
 

CHARACTERIZATION OF THE HOST TISSUE RESPONSE INDUCED BY A 
BIOSYNTHETIC MATERIAL COMPOSED OF POLY (4-HYDROXYBUTYRATE) 

 
 
 
 
 
 
 

by 

Catalina Pineda Molina 

Biomedical Engineer, Antioquia’s School of Engineering with CES University, 2007 

Master in Biotechnology, National University of Colombia, 2013 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 

2018 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Catalina Pineda Molina 
 
 
 

It was defended on 

June 28, 2018 

and approved by 

Bryan M. Brown, PhD, Assistant Professor, Department of Bioengineering and Obstetrics, 

Gynecology, and Reproductive Sciences 

Janet S. Lee, MD, Professor, Department of Medicine 

Kacey Marra, PhD, Associate Professor, Department of Plastic Surgery and Bioengineering 

 Jon D. Piganelli, Associate Professor, Department of Surgery, Immunology and Pathology 

 Dissertation Director: Stephen F. Badylak, DVM, PhD, MD, Professor, Departments of 

Surgery and Bioengineering 

 

 



 iii 

Copyright © by Catalina Pineda Molina 

2018 



 iv 

 

Biomaterial-associated infections and bacterial resistance to antibiotics represent two of the major 

causes of implant failure. Pre-clinical and clinical studies have associated the use of biosynthetic 

surgical mesh materials composed of poly (4-hydroxybutyrate) (P4HB) with decreased surgical 

site infection (SSI) and an improved long-term remodeling response. The mechanisms driving 

these beneficial effects of P4HB remain unknown. 4-hydroxybutyrate (4HB), the main degradation 

product of P4HB, is an endogenous short chain fatty acid (SCFA) that has been exhaustively 

studied for its role as a modulator of the neurotransmitter γ-aminobutyric acid (GABA) in the 

central nervous system (CNS) and as a modulator of reactive oxygen species (ROS) in 

endothelium. Other functions of 4HB within non-CNS tissues have been less studied; however, 

this SCFA is a hydroxylated form of butyrate, a known histone deacetylase (HDAC) inhibitor, 

which is secreted by commensal bacteria within the gastrointestinal tract. Butyrate exerts its 

immunomodulatory functions by suppressing pro-inflammatory macrophage activation and 

promoting antimicrobial peptide (AMP) secretion. However, the immunomodulatory effects of 

4HB upon cells of the immune system and the ability of 4HB to induce the expression of AMP 

have not been studied.  
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The present dissertation evaluates the 4HB-mediated effects upon macrophage expression. 

The molecular mechanisms by which a specific AMP, cathelicidin LL-37, is expressed are 

described. A rat model of a partial thickness abdominal wall defect and a rat model of deliberate 

contamination in a subcutaneous tissue pocket are used to evaluate the host macrophage response 

and the expression of cathelicidin LL-37 in the presence of P4HB surgical mesh. 

4HB promotes a pro-remodeling, regulatory phenotype and increases expression of AMP 

in subjected macrophages. The associated molecular mechanism involves transcriptional 

activation of cathelicidin LL-37 through MAP-kinase and NF-κB pathways. In vivo, P4HB 

mitigates the acute, pro-inflammatory host response and provides an increased resistance to 

bacterial contamination. The results of this work expand the understanding of the biologic activity 

of 4HB in cells of the immune system and show its potential to promote a constructive tissue 

remodeling effect for regenerative medicine applications.
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1.0  INTRODUCTION 

The use of biosynthetic materials composed of poly 4-hydroxybutyrate (P4HB) in medical devices 

has increased significantly over the past decade [1]. The rationale behind the use of P4HB-based 

materials as a surgical mesh for ventral hernia repair applications includes its beneficial 

mechanical properties and its ability to degrade in vivo, among others[2]. Pre-clinical [3, 4] and 

clinical studies [5-7] have shown that implanted surgical meshes composed of P4HB prevent a 

long-term adverse host response and are associated with both a decreased hernia recurrence rate 

and a lower incidence of surgical site infection (SSI) when compared with other surgical meshes. 

The mechanisms by which P4HB mesh promotes these beneficial clinical outcomes are unknown; 

however, it is hypothesized that the early host macrophage response to P4HB plays a significant 

role in determining the long-term outcomes.  

The present dissertation evaluates the host macrophage response to P4HB and compares it 

with the host response to other non-degradable and degradable synthetic and biologic surgical 

meshes. The immunomodulatory activity of P4HB and its ability to promote endogenous 

antimicrobial peptide expression in macrophages are investigated. The cellular and molecular 

mechanisms by which 4-hydroxybutyrate, the degradation product of P4HB, drives these 

modulatory effects are also investigated. Finally, the role of macrophages in promoting a particular 

long-term outcome [foreign body response (FBR) vs. constructive tissue remodeling] and their 
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contribution to resistance to bacterial contamination when interacting with a subset of non-

degradable or degradable synthetic, biosynthetic, and biologic surgical meshes are evaluated.  

The present chapter provides a general background on the host response to implanted 

biomaterials, and more specifically the role of macrophages as critical modulators of this response. 

A second aspect of the host response, the endogenous secretion of antimicrobial peptides (AMP), 

is discussed and presented in the context of implanted biomaterials. The general characteristics of 

polymers and monomers of 4-hydroxybutyrate are described. Finally, the significance of the 

present work is explained. 

1.1 THE HOST RESPONSE TO IMPLANTED BIOMATERIALS 

1.1.1 The wound healing process 

Disruption of the normal structure of tissues, produced either by surgical or traumatic injuries, 

prompt a wound healing process leading towards the recovery of tissue homeostasis. The wound 

healing involves a series of strictly coordinated molecular and cellular events and is classically 

divided into three, overlapping phases: 1) inflammation, 2) proliferation, and 3) tissue repair 

(Figure 1A) [8]. Immediately after injury, aggregation of platelets produced by the rupture of 

vessels results in an activation of the coagulation cascade and the release of chemotactic signals to 

induce cell migration. Cells of the innate immune system (i.e., neutrophils and macrophages) are 

the predominant cell types present during the inflammation phase. Neutrophils migrate within the 

first 48 hours, followed by macrophage infiltration. Macrophages activate along a broad  
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Figure 1. Host response to wound healing and to implanted biomaterials.  

A. Phases of healing process following an implantation of a surgical mesh material. B. Timeline of 

molecular and cellular events at the mesh-tissue interface. C. Schematic view of protein adhesion (Vroman effect), 

and cellular interactions with an implanted surgical mesh. (A & B, adapted from [8, 9]). 
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spectrum of phenotypes, orchestrating the pro-inflammatory response to injury at early time points, 

but also regulating the tissue repair process and recovery of tissue homeostasis during the 

proliferative and maturation phases (Figure 1B) [10]. An appropriate transition from a pro-

inflammatory state to an alternative, regulatory phenotype of macrophages is critical for a 

successful wound healing process. For instance, a perpetuated inflammatory response, promoted 

by the maintenance of a pro-inflammatory macrophage phenotype at the injured site is one of the 

hallmarks of chronic wounds, commonly associated with poor healing outcomes [11].  

1.1.2 The host response to biomaterials 

The present dissertation considers implanted biomaterials in the form of surgical mesh materials 

and both terms will be used interchangeably. All implanted materials elicit a host immune 

response, which is the ultimate determinant of their downstream success or failure within the body 

[12, 13]. After biomaterial implantation, an early transition from pro- to anti- inflammatory 

macrophages, particularly in response to implanted, extracellular matrix (ECM) bioscaffolds, is a 

predictor and determinant of long term site-appropriate tissue repair, a process known as 

“constructive remodeling” [14-16]. Conversely, non-degradable and slowly degradable polymeric 

scaffolds typically prompt a chronic inflammatory host response, promoted by the perpetuation of 

a pro-inflammatory macrophage phenotype at the material-tissue interface, resulting in a FBR [15, 

17, 18]. As a response to frustrated phagocytosis, macrophages fuse together to form multinucleate 

foreign body giant cells characterized by chronic active inflammation, seroma formation, fibrotic 

scar tissue, and increased risk of infection [15, 19, 20]; all of which may be associated with tissue 

contraction and pain, among other complications [21, 22].  
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Different strategies have been used to mitigate the effects of an adverse host immune 

response to implanted materials. Such strategies include functional coating with biologic 

molecules such as cytokines or extracellular matrix components that modulate the phenotypic 

transition of macrophages at the host-material interface and prevent the development of FBR [15, 

16, 23]. Other strategies include the development of absorbable polymers with tunable mechanical 

properties and controlled degradation times [24], promoting only a temporary substrate and 

therefore, a temporary host response. These materials include polymers and copolymers of poly-

glycolide (PGA), poly-lactide (PLA), poly-hydroxyalcanoates (PHA), poly-4-hydroxybutyrate 

(P4HB), and poly-trimethylene carbonate (TMC), among others [3, 25, 26]. Additionally, other 

physical and chemical characteristics of absorbable materials also influence the final outcome of 

the implanted material. For example, the micro- and macro-structure of polymers affect molecular 

and cellular interactions. Patterns of polymer degradation, such as rate and release of acid 

monomers into the microenvironment, which in turn decrease the local pH, promote a prolonged 

pro-inflammatory stage, affecting the functionality of the repaired tissue (i.e., fibrotic or site-

appropriate tissues). The chemical composition of polymeric scaffolds can facilitate or inhibit 

bacterial adherence. 

1.1.3 Wound healing and bacterial infection 

Bacterial infiltration is facilitated by the disruption of tissues during the injury or by their adhesion 

at the surface of implanted biomaterials. Perpetuation of bacterial colonies within biofilms 

increases the levels of bacterial proteases and pro-inflammatory cytokines, orchestrated by a 

prolonged presence of polymorphonuclear cells and pro-inflammatory macrophages, impairing 

effective wound healing [27, 28].  
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1.2 BACTERIAL-BIOMATERIAL INTERACTIONS 

Interactions of bacteria with adherent proteins at the surface of implanted materials allows for their 

attachment and subsequent secretion of a biofilm. Bacterial biofilms are an organized hydrated 

matrix of extracellular polymeric substances (EPS) [29, 30] that provides protection from host 

defense mechanisms and allows bacterial survival within the tissue [31, 32]. Bacterial biofilms are 

less susceptible to antimicrobial agents. Mechanisms which account for this increased resistance 

include: 1) EPS-mediated formation of a thick structure that isolates bacteria and inhibits the 

entrance of immune cells or diffusion of antimicrobial agents and 2) slow growth rate of bacteria 

within the EPS thus rendering antimicrobial agents ineffective [30, 32].  

Bacterial concentrations greater than 1*105 colony forming units (CFU) per gram of wound 

tissue can lead to the development of infections [33]. It is estimated that more than 70% of bacterial 

infections, which include those associated with soft tissues and implanted biomaterials, are 

involved in the formation of biofilms [30, 34]. Given the intrinsic resistance of biofilms to current 

antimicrobial therapies, there is an imminent need of new approaches that effectively 

decrease/impede bacterial interactions and thus biofilm formation. 

1.3 ENDOGENOUS ANTIMICROBIAL PEPTIDES 

Antimicrobial peptides (AMP) have long been recognized as part of the innate immune system 

defense against pathogens. AMP can be effective even when bacteria are in a quiescent stage 

within a biofilm, providing an advantage over most current antibiotic agents [30], and can prevent 

bacterial-associated biofilm formation [32] and persistent infection [35, 36].  
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The major groups of AMP in mammals are defensins, cathelicidins, and histatins [37]. The 

mechanisms of action of AMP include their ability to interact with negatively charged bacterial 

membranes because of their cationic polarity, and promote disruption and permeabilization of the 

bacterial membrane. AMP can also target and block specific molecules of bacterial metabolic 

pathways [32]. Various AMP have been shown to downregulate the gene expression of molecules 

required for bacterial motility and matrix synthesis through inhibition of transcriptional activators 

of the quorum-sensing (QS) systems and the intracellular stringent response signal (p)ppGpp, 

affecting bacterial communication within the biofilm [30]. The functions of AMP extend beyond 

antimicrobial activity. For example, defensins and cathelicidins are chemoattractants for immune 

cells to enhance the host response to bacterial contamination or infection [38, 39]. The role of 

cathelicidin LL-37, the only human cathelicidin, in wound healing processes [40-42] and 

angiogenesis [43] has also been recognized. Cathelicidin LL-37 is also implicated in a seemingly 

paradoxical response, since it promotes the expression of anti-inflammatory cytokines in already 

activated pro-inflammatory immune cells, acting as modulator of the immune response and 

promoting local tissue homeostasis [39]. 

The functions of AMP at the material-tissue interface importantly prevent bacterial-

associated biofilm formation [32] and therefore, persistent infections [35, 36]. Small fragments of 

AMP have been synthetically produced to functionalize biomaterials. For instance, the small 

peptide sequence (LLKKK18), derived from cathelicidin LL-37, conjugated to dextrin and 

indirectly linked to Carbopol® hydrogels (based on acrylic acid polymers), is being investigated 

for skin burn treatments [40]. Strategies intended to enhance the natural production of AMP using 

biologically-derived biomaterials, however, have not yet been explored. The use of implanted 
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biomaterials able to trigger the immune system to produce AMP could provide a sustained and 

more potent response compared with the extrinsic addition of these peptides within the biomaterial. 

1.4 BIOSYNTHETIC POLYMERS COMPOSED OF P4HB 

Medical devices composed of P4HB have been gaining attention within the biomaterials field. 

P4HB-based materials are FDA approved and indicated for a variety of soft tissue repair 

procedures in plastic and reconstructive surgeries (i.e., sutures, meshes for hernia and tendon 

repair, etc.) [1]. P4HB is a polyester that belongs to the group of polyhydroxyalcanoates (PHA), 

which are polymers naturally assembled by microorganisms and further processed (e.g., molded, 

extruded, knitted, woven, etc.) to produce a highly reproducible material with mechanical 

properties comparable to synthetic polyesters. Pre-clinical and clinical evidence indicate the ability 

of P4HB to promote tissue integration [3, 5], vascularization [3], and functional tissue 

reconstruction [44], prevent long-term adverse response [3, 7, 45], and resist bacterial 

contamination [4]. The mechanisms associated with the advantageous responses of implanted 

P4HB still need to be further studied. 

The main forms of degradation of P4HB are surface erosion and enzymatic degradation, 

releasing monomers of 4HB. Moreover, it has been shown that unlike PGA or poly-ε-caprolactone 

(PCL), in vivo degradation of P4HB does not decrease the local pH, reducing the risks of 

inflammation and bacterial infection at the host-material interface [3]. Following hydrolysis of 

P4HB, monomers of 4HB are quickly degraded through the Krebs cycle, finally being eliminated 

from the body through CO2 and H2O, without harmful accumulation of secondary metabolites [46]. 
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1.4.1 4-Hydroxybutyrate 

4HB is an endogenous bioactive molecule commonly found in mammalian tissues [47-49], it 

belongs to the group of short chain fatty acids (SCFA), and it is actively studied for its role as 

metabolite of the neurotransmitter γ-aminobutyric acid (GABA). In the central nervous system 

(CNS), this molecule modulates the extracellular concentrations of GABA, dopamine, and 

glutamate to regulate neural responses [50]. Endogenous 4HB has been identified in peripheral 

organs (i.e., hearth, kidney, liver, lungs, muscle, and brown fat) at concentrations that exceed the 

normal values in brain [51]. Although the functions of 4HB within these tissues remain mostly 

unclear, a protective effect of 4HB has been identified. In particular, 4HB has been shown to 

mitigate cellular responses to stress and ischemia by decreasing the production of reactive oxygen 

species (ROS) and shifting metabolism towards the production of NADPH [52]. Exogenous 

administration of 4HB is currently approved by the FDA for the treatment of narcolepsy and is 

being evaluated for the control of fibromyalgia in a phase 3 clinical trial [53, 54].  

Other functions of 4HB within the tissues have been less studied. This SCFA is a 

hydroxylated form of butyrate, a known histone deacetylase (HDAC) inhibitor secreted by 

commensal bacteria within the gastrointestinal tract. Butyrate exerts its immunomodulatory 

functions as a suppressor of pro-inflammatory macrophages to prevent the development of chronic 

inflammation, and promotor of AMP secretion to prevent bacterial infection [55-57]. A group of 

SCFA, which include butyrate, valeric acid, propionate, and a series of butyrate derivatives such 

as sodium-4-phenylbutyrate, have been shown to modulate favorable responses and induce the 

gene expression of AMP in a variety of cells of the immune system (i.e., epithelial cells, 

neutrophils, macrophages) [58-60]. It is plausible, therefore, that similar responses will be elicited 
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by 4HB. The immunomodulatory influence of 4HB upon cells of the immune system and its ability 

to induce the expression of AMP have not yet been explored. 

1.5 SIGNIFICANCE  

Biomaterial-associated infections and the emergence of antibiotic resistant bacteria represent 

significant challenges for surgeons and the field of biomaterials in general. Surgical site infections 

(SSI) are considered the main cause of implant failure [61], with an incidence as high as 33% [62].  

The primary source of variability are factors associated with the type of application (i.e., contact 

lens, meshes for hernia repair, catheters, etc.) and the intrinsic properties of the implanted 

biomaterial (i.e., biologic vs. synthetic, microstructure, degradability, etc.) [62]. The incidence of 

infection increases when non-degradable synthetic mesh materials such as polypropylene, 

poly(tetrafluorethylene) (ePTFE) or multifilament polyester are employed [63]. New approaches 

in manufacturing of synthetic materials are focused on functionalization and coating with 

antimicrobial agents [64, 65]. Such strategies, however, provide only short-duration protection for 

the time that the active component is released and involve a high risk of developing bacterial 

resistance [66]. Additionally, it has been shown that sub-optimal concentrations of antibiotics 

(which could be induced by slow, long-term release) promote an increased release of extracellular 

DNA (eDNA) into the bacterial biofilms and therefore, increased resistance to the antibiotic [30]. 

The recognition that AMP kill bacteria through mechanisms that do not depend on the metabolic 

activity of the pathogens, provides an effective mode of protection against them without the risk 

of developing resistance. The exogenous administration of AMP is being explored [40], however, 

this mode of use raises questions regarding the stability of the peptides and the methods for 
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delivery, and provides only temporary protection. The present study investigated an alternative 

approach that enhances endogenous antimicrobial activity of the immune system via increased 

production of AMP by host cells, thus generating a stronger and more prolonged response.  

Biosynthetic materials composed of P4HB have been shown to facilitate site appropriate 

tissue remodeling and resist persistent bacterial contamination [4]. The mechanism(s) by which 

these materials, which do not contain bona fide AMP, can promote a favorable wound healing and 

resist bacterial contamination remain unknown. The activity of 4HB, the main degradation product 

of P4HB, as an endogenous metabolite within the CNS has been recognized. The use of 4HB as 

an endogenous inductor of AMP represents an attractive alternative to prevent biofilm-associated 

infections and potentially contribute to improved tissue repair outcomes due to their associated 

secondary functions in the wound healing process. Identification of the mechanisms mediating the 

effects induced by 4HB will prompt the development of newly derived composites able to promote 

functional tissue reconstruction in challenging, contaminated clinical environments. The present 

work provides significance within a basic science understanding via opportunities for clinical 

translation. 

1.6 CENTRAL HYPOTHESIS 

The present study hypothesizes that the biosynthetic surgical mesh material composed of P4HB 

promotes a predominantly constructive, anti-inflammatory macrophage phenotype, increased 

antimicrobial activity through expression of AMP, and a favorable tissue remodeling outcome 

when compared to synthetic counterparts.  
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1.7 SPECIFIC AIMS 

1.7.1 Specific aim 1 

Determine the phenotypic response of macrophages following exposure to degradation byproducts 

of P4HB. 

Sub Aim 1.1: Compare the phenotypic response of macrophages exposed to degradation 

byproducts of a subset of biosynthetic, synthetic, and biologic surgical mesh materials. 

Hypothesis 1: Degradation byproducts of P4HB promote a predominant constructive anti-

inflammatory macrophage phenotype compared to other synthetic mesh materials. Degradation 

byproducts of P4HB suppress the pro-inflammatory macrophage phenotype. 

Rationale: Macrophage activation within a diverse phenotypic spectrum plays an 

important role in the host response to biomaterials [67]. The anti-inflammatory effect of butyrate 

in IFN-γ-stimulated macrophages [57], and its facilitating role in the activation of anti-

inflammatory (M2-like) macrophages [68] have already been demonstrated. The ability of 4HB, 

the main degradation product of P4HB, to modulate the macrophage response remain unknown. 

The present study uses use immunolabeling and gene expression to examine the phenotype of 

murine bone marrow-derived macrophages induced by P4HB vs. synthetic and biologic mesh 

materials in vitro. 

1.7.2 Specific aim 2 

Identify the mechanisms responsible for the antimicrobial activity associated with the biosynthetic 

material composed of P4HB. 
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Sub Aim 2.1: Determine the direct and indirect (macrophage-mediated) antimicrobial 

effect of degradation byproducts of P4HB. 

Sub Aim 2.2: Compare the expression of AMP of macrophages exposed to degradation 

byproducts of a subset of biosynthetic, synthetic, and biologic surgical mesh materials. 

Hypothesis 2: The antimicrobial activity of P4HB is mediated by an indirect effect 

involving the transcriptional activation of AMP in macrophages exposed to degradation 

byproducts of the biosynthetic material.  

Rationale: Activated macrophages express AMP [69] with bactericidal and 

chemoattractant functions within the wound healing process [39, 41, 70-72]. The role of AMPs 

within the host response to implanted surgical biomaterials, however, has not been previously 

evaluated. Further derivatives of butyrate (i.e., sodium-4-phenylbutyrate) have been shown to 

share butyrate’s activity [59, 60] either acting as HDAC inhibitors or as signaling molecules 

activating the mitogen-activated protein (MAP)-kinase pathway and therefore, inducing the 

expression of AMP. Whether 4HB is capable of inducing transcriptional activation of AMP is 

unknown. The proposed study evaluates antimicrobial activity, gene expression, and inhibition 

immunoassays to target intermediate proteins involved in the expression of AMP in macrophages 

exposed to byproducts of P4HB. 

1.7.3 Specific aim 3 

Evaluate the host tissue response to biosynthetic materials composed of P4HB in vivo. 

Sub-Aim 3.1: Evaluate the spatiotemporal pattern of host tissue response to biosynthetic 

materials composed of P4HB implanted in a rat partial thickness abdominal wall defect model. 
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Sub-Aim 3.2: Compare the resistance to deliberate bacterial contamination of biosynthetic, 

synthetic, and biologic surgical mesh materials implanted in a rat subcutaneous model. 

Hypothesis 3: Biosynthetic material composed of P4HB promotes increased antimicrobial 

activity through AMP expression, and a constructive macrophage phenotype when compared to 

other mesh devices. 

Rationale: The early spatiotemporal phenotype of macrophages as part of the host immune 

response to implanted biomaterials is a determinant and predictor of long term outcomes (i.e., pro-

remodeling or chronic inflammation) [14]. The host immune response to implanted P4HB and the 

expression of AMP have not been evaluated in the pre-clinical setting. The mechanisms behind 

the resistance of P4HB to persistent bacterial contamination remain unknown. The cell types 

involved and their association with secretion of AMP need to be further evaluated. The proposed 

study examines the in vivo macrophage phenotype and AMP expression following P4HB mesh 

implantation in a rat partial thickness abdominal wall defect model.
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2.0  COMPARATIVE PHENOTYPIC RESPONSE OF MACROPHAGES EXPOSED 

TO DEGRADATION BYPRODUCTS OF BIOSYNTHETIC, SYNTHETIC, AND 

BIOLOGIC SURGICAL MESH MATERIALS1 

2.1 INTRODUCTION 

The use of biomaterials from synthetic, biosynthetic, and biologic sources has become 

commonplace for the repair of damaged tissues for different clinical applications. The clinical 

outcome, however, ranges from successful tissue repair to implant failure. The early macrophage 

response to implanted biomaterials, specifically their phenotypic profile, is predictive and 

determinant of such disparate downstream outcomes [14]. An earlier transition of pro-

inflammatory (M1-like) macrophages to pro-remodeling (M2-like) macrophages has been 

associated with a successful tissue repair, whereas a prolonged presence of M1-like cells drives a 

FBR, characterized by scar tissue formation, presence of multinucleate giant cells, and chronic 

inflammation. 

Different studies have shown the ability of ECM-based scaffolds to modulate the host 

response by increasing the ratio of M2-like to M1-like macrophages within the first 14 days post-

implantation [14, 15, 67]. Further, it has been shown that these responses are in part due to 

                                                 

1 Sections of this chapter to appear in Journal of Immunology and Regenerative Medicine. 



16 

molecular interactions between the degradation products of the ECM (cryptic peptides, growth 

factors, matrix bound nanovesicles (MBV), among others) and macrophages [73-76].  

Macrophage activation along a broad spectrum of phenotypes involves the expression of 

cell surface markers, transcription factors, and activation of differential metabolic pathways 

(Appendix A). The activated pathways direct the release of bioactive molecules, including 

cytokines, chemokines, and AMP, all of which determine cellular function and sequentially drive 

the host immune response [10, 69, 75]. The degradation byproducts of polymeric materials of 

different compositions are known to elicit distinct phenotypic responses, but the specific response 

has not been well characterized for most materials. Characterization of the host response to 

polymeric materials could be determinant to understand differential clinical outcomes.  

The present study evaluates the in vitro macrophage phenotypic profile induced by 

stimulation with the degradation products of P4HB as compared to the macrophage phenotype 

induced by degradation byproducts of other synthetic and biologic materials commonly used as 

surgical meshes. The immunomodulatory activity of these byproducts on macrophages activated 

with LPS and IFN-γ (MLPS/IFN-γ) is also determined. 

2.2 MATERIALS AND METHODS 

2.2.1 Test articles 

Common surgical polymeric materials used for tissue engineering and regenerative medicine 

applications are included. The source and characteristics of the surgical mesh materials under 

evaluation are described in Table 1.  
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Table 1. Composition and properties of surgical meshes 

Commercial 
Scaffold 

Name 

Polymer 
Composition 

Category in vivo 
Resorption 

Time 

Fiber 
Diameter 
(μm) 

Pore 
Size 

(mm2) 

Ref. 

Phasix™ Poly-4-
Hydroxybutyrate 
(P4HB) 

Degradable 
Biosynthetic 

12-18 
months 

166 0.25  [77] 

Bard® Polypropylene (PP) Non-
degradable 
Synthetic 

NA 185.7  0.44  [25] 

 TIGR® Fast Resorbing 
Fiber - Copolymer 
of Glycolide, 
Lactide and 
Trimethylene 
Carbonate (TMC) 
Slow Resorbing 
Fiber - Lactide and 
Trimethylene 
Carbonate 

Degradable 
Synthetic 

4 months & 
36 months  

10-40  1.0  [24, 
78] 

GORE® 
BIO-A® 

Polyglycolic acid 
(PGA) & 
Trimethylene 
Carbonate (TMC) 

Degradable 
Synthetic  

6 months 3.38 NA [24] 

Strattice™ Acellular Porcine 
Dermis 

Degradable 
Biologic 

12 months NA NA [79] 

2.2.1.1 In vitro accelerated hydrolysis of mesh scaffolds 

Phasix™ mesh was hydrolyzed with 3M HCl at 37°C using a modification of a previously 

established accelerated hydrolysis method [77]. Tigr® Mesh and GORE® BIO-A® were hydrolyzed 

with 9M NaOH at 37°C. Bard® Mesh was used as a non-degradable control, but was still subjected 

to all hydrolysis steps. Solubilized monomers released by the hydrolysis were neutralized to pH 

7.0 with the opposite solution. The resulting solution was dialyzed with a membrane (0.1 to 0.5 

Kd cut off) (Float-A-Lyzer™ G2 Dialysis Device, Fisher Scientific Cat No. 08-607-016) to 

remove the excess salt.  
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2.2.1.2 Preparation of digested ECM bioscaffold 

Degradation products of Strattice™ were obtained through enzymatic digestion [80, 81]. 100 mg 

of pepsin (Sigma, Cat No. P7012) were mixed with 1000 mg of lyophilized Strattice™ powder in 

100 ml of 0.01 M HCl. The digestion was performed for 48 hours at a constant stir. 

2.2.2 Experimental design overview 

Degradation products of the meshes generated by hydrolysis were used to either activate naïve 

murine bone marrow-derived macrophages for 24 hours, or to challenge pre-activated MIFN-γ/LPS 

macrophages (Figure 2). Macrophage phenotype was evaluated by immunolabeling for the 

markers F4/80, iNOS, Fizz1, and Arginase1. Secretion of TNF-α and IL-10 was quantified by 

enzyme-linked immunosorbent assay (ELISA). Gene expression of metabolic, surface markers, 

and transcription factors were also evaluated. 

2.2.3 Gas chromatography – mass spectrometry 

In collaboration with the Cambridge Polymers Group, the main degradation product of Phasix™ 

was determined by gas chromatography – mass spectrometry (GC-MS) and compared with the 

solution containing Bard® Mesh. Briefly, 1 ml of neutralized solution was filtered through a 0.45 

µm PTFE syringe filter and transferred to GC autosampler vial. The samples were analyzed by an 

Agilent 6890GC/5973MS system, in Scan (mass spectrometer detection 50-550 m/z) or selection 

ion monitoring (SIM) mode with retention times selected using standards of γ-butyrolactone 

(GBL) and 4-hydroxybutyrate (4HB), as they are the most likely P4HB degradation  
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Figure 2. Macrophage differentiation and activation. 

A. Primary macrophages were differentiated from mononuclear cells harvested from the bone marrow of 

C57bl/6 mice. B. Macrophages were exposed to degradation byproducts of the meshes or known activators of the 

M1-like (IFN-γ / LPS), and M2-like phenotypes (IL-4) for 24 hours. C. Macrophages were first activated to a pro-

inflammatory M1-like phenotype for 6 hours, and then exposed to one of each of the degradation byproducts of the 

mesh scaffolds for 24 hours. The phenotype of stimulated macrophages was evaluated by immunolabeling of 

markers of pan-macrophages Mϕ (F4/80+), pro-inflammatory M1-like macrophages (iNOS+), and anti-inflammatory 

regulatory M2-like macrophages (Fizz1+ and Arginase1+). 

 

products. The 2011 NIST/EPA/NIH spectral library database (NIST MS search 2.0g) was used for 

compound identification. For each peak present in the chromatogram, the mass spectrum was 

determined by measuring the mass spectrum at the apex of the peak and subtracting a background 

immediately prior to the peak onset. The resulting spectrum was screened against the mass spectral 

library. 
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2.2.4 Isolation and culture of murine bone marrow-derived macrophages (BMDM) 

All procedures were approved by and performed according to the guidelines of the Institutional 

Animal Care and Use Committee at the University of Pittsburgh (IACUC protocol #15086460). 

Bone marrow-derived monocytes were obtained from female C57bl/6 mice (Jackson Laboratories, 

Bar Harbor, ME) and differentiated into macrophages as previously described [80, 82]. Animals 

were euthanized by CO2 inhalation and subsequent cervical dislocation in accordance with the 

guidelines of the American Veterinary Medical Association (AVMA) Panel of Euthanasia. 

Following euthanasia and using an aseptic technique, the skin of the hind legs was completely 

removed, the coxa-femoral joint was disarticulated, and the legs harvested. The excess of muscle 

was removed, and after disarticulation of tarsus and stifle, tibia and femoral bones were isolated. 

Under sterile conditions, the ends of each bone were transected and the bone marrow flushed with 

medium using a 30G needle. Harvested monocytes were seeded at a concentration of 2*106 

cells/ml and differentiated into macrophages by culture for 7 days with macrophage-colony-

stimulating-factor (MCSF)-containing media [DMEM high glucose (Gibco, Grand Island, NY), 

supplemented with 10% fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA), 10% L929 cell 

supernatant, 50 µM beta-mercaptoethanol (Gibco), 100 U/ml penicillin, 100 ug/ml streptomycin, 

10 mM non-essential amino acids (Gibco), and 10 mM hepes buffer]. Cells were differentiated 

into macrophages for 7 days at 37°C and 5% CO2 with media changes every 48 hours.  

2.2.5 Macrophage activation 

Naïve macrophages were stimulated with 1.32 mg/ml of the byproducts of hydrolysis of synthetic 

or biosynthetic meshes, 200 µg/ml of pepsin-digested Strattice™, or the macrophage activation 
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controls to promote an M1-like phenotype (20 ng/ml IFNγ and 100 ng/ml of LPS) or an M2-like 

phenotype (20 ng/ml IL-4) for 24 hours at 37°C, 5% CO2 [83]. In a separate experiment, 

macrophages were first activated toward using IFNγ and LPS for 6 hours, as described above, 

followed by stimulation using the byproducts of the mesh materials for 24 hours [75].  

2.2.6 Immunolabeling of treated macrophages 

Stimulated macrophages were fixed in 2% paraformaldehyde for 30 minutes, followed by washes 

with PBS. Fixed cells were then incubated for 1 hour with blocking buffer (2%v/v horse serum, 

1%wt/v bovine serum albumin, 0.1%v/v triton X-100, and 0.1%v/v tween-20 in PBS) to inhibit 

non-specific binding of antibodies. After blocking, macrophages were incubated in primary 

antibodies at 4°C overnight: (1) monoclonal rat anti-murine F4/80 (CI-A3-1) (Novus Biologicals, 

Cat. No. NB600-404) at 1:100 dilution, (2) polyclonal rabbit anti-iNOS (Novus Biologicals, Cat. 

No. NB300-605) at 1:100 dilution, (3) polyclonal rabbit anti-murine Fizz1 (RELMα) (Peprotech, 

Cat. No. 500-P214) at 1:100 dilution, and (4) polyclonal rabbit anti-liver Arginase1 (Abcam, Cat. 

No ab91279) at 1:100 dilution. After washing in PBS, the macrophages were incubated in 

fluorophore-conjugated secondary antibodies [Alexa Fluor goat anti-rat 488 (A11006) or goat anti-

rabbit 488 (Cat. No. A11034), Invitrogen] at 1:200 dilution for 1 hour at room temperature. After 

washing again with PBS, nuclei were counterstained with 4’-6-diamidino-2-phenylindole (DAPI) 

prior to imaging. Images of three 20X fields were taken for each well using a Zeus live-cell 

microscope, standardizing the light exposure times for based upon those set for cytokine-treated 

macrophages. The percent of positive cells for each marker was quantified using CellProfiler 

Image Analysis Software (http://www.cellprofiler.org), positive macrophages (green label) were 

identified by their co-localization with DAPI positive nuclei. The percent of expressing 

http://www.cellprofiler.org)/
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macrophages was then determined by dividing the identified positive cells by the total number of 

macrophage nuclei. 

2.2.7 Gene expression profile of exposed macrophages 

Transcriptional activation of surface markers, metabolic markers, and transcription factors 

(Appendix B) was evaluated in macrophages exposed to each of the byproducts of the surgical 

meshes. Total RNA was extracted from stimulated macrophages with 800 µl TRIzol reagent 

(Ambion, Cat. No. 15596018) using cell scraper. The solution was mixed with 200 µl chloroform, 

vortexed for 15 seconds and centrifuged at 12,000 g for 10 minutes. The aqueous phase was 

transferred to a new tube and the RNA precipitated with 3M sodium acetate (1/10 of the volume) 

and isopropanol (1 volume), followed by centrifugation at 18,000 g for 20 minutes. RNA 

purification was made washing the RNA pellet in 75% ethanol with an additional centrifugation 

at 18,000 g for 15 minutes. The RNA pellet was air dried and re-suspended in nuclease-free water. 

The RNA solution was treated with DNase I to remove any residual genomic DNA. 1 µg RNA 

was converted in cDNA using the High Capacity cDNA Reverse Transcription Kit (Invitrogen, 

Cat. No. 4368814) following manufacturer instructions. Real time quantitative polymerase chain 

reaction (qPCR) was made using PowerUp™ SYBR® Green Master Mix (Applied Biosystems, 

Cat. No. A25778) to determine the levels of expression of different markers of macrophage 

activation. The levels of expression were normalized with the housekeeping gene hprt1. Results 

were expressed as fold change log (2-ΔΔCt) relative to non-treated macrophages. 
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2.2.8 Phagocytosis  

The ability of macrophages treated with byproducts of P4HB to phagocytose fluorescent latex 

microspheres was evaluated as previously described [73] with some modifications. Treated 

macrophages were rinsed with PBS and incubated with 4.55*107 particles/ml of Fluoresbrite YG 

Microspheres 1.00 um (Polysciences, Warrington, PA) in complete media for 15 minutes at 37°C, 

5% CO2. After incubation with microparticles, macrophages were washed with PBS and harvested 

with Accutase® solution. Cells were centrifuged and rinsed with PBS followed by a counterstain 

with viability dye eFluor 780 (eBioscience, San Diego, CA) at a dilution of 1:1000 for 30 minutes 

on ice. The percentage of phagocytic macrophages was determined by flow cytometry. 

2.2.9 Enzyme-linked immunosorbent assay (ELISA) 

Specific enzyme-linked immunosorbent assays (ELISA) were used to determine the 

concentrations the secreted cytokines TNF-α and IL-10 in macrophages activated with LPS and 

IFN-γ followed by stimulation with each of the byproducts of the surgical meshes for 24 hours. 

Cell culture supernatants were collected and centrifuged at 1,500 g at 4°C for 10 min to remove 

particulate material prior to use. ELISAS were performed following specific manufacturing 

instructions (Mouse TNF ELISA Kit, BD OptEIA, Cat. No. 560478; and Quantikine ELISA, 

mouse IL-10, R&D Systems, Cat. No. M1000B).  
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2.2.10 Statistical analysis 

Three independent experiments were conducted. Data is presented as the mean ± standard error of 

the mean (SEM). Statistical differences were determined using a non-parametric ANOVA test 

(Kruskal-Wallis test). Differences were compared with post-hoc Dunn’s test relative to non-treated 

macrophages. A value p<0.05 was considered statistically significant. Statistical analysis was 

performed using GraphPad Prism version 6.07 (GraphPad Software, La Jolla CA, USA). 

2.3 RESULTS 

2.3.1 4-hydroxybutyrate is the main degradation product of the accelerated hydrolysis of 

Phasix™ 

The product of accelerated hydrolysis of Phasix™ was confirmed by gas chromatography – mass 

spectrometry (GC-MS) by the Cambridge Polymers Group (Figure 3A). Using both Scan and SIM 

mode, a single dominant peak was observed in the sample containing the degradation products of 

Phasix™ (red). The peak was strongly identified as 4HB (Figure 3B) compared to the NIST mass 

spectrum library (Figure 3C), with a match factor of 965. No other significant peaks were observed 

in the chromatograms for the evaluated samples. 
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Figure 3. Gas chromatography – Mass spectrometry for degradation products of Phasix. 

A. SIM overlay of degradation byproducts of Phasix (red), Bard® Mesh (black), or water as a control 

(blue). A unique peak centered at approximately 3.9 minutes was found in the sample containing the degradation 

products of Phasix. B. Measured mass spectrum of the peak found in A, corresponding to the degradation 

byproducts of Phasix. C. NIST library search result showing the mass spectrum of the closest library match, 

corresponding to 4-hydroxybutyrate. A strong match factor of 965 was found. 
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2.3.2 In vitro macrophage response induced by degradation products of mesh scaffolds 

The phenotypic profile of murine BMDM was determined by immunolabeling via the expression 

of the pan-macrophage marker F4/80, the pro-inflammatory, M1-like marker iNOS, and the M2-

like markers Fizz1 and Arginase1. Quantitative PCR was used to determine the relative expression 

of markers associated with macrophage activation, metabolism, and transcription factors in 

comparison with non-treated macrophages. 

All byproducts of the surgical meshes induced a distinctive pattern of macrophage 

activation (Figure 4). Exposure of the macrophages to the degradation products of all surgical 

meshes did not show differences in the expression of F4/80. Treatment with degradation 

byproducts of TIGR® and Strattice™ resulted in a phenotypic response of iNOS+ cells significantly 

higher than non-treated macrophages (Figure 4B). All byproducts of the surgical meshes induced 

the transcriptional upregulation of TNF-α and downregulation of markers associated with an M2-

like phenotype (Fizz1, YM1, CD206, and IL1-Ra) (Figure 4C). Degradation byproducts from 

Phasix™ and TIGR® induced the transcriptional activation of KLF4. The transcription factor IRF3 

was upregulated by 4HB. 

2.3.3 Phagocytic capability of macrophages stimulated with 4HB 

Treatment of macrophages with the byproducts of Phasix™ did not affect the phagocytic activity 

of the cells in comparison with macrophages treated with LPS and IFN-γ, or IL-4, as shown in 

Figure 4D. 
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Figure 4. In vitro macrophage response to degradation byproducts of surgical meshes.  

Primary murine BMDM were exposed to 1.32 mg/ml degradation products of PhasixTM, TIGR®, GORE® BIO-A®, or Strattice™ for 24 hours. A. 

Activation of markers associated with pro-inflammatory (iNOS) and anti- inflammatory (Fizz1 and Arginase1) phenotypes was evaluated by immunolabeling. A 

general marker of macrophages (F480), was used. Known factors that are promoters of pro-inflammatory (100 ng/ml LPS and 20 ng/ml IFN- γ) or anti-

inflammatory (20 ng/ml IL-4) phenotypes were included as controls. Scale bar 200 µm. B. Quantification of the response of treated macrophages in A. Images 

were quantified using Cell Profiler image analysis software. Values: Mean ± SEM, biologic replicates (N)=3, technical replicates=3. Differences between stimuli 

for each marker were evaluated using non-parametric ANOVA test, * p<0.05. C. Heat map of relative transcriptional activity of surface and metabolic markers, 

and transcription factors of macrophage activation. Data presented as fold change relative to non-treated macrophages. D. Phagocytic activity of macrophages. 

Values: Mean ± SEM, biologic replicates (N)=3. 
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2.3.4 Polymers composed of 4HB have an immunomodulatory effect upon macrophages 

activated with LPS and IFN-γ 

When BMDM were activated with IFN-γ and LPS, followed by stimulation with the degradation 

products of the surgical meshes, distinctive activation patterns were seen (Figure 5). Exposure with 

byproducts of TIGR and GORE BIO-A showed an increase in the number of cells expressing 

iNOS (Figure 5A). The degradation products of Phasix™ decreased the percentage of cells 

expressing F4/80 and increased the number of macrophages expressing Fizz1 and Arginase1, when 

compared with the other degradation products or the media control (Figure 5B). At the mRNA 

level, byproducts of Phasix™ induced the transcriptional upregulation of the surface markers Fizz1 

and IL1-Ra, and the transcription factors IRF3, KLF4, and STAT3 on macrophages first activated 

with LPS and IFN-γ (Figure 5C). Compared to non-treated macrophages, all materials induced the 

expression of TNF-α in activated macrophages, as shown by the relative quantification of the 

mRNA and the secreted product by ELISA (Figure 5D). All byproducts of the surgical meshes 

also induced the secretion of IL-10 in macrophages first activated with LPS and IFN-γ as compared 

to non-treated macrophages.  
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Figure 5. Effect of degradation products of mesh materials upon pro-inflammatory macrophages.  
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A. Degradation byproducts of P4HB have an immunomodulatory effect upon pre-activated pro-

inflammatory macrophages. BMDM were challenged with 100 ng/ml LPS and 20 ng/ml IFN- γ for 6 hours to induce 

a pro-inflammatory phenotype, followed by exposure to 1.32 mg/ml degradation products of each of the mesh 

materials (PhasixTM, TIGR®, GORE® BIO-A®, or Strattice™) or media alone for 24 hours. Scale bar 200 µm. B. 

Quantification of the response of challenged macrophages in A. Values: Mean ± SEM, biologic replicates (N)=3, 

technical replicates=3. Differences between stimuli for each marker were evaluated using non-parametric ANOVA 

test, *p<0.05. C. Heat map of relative transcriptional activity of surface and metabolic markers, and transcription 

factors of macrophage changes after LPS/IFN-γ activation and followed by stimulation with byproducts. Data 

presented as fold change relative to non-treated macrophages. D. Quantification of secreted cytokines IL-10 and 

TNF-α. Values: Mean ± SEM, biologic replicates (N)=3, technical replicates=2. 

2.4 DISCUSSION  

The present study evaluated the in vitro phenotypic pattern of murine bone marrow-derived 

macrophages stimulated with the degradation product of Phasix surgical mesh, 4HB. The 

macrophage phenotype induced by 4HB was compared with the activation profile induced by 

byproducts of other synthetic and biologic surgical meshes. The results showed a distinct 

activation of macrophages induced by each of the byproducts. Additional evaluation of the 

immunomodulatory activity of 4HB upon macrophages first activated with LPS and IFN-γ 

(MLPS/IFN-γ) showed the ability of this SCFA to modulate the upregulation of a series of 

transcription factors and surface markers, modifying the LPS /IFN-γ-induced response. 

The host response to biomaterials is initiated immediately after contact of the material with 

the host tissue. It has been well recognized that the initial cell-biomaterial interactions trigger 

specific molecular events of the host response, which ultimately drive downstream outcomes [23, 
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84, 85]. A number of cell types, from the innate and adaptive immune systems, are involved in 

these early events [86]. Of the many cell types involved, macrophages have received attention due 

to their functional plasticity and their important roles in regulating the inflammatory response and 

the tissue repair process following injury [87].  

Macrophage plasticity moves along a broad spectrum of functional subtypes within the 

classically activated M1-like and the alternatively activated M2-like phenotypes [67, 87]. The 

plasticity of macrophages is modulated by the tissue microenvironment (i.e., tissue damage, 

cytokine/chemokine release, pathogens, etc.). The diverse phenotypes of macrophages are 

acquired by particular gene expression profiles and metabolic and functional characteristics that 

allow the cells to rapidly respond to the tissue’s needs and perform specific functions. The present 

study evaluated a group of surface markers, secreted molecules, and transcription factors 

commonly associated with LPS/IFN-γ-induced (iNOS, TNF-α, IRF3, STAT3) or IL-4-induced 

(Arginase 1, Fizz1, YM1, CD206, PCK2, IL1-Ra, KLF4, IL-10) responses by either providing a 

positive feedback and therefore accentuating a particular function or initiating a negative response 

that modifies the original phenotype.  

Inherent biomaterial-related factors such as the composition and the degradation products, 

are critical factors defining the patterns of macrophage activation. The present study used 

degradation byproducts of surgical meshes from different sources (synthetic, biosynthetic, and 

biologic) and compositions (4HB, TMC, glycolic acid, lactic acid, pepsin-digested ECM), 

therefore a distinct pattern of activation was expected. 

The mechanisms involved in the 4HB-cell interaction and uptake are not fully understood, 

but they most likely involve the activation of specific G-protein coupled receptors (GPCR) and 

sodium-coupled membrane transporters, which are commonly used by other SCFA [88-92]. 
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Acetate, butyrate, and propionate have been identified as endogenous ligands for the receptors 

GPR41, GPR43, and GPR109a, in epithelial cells, adipocytes, peripheral blood mononuclear cells, 

among others [93, 94], with a variety of functions that include tumor suppression [90] and 

regulation of energy metabolism [95]. More importantly, it has been shown that downstream 

events triggered by these receptors and transporters, are associated with modulation of pro-

inflammatory responses [92, 96, 97], more likely through an inhibitory feedback following 

exposure to pro-inflammatory cytokines such as TNF-α and IL-1β [96].  

The present study showed that macrophages activated with LPS and IFN-γ and then 

stimulated with 4HB induced a distinct pattern of expression characterized by the upregulation of 

important markers associated with the anti-inflammatory phenotype (Fizz1, Arginase 1, and IL1-

Ra), as well as transcriptional upregulation of the transcription factor KLF4, all of which suggest 

an immunomodulatory effect of this 4HB upon macrophages. Stimulated macrophages were also 

shown to upregulate the expression of TNF-α, and the transcription factors IRF3 and STAT3. It 

has been suggested that after stimuli of cells with SCFA, there is a tight regulation of both pro- 

and anti-inflammatory responses that allow the release of ROS, but also that modulate their 

activation state through the activation of a negative feedback mediated by the GPCR receptors 

[93]. Which in turn might explain the pattern of macrophage phenotype being expressed after 4HB 

induction, and the associated antimicrobial activity being described in pre-clinical and clinical 

studies.  

Although the surgical mesh material composed of polypropylene (Bard) mesh is non-

degradable, the macrophage response observed (F4/80+high, iNOS+low, Fizz1- Arg-) and the 

upregulation of TNF-α and IRF4, could be produced by the presence of surfactants and detergents 

used during the manufacturing process.  
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The presence of TMC, glycolic acid and lactic acid could impact both metabolic and 

functional activities of exposed macrophages. Indeed, it has been shown that TMC degradation 

requires the release of ROS and hydrolytic enzymes to mediate its conversion into 1,3-propanediol 

and carbon dioxide [98, 99]; therefore, signaling pathways leading to the release of superoxide 

anion radicals is guaranteed to perform this function. In addition, both lactic acid and glycolic acid 

are endogenous intermediaries of cell pathways. In particular, lactic acid is usually increased as a 

consequence of metabolic reprogramming of tumor cells during the Warburg effect [100], or as a 

pro-inflammatory response to LPS-stimuli where the macrophages activate the glycolytic 

pathway. An increase in the extracellular concentration of lactic acid is sensed by macrophages 

through membrane receptors, which include the GPR132, and activates a signaling cascade able 

to abrogate the LPS-induced macrophage response. This signaling cascade acts as negative 

feedback to inhibit the perpetuation of the glycolytic pathway and contribute to an anti-

inflammatory phenotype [101, 102] through the activation of signaling cascades mediated by the 

hypoxia-inducible factor 1α (HIF-1α) and the expression of Arginase 1 [102, 103].  

The combined action of all three molecules (TMC, glycolic acid, and lactic acid) in the 

case of TIGR, or TMC and glycolic acid in the case of GORE BIO-A, guarantees an increased 

complexity of the macrophage response. In the present study, none of the markers associated with 

an anti-inflammatory phenotype (Fizz1, YM1, Arginase 1, CD206, or IL1-Ra) were significantly 

increased after stimulation with these combined molecules. However, degradation byproducts of 

both TIGR and GORE BIO-A induced the transcriptional activation of KLF4, which may have 

a downstream effect upon expression of other anti-inflammatory markers.  

Finally, the use of pepsin-digested dermal ECM (Strattice) upon the macrophages 

resulted in a downregulation of most of the evaluated genes/markers, with the exception of iNOS. 
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Previous studies have shown similar activation patterns of macrophages treated with solubilized 

products of dermal ECM [74]. The increased iNOS expression is not seen following treatment with 

ECM derived from other source tissues and therefore may be specific to the dermal tissue source. 

Differences in decellularization methods may be also involved in the macrophage response [14, 

104]. 

There are several limitations to the present study. Although the markers of macrophage 

activation and gene expression profile provided a good source of information to determine 

similarities and differences between macrophages exposed to each of the byproducts of surgical 

meshes, inclusion of additional phenotypic and functional markers are required. The activation of 

transcriptionally upregulated factors, as well as their secondary products, should be investigated. 

Additionally, the macrophage response across different species have been shown to present 

variability in specific markers. For example, human macrophages exposed to IL-4 do not show 

increased Arginase 1 activity [105]. Therefore, future studies should investigate whether the 

byproducts of the surgical materials included in the present study induce similar responses in 

human macrophages.  

2.5 CONCLUSION 

Results of the present study show the ability of 4HB to modify the macrophage phenotypic 

response. In summary, 4HB promoted a macrophage phenotype that is distinct from classically 

(M1-like) and alternatively (M2-like) activated macrophages, and from the responses induced by 

other degradation byproducts of synthetic and biologic surgical meshes. 4HB promotes the 

activation of a series of transcription factors and cytokines able to modulate the macrophage 
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response. The findings of this study are consistent with the premise that macrophages have a 

remarkable functional plasticity that can be modulated by the specific molecules present within 

the microenvironment. The findings of this study help in understanding the factors that influence 

the patterns of macrophage activation and the molecular interactions of mesh materials with cells. 

This understanding could guide the design of meshes tailored to promote immunomodulation. 
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3.0  IDENTIFICATION OF THE MECHANISMS RESPONSIBLE FOR THE 

ANTIMICROBIAL ACTIVITY ASSOCIATED WITH THE BIOSYNTHETIC 

MATERIAL COMPOSED OF P4HB 

3.1 INTRODUCTION 

Pre-clinical studies have shown the ability of biosynthetic materials composed of P4HB to resist 

persistent bacterial contamination [4]. Likewise, clinical reports of hernia repair procedures using 

the Phasix surgical mesh have shown a decrease in the incidence of post-operative surgical site 

infections (SSI) [5-7]. The mechanisms associated with the ability of polymers of 4HB to resist 

bacterial contamination are, however, unknown.  

Previous reports have identified the ability of other SCFA, such as butyrate and 4-

phenylbutyrate, to induce upregulation of AMP through at least one of two different mechanisms: 

1) entering into the nuclei and effecting as HDAC inhibitors [106-108] and therefore promoting 

gene expression, or 2) through signaling-transduction mechanisms mediated by MAP kinases [60, 

108, 109].  

The present study investigates the specific mechanisms involved in the antibacterial 

activity induced by polymers of 4HB. The expression of AMP in macrophages exposed to 4HB is 

evaluated and compared with the level induced by byproducts of other synthetic and biologic 
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surgical meshes. The molecular mechanisms regulating the expression of the AMP cathelicidin 

LL-37 in murine bone marrow-derived macrophages exposed to 4HB are investigated. 

Other hydroxylated derivatives of butyrate, namely 2-hydroxybutyrate (2HB) and 3-

hydroxybutyrate (3HB), are endogenous metabolites in different tissues [47, 110-112], but their 

ability to promote the secretion of AMP remains unknown. The potential of these hydroxylated 

derivatives of butyrate to control bacterial infections through promotion of endogenous 

upregulation of AMP is determined herein.  

3.2 MATERIALS AND METHODS 

3.2.1 Overview of experimental design  

Four major aims were approached with the present study:  

1. To determine whether the antimicrobial activity induced by 4HB was due to a direct or 

an indirect (cell mediated) effect, colonies of Staphylococcus aureus were directly exposed to the 

byproduct of Phasix, 4HB, or to conditioned media produced by macrophages stimulated with 

4HB for 24 hours. Growth of exposed bacteria was measured after 18 hours (Figure 6A). 

2. To compare the level of expression of AMP by macrophages exposed to byproducts of 

different surgical mesh materials (Table 1) and hydroxylated derivatives of butyrate. 

Transcriptional activation of the AMP cathelicidin LL-37, and β-defensins 2, 3, and 4 was 

evaluated by qPCR. The number of cells expressing cathelicidin LL-37 was compared by 

immunolabeling (Figure 6B). 
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3. To determine the ability of hydroxylated derivatives of butyrate to inhibit HDAC activity 

in exposed macrophages. A dose response curve of HDAC activity was established for each SCFA, 

and the acetylation of histone 3 was evaluated by Western blot (Figure 6C). 

4. To determine the transduction mechanism involved in the expression of cathelicidin LL-

37 induced by 4HB in stimulated macrophages. Specific inhibitors of potential surface receptors, 

protein kinases, and transcription factors were used to evaluate the effects of their inhibition in the 

transcriptional activation of the Cramp gene (Figure 6D). 

3.2.2 Antimicrobial activity 

3.2.2.1 Preparation of bacterial inoculum 

As previously described by [113], Staphylococcus aureus (American Type Culture Collection 

29213, wound isolate) was grown in suspension overnight in a 37°C shaker. Bacteria were then 

diluted to 5x105 CFU/ml, and 150 μl of bacterial suspension were added to each well of a 96-well 

microplate.  

3.2.2.2 Direct antimicrobial activity 

To determine the direct antimicrobial activity 1.32 mg/ml of 4HB or the vehicle control were 

directly mixed with the bacterial suspension. The plate was incubated at 37°C. Absorbance values 

were measured every hour, over a period of 24 hours, at 570 nm with a BioRad 680 Microplate 

Reader. 
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Figure 6. Experimental design overview – Mechanisms of antimicrobial activity.  

A. Direct vs. indirect (cell mediated) antimicrobial effect of biosynthetic materials composed of P4HB. B. 

Evaluation of AMP induced by murine bone marrow-derived macrophages stimulated with byproducts of 

degradation of biosynthetic, synthetic, and biologic surgical scaffolds, or with hydroxylated derivatives of butyrate. 

C. Evaluation of inhibition of HDAC activity in macrophages exposed to byproducts of P4HB. D. Evaluation of 

potential membrane receptors, protein kinases, and transcription factors involved in the upregulation of the Cramp 

gene. 
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3.2.2.3 Indirect (macrophage-mediated) antimicrobial activity 

To evaluate the indirect antimicrobial activity of 4HB, naïve macrophages were stimulated for 24 

hours with 1.32 mg/ml 4HB or the vehicle control using serum-free and antibiotic-free media. The 

produced conditioned media was used to evaluate bacterial growth over a course of 24 hours at 

37°C. Absorbance values were determined every hour at 570 nm with a BioRad 680 Microplate 

Reader. 

3.2.3 Effects of butyrate and hydroxylated derivatives of butyrate upon murine BMDM 

3.2.3.1 Monomers  

Sodium butyrate (Sigma, Cat. No. B5887), butyric acid (Sigma, Cat. No. B103500), sodium 2-

hydroxybutyrate (Na-2HB) (Sigma, Cat. No. 220116), 2-Hydroxybutanoic acid (Acid-2HB) 

(Sigma, Cat. No. CDS000492), sodium 3-hydroxybutyrate (Na-3HB) (Sigma, 54965), 3-

hydroxybutyric acid (Acid-3HB) (Sigma, Cat. No. 166898), and sodium 4-hydroxybutyrate (Na-

4HB) (Sigma, G-001) were used in the present study (Figure 7). The methanol containing the Na-

4HB was evaporated and the SCFA was solubilized in sterile type I water. 

 

Figure 7. Chemical structure of butyrate and hydroxylated derivatives.  

Butyrate and the isomers 2-hydroxybutyrate (2HB), 3-hydroxybutyrate (3HB), and 4-hydroxybutyrate 

(4HB) were evaluated as sodium salts or as acidic compounds. 
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3.2.3.2 Stimulation of BMDM with butyrate or its hydroxylated derivatives 

Naïve macrophages were isolated from bone marrow and differentiated as described in section 

2.2.4. Macrophages were stimulated with a series of increasing concentrations (as specified for 

each experiment) of the acid or sodium salt forms of butyrate or its hydroxylated derivatives (2HB, 

3HB, and 4HB) for 24 hours at 37°C, 5% CO2.  

3.2.3.3 Macrophage metabolism and cell viability 

Metabolism and viability of stimulated macrophages were measured using the MTT assay 

(Vibrant® MTT Cell Proliferation Assay Kit, V-13154, Molecular Probes) following the 

manufacturer instructions. Briefly, 1*105 bone marrow-derived monocytes were plated and 

differentiated into macrophages as described in section 2.2.4. Each of the SCFA were evaluated at 

0.05 mM, 0.1 mM, 0.25 mM, 0.5 mM, 1 mM, 2 mM, 4 mM, 12 mM, 24 mM, 48 mM, and 96 mM 

for 24 hours at 37°C, 5% CO2. After stimulation, macrophages were washed with PBS and 

incubated with 100 µl of serum-free and antibiotic-free media containing 1.2 mM MTT (3-(4,5-

dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide) solution for 2 hours. After the incubation 

period, 75 µl of media was removed from the each well and the formazan produced by reduction 

of the MTT was diluted with 50 µl of dimethyl sulfoxide (DMSO). Following an incubation of 10 

minutes at 37°C, the concentration of formazan was determined by optical density at 540 nm. The 

metabolic activity of macrophages was calculated from a standard curve. Results were presented 

relative to untreated (media only) macrophages. Concentrations that decreased metabolic activity 

by more than 50% were considered cytotoxic. 
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3.2.4 Expression of cathelicidin LL-37 in MBMDM 

The expression of cathelicidin LL-37 was evaluated by immunolabeling. Macrophages were 

stimulated with byproducts of the surgical mesh materials (Phasix, BardMesh, TIGR, 

GOREBIO-A, or Strattice), or non-cytotoxic concentrations of acid or sodium salt forms of 

butyrate or its hydroxylated derivatives (2HB, 3HB, and 4HB) for 24 hours. Treated macrophages 

were fixed in 2% paraformaldehyde for 30 minutes, followed by washes with PBS. Fixed cells 

were then incubated for 1 hour with blocking buffer (4%v/v horse serum, 2%w/v bovine serum 

albumin, 0.1%v/v triton X-100, and 0.1%v/v tween-20 in PBS) to inhibit non-specific binding of 

antibodies. After blocking, macrophages were incubated with the primary rabbit polyclonal 

antibody cathelicidin LL-37 (Abbiotec, Cat. No. 253814) at 1:100 dilution at 4°C overnight. After 

washing in PBS, the macrophages were incubated with fluorophore-conjugated the secondary 

antibody goat anti-rabbit 488 (Invitrogen, Cat. No. A11034) at 1:200 dilution for 1 hour at room 

temperature. After washing again with PBS, nuclei were counterstained with 4’-6-diamidino-2-

phenylindole (DAPI) prior to imaging. Images of three 20X fields were taken for each well using 

a live-cell microscope.  

3.2.5 Gene expression of antimicrobial peptides 

To determine the transcriptional activation of the AMP cathelicidin LL-37, and the β-defensins 2, 

3, and 4 (Appendix B), macrophages were treated with byproducts of the surgical mesh materials 

(Phasix, BardMesh, TIGR, GOREBIO-A, or Strattice), non-cytotoxic concentrations of 

sodium butyrate, or its hydroxylated derivatives (Na-2HB, Na-3HB, and Na-4HB) for 24 hours. 

The RNA isolation and qPCR were performed according to the protocol described in section 2.2.7. 
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The levels of expression were normalized with the housekeeping gene hprt1. Results were 

expressed as relative fold change log (2-ΔΔCt) relative to non-treated macrophages. 

3.2.6 HDAC inhibitory activity 

3.2.6.1 Total protein isolation 

Macrophages were harvested using a cell scraper and collected. After centrifugation at 3500 g for 

5 min at 4°C, supernatants were removed and the cells were washed twice with 1000 μl phosphate 

buffered saline (PBS). The cells were then lysed with lysis buffer [150 mM NaCl, 50 mM Tris pH 

8.0, 1%v/v Triton X-100, 0.5%v/v sodium deoxycholate (SDC), 0.1%v/v sodium dodecyl sulfate 

(SDS) and protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific, Cat No. 

PIA32961)], incubating on ice for 1 hour, and vortexing for 30 seconds every 10 minutes. After 

incubation, the lysis solution was centrifuged at 14000 g for 15 minutes, and the supernatant 

containing the proteins was transferred to a new tube. The concentration of protein was quantified 

using the Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific, Cat No. 23225), following 

manufacturer’s instructions. 

3.2.6.2 HDAC activity  

The AmpliteTM Fluorimetric HDAC activity Assay kit *Green Fluorescence* (AAT Bioquest, Cat 

No. NC1484042) was used following the manufacturer’s instructions to evaluate whether the 

hydroxylated derivatives of butyrate have an inhibitory effect on HDAC activity. Briefly, 5 ug of 

total protein extracts were incubated for 20 min at 37°C with increasing concentrations of each of 

the SCFA (0.5 mM - 96 mM). A series of increasing concentrations of sodium butyrate and 3 µM 

trichostatin A (TSA) were used as controls. To determine the HDAC activity, 50 μl of HDAC 
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Green™ Substrate working solution was added and incubated for 1 h at 37°C. Fluorescence 

intensity was read at Ex/Em = 490/525 nm. Percentage of HDAC inhibition was calculated relative 

to the non-inhibited control.  

Additionally, to evaluate whether the hydroxylated derivatives of butyrate are able to 

directly inhibit the enzymatic activity of HDAC in naïve macrophages, cells were treated with 1 

mM sodium butyrate, 4 mM of any of the hydroxylated derivatives (Na-2HB, Na-3HB, Na-4HB), 

or the controls 0.375 µM TSA (AAT Bioquest, Inc) or 12.5 µM histone acetyl transferase 

inhibitor (HAT) (Selleckchem, Cat No. S7152) for 24 hours, followed by evaluation of the HDAC 

activity in the protein extracts. The results were contrasted with evaluation of the levels of 

acetylation of the histone H3 by western blot using the specific antibody anti-Histone H3 (acetyl 

K9) (Abcam, Cat No. ab61231). 

3.2.7 Signaling-transduction mechanism 

3.2.7.1 Transcriptional inhibition of G protein-coupled receptors (GPCR)  

Hcar2 Stealth siRNA (Thermo Fisher Scientific, Cat. No. MSS234551) and SLC52A2 Stealth 

siRNA (Thermo Fisher Scientific, Cat. No. MSS225263) were used to inhibit the transcription of 

the G protein-coupled receptors GPR109a and GPR172a, respectively. These GPRs are potentially 

involved in the signaling cascade upregulating cathelicidin LL-37 induced by 4HB in 

macrophages. Liposomes (Lipofectamine™ RNAiMAX, Thermo Fisher Scientific, Cat. No. 

13778030) containing the siRNA or the control (Stealth RNAi™ siRNA Negative Control Lo GC, 

Thermo Fisher Scientific, Cat. No. 12935-200) were prepared in Opti-MEM™ I Reduced Serum 

Medium (Thermo Fisher Scientific, Cat. No. 11058021) and used to transfect primary murine bone 

marrow-derived macrophages for 24 hours. After this period of time, cells were exposed to 1.32 
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mg/ml of byproducts of P4HB or the vehicle control for other 24 hours. Gene expression was used 

to evaluate changes in the level of cathelicidin LL-37. 

3.2.7.2 Inhibition of MAP kinases and transcription factors  

To determine whether the MAP kinases c-Jun N-terminal kinase (JNK), p38 and the Mitogen-

activated protein kinase kinase (MEK-1,2) are involved in the activation of cathelicidin LL-37, the 

specific inhibitors SP600125, SB203580, and U0126, targeting each of these proteins, were used 

at a working concentration of 10 µM to pretreat naïve macrophages for 1 hour, before stimulating 

them with degradation byproducts of P4HB for 24 hours. Likewise, specific inhibitors for the 

transcription factors the activator protein 1 (AP-1), 10 µM SR11302, the signal transducer and 

activator of transcription 3 (STAT3), 20 µM STA-21, and the hypoxia inducible factor 1α (HIF-

1α), 0.7 µM HIF-1α inhibitor, were used to pretreat macrophages and determine the complex(es) 

involved in the upregulation of this AMP induced by 4HB. Gene expression and specific 

immunolabeling against cathelicidin LL-37 were used to determine the effects of the inhibition 

upon the production of this AMP. 

3.2.7.3 Evaluation of the NF-κB activity induced by 4HB 

To determine the role of the nuclear factor-κB (NF-κB) in the 4HB-mediated transcriptional 

activation of cathelicidin LL-37, a specific inhibitor (100 µM ursolic acid) was used to pre-treat 

the naïve macrophages for 6 hours followed by stimulation with 4HB for 24 hours. Changes in the 

level of cathelicidin LL-37 expression were evaluated by immunolabeling. 
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3.2.8 Statistical analysis 

Three independent experiments were conducted. Data is presented as the mean ± standard error of 

the mean (SEM). Statistical differences were determined using a non-parametric ANOVA test 

(Kruskal-Wallis test). Differences were compared with post-hoc Dunn’s test relative to non-treated 

macrophages in vitro. The fold change gene expression relative to non-treated macrophages was 

analyzed using the BoostRatio Web Application for the ratio between the treatments and the 

control [114]. A value p<0.05 was considered statistically significant. Statistical analysis was 

performed using GraphPad Prism version 6.07 (GraphPad Software, La Jolla CA, USA). 

3.3 RESULTS 

3.3.1 P4HB induces an indirect (cell mediated) antimicrobial activity 

Direct exposure of S. aureus to degradation byproducts of Phasix did not decrease the bacterial 

growth when compared with bacteria exposed to vehicle control (Figure 8A). Exposure of S. 

aureus to the conditioned media of macrophages stimulated with the byproducts of Phasix 

resulted in a 30% decrease in the bacterial growth as compared the conditioned media of 

macrophages stimulated with the vehicle control (p=0.029) (Figure 8B), suggesting an indirect 

antimicrobial effect of 4HB.  



47 

 

Figure 8. Direct vs. indirect antimicrobial activity. 

A. Direct antimicrobial activity assay. S. aureus growth in the presence of degradation byproducts of 

Phasix (4HB) or vehicle control. B. Indirect antimicrobial activity assay. S. aureus growth in the presence of 

conditioned media from macrophages exposed to degradation byproducts of Phasix or vehicle control. Value: 

Mean ±standard deviation (SD), biologic replicates (N)=3, technical replicates=3. 

3.3.2 P4HB induces a distinctive expression of cathelicidin LL-37 

The ability of degradation byproducts of different surgical meshes (Phasix, BardMesh, TIGR, 

GORE BIO-A, and Strattice) to induce the secretion of the AMP cathelicidin LL-37 in 

stimulated macrophages was evaluated (Figure 9A). Stimulation with the byproduct of Phasix, 

4HB, significantly induced the expression of cathelicidin LL-37 when compared with non-treated 

macrophages (Figure 9B). Moreover, the mechanism involved in the increased expression of this 

AMP is through the upregulation of the Cramp gene, which codes for cathelicidin LL-37 (Figure 

9C). Byproducts of Phasix and byproducts of Strattice induced also the transcriptional 

upregulation of the β-defensins 3 and 4 (Figure 9D & E). 
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Figure 9. In vitro expression of antimicrobial peptides induced by byproducts of surgical meshes.  
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Primary murine BMDM were exposed to 1.32 mg/ml degradation products of PhasixTM, TIGR®, GORE® 

BIO-A®, or Strattice™ for 24 hours. A. Activation of cathelicidin LL-37. Known factors that are promoters of pro-

inflammatory (100 ng/ml LPS and 20 ng/ml IFN- γ) or anti-inflammatory (20 ng/ml IL-4) phenotypes were included 

as controls. Scale bar 200 µm. B. Quantification of the response of treated macrophages in A. Images were 

quantified using Cell Profiler image analysis software. Values: Mean ± SEM, biologic replicates (N)=3, technical 

replicates=3. Differences between stimuli for each marker were evaluated using non-parametric ANOVA test, * 

p<0.05. C-E. Relative transcriptional activity of cathelicidin LL-37 (C), β-defensin 3 (D), and β-defensin 3 (E). Data 

presented as fold change relative to non-treated macrophages. Values: Mean ± SEM, biologic replicates (N)=3, 

technical replicates=3. 

3.3.3 Comparison of hydroxylated derivatives of butyrate 

3.3.3.1 Sodium hydroxylated derivatives of butyrate are not associated with a cytotoxic effect 

upon murine bone marrow-derived macrophages 

The macrophage metabolic activity and the cytotoxicity induced by sodium salt or acid 

forms of butyrate and its hydroxylated derivatives was evaluated. Exposure of murine bone 

marrow-derived macrophages to increasing concentrations of sodium butyrate, butyric acid, or the 

acid hydroxylated derivatives (acid-2HB and acid-3HB) induced a reduction in the cell metabolic 

activity by more than 50%. Concentrations higher than 2 mM of butyrate and butyric acid, and 

concentrations higher than 24 mM of acid-2HB and acid-3HB were associated with a cytotoxic 

effect. On the other hand, the sodium hydroxylated derivatives of butyrate (Na-2HB, Na-3HB, and 

Na-4HB) preserved the viability of stimulated macrophages at all evaluated concentrations (Figure 

10).  
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Figure 10. Dose response curves of butyrate and its hydroxylated derivatives.  

A. Both sodium butyrate and butyric acid decreased the cell viability at concentrations higher than 4mM. 

B-D. All hydroxylated forms of butyrate in their salt forms (Na-2HB, Na-3HB, and Na-4HB) are non-cytotoxic at 

supra-physiologic concentrations (96 mM). Acid forms of 2HB and 3HB decreased the cell viability at 

concentrations higher than 24 mM. Dotted line at 50% represents the threshold of viability. Value: Mean ±SEM, 

biologic replicates (N)=3, technical replicates=3. 

3.3.3.2 Sodium 4-hydroxybutyrate induces an increased expression of the AMP cathelicidin 

LL-37 in stimulated murine bone marrow-derived macrophages 

The ability of hydroxybutyrate isomers to upregulate the endogenous expression of the AMP 

cathelicidin LL-37 in stimulated macrophages was evaluated and compared with the induction 

produced by sodium butyrate. All SCFA induced a distinct expression of cathelicidin LL-37 

(Figure 11A). Sodium butyrate and its sodium hydroxylated derivatives (Na-2HB, Na-3HB, and 
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Na-4HB) induced an expression that was responsive to the dose used to stimulate the macrophages. 

Effective concentrations that induced significantly higher cathelicidin LL-37 expression when 

compared with non-treated macrophages were: between 0.5 mM to 2 mM of sodium butyrate, 2 

mM of Na-2HB and Na-3HB, and between 0.5 mM to 12 mM of Na-4HB (Figure 11B). The acid 

counterparts of the evaluated SCFA (butyric acid, acid-2HB, and acid-3HB) were not associated 

with a dose response; none of the concentrations of acids induced a significantly higher expression 

of cathelicidin LL-37 when compared with the non-treated macrophages (Figure 11B). 

3.3.3.3 Sodium 4-hydroxybutyrate induces a transcriptional activation of AMP in exposed 

macrophages 

mRNA expression of the genes codifying for cathelicidin LL-37, β-defensin 2, β-defensin 3, and 

β-defensin 4, were evaluated in macrophages exposed to sodium hydroxylated derivatives of 

butyrate (Na-2HB, Na-3HB, and Na-4HB) and compared with non-treated macrophages. A 

significantly higher upregulation of the gene Cramp was found in macrophages treated with 2 mM 

Na-3HB (mean fold change: 10.62, p ratio=0.0045), and with those treated with Na-4HB at 1 mM 

(mean fold change: 8.14, p ratio=0.001) or 2 mM (mean fold change: 3.49, p ratio= 0.013) (Figure 

12A).  

Expression of β-defensin 2 was found to be modulated by sodium butyrate and Na-4HB, 

but not by Na-2HB and Na-3HB. The highest upregulation level was induced by 4 mM Na-4HB 

(mean fold change: 2.73), followed by 2 mM of either sodium butyrate (mean fold change: 2.34) 

or Na-4HB (mean fold change: 1.85) (Figure 12B). β-defensin 3, however, was modulated to a 

lower extent. Only Na-4HB at 2 mM and 4 mM induced an increase in fold induction (1.59 and  
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Figure 11. Expression of cathelicidin LL-37 induced by butyrate and its hydroxylated derivatives.  

A. Immunofluorescence for the AMP cathelicidin LL-37. A series of increased concentrations of butyrate 

or its hydroxylated derivatives were used to stimulate primary murine bone marrow-derived macrophages. A dose 

response of expression is observed (green) for all the evaluated monomers. Biologic replicates (N)=3, technical 

replicates=3. Scale bar 100 μm. B. Quantification of cathelicidin LL-37 expression. Na-4HB induces the expression 

of cathelicidin LL-37 in amounts comparable to sodium butyrate. All hydroxylated forms have the ability to induce 

endogenous secretion of the AMP, with higher levels in their sodium forms than in their acid forms. Differences 

between concentrations for each SCFA were evaluated using non-parametric ANOVA test, *p<0.05 relative to non-

treated macrophages. Value: Mean ±SEM, biologic replicates (N)=3, technical replicates=3. 
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1.62 times, respectively). None of the other sodium forms of butyrate or its hydroxylated 

derivatives were found to modulate the transcription of the β-defensin 3 gene (Figure 12C). 

The gene codifying for β-defensin 4 was found to be upregulated by sodium butyrate and 

all of its hydroxylated derivatives (Figure 12D). The highest level of induction was produced by 

Na-4HB at both 2 mM (fold change: 2.73, p ratio=0.018) and 4 mM (fold change: 3.00, p 

ratio=0.024). 

 

Figure 12. Gene expression of AMP induced by butyrate and its hydroxylated derivatives.  

A. Na-3HB and Na-4HB induce an upregulation of the Cramp gene at 1 mM and 2 mM compared to non-

treated macrophages. C. Expression of β-Defensin 3 is not significantly upregulated by any of the evaluated SCFA. 

Value: Mean ± SEM, biologic replicates (N)=3, technical replicates=3. 
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3.3.3.4 Sodium butyrate and its hydroxylated derivatives present a distinct HDAC inhibitory 

activity upon murine bone marrow-derived macrophages 

The activity of sodium butyrate and its sodium hydroxylated derivatives (Na-2HB, Na-3HB, and 

Na-4HB) as HDAC inhibitors in primary murine bone marrow-derived macrophages was 

evaluated. The ability of different concentrations of these SCFA to inhibit HDAC enzymes in 

protein extracts was first determined. The results show a dose dependent inhibition in protein 

extracts incubated with sodium butyrate and Na-2HB, but not with Na-3HB or Na-4HB (Figure 

13A). The half maximal inhibitory concentration (IC50) was determined for sodium butyrate (3.69 

± 1.12) mM and for Na-2HB (12.51 ± 1.6) mM, using non-linear fitting regression (r2 = 0.99 and 

0.96, respectively) (GraphPad Prism). 

Treatment of murine bone marrow-derived macrophages with 1 mM sodium butyrate or 4 

mM of each of the sodium hydroxylated derivatives did not show an inhibition of the HDAC 

activity (Figure 13B). Western blot for acetyl-Histone 3, at the lysine 9 further confirmed that none 

of the treatments at the working concentrations had an effect upon the level of acetylation (Figure 

13C), validating the results obtained with the dose response evaluation. 

3.3.4 4HB induces transcriptional activation of cathelicidin LL-37 through a signaling-

transduction mechanism 

The signal-transduction mechanism involved in the transcriptional upregulation of the 

antimicrobial peptide cathelicidin LL-37 induced by the byproduct of Phasix (4HB) was 

evaluated. Transcriptional inhibition of two potential membrane receptors showed that decreasing 

GPR109a, but not GPR172a, reduced the 4HB-mediated cathelicidin LL-37 transcription in 
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Figure 13. Differential HDAC inhibition induced by sodium butyrate and its hydroxylated 

derivatives.  

A. HDAC activity in macrophage-derived protein extracts induced by increasing concentrations (0.5 mM to 

96 mM) of sodium butyrate or each of the hydroxylated derivatives (Na-2HB, Na-3HB, and Na-4HB). 0.003 mM 

trichostatin A (TSA) or non-treated extracts were used as controls. HDAC activity is presented as a percent 

normalized to non-treated protein extracts. A dose-dependent inhibition was found in protein extracts treated with 

sodium butyrate (IC50 3.69 ± 1.12) mM and for Na-2HB (IC50 12.51 ± 1.6), but not with Na-3HB and Na-4HB. B. 

Murine bone marrow-derived macrophages were treated with 1mM sodium butyrate or 4mM of one of the 

hydroxylated derivatives (Na-2HB, Na-3HB, or Na4HB) for 24 hours. Non-treated macrophages, 0.375 µM TSA, or 

12.5 µM HAT inhibitor were used as controls. HDAC activity of treated macrophages was determined and presented 

as a percent normalized to non-treated macrophages. At the concentrations evaluated, none of the SCFA induced an 

HDAC inhibitory activity. C. Representative western blot for acetyl (lys9)-histone 3, of three independent 

experiments.  
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BMDM (Figure 14A). The use of specific inhibitors targeting the MAP kinases JNK, p38, and 

MEK 1,2, showed that p38 and, to a lower extent, JNK are required to induce the upregulation of 

cathelicidin LL-37 in macrophages stimulated with the byproduct of Phasix, 4HB, as shown in 

the relative mRNA quantification (Figure 14B) and the protein level (Figure 14C). A synergistic 

effect from the MAP kinases was additionally seen since the combined inhibition of these proteins 

completely abolished the expression of cathelicidin LL-37 (Figure 14C).  

Results of the present study showed that besides the requirements of a 4HB cell membrane 

receptor and the activation of p38, the expression of cathelicidin LL-37 mediated by 4HB in 

macrophages requires the specific activation of NF-κB as shown in Figure 14D, and when this 

nuclear transcription factor becomes is inhibited, the level of cathelicidin LL-37 secretion is 

blocked.  

In summary, the evaluation of the pattern of protein activation during a period of time of 

24 hours after cell stimulation with 4HB showed an early activation by phosphorylation of p38 

(with maximum activation between 1 and 3 hours), and a sequential activation of the subunit p65 

of the NF-κB protein (between 3 and 9 hours, and a maximum activity at 6 hours post induction). 

The activation pathway is then followed by the increased level of cathelicidin LL-37 between 9 

and 24 hours (Figure 14E). 

The specific inhibition of the transcription factors HIF-1α, AP-1, and STAT3 showed that 

only blocking AP-1 decreased expression of cathelicidin LL-37 in macrophages treated with 4HB 

(Figure 14 F & G).
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Figure 14. Signal-transduction mechanism involved in the upregulation of cathelicidin LL-37 mediated by 4HB. 
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A. RNA expression level of the camp gene codifying for cathelicidin LL-37. Specific siRNA inhibitors for 

GPR109a and GPR172a show association of the former in the AMP expression. B-C. Inhibitors targeting the MAP 

kinases p38, JNK, and MEK showed the association of these proteins with the expression of cathelicidin LL-37 

mediated by 4HB. P38 and to a lower extent JNK are required for the expression of cathelicidin LL-37, by gene 

expression (B) and protein level (C). D. Specific inhibitors targeting 4HB receptors, p38, and NF-κB confirm the 

association of these molecules with the production of this AMP. E. Protein activation was evaluated over a time 

period of 24 hours. An earlier activation of the MAP kinase p38 (0.5 to 3 hours), was followed by activation of NF-

κB (3 to 9 hours), and finally concluded in cathelicidin LL-37 expression between 9 and 24 hours. F-G. Specific 

inhibitors targeting the transcription factors AP-1, HIF-1α, and STA-21, suggest that only AP-1 is involved in the 

secretion of cathelicidin LL-37 induced by 4HB, gene expression (F) and protein level (G). 
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3.4 DISCUSSION 

The present study evaluated the mechanisms by which 4HB promotes antibacterial activity in 

murine bone marrow-derived macrophages. This study showed that 4HB-mediated antimicrobial 

protection occurs via endogenous upregulation of AMP. The 4HB-induced expression of 

cathelicidin LL-37 is independent of a direct HDAC inhibitory activity of 4HB. Instead, it seems 

to be associated with a cell signaling mechanism that involves an activation cascade through the 

MAP kinases p38 and JNK, and the NF-κB pathways (Figure 15). 

The present study compared the effect of sodium butyrate and its hydroxylated derivatives 

(Na-2HB, Na-3HB, and Na-4HB) upon HDAC activity and the expression of AMP in murine bone 

marrow-derived macrophages. The results showed a distinct HDAC inhibitory activity associated 

with sodium butyrate and Na-2HB in a concentration-dependent fashion, whereas Na-3HB and 

Na-4HB were not associated with HDAC inhibition even at high millimolar concentrations. 

Sodium butyrate showed more inhibition than Na-2HB. The present study also showed that the 

hydroxylated derivatives of butyrate differentially modulate the macrophage expression of the 

AMP cathelicidin LL-37, and to a lesser degree the β-defensins 2 and 4 in vitro. Na-4HB induced 

the greatest level of endogenous secretion of these AMP; amounts comparable to those induced by 

sodium butyrate. Less induction of AMP expression was induced by Na-3HB, and the least by Na-

2HB. The present study also showed preservation of cell viability when exposed to a wide range 

of physiologic and supra-physiologic concentrations of the hydroxylated derivatives of butyrate, 

which contrasted with the cytotoxic effect induced by sodium butyrate. 
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Figure 15. Proposed molecular mechanism of 4HB-mediated transcriptional activation of cathelicidin 

LL-37. 

Transcriptional upregulation of cathelicidin LL-37 in macrophages exposed to 4HB requires a specific 

ligand-receptor activation modulated by the G-protein coupled receptor GPR109a. After activation, an intracellular 

signaling cascade promotes the sequential phosphorylation and activation of the MAP Kinases, p38 and JNK. 

Although the mechanisms of NF-κB phosphorylation have not been evaluated in the present model, its activation 

occurs downstream from p38, and is essential for the AMP transcriptional response. Once translocated to the nuclei, 

the transcriptional factors AP-1 (cFOS/c-Jun subunits) and p65 participate in the transcriptional activation of 

cathelicidin LL-37 mediated by 4HB. 
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Different SCFA have been associated with a weak HDAC inhibitory activity when 

compared to potent inhibitors such as trichostatin A [106]. Variables such as concentration, cell 

type, specific HDAC groups and subgroups, the ability of the molecule to enter into the nuclei, 

among others, are determinant in this activity [93]. Sodium butyrate is a known inhibitor of HDAC 

classes I and II in a broad spectrum of cell types. This molecule has been shown to induce apoptosis 

among different epigenetic effects [115]. Evaluation of sodium butyrate in the present study 

confirms the HDAC inhibitory activity induced by this molecule in exposed macrophages, and its 

cytotoxic effect when used at high concentrations. The present study also shows the AMP 

induction by Na-2HB is associated with HDAC inhibition. Although the results of this study show 

that Na-3HB and Na-4HB did not have a HDAC inhibitory activity in treated macrophages, these 

molecules have been clearly shown to inhibit HDAC activity in other body systems. For example, 

Shimazu et al., 2013 showed that physiologic circulatory concentrations of 3HB (higher than 1 

mM) during prolonged exercise or starvation have a direct HDAC inhibitory activity upon human 

embryonic kidney 293 (HEK293) cells in vitro, and whole kidney in vivo, in a dose dependent 

manner. The study reported that the major targets of acetylation were lysine 9 and 14 of histone 3, 

and that the inhibited HDAC belonged to classes I and II, with a generalized effect of protection 

against oxidative stress [116]. Similarly, Klein et al., 2009 have shown a heterogeneous HDAC 

inhibitory response induced by 4HB in different regions of the rat brain. Whereas a significant 

acetylation was found in the cerebellum, the hippocampus, and brain stem, other regions like the 

temporal and parietal cortex were shown to be unresponsive to 4HB. Of particular interest, only 

those regions that were responsive express class IV HDAC, suggesting that this subgroup is the 

target of 4HB [48]. 
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The lack of HDAC inhibitory activity associated with Na-4HB and its ability to upregulate 

the expression of AMP further supports the requirement of specific surface receptors at the cell 

level to trigger the transcriptional activation of AMP. It is hypothesized herein that the presence 

of the hydroxyl group at the carbons -2 and -3 provide a less stable molecular interaction, which 

results in a lower endogenous AMP induction. In fact, the presence of the 4-hydroxyl group has 

been shown to play a key role in high affinity interactions between 4HB and GABAA receptors in 

the brain [50]. Other ligand-receptor interactions, in particular those associating SCFA with the 

GPR109a, suggest that the carboxylic group of the fatty acids is the anchor point to trigger a 

receptor-mediated response [117]. Other derivatives of butyrate which have chemical 

modifications in the carbon -4, but have a preserved carboxylic group, such as sodium 4-

phenylbutyrate, have been shown to induce an effective transcriptional activation of AMP in 

epithelial cells and macrophages [60, 109, 118]. 

The present study evaluated the signal-transduction mechanism by which 4HB induced the 

expression of cathelicidin LL-37. When evaluating potential GPCR associated with macrophages, 

a high mRNA expression of GPR109a and GPR172a, was seen in naïve macrophages. From those, 

the transcriptional inhibition of GPR109a was shown to have an inhibitory effect on the expression 

of cathelicidin LL-37, suggesting that, at least partially, this receptor is involved in the molecular 

mechanism activating the AMP in 4HB-stimulated macrophages. 

GPCR-mediated activation of MAP Kinases following stimulation with SCFA has already 

been described for a variety of cell types [119]. The specific set of proteins involved (JNK, p38, 

or MEK1,2, and specific downstream transcription factors), however, seem to be differentially 

activated depending upon the molecule triggering the response and the type of cell involved [107, 
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120, 121]. Results of the present study showed that activation of JNK and p38 are required to 

induce the transcriptional activation of cathelicidin LL-37 in 4HB-stimulated macrophages.  

Additionally, phosphorylation of the NF-κB protein was necessary to induce the AMP 

response in 4HB-treated cells. Importantly, phosphorylation of the p65 subunit of NF-κB did not 

occur before three hours of stimuli, whereas LPS- or TNF-α-induction of the NF-κB pathway are 

usually associated with a rapid (5 min to 60 min) phosphorylation [122]. The delayed NF-κB 

response in the present study suggests that activation of p65 could be part of a secondary response 

that depends upon the development of a prior response within the cell. Given the pattern of 

macrophage activation described in Chapter 2.0 of the present dissertation, it could be 

hypothesized that either transcriptional activation of IRF3 or secreted TNF-α from 4HB-

stimulated macrophages, are a requirement for the subsequent activation of NF-κB. 

A second hypothesis explaining the delayed phosphorylation of NF-κB relies in a 

transactivation mechanism of p65 mediated by the MAP kinases. It has been previously shown 

that non-canonical activation of the p65 subunit can occur through phosphorylation mediated by 

the mitogen- and stress-activated kinase 1 (MSK1) (Figure 15), which is a downstream molecule 

of JNK and p38 [123].  

Others have shown, however, that under TNF-α induction, transactivation of p65 is p38-

independent. In this particular case, activation of the MAP Kinase is required to further induce the 

co-activator complex CBP/p300 (Figure 15), which stabilizes the interaction of p65 at the promoter 

domain of the gene being transcribed, but does not influence phosphorylation of p65 [124]. Within 

the present study, it is still unknown what is the molecular association between p38 and p65. The 

use of an inhibitor of p38 significantly decreased, but not abolished, cathelicidin LL-37 secretion. 

On the other hand, inhibition of NF-κB completely blocked the production of this AMP, which 
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suggests that NF-κB is not being directly phosphorylated by a downstream element of p38. Future 

studies to confirm these mechanisms are warranted. 

Transcriptional activation of cathelicidin LL-37 has been shown to be a complex process 

that involves the activation of several transcriptional factors and cis-elements at both the 5’-UTR 

and 3’-UTR regions of the Cramp gene [125]. Specific domains for NF-κB, nuclear factor NF-IL-

6, granulocyte macrophage-colony stimulating factor (GM-CSF), CCAAT/enhancer binding 

protein (C/EBP), GATA transcription factors, and interferon regulatory element-δ (IRE-δ) have 

already been identified [126]. Moreover, upregulation of cathelicidin LL-37 has been shown to be 

modulated by the transcription factor specificity protein-1 (Sp1) after induction with double-

stranded RNA [127], STAT3 and HIF-1α when mediated by entinostat [128], and the cAMP-

response element binding protein (CREB) and AP-1 after stimulation with butyrate [107, 125]. 

The present study showed that 4HB-stimulation of macrophages induced cathelicidin LL-37 

expression through a mechanism that requires the complex factors AP-1 and NF-κB, which are 

consistent with the molecular pathways being activated. Furthermore, it was shown that 4HB-

mediated cathelicidin upregulation in macrophages is independent of STAT3 or HIF-1α. 

A number of important clinical implications are derived from the results of the present 

study. Both p38 and NF-κB are known targets of a broad number of nonsteroidal anti-

inflammatory drugs (NSAIDs) [129]. In fact, a number of studies associate the use of NSAIDs 

with a stronger progression of infections [130-132]. An understanding of the mechanisms involved 

in the endogenous upregulation promoting resistance to bacterial infection, and the inhibitory role 

of NSAIDs, will help clinical practitioners to determine alternative anti-inflammatory cocktails 

that do not inhibit the potential of implanted polymers composed of 4HB. 
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There are several limitations to the present study. Although two potential GPCR were 

evaluated, additional membrane receptors (GPR41 and GPR43) and sodium-coupled transporters 

(Slc5a8) could be contributing to the 4HB-associated effect in macrophages. Direct molecular 

interactions between the kinases and additional intermediaries of the activation cascade need to be 

further investigated.  

3.5 CONCLUSION 

The present study showed the ability of 4HB to induce antimicrobial resistance through the 

promotion of an endogenous upregulation of AMP in exposed macrophages. The mechanisms of 

AMP secretion are independent of a direct HDAC inhibitory activity, which has been commonly 

associated with SCFA. 4HB instead promoted a specific molecular activation cascade that resulted 

in the increased expression of cathelicidin LL-37. The increased expression of AMP as well as the 

ability to preserve the viability of the cells suggest that 4HB may be used in many applications, 

such as functionalization of biomaterials or as a cargo molecule for drug delivery. 4HB has the 

advantage of promoting bacterial resistance without the risk of adverse effects on the cells.  
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4.0  COMPARATIVE HOST MACROPHAGE RESPONSE TO SURGICAL MESHES 

USED FOR VENTRAL HERNIA REPAIR2 

4.1 INTRODUCTION 

The use of surgical mesh materials for ventral hernia repair has become commonplace, largely in 

response to the documented decrease in the incidence of hernia recurrence compared to repair 

without the use of a surgical mesh [133-135]. However, all meshes elicit a host tissue response 

that is dependent, in part, upon the material(s) from which the implant is manufactured, the design 

and degradability of the material, and host variables such as age, body mass index, smoking 

history, and co-morbidities, among others [12, 136-140]. 

At the cellular level, one of the major determinants of the downstream outcome is the 

phenotype of the innate immune response, especially the macrophage component of the innate 

response (Figure 1, adapted from [8, 9]). A persistent pro-inflammatory (M1-like) macrophage 

phenotype is typically associated with dense fibrosis and scar tissue formation and, if the implanted 

material is non-degradable, the well described foreign body response (FBR) [13, 15, 21]. In 

contrast, a regulatory, pro-remodeling (M2-like) macrophage phenotype within the first 14 days 

                                                 

2 Sections of this chapter to appear in Journal of Immunology and Regenerative Medicine. 
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post-implantation is predictive of the deposition of less dense, organized and site appropriate 

connective tissue [14]. 

The initiators of a pro-inflammatory vs. a pro-remodeling macrophage response are not 

fully understood but with respect to biomaterials, synthetic and non-degradable biomaterials 

typically induce a pro-inflammatory response, while naturally occurring, degradable materials 

typically induce a pro-remodeling response [15, 16, 141]. Neither of these phenotypes is exclusive 

and in reality, the ratio of cells with their respective phenotype defines and determines the 

microenvironmental milieu and associated tissue response [14, 15, 142]. 

The objective of the present study is to characterize the host response induced by a subset of 

surgical meshes composed of synthetic, biosynthetic, and biologic sources.  

4.2 MATERIALS AND METHODS 

4.2.1 Experimental Design Overview 

The effects of selected synthetic, biosynthetic, and biologic surgical meshes upon macrophage 

activation were evaluated in vivo. Three synthetic surgical mesh devices: 1) Bard® Mesh, 2) TIGR® 

Matrix Surgical Mesh, 3) GORE® BIO-A® Tissue, one biosynthetic mesh device: 4) Phasix™ 

Mesh, and one biologic mesh device: 5) Strattice™ Reconstructive Tissue Matrix, were used in 

the present study (Table 1) [24, 25, 77-79]. 

A rat abdominal bilateral partial thickness defect was used to evaluate the host response to 

the implanted surgical mesh devices [14, 143]. The histologic appearance, macrophage phenotype, 
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and cathelicidin LL-37 expression were evaluated at 3, 7, 14, 21, and 35 days after surgery (Figure 

16). 

 

Figure 16. Experimental design overview.  

In vivo evaluation of the host response to biomaterials. The test articles were evaluated in a Sprague–

Dawley rat partial thickness abdominal wall defect model. A 1.5 cm x 1.5 cm test article was implanted following 

surgical removal of the external and internal oblique muscles. The animals were sacrificed and materials harvested 

at 3, 7, 14, 21, and 35 days post-surgery. Explanted specimens were used for histomorphologic analysis quantifying 

cellularity, vascularity, foreign body multinucleate giant cells, and cell thickness around the implanted mesh 

materials. Immunolabeling using antibodies specific for markers of macrophage phenotype [Pan-Mϕ (CD68+), M1-

like (CD68+CD86+), and M2-like (CD68+CD206+)] were used to determine the potential immunomodulatory effect 

of the tested materials upon macrophages. 

4.2.2 Scanning Electron Microscopy 

Surface characteristics of the surgical meshes were evaluated by scanning electron microscopy 

(SEM) (Figure 17). Strattice™ scaffold was fixed in aqueous glutaraldehyde solution (2.5% v/v) 

for 30 minutes, followed by immersion in a series of progressively greater concentrations of 

ethanol (30%, 50%, 70%, 90%, and 100%). The scaffold material was then dried in 100% 

hexamethyldisilazane (HMDS) (Sigma-Aldrich, MW, USA) for 3 minutes. All other evaluated 

surgical mesh materials did not require fixation or dehydration steps. The surgical mesh materials 
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were mounted onto aluminum stubs and sputter coated with gold/palladium alloy (thickness: 4.0 

nm). The meshes were imaged with a scanning electron microscope (JEOL JSM6330f, JEOL, 

Peabody, MA) at a 3.0 kV accelerating voltage.  

 

Figure 17. Scanning electron microscopy of surgical mesh materials.  

SEM images of each mesh device at 50x magnification (upper row, scale bar 100 µm) and 200x 

magnification (bottom row, scale bar 100 µm). Inset represents the cross-section of the biologic scaffold 50x 

magnification (scale bar 200 µm). 

4.2.3 Surgical model and mesh implantation  

The host response to the implanted surgical meshes was evaluated using a previously described rat 

abdominal wall partial thickness defect model [143, 144]. Animal procedures were approved by 

and performed according to the guidelines of the Institutional Animal Care and Use Committee at 

the University of Pittsburgh (IACUC protocol #15127009). Sixty Sprague–Dawley rats were 

randomly divided into six separate groups. Each rat was anesthetized and maintained at a surgical 

plane of anesthesia with 2% isoflurane in oxygen. The surgical site was prepared in sterile fashion 
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using a betadine (providone-iodine) solution followed by placement of sterile drapes. Bilateral 

paramedian skin incisions were made to provide access to the muscular abdominal wall. Defects 

measuring 1 cm x 1 cm were created in the exposed musculature (external and internal oblique 

muscles), leaving the underlying peritoneum and transversalus fascia intact. The defects were then 

either repaired with one of the test articles or left unrepaired (n=4 for each group at each time 

point). Each mesh was sutured to the adjacent abdominal wall musculature with 4–0 Prolene non-

absorbable suture at each corner to secure the mesh and allow for partial mechanical loading of 

the test article, and to allow for identification of the implant boundaries at the time of euthanasia 

and explanation. A minimal amount of suture material was used to avoid eliciting a host response 

to the suture material that would obscure the host response to the mesh material itself. The skin 

was closed using absorbable 4–0 Vicryl suture. The animals were recovered from anesthesia on a 

heating pad and allowed normal activity and diet for the remainder of the study period. 

4.2.4 Test article collection 

At 3, 7, 14, 21, and 35 days post implantation, 2 animals in each group were euthanized by CO2 

inhalation and subsequent cervical dislocation in accordance with the guidelines of the American 

Veterinary Medical Association (AVMA) Panel of Euthanasia. Following euthanasia and using 

sterile technique, the skin was gently dissected and reflected, and the test specimens and 

surrounding tissue were collected and immersed in 10% Neutral Buffered Formalin (NBF) for 

subsequent histologic evaluation. 
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4.2.5 Quantitative Histomorphologic Analysis 

A quantitative scoring system (Table 2) was used to evaluate the host response to the implanted 

surgical meshes at each time point. The NBF-preserved specimens were embedded in paraffin 

prior to being cut into 5 µm thick sections and mounted onto glass slides. The specimens were 

deparaffinized with xylene immersion followed by exposure to a graded series of ethanol solutions 

(100%, 95%, 75%) [15]. Sections were stained with hematoxylin and eosin (H&E) (Sigma-

Aldrich, USA) following manufacturer instructions. Stained slides were dehydrated using a graded 

series of ethanol solutions (75%, 95%, 100%) prior to cover-slipping. A total of 3 low 

magnification (100x) and 3 high magnification (400x) images were acquired for each H&E section 

at the mesh-tissue interface. The criteria used to quantitatively evaluate the histomorphology of 

the specimens included: total cellular infiltration, vascularization, number of multinucleate foreign 

body giant cells (MNGC), and cell layer thickness around the implanted surgical mesh. The total 

number of cells per field of view (FOV) was quantified using CellProfiler Image Analysis 

Software (http://www.cellprofiler.org). All other scoring criteria were quantified by three 

independent blinded observers. 

  

http://www.cellprofiler.org)/
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Table 2. Quantitative Histomorphologic Analysis 

Image 
Magnification Category Description 

Low 
magnification 
(100x) 

Cellularity Number of cells at the mesh-tissue interface per 
FOV 

Vascularity  Number of blood vessels per FOV 

High 
magnification 
(400x)  

 Multinucleate 
foreign body giant 
cells 

Number of foreign body giant cells per FOV 

Cell layer 
thickness 

Number of cell layers of dense cellular 
accumulation immediately adjacent to mesh fibers 
per FOV 

4.2.6 Immunolabeling of tissue sections 

The macrophages within each FOV were identified and quantified by immunofluorescence. 

Antigen retrieval of tissue sections was facilitated with citrate buffer (10 mM citrate, pH 6.0) at 

95-100˚C for 20 minutes. The blocking solution, consisting of 2%v/v normal horse serum 

(Hyclone), 1%wt/v bovine serum albumin (Sigma), 0.1%v/v Triton X-100 (Sigma), and 0.1%v/v 

Tween-20 (Sigma) in PBS, was applied for 1 h. Primary antibodies against the pan-macrophage 

marker CD68 (mouse anti-rat CD68, clone ED1, Abd Serotec) and the M1-like, pro-inflammatory 

macrophage marker CD86 (rabbit anti-human CD86, clone EP1158Y, Abcam) were used at 1:150 

dilution, the M2-like, pro-remodeling macrophage marker CD206 (goat anti-human CD206, 

polyclonal, Santa Cruz) was used at 1:100 dilution, incubating overnight at 4˚C. Sections were 

washed and incubated with the following fluorescently conjugated secondary antibodies diluted in 

blocking solution for 1 hour at room temperature: donkey anti-mouse Alexa Fluor-594 (1:200 

dilution, Invitrogen), donkey anti-rabbit PerCPCy5.5 (1:300 dilution, Santa Cruz), and donkey 
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anti-goat Alex Fluor-488 (1:200 dilution, Invitrogen). Nuclei were labeled with DAPI and slides 

coverslipped with fluorescent mounting medium (Dako). Three multispectral epifluorescent 

images were acquired for each slide at the mesh-tissue interface (Nuance multispectral imaging 

system, CRi Inc.). 

Macrophages were defined as CD68 positive co-localized with nuclei. The total number of 

cells co-expressing CD68 with CD86 and/or CD206 was quantified for each image using 

CellProfiler Image Analysis Software (http://www.cellprofiler.org). The subpopulation of 

macrophages CD68+CD206+CD86+ was denoted as “triple-labeled”. The M1-like subpopulation 

was calculated by subtracting the number of triple-labeled CD68+CD206+CD86+ cells from the 

CD68+CD86+ cells, to remove double counted cells. Likewise, the M2-like subpopulation of 

macrophages was calculated by subtracting the number of triple-labeled CD68+CD206+CD86+ 

cells from the CD68+CD206+ cells. A ratio of the number of M2-like to M1-like cells 

((CD68+CD206+):(CD68+CD86+)) was calculated for each field. The ratio was obtained dividing 

the number of M2-like macrophages by the number of M1-like macrophages. 

4.2.7 Statistical analysis 

Quantification of histomorphologic criteria and immunolabeling are presented as the mean ± the 

standard error of the mean (SEM) from four biologic replicates. Data normality was evaluated 

using the Kolmogorov-Smirnov test for each mesh device at each time point. Statistical differences 

between the mesh materials at each time point were determined using a non-parametric ANOVA 

test (Kruskal-Wallis test). The pattern of differences was evaluated with post-hoc Dunn’s multiple 

comparison test. A value p<0.05 was considered statistically significant. Statistical analysis was 

performed using GraphPad Prism version 7.0c (GraphPad Software, La Jolla CA, USA). 
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4.3 RESULTS 

4.3.1 Macroscopic assessment 

All animals survived to the intended time point. All implanted surgical meshes were integrated 

with surrounding tissue. By day 35, all implanted materials remained largely intact and were easily 

identified during necropsy. None of the implanted test articles induced edema at the implant site. 

4.3.2 Histomorphologic quantification 

The host tissue remodeling response was quantified from H&E stained images (Figure 18) with 

respect to vascularization, total number of infiltrating cells, presence of MNGC, and cell thickness 

around the implanted material. At each of the evaluated time points, non-parametric test indicated 

that the level of vascularization per FOV around the implanted surgical meshes remained 

comparable (Figure 19A). After 35 days of implantation, the number of vessels found at the mesh-

tissue interface ranged between 6 to 12 per 100x FOV.  

The acute host response (days 3 and 7) to all materials was characterized by a dense 

infiltration of mononuclear cells. TIGR® mesh showed greater infiltration of mononuclear cells 

compared with the other meshes at all time points (Figure 19B). Differences in the number of 

MNGC between the surgical meshes were evident as early as day 7 post-implantation. By day 7, 

quantification of these cells showed (2.5 ± 1.4) MNGC around Phasix™, (2.3 ± 1.3) MNGC 

around Bard® Mesh, (2.5 ± 1.5) cells around GORE® BIO-A®, (8.5 ± 4.9) cells around TIGR®, 

and (0.4 ± 0.2) cells around Strattice™. These values remained similar by day 35 for each of the 



75 

meshes, as shown in Figure 19C. Further analysis indicated that there were significant differences 

in the number of MNGC between Strattice™ and TIGR® mesh at 7, 14, 21, and 35 days (Figure 

19C).  

The number of cell layers in the area of dense accumulation immediately adjacent to 

TIGR®, GORE® BIO-A®, and Strattice™ remained constant at all time points. Phasix™ mesh 

showed an increased cell-layer thickness around the fibers at day 7 compared with GORE® BIO-

A®, that decreased over time. For all the other time points (days 14 to 35), the cell-layer thickness 

around the implanted material remained similar between the meshes (Figure 19D).  

4.3.3 Spatiotemporal analysis of macrophage phenotype  

The spatiotemporal distribution of phenotypically distinct macrophages at the material-tissue 

interface was characterized by immunolabeling. The co-expression of the pan-macrophage cell 

surface marker CD68 with the pro-inflammatory (M1-like) CD86 marker and/or the pro-

remodeling (M2-like) scavenger receptor CD206 was determined (Figure 20). As shown in the 

defect control (i.e., no implanted material), earlier time points (days 3 and 7) were associated with 

a pro-inflammatory response at the wound site, with marked infiltration of CD86+ macrophages. 

The response transitioned into a pro-remodeling reaction by day 14, when an increased population 

of CD206+ macrophages was observed (green). A resolution phase without prolonged macrophage 

response was found at day 35 in normal tissue.  

All implanted surgical meshes induced a macrophage response that, although variable in 

phenotype remained active for the 35 days of evaluation. Infiltrated macrophages were localized 
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at the biomaterial-tissue interface and in close proximity to the mesh fibers of Phasix™, Bard® 

Mesh, TIGR® and GORE® BIO-A®, and at the periphery of the Strattice™ scaffold (Figure 20). 

 

Figure 18. Histologic appearance implanted surgical meshes.  

Representative hematoxylin and eosin stained histologic cross sections of each mesh at 3, 7, 14, 21, and 35 

days post-implantation, showing the cell response to implanted surgical meshes: Phasix™ Mesh, Bard® Mesh, 
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TIGR®, GORE® BIO-A®, and Strattice™. Low magnification images (100x, upper, scale bar 200 µm) show the 

levels of vascularization and cellular infiltration. High magnification images (400x, bottom, scale bar 100 µm) show 

the MNGC and the cellular thickness at the margins of the implanted materials. 

 

Figure 19. Quantification of histomorphologic profile of explanted mesh materials.  

A. Number of blood vessels per 100x Field of view (FOV). B. Number of cells at the mesh-tissue interface 

in a 100x FOV. C. Number of formed multinucleate giant cells per 400x FOV. D. Number of cell layers of dense 

cellular accumulation immediately adjacent to the mesh fibers per 400x FOV. Values: Mean ± SEM, biologic 

replicates (N)=4, technical replicates=3. Differences between the implanted mesh devices for each criteria were 

evaluated using non-parametric ANOVA test. Statistical significance was determined by p<0.05, * as different from 

Phasix™, % as different from Bard® Mesh, # as different from GORE® BIO-A®, and % as different from 

Strattice™. 



78 

 

Figure 20. Biosynthetic scaffolds composed of P4HB modulate an early anti-inflammatory phenotype 

of macrophages. 

Immunolabeling of implanted mesh materials or defect alone controls. Red: CD68+ (pan macrophages), 

Green: CD206+(pro-remodeling macrophages), Orange: CD86+ (pro-inflammatory macrophages), Blue: DAPI. 

Earlier time points were characterized by a pro-inflammatory acute host response surrounding the implanted 

synthetic materials and the defect alone in contrast with a markedly pro-remodeling population of macrophages 

surrounding the PhasixTM mesh device. Scale bar 100 μm. 
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Figure 21. Quantification of macrophage subpopulations at the mesh-tissue interface.  

Images were quantified using Cell Profiler image analysis software. A. Number of pro-inflammatory M1-

like macrophages CD68+CD86+, per 200x FOV. B. Number of pro-remodeling m2-like CD68+CD206+, per 200x 

FOV. C. Number of triple-labeled CD68+CD206+CD68+ macrophages, per 200x FOV. Values: Mean ± SEM, 

biologic replicates (N)=4, technical replicates=3. Differences between the implanted mesh devices for each criteria 

were evaluated using non-parametric ANOVA test at 3, 7, 14, 21, and 35 days. Statistical significance was 

determined by p<0.05. 
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Day 3: By 3 days, the population of pro-inflammatory (M1-like) macrophages, recognized 

as CD68+CD86+ cells, was similar among the implanted materials (Figure 21A, Day 3). However, 

the pro-remodeling (M2-like) subpopulation of macrophages, identified as CD68+CD206+, 

showed variability among the materials. Macrophages with an M2-like phenotype were in greatest 

number around Phasix™ (46.5 ± 13.2 cells), with fewer cells around Bard® Mesh (31.8 ± 12.8 

cells), GORE® BIO-A® (30.5 ± 7.5 cells), Strattice™ (10.8 ± 2.8 cells), and the least number of 

M2-like macrophages around TIGR® (7.2 ± 3.9 cells). Statistical analysis of the M2-like 

macrophages at this time point showed differences between the materials. The differences were 

particularly found between Phasix™ and GORE® BIO-A® with TIGR®, respectively, as indicated 

in Figure 21B, Day 3. Likewise, quantification of triple-labeled CD68+CD206+CD86+ 

macrophages showed the greatest number around GORE® BIO-A® (44.5 ± 6.2 cells), with fewer 

cells around Phasix™ (42.5 ± 10.9 cells), Bard® Mesh (30.2 ± 8.9 cells), Strattice™ (25.4 ± 8.2 

cells), and the least number of triple-labeled cells around TIGR® (12.7 ± 2.4 cells). Statistical 

analysis showed differences for this subpopulation of macrophages between the implanted 

materials, as indicated in Figure 21C, Day 3. Differences observed in the subpopulations of 

macrophages for each of the implanted materials was reflected in the ratio of M2-like:M1-like 

macrophages. Analysis of the M2-like:M1-like ratio at day 3 showed a differential response among 

the materials. The ratio was higher for Phasix™ (4.44 ± 3.33) than for TIGR® (0.13 ± 0.03) (Figure 

22A). 

Day 7: The macrophage response at 7 days was distinct among the evaluated meshes. A 

predominant pro-inflammatory response was seen at the interface of the implanted TIGR® 

material, whereas all the other materials were characterized by a mixed population of macrophages 

(Figure 20, column 2). Macrophages with an M1-like phenotype were in the greatest number 
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around TIGR® (404.3 ± 78.6 cells), with fewer M1-like cells around Bard® Mesh (152.5 ± 20.8 

cells), Phasix™ (147.5 ± 55.8 cells), GORE® BIO-A® (143.3 ± 19.7 cells), and the least number 

of M1-like macrophages around Strattice™ (31.0 ± 7.1 cells) (Figure 21A, Day 7). Statistical 

differences were found between Strattice™ compared to either TIGR, Bard® Mesh, and GORE® 

BIO-A®. The number of pro-remodeling M2-like macrophages was lower around the implanted 

Strattice™ scaffold compared to the other materials (Figure 21B, Day 7). At day 7, the number of 

cells co-expressing CD68+CD206+CD86+ also presented differences between the materials. The 

number of this subtype of macrophages was higher around TIGR® (70.3 ± 9.6 cells) when 

compared to Strattice™ (13.7 ± 3.8 cells) and Phasix™ (15.7 ± 5.1 cells) (Figure 21C, Day 7). 

Statistical analysis of the M2-like:M1-like ratio at day 7 showed differences between the implanted 

meshes. The M2-like:M1-like ratio was higher around Phasix™ (2.06 ± 1.09 cells) than around 

TIGR® (0.12 ± 0.02 cells) and Strattice™ (0.08 ± 0.02 cells), respectively (Figure 22B). 

Day 14: By day 14, the macrophage response remained a mixture of M1-like and M2-like 

cells for all materials (Figure 20, column 3). The number of macrophage subtypes varied among 

the implanted materials. Phasix™ showed a higher number of both pro-inflammatory M1-like 

(205.0 ± 29.1) and pro-remodeling M2-like (41.1 ± 10.3) macrophages compared with Strattice™ 

(66.1 ± 23.2 and 11.4 ± 3.6, respectively) (Figure 21A & Figure 21B, Day 14). Likewise, TIGR® 

presented an increased subpopulation of cells co-expressing CD68+CD206+CD86+ (84.5 ± 13.9) 

when compared with Strattice™ (11.2 ± 3.8) and GORE® BIO-A® (26.6 ± 7.5), respectively 

(Figure 21C, Day 14). At this time point, the ratio of M2-like:M1-like macrophages did not show 

differences between the surgical materials (Figure 22C). 
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Day 21: After 21 days, the macrophage response to the implanted surgical meshes persisted 

as a mixture of phenotypic subtypes. The number of pro-inflammatory and pro-remodeling 

macrophages were similar among the materials (Figure 21A & Figure 21B); and therefore no 

differences were observed between the M2-like:M1-like ratios (Figure 22D). In contrast, TIGR® 

was associated with an increased number of macrophages co-expressing CD68+CD206+CD86+ 

(99.5 ± 16.7) compared with either Phasix™ (35.9 ± 8.3), GORE® BIO-A® (35.5 ± 6.6), and Bard® 

Mesh (47.1 ± 15.7) (Figure 21C, Day 21). 

Day 35: A mixed macrophage activation profile continued by day 35 at the interface of all 

implanted materials (Figure 20, column 5). A significant change was observed for the number of 

M1-like macrophages associated to each of the implanted materials. In particular, the number of 

pro-inflammatory macrophages decreased at the periphery of Strattice™ (12.8 ± 2.7 cells) 

compared with either Phasix™ (163.7 ± 18.1 cells), Bard® Mesh (108.5 ± 13.5 cells), and TIGR® 

(86.8 ± 7.1 cells) (Figure 21A, Day 35). At this time point, however, no differences were observed 

between the pro-remodeling M2-like macrophages (Figure 21B, Day 35), and as a consequence, 

an increased M2-like:M1-like ratio was associated to Strattice™ (1.86 ± 0.57) compared with 

Phasix™ (0.18 ± 0.05) and Bard® Mesh (0.36 ± 0.12), respectively (Figure 22E). The number of 

triple-labeled CD68+CD206+CD86+ macrophages also presented differences between the meshes. 

TIGR® continued with increased values of this subpopulation of cells (83.7± 11.6 cells), as 

observed since day 7, that by day 35 were significantly higher compared with each of the other 

materials: Bard® Mesh (19.3 ± 3.5 cells), GORE® BIO-A® (19.5 ± 3.2 cells), Phasix™ (19.3 ± 3.3 

cells), and Strattice™ (29.2 ± 6.1 cells) (Figure 21C, Day 35). 
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Figure 22. Quantification of M2-like:M1-like ratio of macrophages.  

Ratio of M2-like:M1-like around mesh fibers at A. 3 days, B. 7 days, C. 14 days, D. 21 days, and E. 35 

days. Images were quantified using Cell Profiler image analysis software. In vivo, PhasixTM mesh device modulates 

an earlier transition of pro-inflammatory to anti-inflammatory macrophages compared to synthetic mesh materials. 

Values: Mean ± SEM, biologic replicates (N)=3, technical replicates=3. Differences between surgical meshes were 

evaluated using non-parametric ANOVA test, *p<0.05. 

4.3.4 Expression of cathelicidin LL-37 around implanted surgical meshes 

The secretion of the AMP cathelicidin LL-37 around implanted surgical meshes was evaluated 

(Figure 23). Immunolabeling results showed an increase in the expression of this AMP following 

muscle injury compared to non-injured muscle, as seen in the images of native muscle vs. defect 

alone (Figure 23A & Figure 23B). Immunolabeling at the interface of the implanted surgical 

meshes showed an increased expression of cathelicidin LL-37 by the cells localized immediately 

around the fibers of Phasix, Bard Mesh, TIGR, and GORE BIO-A. The least expression 

was shown in cells infiltrating the Strattice scaffold. Quantification of the number of cells 

expressing cathelicidin LL-37 showed that Phasix presented the highest number of cells around 

the mesh fiber at all time points, when compared to all the other surgical meshes or the defect 
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alone (Figure 23C). Moreover, statistical analysis showed that these numbers were different when 

compared with GORE BIO-A and Strattice at almost all evaluated time points. 
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Figure 23. In vivo cathelicidin LL-37 expression (green) around fibers of synthetic, biosynthetic and 

biologic scaffold materials. 

A. Basal expression of cathelicidin LL-37 in native muscle. B. Immunolabeling of cathelicidin LL-37 

surrounding the mesh fibers or the defect alone control. Increased expression of the antimicrobial peptide is 

associated with the tissue repair process, as evidenced in the defect alone samples. Scale bar 50 μm. C. 

Quantification of cells expressing cathelicidin LL-37. Values: Mean ± SEM, biologic replicates (N)=3, technical 

replicates=3. Differences between surgical meshes were evaluated using non-parametric ANOVA test, *p<0.05. 
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4.4 DISCUSSION  

Macrophages are the most abundant cell type involved in the host response to implanted 

biomaterials [84, 145]. Once thought to function primarily or exclusively as a phagocyte in 

response to infectious agents, foreign materials, and/or damaged tissue, and to occasionally 

combine with neighboring cells to form multinucleate giant cells as part of the foreign body 

reaction [18, 21] at sites of chronic inflammation, the plasticity of macrophages and their essential 

role in diverse physiologic processes is now recognized [10, 146]. 

Macrophages have antigen-presenting functions that link the innate and adaptive arms of 

the immune system [147], participate in fetal and post-natal development [148, 149], tissue 

homeostasis [150, 151], and even tissue and organ regeneration [152-155]. Macrophages show 

remarkable diversity with respect to their phenotype and secretome and play a crucial role in 

mitigating, not promoting, inflammation [156]. The macrophage phenotype induced within the 

first 14 days following implantation of a biomaterial has been associated with downstream tissue 

remodeling and clinical outcome [14, 15].  

The present study showed a distinctive temporal macrophage phenotype response to five 

different surgical meshes that differ in composition and degradability. The Bard surgical mesh is 

a non-degradable mesh composed of the synthetic material polypropylene and elicited a dominant 

foreign body response, as shown by the increased cell-layer thickness accumulation (Figure 18).  

The two degradable synthetic surgical meshes, TIGR® and GORE® BIO-A®, elicited an 

M1-like response with the TIGR® mesh showing a more robust pro-inflammatory response and 

accumulation of multinucleate giant cells than GORE® BIO-A®. The cause for the more 
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pronounced M1-like response to the TIGR® mesh is unknown but may be related to composition, 

knit pattern, degradation rate, and/or the degradation by-products, among other variables [19, 134, 

157]. TIGR® mesh is composed of multifilament fibers that have different degradation rates 

depending upon the presence or absence of glycolide. The fast resorbing co-polymer is formed by 

glycolide, lactide, and trimethylene carbonate (TMC), and is hydrolyzed within the body in four 

months. The slow resorbing co-polymer, formed by lactide and TMC, takes three years to degrade 

[158]. In contrast, GORE® BIO-A® is a mesh composed of monofilament fibers of a co-polymer 

of glycolide and TMC, with an in vivo degradation time of 6 months [159]. 

Strattice™ is a slowly degradable biologic mesh composed of porcine dermal extracellular 

matrix (ECM). Most biologic meshes composed of ECM that is not chemically cross-linked are 

associated with a more favorable M2-like:M1-like ratio than synthetic meshes. However, tissue 

processing methods, including residual decellularization agents and preservatives can markedly 

influence the host response toward a pro-inflammatory state [104, 160]. Strattice™ has previously 

been shown to cause a more dominant pro-inflammatory response than other biologic surgical 

meshes [14, 159]. 

Phasix™ is a slowly degradable biosynthetic surgical mesh. The term biosynthetic in the 

present context is defined as a naturally occurring (i.e., biologic origin) monomer or polymer 

manufactured by synthetic methods. Hydroxylated and non-hydroxylated forms of butyrate are 

naturally occurring molecules that belong to the group of short chain fatty acids. Butyrate is 

produced in abundant amounts by bacteria in the gastrointestinal tract to protect against chronic 

inflammation [55, 161], whereas 4-hydroxybutyrate (4HB) is produced in various tissues as a 

neurotransmitter [51] and with protective effects against stress and ischemia [52]. Other 

hydroxylated isoforms of butyrate are modulators of metabolism during ketosis and insulin-
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resistance [110, 111]. The ability to knit the polymeric form of 4-hydroxybutyrate provides the 

potential to create a surgical mesh with predictable mechanical properties. One of the hypothesized 

physiologic functions of 4HB, which is the hydrolytic degradation product of Phasix™, is the 

activation of an M2-like, or regulatory macrophage phenotype. Results of the present study show 

the increased presence of CD206+ macrophages immediately adjacent to Phasix™ mesh fibers at 

early post-implantation time points. Previous studies have shown that the presence of M2-like 

macrophages in the early post-implantation period biomaterials portends a favorable tissue 

remodeling outcome [14-16]. The present study lasted 35 days but a 52-week animal study and 

18-month clinical data show favorable outcomes [3, 7]. 

The present study also showed the ability of a 4HB polymeric surgical mesh to modulate 

the endogenous upregulation of cathelicidin LL-37 in a clean soft tissue environment. The results 

showed robust expression of cathelicidin LL-37 with Phasix and highlight the importance of 

cathelicidin LL-37 during normal wound healing, as has been previously reported [40-43]. The 

stronger and more prolonged response obtained with the addition of 4HB can potentially provide 

for an improved clinical outcome.  

It is clear from the results presented herein that the host response to different surgical mesh 

materials is distinctive. It has been suggested that the host response to biomaterials is the single 

most important determinant of the clinical outcome [162]. Although other variables in surgical 

mesh properties such as strength, degradability and cost are important considerations, the host 

response will largely determine functionality, the incidence of complications and other metrics of 

success vs. failure. 

There are several limitations to the present study. Only a single marker (CD86 or CD206) 

were used to determine the phenotype of macrophages present at the mesh-tissue interface. These 
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have been used to identify macrophages pushed to a pro-inflammatory (CD86+) activation state or 

an anti-inflammatory and regulatory activation state (CD206+) by non-physiologic amounts of 

cytokines, LPS+IFN-γ and IL-4, respectively [10]. Additional characterization of the phenotypic 

profile of the subpopulations of macrophages, by using other surface, metabolic, and secreted 

markers would represent a more comprehensive characterization of phenotype. In addition, these 

meshes represent only a small subset of biosynthetic, synthetic and biologic meshes. Therefore 

conclusions may not extend to other meshes within these three groups. 

4.5 CONCLUSION 

Results of the present study are consistent with the premise that the phenotypic profile of 

macrophages interacting with implanted materials in the early post-operative period (within the 

first 14 days) are predictive of long term outcomes (months or years after implantation). Further, 

it appears that 4HB, the degradation product of Phasix™, increases the M2-like/M1-like ratio and 

facilitates robust cathelicidin LL-37 expression. A more complete understanding of the factors 

influencing the patterns of macrophage activation, and the molecular interactions of mesh 

materials with cells will influence the design of meshes tailored to promote site appropriate tissue 

repair. 
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5.0  COMPARATIVE RESISTANCE OF SURGICAL MESH MATERIALS TO 

DELIBERATE BACTERIAL CONTAMINATION IN A RAT SUBCUTANEOUS 

IMPLANT MODEL 

5.1 INTRODUCTION 

The design and composition of biomaterials for hernia repair have evolved considerably during 

the past several decades. Large pore size (type I meshes, greater than 75 μm pore size), 

monofilament, degradability, and mesh characteristics that promote host tissue integration are 

among the features now considered desirable [134, 157]. Modifications of mesh design and 

composition continue in an attempt to improve clinical outcomes, but the incidence of surgical site 

infection (SSI) remains problematic [163]. The risk of SSI following hernia repair depends on a 

number of factors including the type of material implanted, the repair technique utilized, the 

anatomic location of the hernia, and patient co-morbidities, among others. For example, post-

surgical infection rates after inguinal hernia repair range from 0 to 6 percent [164], while infection 

rates following ventral hernia repair range from 3 to 22 percent [163, 165]. High infection rates 

have also been associated with incisional hernia repair procedures [166]. Complications from SSI 

are associated with increased morbidity, hospital length of stay, and cost. It is estimated that SSI 

is responsible for additional annual hospital charges of approximately $1.6 billion in the United 
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States alone. Staphylococcus aureus, a facultative anaerobic Gram-positive pathogen, is the most 

commonly reported cause of surgical mesh contamination [166, 167]. 

The use of metallic meshes to reinforce hernia repair achieved widespread use by 1946 

[168], but the high incidence of post-operative complications including seroma formation, 

infection, and non-resolving drainage resulted in their use being abandoned by 1970 [169]. 

Synthetic mesh devices replaced metallic meshes but the challenges of infection, foreign body 

reaction, and encapsulation persist. Modifications of the physical properties of synthetic mesh 

materials have been made to diminish the foreign body reaction and subsequent encapsulation 

[141, 170], and biomaterials derived from biologic sources (e.g., extracellular matrix) are now 

commonly used in contaminated surgical fields [171-173]. A number of antimicrobial mesh 

coatings and synthetic-biologic hybrids have been developed and are being investigated for their 

ability to confer resistance to bacterial contamination [174] and modulate the host response after 

implantation [15, 16]. 

Each material has advantages and disadvantages. While synthetic meshes have highly 

tunable properties, can retain their tensile strength indefinitely (if non-degradable), and have 

successfully reduced some of the complications associated with metallic meshes, they are 

associated with intra-abdominal adhesion formation, enteric fistulas, and SSI [175]. Biologic 

materials, on the other hand, typically degrade and are replaced by host tissue, and provide a 

natural source of AMP which help to resist SSI [176]. However, the composition and processing 

of biologic materials are variable, the mechanical properties are not as tunable as those of synthetic 

materials, and the manufacturing is costly [177]. A new group of biodegradable biosynthetic 

meshes has recently become available for clinical use. Biosynthetic materials, which consist of 

naturally occurring molecules that can be manufactured by methods similar to synthetic materials, 
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have shown biocompatibility in different medical applications [3, 178-180]; but their ability to 

resist SSI has not yet been evaluated. 

The objective of the present study is to determine the ability of five surgical mesh devices 

to resist deliberate contamination with a clinical strain of S. aureus in a rat model. The mesh 

devices investigated included a biosynthetic surgical mesh, three synthetic mesh surgical meshes, 

and a biologic graft. 

5.2 MATERIALS AND METHODS 

5.2.1 Experimental design 

The surgical meshes Phasix™, Bard® Mesh, TIGR® Matrix Surgical Mesh, GORE® BIO-A® 

Tissue Reinforcement, and Strattice™ Reconstructive Tissue Matrix were implanted in a rat dorsal 

subcutaneous model for 14 days. Three inoculation levels of S. aureus were investigated: 1x104 

CFU, 1x106 CFU, or 1x108 CFU in 100 μl sterile PBS. A non-contaminated control group was 

included for each test article, and a sham-operated control group was also included. Six animals 

were used per test article at each inoculation level. Histologic evaluation and quantification of 

persistent bacterial contamination were conducted (Figure 24). 
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Figure 24. Experimental design overview.  

A rat dorsal subcutaneous model was used to study surgical meshes characterized as synthetic (BARD® 

Mesh, TIGR®, and GORE® BIO-A®), biosynthetic (Phasix™ Mesh), or biologic (Strattice™ Reconstructive Tissue 

Matrix). After implantation, one of three different concentrations of a clinical isolate of Staphylococcus aureus was 

inoculated on the mesh material, or PBS was used as negative control. Sham-operated animals without mesh were 

used as a second control. The test devices were explanted after 14 days. The histologic characteristics of the 

harvested tissues were evaluated, and the amount of bacteria colonizing the meshes was quantified. 

5.2.2 Preparation of Bacterial Inoculum 

Single colonies of a clinical isolate S. aureus (ATCC 25923) were cultured in tryptic soy broth 

(Soybean-Casein Digest Medium) (BD, USA) overnight at 37°C with constant shaking. S. aureus 

concentration was calculated based on optical density and compared to a predetermined growth 

curve for the bacterial strain. 1x104 CFU, 1x106 CFU, or 1x108 CFU S. aureus were obtained by 

diluting the cultured bacteria in 100 μl sterile PBS. 

5.2.3 Surgical model, mesh implantation, and bacterial inoculation 

All procedures were approved by and performed according to the guidelines of the Institutional 

Animal Care and Use Committee at the University of Pittsburgh (IACUC protocol #14020360). 
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Anesthesia was induced with 2.5-4% isoflurane, and surgical plane anesthesia was maintained with 

0.5-4% isoflurane throughout the procedure. The surgical site was prepared by clipping the fur 

over the entire dorsal region, and cleaning the operative site with three alternating scrubs of 

providone-iodine surgical scrub and 70% isopropyl alcohol solutions. A final scrub with 70% 

isopropyl alcohol was applied and allowed to dry, followed by placement of sterile surgical 

drape(s) over the entire field. A 1 cm incision was made over the dorsal midline and a 2.0 cm x 

3.0 cm subcutaneous pocket was created on one side of the midline (Figure 25A). Each animal 

received one sterile 2.0 cm x 3.0 cm test article implanted into the dorsal subcutaneous pocket 

(Figure 25B). Briefly, the mesh device was folded over itself to minimize contact with the skin 

during the implantation. Once positioned in the pocket, the test article was unfolded again. 

Following implantation, the surgical site was inoculated with one of the S. aureus preparations: 

1.0x104 CFU, 1.0x106 CFU, or 1.0x108 CFU in 100 μl sterile PBS (Figure 25C), designated as 

low, medium, and high inoculation levels, respectively. Non-contaminated test articles were 

injected with 100 μl sterile PBS. Following placement of the test article and the designated 

inoculum, the skin was closed with a continuous 4-0 VICRYL™ suture. For the sham-operated 

group, the inoculum was injected into the dorsal subcutaneous pocket without any implanted 

material, followed by skin closure as described above. Each animal was recovered from anesthesia, 

returned to its cage and allowed free access to food and water ad libitum. Rats were given 

Buprenex® (0.06 mg/kg subcutaneously) and Baytril® (5 mg orally) at the time of surgery and for 

3 days post-surgery.  
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Figure 25. Surgical model of dorsal subcutaneous mesh implantation in a rat.  

A. A 1 cm incision was made along the dorsal midline. B. A 2 cm x 3 cm subcutaneous pocket was bluntly 

dissected and a 2.0 cm x 3.0 cm mesh device implanted. C. After the mesh device was implanted, the pocket was 

injected with 1.0x104 CFU, 1.0x106 CFU, or 1.0x108 CFU of a clinical isolate of Staphylococcus aureus suspended 

in 100 µl of sterile PBS. Sterile PBS was used as non-inoculation control. No-mesh controls were used at the 

different inoculum levels. After performing the injection, the incision was closed with suture. 

5.2.4 Test article collection 

At 14 days post implantation, animals were euthanized by CO2 inhalation and subsequent cervical 

dislocation in accordance with the guidelines of the AVMA Panel of Euthanasia. Following 

euthanasia and using sterile technique, the skin was gently dissected and reflected, the specimens 

and surrounding tissue were collected. Using a sterile razor blade, 100 mg of the collected 

specimens were used for S. aureus quantification, as described below. The remaining specimen 

material was immersed in 10% NBF for subsequent histologic evaluation.  
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5.2.5 Qualitative histologic assessment 

Fixed specimens were embedded in paraffin prior to being cut into 5 µm thick sections, and 

mounted onto glass slides. The specimens were deparaffinized with xylene immersion followed 

by exposure to a graded series of ethanol solutions (100%, 95%, 75%). Sections were stained with 

hematoxylin and eosin (H&E) and tissue gram stain (Sigma-Aldrich, USA) following 

manufacturer instructions. Stained slides were dehydrated using a graded series of ethanol 

solutions (75%, 95%, 100%) prior to cover-slipping. A total of 3 images were acquired for each 

H&E and gram stained section at the mesh/tissue interface. The criteria used to evaluate the 

histomorphology of the specimens included: organization of the tissue surrounding the implanted 

mesh devices, cellular infiltration, granulation tissue formation, and the presence of Gram-positive 

bacterial colonies. 

5.2.6 Quantification of Staphylococcus aureus  

100 mg of the explanted specimen (mesh and adjacent tissue) was taken from the lateral edge near 

the center of the mesh (Figure 26), immersed in 5 ml sterile PBS, and homogenized for 30 seconds 

at room temperature to dissociate adherent bacteria. 1:1,000 and 1:10,000 dilutions were prepared 

from the homogenized PBS solution. Undiluted and diluted solutions were plated on tryptic soy 

agar plates. The plates were incubated at 37°C for 24 h and S. aureus colonies quantified for each 

specimen. 
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Figure 26. Quantification of S. aureus in explanted devices.  

A. Explanted specimens were consistently cut as depicted, and 100 mg immersed in 5 ml sterile PBS. B. 

Dissociation of the adhered bacteria was made by homogenization for 30 seconds. C. Serial dilutions of the 

homogenized solution were plated on tryptic soy agar plates and incubated at 37°C for 24 h. 

5.2.7 Statistical analysis 

Quantification of S. aureus CFU is presented as the mean ± the standard error of the mean (SEM). 

Statistical differences between the mesh materials at each inoculation level were determined using 

a one-way non-parametric ANOVA test (Kruskal-Wallis test). The pattern of differences was 

evaluated with Dunn’s multiple comparison test. A value p<0.05 was considered statistically 

significant. Statistical analysis was performed using GraphPad Prism version 6.07 (GraphPad 

Software, La Jolla CA, USA). 
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5.3 RESULTS 

5.3.1 Macroscopic assessment 

All animals survived the 14 days of study. All non-contaminated mesh materials were integrated 

with surrounding tissue, and were easily identified during necropsy. Animals receiving Strattice™ 

mesh showed clear signs of infection such as swelling and accumulation of purulent material at 

low (1x104 CFU), medium (1x106 CFU) and high (1x108 CFU) inoculation levels. Animals 

implanted with BARD® mesh showed these same signs of infection at medium (1x106 CFU) and 

high (1x108 CFU) inoculation levels. Animals implanted with BARD® Soft mesh, TIGR®, and 

GORE® BIO-A®, showed a macroscopic purulent exudate only at the highest (1x108 CFU) 

inoculation level. Likewise, the animals that received the Phasix™ mesh showed purulent exudate 

at the highest (1x108 CFU) inoculation level only, but the appearance was of less severity 

(decreased macroscopic purulent exudate) compared to the other explanted mesh devices. The no-

mesh control groups showed edema and accumulation of purulent material at the highest (1x108 

CFU) inoculation level. 

5.3.2 Qualitative histologic assessment  

At 14 days post implantation, all devices showed robust host mononuclear cell infiltration (Figure 

27). Accumulation of host cells was localized around the fibers of synthetic (BARD® TIGR®, and 

GORE® BIO-A®) and biosynthetic (Phasix™) meshes, and along the margins of the Strattice™ 

mesh. For all meshes, the highest (1x108 CFU) inoculation level of S. aureus was associated with 

granulation tissue and necrosis surrounding the implanted device and a large number of 
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polymophonuclear (PMN) cells, characteristic of an active bacterial infection. H&E images from 

Strattice™ mesh showed an increased degradation of the mesh material compared to the non-

contaminated control, and increased cellular infiltration within the device at the different bacterial 

inoculation levels (1x104 CFU, 1x106 CFU, and 1x108 CFU). The no-mesh control groups showed 

the prevalence of polymorphonuclear cells at the medium (1x106 CFU) and highest (1x108 CFU) 

inoculation levels.  

The gram-stained sections showed no signs of bacterial contamination among the non-

contaminated controls (Figure 28). Consistent with the macroscopic observations, the presence of 

Gram-positive bacteria was identified in both BARD® and Strattice™ mesh devices at all bacterial 

inoculation levels. Specimens containing BARD® Soft mesh did not show histologic evidence of 

bacterial colonization at low (1x104 CFU) and medium (1x106 CFU) inoculation levels; however, 

robust bacterial colonization was present around the mesh fibers at the highest (1x108 CFU) 

inoculation level. Phasix™ showed areas of bacterial colonization around the mesh fibers only at 

the highest level (1x108 CFU) of S. aureus inoculation. The no-mesh control groups showed the 

presence of Gram-positive bacteria at the highest (1x108 CFU) inoculation level. 
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Figure 27. Histologic appearance of mesh devices after 14 days of in vivo implantation.  

Representative hematoxylin and eosin stained histologic cross sections of each mesh/inoculation level were 

imaged at 40x magnification. Black arrows show necrotic tissue and granulation tissue formed as a consequence of 

the bacterial infection. Scale bar represents 500 µm. 
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Figure 28. Gram staining oh histologic sections. 

Gram stained histologic cross sections were imaged at 100x magnification. Black arrows indicate the areas 

that were positive for bacterial colonies. Scale bar represents 100 µm. 
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5.3.3 Quantification of Staphylococcus aureus 

Quantification of bacteria within the explanted meshes at 14 days showed differences in the 

amount of viable S. aureus between the groups (Figure 29). The non-contaminated controls had 

undetectable levels of bacterial contamination, and the Kruskal-Wallis test showed no differences 

between the meshes (statistic=3.968, p=0.5540). For animals inoculated with a low level (1x104 

CFU) of S. aureus, Strattice™ showed the greatest number of bacteria (1.32 ± 0.6) x 106 CFU, 

fewer bacteria was associated to BARD® Mesh (5.5 ± 3.4) x 105 CFU, TIGR® (7.5 ± 2.4) x 104 

CFU, Phasix™ (7.2 ± 7.1) x 104 CFU, and the no-mesh control (1.2 ± 1.0) x 104 CFU, and the least 

number of bacteria was associated with GORE® BIO-A® (8.3 ± 6.5) CFU. Statistical analysis 

indicated significant differences between the number of bacterial colonies in GORE® BIO-A® 

compared with Strattice™, BARD® Mesh, and TIGR®. 

At the medium (1x106 CFU) inoculation level, quantification of the S. aureus showed the 

greatest numbers for Strattice™ (1.6 ± 0.5) x 106 CFU and BARD® (1.6 ± 1.2) x 106 CFU, fewer 

number of bacteria for TIGR® (3.0 ± 1.0) x 105 CFU and the no-mesh control (1.8 ± 0.2) x 105 

CFU, and the lowest number of bacteria associated with Phasix™ (8.5 ± 4.3) x 104 CFU and 

GORE® BIO-A® (8.0 ± 5.1) x 104. Statistical analysis showed that either Phasix™ and GORE® 

BIO-A® were significantly more resistant to bacterial contamination than Strattice™ and BARD®, 

respectively. 

Data at the highest inoculation level (1x108 CFU) showed the greatest numbers of bacteria 

associated with BARD® Mesh (4.3 ± 0.4) x 106 CFU, TIGR® (4.2 ± 0.6) x 106 CFU, Strattice™ 

(3.7 ± 0.8) x 106 CFU from, and the no-mesh control (3.5 ± 0.6) x 106 CFU, a fewer number 

associated with GORE® BIO-A® (2.3 ± 1.7) x 106, and the lowest number of bacteria associated 

with Phasix™ (1.3 ± 0.7) x 106 CFU.  
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Figure 29. Quantification of colonizing S. aureus in explanted specimens 14 days post implantation. 

Significance represents differences in the number of CFU between the mesh materials at each inoculation 

level. Values: Mean ± SEM, biologic replicates (N)=6. Differences between surgical meshes were evaluated using 

non-parametric ANOVA test, *p<0.05. 

5.3.4 Cathelicidin LL-37 expression around implanted mesh devices with bacterial 

contamination 

Expression of cathelicidin LL-37 was evaluated in the contaminated field of Phasix™, BARD® 

Mesh, or the no-mesh control. Immunolabeling images showed an increased secretion of this AMP 

around the Phasix™ fibers at all the bacterial inoculation levels (Figure 30). 
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Figure 30. Cathelicidin LL-37 expression around implanted mesh devices with bacterial 

contamination.  

A. Representative images of cathelicidin LL-37 expressed (green) around the fibers of P4HB and PP at 

each bacterial inoculation level. Scale bar 50 μm. B. Quantification of the number of cells expressing cathelicidin 

LL-37 at each inoculation level. Values: Mean ± SEM, biologic replicates (N)=3, technical replicates=3. Differences 

between surgical meshes were evaluated using non-parametric ANOVA test, *p<0.05. 
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5.4 DISCUSSION 

The present study used a rat model of subcutaneous implantation to determine the ability of five 

surgical meshes to resist deliberate S. aureus contamination at three different inoculation levels. 

The test articles included three synthetic devices (BARD® Mesh, TIGR®, and GORE® BIO-A®), 

a biosynthetic device (Phasix™ Mesh), and a biologic mesh (Strattice™ Reconstructive Tissue 

Matrix). Results showed that Phasix™ and GORE® BIO-A® were more resistant to bacterial 

contamination than the polypropylene-derived mesh material (BARD®) and the biologic mesh 

(Strattice™) at low and medium inoculation levels. In addition, at the highest inoculation level, 

Phasix™ was associated with the lowest number of bacteria compared with all the other groups, 

suggesting a greater resistance to deliberate bacterial contamination.  

Although various factors contribute to the development of SSI after hernia repair 

procedures [167, 181], the physical and chemical properties of surgical mesh materials are of 

obvious importance. The inherent characteristics of surgical mesh materials influence the 

adherence of bacteria to the mesh surface, the formation of bacterial biofilms, and the ability of 

the host to appropriately respond to and control bacterial contamination [182]. For example, it has 

been shown that monofilament woven/knitted materials are more resistant to bacterial 

contamination than multifilament structures [183].   

The ability of a mesh material to degrade under physiological conditions is another factor 

influencing bacterial adherence and persistence of bacterial contamination. Synthetic non-

degradable polymers like polypropylene are known to produce a host response characterized by 

increased cellular infiltration and production of pro-inflammatory signals that result in a foreign 

response to the implanted material [15, 184]. The fibrous tissue encapsulation response may 

impose a barrier that inhibits bacterial clearance. In contrast, degradable materials may provide a 
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temporary substratum for bacterial attachment, but this is progressively diminished as degradation 

of the mesh material occurs [140, 182]. The chemical composition of Phasix™ combined with its 

degradation properties may contribute to the high resistance to bacterial contamination for this 

mesh material. 

The presence of innate antimicrobial peptides (AMP) has been demonstrated in some 

biologic derived materials like small intestinal submucosa (SIS) and urinary bladder matrix 

(UBM), which are capable of eliciting antimicrobial activity during the process of ECM 

degradation [113]. However, studies have shown that differences in tissue processing, such as 

applied detergents and chemical solutions, can affect the inherent properties of the ECM mesh 

materials [104]. Given the variable composition and processing methods of biologic mesh 

materials, further studies are required to fully evaluate the potential ability of biologic meshes to 

resist bacterial contamination. 

There are limitations to the present study. The in vivo model involved a subcutaneous 

implant into a non-injury site (i.e., healthy tissue). The human clinical scenario would likely 

involve placement of a mesh as part of a ventral abdominal hernia repair. Selection of the model 

is a critical factor for consideration, and requires an understanding that there is no animal model 

that fully recapitulates the events involved in wound healing following SSI [185]. Confounding 

results have been found in studies comparing surgical mesh materials in contaminated 

environments in rat versus rabbit models [4], with materials being more susceptible to persistent 

bacterial contamination in one species than in the other. Physiological differences (i.e., host 

immune response) between rodents and rabbits, and susceptibility of each species to the bacterial 

inoculum employed, should be further studied to clarify the genesis of these differences.  
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Further analysis of the evaluated devices in a model of contamination in abdominal hernia 

repair would be of interest. However, since the degradation time of the surgical meshes included 

in this study exceeds one year, a long-term study would be required to determine whether their 

complete resorption correlates with bacterial clearance. It is important to note however, that an 

increased degradation rate was histologically observed for Strattice™ following bacterial 

inoculation compared to the non-contaminated control. Strattice™ degradation might be 

accelerated by the presence of bacterial enzymes and acidification of the microenvironmental pH 

as a result of the host immune response, among other factors. Finally, these devices represent only 

a small subset of synthetic, biosynthetic, and biologic devices, therefore generalized conclusions 

cannot be made for these three main groups based on the results found herein and only device-

specific and comparative conclusions are valid. 
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6.0  DISSERTATION SUMMARY 

The work presented in this dissertation characterized the host macrophage response to a 

biomaterial composed of poly (4-hydroxybutyrate) as a mode of understanding the early events 

associated with the surgical mesh material, which could explain the beneficial clinical outcome 

and decreased surgical site infection incidences reported for P4HB. The phenotypic spatiotemporal 

pattern of macrophages exposed to 4HB was evaluated. The immunomodulatory activity induced 

by 4HB upon exposed macrophages that were first activated with LPS-IFN-γ was identified. 

Additionally, the 4HB-mediated endogenous upregulation of AMP in stimulated macrophages was 

evaluated. The cellular and molecular mechanisms by which 4-hydroxybutyrate drives these 

modulatory effects were also investigated. Finally, a rat model of a partial thickness abdominal 

wall defect and a rat model of deliberate contamination in a subcutaneous tissue pocket were used 

to evaluate the host macrophage response and the expression of cathelicidin LL-37 in the presence 

of P4HB surgical mesh. The major findings of each aim are outlined below. 

6.1 MAJOR FINDINGS 

Specific aim 1: Determine the phenotypic response of macrophages following exposure to 

degradation byproducts of P4HB. 
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Sub Aim 1.1: Compare the phenotypic response of macrophages exposed to degradation 

byproducts of a subset of biosynthetic, synthetic, and biologic surgical mesh materials. 

• Oligomeric and monomeric forms of 4HB are capable of inducing a rapid murine 

macrophage phenotype activation within the M1-like and M2-like spectrum, 

producing an expression pattern (F4/80+high/iNOS+low/Arg+low/Fizz1-). 

Transcriptional activation of TNF-α, IRF3, and KLF4 was also observed. 

• Degradation byproducts of P4HB have immunomodulatory properties upon 

primary murine macrophages already committed to a pro-inflammatory phenotype 

(i.e., MLPS/IFN-γ). In particular, inducing upregulation of Arginase 1, Fizz1, IL1-Ra, 

and KLF4.  

• Four additional materials, commonly used in hernia repair applications, were 

characterized. Biomaterial composition (i.e., TMC+PLA+PGA vs. P4HB) induces 

a differential effect on the phenotypic activation pattern of exposed macrophages. 

 

Specific aim 2: Identify the mechanisms responsible for the antimicrobial activity associated with 

the biosynthetic material composed of P4HB. 

Sub Aim 2.1: Determine the direct and indirect (macrophage-mediated) antimicrobial 

effect of degradation byproducts of P4HB. 

Sub Aim 2.2: Compare the expression of AMP of macrophages exposed to degradation 

byproducts of a subset of biosynthetic, synthetic, and biologic surgical mesh materials. 

• P4HB exerts resistance to bacterial contamination using an indirect (cell-mediated) 

mechanism. Specifically, the mechanism occurs by promoting endogenous 

upregulation of antimicrobial peptides. 
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• 2HB, but not 3HB and 4HB, is a HDAC inhibitor in murine bone marrow-derived 

macrophages.  

• Degradation products of P4HB induce an upregulation of cathelicidin LL-37 

through a signaling-transduction mechanism. The key proteins identified in the 

transcriptional activation process were GPR109a, JNK, P38, NF-kB, and AP-1.  

• Hydroxylated derivatives of butyrate differentially induce expression of 

cathelicidin LL-37.  

 

Specific aim 3: Evaluate the spatiotemporal pattern of host tissue response to biosynthetic 

materials composed of P4HB implanted in a rat partial thickness abdominal wall defect model. 

Sub-Aim 3.1: Compare the resistance to deliberate bacterial contamination of biosynthetic, 

synthetic, and biologic surgical mesh materials implanted in a rat subcutaneous model. 

• Characterization of the spatiotemporal distribution of macrophages suggests the 

ability of P4HB to mitigate the acute pro-inflammatory response in a pre-clinical 

model. 

• Four additional materials, commonly used in hernia repair applications, were 

characterized. 

• Implanted P4HB induce upregulation of cathelicidin LL-37 when compared to 

other synthetic and biologic scaffolds. 

• Implanted P4HB materials showed a higher resistance to deliberate bacterial 

contamination in an in vivo animal model compared to the other evaluated 

materials. 
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6.2 CONCLUSION 

The work described in the present dissertation shows the effects of 4-hydroxybuturate upon the 

phenotypic activation of macrophages. 4HB promoted a pro-remodeling, regulatory phenotype and 

increased expression of AMP in subjected macrophages. The associated molecular mechanism 

involves transcriptional activation of cathelicidin LL-37 through MAP-kinase and NF-κB 

pathways.  

In vivo, P4HB mitigates the acute, pro-inflammatory host response and provides an 

increased resistance to bacterial contamination. The results of this work expand the understanding 

of the biologic activity of 4HB in cells of the immune system and show its potential to promote a 

constructive tissue remodeling effect for regenerative medicine applications.  

The described molecular mechanism has important clinical implications. The main proteins 

driving the activation of cathelicidin LL-37 expression, induced by 4HB, are direct targets of non-

steroidal anti-inflammatory drugs (NSAID). Therefore, current post-surgical anti-inflammatory 

treatments might be reducing the potential of implanted surgical meshes composed of P4HB. 

Understanding of mechanisms involved in the endogenous upregulation promoting resistance to 

bacterial infection, and the inhibitory role of NSAIDs, may help clinical practitioners to determine 

alternative anti-inflammatory cocktails that do not inhibit the potential of implanted polymers 

composed of 4HB. 
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APPENDIX A 

MACROPHAGE PHENOTYPIC MARKERS 

Table 3. Description of macrophage phenotypic markers 

Name Description 

Arginase 1 

In murine macrophages, arginase 1 expression is induced by IL-4, 
microbes and microbial products, hypoxia, or lactic acid [186]. The 
activity of the metabolic enzyme arginase limits the availability of L-
arginine to synthesize nitric oxide (NO), thus reducing the secretion of 
reactive nitrogen species. The enzyme arginase hydrolyses L-arginine 
into ornithine and urea. Further downstream pathways from this 
secretion promote cellular proliferation and tissue repair [187]. 
A number of different molecular mechanisms and associated 
transcription factors have been shown to regulate the transcriptional 
activation of arginase 1. Specific domains at the promoter have been 
recognized for PPARγ, PPARδ, STAT6, KLF4, C/EBPβ, PU.1, IRF8, 
and AP-1 [105, 188]. 

CD206  

Identified as the mannose receptor C type 1 from the lectin family. It is 
a scavenger receptor that mediates endocytosis and phagocytosis 
processes. CD206 recognizes mannose N-linked glycoproteins that 
compose the coating of many pathogens [189]. Expression of the CD206 
receptor is known to be induced by IL-4 and other anti-inflammatory 
cytokines [75, 153]. CD206 further induce inhibit pro-inflammatory 
signals mediated by Th1 cells [153]. 

CD68 

CD68 is a marker restricted to monocytes and macrophages, and 
therefore has been widely used as a pan-macrophage marker [190]. It is 
a glycosylated type I transmembrane protein with functions as scavenger 
receptor and antigen processing protein [191].  
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Table 3 (continued) 

Name Description 

CD86 

The cluster of differentiation 86 (CD86) is a costimulatory receptor 
involved in regulation of the innate immune response and inflammation 
[192, 193]. Activation of CD86 in macrophages induces the expression 
of pro-inflammatory cytokines, such as IL-6, via activation of the NF-
κB transcription factor [194].  

F4/80 

F4/80 is a transmembrane glycoprotein constitutively expressed by 
murine macrophages. The levels of expression are higher in 
macrophages than in monocytes. Although F4/80 is not indispensable for 
monocyte differentiation, its expression in macrophages is required to 
induce T cell differentiation [195]. 

Fizz1 
Protein found in inflammatory zone 1 (Fizz1) is also identified as 
resistin-like molecule α (RELM-α) [196]. Fizz1 regulates the expression 
of the Th2 cytokines, IL-4 and IL-13.  

IL1-Ra 

Interleukin 1- receptor antagonist (IL1-Ra) is a soluble inhibitor secreted 
by immune cells to regulate pro-inflammatory events. IL1-Ra is a high 
affinity competitor of the interleukins 1 α and β (IL-1α and IL-1β) 
blocking the response mediated by the interleukin 1 receptor 1 (IL1-R1) 
[197]. 

iNOS 

Induced nitric oxide synthase (iNOS) is regulated via transcriptional 
mechanisms induced by the pro-inflammatory cytokines IL-1β, IFN-γ 
and TNF-α, microbial products such as LPS, and hypoxia. iNOS is a 
competitor of argines 1. iNOS metabolizes arginine to NO and citrulline, 
therefore promoting the production of reactive nitrogen species [187]. 

IRF3  

Interferon regulatory factor 3 (IRF3) is an important transcription factor 
mediating viral and bacterial infections [198]. Activation of IRF3 has 
been associated with downstream secretion of interferon 1β (IFN-1β) 
and interleukin-6 (IL-6), ultimately leading to NO production [199].  

KLF4  

Kruppel-like factor 4 (KLF4) is a transcription regulator required for 
both monocyte differentiation into macrophages [200] and IL-4-
induced macrophage activation [201]. Binding of KLF4 to the promoter 
of the arginase gene is required for its transcriptional activation [202].  

KLF6  

Kruppel-like factor 6 (KLF6) is another transcription factor of the 
Kruppel-like family of zinc finger proteins. KLF6 activation is induced 
by LPS and IFN-γ, and has been shown to be inhibited by IL-4 and IL-
13. KLF6 modulates the activity of NF-κB, stabilizing the pro-
inflammatory response in activated macrophages [203]. 
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Table 3 (continued) 

Name Description 

PCK2 
Phosphoenolpyruvate carboxykinase 2 (PCK2) is localized in the 
mitochondria. In glucose-limited microenvironments, PCK2 catalyzes 
the conversion of glutamine into phosphoenolpyruvate [204].  

STAT1 

Signal transducers and activators of transcription-1 (STAT1). STAT1 
plays an important role in the activation of signaling cascades induced 
by toll-like receptors (TLR) [205] and interferon receptors [206]. STAT1 
mediates the secretion of iNOS, MCP-5, and IP-10, through an IFN-β-
activated signaling cascade [207]. 

STAT2 

It has been suggested that STAT1 and STAT2 are functionally 
redundant; upon activation, STAT1 and STAT2 form a heterodimer to 
mediate the transcriptional activation of IFN-1 (α & β)-induced genes 
[208]. It has been shown that human monocyte differentiation into 
macrophages requires STAT1-induced STAT2 activation [209].  

STAT3 

After pro-inflammatory responses, macrophages activate additional 
signaling cascades towards resolution of the pro-inflammation. 
Activation of STAT3 is required to mediate this resolution phase. 
STAT3 induces an indirect IL-10 secretion through upregulation of IFN-
1 [210]. 

TNF-α 

Tumor necrosis factor α (TNF-α) is a pro-inflammatory cytokine 
responsible of multiple pro-inflammatory effects, such as T cell 
activation, histamine release, among others [211]. TNF-α expression is 
essential to protect against intracellular pathogens. TNF-α has an 
inhibitory effect on arginase 1 secretion, thus preventing the alternative 
activation of macrophages (M2-like response) [186].  

YM1 
YM1 is a chitinase-like secretory lectin [196, 212]. YM1 secretion is 
strongly induced by IL-4 and IL-13 stimuli through a signal transduction 
mediated by STAT6 [213]. 
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APPENDIX B 

PCR PRIMER SEQUENCES 

Table 4. PCR murine primer sequences 

mRNA Primer sequence Accession 
number Ref. 

YM1 F: 5’-GGATGGCTACACTGGAGAAA-3’  
R: 5’-AGAAGGGTCACTCAGGATAA-3’  NM_009892.3 [68] 

CD206  F: 5’-GCAGACTGCACCTCTGCCGG-3’  
R: 5’-TGCTGCTTGCAGCTTGCCCT-3’  NM_008625.2 [68] 

 Fizz1 F: 5’-CCCTCCACTGTAACGAAG-3’  
R: 5’-GTGGTCCAGTCAACGAGTAA-3’  NM_020509.3 [68] 

TNF-α F: 5’-CCACCACGCTCTTCTGTCTA-3’ 
R: 5’-AGGGTCTGGGCCATAGAACT-3’  NM_013693.3 [75] 

IRF3 F: 5’-GATGGCTGACTTTGGCATCT-3’ 
R: 5’-ACCGGAAATTCCTCTTCCAG-3’ NM_016849.4 [75] 

IL1-Ra F: 5’-GTGAGACGTTGGAAGGCAGT-3’ 
R: 5’-GCATCTTGCAGGGTCTTTTC-3’ NM_031167.5 [75] 

KLF4 F: 5’-GCCACCCACACTTGTGACTA-3’ 
R: 5’-CAGTGGTAAGGTTTCTCGCC-3’ NM_010637.3 [75] 

KLF6 F: 5'-CACGAAACGGGCTACTTCTC-3' 
R: 5'-ACACGTAGCAGGGCTCACTC-3' NM_011803.2 [75] 

STAT1 F: 5'-TCCCGTACAGATGTCCATGAT-3' 
R: 5'-CTGAATATTTCCCTCCTGGG-3' NM_001357627.1 [75] 

STAT2 F: 5'-CGCTTGGAGAATTGGAAGTT-3' 
R: 5'-GCTGTCAAGGTTCTGCAACA-3' NM_019963.2 [75] 
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Table 4 (continued) 

mRNA Primer sequence Accession 
number Ref. 

STAT3 F: 5’-CTCAGCCCCGGAGACAGT-3’ 
R: 5’-CTGCTCCAGGTAGCGTGTGT-3’ NM_213659.3 [75] 

PCK2 F: 5’-GTACTGGGAAGGCATTGACC-3’ 
R: 5’-AGTTTGGATGTGCACAGGGT-3’ NM_028994.3 [75] 

Cramp F: 5’-CTTCAACCAGCAGTCCCTAGACA-3’ 
R: 5’-TCCAGGTCCAGGAGACGGTA-3’ NM_009921.2 [214] 

β-Defensin 2 F: 5’-AAGTATTGGATACGAAGCAG-3’ 
R: 5’-TGGCAGAAGGAGGACAAATG-3’ NM_010030.1 [215] 

β-Defensin 3 F: 5’-GCATTGGCAACACTCGTCAGA-3’ 
R: 5’-CGGGATCTTGGTCTTCTCTA-3’ NM_013756.2 [215] 

β-Defensin 4 F: 5’-GCAGCCTTTACCCAAATTATC-3’ 
R: 5’-ACAATTGCCAATCTGTCGAA-3’ NM_019728.4 [215] 

Hprt1 F: 5’-TGATCAGTCAACGGGGGACA-3’,  
R: 5’-TTCGAGAGGTCCTTTTCACCA-3’  NM_013556.2 [216] 
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