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Numerically simulating granular materials’ dynamics during pneumatic conveying is a great 

challenge for today’s researchers. Existing mathematical models of granular flow have limitations 

that make it difficult to obtain good agreement between simulations and experimental results. In 

this thesis, a portable sensor, known as an inertial-measurement-unit (IMU), is used as a new tool 

to study pneumatic conveying particle dynamics at a relatively low conveying velocity (or dense-

phase flow) in horizontal gas-solid two-phase pipe flow. In order to get useful information, an 

IMU-based trajectory reconstruction algorithm has been developed. The algorithm uses the 

quaternion method to realize coordinate transfer between local and IMU frames, and an extended 

Kalman filter to filter the Gaussian white noise. The sensor’s dynamics information, such as global 

acceleration, is obtained by analysis of IMU data and is available for future research.  The IMU-

based trajectory reconstruction algorithm is verified by an experiment that imitates the motion of 

the IMU inside the pipe during pneumatic conveying. The IMU-based trajectory reconstruction 

algorithm shows accuracy on trajectory reconstruction results. The techniques that have been 

developed in this work are shown to provide a new inexpensive and straight-forward method with 

which to study particle dynamics.
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 INTRODUCTION 

Pneumatic conveying is one of the most popular methods of handling bulk powdered and 

granular materials in mining, chemical and agricultural industries. The process of pneumatic 

conveying has existed for more than 100 years. The first documentary record appears from 1856 

to 1876 in the ports of London, where people took advantage of pneumatic conveying technology 

to unload grain from ships (Klinzing, 2018). Pneumatic conveying shows great value in current 

daily life and industry. For example, an Ishinomaki Redcross Hospital in Japan uses a pneumatic 

tube system to achieve high speed transportation of chemicals and samples. The system saves time 

and human resources for logistics and transportation, which indirectly improves patient care. 

Providing nurses the ability to focus more on taking care of patients will lower the mortality risk 

(Patterson, 2007).  

In industry, pneumatic conveying is widely used to transport many types of materials.  

Vacuum conveyors are designed to transport powder and particles in an enclosed environment. 

This machine protects people from airborne pollution, and also shields materials from the 

influences of the surroundings.  

Even though pneumatic conveying has been used for over 150 years, it is still an open 

subject for study because there is still interest in making improvements in efficiency and energy 

consumption. The first study on record of pneumatic conveying was carried out in Germany by 
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Gasterstadt in 1924 (Klinzing, 2018). He studied the linear behavior of pressure drops in straight 

sections of pipe with solids flow. 

Today the motion of particles during pneumatic conveying is studied by numerous 

researchers. For example, a lot of researchers used numerical simulation to study particle dynamics 

(Matsumoto & Saito, 1970) (Tsuji, Tanaka, & Ishida, 1992) (Xiang & McGlinchey, 2004). They 

use theoretical models and solve the motion mathematically. Meanwhile, other scholars study the 

particle dynamics experimentally. Zheng et al. used a camera system to capture the motion of 

particles and analyzing the fluctuating velocity (Zheng & Rinoshika, 2017), and Wang et al. used 

electrostatic sensor to detect the velocity of particles in a flow (C. Wang, Zhang, Zheng, Gao, & 

Jia, 2017).  

In this paper, we are trying to create a new way to study particle dynamics by using an 

inertial measurement unit (IMU). An IMU is a small device that can record acceleration, angular 

velocity and fluctuating magnetic field while it’s moving. The idea behind this project is to put the 

IMU inside the pipe, embedded with the particles, such that it will move with the particles. By 

analyzing the acceleration, angular velocity, and magnetic field measurements of the IMU, we can 

infer information about the forces acting on it and can calculate its trajectory, thereby obtaining 

better understanding of the associated particle dynamics and trajectory of the particles. 

In this thesis, a new algorithm is developed to reconstruct the particle (i.e. sensor unit) 

trajectory from IMU data and to optimize the result through a Kalman filter. The framework of the 

algorithm is shown in Figure 1.1. The IMU deployment involves placing the IMU into the particle 

bed in the pipe. The test is then run by causing the flow to occur in the pipe and simultaneously 

collecting motion data with the IMU.  The data from the IMU is then transformed to the global 

frame, and then the trajectory of the IMU’s motion is reconstructed though the algorithm to be 
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described in this thesis. The Kalman filter is used to optimize the result. Finally, the kinetics 

information of interest may be obtained. 

 

 

Figure 1.1 Framework of the particle dynamics analysis algorithm: IMU deployment (the green circles 

represent particles, and blue block represents IMU); coordinate transformation, trajectory reconstruction, 

Kalman filter, and kinetics analysis. 

The structure of this thesis is based on the framework of the algorithm, and is organized as 

follows: Chapter 2 will focus on background knowledge, such as previous methods of studying 

pneumatic conveying and techniques used in this paper; Chapter 3 will introduce the experimental 

equipment and methods of pneumatic conveying experiment; Chapter 4 will introduce the step of 

obtaining rotation matrices to transfer the data to the global frame (by using quaternion method);  

Chapter 5 will show the trajectory reconstruction algorithm result of IMU moving in the pipe and 

discussions about the results; Chapter 6 will introduce an imitation experiment and discussion 

about the trajectory reconstruction algorithm results; Chapter 7 will provide information of 

Kalman filter development; and Chapter 8 will present conclusions and discussion of the 

algorithm.

IMU deployment 
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 BACKGROUND AND LITERATURE REVIEW 

Pneumatic conveying has been studied for about a century. There are many published 

works in the literature on the subject, some of which will be briefly reviewed in this chapter. 

In this paper, we focus on an algorithm to study the motion of particles by using an IMU 

as a tool. The background knowledge of IMUs will be reviewed. Accelerometers, gyroscopes and 

magnetometers will be studied, respectively.   

2.1 MOTIVATION FOR STUDYING PNEUMATIC CONVEYING 

Pneumatic conveying is popularly used because it offers the user the following seven 

advantages (Klinzing, Rizk, Marcus, & Leung, 2010):  

1. A variety of products can be transported while being isolated from environmental 

effects (e.g. dust).  

2. The transportation route is flexible and easily adjusted by pipeline.  

3. Distribution can be to many different areas in a plant and pick-up can be from several 

areas.  

4. Low maintenance and low manpower costs.  

5. One pipeline can be used for a variety of products.  

6. Pipelines provide a secure way to convey high-valued products.  



 

 

   

 

5 

7. Ease of automation and control.  

However, there are still some disadvantages with pneumatic conveying that need to be 

overcome. For example, complex flow phenomena take place during pneumatic conveying 

( Klinzing et al., 2010), such as suspension flow, slug flow, plug flow; and fluidized dense-phase 

flow phenomena may occur as gas and solid flow through horizontal pipes. The suspension 

destroys the ability of conveying and is not uncommon in pneumatic conveying systems. The drag 

force is pointed out to be the main contributor to the conveying line pressure drop for dilute phase 

(Mills, Jones, & Agarwal, 2004). When a particle experiences drag force, the particle shows 

acceleration or deceleration, whose effect of acceleration is not understand yet (Klinzing et al., 

2010). The acceleration effect was addressed by treating it as an added mass. This concept is 

inaccurate and misleading when applied above the intermediate Reynolds number regime, thought 

it works well for describing low Reynolds number motion. According to Klinzing et al., no clear 

pattern of the effect of acceleration under intermediate Reynolds number regime can be found from 

published results.  

The particular pneumatic conveying flow that is studied in this paper is called dense phase 

flow. The property of dense phase flow is variant depending on the properties of material being 

conveyed, the solid loading ratio and the conveying air velocity. However, the generality of dense 

phase flow is that the flow is over a deposited layer, while makes it move slowly in discrete or 

separate plugs of material. The dense phase flow is effective for transport and worthy of study 

because it has multiple benefits to the pneumatic conveying system, such as minimizing the 

influence on the pipe’s wall, protecting the conveying materials, saving energy and having less 

system installation cost.  
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 Methods of Studying Pneumatic Conveying 

Some researchers used high-speed cameras to analyze particle dynamics (F. Yan & 

Rinoshika, 2011; Zheng & Rinoshika, 2017). A schematic of their set-up is shown in Figure 2.1. 

The sheet of light is generated by the light source and lights up particles, shown in green. The 

high-speed-camera scanned the interrogation area and recorded video. The video was analyzed by 

particle image velocimetry (PIV) software. As a conclusion, they found the fluctuating velocity 

patterns and features of energy distribution. The advantage of this method was that it provides a 

visible and intuitive way to study the dynamics. However, the equipment of this study, for example, 

the high-speed camera is expensive. Moreover, the effort of calibrating the camera, applying 

wavelet to filter the noise, and analyzing the images to obtain results, is complicated and time 

consuming. 

 

Figure 2.1 Schematic of the high-speed PIV measurement system. (Re-draw from Zheng & Rinoshika, 2017) 

Light source 

High Speed Camera 



 

 

   

 

7 

Recently, Wang et al. reported that the electrostatic method is one of the most promising 

methods for measurement of pneumatic particle conveying (Miller, Baimbridge, & Eyre, 2000)(C. 

Wang et al., 2017). They mounted electrodes on the inner and outer surfaces of the pipe to find 

particle velocities. 

In that study, the charge signal from the electrostatic sensor was analyzed, then a harmonic 

wavelet transform was applied to decouple the signal. They found the velocity of particles and 

studied the relationship between particle velocity, the particle concentration distribution, and the 

particle flow rate. With this method, only the velocity of particles can be determined, and the set-

up is very complicated, requiring holes to be drilled into the pipes. 

Another technique to measure flow rate is presented by Yan (1996). The measurement 

relies on the detection of a rise in fluid temperature as a result of a constant heat input.. The mass 

flow rate is calculated by the following equation: 

 𝑀𝑠 =
𝐻

𝐶𝑝 ∙ ∆𝑇
 

(2-1) 

where 𝑀𝑠 is the flow rate; 𝐻 is the rate of heat input; 𝐶𝑝 is the specific heat of the fluid at constant 

pressure and ∆𝑇 the change in temperature measured upstream and downstream of the heated 

sensing section, which is ∆𝑇𝑐1 − ∆𝑇𝑐2. This method is more applicable to dense phase solids flow 

because the requirement of heat conduction. Yan also mentioned the major disadvantage of this 

flow rate meter is its poor repeatability. 

After studying pneumatic conveying by experimental methods, the information (such as 

air pressure and flow rate, etc.) is collected and used to develop a mathematical model for 

numerical simulation.  Numerical simulation to study particle dynamics has been widely applied 

since the 1950’s. The discrete element method (DEM) is used to model small scale particles’  
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behavior (Luding, 2008). The spring-damper system is accepted as the best way to model the 

contact force between particles and between particles and the wall as shown in Figure 2.2 (Tsuji 

et al., 1992; Xiang & McGlinchey, 2004). Xiang & McGlinchey studied the force between particles 

by solving equation of motion of impacting particles: 

 
𝑑2�̂�(�̂�)

𝑑�̂�2
+ 𝑎𝑥(�̂�)

1
4⁄
𝑑𝑥(�̂�)

𝑑�̂�
+ 𝑥(�̂�)

3
2⁄ = 0 

(2-2) 

Where 𝑎 =
𝑘

2(𝑚𝑞)
1

2⁄
, �̂� =

1

(𝑚𝑞)
1

2⁄
, 𝑥 = 𝑥𝑞,  𝑘 is the spring stiffness of the model, 𝑞 is the damping 

coefficient, 𝑚 is the particle mass and 𝑥 is the displacement. 

In that work particle motion was simulated and the result matched the plug motion that was 

captured by video. Xiang et al. successfully simulated plug formation, plug collapse, and plug 

movement but only in two dimensions. 

                               

Figure 2.2 The particle contact model for numerical simulation. 

(a.) the model used by Xiang & McGlinchey; (b). the model used by Tsuji et al. 

The previous methods are not only very sophisticated and expensive to set up and operate, 

but also measure force indirectly. Moreover, the experimental methods require obtaining 

acceleration through velocity differentials, and the acceleration is only two-dimensional. IMUs, 
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on the other hand, offer a new and relatively simple possibility with which to study particle 

dynamics in flows by measuring acceleration directly. Because IMUs measure motion in three 

dimensions, the particle dynamics can be understood in three dimensional views. 

2.2 INERTIAL MEASUREMENT UNIT (IMU) 

An inertial measurement unit is an electronic device which is composed of an 

accelerometer and gyroscope. It is used to measure acceleration and angular velocity in its own 

frame. Some IMUs also have a magnetometer, thermometer and piezometer, which can be used to 

measure environmental magnetic field strength, temperature and surface pressure. IMUs are 

popular devices for use in sports motion analysis and navigation. For example, Zhang placed two 

IMUs on a human arm to study the pitching motion (M. Zhang, 2015). The system he introduced 

can record body segment kinematics information, which can be used to help coaches quantitatively 

monitoring the athlete’s motion. In Zhang’s work, he attached two IMUs on upper arm and 

forearm, respectively. The motion of pitching was recorded by those IMUs. Then he used a 

kinematics reconstruction method to get arm trajectory, joint angle and velocity. Finally, he 

applied inverse dynamics to find joint force and moment of the arm. In that work the IMU was 

shown to be useful for monitoring throwing kinetics. 

Another extensive application of IMUs is in the navigation field. For example, quadcopters 

can be equipped with IMUs to help with navigation (Sa & Corke, 2012; Achtelik, Kuhnlenz, & 

Buss, 2009). According to Achtelik et al., an IMU was mounted on the quadcopter and used to 

measure attitude angle. The quadcopter was controlled and stablized based on attitude angle 

information from the IMU by Proportional-Derivative control. IMUs can commonly be found in 
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navigation systems where their data are fused with that of a Global Position System (GPS) (Lotters, 

Schipper, Veltink, Olthuis, & Bergveld, 1998; P. Zhang, Gu, Milios, & Huynh, 2005).  Based on 

Lotters et al.’s work, the error model of the IMU was found. The error was caused by bias and this 

error accumulates with time in the integrations. This is because the IMU is a so-called dead-

reckoning sensor. The process of dead-reckoning is performed by taking the last known position 

and the time at which it was obtained, and noting the average speed and heading since that time to 

the current time. To address these errors,  the Kalman filter was employed to get more accurate 

estimation of position and velocity. This was accomplished by utilizing the GPS observations in 

order to determine these errors which are then used to correct the IMU. 

IMUs have also been used as a tool to record motion trajectories. Wang et al. mounted an 

IMU on a pen (J. S. Wang, Hsu, & Liu, 2010). By calculating the trajectory of the pen, the authors 

were able to recognize the word that was written by the pen. They used quaternions to estimate the 

pen’s orientation. Because the working period for writing a letter is not long (about 4 sec), they 

handled the IMU’s drift by an orientation error compensation method. They believed the 

orientation error accumulation to be a linear function in the quaternion space. They modeled a 

linear function to eliminate error caused by the drift as follows: 

 𝒒(𝑘) = 𝒒(𝑘) − 𝒎𝑘 
(2-3) 

where 𝒒(𝑘) is kth quaternion; 𝑚 is the slope of their linear function. 

 Accelerometer 

Microelectromechanical systems (MEMS) accelerometers are widely applied in 

acceleration measurement because of their low-cost, easy installation and simple detection 
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electronics. Just as its name implies, the function of an accelerometer is acceleration measurement. 

The working principle of an accelerometer is measuring the displacement of a proof mass, which 

is caused by inertia of the mass itself – when the base moves, the proof mass resists motion, and a 

relative displacement ensues that is proportional to the base acceleration. The displacement is 

usually measured by potential difference.  

There are four kinds of mechanical acceleration sensing element designs in the low price  

market which are popular (Acar & Shkel, 2003), and they are introduced with four examples.  

The first type, for example the Endevco Model 7290A Microtron Z-axis accelerometer, is 

based on a suspension-beam array as shown in Figure 2.3. The design is made up of three layers. 

The proof mass structure in the middle layer is created using wet-etching techniques. The other 

two layers contain fixed capacitors. The model of this kind of device can be treated as a spring-

damper system. The suspension-beam array can be regarded as the spring and the gas in the interval 

is the damper. Inertia force causes displacement of the proof mass, which unbalances the 

capacitors. The capacitor unbalance can be measured to detect the displacement and therefore the 

acceleration. The gas in the interval is the damping fluid, so this kind of accelerometer has a small 

temperature influence.  
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Figure 2.3 Endevco 7290A-10 accelerometer. (a) Structural design; 

(b) SEM micrograph of the suspension-beam array (Acar & Shkel, 2003). 

The second kind of low-cost accelerometer is a dual-axis accelerometer built using surface 

micromaching techniques. A picture is shown in Figure 2.4. The deflection of this structure is 

measured using a differential capacitor. Central electrodes are attached to the proof mass and some 

others are fixed to the substrate. When the proof mass moves, the differential capacitor will be 

unbalanced, and again this unbalance is measured to infer the causal acceleration.  

 

Figure 2.4 The micrograph of the integrated chip of a surface-machined accelerometer (Acar & Shkel, 2003). 

The third kind of design, for example Silicon Designs SD2012-10, is a Z-axis 

accelerometer. An example schematic is shown in Figure 2.5. As shown in Figure 2.5, the proof 
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mass is held by a torsion bar. Beneath the sense element on the substrate, there are two conductive 

capacitors. The acceleration along the Z-axis will create a moment around the torsion axis and the 

capacitor will be unbalanced. Similar to the second method, the imbalance of the capacitor is 

proportional to acceleration. 

 

 

Figure 2.5 Schematic illustration of the sensing element of a Z-axis accelerometer (Acar & Shkel, 2003). 

The fourth technique, for example Motorola M1220D, is also a Z-axis accelerometer. As 

shown in Figure 2.6, the proof mass is placed on the geometric center. The center plate can be 

defected when there is acceleration. The change of distance of the mass to its original place will 

be measured by the changing of the capacitor’s value. Similar to the previous two designs, the 

capacitance change is proportional to acceleration. 

 

 

Figure 2.6 Micrograph of the sensing unit in Motorola Z-axis accelerometer (Acar & Shkel, 2003). 
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A triple-axis accelerometer is a combination of three single-axis accelerometers or a single-

axis accelerometer and a dual-axis accelerometer. For example, Figure 2.7 shows two kinds of 

such combinations. Figure 2.7a shows the triple-axis accelerometer, which is composed of three 

single-axis accelerometers. Those three single accelerometers have similar mechanisms to 

Endevco Model 7290A. Figure 2.7b shows the triple-axis accelerometer, which is composed of 

one single-axis accelerometer and one dual-axis accelerometer. The single-axis accelerometer has 

similar mechanism to Endevco Model 7290A and the dual-axis accelerometer has similar 

mechanism to Silicon Designs SD2012-10. 

The accelerometer used in this thesis is from BOSCH BMI160 sensor fusion. The detail of 

structural design is not found. 

 

 

Figure 2.7 a. photograph of three-axis accelerometer (Lemkin & Boser, 1999); 

b. Planar integration of three-axis sensing electrode design (Tsai, Liu, & Fang, 2012). 

 Gyroscope 

The MEMS gyroscope is another important sensor in IMUs. The function of a MEMS 

gyroscope is angular velocity measurement. The working principle of a gyroscope is similar to 
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that of a MEMS accelerometer in that they both take advantage of the changing of capacitor’s 

value due to changing distance. The topology structure of the gyroscope is shown in Figure 2.8. 

The proof mass in the gyroscope is constantly moving at a certain frequency. When the whole 

gyroscope rotates at some velocity, perpendicular relative displacement of the proof mass and the 

substrate will occur as a consequence of the spring (or flexible parts) deformation. This 

displacement is driven by Coriolis force, and the displacement causes potential difference in the 

capacitor, which can be measured to infer the rotation velocity by following equation: 

 
∆𝑉

∆Ω
=

2𝑚𝜔𝑑𝑦𝑑

𝑘
∙
𝜀0𝑙0
𝑔

∙ 𝑁 ∙ 𝑉𝑚 
(2-4) 

where ∆𝑉 is changed voltage; ∆Ω is rotation angle; 𝑚 is the proof mass; 𝜔𝑑 and 𝑦𝑑 respectively 

represent the resonant frequency and vibration amplitude of the drive mode; 𝑘  is the spring 

constant; 𝑙0 is overlap of comb fingers; 𝜀0 is dielectric property of dielectric; 𝑔 is the nominal gap 

of the fingers; 𝑁 is the number of drive comb fingers and 𝑉𝑚 is amplitude of the input voltage. 

 

 

Figure 2.8  The topology graphic of the lateral-axis DRIE gyroscope (Xie & Fedder, 2002). 
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A drawback to this gyroscope design is that a relatively large  defection of the gyroscope 

can be caused by  thermal effects (Leland, 2005; Chong et al., 2016). Because the gyroscope is 

fabricated with silicon, which is a high-temperature-sensitive material and its physical properties 

change dramatically with environmental temperature, the measurement will be affected by 

temperature. In this study, we don’t need to compensate for the temperature effect. The 

environmental temperature changes are negligible in our scenario, so the error produced by varying 

temperature can be ignored. However, calibration and turning on the gyroscope before doing the 

experiment to preheat the chip are required for each experiment. 

The gyroscope used in this thesis is from BOSCH BMI160 sensor fusion. The detail of 

structural design is not found. 

 Magnetometer 

Some IMUs are also equipped with magnetometers to help with navigation.  

Magnetometers are usually used to determinate the heading angle and direction. Magnetometers 

can be classified in accordance with their sensitivities, their physical size and their power 

consumption. In this section, three major types of MEMS magnetometers that are found in the 

market, which use different working principles, will be reviewed. 

The first kind of MEMS magnetometer uses the hall effect. A schematic diagram of this 

kind of magnetometer is shown in Figure 2.9. If magnetic flux B is present as shown in Figure 2.9, 

the current I will be affected by Lorentz force. This force changes the charge distribution on the 

plate, inducing another current. As a result, a potential difference can be measured as VH. The 

voltage exhibits a proportional relationship to the strength of the magnetic field, which is shown 

as follows: 
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 𝑉𝐻 = (𝐾𝐻 ∙
𝐼

𝑡
) ∙ 𝐵 

(2-5) 

where 𝑉𝐻 is the output voltage in volts; 𝐾𝐻 is the Hall effect co-efficient; 𝐼 is the current flow 

through the plate in amps; 𝑡 is the thickness of plate in mm; 𝐵 is the magnetic flux density in T. 

 

Figure 2.9 The schematic diagram of Hall-effect magnetometer. 

The second working principle of magnetometer is demonstrated in Figure 2.10. As shown 

in the figure, the torsion beam will rotate in the presence of an ambient magnetic flux. The rotation 

angle of the torsion beam can be measured by another system, and the angle has relationship to the 

strength of magnetic field in the environment. The relationship is shown as follows (Yang et al., 

2002): 

 �⃗� =
(�⃗⃗� × �⃗⃗� )𝑉𝑚𝑎𝑔

𝑘𝜙
 

(2-6) 
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where �⃗�  is the angular deflection; �⃗⃗�  is magnetization of the bar; volume 𝑉𝑚𝑎𝑔 is mechanically 

driven to align the magnetization with the external field �⃗⃗� ; 𝑘𝜙 is the torsional beam stiffness. 

 

 

Figure 2.10 The schematic representation of micromechanical 

torsion beam magnetometer operation (Yang et al., 2002). 

The third kind of magnetometer takes advantage of the magneto-resistive effect. A 

schematic diagram of this principle is shown below in Figure 2.11. The Wheatstone bridge 

arrangement is used to form a circuit, which exhibits an anisotropic feature. The resistance in each 

leg of the bridge will produce varied responses to different magnetic field strength. The output 

voltage can be used to calculate magnetic field using the equation: 

 ∆𝑀 =
∆𝑉

𝑉𝑠
∙ 𝑅 ∙ 𝑆𝑀  

(2-7) 

where ∆𝑀 is the change of magnetic field strength;  ∆𝑉 is the change of output voltage; 𝑅 is 

original resistance of each resistor; 𝑆𝑀 is a constant, which 𝑆𝑀 = −∆𝑅
∆𝑀⁄ . 

In this study, the magnetometer used is the third kind presented here.  
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Figure 2.11 Wheatstone bridge arrangement for sensing the 

applied magnetic field.
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 EXPERIMENT EQUIPMENT AND METHODS 

In this chapter, the equipment and methods of two experiments will be introduced, which 

are a pneumatic conveying experiment and an imitation experiment.  

3.1 PNEUMATIC EXPERIEMENT 

The pneumatic conveying experimental tests were conducted at the University of 

Pittsburgh. The schematic diagram of the pneumatic conveying experiments rig is shown in Figure 

3.1. Figure 3.2 is a photo of the pipe segment of the test rig. This pneumatic conveying system is 

a positive-pressure system. It’s comprised of the air compressor, air storage tank, standard flow 

meters, regulating valves, vacuum sucker, conveying pipe, receiving tank, and hopper. The end 

section of the pipe (about 3 meters) is made of transparent acryllic while the remaining sections of 

the pipe are made of stainless steel. The inner diameter of the pipe is 20mm. The pipe is installed 

horizontally, supported by a steel frame. 
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Figure 3.1 The rig of pneumatic conveying system. The part from A to B is a transparent plastic pipe, 

which allows easy observation of the particles’ and the IMU’s movement. The IMU is set at point A before 

every trial. 

 

Figure 3.2 IMU moves through the transparent part and falls into the red bucket. Y axis of global frame is 

along the pipe, horizontal; Z axis is straight up. 

IMU 

Y axis 

Z axis 

X axis 
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The conveyed particle is Kodak PET (polyethylene terephthalate), with density of 

1.3905g/cm3, and the average particle size is 8mm3. The velocity of air flow is from 4 m/s to 20 

m/s. By controlling the air velocity and feeding mass, the mass flow rate of the particle is 2.8 

kg/h. 

The IMU measurement data flow is shown in Figure 3.3. The IMU we use is an mlientlab 

MetaWearC Board. This is one of the smallest IMUs that can be found in the market, as shown in 

Figure 3.4. The manufacturer specification of the IMU is shown in Table 3.1. A small IMU is 

preferred so that it is close in size to the particles.  It is equipped with 10-axis motion sensing, 

which includes 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer and pressure sensor. 

It is powered by a CR2032 coin cell battery. The IMU is connected with a tablet by Bluetooth, the 

data is recorded in real time on the tablet using a software called MetaWear. After the data 

recording is finished, the data files are transmitted to the PC, where it they are analyzed by Matlab 

software. 

 

Figure 3.3 Structure of trajectory measurement data flow. The IMU is connected with tablet by 

Bluetooth and is then transmitted to the PC. 
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Figure 3.4 The size of IMU compared with a quarter coin and inside its plastic case.  

The accelerometer is shown in red box; the gyroscope is shown in blue box, and magnetometer is shown in 

orange box. 

Table 3.1Final position error of three experiments 

 Range Sensitivity Noise 

Accelerometer 

(16bit) 
±4g 8192LSB/g 180 μg/√Hz 

Gyroscope 

(16 bit) 
±1000°/s 32.8 LSB/°/s 0.008 °/s/√Hz 

Magnetometer 

(16bit) 
±1300μT 0.018 (0.001) N/A 

 

The experiment is conducted by the following steps: 

1.  Turn on the power supply to the vacuum, and ensure the air supply valve is fully open. 

The different air pressure can be achieved by tightening or loosening the air pressurizer.  

2. Turn on the vacuum and suck up 0.8 kilograms of particles into the hopper.  

3. After pressurizing the chamber, release the pressure and air flow pushes the particles 

through the pipe. At the end of the pipe the particles fall into the bucket.  

4. Turn off the valve and stop the air flow. 

5. Weigh the particles in the bucket.  

6. If the weight is not 0.8 kilograms, the steps above are repeated until the weight is 0.8 

kilogram.  It is worth mentioning that after repeating several times, a stable deposit 
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layer is formed in the pipe. The moveable particles are set on the deposit layer, which 

are required to be equidistributional to reach a steady state. When the captured weight 

is 0.8 kilograms, the particles in the pipe are considered to be equidistributional. 

7. After the particles are equidistributional, turn the IMU on and start logging data. The 

sample frequencies of accelerometer and gyroscope are both set at 100Hz. 

8. Put the IMU into the pipe at the point shown in Figure 3.1. The direction of Y axis of 

IMU frame is carefully aligned with global frame.  

9. Turn on the vacuum and suck up 8 kilograms of particles into the hopper. 

10. After pressurizing the chamber, release the pressure so that air flow pushes the particles 

and the IMU through the pipe. At the end of the pipe the particles and IMU will fall 

into the bucket. Then turn off the valve and stop the air flow. 

11. Stop logging data and transfer data files to PC.
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 KINEMATIC ANALYSIS 

The basic idea behind this study, involving use of an IMU to infer information about 

particle flows, is to use local frame linear acceleration and angular velocity to extract information 

about the IMU kinetics and kinematics in the global frame. Once the global frame data is obtained, 

it can be used to learn about forces between IMU and particles by using an inverse dynamics 

method. A trajectory reconstruction algorithm can be used to learn the IMU path.   In the pipe flow 

problem, the only two definitive pieces of known information are the path of the pipe and run time. 

Errors in the trajectory reconstruction algorithm can be assessed by comparing them with the 

pipe’s path.  

At any point in the motion, a rotation matrix is needed to transform acceleration and angular 

velocity between two frames, namely from the local frame (IMU frame 𝐹𝑖𝑚𝑢) to the global frame 

(𝐹𝑔𝑙𝑜𝑏𝑎𝑙). The ideal mathematical correlation between IMU accelerometer’s digital reading (not 

considering bias, noise and other interference factors) and linear acceleration in the global frame 

is written as: 

 �⃑�𝑔 = 𝑅𝑖
𝑔

∙ �⃑�𝑖 
(4-1) 

where �⃑�𝑔 is the acceleration in the global frame, 𝑅𝑖
𝑔

is the rotation matrix from 𝐹𝑖𝑚𝑢 to 𝐹𝑔, and �⃑�𝑖 

is the acceleration in the IMU frame. 
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To get the rotation matrix, Euler method is not considered to be used because of its 

disadvantages, such as gimbal lock and ambiguous correspondence to rotations (Dam, Koch, & 

Lillholm, 1998). The quaternion method is used for calculating frame rotations.  

The quaternion based rotation matrix construction technique is better because it does not 

have gimbal lock, and it is geometrically intuitive (Dam et al., 1998). Moreover, the quaternion-

based rotation matrix is coordinate system independent and has a simple composition method 

(which will be expounded in ensuing paragraphs), which gives advantage when calculating a series 

of rotations and programming.  

4.1 QUATERNION METHOD 

The quaternion method is invented by W R Hamilton in 1843 (Krishnaswami & Sachdev, 

2016). Hamilton found an ingenious way to multiply triplets. He defined quaternions as a package 

of four dimensional vectors from vector space ℍ (named after Hamilton). The quaternion 𝐪 can be 

written as complex form (Eq. ((4-2)):  

𝐪 = 𝛼 + 𝛽𝒊 + 𝛾𝒋 + 𝛿𝒌 
(4-2) 

while: 𝒊 = (1,0,0), 𝒋 = (0,1,0), 𝒌 = (0,0,1) in the local reference frame (IMU frame); 𝛼, 𝛽, 𝛾 

and 𝛿 are scalar terms. 𝒊, 𝒋 and 𝒌 components that define the rotation axis vectors in the reference 

frame, meanwhile 𝛼, 𝛽, 𝛾 and 𝛿 are the angles of rotation of the frame about the vector. 

Eq. (4-2) can be rewritten as Eq. (4-3): 
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𝐪 = [𝑞0 𝒒1 𝒒2 𝒒3]T = [
𝑞0

𝒒 ]
(4-3) 

where: 

𝑞0 = 𝛼, 𝒒1 = 𝛽𝒊, 𝒒2 =  𝛾𝒋, 𝒒3 =  𝛿𝒌, 𝒒 = [𝒒1 𝒒2 𝒒3]T
(4-4) 

According to quaternion’s definition, the 2-norm of the quaternion should equal to 1, or 

rotation will not be pure rotation, but will have some scale factor (Kuipers, 1999). In other words, 

each quaternion must satisfy Eq. (4-5). 

√𝑞0
2+𝒒1

2 + 𝒒2
2 + 𝒒3

2 = 1
(4-5) 

According to the definition of quaternion rotation operator 𝐿𝑞(𝐯) (Kuipers, 1999), acting

on a unit vector 𝐯, the coordinate fixed rotation can be expressed by follow equation: 

𝐿𝑞(𝐯) = 𝐪 × 𝐯 × 𝐪∗

(4-6) 

In Eq. (4-6), 𝐯 is the 3-by-1 rotated vector; and 𝐪∗ is the complex conjugate of 𝐪.

Another two important properties of quaternion are (Kuipers, 1999): 

𝐪∗ × 𝐩∗ = (𝐩 × 𝐪)∗

(4-7) 

𝐩 × 𝐪 = 𝑝0𝑞0 − 𝒑 ∙ 𝒒 + 𝑝0𝒒 + 𝑞0𝒑 + 𝒑 × 𝒒
(4-8) 

Assuming 

𝐮 = 𝐿𝑞(𝐯) = 𝐪 × 𝐯 × 𝐪∗, 𝐿𝑝(𝐮) = 𝐩 × 𝐮 × 𝐩∗

(4-9) 

and we can obtain: 

𝐿𝑝(𝐮) = (𝐩𝐪)∗ × 𝐮 × (𝐩𝐪)∗ = 𝐿𝑝𝑞(𝐯)
(4-10) 
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The order subscript of 𝐿𝑝𝑞(𝐯) in Eq. (4-10) means the sequence of operator which is

relevant with time order: 

𝐪(𝑡 + ∆𝑡) = 𝐪(∆𝑡) × 𝐪(𝑡) 
(4-11) 

Based on Eq. (4-5), the expression can be written as a function about 𝜙(𝑡) and 𝐯, which 

can be shown as 

𝐪 = r(𝜙(𝑡), 𝒖) = cos(𝜙(𝑡)) + 𝒖 ⋅ sin(𝜙(𝑡)) 
(4-12) 

where 𝒖 is the unit vector of the rotation axis, which comes from: 

𝒖 =
𝐰(𝑡)

‖𝐰(𝑡)‖ (4-13) 

where 𝐰(𝑡) is the angular velocity vector, more specifically, (𝑤1𝒊, 𝑤2𝒋,𝑤3𝒌).

Then 𝐿𝑞(𝐯) can be rewritten as follows:

𝑳𝒒(𝐯) = 𝐑(𝝓(𝑡), 𝒖) = 𝒖 × 𝐯 ∙ sin(2𝜙(𝑡)) +𝐯 ∙ cos(2𝜙(𝑡)).
(4-14) 

which, by replacing 2𝜙(𝑡)  with rotation angle 𝜃(𝑡) can be written as: 

𝑳𝒒(𝐯) = 𝐑(𝜽(𝒕), 𝒖) = 𝒖 × 𝐯 ∙ sin(𝜃(𝑡)) +𝐯 ∙ cos(𝜃(𝑡)).
(4-15) 

The quaternion’s expression becomes: 

𝐪 = r(𝜃(𝑡), 𝒖) = cos
𝜃(𝑡)

2
+ 𝒖 ⋅ sin

𝜃(𝑡)

2 (4-16) 

Applying Eq. (4-8) and Eq. (4-16), the derivative of 𝐪(t) can be written as: 
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lim
∆𝑡→0

(
𝐪(𝑡 + ∆𝑡) − 𝐪(𝑡)

∆𝑡
)

= lim
∆𝑡→0

[(cos
𝜃(∆𝑡)

2
− 1) cos

𝜃(𝑡)

2
− 𝒖∆ ⋅ 𝒖sin

𝜃(𝑡)

2
sin

𝜃(∆𝑡)

2
+

⋅ sin
𝜃(𝑡)

2
(cos

𝜃(∆𝑡)

2
− 1) + 𝒖∆ ⋅ cos

𝜃(𝑡)

2
sin

𝜃(∆𝑡)

2

+ 𝒖∆ × 𝒖sin
𝜃(𝑡)

2
sin

𝜃(∆𝑡)

2
]/∆𝑡 

(4-17) 

where 𝐪(∆𝑡) = cos
𝜃(∆𝑡)

2
+ 𝒖∆ ⋅ sin

𝜃(∆𝑡)

2
, 𝐪(𝑡) = cos

𝜃(𝑡)

2
+ 𝒖 ⋅ sin

𝜃(𝑡)

2
. 

When ∆𝑡 tends to be zero, two approximations are made. The two approximations are: 

 𝜃(∆𝑡) = ‖𝛚(𝑡)‖∆𝑡,𝛚(𝑡) = ‖𝛚(𝑡)‖𝒖∆ 
(4-18) 

Then this limit problem can be solved by taking advantage of L'Hôpital's rule, which will 

give us the result: 

 �̇�(𝑡) = lim
∆𝑡→0

(
𝐪(𝑡 + ∆𝑡) − 𝐪(𝑡)

∆𝑡
) =

1

2
‖𝐰(𝑡)‖𝒖∆ × 𝐪(𝑡) =

1

2
𝐰(𝑡) × 𝐪(𝑡) 

(4-19) 

 

One step further, Eq. (4-19) can be written as: 

 �̇�(𝑡) =
1

2
[

0 𝑤1 𝑤2 𝑤3

−𝑤1 0 −𝑤3 𝑤2

−𝑤2 𝑤3 0 −𝑤1

−𝑤3 −𝑤2 𝑤1 0

] [

𝑞0

𝑞1

𝑞2

𝑞3

] 
(4-20) 

For convenience, Eq. (4-20) is rewritten as 

 �̇�(𝑡) =
1

2
Ω ∙ �⃗⃗� (𝑡) 

(4-21) 
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where Ω = [

0 𝑤1 𝑤2 𝑤3

−𝑤1 0 −𝑤3 𝑤2

−𝑤2 𝑤3 0 −𝑤1

−𝑤3 −𝑤2 𝑤1 0

] , �⃗⃗� (𝑡) = [

𝑞0

𝑞1

𝑞2

𝑞3

]. 

Eq. (4-21) can be solved by second order integration or higher order integration (for 

example, fourth order integration by applying Runge Kutta method). For example, solving Eq. 

(4-21) by second order integration, the result will be: 

 𝐪(𝑡) = 𝑒
1
2Ω∙𝑡𝐪(0),𝐪(𝑡 + ∆𝑡) = 𝑒

1
2Ω∙∆𝑡𝐪(𝑡) (4-22) 

where 𝐪(0) is the initial quaternion which represents the initial status of the IMU. The procedure 

to find the initial quaternion will be explained later. 

The quaternion to rotation matrix relationship is derived by Eq. (4-6) and Eq. (4-8).  

 

𝐫 = 𝐪∗ × 𝐯 × 𝐪 = (2𝑞0
2 − |𝒒|2)𝐯 + 2(𝒒 ∙ 𝐯)𝒒 + 2𝑞0(𝒒 × 𝐯) = R𝑣

𝑟𝐯

= [

2𝑞0
2 + 2𝑞1

2 − 1 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 2𝑞0
2 + 2𝑞2

2 − 1 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 2𝑞0
2 + 2𝑞3

2 − 1

] [

𝑣1

𝑣2

𝑣3

] 
(4-23) 

R𝑣
𝑟  is a 3-by-3 rotation matrix based on coordinate fixed rotation, which transfers the frame from 

coordinate 𝑣 to coordinate 𝑟. 

4.2 QUATERNION APPLICATION IN IMU FRAME TRANSFER 

While the IMU is moving inside the pipe, being pushed by particles, rotation of the IMU 

occurs as it exhibits six degree-of-freedom motion. The measurements from accelerometers, 

angular rate gyros, and magnetometers are in the IMU (body) frame. In order to get these quantities 

in the global frame, a coordinate transfer must take place. 
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First, in order to find the initial attitude angle, the global frame should be defined, as shown 

in Figure 4.1. In this step zero yaw angle 𝜓 is assumed to simplify the calculation process, which 

will lead to an intermediate frame. The intermediate frame can be transformed to global frame by 

solving the real 𝜓, which will be discussed in Chapter 5. Then the process assumes that the global 

frame is fixed and that the IMU frame is rotated to a certain posture. Because there is no rotation 

acting on the Z axis, any posture can be made by the product of 𝑅𝑥(𝜙) and 𝑅𝑦(𝜃). Supposed that 

the rotation about Y-axis is followed by the rotation about X-axis. The sequence of rotation matrix 

is: 

 𝑭𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑅𝑦(𝜃)𝑅𝑥(𝜙)𝑭𝑖𝑚𝑢 
(4-24) 

where 𝑭𝑔𝑙𝑜𝑏𝑎𝑙  is the global frame and 𝑭𝑖𝑚𝑢 is the IMU frame, as mentioned before. 

 

Figure 4.1 Frame transform 

By the Euler method, the rotation matrix is shown below: 
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 𝑅𝑥(𝜙) = [

1 0 0
0 cos(𝜙) sin(𝜙)

0 −sin(𝜙) cos(𝜙)
] , 𝑅𝑦(𝜃) = [

cos(𝜃) 0 − sin(𝜃)
0 1 0

sin(𝜃) 0 cos(𝜃)
] (4-25) 

Eq. (4-24) can be rearranged as: 

 𝑭𝑖𝑚𝑢 = (𝑅𝑦(𝜃)𝑅𝑥(𝜙))−1𝑭𝑔𝑙𝑜𝑏𝑎𝑙  
(4-26) 

Since the gravity is the only force applied on IMU when it is motionless, the acceleration 

in global frame is [0 0 𝑔]T. The relationship between acceleration in IMU frame and global 

frame when IMU is motionless can be written as Eq. (4-27). 

 [

𝑎𝑥

𝑎𝑦

𝑎𝑧

] = [

1 0 0
0 cos(𝜙) −sin(𝜙)

0 sin(𝜙) cos(𝜙)
] [

cos(𝜃) 0 sin(𝜃)
0 1 0

−sin(𝜃) 0 cos(𝜃)
] [

0
0
𝑔
] 

(4-27) 

By solving Eq. (4-27), the roll angle 𝜃 and the pitch angle 𝜙 are derived from the filtered 

acceleration signal. 

 𝜃 = tan−1
𝑎𝑥

√𝑎𝑦
2 + 𝑎𝑧

2
, 𝜙 = tan−1(−

𝑎𝑦

𝑎𝑧
) 

(4-28) 

The parameter of quaternion representation is computed by following equations (Kuipers, 

1999): 

 

𝑞0 = cos (
𝜓

2
) cos (

𝜃

2
) cos (

𝜙

2
) + sin (

𝜓

2
)sin(

𝜃

2
)sin (

𝜙

2
) 

𝑞1 = cos (
𝜓

2
) cos (

𝜃

2
) sin (

𝜙

2
) − sin (

𝜓

2
)sin(

𝜃

2
)cos (

𝜙

2
) 

𝑞2 = cos (
𝜓

2
) sin (

𝜃

2
) cos (

𝜙

2
) + sin (

𝜓

2
)cos(

𝜃

2
)sin (

𝜙

2
) 

𝑞3 = sin (
𝜓

2
) cos (

𝜃

2
) cos (

𝜙

2
) − cos (

𝜓

2
)sin(

𝜃

2
)sin (

𝜙

2
) 

(4-29) 
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By applying Eq. (4-29), the initial quaternion 𝐪(0) is found: 

 𝐪(0) = [cos (
𝜃

2
) cos (

𝜙

2
) , cos (

𝜃

2
) sin (

𝜙

2
) , sin (

𝜃

2
) cos (

𝜙

2
) ,−sin(

𝜃

2
)sin (

𝜙

2
)]T 

(4-30) 

The sample rate of the gyroscope is 100Hz that time interval of each data is regarded as ∆𝑡 

in Eq. (4-22). The Eq. (4-22) can be written as: 

 𝐪(𝑘 + 1) = 𝑒
1
2Ω∙∆𝑡𝐪(𝑘), 𝑘 = 0,1,⋯ (4-31) 

where 𝐪(𝑘) is the kth quaternions. 

As Eq. (4-23) indicated: 

 𝑭𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐑𝑖𝑚𝑢
𝑔𝑙𝑜𝑏𝑎𝑙

𝑭𝑖𝑚𝑢 
(4-32) 

where 𝐑𝑖𝑚𝑢
𝑔𝑙𝑜𝑏𝑎𝑙

= [

2𝑞0
2 + 2𝑞1

2 − 1 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 2𝑞0
2 + 2𝑞2

2 − 1 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 2𝑞0
2 + 2𝑞3

2 − 1

]. 

Now we are able to transfer acceleration from the IMU frame to the global frame at each 

time step of the data. 

4.3 TRAJECTORY CALCULATION 

After getting acceleration in the global frame, the effect of gravity must be subtracted so 

that the acceleration can be integrated to obtain velocities and positions of the IMU vs time. The 

‘real acceleration’ in global frame 𝑨𝑟 is calculated by equation of the subtraction as shown in Eq. 

(4-33): 
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𝑨𝑟 = (𝐑𝑖𝑚𝑢

𝑔𝑙𝑜𝑏𝑎𝑙
𝑨𝑖𝑚𝑢 − [0 0 1]T） ∙ 𝑔 (4-33) 

The velocity can be derived by integrating acceleration 

 𝑽 = ∫ (𝑨𝑟)𝑑𝑡
𝑡

𝑜

 
(4-34) 

where 𝑽 is velocity and 𝑡 is motion duration. 

The trajectory can then be derived by integrating again 

 𝑷 = ∬(𝑨𝑟)𝑑𝑡

𝑡

0

 
(4-35) 

where 𝑷 is the position of the IMU. 
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 EXPERIMENT RESULTS AND DISCUSSION 

The pneumatic conveying experiment introduced in Chapter 3 has been done twenty times, 

each producing similar results. An example case is shown here for discussion.  

5.1 EXPERIMENT RESULT 

The raw data from the IMU in the experiment is shown in Figure 5.1. The gyroscope’s data 

is used to detect the start of motion of the IMU and the accelerometer’s data is used to detect the 

end of motion. The part before point A in Figure 5.1 is defined as prior static phase, which is 

covered by blue. The part between point A and B is defined as the dynamic phase, which continues 

for 1.68 seconds in this example. During this phase the IMU is moving with the particles inside 

the pipe. The dynamic phase is zoomed in Figure 5.2 for a better look. The point B is when the 

IMU starts to fall into the bucket at the end of the pipe. The IMU is doing free-fall between point 

B and B’. The period between point B and C is defined as the posterior static phase. The IMU sits 

inside the bucket during this time period. Between points C and D the IMU is taken out of the 

bucket and is placed on a flat table after point D.  
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Figure 5.1 Example raw data from IMU in an experiment, (top) accelerometer data, (bottom) angular rate 

gyro data. A is the motion start point; B is the motion end point of pneumatic conveying process; 

the section between C and D is the process of finding the IMU and taking it out of the bucket. 
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Figure 5.2 Zoomed-in example raw data of dynamic phase from IMU 

By studying the raw gyroscope data, in this example the IMU rotates fast from 9.82s to 

10.15s, for about 0.33s. After that the IMU barely rotates for about 1.15s. Then it starts rotation 

again when it approaches the pipe exit.  

The initial roll angle (𝜙) and the initial pitch angle (𝜃) of the IMU are derived from prior 

static acceleration data by using Eq. (4-28) in Chapter 4, which is restated below. 

 𝜃 = tan−1
𝑎𝑥

√𝑎𝑦
2 + 𝑎𝑧

2
, 𝜙 = tan−1(−

𝑎𝑦

𝑎𝑧
) 

(5-1) 

Considering the limitation of arctangent, Eq. (5-1) is rewritten as Eq. (5-2) (J. S. Wang et al., 

2010). 
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𝜙 = tan−1 (
𝑎𝑦

𝑎𝑧
) , for 𝑎𝑧 < 0 

𝜙 = tan−1 (
𝑎𝑦

𝑎𝑧
) , for 𝑎𝑧 > 0 and 𝑎𝑦 > 0 

𝜙 = tan−1 (
𝑎𝑦

𝑎𝑧
) , for 𝑎𝑧 < 0 and 𝑎𝑦 < 0 

(5-2) 

Then by using the algorithm which is derived in Chapter 4, we are able to transfer 

acceleration at all points in time in the IMU frame to the intermediate frame. Since the IMU is a 

dead-reckoning sensor, the data for an initial period is reliable. The first 1 second’s trajectory result 

is yawed 𝜓 degree to make the motion direction aligned with Y axis, and by doing this, the 

intermediate frame is transported to the global frame. The result has been plotted in Figure 5.3. 

The E point is an impact point where moving particles collide with or begin initial acceleration of 

the static IMU. After that point the acceleration primarily changes in the Y axis. In other words, 

the IMU is under an acceleration and deceleration process in Y, while it experiences little motion 

in the other two directions. The result of velocity is shown in Figure 5.4, the magnitude of average 

velocity is about 3m/s. 
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Figure 5.3 IMU Acceleration in global frame 

 

Figure 5.4 IMU Velocity in global frame 

A single and double integration, respectively, is applied to the acceleration signal to get the 

IMU velocities and positions along the trajectory.  The resulting trajectory for the data set in this 

example is shown in Figure 5.5. The start point is shown at the red star, whose coordinates are [0, 

E 
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0, 0]. The end point is shown at the blue star, whose coordinates are [-0.283, 3.059, -0.465]. The 

trajectory is shown as a black line.  For comparison, a pipe is overlaid as a reddish transparent 

cylinder. As shown in Figure 5.5a and Figure 5.5b, the IMU is moving forward along Y axis. The 

IMU appears to be uplifted and then it moves down slightly in the Z direction as shown in Figure 

5.5c. This kind of feature matches with what we have observed in the experiment. 

 

 

Figure 5.5 Plot of the IMU trajectory. (a) is an oblique view, (b) is lateral view and (c) is the front view. The 

black solid line is the IMU’s trajectory and the reddish transparent cylinder represents the pipe. 

However, the end portion of the trajectory of the IMU goes outside of the limitation of the pipe. 

The intuitive conclusion is that the acceleration and/or gyro data are not equal to the true value. 

(a) 

(b) (c) 
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This is because the accelerometer’s and gyroscope’s signals are composed of noise and drift. The 

mathematic model of each signal is defined as:  

 𝒂𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 = 𝒂𝑡𝑟𝑢𝑡ℎ + 𝑓𝑑
𝑎(𝑡) + 𝑛𝑜𝑖𝑠𝑒𝑎;𝒘𝑔𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒 = 𝒘𝑡𝑟𝑢𝑡ℎ + 𝑓𝑑

𝑤(𝑡) + 𝑛𝑜𝑖𝑠𝑒𝑤 
(5-3) 

where 𝒂𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟  and 𝒘𝑔𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒  are the raw data received from the IMU, 𝒂𝑡𝑟𝑢𝑡ℎ and 𝒘𝑡𝑟𝑢𝑡ℎ 

are the true values of the motion, 𝑓𝑑
𝑎(𝑡) and 𝑓𝑑

𝑤(𝑡) are drift functions for the accelerometer and 

gyroscope with respect to time, and 𝑛𝑜𝑖𝑠𝑒𝑎  and 𝑛𝑜𝑖𝑠𝑒𝑤  are the white Gaussian measurement 

noise. In order to get accurate acceleration and angular velocity data for motion, we have to find 

𝒂𝑡𝑟𝑢𝑡ℎ and 𝒘𝑡𝑟𝑢𝑡ℎ. 

 𝒂𝑡𝑟𝑢𝑡ℎ = 𝒂𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 − 𝑓𝑑
𝑎(𝑡) − 𝑛𝑜𝑖𝑠𝑒𝑎; 𝒘𝑡𝑟𝑢𝑡ℎ = 𝒘𝑔𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒 − 𝑓𝑑

𝑤(𝑡) − 𝑛𝑜𝑖𝑠𝑒𝑤 
(5-4) 

5.2 CHAPTER CONCLUSION 

In this chapter, we introduced the pneumatic conveying experiment equipment, method 

and IMU trajectory result. The trajectory reconstruction algorithm works, but because of the error 

in raw data, we can’t get an accurate trajectory result. In order to get an accurate trajectory, we 

have to address errors in the measurement, described in Eq. (5-1). As mentioned in Chapter 2, the 

IMU is a dead-reckoning sensor, which accumulates error with time. 
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 IMITATION EXPERIMENT 

Some researchers reported Allan Variance is a good tool for characterization of an IMU 

accelerometer and gyroscope in stationary state (Variance, El-sheimy, Hou, & Niu, 2015;  Hou & 

El-Sheimy, 2004). In this paper, because our interest is IMU’s behavior in dynamic state, a novel 

way to study IMU is applied. we designed a linear actuator to study the relationship between IMU’s 

state of motion and IMU’s output (mainly studied accelerometer and gyroscope’s output). The 

imitation experiment will be explained below. 

The IMU movement inside the pipe system is invisible, as it is buried among the particles, 

and is generally uncontrollable for testing purposes. In order to study the IMU’s performance and 

find a baseline for Kalman filter design, we constructed a device to operate an imitation 

experiment, which imitates the IMU’s motion during pneumatic conveying. The IMU’s motion is 

controlled by actuators, such as steppers and DC motors in our device. A 3D CAD model is shown 

in Figure 6.1. 
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Figure 6.1 The assembly diagram of imitation experiment 

This is a two-degree-freedom device. It realizes yaw by the semicircular block under the 

rail; and it achieves forward and backward movement by a motor-driven belt along the rail. An 

Arduino board is used to control stepper motor’s speed. With the speed control, the commanded 

velocity, accepted to be the true value, can be determined and used as reference. 

6.1 EQUIPMENT 

The linear rail we use is a V-Slot® 20×40×1500 (mm) from Openbuilds®. The stepper 

motor is a NEMA 17 high torque motor that moves 1.8 deg/step and has a gear ratio of 18:1. The 

stepper motor driver is EasyDriver from Sparkfun®. The control board is Arduino Uno Rev3 from 
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Arduino®. The output of the power supply is set to 10V to drive the stepper motor. A photo of the 

test setup is show in Figure 6.2. 

 

Figure 6.2 Photo of the imitation experiment test setup. 

The rail 

The IMU 

The stepper 

Arduino board 

The Belt 
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 Control method 

In the imitation experiment the motor is controlled by an Arduino Uno. The electrical 

wiring is shown in Figure 6.3. 

 

Figure 6.3 The electrical wiring for control system 

The controller enables moving IMU at known speeds and directions. 

6.2 EXPERIMENTAL METHODS 

In order to study the IMU’s behavior and performance under different motions, several 

different groups of experiments are conducted.  
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Experiment 1: The speed of the IMU plate is set to be 0.125m/s and it is prescribed to 

move forward 1.25m from point A to point B (as shown in Figure 6.4a); then the IMU plate stays 

at point B for 2 seconds; then the plate travels back to point A at a speed of 0.125m/s and it stops 

at point A. 

It’s worth mentioning that in pipe tests the IMU travels at about 3m/s as shown in Figure 

5.3. The commanded velocity in the imitation experiment is not 3m/s because of the following 

reason. As mentioned in Chapter 2, the IMU is a dead-reckoning sensor and the error accumulates 

with time. In order to test our trajectory reconstruction algorithm, because we were constrained on 

the distance that could be traveled, we intentionally increased the traveling time to exacerbate the 

errors. Therefore, the velocity is set to be 0.125m/s. The backward trajectory is not a part of motion 

imitation, but brings convenience for conducting experiment repeatedly to make sure the result has 

generality.   
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Figure 6.4 Experiment 1 setup. a). Sketch of the IMU path in the imitation experiment (top view). The IMU 

moves from point A to point B at constant speed of 0.125m/s, and goes back to point A after staying at point B 

for about 2 seconds; b). The picture of the actual setup with IMU body frame. 

A sample of raw accelerometer data (with only the bias removed) from the IMU is shown 

in Figure 6.5a. It shows that the whole motion, moving from A to B and then B to A, takes 23.35 

seconds (9.82s to 33.18s). Before the 9.82s point in Figure 6.5, the IMU is static. The initial 

quaternion is solved using information in this period of time. And as highlighted by red circles, a 

positive peak will follow with a negative peak, vice versa. The reason for this phenomenon might 

be explained by a spring-damper model of the accelerometer. After applying a force, the spring-

1.25m 

Y axis 

Z axis 
X axis 

 

 
 X axis 

Y axis 
(a). Sketch of the IMU path 

(b). The picture of the actual setup 
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damper system will oscillate. This does not show influence on trajectory by comparing the result 

of noise and bias model in Chapter 5. However, the inverse peak is unrealistic and creates difficulty 

for force analysis. 

It’s worth mentioning that the data shown here is from point A to point B and back to point 

A. This is because the velocity and trajectory result are used to compare with the noise and bias 

model’s simulation results shown in Chapter 7. As time increases, the characteristic of the error 

will be emphasized, which will show great similarity to the simulation result. 
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Figure 6.5 Results of experiment one (a). Acceleration result in three axes in experiment 1. (b). Gyro result in 

three axes in experiment 1. The transparent blue area is Prior static phase, the green area is Posterior static 

phase, and the uncovered area is dynamic phase. 

The acceleration is transferred from the IMU frame to the global frame by using the 

algorithm described in Chapter 4, the result is shown in Figure 6.6.  In Figure 6.6, only the motion 

(a) 

(b) 
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part (dynamic phase) is plotted, and the time stamp starts from zero. Because the IMU is set to 

move along the X axis, the data in Figure 6.6 shows significant acceleration change only along the 

X axis. But there are small fluctuations at 10.65s and 12.66s in the Y axis, highlighted with a red 

oval in the figure.  

 

Figure 6.6 the acceleration of experiment 1 in the global frame 

By integration, we are able to get the velocity and trajectory, which are plotted in Figure 

6.7a and b, respectively. As shown in Figure 6.7, for a short time, the velocity obtained by 

processing the IMU’s data is close to the designed velocity, and the calculated position is close to 

the true position. However, as time increases, the difference between the calculated value and the 

designed (true) value increases. 
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Figure 6.7 The comparsion of true values and experiment results (a). Comparison of the velocity calculated 

by acceleration in the global frame and the velocity calculated by stepper motor’s command speed of 

experiment 1; (b). comparison of the position calculated by velocity in the global frame and the true position 

calculated by stepper motor’s command speed 

(a) 

(b) 
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Experiment 2: This experiment is similar to Experiment 1 but now a global rotation of the 

path (about its longitudinal axis) is introduced during the motion.  The speed of the IMU plate is 

set to be 0.125m/s and the plate moves forward 1.25m from point A to point B (as in Experiment 

1 and as shown in Figure 6.4); while moving forward, the rail rotates about its center axis from 0 

° to 30°, and then back to 0° (as shown in Figure 6.8b and Figure 6.9) ; then the plate will stay at 

point B for 2 seconds; then the plate will travel back to point A at 0.125m/s and stop at point A 

with no further rotation of the rail. 
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Figure 6.8 Photo of experiment 2 setup.  a). The picture of actual setup with IMU body frame; b). Photo 

depicting rotation of the rail: (i) rotated 0 degree; (ii) rotated 30 degrees. 

i ii 

The IMU 
The IMU 

(b). Photo depicting rotation of the rail 

(a). The picture of the actual 

setup (same as in the fig. 6.4) 
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Figure 6.9 Sketch of the rotated trajectory of experiment 2. The original point is 

marked in yellow, trajectory is shown in red line. 

The measured acceleration in three axes in the global frame is shown in Figure 6.10. As 

shown in Figure 6.11, the velocity result is similar to Experiment 1, where, as time increases, the 

error between calculated value and the designed (true) value increases.  Command speed is only 

shown in X axis because the speed of Y and Z axis are manually controlled. The calculated 

trajectory is shown in Figure 6.12. 
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Figure 6.10 The acceleration of experiment 2 in global frame 

Figure 6.11 The velocity of experiment 2 in global frame 
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Figure 6.12 The oblique drawing of calculated trajectory of experiment 2 

Experiment 3: This experiment is similar to Experiment 2 but now a body-fixed rotation 

is added to the IMU during the motion.  The speed of the IMU plate is set to be 0.125m/s as it 

moves forward 1.25m from point A to point B (as in Experiment 1 and as shown in Figure 6.4); 

while moving forward, the rail rotates about its center axis from 0 ° to 30°, and then back to 0° (as 

in Experiment 2 and as shown in Figure 6.8 and Figure 6.9) ; then the plate will stay at point B for 

2 seconds; then the plate will travel back to point A at 0.125m/s and stop at point A. As shown in 

Figure 6.13, during the whole motion, the IMU rotates about the X axis in the body frame at 

constant speed 2 rasd/s. Figure 6.14 shows a sketch of the trajectory. Because the rotation axis 

passes though the IMU’s center, Figure 6.14 is actually the same as Figure 6.9.   
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Figure 6.13 Photo of IMU mounted on motor-equipped plate to enable rotation about Z axis. The X and Z 

axis of IMU body frame is shown by orange and red arrow, respectively. 

 

Figure 6.14 Sketch of the rotated trajectory of experiment 3. The original point is marked 

in yellow, trajectory is shown in red line 
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The measured acceleration in three axes in the global frame is shown in Figure 6.15. The 

results show that acceleration in X axis has a lot of noise, acceleration in Y and Z oscillate around 

0. The oscillation might be because the IMU is not rotated about Z axis ideally, the rotation is 

actually decentered. The eccentric motion could cause IMU fluttering while moving. 

By taking first-order integration, the velocity is shown in Figure 6.16. And the trajectory 

is shown in Figure 6.17.  The trajectory drifts a lot. The displacement in the X-axis is almost 10m 

and 3m in the Z-axis, which shows great error. 

 

Figure 6.15 The acceleration of experiment 3 in global frame 
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Figure 6.16 The velocity of experiment 3 in global frame 

 

Figure 6.17 The oblique drawing of trajectory of experiment 3 
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6.3 CHAPTER CONCLUSIONS 

In this chapter, the experimental methods of the simulated experiment were introduced. 

The brief summary of three scenarios is shown in Table 6.1. 

Table 6.1 Summary of imitation experiment method 

 Experiment 1 Experiment 2 Experiment 3 

DOF 1 2 3 

Description 
IMU is moving straight 

along global X axis 

IMU is yawing about global 

Y while moving straight 

along global X axis 

IMU is rotating around global Z axis, 

yawing about global Y and moving 

straight along global X axis 

 

Each experiment was conducted ten times and the average error of final position is listed 

in Table 6.2, and standard deviations are shown in parentheses. Those errors exist because the IMU 

is composed of dead-reckoning sensors, the error will accumulate with time. A close-loop feedback 

control system is needed to optimize the output, which is the ultimate purpose of this study. 

Table 6.2 Final position error of three experiments 

 X axis (m) Y axis (m) Z axis (m) 

Experiment 1 0.002 (0.004) 0.010 (0.016) 0.086 (0.096) 

Experiment 2 0.177 (0.087) 0.007 (0.003) 0.012 (0.540) 

Experiment 3 0.102 (0.1435) 0.018 (0.001) 0.041 (0.011) 

 

In the next chapter, a Bayes filter will be studied, and applied to optimize our trajectory 

algorithm. 
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 BAYES FILTER 

An IMU is composed of multiple dead-reckoning sensors, such as accelerometer and 

gyroscope. As mentioned in Chapter 2, the dead-reckoning sensors accumulate errors with time. 

The error will be magnified when integral operation is involved. For example, assuming the error 

is a constant signal, after first-order integration, the error of the result is a linear function of time; 

after second-order integration, the error of the result is a quadratic function of time, and so on. 

In our case, acceleration data is used to calculate a trajectory by doing double integration, 

which will cause a large error for events that last more than a second. To better understand how 

Gaussian white noise and drift influence the result, a simulation was created.  To conduct the 

simulation, a noise and drift model of acceleration is defined as: 

 𝒂𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝒂𝑡𝑟𝑢𝑡ℎ + 𝑓𝑑(𝑡) + 𝑛𝑜𝑖𝑠𝑒 
(7-1) 

where 𝑎𝑡𝑟𝑢𝑡ℎ is true acceleration; 𝑓𝑑(𝑡) is a drift function with respect to time (we treat it as a 

linear function: 𝑓𝑑(𝑡) = 𝑐𝑜𝑛𝑠𝑡 ∙ 𝑡); and noise is Gaussian white noise. First and second order 

integrals are applied to calculate velocity and position, respectively. The result is compared with 

the true acceleration. 

Figure 6.7 shows how noise and drift affect the velocity and trajectory calculations. The 

ideal acceleration (assumed to be acceleration in the global frame) is drawn in red and is made up 

to be the acceleration that causes the sensor to move in a step-wise velocity pattern. The blue line 

is the simulated data, with noise included.  Figure 7.1b shows the resulting calculated velocity, 
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which is the first integral of Figure 7.1a’s data. Figure 7.1c is the trajectory, which is the result of 

second integral of Figure 7.1a’s data. Figure 7.2 and Figure 7.3 show the influence of the result by 

noise and drift, respectively. It’s noteworthy that the shape of result in Figure 7.1 is similar to 

Figure 6.7, which suggests that the cause of error in Figure 6.7 is noise and drift (or only noise) of 

the IMU measured acceleration.  The error caused by drift cannot be reduced or eliminated by a 

filter in the frequency domain, such as a low-pass filter. Therefore, dead-reckoning sensors must 

be periodically reset by using extra information. 

 

Figure 7.1 Noise and drift effects to trajectory reconstruction result  

a. the red line is designed acceleration, the blue line is designed acceleration composed with noise and drift; b. 

red line is velocity from designed acceleration, blue line is velocity from noisy acceleration; c. red line is 

position from designed acceleration, blue line is position of noisy acceleration 
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Figure 7.2 Drift effects on trajectory reconstruction result  

a. the red line is designed acceleration, the blue line is designed acceleration composed with  

drift; b. red line is velocity from designed acceleration, blue line is velocity from drifted acceleration;  

c. red line is position from designed acceleration, blue line is position of drifted acceleration 
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Figure 7.3 Noise effects on trajectory reconstruction result 

a. the red line is designed acceleration, the blue line is designed acceleration composed with noise; 

b. red line is velocity with designed acceleration, blue line is velocity with noisy acceleration; 

c. red line is position with designed acceleration, blue line is position of noisy acceleration 

According to other references, external sensors such as Global Positioning System (GPS) 

are widely used as correction data for dead reckoning systems (Zhang, Gu, Milios, & Huynh, 2005; 

Fakharian, Gustafsson, & Mehrfam, 2011). For example, Zhang et al. used position measurement 

as reference and compared with position calculated by IMU to calculate Kalman filter gain of the 

system. The trajectory result showed high accuracy when the Kalman filter was applied. Those 

works suggest that closed-loop feedback is able to compensate the result, which requires external 

information provided by another sensor. With extra information, the drawbacks of each sensor in 

the IMU are compensated, which provides more accurate state estimation. The next step of our 

work is to build a close-loop control system to compensate state vector and output results.  Bayes 
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filters, such as the Kalman filter (KF) (S. H. P. Won, Golnaraghi, & Melek, 2009; Caron, Duflos, 

Pomorski, & Vanheeghe, 2006) and particle filters (PF) (S. Won, Melek, & Golnaraghi, 2010; 

Touil, Zribi, Choquel, & Benjelloun, 2007), are widely used as close-loop feedback systems 

according to previous works. 

Therefore, in this paper, we take advantage of the Kalman filter (KF) algorithm to improve 

our trajectory algorithm. 

7.1 EXTENDED KALMAN FILTER 

The Kalman filter, also known as linear quadratic estimation, has long been used as an 

algorithm to find the best estimate of states by combining measurements from various sensors in 

the presence of noise. It is used as a filter in many cases since the states usually are noisy signals. 

The Kalman filter algorithm is popularly applied to IMUs (S. Won et al., 2010; Mirzaei & 

Roumeliotis, 2008). With Kalman filters, the noise and drift can be attenuated. The whole process 

can be demonstrated as KF structure shown in Figure 7.4.  The Kalman filter can be divide into 

two parts: prediction step and correction step. In the prediction step, the state equation is used. The 

next state is predicted by the previous state. Then the predicted state is substituted into the 

measurement model and the gain is derived by comparing the output with the result measured by 

the sensor. The state is compensated by adjusting the gain. 
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Figure 7.4 A complete picture of the operation of the Kalman filter (Welch & Bishop, 2006) 

In this study, we introduce a new method to build a Kalman filter system. Because the IMU 

is moving inside a pipe system with particles undergoing pneumatic conveying, GPS signals are 

too weak to be used as they cannot penetrate the pipe and reach the IMU, and cameras can’t be 

reliably used to locate the IMU’s position. Furthermore, magnetic field is heavily perturbed (or 

disturbed) by surroundings, such as metal materials and electronic devices, so using 

magnetometers to correct the quaternions is not available for our case. 

To do that, we present a novel way to detect position by magnetic field distribution, which 

will be introduced in the following section. Since the strength of magnetic field at certain points is 

a constant when the environment is stable, the strength of magnetic field could be used to detect 

the IMU’s position. That position information can be detected by the IMU’s magnetometer and 

compared with the trajectory result calculated by the algorithm we developed in Chapter 3. Then 

the correction step can be applied. However, because the measurement model is no longer linear, 

and the error distribution is no longer Gaussian, adjustments to the Kalman filter approach must 

be made. The state transition and observation models of the Kalman filter are required to be linear 
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functions. In order to make the Kalman filter valid for this non-linear system, extended Kalman 

filter is implemented. 

Extended Kalman filter (EKF) is designed for non-linear state estimation. EKF linearizes 

the non-linear state function and measurement function locally by obtaining Jacobian matrices, 

which are used to predict and update the state. 

 The system model 

For a recap (as mentioned in Chapter 3), there are two reference frames relative to IMU 

motion, which are the IMU frame and the observation frame. The observation frame is also called 

the global frame. All the sensors in an IMU make measurements in the IMU frame. The X axis of 

the global frame is aligned with the direction tangent to the primary section of pipe. The Z axis of 

the global frame is in the opposite direction to the gravity force. Both the IMU frame and global 

frame use a right-handed coordinate system. 

 Process State 

We define a state vector x as follows: 

 𝒙 = [𝒒 𝒑 𝒗 𝒃𝒂 𝒃𝒈]𝐓 
(7-2) 

which is composed of the rotation quaternion 𝒒, position 𝒑, velocity 𝒗, tri-axis accelerometer and 

gyroscope bias vectors 𝒃𝑎 and 𝒃𝑔, respectively. In our model, IMU biases are modeled as random 

walk processes driven by the zero-mean white Gaussian noise processes from acceleration and 

quaternion, 𝑛𝑎 and 𝑛𝑞, respectively. The covariance matrix of 𝑛𝑎 is Σ𝑎
𝑎

𝑘 = ∆𝑡𝑎𝜎𝜔
2 , where ∆𝑡𝑎 is 
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the system sampling interval of accelerometer, 𝜎𝜔
2  is the covariance of Gaussian noise. The 𝑛𝑞 is 

modeled as follows (Sabatini & Member, 2006): 

 𝑛𝑞 = −
∆𝑡

2
Ξ𝑞𝑣𝑞 = −

∆𝑡𝑎

2
[
[𝑒 ×] + 𝑞0I

𝑒 T
] 𝑣𝑞  

(7-3) 

where 𝑣𝑞  is white Gaussian measurement noise. 

The state equation is:  

 �̇� =

[
 
 
 
 
�̇�
�̇�
�̇�
𝒃�̇�

𝒃�̇�]
 
 
 
 

=

(

 
 

Ω(𝑡) ∙ 𝒒 + 𝒏𝑞

𝒗

𝑅𝑖𝑚𝑢
𝑔𝑙𝑜𝑏𝑎𝑙

�̃�𝑏 − 𝒈 + 𝒏𝑎

𝒏𝑎

𝒏𝑞 )

 
 

 
(7-4) 

In Eq. (7-4), Ω(𝑡)  is the same as in Eq. (4-21); 𝑅𝑖𝑚𝑢
𝑔𝑙𝑜𝑏𝑎𝑙

 is the rotation matrix which 

transfers coordinates from the IMU frame to the global frame; �̃�𝑏 is the acceleration in the IMU 

frame, which is defined as: 

 �̃�𝑏 = 𝑎𝑚 − 𝑏𝑎  
(7-5) 

where 𝑎𝑚 is acceleration measurement from IMU, and 𝑏𝑎 is the bias of the accelerometer. 

The state transition vector equation is: 

 

[
 
 
 
 
𝒒(𝑘 + 1)
𝒑(𝑘 + 1)
𝒗(𝑘 + 1)

𝒃𝑎

𝒃𝑞 ]
 
 
 
 

= Φ(Ω(𝑡), Δ𝑡)

[
 
 
 
 
𝒒
𝒑
𝒗
𝒃𝑎

𝒃𝑞]
 
 
 
 

+ 𝐺 [

𝒂
𝒈
𝒏𝑎

𝒏𝑞

] 
(7-6) 

where Φ(Ω(𝑡), Δ𝑡) =

(

 
 
 
 

𝑒
1
2
Ω∙∆𝑡 0 0 0 𝑒

1
2
Ω∙∆𝑡

0 I I ∙ ∆𝑡 𝑅𝑖𝑚𝑢
𝑔𝑙𝑜𝑏𝑎𝑙 ∙

∆𝑡2

2
0

0 0 I 𝑅𝑖𝑚𝑢
𝑔𝑙𝑜𝑏𝑎𝑙 ∙ ∆𝑡 0

0 0 0 I 0
0 0 0 0 I )
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𝐺𝑐 =

(

 
 
 
 

0 0 0 𝑒
1
2
Ω∙∆𝑡

𝑅𝑖𝑚𝑢
𝑔𝑙𝑜𝑏𝑎𝑙 ∙

∆𝑡2

4
−I ∙

∆𝑡2

2
𝑅𝑖𝑚𝑢

𝑔𝑙𝑜𝑏𝑎𝑙 ∙
∆𝑡2

2
0

𝑅𝑖𝑚𝑢
𝑔𝑙𝑜𝑏𝑎𝑙 ∙

∆𝑡

2
−I ∙ ∆𝑡 𝑅𝑖𝑚𝑢

𝑔𝑙𝑜𝑏𝑎𝑙 ∙ I ∙ ∆𝑡 0

0 0 I 0
0 0 0 I )

 
 
 
 

. 

Then the a priori state estimate is expressed as: 

 𝑥 𝑘+1
− = Φ(Ω(𝑡), Δ𝑡)𝑥 𝑘 + 𝐺𝑐𝑢 

(7-7) 

where 𝑢 = [𝑎 𝑔 𝑛𝑎 𝑛𝑞]T. 

The process noise covariance matrix 𝑄𝑑  will have the following expression: 

 𝑄𝑑 = Φ(Ω(𝑡), Δ𝑡)𝐺𝑐𝑄𝑐𝐺𝑐
TΦ(Ω(𝑡), Δ𝑡)T 

(7-8) 

where 𝑄𝑐  is the covariance of system noise and depends on IMU noise characteristics. 

The a priori error covariance matrix is then expressed as shown in Eq. (7-9): 

 𝑃𝑘+1|𝑘
− = Φ(Ω(𝑡), Δ𝑡)𝑃𝑘|𝑘Φ(Ω(𝑡), Δ𝑡)T + 𝑄𝑑  

(7-9) 

 Measurement State 

Measurement method 

In order to find the reference information, we developed a new method to detect position 

of the IMU. The magnetometer calibration is conducted by the method shown in Appendix A.3.  

As shown in Figure 7.5, a series of magnets are placed under the belt and inside the slot. 
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Figure 7.5 Magnets are placed along the rail, marked with red circles. There are 8 magnets at each 

location and they are installed evenly inside the slot, the distance between each of them is 0.16m. 

As the IMU is moved past the magnets, the strength of magnetic field is obtained by the 

magnetometer. An example result is shown in Figure 7.6. Intuitively we know that when the 

magnetometer passes a pole of a magnet, there will be a peak appearing in the measured magnetic 

field magnitude. In the experiment, two separates IMU motions are captured: 1. the IMU moves 

in constant speed controlled by the stepper motor; 2. the IMU moves at variable speed controlled 

manually (in each case the IMU is moved only in one direction). The magnetic field strength of 
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constant speed motion (blue) is shown in Figure 7.6a, while the variable speed case is shown in 

red. Since the sample frequency is higher than the frequency of the passing peaks, the number of 

peaks captured is the same in each case (Figure 7.6a). The captured peaks are used to divide the 

magnetic field into multiple sections, which provide a lot of insight for the next step.  

As shown in Figure 7.6a, the characteristic of the blue line is captured and matched with 

the characteristic of red line. For example, the peak point 𝛼 in the blue line is considered matching 

with the peak point 𝛼′ in red; the bottom point 𝛽 in blue is considered to be matching with the 

bottom point 𝛽′ in red. In 1476 sample points, 82 of them can be paired, which indicates that there 

are 41 pairs of matching points. The position of the red line can be synchronized in time and 

position, since the sensor is moved at constant speed in this case. Therefore, every point of stepper-

controlled position is defined in both time and space. The position of the 41 paired points from the 

variable speed motion (red) have the same position as their stepper-controlled counterparts (blue).  

The remaining positions are obtained by linear interpolation method. As a result, the positions can 

be plotted as shown in Figure 7.6a, where the red line is a result of manual control, and the blue 

line is controlled by stepper motor.  

 



 

 

   

 

72 

 

 

Figure 7.6 position detection method (a). magnetic field magnitude vs. time, the red 

line is manually controlled, and the blue line is controlled by stepper; 

(b). position vs. time, the red line is manually controlled, and the blue line is controlled by stepper. 
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Measurement model: 

The position and magnetic disturbance can be written as the function: 

 𝑝𝑚 = 𝑓(𝑚) + Ψ 
(7-10) 

where 𝑓(𝑚) is a piecewise function; and Ψ is the error of estimating position by applying function 

𝑓(𝑚). From Eq. (7-10) the measurement model 𝑧 is described as: 

 𝑧𝑘 = 𝑝𝑚 
(7-11) 

The Jacobian matrix for the measurement vector is then computed as: 

 𝐹𝑘+1 =
𝜕

𝜕𝑥 𝑘+1
𝑧𝑘+1|𝑥 𝑘+1=𝑥 𝑘+1

− = [04×3 I3×3 010×3]
T 

(7-12) 

The covariance matrix of the measurement model 𝑅𝑘+1 is: 

 𝑅𝑘+1 = 𝜎𝑝
2𝐈 

(7-13) 

The Kalman gain is computed as: 

 𝐾𝐾+1 =
𝑃𝑘+1

− 𝐹𝑘+1
T

𝐹𝑘+1𝑃𝑘+1
− 𝐹𝑘+1

T + 𝑅𝑘+1

 
(7-14) 

The a posteriori error state is written as: 

 𝑥 𝑘+1 = 𝑥 𝑘+1
− + 𝐾𝐾+1[𝑧𝑘+1 − 𝐹𝑘+1𝑥𝑘] 

(7-15) 

The a posteriori error covariance matrix is then computed as: 

 𝑃𝑘+1 = 𝑃𝑘+1
− − 𝐾𝐾+1𝐹𝑘+1𝑃𝑘+1

−  
(7-16) 
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 Computer simulation 

For the purpose of algorithm testing, the motion data is collected from the IMU when it is 

moved by the linear actuator. The sampling frequencies of the accelerometer, gyroscope and 

magnetometer are 100Hz, 100Hz and 25Hz, respectively. The sensed gravitational field 𝒈 =

[0 0 𝑔]T, in which 𝑔 is assumed to be 9.81 m/s. The magnetometer is calibrated and normalized 

using the method introduced in Appendix A.3. The filter parameters are listed in Table 7.1. The 

covariance has been optimized by experimentation. The result of 𝑄𝑐  is computed offline.  

 
Table 7.1 Parameters for the Kalman filter. 

𝜎𝜔 𝜎𝑎  𝜎𝑏𝑎  𝜎𝑏𝜔 𝜎𝑝 𝜎𝑔 

0.001m/s2 0.01m/s2 0.001m/s2 0.001rad/s 0.1mm 0.01rad/s 

 

The outline of the complete algorithm is shown in Figure 7.7. First all sensors are 

calibrated, then the prior static attitude is estimated from static accelerometer’s data. The prior 

static attitude is then used with gyroscope to get initial rotation matrices. The quaternion is applied 

here. The acceleration in the IMU frame is transferred to the global frame for all data points and 

gravity is subtracted to determine the dynamic acceleration, which is integrated to find IMU 

velocity and position. The information of acceleration in the global frame, as well as the calculated 

velocity and position results are used as inputs to the Kalman filter. The location detected by using 

the magnetometer is applied as a comparison signal. The output of the Kalman filter is the 

compensated position, velocity and acceleration. 
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Figure 7.7 The outline of trajectory reconstruction algorithm: ab is acceleration in the IMU frame; 

a0 is acceleration in stable state; q0 is initial quaternion element;  

w0 and wn are initial angular velocity and motion angular velocity.  

 

 Results and discussion 

The Kalman filter algorithm validation is carried out by running the three groups of 

imitation experiments introduced in Chapter 4. The difference from Chapter 4 is that the motion 

here is only from point A to point B. As the truth reference, the length of total displacement is 

used. The coordinates of the start and end points are [0, 0, 0] and [-1.250, 0, 0], respectively. After 

the trajectory result is compensated, first-order differentiation is applied to find velocity and 

second-order differentiation is applied to find acceleration. The accelerations derived from Chapter 

4 are used to compare with the accelerations we derived in this chapter by second-order differential. 
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 Experiment 1 

The trajectory result is shown in Figure 7.8. The trajectory without Kalman filter shows 

large error at the end point, which is [-1.070m, -0.045m, -0.502m]. The end point with Kalman 

filter is [-1.208m, 0.010m, -0.086m], which almost matches [-1.250m, 0,0]. The error with Kalman 

filter is [0.008m, 0.010m, 0.086m], while without Kalman filter is [0.180m, 0.045m, 0.502m]. 

 

Figure 7.8 Trajectory comparison between Kalman filtered and base trajectory algorithm. 

Figure 7.9 shows the global acceleration with and without Kalman filter. It shows that 

without Kalman filter, the signal is noisier.  In the X axis data, there are two inverse peaks as 

shown in the plot. After applying Kalman filter, those two inverse peaks largely disappear, which 

is more accurate. In addition, it is notable that the end portion of acceleration in the Y axis almost 

becomes zero when the Kalman filter is applied.  
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Figure 7.9 Comparison of global frame acceleration comparison between w/ and w/o Kalman filter. 

 Experiment 2 

Similar to the results for Experiment 1, the trajectory results for Experiment 2 are shown 

in Figure 7.10. The trajectory without Kalman filter shows large error at the end point, with 

coordinates at [-2.482m, -0.279m, -0.050m]. The end point coordinates with Kalman filter are [-

1.375m, -0.007m, -0.013m], which are much closer to [-1.250m, 0,0].  The error with Kalman 

filter is [0.125m, 0.007m, 0.013m], while without Kalman filter is [1.232m, 0.279m, 0.050m]. 

 

inverse peaks 
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Figure 7.10 Comparison of trajectory w/ and w/o Kalman filter. 

(a). oblique drawing; (b). lateral view; (c). top view. The black points in oblique drawing are terminal 

points of w/ and w/o Kalman filter; the black points in lateral and top views represent the location when 

maximum roll angle is reached. 

Because the linear movement is combined with rotation in Experiment 2, there are 

displacements in the Y and Z directions. The geometrical sketch of a cross-section of the trajectory 

is shown in Figure 7.11. 

The lengths of b and c are the true values of displacement when the roll angle is 30˚, 

which in the Y axis should be 0.09m and in the Z axis should be 0.0241m, as shown in 

expression below. 𝑏 = (1 − 𝑐𝑜𝑠 (
𝜇

6
)) ∙ 𝑎 = 2.41𝑐𝑚, and 𝑐 = 𝑠𝑖𝑛 (

𝜇

6
) ∙ 𝑎 = 9𝑐𝑚 

The calculated displacement in the Y axis is 0.167m with the Kalman filter while it is 

0.401m without the Kalman filter; and the calculated displacement in the Z axis is 0.023m with 

the Kalman filter while it is 0.131m without the Kalman filter. 

(a). 

(b).
(c). 
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Figure 7.11 Geometrical sketch of cross-section of trajectory for Experiment 2. The black line 

represents the distance from the IMU to the center of rotation, where a=18cm. 

b is calculated by 𝐛 = (𝟏 − 𝐜𝐨𝐬 (
𝝁

𝟔
)) ∙ 𝐚 = 𝟐. 𝟒𝟏𝒄𝒎,and 𝐜 = 𝐬𝐢𝐧 (

𝝁

𝟔
) ∙ 𝐚 = 𝟗𝒄𝒎 

Figure 7.12 shows the global acceleration comparison between trajectory calculated using 

the base algorithm and the trajectory calculated using the Kalman filter. The noisy signal is filtered 

by the algorithm and the signal is much smoother. 

  

Figure 7.12 The global acceleration comparison between data w/ and w/o Kalman filter 
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 Experiment 3  

As shown in Figure 7.13, after the Kalman filter is applied, the magnitude of noise in the 

X direction is attenuated, and the amplitude of oscillation in Y and Z directions are also decreased. 

As a result, the velocity in Figure 7.14 is more accurate. The trajectory results for Experiment 3 

are shown in Figure 7.15. The trajectory without Kalman filter shows large error at the end point, 

with coordinates at [-10.200m, -9.261m, 2.516m]. The end point coordinates with Kalman filter 

are [-1.342m, -0.017m, 0.033m], which are much closer to [-1.250m, 0,0].  The error with Kalman 

filter is [0.092m, 0.017m, 0.033m], while without Kalman filter is [8.950m, 9.261m, 2.516m]. In 

Figure 7.15, the result of trajectory with the Kalman filter is much better than before. Multiple 

circles are shown in Figure 7.15c. Those circles support the assumption we made before, the IMU 

is not rotated about Z axis (global frame) but doing eccentric motion. The peak displacement 

caused by roll is [0.017m,0.026m]. Comparing with theoretical displacement [0.024m,0.09m], the 

error is [0.007m,0.017m]. However, the error is relatively small compared to the result without 

Kalman filter. 
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Figure 7.13 Comparison of global frame acceleration comparison between w/ and w/o Kalman filter. 

 

Figure 7.14 velocity in global frame w/ Kalman filter. 
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Figure 7.15 Comparison of trajectory w/ Kalman filter. 

(a). oblique drawing; (b). top view; (c). lateral view. 

 Overall of Results 

Each experiment was conducted ten times and the average error of final position is listed 

in Table 7.2. The standard deviation of error in each axis is shown in parentheses. 

Table 7.2 Final position error comparison 

 

X axis (m) Y axis (m) Z axis (m) 

w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF 

Experiment 1 0.002 (0.004) 0.188 (0.015) 0.010 (0.016) 0.044 (0.063) 0.086 (0.096) 0.502 (0.781) 

Experiment 2 0.177 (0.087) 1.225 (0.197) 0.007 (0.003) 0.279 (0.099) 0.012 (0.540) 0.050 (0.021) 

Experiment 3 0.102 (0.1435) 11.201 (3.183) 0.018 (0.001) 10.895 (2.311) 0.041 (0.011) 2.645 (0.182) 
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7.2 CONCLUSION OF EKF TEST RESULTS 

In this chapter, we studied the use of an extended Kalman filter in the trajectory calculation 

using IMU data. In particular, a novel application of the Kalman filter was introduced in which 

external magnets were used along the path and magnetic field magnitude was used as a reference 

signal.  The mathematical model was constructed, and the imitation experiment was used to 

validate the EKF algorithm. 

As shown in Table 7.2, the position error is much smaller when the Kalman filter is applied. 

As a consequence, the noisy acceleration signal is filtered when Kalman filter is applied. The effect 

of EKF is significant.  
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 CONCLUSION AND DISCUSSION 

This thesis set out to solve the problem of better understanding particle flow kinematics in 

pneumatic conveying by using IMUs as a low cost and convenient method compared with other 

methods. However, the IMU is composed of dead-reckoning sensors, which means that errors will 

accumulate in their results with time. It is necessary to find a compensation method to mitigate or 

eliminate the error. 

In this paper, we introduced a new trajectory reconstruction algorithm. The new Kalman 

filter algorithm mitigates the errors that appear in the IMU’s trajectory from the base algorithm.  

Its effect is repeatable, and it shows in the global acceleration plots that the noise of acceleration 

is diminished. The unrealistic inverse peaks are almost gone. The function of this algorithm is 

significant in reducing errors. 

However, there are some limitations of this study.  

1. The size of IMU is much bigger than the particle, and the density of the IMU is higher 

than that of the particles as well. This will cause inaccuracy when we try to speculate on 

the particle’s motion from IMU.  

2. The extended Kalman filter has limitation when the system is highly nonlinear, and the 

approximation might not be good enough. 

The first limitation can be solved only when technology is advanced enough. When the 

manufacturing level advances to the point where the size of the IMU can be shrunk to the same as 
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the particles, we can better use the algorithm to detect particle movement during pneumatic 

conveying. 

The second limitation can be solved by using another estimation technique called the 

unscented Kalman filter (UKF), or another nonlinear state estimator based on a very similar 

principle called the particle filter (PF). These may be effective, however, their computational cost 

will grow compared to the Kalman filter method presented here. 
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APPENDIX 

CALIBRATION OF INERTIAL MEASUREMENT UNIT 

Although commercial IMUs are calibrated before they leave the factory, it is important for re-

calibration to be done before they are used in the lab because the bias of the sensors may change 

over time, and the environment may influence the result as well. For example, the environmental 

temperature and moisture may have an effect on the bias and drift of a gyroscope (M. Zhang, 

2014).  

The calibration method for each sensor in this paper is presented below.  

A.1 CALIBRATION OF ACCELEROMETER 

As mentioned in previous section, the bias and other effects of accelerometer will cause 

error in our trajectory reconstruction result. In this work, we provide a novel way to calibrate the 

accelerometer, which uses gravitational acceleration as a reference. First of all, we define the 

measurement model. 

The accelerometer is a triplet of sensors with perpendicular sensitivity axes. As mentioned 

in Eq. 4.1, the output can be defined as in the following equation. 
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 [

𝑎𝑥
𝑖𝑚𝑢

𝑎𝑦
𝑖𝑚𝑢

𝑎𝑧
𝑖𝑚𝑢

] = 𝑆𝑎 ∙ 𝐴𝑎 ∙ ([

𝑎𝑥
𝑡𝑟𝑢𝑒

𝑎𝑦
𝑡𝑟𝑢𝑒

𝑎𝑧
𝑡𝑟𝑢𝑒

] + [

𝑏𝑥
𝑎

𝑏𝑦
𝑎

𝑏𝑧
𝑎

] + 𝑁 + 𝐷(𝑡)) 
(A-1) 

where [𝑎𝑥
𝑖𝑚𝑢 , 𝑎𝑦

𝑖𝑚𝑢 , 𝑎𝑧
𝑖𝑚𝑢]T is the raw data obtained from IMU (m/s2); 𝑆𝑎 is the scale matrix, which 

is used to correct the sensitivity error; 𝐴𝑎  is the effect of misalignment; [𝑎𝑥
𝑡𝑟𝑢𝑒, 𝑎𝑦

𝑡𝑟𝑢𝑒, 𝑎𝑧
𝑡𝑟𝑢𝑒]T is 

the true acceleration; [𝑏𝑥
𝑎 , 𝑏𝑦

𝑎, 𝑏𝑧
𝑎]T  is the bias vector; 𝑁  is the noise vector; 𝐷(𝑡)  is the drift 

function for time. The accelerometer calibration involves finding the scale matrix, misalignment 

effect and bias vector so that true acceleration can be found for any measurement.  

We use a spherical motion fit to calibrate the triple-axis accelerometer. The theory behind 

this method is explained as follows. When the IMU is motionless, the only force applied on the 

accelerometer is gravity force, and no matter what attitude the IMU is in, the force is the same. 

That means that rotating the IMU to many different attitudes and plotting all the magnitudes (of 

the three orthogonal components) will ideally produce a sphere whose radius is the magnitude of 

gravitational acceleration.  In reality, the actual plot of all of the measured vectors is not spherical, 

so the difference in radius from 1 g is sensitivity error and the offset of the center of the 

approximate sphere is the bias. The device we use is shown in Fig. A.1. The frame of the structure 

is designed to obtain rotation about three orthogonal axes by inserting the IMU in three different 

orientations as shown in Fig. A.1. The stepper motor is connected with a frame, and the IMU can 

be mounted in the frame. With this device, the IMU can only rotate about three perpendicular axes 

(i.e. no translation). An example of plotted data is shown in Fig. A.2. The bias 

[𝑏𝑥
𝑎, 𝑏𝑦

𝑎 , 𝑏𝑧
𝑎]T = [0.0345, 0.0528,0.0301]T. The 𝑆𝑎 ∙ 𝐴𝑎  term is presented as matrix Ψ𝑎, which is 

found by an optimization method. Because the IMU is rotated 360° about three mutually 

perpendicular axes successively, the vector from the center of the sphere to the rotation result (red 
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dot in Fig. A.2) of each axis is supposed to be perpendicular as well. The cost function is defined 

as follows: 

 𝐶(𝑽) = ∑ 𝑉𝑥(i)
𝑛

i=1,j=1
× 𝑉𝑦(j) + ∑ 𝑉𝑥(i)

i=1,j=1
× 𝑉𝑧(j) + ∑ 𝑉𝑦(i)

𝑛

i=1,j=1
× 𝑉𝑧(j) 

(A-2) 

where, for example, 𝑉𝑥(i) is the ith vector, which points from the sphere center to the ith result as it   

rotates about X axis; and 𝑛 is the number of data points. By bounding the cost function ‖𝐶(𝑽)‖ ≤

0.001, Ψ𝑎 is solved to be [
0.9993 −0.0115 −0.0037
0.0122 0.9999 0.0077
0.0080 −0.0008 1.0000

]. 

The temperature and other environmental factors have little effect on accelerometer, so the 

accelerometer is only calibrated at the beginning of each day’s experiments.  

 

Fig. A.1 The device used to calibrate the accelerometer by inserting the IMU in three different 

orientations to obtain rotation about orthogonal axes. 
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Fig. A.2 The sphere fit. The red dots are raw acceleration data; 

the blue surface is fitted sphere surface. 

A.2 CALIBRATION OF GYROSCOPE 

The gyroscope provides a triplet of sensors with perpendicular sensitivity axes. A 

mathematical model of the sensor output is defined as in the follow equation, which is an expanded 

version of Eq. (4-2). 

 [

𝑤𝑥
𝑖𝑚𝑢

𝑤𝑦
𝑖𝑚𝑢

𝑤𝑧
𝑖𝑚𝑢

] = 𝑆𝑔 ∙ 𝐴𝑔 ∙ ([

𝑤𝑥
𝑡𝑟𝑢𝑒

𝑤𝑦
𝑡𝑟𝑢𝑒

𝑤𝑧
𝑡𝑟𝑢𝑒

] + [

𝑏𝑥

𝑏𝑧

𝑏𝑧

] + 𝑁 + 𝐷(𝑡)) 
(A-3) 

where [𝑤𝑥
𝑖𝑚𝑢 , 𝑤𝑦

𝑖𝑚𝑢 , 𝑤𝑧
𝑖𝑚𝑢]T is the raw data obtained from the IMU (deg/s); 𝑆𝑔 is the scale matrix; 

𝐴𝑔 is the effect of misalignment; [𝑤𝑥
𝑡𝑟𝑢𝑒 , 𝑤𝑦

𝑡𝑟𝑢𝑒 , 𝑤𝑧
𝑡𝑟𝑢𝑒]T is the true angular velocity; [𝑏𝑥

𝑔
, 𝑏𝑦

𝑔
, 𝑏𝑧

𝑔
]T 
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is the bias vector; 𝑁 is the noise vector; 𝐷(𝑡) is the drift function for time. For the commercial 

IMUs that we are using, after the bias of the gyroscope is calibrated, the result of higher speed 

rotation is found to have almost no error, as shown in Fig. A.3. The IMU is mounted on the same 

device shown in Fig. A.1, and is rotated about three orthogonal axes, creating 20 circles at constant 

speed of 682 deg/s. As shown in Fig A.3a, Fig A.3c and Fig A.3d, the angular velocities are close 

to 682 deg/s. The total rotation angle is about 7,200 deg for each test (360 deg x 20 rotations). This 

suggests that the product of 𝑆𝑔 ∙ 𝐴𝑔 is close to the identity matrix, the Eq. A.2 can be simplified as 

Eq. A.3. The calibration focuses on finding the bias vector.  

 [

𝑤𝑥
𝑖𝑚𝑢

𝑤𝑦
𝑖𝑚𝑢

𝑤𝑧
𝑖𝑚𝑢

] = [

𝑤𝑥
𝑡𝑟𝑢𝑒

𝑤𝑦
𝑡𝑟𝑢𝑒

𝑤𝑧
𝑡𝑟𝑢𝑒

] + [

𝑏𝑥

𝑏𝑧

𝑏𝑧

] + 𝑁 + 𝐷(𝑡) 
(A-4) 

When an IMU is motionless, the angular velocity on each axis is zero, so the measured 

values should be zero as well. The bias is defined as the mean value of motionless raw gyroscope 

data. 

The gyroscope is calibrated before every experiment. 
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Fig. A.3 The result of angular velocities and rotation angles about each axis during individual axes rotations. 

a. Angular velocities when rotated about X axis; b. Rotation angles when rotated about X axis; 

c. Angular velocities when rotated about Y axis; d. Rotation angles when rotated about Y axis; 

e. Angular velocities when rotated about Z axis; f. Rotation angles when rotated about Z axis. 
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A.3 CALIBRATION OF MAGNETOMETER 

The way we use the magnetometer dictates the way we calibrate it. The function of the 

magnetometer in this study is to find the strength of magnetic field instead its direction (that is, the 

magnitude of the magnetometer vector is important and not necessarily the values of any given 

axis). The model is defined as shown in the following equation. 

 [

ℎ𝑥
𝑖𝑚𝑢

ℎ𝑦
𝑖𝑚𝑢

ℎ𝑧
𝑖𝑚𝑢

] = 𝑆ℎ ∙ ([

ℎ𝑥
𝑡𝑟𝑢𝑒

ℎ𝑦
𝑡𝑟𝑢𝑒

ℎ𝑧
𝑡𝑟𝑢𝑒

] + [

𝑏𝑥

𝑏𝑧

𝑏𝑧

] + 𝑁) 
(A-5) 

where [ℎ𝑥
𝑖𝑚𝑢 , ℎ𝑦

𝑖𝑚𝑢 , ℎ𝑧
𝑖𝑚𝑢]T is the raw data obtained from the magnetometer in the IMU (T); 𝑆ℎ is 

the scale matrix, which is used to correct the sensitivity error; [ℎ𝑥
𝑡𝑟𝑢𝑒, ℎ𝑦

𝑡𝑟𝑢𝑒, ℎ𝑧
𝑡𝑟𝑢𝑒]T is the true 

angular velocity; [𝑏𝑥
ℎ, 𝑏𝑦

ℎ, 𝑏𝑧
ℎ]T is the bias vector; and 𝑁 is the noise vector. 

The calibration method for the magnetometer is similar to that for the accelerometer. 

However, because the magnetometer is not working by inertial effects, the calibration is simpler. 

Before the experiment, the magnetometer is calibrated. The IMU is rotated arbitrarily by hand at 

the starting point. In order to get the best calibration result, there are two critical things that should 

be noticed. First, the duration of the manual rotation should be more than 40 seconds to collect 

1,000 sample points for statistical purpose; second, the IMU is rotated about the start point and 

each magnetometer axis should cover as much orientation as possible. During the calibration 

procedure, an iterative batch Least Squares Error (LSE) calculation is used to estimate the 

deviation and the combined scale factors of the sensor. An example result is shown in Fig. A.4. 

The bias is the offset of the center of the sphere from the origin; and the diameter of the sphere is 

the strength of magnetic field, which will be normalized to 1 eventually.  
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Fig. A.4 The sphere fit result. Each red dot is the raw data from the magnetometer;  

the blue surface is LSE sphere surface. 

Summary 

This chapter introduced the calibration method of each sensor used in this paper. Based on 

the role of each sensor, dominant parameters are taken into account for the sake of simplifying the 

calibration procedure. Before calibration, sensors are turned on for 10 minutes to pre-heat. The 

accelerometer and magnetometer were calibrated before the first trial of the day when experiments 

are planned to conduct; and the gyroscope was calibrated before every trial.
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