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Heart failure is a chronic, progressive condition that affects over 6 million Americans. 

The gold standard treatment for advanced heart failure is heart transplant. However, when a 

donor heart is not available, or the patient is not eligible, patients may receive a mechanical 

circulatory support device such as a left ventricular assist device (LVAD).  

 

LVADs can improve patient survival and increase patient quality of life but they also 

require significant changes in lifestyle and carry with them risks of adverse events, such as re-

hospitalization, gastrointestinal bleeding (GI), stroke, or right heart failure. LVAD decision 

making for physicians and patients requires extensive discussion of the trade-off between 

benefits, risks, and associated lifestyle changes. Decision support tools for patients and their 

caregivers are in development but are not personalized and are limited to general educational 

information.  

 Using Bayesian modeling, a machine learning method of data analysis, I developed 

novel predictive models for three sets of LVAD outcomes: all-cause mortality, recurrent 
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gastrointestinal (GI) bleeding, and pump-dependent ischemic stroke. The mortality models 

performed better than current risk scores with receiver operating characteristic area under the 

curve (ROC AUC) of 70-71% in a multi-center validation cohort and 76-79% in a contemporary 

single-center study. The recurrent GI bleeding models performed with ROC AUCs of 68% and 

60%, revealed the importance of hemoglobin/hematocrit levels and inflammation in driving risk, 

and are the first models for this outcome. The ischemic stroke models out-performed the current 

ischemic risk score with ROC AUCs of 64-66%.  

 

In addition to model development, I explored how to present prognostic information to 

decision making stakeholders: physicians, patients, and caregivers. I accomplished this with 

three studies: pilot testing the usability of an online application for physicians, surveying 

potential LVAD patients’ interest in healthcare engagement, and comparing the interpretation of 

prognostic information in different visual formats between patients and the general population. 

The results of these studies indicated that survival predictions are the most important outcome in 

decision making; patient numeracy is a key determinant of decision making engagement; and use 

of line graphs to present prognostic information is well-suited to all stakeholders.  
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1.0  INTRODUCTION 

1.1 HEART FAILURE ETIOLOGY AND PROGRESSION 

Heart failure is a chronic, progressive condition that affects over 6 million Americans. It 

is characterized by a decline in function of the heart to pump enough blood to perfuse the body. 

To compensate for the loss of power, the heart may enlarge (cardiac dilation), the muscles of the 

heart may increase in mass, and/or the heart may pump faster. The vasculature may respond by 

narrowing blood vessels to increase overall pressure or diverting blood perfusion away from less 

important tissues. As the heart continues to under-perform, these compensation methods begin to 

fail. Symptoms resulting from heart failure are fatigue, shortness of breath, and difficulty 

moving. Patients with heart failure may not know they have the condition until the symptoms 

begin inferring with activities of daily living [1].  

To better describe and then treat heart failure, a system of classification is used called 

the New York Heart Association (NYHA) Functional Classification. There are four classes of 

patients, characterized by the functional capability of the patient from Class I – No limitation of 

physical activity, to Class IV – Unable to carry on any physical activity without discomfort, with 

symptoms present even when at rest [2].  

In early stages (Class I & II), heart failure can be managed with medication, reduced 

sodium diet, and exercise. However, these solutions do not solve the underlying issue of the 
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weakened heart and gradually become ineffective over time. When medication and lifestyle 

changes no longer are effective at managing symptoms, a patient is considered to have advanced 

heart failure (Class III & IV) [3].  

To further delineate the condition of advanced heart failure patients, the International 

Mechanical Circulatory Support registry (INTERMACS) classifies patients with end-stage HF 

into seven (7) profiles, with decreasing severity of illness [4]. The correlation between 

classification systems and their relationship to treatment modalities is presented in Figure 1 [5].  

 

Figure 1. Schematic of NYHA class and INTERMACs profile describing the heart failure treatment continuum [5]. 

Advanced heart failure treatments range from intravenous drug delivery (inotropes) to 

surgical interventions (cardiac resynchronization therapy, coronary artery bypass, percutaneous 

coronary intervention, valve repair or replacement, heart transplant) and device implantation 

(implantable cardioverter defibrillator, left and/or right ventricular assist device). At the end of 

the disease progression, palliative care and hospice are often considered. The tumultuous clinical 

course of disease progression and treatment intensity is depicted in Figure 2 [6].  
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Figure 2. Heart failure disease progression and treatment intensity [6]. 

The gold standard treatment for end-stage heart failure is a heart transplant. However, the 

number of hearts available for transplant is far less than the number of patients who need a new 

heart. Additionally, not all advanced heart failure patients are eligible for heart transplant, due to 

their age, comorbid conditions, or lifestyle choices. When a heart is not available, or the patient 

is not eligible, patients may receive a left ventricular assist device (LVAD).  

1.2 LEFT VENTRICULAR ASSIST DEVICES 

Originally just used as a bridge to transplant, the current generation of LVADs can also 

be used as a destination therapy for patients who are ineligible for transplant. LVADs can add 
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years to a patient’s life expectancy and increase quality of life [7, 8], but also require significant 

changes in daily life, investment of time and money, and present a heightened risk of severe 

adverse events [9].  

At the time of this writing, only two FDA approved continuous flow LVAD devices were 

commercially available in the United States: Heartmate II (Abbott) and HVAD (Medtronic) [10] 

(see Figure 3.) 

The Heartmate II was approved by the FDA in 2008 for bridge to transplant (BTT) and in 

2011 for destination therapy (DT) [11]. The HVAD was approved as BTT in 2012 and as a 

destination therapy in 2017 [12]. (The DT approval occurred after the last data collection for this 

study, and therefore is only used as BTT in the analyses presented herein.)  

Both devices are classified as continuous flow pumps. They are both implanted inside the 

body and are connected through the skin to an external controller and power system. The 

HeartMate II has an axial flow impeller and operates at 6000-15000 rotations per minute (rpm) 

to provide up to 10 liters per minute of blood flow. It is cannulated from the apex of the left 

ventricle, with outflow to the aorta. The HVAD is a centrifugal flow device that is cannulated 

directly to the left ventricular apex. It operates at 2000-5000 rpm to provide up to 10 liters per 

minute [13]. The HVAD design originally had a smooth titanium inflow cannula, but was 

updated with a sintered inflow cannula in 2011 due to the high rate of pump thrombosis and 

stroke [14].  
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Figure 3. Continuous flow LVADs currently in use: Heartmate II (A) and HVAD (B) [13] 

The driveline that exits the skin and the external controller require careful maintenance to 

avoid life-threatening infection or electrical failure. Both pumps are powered by AC power or 

batteries that plug into the controller. Therefore patients need to be near electrical outlets and/or 

carry extra charged batteries at all times [15]. In addition to maintaining the external hardware, 

patients are recommended to adhere to a low sodium diet. They also face increased risk of 

having to return to the hospital for pump-associated complications such as driveline infections, 

controller malfunction, pump thrombosis, or gastrointestinal bleeding [16]. Managing these life 

changes and risks not only demands the attention of the patient but the support of at least one 

dedicated caregiver [17].   
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Due to the trade-off of potentially improved survival and quality of life to change in 

lifestyle and risk of adverse events, the decision for a physician and patient to have an LVAD 

implanted requires careful review of educational information and discussion [6]. Accordingly, 

multidisciplinary heart failure teams must work together to educate patients and their caregivers 

on LVAD use, risks, and associated lifestyle changes as the patients are discerning their 

treatment options [18].  

1.2.1 Left Ventricular Assist Device Decision Making 

The decision to implant an LVAD is a daunting task for both patients and physicians; 

excess caution may deny a timely, life-saving intervention, but overzealous use may subject 

patients to significant morbidity, potentially diminishing their quality of life and/or hastening 

death. The complexity and challenge of clinical decision-making, therefore, lies in identifying 

the right patient who should receive an LVAD at the right time. 

Most patients that are referred for an LVAD implant are INTERMACS profile I & II. The 

morbidity and survival when implantation occurs at this point in disease progression is far from 

satisfactory and greatly impacts the financial and ethical ramifications of the procedure [7, 19]. If 

a referring physician could identify and refer patients who are both refractory to conventional 

therapy but not critically ill (INTERMACS 3 or higher), it is hypothesized that LVAD therapy 

may have a marked improvement in survival and quality of life outcomes [20].  
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The best practices for the use of an LVAD were recently published as a set of guidelines 

by The International Society for Heart and Lung Transplantation (ISHLT) [21] and the American 

Heart Association (AHA) [22]. While these guidelines are an essential first step toward 

implementation of this technology, they have fundamental limitations:  

(1) They are based on consensus and aggregated experience, and therefore cannot be 

personalized to an individual patient 

(2) They do not capture the values and needs of individual patients and their 

caregivers 

(3) They lack effective methods of communicating the risks and benefits of LVAD 

use to patients, which is essential to achieving shared decision making 

These limitations provide the motivation for the current research reported here. It is built 

on the premise that decision support tools are needed to augment the current guideline-based 

rationale for determining when and if to implant an LVAD in an advanced heart failure patient. 

1.3 FRAMEWORKS FOR DECISION SUPPORT TOOLS 

Requirements of an effective and safe clinical decision support tool have been a topic of 

much interest, particularly with the government incentive to establish and use electronic medical 

records [23]. For physicians, there is a clinical decision support guidance called the “Five Rights 

of CDS” (Table 1) [24]. For patients, there is the frequently updated and well-validated 

International Patient Decision Aid Standards (iPDAS) (Table 2) [25]. These two sets of 

guidelines define the frameworks to evaluate the existing tools for LVAD decision making.   
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Table 1. Five Rights of CDS [24] 

1. The right information, 

2. To the right person, 

3. In the right intervention format, 

4. Through the right channel, 

5. At the right time in workflow. 
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Table 2. iPDAS (v3) Checklist (excluding screening-specific requirements) 

Dimension / details Item 

Information 

Providing information about 

options in sufficient detail for 

making a specific decision 

1. The decision support technology describes the health condition or problem 

(intervention, procedure or investigation) for which the index decision is required 

2. The decision support technology describes the decision that needs to be 

considered (the index decision) 

3. The decision support technology describes the options available for the index 

decision 

4. The decision support technology describes the natural course of the health 

condition or problem, if no action is taken. 

5. The decision support technology describes the positive features (benefits or 

advantages) of each option 

6. The decision aid describes negative features (harms, side effects or 

disadvantages) of each option. 

7. The decision support technology makes it possible to compare the positive 

and negative features of the available options. 

8. The decision support technology shows the negative and positive features of 

options with equal detail (for example using similar fonts, order, and display of 

statistical information). 

Probabilities 

Presenting outcome 

probabilities 

1. The decision support technology provides information about outcome 

probabilities associated with the options (i.e. the likely consequences of decisions) 

2. The decision support technology specifies the defined group (reference class) 

of patients for which the outcome probabilities apply. 

3. The decision support technology specifies the event rates for the outcome 

probabilities (in natural frequencies). 

4. The decision support technology specifies the time period over which the 

outcome probabilities apply. 

5. The decision support technology allows the user to compare outcome 

probabilities across options using the same denominator and time period. 

6. The decision support technology provides information about the levels of 

uncertainty around event or outcome probabilities (e.g. by giving a range or by 

using phrases such as “our best estimate is…”) 

7. The decision support technology provides more than one way of viewing the 

probabilities (e.g. words, numbers, and diagrams). 

8. The decision support technology provides balanced information about event 

or outcome probabilities to limit framing biases. 
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Table 2 (continued). 

Clarifying and expressing 

values 

1. The decision support technology describes the features of options to help 

patients imagine what it is like to experience the physical effects. 

 2. The decision support technology describes the features of options to help 

patients imagine what it is like to experience the psychological effects. 

3. The decision support technology describes the features of options to help 

patients imagine what it is like to experience the social effects. 

4. The decision support technology asks patients to think about which positive 

and negative features of the options matter most to them. 

Decision Guidance 

Structured guidance in 

deliberation and 

communication 

1. The decision support technology provides a step-by-step way to make a 

decision. 

2. The decision support technology includes tools like worksheets or lists of 

questions to use when discussing options with a practitioner. 

Development 

Using a systematic 

development process 

1. The development process included finding out what clients or patients need to 

prepare them to discuss a specific decision 

2. The development process included finding out what health professionals need 

to prepare them to discuss a specific decision with patients 

3. The development process included expert review by clients/patients not 

involved in producing the decision support technology 

4. The development process included expert review by health professionals not 

involved in producing the decision aid. 

5. The decision support technology was field tested with patients who were 

facing the decision. 

6. The decision support technology was field tested with practitioners who 

counsel patients who face the decision. 

Evidence 1. The decision support technology (or associated documentation) provides 

citations to the studies selected. 

2. The decision support technology (or associated documentation) describes 

how research evidence was selected or synthesized. 

3. The decision support technology (or associated documentation) provides a 

production or publication date. 

4. The decision support technology (or associated documentation) provides 

information about the proposed update policy. 

5. The decision support technology (or associated documentation) describes the 

quality of the research evidence used. 
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Table 2 (continued). 

Disclosure and transparency 1. The decision support technology (or associated technical documentation) 

provides information about the funding used for development. 

2. The decision support technology includes author/developer credentials or 

qualifications. 

Plain Language 1. The decision support technology (or associated documentation) reports 

readability levels (using one or more of the available scales). 

DST Evaluation 1. There is evidence that the decision support technology improves the match 

between the features that matter most to the informed patient and the option that is 

chosen 

 

1.3.1 Physician-oriented Tools for LVAD Decision Making 

The primary decision support tools for physicians evaluating patients for LVAD implant 

are risk scores that predict post-operative mortality. The most commonly used scores are 

summarized in Table 3. Of these, only one risk score considers the format of delivery to 

physicians, the Seattle Heart Failure Model (SHFM), which has an online and downloadable 

calculator to present the risk of mortality at 1, 2, and 3 years. All other scores must be calculated 

by physicians on their own. Almost every risk score is derived from a small, clinical trial cohort, 

except the SFHM which was developed from a cohort of 1,125 ambulatory patients, who were 

less sick than the patients being considered for LVADs. Performance of these models can be 

good in their specific patient populations (ROC AUC 0.89 for DTRS) but does not maintain this 

rate of success with validation in the sickest patients, reflective of the current LVAD candidates 

(ROC AUC 0.58 for DTRS) [26].  
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Table 3. Physician-oriented tools for LVAD decision making 

Tool Outcome 

predicted 

Development 

cohort  

Validation 

cohort and 

performance 

Pro Con 

Heartmate II 

Risk Score [27] 

 

90-day and 1-

year mortality 

Derived from 

HMII BTT and 

DT trial patients 

(N = 1,122) 

randomly divided 

into derivation 

cohort 

(n = 583)  

 

Validation cohort 

(n = 539) 

 

AUC ROC: 0.64 

 

ROC AUC in 

LVAD patients 

from ROADMAP 

trial: 0.71 at 3 

months, 0.62 at 

12 months[28] 

Developed with 

contemporary 

device therapy 

era patients  

 

Discriminates 

survival in 

sicker, 

INTERMACS 

profiles 1-2, 

patients 

Performed less 

well than the 

MELD score 

(0.66) 

 

Did not 

discriminate well 

in the less sick. 

[29]  

Seattle Heart 

Failure Model 

(SHFM) [30] 

1-, 2-, and 3-

year mortality 

in patients 

with 

moderate HF 

Derived in a 

cohort of 1125 

ambulatory heart 

failure patients  

Prospectively 

validated in 5 

additional 

cohorts, n= 9,942 

ambulatory heart 

failure patients  

 

ROC AUC: 0.73 

 

ROC AUC in 

LVAD patients 

from ROADMAP 

trial: 0.71 

Applicable for 

both non-MCS 

and MCS patient 

cohort 

 

Easily accessible 

on the web 

 

Longest follow 

up of any 

prediction scores 

Validation cohort 

was not reflective 

of advanced HF 

population for 

whom MCS is 

being considered 

 

Overestimate 

survival when 

used to stratify 

advanced HF 

patients[31] 

Destination 

Therapy Risk 

Score 

90-day in-

hospital 

mortality for 

pulsatile DT 

LVADs 

Derived from 

patients 

consenting to be 

a part of the DT 

registry for the 

HeartMate XVE 

LVAD (n=222) 

Original 

validation ROC 

AUC: 0.89 

Good 

delineation 

between high 

and low risk 

groups in 1,124 

patients enrolled 

in the HMII DT 

and BTT trials  

Lacks 

applicability to 

the newer 

generation, CF-

LVADs devices  

 

ROC AUC: 0.54 

and 0.58 for the 

HeartMate II BTT 

and DT groups, 

respectively.[26] 

Model for End-

stage Liver 

Disease 

(MELD) for 

MCD[32] 

Correlated 

with bleeding 

risk and 

predicts 6-

month 

mortality 

Derived from 

n=231 patients 

being considered 

for transhepatic 

portosystemic 

shunts and later 

for liver 

transplant 

candidate 

categorization  

Bleeding 

validated in 

single center 

MCS population, 

n=211 

 

Mortality 

validated in 

INTERMACs 

registry, n=324 

 

In single center 

cohort, MELD 

predicted 

hospital stay,  

postoperative 

device 

infections, RV 

failure, and renal 

failure. 

 

In both cohorts, 

the MELD score 

was predictive 

of operative and 

6-month 

mortality. 

Limited utility in 

less ill cohort  

 

Not developed for 

MCS patients  

 

Does not include 

serum creatinine, 

which can 

indicate 

malnourishment 

and vastly 

underestimate 

renal dysfunction 
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1.3.2 Patient-oriented Tools for LVAD Decision Making 

There are two published patient decision support tools in development for LVAD 

patients, summarized in Table 4. Both tools are funded by grants from the Patient-Centered 

Outcomes Research Institute (PCORI). They both were developed using the guidelines from 

iPDAS, derived from single-center feedback and using multi-center clinical trials for validation. 

The results of both validation trials have not yet been published, so final outcomes in terms of 

benefit and impact of the tools are currently unknown. 
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Table 4. Patient-oriented tools for LVAD decision making 

Tool Development 

cohort 

Validation 

cohort  

Components Pro Con 

Colorado 

Patient 

Decision 

Support, 

PCORI [33] 

 

Semi-structured 

interviews with 

24 patients, 20 

caregivers, and 

24 clinicians to 

assess 

readability, bias, 

and usability 

 

DECIDE-

LVAD   clinical 

trial of 6 US 

hospitals, 

n=168 patient-

caregiver dyads 

Paper tool: 

educational 

information, 

pictographs of 

risks, self-directed 

patient values 

exercise, patient 

and caregiver 

perspectives 

  

Video 

Knowledge at 1 

month increased 

by 31% for 

patients and 6% 

for caregivers 

 

Values-treatment 

concordance at 1 

month 

was shown with 

both patients and 

caregivers, 

where treatment 

choice aligned 

with stated 

values  

 

Satisfied with the 

length of the 

decision aids 

Baseline study 

process for 

clinical trial as 

a whole 

was lengthy 

 

Video is 24 

minutes long 

without search 

or skip 

functionality 

Baylor, 

Deciding 

Together, 

PCORI [34] 

15 LVAD 

candidates, 15 

patients, 15 

caregivers, 15 

LVAD decliners 

and 11 clinicians 

involved in 

LVAD care were 

interviewed 

(n=71, total) 

Alpha tested 

through 

cognitive 

interviews 

(n=5) and 

acceptability 

tested with 

LVAD patients 

(n=10), 

candidates 

(n=10), and 

clinicians 

(n=13) 

 

Multi-site 

randomized 

trial across 5 

cardiovascular 

hospitals 

planned 

Paper tool, 

educational, risk 

information in 

pictographs, patient 

values exercise, 

patient narratives 

 

Video (online) 

Patients, 

caregivers and 

clinicians 

reported they 

would 

recommend the 

aid to patients 

considering 

treatment options 

for heart failure. 

1 hour to 

review entire 

decision aid 
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1.4 NEED FOR IMPROVED DECISION MAKING 

1.4.1 Physician support tools 

The current tools available for physicians only meet the first ‘right’ of the CDS 

framework. Their utilization for LVAD implant decision making is limited by the accessibility of 

the tool and the workflow habits of the decision-making team [35]. The amount of information 

required to be manually entered to calculate the risk scores (demographics, labs, history, family 

support, clinical parameters, etc.) further reduces the likelihood of use in real-time decision 

making. 

In this research thesis, I address the issues of model development with the right data 

(Aim 1) and presentation of the data in the right format and channel (Aim 2). Ongoing research 

by our colleagues addresses the right person to use the data and the right time in workflow the of 

support tool use [35].  

1.4.2 Patient support tools 

The risk information presented in current heart failure decision aids is limited to average 

probabilities for an aggregate population, for example, based on a clinical trial. However, recent 

utilization of machine learning and data mining, in combination with the growth of clinical data 

registries, has made it possible to develop patient-specific prognostic models. Our group has 

previously used these methods to develop personalized models for predicting LVAD outcomes, 

including mortality [36], recovery [37], and adverse events [38, 39].  
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Both tools currently in development for patients incorporate video or online components 

but use paper instruments for the primary education and have a patient self-guided response 

section. The response section is not used for analysis or shared with physicians but is intended to 

stimulate conversation with patients. There is no interactive component to the tools or feedback 

to the physician. 

This study aims to develop well validated predictive models with the latest clinical 

information and statistical techniques that can be shared with patients (Aim 1) and address their 

needs in an understandable and unbiased visual format (Aim 3). 
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2.0 AIM 1: BAYESIAN NETWORK MODELS 

The studies conducted in Aim 1 cover a range of modeling outcomes that demonstrate the 

versatility and utility of Bayesian networks to address the clinical decision making for LVADs. 

In Aim 1.1 outcomes for all-cause mortality are modeled for four different time points. 

This represents the most common outcome cited when physicians and patients discuss risks after 

LVAD implant. The use of multiple time points allows different factors that impact risk to be 

highlighted, from the pre-implant patient surgical history and end-organ function for early 

outcomes to patient age and frailty for longer-term outcomes. 

In Aim 1.2 the most commonly occurring adverse event is addressed: gastrointestinal 

(GI) bleeding. While GI bleeding is not associated with high patient mortality, it is closely 

related to the occurrence of other adverse events (e.g., re-hospitalization, infection, and stroke), 

and it significantly impacts quality of life. Recurrent GI bleeding is of the most concern to 

physicians, because it indicates inadequate medical management. In this aim, recurrent GI 

bleeding at any time after implant was modeled based on the patient pre-implant status and the 

patient status at the time of initial bleed. This is the first study to predict recurrent GI bleeding in 

this patient population. 

Finally, in Aim 1.3 the most pernicious adverse event for patients with and LVAD was 

addressed: ischemic stroke. Ischemic stroke risk is driven by the device-patient interaction, 

particularly the blood-material interface of the pump and the resulting change in hemodynamics. 
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To consider the important role pump design plays in effecting the risk of ischemic stroke, models 

were made to measure the risk of ischemic stroke for each pump type: axial and centrifugal. The 

latter analysis revealed different sets of predictive factors to be important for each pump type.  

The three predictive models developed in Aim 1 cover a spectrum of issues facing 

patients with LVADs and a range of data elements that can be used for model development with 

Bayesian networks.  

2.1 A BAYESIAN MODEL TO PREDICT MORTALITY FOLLOWING LEFT 

VENTRICULAR ASSIST DEVICE THERAPY 

2.1.1 Introduction 

Aim 1.1 sought to develop Bayesian-based prognostic models of mortality for multiple 

time points following implantation of a continuous flow LVAD, using the Interagency Registry 

for Mechanically Assisted Circulatory Support (INTERMACS). Although various risk 

stratification models to predict mortality post LVAD have been proposed over the years, they all 

have limited applications in ‘real life’ decision making [40], due to their derivation from small 

data sets, limited number of variables or isolated to a specific pump in a study population [41-

43]. Accurate predictions of outcomes after LVAD implantation depend on complex and 

dynamic interplay of multiple pre-operative variables that may not be captured by traditional 

multivariate modeling. Bayesian network (BN) modeling can account for dynamic, non-linear 

interactions between clinical and non-clinical variables and their influence on patient outcomes. 

In this way, they mimic complex human decision making, while drawing their diagnostic 
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algorithms from thousands of patients. Moreover, these models can predict outcomes at different 

time points post-LVAD by recognizing the time-varying importance of relevant variables. BN 

algorithms have been developed to predict mortality, gastrointestinal bleeding, and right 

ventricular failure in LVAD population [36, 39].  

2.1.2 Methods 

Patient cohort  

This study was approved by the INTERMACS Data, Access, Analysis, and Publication 

Committee. The Data Coordinating Center at University of Alabama at Birmingham provided 

de-identified patient data for implantations undertaken between April 2006 and December 2016 

(n=20,216). Modeling was performed using pre-implant patient information from January 2012-

December 2015, for adult (over 18 years of age) patients receiving a primary continuous flow 

LVAD or LVAD and right ventricular assist device (RVAD) in combination (n = 10,277). We 

chose this time frame to include current generation, continuous flow LVADs with least amount 

of missing data and derived from over 160 clinical sites in the United States [7]. Total artificial 

heart recipients and RVAD-only receipts were excluded from this study. Patients who received 

device exchanges (n=800) were included in the study, with total time on pump calculated across 

the multiple implants. Patients who recovered while on LVAD support or received heart 

transplants were included and indicated as “alive” in modeling outcomes up until that time point 

and censored for subsequent time points. Mortality post-LVAD implantation was noted at the 

following times: 1 month, 3 months, and 12 months.  
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Data pre-processing 

The INTERMACs data set includes over 400 pre-implant variables, with varying levels 

of data completion. BN construction requires no missing data in the training set. Therefore, 

preprocessing was required, in which the missing data elements were categorized into 2 sets: 

those missing in specific patterns (missing, not at random) and those that were ‘truly unknown’ 

(missing at random). An example of data missing, not at random, was if a patient did not 

complete a quality of life questionnaire because they were too sick, then the answers for all the 

questionnaire response variables were filled in as ‘not applicable’. A missing at random example 

was, if a patient did not perform a 6-minute walk test and no reason why was documented, then 

the result of that test (distance walked) was classified as missing rather than left blank. Variables 

with over 40% missing were excluded from the analysis (n=42). Additionally, variables with less 

than 1% positive responses (e.g., Previous Dor procedure, done in only 8 patients) were removed 

from the analysis (n=16).  

Some variables in INTERMACS capture information across a series of binary ‘Yes / No’ 

answers. To reduce the fields and improve the predictive power of variables, some fields were 

collapsed into multilevel variables. For example, INTERMACS has two variables for every 

comorbidity: Contraindication limiting transplant (Yes/No) and Contraindication, but not 

limiting transplant (Yes/No). These were collapsed into Contraindication: Yes, Yes-limiting 

transplant, or No. In this way, the number of variables for modeling was reduced. Fields for past 

medical interventions were combined into total counts of events, while keeping the individual 

binary information. For example, a patient with a coronary artery bypass grafting (CABG) and 

dialysis during their hospitalization was captured as CABG- Yes, Dialysis- Yes, and Total Event 

Count- Two. Variables with many levels were broken into subsets to identify important features. 
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For instance, Primary Diagnosis (a 31-level variable) was divided in to Ischemic Etiology, 

Restrictive Myopathy, Dilated Myopathy, and Congenital disease. After variable pre-processing, 

203 pre-implant variables were used in the model construction.  

Modeling cohorts 

BN classifiers were derived for each time point of interest using a training dataset 

consisting of 80% of the data records selected at random (using Weka test/train split function.) 

The remaining 20% of data was held aside as the test set for the final model validation. This 

resulted in 6 sets of data across 3 pre-specified time points, three training sets—one for each 

model—and three test sets. The three training sets were each processed for feature selection 

independently. 

Discretization of Continuous Variables 

Bayesian modeling requires that all variables be categorical, therefore continuous 

variables must be discretized. In this study, four different methods of discretization were 

explored: expert binning (cut points determined for VAD implant guidelines, established risk 

tools, and normal ranges), supervised binning (MDL method in Weka), equal frequency binning, 

and equal width binning. Using training data, information gain was measured for each variable 

using each method, and results were compared. Choosing the method that yielded the highest 

information gain for each variable, a hybrid approach of expert binning, equal frequency, and 

equal width binning was used in to discretize the variables. This was performed for all 3 models. 
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Feature selection 

To select variables for inclusion in the model, information gain was run in a 10-fold cross 

validation on the training data, with the recurring top variables being selected for model 

inclusion. Cut off for selection was information gain > 0.003 for all three time points. This 

resulted in a set of 29, 26, and 31 variables for the 1, 3, and 12-month models, respectively.  

Bayesian Analysis   

BNs process individual patient data in a dynamic and non-linear fashion to predict 

probable outcomes. The selected features from the training sets were used to learn both Tree 

Augmented Naïve Bayes (TAN) and Naïve Bayes (NB) graphical models using GeNie software 

(BayesFusion, Pittsburgh, PA). Each model was optimized by running 10-fold cross validation 

and removing or adding variables that either had low diagnostic value (as calculated in GeNie) or 

were on the cusp of the information gain cut off. At all three time points the NB models had 

superior performance, as measured by the area under the receiver operator characteristics curve 

(ROC AUC). The final NB models had 28, 26, and 21 predictive variables for the 1, 3, and 12-

month models, respectively. Variables were grouped into three categories: demographics/patient 

status, medical history, and test results (laboratory, exercise and imaging). 

Final Validation 

Models were validated using the three test sets, which had not been used in the prior 

model learning. ROCs were plotted in R. In addition, we also report accuracy, sensitivity, and 

specificity (assuming a 50% threshold) of the Bayesian models’ performance. 



 23 

2.1.3 Results 

A total of 10,277 patients met the inclusion criteria (Figure 4). The majority were 

between 50 and 69 years of age (n = 6,174; 60%); 78% (n = 8,044) were male; 3,811 patients 

(35%) received the LVAD as DT, and 5,528 patients (54%) were listed as BTT. Ischemic disease 

was listed as the cause for cardiomyopathy in 4,637 patients (41=5%). At the time of 

implantation, 16% (n = 1,671) were categorized as INTERMACS profile 1, 35% (n = 3,548) as 

INTERMACS profile 2, and 32% (n = 3,318) as INTERMACS profile 3. In the training sets (n = 

8,222), 1-month mortality was 5% (n = 426), 3-month mortality was 9% (n = 776), and 12-

month mortality was 18% (n = 1459). In the test sets (n = 2,055), mortality was at 6% (n = 114) 

at 1-month, 10% (n = 200) at 3-month, and 19% (n = 390) at 12-month post LVAD implantation. 

 

 

Figure 4. Model cohort selection 
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Models and test validation:  

Bayesian models for 1, 3, and 12 months post-LVAD are illustrated in Figures 6,7, and 8. 

Variables are color-coded according to 3 categories: demographics/patient status, medical history 

and results. ROCs, accuracy, sensitivity, specificity, and AUC ROC are summarized in Figure 5 

and Table 5. Accuracy ranged between 76% and 87%, and ROC AUC ranged between 70% and 

71%. 

 

Table 5. Model test validation performance 

 1-month 3-month 12-month 

Accuracy 87% 82% 76% 

Sensitivity 30% 33% 33% 

Specificity 90% 87% 86% 

ROC AUC 70% 71% 70% 
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Figure 5. ROC curves for Bayesian models to predict various time points post LVAD implantation (0.70 at 

1 month, 0.71 at 3 months, 0.70 at 12 months) 

 

Mortality at 1-month post LVAD: This NB model contains 28 variables directly 

connected to the outcome (Figure 6). Although the order of influence changes as variables are 

observed or specified (i.e., while calculating the risk for a specific patient), the variables most 

predictive of early post-LVAD mortality are concomitant RVAD implant, total number of events 

during the implant hospitalization, low platelet count, high bilirubin levels, high aspartate 

aminotransferase (AST) level, and low INTERMACS profile. 
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Figure 6. Bayesian model for predicting mortality 1-month post LVAD implantation. Variables are color 

 coded: demographics (yellow), medical history (orange) and test results (blue). 

 

Mortality at 3 months post LVAD: The NB model for mortality at 3 months post LVAD 

had 26 variables, with concomitant RVAD implant, older age, elevated blood urea nitrogen, low 

hemoglobin and lower INTERMACS profiles being highly predictive of higher mortality risk 

(Figure 7). 
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Figure 7. Bayesian model for predicting mortality 3 months post LVAD implantation 

 

Mortality at 12 months post LVAD: The NB model for mortality at 12 months post 

LVAD had 12 variables, with older age, elevated blood urea nitrogen, low hemoglobin, DT 

device strategy, and concomitant RVAD implant being highly predictive of mortality (Figure 8). 
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Figure 8. Bayesian model for predicting mortality 12 months post LVAD implantation 

 

Unique variables across time points: 

There were several variables that impacted risk of mortality across all time points such as 

old age, dialysis during index hospitalization, previous cardiac operations, albumin, platelet 

count, blood urea nitrogen. Similarly, there were several highly predictive variables that 

predicted short term mortality which were distinct from those predicting 12-month risk of death. 

These included lower INTERMACS profile, pre-operative ventilator dependence and hepatic 

function (indicated by AST and bilirubin levels) affecting 1-month mortality while ischemic 

etiology, history of chronic renal disease and frailty contributed more to 12-month mortality. 
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2.1.4 Discussion 

Appropriate patient selection is key to optimal outcomes after LVAD therapy. There is a 

critical need for an accurate predictive model that is derived from a comprehensive database 

across multiple clinical sites, incorporates the impact of a large variety of clinical variables to 

account for the heterogeneity of end stage HF patient, and is up to date with the evolving 

technologic innovation in mechanical circulatory support devices. In other words, a successful 

predictive tool would mimic human decision making, while drawing on data from tens of 

thousands of patients who have undergone LVAD implantation. BN algorithms can provide the 

necessary tools to achieve this, as demonstrated in our analysis.  

These analyses revealed a variety of risk factors from disparate categories (e.g., 

demographics, medical history, and laboratory test results) that influence post LVAD survival. 

Many of the variables that were found to be predictive in these models have previously been 

recognized as high risk factors in separate analysis [27, 44, 45]. Rather than trying to combine a 

multiplicity of factors by using a weighted summation, Bayesian models provide a dynamic 

incorporation of many variables, yielding a more robust ROC value than previously published 

scores [46]. The 90-day and 12-month HMRS stratifications had AUC of 60% and 57%, 

respectively [27], whereas the Bayesian 90-day and 12-month predictions exhibited AUC of 71% 

and 70%, respectively. BN analyses can show how clinical variables impact the predicted class 

value (mortality) without requiring that every patient variable be entered to give a prediction. 

This is an advantage over existing risk scores, which are rendered unusable if any of the 

parameters are not known. 
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In the present analysis, there were several variables found to have significant impact on 

the predicted mortality at different time points after LVAD implantation. These included 

clinical and non-clinical variables, both of which play a vital role in decision-making that occurs 

on a day-to-day basis with these often critically ill patients. An example of a non-patient variable 

was the number of LVAD implants performed at a site annually, which has been shown to 

impact outcomes [27]. The final BN models included both non-modifiable/historical variables 

(such as patient age and surgical intervention history) and modifiable variables (such as 

nutritional assessment and renal function). Long-term mortality post-LVAD implant is likely 

more influenced by post-operative adverse events (such as stroke, infections, or right ventricular 

failure) than pre-operative variables, which is reflected by a slight drop in the ROC for the 12-

month mortality model. 

The ability to recognize the impact of different variables in predicting mortality at 

various time points post-LVAD implant is important, given that many high-risk variables (e.g. 

acute renal failure) that could impact short term mortality may reverse with time and be less 

relevant in predicting long term outcomes [47]. Although there are some high-risk variables that 

impact both short and long-term risk of mortality, their depth of impact may change over time. 

Extrapolating data from 90-day models to predict one-year mortality as was done in HeartMate 

Risk Score (HMRS) neglects this change in variable importance, but is overcome by using 

multiple, independent predictive models. 

These BN mortality models demonstrated a remarkable improvement over existing 

models with respect to accuracy, specificity and ROC. The models in this study have an ability to 

(1) learn from prior probability, (2) apply to the most recent patient mix and device technology, 

and (3) be more tolerant to missing data elements when calculating predictions. In addition, BNs 



 31 

reflect the natural clinical decision-making process as compared to traditional risk scores and 

therefore provide greater confidence as a tool for those making medical decisions. 

Limitations: 

We acknowledge that this study has several important limitations, including missing data 

pertaining to the independent variables. Although the INTERMACS database is large and 

representative, it suffers from sparsity of many data elements. This prompted us to exclude some 

variables which may have been relevant predictors. Additional limitations include inherent 

retrospective bias (all patients were already chosen to receive an LVAD) and only FDA 

approved VAD devices were included in registry. However, despite these limitations, our study 

does not suffer from other, more common limitations (e.g., single centered) as we utilized the 

most comprehensive and robust registry currently available for LVAD recipients. 

2.1.5 Conclusion 

The BN mortality models show great promise as reliable and accurate risk stratification 

tools for clinical decision making. The potential utility of the models is to assist the medical team 

in decision making with patients for whom the merits or contraindications to LVAD implantation 

are not immediately clinically apparent. Accordingly, we hope that CORA will promote the 

appropriate and perhaps judicious use of LVAD therapy by providing clinicians and patients a 

more informed decision regarding potential short-term and long-term outcomes. 
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2.2 PREDICTING PREDISPOSITION TO AND RECURRENCE OF GI BLEEDING 

IN PATIENTS WITH CF-LVADS 

2.2.1 Introduction 

Gastrointestinal (GI) bleeding is one of the most frequently occurring adverse events in 

patients who have continuous flow left ventricular assist devices (CF-LVADs), with an incidence 

reported between 18% and 40% [48, 49]. Typically recurrent, it substantially impacts the 

patient’s quality of life through frequent readmissions, prolonged hospitalizations [50], and a 

potentially higher risk of infection and thromboembolic events [51]. In addition, the associated 

blood transfusions may result in allosensitization [52] which impacts the patient’s transplant 

candidacy[53, 54] and can pose a long term risk of post-transplant rejection.  

The etiology of GI bleeding in patients with CF-LVADs has been studied extensively and 

is likely multifactorial. Non-pulsatile blood flow [55], which may lead to vascular stiffening [56, 

57] or arteriovenous malformation (AVM)[58], unfolding of von Willebrand factor from the 

shear stress of the impeller that leads to increased susceptibility to degradation and an acquired 

von Willebrand syndrome [59], elevated Angiopoeitin-2 levels due to coagulation factors from 

blood-metal interface leading to AVM [60], and the need for anticoagulation and antiplatelet 

therapy[61] have all been associated with elevated risk of GI bleeding.  

Pre-implant clinical risk factors that are known to be associated with increased incidence 

of GI bleeding include older age, elevated creatinine, and pre-operative right heart failure [52, 

57]. Given the heterogeneity of GI bleeding etiology and the effect of both pre- and post-LVAD 

implant factors, multivariate modeling or focusing on pre-implant variables alone may not be 

adequate for identifying patients who are at risk for GI bleeding. There is a need to better 
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understand the factors that impact the risk of GI bleeding, which may provide insights as to how 

GI bleeding may be mitigated or prevented. In this study, we use Bayesian network modeling on 

a large, retrospective data set to construct two predictive models to better characterize the risk 

factors and causes for GI bleeding (Figure 9).  

2.2.2 Methods 

Data Source 

The data for this study was derived from the Interagency Registry for Mechanical 

Assisted Circulatory Support (INTERMACS), funded by the National Heart, Lung and Blood 

Institute, National Institutes of Health, Department of Health and Human Services. 

Inclusion criteria for this study were the use of a CF-LVAD as the primary implant 

between years 2010 and 2015 in patients over 18 years old. Patients who received biventricular 

ventricular assist devices (BiVADs) were included. Patients with temporary RVAD support 

alone were excluded. Total artificial heart implants and pulsatile LVAD implants were excluded. 

Patients were excluded from the model if they died or were transplanted within the first 30 days 

of implant.  

Endpoints 

Incidence of GI bleeding was determined using INTERMACS event data and definitions. 

A GI bleeding event was identified as an upper GI bleed, lower GI bleed, or positive occult stool 

(location unknown). To assess GI bleeding that was caused by the LVAD implant, initial GI 

bleeding was defined as a GI bleeding event occurring more than 2 weeks after implant. GI 

bleeding events occurring before 2 weeks were not counted. Recurrent GI bleeding was 

identified as an additional GI bleeding event occurring 2 or more weeks after the initial bleed. 



 34 

This outcome is used as the study endpoint because a patient with a single GI bleeding event 

with no recurrence can be considered effectively managed and the GI bleed is less likely to be 

LVAD related. Specifically, our goal is to address CF-LVAD-associated reasons for GI bleed, 

which may result from the chronic dis-regulated angiogenic state that leads to multiple bleeds. 

Focusing on recurrent GI bleeding allows for prediction of successful (non-hemorrhagic or non-

recurring) versus unsuccessful (recurrent GI bleeding) outcomes. There was no maximum time 

limit set between initial and recurrent bleeding events.  

 Model scope 

Two models to predict recurrent GI bleeding were constructed in this study (Figure 9.) 

The first model used patient pre-implant health information to predict the risk of recurrent GI 

bleeding after CF-LVAD implantation. The pre-implant predisposition model used mostly non-

modifiable patient characteristics. The modeling data set included 13,082 patients, with 1,439 

(11%) having recurrent GI bleeding.  

The second model used post-operative factors at the time of a patient’s first GI bleeding 

event to predict the risk of a second GI bleeding event. This is referred to as the post-implant risk 

model for recurrent GI bleeding events. The goal of this model was to provide insight on the 

LVAD-related factors associated with recurrent bleeding. The model used medications at the 

time of the initial GI bleeding event (e.g., anticoagulation), labs (e.g., INR) and therapeutic 

interventions within one week of the initial GI bleeding event. Of the 3,139 patients with a single 

GI bleeding event at least two weeks after CF-LVAD implant, patients without data within a 

one-week window of their initial bleed were excluded (n= 1,612). The remaining 1,527 patients 

were used in the post-implant risk model building, with 49% having a recurrent GI bleed. 
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Model development and validation 

INTERMACS data was processed by discretizing continuous variables using the 

supervised binning class-attribute interdependence maximization (CAIM) method, which was 

iterated 5 times[62]. Missing data was not imputed but was captured categorically as “missing”.  

Feature selection was performed using information gain and hill climbing, each with 10-

fold iterations, to select the primary variables impacting recurrent GI bleeding. After creating a 

subset of variables using information gain (gain > 0.003) and the most frequently selected 

variables from hill climbing, a Tree Augmented Naïve (TAN) Bayes model was created and 

validated by 10-fold cross validation using GeNie software (BayesFusion, Pittsburgh, PA). 

Variables in the model were evaluated for their impact on the prediction by diagnostic value. 

Diagnostic value is a measure of the influence the variable has on the model prediction, based on 

the expected gain in cross-entropy. Variables with the lowest diagnostic value were removed 

from feature selection and the model was re-learned and validated with 10-fold cross validation. 

Variables were iteratively removed and added until the model performance, defined by the 

receiver operating characteristic area under the curve (ROC AUC), no longer improved. 

Model validation was performed using more recent patient data from INTERMACS, 

covering new implants done in 2015-2016, as well as data from previous patients who had not 

experienced recurrent bleeding by 2015 and who were still alive on their original CF-LVAD. 

The pre-implant predisposition model had 3,351 patients and the post-implant risk model had 

1,236 patients in the validation cohorts. 
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Figure 9. Schematic of Patient Selection for Models.  

2.2.3 Results 

Incidence of GI Bleeding 

Of the 13,082 patients implanted with a primary CF-LVAD between 2010 and 2015, 

3,505 patients (27%) had 7,426 episodes of GI bleeding. The mean number of GI bleeding events 

per patient was 2.1 with a range of 1 to 45 per patient. GI bleeding events were experienced by 

patients from 0.5 to 64 months after implant, with the mean time to the first GI bleeding event of 

6.6 months and median time of 2.4 months. The mean time between the first and second GI bleed 

was 4.3 months and median time of 1.7 months (range 0.5 to 61 months).  

Pre-implant characteristics of patients with and without recurrent GI Bleeding 

Of the 13,082 patients, 1,439 (11%) experienced recurrent GI bleeding. Compared to the 

non-recurrent bleeding cohort (patients with 0 or 1 GI bleeding event), patients who had 

recurrent GI bleeding events were more likely to be older (age 60-79), on an axial flow pump 

(HeartMate II), and implanted as a destination therapy (Table 6).  
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Table 6. Clinical Characteristics of Patients by GI Bleeding Recurrence 

Patient Information Non-Recurrent GI 

Bleeding (0-1 

events),  

n = 11,643 

Recurrent GI 

Bleeding (2+ 

events),  

n = 1439 

  

  n % n % p-value 

Pump Type Centrifugal 2069 18% 140 10% < 0.001 

  Axial 9572 82% 1299 90% < 0.001 

Device  LVAD 11320 97% 1413 98% 0.032 

  BiVAD 323 3% 26 2% 0.032 

NYHA Class  III 2112 18% 245 17% 0.298 

  IV 8608 74% 1085 75% 0.230 

Strategy DT 4803 41% 829 58% < 0.001 

  BTT 6749 58% 600 42% < 0.001 

Age 80+ 75 1% 14 1% 0.153 

  70-79 1450 12% 307 21% <0.001 

  60-69 3613 31% 651 45% <0.001 

  50-59 3243 28% 354 25% 0.009 

  40-49 1734 15% 89 6% <0.001 

  30-39 952 8% 21 1% <0.001 

  19-29 576 5% 3 0% <0.001 

Gender Male 9152 79% 1121 78% 0.542 

 

Data shown as the total in each category and percentage of total, with comparison 

between groups measured using a two-way z-test. Acronyms: LVAD, Left Ventricular Assist 

Device; RVAD, Right Ventricular Assist Device; DT, Destination Therapy; BTT, Bridge to 

Transplant (includes patients listed and not-yet listed). In this dataset, all axial flow pumps are 

Heartmate II (Abbott) and all centrifugal flow pumps are HVAD (Medtronic). 

 

Recurrent GI bleeding Predisposition Model and Results 

Out of 261 pre-implant variables that were used in feature selection, 18 were identified as 

the top predictors of predisposition for recurrent GI bleeding (Figure 10). Final cross-fold 

validation ROC AUC was 69% (Figure 11). In the validation data set from INTERMACS 
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(n=3,351 patients), 13% of patients experienced recurrent GI bleeding events. Model 

performance with this test data was ROC AUC of 68% (Figure 11). 

 

 

Figure 10. Predisposition to Recurrent GI Bleeding Model. Arrows indicate a relationship between 

variables, with arrow thickness indicating strength of relationship. 

 



 39 

 

Figure 11. Receiver operating characteristic curves for predisposition to GI bleeding events, by cross-fold 

and test validation 

 

The most predictive variables driving recurrent GI bleeding risk were: age, previous 

cardiac operations, anemia (low hemoglobin), destination therapy device strategy, axial flow 

pump, and elevated blood urea nitrogen (BUN). A summary of all the variables, their diagnostic 

value, and effect on risk is captured in Table 7. 
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Table 7. Summary of Variables Predicting Predisposition to Recurrent GI Bleeding 

Variable Diagnostic 

Value 

Increase or Decrease Risk 

Age 0.05 Increase with age 

Device strategy 0.019 Increase when DT 

Previous CABG 0.018 Increase 

Previous Cardiac Operations 0.016 Increase 

Advanced Age 0.014 Increase 

Hemoglobin (g/dL) 0.008 Decrease  

BUN (mg/dL) 0.007 Increase 

Pump Flow 0.007 Increase when axial flow 

Creatinine (mg/dL) 0.006 Increase 

LDH (u/L) 0.006 Decrease when LDH increases 

ECG Rhythm 0.006 Increase with Atrial Fibrillation 

Frailty (INTERMACS 

definition)21 

  

0.005 Increase  

Peripheral Vascular Disease 0.005 Increase 

Time Since Cardiac Diagnosis 0.005 Increase with time since diagnosis 

ALT (U/L) 0.005 Decrease when ALT increases 

Allopurinol 0.005 Increase when used 

Working  0.005 Increases if patient not working 

Chronic Renal Disease 0.004 Increase 
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Post-implant Risk of Recurrent GI Bleeding Model and Results 

Variables used in the post-implant risk of recurrent GI bleeding event model included 

independent patient variables (e.g., patient age), medications at the time of the initial GI bleeding 

event and lab values and adverse events experienced by the patient within one week of the initial 

GI bleed. Out of 92 variables that went into feature selection, 16 were selected for the post-

implant TAN risk model (Figure 12). Final cross-fold validation ROC AUC was 61% (Figure 

13). More recent data from INTERMACS (n=1,236 patients), which was not used in the model 

learning, was used to validate model performance. In this test set, 39% of patients experienced a 

recurrent GI bleeding event. The test validation had a performance of ROC AUC of 60% (Figure 

13). 

 

 

Figure 12. Tree Augmented Naive Bayesian network of post-implant recurrent GI bleeding event risk. 

Arrows indicate a relationship between variables, with arrow thickness indicating strength of relationship. 
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Figure 13. Receiver operating characteristic curve for post-implant risk of recurrent GI bleeding events, 

cross fold and test validation 

 

Of the 16 model variables, the most predictive were: hematocrit and hemoglobin, age, 

and plasma free hemoglobin (Table 8). Four of the 16 variables were treatments, possibly 

modifiable by clinicians. The rest were lab values from the time of the initial bleed (6), 

independent variables (4), and time and location of the bleed (2). 
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Table 8. Variable in post-implant reoccurrence model and impact on risk 

Variable Diagnostic 

Value 

Increase or Decrease 

Risk 

Category 

Hematocrit (Max) 0.042 Decreases Lab 

Hemoglobin (Max) 0.014 Decreases Lab 

Age 0.014 Increases Pre-implant, Independent 

Min Hemoglobin 0.011 Decreases Lab 

Plasma-free 

Hemoglobin 

0.01 Increases Lab 

Interval to initial 

bleeding event 

0.008 Decreases with time Independent 

White Blood Cell 

Count 

0.007 Decreases Lab 

Hemoglobin (Min) 0.007 Decreases Lab 

Hemoglobin at bleed 

event 

0.007 Decreases Lab 

Heparin 0.007 Decreases Treatment 

Inotrope Therapy 0.005 Decreases Treatment 

Aspirin 0.004 Decreases Treatment 

Antiplatelet Count 0.004 Decreases Treatment, summary 

Pump flow: 

Centrifugal 

0.004 Decreases Pre-implant, Independent 

Location: Upper GI  0.003 Increases Independent 

LVAD or BiVAD 0.003 BiVAD decreases Pre-implant, Independent 

2.2.4 Discussion 

We present the first risk models for recurrent GI bleeding in patients with CF-LVADs, 

using Bayesian networks to analyze both pre- and post-implant risk factors. The pre-implant 

predisposition model performed with a ROC AUC of 0.68, while the post-implant risk model 

was less successful with a ROC AUC of 0.60. Both models identified features of high risk 

patients and provide insight into the complex pathophysiology of GI bleeding associated with 

CF-LVAD use. 
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The greatest predictor of pre-implant predisposition for recurrent GI bleeding events was 

patient age. This is in line with findings from previous studies of GI bleeding risk factors[57, 63-

65]. Old age is also a predictor of spontaneous AVM formation in elderly patients without heart 

failure[66].  

In addition to age as an objective measure, INTERMACS captures the subjective 

physician assessment of a patient being of “advanced age”, which is independent from actual 

patient age. Initially used to indicate whether a patients’ age prevents them from receiving a 

heart transplant, the definition was expanded to include any concern about implanting an LVAD 

that a physician may have due to the patient’s age[67], such as frailty. This indicator is an 

important factor in the pre-implant predisposition model; for example, patients who are 

considered “advanced age” in the 60-69 years old group have higher risk of recurrent GI 

bleeding (20% risk) compared to patients 60-69 years of age who are not “advanced age” (14% 

risk) or patients who are “advanced age” and 70-79 or 80+ years (18% risk for both). The 

inclusion of physician intuition increases the utility and performance of the predisposition model.  

A similar factor indicating patient overall health is patient work status. Patients who work 

either full or part time at the time of the CF-LVAD implant have a lower risk of recurrent GI 

bleeding. This is probably due to these patients being more likely to be younger and in better 

health than those who are not working. This relationship with working and better outcomes has 

also been seen in patients with heart transplants[68]. 

Patient age is a related factor with other variables in the predisposition model, such as 

device strategy (DT) and type of pump (HeartMate II). DT patients are typically older than BTT 

patients and the only device approved for DT at the time of this data collection was the 

HeartMate II, which is an axial flow device. This relationship between age and device strategy 
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has also been noted in the literature [57]. However, these additional variables do help 

differentiate risk in the predisposition model, for example: a 65-year-old patient who is BTT and 

listed for transplant has a 7% risk of recurrent GI bleeding if on a centrifugal flow pump, 

compared to a 12% risk for a similar patient on an axial flow pump. Similarly, the 65 years-old 

listed as DT on an axial flow pump has a 20% risk of recurrent GI bleeding. 

The type of pump flow has been associated with factors that may impact GI bleeding risk. 

Centrifugal flow pumps have less hemolysis [69], possibly due to their lower rotations per 

minute and/or lower blood-pump contact area. This lower hemolysis may decrease angiogenesis 

and therefore AVM-related GI bleeding [59]. However, other studies suggest that the pump 

design differences contribute less to the risk than the confounding age and device strategy factors 

[59, 60].  

Hemoglobin/hematocrit (Hgb/Hct) levels were influential factors in both the pre- and 

post-implant risk models for recurrent GI bleeding. Low pre-implant Hgb was associated with a 

higher risk of post-implant recurrent GI bleeding events. While pre-implant Hgb alone may not 

be a causal factor, the etiology behind the low Hgb is the likely factor driving recurrent GI 

bleeding risk, as it may indicate persistent, low grade GI bleeding [70].  

Similarly, low post-implant maximum Hgb/Hct, the highest Hgb/Hct levels between the 

patients’ last follow up and the time of the first GI bleeding event, were associated with an 

elevated risk of GI bleeding recurrence. Another potential explanation for the low maximum 

Hgb/Hct is subclinical hemolysis due to the CF-LVAD created shear stress and blood-metal 

interface [71]. This is further supported by high plasma-free hemoglobin as an additional risk 

factor. Hemolysis is a surrogate for turbulent flow beyond the design parameters of the device; 
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such turbulence facilitates degradation of vWF and is thought to further impair vWF-regulated 

angioneogenesis with increased risk of AVM formation [59].   

The post-implant model identified anticoagulants (aspirin, heparin) and inotropes as 

predicting a lower risk of recurrent GI bleed. Whether these treatments were maintained between 

the first and second GI bleed event and at what doses were not assessed, therefore few 

conclusions can be made as to their role in preventing recurrent GI bleeding. One explanation 

may be successful adjustment of anticoagulation regimens: if anticoagulation contributes to a 

first GI bleeding event, it can be adjusted to prevent a recurrence of bleeding. Inotrope use may 

be connected to the pulsatility-related mechanism of GI bleeding; single center evidence has 

shown that inotropes, specifically epinephrine, can increase cardiac pulsatility and decrease GI 

bleeding risk [72]. However, the association of inotrope therapy with decreased recurrent GI 

bleeding in our model may be confounded by very sick patients on inotropes dying before they 

have a recurrent GI bleed. Similarly, patients on BiVADs have lower risk of recurrent GI bleeds, 

likely due to their diminished overall survival[73]. 

These models can be used to identify patients at risk for recurrent GI bleeding and allow 

for more careful planning for and management after CF-LVAD implant. For example, patients 

with low pre-implant Hgb may benefit from capsule endoscopy assessment prior to implant 

surgery to rule out pre-existing sources of GI bleed.  

The pre-implant predisposition for GI bleeding model adds to the tool kit of risk 

assessments that physicians can use when making decisions about the care and management of 

patients receiving LVADs [27, 39, 74, 75]. The post-implant risk model highlights the potential 

CF-LVAD related causes of GI bleeding. While the present ROC AUC is modest, this is an 

important step to improving prediction and understanding of GI bleeding in CF-LVAD patients. 
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These predictive models will be made available to clinicians to evaluate as part of the Cardiac 

Outcomes Risk Assessment (CORA) decision support tool, which is available for demonstration 

use at www.app.mycora.org.  

Limitations: 

The data collected in INTERMACS for GI bleed does not separate AVM related bleed 

from other sources of GI bleed. This is a major hindrance in being able to classify the etiology of 

GI bleeding, particularly with how it relates to the CF-LVAD implant. Future work will use data 

from individual clinical sites that specifies AVM etiology to hypothesize physiologic reasons for 

the elevated AVM bleed risk. Another limitation is the low ROC AUC for the post-implant 

recurrent GI bleeding risk model. This may be due to the open-ended time interval used for 

recurrent GI bleeding. New models that examine recurrent GI bleeding over specific intervals 

(e.g., within 3, 6, or 12 months) could exclude patients who passed away or were transplanted 

and may improve predictive performance. 

2.2.5 Conclusions 

The important risk factors for recurrent GI bleeding can be identified for patients before 

they receive an LVAD implant and after an initial bleed occurs. The primary predictors for 

bleeding in both models are patient age and hemoglobin levels. Subclinical bleeding and possible 

hemolysis from CF-LVAD function may increase risk of GI bleeding in CF-LVAD patients. 

Physicians can use these models to identify high risk patients to monitor them for bleeding, as 

well as consider the best pump type to implant. Further work is required to identify the origin of 

the GI bleed, be it AVM or other causes, and determine the influence of specific risk factors on 

the pathophysiologic mechanisms driving GI bleeding.     

http://www.app.mycora.org/
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2.3 RISK FACTORS FOR ISCHEMIC STROKE AFTER CF-LVAD IMPLANT BY 

PUMP TYPE 

Abstract: The risk of stroke continues to be a major adverse event after CF-LVAD 

implantation, limiting the utility of CF-LVADs. Ischemic stroke risk is directly related to factors 

arising from the pump-person interaction of the CF-LVAD, but these factors may differ by pump 

design. Using a Bayesian Network machine-learning approach, we predicted pre-implant risk for 

ischemic stroke in patients with axial or centrifugal flow pumps at 3 months after LVAD 

implant. Features of high risk patients on axial flow pumps were elevated c-reactive protein, 

invasive interventions during the CF-LVAD hospitalization and myocardial infarction. The 

features of high risk patients on centrifugal flow pumps were smaller patients, not using diuretics 

or antihypertensive medications. Common factors to both pump types were old age and elevated 

blood pressure. The performance of the risk predicting Bayesian model was a ROC AUC of 61% 

for axial and 66% for centrifugal flow pumps. 

2.3.1 Introduction 

Stroke is one of the most devastating adverse events affecting patients who receive a 

continuous flow left ventricular assist device implant (CF-LVAD). It is associated with high 

mortality and morbidity [76, 77], reduced patient quality of life, and impaired candidacy for 
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heart transplant [78]. Due to the high level of adverse effects, the risk of stroke is one of the main 

reasons CF-LVADs are not recommended for use in the less-sick heart failure patient population 

[79]. 

Strokes occurring in CF- LVAD patients can have either a hemorrhagic or ischemic 

etiology, with incidence of each type reported from 0-16% and 4-17.1%, respectively [80]. The 

causes of and treatment for each stroke pathology are different [81]; therefore the factors 

impacting post-CF-LVAD risk may also be different. For this reason, the present study focuses 

solely on causes and risk factors for ischemic stroke. 

Ischemic stroke falls into the category of CF-LVAD adverse events that arise from the 

pump-patient interface [82]. The interaction of blood with the metal interface, potential blood 

damage from the high-speed rotors, change to continuous blood flow, and increased potential for 

infection are all pathology-effecting factors that arise from the use of the CF-LVAD. Because of 

this, it makes sense that the device type, surgical technique and associated medical management 

may impact the risk of resulting adverse events, like stroke. In fact, recent data has indicated that 

pump type does play a role in stroke incidence and risk mitigation [83, 84]. However, analysis of 

the pre-operative predictive risk factors for ischemic stroke do not often distinguish between the 

two main pump types being used clinically [76, 84]. 

The goal of this study is to identify and compare pre-operative patient features associated 

with an elevated risk of ischemic stroke after axial or centrifugal CF-LVAD implant. Differences 

between the risk factors associated with each pump type can help identify the causative factors 

for ischemic stroke and be used in decision making for selecting appropriate CF-LVAD 

candidates.   
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Bayesian models were used to create the risk predictions in this analysis due to their 

ability to handle the interaction of many related pre-operative variables.   

2.3.2 Methods 

Data set and definitions 

The data for this study was derived from the Interagency Registry for Mechanical 

Assisted Circulatory Support (INTERMACS), funded by the National Heart, Lung and Blood 

Institute, National Institutes of Health, Department of Health and Human Services under 

Contract No. HHSN268201100025C. More information is available at: www.intermacs.org. IRB 

approval was obtained through the hospitals participating within INTERMACS. 

Ischemic stroke was defined as a neurologic adverse event that was an 

ischemic/embolism type of cerebrovascular accident (CVA), using INTERMACS nomenclature.  

 

Patient cohort 

Inclusion criteria for this study were the use of a CF-LVAD as the primary implant and 

age over 18 years old. Patients who received Bi-VAD (left and right VADs) were included. Total 

artificial heart implants and pulsatile LVAD implants were excluded. The time frame for 

implants was between 2012 and 2016. Patients were censored for transplant, explant, or non-

ischemic stroke related death before 3 months post-CF-LVAD implant.  

 

 

 

 

http://www.intermacs.org/
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Data pre-processing 

Pre-implant patient data was split into two patient populations: patients receiving a 

primary axial flow pump and patients receiving a primarily centrifugal flow pump. Outcomes for 

each data set were occurrence of an ischemic stroke within 3 months of CF-LVAD implant.  

Data was processed by discretizing continuous variables using equal width binning for 

each of the two patient populations. This method was determined by comparing the information 

gain of each variable after discretization by three different methods: supervised binning, equal 

width binning, or equal frequency binning and selecting the method that had the highest 

information gain. This was done independently for the axial flow and centrifugal flow models. 

The number of bins was determined by comparing the Naïve Bayes model performance with 

continuous variables split into 2 to 10 bins and selecting the version with the highest receiver 

operating characteristic area under the curve (ROC AUC). In the axial flow model, continuous 

variables were discretized into 10 equal width bins, and, in the centrifugal flow model, 

continuous variables were discretized using 7 equal width bins. 

 No imputation was performed for missing data.  

 

Variable feature selection and model training 

Data for each time point was divided into two parts: a training data set comprising 80% 

of the data, and a test set of 20%. Splits were made randomly in Weka. Training data was used 

for feature selection and model structure and parameter learning, while test data was only used in 

the final performance validation.  
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Feature selection was performed using information gain and hill climbing (Weka) to 

select the variables most related to ischemic stroke risk for each pump type. Information gain 

threshold was set at gain > 0.003. 

Using the resulting feature selected variables, a Tree Augmented Naïve Bayes (TAN) 

model and a Naïve Bayes (NB) model were created (GeNie, BayesFusion, Pittsburgh, PA) to 

classify the outcomes for each pump type. The initial models were validated by 10-fold cross 

validation and each variable was evaluated for diagnostic value. Diagnostic value is a measure of 

the influence the variable has on the model prediction, based on the expected gain in cross-

entropy. The lowest ranked variables were removed, and the model was re-learned and then 

validated with 10-fold cross validation. Variables were iteratively removed and added until the 

model performance, defined by ROC AUC, no longer improved. This procedure was performed 

independently for the axial and centrifugal flow patient populations. Outcomes from the TAN 

and NB models were compared to select the best performing model. 

 

Model validation 

The test set of data, comprising 20% of the initial patient data set, was used for 

performance validation of the final axial and centrifugal flow ischemic stroke models. The test 

data sets were also used to measure the performance of a recently published ischemic risk score 

[76]. 
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2.3.3 Results 

Patient cohort 

Out of 13,593 patients who received CF-LVADs between 2012 and 2016, 937 (7%) 

patients experienced an ischemic stroke at some point after implant. Of these ischemic strokes, 

32% were fatal. Of the patients who experienced ischemic stroke, 47% had them by 3 months 

after implant (Figure 14). When considering timing by pump type, 45% of axial pump and 57% 

of centrifugal pump ischemic strokes occurred by 3 months after implant. 

 

 

 

 

 

 

Figure 14. Time to ischemic stroke, by pump type. Percent shown is of total patients who 

had an ischemic stroke, by pump group. 
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The average patient centrifugal flow patient with an ischemic stroke was younger (56 vs 

60 years of age, p-value < 0.0001), bridge to transplant (92% vs 35%, p-value < 0.0001) and 

more likely to be INTERMACS profile 2 (38% vs 27%, p-value = 0.0040). All other descriptive 

factors had no statistically significant differences between pump groups (Table 9).  

 

Table 9. Comparison of Patient Features by Adverse event of Ischemic Stroke 

  Patients with Ischemic Stroke after CF-

LVAD  

 

Characteristic  Axial Flow, 

n = 685 

Centrifugal Flow, 

n=252 

p-value 

Age Mean (StdDev) 60 (11) 56 (10) < 0.0001 

Gender Male 175 100% 58 100% 0.4715 

Race White 490 71% 163 64% 0.2543 

 African 

American 

145 21% 57 23% 0.6643 

 Other 51 7% 33 13% 0.0084 

Device Strategy BTT 241 35% 233 92% < 0.001 

 DT 435 64% 19 8% < 0.001 

 Other 9 1% 0 0% 0.0688 

Blood Type O 306 45% 119 47% 0.5518 

 A 265 39% 82 33% 0.1313 

 B 85 12% 35 14% 0.5592 

 AB 22 3% 14 6% 0.0994 

NYHA II 1 0% 1 0% 0.4605 

 III 109 16% 46 18% 0.4105 

 IV 534 78% 193 77% 0.7833 

INTERMACS 

Profile 

1 122 18% 41 16% 0.5996 

 2 187 27% 95 38% 0.0040 

 3 249 36% 82 33% 0.3381 

 4 106 15% 24 10% 0.0260 

 5 13 2% 7 3% 0.4099 

 6 6 1% 1 0% 0.4515 

 7 2 0% 2 1% 0.2965 

 

Data is shown as the total in each category and percentage of total, with comparison 

between axial and centrifugal flow pump patient groups using two-way z-test. DT, Destination 

Therapy; BTT, Bridge to Transplant (includes patients listed and not-yet listed).  
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Axial flow model 

Between 2012 and 2016, 9,159 patients received axial pump CF-LVADs, 307 (3.4%) of 

whom had ischemic stroke within 3 months after implant. The axial pump model structure and 

parameters were constructed using a training set of 7,327 patients, 243 of whom (3.3%) had 

ischemic stroke within 3 months. 

Of the 247 pre-implant variables that went into feature selection, 53 were identified as 

potential predictors using information gain and hill climbing methods. These were used to build 

both TAN and NB models in GeNie. Variables were assessed for diagnostic value, low value 

variables were removed, and a new model was learned. This was done iteratively until 

performance, measured by ROC AUC from 10-fold cross validation, was optimized. The best 

performing axial pump model was with NB and included 32 variables (Figure 15).  Model 

performance was measured with a test validation dataset (n=1832). For this axial flow patient 

population, 3.5% of patients (64 of 1832) had an ischemic stroke by 3 months. The model had a 

ROC AUC of 0.61 (Figure 16). 
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Figure 15. Tree augmented naive Bayesian network of ischemic stroke risk at 3 months with an axial flow 

pump 
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Figure 16. Receiver operating characteristic curve for model of ischemic stroke risk at 3 months with an 

axial flow pump 

 

Centrifugal flow model 

There were 2,909 patients implanted with a centrifugal flow pump between 2012 and 

2016, 137 (4.7%) of whom had ischemic stroke within 3 months of implant. 

Model structure and parameter learning was performed with a training data set of 2,377 

centrifugal flow pump patients, 115 (4.9%) of whom had an ischemic stroke by 3 months. 

Out of the 246 pre-implant variables that were used in feature selection, 50 were 

identified as top predictors using information gain and hill climbing. As with the axial flow 

pump model, the selected variables were used to build both TAN and NB models in GeNie. 

Variables were assessed for diagnostic value, low value variables were removed, and 

performance was measured with 10-fold cross validation until ROC AUC was optimized. The 
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best performing model was achieved using TAN and included 36 variables (Figure 17). Model 

performance was measured with a test validation dataset (n=582). In this dataset, 3.8% of 

patients with a centrifugal flow pump (22 of 582) had an ischemic stroke by 3 months. The 

model had a ROC AUC of 0.64 (Figure 18). 

 

 

Figure 17. Tree augmented naive Bayesian network of ischemic stroke risk at 3 months with a centrifugal 

flow pump 
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Figure 18. Receiver operating characteristic curve for model of ischemic stroke risk at 3 months with a 

centrifugal flow pump 

 

Comparison of Axial and Centrifugal Flow Model Variables 

Key variables in each of the predictive models are captured in Table 10. 

Top predictors for the axial pump ischemic stroke model were: elevated C-reactive 

protein levels, elevated uric acid, previous use of temporary circulatory support, small left 

ventricular end diastolic diameter, and being too sick to take the Kansas City Cardiomyopathy 

Questionnaire (KCCQ). Both admission due to myocardial infarction (MI) and major MI were 

predictive of higher stroke risk. Demographic features affecting stroke risk were old age, female 

sex, and African American race.  
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The most predictive variables for the centrifugal pump model were: elevated uric acid, 

destination therapy (DT), hospital implant volume over 50 per year, no use of loop diuretics, and 

short height. Unique to this model is the risk factor of giant cell myocarditis, presence of ascites, 

and unfavorable mediastinal anastomosis. The only demographic factor affecting stroke risk of 

patients with centrifugal flow pumps was old age. 

Out of the 67 features in the two models, 13 are in both models and 41 are unique. The 

main differences between the two are more medication variables in the centrifugal flow model 

(norepinephrine, loop diuretics, warfarin, aldosterone, dobutamine, and amiodarone). In the axial 

flow model, there are more events during hospitalization risk factors (dialysis, intubation, 

feeding tube, ultrafiltration, and major MI). 
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Table 10. Variables by diagnostic value in the axial and centrifugal pump patient populations 

Axial Flow Centrifugal Flow 

Variable 

Diagnostic 

Value Variable 

Diagnostic 

Value 

C-reactive protein 0.019 Uric acid 0.025 

Uric acid 0.015 Device strategy (DT) 0.023 

Temporary circulatory support 0.014 Hospital implant volume 0.017 

LVEDD 0.014 Loop diuretics 0.015 

Reason for not taking KCCQ 0.013 Height 0.014 

Pre-Albumin 0.012 IV Norepinephrine 0.013 

On ventilation during hospitalization 0.011 LVEDD 0.013 

Admission due to MI 0.01 Giant cell myocarditis 0.012 

Intubation during hospitalization 0.01 Previous cardiac operations? 0.012 

Major MI during hospitalization 0.009 On ventilation during hospitalization 0.012 

Platelet count 0.009 ECMO during hospitalization 0.012 

Ischemic etiology 0.008 History of MCS 0.011 

Previous cardiac operations? 0.008 Previous ECMO 0.01 

Previous CABG 0.008 Weight 0.01 

On ECMO 0.008 Potassium 0.01 

Sodium 0.008 Pulmonary arterial systolic pressure 0.01 

Pulmonary arterial diastolic pressure 0.008 Pulmonary arterial diastolic pressure 0.01 

INTERMACS profile 0.007 Age  0.009 

Albumin 0.007 Pulmonary wedge pressure 0.009 

Diastolic blood pressure 0.007 Frailty 0.008 

Hospital implant volume 0.006 Ascites 0.008 

Dialysis during hospitalization 0.006 

Non-cardiac surgery during 

hospitalization 0.007 

Events during hospitalization? 0.006 LDH 0.007 

Ultrafiltration during hospitalization 0.006 Unfavorable mediastinal anastomosis 0.006 

Feeding tube during hospitalization 0.006 Admission due to MI 0.006 

History of MCS 0.006 Cardiac surgery during hospitalization 0.006 

Mitral regurgitation 0.006 Right ventricular ejection fraction 0.006 

Height 0.006 Heart rate 0.006 

Systolic blood pressure 0.006 Warfarin 0.005 

Hemoglobin 0.005 Platelet count 0.005 

Age 0.004 Current ICD 0.004 

African American 0.004 Aldosterone 0.004 

  

Diastolic blood pressure 0.004 

  

IV Dobutamine 0.003 

  

Amiodarone 0.003 

LVEDD, Left Ventricular End Diastolic Diameter; KCCQ, Kansas City Cardiomyopathy questionnaire; 

MI, Myocardial infarctions; CABG, Coronary arterial bypass graft; ECMO, Extracorporeal membrane oxygenation; 

MCS; Mechanical circulatory support; DT; Destination therapy; IV, intravenous; LDH, Lactate dehydrogenase; 

ICD, implantable cardioverter defibrillator. 
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Comparison of models to contemporary risk score  

To compare the models’ performance to a published risk score, we evaluated the same 

test data sets with the INTERMACS stroke score [76]. For the both the axial flow and centrifugal 

flow pumps, the risk score is not significantly associated with the rate of ischemic stroke (Figure 

19). Evaluating the risk score by ROC, centrifugal ROC AUC is 54.8% and axial is 58.8% 

(Figure 20). 

 

 

Figure 19. INTERMACs ischemic stroke risk score patient stroke incidence discrimination 
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Figure 20. Receiver operating characteristic curves for axial and centrifugal flow pumps using the 

INTERMACS ischemic stroke risk score 

2.3.4 Discussion 

Patient factors affecting risk of ischemic stroke can be identified before CF-LVAD 

implant, and the factors driving ischemic stroke risk type differ by type of device being 

implanted.   

The two device types being compared in this study were axial and centrifugal flow 

pumps. At the time of this data collection, only axial flow pumps had been approved for 

destination therapy (DT). Patients who are DT are usually older or have co-morbid conditions, 

therefore it was not surprising that the axial flow patients were significantly older than the 
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centrifugal pump patients. Age is associated with increased ischemic stroke risk in both the 

predictive models generated in this study and in the literature for both VAD and non-VAD 

populations [85]. 

Despite patients being a higher age over all, axial flow pumps had a lower overall risk of 

ischemic stroke by 3 months compared to centrifugal flow pumps. This difference has been 

noted in other studies, where there were more events per patient year of ischemic stroke in 

HVAD (the only centrifugal pump approved at the time of this study) than in HeartMate II 

pumps (the only axial flow pump approved at the time of this study) [85]. This difference in 

incidence was not seen with hemorrhagic stroke. 

Pre-implant blood pressure has been identified as a modifiable factor that can affect risk 

of ischemic stroke [86], and can be successfully managed with hypertensives [87]. In the most 

recent INTERMACS report, a systolic blood pressure over 120mmHg was one of the key 

components of the predictive ischemic risk score [76]. Blood pressure is included in the axial 

flow predictive model in the form of systolic blood pressure, diastolic blood pressure, and 

pulmonary arterial diastolic pressure (PADP). Interestingly, of the three measures, PADP had the 

largest impact on risk prediction. In the centrifugal pump patient model, the blood pressure 

measures that drive risk are: Pulmonary arterial systolic pressure (PASP), PADP, pulmonary 

wedge pressure, and diastolic blood pressure. 

 

 

 

Admission to hospital due to myocardial infarction (MI) was a driver of ischemic stroke 

risk in both pump models, with major MI during hospitalization also being a factor for risk in the 
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axial pump model. MI causing an anterior infarction has been associated with increased risk of 

developing ventricular thrombi, which may dislodge to cause stroke [88]. Additionally, the 

hemodynamic change and inflammatory response to infarction may factor into subsequent stroke 

risk [89, 90].  

Uric acid has been widely studied as a risk factor associated with acute stroke in the non-

LVAD population [91-93], though whether it is an independent risk factor or a marker of 

atherosclerotic disease is not fully understood [94]. It is a predictive factor in both the axial and 

centrifugal pump models. Uric acid is also connected to platelet count and LDH in the 

centrifugal pump TAN model, suggesting that it is an indicator of associated disease and not just 

a factor on its own. 

Elevated C-reactive protein (CRP) was the primarily predictor for ischemic stroke in 

patients with an axial flow pump. CRP is a marker of inflammation and has been shown to be a 

strong predictor of ischemic stroke, MI, and death [95].  

In both pump models, interventions during the hospitalization before CF-LVAD implant 

drive the risk of ischemic stroke. This includes dialysis, intubation, feeding tube, ultrafiltration, 

and major MI in the axial pump model, ventilation and ECMO in both models, and cardiac or 

non-cardiac surgery in the centrifugal pump model. All the interventions are invasive and carry 

the risk of tissue inflammation and infection, as well as indicating an overall poorer health at the 

time of hospitalization for the patient.  

Use of loop diuretics and aldosterone are associated with lower ischemic stroke risk in 

patients with centrifugal flow pumps. This is in line with the connection between hypertension 

and stroke risk, were patients not being managed with these are at greater risk of becoming 

hypertensive after CF-LVAD implant. Use of amiodarone and IV dobutamine were also 
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associated with lower ischemic stroke risk. Atrial fibrillation has been highly associated with 

ischemic stroke risk [81, 96], though was not a selected feature in either risk model. The use of 

an anti-arrhythmic such as amiodarone may decrease stroke risk by minimizing occurrence of 

arrhythmias in these patients. IV norepinephrine was associated with increased ischemic stroke 

risk, potentially due to its vasopressor effect.  

Device strategy is a significant predictor for outcomes in the centrifugal flow pump 

model, with DT being the strategy associated with higher risk. Centrifugal flow pumps were not 

approved for DT at the time of this study, so the 2% of patients with them that were DT were 

technically off label. This rare off-label use is associated with ischemic stroke risk, however that 

may be due to other factors that caused the patients to be on off-label in the first place, such as 

very small body size and older age (the DT-approved axial flow pump is larger and may not be 

tolerated as well in very small patients.) Patient size by height and weight was also a predictor of 

centrifugal pump ischemic stroke, with smaller patients having higher risk.  

Gender was not a predictor in either model, despite it being commonly reported as a risk 

factor in other literature [76, 97]. In one study, the relationship between the higher risk of 

females having ischemic stroke was characterized in context of their smaller size, which was a 

predictive factor in our centrifugal pump model, and their risk of thromboembolism due to the 

use of oral contraceptives or hormones [98].  

 

 

Comparing the predictive strength of our resulting models to the current published risk 

score, we demonstrated superior performance. The current predictive performance of our models 
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at 61% and 64% ROC AUC for the axial flow and centrifugal pump models, respectively, shows 

moderate predictive power. 

This study was limited by the large amount of missing data, particularly for lab values, 

which ranged from (5-72% missing). Data is manually entered into INTERMACS and may be 

subject to errors in entry. However, this study is the largest of its kind to compare outcomes by 

pump type and the first to derive independent predictive models for ischemic stroke. Future work 

will explore additional time points, including early (within 2 weeks of implant) stroke and late 

stroke 12 months, as well as risk factors for hemorrhagic stroke, the less common but deadlier of 

the stroke types in LVAD patients. 

2.3.5 Conclusion 

By using a Bayesian approach, we explored pre-implant factors that are predictive for 

ischemic stroke and their relation to the type of pump. Patients on centrifugal flow pumps have a 

higher ischemic stroke risk, but selection of the right patients can mitigate this increased risk. 

Factors driving overall risk include blood pressure, which can be pre-operatively managed, and 

incidences of invasive interventions. These models may be utilized to identify optimal candidates 

for LVAD implantation that have a lower risk of ischemic stroke. 
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3.0 AIM 2: VERIFICATION OF MORTALITY MODELS AND PHYSICIAN USE CASE 

FOR LVAD DECISION SUPPORT 

3.1 RETROSPECTIVE EVALUATION OF MORTALITY MODELS AT SINGLE 

IMPLANT CENTER USING COMPLETE PATIENT DATASET 

3.1.1 Introduction 

Heart failure is a chronic, progressive condition that affects over 6 million Americans. It 

is characterized by a decline in function of the heart to pump enough blood to perfuse the body 

[1]. As the condition progresses, treatments may escalate from dietary modification and oral 

medications to intravenous drug delivery and surgical interventions, such and mechanical heart-

assist pumps and heart transplantation [2]. Heart transplant is the gold standard treatment for end 

stage heart failure; however, donor heart supply is limited and not all patients are eligible for 

transplant, due to their age, comorbid conditions, or lifestyle choices. As an alternative, advanced 

heart failure patients may receive a durable left ventricular assist device (LVAD) as a bridge to 

transplant (BTT) or as a destination therapy (DT) [10].  
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LVADs can increase quality of life and improve patient survival [7, 8], but also require 

significant changes in daily life, investment of time and money, and introduce risks of major 

adverse events [9]. These tradeoffs underscore the importance of careful patient selection, for 

which predictive models can serve as an important component of risk assessment. 

We recently published models to predict post-LVAD mortality at 1, 3, and 12 months 

after implant [75] using the data from the Interagency Registry for Mechanically Assisted 

Circulatory Support (INTERMACS), the largest registry of retrospective LVAD patient data in 

the United States [7]. The models were developed using Bayesian analysis and validated with a 

subset of registry data that was withheld from the model derivation. While use of the large 

registry dataset provides a robust model, it obscures institution-dependent differences in patient 

selection, care, and outcomes. Use of a personalized decision support tool in a ‘real world’ 

clinical setting is necessary to understand its applicability at individual institutions.   

The INTERMACS registry includes a large population (n = 20,216) of LVAD patients 

but suffers from missing data and entry errors. Because data is entered manually by LVAD 

coordinators and nurses at each participating site, there are inevitable errors such as misplaced 

decimal points, incorrect units, and skipped fields. No data checks are imposed on the data entry 

process, therefore any information that is unusual or out of range is not flagged. When we 

developed the Bayesian models with these data, out-of-range or illogical data entries were 

censored; however, missing data was left as-is, instead of being imputed, to minimize over-

fitting. The extent to which these issues affect the performance of the Bayesian predictive 

models is unknown; therefore, a carefully checked and evaluated dataset from a single clinical 

site was used to measure model performance. 
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This study was undertaken to establish the performance of our Bayesian models for 

LVAD mortality at a single institution with a complete, retrospective patient data set. The goal of 

this work was to prove the utility of the models for use in prospective patient risk assessment. 

3.1.2 Methods 

Data acquisition and cleaning 

We acquired site-specific INTERMACS data for 100 consecutive patients who received a 

CF-LVAD at Allegheny General Hospital (AGH) between 2014 and 2015. A data sharing 

agreement was established between Carnegie Mellon University (CMU) and AGH to assure the 

security of protected health information in this study. This study was approved by CMU and 

AGH’s review boards for biomedical research (IRBs). 

The time-period was selected to include records with at least 1 year of follow up data. 

The data was organized into three categories: Pre-Implant, Post-Implant, and Event. Missing or 

illogical data (outside of feasible range or conflicting with other entries) was manually identified 

and checked by a data coordinator. Data elements that were designated as “unknown” or 

“missing” were addressed by reviewing all available patient medical records. In cases where the 

data could not be found, the data field was denoted as “not recorded.” All units for continuous 

variables were also checked. Once all 100 patients were verified by the coordinator at AGH, the 

data set was sent to CMU for analysis.  

Data pre-processing 

Pre-implant continuous data were binned into groups as previously described [75]. 

Mortality outcomes were assigned to each patient using the Event data for each of the three time 

points: 1, 3, and 12 months post LVAD. 
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Model validation 

The complete AGH data sets were used to measure the Bayesian mortality model 

performance for each time point, using test validation in GeNie (BayesFusion, Pittsburgh, PA). 

3.1.3 Results 

Data cleaning revealed 9% of all pre-implant information (2704 out of 28500 possible 

fields) was missing or out of range in the patient records. After data cleaning, this was reduced to 

4% (1184) fields that were confirmed as not recorded. 

The patient cohort at AGH was similar to the overall INTERMACs population in terms 

of patient age and gender (Table 11.) The main statistical differences between cohorts were the 

proportion of INTERMACS profile 2 and 3 patients. This difference indicates a sicker patient 

population in the AGH cohort than the INTERMACS patients overall.  
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Table 11. Patient cohort comparison 

  

AGH Patients  

(n=100) 

INTERMACS Patients (n 

= 10,277)  

Characteristic 

 

n % n % p-value 

Age Mean (std) 56.2 (12.7) 56.9 (13) 0.59197 

Gender Female 27 27% 2225 22% 0.19706 

 

Male 73 73% 8044 78% 0.20408 

NYHA I 0 0% 12 0% 0.72786 

 

II 2 2% 88 1% 0.2187 

 

III 55 55% 1850 18% < .001 

 

IV 26 26% 7816 76% < .001 

 

Unknown/ Not 

documented 17 17% 511 5% < .001 

INTERMACS 1 20 20% 1671 16% 0.3125 

 

2 48 48% 3548 35% 0.0048 

 

3 14 14% 3318 32% 0.0001 

 

4 15 15% 1340 13% 0.56192 

 

5 0 0% 230 2% 0.13104 

 

6 2 2% 58 1% 0.0601 

 

7 1 1% 41 0% 0.34722 

 

Unknown 

 

0% 71 1% 0.40654 

Ischemic Etiology No 48 48% 5640 55% 0.16758 

 

Yes 52 52% 4637 45% 0.16758 

Device Strategy BTT Likely 67 67% 5261 51% 0.00164 

 

BTT Unlikely 5 5% 267 3% 0.13362 

 

DT 25 25% 4658 45% < .001 

 

Other 3 3% 91 1% 0.02642 

NYHA, New York Heart Association class; INTERMACS, Interagency Registry for Mechanically Assisted 

Circulatory Support; BTT, Bridge to transplant; DT, destination therapy. 

 

One month after implant, 4 (4%) of the 100 AGH patients had died. Then NB mortality 

model correctly predicted 3 out of the 4 deaths (75%) and predicted 87 out of 96 alive patients 

(91%), using a threshold of 50%. The ROC AUC was 78%. This is better performance than the 

original model validation of 70% ROC AUC (Figure 21).  
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Figure 21. ROC curves for 1-month mortality from original and AGH-specific validation 

 

At three months after implant, 8 (8%) of the 100 patients had died. The NB mortality 

model correctly predicted 4 of the 8 deaths (50%) and 83 of the 92 living patients (90%), using a 

determination threshold of 50%. The ROC AUC for the model performance was 76%. This is 

superior to the original model test validation of 71% (Figure 22). 
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Figure 22. ROC curves for 3-month mortality from original and AGH-specific validation 

 

By twelve months after implant, 18 (18%) of the 100 patients had died. The NB mortality 

model correctly predicted 6 of the 18 deaths (33%) and 73 of the 82 living patients (89%), using 

a determination threshold of 50%. The ROC AUC for the model performance was 75%, which 

was better that the original model validation of 69% (Figure 23). 
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Figure 23. ROC curves for 12-month mortality from original and AGH-specific validation 

 

3.1.4 Discussion 

We had previously reported ROC AUCs of 70%, 71%, and 69% for Bayesian mortality 

predictions at 1, 3 and 12 months post-LVAD implant with a validation cohort from 

INTERMACS. All three mortality models performed better in the AGH patient dataset than in 

the INTERMACS validation cohort. The AGH patients had similar demographics to the patients 

in the model learning dataset, however there were significantly more patients with severe heart 

failure, as indicated by the percentage of patients with INTERMACS 2 classification. 

One of the explanations for the better performance with AGH patient data is the greater 

proportions of severe heart failure patients. Recent analysis by our group has demonstrated that 

the Bayesian mortality models perform better in the more severe heart failure populations 

(Kanwar et al, in preparation). The INTERMACS profile 1 patient group had ROC AUCs of 
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71% for each of the 1, 3, and 12-month time points and the profile 2 patient group had ROC 

AUCs of 74%, 75%, and 70% for the time points. These are the same or better performing than 

the validation with all patients. The difference in performance may be attributed to the greater 

proportion of data available for the sicker patients. Bayesian models are derived using prior 

probabilities and thus are more accurate when applied to patient populations that comprise a 

greater percentage of the derivation cohorts. Another reason for the difference may be that the 

factors that increase a patient’s risk of dying (such as recent cardiac surgery, advanced age, and 

dialysis) are easy to capture in the dataset, while it is much harder to identify and quantify 

features that predict a patient’s good health and survival.  

Before using the Bayesian mortality model predictions in clinical practice at an implant 

center, it is essential to verify their performance on that center’s specific patient population. This 

is especially important given the influence of institutional experience on outcomes. This is 

illustrated by the Heartmate II Risk Score, which includes institution implant volume as a 

statistically significant predictor for mortality outcomes[44]. Additionally, an assessment of 

implant center volume on one-year mortality of destination therapy (DT) patients found that low 

volume centers had a higher mortality rate [99]. Similar relationships have been reported for 

transplant graft survival[100] and right heart failure-associated mortality[101]. Since AGH is an 

experienced, high volume implant center, the models may perform better there than in a lower 

implant volume institution. 

The data cleaning step at AGH did not create a significant difference in missing data, 

with the majority (56%) of missing data elements identified as not recorded. The Bayesian 

method of modeling is robust to missing information when making predictions, and this is shown 

to be true by the resulting ROC AUCs. Whether having no missing data would improve the 
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model performance remains unknown. However, it is unlikely that any institution can have a 

value for every possible patient variable, making these models attractive for real world use.   

The models assessed in this analysis have been made available at app.myCORA.org, as 

part of the Cardiac Outcomes Risk Assessment (CORA) decision support tool for physicians 

(Figure 24.) This tool will now be prospectively evaluated with the multidisciplinary team at 

AGH to measure its impact on patient selection and decision making. Predictive models for post-

LVAD adverse events are being developed to add to the CORA tool (e.g., ischemic stroke, major 

bleeding) and will be evaluated for performance with the same single center, retrospective 

validation methodology. 

 

Figure 24. Screenshot of the app.myCORA.org web tool 

 



 78 

3.1.5 Conclusion 

By validating the model set at a single clinical site, performance can be demonstrated for 

the patient population served at that site and for the unique surgical and medical management 

style of the clinicians. This exercise is imperative to confirm the utility of the mortality models 

for clinical decision making. Future work will be to prospectively test the model performance in 

the AGH multidisciplinary team meeting setting, to evaluate utility in real life decision making.  
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3.2 PILOT TESTING THE MYCORA PHYSICIAN USER INTERFACE  

If a tree falls in the woods, but no one is there to hear it, does it make a sound?  

If a decision support tool gives accurate predictions on patient outcomes, but no one 

takes the time to use it, does it help medical practice? 

3.2.1 Introduction 

Design of a clinical decision support tool must be carefully considered for the tool to be 

used in and improve upon medical practice. The government Medicare and Medicaid electronic 

health record (EHR) incentive program has clinical decision support (CDS) as one of its core 

focus areas [24]. This prompted a guidance document for a CDS framework. Called the “CDS 

Five Rights”, it states that CDS interventions should provide [102]:  

1. the right information (evidence-based guidance, response to clinical need)  

2. to the right people (entire care team – including the patient) 

3. through the right channels (e.g., EHR, mobile device, patient portal)  

4. in the right intervention formats (e.g., order sets, flow-sheets, dashboards, patient lists)  

5. at the right points in workflow (for decision making or action)  

In short, for a CDS to be effective, it must be relevant to those who use it to facilitate the 

right decision for the right patient at the right time. 
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While much research has been done in the field of LVAD decision making to address the 

first CDS tenet using the right information [26, 30, 44], the tenets of the right people, channel, 

format, and point in workflow have been largely neglected. This study addresses the issues of 

determining the right channel and intervention format for the myCORA decision support tool use 

by physicians. 

This pilot study tested the usability of the current myCORA decision support interface 

with physicians to inform the design of a large online study for quantitative measurement of 

usability, interpretation, and content quality. 

3.2.2 Methods 

Pilot testing was performed with one of the CORA clinical collaborators. The participant 

was asked to access the new myCORA interface on their own computer and to share their screen 

via Skype. The participant was asked to think aloud as they responded to questions about the 

interface and explain what they were doing and why. A preliminary script of questions was used 

to guide the participant through initial interface thought and two exercises, using patient 

information already in the myCORA tool and then entering information for a past patient. The 

screen of the user was video recorded with MouseFlow, a mouse tracking software, and audio 

recorded to augment note-taking. 

Responses were analyzed for themes in response in two main categories: layout and 

content. 

Mouse tracking heat maps were used to show the areas the users spent the most time one, 

where they had the most clicks, and where their attention was primarily focused.  
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3.2.3 Results 

Access 

Pilot user accessed the myCORA app through her personal laptop computer with the 

Safari internet browser. 

Initial Feedback 

Responses followed a natural flow from left to right. The most time was spent on reading 

and making sense of the content of the prognostic graphs, followed by scanning the variable 

input options. Themes covered in the initial feedback are summarized in Table 12.  
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Table 12. Responses to myCORA layout 

Layout Theme Example response 

Page layout “Icons on the left are easy to read, nice, understandable” 

Data presentation “Table is busy. Can see that it’s percentages but would like a better 

visual.”  

Model information • ‘Avg age 60’, interpreted as a healthy control patient 

• “Why are the x-axes different? This is misleading, because I 

naturally compare them to each other” 

Wording • “Wording confusing for ‘patient does not want transplant’–

should be ‘does patient want a transplant, yes/ no?’” 

• “What do ‘scenarios’ mean?” (in the model legend) 

Interaction • Variables are disappearing (moving from unobserved to 

observed) 

• Trying to change variable sorting to influence overall, used 

second drop-down option, which is dependent on the first 

 

First exercise (pre-entered data) 

When asked to interpret the prognosis graph information, respondent answered correctly 

and rapidly, using the information on the prognosis table at the top of the screen.  

When asked to name three un-observed variables for the demonstration patient, 

participant reported three titles of the variable groups, as opposed to individual variables, e.g., 

“laboratory values” instead of “creatinine”.  When asked to say what variable had the most 

influence on the survival outcome, participant knew to look for ranking of variables by their 
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influence, but originally selected the wrong dropdown box. After prompting by the interviewer, 

she successfully sorted by influence and reported the variable. At first, she paused to give the 

variable group title, but realized that the group titles had been removed when the sorting method 

changed.  

Second exercise (own patient data) 

When asked to create a new patient, participant knew to use the arrow at the back button 

to the main patient screen and found the “Add New” option quickly. Data for the initial patient 

information was entered without hesitation or question of why those items were chosen.  

Asked to enter patient information to determine outcome, the participant entered 13 

variables, only changing one during the process. She scrolled down the un-observed variable list, 

leaving in it “Group” mode. As each variable was selected it moved to the ‘observed’ list and 

effectively disappeared. This was met with frustration as some of the variables had dependents. 

Models were not seen to the left because she was answering variables down the page, out of view 

of the models. Thus, no change in model outcome was seen during data entry. 

Responding to model outcome, participant correctly interpreted the graph but was 

surprised at the survival prediction outcome. Participant did not seek to look at the variable 

influences until prompted. When looking at the most influential variable, concern about outcome 

was somewhat alleviated. Reponses about the content are summarized in Table 13. 

 

 

 

 

 

 

 



 84 

Table 13. Response to myCORA model content 

Content Theme Example response 

Mortality prediction • “That is very poor prognosis, which is surprising because the 

parameters I entered are fairly common for our VAD patients” 

• “Why is SHFM included here? What is its purpose?” 

Other model predictions Did not view or comment on 

 

Post-exercise feedback 

When asked how this tool would be used in her practice, participant said she would most 

want to use it to evaluate ambulatory heart failure patients on medical therapy who need 

intermittent IV inotropes. Regarding when in the relationship with the patient (e.g., at time of 

diagnosis, during LVAD evaluation, immediately before surgery) this would be, she said it was 

different for every patient – a patient receiving a diagnosis in the ICU on ECMO wouldn’t be 

appropriate, but a patient earlier in their disease progression might be. 

In terms of usability, the participant indicated that though she was overwhelmed with the 

information at first (the summary table of prognoses, in particular) she felt more comfortable 

navigating the tool after some time using it. At one point when going to sort variables by 

influence the participant said, “I remember how to do this!” Prolonged use of the tool did not 

impact her perception of the model content, with concerns about the predicted patient prognosis 

being too dire persisting throughout the exercise.  

In closing, the participant said she liked how myCORA worked, but would not want to 

use it with patients until she better understood and believed the predictive models. It was 

suggested that model validation with her site’s contemporary data would help achieve this. 
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Mouse tracking analysis 

On the patient selection screen, mouse movement tracking revealed most attention spent 

looking through patient names and taking note of patient features, predominantly gender and 

NYHA level (Figure 25). The mouse action also shows tracing across a row of patient 

information. 

 

 

Figure 25. Heat map of mouse activity on patient selection screen 

 

Attention tracking, which is extrapolated from mouse clicks, movements, and scrolling, 

shows that the patient list is the area of main focus, with least focus on the navigation options at 

the bottom of the page (Figure 26). 
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Figure 26. Attention heat map of patient selection screen 

 

On the patient prognosis page during the user exercise, movement was concentrated 

around the survival model and observed variables (Figure 27). Because some of the observed 

variables had dependent dropdown options, movement was high over the additional fields to 

click on. Mouse activity decreased over the models, with no activity over the last three models. 

Attention was primarily on the survival model and decreases going down the screen 

(Figure 28). There are 33 unobserved variables that fall below the last line of models, which 

received the minimum attention. 
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Figure 27. Heatmap of mouse activity on patient prognosis screen 
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Figure 28. Attention heat map of patient prognosis screen 
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3.2.4 Discussion 

The myCORA user interface was shown to be visually appealing but with issues in 

usability and model content. Main areas of use-issues were the sorting options for variables, 

movement of variables from un-observed to observed columns, and entering information for 

dependent variables. Main issues for models were lack of information about the legend labels, 

survival prognosis and use of SHFM, interpretation of static/in development models. 

Analysis of mouse movement and attention indicated a focus on survival at the most 

important information, with little attention on options at the top and bottom of each page. Ways 

to minimize the amount of scrolling necessary to view and enter information should be explored.   

The optimal time in patient disease progression to initiate use of myCORA is difficult to 

pin down and may vary from user to user. In this pilot, the participant wanted to use CORA to 

evaluate less sick patients, with the reasoning that very sick patients would receive an LVAD 

because there is no other treatment option. This is in contrast with feedback from collaborators 

who indicated they would want to use this tool to convince very sick patients that an LVAD 

would not be beneficial and to pursue palliative care instead. For the development of the larger 

user testing, a visual of patient disease progression will be incorporated to allow users to more 

easily conceptualized and indicate when they think the tool would be of most interest. 

Overall tool use improved over time, with speed of actions improving and the participants 

knowing where to look for information. This pilot did not include using a ‘quick start’ guide or 

any educational information about the tool prior to the exercises. Introduction of a quick start 

guide or educational videos will be included for the large user testing to speed up the process of 

learning and comfort with the support tool.  
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To be confident with the model predictions, the participant indicated that she needed 

more information about the model and its performance. Future work will include validation of 

the model on each collaborating site’s specific data (as performed with patient data from 

Allegheny General Hospital.) A question for the user feedback survey will be added to ask what 

evidence they would want to see to feel confident using the prognostic tools.  

Though the myCORA online application has sections beyond prognosis, the main focus 

of the user was on the prognosis screen, which is the landing page after patient selection. 

Additional work will be needed to assess the utility of the other myCORA components (History, 

Treatment, and Workplan.) 

The user in the pilot testing was familiar with the Bayesian modeling used to derive the 

prognostic results and receives financial support from the CORA grant. Her feedback may be 

positively biased given her familiarity and involvement with the CORA research project. 

However, she may also have spoken more freely given her familiarity with the interviewer. 

Results from this pilot trial will not be included with the following user exercise testing but 

instead will be used to inform and clarify the user exercise prompt. 

3.2.5 Conclusion 

The myCORA user interface for physicians has a pleasant visual layout but needs to be 

improved in terms of usability. In terms of content, models need more information about their 

derivation and the information being presented. MyCORA has promise to be a useful tool in 

physician decision making, pending layout and content improvements, and may be used in 

multiple points in the patient disease progression. Future work includes generating feedback 

from a larger audience and validating models with data from collaborating clinical sites. 
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4.0  AIM 3: KEY FEATURES OF PATIENT BEHAVIOR IN CONTEXT OF 

MEDICAL DECISION MAKING 

4.1 FACTORS AFFECTING HEALTHCARE ENGAGEMENT BY PATIENTS WITH 

SEVERE HEART FAILURE: AN INVESTIGATION USING MACHINE LEARNING 

ABSTRACT 

Background: The decision to receive a durable left ventricular assist device (LVAD) to 

treat end stage heart failure involves understanding and weighing the risks and benefits of a 

highly invasive treatment strategy. These patients may have experienced a long, slow decline in 

health leading up to their first contemplation of receiving an LVAD. Consequently, they may 

exhibit a spectrum of cognitive impairment. Decision support tools can potentially help these 

unique patients with the LVAD decision process, but the content and presentation of information 

should be tailored to effectively engage these patients.  

Methods and Results: A survey study of 57 heart failure patients was performed to 

understand their attitudes towards their health care engagement, measured by: their medical 

knowledge, interaction with physicians, confidence with technology and data visualization, and 

questions they have about their health. The survey responses were analyzed using traditional 

descriptive statistics and machine learning (Bayesian search, k-means clustering, and latent 

dirichlet allocation text analysis). Descriptive statistics showed a positive patient response to 
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health engagement (65%, n=37 satisfied with their involvement), interest in accessing their 

health record (74%, n=42) and using a prognostic tool (56%, n=32). Machine learning identified 

a strong relationship between the patients’ numeracy and their interest in participating in their 

healthcare decisions. Text analysis of an open-ended question indicated an interest in education 

about the technical details of the LVAD (26%, n=15), a desire for personalized survival 

information (21%, n=12), and hesitancy to discuss their healthcare wants aloud with a non-

physician staff person (25%, n=14).  

Conclusions: While most patients reported interest in engaging in their healthcare, there 

was a subset of patients who were less interested in engaging in their own treatment decisions 

and less confident in understanding both health information and data visualizations. Design of a 

decision support tool for LVAD patients should consider a spectrum of ability and desire to 

understand health information and data visualization. 

4.1.1 Introduction 

Shared decision making between patients and their healthcare provider is a well-

recognized goal throughout healthcare [6, 103, 104]. It is especially important in situations where 

the consequences of treatment decisions are complicated, uncertain and severe [105]. An 

example of such a scenario is the patient’s decision to receive a durable left ventricular assist 

device (LVAD) - a decision that involves a highly invasive treatment strategy with complex 

trade-offs that affect patient survival and quality of life over an extended time. 

 

LVAD therapy is one of the limited treatment options for patients with end-stage heart 

failure. Initially used to bridge patients to a heart transplant, LVADs are now also offered as a 
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destination therapy to patients who are ineligible for a transplant. Use of an LVAD can extend 

survival and increase quality of life [7, 8], but also requires significant changes in daily life as 

well as investment of time and money from the patient and their caregiver, and presents a 

heightened risk of severe adverse events such as stroke and infection [9]. Accordingly, 

multidisciplinary heart failure teams cooperate in educating prospective LVAD candidates and 

their caregivers on the associated risks, responsibilities and lifestyle changes as they are 

discerning their treatment options [18]. Clinical decision aids can facilitate patient and caregiver 

education and decision making in this process. Many decision aids have been designed to guide 

patients throughout the progression of heart failure, including preventative care[106], 

management acute chest pain[107], and durable implanted devices such as cardiac 

defibrillator[108] and LVAD therapy[109]. Information may be shared in multiple formats, 

including printed brochures, online text, graphics, videos [110], or combinations thereof [34, 

109]. Risks are commonly conveyed to patients as percentages or probabilities [111, 112]. The 

format for presenting this information must be carefully considered, as it is important to provide 

a complete and interpretable picture of both the risks and benefits while not overwhelming a 

patient [111, 113]. Risk information is commonly presented as average probabilities for 

aggregate populations. However, recent advances in machine learning and data mining, in 

combination with the growth of clinical data registries, have made it possible to develop patient-

specific prognostic models. Our group has used these methods to develop personalized models 

for predicting LVAD outcomes, including mortality [36], and adverse events [38] [39].  

 

The goal of this study was to understand these patients’ attitudes toward their 

engagement with health information and medical decision making. While patient response to 
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various data and risk presentation methods has been extensively studied [111, 114-116] and 

patient-physician relationships have been explored [117, 118], this study explores the interaction 

of both domains in the end-stage heart failure patient population. The unique features of this 

patient population is that they are typically suffering a long, slow disease progression that leaves 

them physically and emotionally exhausted by the time of LVAD decision making[17]. They 

may also be cognitively impaired from their disease[119]. The results of this study are intended 

to inform the design of the first personalized prognostic decision aid for patients considering 

LVAD therapy.  

4.1.2 Methods 

A paper-based survey was developed by researchers at Carnegie Mellon University 

(CMU) that included domains related to: interaction with their cardiologist, interest and comfort 

with medical information related to their condition, and familiarity with visualization of 

quantitative data. (The survey is included in the Appendix, as supplemental material.) The survey 

protocol was approved by the institutional review boards (IRB) at CMU, Duke University, and 

Allegheny General Hospital. All study participants provided written informed consent and were 

not compensated for participating in the study. 

 

Patient Cohort and Data Collection 

Patients were enrolled at Duke University Medical Center (n=22) and Allegheny General 

Hospital (n=35) between May 2015 and April 2016. Patients referred to the advanced heart 

failure program in the outpatient setting for LVAD evaluation (either bridge-to-transplant or 

destination therapy) who were age ≥ 18 years and New York Heart Association (NYHA) class II 
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– IV were included. Pediatric patients < 18 years and those unable to provide consent due to 

mental or physical inability were excluded. Surveys were either conducted by a study 

coordinator (n=35) or by the patient themselves in a private setting on the hospital premises 

(n=22), prior to the patient’s clinic visit. All patients who began the survey study made it to 

completion (n = 57).  

 

Descriptive Analysis 

Descriptive statistics were compiled and analyzed in Microsoft Excel and SPSS.  

 

Free-text response analysis 

To discover common themes among responses to the final, free-text question: “If you 

could imagine a computer wizard that could answer all your questions, what would you ask?” 

we used the Latent Dirichlet Allocation (LDA) algorithm [120]. LDA is an unsupervised 

probabilistic graphical model for topic discovery. This model can be used to cluster a set of 

documents into groups that discuss a common topic. We used the Python implementation of 

LDA provided by gensim (RaRe Technologies) to analyze the responses. We performed LDA for 

5000 iterations, determining the number of iterations by computing the difference in topic 

distribution after each iteration and stopping the algorithm when the difference became 

negligible. The number of topics was chosen by generating groups with LDA for 2, 3 and 4 

topics, then assessing the coherency of the results for each group. Starting with the 4-topic LDA 

model, we found that distributions for most responses (45 out of 57) were captured entirely by 

topics 1 through 3, and the remaining responses contained a negligible proportion (of the order of 

10-16) of topic 4. This indicated that the distribution of the responses could be captured 
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effectively with less than four topics. When testing the 2-topic model, manual inspection showed 

that related documents were not clustered. For example, question responses “How long will I live 

and what can I do?” and “Survival rate of heart transplant post heart transplant and lifestyles”, 

which both are related to survival, were sorted into two different topics. The first response 

contained a high proportion of topic 2 (0.89) while the second one contained a high proportion of 

topic 1 (0.93). When using a 3-topic model, these responses were classified into the same topic. 

Thus, we concluded that the LDA model with 3 topics was the best performing model and was 

used for this analysis. In addition, we manually coded a fourth group of responses that were not 

captured by LDA, which were either blank or entered as “No”. 

 

Bayesian Analysis 

Survey data was analyzed by a Bayesian Search method using GeNie 2.1 Academic 

(Bayes Fusion, Pittsburgh, PA). Missing data elements were classified in their own category, 

missing, and were not imputed. Model background knowledge was organized such that follow-up 

or dependent survey questions were secondary to initial or stand-alone questions. The number of 

inter-dependencies between variables (nodes) was limited to 20, and the number of parent nodes 

was limited to 8. The network structure was learned over 20 iterations, with a sensitivity of 10% 

and a prior link probability of 0.1%. Results were visualized as a directional nodal network, with 

the arcs between nodes representing the influence between responses, the arc pointing to the 

dependent variable, and their thickness indicating the strength of the association [121]. Variables 

without any relationships were shown as nodes without any arcs. 
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Cluster Analysis  

Cluster analysis was performed on the dataset by assigning a numeric value to each 

answer response for the related questions identified by the Bayesian Search method. Distances 

between responses were computed using the mean absolute difference, which were then negated 

to produce a symmetric matrix of patient response similarities. Kernel Principal Components 

Analysis (kPCA) was then applied, using the similarity matrix as the kernel, to find a two-

dimensional distribution of responses [122]. This was visualized by producing a series of scatter 

plots, in which the responses to questions were encoded by a color scale.  

4.1.3 Results 

We surveyed 57 patients using a 44-item questionnaire. Patients were 82% male, 

predominantly NYHA class III, with an average age of 60 (range 29-79). The respondent cohort 

is summarized in Table 14.  

 

Table 14. Patient demographics 

Total Patients, n = 57   n Percent 

Gender Male 47 82% 

NYHA Class I 0 0% 

  II 8 14% 

 III 28 49% 

  IV 20 35% 

Age Range 25-78  

  Mean 60   

Administered by Self 22 39% 

 Research Coordinator 35 61% 

 

 



 98 

Medical Knowledge and Interaction 

Responses related to medical knowledge and interaction are summarized in Table 15.  

Most respondents (61%) reported being at least somewhat familiar with LVADs, thought 

their condition was severe enough to need a heart transplant (77%), and would accept one (93%). 

Most patients (89%) knew their cardiologist, felt comfortable discussing their physical and 

emotional state with their medical team, preferred communicating with their doctor in person, 

but would use an email or message system if it was available. When interacting with their doctor, 

most (74%) reported spending over 60 minutes talking about their condition and were satisfied 

with the duration of their interaction. In terms of learning more about their health, most (74%) 

patients expressed the desire to view their medical records but had not requested to see them. 

The majority of patients (65%) reported feeling that they had control over their treatment 

options. 
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Table 15. Answers to Medical Knowledge and Interaction questions 

How familiar are you with VADs? n Percent 

Never heard of them 4 7% 

Somewhat familiar  33 61% 

Very familiar 17 31% 

Do you think your condition is so severe that you need a heart transplant?   

Yes 44 77% 

No 13 23% 

Would you accept a heart transplant?   

Yes 53 93% 

No 4 7% 

Do you know your HF cardiologist?   

Yes 50 89% 

Yes, but forgot their name 4 7% 

No 2 4% 

Do you feel comfortable discussing your physical and emotional state with your 

physicians? 

  

I am comfortable discussing both my physical and emotional state 50 89% 

I am comfortable discussing my physical condition, but not my feelings or emotions 4 7% 

I am generally uncomfortable asking questions about my physical and emotional 

state 

2 4% 

Which method makes you feel most comfortable asking questions of your doctor?   

In person 50 88% 

Over the phone 5 9% 

Text message 2 4% 

If you could communicate with your medical team using either an email or 

messaging system, would you consider using it? 

  

Yes 33 58% 

Maybe 12 21% 

No 12 21% 

About how much total time have you spent speaking with your doctor about your 

condition? 

  

Less than 15 min 2 4% 

15-30 min 7 12% 

30-60 min 6 11% 

Over 60 min 42 74% 

Do you feel you spent adequate time, or wish you could spend more with your 

doctor? 

  

I am satisfied 40 71% 

I was satisfied at first, but later remembered questions I wish I asked 3 5% 

I was not able to ask all the questions of my doctor, but the staff (nurses, 

coordinators, etc.) were able to fill in my missing questions 

6 11% 

I was not able to ask all the questions of my doctor, but the staff (nurses, 

coordinators, etc.) were able to fill in my missing questions 

 

 

7 13% 
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Table 15 (continued). 

If you had access to your electronic health records, would you look at them and 

try to understand it? 

  

Yes, I am eager to look at my records 42 74% 

No, I am not really interested in my records 4 7% 

No, I don't think I would understand my records 8 14% 

No – “I don’t want to know” 3 5% 

Have you ever requested access to your medical records?   

Yes, very informative 8 14% 

Yes, but couldn't understand them 4 7% 

No, used a chart (myChart) 2 4% 

No 43 75% 

Which of the following best describes how you feel about your involvement in 

your treatment? 

  

I feel like I have control over what treatments I received and when 37 65% 

I have no say whatsoever, the doctors just do what they want and never ask me 3 5% 

I feel like I'm *too involved*… the doctors can't make decisions on their own, 

without asking me 

1 2% 

None of the above 16 28% 

 

Technology and Visualization Preferences 

Responses related to technology and data visualization are summarized in Table 16. 

Many patients (46%) used a smartphone and/or a computer every day (44%), and most (54%) did 

not use a tablet at all. Most patients were comfortable understanding bar graphs (63%), line 

graphs (61%), and pie charts (71%). Few patients (40%) were confident interpreting survival 

curves. While most patients (68%) had not used a decision support tool in any context, most 

thought a roadmap of their healthcare progression would be useful (53%). They also believed 

that a website or computer program with their prognosis would be useful (57%) and were 

interested in accessing videos of patients telling stories of their implant experiences (65%). 
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Table 16. Answers to Technology and Visualization Preference Questions 

How frequently do you use you a smart phone? n Percent 

Every day 26 46% 

Occasionally 9 16% 

Never 22 39% 

How frequently do you use a computer? 

  Every day 23 44% 

Occasionally 14 27% 

Never 15 29% 

How frequently do you use a tablet? 

  Every day 14 27% 

Occasionally 10 19% 

Never 28 54% 

How comfortable are you understanding Bar Graphs? 

  Not at all 10 18% 

Somewhat 11 20% 

Very 35 63% 

How comfortable are you understanding Line Graphs? 

  Not at all 9 16% 

Somewhat 13 23% 

Very 34 61% 

How comfortable are you understanding Pie Charts? 

  Not at all 7 13% 

Somewhat 9 16% 

Very 40 71% 

How comfortable are you understanding Survival Charts? 

  Not at all 16 29% 

Somewhat 17 31% 

Very 22 40% 

Have you ever used a decision tool? 

  Yes 17 32% 

No 36 68% 

If you were given a roadmap that shows the progression of your health, and the 

decision points in your care, would you find it useful?   

Yes 30 53% 

Somewhat 13 23% 

Not at all 14 25% 
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Table 16 (continued). 

If there was a website or computer program that would show your prognosis, 

would that be useful? 

  Yes 32 57% 

Somewhat 15 27% 

Not at all 9 16% 

If there was a website where you could watch short videos of other patients like 

you telling stories of their experiences, would that interest you?   

Yes 37 65% 

Somewhat 7 12% 

Not at all 13 23% 

 

Free-text response analysis with LDA 

In response to the question: “If you could imagine a computer wizard that could answer 

all your questions, what would you ask?”, the LDA model detected three topics from the data, 

exclusive of those who chose not to respond: 1) survival, longevity, 2) Non-LVAD heart failure 

treatment and prevention, and 3) LVAD outcomes and side effects. Of the 57 respondents, 19 

gave responses categorized in Topic 4: either blank, “No”, “Nothing”, or “N/A” (Table 17). 

 

Table 17. Responses to free text question, “If you could imagine a computer wizard that could answer all 

your questions, what would you ask?” 

Topic N Example responses 

1. Survival, longevity 12 “Is this (LVAD) worth the risk, will I have a longer life?” 

“How long can I live without a heart transplant?” 

“How long will I live and what can I do?” 

2. Non-LVAD Heart 

Failure Treatment and 

prevention 

11 “What is the average time one with my health usually stays on 

milrinone? What is the likelihood someone with my health will 

receive a heart for transplant in that time?” 

“Overview multiple courses of possible treatment at each stage and 

have all info in one place when making decisions” 

3. LVAD Outcomes 

and side effects 

15 “How big is the equipment? How do you shower with it?” 

“Outcome of patients similar in age with heart disease” 

“What are the side effects [of the LVAD]?” 

4. No answer 19  
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The majority of completed responses included specific details about the LVAD, risks, 

and side effects.  

 

Bayesian Search Results 

Bayesian analysis revealed several variables to be inter-related. (See Figure 29.) The 

probability of requesting medical records was positively related to comfort talking with their 

physician. The time spent with physician was positively correlated with ability to understand 

visualization of data. Interestingly, satisfaction with the time spent with the physician was not 

associated with the amount of time spent with physician. Finally, patients less comfortable 

discussing their emotional and/or physical health with their physicians were less likely to be 

interested in accessing their electronic healthcare records. 
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Figure 29. Bayesian model of patient responses. Each question in the survey is represented by a node. The 

arcs between nodes represent the influence between responses to these questions; and their thickness indicates the 

strength of the association. Arc direction indicates the directionality of the relationship, with the arc pointing at the 

dependent node. Unconnected variables (bottom) were not shown to be related to any other variable. 
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Cluster Analysis  

Patients were compared by their responses to the interconnected nodes shown in Figure 

29 as well as three independent variables (age, gender, and NYHA class). Their clustering by 

answer response is shown in Figure 30. Each point is a patient and the color for each point 

indicates the patient’s response to the survey question. Interpretation was performed by visually 

noting clustering of similar responses.  

 

 

Figure 30. Cluster analysis of patient responses. Each point is one patient, plotted on a unit-less 2D space. 

The color of each dot corresponds to the patient’s answer to the question indicated in the title of each chart. 
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Clustering shows a clear delineation with patient response to data visualization. (See 

bottom row of Figure 30.) Patients who reported they understood the visualization method 

(yellow dots) cluster on the left of each plot; and patients who reported not understanding the 

visualization cluster on the right (purple dots). This is seen in all four data visualization plots. 

The right-hand cluster of patients (those who did not understand the visualizations) is also seen 

in the chart answering: “Have you requested to see your EHR?” (View_EHR) as those who had 

difficulty understanding their medical records in the past. This overlap of responses indicates that 

the patients who had not understood their EHR were the same patients who did not understand 

data visualizations. 

4.1.4 Discussion 

This study provides insight into the attitudes of advanced heart failure patients towards 

engagement with their health care, with the goal of informing the development of a patient 

decision aid that will benefit all potential LVAD patients. The information gained from the 

descriptive analysis represents an optimistic outlook, with most patients comfortable discussing 

their health with their doctors (89%), participating in and satisfied with their treatment decisions 

(65%), and interested in accessing more information to help make their decisions (74%). 

However, there is a non-negligible minority that does not fit this outlook. To better understand 

this patient set, we employed machine learning techniques. In this way, we uncover possible 

relationships that can inform the design of decision support tools to encourage all patients to 

engage in their healthcare decision making.  
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The patients who were less interested in healthcare engagement tended to spend less than 

60 minutes (cumulative) speaking with their physicians, self-identified as being less comfortable 

discussing their health with physicians and were less confident in understanding graphs and their 

own medical records. Engaging these patients in decision making requires understanding and 

addressing the underlying issues and concerns. Interestingly, in this study patient age, gender, 

and NYHA status were not associated with patient attitude towards their healthcare engagement. 

Socioeconomic status has also been suggested as a predictor of patient engagement [123, 124], 

but was not captured in this study. 

 

The results of both the Bayesian search and clustering analysis indicate numeracy, 

captured in this study as comfort interpreting different types of graphs, as the key feature 

connected to a discomfort or disinterest in health engagement. The relationship between 

numeracy and health engagement in this study is consistent with a prior finding with cancer 

patients in which overall health engagement was correlated with highest level of patient 

education [125]. It is also consistent with a study of subjective patient numeracy and satisfaction 

with physician communication, which found and inverse relationship between the two [126]. 

Therefore, patient numeracy and education level are important considerations when presenting 

health information to patients.  

 

The consequence of failing to assure understandability of health data is illustrated by the 

relationship between patient interest in seeing their medical records and whether they had asked 

to see their records previously. Patients who had previously asked for their records but could not 

understand them (7%) indicated little interest in health engagement (47% were uninterested 
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compared to 12% for patients who had not viewed their records and 4% for patients who had 

viewed and understood them). Patients may feel discouraged from not understanding their health 

information and therefore being less likely to try to engage again.  

 

Text analysis showed patients’ desire for information on the technical components of the 

LVAD and a desire for personalized outcomes, primarily survival. The first topic is a part of 

patient education, which can be effectively delivered through a decision support tool [34, 109]. 

The second topic, of personalized predictions, is being addressed by our research group through 

the development of personalized mortality predictions [36].  

 

An interesting finding of this study was that patients may be less likely to answer 

questions about their wants when asked aloud, as opposed to writing them down anonymously. 

Of the 19 patients who did not respond to the open-ended survey question, only 5 (23% of 22) 

had self-administrated the survey versus 14 (56% of 35) patients who had the survey 

administered by a research coordinator. This suggests that patients were not comfortable 

verbalizing their desire to know more about their condition or were not comfortable telling 

someone in a clinical setting. A support tool that can be viewed and interacted privately by the 

patient may provide an opportunity for engagement when patients may otherwise feel 

uncomfortable. Examples of treatment success with a non-human interaction have been seen in 

the mental health space: with  the use artificial intelligence to provide therapy to patients with 

PTSD [127] and use of a chatbot with college students dealing with depression [128].  
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When responding to questions about their current and potential use of technology, 

patients in this study indicated that they would find a computer program with their prognosis 

useful (57%) and were interested in viewing a hypothetical website with videos of patients 

talking about their experiences (65%). This is encouraging for use of advanced technology in 

patient education but cannot be used as evidence alone to eschew the more traditional hardcopy 

decision support information they currently receive. Future work needs to compare various 

education options with patients to determine the best delivery method for the most relevant 

information related to their healthcare decisions.  

 

Most patients who took this survey expressed a positive outlook on their healthcare 

engagement. However, because the trigger for the survey was attending the informational 

discussion with their physician, the sampling for this survey study may be biased toward 

healthier and better communicating patients.  

4.1.5 Conclusion 

The results of this study will inform future development of a decision aid for patients 

considering an LVAD. The heart failure patients participating in this study who had not 

understood their health information in the past or who had poor numeracy indicated low interest 

in, or comfort with, healthcare engagement. Therefore, the decision support tool should aim to 

accommodate patients at their educational and comfort level, to encourage them to face daunting 

decisions and to create a safe space to record their worries or questions. 
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4.2 PROGNOSTIC DATA LITERACY AND EFFECT ON RISK PERCEPTION IN 

GENERAL AND PATIENT POPULATIONS 

4.2.1 Introduction 

Patient decision making relies on patient and caregiver understanding of potential risks 

weighed against the benefits of treatment. For a patient considering a left ventricular assist 

device (LVAD), a major trade-off is the risk of adverse events versus increased longevity and 

quality of life [7, 8]. Decision support tools can help navigate this decision making through 

presentation of educational and statistical risk information [34, 109]. 

With improvements in data analysis techniques, personalized risk predictions are being 

developed for use in decision support tools. This adds a new layer of information for patients and 

their caregivers to process: what is their personal risk as opposed to the average patient risk. 

However, it is unknown how this individualized information will affect the patient’s overall 

perception of the risk of receiving an LVAD.  

How to present risk data and probabilities to a patient population has been extensively 

studied [111, 112], with recommendations for the combination of both visual and numeric 

information, use of probabilities instead of percentages, and careful choice of probability 

denominators. However, these studies are focused on general risk information, and do not 

directly address the issue of personalized risk information communication. Additionally, the 

differences in perception of medical risk information between patients and non-patients have not 

been fully elucidated.  
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In this study we compare the responses from a general population and a heart failure 

patient population to see if there differences in response to visualization of risk information. The 

goal is to design a decision support tool with personalized risk information that is easy to 

interpret and effective for both patients and their caregivers. To achieve this, this study has three 

aims: first, compare different visualizations of risk information for ease of interpretation; second, 

examine the effect data visualization on risk perception of using general and personalized risk 

information; and third to understand how people interpret dependent risks, such as adverse event 

risk in the context of survival probability. Differences between patient and general population 

responses will be analyzed for all three aims. 

4.2.2 Methods 

All analysis performed in this study was approved by the CMU IRB board as an exempt 

study.  

Participants 

In this study, we recruited respondents from Prolific Academic, an online community of 

questionnaire takers geared toward research studies. The general population recruitment was 

limited to English speakers over the age of 40 at the time of taking the survey. The patient 

population recruitment was limited to English speakers who self-reported a diagnosis of heart 

failure from a medical doctor. Respondents were each paid $1.50 for completing the survey 

exercise. 

The percentage of general population respondents who gave valid, complete surveys was 

130 out of 136. Participants were excluded for not finishing the survey or timing out of the 

survey (taking over 25 minutes to complete). Of the patient respondents, 3 were excluded out of 
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the 80 responses due to contradictory self-reporting about their health status (e.g., “Yes, I have 

heart failure” and “No, I do not have heart failure”. Two patients were excluded for not 

completing or timing out of the survey. 

Ease of interpretation of risk information 

Respondents were presented with risk information about having a surgery to cure a 

slowly progressing but deadly disease and then asked questions about the risks of the surgery. 

Questions measured accuracy of data interpretation as well as perception of risk.. 

Visualizations  

Respondents were randomized to viewing one of three types of visualizations (line, bar, 

or pictograph) with two types of information presented initially (average survival and average 

adverse event (AE) information or just average survival alone) and one of two types of a 

personalized survival probability reveal (above or below the average survival probability by 6%). 

With these levels, there are 12 possible types of visualizations seen by respondents.   

These three methods of displaying data were chosen based on their use in current and 

developing decision support tools. The myCORA physician decision support tool uses line 

graphs to show physicians the changing patient risks over time. The PCORI-funded LVAD 

patient decision support tool at UC Denver uses pictographs to convey risk information [109]. 

Bar graphs were included because of the high reporting of patient understanding in the CORA 

patient survey study, and the frequent reporting of bar graphs being most easily understood and 

preferred by users in the literature [129]. 

Visuals were developed by a professional designer, keeping the color scheme, font sizes, 

and textual information displayed consistent from visual to visual. Data used for the visual is 

roughly based on average risk information for patients receiving an LVAD [7]. Figure 31 has 
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examples of the three visual types, with and without AE information displayed, before and after 

the personal survival reveal. All images are scaled to half the size respondents would see on their 

computer. 
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Example one: Line graph with survival and risk of AE, with reveal of personalized survival 

probability better than average. 

                     

 

Example two: Bar graph with survival, no AE information, with reveal of personalized survival 

probability worse than average. 

 

 
Example three: Pictograph with survival and AE, with reveal of personalized survival probability 

worse than average. 

 
Figure 31. Examples of visualizations before and after personalized survival reveal 
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Time to answer 

The amount of time in seconds to complete each section was recorded and reported for 

analysis as time per question. Normalization to the number of questions was done to account for 

different sets of questions with and without AE risk and before and after the personalized 

information reveal (Table 18).  

 

Table 18. Number of questions for each participant group and section 

Information seen Number of questions 

Before reveal: Average survival and AE risk 6 

Before reveal: Average survival only 3 

After reveal: Personalized survival with average 

survival and AE risk 

5 

After reveal: Personalized survival with average 

survival 

3 

 

Time was recorded by time to submit for an entire section. Optional comments sections 

were not included in this time recording. 

Time to answer was analyzed by one-way ANOVAs to compare the amount of time taken 

by visualization type and by whether AE information was presented. A two-way ANOVA was 

performed to measure the interaction between visual and AE information. Mean +/- 1 standard 

deviation was used to report the data. 

Accuracy of interpretation 

Interpretation questions were used to measure the ability of the participant to correctly 

infer data from the graph. Three different types of questions were used: 1) Direct reporting: “Out 

of 100 people who have the surgery, how many will have an adverse event by 1 year?”, where 

participants needed to state the percent AE shown on the graph; 2) Reporting the inverse: “Out of 

100 people, how many will have died by one year?”, where participants needed to subtract the 
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percent survival from 100% to get the mortality number; and 3) Interpreting the adverse event 

and survival information together: “What is the probability of being alive without an adverse 

event by one year?” With this question type, participants needed to subtract the percentage of 

patients with AE from the percentage of survival.  

Participants who did not see AE data were only asked question type #2. Participants who 

did see adverse event data were asked question types #1 & #3 before the personalized 

information reveal and asked question type #3 again after the personalized prognosis reveal.  

The wording of the questions used two different styles: probabilistic (out of 100) and 

percentage-based (%). Question type #1 and 2 were probabilistic, while question type #3 was 

percentage-based. 

A correct answer was determined if the response was within +/- 3 of the intended 

response, to allow for small math errors. A correct answer was assigned a ‘1’ and an incorrect 

answer was assigned at ‘2’. Accuracy was measured by Mann Whitney-U comparison of 

distributions for analysis between two groups and the Kruskal-Wallace comparison of 

distribution between 3 groups. Percent of population correct was used to report the summary 

data. 

Effect of risk presentation on risk perception  

Perception of risk was measured by asking the respondents to rank the size of the risk of 

dying before one year, the likelihood of having an adverse event within one year, and the 

willingness to the surgery, each on a scale of 0 to 10.  

Analysis of responses between two groups was performed in SPSS using the Mann 

Whitney-U comparison of distributions for analysis between two groups and the Kruskal-

Wallace comparison of distribution between 3 groups. Data was visualized as the percentage of 
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respondents indicating a risk per each category (0-10). Summary data was presented as the 

percent of respondents reporting a category over 5 (6 or higher). 

Effect of average versus personal risk information on risk perception  

The change in the perceived size of risk of dying within one year was measured by 

subtracting the respondent’s original risk rating from their risk rating after the personalized 

survival probability reveal. A negative risk change indicated a decrease in the size of the 

perceived risk of dying, while a positive value indicated an increased perceived risk.  

Similarly, the change in willingness to have surgery was measured by subtracting the 

original willingness rating from the rating after the personalized prognosis reveal. A negative 

outcome indicated an increased likelihood to have surgery after the information reveal, while a 

positive outcome indicated a decreased likelihood of wanting the surgery. 

Perception of personalization 

Respondents were asked to indicate how personalized the visualizations of information 

felt to them on a scale of 0 to 10, with 0 being the least personalized and 10 being the most, after 

the personal prognosis was revealed. Responses were compared using the Mann Whitney-U or 

Kruskal-Wallace comparisons of distributions, for assessing two and three groups, respectively. 

Data was reported as the percentage of respondents indicating a risk per each category (0-10). 

4.2.3 Results 

Participant Features 

The patient and general population respondents represented similar ranges of educational 

level, races, household incomes, and location types (Table 19). The patient group was 

significantly younger than the general population respondents (mean 33 years of age versus 48) 
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and had significantly fewer females (31% versus 47%). The general population had significantly 

more caretakers than the patient group.  

 

Table 19. Demographics of general and patient populations 

 

Gen Pop, n = 130 Patient, n = 75 
 

  n % n % p-value 

Mean (Std) 48 (7.7) 33 (10.4) < 0.001 
Less than high 

school degree 
2 2% 1 1% 

0.904 

High school/GED 22 17% 12 16% 0.865 

Some college 23 18% 16 21% 0.522 

Associate degree 12 9% 2 3% 0.073 

Bachelor's 36 28% 22 29% 0.803 

Master's 25 19% 19 25% 0.303 

Professional degree 3 2% 2 3% 0.873 

Doctoral 7 5% 1 1% 0.150 

Asian 3 2% 3 4% 0.490 

Black 2 2% 2 3% 0.490 

Other 1 1% 4 5% 0.041 

White 122 94% 65 87% 0.080 

White and Black 2 2% 0 0% 0.280 

Native Hawaiian 0 0% 1 1% 0.187 

Female 61 47% 23 31% 0.023 

Less than $30,000 41 32% 21 28% 0.596 

$30,000 - $59,000 50 38% 22 29% 0.187 

$60,000-$99,000 18 14% 16 21% 0.165 

$100,000-$149,000 5 4% 8 11% 0.054 

Over $150,000 16 12% 8 11% 0.726 

Rural 20 15% 7 9% 0.219 

Suburban 59 45% 24 32% 0.060 

Urban 51 39% 44 59% 0.007 

No 113 87% 60 80% 0.187 

As a caretaker 12 9% 1 1% 0.026 

As a patient 101 78% 66 88% 0.067 

As a professional 11 8% 8 11% 0.603 

No personal 

interaction 
6 5% 0 0% 

0.059 
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Ease of interpretation of risk information: Time to respond  

Comparing the time to respond per question across all the survey sections between 

patients and the general population, the patient population is significantly faster, with 15 seconds 

for patients and 22 seconds for the general population (p-value = 0.0006) (Figure 32). 

 

  

Figure 32. Time to respond by study participant type 

 

Looking at the effect of visualization type, there was no significant difference in the 

general population, but there was an effect in the patient population (p=value = 0.03), with line 

graphs (24 seconds) and pictographs (17 seconds) being significantly different (p-value = 0.026) 

(Figure 33). 
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Figure 33.Time to respond per question by participant type and visualization 

 

The response time with and without AE information was compared. The distribution of 

interpretation questions was different when AE information was presented (3 questions) 

compared to when it was not presented (1 question), therefore there may have been an effect on 

timing due to question difficulty. This was seen in the general population group, with a 

significant difference of a 17 second increase to response time when AE information was 

included (Figure 34). However, there was no statistical difference in the time to response in the 

patient group. 
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Figure 34. Time to respond by presentation of AE information and participant type 

 

Finally, the interaction of type of visualization and inclusion of AE information was 

compared within each participant group, and there were no between-subjects effects in either the 

general population (p-value = 0.99) or the patient group (p-value = 0.8). 

 

Ease of interpretation of risk information: Accuracy of interpretation 

Four questions were asked: Direct reporting, probabilistic question “Out of 100 people 

who had the surgery, how many had an adverse event by 1 year?”; Inverse reporting, 

probabilistic question, “Out of 100 people who had the surgery, how many died by 1 year?”; 

Dependent, subtraction question before the survival reveal, “If someone had this surgery, what is 

the chance they would be alive and without an adverse event at one year?”; and dependent 

subtraction question after the survival reveal, “If you had this surgery, what is the chance you 

would be alive and without an adverse event at one year?” 
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Performance between the patient and general population cohorts was not significantly 

different for any question type (Figure 35).  Overall, survey respondents did not answer the 

questions requiring interpretation of the two pieces of data together correctly. Respondents 

correctly answered the direct information from the graph the most often and were slightly worse 

at correctly answering the inverse question. 

 

 

Figure 35. Percent of respondents correctly interpreting each question type 

 

Type of visualization influenced accuracy of interpretation in both respondent 

populations. In the general population, the bar graph had a significantly higher rate of correct 

answers for the subtraction question after the personalized survival reveal (p-value = 0.043). 

Line graphs were correctly interpreted most often (but not to a significant degree) for the direct 

and inverse questions. In the patient group, pictographs had significantly higher correct 

interpretation for the direct question (p-value = 0.015), while line graphs had significantly higher 

correct interpretation for the subtraction question after the personalized survival reveal (p-value 
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= 0.032). The line graphs were the only visual to be interpreted correctly at all for the subtraction 

questions in this population.  These results are summarized in Figure 36.  

 

 

Figure 36. Percent of respondents correctly interpreting each question type by type of visualization 

 

The reveal of personalized survival information that was better or worse than average had 

no statistically significant effect on the accuracy of interpretation for either respondent group.    

In summary, questions asking for interpretation of survival and AE information at the 

same time were not easy to comprehend. For the direct and inverse reporting questions, line 

graphs where the easiest to comprehend for the general population and pictographs and bar 

graphs were easiest to interpret for the patient group. 

 

Effect of risk presentation on risk perception: Risk of dying  

After viewing the average survival information with or without AE information 

presented, the survey participants were asked to rate the size of the risk of dying within one year 

on a scale from 0 to 10, from least to most risk.  
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The patient and general populations had significantly different responses. The general 

population tended to find the risk of death smaller (35.4% over 5 on the scale of 0 to 10) than the 

patient population (52% over 5) (p-value = 0.039) (Figure 37). 

 

 

Figure 37. Comparison of size of risk of dying between general and patient populations 

 

When considering the effect of the visualization, the type of graph had no significant 

impact on the perceived risk of dying within one year for patients or the general population (p-

value = 0.556 and 0.546, respectively). There was a trend towards the general population 

perceiving the lowest risk of dying with bar charts (29.5% over 5) compared to line and 

pictographs (35.7% and 40.9% over 5, respectively) (Figure 38a). In the patient group, 

pictographs conveyed the highest risk of dying (62.5% over 5), followed by bar and line graphs 

(50% and 42.3% over 5, respectively) (Figure 38b). 
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Figure 38. General population (a) and patient population (b) perceived risk of dying by type of visual 

 

There was a statistically significant difference in perception of the risk of dying in the 

general population when AE information is included (p-value = 0.046), but not in the patient 

population (p-value = 0.278). In the general population, inclusion of the AE information 

decreased the perceived risk of dying, with 26.2% of the respondents giving a risk size over 5, 

compared to 43.5% of the respondents without AE information. This relationship was reversed 

for the patient population, with 57.9% of the patient population reporting a perceived risk of 

dying over 5 when AE information is included, compared to 45.9% without. (Figure 39) 
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Figure 39. General population (a) and patient population (b) perceived risk of dying with and without 

inclusion of AE information. 
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After having the personalized survival information revealed, the participants were asked 

again what they perceived to be the size of the risk of dying within one year. Some participants 

saw a personal risk 6% higher than average (n = 57 for general, n = 40 for patients) and some 

saw a personal risk 6% lower than average (n = 73 for general, n = 35 for patients). This 

difference in personal risk had a significant effect on the perception of the risk of dying in both 

participant populations (p-value = 0.006 and < 0.001 for the general and patient populations, 

respectively.) In both cases the participants seeing a personal risk below average had a higher 

perceived risk of dying (42.5%, 51.4% over 5 for general and patient populations, respectively) 

(Figure 40). 
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Figure 40. General population (a) and patient population (b) perceived risk of dying after reveal of 

personalized survival above or below the average. 
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Effect of risk presentation on risk perception: Likelihood of AE  

Only respondents who saw AE information were asked about the likelihood of having an 

adverse event within one year after surgery.  

General population respondents had a significantly different distribution of response from 

patient respondents, with patient expressing a greater likelihood of having an adverse event (50% 

versus 27.9% responding over 5, p-value = 0.016) (Figure 41). This matches the pattern in the 

perceived risk of dying, where patients also indicated a higher risk than the general population. 

 

 

Figure 41. Comparison of size of risk AE occurrence between general and patient populations 

 

The type of visualization did not have a significant effect on the distribution of perceived 

AE risk in either of the participant populations (p-value = 0.338, 0.926 for general and patient 

populations, respectively.) Pictographs conveyed the highest likelihood of AE in both the patient 

and general populations, with line graphs showing the lowest risk for the general population and 

bar graphs the lowest in the patient population (Figure 44). This matches the response of patients 

and general populations to pictographs having the highest perceived risk of dying within one 

year. 
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Figure 42. General population (a) and patient population (b) perceived risk of AE by type of visual 
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Willingness to consider surgery 

There was no statistically significant difference in the distribution of responses from 

patients or the general population when asked how willing they would be to consider having the 

surgery (p-value = 0.840). There was a trend towards patients being less likely to consider 

surgery, with 78.7% over 5, compared to 82.3% for the general population. This is in line with 

the patient population expressing a higher perceived risk of death and adverse events in the year 

after surgery, compared to the general population (Figure 43). 

 

 

Figure 43. Comparison of size of willingness to consider surgery between general and patient populations 

 

The type of visualization did not have a significant effect on the distribution of perceived 

willingness to consider surgery in either of the participant populations (p-value = 0.382, 0.251 

for general and patient populations, respectively.) Bar graphs conveyed the highest likelihood of 

considering surgery in both the patient and general populations (83.3% and 86.4% over 5, 

respectively), with pictographs having the least likelihood for the general population and line 

graphs for the patient population (76.0% and 75.0% over 5, respectively (Figure 44). 
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Figure 44. General population (a) and patient population (b) perceived willingness to consider surgery by 

type of visual 
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There was no statistically significant difference in the willingness to have surgery with or 

without the AE information included in the general or patient population (p-value = 0.363, 0.234, 

respectively). In the both the patient and general population, inclusion of the AE information 

increased the likelihood of wanting surgery, with 86.8% of the patient respondents giving a 

likelihood over 5 and 83.6% of the general population respondents (Figure 45.) 

 

 

Figure 45. General population (a) and patient population (b) perceived willingness to consider surgery by 

inclusion of AE information 
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This contrasts the results from the perceived risk of dying in the patient population, 

where inclusion of AE information conveyed a higher risk of dying within one year. Despite the 

higher risk of dying perceived by patients, the willingness to have surgery is also higher. 

After having the personalized survival information revealed, the participants were asked 

again whether they would consider having the surgery. The addition of personalized risk had a 

significant effect on the willingness to consider surgery in the general population (p-value = 

0.020) (Figure 46a) but not the patient population (p-value = 0.719) (Figure 46b). In the general 

population, the participants seeing a personal survival probability below average were less likely 

to consider surgery than those seeing a higher survival (74.0% versus 78.9% over 5, 

respectively.) The patient population had the opposite trend, with a slightly higher likelihood of 

considering surgery when the survival probability was below the average (77.1% versus 75% 

over 5, respectively). 
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Figure 46. General population (a) and patient population (b) likelihood of wanting surgery after survival 

probability is shown 

 

 

 

 

 

 



 136 

Effect of personal vs average risk information on risk perception: Change in perceived 

risk of dying within one year 

There was not a statistically significant difference in the total delta in the perceived risk 

between patients and the general population before and after the personalized information reveal. 

There was a slight trend for patients to have an increase in their risk perception compared to the 

general population (Figure 47). 

 

 

Figure 47. Comparison of change in risk of dying perception between general and patient populations 
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When considering whether the participants saw either a personalized survival probability 

that was above or below the average survival, both populations had a significant difference 

between groups. In the general population, the perceived risk dropped by a mean of 0.86 in the 

above average survival group, compared with a rise of 0.95 when the survival was worse than 

average (p-value <0.001). Similarly, in the patient population, the perceived risk dropped by a 

mean of 0.98 in the above average survival group, compared with a rise of 0.31 when the 

survival was worse than average (p-value = 0.008) (Figure 48). 

 

 

Figure 48. Comparison of change in risk of dying perception between general and patient populations, with 

survival probability above and below average 
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The effect of the type of visual on the change in perceived risk of dying within one year 

was only significant in the below average survival general population group (p-value = 0.037). 

All other groups had no significant differences.  

The trend for the general population is that with an above average survival risk, all graph 

types have a decreased risk perception, with line graphs showing the biggest decrease in risk 

(1.37) and bar graphs the least (0.44). For the below average, general population group line 

graphs also had the biggest impact on risk perception change (1.70) and pictographs had the least 

(0.21). 

For the patient population, the below average survival group had the largest change in 

risk perception with bar graphs, with an increased risk of 0.70. Interestingly, in this group the 

participants seeing a pictograph reported a decreased risk perception of 0.60. In the above 

average survival probability patient group, line graphs had the biggest decrease in risk perception 

(1.6). The pictographs had a decrease in risk of 0.56, very similar to the response to pictographs 

in the below average group (Figure 49). 
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Figure 49. Comparison of change in risk of dying perception between visualizations, with survival 

probability above and below average in general (a) and patient (b) populations 

 

Presentation or exclusion of AE information had no significant effect on the change in 

perceived risk in any respondent group. In the general and patient populations with above 

average survival probability there is a larger decrease in risk with the AE shown versus not 

shown (-0.90 with AE versus -0.81 without AE in the general population, -1.2 with AE versus -

0.75 without in patient). In the general population group with below average survival, there is a 

larger increase in risk when AE is not shown (0.68 with AE versus 1.14 without). In the patient 

population with below average survival this pattern is reversed, including AE information 

created the larger increase in risk (0.50 with AE versus 0.12 without) (Figure 50).  
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Figure 50. Comparison of change in risk of dying perception with AE information included or not 

included, with survival probability above and below average in general (a) and patient (b) populations 

 

There was no effect from the interaction of graph type and inclusion of AE information 

on the change in perceived risk of dying within one year in any of the populations, above or 

below average survival. 

 

Effect of personal vs average risk information on risk perception: Change in willingness 

to have surgery 

There was no statistical difference in the change in willingness to have surgery between 

patients and the general population before and after the personalized information reveal (Figure 

51). 
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Figure 51. Comparison of change in willingness to have surgery between general and patient populations 

 

Whether the participants saw a personalized survival probability that was above or below 

average had a significant effect on the willingness to have surgery in the general population. The 

willingness increased by a mean of 0.21 in the above average survival group, compared with a 

decrease of 0.48 when the survival was worse than average (p-value = 0.001). 

The change in the patient population group was not significant (p- value = 0.162) but 

followed the same pattern as in the general population. The willingness to have surgery increased 

by a mean of 0.28 in the above average survival group, compared with a decrease of 0.29 when 

the survival was worse than average (Figure 52). 
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Figure 52. Comparison of change in willingness to have surgery between general and patient populations 

with above and below average survival probabilities 

 

The effect of visualization was not significant in any of the respondent groups (Figure 

53). Of the above average survival general population, respondents viewing bar graphs had the 

largest increase in willingness to have surgery (0.33), followed by line graphs (0.21) and 

pictographs (0.10). In the below average survival general population, bar graphs decreased the 

willingness the least (-0.27) followed by pictographs (-0.54) and line graphs (-0.65). This 

conveys that the bar graph makes the general population feel the most optimistic about 

considering surgery. 

In the patient population, the above average survival group had a very different response 

than the above average general population group. These participants had a decrease in 

willingness to have surgery when data was viewed on a bar graph, despite having a better than 

average survival outcome (-0.29). The line graph had the largest increase in willingness to 
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consider surgery (0.60) followed by pictographs (0.56). In the below average survival patient 

population the pictograph surprisingly increased the willingness to consider surgery (0.60), while 

the line graph decreased the willingness the most (-0.80) followed by the bar graph (-0.40). 

Taken all together, patients viewing the data on pictographs have the most optimistic change in 

willingness to consider surgery, while those patients viewing bar graphs have the greatest decline 

in willingness.  

 

 

Figure 53. Comparison of change in willingness to have surgery between general and patient populations 

with above and below average survival probabilities by type of visualization 

 

Inclusion or exclusion of AE information had no significant effect on willingness to 

consider surgery in any respondent group (Figure 54). In the general populations with above 

average survival probability there is a larger increase in willingness with the AE shown (0.37) 
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versus not shown (0.04). General population respondents seeing below average survival, had a 

greater decreased in willingness to consider surgery when AE information was not included (-

0.71) versus when it was included (-0.16). Overall, the inclusion of AE information seems to 

make the general population respondents more willing to consider surgery. 

In the patient population there is even less difference in effect with and without AE 

information. Patients with above average survival had a slight increase in willingness with AE 

included (0.20) and with AE excluded (0.35). When patients saw a below average survival 

probability, they had a slight decrease in willingness to have surgery with AE (-0.22) and 

without AE (-0.35).  

 

 

Figure 54. Comparison of change in willingness to have surgery between general and patient populations 

with above and below average survival probabilities by inclusion or exclusion of AE information 
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There is no effect from the interaction of graph type and AE information included or not 

on the change in willingness to have surgery in any of the populations, above or below average 

survival. 

 

5. Perception of personalization 

There is no statisically significant difference in the personalization perceived by the 

survey respondents by population type, data visualization, inclusion of AE, or reveal of personal 

survival probability above or below the average. 

Overall patients rated the information as being more personalized than the general 

population (80% over 5 versus 70% over 5, respectively) (Figure 55).  

 

 

Figure 55. Rank of perceived personalization of information 
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In the general respondent population, the bar graph has the highest rating of 

personalization (79.5% over 5) compared to the pictograph (70%) and the line graph (59.5%). 

This relationship is the same in the patient population, with bar graphs having the highest 

personalization rating (91.7%) compared to pictographs (80.8%) and line graphs (56%) (Figure 

56). 
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Figure 56. General population (a) and patient population (b) perceived level of personalization by type of 

visual 
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When AE information is included in the visualization, general population respondents 

report that the visual seems less personalized (63.9% over 5) than when AE information is 

excluded (75.4%). The response is reversed with patient respondents; inclusion of AE 

information has a higher perception of personalization (81.6% over 5) than without (78.4%) 

(Figure 57). 
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Figure 57. General population (a) and patient population (b) perceived level of personalization by inclusion 

or exclusion of AE information 
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Finally, both the general and patient populations who were given a below average 

survival probability found the visualization to be more personalized (42.5% and 51.4% over 5, 

respectively.) When their personal survival was above average they rated personalization of the 

visual at (31.6% and 27.5% over 5, respectively) (Figure 58). 
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Figure 58. General population (a) and patient population (b) perceived level of personalization by survival 

information above or below average 
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4.2.4 Discussion 

Two metrics were used to measure the ease of interpretation of graphs: amount of time to 

answer questions and accuracy of interpretation. Patients were significantly faster at answering 

questions that the general population. This may be due to the younger overall age of the patient 

cohort than the general population. Assessment of numeracy has shown that older people (over 

55 years of age) had significantly decreased numeracy compared to people 24-54 years of age 

[130]. Comparing the type of visualizations for speed of interpretation, line graphs were 

interpreted fastest by the general population and pictographs were interpreted fastest by patients. 

In terms of accuracy, line graphs were interpreted more correctly in all cases where there was a 

significant difference. Inclusion of adverse event information did not affect accuracy of 

interpretation. Taken all together, line graphs had the greatest ease of interpretation in both 

population types.  

Questions asking for the AE and survival to be interpreted at the same time were mostly 

answered incorrectly, with no correct answers from patients looking at bar graphs or pictographs. 

Risks that should be interpreted together may need a different style of visualization, such as part-

to-whole area graphs to indicate the dependence of the two risks [129].  

Effect of visualization of perception of risk was measured by three different areas: risk of 

dying, risk of AE, and willingness to consider surgery. For the risk of dying and risk of AE, 

patient and general populations were significantly different, with the patient group expressing a 

greater perception of risk in both cases. Having experienced varying levels of the heart failure 

disease progression, this population may be more sensitive to medical risks. Type of 

visualization and inclusion of AE had no effect on the risk perception. 
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The use of comparative data after the personalized survival probability reveal influenced 

risk perception for willingness to consider surgery in the general population. This is in line with 

a study looking at comparisons between hypothetical and average risk data in a non-patient 

population showed that people seeing a higher-than-average risk were more likely to want an 

intervention [131]. Interestingly, this effect was not seen in the patient population. The lack of 

change in the patient group willingness to consider surgery, despite a difference in perceived 

risk, suggests that the desire to pursue treatment options is not prognostic-sensitive.  

Analysis from the University of Colorado on patient attitudes when considering LVAD 

implant showed that patient decision making can be characterized as either automatic, deciding 

without much consideration of the risk data, or reflective, considering the risks, benefits, and 

burden[17]. Most patients were automatic and automatic deciders all opted for receiving an 

LVAD, while reflective patients were split: some received the pump and while others declined.  

In this study, patient response mirrored the automatic deciders, where perception of risk and 

personalized survival information did not change interest in receiving an intervention. 

Risk information’s lack of impact on interest in interventions indicates that other types of 

educational materials may be needed to engage patients in decision making. This could be the 

use of patient testimonials [132], statements from physicians [133], or values clarification 

exercises [134].  Future work on development and evaluation of the myCORA patient counselor 

will explore the effect of these elements on patient risk perceptions. 

When determining which visualization was perceived as most personalized to the user, 

there was no significant different between populations, graphs types, or inclusion of AE 

information. Directionally, bar graphs were rated as being most personalized and line graphs the 

least.  
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4.2.5 Conclusion 

The goal of this study was to determine which method of visualization was most easily 

interpretable for patients and their caregivers and how different visualizations effected risk 

perception. Line graphs were the best interpreted overall and did not bias risk perception. 

Patients were more sensitive to risk data in terms of perceiving higher risks but were less 

sensitive to risk when indicating how willing they would be to have surgery. Future presentation 

of prognostic data can use line graphs to show single risk types but may need different methods 

of presentation to show dependent risks. Other types of information than risks, such as patient 

testimonials or physician recommendations, may be needed to affect patient preferences for 

treatments. 
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5.0  CONCLUSIONS 

5.1 SUMMARY 

Development of a decision support tool requires the right information, presented to the right user, 

in the right format, at the right time. Determining what constitutes the ‘right’ approach for each 

element requires extensive work in the field of not only data analysis, but also behavioral science 

and decision making, human-computer interaction, and clinical practice. In this thesis, I 

incorporate research from all these fields to develop decision support tools for both physicians 

and patients considering LVAD implantation.  

New models to predict patient survival after LVAD implant were developed with a 

current mix of patients, including BTT and DT patients on both axial and centrifugal flow 

pumps, and elucidate the factors that drive early and late mortality risk. The predictions perform 

better than current risk scores and provide users with information on which patient features 

contribute most to their survival predictions.  

Models to predict recurrent GI bleeding and ischemic stroke expand the utility of the 

physician decision support tool, supplying information on the both the most frequent and the 

deadliest patient adverse event, respectively. Both predictive models identify features of high-

risk patients, allowing physicians to consider additional evaluation for high-risk patients.  
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Presentation of model information to physicians requires an intuitive user interface that 

fits into their regular workflow. Initial pilot testing of our user interface uncovered issues with 

layout and interactive elements that I need to address. I also need to validate the model outputs in 

a site-dependent fashion to prove the model accuracy and utility for physician buy-in. 

Patient numeracy influenced patient interest in participating in decision support, 

indicating that the presentation of prognosis information is a key component to support tool 

design. Analysis of patient and general population responses to different visual tools found that 

line graphs were most universally well-interpreted for different prognostic information and did 

not bias perception of risk.  This visual will be further explored in the future for the ability to 

present multiple risks concurrently and in low-numeracy patient populations. 

 

5.2 FUTURE WORK 

There are more outcomes to model for the LVAD patient population. To improve 

throughput for model building, I have developed an automated machine learning workflow with 

my colleague, Carmen Khoo. We plan to use the new workflow to model right heart failure 

(using the latest definitions decided by INTERMACS and ISHLT), hemorrhagic stroke, renal 

failure, infection, thrombosis and late mortality (3yrs+). I will also continue to maintain and 

update the current models with new INTERMACS data as it is made available.  

In addition to predicting outcomes for patients who received an LVAD, I will create 

models for patients who did not receive mechanical support and instead were on optimal medical 

management. This is a critical aspect in providing a balanced decision tool for patients and 
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physicians, showing what the alternative treatments are. The main dataset I intend to use for this 

model development is from the ROADMAP trial[8].  

 

Content development for the patient counselor will continue, with the patient surveys 

presented in this thesis work informing the design, along with myLVAD website discussion text 

analysis, and a future patient interview study. The patient counselor will use “lite” versions of 

the predictive algorithms from Aim 1 alongside educational information sourced from the 

literature and physician interviews.  

An observational study of heart failure patients receiving treatment information from 

doctors and thinking through options for their treatment (e.g., whether to receive an LVAD) will 

be used to identify patient concerns and values during decision making. Analysis for this study 

will employ the latest in language technologies, including topic discovery and sequence analysis. 

The design goal is to create a resource that patients can access with their caregivers from home 

to follow up after discussions with their doctors.   

I will evaluate the resulting patient decision support tool for usability through a think-

aloud study with LVAD patients and their caregivers. In this study, I will observe how patients 

and their caregivers navigate through the interface and ask questions about their perceived utility 

of the tool. Following this pilot test, I plan to apply for PCORI funding to evaluate the tool with 

a prospective patient population. 
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APPENDIX 

CORATM: CARDIAC OUTCOMES RISK ASSESSMENT

A Personalized Cardiac Counselor for Optimal VAD Therapy 

Interview Questions for Patients  

Identifier # __________ 

Date: 

This survey consists of four Parts. The first part asks a few questions about you and your health; the 

second part relates to your interaction with your medical team; the third part asks about your familiarity 

with technology; and the fourth part relates to your familiarity with decision aids. This entire survey 

should take about 30 minutes. 

PART-1: About You 

1. Is this the first time you are taking this survey?  ☐ Yes ☐ No

a. if not the first time, approximately how long ago did you last take the survey?

2. What is the purpose of your visit today?

3. Do you know the diagnosis of your heart disease? How would you describe it?

4. In your opinion, how severe your medical condition? (circle one)
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a. My health is about as good as people I know my age. 

b. I have heart failure that limits the things I can do, but it’s not a major problem. 

c. I have heart failure that prevents me from doing some of the things I like to do. 

d. I have severe heart failure that might kill me eventually (a year from now.) 

e. I have severe heart failure that might prevent me from ever leaving the hospital. 

 

5. --------------------------------------------------------------------------------------------------------------------------- D
o you think your condition is so severe that you need a heart transplant? Yes / No 

6. --------------------------------------------------------------------------------------------------------------------------- I
f you were offered the option of a heart transplant, would you accept it? Yes / No 

7. How familiar are you with ventricular assist devices? (circle one) 

 

a. Never heard of them 

b. Somewhat familiar: I’ve heard of them, but not sure what they are, how they work, or what 

good they could do for me. 

c. Very familiar: I’ve read up on them and/or my doctor has told me about them and I have a 

good understanding about how they could (or could not) help me. 

 

Part 2: Interaction with your medical team. 

1. Do you know who your heart failure cardiologist is? (circle one) 

a. Yes, his / her name is __________________________ 

b. Yes, I met him / her, but I cannot remember his name. 

c. I really don’t know. 

2. Do you feel comfortable discussing your physical and emotional state with your physicians? 

a. I am comfortable discussing both my physical and emotional state 

b. I am comfortable discussing my physical condition, but not my feelings or emotions. 

c. I am generally uncomfortable asking questions about my physical and emotional state. 

3. Which of the following methods of communication makes you feel most comfortable asking 

questions from you doctor? (circle one) 

a) In person b) Over the phone c) By email 

4. If you had a safe and secure way of communicating with your medical team using either an email or 

messaging system, would you consider using it? (circle one) 

a) Yes  b) No  c) Maybe 

5. How interested are you in understanding your condition? (circle one) 

a. I am very interested in learning everything I can about my condition. 

b. I am somewhat interested. 

c. I rely on the experts who know what they are doing. 

6. Is there anything in particular you wish you knew more about? (i.e. more information to help interpret 

your test results or to better understand your treatment options) 
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7. About how much total time have you spent speaking with your doctor about your condition prior to 

taking this survey? 

a. less than 15 minutes b. 15-30 minutes c. 30-60 minutes d. over an hour 

8. Do you feel you spent adequate time, or wish you could spent more time with you doctor? 

a. I am satisfied with the time spent with my doctor. 

b. I was not able to ask all the questions of my doctor, but the staff (nurses, coordinators, etc.) 

were able to fill in my missing questions. 

c. I wish I had more time to ask questions of my doctor. 

d. I was satisfied at first, but later remembered questions I wish I had asked. 

9.  If you had access to your electronic health records, would you look at them and try to understand it?  

a. Yes, I am eager to look at my records 

b. No, I am not really interested in my records. 

c. No, I don’t think I would understand my records. 

d. No, for another reason: ____________________________________________ 

 

PART-3: Your familiarity with technology. 
8. Have you done any internet research in the past regarding your heart failure?  

a. No: Proceed to next question. 

b. Yes: we would like to know what sites you visited, and your impressions of their helpfulness 

 Did not visit Visited: not 

useful. 

Visited: useful 

WebMD ☐ ☐ ☐ 

HeartHope ☐ ☐ ☐ 

Other:______________* ☐ ☐ ☐ 

Other:______________* ☐ ☐ ☐ 

* if you cannot remember the name, you can leave this blank. 

9. If you visited one of these sites, was there any information that you were unable to find? 

 

10. Have you ever requested access to your medical records? (circle one)  

a. No. 

b. Yes, but I really could not understand the information. 

c. Yes, I found it to be informative. 

11. How frequently do you use the following electronic devices? 

 Every day Occasionally Never 

Smart phone (like iPhone) ☐ ☐ ☐ 

Computer (laptop or 

desktop) 
☐ ☐ ☐ 

Computer tablet ☐ ☐ ☐ 
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12. How comfortable are you understanding and interpreting the following types of graphs?  

 Do not understand Understand somewhat Understand well 

Bar Graph ☐ ☐ ☐ 

Line Graph ☐ ☐ ☐ 

Pie Chart ☐ ☐ ☐ 

Survival Chart ☐ ☐ ☐ 

 

Bar Graph 

 

 

Line Plot 

 

 

Pie Chart 

 

Survival Curve 
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Part 4: Decision Aids and Shared Decision Making 

13. Have you ever used a decision tool… like for buying a car or choosing a college? 

a) yes (explain) ___________________  b) no 

14. Which of the following statements best describes how you feel about your involvement in your 

treatment? 

a) I feel like I have control over what treatments I receive and when. 

b) I have no say whatsoever, the doctors just do what they want and never ask me. 

c) I feel like I’m *too involved* … the doctors can’t make a decision on their own, without 

asking me. 

d) none of the above 

15. If you were given a “roadmap” that shows the progression of your health, and the decision points in 

your care, would you find that useful? 

a. Yes, I think it would be very useful. 

b. I think it would be somewhat useful. 

c. I don’t think it would be useful for me. 
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16. If there was a website or computer program that would show your prognosis (risk of death, becoming 

more sick, or side-effects of treatment) would that be useful? 

a. Yes, I think it would be very useful. 

b. I think it would be somewhat useful. 

c. I don’t think it would be useful for me. 

 

17. If there was a website where you could watch short videos of other patients like you telling stories of 

their experiences, would that interest you? 

yes  maybe   no 

18. If you can imagine a computer “wizard” that could answer all your questions about your health, or 

your treatment choices, what would you ask? 

 

 

This concludes the survey. Thanks for your participation! 
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