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This dissertation is focused on understanding the relationship between rheology and morphology 

of capillary suspension under various shearing conditions. A model ternary liquid/liquid/particle 

system is constructed for experimental propose. Particularly in this system, one of the liquid has 

some preferentiality in wetting towards particles so that liquid meniscus can be formed between 

particles. Formation of such meniscus can create a network which endows the suspension with a 

yield stress. Four specific topics are presented: 1) to investigate rheology of pendular network (i.e. 

only pair-wise connection form between fully wet particles), by examining the dependence of the 

yielding behavior on flow history, quantify their viscoelasticity, and relate these to the 

microstructural picture of meniscus rupture; 2) to verify the effect of various wetting conditions 

on rheology of the capillary suspension. Results show a diminishing solid-like property of such 

suspension as the particles become less wetting by the minority fluid, which induced particle 

aggregation; 3) to map the rich variety of morphologies for a model ternary system containing 

particles which were equally wetted by both polymers, analogous to: Picking emulsions, particle-

stabilized foams and bijels 1, 2; 4) to correlate the dynamic morphology of ternary model blend 

with rheological measurement during creep-recovery via in-situ visualization. 
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1.0  INTRODUCTION 

1.1 BACKGROUND 

By adding a small amount of water to dry sand, sand castles can be built because the water wets 

the sand, forming capillary bridges binding the particle together. Such capillary-driven attractive 

particulate systems find their significance in not only scientific literature but providing an approach 

to fabrication of new materials3. Previous studies have focused on how the added liquid affects the 

original suspension system in terms of rheology and morphology. For instance, addition of a small 

amount of wetting fluid to a suspension of particles in a non-wetting fluid, the suspension would 

form a pendular network shown in Figure 2, where particles are connected by pair-wise menisci, 

giving the suspension a yield stress4-7. In general, this dissertation is to examine multiple effects 

such as the dependence on composition, on deformation history and particle wettability on 

particulate suspensions using an idealized “model system”: The model system consists of two 

immiscible polymers polyethylene oxide (PEO) and polyisobutylene (PIB), and silica particles 

whose wettability for the liquids can be tuned. One of the advantages of such system is that it flows 

at a modest temperature, but its structure can be preserved by simply cooling to room temperature, 

and characterized by examining one of the polymer phases in scanning electron microscope after 

selective removal of the other. Thus the rheological properties of ternary systems and their 

morphology can be related. Later in this research, a slightly different model system consisting LIR-
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30/PEO/glass particle was used to examine the in-situ morphology deformation during shear. 

Detailed description on this system as well as correlation between rheology and morphology 

during creep-recovery process is available in Chapter 5.0 . For rest of the dissertation, Chapter 1.1 

gives the background and literature review on four specific topics accomplished; Chapter 1.2 

summarized the materials and experimental technique used through this work. Chapter 2.0  

examines the dependence of the yielding behavior on flow history for pendular network; Chapter 

3.0  verifies the effect of various wetting conditions on rheology of the capillary suspension by 

conducting surface medication on silica particles to alter their hydrophobicity; Chapter 4.0 

constructs a map of rich variety morphologies for the model ternary PIB/PEO/silica system 

containing particles which were equally wetted by both polymers. 

1.1.1 Establishment of model ternary liquid/liquid/particle system 

In particulate systems, capillary forces can bind discrete particles together into a space-spanning 

network with a yield stress. The most familiar example is of sand, which when wetted with small 

amounts of water, develops sufficient yield stress to allow construction of elaborate sand castles8-

11. The same is true for particles-in-liquid suspensions: addition of a small amount of a second 

immiscible liquid can create a network which endows the suspension with a yield stress4-7, 12-17.  

Such suspensions in which capillarity forces are important are practically useful in 

materials science. Specifically, the very simple method – “add liquid and mix” – of realizing a 

yield stress offers a convenient way of stabilizing a structure temporarily before it can be made 

permanent e.g. by sintering or crosslinking3. Furthermore, open pore morphologies can be realized 

readily in such systems16, 18-20 with immediate relevance to applications in which chemical 

transport or fluid retention must be combined with mechanical strength. Indeed applications to 
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materials science are not restricted to suspensions with capillary  forces – a diverse set of 

particle/fluid/liquid mixtures can, depending on the materials and composition, yield a variety 

morphologies of potential interest to materials science3, including, particle-stabilized foams21-23, 

bijels19, 24, wet granular materials8, 25, 26 and liquid marbles27, 28. 

Previously in our group, a model system composed of immiscible polyethylene oxide 

(PEO), polyisobutylene (PIB) and silica particles that were fully-wetted by PEO was constructed 

to examine the morphology of capillary suspensions. These mixture constituents were selected not 

for any specific application, but for experimental convenience: the wetting fluid PEO melts at a 

modest temperature (~65), which facilitates the rheological measurements of the ternary system, 

and it can be solidified by cooling to room temperature which helps morphology characterization 

by electron microscopy. Previous experiments showed that ternary system morphology as well as 

rheology are sensitive to the volumetric ratio of PEO to particles5: . As 𝜚  increases 

from ~0.01 to ~0.2, particles became bound together by small menisci of the wetting liquid, 

forming a percolating network which was dubbed a pendular network. A further increase in 𝜚 at 

fixed particle loading led to encapsulation of particles due to excess PEO, and the system reached 

the compact capillary aggregation regime. Detailed morphology evolution upon composition for 

systems with fully wetting particles is discussed later and shown in Figure 2.  Rheologically, 

pendular networks were found to behave analogous to other attractive suspensions: they showed 

yield stress in steady shear, solid-like behavior and G’-G” crossover in large amplitude oscillatory 

shear (LAOS), and delayed yielding in creep5. 

A PIB/PEO/silica model system was used to examine the rheology of pendular networks. 

Since such mixtures are far from equilibrium, and their deformation history is expected to affect 

the microstructure and rheological properties4.  Even at same composition, either pendular network 
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or capillary aggregate structures may appear depending on the mixing conditions. Nevertheless, 

capillary aggregates can be reduced or eliminated by pre-dispersing the PEO with a drop size 

comparable to or smaller than that of the particles. In addition, pendular menisci may be ruptured 

under applied flow deformation and re-formed simultaneously as particles that already have 

wetting fluid on their surface come into contact with each other. This raises several questions: does 

high shear rate induce structural breakdown, and if so, do the rheological properties depend on 

shear history? In addition, can changes in rheological properties be restored by sufficiently long 

flow? Or is flow-induced structural breakdown long-lived, and thus induce nearly-permanent 

changes in properties? Are pendular networks viscoelastic, e.g. do they show significant recovery 

upon cessation of shear? Incidentally, very similar questions have been addressed in another 

system with capillary forces, viz. droplet-matrix blends of immiscible fluids 29-31. In that case, flow 

induces both drop breakup and drop coalescence (analogous to breaking and reforming menisci). 

In those systems, shearing at high rate can reduce drop size and affect the rheology, but subsequent 

shearing at lower rate can usually (but not always) restore the original drop size and rheological 

properties. The questions stated above are answered and this portion of the thesis is described fully 

in Chapter 2.0 . 
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Figure 1. A schematic representation of a liquid bridge of volume V and surface tension  between two 

spheres. 

 

 

 

1.1.2 Effect of wettability on capillary clusters 

While the above-mentioned case involving unmodified silica particles with PEO and PIB is dubbed 

the fully-wetting situation, i.e. the contact angle at fluid-particle interface is zero, forming hour-

glass shaped meniscus. However, the case when the surface of the particles is less-favorably wetted 

by the minority fluid, which is dubbed the partially-wetting situation (Figure 1  where the angle  

is not close to zero), has not been fully discussed. Here we focus on only a narrow composition 

range with  ranging from 0 to 0.25, i.e. the volume fraction of PEO is much less than the particle 
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volume fraction to ensure pair-wise menisci, at least approximately. In such particulate systems 

with capillary forces, the wettability of the particles towards the minority liquid plays a crucial 

role in determining the blend rheology and microstructure1, 3, 32. Because the inter-particle 

attractive force has a joint contribution of surface tension and Laplace pressure difference33:  

 
(1) 

where   is the neck radius of the meniscus,  is the surface tension, and  is the 

Laplace pressure difference inversely proportional to the curvature �̅�  of the meniscus. As the 

contact angle increases, the pressure term becomes less dominant with the decreasing curvature 

and eventually changes the sign, making the overall capillary interaction repulsive34. Although, 

the full dependence of contact force between individual pair of particles on yielding behavior for 

overall particulate system is predicted to be more complex35, we speculate that capillarity-induced 

aggregation, and hence yield stresses developed in the fully wetting situation will diminish or even 

disappear in the partially wetting situation. Therefore, silica particles carrying three different 

degrees of hydrophobicity from surface modifications (including the unmodified fully wet ones) 

will be examined. The modification process involves two different silane agents: 

dichlorodimethylsilane (DCDMS) and octadecyltricholorosilane (OTS), both replace the silanol 

groups on silica surface with the hydrophobic groups36, 37. Using these three different particle 

types, we examined the dependence of linear viscoelastic storage modulus on particle loading 

under oscillatory shearing condition, and yielding behavior by conducting steady state shear 

experiments. Details of experimental process on surface treatments is available in Chapter 1.2.3. 

Detailed results on both particles are described in Chapter 4.0 .  
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1.1.3 Morphology evolution for ternary system with various wettabilities 

Ternary liquid/liquid/particle mixtures show a wide diversity of microstructures resulting from 

how the particles interact with two fluids, such as: pairwise attraction through capillary bridging4, 

5, 13, many-body cohesion through capillary clustering 5, interfacial assembly of particles 24, 38, 39 or 

particle bridging of drops15, 40. Even a single ternary system can display several of the above 

morphologies depending on its composition and particle wettability. In a previous paper5, a 

previous group member examined the morphology of ternary blends composed of PEO, PIB, and 

silica particles that are almost completely wetted by one of the polymer phases. Five types of 

morphology were identified in a single system, and the corresponding morphological map is shown 

in Figure 2: (1) pendular/funicular network, (2) capillary aggregates network, (3) filled drops, (4) 

co-continuous and (5) drops-in-suspension. These results highlight the central role of capillary 

interactions in the formation of percolated structures in the case of pendular, funicular and capillary 

aggregates bicontinuous networks, where the cohesion between the particles forming the network 

is dominated by capillary forces. For a fixed particle volume fraction, the increase in wetting phase 

volume fraction induces a change in the building blocks of the capillary-driven network from 

single particles to capillary aggregates. In addition, the particle volume fraction was found to have 

a strong influence on phase inversion of the ternary system. However, the effects from changing 

wettability of particle surface in blend morphology remain unknown. Indeed in small molecule 

systems, one well-studied example of three-phase liquid/liquid/particle systems is Ramsden–

Pickering emulsions 15, 36. The particles act as surfactants by adsorbing at the liquid–fluid interface, 

hence inhibiting drop coalescence and stabilize the emulsion. Additionally, a coherent monolayer 

of particles will stay at the interface that may bridge the droplets and assemble the droplets into 

volume-spanning networks due to capillary adhesion15, 40. Mostly important, the presence of 
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interfacially active particles can stabilize bicontinuous structure through arrested spinodal 

decomposition of the fluids41, 42. Analogous to Figure 2, a morphological map for particles that are 

partially-wetted by both of the immiscible liquid phases during melt-mixing is constructed in 

Chapter 4.0 . 

 

 

 

 

Figure 2. Morphological map and schematic structures of the investigated PIB/PEO/fully wettable silica 

ternary system. The ternary composition diagram is based on volume fractions. The red dashed path in the 

ternary diagram represents the phase inversion boundary, with the liquid continuous phase being PIB (non-

wetting phase) on the left-handside and PEO (wetting phase) on the right-handside. The grey region of the 

ternary diagram corresponds to high particle concentrations, which was not explored. Figure reproduced 

from T. Domenech and S. S. Velankar, J. Rheol., 2017, 61, 363-377. with permission. 
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1.1.4 Advantages of in-situ visualization on creep-recovery for model blend 

As mentioned above, with a small amount of wetting fluid, a pendular network will form which 

endows the suspension with a yield stress5, 13. Such a ternary mixture is unquestionably “solid-

like”, nevertheless, at a small strain on the order of 1%, it yields and shows very little elastic recoil 

(Chapter 2.4.3). Thus after yielding, a pendular network is almost purely viscous and not 

viscoelastic. However further increasing the amount of wetting fluid will engulf the particles and, 

if there is sufficient wetting fluid, one expects to obtain a particle containing droplet-matrix 

microstructure. Such droplet-matrix morphologies are known to be viscoelastic, for instance, 

immiscible polymer blends with a droplet-matrix morphology show elastic recovery that is 

substantially larger than that of their pure components due to the interfacial tension43, 44. Other 

viscoelastic properties can be measured and related to the morphology including normal stresses 

in shear flow and stress relaxation behavior, e.g. the stress relation behavior has been categorized 

with different morphological changes mechanism after cessation of flow: shape-recovery of 

slightly deformed droplets, breakup of a deformed droplet due to end-pinching, and breakup of a 

highly elongated droplet45. While little research has been done on the stress-strain response during 

creep-recovery test for such particle-filled droplets blend, for pure binary droplet-matrix blends, 

the polymer blend literature suggests that both the level and time scale of the immiscible blend 

recovery after steady state shear are very sensitive to the morphology43, 46. 

In order to clarify relationship between rheology parameters and the morphology during 

creep-recovery process, both need to be observed simultaneously. Rapidly quenching the structure 

at step shear strain enables ex-situ observation on the shape of dispersed droplets during 

recovery47. Yet such method failed to capture the deformation evolution of single droplet. Because 

the blend quenching is an irreversible process, several blends at different strain deformation are 
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needed to make a comprehensive comparison. In order to overcome such limitation, I therefore 

conducted an in-situ visualization of structural evolution under shearing conditions using a 

microscope-equipped rheometer, and correlated them with rheological phenomena. Preliminary 

tests show that the reflective index mismatch between silica particles and continuous PIB phase 

makes the image crowded and difficult to interpret at even modestly higher particle loadings. 

However, a nearly-perfect index match was found for glass particles in liquid isoprene rubber 

(LIR-30) suspension. Liquid bridges formed by addition of low molecule weight PEO give 

excellent optical visibility of capillary aggregates even at up to 20 vol% of particles. Thus, the study 

in Chapter 5.0 utilize this LIR-30/PEO/glass particle system to investigate the relationship between 

in-situ dynamic microstructure and rheological response for pendular network and capillary 

aggregates.  

1.2 EXPERIMENT AND EXPERIMENTAL SET UP 

1.2.1 Materials and chemicals 

Polyisobutylene (PIB, ρ≈0.908 g/ml, Mw≈2,200 g/mol) and polyethylene oxide (PEO, ρ≈1.1 

g/ml, Mw≈20,000 g/mol, melting point ≈  65°C) was purchased from Soltex and Fluka 

respectively. Spherical silica particles (diameter roughly 2μm) were purchased from Industrial 

Powders. As shown previously4, 5, unmodified particle surfaces are fully wetted by PEO, which is 

the minority phase in the mixtures examined here.  

Ternary blend materials tested in Chapter 5.0 are composed differently from above: 

Polyisoprene (LIR30 from Kuraray, viscosity 130Pa.s) is the continuous phase and low molecule 
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weight polyethylene oxide (PEO, ρ≈1.1 g/ml, Mw≈600 g/mol) is the wetting fluid. The particles 

used are hydrophilic glass particles with average diameter of  ~ 10μm obtained from 

Karlsruhe Institute of Technology.  

1.2.2 Sample preparation- Cold Mixing  

All the samples studied in Chapter 2.0 and 3.0 were made through a mixing process dubbed as 

“cold mixing”. The first step of cold mixing is to make a concentrated masterbatch. A small 

quantity of PIB and PEO were mixed together using a custom ball mixer40. 80 wt % of PIB and 20 

wt % of PEO were held inside the mixer at 80 ℃ for 15 minutes to ensure complete melting, and 

then mixed at 600 RPM for 2 minutes. The mixed product was then transferred into a sealed plastic 

dish, and quenched in the refrigerator at about 10 ℃  for at least 30 minutes to complete 

crystallization of the PEO. The masterbatch blend produced has a PEO-in-PIB morphology, and 

after removal of PIB, the residual PEO drops are seen to be roughly 5 μm  in diameter. 

PIB/PEO/silica ternary samples of the desired compositions were then prepared by blending 

appropriate quantities of masterbatch, pure PIB, and particles by hand with a spatula in a 40 mm 

petri dish at room temperature. Samples were placed in vacuum overnight to degas and then stored 

in the fridge to suppress particle sedimentation.  

The intention of making masterbatch is to circumvent problems we had in previous 

experiments in which all three components were mixed all at once in a batch mixer. For instance, 

for a ~4 grams batch with wetting fluids volume fractions as low as  0.16%, this volume 

fraction corresponds to only 8 mg of wetting fluid. Apart from possible errors in weighing such 

small quantities, it is also possible that some of the wetting fluid may be “lost” if it wets the internal 
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parts of the mixer, making the actual mixture composition different from the target value. In 

addition, when the PEO/PIB ratio is itself varied for specific blend, the drop size will change, and 

this is expected to affect the morphology according to previous experimental results. Cold-mixing 

circumvents the previous direct mixing method so that: 1) very dilute PEO compositions (10-times 

lower than those used previously) can be examined without possible weighing errors; 2) the 

consistency of size of PEO drops can be kept from one sample to another.  

Overall seven compositions were studied including the particle-free blend. For each blend, 

PEO to particle volumetric ratio (ϱ) varied from 0 to 0.32 and the particle loading was fixed at 

20vol%. 

1.2.3 Sample preparation- Silica Surface Modification 

For partially wetted particles studied in Chapter 3.0 and 4.0 , silane agents dichlorodimethylsilane 

(DCDMS) and octadecyltricholorosilane (OTS) are used to increase hydrophobicity of particle 

surface. The process of modification is similar to that used previously40, although the final drying 

step is circumvented to avoid particle aggregation. For DCDMS modification, a gas stream with 

DCDMS vapor was fed into a tumbling vessel half-filled with particles for 60 minutes. This 

DCDMS modification was performed by Mr. Martin Echavarria, an undergraduate Chemical 

Engineering major at Pitt. For OTS modification, the silica particles are first heated up to 380℃ in 

the vacuum oven for 5 hours to remove the residual organic compound. Particles are then 

suspended in toluene, the silane is added, and allowed to stir at 99℃ for 7.5 to 13 hours to complete 

the silanization reaction. The particles are washed with reagent grade toluene 5 times before dried 

out in the hood. This OTS modification procedure was conducted by Ms. Yuening Wang, an 

undergraduate Chemistry major at Pitt.  
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SEM was performed on particle/PEO/PIB mixtures to verify that silanization makes the 

DCDMS-coated particles equally-wetted by the PEO and PIB, whereas the OTS makes them 

preferentially-wetted by the PIB (Figure 15). 

The same “cold-mixing” method is used for sample preparation and is done by Ms. Nicole 

Heinichen. Overall eight compositions for each kind of the particle are selected ranging from 1vol% 

to 30 vol% with a fixed PEO to particle volumetric ratio ( ) of 0.16 as is shown in the table below. 

1.2.4 Sample preparation- Two step mixing 

Two-step mixing method instead of cold-mixing was used in Chapter 4.0 . Different amount of 

PIB and PEO were first held inside the mixer at 80 ℃  for 15 minutes to ensure complete melting, 

then corresponding amount of particles were added and mixed at 600 RPM for 2 minutes. The 

mixed product was then immediately transferred into a sealed plastic dish, quenched in the 

refrigerator at about 10   for at least 30 minutes to solidify the PEO phase. This mixing process 

was performed by Mr. David Roell, an undergraduate Chemical Engineering major at Penn state 

university.  

Sample stubs were prepared for SEM characterization. For samples with PIB as the 

continuous phase, a small quantity of sample is first transferred into a vial filled with n-octane, 

and held overnight to dissolve the PIB matrix. The residual sediment (network structure composed 

of particles and wetting fluid) is then collected and transferred onto a carbon-taped SEM stub with 

a piece of filter paper (Millipore, 0.1 μm pore size) attached, rinsed by octane several times. For 

samples with PEO as the continuous phase, a small bulk of sample was first cooled and fractured 
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in liquid nitrogen. the fractured surface was then washed several times with n-octane before 

placing on the sub. All SEM stubs with extraction were then left to dry, and coated with an Au/Pd 

sputtering target (Cressington) for 90 seconds at 40mA before sent into the SEM chamber. 

1.2.5 Characterization 

Rheological experiments were conducted on a TA Instruments AR-2000 stress-controlled 

rheometer (for composition study) and an Anton Paar rheometer MCR 302 (for deformation 

study). All the tests on PIB/PEO/silica system were carried out on a 25 mm parallel plate geometry 

profiled to prevent wall slip, at 80 degree to ensure melting. The geometry was pre-heated to 80 

degree, then the sample was loaded within a gap of 1 mm. For steady state shear, measurements 

were carried out at shear rates ranging from 0.01s-1 to 100 s-1 with a maximum shearing time of 1 

minute for each point. By fitting the results into modified Herschel-Bulkley equation, we are able 

to derive the yield stress for each blend as is discussed in Chapter 2.4. For dynamic oscillatory 

experiments, amplitude sweep tests (strain ranging from 0.005% up to 300% at 1 rad/s) were 

conducted to evaluate the viscoelastic behavior for each blend. Detailed results are also discussed 

in Chapter 2.4.  

Effect of deformation history on rheology tests were mainly conducted on an Anton Paar 

rheometer MCR 302. Two deformation procedures were conducted and LAOS behavior for each 

sample were examined afterwards. For the first one, each sample was subjected to 1/s for 600 strain 

units, followed by an amplitude sweep at 1 rad/s up to a strain of 300%. Immediately following 

this, a second amplitude sweep was conducted, but with decreasing strain. For the second one, 

samples were sheared at three different rates, 0.1, 1, and 10/s. These rates span across the highest 
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rate in the oscillatory experiment (3/s corresponding to 300% strain). Each shear step was 

conducted for 10 minutes, followed by an amplitude sweep at 1 rad/s. The corresponding results 

are discussed in Chapter 2.4.3. In the same Chapter, creep-recovery tests on PIB/PEO/silica system 

were conducted at stresses lower than the yield stress estimated from previous steady shear 

measurements. Creep times were varied, whereas a fixed recovery time of 250 seconds was set.   

Creep-recovery tests on LIR50/PEO/glass particle system were also conducted on the 

Anton Paar rheometer with a 40 mm parallel glass plate geometry and built in in-situ microscope 

at 20 ℃. The sample will be loaded within a gap of 200 . In-situ visualization will be carried 

out while the rheology tests are in progress. The video capture function is activated to 

simultaneously record the rheological parameters and corresponding optical image of localized 

microstructure. It is for the optimization of the image quality that we will use LIR-50/PEO/Glass 

system for the in-situ experiments at higher particle loading (>5 vol %). The light scattering from 

the particles can be reduced due to the near-perfect index match between glass particles and 

continuous polyisoprene phase as is shown in the example below. Preliminary tests on 

PIB/PEO/silica system showed in-situ visualization is only accessible under dilute conditions 

(particle loading less than 2 vol %, not shown here).    

Oscillatory shear, steady state flow and creep-recovery tests will be conducted in order to 

test the viscoelasticity of ternary system. Detailed testing protocol is shown in Chapter1.0 5.3.2: 

the sample was first sheared at 480 Pa for 2 minutes in order to attain enough strain units to reach 

steady state flow condition. A 0.7-second step shear was applied at same stress level (480Pa) and 

ceased for 5 minutes to record the strain recovery. The creep-recovery process was repeated three 

times and the video recording starts from the end steady state flow toward the end of third recovery 
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to 1) capture the instantaneous elongated particle filled droplet morphology; 2) measure the time 

required for such structure to recover; 3) investigate the relaxation and aspect ratio dependence on 

stress and composition. Such testing protocol was conducted three time at different stress level 

(480Pa/240Pa/120Pa). The initial steady state shearing time varied for different stresses to ensure 

same strain units were applied before the following creep-recovery process (ie. 480Pa for 2 

minutes and 240Pa for 4 minutes, etc). An oscillatory shear experiment was conducted right after 

the creeping, both storage and loss moduli were retrieved from a frequency sweep range of 0.05% 

to 300% at fixed strain amplitude of 1%. The modulus results along with the in-situ visualization 

can be used to determine whether the system is in pendular network state or capillary aggregate 

state. Limited steady state flow experiment were also conducted to measure the yield stress and 

infinite shear viscosity by increasing shear rate from 0.1/s to 100/s for selected compositions.  

Aggregate structures were examined by SEM using ZEISS Sigma500 VP microscope and 

JEOL JSM6510 over a wide range of length scales. The sample stubs for SEM were made after 

solidifying the PEO by cooling and removal of PIB with octane. A small amount of sample was 

transferred into a vial filled with n-octane, and held overnight to dissolve the PIB matrix. The 

residual sediment (a composite structure comprising particles and PEO) was then collected, 

transferred onto a filter (Millipore, 0.1 μm pore size) stuck onto a carbon-taped SEM stub, and 

rinsed with octane several times, followed by metal coating using an Au/Pd sputtering target 

(Cressington) for 90 s at 40 mA. 
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2.0  COMPOSITION AND FLOW HISTORY DEPENDENCE OF YIELDING  

2.1 CHAPTER FREFACE 

Materials contained in this chapter were published as a research article in RSC Advancestitled 

“Preparation and yielding behavior of pendular network suspensions” in Journal of Rheology; 

figures used in this chapter have been reprinted with permission from: J. Rheol., 61 (2017) 217-

228. (listed as reference 76 in the bibliography section). Copyright © 2015 The Royal Society of 

Chemistry.  

List of Authors: Junyi Yang and Sachin S. Velankar 

2.2 INTRODUCTION 

In particulate systems, capillary forces can bind discrete particles together into a space-spanning 

network with a yield stress. The most familiar example is of sand, which when wetted with small 

amounts of water, develops sufficient yield stress to allow construction of elaborate sand castles8-

11. The same is true for particles-in-liquid suspensions: addition of a small amount of a second 

immiscible liquid can create a network which endows the suspension with a yield stress4-7, 12-17.  

Such suspensions in which capillarity forces are important are practically useful in 

materials science. Specifically, the very simple method – “add liquid and mix” – of realizing a 
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yield stress offers a convenient way of stabilizing a structure temporarily before it can be made 

permanent e.g. by sintering or crosslinking3. Furthermore, open pore morphologies can be realized 

readily in such systems16, 18-20 with immediate relevance to applications in which chemical 

transport or fluid retention must be combined with mechanical strength. Indeed applications to 

materials science are not restricted to suspensions with capillary  forces – a diverse set of 

particle/fluid/liquid mixtures can, depending on the materials and composition, yield a variety 

morphologies of potential interest to materials science3, including Pickering emulsions15, 36, 

particle-stabilized foams21-23, bijels19, 24, wet granular materials8, 25, 26 and liquid marbles27, 28. 

In such particulate systems with capillarity, the wettability of the particles towards the 

minority liquid plays a crucial role in determining the suspension microstructure1, 3, 32. The above-

mentioned case of wet sand is, in this article, dubbed the fully-wetting situation, i.e. the particles 

are fully-wetted by the minority liquid, water. The case when the particles are less-favorably 

wetted by the minority fluid is dubbed the partially-wetting situation. This article is concerned 

with the former situation. 

In a previous paper5, we examined the morphology of suspensions in the fully-wetting 

situation. The suspensions were composed of two immiscible polymeric liquids and silica particles 

that were fully-wetted by one of the two liquids. Experiments showed that when the wetting liquid 

was present in a small minority (in that paper, 16vol % of the particle loading), the morphology 

consisted of particles bound together by small menisci of the wetting liquid. At very low particle 

loadings, such meniscus binding led to the formation of open (i.e. not compact) aggregates denoted 

pendular aggregates. When the particle loading exceeded a few percent, aggregates were found to 

join together into a percolating network which was dubbed a pendular network. This terminology 

derives from the term pendular meniscus used to describe an hourglass-shaped meniscus joining 
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two particles26, 33, 48, which is our idealized picture of the basic building block of a network at low 

wetting fluid loadings. Rheologically, pendular networks were found to behave analogous to other 

attractive suspensions: they show yield stress in steady shear, solid-like behavior and G’-G” 

crossover in LAOS, and delayed yielding in creep5. 

The goal of this article is to examine the rheology of pendular networks in greater detail, 

for example quantifying how the yield strain changes with the wetting liquid loading, whether the 

networks have significant elasticity (in the sense of elastic recoil), and whether rheological 

properties can be related to microstructural details of the pendular bridges. A significant part of 

this paper is devoted to the effect of shear history on the rheological properties. Specifically as will 

be discussed in Chapter 2.5, pendular menisci are associated with a certain attractive force, and 

furthermore the meniscus breaks when the inter-particle distance is sufficiently large. This raises 

an obvious question: can a high preshear rate or a high preshear strain disrupt the pendular network 

and induce softening? On the other hand, a meniscus may also be re-formed under applied flow as 

particles that already have wetting fluid on their surface come into contact with each other. This 

raises a second question: can changes in rheological properties be restored by sufficiently long 

flow? Or is flow-induced structural breakdown long-lived, and thus induce nearly-permanent 

changes in properties? Furthermore, since a pendular meniscus can be stretched to some extent 

without rupture, can this induce viscoelastic phenomena in the suspension such as elastic recovery 

after cessation of shear?  

Incidentally, very similar questions have been addressed in another system with capillary 

forces, viz. droplet-matrix blends of immiscible fluids. In that case, flow induces both drop 

breakup and drop coalescence (analogous to breaking and reforming menisci). In those systems, 

shearing at high rate can reduce drop size and affect the rheology, but subsequent shearing at lower 
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rate can usually (but not always) restore the original drop size and rheological properties29-31. 

Furthermore, the increase in interfacial area due to applied flow provides a means of storing 

mechanical energy, and hence induces viscoelastic effects43, 44, 47. This article seeks to address 

similar questions for particulate systems with capillary forces. 

This paper is structured as follows. Chapter 2.3 provides experimental details and Section 

III discusses the experiments. In the first part of Chapter 2.4, we develop and validate a new 

method for preparing our three-component mixtures along with a rationale for why this new 

method is preferred over the mixing procedures followed previously. In the latter section Chapter 

2.4.2, we address the questions of the previous paragraph through rheological experiments. 

Chapter 2.5 comments on the results in the context of the micromechanics of meniscus rupture, 

followed by Conclusions. 

2.3 EXPERIMENTAL SECTION 

2.3.1 Materials and sample preparation 

Polyisobutylene (PIB, ρ≈0.908 g/ml, Mw≈2,200 g/mol) and polyethylene oxide (PEO, ρ≈1.1 

g/ml, Mw≈20,000 g/mol, melting point ≈  65 ℃ ) was purchased from Soltex and Fluka 

respectively. Spherical silica particles (diameter roughly 2μm) were purchased from Industrial 

Powders. All experimental materials are identical to those used previously4-6. As shown 

previously4, 5, the particle surfaces are fully wetted by PEO, which is the minority phase in the 

mixtures examined here.  
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A small quantity of PIB and PEO were mixed together to make a concentrated 

“masterbatch” using a custom ball mixer40. 80 wt % of PIB and 20 wt % of PEO were held inside the 

mixer at 80℃  for 15 minutes to ensure complete melting, and then mixed at 500 RPM for 5 

minutes. The mixed product was then transferred into a sealed plastic dish, kept in the refrigerator 

at about 10℃ for at least 30 minutes to complete crystallization of the PEO. The masterbatch blend 

has a PEO-in-PIB morphology, and after dissolving the PIB, the residual PEO drops are seen to 

be roughly 5μm in diameter (Figure 3).  

 

 

 

 

Figure 3. SEM image of solidified PEO dispersed phase extracted from the “masterbatch”. 

 

 

 

Ternary samples of the desired composition were prepared by blending appropriate 

quantities of this “masterbatch”, pure PIB, and particles. This blending was performed by hand 

with a spatula in a 40 mm petri dish at room temperature. Samples were placed in vacuum 

overnight to degas. This mixing procedure is different than that used previously5 and the reasons 

for this will be discussed in Chapter 2.4.  
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2.3.2 Rheolometer 

Rheological experiments were conducted on a TA Instruments AR-2000 stress-controlled 

rheometer as well as Anton Paar rheometer MCR 302. All the experiments were carried out on a 

25 mm parallel plate geometry profiled to prevent wall slip, at 80 ℃ to ensure that PEO was well 

above its melting temperature. The geometry was pre-heated to 80℃, the sample loaded, and set 

to a gap of no more than 1 mm.  

Both continuous and oscillatory shear flow properties were measured. For continuous 

shear, steady shear measurements were conducted at shear rates ranging from 0.01s-1 to 100 s-1. 

Each shear rate was maintained until deviation in torque was less than 3% for 1 minute.  Creep-

recovery tests were done at stresses lower than the yield stress estimated from steady shear 

measurements. Creep times were varied (discussed later) whereas a fixed recovery time of 250 

seconds was set. For oscillatory experiments, amplitude sweep tests (strain ranging from 0.005% 

up to 300% at 1 rad/s) were conducted.   

The compositions selected here are firmly in the regime in which pendular aggregates are 

expected, and hence morphological characterization is not the focus here. A limited amount of 

optical and electron microscopy was conducted using methods established previously.  

These show that the samples have the expected structure of pendular aggregates, viz. 

particles that are connected by small menisci of the PEO. A typical example of the morphology is 

shown in Figure 34 in the Appendix A. 



 23 

2.4 RESULTS 

2.4.1 Validation of the “cold mixing”  

Our previous research4 considered ternary mixtures using the same constituents as the present 

paper with a composition of 10 vol % particles and 2.8 vol % PEO. Various mixing methods were 

considered including premixing the particles into the PIB before adding the PEO or vice versa 

(predisperse the PEO before adding particles). Different combinations of mixing speed were also 

used. In all cases, the temperature during the mixing was 80 ℃, and hence the PEO was molten 

when it was mixed. In general, two types of structures were evident: a network of particles bound 

by menisci of PEO, and large PEO-bound particle aggregates, called capillary aggregates. For 

convenience, examples of both structures, taken from that article4, are shown in Figure 34.  That 

article suggested that capillary aggregates were a “trapped state” which could not be broken up 

easily under mixing conditions. Achieving predominantly pendular networks required avoiding 

the formation of capillary aggregates in the first place, e.g. by pre-dispersing the wetting fluid PEO 

(preferably at a size smaller than of the particles) prior to adding particles. 

Despite success in avoiding capillary aggregates, the previous methods still have some 

limitations. The first is that research on wet granular materials suggests that even extremely small 

quantities of wetting fluid (as low as 0.01 vol %) can affect the flow behavior9. Previously 5 we 

conducted experiments with wetting fluids volume fractions as low as and found that 

pendular aggregation already had a major effect on rheological properties. For a ~4-gram batch, 

this volume fraction corresponds to only 8 mg of wetting fluid. Apart from possible errors in 

weighing such small quantities, it is also possible that some of the wetting fluid may be “lost” if it 
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wets the internal parts of the mixer, making the actual mixture composition different from the 

target value. Accordingly, volume fractions of wetting fluid lower than 0.16% were not examined. 

Second, the previous experiments showed that the size of the drops immediately prior to adding 

particles is an important parameter affecting the morphology development, with a small drop size 

reducing the formation of capillary aggregates. But when the PEO/PIB ratio is itself varied, the 

drop size may change, and this may be expected to affect the morphology. Finally, reproducing 

the same morphology using a different mixer, e.g. one with a larger capacity, is difficult, once 

again because different mixing characteristics are likely to create different drop sizes prior to 

adding particles. 

The mixing process considered here, dubbed “cold mixing” is intended to circumvent these 

problems. Analogous to one of our previous mixing processes, the PEO is pre-dispersed as drops 

in the PIB, but then the blend masterbatch is cooled to solidify the PEO drops (shown in Figure 

3). Particles are then mixed with this masterbatch at room temperature (along with additional PIB 

as needed). The sample is then heated in a rheometer to remelt the PEO drops, and then sheared to 

induce meniscus-bridging of particles. This cold mixing method offers several advantages. First, 

since samples in the pendular regime require very little PEO, a single PEO/PIB masterbatch is 

adequate to prepare a large number of ternary samples. Since the size of the frozen drops does not 

change during the room-temperature mixing step, all the ternary samples have identical drop size 

distributions across all samples. Second, the masterbatch can be diluted repeatedly to realize very 

low wetting fluid loadings without significant weighing errors, and moreover, since the PEO is 

solid until the sample is loaded in the rheometer, it cannot be lost by wetting parts of the mixer 

(the mixing dish and spatula in our case).  
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Finally, the first task of this paper therefore is to validate this cold mixing method as a 

means of preparing pendular morphologies. 

Figure 4 validates this cold mixing approach. It compares the oscillatory behavior in 

amplitude sweep experiments for one specific blend with 20 vol % particles and 3.2 vol % PEO before 

melting vs after melting and shearing. The oscillatory behavior of the cold-mixed sample at 30  

(‘-‘ symbols with thick curves) suggests liquid-like behavior with 𝐺" ≫ 𝐺′ over the entire strain 

range. Such behavior is consistent with that expected for a suspension with a dispersed phase 

loading of 23.2 vol %. Note that the silica particles as well as the solidified PEO drops are both 

more polar than the PIB matrix, and this suspension is expected to behave not like a hard-sphere 

suspension but like a suspension of attractive particles. Indeed Figure 35 shows that under steady 

shear conditions at 30 , this blend is somewhat shear-thinning, likely reflecting the influence of 

attractive interactions.  

The sample was then melted, and sheared at 1 s-1 for 10 minutes. Upon repeating the 

amplitude sweep, a sharp change in rheology is apparent in Figure 7:  at low strain, 

followed by a crossover at intermediate strain. Such behavior is qualitatively similar to that 

observed in our previous research at the same composition, and was attributed to the formation of 

a pendular network (i.e. with pendular menisci bridging the particles), and the strain crossover was 

interpreted in terms of the microstructural breakdown of these menisci. This will be discussed 

further later. Subsequent to the amplitude sweep, the steady shear viscosity was measured at 

several different rates, and once again, the behavior (Figure 35) is qualitatively different from the 

unmelted sample: the sample shows yield-stress rheology (viscosity roughly follows �̇�−1) similar 

to that obtained from pendular networks previously5. 
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Figure 4 and Figure 35 also show the behavior of a particles-in-PIB mixture without any 

PEO added at 80℃, and this suspension is liquid-like, not surprising for a suspension at 20 vol % 

particles. Thus, as previously, we firmly conclude that the strongly non-Newtonian behavior is 

attributable to capillary forces between particles. 

In a later section of this paper, we will show that deformation history affects LAOS 

behavior significantly. Anticipating that, it is immediately relevant to ask whether the measured 

rheology changed if the sample was sheared for a longer duration. Accordingly Figure 4 shows 

two additional LAOS experiments, each conducted with an additional 600 strain units of shear at 

the same shear rate of 1 s-1. These show negligible differences in moduli as compared to the first 

shearing step suggesting that sufficiently long shearing can establish a steady state rheology, at 

least under the conditions of Figure 4. 

 

 

 

 

Figure 4. LAOS results for ternary mixture (PIB/PEO/silica =76.8/3.2/20) before and after melting and 

shearing, and binary suspension (PIB/silica = 76.8/23.2).  Filled symbols with solid lines represent the storage 

modulus and open symbols with dashed lines represent the loss modulus. 
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2.4.2 Rheological changes with wetting fluid content 

The cold-mixing approach can now be applied to examine the effect of wetting fluid content on 

the rheology. Previously we had shown that the rheological properties are non-monotonic in 

wetting fluid loading: at very low wetting fluid loadings, the formation of a pendular network leads 

to the rheological changes detailed in Figure 4 and Figure 35. But once the wetting fluid volume 

fraction became comparable to the particle fraction, the wetting fluid encapsulated the particles 

leading to a destruction of the pendular morphology, and the solid-like rheology diminished.  

The corresponding results are best-represented in terms of the wetting fluid to particle 

volume ratio: samples with ϱ of about 0.1 to 0.3 had a roughly pendular structure whereas in 

samples with ϱ exceeding 1, the particles were engulfed by the wetting fluid, and had a diminished 

yield stress. 

We seek to repeat those experiments for two reasons. First, as mentioned in the 

Introduction, preparing samples by direct mixing of the three components sometimes involved 

very small quantities of wetting fluid, with consequent uncertainty in composition. Second, more 

important, even the lowest wetting fluid loading that could be examined previously already showed 

a measurable yield stress. Thus we were not able to capture the transition between liquid and solid 

as fluid loading is increased. For instance, we could not establish whether there is a minimum 

amount of wetting fluid needed for developing a yield stress, or equivalently, if the yield stress 

appears gradually or abruptly as wetting fluid content changes. As mentioned above, one 

advantage of the cold mixing approach is that since mixing is performed when the PEO droplets 

are frozen, low wetting fluid loadings can be realized by sequential dilution. Accordingly, we 

examined the rheology of 20 vol % silica suspensions with PEO loadings varying from ϕPEO =
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0.08% 𝑡𝑜 6.4%. These results are shown in Figure 5. The numbers in the legend correspond to the 

value of ϱ, but since the particle loading is fixed at 20 vol %, the  values are simply 0.2* ϱ. 

In the absence of PEO, the particles-in-PIB suspension show strain sweep behavior similar 

to that of the unmelted sample in Figure 4: liquid-like rheology with  over the entire strain 

range. Addition of wetting fluid at a loading  (which corresponds to ϱ = 0.004) 

has only a slight effect on the moduli. The next higher wetting fluid loading, corresponding to 

 already shows all the features of the pendular network that were evident in Figure 4: 

much higher moduli, 𝐺′ > 𝐺" at low frequencies, and then a moduli crossover at some strain. 

Further increase in wetting fluid loading does not change the behavior qualitatively but the 

quantitatively, the moduli increase considerably up to , followed by a modest decrease. 

In steady shear (Figure 5b), the effects of PEO are felt even at the lowest PEO loading 

where the low-rate viscosity rises significantly at . Upon further addition of PEO, the 

low-rate data show a clear yield stress, whereas there is only a modest change in stress at the 

highest shear rates accessible, and the stress vs strain rate data approach a slope of 1. These results 

suggest that significant solid-like behavior appears between 0.08% and 0.32% corresponding to 

 and . It is difficult to reliably measure the value of yield stress at very low wetting 

fluid loadings within the maximum steady state shear maintaining time of 1 minute. Hence it is 

difficult to establish a percolation threshold above which a space-spanning network exists. Indeed 

there does not appear to be any wetting fluid loading at which the yield stress increases abruptly.  
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To quantify the yield stress in a consistent fashion across all samples, the data of Figure 5b 

were fitted to the modified Herschel Bulkley equation  , where 𝜎𝑦  

represent the yield stress and  is a constant value measured from pure suspension at highest rate 

accessible. 49 The first two terms describe the stress-rate behavior at low rate regime and the third 

term mainly describe the higher rate regime. The solid lines in Figure 5b show the fits, and the 

corresponding values of the three fitting parameters  and  are given in Table 1. The fitted 

yield stress (Figure 8a) increases almost linearly at low  values, followed by a decrease in 

yield stress when  exceeds 0.16 (i.e.  exceeds  %). It must be noted that the yield stress 

obtained at the lowest  value may not be entirely accurate since those stress vs rate data do not 

show a clear plateau at low rates. Furthermore, the lowest 2-3 points in Figure 5b may not have 

reached steady shear conditions due to the low shear strain corresponding to the 1 minute shearing 

time. It is useful to compare the results against those obtained previously5. The first comparison is 

against the yield stress measured at same composition, but prepared by the previous mixing method 

in which the PEO drops were molten during mixing. That case gave a somewhat higher yield stress 

(green triangle).  The second is a series of ternary mixtures at 10 vol % particles, but spanning 

roughly the same range of  values. The corresponding yield stresses (shown by the red squares 

in Figure 8a) are qualitatively similar, and in particular, at both 10 vol % and 20 vol % particles, 

samples approximately show the  at low wetting fluid loadings and then a 

maximum yield stress when  is on the order of 0.1. 
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Table 1. Summary of fitting parameters used in Modified Herschel-Bulkley equation: 

 for various ϱ values. 

 k 

[SI units] 

n 
 𝜎𝑦 [Pa] 

0.004 11.1 0.552 6.70 

0.016 20.2 0.448 27.3 

0.04 64.2 0.443 55.1 

0.16 78.5 0.485 220.7 

0.25 85.7 0.478 169.0 

0.32 72.6 0.552 134.3 

 

 

 

 

Figure 5. (a) LAOS results for ternary mixtures at fixed particle loading (20 vol %) and various PEO loadings. 

The ϱ values are listed in the legend. Filled symbols with solid lines represent the storage modulus and open 

symbols with dashed lines represent the loss modulus; (b) Stress versus shear rate curves. Continuous lines 

represent the best fit for each composition using the modified Herschel-Bulkley equation. The inset shows 

dimensionless plot for the same data. 

 

ϱ 
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Finally, we’d previously suggested a two-parameter scaling of the flow curve. Specifically 

we proposed scaling the steady shear data as follows: (1) normalize the shear stress by the yield 

stress , (2) the viscosity by the limiting high shear rate viscosity  ( ) for pure 

suspension at high shear rates, and (3) as a consequence, normalize the shear rate by the 

characteristic rate . This scaling is suggested by drawing an analogy between suspensions 

in a pendular state and suspensions with attractive interactions between particles5, 50. At 

sufficiently low shear rates viscous forces are negligible, and hence the stress (which approaches 

the yield stress) embodies the attractive forces between particles. At sufficiently high rates viscous 

forces dominate, and hence the stress must simply represent the hard-sphere type contribution of 

the particles. In this physical picture, just two parameters – the yield stress that represents 

interparticle attractions, and the high-shear rate viscosity that represents viscous interactions 

between particles – suffice to scale all the steady shear behavior. Here we test whether the scaling 

applies as the PEO loading (rather than the particle loading) is varied. Since all the samples of 

Figure 7 have the same particle loading (20 vol % ), they must necessarily have the same value of 

, and indeed we remarked above that the high-shear rate stress is only weakly sensitive to 

wetting fluid loading. Thus the only “shift” permissible is to normalize the stress using the yield 

stress. Figure 6b shows the results. With no further adjustable parameters (since  was already 

determined in Figure 6a) a reasonable superposition of the various flow curves is obtained. The 

same scaling is shown in the form of a normalized stress vs normalized rate graph as an inset in 

Figure 7b. This confirms the validity of treating the flow curve of pendular suspensions as being 

an “interpolation” between a low rate regime dominated by capillary attractions, and a high rate 
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regime dominated by hard sphere suspension hydrodynamics. We must reiterate that at 

, the flow curve is only weakly non-Newtonian (Figure 7b) and therefore the corresponding value 

of yield stress is susceptible to some error.  

 

 

 

    

Figure 6. (a) Yield stresses corresponding to Fig. 3b compared with previous results. (b) Viscosity versus 

normalized shear rate curves for various  values. 

 

 

 

2.4.3 Dependence of flow conditions on microstructure  

As explained in the Introduction, since such ternary blends are far from equilibrium, their 

microstructure can depend significantly on their deformation history. Above we already mentioned 

that adding the PEO after the particles led to formation of numerous capillary aggregates, whereas 

pre-dispersing the PEO before adding the particles gave a pendular structure with an almost 

complete absence of capillary aggregates. That same article4 reported that different mixing 

approaches gave as much as a three-fold difference in yield stress. At least some of the difference 
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was attributable to formation of capillary aggregates which, being very compact, do not contribute 

much to the modulus. Some of the difference might also reflect more subtle differences in 

microstructure such as the number of pendular bridges per unit volume or average number of 

bridges per particle. Regardless, since the microstructure depends on mixing conditions, it is not 

surprising that the rheology does too. The cold mixing approach now provides a more consistent 

method of preparing samples across a range of compositions, and thus permits the effect of 

deformation history on rheology to be examined. We are chiefly concerned with three questions, 

all of which arise from the physical picture of particles held together by pendular menisci. The 

first concerns strain rate effects: we anticipate that capillary menisci are ruptured at high stress 

(indeed this is equivalent to regarding  as being independent of capillary attractions between 

particles as discussed in Chapter 2.4.2). Does this rupture also lead to softening, i.e. to a decrease 

in modulus? Indeed Koos and Willenbacher51 measured the linear viscoelastic moduli after a high 

rate shearing and noted a gradual increase with time, suggesting some structural breakdown due 

to high rate shear, and subsequent recovery.  The second concerns strain effects: we anticipate that 

capillary menisci rupture when deformed sufficiently. Does such large strain-induced meniscus 

rupture lead to softening as well? The third concerns elasticity (in the sense of recoverable 

deformation): since individual capillary menisci can be stretched (few ten percent as discussed in 

Section IV), can pendular networks show few ten percent recoverable strain after cessation of 

shear? 

We will first illustrate the changes in rheology with deformation history with a simple shear 

protocol. A sample of the same composition of Figure 4 (PIB/PEO/silica=76.8/3.2/20) was 

subjected to 1/s shear for 600 strain units, followed by an amplitude sweep at 1 rad/s up to a strain 

of 300%. Immediately following this, a second amplitude sweep was conducted, but with 
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decreasing strain. A sharp decrease in low-amplitude modulus is evident (Figure 7a), presumably 

indicating some breakdown in the structure of the particulate network. This simple experiment 

shows clearly that shear history can – even within a single sample – induce moduli changes of as 

much as a factor of five. Yet this figure does not unambiguously identify whether the softening is 

a rate effect or a strain effect. In an oscillatory experiment at a strain amplitude  and frequency 

, the peak strain rate is . Thus, an amplitude sweep at fixed frequency exposes samples to 

increasing strains as well as increasing rates.  

To test the rate dependence more directly, we examined the LAOS behavior of the same 

composition of Figure 4 (PIB/PEO/silica =76.8/3.2/20) after shearing at three different rates, 0.1, 

1, and 10/s. These rates span across the highest rate in the oscillatory experiment (3/s 

corresponding to 300% strain at 1 rad/s). Each shear step was conducted for 10 minutes, followed 

by an amplitude sweep at 1 rad/s. The results (Figure 7b) unambiguously show a significant 

softening: the low strain modulus decreases by almost three-fold after shearing the sample at 10/s. 

These changes in rheology were found to be completely reversible: upon shearing at 1/s for 10 

minutes, the LAOS data overlaid almost exactly onto the 1/s results shown in Figure 9b. To our 

knowledge, these are the first data to show that the mechanical properties of suspensions with 

capillary interactions can be tuned reversibly by simply varying the shear rate imposed on the 

suspension. These experiments were performed for samples with various PEO fractions (all at  

20vol % particles), and in all cases, LAOS data were collected after three different preshear rates. 

The dependence of the corresponding linear viscoelastic modulus on ϱ after the three different 

rates is shown in Figure 36. All samples behave similarly (modulus reduces as preshear rate 

increases), but the decrease in modulus is more pronounced at low ϱ values. We speculate that this 
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is because the capillary network becomes increasing tenuous at low ϱ  values, and can be 

destroyed readily by shearing. Incidentally it is interesting to note that the trend of Figure 36 – that 

the modulus becomes more dependent on rate at low ϱ  - cannot continue to arbitrarily low wetting 

fluid loadings. This is because at ϱ = 0, capillary interactions must vanish and the rate dependence 

should disappear (as indeed it does experimentally, not shown).  

 

 

 

 

Figure 7. (a) LAOS results for ternary mixture (PIB/PEO/silica=76.8/3.2/20) where yellow squares indicate 

increasing strain and red triangles indicate decreasing strain. (b) LAOS results for ternary mixture after 

shearing at various rates indicated. Filled symbols with solid lines represent the storage modulus and open 

symbols with dashed lines represent the loss modulus. 
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It is also plausible that the capillary network may be broken by strain rather than by strain 

rate.  Specifically, the process of breaking vs remaking a pendular meniscus is hysteretic (see 

Chapter 2.5) and hence we examined whether a modest strain imposed on a network that was 

created under steady shear conditions is itself disruptive. To test the strain dependence independent 

of rate effects, the following shear protocol (illustrated in the upper part of Figure 8) was used. A 

sample with  and  was sheared at  for 600 strain units. Shearing was 

paused, then resumed at the same shear rate for 1 strain unit, and then the oscillatory moduli 

measured. The entire process was repeated but with the latter strain being increased to 3, 60, and 

finally another 600 strain units. The corresponding data are shown in Figure 8, and it is clear that 

while strains of about 1 strain unit do indeed reduce the modulus as compared to much longer 

strains at the same rate, these modulus variations are modest, and much smaller than those in 

Figure 7. These observations suggest that while some menisci may be broken at large shear strain, 

new menisci are simultaneously formed, leading to little or no change in the overall network 

structure. 
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Figure 8. LAOS results for ternary mixture (PIB/PEO/silica=76.8/3.2/20) following the shear protocol 

sketched above. Filled symbols with solid lines represent the storage modulus and open symbols with dashed 

lines represent the loss modulus. 

 

 

 

It is of immediate interest to ask whether such changes in modulus noted in Figure 7 can 

be related to underlying changes in microstructure. Previously we have used scanning electron 

microscopy (SEM) of samples in which the continuous phase was dissolved to qualitatively 

identify the microstructure (e.g. pendular vs capillary aggregates). However that approach is not 

suitable for testing for more subtle changes in network microstructure since the aggregates tend to 

undergo at least some damage when preparing samples for SEM. Here we attempted a different 

approach. Small samples of blends with 20 vol % particles were extracted from the rheometer (from 

near the edge of the parallel plate geometry) after shearing at  and  shearing, and 

placed in a polystyrene dish. These samples were too concentrated to permit any judgement on 
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whether structural breakdown occurred. A large drop of PIB was then placed on each sample in an 

attempt to gently to spread out the aggregates, and hence improve the images. This was 

unsuccessful: neither of the samples could be spread significantly, i.e. after both  and 

, the yield stress of the samples with 20 vol % particles was too high. This experiment was 

then repeated at a much lower particle loading of 3vol %, while maintaining the same PEO/PIB 

ratio ( ). Here the results proved clearer: the sample sheared at higher shear rate spread 

significantly, and discrete clusters can be readily identified by optical microscopy (Figure 9). In 

contrast, the sample sheared at the lower rate did not spread significantly suggesting a larger yield 

stress, presumably due to larger interconnected clusters. Thus we tentatively conclude that high 

rate shearing induces breakdown of capillary menisci, thus reducing the connectivity of the 

network. The shear thinning as noted in Figure 5 (at fixed particle loading) or previously (at fixed 

ϱ)5 may be attributed to this decrease in network connectivity. Confirming this tentative conclusion 

requires in situ visualization52. The present experimental system is ill-suited for in situ 

visualization: the large refractive index mismatch between the particles and the continuous phase 

makes it impossible to image samples with 20 vol % particles. However we conducted experiments 

on an analogous system comprising glass particles, 1,4-polyisoprene as the continuous phase, and 

glycerol as the wetting fluid. Due to a near-perfect index match between the glass and 

polyisoprene, the particles are nearly invisible, and excellent images are obtained at 4.5 vol % 

particles. Those experiments (Figure 38 in the Appendix A) show beyond doubt that meniscus-

bound aggregates do break down at high rates, and moreover, they readily form within a few strain 

units when sheared at low rate. 
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Figure 9. Optical microscope showing ternary mixture (PIB/PEO/silica=96.52/0.48/3) spread on a petri dish: 

(a) after 0.1/s shearing for 10 minutes; (b) after 10/s shearing for 10 minutes. The insets show the same 

sample with lower magnification. 

 

 

 

The third question above – how much strain pendular networks can withstand without 

undergoing irreversible deformation – was addressed by creep-recovery experiments. A sample of 

the same composition as Figure 4 (PIB/PEO/silica=76.8/3.2/20) was subjected to creep at a stress 

of either 100 Pa or 150 Pa. Two stresses were needed to cover both "elastic” and “plastic” regimes 

of deformation (explained in the next paragraph), but note that both these stresses are lower than 



 40 

the yield stress measured in steady shear experiments (Figure 6a  and Table 1) for this same sample. 

The creep was interrupted at a small strain, following which recovery was monitored. This was 

repeated at several different creep times. In between each creep step, the sample was “reset” by 

shearing at 1/s for 600 strain units. These results are shown in Figure 10a.  

The creep process (if not interrupted) comprises a rapid deformation to about 0.6% strain, 

followed by a slow increase in strain, as may be expected at a stress below the yield stress. Once 

interrupted, a portion of the strain recovered rapidly, followed by a slower recovery over several 

seconds. The ultimate recovery obtained from this experiment is shown in Figure 10b. If the 

applied strain is less than roughly 0.6%, almost all the strain can be recovered, i.e. the sample 

behaves elastically. Such elastic behavior is evident when the creep time is sufficiently small at 

100 Pa strain. However for larger strains, the ultimate recovery remains fixed, i.e. deformation in 

excess of ~0.6% is almost purely plastic. These correspond to the longer duration creeps at 100 

Pa, and all the cases at 150 Pa stress. Similar results were obtained at other compositions, and two 

such examples (  and ) are shown in Figure 37 respectively. 
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Figure 10. (a) Creep-recovery test results for ternary mixture (PIB/PEO/silica=76.8/3.2/20) at two stresses 

both below its yield stress. (b) Ultimate recovery strain (𝛄∞) versus strain applied during creep (𝛄). 

 

 

 

Plastic deformation is generally associated with irreversible microstructural changes. On 

the other hand, a glance at LAOS data such as Figure 4 or Figure 7a, shows that the modulus at 

0.6% oscillatory strain is already less than half of its value at small-strain. This suggests that 

reversible strain softening occurs prior to plastic deformation. In order to verify this, one last 

experiment was conducted.  
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Samples were presheared at 1/s for 10 minutes, and then subjected to oscillatory amplitude 

sweep tests where the upper limit of the amplitude was increased in each successive step. For 

instance, in Figure 11, the first amplitude sweep ranged from 0.01% to 0.1% strain, the second 

from 0.01% to 1% strain, etc. It is clear that the modulus vs strain data remain reproducible at least 

up to 1% strain, a strain at which the modulus has reduced to less than half its low strain value. 

This confirms that significant modulus softening can occur reversibly, i.e. prior to irreversible 

decrease in modulus (see also 53 for further comments on this). 

 

 

 

   

Figure 11. LAOS results of ternary mixture (PIB/PEO/silica=76.8/3.2/20) with sequentially increasing upper 

strain limit. Only storage modulus is shown. 

 

 

 

Figure 12 now summarizes various strains that characterize the LAOS rheology: the limit 

of linearity ( ) at which the G’ reduces 10% from the value at the lowest strain accessible, 

the strain  at which the G” shows a maximum, and the strain  at which the G’ and G” 
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cross. Two of these strain measures increase gradually with PEO content, whereas  decreases 

slightly. We note that  disappears at low PEO content since there is no crossover (G’<G” 

throughout the amplitude range). Furthermore, the sample with  shows a weak peak in 

G” and hence the corresponding value of  is less reliable. At least one other article also 

mentions that the limit of linear viscoelasticity in LAOS experiments is only about 0.1%, although 

their crossover strains were larger54. Finally, above we also quantified two other measures of 

yielding: the strain at which irreversible changes in the linear viscoelastic modulus appear, and 

γ∞, the recoverable strain. Both these are on the order of 1%, and both increase slightly with 

wetting fluid content. 

 

 

 

   

Figure 12. Summary of various measures of yield strains:  (blue diamond),  (red square) and  

 (green triangle). Solid line with a slope of 1/3 represents Eq. 4, but shifted down by a factor of 10. 
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2.5 DISCUSSION 

Our microstructural picture of the suspensions in this study is of aggregates of particles held 

together by capillary forces, with the aggregates themselves percolating to form a network. In an 

ideal pendular network, all capillary interactions are strictly pairwise, i.e. each meniscus bridges 

exactly two particles, and there is no coalescence of menisci. The actual aggregates are not strictly 

pendular (indeed with polydisperse systems, multiple particles sharing a meniscus is highly likely). 

Nevertheless, as a first approximation, we will consider the mechanics of pendular networks for 

the idealized case of pendular menisci, monodisperse particles, and monodisperse menisci. With 

these assumptions, a “volume balance” readily yields7: 

 

(2) 

where the value of  is the coordination number representing the average number of 

menisci per particle (  will be adopted below), is radius of the particles. One can therefore 

use Eq. 2 to estimate the mean meniscus volume from the composition of the ternary mixture. This 

meniscus induces an attractive force between the particles given by33: 

 

(3) 

or  

 

(4) 
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where the  are dimensionless variables depend on  and liquid-solid contact angle 

33. For the sample compositions examined here,  larger than  and hence only Eq. 4 is 

needed. In both these above expressions,  is a dimensionless half-separation (i.e.  is the 

separation between the particle surfaces),  is a non-dimensional meniscus volume 

(which can be estimated from Eq. 2), and  is the non-dimensional force. Note that  

approaches 1 at small separations in Eq. 3. Beyond a certain separation, the meniscus ruptures, and 

the force jumps to zero. Previous results 55 show that the dimensionless half-separation for rupture 

is: 

 

(5) 

where the latter equality is obtained from substituting from Eq. 2. The forces calculated 

from Eq. 4 (with Eq. 5 serving as the cut-off distance for meniscus rupture) are plotted in Figure 

13 for a variety of sample compositions. Several comments can be made based on this idealized 

model. 
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Figure 13. Normalized pair-wise capillary bridge attraction force as a function of dimensional separation 

distance for various  values. 

 

 

 

First, it is immediately tempting to ascribe rheological changes to breaking of the pendular 

menisci connecting the particles. For example, it is reasonable to expect that as the pendular 

network is sheared starting from quiescent conditions, irreversible changes appear when the 

particle separation exceeds that given by Eq. 5. This immediately suggests that if the deformation 

is affine, the breakdown strain should be roughly equal to , and hence must scale as . Figure 

12 shows that this scaling is approximately correct for all three measures of breakdown strain, 

although admittedly, the number of data points is small.  
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We emphasize that this prediction presumes that  is independent of wetting fluid loading 

– an assumption that is guaranteed to break down at high  values as menisci coalescence begins.  

Second, the actual value of  predicted from Eq. 5 is far higher than measured using any 

of the measures of breakdown. Specifically, the solid line in Figure 12 is shifted a factor of 10 

lower than predicted by Eq. 5. This overprediction remains regardless of what value of  is 

adopted, or even whether  is independent of  or not (note that  is a coordination number and 

hence only values between 2 and 12 are physically realistic, and hence  cannot be too far from 

4). This may indicate that breakdown of the network involves processes other than (or in addition 

to) meniscus breakdown. One candidate for other processes is simply the rearrangement of 

particles within the cages defined by their nearest neighbors. Indeed past research on attractive 

suspensions suggests that such particle rearrangement can induce permanent structural and 

rheological changes that are in addition to those attributable to interparticle attractions56, 57. 

Another possibility is that breakdown may still involve meniscus rupture, but not homogeneously; 

instead localized deformation may cause rupture of relatively few menisci which experience far 

higher strain than the average. 

Third, a key experimental observation is the rate dependence of the modulus which we 

have attributed to structural breakdown (i.e. rupture of menisci) at high rates. It is useful to define 

a particle-scale capillary number 

 

(6) 
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where  is the interfacial tension,  is the viscosity. The denominator is simply highest 

capillary force possible from Eq. 2.  Thus we expect that when  is on the order of 1, almost all 

interparticle capillary bonds are broken and the morphology consists of discrete particles wetted 

by the PEO, possibly coexisting with PEO drops that are no bigger than the particles. For  

on the other hand, large meniscus-bound structures can survive. Previously58 we have reported the 

interfacial tension, , between PEO and PIB. The present polymers have somewhat 

different molecular weights, but in any case,  on the order of  can be expected. Then 

with  and , we expect  to become on the order of 1 when  is on the 

order of 6000 , a rate far exceeding the highest rate applied in our experiments. This simple 

dimensional analysis suggests that it is extremely unlikely that the shearing in our experiments is 

capable of breaking down the microstructure to the level of discrete particles. Thus all the structural 

breakdown reported here is likely the rupture of menisci connecting multiparticle clusters, and 

small pendular clusters likely survive to the highest accessible rates. 

Fourth, although we have previously drawn an analogy between such non-colloidal 

pendular suspensions and attractive colloidal suspensions5, Figure 13 illustrates some noteworthy 

features specific to the pendular suspensions.  For instance, in Figure 13, the pairwise attraction 

extends to roughly 20% of the particle radius, whereas 5% of particle radius is more typical in 

attractive colloidal suspensions and gels (indeed some gels can be regarded as sticky hard spheres 

with negligible range of attraction59-63). Moreover, the pendular attraction is hysteretic: while an 

interparticle separation of ~20% of the particle diameter is needed to break the meniscus, the 
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particles must be brought nearly into contact to restore the attraction. This may be one reason why 

a strain on the order of 1 induces modest breakdown of the sample (as judged by the slight modulus 

decrease in Figure 8), which may be restored at higher strain.  Indeed at low particle loading, such 

hysteresis may become increasingly important: reforming a meniscus requires the particles to 

collide with each other and thus we anticipate that once broken down after high-rate shearing, long 

shearing at lower rates may be needed to restore capillary menisci between particles. Lastly, the 

interparticle repulsion, which corresponds to contact between the particle surfaces, is extremely 

short range. Thus, for all practical purposes, the force-displacement curve for the particles has a 

positive slope at all separations (i.e. greatest attractive force is at zero separation). This suggests 

that a chain of pendular menisci cannot deform homogeneously; instead localized deformation and 

rupture of menisci is expected, analogous to pulling on a chain of magnets. Certainly a three-

dimensional network can deform in more complex ways than a single chain, but nevertheless non-

affine deformation may appear even at low strains. In fact we have conducted one preliminary 

experiment, albeit using the fluids and particles of Figure 38 (different from those used in the rest 

of this paper). This experiment is described Supplementary Figure 39 which shows that even at 

300% strain, there is little or no deformation evident on the scale of single particles. Instead 

breakdown involves rotational motion of roughly-rigid segments of the pendular network. 

Unpublished results from Bossler, F., and Koos, E. (personal communication) support localized 

rupture as well.  

Finally, a key result of this paper is that the rheology depends on the shearing conditions 

prior to the measurements. This immediately points to the difficulty of quantifying rheological 

properties as a function of composition. For instance, in a previous article, we examined pendular 

suspensions along a specific path in the ternary composition diagram where wetting fluid was 16% 
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of the particle loading. Along that path, we reported that the low-frequency plateau modulus as 

well as yield stress followed power laws,  and . In light of the results of this 

paper, if the shear history of the suspensions were changed, those power laws exponents may 

change or indeed the behavior may not be power law at all. 

2.6 CONCLUSION 

In summary, this article makes two chief contributions. The first, an operational issue, is to develop 

a new method of preparing pendular networks. The key merit of this method is to mix the particles 

and the drops together under conditions under which the drops are frozen. Thus the drop size 

distribution, contact angle, the stress under which drops collide with particles and wet them etc. 

can all be kept consistent across a wide range of sample compositions. Obviously this is only 

possible when the drop fluid can be frozen by crystallization or vitrification. The second is to 

elucidate fundamentals of pendular network rheology. In this context, the chief observations of 

this article are (1) pendular networks undergo a significant loss of modulus upon shearing at high 

rates, likely due to rupture of pendular menisci joining the particles, (2) at least for the 

compositions examined, the changes in rheology can be reversed, i.e. sufficiently long shearing 

can reset flow-induced rheological changes, (3) pendular networks can show elastic recoil strains 

on the order of 1%, and yield at larger strains, and (4) they also undergo significant reversible 

decrease of modulus prior to yield.  

Overall the observations are consistent with the physical picture that a pendular network 

yields by rupture of the menisci joining particles. Nevertheless, the yield strains are far smaller 
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than may be expected by simple considerations of how much two particles need to separate before 

the meniscus between them breaks. We speculate that this is because yielding and flow involve 

rupture of a relatively few menisci connecting large particle aggregates.  
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3.0  THE EFFECT OF PARTICLE WETTABILITY ON YIELDING  

3.1 Chapter Preface 

Materials contained in this chapter were submitted as a research article titled “The effect of particle 

wettability on the of rheology particulate suspensions with capillary force” in Colloid and surface 

A;  

List of Authors: Junyi Yang, Nicole Heinichen, and Sachin S. Velankar 

 

3.2 INTRODUCTION 

Capillary forces can sharply change the flow behavior of a particulate system2, 7, 13, 14, 27, 64-67. The 

most familiar example is of sand which can be poured easily when dry, but develops sufficient 

yield stress to support sand castles when wet. It has been long recognized that this change in 

rheology is attributable to the presence of small menisci between the particles which bind together 

the particles and induce a cohesive yield stress9, 26. A granular system such as sand typically has a 

high particle fraction typically around 60 vol%, but the same effect can be seen at much lower 

particle fractions in suspensions5, 12, 13, 68, 69. Specifically, if one starts with particles suspended in 

one fluid and adds a small quantity of a second fluid, the suspension can change from a free-
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flowing liquid into a high viscosity paste5, 12, 13, 70. The central question motivating this paper is: 

how does the rheology of such a capillary-bound particulate system change as the particles become 

less wetting towards the minority fluid? Before proceeding, we clarify the simplified terminology 

in the rest of this paper: for the conciseness, the term the term “particle wetting” will be used rather 

than “particle wetting by the minority fluid”. Thus a description such as “silanization makes 

particles less wettable” means “silanization makes particles less wettable by the minority fluid”. 

Similarly “unmodified particles are fully-wetted” means “unmodified particles are fully-wetted by 

the minority fluid”. 

The simplest microscopic picture of such a capillary-bound particulate system (Figure 14a) 

involves a single pendular meniscus binding together two particles. Such pair-wise adhesion can 

bind particles together into large aggregates, which is generally denoted as the pendular state of 

the particulate system. At higher content of the minority fluid, multiple particles may become 

bound together by single menisci (Figure 14b), which has been called the funicular state71. Both 

these states presume that the minority fluid preferentially wets the particles, i.e. the contact angle 

(measured through the minority phase) is small, and indeed Figure 14a is drawn accordingly. This 

small contact angle is what guarantees that the pendular meniscus has a negative curvature (i.e. the 

meniscus has a negative Laplace pressure), and hence induces an adhesive force between particles. 

The situation when the minority fluid is less wetting towards the particles, i.e. the contact angle is 

near or above 90 , is more complex. In this case, a pairwise meniscus is unfavorable (its bulging 

shape, inset to Figure 14c, corresponds to a positive Laplace pressure) and induces a repulsive 

force between the particles at small interparticle separations72. Since the meniscus is unfavorable, 

when the minority fluid is mixed into the particulate system, it is unlikely to adopt the 

configuration of Figure 14c at all. Accordingly one would expect that if the contact angle of the 
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minority fluid is large, there should be little or no change in rheological properties of the particulate 

system. Remarkably however, Koos and Willenbacher reported that for several suspensions, a 

significant yield stress appeared due to addition of minority fluid even though the particles were 

poorly wetted13. Those experiments suggested that even a minority fluid that does not favor the 

particles can induce interparticle attraction and particle aggregation. Later calculations pointed to 

one possible reason: even though pair-wise menisci were not energetically favorable, multi-

particle menisci may still be favorable51. Thus large-scale percolating networks could form using 

such multi-particle aggregates (dubbed capillary state clusters, Figure 14c) as their building blocks. 

The physical situation of Figure 14c bears a strong resemblance to the case of droplet-bridging by 

particles illustrated in Figure 14d. In both cases, one has neighboring “blobs” of the minority fluid 

that, because they share particles, can build large aggregates and endow the mixture with a yield 

stress. The quantitative difference is that the individual blobs of the minority fluid are much bigger 

than the particles in Figure 14d  (hence may be called drops), whereas the blobs and particles have 

comparable size in the capillary clusters of Figure 14c. 

In summary, addition of a minority liquid is able to create a particulate network due to 

capillary forces regardless of whether the minority fluid makes a small or a large contact angle on 

the particle surface. But the microstructure of this network is expected to change significantly with 

particle wettability, and one may therefore expect quantitative differences in the rheology as well. 

As yet however, there is no quantitative study of how particle wettability affects the rheology of 

such suspensions. The many examples given in original article by Koos and Willenbacher all used 

various particles made of different materials, sizes, and shapes which cannot be compared with 

one another13. More recently Bossler and Koos have reported an excellent confocal microscopy 

study of how contact angle affects the microstructure of the meniscus-bound particulate network52. 
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The confocal microscopy in that paper supports the physical picture that a minority fluid with good 

wettability towards the particles forms pairwise pendular menisci between particles, whereas a 

minority fluid with poor wettability towards the particles forms multiparticle capillary clusters. 

However the rheological results reported in that paper used highly porous particles which tended 

to absorb the minority fluid. As a result, the rheology (as judged by the modulus of the capillary-

bound suspension) changed non-monotonically as contact angle increased. The reason for this 

seems to be that the porous particles with good wettability absorbed the minority fluid altogether. 

Thus there was no minority fluid available to form pendular menisci, and the corresponding 

suspensions had an unexpectedly low modulus.  

To our knowledge, there is no well-controlled study answering the question in the first 

paragraph of this paper: how does rheology change with particle wettability if other factors 

(particle sizes, system composition) are kept fixed? The present paper addresses this question for 

one specific composition “trajectory” along which the ratio of the minority fluid to the particles is 

held at a fixed value of 0.16. We have frequently represented compositions on a ternary 

composition diagram5, 73-76, and the compositional trajectory for the set of samples studied in this 

paper are shown in Figure 40. 

All the experiments in this paper are conducted using two molten polymers as the two fluid 

phases: polyisobutylene (PIB) as the continuous phase, and polyethylene oxide (PEO) as the 

minority phase. The particles are spherical, non-porous, and polydisperse silica. In past 

publications4-7, 73-76, we have used this same ternary system for a host of experiments on 

microstructure and rheology, and it offers some specific advantages including: (1) the ability to 

quench the morphology by cooling, (2) the ability to selectively remove the PIB for scanning 

electron microscopic imaging, (3) the lack of any significant charge effects or trace surfactant 
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effects, which are often complications in water-based mixtures, and (4) lack of volatility, 

permitting long rheometric experiments without evaporation. For this specific research, the key 

advantage is that the particle wettability towards the minority fluid (PEO) can be modified while 

keeping all other factors constant. Specifically, the as-received particles are fully wetted by the 

PEO, whereas two different silane modifications are conducted to make them increasingly PEO-

phobic.  

This paper is organized as follows. Chapter 3.3 describes the experimental methods. 

Section 3.3.1 verifies the change in wettability of the particles due to silane modification. Chapter 

3.4 describes the main results of changes in rheology with particle wettability. Chapter 3.5 

discusses the results, and Chapter 3.6 is a summary and conclusion.  
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Figure 14.Structural sketch of different configurations of ternary blends containing silica particles with 

various wettability: a) pendular state; b) funicular state; c) capillary state cluster; d) particle-bridged 

droplets.  
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3.3 EXPERIMENTAL SECTION 

3.3.1 Materials and hydrophobic modification 

The two fluids used here are identical to those used in our previous research1, 4-6, 73, 74, 76: 

polyisobutylene (PIB, ρ=0.908 g/mL, MW = 2200 g/mol), and polyethylene oxide (PEO ρ=1.1 

g/mL, MW = 20000 g/mol). The silica particles (mean diameter 2 μm  and the size distribution 

is shown in Figure 41) were the same grade as used previously. Their surface was modified using 

dichlorodimethylsilane (DCDMS) and octadecyltricholorosilane (OTS). DCDMS modification 

was done through a gas phase silane deposition method75, whereas OTS in a liquid phase 

deposition using toluene solvent. Both are described in detail in the electronic supplemental 

information as well as in our previous publication75.  

We acknowledge that the polydispersity may impact the behavior as compared to 

monodisperse particles at comparable fraction. One effect of polydispersity is that capillary forces 

increase with decreasing particle size. Hence when compared at the same composition, yield stress 

increases with decreasing particle size77, 78. Therefore – as long as the particles can be dispersed 

thoroughly – the small particles of a polydisperse sample may be expected to contribute more to 

the stiffness and strength of the suspension. Second, the polydisperse particles may be expected to 

form more compact clusters and perhaps allow clusters to become more stable, e.g. as contact 

angle changes.  
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3.3.2 Surface preparation 

Samples for validating changes in wettability due to silane modification were prepared in a custom 

ball mixer as previously73, by mixing the three components together at 80  when both polymers 

were molten. These samples were examined by SEM using ZEISS Sigma500 VP microscope after 

solidifying the PEO by cooling and removal of PIB with octane. This procedure only refers to 

Figure 15 (PIB:PEO:silica= 70:20:10).  

The samples to be tested rheologically were all prepared by the “cold mixing” method 

described in Yang et al76. A PEO-in-PIB dispersion was first prepared under molten conditions 

and cooled to freeze the PEO drops. Particles were then mixed while still at room temperature at 

which the PEO drops are still solidified. The resulting physical mixture of solidified PEO drops 

and particles was then loaded into rheometer, heated to melt the drops, and sheared to allow 

capillary forces to bond together the particles. Details of mixing procedure are given in ESI. All 

the samples used for rheological experiments (i.e. except for Figure 15) used a PEO:particle ratio 

of 0.16 (Figure 40). 

 

 

 

 

Figure 15.Effect of particle addition on morphology: (a) unmodified silica; (b) DCDMS-modified silica; (c) 

OTS-modified silica. All at composition PIB/PEO/silica= 70/20/10. Insets to (b) and (c) show magnified images 

of the appearance of particles on the surface of the PEO drops. 



 60 

3.3.3 Rheological Measurements 

An Anton Paar MCR 302 rheometer was used with 25 mm diameter profiled parallel plates to 

prevent wall slip. All samples were pre-heated and tested at 80°C to ensure that the PEO remained 

fully molten within a gap of 1 mm.  

Both oscillatory and continuous shear tests were run. For each sample, the experiment 

began with a pre-shear test that ran for 10 minutes at a shear rate of 1 s-1. This was followed by a 

large amplitude oscillatory shear test with strains ranging from 0.005% to 300%, at a constant 

frequency of 1 rad/s. Subsequent to the LAOS tests, continuous shear flow tests were conducted 

in the shear rate range of 0.01 s-1 to 100 s-1 with a maximum shearing time of 1 minute for each 

data point. 

3.4 RESULTS 

3.4.1 Validating the changes in wettability 

We first verify that the DCDMS and OTS do actually change the wettability of the silica towards 

PEO and PIB. For this, blends were prepared with the PIB/PEO/particle volume fraction of 

70/20/10 as is indicated by a red square in Figure 40. At this composition, the 70 vol% PIB 

becomes the continuous phase, whereas the relatively dilute PEO and silica become the dispersed 

phases. Thus, when the PIB phase is removed by dissolving into heptane, the PEO and particles 

can together be deposited on a filter paper and examined in SEM. Figure 15 shows the difference 

in microstructure of the three different particle types.  
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In the case of unmodified silica particles, SEM shows that the PEO is in the form of large 

spheres, with no particles visible. This exact structure has been noted repeatedly in our previous 

articles74, 75 and suggests that the particles are present inside the PEO drops, testifying to their full 

wettability by PEO. Indeed previously we had verified by transmission electron microscopy that 

the PEO/PIB interface makes a near-zero contact angle on the surface of unmodified silica 

particle5.  

At the same composition, the blend with the DCDMS-modified particles (Figure 15b) has 

a sharply different morphology comprising an interfacially-jammed PEO dispersed phase that is 

highly irregular (i.e. non-spherical). A similar morphology was noted by Yang et al for the same 

system75. The interfacial adsorption (inset to Figure 15b) confirms that these particles are partially-

wetted by PEO and PIB. The formation of such irregular shaped silica coated PEO droplets also 

indicates that particles are close to neutrally wetting, rather than having a contact angle far from 

90°. Moreover, high magnification images suggest that the contact angle of the PEO/PIB interface 

at the DCDMS-silica surface is not too far from 90°. 

A blend with the same composition, but with OTS-modified silica particles shows a further 

difference in structure. The particles can still adsorb on the surface of the PEO drops, but heavily 

protrude out (inset to Figure 15c). Indeed the largest silica particles seem to be completely 

unattached to the PEO. Previously we have also noted bridging of PEO drops by the OTS-modified 

silica particles40, 75. These images suggest that the OTS-modified silica is has a strong preferential 

wetting by PIB. 

In summary, the particle silanization appears to be successful with the net result that the 

native silicas are almost completely PEO-philic, the DCDMS-silicas are roughly equally wetting 

towards PEO and PIB, and the OTS strongly prefer PIB.  
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Having verified the differences in particle wettability, we now turn to the effect of this 

wettability on the rheology of PIB/PEO/particle suspensions. 

3.4.2 Effect of particle wettability on rheology 

We will first examine the strain sweep behavior and the steady shear behavior at a single particle 

loading, and then summarize how particle loading affects the main rheological parameters. The 

primary goal of this article is to examine how particle wettability affects the capillary-induced 

changes in rheology of a suspension. Accordingly, the rheology of the suspensions in the absence 

of capillary forces (i.e. the silica-PIB suspension) is not the focus here. Nevertheless, below we 

will include a very brief discussion of the silica-in-PIB suspension only to illustrate the major 

changes induced by capillarity when PEO is added. 

Figure 16 compares the LAOS behavior and Figure 17 the steady shear behavior of four 

blends, all at 20 vol% particles. In the absence of PEO, the silica-in-PIB suspension (made with 

unmodified silica particles) shows liquid-like rheology with  in LAOS and stress nearly 

proportional to rate in steady shear. Upon addition of PEO there is a sharp qualitative change in 

the rheology. In LAOS, both moduli increase sharply, and  at low strain. With increasing 

oscillatory strain, there is a crossover which may be regarded as a yield point. In steady shear, 

Figure 17, an apparent yield stress appears at low rates. All of these features of the solid-like 

rheology were discussed extensively in previous articles5, 76. The focus of this paper is the effect 

of particle wettability. Figure 16 and Figure 17 show that decreasing PEO-philicity reduces the 

solid-like behavior, as evidenced by the decrease in both moduli, and the decrease in yield stress. 

These results suggest that addition of PEO leads to the formation of particulate networks regardless 
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of whether the particles are preferentially-wetted by PEO or by PIB; indeed we will confirm this 

microstructure in the next section). Figure 17 also shows that at the highest shear rates, the stress 

appears to be proportional to rate suggesting an apparent Newtonian behavior at high rate. 

Previously we had interpreted this in terms of a partial breakdown of the particulate network at 

high shear rate5, 76. 

Incidentally, Figure 17 shows the odd feature that at the highest rates, the sample with 

OTS-modified silica has an anomalously low viscosity. We have confirmed this results in multiple 

measurements. This is puzzling since at high shear rates, when viscous forces dominate over 

capillary forces, one should expect the viscosity to be similar for all samples with the same particle 

loading as seen previously5. We have no explanation for this odd observation.  

Data such as Figure 16 and Figure 17 were gathered across a range of particle loadings, all 

while keeping the ratio of PEO to the particles fixed at 0.16. Examples of the raw data at two other 

compositions (10% particles and 30% particles) are shown in Figure 43 (LAOS) and Figure 44 

(steady shear). Not surprisingly, the solid-like rheology becomes less pronounced with decreasing 

particle loading. Specifically, upon decreasing particle loading, both moduli reduce, but the storage 

modulus reduces much more than the loss modulus. Accordingly at low particle loadings, 

. Moreover in steady shear, instead of a clear plateau in stress at low rates, the stress seems to drop 

monotonically (albeit still in a non-Newtonian fashion). These trends with particle loading were 

already explored for the fully-wetted unmodified silicas; the chief contribution of this paper to 

show that the same qualitative trends apply as the particles become less wetting. Further 

quantification of these data will be presented in the following section.  
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Figure 16. Oscillatory strain sweep results for ternary blends containing different silica particles at same 

composition (PIB/PEO/silica=76.8/3.2/20). Filled symbols show storage modulus, open symbols show loss 

modulus. 
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Figure 17. Steady state flow behavior for three ternary blends made consisting different silica particles but at 

same composition (PIB/PEO/silica=76.8/3.2/20), and binary PEO-free blend at (76.8/0/23.2). The solid lines 

show the fitting curves for each blend using modified Herschel-Bulkley equation. 

 

 

 

3.5 DISCUSSION 

As mentioned in the introduction, as the wettability of the particles reduces, we anticipate a weaker 

capillary attraction (or even a repulsion) between particles. Thus one should expect the solid-like 

properties to diminish as wettability of the particles reduces. Figure 16 and Figure 17 strongly 

support this expectation.  
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We extract two parameters from the experimental results: the plateau value of storage 

modulus at small strain amplitude ( ) and the yield stress ( ). The plateau  is obtained by 

averaging the storage modulus values in the linear regime at small amplitude. The corresponding 

values of  are shown in Figure 18a. Yield stresses are estimated by using the following modified 

Herschel-Bulkley equation: 𝜎 = 𝜎𝑦 + 𝑘 ∗ �̇�𝑛 + 𝜂∞ ∗ �̇� as described previously76. This last term is 

well-able to capture the  behavior at high rates. As in our previous paper76, 

 is not a fitting parameter, but instead represents the viscosity expected for a hard-sphere 

suspension with the same particle loading, and is estimated from the Krieger-Dougherty 

equation79. Excellent fits are obtained (Figure 17) with , k and n as the three fitting parameters, 

and the corresponding values of  are shown in Figure 18b. Values of  were all close to 0.76. 

We acknowledge that at low particle loadings, the stress does not reach a convincing plateau at 

low rates, and hence the  value is not entirely reliable. Visual inspection of the flow curves 

suggests that values above 10 Pa can be considered reliable. 

Figure 18 shows that both  and  parameters increase with particle loading, and their 

absolute values decrease with decreasing wettability of the particles. In all cases, the dependence 

of these quantities on particle loading can be captured by power laws with the exponents noted in 

the figures. Given the noise in the data and the relatively few points, we cannot judge with 

confidence whether the exponents depend on particle wettability or not. As discussed previously76 

we re-emphasize that all such ternary mixtures of two immiscible fluids and particles are always 
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far from thermodynamic equilibrium and hence the values of plateau modulus and of the yield 

stress, as well as the exponents, are expected to change if the sample preparation method or flow 

conditions prior to measurement is changed76.  

 

 

 

 

Figure 18. Linear  storage modulus dependence on particle loading using different particles at various 

particle loadings (b) Yield stress dependence on particle loading using different particles at various particle 

loadings 

 

 

 

We now turn to the microstructural picture. The fact that the ternary mixtures of 

PIB/PEO/silica in Figure 16 all have yield stresses regardless of particle wettability suggests that 

there are capillary-bound particle networks in all three cases. Previously we have firmly 

established the existence of a capillary-bound network for the fully-wetting and the DCDMS-

modified particles, but not for the OTS-modified particles. In fact the OTS-modified particles are 

almost completely non-wettable: Figure 15c shows many of them are not bound to the drops at all. 

This makes it even more critical to verify the microstructure since the particles may be too PEO-
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phobic to form a network at all. To verify its microstructure, SEM was conducted on samples 

extracted from the rheometer at the end of the experiments. The corresponding microstructure of 

the mixtures with OTS-modified particles is shown in Figure 19. Similar images for blend 

containing fully wetting particles and the DCDMS-modified particles are shown in Appendix B 

Figure 42. Figure 19 leaves no doubt that – despite their poor wettability of the OTS-modified 

particles – PEO does bind them together. Three possible reasons for why PEO binds poorly wetting 

particles are discussed as followed.  

First, as discussed in the introduction, when particles are poorly wetted, a pair-wise 

meniscus is expected to be repulsive when the particles are nearly in contact (Figure 14c). Yet, at 

larger separations, the force can be attractive72.  This is because the total capillary force consists 

of a Laplace pressure contribution (proportional to the area wetted by the meniscus), and a 

“perimeter” contribution (proportional to the perimeter length of the meniscus). The Laplace 

pressure contribution is repulsive for non-wetting particles, but the perimeter contribution is 

always attractive. Thus it is possible that some particles sustain a pair-wise attraction while 

maintaining some separation. 

Second, the network might not be built from pairwise contacts but from multiparticle 

clusters13 (Figure 14c). Energy calculations51 of capillary-bound clusters of monodisperse particles 

suggest that multiparticle clusters can be stable even if the meniscus fluid makes a contact angle 

as high as 160°. Clusters were found to become more stable with increasing number of particles – 

although of course a larger-volume meniscus was needed to bind all the particles. We believe that 

polydispersity could make multi-particle clusters even more favorable simply because they can 

pack more efficiently and allow larger number of particles to join a cluster.  
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Yet, a close examination Figure 19 suggests that the explanations stated above are not 

entirely satisfactory. Specifically, there is not a single location in Figure 19 where the PEO phase 

trapped between two or more particles appears to bulge outwards, as may be expected for a multi-

particle cluster with a high contact angle. Nor is there any location where a particle has a small 

convex drop of PEO sticking to it; while PEO does appear to adhere to the particle surfaces, it 

appears as irregular patches, not as a convex lens. The latter feature, in particular, was readily 

evident in the work of Bossler et al52, albeit with an oil/water system and much bigger particles. 

These observations suggest a third possibility: variability in contact angle. Such variability is 

evident in the insets to both Figure 15b and Figure 15c. For instance, in Figure 15c, a few particles 

are much more deeply embedded in the PEO, some protrude nearly completely out, whereas many 

more seem to be completely unattached to the PEO. Some of this variability may be intrinsic, i.e. 

the particles may truly have different contact angles even at equilibrium. A much greater source 

of variability might be contact angle hysteresis which is very common and can have various causes: 

surface roughness, chemical heterogeneities on the surface, or irreversible adsorption of either the 

PEO or PIB on the surface. In fact we have already shown that particles that are pre-dispersed in 

PIB tend to be more PEO-phobic than those pre-dispersed in PEO75. Regardless of cause, if there 

is sufficient variability in contact angle, one may get network formation due to the more-wetting 

particles, with the less-wetting particles not attaching to the network at all. 

Thus we tentatively propose the following picture: As the wettability of the particles 

reduces, there is an increasing reliance on multi-particle clusters (rather than pairwise adhesion) 

to sustain the network. Since the capillary forces corresponding to less-wettable particles are 

weaker, the corresponding network is expected to be less strong and less stiff as well. This is 

essentially the physical picture proposed by Koos51. But further we propose that in most real-world 
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cases, the particles have a distribution of wettabilities, either intrinsically or due to contact angle 

hysteresis. As average wettability of the particles reduces, a certain fraction of particles become 

too non-wetting to participate in the network, whereas the other particles remain within the 

network, either bonded pairwise to other particles or as a part of multi-particle clusters. In 

summary, we propose that the decrease in the solid-like characteristics of the suspension as the 

particle wettability reduces has two causes: the multi-particle clusters inherently give a weaker 

network, and moreover, fewer particles contribute to the network. 

To seek evidence that some particles do not participate in the network at all, a different 

experiment was conducted. A small portion of ternary blend consisting OTS-modified particles 

was deposited on a filter paper. Octane was dripped over this to remove the PIB (which was then 

absorbed into the filter paper). We presume that any particles that are not aggregated by the PEO 

would be washed out and redeposited around the boundary. Indeed the result shows that a small 

cluster of particles bound by PEO, along with numerous particles in the surrounding region 

suggesting that many particles are not bound to the network.   

 

 

 

 

Figure 19. Scanning Electronic microscope images of ternary blend consisting OTS-modified silica particle 

at composition of PIB/PEO/silica = 76.8/3.2/20. Part b is at higher magnification. 
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3.6 SUMMARY AND CONCLUSIONS 

In summary, we have examined three-phase liquid/liquid/solid suspensions comprising particles 

suspended in a majority liquid phase, with a small minority of a second liquid phase added. The 

minority liquid can bind together the particles by capillary forces, giving the suspension strongly 

non-Newtonian rheology with characteristics such as a non-zero modulus or a yield stress. The 

central issue underlying this paper is how the rheology depends on the wettability of the particles 

by the minority fluid. To our knowledge, this is the first study of how suspension rheology changes 

with particle wettability while holding fixed the particle sizes and distributions, the fluids, and 

mixture compositions. Therefore all rheological changes can be attributed unambiguously to 

difference in wettability of the particles. 

Three cases were examined: particles that are almost completely-wetted by the minority 

liquid, nearly equally-wetted by both liquids, and almost completely-wetted by the majority fluid. 

Broadly, the rheological properties are qualitatively similar in all three cases: the capillary forces 

induce solid-like mechanical behavior, with the yield stress and the modulus having similar 

dependence on particle loading. But quantitatively, when ternary mixtures with the same 

composition are compared, the yield stress and modulus reduce as the minority fluid becomes less 

wetting towards the particles. On a microstructural scale, the minority phase is found to induce 

aggregation of particles which is responsible for the change in rheology.  

Apart from the quantitative details of the yield stress and modulus, we conclude with two 

central points. First, these results support the physical picture proposed previously that even a 

minority fluid that is not preferentially-wetting towards the particles can give the suspension solid-

like properties, and that the underlying cause is multi-particle clusters held together by capillary 

forces51. Second, the mean wettability of the particles, as judged by a single contact angle, may be 
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a poor predictor of suspension behavior. In most systems, there is inevitably polydispersity in 

contact angle, either inherently or due to contact angle hysteresis. Therefore a minority fluid that 

appears to be almost completely non-wetting towards most of the particles may still be able to 

create capillary bonds because some fraction of the particles can still be wetted. The latter result 

is of obvious relevance to researchers seeking to exploit capillary forces to develop new materials 

or new methods for materials processing. Specifically, even particles that are expected to be fully 

wetting towards the minority or the majority fluid may nevertheless stabilize Pickering emulsion 

type morphologies because some fraction of particles are partially wetting. Conversely, capillary 

aggregates (which require full wetting of particles by the minority phase) may appear even if the 

particles are expected to be partially wetting towards both phases.  
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4.0  ON THE RHEOLOGY OF TERNARY SYSTEM WITH PARTIALLY 

WETTABLE SILICA PARTICLES 

4.1 Chapter Preface 

Materials contained in this chapter were published as a research article titled “A microstructure-

composition map of a ternary liquid/liquid/particle system with partially-wetting particles” in RSC 

Advances; figures used in this chapter have been reprinted with permission from: Soft Matter, 13 

(2017) 8579-8589. (listed as reference 75 in the bibliography section). Copyright © 2017 The 

Royal Society of Chemistry.  

List of Authors: Junyi Yang, David Roell, Martin Echavarria and Sachin S. Velankar 

4.2 INTRODUCTION 

Ternary mixtures of liquid/fluid/particles show a wide diversity of microstructures, many of which 

have been reviewed in two recent articles 1, 3. Much of the structural diversity is attributable to the 

capillarity-induced interaction between particles: pairwise attraction through capillary bridging 5, 

13, 14, 70, many-body cohesion through capillary clustering 5, interfacial assembly of particles 24, 38, 

39 or particle bridging of drops15, 40. Even a single ternary system can display several different 

morphologies depending on its composition. A recent article by one of us suggested that given a 
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pair of fluids and a particulate species, mixtures of various composition can be conveniently 

classified within a triangular compositional diagram, with different regions of composition space 

corresponding to distinct morphologies1. Previous papers4-6, 73, 74, 76 from our group examined the 

morphology of ternary blends composed of two immiscible polymers (polyethylene oxide, PEO 

and polyisobutylene, PIB), and polydisperse silica particles that have a strong affinity for the PEO. 

Five types of morphology were identified at various compositions of this single system: (1) 

pendular/funicular network, (2) capillary aggregates network, (3) particle-filled drops, (4) co-

continuous and (5) drops-in-suspension. Schematics of these structures, and their location on a 

triangular morphological map were presented previously73, 74 and are reproduced in Figure 45. To 

our knowledge, this morphological map covers widest composition range for any single 

liquid/fluid/particle system in the literature. 

That research4-6, 73, 74, 76 was all conducted with particles that are fully-wetted by one of the 

two phases (PEO). This immediately raises the question of how the morphological map would 

change if the particles were partially-wetted by both phases. Most studies of partial wettability in 

three-phase liquid/liquid/particle systems have been conducted in oil/water/particle mixtures. The 

most heavily-studied example is of Ramsden–Pickering emulsions 2, 36, 80 in which the particles act 

somewhat like surfactants by adsorbing at the liquid–fluid interface, hence inhibiting drop 

coalescence and stabilizing the emulsion. There have also been studies of bridged Pickering 

emulsions, i.e. emulsions in which a monolayer of particles at the interface bridges together two 

droplets and hence assembles the droplets into volume-spanning networks 15, 40, 81. The presence 

of interfacially active particles can also stabilize bicontinuous structures through arrested spinodal 

decomposition of the fluids19, 24, 39. Finally, with partially-wetting particles, particle aggregation 

into space-spanning networks has also been noted in oil/water/particle mixtures52.  
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Going beyond small molecule systems, similar microstructures and phenomena have been 

noted in ternary systems in which the two fluids are molten polymers1, 82. 

Despite the research cited in the previous paragraph, a comprehensive mapping of the 

morphology-composition space has never been conducted for situations where the particles are 

partially-wetted by both liquid phases. Most significantly, the effect of particles at higher loadings 

remain very poorly understood. Virtually all of the research cited in the previous paragraph has 

been conducted at relatively low particle loadings, typically lower than 10 % by volume, often 

lower than 2 %. There are a few articles at particle loadings exceeding 15 vol%13, 15, 52, 73, 74, 83, 84 

but many of these do not cover a wide range of fluid phase fractions. The goal of this paper 

therefore is to construct a comprehensive morphological map that is completely analogous to 

Figure S1, but with the key difference that the particles are partially wetted by both liquid phases.  

It must be emphasized that the only difference between this work and the research leading 

to Figure S1 is that the particles in this work are hydrophobically-modified. Other than that, all the 

remaining materials and methods are identical. Thus, the final morphological maps (Figure 6) in 

this paper, and Figure 45, constitute two different slices of the composition-wettability prism of a 

single experimental system. Conceptually, such morphological classification within a prism 

resembles oil-water- surfactant equilibrium phase diagrams85, 86, except that the current mixtures 

are far from equilibrium. 

We proceed in the following sequence. Chapter 4.3 describes the materials and methods, 

including the method used for hydrophobic modification of particles. Chapter 4.4 first verifies that 

the modified particles are indeed partially-wetted by both fluid phases, and then examines the 

effect of particles on the morphology at various fluid ratios and particle loadings.  
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Chapter 4.5 discusses the results, most importantly, the effect of particles on phase 

inversion and co-continuity, and interfacial jamming.  

4.3 EXPERIMENTAL SECTION 

4.3.1 Materials and sample preparation 

Polyisobutylene (PIB,  polyethyleneoxide (PEO, 

) and silica particles (#SS1205, Industrial 

Powders) constitute the ternary experimental system. The particles are spherical with an average 

diameter of 2  and a monomodal size distribution. The particles were made hydrophobic by 

coating them with dichlorodimethylsilane (DCDMS) as follows: a ~100 mL container, quarter-

filled with particles was tumbled at a few rpm. Nitrogen was bubbled through a DCDMS vial, any 

droplets/mist was removed, and the DCDMS-saturated nitrogen was then passed through the 

tumbling container for 1 hour. SEM (shown later in Figure 20) confirms that DCDMS-modified 

particles, when added to a PEO/PIB blend, are partially-wetted by both phases. This contrasts with 

the unmodified particles that when added to a PEO/PIB blend, are fully-wetted by PEO. 

Similar to our previous research, a temperature-controlled custom ball mixer was used to 

mix all three components. A two-step procedure was followed: PEO and PIB were first blended in 

the desired ratio at 600 RPM at 80  for 2 minutes. Then, particles were added to the mixing cup 

and the three components were blended for an additional 5 minutes. This blending procedure is 
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similar to that used in our previous research except for some minor modifications (higher speed 

during blending, and mechanical redesign of how the mixer is held closed during blending). The 

mixed sample was quenched by cooling to roughly 5  to ensure complete crystallization of the 

PEO.  

Sample stubs were prepared for SEM characterization. As previously, we exploit the fact 

that n-octane can selectively dissolve the PIB while leaving the PEO completely unaffected. For 

samples with PIB as the continuous phase, a small quantity of sample was first transferred into a 

vial filled with n-octane, and held overnight to dissolve the PIB matrix. The residual sediment (a 

composite structure comprising particles and PEO) was then collected, transferred onto a filter 

(Millipore, 0.1 μm pore size) stuck onto a carbon-taped SEM stub, and rinsed with octane several 

times. For samples with PEO as the continuous phase, a small portion of sample was first cooled 

and fractured in liquid nitrogen. The fractured surface was then washed several times with n-octane 

before placing on the stub. All SEM stubs were then left to dry, and coated with an Au/Pd 

sputtering target (Cressington) for 90 seconds at 40mA before sent into the SEM chamber. 

In addition to scanning electron microscopy, a limited amount of optical microscopy was 

also conducted on both, molten and quenched blends. All the information from these images are 

completely consistent with SEM images, but particles are not clearly visible. Hence optical images 

are not discussed here.  
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4.4 RESULTS 

Before turning to particle effects, we will briefly summarize the morphology of the PEO/PIB 

blends in the absence of particles. Consistent with our previous research74, we find that blends of 

PEO and PIB show simple droplet-matrix morphologies, either PEO drops in a PIB continuous 

phase (at high PIB content) or PIB drops in a PEO continuous phase (at high PEO content). Phase 

inversion was reported at about 60% PEO. The drop size was found to increase as phase inversion 

composition was approached from either size. Unlike in many polymer blends, we did not find any 

composition region of co-continuity, nor any fibrillar morphologies near phase inversion. This is 

likely due to the fact that the viscosity of our polymers is two to three orders of magnitude lower 

than of typical molten plastics, and hence any complex microstructure that may be present during 

mixing rapidly breaks into a droplet-matrix structure as soon as mixing ceases.  

The rest of this Chapter 4.4 deals with the effects of particles on the morphology. A total 

of 26 blends were examined, and representative SEM images are shown in Appendix A.3 Figure 

46. Due to the large number of samples, it is difficult to gauge the wide-ranging effects of particles 

all at once. Accordingly, the following sections present the results in a more piece-wise fashion 

proceeding from dilute to concentrated particle loadings.  The experimental results for particle 

effects are organized as follows. In Chapter 4.4.1 we first show that the DCDMS modification is 

successful in changing the particles from being fully-wettable by PEO to being partially-wetted by 

both phases. This is followed by four sections that discuss changes in drop size due to particles 

(Chapter 4.4.2), changes in morphology at low particle loading (Chapter 4.4.3), and changes in 

phase continuity due to higher particle loadings (Chapter 4.4.4) and particle wettability (Chapter 

3.5).  
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4.4.1 Validation of surface modification 

As mentioned in the Introduction, the purpose of this research was to construct a morphological 

map of ternary blends with partially-wettable particles, and compare with the case (Figure 45) of 

fully-wettable particles examined previously5. Thus it is first critical to verify that the DCDMS 

treatment actually modifies the surface wettability towards PEO and PIB. This was tested (Figure 

20) by comparing the morphology of four particle-containing blends, two with 10% DCDMS-

modified silica particles, and two with 10% unmodified silica particles. The blend compositions 

were selected so that in two cases PEO was in a large majority (70%) and hence PEO became the 

continuous phase, whereas in the other two cases, PIB was in a large majority (70%) and hence 

PIB became the continuous phase. Figure 20a&b shows the fracture surface of the two blends with 

PEO as the continuous phase after extraction of the PIB, leaving behind craters. The inner surface 

of the craters appears smooth for the sample containing unmodified particles (Figure 20a). In 

contrast, in Figure 20b, the crater surfaces are covered with DCDMS-modified particles. Figure 

20c&d show the two blends with PIB as the continuous phase. In this case, upon extraction of the 

PIB, the dispersed phase (comprising the PEO and silica) is recovered for imaging. The dispersed 

phase of the blend with the unmodified particles (Figure 20c) appears smooth indicating that the 

particles are inside the PEO drops. In contrast, the dispersed phase of the blend with the DCDMS-

modified particles is heavily covered with particles suggesting that the particles are partially-

wetted by PEO and PIB. Based on these images, the DCDMS surface modification process is 

deemed to be successful in creating partially-wettable particles, and therefore suitable for 

constructing a morphology-composition map for a ternary liquid/liquid/particle mixture with 

partially-wettable particles.  
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The images also allow some judgement of contact angles of the DCDMS-coated silica. Due 

to the polydispersity of the particles and also because the PEO/PIB interface is not flat (indeed not 

even very smooth), it is difficult to judge a contact angle quantitatively. Nevertheless, judging by 

the visual appearance of the particles (and in particular, how far the particles protrude out of the 

PEO phase), the particles appear to be at a near 90  contact angle in Figure 20d. In Figure 20b 

however, the particles protrude less out of the PEO phase suggesting a contact angle of less than 

90  as measured through the PEO phase. This comparison of Figure 20b vs d suggests some level 

of contact angle hysteresis, which may be attributable to the following reason: The blends are 

prepared by first blending the PEO and PIB in the appropriate proportions, and then adding 

particles. Thus the particles first encounter (and hence are wetted by) that phase which is 

continuous prior to particle addition. Accordingly, particles encounter PIB first for Figure 20d, 

and PEO first for Figure 20b. Evidently this initially-wetting phase affects the final contact angle. 

Similar contact angle hysteresis can be found in small molecule systems87. Furthermore, Figure 

20d results in a near-symmetric wetting, and Figure 20b results in a preferential wetting by PEO. 

We never observe preferential wetting by PIB, suggesting that the particles are somewhat PEO-

philic, and not as neutrally-wetting.  

Two other features are noteworthy from Figure 20. The first is that in both Figure 20b & 

d, the dispersed phase is non-spherical in notable contrast to the fully-wetting blends (Figure 20a 

& c). Such non-spherical dispersed phases are well-known in Pickering emulsions, and indeed 

were noted even in an early description of Pickering emulsions2. The second is that the dispersed 

phase is much larger when PEO is the dispersed phase than when PIB is the dispersed phase. We 

will discuss both points later in the paper. 
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Figure 20. SEM images comparing blends with unmodified silica particles (a&c) vs. blends with DCDMS-

modified silica particles (b&d). The inset of d shows a higher magnification for the same blend to show the 

particles crowded at the interface. The numbers at the top of each image are the blend composition in the 

format of PIB/PEO/particle volume ratio. 

 

 

 

4.4.2 Dilute particle loading: Increase in size of the dispersed phase 

To test particle effects at dilute loadings, experiments were conducted on blends with just 1% 

particles. Even at this low loading, particles sharply increase drop size as illustrated in Figure 21. 

At a PIB:PEO ratio of 80:20, PIB forms the continuous phase, and the PEO drops are fairly 

uniform-sized and round with a typical diameter of 2  (Figure 21a). Addition of 1 % particles 

induces a massive increase in the PEO drop size to 20  (Figure 21c). Figure 21b shows the 
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reverse situation: at a PIB:PEO ratio of 20:80, PEO forms the continuous phase, and in the absence 

of particles, the PIB drop size is several microns. Upon addition of 1% particles, the drop size 

increases by several fold. Such particle-induced increase in drop size has been noted previously in 

our research40, 88 (indeed at even lower particle loading). We attribute this to an increase in 

coalescence rate due to particles by a mechanism analogous to the “bridging-dewetting” 

mechanism well-known in in aqueous systems, although as originally proposed, the bridging-

dewetting mechanism applies only when the particles are preferentially-wetted by the drop phase58, 

88, 89.  

Figure 21 also shows another unexpected feature: even in the absence of particles, there is 

a large difference in the dispersed phase size: the PEO drops in Figure 21a are far smaller than the 

PIB drops in Figure 21c. This large size difference appears even though both these blends have 

the same dispersed phase loading, and even though their viscosity mismatch is only modest. The 

cause of this asymmetric behavior of the particle-free blends is not clear. Nevertheless, similar 

asymmetric behavior has been noted previously in other blends of immiscible polymers90. We will 

not discuss this drop size asymmetry in particle-free mixtures further in this article. 
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Figure 21. SEM images of the effect of adding DCDMS-coated particles on blends with PIB as the continuous 

phase (a and c) and PEO as continuous phase (b and d). The PIB/PEO/particle volume ratios are noted in 

each image. 

 

 

4.4.3 Morphological changes with composition at 10% particles 

We now turn a higher particle loading of 10%, which is already higher than used in much of the 

past literature on oil/water Pickering emulsions or particle-filled polymer blends. Nine blends with 

various PIB:PEO volumetric ratios ranging from 87:3 to 3:87 were examined, all at 10 % particles 

(Figure 46). Six of these have been selected in Figure 22 to illustrate the morphological changes 

with composition. The magnifications are selected to match the appropriate length-scale of each 

sample, and we will discuss each in turn.  

In Figure 22a, at 3% PEO, the particles appear to be aggregated together by PEO, which 

resembles the “pendular/funicular” morphology obtained previously for fully-wetting particles. At 
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even lower PEO loading (the composition of 89/1/10 in volume in Figure 46), many of the particles 

appear to be bonded to each other pairwise (i.e. pendular menisci), whereas in Figure 22a, multiple 

particles are bonded by a single “funicular” meniscus. It is noteworthy that of all the morphologies 

in Figure 22, this is the only one that also exists in the fully-wetting case studied previously. All 

the other morphologies in Figure 22 are altogether different from those seen in Figure 45. 

Upon increasing the PEO content to 20% (Figure 22b) the morphology changes drastically: 

the dispersed phase PEO now adopts irregular elongated shapes of several tens of microns in size. 

With a further increase in the PEO loading, the size scale of the dispersed phase increases, e.g. 

compare Figure 22b, Figure 46h and Figure 22c, respectively at 20, 30 and 36 % PEO. Along with 

the increase in drop size, the interface becomes much more smooth, Higher magnification images 

at these compositions all show that the surface of such dispersed phases is tightly covered with 

particles. An example is shown in the inset to Figure 22c.  

With a further increase in PEO fraction, phase inversion occurs. At 45 % PEO (Figure 

22d), the morphology qualitatively resembles an inverted version of Figure 22c: an irregularly-

shaped dispersed phase that is coated with particles. Similarly, Figure 22e comprises particle-

covered PIB drops, which is an inverted version of Figure 22b, albeit with a much smaller size 

scale. Finally, at the lowest PIB loading, Figure 22f, the sample still consists of PIB drops, but 

now the drop size is comparable to that of the particles. 



 85 

 

Figure 22. Ternary blend morphology at various PIB/PEO/particle ratios listed in each image. The particle 

loading is 10% in all cases. 

 

 

 

4.4.4 High particle loadings and co-continuous morphologies 

We now turn to a much higher particle loading of 20% and 30%, values far higher than used in 

most of the existing literature on Pickering emulsions or on filled polymer blends. A total of nine 

blends were prepared at these two loadings (Figure 46). The morphological trends were found 

remain broadly similar to those at 10% but with some differences. One difference is the sharp 

decrease in the lengthscale of the dispersed phases as particle loading increases. The second is the 

appearance of highly branched morphologies that appear, at least visually, to be co-continuous. 

Various methods including image analysis, solvent extraction, electrical conductivity 

measurements and rheological measurement have been considered for judging the phase continuity 

of polymer blends91.  
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Here however, well-established quantitative methods of judging phase continuity, which 

typically involve blends of solid samples, are difficult to apply since PIB is a liquid. Instead, we 

rely on qualitative visual judgment. To illustrate these two trends, the morphologies at selected 

compositions are shown in Figure 23. The compositions of Figure 23 were selected such that the 

middle column (Figure 23b and e) correspond to morphologies that appear (at least visually) to be 

co-continuous. The left and right columns correspond respectively to the blends with somewhat 

lower and somewhat higher PEO content respectively. 

At 10 % particles, co-continuous morphologies are not evident, and hence only dispersed 

phase morphologies are shown (Figure 23g&h). As the particle loading reaches 20 %, the branched 

PEO structures are found to join together into the morphology of Figure 23e which appears co-

continuous (indeed it remains intact when the PIB is dissolved). With further increase in particle 

loading, the lengthscale of the morphology reduces further (Figure 23b). The inset to Figure 23b 

shows a higher resolution SEM of the fractured surface which reveals that the PEO-phase itself 

contains a smaller-scale microstructure that incorporates both the particles and the PEO. This latter 

point will be discussed further below. 

On the PIB-rich side of phase inversion (left column of Figure 23), at 10 % particles, the 

54/36/10 blend (Figure 23g) shows a branched dispersed phase, which may be regarded as a 

precursor to a truly co-continuous morphology. With increase in particle loading to 20 % (Figure 

23d), the branching increases, and the 53/27/20 sample is nearly co-continuous (upon extracting 

the PIB, the sample fragmented to some degree). At 30 % particle loading however (Figure 23a), 

the morphology looks distinctly different: it is no longer highly branched, and the surface appears 

highly irregular. Indeed this visually resembles a capillary aggregate morphology seen in mixtures 

with fully-wetting particles6 although in the present case, the particles are not fully-wetting and 
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capillary aggregates are unlikely to form. The likely reason for this morphology is that the particle 

loading now exceeds the dispersed phase loading. Since the particles have a strong preference to 

stay at the interface, a highly irregular interface, by offering a larger interfacial area, may be able 

to accommodate more particles at the interface. 

On the PEO-continuous side (the right column in Figure 23), the dispersed phase (now 

PIB) appears interfacially-jammed. This is somewhat analogous to the left column in Figure 23, 

but with two differences. First, highly elongated and branched dispersed phases do not appear 

when PIB is the dispersed phase (compare for instance Figure 23d vs Figure 23f). Second, 

consistent with the previous section, the size-scale of the morphology is much smaller when the 

dispersed phase is PIB vs when the dispersed phase is PEO. 

Finally, it is noteworthy that the phase inversion composition shifts significantly due to 

particles. In the discussion below, we will present a morphological map of this ternary system, and 

the corresponding Figure 25 shows that particles increase the PIB:PEO ratio at phase inversion, 

i.e. particles help maintain PEO phase continuity even when the PEO loading reduces. 
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Figure 23. Morphologies near phase inversion at various particle loadings. The PIB/PEO/silica ratios are 

listed in each image. Left column are PIB-continuous, right column are PEO-continuous, and mid column are 

co-continuous. The inset in (b) shows a magnified image of structure inside the percolating branches. The 

inset in (h) shows the PEO dispersed phase using OTS-modified silica particles at same composition. The top 

right of each image shows the symbol used in the triangle for each type of phase continuity. 

 

 

 

4.4.5 Effect of particle wettability on phase inversion  

The previous Chapter 4.4.4 concluded that the DCDMS-modified silica particles, which are 

partially-wetting towards both phases, shift the phase inversion point towards higher PIB:PEO 

ratio. In fact our previous research on the unmodified silica particles (which are fully-wetted by 

PEO) showed a similar shift73, 74. The fact these two particle types with very different wettability 

have a similar effect (increase the PIB:PEO ratio at phase inversion) raises the following question: 
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Does the shift in phase inversion composition depend on particle wettability at all? Or is there 

some inherent asymmetry in the PEO and PIB fluids themselves that tends to favor PEO-phase 

continuity regardless of the nature of particles added? 

To address this question, a limited number of blends were prepared using the same silica 

particles, but modified with a different silane, octadecyltricholorosilane (OTS). Since OTS has a 

long alkyl chain, it makes the particles much more hydrophobic, and hence much more PIB-philic, 

than DCDMS-modified particles40.  Two blend compositions, PIB/PEO/silica = 45/45/10, and 

36/54/10 were prepared, and the corresponding morphologies are shown in Figure 24. In the 

45/45/10 blend (PIB:PEO=1:1) PEO forms the dispersed phase, and particles protrude far out of 

the PEO drops (Figure 24a) confirming that they are more PIB-philic than the DCDMS-modified 

particles. Indeed the particles protrude sufficiently far that they can bridge together PEO drops as 

shown in the inset to Figure 24a. Such bridging was already seen previously, albeit with 

monodisperse OTS-silica particles at much lower loading40, 58. In the 36/54/10 blend 

(PIB:PEO=2:3) an elongated or co-continuous morphology appears (Figure 24b). We may then 

summarize the phase continuity results in Table 2. It is immediately obvious that at certain 

PIB:PEO ratios, the phase continuity does depend on the particle type. Most importantly, at the 

1:1 PIB:PEO ratio, the phase continuity of the blends with OTS-modified particles is “flipped” as 

compared to the unmodified or the DCDMS-modified particles. We therefore conclude that the 

changes in phase continuity does depend on the wettability of the particles. Specifically, addition 

of particles favors continuity of the phase that is preferentially-wetted by the particles, as has also 

been observed in oil/water Pickering emulsions42, 87, 92-94.   
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Table 2.Volume ratio of phases near phase inversion 

Particles Approx. PIB: PEO ratio of samples bracketing phase inversion 

 3:2 1:1 2:3 

None  
PIB-cont.  

(Figure 46b) 

PEO-cont. 

(Figure 46c) 

unmodified74 
PIB-cont. 

(Figure 45) 

PEO-cont. 

Figure 45) 
 

DCDMS-

modified (10%) 

PIB-cont. 

(Figure 22c) 

PEO-cont. 

(Figure 22d) 
 

OTS-modified 

(10%) 
 

PIB-cont.  

 (Figure 24a) 

Co-cont. 

(Figure 24b) 

 

 

 
 

 

Figure 24. Testing phase continuity of polymer blends containing OTS-modified silica particle at the two 

compositions (in the format PIB/PEO/silica) indicated in each image 
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4.5 DISCUSSION 

4.5.1 State map and phase inversion 

A major goal of this paper was to construct a state map of the microstructure as a function of 

composition and contrast it with the previously-constructed map for fully-wettable particles. The 

morphological observations of Chapter 4.4 suggest the morphological state map of Figure 25, 

where the various morphologies are shown in schematic form. Pendular/funicular structures appear 

when PIB is the continuous phase and the volume fraction of PEO ( ) is less than that of 

particles ( )  PEO-in-PIB Pickering emulsion microstructures appear when . On the 

PEO-continuous side, PIB-in-PEO Pickering emulsions occur at all particle loadings, including 

when volume fraction of PIB ( ) is less than that of particles( ). In this latter situation, since 

the particle loading exceeds the PIB drop loading, there must be numerous particles that are not 

covering the visible PIB drops. We infer that there may be a population of very small PIB-bound 

particle aggregates dispersed in the PEO phase which are not readily identifiable by our SEM 

imaging method. The two Pickering emulsion states are separated by a co-continuous morphology, 

and Figure 24b shows that such a co-continuous state appears even with particles of a very different 

wettability. To our knowledge, such co-continuous morphologies have never been reported in 

small-molecule oil/water systems prepared by mixing (co-continuous bijels can be prepared as an 

arrested state after spinodal decomposition, but not by blending particles into a two-phase oil/water 

mixture24, 95).  
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We believe that the much lower viscosity of oil/water systems is responsible for this: any 

complex morphology that may exist under flow conditions rapidly reverts to a conventional 

spherical-drop morphology immediately after mixing stops. There are sharp differences compared 

with the state map for fully-wetting particles74. The pendular/funicular microstructure of particles 

bound by PEO is the only one that appears with both unmodified silica (Figure 45) and with the 

DCDMS-coated silicas (Figure 25). Another feature in common with Figure 45 is that particles 

stabilize co-continuous morphologies, whereas in the particle-free blends, co-continuous 

morphologies do not appear. However the microstructural details of the co-continuity are 

altogether different: the co-continuity in Figure 45 is due to internal jamming of the PEO phase, 

whereas those in Figure 23e and Figure 24b are likely attributable to interfacial jamming of 

particles as well as the particle-covered drops within the PEO phase (see below). In the very apt 

description of Spicer et al96, 97, the former is endoskeletal jamming, whereas the latter is 

exoskeletal. Finally, partially-wetted particles greatly affect the morphology across all 

compositions including low and high particle loadings, and across the entire range of PIB:PEO 

ratios. In contrast, fully-wetted particles affected the morphology significantly only when  

exceeded or was comparable to the wetting phase loading,  73, 74.  

The morphological map of Figure 25 is notably asymmetric. The asymmetries include the 

following: 

Pendular/funicular microstructures appear unambiguously only when PEO is the dispersed 

phase. However we acknowledge that it is difficult to make a firm judgement about morphologies 

such as Figure 22f. On one hand, the appearance of PIB craters suggests a Pickering emulsion of 

PIB drops surrounded by PEO. However the drops may also be bonded to each other, similar to 

particle network dubbed “capillary state suspension” by Koos et al13.  
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For the Pickering emulsion microstructures, the dispersed phase has a larger size when 

PEO is the dispersed phase as compared to when PIB is the dispersed phase.  

Near phase inversion, the PEO phase is itself a Pickering emulsion, i.e. the PEO phase 

contains particle-covered PIB drops.  

Addition of particles shifts the phase inversion composition “leftwards” on the composition 

diagram, i.e. in the presence of particles, the PEO can retain continuity at a higher PIB:PEO ratio 

than in the absence of particles. Analogously, at  where co-continuous morphologies 

appear, the PIB:PEO  ratio for the co-continuous morphologies exceeds 1:1. 

The latter three trends all seem to be attributable to preferential wettability of the PEO 

towards the particles. More specifically, the Pickering emulsion literature suggests that an 

emulsion is highly stable against coalescence if the continuous phase is preferentially-wetted by 

the particles, but much less stable if the dispersed phase is preferentially-wetted by the particles98. 

Such differential stability would immediately explain item 2 above, i.e. the PIB drops are small 

because PEO wets the particles preferentially making the PIB-in-PEO emulsion very stable.  

Moreover, if the PIB-in-PEO Pickering emulsion is highly stable, but  is too small to ensure 

PEO phase continuity, it is easy to envision the stable emulsion itself becoming dispersed into PIB 

(item 3 above). Finally, item 4 above may be attributable to two related causes: faster coalescence 

of PEO drops implies that continuity of the PEO phase is favored99, and furthermore, the PEO 

phase tends to incorporate significant amounts particle-coated PIB drops near phase inversion. 

Thus, the volume fraction of the PEO phase is effectively “expanded”, making it easier for that 

phase to become continuous.  
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Figure 25.A summary of all the composition studied and different morphology sketches at various 

compositions. From left to right: (a) pendular/funicular state when PEO is the minority phase; (b) PEO-in-

PIB Pickering emulsion; (c) co-continuous state; (d) PIB-in-PEO Pickering emulsion; (e) PIB-in-PEO 

suspension; (f) PIB-in-PEO suspension. 

 

 

 

4.5.2 Interfacial jamming  

In the oil/water Pickering emulsion literature, it has been long-recognized that particles can crowd 

at the interface and give rise to non-spherical drop shapes, a phenomenon generally called 

interfacial jamming38, 100. Similar phenomena have been noted in air/water systems, and the 

corresponding jammed dispersed phases are often called particle-covered bubbles or liquid 

marbles27, 28. Furthermore, the same idea of interfacial jamming can be exploited to stabilize co-

continuous morphologies24, 101. Interfacially-jammed morphologies readily appear in our systems 

at a variety of compositions (Figure 25), and we will discuss them here. 
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Interfacial jamming appears because particles adsorb at liquid-liquid interfaces very 

strongly, with the adsorption energy typically being several orders of magnitude higher than kT98, 

102. As a result, the desorption of individual particles from the interface is unlikely. Moreover, 

since the particles have homogeneous surfaces (i.e. are not patchy), unlike surfactants, they cannot 

form micelles. Thus crowding particles lead to interfacial jamming.  

Accordingly, the simplest “morphological model” is that interfacial jamming occurs when 

the liquid-liquid interfacial area is exactly what is needed to accommodate all the particles at the 

interface. The corresponding area per unit volume (i.e. the cross sectional area of the particles per 

unit volume) can be estimated as  where  is the diameter of the particles. Consider now 

an emulsion-type morphology (with either PEO or PIB as the dispersed phase) with  being 

lengthscale of the morphology. For example,  may be regarded approximately as a mean drop 

size (if the dispersed phase is in the form of round drops), or a mean cylinder size (if the dispersed 

phase is roughly cylindrical). The interfacial area per unit volume of the morphology is therefore 

roughly  where  is the volume fraction of the dispersed phase. The pre-factor of 4 is 

the exact value for monodisperse cylindrical geometry (the corresponding pre-factor would be 6 

for monodisperse spheres, and 2 for lamellae). If the morphology is on the verge of jamming, we 

can equate the above two areas per unit volume to obtain . This  is the largest 

possible lengthscale for the dispersed phase if all the particles reside at the interface; specifically, 

if  (e.g. under intense mixing conditions), then interfacial jamming cannot happen and hence 

the dispersed phase will remain spherical. On the other hand if the flow is relatively weak, the 
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dispersed phase will coarsen, but become no bigger than . We acknowledge that this model does 

not predict a value for average droplets size of the dispersed phase, which is determined by the 

volume fraction of the dispersed phase, the rate of coalescence of the dispersed phase, and flow 

strength. This model only predicts the largest size the dispersed phase can have, which is also the 

sizescale below which the dispersed phase must be unjammed and hence spherical. This model is 

based on assumption that the particles are monodisperse, whereas in reality, the smallest particles 

are most effective in covering interfaces. Nevertheless,  provides a first order estimate of the 

largest sizescale of the microstructure that can avoid jamming.  

Of all the samples examined, Figure 21c is the only morphology that is not jammed, i.e. 

has unambiguously spherical drops whose interface is not crowded with particles. Indeed, for this 

sample  is predicted, whereas most drops are comparable or smaller in 

diameter. This is consistent with the idea that if , interfacial jamming will not happen. For 

most samples with PIB as the dispersed phase, the  is found to be close to the morphological 

lengthscale estimated from SEM images. For instance, for Figure 4f,  is 

calculated, and a majority of PIB drops appear to have a diameter near  In contrast, for the 

samples with PEO as the dispersed phase, the calculated values of  underestimate the 

morphological sizescale. For instance, for Figure 23d  is calculated whereas 

the interfacially-jammed dispersed phase has a typical width of a few tens of microns.  
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For these PEO-dispersed phase samples, the fact that  suggests that at least one of 

the assumptions underlying the calculation of  must be incorrect. For instance, if some of the 

particles stay dispersed into one of the bulk phases (i.e. behave similar to fully-wetted particles), 

the basic assumption that the all the particles are interfacially-adsorbed is violated. In fact, the 

Section 4.1 and the inset to Figure 23b support a different view, that the morphology is more 

“topologically” complex than a simple emulsion. Specifically, the PEO phase is itself a Pickering 

emulsion which incorporates particles. 

The central conclusion therefore is that in such ternary particle/liquid/liquid systems, co-

continuous morphologies cannot be readily tuned by changing particle loading. For instance, in 

the bijel literature, the lengthscale of the co-continuous structures was found to be proportional to 

the reciprocal of the particle loading24, 95. This was based on the same picture of interfacial 

jamming as above (indeed above we also calculated  ). However in the co-continuous 

morphologies developed by blending, such simple tuning of lengthscales may not be possible; the 

system “decides” whether particles should be located at the interface of the co-continuous structure 

or on drops within one of the phases. Indeed other microstructures may be possible under some 

conditions, e.g. a co-continuous morphology in which one of the phases is a pendular network.  

 



 98 

4.6 CONCLUSION 

To summarize, we have conducted a comprehensive morphology-composition mapping of a 

ternary mixture composed of two molten immiscible polymers (polyisobutylene and polyethylene 

oxide) and spherical silica particles which are partially-wetted by both polymer phases. To our 

knowledge, this study, similar to our previous study of the fully-wetting case, encompasses the 

widest composition range examined for a single ternary liquid/liquid/particle system. The 

partially-wettable particles significantly affect the morphology across the entire range of 

compositions. The various morphologies observed include pendular/funicular aggregates of 

particles, Pickering emulsions, co-continuous morphologies, and (when the particle strongly prefer 

one fluid) particle-bridged Pickering emulsions. The particles induce coalescence of the dispersed 

phase at dilute particle loading, create interfacially-jammed Pickering emulsions, and stabilize 

interfacially-jammed co-continuous morphologies. At least one of the morphologies appears to be 

topologically-complex: a co-continuous morphology where one phase is a Pickering emulsion. 

This suggests that such ternary blends may adopt microstructures that are difficult to predict based 

on simple considerations of wettability and composition.  

Many of the particle effects are asymmetric, i.e. the morphology is sharply different 

depending on which fluid is the continuous phase. The asymmetries are likely attributable to the 

modest preference of the particles towards one of the phases, polyethylene oxide. Most 

importantly, the particles shift the phase inversion composition such that polyethylene oxide, the 

phase that preferentially-wets the particles, tends to become the continuous phase.  

In combination with the previous research on the fully-wetting case, this research 

represents the most detailed morphological mapping of a ternary liquid/fluid/particle mixture in 

the parameter space defined by the composition and the wettability of the particles. It would be 
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interesting to see if other systems with different chemistry and particle sizes show similar 

morphologies at similar composition and particle wettings. If so, they would confirm the idea that 

diverse ternary systems share a somewhat universal microstructural map. 
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5.0  RECOVERY OF PARTICLE-FILLED DROPLETS IN IMMISCIBLE POLYMER 

BLEND  

5.1 CHAPTER PREFACE 

Materials contained in this chapter will be submitted as a research article. 

List of Authors: Junyi Yang, and Sachin S. Velankar 

 

5.2 INTRODUCTION 

It has been long-recognized that a blend of two immiscible Newtonian liquids is viscoelastic. The 

source of this viscoelasticity is interfacial tension. Specifically, under flow conditions, the 

interfacial area within the blend is larger than under quiescent conditions and moreover it has some 

net orientation, i.e. the area tensor is not isotropic. The interfacial energy associated with this 

excess surface area provides a mechanism whereby mechanical energy of deformation can be 

stored rather than dissipated. The interfacial orientation provides a mechanism for developing net 

stress so that blend becomes viscoelastic.  
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Such viscoelasticity is manifested in a variety of rheological phenomena including gradual 

growth of stress during startup of flow, time-dependent stress relaxation or time-dependent elastic 

recoil after cessation of flow, and additional relaxation processes appearing in oscillatory 

frequency sweep experiments.  

On the other hand, interfacial tension can also be a cause for yielding phenomena in 

particulate systems. The most familiar example of this is when a small amount of water is mixed 

with dry sand to yield wet sand which has a yield stress (and a non-zero modulus prior to yield)9, 

13. The same occurs when a small amount of particle-wetting fluid is added to a suspension of 

particles in another fluid. In such cases, the particle-wetting fluid is present in the form of small 

menisci that bind together the particles into a large scale network5, 7, 12, 103. Since flow of such a 

suspension requires breaking some of the capillary “bonds” between the particles, the suspension 

develops a yield stress. As will be discussed later, such a suspension is not especially viscoelastic; 

for example wet sand does not show significant recoil after being deformed8, 9.  

Therefore, considering a ternary mixture comprising particles suspended in fluid with 

another particle-wetting fluid added, one may imagine two extremes of composition. In the first, 

the particle-wetting fluid is dilute whereas the particles are concentrated, and hence the mixture 

has the morphology of a meniscus-bound network (Figure 26a). Rheologically such a network may 

be regarded as elastoplastic: it has a modulus at small deformation, and a yield stress. In the other 

extreme, it the particle-wetting fluid is concentrated whereas the particles are dilute, thus the 

mixture has a droplet-matrix morphology (Figure 26c). Such a mixture is expected to be a 

viscoelastic fluid with no yield stress. This transition from elastoplastic behavior to a viscoelastic 

fluid behavior due to composition changes is the topic of this paper. 
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Figure 26. Compositions examined following a 20 vol% combined phase dashed line. From left to right, three 

morphologies are sketched: a) pendular state; b) capillary aggregates; c) particle-filled droplets. 

 

 

 

In Figure 26, where compositions are indicated on a triangular composition diagram. The 

three vertices correspond to the materials used in this paper (details below): silica particles, liquid 

polyisoprene (which is the continuous phase liquid in all the samples in this paper) and liquid 

polyethylene glycol which is a minority liquid phase which preferentially-wets the particles. The 

dashed line shows a composition trajectory that spans the two extremes of composition mentioned 

in the previous paragraph. In this paper, we conduct rheological and in situ morphological 

investigations of several samples along this composition trajectory. The focus is on one specific 

aspect of viscoelasticity, viz. creep recoil upon cessation of shear, and we investigate how the 

magnitude and the kinetics of recoil vary along the composition trajectory.  
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The outline of this paper is as follows. In Section 5.3 we describe the materials and 

methods. Section 5.4.1 describes the in situ morphological observations during creep recoil, and 

Section 5.4.2 describes the corresponding rheological measurements. Section 0 briefly discusses 

the dependence of retardation on composition.  

5.3 EXPERIMENTAL SECTION 

5.3.1 Materials and sample preparation 

Polyethylene oxide (PEO, ρ≈1.1 g/ml, Mw≈600 g/mol, viscosity < 0.1 Pa∙s) and polyisoprene 

(LIR30, viscosity 130 Pa∙s) was purchased from Fluka and Kuraray respectively. The particles 

used are hydrophilic glass particles with average diameter of ~10μm obtained from Karlsruhe 

Institute of Technology. 

5.3.2 Rheological Measurement and Testing protocol  

Rheology tests were conducted on the Anton Paar rheometer with a 40 mm parallel glass plate 

geometry and built in in-situ microscope at 20 . The sample was loaded within a gap of 200 

. Video capture function was activated to simultaneously record the rheological parameters and 

corresponding optical image of localized microstructure.  

Oscillatory shear, steady state flow and creep-recovery tests were. An example of testing 

protocol is shown in Figure 27: the sample was first sheared at 480 Pa for 2 minutes in order to 

attain enough strain units to reach steady state flow condition. A 0.7-second step shear was applied 
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at same stress level (480Pa) then removed for 5 minutes for strain recovery. The video recording 

starts from the end steady state flow toward the end of third recovery to 1) capture the 

instantaneous elongated particle filled droplet morphology; 2) measure the time required for such 

structure to recover; 3) investigate the relaxation and aspect ratio dependence on stress and 

composition. After the first sequence, same testing protocol was conducted twice more at lower 

stress level (240Pa/120Pa). The initial steady state shearing time varied for different stresses to 

ensure same strain units were applied before the following creep-recovery process (ie. 480Pa for 

2 minutes and 240Pa for 4 minutes, etc). Oscillatory shear experiment was conducted right after 

the creeping, both storage and loss moduli were retrieved from a frequency sweep range of 0.05% 

to 300% at fixed strain amplitude of 1%. The modulus results along with the in-situ visualization 

can be used to determine whether the system is in pendular network state or capillary aggregate 

state. Limited steady state flow experiment were also conducted to measure the yield stress ( ) 

and infinite shear viscosity ( 𝛾∞̇ ) by increasing shear rate from 0.1/s to 100/s for selected 

compositions.  

 

 

 

 

Figure 27. Schematic diagram of test protocol of creep-recovery sequence (only 480Pa and 240Pa are showing 

here). 
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5.4 RESULTS 

5.4.1 In-situ visualization on droplet recovery 

As is mentioned in the introduction, the sole source of viscoelasticity in the current mixtures is 

interfacial tension, and more specifically, shape relaxation of the interface. The advantage of in-

situ visualization is to be able to correlate the morphology evolution deformation to instantaneous 

mechanical response. Accordingly, we will first discuss the structural changes during recover in 

this section, and the corresponding mechanical recovery in the following section. Similar results 

can be obtained, albeit with much more effort, by imaging the morphology quenched from various 

stages of morphological evolution, and comparing the sequence of images with the rheological 

changes43, 104.  

Only the 480 Pa stress is discussed for illustration, since a stress level 480 Pa is beyond the 

yield stresses for all compositions. Similar results are obtained at the two lower stresses, and are 

shown in the ESI. Of the eight blend compositions ranging from 2.75 vol% to 18 vol% of PEO, 

four were chosen in Figure 28 showing their morphologies at different time set during relaxation. 

Our previous studies showed under quiescent condition, the structure of ternary blends varies from 

pendular/funicular network, capillary aggregates, to particle-in-PEO droplets depending on the 

relative volume ratio of wetting phase (PEO) to particles1, 74. And images captured during 

relaxation suggest that morphologies respond differently upon stress removal after steady state 

shear flow.  

The top row of Figure 28 corresponds to dilute PEO loading where the ϱ  value is 

0.33(Figure 28a to d). At this   value, there is not adequate PEO to completely engulf the particles, 
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and the images indicate pendular/funicular clusters of glass particles bonded by PEO menisci. 

During shearing process, those clusters predominantly showed tumbling movement rather than 

deformation along the shearing direction, i.e. the particulate clusters were more-or-less rigid. Once 

the shearing ceased, there was almost no visible change in clusters suggesting negligible 

deformation during shear. Upon increasing the amount of PEO (second row), a capillary particle 

aggregate state emerges (Figure 28e to i) corresponding to complete encapsulation of particles by 

PEO. However the resulting combined phase is highly filled with an internal particle volume 

fraction of 65%. The images show that the capillary aggregates are highly elongated along the 

shearing direction, and upon cessation of shear, they do not undergo significant shape relaxation 

over the entire 5 minute observation period. This arrest of non-spherical drop shapes is entirely 

attributable to the internal jamming within the drops. Further increase in PEO loading (third row) 

lowers the internal particle fraction sufficiently that the combined phase is capable of “normal” 

deformation and relaxation, although a few non-spherical shapes are still evident. We presume that 

some drops have slightly higher particle loading than others, this leading to slower shape recovery 

(Figure 28h to k). Incidentally, the largest drops in this blend have diameters of ~ 50 microns 

which is comparable to the gap size, and hence at this composition at least, the morphology may 

be affected by finite gap width effects. 

The last row corresponds to a ϱ value of 3, and hence the combined phase has a particle 

loading of only 25%. Under these dilute conditions, the behavior resembles that expected from a 

typical droplet-matrix blend where the drop viscosity is far lower than the matrix viscosity: under 

steady shear conditions, the dispersed phase is highly elongated and in the form of fibrils, with 

rapid reversion to spherical shapes after cessation of shear (Figure 28i to o).  
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Incidentally we note that much of the reversion to spherical shapes occurs by capillary 

instabilities of the elongated fibrils, rather than shape recovery of the fibrils. 

 

 

 

 

Figure 28. Screenshots of the structure recovery process 1 second, 10 seconds, and 3 minutes after the 

shearing ceases from in-situ microscope. The compositions are labeled on the up right corner of each row in 

the format of LIR/PEO/particle volume ratio. The shearing direction went horizonal to the right. 
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5.4.2 Composition dependence on strain recovery 

We now turn to the creep recovery after cessation of shear by comparing the strain recovery 

measurements for compositions selected in Figure 28. In general, Figure 29 complies with 

conclusion made in previous section with serval noteworthy difference: First, while there appeared 

no significant changes in shape from 10 seconds to 3 minutes mark for some compositions, the 

recovery continued accordingly; Second, even at dilute PEO condition (2.75%) whose deformation 

of the structure was not obvious by eyes, a 5% strain recoil is still detectable at the end of 

observation window; Third and most importantly, the speed of recovery is not monotonic. Here 

we use the time it took to reach 60% of its ultimate recoverable strain as the total retardation time 

by first approximation. For both highest and lowest PEO content sample, 60% of the ultimate 

recoverable strain reaches within the first 10 seconds, whereas it takes more than 20 and 40 seconds 

for 80/7/13 and 80/9/11 blend respectively.  
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Figure 29. Strain recovery at various compositions. (the legends display in a format of LIR-PEO-particle in 

volume fraction). The smooth lines are corresponding fitting curves. The dashed lines indicate the time 

required to reach 60% of the ultimate recovery strain. 
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Figure 30. Screenshots of ternary blend after fully recovery from different stress level. The compositions are 

labeled on the upper right corner of each row in the format of LIR/PEO/particle volume ratio. The shearing 

direction went horizonal to the right. 
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5.5 DISCUSSION 

5.5.1 Retardation spectrum at various compositions 

As is stated in the section above, the total retardation time of the blends does not increase 

accordingly with the increasing amount of PEO. In order to get a more qualitive judgement on 

retardation time, Vinckier et al43 proposed the recovery behavior following exponential kinetics: 

 

 

(7) 

Where is the ultimate recovery,  is the retardation time. However, this model with 

single exponential kinetics provides very poor fits to the experimental data. Strictly, one needs to 

describe the results using a continuous retardation spectrum . Yet evaluation of a continuous 

spectrum requires sophisticated numerical techniques with attendant questions of whether other 

spectra may capture the measured data equally well. Accordingly, we will adopt a discrete version 

of the same where: 

 

(8) 

 

We attempted fits with various values of , i.e. n equally-spaced retardation times were 

specified, and the corresponding  values were treated as fitting parameters. By trial and error we 
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found that , with retardation times of 0.01s, 1s, 10s and 100s, were adequate to both capture 

all the data accurately, but at the same time as avoid problems with uniqueness. The corresponding 

fitting curves are shown as solid lines in Figure 29. The values of the fitted  are shown for all 

compositions shown in Figure 31 below, and may be regarded as the approximate retardation 

spectrum at each composition. 

Two trends are immediately obvious in the spectra. The first is the increase in the maximum 

 value with increasing PEO content. This is simply a reflection of the increasing , i.e. 

increasing elasticity, as PEO loading increases. The second is the non-monotonic position of the 

peak: the composition 80/9/11 has its peak shifted farthest to the right, i.e. to the longest retardation 

times, whereas the peak is shifted to shorter times a both lower or higher PEO contents. 
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Figure 31. Relaxation spectrum of LIR-PEO-particle system at various compositoins. 𝛕𝟏, 𝝉𝟐, 𝝉𝟑 𝒂𝒏𝒅 𝝉𝟒 are 

chosen as 0.1, 1, 10 and 100 seconds listed in the x-axis. When PEO volume fraction is more than 50% in the 

combined phase, the highest relaxation time scale falls at 1 second. Otherwise, the highest relaxation period 

falls at 10 second indicating a slower relaxation. The legends show the PEO fraction and the data labels show 

the peak position for each of the composition. 

 

 

 

For simplicity of comparison, it would be convenient to quantify the recovery using just 

two parameters, one that captures the magnitude of the recovery, and the other its mean timescale. 

Obviously  is the best measure of the strength of the recovery. A mean timescale can 

be defined as: 

 

(9) 

We acknowledge that this is not the only possible definition, and other definitions have 

been used previously with different weightings for each more105. The values of and  are 
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shown in Figure 32. The ultimate recovery increases monotonically with increase PEO loading, 

whereas the mean retardation time is not monotonic. The reasons for this non-monotonic behavior 

can be immediately related to the microstructure: with decreasing ϱ  (PEO-to-particle volume 

ratio), the combined phase becomes increasingly filled, thus developing high viscosity and 

possibly solid-like rheology. The combined phase retains sufficient mobility to coalesce, and hence 

the drop size, and interfacial deformation under steady shear conditions, both grow. While 

interfacial tension driven relaxation still occurs (as proved by the recovery), this process requires 

significant rearrangement of the particles within the drops and hence is greatly slowed. Once the 

rho value reduces below 0.66, or the particle fraction in the combined phase reaches over 60%, the 

droplets loses sufficient mobility that it cannot coalesce readily and the size of the dispersed phase 

reduces sharply. Recovery no longer requires large shape changes, and hence proceeds more 

rapidly. 
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Figure 32. Summary of both ultimate recovered strain and average relaxation time for each composition 

whose PEO fraction is listed in the x-axis.  

 

 

 

5.5.2 Dependence of droplets recovery on shear stress  

To further understand the effect of creep stress on droplets recovery, the creep-recovery process 

was repeated twice more at lower stress levels (240Pa & 120Pa). The summarized ultimate strain 

recoil and retardation time for each stress level are shown in Figure 33 respectively.  It is apparent 

from the images that the stress dependence on either strain recoil or retardation time is determined 

by its morphology. When the blend is within particle-fill droplets state (shown in open symbols), 

the ultimate recovery is proportional to the stress applied while the retardation time is almost 

independent with stress. On the other hand, when there is not enough PEO to engulf all the surface 

of the glass particles (i.e. capillary aggregates), the dependence alters (shown in filled symbols): 
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the retardation time is now inverse-proportional to stress and ultimate recoil is indifferent from 

stress variation. Similar behavior can be found in the emulsion literature which suggests that both 

the level and time scale of the immiscible blend recovery after steady state shear are very sensitive 

to the morphology and shearing condition. More specifically, according to the model predicted by 

Vinckier43, 46, the ultimate recoil can be given by: 

 

(10) 

where  is the shear stress, R is the radius of the droplets,  matrix viscosity,  

emulsion viscosity,  interfacial tension,  the viscosity ratio,   volume fraction of the droplets. 

 is a function which increases with the viscosity ratio. Noted that in our experimental 

scenario, the observation area is too narrow to gather enough droplets and make quantitative 

analysis on size distribution in a single frame of image. Thus, we only use this model to predict 

the stress proportionality with strain recoil. Since the volume fraction of PEO-and-particle 

combined phase was fixed at 20 vol%, and interfacial tension and matrix/emulsion viscosity can 

be considered constant, the strain recoil is merely depending on radius of the droplets and viscosity 

ratio according to Equation 10. Judging from Figure 30 d through Figure 30 f as the blend is at 

capillary aggregate state, the size scale of the aggregates expands with decreased shear stress since 

lower shear rates prompt coalescence of particle clusters76. In fact, under steady state condition, 

the radius of the droplets is inverse-proportional to the shear stress:  . This explains that 

the recoil strains are linear in the capillary aggregates state. However, with increasing  value, the 
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maximum average radius of the droplets reaches to a plateau at around 50  regardless of the 

shear stress Figure 30 g through Figure 30 o. Because there is a 200  gap constrain in our 

experimental scenario. Therefore, according to Equation 10,  once particle-filled 

droplets are formed. Similarly, the retardation time for emulsion characteristics is given by 

Graebling et al104: 

 

(11) 

According to Equation 11, the retardation time is proportional to radius of the droplets. The 

results in Figure 33 also suggest that the retardation time is inverse-proportional to stress at 

capillary aggregates state (filled symbols) and almost independent to stress at particle-filled 

droplets state (open symbols).   

 

 

 

 

Figure 33. The dependence of ultimate strain recoil and retardation time on steady state shear stress. 
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5.6 CONCLUSION 

To summarize, we have conducted a comprehensive morphology and rheology study on strain 

recoil after steady state shear with particle-filled polymer suspension. The volume of dispersed 

combined phase droplets (glass particle and PEO) were fixed but the morphology of the droplets 

varies with various particle content inside the droplets. To our knowledge, such study on strain-

recovery has never been done on particle-filled droplets. In general, the strain-recovery behavior 

follows a multi-stage exponential kinetics. The ultimate recovery strain increase with increasing 

particle loading while the average retardation time is longest with around 50% of the particle 

loading.  

Simultaneous video capture function was activated during the creep-recovery measurement 

to help explain the relationship between droplets morphology and blend recovery profile. 

Depending on particle content in the droplets, various morphologies were observed including 

pendular/funicular network, aggregates of particles and particle-filled droplets. Both 

pendular/funicular and particle aggregates display rapid recovery and small recoil (in the order of 

1%). Once particle-filled droplets are formed, the creep-recovery profile is determined by two 

factors: on the one hand, the extend of the recovery is dominated by the interfacial tension; on the 

other hand, the fact whether the droplets are internally jammed significantly extends the total 

retardation time required. 

The effects of creep stress are also discussed in the paper. Under steady state condition, the 

droplets size up with decreasing shear stress, and corresponding strain recoil is proportional to the 

shear stress. However, such effect is limited when the droplets size reach to the gap constrain.   
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APPENDIX A 

SUPPLEMENTARY MATERIAL TO “PREPARATION AND YIELDING BEHAVIOR 

OF PENDULAR NETWORK SUSPENSIONS” 
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Figure 34. SEM pictures of the PIB/PEO/SP–A blend after dissolution of the PIB matrix. (a) A capillary 

aggregate. (b) Pendular network. The inset shows a closer view of capillary bridges (pointed out by the blue 

arrows) between particles of different sizes in a branch of the pendular network. Figure reproduced from 

Domenech and Velankar, Rheol. Acta, 53, 593, 2014, with permission from Springer. 
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Figure 35. Viscosity versus shear rate curves for polymer blend (PIB/PEO/SP =76.8/3.2/20): 1. At 𝟑𝟎℃ below 

melting temperature; 2. at   above melting temperature; and 3. Binary PEO free blend at 𝟖𝟎℃ 

(replacing PEO with corresponding amount of particle in volume). 
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Figure 36. Zero shear storage modulus (values in amplitude sweep tests at 0.01% strain) for polymer blend 

with same particle loading (20vol%) but various 𝛠 values and different pre-shear history: after 10 minutes 

shear at 0.1/s (blue diamond), 1/s (red square) and 10/s (green triangle). 
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Figure 37. Creep-recovery test results for ternary mixtures blends with 20vol% particles at two different PEO 

loadings: (a) PIB/PEO/SP= 79.2/0.8/20 at 20 Pa; (b) PIB/PEO/SP= 75/5/20 at 120 Pa. Both stresses were set 

below the yield stress for the corresponding sample. The creep step was interrupted at various times before 

recovery 
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The following two figures use materials and methods different from those in the main paper. The 

ternary mixtures are composed of polyisoprene (LIR30 from Kuraray, viscosity 130 Pa.s) as the 

continuous phase, glass particles (~10 micron diameter), and glycerol as the wetting fluid. The 

sample composition by volume is LIR30/glycerol/glass = 94/1.1/4.4 giving a ϱ value of 0.25. The 

glycerol was pre-dispersed into the LIR30, followed by adding the particles. All mixing was 

performed by hand with a spatula. 

For flow visualization experiments, the sample was loaded in a shear cell at room 

temperature. The shear cell is a parallel plate device capable of linear translation. The maximum 

usable strain was roughly 15 strain units, and hence instead of steady shear, oscillatory strain was 

applied on the sample. Figure 38 illustrates the formation of aggregates at low frequency (which 

corresponds to a low maximum shear rate), followed by breakdown upon increasing the frequency, 

followed by reformation of the aggregates at low frequency. Figure 38 also includes LAOS 

modulus data obtained with the same sample and indeed the storage and loss moduli decrease 

when the pendular network is ruptured, but recover (at least partially) when sheared. Note that the 

particle volume fraction in these samples (4.4%) is far less than in the main paper (20%) and hence 

these samples are only weakly-solidlike. Hence the rheological changes corresponding to network 

rupture are only modest. 

Figure 39 illustrates morphological changes during LAOS, and the same sequence of 

images are available as a movie file entitled LAOSSequence.mpg. 

We are grateful to Dr. Erin Koos for permitting use of her shear cell and microscope, and 

assistance with setting up the experiment. 
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Figure 38. Optical micrographs after oscillation under the conditions (frequency, strain, duration, and 

maximum shear rate during the oscillation) shown below each image. Thick yellow arrows indicate the 

sequence of shearing. Bottom right shows changes in oscillatory moduli using the same shear protocol. 
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Figure 39. Images taken after applying increasing amounts of oscillatory strain (listed in the image) at a 

frequency of 0.1 Hz. Yellow arrows indicate sequence of strain increase. Up to 300% strain, the changes in 

microstructure involve small rotations of the network (more clear in the movie LAOS Sequence.mp4 of the 

same images). At 1000% strain, the rupture of the network is evident. 
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APPENDIX B 

SUPPLEMENTARY MATERIAL TO “THE EFFECT OF PARTICLE WETTABILITY 

ON YIELDING OF TERNARY LIQUID/LIQUID/PARTICLE POLYMER BLENDS” 

 

Figure 40. Composition diagram of all samples examined. The green dashed line follows a fixed PEO:particle 

ratio of 0.16. The red square represents the sample solely in Figure 2. 
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Figure 41. Particle size distribution of unmodified silica particles showing the average diameter is around 

2𝛍𝐦. 

 

 

 

 

Figure 42. Scanning Electronic microscope images of ternary blend consisting: a) fully wetting silica particle 

at composition of PIB/PEO/silica = 76.8/3.2/20. b) DCDMS-modified silica particle at PIB/PEO/silica = 

89/1/10 reproduced with permission from RSC. (J. Y. Yang, D. Roell, M. Echavarria and S. S. Velankar, Soft 

Matter, 2017, 13, 8579-8589). 
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Figure 43. Large amplitude strain sweep results for ternary blends with different silica particles (from left to 

right: unmodified silica, DCDMS-modified silica and OTS-modified silica). Two compositions are shown in 

each case: PIB/PEO/silica=66.2/4.8/30 (square) and 88.4/1.6/10 (round).  Filled symbols show storage 

modulus, Open symbols show loss modulus. 
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Figure 44. Steady flow behavior for three ternary blends containing, from left to right, unmodified silica, 

DCDMS-modified silica and OTS-modified silica at two compositions: PIB/PEO/silica=66.2/4.8/30 (square) 

and 88.4/1.6/10 (round). At 30% particles, some data at high shear rates have been omitted due to indications 

of slip, e.g. non-monotonic changes in stress as rate increases. 

 

 

 

B.1 EXPERIMENTAL DETAILS 

B.1.1 Materials  

The two fluids used here are identical to those used in our previous research1, 4-6, 73, 74, 76: 

polyisobutylene (PIB, ρ=0.908 g/mL, MW = 2200 g/mol), and polyethylene oxide (PEO ρ=1.1 

g/mL, MW = 20000 g/mol). Both fluids are Newtonian under the conditions of the rheological 

experiments. The size distribution of silica particles is shown in Figure 41. 
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B.1.2 Surface modification of silica 

Dichlorodimethylsilane (DCDMS) and octadecyltricholorosilane (OTS) were used to increase 

hydrophobicity of particle surface. For DCDMS modification, the process was identical to that in 

Yang et al75. A gas stream laden with DCDMS vapor was fed into a tumbling barrel half-filled 

with particles for 60 minutes. For OTS modification, the procedure was similar to that used 

previously40. The silica particles were first heated at 380℃ in a vacuum oven to remove any 

residual organic compounds on the surface. Particles were then suspended in toluene, the OTS was 

added, and allowed to stir at 99℃  to accomplish hydrophobization. The mixture was stirred 

overnight, then washed five times with toluene, centrifuged, and dried to remove the solvent.  

B.1.3 Blend preparation 

Samples for validating changes in wettability due to silane modification were prepared as 

previously73, by mixing the three components at 80 ℃ where both polymers are molten. 70 vol% 

of PIB, 20 vol% of PEO and 10 vol% of particles were held inside the mixer at 80 ℃ for 15 minutes 

to ensure complete melting, and then mixed at 500 RPM for 5 minutes. The blend was then cooled 

in a refrigerator, the PIB removed by dissolving into octane, and the dispersed phase (PEO and 

particles) examined by SEM. This procedure and composition refers to Figure 15 only. 

The samples to be tested rheologically were all prepared by the “cold mixing” method 

described in Yang et al76. In this method, a PEO-in-PIB dispersion was first prepared under molten 

conditions and cooled to freeze the PEO drops. Particles were then mixed while this mixture was 

still at room temperature at which the PEO drops are still solidified. The details are as follows: A 

master batch of 80 wt% PIB and 20 wt% PEO was made using a custom mixer described 
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previously5, 74-76. The appropriate weight percentages of PEO and PIB were transferred into the 

mixer container and covered with a metal cap until it reached 80°C to ensure complete melting of 

the PEO. Once the temperature was reached, the PEO was blended into the PIB at 500 RPM for 5 

minutes. The blend was immediately transferred into a petri dish, sealed with parafilm, and placed 

in a refrigerator at about -5℃ for 20 minutes to complete the crystallization of the PEO drops.  

Separately, particles were dispersed into PIB. For the unmodified or the DCDMS-modified 

particles, simply adding the dry powder into the PIB and mixing by hand was adequate to realize 

a good dispersion. The OTS modification however was done in a toluene solvent, and those 

particles were dried at the end, resulting in some aggregation. Simply mixing the dried powder of 

OTS-modified particles into PIB gave a poor dispersion (large aggregates were evident). 

Accordingly, the OTS-modified particles were first dispersed in a small amount of heptane and 

sonicated for 1 hour. Excellent dispersion of particles was verified by optical microscopy. The 

appropriate amount of PIB was then added to this solution and the sample mixed with a spatula 

until most of the heptane evaporated, followed by complete drying of the heptane while stirring in 

the hood. Since the particles were never dry during this process, they transferred from a well-

dispersed state in heptane to a well-dispersed state in PIB. 

In either case, suitable quantities of the particles-in-PIB blend were then mixed with the 

PEO-in-PIB masterbatch to realize the desired composition for the ternary mixture. This mixing 

was done by hand with a spatula in a petridish at room temperature to keep the PEO drops solid 

(hence the term “cold mixing”). The samples were placed in vacuum overnight to eliminate air 

bubbles. The samples were then sealed with parafilm and stored in the refrigerator (to minimize 

sedimentation) until the rheology tests.  
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Before any rheological experiments, each dish was given about 20 minutes to reach room 

temperature before the parafilm was removed to avoid humidity condensing onto the sample. All 

the samples used for rheological experiments (i.e. except for Figure 15) used a PEO:particle ratio 

of 0.16 (Figure 40). A limited number of samples without PEO were also examined. For 

microstructure validation, SEM characterization was conducted using ZEISS Sigma500 VP on 

ternary blends after selectively removal of continuous PIB. 
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APPENDIX C 

SUPPLEMENTARY MATERIAL TO “A MICROSTRUCTURE-COMPOSITION MAP 

OF A TERNARY LIQUID/LIQUID/PARTICLE SYSTEM WITH PARTIALLY-

WETTING PARTICLES” 
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Figure 45. Morphological map and schematic structures of the investigated PIB/PEO/fully wettable silica 

ternary system. The ternary composition diagram is based on volume fractions. The red dashed path in the 

ternary diagram represents the phase inversion boundary, with the liquid continuous phase being PIB (non-

wetting phase) on the left-handside and PEO (wetting phase) on the right-handside. The grey region of the 

ternary diagram corresponds to high particle concentrations, which was not explored. Figure reproduced 

from T. Domenech and S. S. Velankar, J. Rheol., 2017, 61, 363-377. with permission 
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Figure 46. Summary of scanning microscope images at all compositions which are labelled in the pictures 

separately. The compositions, all listed in the form of PIB/PEO/silica, are as follows: (a) 80/20/00; (b) 50/50/0; 

(c) 40/60/0; (d) 20/80/0; (e) 89/1/10; (f) 87/3/10; (g) 70/20/10; (h) 60/30/10. (i) 54/36/10; (j) 45/45/10; (k) 

20/70/10; (l) 30/60/10 (m) 3/87/10. (n) 78/2/20; (o) 60/20/20. (p) 53/27/20; (q) 45/35/20; (r) 35/45/20; (s) 2/78/20; 

(t) 52/18/30. (u) 40/30/30; (v) 28/42/30; *sign refers to Figure 2c&d where the difference of addition partial 

wet particles is shown. 
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