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In recent years, the possibility of mass casualties resulting from acts of chemical terrorism has 

emerged as a growing public health issue. Due in part to their wide availability and potential 

simplicity of deployment, cyanide and azide are two toxic agents that have already been 

nefariously employed to a limited extent and, moreover, are regarded as substances of concern in 

relation to possible acts of terrorism by the Department of Homeland Security. In the US, the two 

approved cyanide therapies, nitrite in combination with thiosulfate and the FDA-labeled 

hydroxocobalamin, are not suitable for use in mass casualty situations; while, no antidote is 

available for azide. 

Recently, the cobalt Schiff-base complex 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1] 

heptadeca-1(17)2,11,13,15-pentaenyl Co(II/III) di/tribromide (CoN4[11.3.1]) has been shown to 

have antidotal effectiveness toward cyanide and azide in mice. The reaction mechanism(s) by 

which CoN4[11.3.1] detoxifies cyanide and azide, however, has(have) remained speculative until 

now – presenting something of a barrier to the rational development of the next generation of 

antidotes.

In this dissertation, the kinetics of the binding of cyanide and azide to the 

Co(II)N4[11.3.1] compound studied under anaerobic conditions using stopped-flow 
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MECHANISMS OF CYANIDE AND AZIDE BINDING TO COBALT COMPLEXES 

RELEVANT TO THEIR ANTIDOTAL ACTION 

Hirunwut Praekunatham, DrPH 

University of Pittsburgh, 2018 

ABSTRACT 



 v 

spectrophotometry are reported. In addition, the reduction kinetics of Co(III)N4[11.3.1] by 

ascorbate have been examined as well as the oxidation of Co(II)N4[11.3.1], the dicyano-

Co(II)N4[11.3.1] and the diazido-Co(II)N4[11.3.1] by molecular oxygen.  Mechanisms of 

cyanide and azide binding to CoN4[11.3.1] are discussed as well as the possible utility of 

CoN4[11.3.1] as a cyanide or azide antidote. 
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1.0  INTRODUCTION 

For centuries, certain chemical agents have been used for nefarious activities. In the Ancient 

Greek era, numerous toxins from poisonous plants and heavy metals (e.g. arsenic, lead, mercury) 

were examined. Some of these (notably hemlock – a tremendously poisonous plant) were used 

for suicide by individuals and for administering the death penalty by the government [1]. 

Chemical agents have also been employed as lethal weapons. In China, arsenic was used for 

fight during the period 960 through 1279 AD (the Song dynasty) [2]. In World War I (1914-

1918) several toxic chemicals, such as chlorine, phosgene, hydrogen cyanide, or sulfur mustard, 

were employed in combat between the western allies and the Germans [2, 3]. 

Generally, not all toxic chemicals are equally likely to be chosen by the terrorist or others 

intent on any criminal wrongdoing; only particular types of compounds with particular 

characteristics: (1) high toxicity; (2) difficulty of detection; and (3) efficient distribution in vivo 

[4].  

1.1 CYANIDE OVERVIEW: CHEMICAL PROPERTIES AND HUMAN EXPOSURE 

According to the  US Centers for Disease Control and Prevention (CDC) types and categories of 

hazardous chemicals [5], cyanide, along with arsine, carbon monoxide and sodium 

monofluoroacetate, are classified as “blood agents – Poisons that affect the body by being 



 2 

absorbed into the blood” [5]. With regard to toxicological mechanism, once inside the human 

body, cyanide acts as an inhibitor of complex IV (cytochrome c oxidase) of the mitochondrial 

electron transport system. The binding of cyanide to heme a3 of complex IV alters cellular 

respiration by preventing electron transfer to the terminal acceptor, molecular oxygen (O2). 

Consequently, ATP production comes to a halt, leading to histotoxic hypoxia and eventually, 

death of cells. 

Regarding chemical properties, cyanide refers to an anion with a one-negative charge 

consisting of a carbon atom forming a triple bond to a nitrogen atom. Cyanide in aqueous 

solution is present as two species: the acid form, HCN; and the anionic form, CN–; the amount of 

each species being dependent on the pH. Since hydrocyanic acid (HCN) has a pKa of 9.2 [6], at 

the optimal pH of human blood of 7.4, the vast majority (>98%) of total cyanide circulates in the 

blood as HCN. Gaseous HCN has a faint smell of bitter almond and seems to be pale-blue to 

colorless in hue. A substantial minority (10-20%) of the population cannot smell the gas and so, 

could not perceive their exposure to cyanide [7, 8]. 

Cyanide has been recognized as a dangerous toxicant for decades. In the past, cyanide 

was deployed as a chemical weapon by the allied forces in World War I, but failed to cause mass 

destruction of the Germans troops [9]. In World War II, cyanide was adopted by the Nazi as an 

unspeakably cruel method to slaughter Jewish and Romani people in gas chambers [9]. In the 

late 1980’s, a chemical agent widely believed to be cyanide was also employed in a civil war in 

the Middle East region [9]. Moreover, in the 1990’s, cyanide was used for terroristic purposes at 

the World Trade Center attack in 1993 [10], and the Tokyo subway attack in 1995 [11]. At 

present, the possible release of cyanide in locations with re-cycled air handling, such as modern 

buildings or mass transport systems, remains a public health concern. Apart from criminal or 
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terroristic activities, people could be exposed to cyanide through occupational tasks, particularly 

firefighting. Especially fires associated with modern structures and aircraft can generate smoke 

that is composed of several toxic chemicals including hydrogen cyanide. Besides asphyxia by 

smoke inhalation, cyanide in the smoke can play a major role as a silent killer among the 

firefighters [12, 13]. Other occupations that are prone to cyanide exposure include electroplating, 

mining, certain pesticide applications, metal cleaning, and gold extraction [7]. Moreover, 

cigarette smokers, including secondhand smokers, are at risk since cyanide is produced as one of 

the poisonous byproducts of tobacco smoke [14]. In an environmental setting, diets derived from 

cyanogenic plants like cassava, lima beans, or bitter almonds [15, 16], can be a rich source of 

cyanide, leading to poisoning in humans after being consumed. Interestingly, chronic exposure 

of cyanide due to consumption of cyanogenic plants, especially cassava, can cause epidemic 

outbreaks of permanent muscle weakness of the lower extremities called “spastic paraparesis” or 

“konzo” in West Africa [16]. 

1.2 AZIDE OVERVIEW: CHEMICAL PROPERTIES AND HUMAN EXPOSURE 

Azide is a singularly-charged anion consisting of three nitrogen atoms forming bonds in linear 

molecular geometry. Azide in aqueous solution is composed of two species: hydrazoic acid 

(HN3) and azide anion (N3
–). The pKa of HN3 is 4.7 [17] and, so, in aqueous solution at pH close 

to normal blood pH of 7.35-7.45, over 99% of the total azide is present as N3
–.  

Formerly, azide was known for certain to be a potent vasodilator; therefore, it had been 

studied in relation to its anti-hypertensive effect in both normotensive and hypertensive patients 

in 1954 [18]. Nowadays, although azide is no longer used as therapeutic, its compounds are used  
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for other purposes [19]. In automobile airbags, in particular, sodium azide is one of the leading 

chemical components for generating nitrogen gas, immediately after a collision occurs. Azide is 

also commonly used as a preservative in the medical laboratory, and due to its toxicity, azide 

could potentially be used as a pesticide or herbicide. Furthermore, azide compounds play various 

roles in some manufacture of rubber, latex, wine, and Japanese beer [19]. 

Like cyanide, azide is known to inhibit cytochrome c oxidase (Complex IV) of the 

electron transport system in mitochondria [20]. Undoubtedly, azide has been used as a poisoning 

agent for decades, but so far, only in a few locations. In Kyoto, Japan, four azide-related 

poisoning incidents occurred within three months (August-October 1998) [21]. A total of 28 

victims including 8 physicians, 10 laboratory workers, and other 10 people, were poisoned by 

sodium azide in hot beverages made with azide-contaminated water. Fortunately, no one 

developed any life-threatening symptoms in these incidents. In the US in 2009, six medical 

researchers were reported to be deliberately poisoned by sodium azide laced coffee at Harvard 

University [22]. One year later in 2010, following an investigation by US CDC, five people were 

found to be poisoned by sodium azide in iced tea at a local restaurant in Dallas, TX [23, 24]. 

Recently, the occurrence of azide poisoning in coffee repeated itself in late February 2017 at 

Yale School of Medicine [25]. In addition, some people, particularly laboratory personnel or 

health care workers, sporadically use sodium azide for suicide attempt [26-29] maybe because 

they are well-informed regarding azide toxicity and can easily acquire the poison from the 

laboratory or hospital inventory. 

Despite being a less potent complex IV inhibitor, as compared to cyanide [30], azide is 

formally recognized by the US CDC as one of the hazardous chemicals that could cause a severe 

emergency [31]. Sodium azide, the most common form available, is a white, odorless powder. 
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Unlike cyanide or other blood agents, after dissolution in water, azide exists principally in its 

anionic form (N3
–) at neutral pH [32] and is not quickly lost to the atmosphere. Since the aqueous 

solution of azide is likely to be colorless and has an unnoticeable odor, it is an effective toxicant 

with which to lace food/beverages to poison unsuspecting victims. As another possibility, public 

water systems could be targeted if enough sodium azide were available. 

1.3 TOXICOLOGICAL MECHANISM(S) OF CYANIDE AND AZIDE 

So far, many studies have provided ample and compelling evidence to indicate that cyanide itself 

is responsible for its toxicity, through inhibitory binding in the anionic form to cytochrome c 

oxidase (complex IV). On the other hand, the clear toxicological mechanism(s) of azide toxicity 

remain(s) inconclusive and require(s) further investigation. There are three plausible hypotheses 

that have been proposed to explain azide toxicity.  

The first hypothesis is that after entering the human body, azide is converted to nitric 

oxide (NO), and NO is the principal toxic metabolite. Several attempts have been made to 

support this idea. In 1987, Kruszyna et al. [33] demonstrated that under optimal temperature and 

pH conditions, azide was found to be transformed to NO in human erythrocytes. In another study 

[34], tonic convulsion following intracerebroventricular administration of sodium azide in rats 

could be explained by the effect of NO derived from azide. Moreover, hypotension caused by 

azide poisoning could be explained by its conversion to NO [33] since the production of NO 

leads to the dilatation of blood vessels, decreasing blood pressure [35].  

The second hypothesis is that azide could be transformed to cyanide, and cyanide acts as 

the principal toxicant. As previously mentioned, both cyanide and azide can inhibit mitochondrial 
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cytochrome c oxidase (complex IV) and, in fact, they share some similarities in clinical signs 

developed by patients. Persuasive evidence to support this proposition is based on the detection 

of a substantial amount of cyanide in the plasma of two azide-intoxicated patients. As reported 

by Klein-Schwartz et al. [28], the first case was a 52-year-old male who attempted to commit 

suicide by ingesting 1.2-2 grams of sodium azide. At the hospital, cyanide level in his plasma 

was found to be 1.6 mg/L, which considerably exceeded the minimum concentration of 0.5 

mg/L; while, the substance from the powder ingested by the patient was tested negative for 

cyanide. According to Lambert et al. [29], the second case was a 25-year-old female who was 

presumed dead before arrival by azide poisoning. Upon post-mortem examination, a tremendous 

amount of azide remained in many samples, such as blood (262 mg/L), bile (1,283 mg/L), and 

stomach contents (745 mg/L); while, cyanide was also detected in the blood (9 mg/L). 

Additionally, Lambert et al. [29] demonstrated that cyanide was produced during in vitro 

incubation of azide with whole blood; however, the mechanism by which cyanide was present 

under these conditions remains unknown. 

Lastly, the third hypothesis is that the azide moiety itself is responsible for the effects of 

the toxicant. Lack of clarity with regard to the mechanism of toxicity is clearly a barrier to 

logical discovery of antidotes and, consequently, distinguishing between these three hypotheses 

is of some importance and was an objective of the current work. 
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1.4 CURRENT CYANIDE AND AZIDE ANTIDOTES IN THE US 

1.4.1 Cyanide antagonism 

Several chemical substances have been reported to antagonize cyanide toxicity by various 

mechanisms. According to a recent review by Petrikovics et al. [36], nitrites, cobalt compounds, 

and carbonyl compounds (such as pyruvate or α-ketoglutarate) act as direct/indirect cyanide 

scavengers, subsequently lowering the circulating free cyanide. Some sulfur compounds (such as 

thiosulfate or sulfane sulfurs) play a role in the conversion of cyanide to a less toxic metabolite, 

thiocyanate (SCN–). Other cyanide therapies, such as oxygen or chlorpromazine, have been 

suggested although mechanisms of antidotal action for these therapies remain in question. In the 

US, there are currently two antidote kits available for cyanide poisoning: NithiodoteTM and 

Cyanokit® 

1.4.1.1 NithiodoteTM 

NithiodoteTM, supplied by HOPE pharmaceuticals [37], is a combination cyanide therapy 

consisting of two compounds – sodium nitrite (300 mg/10 mL) and sodium thiosulfate (12.5 g/50 

mL). Intravenous administration is the recommended route for cyanide treatment. As proved by a 

study in 1952 [38], due to the synergistic effect, the combination therapy of these two sodium 

salts was more effectively antidotal toward cyanide (at several times the LD50 dose) than 

administration of either sodium nitrite or sodium thiosulfate alone. As demonstrated by 

Leininger and Westley [39], thiosulfate functions as a sulfur donor substrate for the enzyme 

rhodanese which catalyzes the conversion of cyanide to the considerably less toxic thiocyanate 

anion (SCN–). Thiosulfate is probably only helpful, however, if the dose of cyanide ingested by 
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patients is more than 4 x oral LD50 [40]. Furthermore, a recent study has proved that sulfide, a 

potent complex IV inhibitor like cyanide, is found in blood following the administration of 

thiosulfate. Instead of yielding a benefit, it turns out thiosulfate could aggravate cyanide toxicity 

by producing sulfide in the blood [41]. 

Previously, the mechanistic explanation by which sodium nitrite neutralized cyanide was 

based on the fact that sodium nitrite causes the oxidation of deoxyhemoglobin to form 

methemoglobin in the bloodstream; subsequently, the methemoglobin formed scavenges any free 

cyanide [42]. This will ameliorate the harmful effect of cyanide [43]. However, recent literature 

offered new findings contradicting the idea that the antidotal mechanism related to 

methemoglobin might not be entirely correct. As discussed by Way [44], the process by which 

nitrite produces methemoglobin is slower than any ameliorative effect of nitrite. Under 

conditions that methemoglobin formation is antagonized by methylene blue, nitrite is still 

effectively antidotal toward cyanide. Moreover, nitrite exhibits protection against cyanide 

toxicity in cell cultures derived from chick embryonic neurons [45] or rat brains [46] despite the 

fact that these cultured cells are unable to produce methemoglobin due to lack of hemoglobin. 

Important discoveries of the mitochondrial NO synthase and the auxiliary role of NO in 

the mitochondrial electron transport system lead to a more convincing explanation for the 

cyanide antidotal action of nitrite. As demonstrated by Cambal et al. [41], the delivery of nitrite 

results in rapid production of NO in circulating blood. NO, derived from nitrite, can effectively 

alter cyanide-related inhibition of cytochrome c oxidase, by displacing cyanide from the 

substrate/inhibitor binding site; subsequently, restoring its O2 binding/reducing capability [47, 

48]. 
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1.4.1.2 Hydroxocobalamin (Cyanokit®) 

Cyanokit®, supplied by Meridian Medical Technologies [49], is the trade name of 

hydroxocobalamin, which is the US FDA approved cobalt-containing antidote for cyanide 

poisoning. Hydroxocobalamin is a form of vitamin B12 (cobalamin), which has a macrocyclic 

structure (molecular weight = 1,329 g/mol) with cobalt(III) surrounded by a corrin ring (Figure 

1). In keeping with most transition-metal-ion complexes, the cobalt ion at the center of the 

macrocycle can bind ligands such as cyanide anion. Hydroxocobalamin has essentially one 

available site to substitute hydroxide with cyanide, subsequently, forming cyanocobalamin, 

which may be excreted via the renal system [50].  

Hydroxocobalamin has been proved its effectiveness to detoxify cyanide in numerous 

animal and human studies since 1952 [36]. It was demonstrated that hydroxocobalamin, 

delivered by either intravenous or intraperitoneal injection, shows protection from cyanide 

poisoning through various routes of exposure such as inhalation, enteral or parenteral routes [51, 

52]. According to the treatment guideline for cyanide poisoning in adults [53], 5 gram of 

hydroxocobalamin needs to be infused intravenously over 15 minutes; an additional dose may be 

applied, depending on the patient’s clinical condition at that moment. Hydroxocobalamin can 

also be administered via intramuscular injection (IM); however, the IM protocol is recommended 

only for a case with vitamin B12 deficiency [54], not cyanide poisoning. 

Even though the antidotal efficacy of both cyanide antidote kits (NithiodoteTM and 

Cyanokit®) have been well documented in cyanide-intoxicated patients, they are both far from 

practical for use in mass casualty situation, which a short administration time and fast 

ameliorative effects of the drug are essential. 
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1.4.2 Azide antogonism 

Unlike cyanide, there is no currently approved antidote for azide poisoning. Several case reports 

suggest that patients who had ingested a low dose of sodium azide usually developed mild 

symptoms and eventually survived by receiving just supportive treatment (such as intravenous 

fluid and gastric lavage) without any antidotes [23, 55, 56]. However, in severe cases, specific 

antidotal treatment to detoxify the harmful effect of azide remains necessary.  

Due to the close similarity in the characteristic inhibition of cytochrome c oxidase by 

azide and cyanide, it could be rationally argued that traditional remedies for cyanide poisoning 

(nitrite/thiosulfate and hydroxocobalamin) could be favorable for azide toxicity. Nevertheless, 

experience with the azide antidotes in humans is limited mainly to case reports, and none has 

rendered a conclusive, convincing, or consistent benefit of these two remedies. Based on several 

reports of azide cases, nitrites (either amyl nitrite or sodium nitrite) were given to several azide-

intoxicated patients, but they did not show significant improvement and ended up dead afterward 

[28, 57]; while, only one case report from Austria has revealed that one patient had the 

satisfactory clinical outcome after receiving intravenous hydroxocobalamin [58]. Therefore, 

other cobalt complexes, may be a better choice than the nitrite compounds in the search for 

potential antidotes to azide toxicity.  
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1.5 SOME NEWLY DEVELOPED COBALT-CONTAINING PUTATIVE 

CYANIDE/AZIDE ANTIDOTES 

Hydroxocobalamin has been proved to have an ameliorative effect on cyanide toxicity despite its 

limitations in mass casualty circumstances. In contrast, the clinical effectiveness of 

hydroxocobalamin for amelioration of azide poisoning remains questionable due to insufficient 

data. There has been some effort to discover more efficacious and/or less expensive cobalt-

containing complexes for application as cyanide/azide antidotes, including the putative 

candidates: cobinamide, CoTMPyP, and Co(II)N4[11.3.1] (Figures 1, 2 and 3 respectively). 

1.5.1 Cobinamide 

Cobinamide is known to be the penultimate precursor of cobalamin in biosynthesis.  Cobinamide 

(molecular weight = 990 g/mol) has a similar macrocycle structure as cobalamins, except the 

absence of the 5,6-dimethylbenzimidazole ribonucleotide tail linked to the cobalt atom in the 

lower axial ligand position (Figure 1) [59]. Thus, cobinamide has two axial ligand sites available 

to bind to nucleophiles such as cyanide or azide; while, cobalamin has only a single available 

axial position.  

Numerous studies have indicated that cobinamide is effectively antidotal toward cyanide 

to a greater extent than cobalamin. For instance, cobinamide can significantly reverse complex 

IV inhibition by cyanide in mammalian cells [60], fruit flies (Drosophila Melanogaster) [60], 

and New Zealand white rabbits [61], better than hydroxocobalamin. A mouse study has 

suggested that cobinamide should be the best cyanide antidote, compared with other 

conventional cyanide therapies (hydroxocobalamin, sodium thiosulfate, sodium nitrite, and 
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nitrite/thiosulfate) because cobinamide is found to be 3-11 times more potent than 

hydroxocobalamin [62]. Another advantage of cobinamide over cobalamin has been pointed out 

by Bebarta et al. [63] that intravenous cobinamide requires only one-fifth of the cobalamin 

dosage in order to reverse cyanide-induced apnea in swine. 

Cobinamide is not simple to manufacture, however, leading to a high cost of commercial 

production. The estimated cost of cobinamide production is sixty times more than that of 

hydroxocobalamin [64]. Moreover, while there has been considerable research on the benefit of 

cobinamide for cyanide poisoning, its ameliorative effect toward azide remains obscure and 

awaits exploration. 
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Figure 1. Chemical structures of cobalamins and its biological precursor, cobinamide. 
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Several attempts have been made to find alternative cobalt-containing macrocycle 

molecules that can efficaciously neutralize the toxicity of cyanide. According to Benz’s 

dissertation [65], several kinds of cobalt-containing complexes have been examined, such as 

cobalt(III) tetraamido macrocycles, cobalt(II) tetrasulfophthalocyanine or cobalt(II) 

tetraaminophthalocyanine; none of which proved suitable for various reasons. 

1.5.2 Cobalt(III) meso-tetra(4-N-methylpyridyl)porphyrin (Co(III)TMPyP) 

Recently, Benz et al. [66] have suggested that Co(III)TMPyP (Figure 2) could be a potential 

candidate for cyanide poisoning. In mice, Co(III)TMPyP, administered one-minute post cyanide 

by intraperitoneal injection, significantly increased percent survival, and decreased the recovery 

time after “knockdown” (loss of consciousness) compared to controls. Due to square-planar 

geometry (Figure 2), Co(III)TMPyP has two available ligand positions to bind nucleophiles like 

cyanide and azide, similar to cobinamide. Preliminary indications are that Co(III)TMPyP could 

be a better cyanide antidote than hydroxocobalamin [66], comparable to cobinamide but less 

expensive [64]. 

So far, however, there has been little consideration of the reaction of Co(III)TMPyP with 

azide. According to Benz et al. [66], Co(III)TMPyP certainly binds azide, but no previous study 

has investigated the azide-antidotal effect of Co(III)TMPyP in animals. 
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Figure 2. Chemical structure of cobalt(III) meso-tetra(4-N-methylpyridyl)porphyrin (Co(III)TMPyP). 

1.5.3 Cobalt(II) 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17)2,11,13,15-

pentaene (Co(II)N4[11.3.1]) 

In an attempt to find new alternative antidotes for cyanide and azide, we hypothesized that cobalt 

Schiff-base macrocycles could be a viable option. The chemical structure of Co(II)N4[11.3.1] is 

illustrated in Figure 3. According to Long and Busch [67], some transitional metals like Co(II) 

(the “reduced” form) or Co(III) (the “oxidized” form) can be complexed with Schiff-base 

macrocyclic ligands in a single step (the synthesis of Co(II/III)N4[11.3.1] is explained in detail in 

Chapter 2.2). It has been shown that after delivery into the bloodstream, Co(III)N4[11.3.1], in 

keeping with other cobalt macrocycles, is generally converted to the reduced Co(II) complex by 

ascorbate – the principal reductant present in human blood [68]. This reduction process will 
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clearly affect the association reaction between the Co(III) complex and toxicants; while, there 

should be no impact if the compound is administered in the Co(II) form. It follows that recent 

research has focused on the capabilities of toxicant binding to the reduced cobalt macrocycle, 

Co(II)N4[11.3.1], rather than Co(III)N4[11.3.1]. Accordingly, the investigations described in the 

present Dissertation follow this trend. 

Regarding the cyanide-antidotal effect of Co(II)N4[11.3.1] in a sub-lethal mouse model 

[68], Co(II)N4[11.3.1] was shown to exhibit an impressive cyanide scavenging effect without 

evidence of long-term sequelae up to one week later. Co(II)N4[11.3.1], administered 

prophylactically to cyanide-intoxicated mice, significantly decrease the recovery time after 

“knockdown” from 22 minutes (for the control group) to 3 minutes. The azide-antidotal effect of 

Co(II)N4[11.3.1] has not previously been reported. 
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Figure 3. Chemical structure of cobalt(II) 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-

1(17)2,11,13,15-pentaene (Co(II)N4[11.3.1]). 
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1.6 SCOPE OF THE DISSERTATION 

It is undeniable that two currently approved cyanide antidotes in the US, nitrite/thiosulfate and 

hydroxocobalamin, can be beneficial in the treatment of acute cyanide poisoning, especially 

individual cases. Despite their safety and efficacy, both therapies suffer from the major drawback 

that they are seemingly not suitable for some urgency situations such as mass casualties, which 

requires short times for drug administration and fast antidotal action of the drugs. In case of 

azide poisoning, it seems that use of nitrites as an antidote has proved ineffective [28, 57]; while, 

the beneficial effect of hydroxocobalamin for azide toxicity remains in doubt due to lack of 

convincing scientific evidence. 

Recently, several attempts have been made to develop new cobalt-containing antidotes 

for both cyanide and azide poisoning. Evidence based on literature review of some selected 

alternative cobalt-containing compounds suggests that Co(II)N4[11.3.1] is arguably the best 

choice for cyanide poisoning, as compared to others at various stages of development 

(cobinamide, CoTMPyP). As it is unethical to test cyanide antidotes on humans, Federal Drug 

Administration (FDA) approval for such compounds must be through demonstration of efficacy 

in animals (the “Animal Rule”). Amongst other stipulations, the Animal Rule requires that the 

mechanism of action be understood well enough to have evidence-based expectation of similar 

efficacy in humans. The chemical reaction mechanism(s) by which Co(II)N4[11.3.1] neutralizes 

the toxicants (cyanide/azide) remain(s) speculative. In addition, no previous study has 

investigated the azide-ameliorative effect of Co(II)N4[11.3.1] in an animal model before. The 

key toxicant causing azide toxicity (azide itself or its secondary metabolites, such as NO or 

cyanide) is still questionable. This Dissertation seeks to remedy these problems by (1) 

demonstrating the cyanide/azide-antidotal properties of Co(II)N4[11.3.1] by virtue of (a) binding 
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activity and (b) chemical kinetics and reaction mechanism, and (2) assessing the effectiveness of 

Co(II)N4[11.3.1] in the amelioration of azide toxicity in mice.  

The overall structure of the Dissertation is composed of five chapters including this 

introduction (Chapter 1). The second chapter is concerned with materials and methods used for 

these studies. Chapters 3 and 4 present the findings of two peer-reviewed papers on, respectively, 

the antidotal action of Co(II)N4[11.3.1] towards cyanide and azide toxicity.  The final chapter 

(Chapter 5) provides a summary of the entire dissertation, public health implications, and some 

recommendations for future research. 
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2.0  MATERIALS AND METHODS 

2.1 MATERIALS 

All reagents were ACS grade, or better, used without further purification, and unless stated to the 

contrary, were obtained from Fisher or Sigma-Aldrich. Sodium dithionite (87% minimum assay) 

was purchased from EMD Chemicals Inc. Argon gas (99.998%) and oxygen gas (grade 4.7, 

99.997%) were acquired from Matheson Incorporated. 0.1 M sodium phosphate buffer was 

prepared by mixing an appropriate volume of 0.1 M sodium phosphate monobasic (NaH2PO4) 

and 0.1 M sodium phosphate dibasic (Na2HPO4) to make buffers at desired pH ranging from 4 to 

8. CHES (2-[N-Cyclohexylamino]-Ethanesulfonic Acid) at a concentration of 0.1 M was used as 

a buffer at pH > 8, and borate buffer (0.1 M) was used at pH ≥ 9. The desired pH of CHES and 

borate buffers were adjusted by adding 0.1 M NaOH or HCl solution. Cyanide solutions were 

prepared by dissolving KCN salt in a pH 11.6 water solution adjusted with NaOH in septum-

sealed vials with limited head volume. Gastight syringes were used for transferring KCN 

solutions. To prepare NaN3 solutions, the salt was dissolved in 0.1 M sodium phosphate buffer at 

desired pH in septum-sealed vials with minimal headspace. In order to maintain ionic strength, 

sodium nitrate or sodium chloride were added to 0.1 M sodium phosphate buffer.  
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2.2 SYNTHESIS OF Co(II)N4[11.3.1] 

The synthesis of cobalt(II) 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-

1(17)2,11,13,15-pentaene dibromide (Co(II)N4[11.3.1]) was done anaerobically based upon the 

method of Long and Busch [67], adapted by Lacy et al. [69]. Briefly, CoBr2 (1.35 g, 6.17 mmol) 

and 2,6-diacetylpyridine (1.00 g, 6.13 mmol) were dissolved in 20 mL of deoxygenated ethanol, 

followed by the addition of 0.5 mL of water and then degassed 3,3’-diaminodipropylamine 

(0.857 mL, 6.13 mmol) under argon at room temperature over the course of several minutes. The 

blue-green color of CoBr2 and 2,6-diacetylpyridine gradually turned to dark red.  Next, a small 

amount of glacial acetic (1 µL) was added before letting the solution stir at 50°C for 12 hours. 

After that, the solution was taken to a glovebox equipped with purified argon (with < 0.5 ppm 

O2, ~4 ppm H2O) and then filtered using a fritted-glass funnel after cooling to room temperature. 

The filtration product, which was a purple solid, was then washed with ethyl acetate and left to 

dry over phosphorus pentoxide (P2O5) for 24 hours. Elemental analyses for C15H22N4Br2Co, 

performed by Atlantic Microlab Inc., gave the following results. Calcd:  37.76% C, 4.65% H, 

11.74% N, and 33.50% Br; Found: 37.66% C, 4.67% H, 11.62% N, and 33.16% Br (see cation 

structure in Figure 3). Co(III)N4[11.3.1] was prepared by allowing the reduced compound to 

oxidize overnight under ambient conditions and used without any further purification. 
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2.3 INSTRUMENTATIONS 

2.3.1 Stopped-flow spectrometry 

The rapid reaction kinetics were performed using an SX.18MV-R stopped-flow spectrometer, 

supplied and manufactured by Applied Photophysics Limited [70] (Figure 4).  The operation of 

the stopped-flow apparatus is illustrated on the diagram below (Figure 5). Briefly, the drive 

syringes are filled with the solutions of two reagents. After the pneumatically controlled drive 

ram moves forward rapidly, the reagents will pass into the mixer, and immediately into the 

optical observation cell. The reaction mixture then passes into the stop syringe. Eventually, the 

stop syringe plate strikes the stopping block. This will concomitantly stop the flow of the 

reaction mixture and commence data acquisition. This machine is also equipped with a xenon arc 

lamp as a light source, monochromator that allow us to select the particular wavelength of 

interest, and absorbance detector. The signal received from the detector is then processed as an 

electronic spectrum, and the signal can be recorded on millisecond to second timescales. 

A major limitation of stopped-flow spectrometry is that the reaction must not be too fast 

(faster than one millisecond of the exact age, also known as the dead time [70]) in order to be 

detectable by the machine. In addition, to be able to measure the rate of reaction, the 

concentration of the reagent has to be high enough to see changes in the optical density. 
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Figure 4. An SX.18MV-R stopped-flow spectrometer, manufactured by Applied Photophysics Limited. 
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Figure 5. Operation of the SX.18MV-R stopped-flow (single mixing) apparatus. 

Adapted from Applied Photophysics SX.18MV-R Stopped-Flow Reaction Analyser User Handbook [71]. 

2.3.2 Other instrumentations 

The measurement of electronic absorption spectra was carried out using Shimadzu UV-1650PC 

and UV-2501PC spectrophotometers. During the experiment, temperature levels were controlled 

using a thermostat reaction chamber. A Corning Pinnacle 555 pH/ion meter was used to measure 

pH. The concentrations of oxygen solutions in 0.1 M sodium phosphate buffer, pH 7.4, were 

generally calculated from Henry’s law. In a limited number of cases, the oxygen concentration 

was verified by measurement with a Clark-type electrode housed in an Oxygraph O2k 

polarographic instrument (Oroboros, Innsbruck, Austria).  
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2.4 METHODS 

2.4.1 Anaerobiosis 

Most deoxygenated solutions were generally prepared using an Omni-Lab glovebox, 

manufactured by Vacuum Atmospheres Company; however, a Schlenk line (or vacuum gas 

manifold), was employed when necessary. Argon gas was used as an inert gas for both devices. 

To be certain that oxygen was eliminated from the stopped-flow spectrometer, the reaction 

chamber including drive and stop syringes were washed at least three times with 1 M Na2S2O4 

solution and left overnight with the argon gas flowing through the machine before starting the 

anaerobic experiment. 

2.4.2 Kinetic experiments 

The stopped-flow kinetic experiments were carried out in both multiple (photodiode array, PDA) 

and single wavelength absorbance (photomultiplier tube, PMT) modes. At least three data sets 

were collected for each set of kinetic conditions and subsequently averaged.  The stopped-flow 

instrument was flushed out at least five times to ensure that the previous chemicals remaining in 

the reaction chamber were completely removed before starting the next set of reactions.  

In the concept of chemical kinetics [72, 73], a rate constant, denoted by k, is used for the 

determination of how fast the reaction proceeds. A large value for k indicates that the chemical 

reaction is fast. For a reaction between compounds A and B to form a product C (A + B  C), 

the rate of reaction, which represents the rate of disappearance of compound A or B, can be 

written as the equation below. 
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     (1) 

After integration technique is applied to (1), the rate equation with respect to time can be 

shown below (Equation 2). 

      (2) 

In this study, the pseudo-first order reaction (flooding technique) was used to obtain the 

observed rates (kobs). Under pseudo-first order conditions, the concentration of compound B is 

seemingly in very large excess, compared to the concentration of compound A ([B]0 >>> [A]0). 

Therefore, the concentration of B remains approximately constant throughout the entire reaction, 

and the concentration of B at the end of the reaction would be similar to the initial concentration 

of B ([B] ≈ [B]0). Based on the underlying assumptions made from the flooding technique, the 

rate equation as shown in (2) can be considerably simplified as the equations demonstrate below.        

      (3) 

      (4) 

Or                 where    (5) 

According to (5), a rate constant (k) can be determined from the slope of the linear 

relationship between the observed rates (kobs) and the different concentrations of compound B as 

shown in (6). In our stopped-flow experiments, compound B represents various substrates 

including NaN3, KCN, CoN4[11.3.1], oxygen, or sodium L-ascorbate. 
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      (6) 

All kinetic data were analyzed and modeled using Pro-K and SX.18MV software 

programs, supplied by the manufacturer. Pro-K software was performed a global analysis; while, 

SX.18MV was used to fit both single and double exponential floating endpoint models 

(  for a single wavelength. 

Additionally, the temperature dependence of reaction rates was demonstrated in our 

experiment based on the linear form of the Eyring Equation [74, 75] as shown below (Equation 

7). 

    (7) 

where k is the rate constant 

T is the absolute temperature in Kelvin (K) 

h is the Planck’s constant (6.626 x 10-34 J sec) 

R is the gas constant (8.3145 J mol-1 K-1) 

kB is the Boltzmann’s constant (1.381 x 10-23 J K-1) 

The activation parameters can be determined from an Eyring plot, a plot of natural log for 

the observed rates over the absolute temperature (ln kobs/T) against the reciprocal temperature in 

Kelvin (1/T). The enthalpy of activation (ΔH‡) was calculated from the slope of the Eyring 

equation (slope = -ΔH‡/R); whereas, the entropy of the entropy of activation (ΔS‡) was calculated 

from the y-intercept (y-intercept = ln kB/h + ΔS‡/R). 
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Stopped-flow experiment with oxygen employed sodium phosphate buffer solutions 

saturated with 99% oxygen (exposed to 1 atm oxygen for 2 hours) resulting in solutions with 

oxygen concentrations of 1 mM [76]. Anaerobic experiments were performed under buffers 

flushed with argon and drive syringes were filled with reagents in the glove box. 

All graphs were drawn using Kaleida-graph software v.4.5.1. All chemical structures 

were created using ChemDraw Professional v.15.1. 
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3.1 INTRODUCTION 

While many cobalt complexes have been shown to exhibit cyanide-scavenging properties, only 

hydroxocobalamin has been FDA-approved [77] for use in ameliorating the harmful effects of 

cyanide toxicity in patients without causing life-threatening side effects [51, 78]. Despite its 

safety and clinical success, hydroxocobalamin requires the intravenous administration of large 

volumes [79]. Finding more effective and less expensive cyanide antidotes would be beneficial 

to both patients and public health. Recently, a cobalt-containing Schiff-base macrocycle 

compound, cobalt 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17)2,11,13,15-
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pentaene dibromide (CoN4[11.3.1]), was found to be a viable option as a cyanide antidote [68]. 

CoN4[11.3.1] is a low molecular weight compound that binds two molecules of cyanide 

(hydroxocobalamin binds only a single cyanide) and is synthesized in a single step with 

affordable starting materials. In a sub-lethal mouse model, CoN4[11.3.1] was more effective at 

ameliorating cyanide toxicity when compared to hydroxocobalamin, cobinamide, or a cobalt-

containing porphyrin [64, 66], and no long-term sequelae were observed in these mice more than 

a week later [68]. Due to its relatively low molecular mass (~4-times smaller than 

hydroxocobalamin) [64, 68], CoN4[11.3.1] may be more soluble than other larger cobalt 

complexes, leading to an enhancement of the ameliorative effect. The working hypothesis for the 

mechanism of cyanide detoxification by many of these cobalt macrocycles is that the cobalt(II) 

forms are substitution-labile and more easily bind cyanide; after which they are easily oxidized 

to their cobalt(III) forms (due to changes in redox potential), become substitution-inert, and 

therefore retain the bound cyanide. It is also important to determine if ascorbate, the primary 

reductant in the human body, can reduce Co(III)N4[11.3.1] and how rapidly this reaction takes 

place. In addition, determining the kinetics and thermodynamics of cyanide binding to the 

reduced form of CoN4[11.3.1] may give us further insight into the mechanism of the cyanide 

association and aid in the development of this and other cyanide antidotes. 
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3.2 RESULTS 

3.2.1 Kinetics of the reduction of Co(III)N4[11.3.1] with ascorbate   

We have previously determined that Co(III)N4[11.3.1] can be reduced by ascorbate and the 

reduced compound was also observed in mouse blood [68]. The electronic absorption spectrum 

of the oxidized form of CoN4[11.3.1] is shown in Figure 6 (dotted trace) and upon an addition of 

a 50-fold excess of sodium L-ascorbate, the compound was reduced to the Co(II) form (solid 

trace) which exhibits an absorption maximum at 460 nm.  Under pseudo-first order conditions 

(10 to 50-fold excess of sodium ascorbate), the rate of Co(III)N4[11.3.1] reduction was followed 

by observing an increase in absorbance at 460 nm using a stopped-flow spectrometer. A single 

phase was observed and a linear fit of the observed pseudo-first order rate constants versus the 

sodium L-ascorbate concentrations was obtained to determine a second-order rate constant of 

11.7 (± 0.4) M-1 s-1 at 25°C and pH 7.4 (Figure 7A). To determine the activation parameters of 

the reaction, the observed rates were measured at six different temperatures between 10 and 

37°C. The enthalpy (ΔH‡) and entropy (ΔS‡) of activation was then be calculated based on a 

linear fit of the data, a plot of ln kobs/T vs. 1/T (Figure 7B). The enthalpy of activation (ΔH‡), 

obtained from the slope of the line in Figure 7B, was found to be 53.9 (± 0.8) kJ mol-1; while, the 

entropy of activation (ΔS‡), determined from the y-intercept of the linear line, was determined to 

be -79 (± 3) J mol-1 K-1. 
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Figure 6. Electronic absorption spectra of CoN4[11.3.1] species in the absence and presence of cyanide.   

Electronic absorption spectra of Co(II)N4[11.3.1] (solid trace), Co(III)N4[11.3.1] (dotted trace) and 

Co(III)N4[11.3.1](CN)2 (dashed trace). Co(II)N4[11.3.1] (0.3 mM) was prepared anaerobically in sodium phosphate 

buffer (0.1 M, pH 7.4). KCN (15 mM) was prepared anaerobically in a pH 11.6 water solution adjusted with NaOH. 

Co(III)N4[11.3.1] (0.3 mM) was prepared by allowing the reduced compound to oxidize overnight under ambient 

conditions.  
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Figure 7. Kinetics of the reaction of CoN4[11.3.1] with ascorbate or oxygen.  

(A) Stopped-flow kinetics of the reaction of Co(III)N4[11.3.1] (0.3 mM) with an excess of sodium L-ascorbate (3-15 

mM) followed at 460 nm in 0.1 M sodium phosphate buffer, pH 7.4 at 25°C. The observed rates are then plotted 

against the sodium ascorbate concentrations. The rate constant was determined from the slope of the line. (B) Eyring 

plot for the reduction of Co(III)N4[11.3.1] by sodium L-ascorbate. Reactions between sodium ascorbate (15 mM) 

and Co(III)N4[11.3.1] (0.3 mM) were carried out at 6 different temperatures ranging from 10-37°C. The natural log 

of the observed rates over temperatures in Kelvin were plotted versus the reciprocal temperatures in Kelvin. The 

activation parameters were obtained from the slope and y-intercept of the plot. (C) Stopped-flow kinetics of the 

reaction of oxygen with Co(II)N4[11.3.1] (0.05 mM) under pseudo-first order conditions at 25°C. Sodium phosphate 
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buffer solutions (0.1 M, pH 7.4) at different oxygen concentrations, prepared by mixing between deoxygenated 

buffer and 100% oxygen saturated buffer, were rapidly mixed with Co(II)N4[11.3.1] and followed at 460 nm.  The 

observed rates were plotted versus the final oxygen concentrations (0.28-0.5 mM). 

 

As it had previously been observed that leaving a solution of the Co(II)N4[11.3.1] on the 

benchtop overnight resulted in the complete conversion of the compound to its oxidized form, it 

seemed important to determine the rate of oxidation of the reduced compound if only to insure 

that it was not faster than the reduction by ascorbate.  The oxidation of Co(II)N4[11.3.1] was 

performed under pseudo-first order conditions using an excess of oxygen in solution made by the 

use and dilution of oxygen-saturated buffer.  The second order rate constant, determined from the 

linear fit of the data, was found to be 0.5 (± 0.02) M-1 s-1 at 25°C (Figure 7C).  The reaction may 

be somewhat complicated as the y intercept is non-zero; an indication that some other process is 

involved in the reaction. The oxidation has a second order rate constant ~20-fold slower, 

however, than the reduction of Co(III)N4[11.3.1] by ascorbate.  Since physiological ascorbate 

levels are ~60 µM [80] and if oxygen levels are not above that, then CoN4[11.3.1] is most likely 

to be found in its reduced in the circulation when used as an antidote.  Therefore, it is important 

to examine the binding of cyanide to the reduced form of CoN4[11.3.1]. 

3.2.2 Kinetics of cyanide binding to Co(II)N4[11.3.1] under anaerobic conditions  

The electronic absorption spectra of Co(II)N4[11.3.1] (solid trace) and the dicyano-Co(III) 

complex (dashed trace) are shown in Figure 6 at 25°C, pH 7.4. A new absorption peak appeared 

at 420 nm (see dashed trace) after the addition of an excess of cyanide, while the previous 

absorption peak at 460 nm disappeared. Lopez-Manzano et al. [68] had previously shown that 

the binding of two molecules of cyanide to the reduced cobalt compound, even under anaerobic 
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conditions, generated an oxidized dicyano-cobalt(III) complex. The kinetics of this reaction were 

examined by following spectral changes at both 420 nm (peak of dicyano-Co(III) compound) 

and 460 nm (the peak associated with the Co(II) parent complex) using a stopped-flow 

spectrometer.  At 25°C, the reaction of Co(II)N4[11.3.1] with cyanide under anaerobic conditions 

was too fast to be observed. In order to slow the reaction, both the temperature (to 10°C) and the 

cyanide concentrations (only a 10 to 20-fold excess) were lowered as far as possible while still 

maintaining pseudo-first order conditions. The rate of reaction, monitoring the kinetic traces at 

both 460 and 420 nm, was found to be very rapid and reached equilibrium within 20 ms. A plot 

of normalized absorption spectrum changes over time for kinetic traces at 460 and 420 nm 

(Figure 8A) exhibited a mirror image. This suggested that the single phase observed from the 

rate of the disappearance of the absorption maximum at 460 nm (due to Co(II)N4[11.3.1] ) was 

identical to the rate of the appearance of the peak at 420 nm (due to Co(III)N4[11.3.1](CN)2). 

The kinetic traces generated at both 460 and 420 nm were best fit with a single exponential 

model. A plot of the observed rate constants (kobs-420 nm & 460 nm) versus varying cyanide 

concentrations was linear and second-order rate constants (kf) were obtained from the slopes of 

fits: 8.5 (± 0.5) x 104 and 8.0 (± 0.5) x 104 M-1 s-1 (pH 7.6, 10°C) for data obtained at 420 and 

460 nm, respectively (Figure 8B). However, the y-intercepts of linear fits to the data were non 

zero, suggesting that either a portion of the reaction was missed, a back reaction occurred or a 

pre-equilibrium existed in the reaction of cyanide binding to the cobalt complex.  The y-intercept 

(kr ~400 s-1) may also represent the rate constant of a reaction that does not depend upon the 

concentration of cyanide, such as a reverse reaction: Co(II)N4[11.3.1](CN)2  → 

Co(II)N4[11.3.1](CN) + CN–.  
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The reaction of cyanide binding to Co(II)N4[11.3.1] was found to be temperature 

dependent over the range of 10 to 25°C. Using the Eyring equation, the reciprocal of the 

temperature was plotted versus ln kobs/T (Figure 8C). The enthalpy of activation (ΔH‡) was 

calculated from the slope of a linear fit to the data; a value of 10.7 (± 0.3) kJ mol-1 was 

determined. The entropy of activation (ΔS‡) was calculated from the y-intercept of the line and 

found to be -153 (± 1) J mol-1 K-1.   The small ΔH‡ value we determined indicates a low enthalpic 

barrier to the reaction, typically found in the range of 20-150 kJ mol-1 for bimolecular reactions 

and is certainly consistent with the large rate constant value observed (kf of ~105 M-1 s-1).   

Additionally, reactions between cyanide and the cobalt complex were performed at a 

range of hydrogen ion concentrations (pH 6.3 to 9.0, see Figure 8D) and we observed an 

increasing rate of reaction with increasing pH. Indeed, we found that the reaction rate above pH 

9.0 was so fast that we were not able to measure it. These results are in contrast to some 

reactions of cyanide with cobalt complexes in which the rate of the reaction decreases with 

increasing pH, indicating HCN as the attacking nucleophile, although other reactions clearly 

depend on both on species [81]. Since our observations showed an increasing rate with 

increasing pH, this suggests that the anionic form of cyanide (CN–) is the attacking species 

during the reaction and that the reaction with HCN must be very much slower.  The pKa of HCN 

is 9.3 at 25°C and thus the concentrations of cyanide anion (CN–) increases under more basic 

conditions (at pH ~9.3 the ratio of HCN/CN– is 1:1). The percent cyanide anion calculated at 

various hydrogen ion concentrations (using the Henderson-Hasselbalch equation) is plotted 

alongside the observed rates of cyanide binding to the cobalt complex (Figure 8D).  The rates 

correspond quite well with the amount of cyanide anion present during the reactions, thus 

lending additional support to the idea of cyanide anion as the attacking species. 
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While the pH dependence of the reaction fits with the idea that the cyanide anion is the 

predominant attacking species, there is another reagent involved in the reaction, 

Co(II)N4[11.3.1].  Many other cobalt compounds with coordination to 4 nitrogen atoms have a 

square-planar arrangement (see Figure 3 in Chapter 1), with 2 other available sites for ligand 

binding. Frequently these other ligands are water molecules which when bound to metals 

undergo a change their pKa.  A bound water molecule may lose a proton to become a bound 

hydroxide, for example, which can cause a change in the reaction kinetics. In addition these 

changes in the axial ligands’ protonation state may be reflected by changes in the electronic 

absorption spectrum of the compounds.  Therefore, Co(II)N4[11.3.1] (0.6 mM) samples in either 

0.1 M sodium phosphate (pH 4.5-8.5) or borate (pH 9-11) buffers, with 0.3 M NaCl added to 

maintain ionic strength, were prepared anaerobically and the electronic absorption spectra of 

these solutions were recorded at pH levels (measured after mixing), ranging from 4.9 to 10.6.  

All of these spectra were shown to be essentially identical (see Figure 6, solid trace, as an 

example). However, we found that the intensity of the Co(II)N4[11.3.1] spectrum recorded below 

pH 5 decreased over time, probably due to some degradation of the Schiff-base macrocycle 

structure [82]. Thus, in the range pH 5 to 10, we can find no evidence that the axial positions of 

the square-planar structure of Co(II)N4[11.3.1] in aqueous solution are perturbed due to changing 

pH and are more convinced that the kinetic evidence supports the cyanide anion as the attacking 

species in the reaction of cyanide with Co(II)N4[11.3.1].  It has also been suggested that the 

CoN4[11.3.1] complex has a square planar geometry, rather than octahedral, and that there are no 

axial ligands bound to the complex [83].  The lack of any change in the absorption spectrum with 

pH, while hardly definitive, does seem to support this notion. 
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Figure 8. Kinetics of the reaction of Co(II)N4[11.3.1] with cyanide under pseudo-first order conditions. 

(A) Representative stopped-flow kinetics of the reaction between Co(II)N4[11.3.1] and KCN under pseudo-first 

order conditions at 10 °C, pH 7.6 (after mixing). The reactions were followed anaerobically at 420 (solid line) and 

460 (dashed line) nm under the following circumstances: 0.3 mM Co(II)N4[11.3.1] in 0.05 M sodium phosphate 

buffer, pH 7.4, 3 mM KCN (10-fold excess, prepared in a pH 11.6 water solution adjusted with NaOH) at 10 °C. 

Absorbance changes were followed at both 420 and 460 nm and normalized. (B) Stopped-flow kinetics of the 

reaction of Co(II)N4[11.3.1] (0.3 mM) with KCN (3-6 mM) under anaerobic conditions. The reaction was followed 
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under pseudo-first order conditions at both 420 and 460 nm at pH 7.6 (after mixing), 10°C. The observed rates 

obtained from both kinetic traces at 420 (closed circles) and 460 (open squares) nm were then plotted against the 

KCN concentrations. Rate constants were determined from the slope of the lines.  (C) Eyring plot determining the 

activation parameters for the reaction kinetics of Co(II)N4[11.3.1] (0.3 mM) with KCN (3 mM) were followed as in 

(B) at 420 nm under anaerobic conditions at 5 different temperatures between 10 and 25°C. The natural log of the 

observed rates over temperatures in Kelvin were then plotted against the reciprocal temperatures in Kelvin. The 

enthalpy (ΔH‡) and entropy (ΔS‡) of activation were determined from the slope and y-intercept of the plot, 

respectively. (D) Stopped-flow kinetics of the reaction of Co(II)N4[11.3.1] (0.3 mM) with KCN (3 mM) under 

anaerobic conditions at 10°C. Kinetic traces were monitored at 420 nm under pseudo-first order conditions at 

different pH (measured after mixing) ranging from 6.3 to 9.0. The observed rates were plotted versus the final pH 

values (closed circles).  The right axis represents the percentage of cyanide anion plotted versus the pH (open 

circles). 

 

3.2.3 Kinetics of cyanide binding to Co(II)N4[11.3.1] under non-pseudo first order 

conditions 

As observed in the pseudo-first order reactions of Co(II)N4[11.3.1] with excess cyanide, the 

intercept was non-zero indicating that a portion of the reaction was either due to a pre-

equilibrium or that we were missing part of the reaction. In order to investigate the potential 

portion of the reaction represented by the non-zero intercept (see Figure 8B), the reaction of 

cyanide with Co(II)N4[11.3.1] was carried out under non-pseudo first order conditions. The 

kinetics of this reaction were performed under anaerobic conditions (10°C, pH 7.6) using a 1:1 

ratio of [cyanide]:[Co(II)N4[11.3.1]] (0.3 mM each) and observed that the absorption spectrum in 

the 400-500 nm region initially increased during a 27 millisecond time-frame, then decreased 

slightly (Figure 9A). Under the same reaction conditions, but in the presence of oxygen, we 

found an initial small increase in absorbance (over 27 ms), followed by a decrease (over 500 ms) 

in the absorption spectrum of 400-500 nm (Figure 9B). However, neither of these reactions for 
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the 1:1 ratio of reagents, showed a peak at 420 nm, which, when present, indicates the dicyano-

Co(III) complex. Therefore, it appears that under these conditions we are observing the 

formation of a monocyano cobalt complex. 

 

 

Figure 9. Kinetics of the reaction of Co(II)N4[11.3.1] with cyanide at a 1:1 ratio in the absence and presence of 

oxygen at 10°C, pH 7.6. 
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Reactions between Co(II)N4[11.3.1] (0.3 mM) in 0.05 M sodium phosphate buffer, pH 7.4 and KCN (0.3 mM) in a 

pH 11.6 water solution adjusted with NaOH were performed at 10°C, pH 7.6 (after mixing). Stopped-flow kinetic 

data were recorded using photodiode array mode at 3 different time points; Main panel: Electronic absorption 

spectra of the reaction of Co(II)N4[11.3.1] with KCN at t = 0 ms (solid trace), 27 ms (dashed trace) and 513 ms 

(dotted trace). Inset: Enlarged electronic absorption spectra between 400 and 500 nm. The experiments were carried 

out in the (A) absence and (B) presence of oxygen. 

 

 

In addition, reactions of Co(II)N4[11.3.1] with cyanide were carried out with a 1:2 ratio 

of reactants (0.3 mM Co(II)N4[11.3.1]:0.6 mM KCN) (Figure 10) under anaerobic conditions, at 

10°C, pH 7.6.  In this reaction, an increase in absorption at 420 nm was observed, while during 

the same time the 460-nm absorption band decreased. This behavior resembled the results 

observed under pseudo-first order conditions (Figure 6, dashed trace), suggesting the formation 

of the dicyano-Co(III)N4[11.3.1] species. Interestingly, in the presence of oxygen, the absorption 

at 420 nm also initially increased, but the absorbance increase did not reach the same absorbance 

level as the reaction performed in the absence of oxygen. This suggested that a dicyano-

Co(III)N4[11.3.1] species was formed; while, the decrease in 420-nm absorption band indicated 

that there could be another additional pathway(s) to produce the final product.  Taken together, 

the data from the non-pseudo first order reactions of cyanide binding to CoN4[11.3.1] suggest 

that the first cyanide binding is extremely rapid followed by association of the second cyanide 

which is then the rate-determining step that we observe (see Figure 8B). 
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Figure 10. Kinetics of the reaction of Co(II)N4[11.3.1] with cyanide at a 1:2 ratio in the absence and presence 

of oxygen at 10°C, pH 7.6. 

Reactions between Co(II)N4[11.3.1] (0.3 mM) in 0.05 M sodium phosphate buffer, pH 7.4 and KCN (0.6 mM) in a 

pH 11.6 water solution adjusted with NaOH were carried out in the absence and presence of oxygen at 10°C, pH 7.6 

(after mixing). Stopped-flow kinetic data were recorded using photodiode array mode and followed at both 420 

(solid traces) and 460 nm (dashed traces) over a 500 ms time frame. 

 

3.2.4 Cyanide binding to Co(II)N4[11.3.1] in the presence of oxygen 

As we are interested in the potential antidotal activity of Co(II)N4[11.3.1] under physiological 

conditions, the binding of cyanide to the reduced cobalt complex was carried out under aerobic 

conditions. While most of the oxygen in mammals is found bound to hemoglobin, the circulating 

levels of oxygen may increase during cyanide poisoning as cytochrome c oxidase will no longer 
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be able to turnover the available oxygen with cyanide bound to its active site. Cyanide binding to 

Co(II)N4[11.3.1] in the presence of oxygen was initially assessed using electronic absorption 

spectrophotometry. KCN solutions (6 mM) were prepared aerobically, [O2] ~250 µM, whereas 

Co(II)N4[11.3.1] (0.3 mM) was prepared anaerobically in 0.1 M sodium phosphate buffer, pH 

7.4. The equal volume of the two solutions were then mixed in a cuvette, leading to the 

disappearance of the absorption peak at 460 nm associated with reduced cobalt species (solid 

trace, Figure 6). The resultant spectrum closely resembled the spectrum of Co(III)N4[11.3.1] 

(dotted trace, Figure 6).  When this reaction was attempted under the similar conditions ([KCN] 

= 6 mM, [Co(II)N4[11.3.1]] = 0.3 mM) but in the stopped-flow spectrophotometer, even at 10°C 

the reaction occurred within the dead time of the instrument and, thus, no rate constant for the 

reaction under oxygen could be determined due to an extremely rapid reaction. 

3.3 DISCUSSION 

Co(III) complexes are famously kinetically inert to substitutions. Consequently, a good deal of 

effort has gone into understanding the apparent ease with which Co(III) corrinoids (e.g. 

cobalamin) bind cyanide.  We have recently argued, however, that one does not necessarily need 

to invoke phenomena such as favorable kinetic trans effects to explain facile cyanide 

substitutions in these systems. The net reducing conditions in vivo favor reduction to Co(II) 

forms and, therefore, the available cobalt based cyanide scavengers almost certainly work by 

binding cyanide to their Co(II) forms, followed by oxidation to kinetically stable Co(III) cyanide 

adducts [59, 66, 68]. This ensures the cyanide can be excreted rather than systemically 

redistributed.  In the current experiments, we have examined the physicochemical properties of 
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CoN4[11.3.1] to ensure that it fits this model and seek to explore why it may have improved 

decorporation characteristics compared to other cobalt scavengers.   

3.3.1 In vivo oxidation/reduction considerations 

Ascorbate is deemed to be one of the main reductants in body fluids and tissues in humans with 

the estimated ascorbate concentration in blood plasma of ~60 µM [80]. The reduction of 

Co(III)N4[11.3.1] by ascorbate, was found to be reasonably facile with a rate constant of 11.7 (± 

0.4) M-1 s-1 at pH 7.4 and 25°C. This rate constant is comparable to those observed for other 

cobalt amine (N4) complexes: Co(Me6[14]4,11-dieneN4)(H2O), 3.4 M-1 s-1; 

Co(Me6[14]tetraeneN4)(H2O), 42 M-1 s-1; Co(ms-Me6[14]aneN4)(H2O), 42 M-1 s-1; and 

Co([14]aneN4)(OH), 29 M-1 s-1 in their reactions with ascorbate [84]. The rate constant for the 

oxidation of Co(II)N4[11.3.1] was found to be 0.5 (± 0.02) M-1 s-1, almost 20-fold slower than the 

rate constant observed for the ascorbate reduction of the complex.  Estimates of the effective free 

oxygen concentration in mammals are ~30 µM [85], but the level of oxygen might be expected 

to be a little higher under circumstances where the consumption of oxygen is inhibited (e.g. 

during cyanide intoxication).  So assuming that the level of oxygen could be double that of 

normal physiologic concentration, i.e. equal to the circulating level of ascorbate and, therefore, 

the relative rate constants would ensure that the reduction of the cobalt complex would dominate 

by more than an order of magnitude. In short, whatever form administered, the CoN4[11.3.1] will 

quickly be reduced in circulating blood and remain so with cyanide bound. 
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3.3.2 Kinetics and plausible antidotal mechanisms of cyanide binding to Co(II)N4[11.3.1] 

It follows that the binding of cyanide to Co(II)N4[11.3.1] is the functionally significant issue.  In 

this study, the overall reaction under anaerobic conditions, leading to formation of a dicyano 

final product, was found to be extremely rapid with a second order rate constant of 8 x 104 M-1 s-1 

(pH 7.6) when measured at 10°C. While we could not measure the second order rate constant of 

cyanide binding at 37°C, it can be estimated from the activation parameters at greater than 105 

M-1 s-1. In addition, this rate constant is consistent with describing the binding of the second 

cyanide (the rate determining step) since the reaction of the first cyanide with Co(II)N4[11.3.1], 

leading to a monocyano intermediate, was not observable (see Figure 11). As we alluded to in 

the beginning of this discussion, there is a dearth of data concerning the binding of cyanide to the 

reduced forms of several potential antidotes containing cobalt.  While we can only estimate the 

rates of some of these reactions, it is clear that the binding of cyanide to Co(II)N4[11.3.1] is 

extremely fast. We also note that the pH behavior of the rates of cyanide binding to a cobalt 

porphyrin (e.g. CoTMPyP) [66] and a cobalt corrin (cobalamins) [86] indicated that the 

protonated form of cyanide, HCN, was one of the attacking species in these reactions. In 

contrast, the pH behavior of the reaction of cyanide with Co(II)N4[11.3.1] (Figure 8D) indicates 

that the cyanide anion (CN–) is the major attacking species. It might be expected that the cyanide 

anion (1-) would combine with the Co(II)N4[11.3.1] (2+) at an increased rate over HCN (0) 

binding to other cobalt complexes.  
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Figure 11. A plausible mechanism for the reaction of Co(II)N4[11.3.1] with excess of cyanide in the absence of 

oxygen at pH 7.6. 

The step with the second order rate constant (k) is the rate determining step (experimentally accessible). 

3.3.3 Effect of oxygen on the dicyano cobalt complex 

When cyanide was added to Co(II)N4[11.3.1] in the presence of oxygen, the absorption spectrum 

generated was essentially identical to the spectrum of Co(III)N4[11.3.1] (dotted trace, Figure 6). 

This suggested that cyanide could be lost from the “final” Co(III)N4[11.3.1](CN)2 product. The 

overall reaction under aerobic conditions was so fast that we could neither identify the exact 

pathways nor determine the rate constant(s). Since the rate of the first cyanide binding to the 

cobalt complex was faster than that for the second cyanide, it is likely that cyanide is released 

from the monocyano-Co(III)N4[11.3.1] by an inner sphere reaction with oxygen before the 

second cyanide can be bound to the complex (see Figure 12). Reactions of Co(II)N4[11.3.1] with 

cyanide at a 1:2 ratio under aerobic conditions, however, showed that a small amount of dicyano-

Co(III)N4[11.3.1] complexes could also be formed as a minor product. The possible mechanism 

for the loss of cyanide from monocyano-Co(II)N4[11.3.1] is currently under investigation. A 

plausible series of reactions for the reaction of Co(II)N4[11.3.1] with excess of cyanide in the 

presence of oxygen is shown in Figure 12.  
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Figure 12. A plausible mechanism for the reaction of Co(II)N4[11.3.1] with excess of cyanide in the presence 

of oxygen at pH 7.6. 

The step with the second order rate constant (k) is the rate determining step (experimentally accessible). 

 

The release of both cyano ligands from the cobalt complex in the presence of oxygen 

would certainly suggest that Co(II)N4[11.3.1] might not be an effective antidote against cyanide 

toxicity, but we have certainly demonstrated that it does work effectively in vivo [64, 68]. How 

can these two observations be reconciled? We have also previously demonstrated that in the 

presence of excess ascorbate, oxygen is turned over (possibly to H2O2), in a catalytic fashion, by 

Co(II)N4[11.3.1] [68]. In addition, when cyanide was added to the aforementioned reaction, the 

oxygen turnover was effectively halted.  The available evidence supports either that the 

concentration of reductants (ascorbate and other reducing compounds) must be higher than the 

normal physiologic level of free oxygen in vivo, or that the oxygen concentration can be 

efficiently lowered by the turnover reaction of CoN4[11.3.1]. 
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3.3.4 Activation parameters 

The enthalpy (ΔH‡) of activation for the Co(III)N4[11.3.1] reduction was found to be 53.9 (± 0.8) 

kJ mol-1; while, the ΔH‡ value for cyanide binding to the cobalt complex (10.7 (± 0.3) kJ mol-1) is 

even lower than the typical ΔH‡ values ranging from 20-150 kJ mol-1 [75]. This small ΔH‡ value 

is relevant to the large rate constant value (k of ~105 M-1 s-1), indicating that the cyanide binding 

process to Co(II)N4[11.3.1] was undoubtedly very rapid. 

Interestingly, the entropy (ΔS‡) of activation of both reactions (ascorbate reduction and 

cyanide binding) showed large negative values: -79 (± 3) J mol-1 K-1 for the Co(III)N4[11.3.1] 

reduction and -153 (± 1) J mol-1 K-1 for cyanide binding to Co(II)N4[11.3.1]). Generally, 

entropies of activation are subject to much more speculation concerning their values, as opposed 

to enthalpies of activation.  Differing ΔS‡ values for rather similar reactions are often attributed to 

changes in solvation between ground and transition states. These large negative values, however, 

do suggest much more ordered transition states compared to their ground states. Large negative 

values of ΔS‡ for bimolecular reactions have been observed in cases of ionic reactions between 

similarly charged ions, for example, CH2BrCOO– + S2O3
2– (ΔS‡ = -80 J mol-1 K-1), S2O3

2– + 

S2O3
2– (ΔS‡ = -160 J mol-1 K-1), [Co(NH3)5Br]2+ + Hg2+ (ΔS‡ = -160 J mol-1 K-1) [87]. In our 

study, however, the reactions were between positively charged ions (Co(II/III)N4[11.3.1]) and 

negatively charged ions (ascorbate– and CN–) and, thus, this is not an adequate explanation. One 

would, however, expect negative activation entropies in associative reactions as two entities 

come together (associate), e.g. cyanide or ascorbate with cobalt ions. Therefore, the negative 

activation entropies seem to indicate that both of these reactions (ascorbate reduction and 

cyanide binding) are associative with the cyanide binding reaction being strongly so.  
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This study has gone some way towards enhancing our understanding the reaction of 

Co(II)N4[11.3.1] with cyanide. The exceptionally fast rate of reaction of the complex with 

cyanide implies a high efficacy of its cyanide-scavenging property. These findings further 

support the conclusion, suggested by our previous work using a sub-lethal mouse model, that 

Co(II)N4[11.3.1] could potentially be a more cost-effective and better cyanide antidote, rather 

than the conventional therapy, hydroxocobalamin. 
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4.1 ABSTRACT 

The administration of Co(II)N4[11.3.1] at 5 minutes post sodium azide intraperitoneal injection 

to mice resulted in a substantial decrease of righting-recovery times, compared to controls. The 

percent survival for the mice receiving Co(II)N4[11.3.1] also increased, compared to the controls. 

Sodium nitrite showed no ameliorative effect toward azide in mice. Anaerobically, two azide 

molecules cooperatively bind to one cobalt complex with a binding (association) constant of 2.8 

x 108. However, in the presence of oxygen, oxidation of the Co(II)N4[11.3.1](N3)2 adduct occurs 
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with the concomitant loss of at least one azido ligand. The stopped-flow kinetics of cyanide 

binding to Co(II)N4[11.3.1] in the absence of oxygen exhibited three experimentally observable 

phases; I (fast), II (intermediate) and III (slow). Phase II accounted for ~100% of the overall 

absorbance changes, representing the major process observed with a second-order rate constant 

of 29 (± 4) M-1 s-1 at 25°C. The data demonstrated pH independence of the reaction around 

neutrality, suggesting the unprotonated azide to be the attacking species. In the presence of 

excess oxygen, the oxidation of Co(II)N4[11.3.1](N3)2 to Co(III)N4[11.3.1](N3) exhibited 

biphasic kinetics. Both phases were oxygen dependent but the faster phase was linearly 

dependent on the square of the oxygen concentration. The mechanism of this oxidation is 

complicated and warrants further study. However, the simplest explanation would be that the 

oxidation of the substitution-labile Co(II)N4[11.3.1](N3)2 requires displacement of an azido 

ligand by oxygen, followed by inner-sphere electron transfer forming Co(III)N4[11.3.1](N3) and 

superoxide, resulting in the kinetically stable monoazido-Co(III) adduct. 

4.2 INTRODUCTION 

Most azide poisonings are accidental, or suicide attempts, but there also seem to have been at 

least half a dozen reported instances of malicious injury to others caused by spiking beverages 

with azide in Japan [21] and the US [23-25]. The symptoms of acute azide (N3
–) intoxication are 

similar to those induced by cyanide (CN–) [88, 89] and, analogous to cyanide, azide is known to 

be an inhibitor of the mitochondrial electron transport system, specifically at cytochrome c 

oxidase (complex IV) [30, 90, 91].  Unlike cyanide, however, there is no antidote for azide 

poisoning, either approved or off-label, currently available.  When dissolved in aqueous solution, 
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azide is an odorless, colorless and highly toxic substance, clearly useful characteristics for 

nefarious purpose.  Sodium azide has a number of commercial uses, most notably in the 

explosive deployment of automobile airbags, but it is also a widely used bactericidal agent.  

Consequently, there probably exists a significant quantity of sodium azide stored in poorly 

documented locations.  Due to the similarity of action for azide and cyanide, conventional 

remedies for cyanide poisoning, such as nitrite/thiosulfate and/or hydroxocobalamin, might be 

expected to be of benefit for treating azide toxicity.  None of these, however, has so far 

demonstrated a substantial or convincing amelioration of azide toxicity [92]. 

Recently, we have shown that a cobalt-containing Schiff-base macrocyclic compound, 

cobalt 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17)2,11,13,15-pentaene 

dibromide (CoN4[11.3.1]), effectively scavenged cyanide in mice [64, 68]. Here, we explore 

whether CoN4[11.3.1] might also be an effective antidote toward azide toxicity by virtue of its 

scavenging capability, which we demonstrate through the application of various physical 

methods and by restoration of righting recovery in sub-lethally intoxicated mice.  In addition, 

some previous authors have questioned whether the toxic effects of azide are due to N3
– itself, 

suggesting that secondary metabolites like cyanide [89] or nitric oxide [34] might be the 

principal toxic species. The present findings distinguish between these possibilities. 
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4.3 RESULTS 

4.3.1 Potential antidote to azide toxicity in mice 

The righting recovery behavior of mice has recently been employed to assess the ability of 

potential antidotes to ameliorate sub-lethal doses of toxicants (especially cyanide) [41, 68, 93]. In 

the present study, mice were injected intraperitoneally (IP) with sodium azide (t = 0) then, after 

“knockdown” (loss of consciousness), placed on their backs and the time until they “righted” 

themselves onto four feet recorded. Mice given sodium azide exhibited a rather steep response 

curve: 26 mg/kg was an LD20 (or knockdown) dose; 24 mg/kg (LD0) showed minimal effect; 30 

mg/kg was essentially a lethal dose.  This is similar to cyanide but the molar doses of azide 

required to elicit a similar righting-recovery response to cyanide in mice were ~4 times the 

cyanide doses.  When given 26 mg/kg sodium azide (IP), 12 week-old mice demonstrated 

knockdowns at 7-8 min post injection, with the majority of mice surviving (88%) and exhibiting 

righting-recovery times of 40 (± 8) min (Table 1). 

 

Table 1. Antidotal activity of CoN4[11.3.1] against azide toxicity in mice. 

Experimental conditions Number of 

knockdowns 

Recovery 

Time (min) 

% survivors 

26 mg/kg NaN3 8 of 8 40 (± 8) 88 

26 mg/kg NaN3 + 24 mg/kg NaNO2 (5 min later) 6 of 6 38 (± 8) 83 

26 mg/kg NaN3 + 37 mg/kg CoN4[11.3.1] (5 min later) 2 of 7 12 (± 4) 100 
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Since sodium azide exhibits a similar toxicological profile to cyanide, with presumably 

the same biological target (cytochrome c oxidase), two antidotes that were previously found to 

be effective against cyanide toxicity in mice were investigated.  Sodium nitrite (12 mg/kg) has 

been shown to ameliorate cyanide toxicity in mice up to 20 min after the toxicant dose (5 mg/kg 

NaCN, LD75) but when sodium nitrite (24 mg/kg, IP) was given to mice 5 min after the azide 

dose, it had virtually no effect, with mice exhibiting a righting recovery at 38 (± 8) min (see 

Table 1).  Previously the protective effect of CoN4[11.3.1] against cyanide toxicity has been 

demonstrated in a mouse model [64, 68]. When CoN4[11.3.1]Br2  (37 mg/kg) was given at 5 min 

post sodium azide, all of the mice recovered, the majority of the mice did not knockdown (71%) 

and those that did (29%) recovered by 12 min (Table 1).  These results clearly demonstrate that 

CoN4[11.3.1] is a potential antidote to azide toxicity, while sodium nitrite is apparently not. 

4.3.2 Azide binding to CoN4[11.3.1] 

The addition of Co(III)N4[11.3.1] to mouse blood was previously shown to result in its reduction 

to the Co(II) form [68]. We, therefore, studied the stoichiometry and determined the equilibrium 

constant for the binding of azide to Co(II)N4[11.3.1].  The electronic absorption spectrum of 

Co(II)N4[11.3.1] exhibits a broad band in the visible region with a maximum at 460 nm (Figure 

13, solid trace).  Following the anaerobic addition of excess sodium azide (0.1 M sodium 

phosphate buffer, pH 7.4) the absorption maximum shifts to ~475 nm with slight loss of intensity 

(Figure 13, dashed trace).  These spectra are consistent with the observed transitions being 

largely d-d in origin and, perhaps surprisingly, their similarity is not suggestive of much change 

in net ligand geometry around the central Co(II) ion upon binding azide.  However, we found 

that no azide bound when this experiment was carried out in low or red light. Thus we conclude 
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that the binding of azide to Co(II)N4[11.3.1] must be photo-catalyzed and subsequently all other 

experiments were carried out under ambient light. When excess azide was added to 

Co(II)N4[11.3.1] in the presence of oxygen, the spectrum obtained displayed significantly 

reduced absorption intensity throughout most of the visible region (Figure 13, dot-dashed trace) 

in keeping with the typically weak d-d spectra of Co(III) compounds.  The absorption spectrum 

of azide-free Co(III)N4[11.3.1] demonstrating a similar lack of distinct features in the visible 

region is shown for comparison (Figure 13, dotted trace).  The 5-fold more intense band at 350 

nm in the azide adduct formed under aerobic conditions (Figure 13, dot-dashed trace) is 

presumably more charge-transfer (ligand-to-metal) in nature than the visible-region bands in 

these spectra.  Overall, these data suggest that in the presence of oxygen, the binding of azide to 

Co(II)N4[11.3.1] results in oxidation of the cobalt to a Co(III) form.  The conversion of an initial 

Co(II) species to a Co(III)-containing azide adduct under aerobic conditions has subsequently 

been confirmed by EPR measurements (see below). 
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Figure 13. Electronic absorption spectra of Co(II/III)N4[11.3.1] binding to azide.  

Sodium azide was titrated into Co(II)N4[11.3.1] (0.5 mM) under anaerobic conditions and into Co(III)N4[11.3.1] 

(0.5 mM) under aerobic conditions at 25ºC and pH 7.4 (0.1 M sodium phosphate buffer) in septum-sealed cuvettes 

(1 cm path length) using gastight syringes. Main panel: Electronic absorption spectra of Co(II)N4[11.3.1] alone 

(solid trace) and in the presence of 100-fold excess of sodium azide (dashed trace) and Co(III)N4[11.3.1]  alone 

(dotted trace) and in the presence of 100-fold excess of sodium azide (dot-dashed trace). Inset: Enlarged electronic 

absorbance spectra of Co(II)N4[11.3.1] and Co(III)N4[11.3.1] with a 100-fold excess of sodium azide. 
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While the electronic spectral changes indicated that azide bound to Co(II)N4[11.3.1], the 

stoichiometry remained unresolved.  Job’s method has been used for over a century to determine 

molecular associations such as acid-base equilibria, transition metal coordination, host-guest 

association, etc.  Briefly, the mole fraction of a single component of a two-component system 

can be plotted versus some physical property, commonly absorbance, which linearly relates to 

the formation of a complex.  This presentation is often called a Job plot [94-96].  As a positive 

control, we applied a minor variation of the method to a system containing similarly weak 

chromophores to the cobalt complexes we intended to investigate further.  Formation of the 

Cu(II)EDTA complex was monitored by absorption difference spectroscopy monitoring the 

peak-to-trough changes at 723 and 500 nm (Figure 14A).  This well-known 1:1 complex gave a 

maximal absorption difference at the volume fraction of 0.5, confirming the expected 1 Cu(II):1 

EDTA stoichiometry.  In addition, the triangle-like plot (rather something more curved in the 

vicinity of the maximum) indicates a large binding constant [94-96].  It is known that EDTA 

binds Cu(II) with a Keq of ~1018 and thus the triangular plot (Figure 14A) is consistent with this 

large binding constant [94].  When the same approach was applied to the anaerobic binding of 

azide to Co(II)N4[11.3.1], monitoring the peak-to-trough changes at 360 and 490 nm, the 

maximum was clearly not found to be at a volume fraction of 0.5, but at 0.33 (Figure 14B).  This 

correlates with a 1 Co(II)N4[11.3.1]:2 azide ratio similar to the stoichiometry previously 

observed for the binding of cyanide [68]. Interestingly, if an otherwise analogous experiment 

was carried out in the presence of oxygen, the resulting Job plot was found to exhibit a maximum 

at a volume fraction of 0.6 (Figure 14C).  This result fits a 1:1 stoichiometry better than the 1:2 

ratio found for the Co(II)N4[11.3.1]-azide complex in the anaerobic experiment, but may also 

indicate the presence of some additional minority species with alternate stoichiometry (e.g. 2 
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cobalt:1 azide).  Whatever the correct explanation for this perplexing result, we can be 

reasonably certain that oxidation of the Co(II)N4[11.3.1](N3)2 adduct occurs with the 

concomitant loss of at least one azido ligand. 
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Figure 14. Job plots resulting from the titrations of Cu(II)SO4 to Na2EDTA and Co(II/III)N4[11.3.1] to azide. 

The titrations of (A) Cu(II)SO4 to Na2EDTA (0.025 M acetate buffer, pH 4.7), (B) Co(II)N4[11.3.1] to sodium azide 

(0.1 M sodium phosphate buffer, pH 7.4), and (C) Co(III)N4[11.3.1] to sodium azide (0.1 M sodium phosphate 
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buffer, pH 7.4) by the method of continuous variations. The intersection of linear fits represents the volume fraction 

(XA = [A]/([A]+[B])) of host corresponding to its binding ratio with the ligand. Open and closed circles represent 

absorbance change values associated with each linear fit within each plot. 

 

 

Co(II)N4[11.3.1] has an EPR spectrum typical of S = 1/2 Co(II) complexes (d7) which 

has an axis of symmetry with g|| < g⊥ and exhibits signals near 3300 G (Figure 15, A). We can 

observe a series of signals on top of the main signal (crossover at 3085 G) which consists of 8 

hyperfine lines resulting from the interaction of the unpaired electron (d7) with the 59Co nucleus 

(I = 7/2).  Following the addition of increasing amounts of azide to the initial sample, a new EPR 

signal begins to become apparent (Figure 15, B-D) finally resulting in a spectrum with the main 

crossover feature at 3121 gauss (Figure 15, E) – a small but highly reproducible change.  Even 

when a 100-fold excess of azide was added to Co(II)N4[11.3.1], the EPR signal obtained did not 

significantly change from that observed with a 10-fold excess of sodium azide (Figure 15, E).  

When this sample was exposed to oxygen, the signal disappeared, demonstrating the formation 

of an EPR-silent Co(III)N4[11.3.1] azide compound.  The concentration of the Co(II)N4[11.3.1] 

sample and the fully formed Co(II)N4[11.3.1](N3)2 were determined by double integration of the 

signals with reference to a Cu(II)EDTA standard using the program SpinCount and found to be 

within 90% of the calculated concentrations, i.e. 63 µM.  The concentrations of the azide-free 

and azide-bound signals could be determined by combining the two EPR signals arising from the 

fully formed Co(II)N4[11.3.1](N3)2 and Co(II)N4[11.3.1] in the samples and matching to the 

intermediary spectra (Figure 15, B-D).  This procedure enabled us to quantify concentrations of 

the Co(II) species present without any interference from small amounts of Co(III).  This 

overcame a significant interference that prevented using electronic absorption data to evaluate 

the azide binding constant.  The Kβ’ was determined using the following equation: 
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The concentrations of both cobalt complexes were determined by EPR and the free azide 

concentration was calculated by subtracting the amount of bound azide bound from the initial 

(total) concentration, assuming that 2 azide anions bound to each Co(II)N4[11.3.1] (see Figure 

14B).  The overall binding (association) constant, Kβ’, for the binding of azide to 

Co(II)N4[11.3.1] was then calculated to be 2.8 x 108. 
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Figure 15. X-band EPR spectra at 20 K of Co(II)N4[11.3.1] in 0.1 M sodium phosphate buffer (pH 7.4), 20% 

glycerol and a 10-fold excess sodium ascorbate and with azide.  

Samples of 0.063 mM Co(II)N4[11.3.1] were prepared anaerobically at room temperature (A) and with anaerobic 

aqueous sodium azide in increasing excess (up to 10-fold) over the cobalt complex concentration (B-E).  EPR 
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conditions: 9.8 G modulation amplitude, 63.2 µW microwave power. Samples were frozen and stored in liquid 

nitrogen quickly after preparation for later analysis. 

 

 

Since we found that in the presence of oxygen the Co(II)N4[11.3.1](N3)2 loses an azide 

anion, we determined the overall equilibrium under these conditions. A titration of 

Co(II)N4[11.3.1] in the presence of oxygen with azide resulted in a Kβ’ of 816. 

4.3.3 Kinetics    

Previously, the reduction of Co(III)N4[11.3.1] by ascorbate (~60 µM in the circulating 

blood) was shown to be facile and thus, in relation to the question of antidotal mechanism, it 

seemed most important to determine the rate of binding of azide to the reduced cobalt complex 

rather than the oxidized form.  The kinetics of azide binding to Co(II)N4[11.3.1] were conducted 

under anaerobic conditions, at pH 7.4 in 0.1 M sodium phosphate buffer, by following the 

absorbance changes at 460 nm (absorption maximum of Co(II)N4[11.3.1]) using stopped-flow 

spectrophotometry at both 25 and 37 °C.  The resulting absorbance changes were indicative of 

three phases; I (fast, Figure 16A), II (intermediate, Figure 16B) and III (slow, not shown).  The 

intermediate phase II consisted of ~100% of the absorption decrease at 460 nm and, therefore, 

represents the major process observed. Phase II was found to be linear with respect to both the 

concentration of azide and the cobalt complex (Figures 17A and 17B).  Second-order rate 

constants (designated k2) of 29 (± 4) M-1 s-1 at 25°C and 70 (± 10) M-1 s-1 at 37°C were found for 

this phase.  In addition, reactions of azide and the cobalt complex were carried out at pH values 

of 6.5 (solid diamond) and 8.5 (open square) at 25°C (Figure 17C) demonstrating the absence of 
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any pH dependence of the reaction around neutrality.  As the pKa for azide is 4.7, greater than 

98% of the total azide in solution is in the anionic form (N3
–) at pH values above 6.4.  Thus, as 

expected, the kinetic results are consistent with the unprotonated azide ion being the reacting 

species. 

 

 

Figure 16. Representative stopped-flow kinetics of the reaction of Co(II)N4[11.3.1] with azide under pseudo-

first order conditions.  

The reaction was followed anaerobically at 460 nm under the following conditions: 0.15 mM Co(II)N4[11.3.1], 7.5 

mM (50-fold excess) NaN3, 0.1 M sodium phosphate buffer, pH 7.4, 25°C. The absorption at 460 nm was shown to 

(A) first increase over a 1 second time frame and then (B) decrease afterward over a 500-second runtime. Closed 

circles represent the collected data with solid lines showing the single exponential fits to the data. All concentrations 

given are those obtained after mixing. 
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The fast phase I coincided with an absorbance increase at 460 nm with k1 = 2.6 (± 0.1) x 

103 M-1 s-1 (25°C, 0.1 M sodium phosphate buffer, pH 7.4) and was dependent on both the azide 

concentration and the square of the cobalt complex concentration (Figures 17C and 17D).  This 

initial phase was also independent of pH between 6.5 (closed diamond) and 8.5 (open squares).  

The slow phase III was evident from a very small decrease in absorbance at 460 nm (only a few 

percent change compared to phase II).  Interestingly, this final phase was linearly dependent on 

the square root of the azide concentration (Figure 17E).  When the reaction between azide and 

Co(II)N4[11.3.1] was carried out aerobically, the presence of oxygen appeared to have no impact 

on phases I, or II.  Phase III was masked by the relatively slow oxidation reactions described 

below, so it is unclear if it was affected. 
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Figure 17. Kinetics of the reaction of Co(II)N4[11.3.1] with azide under pseudo-first order conditions at pH 

7.4, 25°C. 

Three phases (fast, k1; intermediate, k2; and slow, k3) were followed anaerobically under pseudo first-order 

conditions at 460 nm in 0.1 M sodium phosphate buffer, pH 7.4, at 25°C with excess sodium azide (1.5-15 mM) and 

Co(II)N4[11.3.1] (0.1-0.5 mM). The observed rates were then plotted versus either the azide concentrations or the 

Co(II)N4[11.3.1] concentrations. All concentrations given are those obtained after mixing. Plots shown are: (A) 

intermediate phase, k2, varying azide concentrations with [Co(II)N4[11.3.1]] = 0.15 mM, (B) intermediate phase, k2, 

varying Co(II)N4[11.3.1] concentrations with [NaN3] = 15 mM, (C) fast phase, k1, varying azide concentrations with 

[Co(II)N4[11.3.1]] = 0.15 mM, (D) fast phase, k1 varying Co(II)N4[11.3.1] concentrations with [NaN3] = 15 mM, 

and (E) slow phase, k3, varying azide concentrations in the presence of 0.15 mM Co(II)N4[11.3.1].  Rate constants 

were obtained from the slopes of the plots. 

 

The oxidation of Co(II)N4[11.3.1](N3)2 to Co(III)N4[11.3.1](N3), in the presence of 

excess oxygen (pseudo-first-order conditions) exhibited biphasic kinetics.  Both phases were 
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oxygen dependent (Figures 18A and 18B) but the faster phase was linearly dependent on the 

square of the oxygen concentration (Figure 18A) with rate constants of 3.0 (± 0.1) x 104 M-2 s-1 

and 130 (± 13) M-1 s-1, respectively. The mechanism of this oxidation is complicated and still 

under investigation. In contrast, the reaction of azide-free Co(II)N4[11.3.1] with oxygen was 

significantly slower, 0.5 (± 0.02) M-1 s-1, with only one significant phase observed (see Chapter 

3, Figure 7C). Both oxidation processes appear to be somewhat complicated and warrant further 

study.  Most importantly, however, with regard to the present investigation, the oxidation of the 

cobalt-azide complex is at least two orders of magnitude faster than the oxidation of the azide-

free cobalt complex. 

 

 

Figure 18. Kinetics of the reaction of Co(II)N4[11.3.1](N3)2 with oxygen under pseudo-first order conditions at 

pH 7.4, 25°C.  

Sodium phosphate buffer solutions (0.1 M, pH 7.4) at different oxygen concentrations, prepared by mixing between 

deoxygenated buffer and 100% oxygen saturated buffer, were rapidly mixed with Co(II)N4[11.3.1](N3)2 and 

followed at 350 nm.  The observed rates are plotted versus the final oxygen concentrations (0.28-0.5 mM). All 

concentrations given are those obtained after mixing. The oxygen dependence of the rates of (A) 
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Co(II)N4[11.3.1](N3)2 (0.05 mM), fast phase, and (B) Co(II)N4[11.3.1](N3)2 (0.05 mM), slow phase. Rate constants 

were obtained from the slopes of the plots. 

4.4 DISCUSSION 

4.4.1 The principal toxicant species 

It has been suggested that the azide anion (N3
–) might not be responsible for the observed 

toxicity of azide, with secondary metabolites, namely, cyanide [89] and nitric oxide [34], 

proposed as the principal species involved.  The present findings firmly refute these alternative 

hypotheses. We have previously shown [41, 93] that (i) administration of sodium nitrite to mice 

(at similar dose to that employed here) results in the appearance of > 0.1 mM nitric oxide in the 

bloodstream, starting at less than 5 min and continuing up to about 20 min following the nitrite 

dose; and (ii) the administration of sodium nitrite/nitric oxide is markedly antidotal toward 

cyanide intoxication. Consequently, the current observation that sodium nitrite has no 

measurable effect on azide toxicity in mice (Table 1) argues strongly against any role for either 

nitric oxide or cyanide in azide poisoning.  If nitric oxide were the key toxicant involved, then 

sodium nitrite would be expected to exacerbate azide toxicity and, if cyanide were important, 

then sodium nitrite should ameliorate azide toxicity.  Of course, we cannot categorically state 

that some other, presently unidentified, secondary metabolite of azide might not be involved, but 

this would only be erroneous speculation.  At the present time, so far as we are aware, there is no 

other unambiguous data or rational and well-formulated hypothesis to suggest that the toxicity of 

azide is due to anything except the N3
– anion itself.  Therefore, in the absence of any information 
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to the contrary, it behooves us to continue working under the extremely reasonable assumption 

that N3
– alone is responsible for the observed acute toxicity. 

The lack of any measurable effect stemming from the addition of sodium nitrite is 

noteworthy for another reason relating to the vasodilatory action of nitric oxide generated from 

nitrite.  Hypotension is a well-documented symptom of azide poisoning [34, 88, 97, 98] and, 

thus, if nitrite were to be administered at higher levels than employed here, or at longer times 

following the azide dose at onset of the toxic symptoms, a net deleterious hypotensive effect may 

become apparent.  

The observed duration of knockdown and time until knockdown following administration 

of toxicant were certainly longer for azide (40 and 8 min) compared to those previously found 

for cyanide (24 and 2 min) [68].  This slower onset and longer duration of knockdown in the case 

of azide can probably be explained by consideration of the two relevant acid dissociation 

constants (Kas).  The pKa for hydrazoic acid is 4.7, indicating that at physiological pH > 98% of 

the azide will be present as the unprotonated anion (N3
–). On the other hand, the pKa for 

hydrocyanic acid is 9.2, indicating that at physiological pH > 98% of the cyanide will be present 

as the molecular acid (HCN).  HCN is free to diffuse across biological membranes and also quite 

soluble in aqueous media, while N3
– must locate channels to efficiently cross membranes.  It 

follows that diffusion of HCN to its mitochondrial site of inhibition from the bloodstream should 

be faster and quantitatively transferred in less time than N3
– is transported. 

4.4.2 Antidotal activity 

In our previous studies concerning the amelioration of cyanide toxicity by CoN4[11.3.1] in mice 

we found the complex to be an efficacious antidote when given either 5 min before or 2 min after 
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an LD40 dose of cyanide (5 mg/kg NaCN) [64, 68]. The cobalt macrocycle was shown to bind 

two molecules of cyanide cooperatively [68] and extensive studies in mice showed it to be at 

least as good an antidote as cobinamide while measurably better than hydroxocobalamin [64]. 

Consequently, because azide is a slower acting toxicant, it is perhaps not surprising that 

preliminary experiments with CoN4[11.3.1] in mice indicate that it will function as an azide 

antidote when given at least 5 min after the toxicant (Table 1).  More remarkable is the apparent 

failure of established cyanide antidotes to display any ameliorative effect toward azide toxicity 

[41, 68]. If we accept the consensual viewpoint that the target for both poisons is primarily 

cytochrome c oxidase, then it is reasonable to expect similarities in behavior of azide and 

cyanide, both in terms of their toxic mechanisms and responses to antidotes.  That is, it might be 

possible to understand any quantitative difference in the manner in which these two toxicants 

behave based on knowledge of how each reacts with isolated cytochrome c oxidase.  In oxygen 

turnover experiments, isolated cytochome c oxidase has been reported to be inhibited by azide 

and cyanide with  Kis of 33 µM and 0.2 µM, respectively [99]; indicating cyanide to be 150-fold 

more inhibitory than azide toward the enzyme.  Intriguingly, the sodium azide dose used in the 

present study (400 µmol/kg) is only 4 times the sodium cyanide dose (100 µmol/kg) used in our 

previous studies also monitoring knockdown and righting recovery.   

The amount of CoN4[11.3.1] employed to ameliorate azide toxicity was ~80 µmol/kg (37 

mg/kg, Table 1) or approximately 20% of the azide dose (400 µmol/kg).  Previously, in order to 

ameliorate cyanide toxicity, the most efficacious dose in mice was found to be approximately 

one half the cyanide dose, consistent with CoN4[11.3.1] binding 2 molecules of cyanide [64, 68]. 

The present dose of CoN4[11.3.1] found to ameliorate azide toxicity would have maximally 

bound about 40% of the azide dose (based on 1:2 stoichiometry) and approximately 20% if 
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oxidation results (based on a 1:1 stoichiometry, see below).  This is low compared to the amount 

of antidote necessary to bind all the azide, but would have the effect of lowering the residual 

azide dose from 26 mg/kg to ~20 mg/kg (i.e. less than the 24 mg/kg at which we able to observe 

minimal effects).  Consequently, the findings are in keeping with the steepness of the dose-

response curve for azide toxicity in mice. 

4.4.3 Mechanism of decorporation 

The detoxification of cyanide by cobalt complexes has recently been suggested to consist of the 

toxicant binding to the reduced (substitution labile) Co(II) forms, resulting in lowering of their 

oxidation potentials, this in turn facilitating oxidation to the (substitution inert) Co(III) cyanide 

adducts, that may be then excreted [59, 66, 68, 79]. That is, bound cyanide becomes trapped in 

kinetically stable forms from which it is slow to dissociate, preventing systemic redistribution of 

the toxicant and, thereby, nullifying its toxicity [64]. From this perspective, the oxidation-state 

change upon binding the toxicant is an essential component of the net mechanism of 

decorporation.  Unlike the cyanide reaction, we observed no oxidation of Co(II) to Co(III) under 

anaerobic conditions following azide binding, the kinetics of oxygen dependence extrapolate 

through the origin in this case (Figures 18A and 18B).  However, upon exposure to air 

Co(II)N4[11.3.1](N3)2 is oxidized to a Co(III) complex (Figure 13, dash-dot trace).  While the 

oxidation of the Co(II)N4[11.3.1](N3)2 is perhaps not as facile as Co(II)N4[11.3.1](CN)2, it may 

be assumed that inhibition of cytochrome c oxidase must lead to tissue hyperoxia and, therefore, 

a kinetically-stable Co(III)N4[11.3.1]-azide complex will be formed.  In addition, we note that 

the oxidation of Co(II)N4[11.3.1](N3)2 by oxygen is still significantly faster than oxidation of the 

parent compound (see Chapter 3, Figure 7C).  The Job plots (Figures 14B and 14C) indicate 
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something more akin to a 1:1 ratio of Co(III):azide in the oxidized form (Figure 14C) rather than 

the 1:2 ratio of Co(II):azide found in the reduced form (Figure 14B).  The simplest explanation 

for these observations appears to be that the oxidation of the substitution-labile 

Co(II)N4[11.3.1](N3)2 requires displacement of an azido ligand by oxygen, followed by inner-

sphere electron transfer forming Co(III)N4[11.3.1](N3) and superoxide, resulting in the 

kinetically stable monoazido-Co(III) adduct (Figure 19).  We offer this interpretation of the 

oxidation process as our working model, but have yet to investigate its validity further, since the 

overall mechanism of decorporation merely requires an oxidation takes place, the details of 

exactly how being less important. 
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Figure 19. A plausible scheme for the oxidation of Co(II)N4[11.3.1](N3)2 by oxygen. 
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5.0  CONCLUSIONS 

The purpose of these studies was to further develop Co(II)N4[11.3.1] as a possible decorporating 

agent for cyanide (HCN/CN–) and azide (N3
–) and so it might be advantageous to consider the 

characteristics and properties of a typical agent.   Decorporation is defined as the therapeutic 

removal of a radioactive material that has been adsorbed by the body.  It can, however, be used 

to describe the removal of a number of heavy metals (e.g lead) and indeed, here the term is used 

to describe the removal of cyanide from the body.  This method of cyanide detoxification is in 

contrast to those that, for example, convert cyanide to a less toxic substance, e.g. thiosulfate.  

A decorporation agent should be nontoxic, specifically bind the potential toxicant tightly 

and excrete the agent-toxicant complex rapidly from the body.   Ethylenediaminetetraacetate ion 

(or EDTA) was proposed as a decorporation agent for the removal of lead from the body in 1942. 

EDTA is multi-dentate ligand that binds very strongly to metal ions, especially the transition 

metals.  For example, the binding constant of EDTA for lead (Pb2+) is 1018 [100, 101]; the high 

value indicates the reverse reaction must be slow and/or equilibrium must lie to the right to form 

a stable complex, a very desirable characteristic. The formation of the [Pb-EDTA]2– complex 

reduces free Pb2+ circulating in blood; subsequently, being eliminated through the kidneys. 

EDTA has been proved to be safe to use in patients with lead poisoning; however, EDTA can 

also chelate other essential cations, especially calcium ion. Consequently, the patient treated with 

EDTA could develop a low level of calcium in the blood (hypocalcemia) if not adequately 
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supplemented with calcium during the decorporation therapy.  While EDTA is a very useful 

decorporating agent, it is nonspecific in its binding to a large number of metal ions and care must 

be taken in its use.  EDTA is a good example of the potential pitfalls associated with the use of 

decorporating agents. 

5.1 THE ROLE OF Co(II)N4[11.3.1] IN CYANIDE DECORPORATION 

Our previous work has shown that 1 molecule of Co(II)N4[11.3.1] cooperatively binds 2 cyanide 

anions, and then, undergoes an oxidation process, in the absence of oxygen, to become the 

kinetically-inert dicyano-Co(III)N4[11.3.1] adduct, subsequently being excreted via the urine 

[68]. The kinetic data from the current study demonstrates that the binding of the second cyanide 

anion is the rate-determining step with the rate constant (k) of 2 x 105 M-1 s-1 at 37°C indicating 

that the detoxification of cyanide might be very rapid.  Co(II)N4[11.3.1] binds with strong 

ligands such as CN– and N3
– in aqueous media, but does not bind weak ligands such as chloride 

or bicarbonate.  Thus Co(II)N4[11.3.1]  is relatively specific in its ligand binding, unlike EDTA, 

and therefore, we should not have to worry about the complex lowering the concentrations of 

important physiological anions such as chloride. It is possible, however, that Co(II)N4[11.3.1] 

and/or its final product, dicyano-Co(III)N4[11.3.1], may bind to some biomolecular sites (e.g. 

proteins or other receptor molecules), leading to some change in physiology. Co(II)N4[11.3.1] is 

not itself naturally found in the body, therefore, it may be less likely that there are some specific 

binding sites for the cobalt molecule. Thus, we think that Co(II)N4[11.3.1] may be safe to use, 

however, more study must be done to determine the pharmacokinetics and the toxicity of this 

compound. 
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According to the previous mouse studies [64, 68], Co(II)N4[11.3.1] is found to exhibit a 

significant ameliorative effect on cyanide toxicity. In the in vivo experiment, 100 µmol/kg of 

NaCN and 50 µmol/kg of Co(II)N4[11.3.1] were given to the 40-gram mice. The concentrations 

of cyanide and Co(II)N4[11.3.1] in mice’s blood circulation can be calculated as 1 x 10-3 M and 

0.5 x 10-3 M, respectively. Based on the rate law equation and using the experimentally 

determined rate constant, the rate of cyanide binding to Co(II)N4[11.3.1] can be calculated as 0.1 

M/s. This suggests that Co(II)N4[11.3.1], in these conditions, can very rapidly bind all the 

circulating cyanide in mouse blood within 0.01 seconds. Additionally, we observed that the dose 

of 52 µmol/kg of Co(II)N4[11.3.1] used in the experiment did not cause any neurological 

sequelae [68]. Taken together, this data supports the potential use of Co(II)N4[11.3.1] as a 

cyanide decorporating agent. 

Another finding to emerge from this study is that, under aerobic conditions, oxygen can 

remove cyanide from Co(II)N4[11.3.1]. The loss of cyanide from the cobalt complex in the 

presence of oxygen might lead one to think that Co(II)N4[11.3.1] would not be an effective 

antidote against cyanide toxicity, but our previous studies have demonstrated that the cobalt 

compound indeed works effectively in the mouse model [64, 68]. At this moment, we do not 

understand how the release of cyanide occurs and determining the mechanism of cyanide 

removal in the presence of oxygen will require a great deal more study. The effect of oxygen on 

the dicyano complex, however, is a potential problem if the Co(II)N4[11.3.1] complex were to be 

used as a cyanide antidote in a clinical setting. Typically, most cyanide-intoxicated patients 

present with respiratory distress and tend to receive oxygen therapy at the hospital. Since oxygen 

could potentially remove cyanide from the cobalt-containing antidote, the patients’ conditions 

may not be improved or may even become worse after receiving the treatment. 
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5.2 THE ROLE OF Co(II)N4[11.3.1] IN AZIDE DECORPORATION 

The stoichiometry of azide binding to the cobalt complex under anaerobic conditions was found 

to be 2:1. The kinetic data has shown that the binding of the first azide ligand is the rate-

determining step with a second-order rate constant of 71 M-1 s-1 at 37°C. Unlike cyanide, after 

two azide anions bind to Co(II)N4[11.3.1], the diazido-Co(II)N4[11.3.1] complex does not 

undergo oxidation to form the kinetically inert species  (Co(III) complex) in the absence of 

oxygen. Based on the Job plot analysis, (see Chapter 4, Figure 14C) at least one azido ligand is 

lost upon oxidation.  

However, the mouse study has shown that Co(II)N4[11.3.1] is significantly antidotal 

toward azide in mice, compared to either controls or receiving another known cyanide antidote, 

sodium nitrite. In this experiment, 400 µmol/kg of NaN3 and 77 µmol/kg of Co(II)N4[11.3.1] 

were given to the 40-gram mice. The estimated concentrations of azide and Co(II)N4[11.3.1] in 

mice’s blood circulation would be about 4 x 10-3 M and 0.77 x 10-3 M, respectively. By applying 

the rate law, we can determine the rate of azide binding to Co(II)N4[11.3.1] in the mouse as 2 x 

10-4 M/s. This suggests that Co(II)N4[11.3.1], under these conditions, can rapidly bind all the 

circulating free-azide molecules within 18 seconds. This calculation rationally suggests that 

Co(II)N4[11.3.1] should work effectively for azide toxicity similar to the way that 

hydroxocobalamin efficaciously detoxifies cyanide. Not surprisingly, Co(II)N4[11.3.1] was 

found to have an ameliorative effect in azide-intoxicated mice. 

We have observed that there was some resemblance between the azide binding to 

Co(II)N4[11.3.1] and the cyanide binding to hydroxocobalamin. For example, both reactions 

both bind one ligand in the oxidized form. Since Co(II)N4[11.3.1] does work as an azide 

antidote, we think that hydroxocobalamin should probably work as an azide antidote too. There 
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is one case report from Austria revealing that an azide-intoxicated patient improved after 

receiving hydroxocobalamin [58]; nevertheless, some might argue that the patient could perhaps 

have recovered by the use of only supportive treatment without receiving any antidotes. 

 The findings from the kinetic study show that the rate of azide binding to 

Co(II)N4[11.3.1] is 3 orders of magnitude slower than the cyanide binding to the complex despite 

the fact that Co(II)N4[11.3.1] works effectively for both cyanide and azide toxicity in the mouse 

model [64, 68]. This suggests that the rate constant might not be a crucial factor in determining 

the effectiveness of the antidote. Determining values of the rate constants and the rate equations 

is still a useful exercise in order to provide insight into the reaction mechanisms and to find out if 

the reaction is not unacceptably slow, i.e. hours vs. minutes. 

5.3 PUBLIC HEALTH IMPLICATIONS AND FUTURE DIRECTIONS 

Since the emergence of modern terrorism, strategies to address mass casualty’s scenarios 

resulting from chemical/biological terrorism have entered the realm of public health. In fact, the 

Department of Homeland Security has funded the CounterACT (Countermeasures Against 

Chemical Threats) program aiming to prepare for chemical emergencies by supporting research 

regarding the development of new or improved therapeutic countermeasures for chemical threats 

[102]. Being part of the CounterACT program, the present study was designed to assess the 

effectiveness of Co(II)N4[11.3.1] as a potential cyanide/azide antidote. (i.e. identify as a lead 

compound to secure funding for further development). On the way to gaining approval for 

therapeutic use, any new compound requires years of supportive investigation in animals 

regarding effectiveness, pharmacokinetics, pharmacodynamics, toxicity and demonstration of 
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basic safety in healthy human volunteers. While Co(II)N4[11.3.1] is at the very beginning of this 

process, the initial signs are encouraging in that the compound is clearly antidotal toward 

cyanide/azide in mice at doses where there has been no indication of any untoward toxicity to 

date. A characteristic orange color appear in the urine about 30 min after injecting the compound 

and clears after a couple of hours, so excretion seems to follow the pattern for water-soluble 

porphyrins and any problems stemming from long-term retention are not expected. 

There is currently no available antidote for azide poisoning and, therefore, the successful 

amelioration of azide toxicity in mice by Co(II)N4[11.3.1] (Chapter 4) is a highly significant 

result, perhaps pointing the way forward. Due to its tendency to lose an azido ligand upon 

oxidation, however, Co(II)N4[11.3.1] itself may ultimately turn out to not be a sustainable lead 

compound in the search for an optimal azide antidote. The focus should be on seeking a cobalt-

based azide scavenger that binds azido ligands in the Co(II) form, then becomes oxidized to 

substitution inert Co(III) product without any inner sphere reaction involving oxygen. Strategies 

for synthesizing the next generation of potential azide scavengers may include developing cobalt 

porphyrins, or other cobalt macrocycles with heteroatomic ligands (e.g. Figure 20). 
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Figure 20. An example of the synthesis of a cobalt macrocycle with heteroatomic ligands. 
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 With regards to its possible potential as a cyanide antidote, the findings (Chapter 3) 

continue to suggest that Co(II)N4[11.3.1] might prove better than anything else available, or 

currently under development. Like Co(III)TMPyP and cobinamide, Co(II)N4[11.3.1] has the 

comparable two axial ligand positions available to bind toxic anions [68], but when directly 

compared with the other cobalt-based scavengers in mice [64] (see also Appendix A), 

Co(II)N4[11.3.1] has the edge. For purposes of stockpiling in anticipation of emergency events 

involving mass casualties and requiring rapid employment, this compound has several 

advantageous characteristics. First, due to its relatively low molecular mass of 318 g/mol (about 

4-time smaller than hydroxocobalamin), Co(II)N4[11.3.1] is likely to be more soluble and easily 

delivered than the larger cobalt complexes such as hydroxocobalamin or cobinamide. Therefore, 

rapid delivery by intramuscular/intraosseous injection will certainly be possible, but inhalation of 

aqueous vapor using something like a pneumatic inhaler might also be achievable. Second, 

Co(II)N4[11.3.1] is significantly less expensive to synthesize than hydroxocobalamin and 

cobinamide [64]. Third, because of its purely synthetic nature and macrocyclic structure, 

Co(II)N4[11.3.1] does not require refrigerated storage and is stable under ambient conditions for 

at least months (as monitored by spectroscopic measurements). The implications regarding any 

strategic plan for chemical terrorism preparedness and response are that the government could 

produce and reserve a substantial amount of antidote (whatever is needed) due to the low cost of 

medication and its storability. 

 There is a need for improved cyanide antidotes for reasons other than counter-terrorism. 

Modern fires almost invariably involve combustion of much nitrogen-containing plastic such as 

acrylonitriles and polyurethanes. Consequently, while frequently misdiagnosed as carbon 

monoxide poisoning, HCN toxicity secondary to smoke inhalation is almost certainly the most 
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prevalent form of cyanide poisoning experienced today, particularly in occupational settings. 

Inexpensive cyanide antidotes, safe enough for self-administration, that could be routinely 

carried on emergency vehicles without the need for special storage or frequent replacement, 

could prove to be of broad significance in firefighting. Thus far, Co(II)N4[11.3.1] appears to 

have possible application in this area that might surpass any more narrow role in 

countermeasures to terrorism. Therefore, Co(II)N4[11.3.1] certainly warrants further drug-

development research regarding its potential application as a cyanide antidote. 
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A.1 ABSTRACT 

Four cobalt-containing macrocyclic compounds previously shown to ameliorate cyanide toxicity 

have been comparatively evaluated with an acute sub-lethal toxicity model in conscious (un-

anesthetized) adult male Swiss-Webster mice.  All of the compounds (the cobalt-corrins 

cobalamin and cobinamide, a cobalt-porphyrin, plus a cobalt-Schiff base macrocycle) given 5 

min prior to the toxicant dose significantly decreased the righting-recovery time of cyanide-

intoxicated mice, but the doses required for maximal antidotal effect varied.  Additionally, all of 

the compounds tested significantly reduced the righting-recovery time when administered at 

either 1 or 2 min after cyanide intoxication, but none of the compounds tested significantly 

reduced the righting-recovery time when delivered 5 min after the toxicant dose.  Using the 

lowest effective dose of each compound determined during the first (prophylactic) set of 

experiments, neuromuscular recovery following cyanide intoxication in the presence/absence of 

the cobalt-based antidotes was assessed by RotaRod® testing.  All the compounds tested 

accelerated recovery of neuromuscular coordination and no persistent impairment in any group, 

including those animals that received toxicant and no antidote, was apparent up to 2 weeks post-

exposures.  The relative effectiveness of the cobalt compounds as cyanide antidotes are discussed 

and rationalized based upon the cyanide-binding stoichiometries and stability constants of the 

Co(III) cyano adducts, together with consideration of the rate constants for axial ligand 

substitutions by cyanide in the Co(II) forms. 
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A.2 INTRODUCTION 

Other compounds, including dicobalt ethylenediaminetetraacetate (Kelocyanor®) [103] and 4-

dimethylaminophenol [104], remain in use worldwide, but there are currently only two 

acceptable antidotes to cyanide poisoning available in the United States [105, 106].  The first, 

Nithiodote®, is a combination treatment of sodium nitrite and sodium thiosulfate [107]; in which 

(i) the nitrite anion probably acts as a nitric oxide (NO) donor leading to the removal of cyanide 

bound to cytochrome c oxidase [41, 93] rather than simply being a methemoglobin generator and 

(ii) the thiosulfate reacts with free cyanide in a reaction catalyzed by the enzyme rhodanese 

leading to formation of the considerably less toxic thiocyanate anion (SCN–) [107]. Intravenous 

infusion of sodium nitrite in the pre-hospital setting must be undertaken with caution, due to the 

likelihood of induced hypotension and methemoglobinemia, the latter being of particular concern 

if there has been any concomitant carbon monoxide poisoning through smoke inhalation [106, 

108].  The second antidote, Cyanokit®, contains hydroxocobalamin (Cb), a vitamin B12 

derivative (Figure 21A) [109].  Cb binds a single cyanide anion to its central cobalt(III) cation, 

with high affinity thereby acting as a scavenger of the toxicant in the bloodstream.  

Unfortunately, while Cb appears to be efficacious and the safest available option for treating 

cyanide intoxication [110, 111], it is still a less than ideal antidote because it must first be 

dissolved (5 g solid in ~200 mL saline) before it can be intravenously infused (~15 mL per min 

for almost 15 min in adults) [109]. Particularly with regard to acute-poisonings/mass-casualty 

situations, this slow administration is a significant problem as cyanide is such a quick-acting 

toxicant. 

Cobinamide (Cbi) lacks the dimethylbenzimidazole nucleotide tail of Cb (Figure 21B) 

allowing for the binding of two cyanide anions to the cobalt ion and has been shown to be a 
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potentially better cyanide scavenger [61, 62].  We have recently demonstrated the cyanide 

scavenging ability of cobalt(III) meso-tetra(4-N-methylpyridinyl)porphine (CoTMPyP) (Figure 

21C) a water soluble metalloporphyrin complex [66, 79].  In addition, we have begun to 

investigate the cyanide binding and scavenging activities of Schiff-base macrocyclic compounds, 

including cobalt 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17)2,11,13,15-

pentaene (CoN4[11.3.1]) (Figure 21D) [68].  These smaller cobalt cations, CoTMPyP and 

CoN4[11.3.1] or similar, which are also able to bind two cyanide anions per cobalt, may be 

soluble at higher concentrations in the bloodstream than Cb and Cbi, resulting in improved 

cyanide-scavenging capabilities.  In this paper, to directly assess the relative merits of such 

cobalt-containing compounds (Table 2) as cyanide antidotes, we have undertaken a series of 

head-to-head comparative assays in mice, in which experiments with Cb were included as a 

benchmark. 
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Figure 21. Structures of cobalt-containing compounds selected for comparison of cyanide scavenging abilities 

in mice. 

(A) Cobalamin (Vitamin B12), a FDA approved cyanide antidote (B) Cobinamide, the biological precursor to 

cobalamin (C) CoTMPyP (Cobalt(III) meso-tetra(4-N-methylpyridinyl)porphine) and (D) CoN4[11.3.1] (Cobalt 

2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]heptadeca-1(17)2,11,13,15-pentaene) [66, 68, 112]. 
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Table 2. Selected properties of the cobalt-containing trial compounds. 

Property Hydroxocobalamin 
(Cb) 

Cobinamide 
(Cbi) 

CoTMPyP CoN4[11.3.1] 

Molecular masses (of 

cations) 

1329 990 678 317 

Comparative 

(estimated) costsa 

1b 63c ~0.8d < 0.2e 

Available sites for 

exogenous ligands 

1 2 2 2 

Stability constantsf 105 M-1 109-1010 M-2 2 x 1011  

M-2 [66] 

> 107 M-2 

[68] g 

Rate constantsh > 102 M-1 s-1 [86] i > 103 M-1 s-1  j 102 - 103  

M-1 s-1 [79] k 

~105 M-1 s-1 l 

aBased on the Sigma-Aldrich catalog (accessed on line October 2017) molar comparisons. bHydroxocobalamin 

hydrochloride $165/g (equating to $825 for a single adult dose). cComparing prices of cyanocobalamin and 

dicyanocobinamide, the sole derivative of the latter available at the time.  The Cbi was only available in mg 

quantities, so there is likely to be reduced cost associated with scaling up production; however, Cbi will remain 

many-fold more expensive than its precursor Cb as additional manufacturing steps (chemical modification, 

purification, recovery) are necessary. dCoTMPyP was not available, so this estimate is based on the mean of the 

pricing for cobalt(II)-5,10,15,20-tetraphenylporphine and cobalt(II)-5,10,15,20-tetrakis(4-methoxyphenyl)porphine, 

two similar metalloporphyrins. eCoN4[11.3.1] is, so far as we are aware, not commercially available at this time 

(except by custom synthesis).  This estimate is based on the catalog prices of the starting materials multiplied by 10. 
fStability constants for cyano adducts in terms of total cyanide concentrations [HCN + CN–] for Co(III) forms at pH 

7.4 and 25°C. gThe stability constant for the bis(cyano)Co(II) adduct was actually determined and found to be 3 x 

105.  There are remarkably few studies reporting the stability constants of cyano complexes of transition-metal ions 

in different oxidation states.  However, based on available reliable data for (i) the hexacyanoferrate(II) and 

hexacyanoferrate(III) pair, plus (ii) the stepwise formation constants for some other polycyano complexes [113], we 

estimate the increase in the net stability constant for the Co(III) form of CoN4[11.3.1] to be at least an order of 

magnitude per cyano ligand:  3 x 105 multiplied by 102 = 3 x 107, or greater. hRate constants for cyanide binding to 

the Co(II) forms at pH 7.4 and 25°C.  Where dicyano complexes are formed, it is often the case that the rate for only 

one ligand association can be observed, the other presumably being too fast to measure. iThe reported rate constant 
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is for the Co(III) form (80 M-1 s-1) hence that for the Co(II) form must be greater as Co(III) complexes are typically 

more substitution inert than their Co(II) counterparts [32, 114, 115]. jThe rate constant for the largest (~90%) of two 

[cyanide]-dependent phases observed for the Co(III) form is 3 x 103 M-1 s-1, hence that for the Co(II) form must be 

greater. kTwo [cyanide]-dependent phases of comparable extent were observed. lPraekunatham et al., manuscript in 

preparation. 

 

 

For this investigation, we chose an acute-toxicity model using intraperitoneal (IP) 

injections of NaCN (saline solutions) in adult male Swiss-Webster mice.  In this paradigm, 

which has previously been well-validated [41, 93, 116, 117] the mice are conscious and freely 

moving at the time of toxicant injection, avoiding the confounding influence of anesthesia 

present in some other animal protocols [93, 118].  The ameliorative capabilities of the 

compounds in question given both prophylactically and therapeutically have been compared.  

Antidotal effects in the short term (< 30 min) have been quantitatively assessed by observing 

shortening of recovery times following cyanide-induced unconsciousness (“righting recovery”).  

Antidotal effects in the longer term (24 hr - 2 weeks) have been quantitatively assessed by 

measuring the duration that the animals were able to remain in position on a rotating cylinder 

(RotaRod®) a test of neuromuscular coordination).  The results suggest that the trial compounds 

all work by similar mechanisms and identify potential strengths/weaknesses of each in the 

pursuit of cobalt-containing compounds as antidotes to cyanide poisoning. 
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A.3 EXPERIMENTAL SECTION 

A.3.1 Chemicals 

All non-gaseous reagents, obtained from Fisher or Sigma-Aldrich, were ACS grade or better and 

used without further purification.  Argon and nitrogen gases were purchased from Matheson 

Incorporated.  Previously described procedures were employed to prepare Cbi [59], CoTMPyP 

[66] and CoN4[11.3.1] [68].  Solutions of sodium cyanide in saline were prepared immediately 

prior to use in septum-sealed vials with minimized headspaces and volumetric transfers made 

with gastight syringes. 

A.3.2 Animal Exposures 

The University of Pittsburgh Institutional Animal Care and Use Committee (Protocol Number 

13092637) approved all animal produces used in these experiments.  The Division of Laboratory 

Animal Research of the University of Pittsburgh provided all veterinary care during this study.  

With the exception of most animals exposed to sodium nitrite (see below), male Swiss-Webster 

mice weighing 35-40 g (6-7 weeks old) were purchased from Taconic, Hudson, NY, housed four 

per cage and allowed access to food and water ad libitum.  Animals were allowed to adapt to 

their new environment for one week prior to carrying out experiments.  All animals were 

randomly assigned to experimental groups of predetermined size.  All solutions administered to 

mice were prepared by dilutions into sterilized saline in septum-sealed vials using gastight 

syringes and were given by ~0.1 mL intraperitoneal (IP) injections.   
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Similar procedures (Protocol Numbers 0808101 and 1008725) approved by the 

University of Pittsburgh Institutional Animal Care and Use Committee were employed in the 

case of the majority of mice treated with sodium nitrite.  Veterinary care was provided by the 

Division of Laboratory Animal Research of the University of Pittsburgh.  Male Swiss-Webster 

mice 16-20 weeks old, weighing 40-45 g were purchased from Charles River Laboratories, 

Wilmington, MA.  All solutions were prepared by dilutions into sterilized saline and 

administered through ∼0.1 mL intraperitoneal (IP) injections.  In general, a group of at least 4 

mice were tested for each experimental point.  Efficacy was tested through the recovery of 

righting ability after NaNO2 (12 mg/kg) was injected 2, 4, 8, 12, 16 or 20 min following the 

administration of NaCN (100 µmol/kg). 

A.3.3 Righting Recovery 

Following cyanide administration, the duration of time required for the recovery of righting 

ability in mice was measured following a simplification [41] of the procedure originally used by 

Crankshaw et al. [116]  The toxicant (5 mg/kg NaCN) was administered to mice (IP) and they 

were then placed in a transparent but dark green-colored plastic tube (Kaytee CritterTrail, 

available from pet stores) in a supine position.  The time it took from the initial administration of 

the toxicant until the mouse flipped from the supine to a prone position in the plastic tube was 

taken as the endpoint (righting-recovery time).   
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A.3.4 Prophylactic Dose-Response 

The established antidote (Cb) and potential prophylactic antidotes (Cbi, CoTMPyP or 

CoN4[11.3.1]) were injected (IP) into mice (n = 6-8 per dose) at levels of 30, 40, 45, 50 or 70 

µmol/kg, 5 minutes before the administration (IP) of 100 µmol/kg NaCN.  Control animals 

received cyanide alone. The righting-recovery times were recorded for mice that survived the 

cyanide intoxication.  A single injection of cyanide administered at this sub-lethal dose typically 

results in a persistent state of unconsciousness within 1-2 min that can last for more than 25 min 

[41, 93] allowing for multiple measures of trial-compound efficacy given both prophylactically 

and therapeutically.  The lowest dose of each putative antidote (Cbi, CoTMPyP or CoN4[11.3.1]) 

having the maximal ameliorative response following prophylactic administration was 

determined.  Based on these results we then selected a single dose (“lowest dose having maximal 

antidotal effect”) for subsequently testing the therapeutic powers of the trial compounds.  For 

comparison, Cb was given at 70 µmol/kg in these subsequent experiments (see below) as there 

was no maximal antidotal effect apparent for this compound in the experimental range. 

A.3.5 Therapeutic Time Response 

After determining the lowest doses having maximal antidotal effect for each putative antidote, 

mice (n = 6-8 per dose) were given 100 µmol/kg NaCN and subsequently (1, 2, or 5 min later) 

injected with either 50 µmol/kg CoN4[11.3.1] or, alternately, 70 µmol/kg Cb, Cbi, or CoTMPyP.  

Righting-recovery times were recorded for mice that survived the toxicant injections and, later, 

the same animals were used in the RotaRod assessments described below. 
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A.3.6 RotaRod Testing 

The accelerating RotaRod® (Coulbourn Instruments, Whitehall, PA), a rotating cylindrical 

apparatus, was used to assess motor skill, learning and recovery subsequent to cyanide 

intoxication.  Well-established experimental protocols were followed [119, 120].  An individual 

trial was started by placing a mouse on the RotaRod device turning at 4 rpm.  Subsequently, 

acceleration was varied linearly from 4 to 22 rpm over the course of 60 s.  Trials ended when the 

mouse either fell off, or had remained on the rotating cylinder for 60 s.  Latency to fall, and 

highest speed reached were recorded for each trial.  The animals were evaluated over a period of 

three consecutive days.  On the first day, each mouse was trained in a series of 8 sequential trials 

on the RotaRod device.  The baseline motor performance was established on the second day by 

determining the max speed (rpm) reached before each animal fell off the RotaRod apparatus, 

averaged over three trials.  On the second day, animals were tested in sets of 3 trials at 15 min 

intervals (with one set of trials made prior to any injections) over a period of 2.5 hrs.  On the 

third day, 24 hr after the previous experiments, mice were tested again for a single set of 3 trials 

to determine whether any latent longer-term differences between experimental groups had 

emerged. A subset of the animals were further tested on the RotaRod apparatus up to 2 weeks 

following their injections.   

Data were analyzed using 2-way ANOVA to determine the main effect of treatment and 

time with Tukey’s multiple-comparison test to determine the differences between groups. 
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A.4 RESULTS 

A.4.1 Comparison of the prophylactic effects of Cb, Cbi, CoTMPyP and CoN4[11.3.1] on 

acute (sub-lethal) cyanide toxicity 

All of the cobalt-containing compounds selected for comparison in this paper have been reported 

to be protective against acute cyanide poisoning [66, 68, 79, 105, 109], but they have not 

previously all been tested in a head-to-head fashion in the same model system.  We chose to use 

the prophylactic administration of the cyanide scavenging compounds in mice as a starting point 

for comparing the efficacy of the four chosen compounds (Cb, Cbi, CoTMPyP and 

CoN4[11.3.1]) against cyanide toxicity.  In order to determine the lowest dose having maximal 

antidotal effect in each case, Swiss-Webster mice (age 7-8 weeks) were injected intraperitoneally 

(IP) with either 30, 40, 45, 50, or 70 µmol/kg of each cobalt compound to be tested, followed 5 

min later by injection (IP) of NaCN (100 µmol /kg).  Control animals that received NaCN alone 

were “knocked down” (i.e. became unconscious) within 1-2 minutes, 20% (16 of 82) died within 

4 min of the toxicant delivery, and those that survived exhibited a mean righting recovery time of 

24 ± 7 min (n = 66). 

All of the compounds employed in this prophylactic paradigm significantly decreased the 

righting recovery time of the cyanide-intoxicated mice, but the dose of each test compound 

required for the maximal effect (i.e. minimal recovery time) varied (Figure 22).  While the 

righting recovery time seemed to decrease as the Cb administered was increased from 30 to 50 

µmol/kg, the only significantly effective dose was 70 µmol/kg (Figure 22A).  The righting 

recovery time was 9 ± 5 min (compared to 24 min for controls) and, in addition, 100% of the 

mice receiving this Cb dose (15 of 15) survived. Interestingly, Cb was the only antidotal 
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compound of the four for which a majority of the mice (14 of 15) still experienced knockdown, 

even at the highest dose tested.  Lower doses of Cbi (45, 50 and 70 µmol/kg) compared to Cb 

significantly reduced the righting-recovery times of cyanide-intoxicated mice to 8 ± 8 min, 12 ± 

10 min, and 5 ± 6 min, respectively (Figure 22B) – all the animals survived (16 of 16) and half 

experienced knockdown (8 of 16).  However, there was noticeably more variation within the 

Cbi-treated groups of mice compared to all the other groups, particularly in mice administered 45 

or 50 µmol/kg Cbi, and the response was not strictly linear.  The most effective dose of Cb (70 

µmol/kg), against cyanide intoxication, was ~1.6 times a similarly effective dose of Cbi (45 

µmol/kg).  The lower effective dose of Cbi can be rationalized by consideration of its structure 

(Figure 21B) in which the loss of the dimethylbenzimidazole ribonucleotide tail of the Cb 

structure (Figure 21A) allows Cbi to bind two exogenous cyanide anions rather than only one. 

The other two compounds forming dicyano adducts, CoTMPyP and CoN4[11.3.1], were 

then tested. CoTMPyP significantly reduced the righting recovery time at all doses tested (Figure 

22C) with righting recovery times of 15 (± 10) min, 9 (± 7) min, 9 (± 5) min, 5 (± 4) min, and 1 

(± 3) min for doses of 30, 40, 45, 50, and 70 µmol/kg, respectively.  The dose of Cb (70 

µmol/kg) most effective against cyanide intoxication, was ~1.8 times a similarly effective dose 

of CoTMPyP (40 µmol/kg).  No deaths (100% survival) were observed when mice were 

administered either 45, 50 or 70 µmol/kg CoTMPyP before cyanide intoxication.  Out of 13 mice 

that were administered 70 µmol/kg of CoTMPyP, only two knocked-down. 

Finally, dose-response testing demonstrated that CoN4[11.3.1] administered at 45, 50, or 

70 µmol/kg significantly reduced the righting recovery time versus control mice to 5 (± 7), 3 (± 

4), 3 (± 3) min, respectively (Figure 22D) – all the animals survived (15 of 15) and about half 

experienced knockdown (7 of 15).  Since, we found that the average time of righting recovery is 
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unchanged when the dose administered was increased from 50 to 70 µmol/kg, the lower dose (50 

µmol/kg) was chosen for the therapeutic experiments (see below).  The dose of Cb (70 µmol/kg) 

most effective against cyanide intoxication, was at least 1.6 times a similarly effective dose of 

CoN4[11.3.1] (45 µmol/kg) – this value could be up to 1.8 times (70 µmol/kg Cb:40 µmol/kg 

CoN4[11.3.1]) but for a single outlying point in the data (Figure 22D).  

 

 

Figure 22. Dose-response profiles for prophylactically administered Cb, Cbi, CoTMPyP and CoN4[11.3.1] in 

cyanide-intoxicated male mice as determined by righting-recovery times.  
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Swiss-Webster male mice (7-8 weeks of age) were injected (IP) with either Cb (A), Cbi (B), CoTMPyP (C) or 

CoN4[11.3.1] (D) 30, 40, 45, 50, and 70 µmol/kg in saline, 5 min before the administration of 100 µmol/kg NaCN 

(in saline).  Control animals received only 100 µmol/kg NaCN injections (open circles).  Righting recovery times 

were recorded and the medians and interquartile ranges are shown.  One-way ANOVA with Tukey’s multiple 

comparisons post-test was performed for each compound tested to determine the significance of the righting-

recovery time as compared to controls. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01 and *p ≤ 0.05. 

 

A.4.2 Comparison of the therapeutic effects of Cb, Cbi, CoTMPyP and CoN4[11.3.1] on 

acute (sub-lethal) cyanide toxicity 

To examine the ability of the cobalt-containing compounds to ameliorate the effects of cyanide 

intoxication when given after the toxicant, Cb, Cbi, CoTMPyP, or CoN4[11.3.1] were 

administered at the maximally effective doses (as described above) to male Swiss-Webster mice 

(7-8 weeks of age) at either 1, 2, or 5 min after injection of NaCN (100 µmol/kg).  That is, all the 

cobalt compounds were administered at a dose of 70 µmol/kg, except for CoN4[11.3.1], which 

was given at a dose of 50 µmol/kg.  The righting-recovery times following the cyanide injections 

were recorded and compared with the controls given NaCN only (Figure 23). 

The mean recovery times for animals given 70 µmol/kg Cb at 1 or 2 min after cyanide 

injections were found to be 11 ± 8 min and 14 ± 3 min, respectively (Figure 23A), longer than 

that observed when the same dose was prophylactically administered (9 ± 5 min, Figure 22A).  

Mice receiving 70 µmol/kg Cbi at 1 or 2 min post-cyanide intoxication had righting-recovery 

times of, respectively, 7 ± 4 min and 11 ± 2 min, again longer than for the prophylactically 

administered dose (5 ± 6 min, Figure 22B).  CoTMPyP performed no better than Cb or Cbi in 

this therapeutic test (Figure 22C) exhibiting recovery times of 10 ± 7 min and 11 ± 6 min, for 

delivery of 70 µmol/kg CoTMPyP at 1 and 2 min, respectively, after cyanide intoxication 
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compared to prophylaxis (1 ± 3 min, Figure 22C).  Additionally, the majority (6/7) of mice tested 

knocked-down when CoTMPyP was administered at 1 min after cyanide injections, comparable 

to the effect seen with both Cb and Cbi.  However, CoN4[11.3.1] performed better than the other 

compounds when given 1 min after cyanide intoxication (Figure 23D) with a righting recovery 

time of 4 ± 3 min, comparable to its prophylaxis (3 ± 3 min, Figure 22D) even though a lower 

dose of the antidote (50 µmol/kg) was used.  When given 2 min after the toxicant, the mean 

righting-recovery time for CoN4[11.3.1] was 13 ± 6 min, no better than the other cobalt 

compounds at the same time point.  Additionally, when the CoN4[11.3.1] had been administered 

at 1 min after the cyanide injections, 4 of the 12 mice tested did not knockdown, a noteworthy 

improvement compared to the effects seen with the other compounds. 
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Figure 23. Therapeutic effects of cobalt-containing compounds in male mice after cyanide intoxication. 

Swiss-Webster mice were injected with either 70 µmol/kg of Cb (A), Cbi (B), CoTMPyP (C), or with 50 µmol/kg of 

CoN4[11.3.1] (D) at 1, 2, or 5 min  post cyanide intoxication.  NaCN given alone (100 µmol/kg) and with the test 

compounds (at the doses above) injected prophylactically at -5 min are included in each plot for comparison 

purposes.  Righting-recovery times were recorded for each set of injections; the median and interquartile range are 

shown.  One-way ANOVA with Tukey’s multiple comparisons post-test was performed for each compound tested to 

determine the significance of the righting-recovery time as compared to controls. ****p ≤ 0.0001, ***p ≤ 0.001, **p 

≤ 0.01 and *p ≤ 0.05.  #median and interquartile range are both equal to 0. 

 

 

In summary, all of the cobalt compounds tested significantly reduced the righting-

recovery time when administered at either 1 or 2 min after cyanide intoxications, but none of the 

compounds tested had any measurable impact on the righting-recovery time when delivered 5 

min after the cyanide administration (Figure 23).  Using exactly the same righting-recovery 
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approach in sub-lethally intoxicated mice (16-20 weeks of age) we have previously shown that 

sodium nitrite clearly is an effective cyanide antidote when given therapeutically more than 5 

min after the toxicant dose [41].  Such is the significance of this earlier result that we present 

data collected from the younger mice (7-8 weeks, closed diamonds) in this study along with the 

data previously published for the older mice here (Figure 24, solid circles) both for emphasis and 

as a positive control.  In terms of preventing knockdown and the shortest righting recovery 

observed, prophylactically administered CoTMPyP appeared to be the most effective of the 

cobalt compounds (Table 3).  Otherwise, CoN4[11.3.1] was the most efficacious of the cyanide 

scavengers tested by several criteria, not the least of which was that it performed comparably, or 

slightly better than the others, at lower relative dose. 

 



 95 

 

Figure 24. The ameliorative effect of NaNO2 on cyanide intoxication. 

Swiss-Webster mice (males, 16-20 weeks of age, solid circles and males 7-8 weeks of age, solid diamonds) injected 

with NaCN (100 µmol/kg, IP) and then administered NaNO2 (12 mg/kg, IP) 2 to 20 min after cyanide. Control 

animals received NaCN only. Values represent means and standard deviations. In general, at least 4 animals per 

point were used, except for control (n = 17 for 16-20 weeks of age and n = 66 for mice of 7-8 weeks of age). One-

way ANOVA with Tukey’s multiple comparisons post-test was performed to determine the significance of the 

righting-recovery time as compared to controls.*p ≤0.0001, **p ≤ 0.05 (16-20 week old mice) #p ≤0 .0001. ##p ≤ 

0.01 (mice of 7-8 weeks of age). Solid circles (mice of 16-20 weeks of age) are reformatted data from Cambal et al. 

[41] 
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Table 3. Distinguishing animal data for the cobalt-containing trial compounds 

Assessment Controls 
(100 
µmol/kg 
NaCN) 

Hydroxocobalamin 
(NaCN + Cb, 70 
µmol/kg) 

Cobinamide 
(NaCN + 
Cbi, 70 
µmol/kg) 

CoTMPyP 
(NaCN + 70 
µmol/kg) 

CoN4[11.3.1] 
(NaCN + 50 
µmol/kg) 

Prophylaxisa: 
Death/group 

16/66 0/15 0/16 0/13 0/15 

Prophylaxis: 
knockdowns/group  

66/66 
(100%) 

14/15 
(93%) 

8/16 
(50%) 

2/13 
(15%) 

7/15 
(47%) 

Prophylaxis(5 min 
pre-NaCN): 
righting recovery 
time (min) 

 
24 

 
9 

 
5 

 
1 

 
3 

Prophylaxis: 
effectiveness ratiob 

N/A 1.0 1.6 1.8 1.7 

Therapeuticc: 
knockdowns/groupd 

N/A 4/4 
(100%) 

5/6 
(83%) 

6/7 
(86%) 

8/12 
(67%) 

Therapeutic: 
righting recovery 
time (min)d 

N/A 11 7 10 4 

aPutative antidotes given 5 min before NaCN. 
b Relative to Cb (see text for explanation). 
cPutative andidotes given 1 min post NaCN administration 
dFor antidotal doses delivered at 1 min time points. 

 

A.4.3 Comparison of neuromuscular recovery in mice administered acute (sub-lethal) 

cyanide doses (controls) or saline (shams)   

The RotaRod testing paradigm employed (Figure 25A, see Experimental Methods for further 

details) involves measuring the duration that individual animals can remain in position walking 

on a rotating cylinder; any shortening of the observed duration following some experimental 

insult being taken as evidence of impairment.  While primarily a measurement of neuromuscular 

coordination [119, 120] the technique also routinely provides some assessment of learning 
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capability and memory.  During the training periods (day 1, 1-8 min; Figures 25B, 25C and 25D) 

the performance of all the animal groups increased steadily, indicating the mice were adapting to 

(i.e. learning) the test.  The trained performance was essentially maintained by 24 hr later with a 

very slight loss in the previous day’s level (pre-IP data sets, Figures 25B, 25C and 25D) and 

sham mice receiving saline solution without toxicant continued to adapt until reaching a plateau 

in their performance (open circles, day 2, 15-150 min; Figure 25B).  Control mice receiving only 

100 µmol/kg NaCN were still completely incapacited 15 min after the toxicant dose, unable to 

remain on the rotating cylinder for any time at all, but then steadily improved over the next 2 hr 

(filled squares, day 2, 15-150 min; Figure 25B).  The performances of the sham and control 

animals remained indistinguishable 24 hr later (day 3, 24 hr points; Figure 25B).  A subset of 

these animals were evaluated at longer times post injections and, in fact, the performances of the 

sham and control animals subjected to training regimens remained indistinguishable at 48 hr, 1 

week and 2 weeks after the intoxications (see Supporting Information). 

A.4.4 Comparison of neuromuscular recovery in mice administered Cb, Cbi, CoTMPyP 

and CoN4[11.3.1] prior to acute (sub-lethal) cyanide exposures  

Before testing any ameliorative capabilities, an initial set of experiments was performed in which 

the cobalt compounds were administered in the absence of cyanide to investigate the presence of 

possible undesirable side effects (Figure 25C).  Interestingly, the performance of mice on the 

RotaRod device was enhanced at 15 and 30 min after the administration of Cb (filled circles, 

Figure 25C, p < 0.01 compared to saline shams in Figure 25B); the effect being quite small, but 

reproducible over multiple days of testing.  In contrast, Cbi-treated mice had a significantly 

decreased rate of performance on the RotaRod device at 15 and 30 min post-cyanide 
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administration (open squares, Figure 25C, p < 0.01 compared to saline shams in Figure 25B).  

From about 90 min onwards, the data obtained for the animals treated with Cb, Cbi and the 

saline shams were indistinguishable (Figure 25C).   There were no significant differences in the 

entire experimental range from 15 min - 24 hr between the performances of either CoTMPyP- or 

CoN4[11.3.1]-treated animals (filled squares and open circles, Figure 25C) when compared to the 

performance of the sham mice injected with saline (Figure 25B). 

In a second set of experiments, animals were injected with the cobalt cyanide-scavenging 

compounds 5 min prior to the toxicant dose, then tested every 15 min for 2.5 hr and again at 24 

hr (Figure 25D).  Mice administered 70 µmol/kg Cb (5 min before the toxicant dose) had 

significantly improved performance up to 105 min after the cyanide injection (filled circles, 

Figure 25D) when compared to mice receiving cyanide alone (filled squares, Figure 25B).  

Interestingly, when comparing the performance of cyanide-challenged mice given the different 

antidotal compounds, the performance of the mice administered Cb was significantly improved 

compared to the others at the earliest time (15 min) after the cyanide intoxication (filled circles, 

Figure 25D).  Otherwise, the performances of the cyanide-challenged mice administered Cb, Cbi, 

CoTMPyP, or CoN4[11.3.1] were not significantly different (Figure 25D).  Compared to the 

results for control animals given cyanide only (filled squares, Figure 25B) all the test compounds 

appeared to be significantly antidotal in mice in the 15 min to ~90 min window.  Consistent with 

a previous report [68] there appears to be no persistent impairment of neuromuscular 

coordination detectable as judged by RotaRod testing at 24 hr in any group that received cyanide, 

irrespective of whether antidote was also given, or not (Figures 25B, 25C and 25D).  In fact, no 

impairment was observed at 2 weeks time post toxicant and/or antidote for any mice using the 

RotaRod testing (see Supporting Information). 
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Figure 25. Neuromuscular coordination comparison of Cb, Cbi, CoTMPyP and CoN4[11.3.1] amelioration 

following NaCN administration in mice. 

(A) RotaRod testing paradigm: arrows indicate RotaRod testing times; lines with circles indicate injection times (all 

IP). Mice were trained on the RotaRod 24 hr before injection, and a baseline performance was obtained 1 hr before 
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injection (Pre-IP). Mice were tested every 15 min after injections for 2.5 hr (up to 150 min) and again at 24 hr to 

assess recovery. One-way ANOVA with Tukey’s multiple comparisons post-tests were performed to determine the 

significance between controls and a particular compound tested or between compounds tested as noted. (B) 

Comparison of performance (maximum speed achieved) for injections of 100 μmol/kg NaCN (closed square) and 

saline control (open circle).  *p ≤ 0.001 vs. saline control. (C) Comparison of performance (maximum speed 

achieved) for mice injected (IP) with 70 µmol/kg of Cb (closed circle), Cbi (open square), CoTMPyP (closed 

square) or 50 µmol/kg CoN4[11.3.1] (open diamond). +p ≤ 0.01 vs. Cbi. (D) Comparison of performance of mice 

(maximum speed achieved) injected with either 70 µmol/kg of Cb (closed circle), Cbi (open square), CoTMPyP 

(closed square) or 50 µmol/kg CoN4[11.3.1] (open diamond) and 100 µmol/kg  cyanide. #p ≤ 0.05 for Cbi & NaCN 

vs. Cbl & NaCN. Numbers of animals (in parentheses) used in each set of experiments are as follows: NaCN (16), 

saline (13), Cb (8), Cbi (8), CoTMPyP (6), CoN4[11.3.1] (7), Cb & NaCN (7), Cbi & NaCN (7), CoTMPyP & 

NaCN (6) and CoN4[11.3.1] & NaCN (7). 

 

A.4.5 Importance of the essentially irreversible kinetics of antidotal cyanide-scavenging 

compounds 

We have now repeatedly argued [68, 79] that the cobalt-based compounds Cb, Cbi, CoTMPyP 

and CoN4[11.3.1], even if administered in their Co(III) forms, are all quickly converted to Co(II) 

forms in circulating blood due to the presence of endogenous reductants such as ascorbate.  

Following cyanide binding, however, the reduction potentials of the central cobalt ions become 

lowered to the extent that the cyanide adducts revert to oxidized forms.  This is crucially 

important because Co(III) complexes are typically more substitution inert than their Co(II) 

counterparts [32, 114, 115] and the cyanide forms are thus stabilized, so that they may be 

excreted rather than assist in systemic redistribution of the toxicant.  This point of view is, 

seemingly, reinforced by the observation that assimilation of the cobalamin cofactor in B12-

dependent enzymes requires reductive decyanation of cyanocobalamin catalyzed by its 

chaperone [121].  As further demonstration of this principal, we undertook a set of experiments 
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employing gallium nitrate as a trial antidote to both cyanide and sulfide (i.e. H2S/HS–) 

intoxication in mice.  Ga(III) is known to be a relatively safe ion when introduced into mammals, 

including humans, for other purposes [122, 123].  It is also well-known to form a stable complex 

with cyanide, but this is substitution labile rather than inert [124, 125].  Accordingly, when 

attempts were made to investigate Ga(III) as a cyanide antidote in mice using the righting-

recovery procedure, no effect was observed, beneficial or otherwise (Table 4).  On the other 

hand, the similarly acting mitochondrial poison sulfide [117, 126] forms a precipitate with 

Ga(III) [127].  This is not a readily reversible process and, consequently, Ga(III) was clearly 

efficacious in ameliorating sulfide intoxication (Table 4) in keeping with the suggestion that a 

degree of irreversibility associated with the final adduct is a highly desirable characteristic for 

effective scavenging. 

 

Table 4. Effects of Ga(NO3)3 on cyanide and sulfide toxicity in Swiss-Webster mice. 

 Survivors/group 

(%) 

Time until deaths of non-

survivors (min) 

5 mg/kg NaCN only 

(control) 

50/66 (76%) ~3 

50 mg/kg Ga(NO3)3 given 

1 min after NaCN 

6/8 (75%) ~3 

18 mg/kg NaHS only 

(control) 

16/24 (67%) < 4 

50 mg/kg Ga(NO3)3 given 

1 min after NaHS 

8/8 (100%) — 
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A.5 DISCUSSION 

When given prophylactically, Cb, Cbi, CoTMPyP and CoN4[11.3.1] all clearly ameliorate the 

toxic effects of cyanide as assessed by righting recovery (Figure 22) and restoration of 

neuromuscular coordination (Figure 25D compared to filled squares in Figure 25B).  In all cases, 

including mice given only the toxicant, or only one of the cobalt compounds, recovery of normal 

neuromuscular function at 24 hr appeared complete (Figures 25B, 25C and 25D).  That is, there 

was no sign of any long-term impairment (up to 2 weeks), providing encouragement for the 

continued development of the latter three compounds as potential cyanide antidotes.  The slightly 

toxic effect detected in the case of Cbi at 15 and 30 min (open squares, Figure 25C) is, however, 

of some minor concern.  The value of these behavioral assessments of toxicity and antidote-

dependent recovery with conscious mice should be fully appreciated – in addition to providing 

information not necessarily accessible with unconscious animals, such experiments avoid the 

well-known confounding complications of anesthesia [93, 118].  

In experiments where the putative antidotes were administered after the toxicant, Cbi, 

CoTMPyP and CoN4[11.3.1] (Figures 23B, 23C and 23D) all performed better than Cb (Figure 

23A).  Particularly if the lower dose is considered, CoN4[11.3.1] (Figure 23D, 50 µmol/kg) was 

measurably better than Cbi and CoTMPyP (Figures 23B and 23C, each 70 µmol/kg) as a 

therapeutic.  This lower effective dose of CoN4[11.3.1] could, of course, be of importance for 

treating higher levels of cyanide intoxication than would be possible with the other compounds.  

In relation to management of public health emergencies, there is currently some interest in 

stockpiling cyanide antidotes and, consequently, other factors may become important for ranking 

these cobalt compounds.  The relatively low cost of CoN4[11.3.1] (Table 2) should not be 

overlooked in this regard.  Also, however, the storage requirements for Cb and Cbi (biological 
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materials) are that they be refrigerated (-20°C) whereas we have stored CoTMPyP, CoN4[11.3.1] 

and similar complexes in darkened, screw-top vials at room temperature for months (years in 

some cases) without noticeable decomposition (assessed by mass spectrometry and spectral 

analysis) beyond some slow oxidation of Co(II) to Co(III). 

The stability constants (K) of all four cyano adducts (Table 2) are large enough to ensure 

that the compounds are efficient cyanide scavengers.  For example, if Cb and cyanide are present 

in approximately equal quantities, K = 105 implies that > 99.99% of the cyanide will be bound to 

the Co(III) center; alternately, if CoN4[11.3.1] and cyanide are present in approximately equal 

amounts, K = 3 x 105 (the lower end of the possible range – see footnote g to Table 2) implies 

that > 99.9% of the cyanide will be bound to the Co(II) center; in the other two cases, the 

stability constants are larger and even more of the cyanide will be scavenged.  Furthermore, 

since the rate constants for cyanide binding by the other three compounds are all similar or larger 

than that for Cb, we may argue that equilibrium is attainable in each case at fast enough rates that 

the relative efficacies of these compounds as antidotes should simply be given by the number of 

exogenous cyanide anions they can bind.  In other words, the antidotal capabilities of Cbi, 

CoTMPyP and CoN4[11.3.1] (all binding 2 CN– per Co(III)) should be comparable on a molar 

basis and they should be better than Cb (binding 1 CN– per Co(III)) by no more than a factor of 

approximately 2.  In the present investigation, this is exactly what we find, the “effectiveness 

ratios” of Cbi, CoTMPyP and CoN4[11.3.1] compared to Cb are all approaching 2 (Table 3).  It 

requires comment that prophylactically administered Cbi has previously been reported to be 3-

fold to 11-fold more efficient than Cb as an in vivo cyanide scavenger in mice [62].  Certainly, 

the anesthesia used in this previous study may have influenced the results, but when the toxicant 

was given as NaCN solutions (IP injections) the 3-fold increased effectiveness of Cbi compared 
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to Cb observed is not very different from the 2-fold increase we suggest here to be limiting.  

Much more surprising is the finding that Cbi was 11-fold more effective than Cb when the 

toxicant dose was delivered as inhaled HCN.  This simply does not appear possible if the only 

relevant activity of Cbi is straightforward complexation of 2 CN– per Co(III); strongly 

suggesting that there must be some presently unrecognized aspect to the antidotal action of Cbi 

particularly associated with toxicant inhalation.  In the earlier study [62] the animals were given 

the antidotes 15 min before starting the HCN dose which was then continued for a period of 30 

min, so there was plenty of time for other processes to become involved. 

In the therapeutic experiments (Figure 23) where antidotes were given after the toxicant, 

the CoN4[11.3.1] performed best of the four when given 1 min after the cyanide (Table 3) 

perhaps reflecting its significantly faster reaction rate than the others (Table 2).  All the 

compounds were comparably effective when given up to 2 min after the cyanide, but if a delay of 

5 min was allowed before giving antidote, none were effective (Figure 23).  We interpret this 

observation to indicate that within 5 min of receiving a cyanide dose the toxicant has bound to its 

molecular target, namely, cytochrome c oxidase in the mitochondria, and the cobalt-based 

scavengers are not able to reverse the inhibition of the enzyme as we have unambiguously 

demonstrated for at least Cb and Cbi [59].  To the contrary, sodium nitrite clearly does work 

therapeutically if given as an antidote at times longer than 5 min after the cyanide dose (Figure 

24).  It should be noted that the majority of these nitrite data were obtained employing older mice 

and from a different supplier compared to the other animal experiments.  The older control 

animals given no antidote exhibited a mean righting recovery time of 29 min, enabling 

effectiveness to be demonstrated if the nitrite was given up to 20 min following the cyanide dose.  

On the other hand, younger control animals given no antidote exhibited a mean righting recovery 
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time of 24 min, enabling effectiveness to be demonstrated if the nitrite was given up to only 

about 15 min following the cyanide dose.  It is to be understood that the 15-20 window of 

effectiveness represents a limitation of the method, it does not necessarily mean that the nitrite 

would be ineffective if the therapeutic doses were to be delayed for more than 20 min following 

a toxicant dose in some other poisoning scenario.  We have previously shown that nitric oxide 

(NO) is able to reverse cyanide inhibition of cytochrome c oxidase [47, 48] and used this 

observation to infer a plausible mechanism by which nitrite anion (acting as an NO donor) may 

be antidotal toward cyanide intoxication independent of methemoglobin formation [41, 93].  

Therefore, unlike the cobalt-based scavengers, nitrite anion can reverse the toxic effect of 

cyanide at its principal molecular target by reversing the inhibition of cytochrome c oxidase; 

hence its broader window of action.  It follows that there are numerous experimental protocols 

that could inadvertently be undertaken that might misleadingly suggest cobalt-based scavengers 

(or any other cyanide-complexing compounds) can be of therapeutic benefit 5 min or more after 

the toxicant dose has ceased.  For instance, if a putative cyanide scavenger is given as a nitrite 

salt, or NO complex, then this really represents a combination therapy, not an unambiguous 

assessment of the scavenger.  Less obviously, any animal model in which cyanide scavengers are 

to be tested, but where there may be inflammation (with accompanying upregulation of inducible 

nitric oxide synthase), or where analgesics/anesthetics are employed (at least some of which are 

known [93] to behave like stimulators of endogenous NO production), a combination therapy is 

probably, if unintentionally, being investigated. 

We have previously shown [59, 68, 79] that the cobalt-based compounds Cb, Cbi, 

CoTMPyP and CoN4[11.3.1] are all quickly converted to Co(II) forms by reductants at the levels 

they are present in circulating blood, facilitating suitably rapid cyanide binding.  Upon binding 
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cyanide, however, the reduction potentials of the central cobalt ions become lowered to the 

extent that the cyanide adducts become oxidized to stable forms that may be excreted.  Here, we 

have described a set of experiments (Table 4) employing gallium nitrate as a trial antidote to both 

cyanide and sulfide (i.e. H2S/HS–) providing further conformation of the importance that the 

final adduct is essentially substitution inert – otherwise, the intended scavenger will only assist in 

the systemic redistribution of the toxicant.  The overall similarity in the relevant physicochemical 

properties (Table 2) of the cobalt compounds able to bind two cyanide anions per metal ion, 

namely Cbi, CoTMPyP and CoN4[11.3.1] and the comparability of their performances in the 

antidotal trials (Table 3) suggests that many cobalt complexes with four approximately equatorial 

nitrogen donors should display the necessary oxidation-reduction chemistry and ligand 

substitution characteristics suitable for application as cyanide scavengers.  Such compounds 

may, however, differ considerably the type of macromolecular biomolecules with which they 

interact.  That is, their relative toxicities will likely depend to some extent on the peripheral 

structures of their chelating ligands. 

A.6 SUPPORTING INFORMATION  

Supporting Information is available free of charge on the ACS Publications website at 

DOI:10.1021/acs.chemres-tox.7b00234. 

Cyanide binding kinetics of Co(II)N4[11.3.1]  and raw data for animal experiments 

presented in Figures 22, 23 and 25 
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