0

00
0 

0.
00

00
 

0.
49

80
0 

Br
ai

ns
te

m
 

M
id

br
ai

n,
 

Po
ns

, 
M

ed
ul

la
 

O
bl

on
ga

ta
, 

Sp
in

al
 C

or
d 

71
00

.0
00

0 
36

30
.0

00
0 

33
67

4.
64

98
 

0.
51

33
 

0.
42

00
 

36
.9

70
0 

10
39

.0
00

0 
0.

00
00

 
42

00
.0

00
0 

0.
00

00
 

0.
49

80
0 

C
er

eb
el

lu
m

 
C

er
eb

el
lu

m
 

71
00

.0
00

0 
36

53
.0

00
0 

46
41

8.
16

67
 

0.
50

60
 

0.
97

00
 

59
.8

60
0 

10
40

.0
00

0 
0.

00
00

 
42

00
.0

00
0 

0.
00

00
 

0.
49

80
0 

C
er

eb
ro

sp
in

al
 

Fl
ui

d 
(C

SF
) 

In
te

rn
al

 C
SF

 
ne

ar
 la

te
ra

l 
ho

rn
s a

nd
 

ar
ou

nd
 sp

in
al

 
co

rd
 

0.
00

00
 

40
95

.5
00

0 
0.

00
00

 
0.

57
33

 
2.

22
00

 
72

.8
00

0 
10

07
.0

00
0 

0.
00

00
 

42
00

.0
00

0 
0.

00
00

 
0.

49
80

0 



168

 

T
ab

le
 4

.1
2 

(C
on

tin
ue

d)
 

Ey
es

 
C

or
ne

a,
 

V
itr

eo
us

 
H

um
or

, E
ye

s 
Sc

le
ra

 

0.
00

00
 

40
52

.6
40

0 
64

39
.8

75
2 

0.
58

48
 

0.
92

00
 

56
.4

60
0 

10
20

.0
70

0 
0.

00
00

 
42

00
.0

00
0 

0.
00

00
 

0.
49

80
0 

M
us

cl
e 

Te
nd

on
s, 

To
ng

ue
, 

M
us

cl
e 

11
6.

95
74

 
34

22
.5

74
0 

43
85

.6
38

1 
0.

49
17

 
0.

77
00

 
58

.2
40

0 
10

49
.7

80
0 

0.
00

00
 

42
00

.0
00

0 
0.

00
00

 
0.

49
80

0 

Fa
t/ 

Bo
ne

/  
Sk

in
 (3

D
 S

LA
 

M
at

er
ia

l) 

 F
at

, B
on

e,
 

C
ar

til
ag

e,
  

Sk
in

 D
ry

 
0.

00
00

 
10

50
.0

00
0 

0.
00

00
 

0.
17

00
 

0.
10

80
 

2.
79

00
 

11
20

.0
00

0 

Fa
t 

Fa
t 

30
0.

00
00

 
23

48
.3

30
0 

19
71

.8
27

4 
0.

21
15

 
0.

03
95

 
5.

63
60

 
91

6.
00

00
 

Bo
ne

 
C

or
tic

al
 B

on
e/

 
Sk

ul
l C

or
tic

al
 

61
0.

00
00

 
13

12
.8

30
0 

60
2.

83
33

 
0.

32
00

 
0.

08
24

 
13

.4
49

0 
19

90
.0

00
0 

Sk
in

 
Sk

in
 D

ry
 

16
20

.0
00

0 
33

90
.5

00
0 

64
13

.0
19

4 
0.

37
22

 
0.

64
00

 
49

.9
34

0 
11

00
.0

00
0 

    
 

L
eg

en
d:

 
Pe

rf
us

ed
 S

eg
m

en
te

d 
In

-V
iv

o 
H

um
an

 H
ea

d 
M

od
el

 
Pe

rf
us

io
nl

es
s A

nt
hr

op
om

or
ph

ic
 H

et
er

og
en

eo
us

 H
ea

d 
M

od
el

 



169

 

   

Fi
gu

re
 4

.2
0.

 V
is

ua
l R

ep
re

se
nt

at
io

n 
of

 th
e 

C
on

st
itu

tiv
e 

Pa
ra

m
et

er
s 

in
 E

ac
h 

H
ea

d 
M

od
el

 a
t 2

97
.2

 M
H

z.
 T

he
 s

eg
m

en
te

d 
in

-v
iv

o
 h

um
an

 

he
ad

 m
od

el
’s

 p
ro

pe
rt

ie
s 

ar
e 

A
) R

el
at

iv
e 

Pe
rm

itt
iv

ity
, C

.) 
C

on
du

ct
iv

ity
, a

nd
 E

.) 
D

en
si

ty
.  

T
he

 a
nt

hr
op

om
or

ph
ic

 h
et

er
og

en
eo

us
 h

ea
d 

ph
an

to
m

 

m
od

el
’s

 p
ro

pe
rt

ie
s a

re
 B

.) 
R

el
at

iv
e 

Pe
rm

itt
iv

ity
, D

.) 
C

on
du

ct
iv

ity
, a

nd
 F

.) 
D

en
si

ty
. 



170

 

Fi
gu

re
 4

.2
1.

 V
is

ua
l R

ep
re

se
nt

at
io

n 
of

 th
e 

T
he

rm
al

 P
ar

am
et

er
s a

t 1
28

.0
 M

H
z 

an
d 

29
7.

2 
M

H
z 



171

T
ab

le
 4

.1
3.

 S
eg

m
en

te
d 

In
-V

iv
o

 H
ea

d 
M

od
el

 a
nd

 A
nt

hr
op

om
or

ph
ic

 H
et

er
og

en
eo

us
 H

ea
d 

Ph
an

to
m

 

M
od

el
’s

 C
on

st
itu

tiv
e 

Pr
op

er
tie

s 
(P

er
m

itt
iv

ity
, c

on
du

ct
iv

ity
) 

an
d 

T
he

rm
al

 P
ro

pe
rt

ie
s 

(B
as

al
 M

et
ab

ol
ic

 R
at

e,
 

Sp
ec

ifi
c 

H
ea

t, 
B

lo
od

 P
er

fu
si

on
 C

oe
ff

ic
ie

nt
, T

he
rm

al
 C

on
du

ct
iv

ity
) 

at
 1

28
.0

 M
H

z.
 C

ite
d 

fr
om

 t
he

 L
ite

ra
tu

re
 

(3
1,

 9
8,

 1
59

-1
64

) 

 

 

 

 

 

 

 



172

 

T
ab

le
 4

.1
3 

(C
on

tin
ue

d)
 

Ey
es

 
C

or
ne

a,
 

V
itr

eo
us

 
H

um
or

, E
ye

s 
Sc

le
ra

 

0.
00

00
 

40
52

.6
40

0 
64

39
.8

75
2 

0.
58

48
 

1.
30

25
 

67
.7

13
7 

10
20

.0
70

0 
0.

00
00

 
42

00
.0

00
0 

0.
00

00
 

0.
49

80
0 

M
us

cl
e 

Te
nd

on
s, 

To
ng

ue
, 

M
us

cl
e 

11
6.

95
74

 
34

22
.5

74
0 

43
85

.6
38

1 
0.

49
17

 
0.

71
92

 
63

.4
95

0 
10

49
.7

80
0 

0.
00

00
 

42
00

.0
00

0 
0.

00
00

 
0.

49
80

0 

Fa
t/ 

Bo
ne

/  
Sk

in
 (3

D
 S

LA
 

M
at

er
ia

l) 

 F
at

, B
on

e,
 

C
ar

til
ag

e,
  

Sk
in

 D
ry

 
0.

00
00

 
10

50
.0

00
0 

0.
00

00
 

0.
17

00
 

0.
00

63
 

4.
56

00
 

11
20

.0
00

0 

Fa
t 

Fa
t 

30
0.

00
00

 
23

48
.3

30
0 

19
71

.8
27

4 
0.

21
15

 
0.

03
69

 
5.

92
15

 
91

6.
00

00
 

Bo
ne

 
C

or
tic

al
 B

on
e/

 
Sk

ul
l C

or
tic

al
 

61
0.

00
00

 
13

12
.8

30
0 

60
2.

83
33

 
0.

32
00

 
0.

06
74

 
14

.7
17

0 
19

90
.0

00
0 

Sk
in

 
Sk

in
 D

ry
 

16
20

.0
00

0 
33

90
.5

00
0 

64
13

.0
19

4 
0.

37
22

 
0.

52
27

 
65

.4
37

0 
11

00
.0

00
0 

  

 Th
e 

ke
y 

le
ge

nd
 in

 T
ab

le
 4

.1
2 

an
d 

Ta
bl

e 
4.

13
 in

di
ca

te
s 

w
hi

ch
 ti

ss
ue

s 
ar

e 
re

pr
es

en
te

d 
in

 th
e 

va
rio

us
 m

od
el

s. 
 T

he
 p

er
fu

si
on

le
ss

 

an
th

ro
po

m
or

ph
ic

 h
et

er
og

en
eo

us
 h

ea
d 

ph
an

to
m

 m
od

el
’s

 t
is

su
e 

cl
as

si
fic

at
io

n 
is

 b
as

ed
 o

n 
th

e 
as

su
m

pt
io

n 
th

at
 t

he
 a

ve
ra

ge
d 

tis
su

e 

cl
as

si
fic

at
io

n 
is

 c
om

pa
ra

bl
e 

to
 th

e 
pe

rc
en

ta
ge

 o
f t

he
 b

io
lo

gi
ca

l t
is

su
e 

in
 th

e 
V

irt
ua

l F
am

ily
 v

1.
0 

D
uk

e 
he

ad
 m

od
el

.  
Th

e 
th

er
m

al
 ti

ss
ue

 

pa
ra

m
et

er
s i

n 
Ta

bl
e 4

.1
2 

an
d 

Ta
bl

e 4
.1

3 
ar

e n
ot

 d
ep

en
de

nt
 o

n 
th

e f
re

qu
en

cy
 n

or
 a 

sp
ec

ifi
c t

em
pe

ra
tu

re
 co

nd
iti

on
.  T

he
 th

er
m

al
 p

ro
pe

rti
es

 

L
eg

en
d:

 
Pe

rf
us

ed
 S

eg
m

en
te

d 
In

-V
iv

o 
H

um
an

 H
ea

d 
M

od
el

 
Pe

rf
us

io
nl

es
s A

nt
hr

op
om

or
ph

ic
 H

et
er

og
en

eo
us

 H
ea

d 
M

od
el

 



173

 

ar
e 

av
er

ag
ed

 b
as

ed
 o

n 
th

e 
w

ei
gh

te
d 

av
er

ag
e 

of
 t

he
 t

is
su

es
, w

hi
ch

 h
as

 o
nl

y 
be

en
 s

ee
n 

fo
r 

co
ns

tit
ut

iv
e 

pa
ra

m
et

er
s 

an
d 

no
t 

th
er

m
al

 

pr
op

er
tie

s (
68

). 
 

 

Fi
gu

re
 4

.2
2.

 V
is

ua
l R

ep
re

se
nt

at
io

n 
of

 th
e 

C
on

st
itu

tiv
e 

Pa
ra

m
et

er
s i

n 
E

ac
h 

H
ea

d 
M

od
el

 a
t 1

28
.0

 M
H

z.
  



174 

Work (166) indicates that numerical thermophysiological models include two systems: a 

passive system and an active system (167).  The active system includes the human body’s 

regulatory responses such as sweating, shivering, vasoconstriction, and vasodilation (168).  The 

passive system includes the heat transfer between the human body and its environment (the 

radiation, convection, radiation).  Wang et al. (169) proved that it is not imperative to incorporate 

physiological responses to temperature in the simulation; thus, physiological responses are not 

incorporated in the numerical thermal simulations and calculations within this study.  Since it is 

assumed that the rate of perfusion is independent of temperature and time to simplify the solution, 

the initial temperature of the blood is set to a constant of 37.00°C in models with perfusion.  The 

thermal properties for the numerical segmented in-vivo human head model has perfusion.  The 

experimental anthropomorphic heterogeneous head phantom is perfusionless (discussed in 

Chapter 5.0) and the constant (Tb) temperature of blood was set to a constant of 18.00°C – the MR 

scanner room temperature. 

4.5.2.1.2 Numerical SAR Analysis at 3T and 7T. 

The SAR is computed using the following SAR equation: 

 𝑆𝐴𝑅(𝑖,𝑗,𝑘) =
1

2

𝜎(𝑖,𝑗,𝑘)(𝑬𝑥(𝑖,𝑗,𝑘)
2 +𝑬𝑦(𝑖,𝑗,𝑘)

2
+𝑬𝑧(𝑖,𝑗,𝑘)

2 )

𝜌(𝑖,𝑗,𝑘) 
  (4.2) 

where i, j, k are the indices in a voxel of data on the 3D rectangular coordinate plane, σ (S/m) is 

the conductivity, ρ (kg/m3) is the density, and E (V/m) is the electric field (direct output from 

FDTD code).  The SAR is computed using equation 4.2, scaled per 1-Watt of input power shown 

in Figure 4.24 and Figure 4.27.  The SAR is derived from the electric fields that were generated 

using thermal models loaded within the numerical 16-strut/ 4-port TEM resonator as shown in Part 

I of this chapter at both field strengths.  The SAR was used as the input power to Penne’s BHTE 
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and was normalized to induce 3.2 W/kg over the entire head model, the current FDA standard, 

which is regulated by a time-average of 10 minutes.   

4.5.2.1.3 Numerical Temperature Calculations at 3T and 7T 

4.5.2.1.3.1 Bioheat Equation and Boundary Conditions 

To adequately assess the numerical RF safety and robustness of the numerical phantom 

temperature models, temperature measurements are measured using a finite-difference 

implementation of Penne’s BHTE (74): 

 𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
= ∇ ∙ (𝑘∇𝑇) + 𝐴0 − 𝐵(𝑇 − 𝑇𝑏) + 𝜌SAR  (4.3) 

where Cp (J/kg ºC) denotes the specific heat (the amount of heat per unit mass required to raise the 

temperature by one degree Celsius), k (J/m s ºC) denotes the thermal conductivity (the property of 

a material that indicates its ability to conduct heat), Ao (J/m3 s) denotes the basal metabolic rate 

(the minimum calorific requirement needed to sustain life in a resting individual), B (J/m3 s ºC) 

denotes the blood perfusion coefficient (162), T (°C) denotes the temperature, Tb (°C) denotes the 

constant blood temperature, and ρ (kg/m3) denotes the density.  The Cartesian discretization of the 

bio-heat equation is covered in full in Chapter 2.0 within Subsection 2.6.4.  The numerical stability 

is met by satisfying the equation in Subsection 2.6.4. 

Convection based boundary conditions are the only mechanisms of heat transfer considered 

in this study.   As mentioned, physiological responses are ignored, and the temperature calculations 

are more conservative in this study than real-life applications.  The temperature change between 
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the tissue surface and the environment is proportional to heat transfer from the computational 

domain and environment.  The boundary condition applied is: 

 𝑘
𝑑𝑇

𝑑𝑡
(𝑥, 𝑦, 𝑧) = −𝐻𝑎(𝑇𝑥,𝑦,𝑧 − 𝑇𝑎) (4.4) 

where Ha (J/m2 s ºC) denotes the convection transfer coefficient (a constant with a value of 20 J/m2 

s ºC (75)), Ta (ºC) denotes the ambient temperature (162) (the property of a material that indicates 

its ability to conduct heat), Tx,y,z (ºC) denotes the temperature as a function of Cartesian space, 

x,y,z denotes the Cartesian space, and k (J/m s ºC) denotes the thermal conductivity.  Ta is set to 

18.00 ºC in each thermal simulation, which is the measured ambient temperature in the MR scanner 

for experiments with the perfusionless phantoms.  

The in-house PBHE algorithm (13) was altered to incorporate GPU implementation for 

faster computations.  The numerical thermal simulations were performed on a computer 

workstation with a GPU (4-6GB of memory) to include equilibrium and numerical RF heating.  

All algorithms were written in MATLAB (The MathWorks, Inc., Natick, MA, USA). 

4.5.2.1.3.2 Stability of Boundary Conditions and Steady-State Temperature Calculations 

The numerical perfusionless anthropomorphic heterogeneous phantom head model is placed in the 

MR system at the MR room temperature, an ambient temperature Ta of 18.00°C, with no applied 

SAR (SAR = 0 W/kg) until an equilibrium is met.  The duration to reach the thermal equilibrium 

is calculated for each model.  To measure the correct numerical temperature rise, each model must 

reach steady-state while loaded inside of the RF coil.   
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Using the stability constant in Subsection 2.6.4, the dt was set to 1.924 ms.  Steady-state 

was reached in the numerical perfused segmented in-vivo human head model after 56.00 minutes 

as illustrated in Figure 4.23.A and immediately in perfusionless anthropomorphic heterogeneous 

head phantom as illustrated in Figure 4.23.B.  The perfusionless anthropomorphic heterogeneous 

head phantom reached steady state immediately because experimentally it is at the same 

temperature as the ambient temperature. 

4.5.2.1.3.3 Temperature Elevation Calculations 

All post-processing, analysis, and SAR and thermal calculations were performed in MATLAB.  

The SAR operates as the heat source in the PBHE.  To reach steady-state, no input power (SAR) 

is applied; in contrast, an input power (SAR) must be applied to experience RF heating.  Using the 

in-house PBHE algorithm (13), an input power is applied to reach the FDA limits with a 10-minute 

continuous input power that yields a 3.2 W/kg average SAR within the respective thermal head 

model (170).  The numerical temperature change, ΔT, is computed and the results in the two 

numerical models are shown in Figure 4.25 and Figure 4.26. 

4.5.3 Results and Discussion 

4.5.3.1 Results 

4.5.3.1.1 Numerical SAR Modeling and Analysis at 7T 

The numerical SAR distribution is shown for the numerical perfused segmented in-vivo human 

head model and the numerical perfusionless anthropomorphic heterogeneous head phantom model 
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in Figure 4.24.   Figure 4.24 is scaled by the maximum allowable peak SAR per 1-Watt of input 

power.  The applied input power was normalized to an average SAR of 3.2 W/kg which is the 

current regulated FDA average SAR for a time average of 10 minutes.  In both models, the peak 

SAR is observed at the highest point of the white matter and gray matter within the brain region.     
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4.5.3.1.2 Numerical Temperature Modeling and Analysis at 7T 

Once the steady-state was reached, numerical RF heating was applied for 10-minutes with the 

power required to achieve the FDA’s maximum limit on the regulated average SAR at 3.2 W/kg.  

In Figure 4.25, the numerical temperature elevation is shown for the numerical perfused segmented 

in-vivo human head model from Tb = 37.00°C to the temperature at the completion of a 10-minute 

thermal heating and masked to the fillable compartments.   
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In Figure 4.26, the temperature elevation is shown for the numerical perfusionless 

anthropomorphic heterogeneous head phantom model from the ambient temperature to the 

temperature at the completion of a 10-minute thermal heating and masked to the fillable 

compartments.  The results in Figure 4.26 and Figure 4.25 show the temperature elevation masked 

to the fillable compartments within each respective head model.   

 
Although Figure 4.24 reveals similarities in the location of some SAR hot-spots to the local 

thermal rise in both thermal models, the numerical temperature rise is different in the numerical 

perfusionless anthropomorphic heterogeneous head phantom model.  The highest temperature rise 

appears to correlate to high local SAR regions in the numerical perfusionless anthropomorphic 

heterogeneous head phantom model.   Figure 4.26 shows the highest temperature rise in the 

numerical perfusionless anthropomorphic heterogeneous head phantom model’s left tendon near 

the zygomatic bone (cheekbone).  These locations are similar locations to the local SAR hot-spot 

regions in Figure 4.24.  However, high SAR hot-spot regions do not necessarily correlate to high 

temperature rise.  The SLA resin and areas with low permittivity in the tissue are producing high 

SAR and temperature.   

4.5.3.1.3 Numerical SAR Modeling and Analysis at 3T 

Figure 4.27 shows the numerical SAR distribution for the perfused segmented in-vivo human head 

model and the perfusionless anthropomorphic heterogeneous head phantom model at 3T.  The 

local SAR hot-spot regions are in the periphery of the brain and the left tendon in both thermal 

models. 
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4.5.3.1.4 Numerical Temperature Modeling and Analysis at 3T 

The temperature is elevated the most in the left temporal lobe and left tendon near the zygomatic 

bone (cheekbone) in Figure 4.28.  This elevation is due to an elevated SAR in this region and the 

heat transferring from other nearby tissues.  In general, the temperature elevates above the ambient 

temperature in the perfused tissues.  The perfusionless tissues operate as a heat sink and lose their 

heat to the MR room environment.  The temperature elevation reached a 7.00°C peak in the 

posterior right of the cerebellum in Figure 4.29.  In general, the numerical perfusionless 

anthropomorphic heterogeneous head phantom model heats in the cerebellum and the anterior right 

and left tendons.  These localized regions are the classified tissue regions where the FDA regulated 

average SAR is the greatest in the phantom model.  These peak temperature regions correspond to 

the peak temperature regions in the perfused segmented in-vivo human head model. 
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4.5.3.2 Discussion and Recommendation 

Part II of this chapter builds on the EM characterization of the numerical perfusionless 

anthropomorphic heterogeneous head phantom model that is provided in Part I for 3T and 7T.  Part 

II aims to provide the thermal characterization of the numerical perfusionless anthropomorphic 

head phantom model.  Although the EM characterization results are coil-specific, the results 

offered a visual representation of the difference in the performance of the numerical 

anthropomorphic heterogeneous head phantom model to other numerical phantom models.  Part I 

concluded that the anthropomorphic heterogeneous head phantom model was the most useful to 

conduct MR safety analysis at 3T and 7T because it had the least amount of percent volume change 

with a significant error.  The absolute electric field analysis of this specific phantom model was 

the most comparable to the numerical segmented in-vivo human head model.  Thus, Part II explores 

an MR safety comparison of the SAR and temperature performance of the numerical perfusionless 

anthropomorphic head phantom at 3T and 7T.  The results were compared to the numerical 

perfused segmented in-vivo human head model to project a potential comparison of the 

temperature rise in the experimental phantom to a human subject. 

4.5.3.2.1 Numerical SAR and Numerical Temperature Modeling at 7T 

A more in-depth analysis of Section 4.2.3.1.3 highlights that not only are the constitutive 

parameters indicative of the changes in the electromagnetic behavior in each model but also the 

thermal parameters are indicative of the changes in the thermal behavior in each model.  Our study 

assesses the numerical SAR distribution per 1-Watt of input power in two thermal head models.  

SAR per 1-Watt was used because the SAR is scalable per input power.  Figure 4.24 assess each 

model’s measured average and peak SAR.  It is essential to reference back to the absolute electric 
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field distribution comparison of Figure 4.4, Figure 4.5, and Table 4.11 to understand  Figure 4.24 

further. 

The perfusionless anthropomorphic heterogeneous head phantom model has low SAR in 

the SLA resin material.  As previously mentioned, the experimental anthropomorphic head 

phantom model utilizes a resin material with conductivity = 0.11 S/m at 7T, which is similar to the 

averaged conductivity (0.17 S/m) of the fat, bone, and skin.  Thus, Figure 4.24 highlights subtle 

differences in the SAR distributions and emphasize that the perfusionless anthropomorphic 

heterogeneous head model still offers a subtle overestimation and underestimation of the global 

SAR distribution.  However, it offers the most accurate representation of the peak SAR. 

Alon et al. investigated the anatomical differences in a human head model and found a 

similar outcome that SAR underestimation could result in a safety risk via SAR and temperature 

rise.  In contrast, the overestimation may lead to inadequate RF coil safety.  

In this study, the thermal simulations validate whether the estimated numerical SAR is a 

safety risk.  The temperature simulations were performed for a continuous 10-minute RF power 

generated by a continuous FDA regulated average SAR, 3.2W/kg, and this power does not 

represent the real power generated by a specific MR sequence.  However, the results demonstrate 

the PBHE algorithm and the numerical perfusionless anthropomorphic heterogeneous head 

phantom model have the capability to predict the temperature rise through any power generated 

by a specific MR sequence.  Using the thermal models, the generated results can help modify MR 

sequences at 7T to meet clinical standards and government regulations.  This analysis is a 

significant resource in assessing MR safety in RF coil design. 

 Differences in numerical SAR are shown in the comparison of the perfusionless 

anthropomorphic heterogeneous head phantom model and perfused segmented in-vivo human head 
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model.  The SAR distributions are comparable among the thermal models but differ in SAR 

intensity per voxel.  The absolute electric field is relatively higher in the SLA resin compared to 

its neighboring classified tissues in Figure 4.7.B due to a low dielectric constant compared to the 

weighted average dielectric constant that corresponds to the combination of the fat/bone/skin.  This 

similar observation appeared in Figure 4.7.A in the electric field; however, the electric field varies 

in the fat, bone, and skin tissues.  Figure 4.7.B illustrates that the SLA resin boundaries create an 

artificial electric field between the classified tissues perfusionless anthropomorphic heterogeneous 

head phantom model.  Based on electromagnetic theory, differences are expected to occur between 

the electric field of the thermal models.  The tangential component of the electric field is 

continuous, yet the normal component is discontinuous.  Thus, the differences are caused by the 

changes in the magnitude of the normal component of the electric field between the thermal 

models. The differences in the electric field result in the differences in the SAR between each 

thermal model. 

Due to the difference in the electric field and SAR, differences are also shown in the 

temperature elevations at 7T and are illustrated in Figure 4.30.  The perfused segmented in-vivo 

human head model offers a better predictor of the temperature rise in an in-vivo human head 

throughout this sequence.  As mentioned, there are differences caused by the heat source in the 

PBHE, SAR; and also, there are differences caused by perfusion.  While it is not important to 

explore the impact by perfusion on temperature; it is important to note that the temperature 

elevation in the perfused segmented in-vivo human head model is much less than the perfusionless 

anthropomorphic heterogeneous head phantom model.  It was observed that each thermal model 

would have the same slope in temperature rise until perfusion causes the temperature to remain 

constant.  As a result of this study, while there are differences between the thermal models, the 
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perfusionless anthropomorphic heterogeneous head phantom model offers realistic locations to 

localized temperature rise for the perfused segmented in-vivo human head model. 

 

Figure 4.30. Temperature Elevation in Each Thermal Model at 7T.  The temperature measurements 

in each model per temperature location for a duration of 10-minutes. 

4.5.3.2.2 Numerical SAR and Numerical Temperature Modeling at 3T 

At 3T, the numerical SAR distribution of each thermal model differs from 7T.  The numerical 

SAR is higher in the periphery perfused segmented in-vivo human head model in comparison to 

the perfusionless anthropomorphic heterogeneous head phantom model.  The numerical SAR 
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within the phantom underestimates the numerical SAR in the perfused segmented in-vivo human 

head model.  This underestimation is supported by the illustration of the absolute electric field 

percent change between both models shown in Figure 4.19. The differences in SAR correlate to 

the differences in the absolute electric field.   

There are differences in the numerical temperature rise in both numerical thermal models 

at 3T.  An equivalent input power of an average SAR of 3.2 W/kg applied to each thermal model.  

The differences in localized temperature rise corresponds to the difference in localized SAR 

regions.  Figure 4.31 illustrates the numerical temperature difference in both thermal models.  The 

numerical thermal models have the same initial temperature rise slope.  Over time, perfusion 

begins to bring the temperature rise to an equilibrium in the perfused segmented in-vivo human 

head models.  The temperature elevation indicates that temperature rise in all shown regions is 

within the IEC guidelines.  
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Figure 4.31. Temperature Elevation in Each Thermal Model at 3T. The temperature measurements in 

each model per temperature location for a duration of 10-minutes. 

4.5.3.2.3 Thermal Characterization Comparison of the Thermal Head Models at 3T and 

7T 

A comparison of the temperature elevation is shown in both thermal models at 3T and 7T in Figure 

4.32 and Figure 4.33. 
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Figure 4.32. Comparison of the Temperature Rise in Two Thermal Head Models at 3T and 7T.  A.) 

Perfused Segmented In-Vivo Human Head Model and B.) Perfusionless Anthropomorphic Heterogeneous Head 

Phantom Model loaded within the numerical 16-strut/4-port TEM Resonator. 
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Figure 4.32 (Continued) 

 

The probe locations were arbitrarily chosen within the perfusionless anthropomorphic 

heterogeneous head phantom model to eliminate favorable locations based on field strengths.   

Studies have indicated that the electric field becomes inhomogeneous at 3T and higher field 

strengths.  It was necessary to evaluate the numerical thermal heating in the perfusionless 

anthropomorphic heterogeneous phantom model at 3T and 7T.  The numerical temperature heating 

at 3T is not uniform primarily due to the SAR not being uniform at 3T.    
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Figure 4.33 indicates that using the power required to reach the FDA’s average SAR limits, 

a peak of 3.2W/kg, causes higher peak temperature rise in some locations at 3T than 7T.  Despite 

using the same continuous average SAR of 3.2W/kg, the power absorbed within the fillable 

compartments at 3T is much higher than 7T.  This difference in RF power absorption is caused by 

the difference in the power absorption within the SLA resin material at respect to each field 

strength.  A minimal power absorption in the SLA resin is experienced at 3T in comparison to 7T 

due to the differences in conductivity (3T: σ = 0.006 S/m; 7T: σ = 0.108 S/m). 

4.5.4 Summary 

In summary, the numerical perfusionless anthropomorphic head phantom model is a useful tool to 

assess MR safety at 3T and 7T.  The numerical perfusionless anthropomorphic head phantom 

model has corresponding SAR hot-spots and localized temperature elevation as the numerical 

perfused segmented in-vivo human head model at 3T and 7T.  The numerical temperature elevation 

over time differs in both thermal models at 3T and 7T because the perfusion stabilizes the 

temperature elevation after a designated duration in time.  

4.6 CONCLUSION 

This chapter was divided into two parts that discussed the EM and thermal characterization within 

a numerical perfusionless anthropomorphic head phantom using the TEM resonator at 3T and 7T.  

This chapter built on the work of Chapter 3.0 and further assessed the significance of the designed 

experimental anthropomorphic head phantom through numerical and experimental assessments.   
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Part I assessed the EM characterization of five numerical models at 3T and 7T by 

evaluating the S-parameters, B1
+ field distributions/intensities, and absolute electric field 

distributions/intensities.  This study determined that any model can be used to assess the S-

parameters at 3T and 7T.  Anthropomorphic head phantoms can be used to assess the B1
+ field 

distributions/intensities regardless of the media.  At 7T, homogeneous brain-doped or 

heterogeneous solutions should be used to be most comparable to the in-vivo volunteer.  At 3T, 

any media can be used to compare to the segmented in-vivo human head model.  However, the 

absolute electric field distribution/intensity is best assessed using the anthropomorphic 

heterogeneous head phantom to determine the least amount of volume change with a significant 

error, and it is most comparable to the segmented in-vivo human head model at both field strengths.  

The absolute electric field distribution/intensity is the bases for MR safety assessments.  These 

results are frequently referenced in Part II. 

Part II provided the thermal characterization of two thermal models at 3T and 7T by 

evaluating the SAR and the temperature elevation.  The study determined that the perfusionless 

anthropomorphic head phantom model overestimates the SAR distribution at 7T and 

underestimates the SAR distribution at 3T.  The overestimation and underestimation of SAR 

correlate to the absolute electric field distribution/intensity in Part I.  The absolute electric field 

was higher in the stereolithography (SLA) resin than the individual  fat, bone, and skin tissues at 

7T; and in contrast, the absolute electric field was lower in the SLA resin than the individual  fat, 

bone, and skin tissues at 3T.  The thermal assessments showed that the perfusionless 

anthropomorphic head phantom model is a great predictor of the initial temperature rise quantity 

and temperature rise locations in the perfused segmented in-vivo human head model.  At both field 

strengths, the perfusionless anthropomorphic head phantom model continues to rise in temperature 
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due to heat transfer, while the perfused segmented in-vivo human head model rises until it reaches 

an equilibrium due to the impact of perfusion.  The thermal elevation is higher in some regions at 

3T; however, the PBHE algorithm and the perfusionless anthropomorphic head phantom model 

are verified as helpful resources to validate the MR safety of an RF coil and MR sequence. 

The results in Chapter 4.0 support Specific Aim 2. The results in Chapter 4.0 indicate that 

accurate numerical modeling is still an effective and efficient predictive resource for an EM and 

thermal analysis.
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5.0 PRELIMINARY ELECTROMAGNETIC AND THERMAL 

CHARACTERIZATION OF THE ANTHROPOMORPHIC HETEROGENEOUS HEAD 

PHANTOM IN DIFFERENT 7T RF COILS 

5.1 INTRODUCTION 

Chapter 3.0 demonstrated through a few 7T MR measurements that the design of an 

anthropomorphic heterogeneous head phantom is a valuable tool for MR testing.  Chapter 4.0 

expands the work of Chapter 3.0 and determines the EM behavior of the anthropomorphic 

heterogeneous head phantom is the most comparable to the in-vivo volunteer in various MR 

measurements using the TEM resonator.  In this chapter, various 7T MR experiments and 

numerical studies are conducted to further evaluate the anthropomorphic heterogeneous head 

phantom as a resourceful tool in MR testing at high fields.  Several preliminary experiments were 

conducted to characterize various RF coil designs (RAPID coil (171-173), TEM resonator (62, 

101, 174), and Tic-Tac-Toe (TTT) coil (55)) that have shown successful 7T neuroimaging.   

The development of RF coils and arrays can be a challenge at 7T MRI.  Before RF coils 

are used in human studies, several EM and thermal characterization must be performed to evaluate 

RF coil designs for performance and RF safety.  Chapter 4.0 discussed EM and thermal 

measurements using the designed phantom and TEM resonator at 7T.   Government limitations in 

RF coil designs regulate thermal measurements.  Many works (14, 24, 107, 143, 175, 176) have 
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used fiber optic probes to monitor the temperature rise in various experimental thermal MR 

measurements to conduct a more accurate temperature rise measurements.  While fiber optic 

probes have proven to be useful, they are only capable of reading the localized temperature rises.  

While global temperature measurement methods are available, preliminary RF heating 

measurements and assessments will be conducted in this chapter using fiber optic temperature 

probes.    

In this chapter, the anthropomorphic heterogeneous head phantom is used to perform 

preliminary electromagnetic and thermal characterization in each RF coil by assessing the S-

parameters, RF homogeneity, and thermal heating.   Workbench analysis characterizes the S-

parameters to assess the transmission and reflection between the various ports within each RF coil.  

RF and thermal simulations used discretized FDTD by applying Maxwell’s equations in order to 

assess RF fields (electric and magnetic) and Penne’s Bioheat equation to assess thermal heating.  

The RF and thermal simulations are validated through an experimental B1
+ mapping method and 

experimental temperature rise measurements using fiber optic probes (Subsection 5.3.2.1).  Note 

that the experimental temperature rise measurements were conducted using the experimental 

anthropomorphic heterogeneous head phantom and TTT coil only.  In addition, the thermal 

simulations (Subsection 5.3.3.1) compared temperature rise in two thermal models: 1) the 

perfusionless anthropomorphic heterogeneous head phantom model and 2) perfused segmented in-

vivo human head model.  The results of this chapter further assess the hypothesis of Specific Aim 

2.  
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5.2 MATERIALS AND METHODS 

The methodology covered within this chapter discusses methods used to assess the hypothesis of 

Specific Aim 2.  This section outlines the organization of this chapter by detailing the experimental 

setup, MR and RF equipment, RF and thermal simulations, and experimental EM and thermal 

measurements.  

5.2.1 Experimental Studies of Electromagnetic and Thermal Characterization 

5.2.1.1 Experimental Setup 

5.2.1.1.1 MR Magnet and RF Experimental Setup 

Equipment at the RF Research and 7T Facilities at the University of Pittsburgh was used to perform 

RF and heating experiments.  The UHF facility offered a passively shielded Siemens 

MAGNETOM® (Siemens Healthcare, Erlangen, Germany) 7T whole-body scanner.  The machine 

offers 60.0-cm horizontal bore that is equipped with eight transmission channels.  The scanner 

system operates on Siemens syngo MR VB17A.   
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Figure 5.1. Experimental RF Heating Setup.  A) RF coil, Anthropomorphic Head Phantom, and 

ambient control phantom setup on the MR scanner, B) two NeoptixTM ReFlexTM boxes with capabilities to read 

eight fiber optic probes, and C) example of NeoptixTM T1 probes. 

5.2.1.1.2 Experimental Network Analyzer  

Scattering parameters were obtained to characterize the experimental anthropomorphic 

heterogeneous head phantom loaded in each experimental RF coil using an experimental network 

analyzer (Agilent E5602A, Keysight Technologies, Santa Rosa, California).   

5.2.1.1.3 NeoptixTM Fiber Optic T1 Probes and ReflexTM 

The experimental temperature was measured with fiber optic temperature probes (NeoptixTM (A 

Qualitrop Company)) (shown in Figure 5.1.C) with a 1s temporal resolution.  The fiber optic 

temperature probes are attached to the NeoptixTM ReFlexTM (accuracy of ±0.8°C) box (shown in 

Figure 5.1.B) which measures the temperature of each probe and is later visualized and recorded 

through NeoptixTM temperature software, NeoptixTM OptiLink Software.   
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5.2.1.1.4 Experimental RF Coils  

This study provides electromagnetic and thermal characterization with the experimental 

anthropomorphic heterogeneous head phantom (18) loaded within various experimental 7T RF 

coils (TEM resonator, loop-based coil (RAPID), and TTT coil).  Each experimental RF coil has a 

different design that is shown in Figure 5.2 and described below. 
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Figure 5.2. Dimensions and Placement of the Anthropomorphic Heterogeneous Head Phantom 

Positioned in Experimental Various 7T RF Coils. 
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5.2.1.1.4.1 Experimental 16ch–Tx/32ch-Rx TTT coil 

An experimental in-house developed 16ch–Tx/32ch-Rx TTT coil (17, 55, 177-179) is the head 

coil in the TTT array and coil family (55, 59, 180, 181) and it comprises of four individual coil 

elements (shown in Figure 5.2.A)  that yield a total of 16-channels (shown in Figure 5.2.B).  The 

16-channel transmit array is configured to use a combination of four-way (Werlatone® Inc., 

D11020-20, Patterson, New York, USA) and two-way (Werlatone® Inc., D11027-10, Patterson, 

New York, USA) splitters to produce one main channel that connects directly to the scanner’s 

combined mode.  Each channel is driven by customized RF shimming using pseudo modes (177) 

that generates the TTT’s quadrature excitation. 

The TTT coil (55) was designed on a 3D printed polycarbonate (PC) former using the 

Fused Deposition Modelling (FDM) (Redeye, Stratus USA) method to case the coil based on the 

design cross-pole antennas (55, 59, 180, 181).  A picture of the entire coil (including the Tx/Rx 

arrays) is shown in Figure 5.2.B.  The 2 x 2 cross-pole TTT coil (228.6 mm x 228.6 mm) has eight 

square-shaped copper (McMaster-Carr, USA) transmission lines (shown in Figure 5.2A).  A PC 

support (dielectric constant = 2.4, σ = 0.0 S/m) is used as a support for the inner rods and outer 

struts.  The struts are surrounded with an 8.0 µm thick single-layered copper sheet (Polyflon, 

Germany). The RF coil shielding (178) was designed with unique slits to minimize the eddy 

currents and ghosting (178) in the coil and was verified through echo planar imaging (EPI) 

applications.  The RF excitation ports’ center coaxial pin is connected to the strut and grounded 

by a connection to the RF shield. The 2 x 2 TTT array is tuned and matched by pushing the square-

shaped copper rods in and out of the outer struts.  Each coil was tuned to 297.2 MHz and matched 

to 50.0 Ω by adjusting the gap between the rods and validated through the scattering parameters 
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using a vector network analyzer (Agilent E5602A, Keysight Technologies, Santa Rosa, 

California).  Four sets of the 2 x 2 TTT arrays are comprised together to generate the coil with a 

top shield.  A 32-channel receive array was designed and is located within the center of the coil. 

5.2.1.1.4.2 Experimental 16-strut/4-port TEM Resonator  

An experimental in-house developed 16-strut/4-port TEM resonator (62) with a centered and fixed 

14-channel receive (101) is used as shown in Figure 5.2.D.  This RF coil was used in Section 4.2 

to validate the numerical studies of the numerical phantom models loaded within the numerical 

TEM resonator.  The experimental 16-strut/4-port TEM resonator was constructed using an acrylic 

cylinder with a 279.4 mm inner diameter, 355.6 mm outer diameter, and 228.6 mm length 

dimensions and two circular rungs.  The 16-elements (Figure 5.2.C) are separated equally 22.5° 

apart around the inside of a thin copper shield and the acrylic cylinder.  The inners rods have a 6.8 

mm diameter and were used to tune and match the TEM resonator. 

5.2.1.1.4.3 Experimental RAPID Biomed Coil  

A commercially available experimental 8-element RAPID Biomed coil (RAPID Biomedical 

GmbH, Würzburg- Rimpar, Germany) (173) was used in the combined mode and shown in Figure 

5.2.F.  The dimensions of the coil are 235.0 mm for the inner diameter and 245.0 mm for the outer 

diameter. An 8-channel loop-based coil (Figure 5.2.E) was used to obtain the scattering parameters 

due to the RAPID coil being a commercial coil with the inability to obtain scattering parameters 

from individual channels. 
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5.2.1.1.5 Experimental Phantoms 

5.2.1.1.5.1 Experimental Anthropomorphic Heterogeneous Head Phantom Generation  

Chapter 3.0 and work (18) described the fabrication of the experimental anthropomorphic 

heterogeneous head phantom. However, the mimicked-tissues development was involved in 

creating gels for stable RF heating instead of using liquids that might offer incorrect readings to 

due diffusion. To achieve the desired constitutive parameters of Table 3.1, various concentrations 

of distilled water, polyvinylpyrrolidone (PVP) powder (ultra-high molecular weight, Sigma-

Aldrich, St. Louis, Missouri, USA), sodium chloride (NaCl) (Fisher Scientific), copper sulfate 

(CuSO4) (Fisher Scientific), sodium azide (NaN3) (Sigma-Aldrich, St. Louis, Missouri, USA), and  

TMDOTMA- (Sigma-Aldrich, St. Louis, Missouri, USA).  PVP was used to lower the permittivity 

and preserves the signal instead of using sucrose (182).  NaCl increased the conductivity and NaN3 

is used as a preservative within each compartment to prevent the gel from molding.  CuSO4 is used 

to adjust the relaxation time of water to an acceptable T1 for the given tissue.  TMDOTMA- is 

used as a temperature sensitive contrast agent. 

5.2.1.1.5.2 Experimental Ambient Control Phantom 

An ambient control phantom (dielectric constant = 79.0, σ = 0.0 S/m) was placed 900.00mm from 

the experimental TTT coil within the bore (as shown in Figure 5.1.A), and RF shielding was placed 

on the experimental ambient phantom to deflect any possible RF inside of the bore during the MR 

scan. 
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5.2.1.2 Experimental Bench Measurements using an Experimental Network Analyzer 

The experimental anthropomorphic heterogeneous head phantom was characterized by the 

reflection coefficient (Sxx) and neighboring coupling (Sxy) of the experimental 16-strut/4-port 

TEM resonator, 16ch–Tx/32ch-Rx TTT coil, and the 8-channel loop-based coil.  Two channels 

were chosen for a demo analysis in each experimental RF coil to highlight the differences in 

loading between the RF coils that might occur using the experimental anthropomorphic 

heterogeneous head phantom. 

5.2.1.3 Experimental B1+ Mapping Measurements in Each Experimental RF Coil  

Before RF heating, experimental B1
+ maps were acquired to compute the voltage required to 

produce a 180°.  Experimental B1
+ field mapping was acquired on the experimental perfusionless 

anthropomorphic heterogeneous head phantom on the experimental 16-strut/4-port TEM 

resonator, 16ch–Tx/32ch-Rx TTT coil, and RAPID coil.  Experimental B1
+ field mapping was 

performed using the saturated TurboFLASH (38) sequence with the following parameters: FOV: 

64.0 x 64.0 mm2; TE: 1.16 ms; TR: 2000 ms; FA: 6⁰; BW: 1502 MHz/px; Resolution: 3.1 x 3.1 x 

2.0 mm3; and 6 flip angles.  Using ITK-Snap (134), the ROIs were determined and manually 

segmented for post-processing. 
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5.2.1.4 Experimental RF Heating Measurements Using the Experimental Anthropomorphic 

Heterogeneous Head Phantom Loaded within the TTT Coil at 7T (Preliminary 

Results) 

5.2.1.4.1 RF Heating Experiment Setup 

RF heating measurements were performed to quantify the temperature rise inside the experimental 

perfusionless anthropomorphic heterogeneous head phantom in the experimental 16ch–Tx/32ch-

Rx TTT coil at 7T.  The probe locations were chosen arbitrarily to not favor the SAR and 

temperature distribution within a specific experimental 7T RF coil.  The temperature probes are 

listed in Table 5.1 and shown in Figure 5.3. 

 

Figure 5.3. Eight Temperature probe locations in the Experimental Perfusionless Anthropomorphic 

Heterogeneous Head Phantom (shown on SLA Resin) and the ambient control phantom. 
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A total of eight probes were used for the experimental temperature measurements.  Seven 

fiber optic probes were used in the experimental perfusionless anthropomorphic heterogeneous 

head phantom where three were in the brain, one in the left eye, one in the cerebellum, one in the 

neck, and one in nasal airway.   One probe was placed in the ambient control phantom (TP 8 

referenced in Figure 5.3) that was wrapped in RF shielding to measure the ambient temperature 

and reflect the radiated RF energy.  The temperature probes were calibrated to have accurate 

temperature readings of the MR scanner room.  

Table 5.1. Temperature Probe Locations within the Experimental Perfusionless Anthropomorphic 

Heterogeneous Head Phantom highlighting the location, tissue classification, and probe depth from the exterior 

locations in Figure 5.3. 

 

Temperature 
Probe (TP) Label 

Physiological Phantom Location Depth of Probe 
(mm) 

1 Brain (Left-Posterior) 80 
2 Brain (Right-Anterior) 70 
3 Brain (Oblique/ Right) 110 
4 Eyes (Center-Left) 15 
5 Cerebellum (Right) 90 
6 Muscle (Right in Neck) 50 
7 Nasal Airway (Phantom Left) 50 
8 Ambient (Control Phantom) N/A 

 

The experimental perfusionless anthropomorphic heterogeneous head phantom was well 

insulated inside of the coil with blue foam (Ultra-Conformable Polyurethane Blue Foam Sheet, ¾” 

thick, 12”x12”, McMaster-Carr, Cleveland, OH, USA) while in the supine position as shown 

Figure 5.2.B.   
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5.2.1.4.2 Experimental RF Heating Measurements 

Before RF heating, the experimental coil and the experimental perfusionless anthropomorphic 

heterogeneous head phantom were placed inside of the bore overnight to achieve equilibrium 

within the MR environment.  18.00⁰C was the ambient temperature reading inside of the bore.   

While turning the gradient coils off, the experimental RF heating measurements are 

designed to measure the experimental temperature rise due to RF power absorption alone in the 

experimental perfusionless anthropomorphic heterogeneous head phantom.  The reference voltage 

delivered (260.0 V) was based on achieving an 11.7µT mean B1
+ field intensity in the experimental 

perfusionless anthropomorphic heterogeneous head phantom (experimental B1
+ measurement 

shown in Figure 5.8).  The experimental RF power is computed from acquiring the experimental 

mean B1
+ field intensity and knowing the various parameters from the MR sequence.   

A rectangular RF pulse is applied for an intense 30 minutes with an 11.1% duty cycle, 10 

ms pulse width.  Experimental RF heating is performed with the following MR sequence 

parameters: Sequence: FID Heating, TA: 30 min, BW: 10kHz/px, PW: 10ms, TR: 90ms, Voltage: 

150V, FA: 836°, TE: 3.6ms, Averages: 4096.  The MR system’s power recordings were obtained 

through software and power logs.  

During post-RF heating, the experimental TTT coil and the experimental perfusionless 

anthropomorphic heterogeneous head phantom were cooled.  The experimental absolute 

temperature changes were computed against the ambient temperature measured in the ambient 

control phantom in comparison to the experimental temperature rise in various compartments of 
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the experimental perfusionless anthropomorphic heterogeneous head phantom.  These results are 

shown in Figure 5.9. 

5.2.2 Numerical Studies of Electromagnetic and Thermal Characterization 

5.2.2.1 RF Simulations 

This subsection describes the numerical RF coils and head models required to develop the RF 

models shown in Figure 5.4 via sub-subsections 5.2.2.1.1 to 5.2.2.1.2.  The FDTD method (70) 

was used through a validated in-house numerical simulation software (13, 59, 71, 101, 132), with 

an accurate transmission line model for the excitation mechanism, generates output time-domain 

and frequency domain data.  The in-house software implements the finite difference equation of 

Maxwell’s equations.  Each model uses an isotropic spatial resolution of ~1.59 mm3 and temporal 

resolution of ~3.00ps.  Each numerical EM head model was placed in the supine position to 

correspond to the positioning of the experimental anthropomorphic heterogeneous head phantom 

model in Figure 5.2.B and D.  The numerical EM head models were positioned such that the corpus 

callosum in the brain was asymmetrically centered along the z-direction as shown in Figure 5.4.B 

and D.  Each numerical RF coil model was tuned and matched to 297.2 MHz.  A first-order 

differentiated Gaussian pulse was used to excite the numerical RF coil model and head models.  

The pulse has a 5.8 ns period that ran until achieving a stable steady state solution - 100,000-time 

steps.   

The output data is read by MATLAB (The MathWorks, Inc., Natick, MA, USA) in order 

to produce the electric and magnetic fields.  The RF simulations are shown through the numerical 
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B1
+ distribution and SAR distribution.  The methodology to compute numerical B1

+ and SAR 

calculations is covered in sub-subsection 5.2.2.1.3.   

 

Figure 5.4. Numerical Coil Description and FDTD Models of the Anthropomorphic Heterogeneous 

Head Phantom model loaded in the in-house developed RF Coils.  The 16ch–Tx/32ch-Rx TTT Coil model with 

the A) Schematic of the TTT Coil (without the Receive Array) model and B) loaded Anthropomorphic 

Heterogeneous Head Phantom model. The 16-strut/4-port TEM Resonator with the C) Schematic of the TEM 

Resonator (without the Receive Array) model and D) loaded Anthropomorphic Heterogeneous Head Phantom 

model.   
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5.2.2.1.1 Numerical RF Coils 

5.2.2.1.1.1 Numerical 16-strut/4-port TEM Resonator Model 

Sub-subsection 4.2.2.1 described the numerical modeling of the 16-strut/4-port TEM resonator 

model shown in Figure 5.4.C-D.  The numerical modeling of this coil matches the design, 

construction, and dimensions of the experimental 16-strut/4-port TEM resonator detailed in sub-

subsection 5.2.1.1.4.2.  

5.2.2.1.1.2 Numerical 16ch–Tx/32ch-Rx TTT Coil Model 

The numerical 16ch–Tx/32ch-Rx TTT coil modeling is shown in Figure 5.4.A-B.  The numerical 

modeling of this coil matches the design, construction, and dimensions of the experimental 16ch–

Tx/32ch-Rx TTT coil detailed in subsection 5.2.1.1.4.1.  The coil is optimized by combining all 

16-channels using the RF shimming tool (in Appendix C) to produce quadrature excitation and a 

bright center.  The coil was tuned and matched by loading the coil with the Virtual Family v1.0 

(31) Duke head to shoulder model.  The coil was not retuned for each RF load. 

5.2.2.1.1.3 Numerical RAPID Model 

The RAPID coil was not modeled because it is a commercial RF coil and its RF configurations are 

not accessible. 
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5.2.2.1.2 Numerical Electromagnetic Head Models  

Two numerical EM head models are used in this particular study namely: 1) a segmented in-vivo 

human head model and 2) an anthropomorphic heterogeneous head phantom model.  The 

constitutive properties of the models were cited in works (31, 98, 153, 159-164) including the 

Virtual Family v1.0 Duke (31, 165) and were reflected in the previous chapter in Table 4.12.    The 

computational domain of all numerical EM head models includes the anatomy of the entire head, 

neck, and upper shoulders. 

5.2.2.1.2.1 Numerical Segmented In-Vivo Human Head Model 

The numerical segmented in-vivo human head model is the numerical EM model of the in-vivo 

volunteer in Chapters 3.0 and 4.0.  The model was generated from the acquired 3T dataset shown 

in Figure 3.2 through automatic segmentation using iSeg (ZMT Zurich MedTech AG, Zurich, 

Switzerland).  The numerical head model consists of 10 group classified tissues namely: air, bone, 

brain (WM/GM), brainstem, cerebellum, cerebrospinal fluid (CSF), eyes, fat, muscle, and skin.  

The constitutive parameters were weighted averages of the tissues in the respective physiological 

location from the head to the upper shoulders.  These physiological tissues are listed in Table 4.12 

in the general biological tissue classification column which corresponds to the phantom tissue 

classification column.  The numerical segmented in-vivo human head model was scaled to 

~1.59mm3 isotropic spatial resolution containing 252*252*287 Yee-cells in the respective x, y, 

and z-direction. 
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5.2.2.1.2.2 Numerical Anthropomorphic Heterogeneous Head Phantom Model 

The numerical anthropomorphic heterogeneous head phantom model is the numerical EM model 

of the experimental anthropomorphic heterogeneous head phantom.  The numerical head phantom 

model was made in two steps.  The first step involved its generation from the acquired 3T dataset 

shown in Figure 3.2 through automatic segmentation using iSeg.  Next, the numerical head 

phantom model was merged with the STL file that contains the SLA resin boundaries between the 

tissues.  The merging of the model components involved the alignment of anatomical landmarks. 

This numerical head phantom model consists of eight group classified tissues namely: air, brain 

(WM/GM), brainstem, cerebellum, CSF, eyes, muscle, and the remainder volume being a 

combination of the fat, bone, and skin (SLA Resin).  The model comprises of the head to upper 

shoulders.  All tissues except the SLA Resin have the same constitutive properties of the numerical 

segmented in-vivo human head model and these properties are listed in Table 4.12.  The numerical 

anthropomorphic heterogeneous head phantom was scaled to ~ 1.59 mm3 isotropic spatial 

resolution containing 252*252*287 Yee-cells in the respective x, y, and z-direction. 

5.2.2.1.3 FDTD Calculations of the B1+ Field and SAR  

The numerical EM calculations were performed primarily in the TTT coil.  The TEM coil was 

only used to validate the SLA resin conductivity.   

5.2.2.1.3.1 FDTD Calculations of the B1
+ Field 

The B1
+

 field intensity per volt is obtained using the simulated input pulse amplitude, which is 

determined by the Fast Fourier transform (FFT) of the Gaussian pulse in the time domain at ~297.2 
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MHz.  The numerical B1
+ distribution was scaled for 1-Watt of input power and was calculated 

with the same calculations referenced in sub-subsection 4.2.2.1.3.  The numerical B1
+ calculation 

and distribution were performed only on the TTT coil to validate the measured B1
+ within the 

experimental anthropomorphic heterogeneous head phantom.  The numerical B1
+ calculations 

were not performed using the TEM resonator. 

5.2.2.1.3.2 FDTD Calculations of the SAR 

The numerical SAR is computed using equation (4.2).  The numerical SAR was normalized per a 

continuous mean B1
+ field intensity of 2µT to produce a 180° flip angle for a 1ms rectangular RF 

pulse.  The numerical SAR calculations performed with the TEM resonator were used only to 

validate the SLA resin shown in Figure 5.5.B-C.  The numerical SAR was calculated for the 

numerical TTT coil using the anthropomorphic heterogeneous head phantom model only.    The 

numerical SAR distribution was scaled to the peak SAR in the model. 

5.2.2.2 Thermal Simulations 

This section describes the thermal simulation methods and the RF coils and head models required 

to develop the numerical thermal models shown in Figure 5.4.   
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5.2.2.2.1 RF Coils 

5.2.2.2.1.1 Numerical 16-strut/4-port TEM resonator Model 

Numerical thermal modeling was not performed using the 16-strut/4-port TEM resonator.     

5.2.2.2.1.2 Numerical 16ch–Tx/32ch-Rx TTT coil model 

Numerical thermal modeling was performed with the numerical 16ch–Tx/32ch-Rx TTT coil model 

loaded with both head models. The computational domain of both head models includes the 

anatomy of the entire head to shoulders.  The coil is driven as described in Subsection 5.2.2.1.1.2 

to perform the thermal simulations.  

5.2.2.2.1.3 Numerical RAPID Coil 

Numerical thermal modeling was not performed using the RAPID coil due to it being a commercial 

RF coil with unavailable design configurations. 

5.2.2.2.2 Numerical Thermal Head Models 

Two numerical thermal models are used in this particular study namely: 1) a perfused 10-tissue 

segmented in-vivo human head model and 2) a perfusionless anthropomorphic heterogeneous head 

phantom model.  The thermal properties were based on the thermal and constitutive properties 

cited in works (31, 98, 153, 159-164) including the Virtual Family v1.0 Duke (31, 165) and were 

reflected in the previous chapter in Table 4.12.  Numerical thermal simulations were conducted 
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using two of the three RF coils (TEM and TTT).  The numerical thermal models are loaded within 

the RF coils as shown in Figure 5.4.B and D.   

 

5.2.2.2.2.1 Numerical Segmented In-Vivo Human Head Model 

The perfused segmented in-vivo human head model is composed of thermal parameters 

and constitutive parameters.  All 10 classified tissues have a corresponding thermal parameter 

listed in Table 4.12. The thermal parameters were weighted averages of the tissues in the respective 

physiological location from the head to the upper shoulders and are visualized.

 

5.2.2.2.2.2 Numerical Anthropomorphic Heterogeneous Head Phantom Model 

The numerical perfusionless anthropomorphic heterogeneous head phantom model is 

composed of thermal parameters and constitutive parameters.  All eight classified tissues have a 

corresponding thermal parameter listed in Table 4.12.  The thermal parameters were weighted 

averages of the tissues in the respective physiological location from the head to the upper shoulders 

and are visualized in Figure 4.21.B  

       Since the experimental perfusionless anthropomorphic heterogeneous head phantom tissues 

were fabricated with agar for thermal testing, the following thermal parameters were used for all 

fillable tissues.  The specific heat capacity was set to 4200.00 J/ kg °C, which is the specific heat 

of the distilled water mixed with agar.  The thermal conductivity was set to 0.498 J/m s °C.  Due 

to there being no perfusion and basal metabolic rate in the experimental perfusionless 
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anthropomorphic heterogeneous head phantom, these parameters were set to for all specified 

fillable tissues.  The thermal parameters of the SLA resin were only known for the thermal 

conductivity 0.17 J/m s °C.  The specific heat was not known for the SLA resin and was set to the 

specific heat of Teflon, 1050.00 J/ kg °C.   

5.2.2.2.2.3 Numerical Thermal Simulations Method 

The numerical thermal simulations were performed using PBHE implemented with the FDTD 

method.  The numerical thermal simulations used the PBHE with the Tb set to 37.00°C in the 

numerical perfused segmented in-vivo human head model and the numerical perfusionless 

anthropomorphic heterogeneous head phantom model set to 18.00°C.  The thermal boundary 

conditions were set to 20 J/m2 s ºC (75).  The numerical perfused segmented in-vivo human head 

model is used to determine how similar the thermal characterization of this model is to the 

numerical perfusionless anthropomorphic heterogeneous head phantom and to demonstrate the 

impact of perfusion on the temperature measurements. 

Initially, the numerical TTT coil and the numerical thermal head models were run to reach 

steady-state as shown in Figure 4.23.  The numerical perfused segmented in-vivo human head 

model’s steady-state was reached in 56 minutes, and the numerical perfusionless anthropomorphic 

heterogeneous head phantom model was at steady-state since its temperature was the same as the 

MR room temperature – 18.00°C.  Next, RF heating was applied with a specified power for an 

intensive 30 minutes to the numerical perfusionless anthropomorphic heterogeneous head phantom 

model and the numerical segmented in-vivo human head model loaded within the numerical TTT 

coil.  The power is equivalent to the product of the scaled net input power and 11.1% duty cycle.  
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The net input power at the RF coil’s plug was extracted from the scanner’s RF power log.  The 

numerical thermal heating calculations are described in sub-subsection 5.2.2.2.3. 

5.2.2.2.3 FDTD Calculations of Temperature Elevation 

The numerical thermal calculations were performed to obtain the temperature elevations (see sub-

subsection 4.5.2.1.3) within both models using TTT coil for a preliminary comparison.  The 

numerical SAR (see sub-subsection 5.2.2.1.3.2) was used as the input heat source for each model.   

The numerical and experimental temperature measurements are compared and shown in Figure 

5.9 for the numerical and experimental perfusionless anthropomorphic heterogeneous head 

phantom.  A numerical comparison between both thermal head models is shown in Figure 5.11 to 

offer a prediction of how similar the numerical thermal characterization in the perfusionless 

anthropomorphic heterogeneous head phantom model is to the perfused segmented in-vivo human 

head model.   

5.3 RESULTS 

5.3.1 Validation of Conductive SLA Resin 

Figure 5.5.C shows the experimental temperature rise on the SLA resin material of the 

experimental anthropomorphic heterogeneous head phantom (151) and proves its conduction.  To 

reach equilibrium, the experimental perfusionless anthropomorphic heterogeneous head phantom, 

and the experimental 16-strut/4-port TEM resonator remained inside the magnet bore overnight.  
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The temperature probes were strategically chosen (Figure 5.5.A, D) and placed on predicted hot-

spots, localized areas of high RF energy, from the numerical modeling (Figure 5.5.B). 

A less power intensive RF heating sequence was used to determine a simple conduction 

assessment of the SLA resin using the experimental 16-strut/4-port TEM resonator. The 

experimental RF heating parameters are as follows: Sequence: FID Heating; TR: 3500ms; FA: 

3600°; Averages: 4096; Reference Voltage: 300V; TA: ~5.5 hours. 

 

Figure 5.5. The SLA Resin by DSM Somos® is used to show the experimental anthropomorphic head 

phantom in (A), and the yellow arrows indicate the location of the probes.  Various views of the numerical SAR 

model for the phantom are chosen to highlight local SAR points in (B).  C.) The temperature rise of the SLA 

Resin that is indicated for 5.5 hours.  The ambient temperature is captured in the last plot. D.) Temperature 

probe locations.  
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Figure 5.5.C illustrates the results of the experimental temperature rises in all probes 

located in Figure 5.5.A.  The SLA resin material is heating considerably, and thus, we can conclude 

that the phantom material is conductive.  The experimental temperature change is highest in the 

nasal passage with a rise of 2.00°C.  There is an equal temperature rise on the upper lip of 1.10°C 

and behind the ear 1.30°C.  There was minimal temperature rise in the shoulders.  The averaged 

tissue in the fat, bone, and skin offer conductivity of 0.1663 S/m and density of 1223.49 kg/m3.  

While it would be ideal to have a conductive skin layer, the SLA resin shows promise in being a 

useful tool for MR purposes. 

5.3.2 Verification of Experimental Bench Measurements 

A workbench analysis is shown in Figure 5.6 to highlight the loading of the experimental 

anthropomorphic heterogeneous head phantom inside of the different experimental RF coils 

designs.   

Chapter 4.0 summarized that the reflection coefficient varies in value based on the loaded 

experimental phantom’s geometry and media within the experimental 16-strut/4-port TEM 

resonator. These results are also shown in Figure 5.6.A. In addition, these results demonstrated 

that the reflection coefficient and coupling of the experimental anthropomorphic heterogeneous 

head phantom were relatively similar to the in-vivo volunteer’s bench results in Chapter 3.0.    

 

 



225 

 

Fi
gu

re
 5

.6
. C

om
pa

ri
so

n 
of

 E
xp

er
im

en
ta

l A
nt

hr
op

om
or

ph
ic

 H
et

er
og

en
eo

us
 H

ea
d 

Ph
an

to
m

 lo
ad

in
g 

us
in

g 
th

e 
Sc

at
te

ri
ng

 P
ar

am
et

er
s 

of
 th

re
e 

E
xp

er
im

en
ta

l R
F 

C
oi

ls
. T

he
 a

nt
hr

op
om

or
ph

ic
 h

et
er

og
en

eo
us

 h
ea

d 
ph

an
to

m
 lo

ad
ed

 w
ith

in
 A

.) 
an

 e
xp

er
im

en
ta

l 1
6-

st
ru

t/4
-p

or
t T

E
M

 r
es

on
at

or
, B

.) 
an

 

ex
pe

ri
m

en
ta

l 8
-c

ha
nn

el
 lo

op
-b

as
ed

 c
oi

l (
si

m
ila

r 
to

 th
e 

R
A

PI
D

 c
om

m
er

ci
al

 c
oi

l’s
 d

es
ig

n)
, a

nd
 C

.) 
an

 e
xp

er
im

en
ta

l 1
6c

h–
T

x/
32

ch
-R

x 
T

T
T

 c
oi

l. 

 



226 

The experimental 8-channel loop-based coil (Figure 5.2E) is used to observe the S-

parameters of the RAPID coil since the RAPID coil is a commercial coil that was not opened.  The 

8-channel loop-based coil has a high coupling for the experimental anthropomorphic head 

phantom (Figure 5.6B) in comparison to the other two coils, while the TEM resonator and TTT 

have a much lower coupling for neighboring channels.  In contrast, the reflection coefficient and 

matching of each channel are lower in amplitude (dB) in the 8-channel loop-based coil for each 

load in comparison to the TEM resonator and TTT coil.   

While all the coils were tuned to in-vivo subjects, Figure 5.6 shows that the coupling and 

reflection coefficient amplitudes of the TTT coil is still optimal using the experimental 

anthropomorphic heterogeneous head phantom.  Due to its high coupling nature, the TTT coil is 

load insensitive to any of anthropomorphic human head loads.  

5.3.1 Experimental B1+ Field Comparison Using the Experimental Anthropomorphic 

Heterogeneous Head Phantom Centered in Various Experimental RF Coils 

RF field homogeneity is a part of an RF coil’s design consideration.  The experimental B1
+ field 

comparison was verified using each experimental RF coil.  The results shown in Figure 5.7 

demonstrates the RF homogeneity qualitatively that different coil geometries produce.  The TTT 

coil is the most homogeneous experimental RF coil presented and is supported through detailed 

experimental B1
+ field profiles in Figure 5.7.  The experimental 16-strut/4-port TEM resonator and 

experimental RAPID coil often have low B1
+ field intensities in certain spots which are shown in 

Figure 5.7.  The low field values produce either low or no MR signal.  The low fields are located 

in the temporal lobe, cerebellum, and upper parietal brain of the head phantom.  In contrast, the 
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loss in these physiological brain regions is present with MR signal in the RAPID coil and TEM 

Resonator. 

 

Figure 5.7. Experimental B1+ Field Comparison of the Anthropomorphic Heterogeneous Head 

Phantom loaded in Each Experimental 7T RF Coil.  Single slices are shown in all planar views.  The magnitude 

was scaled to a maximum B1+ intensity of 0.80 µT√W for 1-Watt of input power. 
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The experimental mean B1
+ field intensity and CV were assessed in various compartments 

of the brain in the experimental perfusionless anthropomorphic heterogeneous head phantom.  In 

the brain compartment, the experimental mean B1
+ field intensity is highest in the RAPID and 16-

strut/4-port TEM resonator.  For the 16-strut/4-port TEM resonator and RAPID coil, the mean B1
+ 

field intensity is highest in the ventricles of the cerebrospinal fluid due to its quadrature excitation.  

The mean B1
+ field intensity is highest next in the midbrain, and this observation is supported by 

the magnitude of the B1
+ distribution illustrated in Figure 5.7.  The mean B1

+ field intensity is 

highest in the midbrain of the 16-strut/4-port TEM resonator.  The experimental anthropomorphic 

heterogeneous head phantom demonstrates that the TTT coil has the lowest mean B1
+ field 

intensity per input power and CV in all compartments and therefore the most homogeneous RF 

distribution.  Note that while the TTT design possesses low B1
+ per input power efficiency, it 

possesses higher B1
+ per SAR efficiency when compared to the TEM design (183). 
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5.3.2 Experimental RF Heating Using the Experimental Perfusionless Anthropomorphic 

Heterogeneous Head Phantom Loaded within the TTT Coil (Preliminary Results) 

Two RF heating experiments were conducted to perform RF heating in the perfusionless 

anthropomorphic heterogeneous head phantom for experimental temperature measurements: 1) 

validating thermal simulations with experimental thermal measurements and 2) comparing 

numerical RF heating of the numerical perfusionless anthropomorphic heterogeneous head 

phantom model to the numerical perfused segmented in-vivo human head model.     

5.3.2.1 Validation of Numerical Temperature Rise to Experimental Temperature 

Measurements 

The numerical ambient temperature was set to 18.00°C within and outside of the numerical 

perfusionless anthropomorphic head phantom model to match the experimental ambient 

temperature.  The numerical and experimental temperature measurements are close in temperature 

change and slope in Probes 1 and 2 in Figure 5.9.  The numerical input SAR was converted to the 

SAR per 1-Watt of input power and scaled by an average net coil input power of 34.88W.  The net 

power is the average power delivered to the coil multiplied by the duty cycle and removes losses 

from the plug to the cables in the coil.  The losses were measured with the network analyzer from 

the plug to the TTT’s cables. 
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The results of Figure 5.9 indicate that the numerical thermal model has the ability to predict 

the experimental thermal measurements.  Despite its accuracy, the experimental and numerical 

models indicate that the temperature rise is linear because the phantom is perfusionless.  

Temperature probes 3 to 5 are close to the SLA resin that is between two compartments.  The 

numerical simulations offer a better prediction for the temperature probes that are submerged 

around non-SLA resin media.  The source of error should be further explored. 

5.3.3 Numerical Studies of Electromagnetic and Thermal Characterization with the 

Anthropomorphic Heterogeneous Head Phantom using the TTT Coil 

Figure 5.10.A and B shows the numerical and validated experimental B1
+ distribution for 1-Watt 

of input power.  The distributions are similar in B1
+ distribution per slice.  The B1

+ field distribution 

is masked to all fillable compartments in the head phantom in order to eliminate the B1
+ field in 

the SLA resin, which produces low MR signal.  The ROI shown is based on the slice selection to 

acquire the experimental B1
+ distribution.  The numerical and experimental B1

+ field distributions 

are scaled to the same magnitude scale (0 to 0.49 µT/√𝑊).     

 Figure 5.10.C shows the numerical SAR distribution per a continuous mean B1
+ intensity 

of 2µT in the head phantom.   The distribution is shown from 0 to 8.00 W/kg.  The peak SAR is 

7.89 W/kg.  The peak SAR region is located in the left temporal lobe of the brain compartment 

and the left zygomaticus major muscle in the upper muscle compartment.
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A numerical RF heating experiment was conducted to perform RF heating in the anthropomorphic 

heterogeneous head phantom for experimental temperature measurements by comparing the 

numerical RF heating of the perfusionless anthropomorphic heterogeneous head phantom to the 

perfused segmented in-vivo human head model.     

In the perfused segmented in-vivo human head model, the numerical temperature 

equilibrium was achieved by setting the body temperature to 37.00°C and bore temperature to 

18.00°C.  The numerical input SAR was scaled by an average net coil input power of 34.88W in 

both models.  A 30-min RF exposure was applied to both models.  Figure 5.11 indicates the results 

of the numerical RF heating comparison of both models for all probes.    In this study, resources 

were not available to perform in-vivo RF heating on a volunteer.  Thus, the perfused segmented 

in-vivo head model offers a prediction of the potential RF heating that this specific in-vivo 

volunteer may experience.  Since the segmented in-vivo head model has perfusion, the temperature 

reaches an equilibrium state in most probe locations in the allotted time except for the temperature 

probe 6 (located in the neck). 

5.4 DISCUSSION 

This study provides several electromagnetic and thermal assessments of the perfusionless 

anthropomorphic heterogeneous head phantom using different RF coils.  RF and thermal 

simulations validated experimental RF and thermal measurements using the anthropomorphic 

heterogeneous head phantom in different RF coil geometries.  The thermal simulations compare 

the RF heating within each developed numerical thermal model. 
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Figure 5.5 validated that the SLA resin is conductive and a useful tool to assess the 

approximate temperature rise in mimicked human tissue.  These measurements validate the SAR 

characterization of the head phantom shown in Chapter 4.0.  Furthermore, the temperature 

measurements verify thermal parameters of the SLA resin not provided by the specification sheet.  

Future work will involve a more robust view of the temperature rise around the phantom and an 

analysis and distinction of the thermal and electrical losses in the phantom and environment.    

Chapters 3.0 and 4.0 concluded that the experimental anthropomorphic heterogeneous head 

phantom is adequate for bench measurements.  The work within this chapter further demonstrates 

through a demo-channel analysis that the experimental anthropomorphic heterogeneous head 

phantom is useful in determining bench measurements on different RF coil geometries.  Chapters 

3.0 and 4.0 summarized that the experimental anthropomorphic heterogeneous head phantom 

measurements are closest to the in-vivo measurements.  Although this study does not offer in-vivo 

bench measurements, it offers a baseline for future in-vivo comparison. 

Figure 5.7 and Figure 5.8 demonstrate the impact RF homogeneity using different 

experimental RF coil designs at 7T.  Even though the experimental RF coils have different designs, 

Figure 5.7 and Figure 5.8 illustrate that the experimental anthropomorphic heterogeneous head 

phantom is a helpful tool for MR researchers that aim to improve RF homogeneity in RF coil 

design.  Moreover, Figure 5.10.B demonstrates how the experimental B1
+ distribution is in 

agreement with its numerical B1
+ distribution results Figure 5.10.A.   

Figure 5.10.C illustrates the SAR distribution throughout the numerical perfusionless 

anthropomorphic heterogeneous head phantom model.  Figure 5.12.B and E aid in determining the 

physiological regions of the global SAR in the SAR distribution from Figure 5.10.C. The 

physiological regions of the numerical perfused segmented in-vivo human head model do not have 



237 

artificial boundaries between the tissues and the tissues within the numerical perfusionless 

anthropomorphic heterogeneous head phantom model are slightly smaller in volume due to these 

artificial boundaries.  As mentioned, the peak SAR is located in the temporal lobe of the brain 

compartment and zygomaticus major muscle in the upper muscle compartment. It is important to 

note that the peak SAR region is not an accurate representation of the peak SAR region and 

intensity in the numerical perfused segmented in-vivo human head model and is supported by the 

comparison of the Figure 5.12.A and D.  The peak SAR is 5.72 W/kg in the numerical perfused 

segmented in-vivo human head model.  The temporal lobe and zygomaticus major muscle are small 

regions within the brain and muscle compartments that are surrounded by the SLA resin material.   

 

 

Figure 5.12. Numerical Comparison of the SAR, Permittivity and Absolute Electric Field Distribution 

in the Numerical Thermal Models within the Numerical TTT Coil. The numerical perfused segmented in-vivo 

human head model shows the A) SAR distribution in the region, B) permittivity in the region, C) the absolute 

electric field in the region, and the numerical perfusionless anthropomorphic heterogeneous head phantom 

model shows the D) SAR distribution in the region, E) permittivity in the region, F) the absolute electric field 

in the region.  
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The SLA resin has a much higher electric field intensity than the electric field in the 

individual fat, bone, and skin tissues due to the SLA resin having a lower permittivity that results 

in a higher electric field distribution.  The absolute electric field is much higher in this region 

within the numerical perfusionless anthropomorphic heterogeneous head phantom model shown 

in Figure 5.12.C than with the numerical perfused segmented in-vivo human head model shown in 

Figure 5.12.F.  Chapter 4.0 also demonstrates having similar differences between the absolute 

electric field behavior in each thermal model using the TEM resonator. 

Preliminary thermal measurement results were conducted using the thermal simulations 

and experimental thermal probes in the TTT only shown in Figure 5.9.  The results indicated that 

the numerical Penne’s Bioheat equation was a good predictor of the numerical perfusionless 

anthropomorphic heterogeneous head phantom model’s temperature rise based on the average net 

input power in the numerical TTT coil.  The source of error for the locations closest to the SLA 

resin should be further explored.  This thermal assessment was performed for an intensive 30 

minutes of continuous power.  The applied numerical RF heating does not present an MR 

sequence, but it shows the capability of presenting the thermal heating in a real MR sequence.  

While the results are preliminary, this analysis is essential because similar thermal simulations can 

be performed based on various MR protocols at 7T.   

The last thermal characterization assessment suggests that the numerical perfused 

segmented in-vivo human head model will not have the same temperature rise as the numerical 

perfusionless anthropomorphic heterogeneous head phantom model.  The numerical global SAR 

for a continuous mean B1
+ intensity of 2µT indicated that the numerical perfusionless 

anthropomorphic heterogeneous head phantom model results would be higher than the numerical 



239 

perfused segmented in-vivo human head model.  However, the impact of perfusion has a 

considerable influence on the difference in temperature rise.  The perfusion in the numerical 

segmented in-vivo human head model allows the model to reach equilibrium, which is supported 

by the results.  The thermal model was created with the best assumption of the most applicable 

electromagnetic and thermal properties; yet, there might be a need to further validate the thermal 

properties in a study (similar to the EM properties validated in Chapter 4.0). 

A sub-goal in this chapter was to assess how accurate a predictor in thermal heating with 

the perfusionless anthropomorphic heterogeneous head phantom would be to an in-vivo 

comparison.  Figure 5.11 shows that there are distinct differences in the temperature change 

between the two thermal models.  However, the numerical perfusionless anthropomorphic 

heterogeneous head phantom offers an accurate comparison of temperature rise and slope before 

the numerical perfused segmented in-vivo human head model reaches equilibrium.  The 

preliminary results are applicable only to the TTT coil, and further work should be done to compare 

the thermal characterization of the experimental perfusionless anthropomorphic heterogeneous 

head phantom in various RF coils. 

5.5 CONCLUSION 

In conclusion, various MR experiments conducted within this chapter highlight that the designed 

phantom is a valued resource for RF engineers and the MR community at 7T.  In addition, the 

preliminary results indicate that the experimental perfusionless anthropomorphic heterogeneous 

head phantom offers promise in predicting thermal characterization of a phantom.  This chapter 
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exams the hypothesis of Specific Aim 2.  Future RF heating experiments can be conducted to 

validate the global, experimental temperature rise through MR thermometry.   
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6.0 CONCLUSIONS AND FUTURE WORK 

6.1 SUMMARY AND FINDINGS 

6.1.1 Development of an Anthropomorphic Heterogeneous Head Phantom to Evaluate 

and Characterize Experimental MRI Studies at 7T 

An anthropomorphic heterogeneous head phantom was developed for MRI applications and can 

be used for other electromagnetic applications.  The anthropomorphic head phantom was 

developed from a 3T MRI healthy male dataset to have eight classified tissue compartments.  The 

anthropomorphic head phantom was successfully built and preliminarily evaluated through an 

application that involves electromagnetic-tissue interactions: MRI (due to it being an available 

resource).  The anthropomorphic head phantom was filled with media possessing electromagnetic 

constitutive parameters that correspond to biological tissues at ~297 MHz.  The anthropomorphic 

head phantom is unique in that it has more tissue compartments than previous works and its data 

is compared to the volunteer from whom the head phantom was prototyped.   

A preliminary comparison between an in-vivo human volunteer (based on whom the 

anthropomorphic head phantom was created) and various phantoms types, one being the 

anthropomorphic heterogeneous head phantom, were performed using a 7T human MRI scanner.  
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The other phantom types were the same anthropomorphic head phantom filled with different 

media, which demonstrated its versatility).  The comparison involved three assessments using EPI, 

B1
+ field distributions, and the scattering parameters in Chapter 3.0.  EPI acquisitions were 

performed, and minimal ghosting and fluctuations were observed using the proposed 

anthropomorphic phantom.  The B1
+ field distributions (during MRI experiments at 7T) and the 

scattering parameter (measured using a network analyzer) were most comparable between the 

anthropomorphic heterogeneous head phantom and an in-vivo human volunteer.   

In conclusion, the developed anthropomorphic heterogeneous head phantom can be used 

as a resource to various researchers in applications that involve electromagnetic-biological tissue 

interactions such as MRI.  The anthropomorphic heterogeneous head phantom’s results prove the 

hypothesis as accurate determining that the anthropomorphic heterogeneous head phantom has a 

better comparison to the in-vivo human volunteer than the commercial homogeneous water-doped 

spherical phantom.  Specific Aim 1 was completed and proved that those that use the 

anthropomorphic heterogeneous head phantom instead of a basic spherical phantom will find it 

easier to evaluate RF head coils. 

6.1.2 Electromagnetic and Thermal Characterization of a Perfusionless 

Anthropomorphic Heterogeneous Head Phantom using the TEM Resonator at 3T 

and 7T MRI 

The anthropomorphic heterogeneous head phantom developed in Chapter 4.0 is further assessed 

in Chapter 4.0 through EM and thermal characterization using the TEM resonator at 3T and 7T.  

EM characterization was assessed through three quantitative studies in Section 4.2.  The EM 

characterization was performed to accurately calculate the scattering parameters and the electric 
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and magnetic field distributions using B1
+ field mapping methods on a 7T human MRI scanner 

and numerical full-wave electromagnetic simulations at 3T and 7T.  In addition, future work could 

offer experimental validation to see if the same study can be validated through experiments at 3T.  

All studies used the following: 

1. a recently developed six-compartment refillable 3D-printed anthropomorphic head 

phantom (developed from MRI scans obtained in-vivo), where the phantom itself is filled 

in its entirety with either heterogeneous loading, or homogeneous brain-doped or water-

doped loading, 

2. in-vivo (the same volunteer on whom the phantom was based), and 

3. a commercial homogeneous water-doped spherical phantom.  

The results determined that the calculated S-parameters for all the anthropomorphic head 

phantoms were comparable to the in-vivo volunteer (within 17% difference of reflection 

coefficient value) and differed for the commercial homogeneous water-doped spherical phantom 

(within 45% difference of reflection coefficient value).  The experimentally measured B1
+ field 

maps of the anthropomorphic heterogeneous and homogeneous brain-doped head phantom results 

were most comparable to the in-vivo volunteer. The numerical simulations show that both the 

anthropomorphic homogeneous water-doped and brain-doped phantom models overestimate the 

absolute electric field intensities when compared to the originally segmented in-vivo human head 

model and anthropomorphic heterogeneous head phantom model.  The results demonstrate the 

usefulness of 3D printing anthropomorphic phantoms for RF coils evaluation and testing 

applications.   

The thermal characterization was assessed using the TEM resonator through the numerical 

full-wave thermal simulations at 3T and 7T.  Penne’s bioheat equation was applied using the SAR 
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input per a continuous power required to achieve the FDA regulated average SAR on the perfused 

segmented in-vivo human head model and perfusionless anthropomorphic heterogeneous head 

phantom model.  The results determine that the perfusionless anthropomorphic heterogeneous 

head phantom does not have the exact temperature rise in the perfused segmented in-vivo human 

head model tissues beyond the perfused time constant.  However, it does demonstrate that the 

numerical simulations and experimental thermal measurements are similar in locations far from 

the SLA resin boundary.  This work is preliminary but shows promise in the anthropomorphic 

heterogeneous phantom being a useful tool in the RF heating assessment of RF coils and supports 

the hypothesis in Specific Aim 2. 

6.1.3 Preliminary Electromagnetic and Thermal Performance Evaluation of the 

Perfusionless Anthropomorphic Heterogeneous Head Phantom using Various RF 

Coils at 7T MRI 

In Chapter 5.0 anthropomorphic heterogeneous head phantom was assessed using various RF coils 

at 7T.  Using the 7T human MRI scanner, the electromagnetic characterization of the designed 

anthropomorphic head phantom was assessed in the experimental TEM resonator, TTT 16-ch 

Tx/32-ch Rx coil, and the RAPID coil through a demo of the experimental scattering parameters 

and experimental B1
+ mapping.  The experimental mean B1

+ is highest in the RAPID and TEM 

resonator at 7T.  However, the experimental TTT coil provides the most uniform RF homogeneity 

with an extensive homogeneous coverage from the top of the head to the base of the cerebellum.  

The numerical temperature simulations are accurate in its comparison to the experimental results 

of RF heating in the experimental perfusionless anthropomorphic heterogeneous head phantom’s 

compartments that are far from the interface of the SLA resin and a classified tissue.  The 
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anthropomorphic heterogeneous head phantom is perfusionless and has a linear temperature rise 

through the thermal heating experiment.  However, the perfused segmented in-vivo human head 

phantom has an exponential trend and reaches equilibrium upon achieving the perfused time 

constant.  These results indicate that the experimental perfusionless anthropomorphic 

heterogeneous head phantom offers promise in predicting electrical and thermal characterization 

of a phantom. 

6.2 FUTURE WORKS 

As previously indicated, an anthropomorphic heterogeneous head phantom model with a realistic 

comparison to an in-vivo human head is limited.  The applications of the designed 

anthropomorphic heterogeneous head phantom are a significant resource to the MR community 

and several entities that dedicate focused work to structural anatomies of the brain and neurological 

work.   

The work within this dissertation suggests that the anthropomorphic heterogeneous head 

phantom is a helpful tool for RF engineers to predict an RF coil’s electromagnetic and thermal 

characteristics and its similarities to an in-vivo human head.  Work should continue to conduct a 

full analysis of well-known thermal and electromagnetic characterization methods on 7T RF coils 

used in the MRI community.  The same work should be considered at various field strengths to be 

a useful tool to the MR community at various field strengths.  The work within Chapter 5.0 

suggests promising results for RF heating using the anthropomorphic heterogeneous head 

phantom. Further work should be explored at 7T to assess the RF temperature rise and safety 

through more detailed RF heating methods such as MR thermometry. 
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The designed anthropomorphic head phantom was designed with ease of access to the inner 

cavities of the brain; thus, the phantom could be a useful tool for implanted devices.   Implanted 

devices can be placed inside of the brain with various brain-computer interface (BCI) applications.  

The anthropomorphic heterogeneous head phantom may become an additional resource for BCI 

applications within MRI studies. 

In addition, the anthropomorphic heterogeneous head phantom could be used to model and 

mimic the anatomy of various diseases to implement anatomical neurological damage of the brain.  

Clinicians might be intrigued to use the anthropomorphic heterogeneous head phantom to simulate 

imaging predictive biomarkers and diagnosis in the human brain. 
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APPENDIX A 

DEVELOPMENT AND MEASUREMENT OF MIMICKED BIOLOGICAL TISSUE 

PHANTOM RECIPES AT 7T 

A.1 SUMMARY 

Throughout this dissertation, the development of an anthropomorphic head phantom is mentioned.  

Chapter 3.0 describes the process to fabricate the rapid prototype of the designed anthropomorphic 

head phantom and its mimicked biological tissues.  In Appendix A, the mimicked biological tissues 

process is elaborated further than in Chapter 4.0 and Chapter 5.0.  Two different methods were 

applied to make the biological tissues.  Section A.2 expresses one method involved creating the 

mimicked biological tissues for the EM measurements only, and Section A.3 details the other 

method involved creating the mimicked biological tissues for the thermal measurements using 

agar. 
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A.2 DEVELOPING PHANTOMS FOR ELECTROMAGNETIC MEASUREMENTS 

Section 3.2.4 discusses the preparation to make the anthropomorphic head phantom’s mimicked 

biological tissues and the process to fill the anthropomorphic head phantom to achieve 

electromagnetic measurements.  It discusses the strategy for choosing the anthropomorphic head 

phantom tissue classification in Table 3.1.  Different in-house mixtures were used to develop the 

mimicked biological tissues in Chapter 3.0 and Chapter 5.0.  The in-house mixtures are composed 

of various concentrations of distilled water, NaCl, CuSO4, and denatured C2H6O. 

Before making the designated tissue, the constitutive parameters must be known to have 

target values to achieve.  All containers are cleaned and deionized before making the tissues.  Using 

the dielectric probe, the values are measured throughout developing the mixtures.   The dielectric 

phantom recipe generator (https://amri.ninds.nih.gov/cgi-bin/phantomrecipe) is used to determine 

the amount of distilled H20 and NaCl required to achieve the targeted permittivity and 

conductivity.  These target values are repeatedly measured with the dielectric probe until the 

targeting value is achieved. 

Next, if its desired to modify the T1 relaxation, then CuSO4 needs to be used.  It needs to 

be added after the NaCl because it is more soluble in the H20 mixture.  The CuSO4 concentration 

should be adapted to achieve the proper T1 range.  The T1 must be measured using a T1-weighted 

sequence and can be done by manipulating the TI parameter in the sequence. 

Then, the permittivity is adjusted to the target value by adding various concentrations of 

denatured C2H6O.  While monitoring the dielectric probe for the target permittivity value, 
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denatured C2H6O is titrated.  The titration of the NaCl and denatured C2H6O are repeated until 

target values are reached.  

The described process is used for the development of each in-house mixture to achieve the 

desired values reported in Table 3.1.  Measurements are conducted several times (n=10, σ=0.01) 

to ensure the stability of the mixture over time. 

A.3 DEVELOPING PHANTOMS FOR THERMAL MEASUREMENTS USING AGAR 

Chapter 5.0 discusses the preparation to make the anthropomorphic head phantom’s mimicked 

biological tissues to conduct the thermal measurements.  Agar eliminates thermal measurement 

errors caused by diffusion, and its accuracy is supported through work (15).  Different in-house 

mixtures are created using various concentrations of distilled water, NaCl, CuSO4, sucrose, and 

polyvinylpyrrolidone (PVP, - average mol wt 40,000, Sigma-Aldrich®). 

The Dielectric phantom recipe generator offers estimated concentrations to use the 

mixtures.  These values are used and validated using the DAK probe.  The Dielectric phantom 

recipe generator also predicts the density and heat capacity based on work (184).  Either sucrose 

or PVP can be used with agar to modify the permittivity (in place for denatured C2H6O). Work 

(182) indicates that the difference in using PVP does not impact the permittivity.  Instead, it 

impacts the signal intensity based on the MR protocol’s echo time (TE) parameters. 

Once the concentrations of all solvents are mixed, the solution is boiled inside of a beaker 

using a high-powered microwave and a stirrer.  The solution is boiled in the microwave for about 

3 minutes.  It is then stirred and cooled for 2 minutes.  This cycle is repeated until gelling occurs.  

It is important to allow the mixture to boil but not spill.  Stop the heating cycle before the spilling 
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begins and increase the stirring and cooling.  It is also necessary to not burn the gel.  If the gel 

burns, it is not useable.  

During the cooling period, the stirrer is continuously checked for gelling of the solution.  

Once the gelling is observed, the cooling and heating cycle is complete.   
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APPENDIX B 

ELECTROMAGNETIC CHARACTERIZATION OF THE VIRTUAL FAMILY DUKE 

MODEL AT 3T AND 7T 

B.1 SUMMARY 

Chapters 4.0 and 5.0 reference the Virtual Family v1.0 Duke model in instances regarding the 

tuning and matching of the RF coil; yet, the results are not shown in detail.  Thus, the results of 

the Duke model are presented within this appendix in Section B.2.   

The purpose of Chapter 4.0 was to display the numerical electromagnetic and thermal 

characterization anthropomorphic heterogeneous head phantom to various models and see which 

results yield the closest comparison to the Duke model.  Chapter 4.0 Part I-A led to a discussion 

of how the electromagnetic media influences the electromagnetic characterization and a 

methodology to determine which media delivers the best performance in evaluating an RF coil.  

Additional electromagnetic models were developed to further elaborate the impact and influence 

of the constitutive parameters despite a phantom’s media and geometry. Section 4.2 uses various 

electromagnetic media and highlights the results of the anthropomorphic head phantom and 

spherical phantom filled with various electromagnetic media.   
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B.2 ELECTROMAGNETIC PROPERTIES TO THE VIRTUAL FAMILY V1.0 DUKE 

MODEL 

The Virtual Family v1.0 (31) Duke model was used to tune and match the numerical RF coils 

mentioned in Chapters 3.0 to 5.0.  The electromagnetic measurements of the Duke model were not 

mentioned but are referenced in many of our works (185, 186).  In this section, the visualization 

is shown for the S-Parameters (Figure B.2.1), B1
+ field distribution (Figure B.2.2), and absolute electric 

field distributions (Figure B.2.3) at 3T and 7T. The thermal characterization is shown through the 

SAR distribution only (Figure B.2.3). Since the segmented in-vivo human head model is used as the 

baseline in Chapters 3.0 to 5.0, its results are compared to the Duke Model’s results. 
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APPENDIX C 

DESIGN, DEVELOP AND VALIDATE A NONLINEAR RF SHIMMING MRI 

OPTIMIZATION ALGORITHM AND GUI IN ORDER TO OPTIMIZE RF COIL 

PERFORMANCE AT 7T  

C.1 INTRODUCTION 

RF shimming (87, 147, 187-191) and transmit SENSE (191-195) are a few multi-transmission 

techniques used to achieve the RF homogeneity of a load within an RF coil while achieving 

government regulated SAR limits (64, 65).  Works (71, 87, 147, 189) show optimizing the B1
+ 

field through RF shimming leads to more homogeneous single slices to successfully achieve B1
+ 

field homogeneity while achieving government regulated SAR limits.  The current computational 

time is exhaustive (30), and although the current performance met the needs of recent findings (30, 

101), our initial toolbox’s performance was a concern.  

Thus, the objective of Appendix C is to develop and validate a nonlinear algorithm that 

enhances the performance of our current nonlinear RF shimming MRI optimization algorithm to 

yield better numerical and experimental results at 7T.  To test this objective, the results of the 
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nonlinear algorithm must be validated to generate novel RF excitations of each channel for 

different coil geometries. 

Our rationale for Appendix C is that by determining the desired nonlinear algorithm and 

incorporating various parallel computing techniques, we will achieve the optimum performance in 

any RF coil (30).  Upon completion, it is expected that Appendix C will strengthen and build upon 

the recent findings in works (30, 101); therefore, the improved performance of various RF coils 

may be achieved.   

In Appendix C, the development and validation of a nonlinear RF shimming algorithm are 

studied to determine its ability to improve RF uniformity through simulation and experimental 

studies.  All experimental studies were validated using the combined mode of the MR scanner at 

the Radiofrequency Research Facility at the University of Pittsburgh. 

C.2 MATERIAL AND METHODS 

C.2.1 Design and Development of an RF Shimming MRI Optimization Algorithm and 

Graphical User Interface 

In order that the designed RF shimming algorithm is useful, a graphical user interface (GUI) is 

designed for the user to adjust the algorithm as desired.  Several MR parameters directly impact 

the results of any load simulated within an RF coil.  Researchers can shim numerical or measured 

fields of any load within an RF coil.  Using MATLAB, a graphical user interface (GUI) was built 
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that is robust enough to compute MR characteristics to any coil and any load as shown in Figure 

C.2.1. 

   

Figure C.2.1. RF Shimming MR Optimization Tool GUI and Shimmed RF Fields. An RF shimming 

toolbox GUI A) is used to find the optimal performance of any load within an RF coil. Results of a single slice 

axial views of a B) initial, non-optimized, C) optimized, D) circularly localized, and E) irregularly localized RF 

fields of a human within a TTT coil. 

 

The graphical user interface allows the user to have versatility in selecting various 

physiological regions of the load in the left panel of Figure C.2.1.A.  The user has the flexibility to 

select the entire tissue or specified portions of the tissue.  If shapes or freehand are preferred to 
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acquire the load’s ROI, the user can choose or make shapes as shown in Figure C.2.1.D and Figure 

C.2.1.E.  For consistency, the same ROI can be used on different loads by loading previous masks. 

The optimization tab offers parameters that constrain the optimization function.  The 

number of channels can be selected or deselected.  The optimization parameters indicate inputs 

that are necessary for the MATLAB Optimization algorithm ‘fmincon’ and other global 

optimization algorithms housed in MATLAB. The Optimization Parameters panel allows the 

maximum number of iterations, the maximum number of function calls, and the number of trials 

to be set. If you desire to alter a parameter, it is only recommended to increase the number of trials. 

C.2.2 Verification of Various Nonlinear Algorithms using Experimental Studies 

Several works (30, 185, 186, 196) have proved that the RF shimming technique incorporated 

within this in-house MATLAB optimization algorithm has been beneficial.  However, these works 

have indicated that future work should be conducted to improve the uniformity of the magnetic 

field to find a global minimum to the desired objective function by utilizing various nonlinear 

algorithms that can allow various constraints to be set.  Works (16, 30) indicates that more 

homogeneous slices (ultra-uniform slice selection) come at the cost of having increased SAR. 

However, this task’s purpose is to seek ultra-uniform slices and achieving government regulated 

SAR limits by applying the optimal nonlinear algorithm for any given RF coil design.  

Using a variety of computational resources such as an in-house 12 node cluster, clusters 

from the University of Pittsburgh’s Supercomputing Center, or XSEDE, RF shimming of the 

magnetic fields and SAR calculations are performed on the electric and magnetic fields generated 

from the FDTD simulations.  The MATLAB Optimization ToolboxTM and MATLAB Global 
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Optimization ToolboxTM was be used to determine which nonlinear algorithm fits the criteria and 

yields the optimal RF coil performance.  These algorithms were incorporated into the RF 

Shimming MRI Optimization tool.  The baseline comparison consists of MR parameters selected 

from our preliminary data (177, 185, 186) using fmincon. The results of the B1
+ field and SAR 

statistics using fmincon were be compared to the results from other nonlinear algorithms within 

MATLAB (i.e. genetic, particle swarm).  

Experimental Verification 

To adequately measure the usability of the designed tool and whether it can be shared with the MR 

community, the designed tool was evaluated in various MR experimental studies. 

The final package of the customized GUI and RF shimming MRI optimization algorithm 

was evaluated during experimental studies.  Magnetic and electric fields that match the desired RF 

coil type and head dimensions were selected in the package.  The desired parameters selected by 

the user were recorded.   

C.3 RESULTS AND DISCUSSION 

C.3.1 Design of Graphical User Interface (GUI) 

The designed GUI and RF shimming algorithm were successfully designed. The tool has the 

versatility to be used regardless of the load.  In our studies, we used the developed RF shimming 

algorithm to optimize the RF coil performance of various coils like the TTT head coil (185, 196), 
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TEM head coil (185), foot and ankle coil  (181), knee coil, upper extremities such as the arm (197), 

and body coil (198, 199). 

 

Figure C.2.2. Main Tab.  The main tab of the GUI offers several parameters for the user to select the 

tissue, geometry, model type, and plane of view. 

 

 

Figure C.2.3. Main Tab’s Load Mask Subsection.  The main tab of the GUI offers several parameters for 

the user to select the tissue, geometry, model type, and plane of view.

Sossena
Typewritten Text
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The toolbox is designed to give the

 

user a large

 

variation in selecting different regions of 

interest in the model. This variability spans to selecting different tissue types, geometries, loading 

mask, and saving mask. Once the user has chosen the desired region of interest, the user must also 

choose the desired optimization parameters, channel configuration, and constraints prior to 

selecting the Optimize button.

 

 

Figure C.2.4 .   . Optimization Tab.

 

Select

 

optimization parameters for various excitation ports (channels) 

of the RF coil.

 

 

The Constraint Tab shown in Figure C.2.5

 

allows the user to set constraints to the nonlinear 

equation. The default objective function appears first, but the user can change the

 

objective

 
function to meet the needs.
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Figure C.2.5. Constraint Tab - Define optimization objective function to be minimizing the constraint 

C.3.2 Verification of Nonlinear Algorithm using Experimental Studies 

Our published studies (177, 181, 185, 186) utilize the nonlinear function ‘fmincon’.  Desirable 

results were achieved and acceptable to be shared with the MR community.  The RF shimming 

toolbox was shown in the morning categorical course at ISMRM in 2014 and 2015.  For the scope 

of this work, the nonlinear comparison was only made for the anthropomorphic heterogeneous 

head phantom loaded within the 16ch-Tx/32ch-Rx TTT coil.  

Below is an example of the initial trails run to determine the appropriate RF shimming 

case. Ten of the 2,000 cases were chosen to indicate the fmincon objective function output 

variables (iterations, funcCount and Trial Number) and indicate the SAR values (peak, average, 

STD, and CV).  To achieve Table C.3.1, 2,000 cases were parsed through that fit the design criteria’s 

cost function and magnetic field constraints set to a mean magnetic field intensity above 9,000 

H/m with CV below 0.23.     
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Table C.3.1. Example of Filtered Results using ‘Fmincon’ Algorithm 

 

 

 

In our recent studies (185, 186), the design criteria were set by RF field homogeneity with 

additional design criteria and constraints filtered by the relative B1
+ efficiency and relative 

absorbed power efficiency.  The best cases were taken and the results were tested.  The validation 

of the results was acquired on the fabricated anthropomorphic heterogeneous head phantom.  The 

results are shown in Figure 5.10. 

Alternatives to the ‘fmincon’ algorithm were tested using the same initial conditions as the 

ten cases in Table C.3.1.  The nonlinear algorithms ‘genetic’, ‘particle swarm’, and ‘fminbnd’ were 

used to optimize the magnetic field.  The results did not determine better results but could be 

explored in the future. 

C.4 CONCLUSION 

In conclusion, an RF shimming toolbox was designed, developed, and validated through 

experimental MR studies.  The objective of Appendix C is considered complete.  Our studies 

indicated that the designed tool is useful for in-house related work.  However, further strategies 
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need to be further developed in order to improve the performance of this preliminary optimization 

tool. 
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