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Natalie Austin, PhD

University of Pittsburgh, 2018

Growing fossil fuel consumption to meet energy demands has led to elevated levels of CO2 (a

greenhouse gas) in the atmosphere, which could have a significant impact on the environment.

Novel methods for CO2 utilization by catalytic conversion to useful chemicals and fuels are

of marked interest for the mitigation of the greenhouse gas footprint.

We used electronic structure calculations to assess the conversion of CO2 by metal

nanocatalysts. Our work was focused on Cu based, M-doped (M= Ni and Zr) heteroge-

nous nanoparticles and their adsorption and activation of CO2. The strong adsorption and

activation of CO2 we observed was attributed to nanoparticle charge transfer to CO2. Due

to the oxophilic nature of Zr, the interaction of CO2 with oxidized Cu-Zr was also assessed.

We determined that oxidized Zr sites on Cu-Zr can still adsorb and activate CO2 which in-

dicated that Cu-Zr nanoparticles are promising materials for CO2 conversion to industrially

relevant products.

As an alternative to traditional heterogeneous catalysts, we used computational methods

to investigate ligand-protected Au nanoclusters as electrocatalysts for the conversion of CO2

to CO. We found that CO2 electroreduction over fully ligand-protected nanoclusters was

not feasible because of unfavorable energies required to stabilize CO2 reduction intermedi-

ates. However, we determined that it is thermodynamically feasible to remove ligands from

the nanoclusters at experimentally applied potentials. The generated surface sites on the

partially ligand-removed nanoclusters were shown to be active for CO2 reduction as they

significantly stabilized reduction intermediates. The generated sites were also active for H2
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evolution, which agrees with experimental observations that these two processes compete.

Interestingly, we found that a specific mode of ligand removal results in a catalyst that was

was both active and selective for CO2 reduction.

In this work, we used computational tools to provide insights into the effects of nanoparti-

cle morphology and composition on the electronic properties of the nanoparticle. Using these

insights, we developed active and selective catalysts for CO2 conversion. Our investigations

into nanoparticle properties and metal-adsorbate interactions, rationalized experimental ob-

servations and could serve as design guidelines for developing catalysts for valuable fuels and

chemicals production from CO2.
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tional chemistry principles. Dr. Götz Veser provided me with valuable experimental angles

and broader perspectives in my research. Dr. Guofeng Wang gave me great insight into

computational approaches that would benefit my work.

I am very thankful to graduate members of the Mpourmpakis Lab (CANELA), Pavlo,

Michael T, James, Zihao, Michael C, Xi, and Robin. I would also like to give thanks to

post-doc Dr. Mudit Dixit and the undergraduate members of the lab. Over the years they

have all been positive role models in my life and work.

I would also like to give thanks to our experimental collaborators Dr. Rongchao Jin and

his graduate student Shuo Zhao from Carnegie Mellon University, and Dr. James McKone

for expanding my insights in the field of electrocatalysis.

I would like to thank my family, the Austin’s, and my Pittsburgh Family: Tom, the

Finnegan’s, and the Jacoby’s for their continuous support. They all provided me with great

words of wisdom and motivation to keep me going and inspired me to reach for success. I

appreciate them all very much.

Finally, I gratefully acknowledge the funding towards my PhD from the National Science

Foundation Graduate Research Fellowship under Grant No. (1247842).

xvii



1.0 INTRODUCTION

Overproduction of carbon dioxide (CO2), a greenhouse gas, through anthropogenic sources

is a significantly detrimental result of the worlds utilization of fossil fuels. High prevalence

of CO2 contributes to climate change (temperature increase) which increases the risk for

loss of major bodies of ice and sudden shifts in agricultural systems [1]. In the mid-1700s

(preindustrial society), the concentration of CO2 in the atmosphere was about 280 ppm

[2]. In the 21st century, the concentration of CO2 in the atmosphere is about 400 ppm

[3], which is over the 350 ppm boundary that has been suggested by scientists across the

world [4]. Increasing concerns about greenhouse gas effects on the Earth gives urgency

to the design of economically and environmentally sustainable technologies that minimize

the human generated carbon footprint. A viable option to mitigate the effects of CO2 is to

convert the significant source of carbon, as a C1 feedstock, into useful chemical and fuels. The

diverse physical and chemical properties of metal nanoparticles (NPs) make them attractive

catalysts for CO2 conversion into valuable commodities. Thus the use of chemicals and fuels

derived by renewable means could offset the negative impacts that our current reliance on

fossil fuels has on the environment.
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1.1 CO2 REDUCTION ON HETEROGENOUS CATALYSTS

Catalytic conversion of CO2 to valuable products is of significant interest as a method to

alleviate the effects of CO2 on our environment [2, 5]. The high thermodynamic stability of

CO2 limits its application in the chemical industry to a few processes including the synthesis

of urea and carbonates [6, 7]. However, the abundance and low-cost of CO2 makes it an

attractive carbon source to investigate its direct chemical transformation to other important

products such as CH3OH, formic acid, hydrocarbons, and CO [2,8].

Atomic hydrogen serves as a highly reactive reducing species to convert CO2 to relevant

chemicals and fuels in hydrogenation reactions [9–12]. The direct dissociation of CO2 to

produce CO (CO2 → CO* + O*) can occur even in the absence of reducing species on

transition metal (TM) surfaces [13–15]. Prior to its dissociation, CO2 can exist in a bent

state (activated state) on the catalyst surface [15, 16]. This activated state is the result

of charge transferred from the metal catalyst to the CO2 molecule, which in turn results

in the elongation of the C=O bonds and decrease in the O=C=O bond angle (linear to

bent mode) [17, 18]. Spectroscopic studies have been instrumental in our understanding

of CO2 activation by identifying the formation of activated CO2 on Ni(100) and K-doped

Rh(111) surfaces prior to its dissociation [15, 19]. In addition, theoretical investigations of

CO2 activation have been assessed on several metal and metal oxide catalysts [13,14,16,20].

Focusing on CO2 conversion to CH3OH, CO2 is in the syngas mixture (CO2/CO/H2)

used for the industrial production of CH3OH on Cu/ZnO/Al2O3 catalysts at moderate tem-

peratures (473-573K) and high pressures (50 to 100 bar) [21]. Experimental and theoretical

studies have shown that CO2 serves as the primary carbon source for the industrial synthesis

of CH3OH [22, 23]. The active sites for CO2 and CO hydrogenation on the industrial cat-

alyst have been identified as a Cu stepped surface decorated with Zn atoms: a CuZn(211)

surface [24]. CO and CO2 hydrogenation intermediates were shown to exhibit increased ad-

sorption strength and decreased barriers towards CH3OH synthesis on CuZn(211) compared

to the Cu(211) surface. The authors hypothesized that Zr, which has a similar oxophilicity

to Zn can result in a similar adsorption behavior as observed with the decoration of Zn atoms

on the surface of Cu(211) [24]. In addition, an experimental study by Yang et al. showed
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higher conversion and selectivity for CH3OH from the hydrogenation of CO2 on ZrO2-doped

Cu/ZnO catalysts compared to Cu/ZnO [25]. Thus, it appears that the incorporation of Zr

into Cu-based catalysts results in generating more efficient catalysts for CO2 conversion.

CuNi systems are another example of attractive catalysts for CH3OH synthesis as exper-

imental studies on Ni/Cu(100) surfaces have shown enhanced catalytic activity for CH3OH

synthesis compared to the monometallic Cu(100) surface [26, 27]. Additionally, a combined

Density Functional Theory (DFT) and kinetic Monte Carlo study on the effects of metal

doping (metal = Au, Pd, Rh, Pt, and Ni) of Cu(111) on CH3OH synthesis found that the

Ni/Cu(111) surface showed the highest rate for CH3OH production compared to the other

alloyed systems and the monometallic Cu(111) surface [28]. Temperature programmed des-

orption (TPD) experiments on a Ni film grown on a Cu(110) surface showed high rates of

CO2 chemisorption compared to the Cu(110) surface on which only physisorption was ob-

served [29]. The ability of CuNi systems to adsorb CO2 have been theoretically investigated

on Ni-doped Cun (n=1-12) clusters [30]. The Ni-doped Cun systems chemisorbed CO2 in a

bent state, while the pure Cun clusters only weakly interacted with CO2. In these clusters

the strong CO2 adsorption was observed when CO2 was in direct contact with the Ni atom

of the cluster. CuNi NP interactions with CO2 have also been studied on 55-atom NPs with

Ni-doped and core-shell CuNi compositions [31]. In the doped system, a single Ni atom was

located in the core, surrounded by 54 Cu atoms and in the core-shell system 13 Ni atoms

were located in the core and 42 Cu atoms were on the shell. Only weak CO2 adsorption was

observed on these systems as further indicated by the C=O bond lengths and O=C=O bond

angle of adsorbed CO2 (∼1.172 Å and ∼180°) remaining like that of gas phase CO2 (1.162

Å and 180°).

Overall, previous studies suggest the incorporation of Zr and Ni into Cu-based cata-

lysts results in the generation of more useful catalysts for the chemical transformation of

CO2 compared to monometallic Cu catalysts. DFT calculations can be used to provide a

thorough analysis of the structural, thermodynamic, and electronic properties of Cu-based

NPs that could potentially lead to identifying novel, stable, and active nanocatalysts for the

adsorption, activation and conversion of CO2 into valuable chemicals and fuels.
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1.2 CO2 REDUCTION ON ELECTROCATALYSTS

CO2 conversion through electrocatalytic means is an alternative and attractive route to

mitigate elevated CO2 emissions by sustainable conversion of CO2 to useful chemicals and

fuels [32–36]. Electrochemical conditions are advantageous for this reaction because applied

potentials can be used to drive the reduction at ambient pressures and temperatures, and

the electricity required to reduce CO2 can be acquired from renewable resources such as wind

and solar power [37–41]. Presently, the challenge with reducing CO2 electrocatalytically is

that it is not industrially feasible due to the highly reducing potentials required to obtain

desired products such as hydrocarbons and CO [37, 42, 43]. Additionally, at these extreme

potentials, there is low selectivity for desired products due to the competing H2 evolution

reaction [38,44]. Therefore, there is continued interest in the design of active catalysts that

promote CO2 reduction at modest potentials while minimizing hydrogen evolution.

Experimental work by Hori et al. demonstrated that bulk Au electrodes can successfully

reduce CO2 to CO [43, 45]. Additional studies have shown that nanosized Au electrodes

are more active than bulk Au electrodes [46–48]. The enhanced activity of Au NPs has

been attributed to catalyst properties such as high surface area and increased presence of

low-coordinated sites that strongly bind reaction intermediates [47, 49–51]. Mistry et al.

investigated CO2 reduction on Au NPs 1.1 nm to 7.7 nm in size [46]. The authors identified

that NPs below 5 nm were significantly more active than bulk Au whereas, NPs larger than 5

nm were comparably active to bulk Au. The activity of the Au NPs less than 5 nm in size was

attributed to the presence of low-coordinated sites such as corners and edges. Interestingly,

the catalytically more active and smaller NPs (< 5 nm) were more selective towards H2 [46].

Hall et al. showed that porous Au film thickness (ranging from 0.5 to 2.7 µm) can also

influence CO2 reduction selectivity [52]. The authors observed a suppression in hydrogen

evolution with increase in film thickness, leading to increased selectivity towards CO. Thus,

in addition to the presence of low-coordinated sites, mass transport effects could also play a

role in resulting activity and selectivity of Au NPs for the CO2 reduction reaction.

In contrast to polydisperse Au NPs, atomically precise Au nanoclusters (NCs), stabilized

by organic ligands, exhibit well-defined structure which make them attractive for catalytic
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applications [53,54]. However, the presence of ligands can also limit the accessibility of reac-

tants to Au sites resulting in reduced catalyst activity [55–57]. Despite this, Kauffman et al.,

has observed enhanced catalytic activity of ligand-protected NCs compared to unprotected

NPs at reducing potentials as small as -0.193 V [48]. Specifically, the authors compared

the activity of a fully ligand-protected Au25(SC2H4Ph)18
- NC, about 1 nm in size, to un-

protected (metallic) 2 nm and 5 nm Au NPs, and bulk Au. Despite the small size of the

Au25(SC2H4Ph)18
- NC, contrary to Mistry et al. [46], the NC was more selective towards

CO than the NPs and bulk Au. In addition, the Au25(SC2H4Ph)18
- NC produced peak CO

production at -1.0 V vs RHE, at a rate 7-700 times higher than on the NPs and bulk Au.

This suggests that the ligands designed to stabilize these Au NCs have an effect in the se-

lective reduction of CO2 to CO. Despite the negative potentials applied, a retention of the

optical spectra before and after CO2 reduction suggests that the Au25(SC2H4Ph)18
- NC did

not change size, and that the S-Au-S-Au-S bonding motif in the cluster shell was majorly

retained. The potential scalability and long-term performance of electroreduction of CO2

over the Au25(SC2H4Ph)18
- NC has also been investigated [58]. Under realistic on-demand

catalyst usage, CO selectivities and Faradaic efficiencies greater than 90%, were achieved

through both potentiostat-controlled and renewable solar powered electrolysis. Thus, these

ligand-protected Au NCs appear to be attractive electrocatalysts for feasible conversion of

CO2.

Theoretical methods combined with experiments can be used to provide atomic level

insight into the catalyst properties that influence CO2 reduction activity over Au25 NCs.

For instance, Kauffman et al. assessed CO2 reduction on fully ligand-protected Au25(SR)18
q

NCs in three different charge states (q= -1, 0, +1) using DFT calculations and experiments,

wherein thiolate ligands were simulated with methylthiols in calculations [59]. The neg-

atively charged NC was able to produce more CO from CO2 reduction than the neutral

and positive NCs between -0.7 V and -1.3 V vs RHE. The activity of Au25(SR)18
- for CO2

reduction was computationally attributed to the stabilization of co-adsorbed CO2 and H+ re-

actants more favorably than on Au25(SCH3)18
q (q= 0, +1). Such a stabilization is expected

due to the electrostatic interactions between the negatively charged NC and the proton.

The presence of ligand-removed NCs, due to the very negative potentials applied, was not
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considered in this work, neither the detailed reaction path. In a latter study, Alfonso et

al. used DFT to investigate CO2 reduction to CO on fully ligand-protected Au25(SCH3)18
-

and partially ligand-removed Au25(SCH3)17
- [60]. The authors identified that the COOH

species, an important intermediate in CO2 reduction, was more stabilized on Au25(SCH3)17
-

(∆G[*COOH]: 0.34 eV) than on Au25(SCH3)18
- (∆G[*COOH]: 2.04 eV). The stabilization

of the COOH intermediate, was attributed to its interaction with exposed Au atoms from

the thiol ligand-removed site [60]. The investigation of ligand-removed Au25(SCH3)17
- was

supported using work by Wu et al. in which the authors observed an enhancement in CO

conversion over the Au25(SC2H4Ph)18 NC when thiol-based ligands were removed from the

NC [57].

Results to date illustrate that there is no consensus on the identity of active sites on

ligand-protected Au nanocatalysts. Some studies have proposed that under reaction condi-

tions these catalysts remain fully ligand-protected [48,54,59,61,62] while others have stated

that some ligand removal is necessary for activity to be observed [55, 57, 63–68]. Addition-

ally, there are competing claims on whether Au nanocatalysts are more selective towards

CO [48,58,69] or H2 [46,70] under CO2 reduction conditions. This lack of agreement on the

selectivity of Au nanocatalysts, in addition to the elusive active sites under electrocatalytic

conditions, make it very difficult to identify chemical strategies for the design and synthesis

of thiolated Au NCs that efficiently reduce CO2.

Although theoretical studies can give valuable insights into the reaction mechanisms and

reveal active catalytic sites, there are presently very few studies that have investigated the

CO2 reduction behavior on these ligand-protected NCs [48, 59, 60, 63]. DFT can be used

to systematically determine how the the NC charge state and ligand-removal concertedly

influence the reaction energetics of the CO2 reduction and H2 evolution reactions. DFT

calculations can elucidate the active sites on the NC catalyst surface for CO2 reduction and

provide insight into the mechanisms of their generation that would lead to the design of more

efficient CO2 electroreduction catalysts.
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2.0 CO2 ACTIVATION ON BIMETALLIC COPPER-NICKEL

NANOPARTICLES

The content of this chapter is taken from Austin, N., Butina, B. and Mpourmpakis, G., ”CO2

Activation on Bimetallic CuNi Nanoparticles”, Prog. Nat. Sci.: Mater. Int., 26, 487-492

(2016) [71].

2.1 COMPUTATIONAL METHODS

In this work we use computational tools to investigate CO2 adsorption and activation on

CuNi bimetallic NPs of different compositional decorations and their monometallic counter-

parts. We used the BP86 functional [72, 73], the resolution of the identity(RI) approxima-

tion [74,75], and the def2-SV(P) [76,77] basis set as implemented in the TURBOMOLE 7.02

computational program package [78]. Dispersion corrections have been taken into account

in the calculations using the D3 method [79,80]. The total electronic energies of icosahedral

55-atom monometallic and bimetallic NPs composed of Cu and Ni were determined by ge-

ometry optimizations. Specifically, these structures include monometallic (Cu55 and Ni55),

decorated (Cu43Ni12 and Cu12Ni43), and core-shell (Cu42Ni13 and Cu13Ni42) combinations of

Cu and Ni atoms. Multiple spin states were considered in our calculations and the lowest

in energy were selected for further analysis. Furthermore, all the optimized structures were

verified as minima with frequency calculations (absence of any imaginary modes). The cohe-

sive energy (binding energy per metal atom, BE/n) [81] was calculated using Equation 2.1:
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BE

n
=
ECu55−xNix − (55− x)ECu − (x)ENi

55
(2.1)

where x is the number of Ni atoms in the NP (x =0, 12, 13, 42, 43, and 55) and ECu55 – xNix ,

ECu, and ENi are the total energies of the Cu55 – xNix NPs, Cu atom, and Ni atom, respec-

tively. Using Equation 2.2 we calculated the excess energy (Eexc) [82, 83], a descriptor for

the stability of the bimetallic NPs relative to their monometallic counterparts:

Eexc =
ECu55−xNix − 55−x

55
ECu55 − x

55
ENi55

55
(2.2)

where ECu55 and ENi55 are the total energies of the Cu55 and Ni55 NPs. The Eexc indicates if

the formation of the bimetallic systems will be favorable (negative total energy) or unfavor-

able. Equation 2.3 was used to calculate CO2 adsorption (binding energy, BE) on the metal

NPs.

BE = ENP CO2 − ENP − ECO2 (2.3)

Adsorption was assessed with CO2 oriented towards one of the equivalent corner sites (coordi-

nation number 6, CN6) on the surface of the NPs, in two different adsorption configurations,

horizontal and vertical to the NP surface. In the case of Cu12Ni43, CO2 adsorption was

also investigated with CO2 oriented towards the edge site (CN8) of the NP where Ni atoms

are located (vide-infra analysis). During CO2 optimization, the coordinates of the NPs

were kept frozen at their optimized positions and the CO2 molecule was allowed to relax.

The calculated adsorption states were further verified as minima with frequency calculations

(absence of imaginary modes on CO2). Natural bond orbital (NBO) analysis was used to

calculate charge distribution on all the systems. Molecular orbital plots were visualized using

TmoleX [84], a graphical user interface for TURBOMOLE.

2.2 RESULTS AND DISCUSSION

2.2.1 Structural and Electronic Properties of Cu55-xNix Nanoparticles

The lowest energy structures of the six NPs studied in this work are shown in Figure 2.1. The

icosahedral shape, which is the lowest energy structure for monometallic Cu55 and Ni55 [85],
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was also maintained for the bimetallic systems. The conservation of the icosahedral geometry

can be attributed to the similar atomic radius of Cu (1.28 Å) [86] and Ni (1.25 Å) [86] atoms.

The calculated BE/n and Eexc of the systems are shown in Table 2.1. The BE/n trend from

the largest (most negative value) to lowest value is as follows: Ni55 > Cu12Ni43 > Cu13Ni42 >

Cu42Ni13 > Cu43Ni12 > Cu55. Thus, we find that as the Ni fraction in Cu55-xNix increases, the

BE/n also increases. This observation agrees with the melting points of the metals, with Ni

(1728 K) [86] having higher melting point than Cu (1358 K) [86], and as a result, the average

bond strength of their alloys shows larger values with higher Ni content. Furthermore we

found that the BE/n trend of the monometallics followed that of experimental bulk (Cu 3.49

eV/atom and Ni 4.44 eV/atom) [86], where in this case the more positive BE/n represents

the more stable system. The Eexc trend describes the stability of the bimetallic NPs

Figure 2.1: Optimized geometries of 55-atom NPs: monometallic (a) Cu55 and (b) Ni55,

decorated (c) Cu43Ni12 and (d) Cu12Ni43 NP with 12 heteroatoms located at the corner

(CN6) sites of the NP, and core-shell (e) Cu13Ni42 and (f) Cu42Ni13 with 13 metal atoms

located in the core and 42 heteroatoms in the shell. The equivalent CN6 and CN8 sites on

the NPs are illustrated in (a). The Cu atoms are colored brown and the Ni blue.

relative to the monometallic parents. The Eexc trend from most stable to least stable is

as follows: Cu42Ni13 > Cu12Ni43 > Cu43Ni12 > Cu13Ni42. Overall we found that the core-
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shell structure, Cu42Ni13, is the most energetically favorable formation for the bimetallic

NPs. In theoretical work by Yang et al. the icosahedral Cu42Ni13 NP was also found to be

energetically favorable [31]. The Eexc trends can be attributed to the surface energy (Cu

1170 ergs·cm-2 and Ni 2240 ergs·cm-2) [87] and bulk cohesive energy of monometallic Cu and

Ni. The surface and cohesive energy values show that, in general, Cu prefers to reside on

the surface and Ni prefers to be in the core of the NP. This core-shell preference has been

shown to be present in nanoscale systems in the recent work by Wang et al. [88], calculating

segregation energies of doped transition metal systems. In particular it was found that the Ni

atom preferred to reside in the core than on the surface of a 55-atom cuboctohedral Cu54Ni.

Due to the energetic preference of Cu for the surface and Ni for the core of the NPs, we find

that the core-shell Cu42Ni13 is more energetically favorable than the corresponding Cu13Ni42

NP, and the decorated Cu12Ni43 is more favorable than the corresponding Cu43Ni12 NP.

Overall the results show that the most energetically favorable NPs have Cu (lower cohesive

and surface energy) on the lowest coordinated, surface sites, and Ni (higher cohesive and

surface energy) on the highest coordinated, bulk sites of the NP.

Table 2.1: Calculated BE/n and Eexc of the Cu55-xNix NPs. The negative values indicate

exothermicity.

2.2.2 CO2 Adsorption on Cu55-xNix Nanoparticles

Previous theoretical work on adsorption of small molecules, such as CO, on the surface of

NPs showed that the stronger adsorption was observed on surface NP sites exhibiting low

CNs (e.g. corners, edges) [89]. In turn, in the CO2 adsorption studies [13, 15, 18], strong

adsorption of the CO2 molecule on the metal surface results to its activation. Thus, we
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primarily investigated the CO2 adsorption on the corner (CN6) site (the lowest coordinated

site in our systems) of the Cu55-xNix NPs. As shown in Figure 2.1(a), since all the CN6 sites

are equivalent (same with the CN8 edge sites) due to the Ih symmetry of the NPs, we studied

the CO2 adsorption on one of these sites. The lowest energy structures for CO2 adsorption

are shown in Figure 2.2. We calculated the adsorption energy for two orientations of the

CO2 molecule: (i) horizontal CO2, where the C atom of CO2 was interacting with the corner

site and (ii) vertical CO2, where an O atom of CO2 was interacting with the corner site. The

horizontal orientation was found to be the most preferred adsorption configuration of CO2 on

all the metal NPs in our study. Consistent with literature [13, 16–18,20], we found that the

systems that activate CO2 always show strong adsorption and charge transfer from the metal

NP to CO2, which results in a linear to bent transition of the CO2 molecule, and elongation

of the C=O bonds. Specifically from Table 2.2 we found strong CO2 adsorption on Ni55,

Cu43Ni12, Cu12Ni43, and Cu13Ni42 and weak adsorption on Cu55 and Cu42Ni13. In addition, as

shown in Table 2.2 the systems with strong CO2 adsorption had more than -0.6|e| transferred

to the CO2 molecule while in the weakly adsorbed systems there was no significant charge

transfer. The geometric properties of gas phase CO2 and CO2 interacting with the metal NPs

are also shown in Table 2.2. Compared to gas phase (non-interacting) CO2, the O1-C-O2

angle of the strongly adsorbed CO2 decreased (<150°) and the C=O bonds elongated (>1.2

Å) which indicates the activation of the CO2 molecule. In the weakly adsorbed systems the

bond angles and bond distances of CO2 remained similar to gas phase CO2. The deviations

of average bond lengths (black squares) and angles (blue circles) between adsorbed and gas

phase CO2 as a function of CO2 BE are illustrated in Figure 2.3. It is clear that both the CO2

bond distances and angles are affected in a similar way with the CO2 BE. To demonstrate

this interdependence between the CO2 angle and bond distance deviation (from CO2 gas) we

plotted these geometric properties in the inset of Figure 2.3 and we observe a linear trend.

Overall, Figure 2.3 shows that the bending of the CO2 molecule and the elongation of its

bonds show the same behavior and they are enhanced (increased activation) with stronger

adsorption on the NP surface. In Figure 2.4 we demonstrate the CO2 BE as a function of

the total charge transferred to the CO2 molecule. We notice that bimetallic systems with Ni

atoms being on the surface of the NP transfer significant charge to CO2. In turn, this results
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in strong CO2 adsorption, while for the Cu42Ni13 system, where Ni is at the core of the NP

and inaccessible to CO2, significant charge transfer is not observed, resulting to weak CO2

adsorption. It should be noticed that so far, our discussion on the activation of the CO2

molecule is entirely focused on the structural and electronic observations made on the CO2

molecule itself and not involving properties of the nanoparticle.

Figure 2.2: CO2 adsorption on the (a-b) monometallic, (c-d) decorated, and (e-f) core-shell

Cu-Ni NPs. The color code is as depicted in Figure 1 with the addition of CO2 (C colored

grey and oxygen colored red).
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Table 2.2: CO2 binding energies on the NPs, total charge (NBO) transferred to CO2, and

geometric properties of gas phase CO2 (non-interacting) and CO2 interacting with the NPs.

Binding energies are in eVs. Bond lengths of C-O1 and C-O2 are in angstroms, Å. Bond

angle of O1-C-O2 are in degrees,°.

Figure 2.3: Deviation of adsorbed CO2 average C=O bond length (left ordinate) and

O=C=O bond angle (right ordinate) from gas phase CO2 as functions of CO2 BE. The

inset figure at the bottom left shows a linear relationship between average C=O bond length

and O=C=O bond angle.
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Figure 2.4: CO2 BE as a function of total charge on CO2. The dashed black line in serves

as a guide to the eye.
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2.2.3 Descriptors for CO2 Adsorption on Cu55-xNix Nanoparticles

From a catalyst design perspective, we need to identify a property of the metal NPs that could

correlate with the observed activation. As a result, we made an effort to rationalize the CO2

adsorption behavior using the d-band center (dC) model by Hammer and Norskov [90, 91].

We calculated the local dC on a single metal site of CO2 adsorption (Cu or Ni) on the

Cu55-xNix NPs. In Figure 2.5, the CO2 adsorption values are plotted as a function of the

local site dC of the NPs. The observed linear trend indicates that there is an increase in

CO2 adsorption with decrease in the dC, shifting towards the energy level of the CO2 Lowest

Unoccupied Molecular Orbital (LUMO), which is located at -0.35 eV (blue dashed line). The

Cu43Ni12 showed the highest local dC and strongest BE, while the Cu55 showed the lowest dC

and the weakest BE. Notice that the Cu43Ni12 positions its local-site dC at the energy level

of CO2 LUMO, showing the strongest adsorption. It is important to note that for Cu12Ni43

we did not observe strong adsorption when CO2 interacted directly with the corner Cu sites

of the NP. Even the presence of Ni atoms in the neighboring positions (edge sites), did not

enhance CO2 adsorption on the corner site compared to the Cu55 system. However, since

surface Ni is responsible for enhancing the CO2 adsorption (compare CO2 adsorption on

Cu55 vs. Cu43Ni12), we calculated the adsorption energy of CO2 on an edge site (CN8) of the

Cu12Ni43, where the Ni atoms are located. In this case we observe a strong CO2 adsorption

on Cu12Ni43 which was 0.4 eV lower in energy than the case where the CO2 interacted with

the Cu atoms of the NP. This shows that the presence of Ni atoms on the surface of the NP

significantly enhances CO2 adsorption.

To further rationalize the effect of the metals d-orbital density and the charge transfer on

the CO2 activation, we plotted the Highest Occupied Molecular Orbitals (HOMO) of Cu55,

Ni55, Cu43Ni12 and Cu12Ni43 NPs as shown in Figure 2.6. These are the monometallic parents

(Cu55 and Ni55), the bimetallic showing the strongest CO2 adsorption (Cu43Ni12) among the

NPs studied, and the bimetallic NP that shows strong CO2 adsorption and favorable Eexc

(Cu12Ni43). It has been shown that charge transfer from the metal to CO2 occurs when the

d-orbitals of the metal NP significantly interacts with the 2πu antibonding orbital (LUMO)

of CO2 [17]. In Figure 2.6 we assessed the presence of d-orbital character in the HOMO
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orbitals of the aforementioned NPs. Figures 2.6(a) and 2.6(b) illustrate the HOMO orbital

distribution on monometallic Cu55 and Ni55 respectively. From the shape of the orbitals we

observe primarily s-orbital localization on Cu55, while there is mainly d-orbital localization

on Ni55. By quantifying the orbital character through the atomic orbital coefficients of

the HOMO, we found that there is a much greater fraction of d-orbital character in the

HOMO of Ni55, which shows strong binding to CO2 than in Cu55, which weakly adsorbs

CO2. The bimetallic systems Cu43Ni12 and Cu12Ni43 show high fractions d-orbital character

with Cu12Ni43 having the highest. Cu43Ni12 has a lower fraction of d-orbital character than

Cu12Ni43 because of the lower fraction of Ni atoms in Cu43Ni12 than in Cu12Ni43. It should

also be noticed that the d-orbitals are localized on surface CN6 atoms of the Cu43Ni12,

whereas, on the CN8 of the Cu12Ni43. In other words, the surface sites where the Ni atoms are

located show strong CO2 adsorption. Overall we demonstrate that adding Ni on the surface

of Cu NPs increases the presence of d-orbital character, which in turn, results in a favorable

interaction of the NP with CO2, and subsequent activation of the CO2 molecule. Although we

found that Cu43Ni12 binds CO2 the strongest, the most promising NP from our study is the

Cu12Ni43 because in addition to the strong CO2 adsorption (BE = -0.8 eV) and activation,

it shows favorable energetics for its synthesis (Eexc = -0.02 eV/atom). This study highlights

that in bimetallic catalyst design it is important to achieve a balance between catalyst

stability (the most stable CuNi NPs prefer Cu to be on the surface) and interaction strength

of the catalyst with adsorbates (CO2 strongly adsorbs and is being activated on surface Ni).

Although computational studies like this one identify bimetallic NPs that are stable and

promising for CO2 activation, there is a synthetic challenge in forming nanostructures with

(in-silico) predefined architecture. Recent experimental advances on the controlled synthesis

of bimetallic NPs with atomic precision can pave the way towards achieving this goal [92,93].
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Figure 2.5: CO2 BE as a function of local dC of the Cu55-xNix NPs. The dashed black line

serves as a guide to the eye. In (b) the vertical blue line represents the LUMO orbital energy

of the CO2 molecule.

Figure 2.6: Visual representation of the HOMO orbitals and fractional distribution of the

HOMO orbital character of the (a) Cu55, (b) Ni55, (c) Cu43Ni12, (c) Cu12Ni43 NPs.
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2.3 CONCLUSIONS

In summary, we performed a DFT investigation on the structural, electronic and CO2 adsorp-

tion properties of Cu55-xNix (x=0, 12, 13, 42, 43, and 55) NPs with a monometallic, core-shell,

and decorated distribution of Cu and Ni atoms. We found that the BE/n of the bimetal-

lic systems was a linear combination of the BE/n of the monometallic systems. We also

calculated the excess energy (Eexc) of the bimetallic NPs with respect to the monometallic

NPs and showed that the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 NPs were

energetically favorable, while the formation of core-shell Cu13Ni42 and decorated Cu43Ni12

were less favorable. These trends rationalize the preference of Cu to be located at the

surface of the NPs rather than Ni. CO2 adsorption calculations revealed weak interaction

(physisorption) with the monometallic Cu55 and core-shell Cu42Ni13, while the monometallic

Ni55, decorated Cu12Ni43 and Cu43Ni12, and core-shell Cu13Ni42 chemisorbed CO2. In the

chemisorbed cases we found strong adsorption of CO2 on the corner sites of all NPs except

Cu12Ni43 where strong CO2 adsorption was found on the edge sites. The sites of strong ad-

sorption on the NPs were always surface sites which were occupied by Ni atoms. Thus, the

location of Ni on the NP plays an important role in the resulting adsorption behavior. The

chemisorption behavior on the NPs was attributed to charge transferred from the metal NPs

to CO2 which led to the activation of the molecule. Additionally, we calculated the local-site

d-band center (dC) and we found a linear relationship between the dC and CO2 adsorption

energy. The sites of strong adsorption localize HOMO orbitals with increased d-character.

Overall this study demonstrates that the presence of surface Ni on CuNi bimetallic NPs

can significantly enhance CO2 adsorption, resulting in the activation of the CO2 molecule.

Furthermore, among the different nanostructures in this study we identified the Cu12Ni43,

which can be potentially experimentally synthesized and activate CO2 for dissociation and

hydrogenation reactions due to its exothermic Eexc and strong adsorption behavior towards

CO2, respectively.
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3.0 CO2 ACTIVATION ON BIMETALLIC COPPER-ZIRCONIUM

NANOPARTICLES

The content of this chapter is taken from Austin, N., Ye, J. and Mpourmpakis, G., ”CO2 on

Cu-based Zr-decorated nanoparticles”, Catal. Sci. Technol., 7, 2245-2251 (2017) [94].

3.1 COMPUTATIONAL METHODS

In this work we use electronic structure calculations to examine the adsorption, activation,

and reaction of CO2 on 55-atom Cu NPs, with select surface Cu atoms being replaced

by Zr atoms to generate Zr-decorated Cu NPs. All DFT calculations in this work were

performed using the Quickstep program in the computational package, CP2K [95]. The

calculations implemented the revised PBE (revPBE) functional [96] and the double-ζ plus

polarization (DZVP) basis set [97] in combination with the Goedecker, Teter, and Hutter

(GTH) pseudopotentials [98] with a 400 Ry cutoff. Grimme’s DFT-D3 method [80] was

used to account for dispersion interactions. Icosahedral 55-atom Cu NPs decorated with Zr

atoms, Cu55-xZrx (x=0, 1, 2, 4, 6, 8, 10, 12), with and without adsorbed CO2 were optimized

in nonperiodic 30 x 30 x 30 Å3 cubic cells until forces were less than 0.02 eV/Å. Optimized

structures were verified as ground states with frequency calculations (absence of imaginary

modes). Equation 3.1 was used to determine the core or shell preference of Zr in the Cu54Zr

NP. This preference is defined as the segregation energy (SE) of a single heteroatom (Zr)

from the core to the surface of the host NP (Cu), where negative values indicate Zr preference

for the surface.

SE = E(Cu54Zr(surface))− E(Cu54Zr(core)) (3.1)
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Where E(Cu54Zr(surface)) is the total electronic energy of the fully optimized Cu54Zr NP in

which one Cu atom is replaced by one Zr atom on the surface of Cu55, and E(Cu54Zr(core))

is the corresponding electronic energy for the core atom replacement. As shown in Figure

3.1 there are two distinct surface sites on the NP: coordination number (CN) 6, which is a

corner site, and CN8, which is an edge site. The Zr atom in Cu54Zr(core) is placed in the

very central core atom of the NP which is a CN12 site. Equation 3.2 was used to calculate

CO2 adsorption (binding energy, BE) on the Cu55-xZrx NPs

BE = ENP CO2 − ENP − ECO2 (3.2)

Where ENP CO2 , ENP, and ECO2 are the total energies of NP with adsorbed CO2, the isolated

NP, and isolated CO2 molecule, respectively. For all CO2 adsorption cases, we considered

parallel and perpendicular adsorption configurations (see Figure A1 of Appendix A.1 for

illustrations of the adsorption configurations considered).

The climbing image nudged elastic band (CI-NEB) method [99] was used to identify

potential barriers towards CO2 activation on the NPs. Transition states determined from

the CI-NEB calculations were further verified by frequency calculations which identified a

single imaginary mode along the reaction coordinate. The convergence criterion for the

maximum force was set to 0.1 eV/Å. Bader [100] charge analysis was further employed to

quantify the charge transferred from the NPs to the CO2 molecule.

3.2 RESULTS AND DISCUSSION

3.2.1 Zr Doping of Cu Nanoparticles

The thermodynamic preference for the surface enrichment of metal A over metal B in an AB

alloy can be determined using the segregation energy (SE) of a single impurity (heteroatom)

in a host system [88, 101]. In order to determine the SE using Equation 3.1, we placed a

Zr atom on three sites of the NP as shown in Figure 3.1. Specifically, we replaced one Cu

atom in the 55-atom Cu NP at the core, edge, and corner sites, with CNs 12, 8, and 6,
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respectively. We identified that Zr prefers to reside on the surface of the NP as indicated

by the negative SE values for the CN6 and CN8 Zr-decorated structures (compared to the

energy of the central core position) shown below the NPs in Figure 3.1. Additionally, we

determined that the CN6 site with a SE of -1.88 eV is the most preferred surface site for Zr to

reside compared to CN8 which has a SE of -1.78 eV. The preference of Zr on the NP surface

can be attributed to the larger atomic radius of Zr (1.60Å) [86] compared to that of Cu (1.28

Å) [86]; Zr resides on the surface to minimize strain effects on the NP. Our calculated SE

preference for Zr on the Cu NP surface agrees with the determined SE preference for Zr on

the surface of Cu(111) [101].

Figure 3.1: 55-atom Cu NP decorated with Zr at the three coordination sites (CN = 6, 8,

12) listed above the NP. The SE values for Zr residing on the CN8 and CN6 sites of the NP

are listed below the NP. The Cu atoms are colored brown and the Zr atoms are in light blue.

3.2.2 CO2 Adsorption and Activation on Cu54Zr and Cu55 Nanoparticles

CO2 can interact with TM systems in a physisorbed state, where it retains the geometric

properties of gas phase CO2, and in a chemisorbed state, where it becomes bent (activated)

[16,18,71]. We performed geometry optimizations of CO2 adsorbed on Cu54Zr starting with

CO2 at a physisorbed (∼3.5 Å) and chemisorbed distance (∼2.0 Å) from the NP surface.

The most preferential adsorption site we found in both states was CO2 interacting parallel

to the edge of the Cu54Zr NP near the Zr atom (see Figure 3.2(a)). The physisorption

and chemisorption energies were calculated to be -0.13 and -1.29 eV, respectively. The

physisorbed state retained the geometric properties of gas phase CO2 (average C=O bond
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length: 1.18 Å and O=C=O bond angle: 179.3°) while the chemisorbed state significantly

deviated from gas phase CO2 (average C=O bond length: 1.29 Å and O=C=O bond angle:

126.5°). We also assessed the transition from the physisorbed to chemisorbed state to identify

any potential barriers towards activation given the enhanced thermodynamic stability of

CO2. As shown in Figure 3.2(a), the physisorbed and chemisorbed structures served as

inputs to a CI-NEB calculation, with 6-8 replicas, which revealed that CO2 activation on

Cu54Zr NP is barrierless. In the absence of surface Zr, the adsorption of CO2 in an activated

state on the Cu55 NP was found to be +0.45 eV which is unfavorable compared to the weak

physisorption of CO2 on Cu55 (-0.059 eV). Weak adsorption of CO2 on monometallic Cu

surfaces has also been observed in previous experimental and theoretical studies [13,16,29].

Figure 3.2(b) shows that the transition from physisorbed CO2 to the activated state of CO2

is barrierless but endothermic. These results indicate that surface Zr on Cu NPs can be an

active site for CO2 adsorption and activation, whereas, surface Cu sites are not.
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Figure 3.2: CI-NEB calculations for the physisorbed to activated state of CO2 on the (a)

Cu54Zr and (b) Cu55 NP. The values in red in (a) and (b) is the change in energy (∆E) from

the phyisorbed to activated state of CO2 (∆E= Eactivated – Ephysisorbed). The negative (red)

value in (a) represents an exothermic step, whereas, the positive value in (b) represents an

endothermic step. The color code on the structure is as in Figure 3.1 with the addition of C

and O (from CO2) colored grey and red, respectively.

3.2.3 CO2 Adsorption and Activation on Cu55-xZrx (x= 2, 4, 6, 8, 10, 12)

Nanoparticles

Following the observed adsorption and activation of CO2 on the Cu54Zr NP we investigated

the CO2 adsorption behavior on CuZr NPs with an increasing surface fraction of Zr atoms.

We generated the CuZr NPs by systematically replacing Cu with Zr at all CN6 sites of

the 55-atom icosahedral NP. We selected CN6 as the site for Zr doping based on our SE

analysis which showed that Zr preferred to reside on the CN6 site of the Cu54Zr NP. As

shown in Figure 3.3(a) we gradually replaced 2-12 Cu atoms with Zr atoms in the NP in

a symmetric manner to investigate the effects of increasing concentration of Zr in a Cu-

based NP. CO2 hydrogenation studies on Cu/ZrO2 have shown that Cu sites are favorable

for H2 dissociation and ZrO2 is necessary for the activation of CO2 [102, 103]. Thus, from
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a catalyst design perspective, our model for Zr doping of the Cu NP with the Zr atoms

being at maximum separation, maximizes the available Zr sites for CO2 activation, while

keeping neighboring Cu sites for H2 dissociation. We do note however that there may be

more stable forms of Cu55-xZrx decoration other than decoration on the CN6 sites (see Figure

A2 and Figure A3 of Appendix A.1 for the case of Cu53Zr2 and corresponding CO2 binding,

respectively). Figure 3.3(b) illustrates CO2 BE as a function of surface fraction of Zr in

the 55-atom NP. The observed CO2 BE does not change significantly with the addition of

2-6 Zr atoms on the NP surface (BE range: -1.39 eV to -1.42 eV). In contrast, we observe

a significant enhancement in the CO2 BE with increasing Zr content when 8-12 Zr atoms

are added on the NP surface (BE range: -1.52 eV to -1.80 eV). As shown in Figure 3.4(a),

for each Cu55-xZrx NP we observed activation of CO2 by elongation of the C=O bonds and

decrease in the O=C=O angle. Figure 3.4(a) also demonstrates that the largest deviation of

the geometrical features of CO2 compared to the gas phase occurs on the NPs exhibiting the

strongest BEs. The activation of CO2 has been attributed to the charge transferred from

the d-orbitals of the TM system to the anti-bonding orbitals of the CO2 molecule. [17, 18].

Therefore in Figure 3.4(b) we plotted the CO2 BE as a function of the total charge located on

the activated CO2 bound to the Zr-decorated Cu NPs. We found that for each NP case more

than 0.9 |e| charge was transferred to the CO2 molecule from the NP. It should be noted

that to verify that the activated (chemisorbed) state of CO2 remains barrierless on the NPs

with the high Zr content, we performed CI-NEB calculations on the Cu43Zr12 NP, which has

the highest composition of Zr in our study and found that indeed, the CO2 chemisorption

remains barrierless and exothermic.
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Figure 3.3: (a) Cu55-xZrx (x = 2, 4, 6, 8, 10, 12) decoration on the 55-atom NPs. (b) CO2

adsorption as a function of surface fraction of Zr on the Cu55-xZrx NPs. The dashed lines

serve as a guide to the eye. The color code on the structure is as in Figure 3.1.

Figure 3.4: (a) Deviation of adsorbed CO2 geometric properties from gas phase CO2 (b)

CO2 BE as a function of total charge on CO2 for each Cu55-xZrx (x= 2, 4, 6, 8, 10, 12) NP.

The inset figure shows chemisorbed CO2 on Cu43Zr12. The dashed lines in (a) and (b) serve

as a guide to the eye. The color code on the structure is as in Figure 3.2.
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3.2.4 Electronic Properties of CuZr Nanoparticles

An understanding of the underlying catalyst properties responsible for CO2 activation is

important for developing catalysts with enhanced CO2 conversion activity. Therefore, we

assessed the d-band center (dC) and ionization potential (IP) as NP descriptors for our

observed adsorption trends. Hammer and Norkov have shown that the dC of a metal catalyst

can be correlated with the adsorbate BE [90,91]. In addition, we have previously shown that

the IP of a catalyst (or equivalently work function) is a good descriptor for adsorption [104]

especially for systems involving charge transfer (case of CO2 interaction as shown in Figure

3.4(b)). In Figure 3.5(a) we identified a correlation between the CO2 BE and the localized

dC of the Zr atom interacting with CO2 for each Cu55-xZrx NP (see inset in Figure 3.4(b)). In

Figure A4 of Appendix A.1, we illustrate the PDOS used to determine the dC for each NP.

It is important to note that for Cu55-xZrx NPs with 2-6 Zr atoms on the surface we observe

a negligible change in the dC of the site, which in turn results to a practically unaffected

CO2 BE as shown in Figure 3.3(a). Conversely, for Cu55-xZrx NPs with 8-12 Zr atoms the dC

varied more significantly and in turn, there were significant variations in the CO2 BE. We

also observe from Figure 3.5(a) that as we increase the Zr composition, the dC shifts closer

to the fermi level (i.e. a shift closer to zero in 3.5(a)) which is responsible for the increasing

adsorption strength of CO2. Overall, the local dC appears to be a good descriptor for the

observed CO2 adsorption behavior. In Figure 3.5(b) we present the relationship between

the CO2 BE and the IP of the NP. As the IP decreases we observe a stronger CO2 BE.

Given that the IP represents the ability of the NP to donate electrons, we believe that the

IP is the catalyst property responsible for the degree of charge transfer to the CO2 molecule

resulting in the activation of the molecule. In addition, Figure 3.5(b) demonstrates a way

to tune CO2 chemisorption: increasing the surface Zr composition (experimental parameter)

decreases the IP of the NP, and in turn, the CO2 adsorption becomes stronger. As shown

in Figure A4 of Appendix A.1, increasing the Zr composition, shifts the HOMO (Highest

Occupied Molecular Orbital) towards the LUMO of CO2 (Lowest Unoccupied Molecular

Orbital) and closer to the Fermi level of the NP. This in turn, results to decreasing the

catalyst IP and increasing the interaction energy of CO2.
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Figure 3.5: (a) Cu55-xZrx (x = 2, 4, 6, 8, 10, 12) decoration on the 55-atom NPs. The color

code is as in Figure 1. (b) CO2 adsorption as a function of surface fraction of Zr on the

Cu55-xZrx NPs. The dashed lines serve as a guide to the eye. The color code on the structure

is as in Figure 3.2.

3.2.5 CO2 Dissociation to CO on Cu54Zr and Cu55 Nanoparticles

The facile chemisorption of CO2 on the Cu55-xZrx NPs indicates that the NPs could serve as

favorable CO2 reduction catalysts compared to monometallic Cu NPs alone. As a preliminary

analysis, for our ongoing CO2 reaction studies, we compared the CO2 dissociation barriers on

Cu54Zr and Cu55 and found that Cu54Zr dissociated CO2 at a significantly lower barrier than

Cu55. Specifically, Figure 3.6(a) illustrates the dissociation of CO2 into adsorbed CO and

O on both the Cu55 and Cu54Zr NPs relative to the isolated CO2 molecule and the NP. We

found that the transition state (TS) energy value and bond length for C-O bond breaking on

Cu55 and Cu54Zr are 0.93 eV and 1.87 Å, and 0.20 eV and 1.73 Å, respectively. The second

TS in the Cu54Zr pathway, which has a small barrier of 0.05 eV represents the diffusion of O

from a top site to a slightly more stable hollow site configuration. The Cu54Zr system exhibits

the second TS because the direct transition of O into the hollow site from CO2 dissociation

through a single TS (as was for Cu55) was not favorable. The corresponding structures for

each state of the energy diagram are shown in Figure 3.6(b). The facile dissociation of CO2
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observed in this study and the oxophillic nature of Zr suggests that under reaction conditions

CuZr NPs can be oxidized as is supported by previous studies [102, 105–107]. Thus in our

recent study we investigated CO2 adsorption behavior on Cu54ZrOx NPs [108]. Notably,

we observed barrieless chemisorption of CO2 on all of the oxidized Cu54Zr systems studied

(see supporting information Figures A5 and A6 in Appendix A.1). This is an important

observation as it shows that surface Zr sites on doped Cu NPs can adsorb and activate CO2

regardless of their degree of oxidation [108].
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Figure 3.6: (a) CO2 dissociation reaction path on Cu55 (black line) and Cu54Zr (red line).

For Cu55, TS represents breaking of a C-O bond, with a C-O bond length of 1.87 Å. For

Cu54Zr, TS1 represents the breaking of a C-O bond, with a C-O bond length of 1.73 Å and

TS2 represents the diffusion of O from a top site to hollow site configuration. (b) Optimized

structures for the CO2 dissociation to CO and O on the Cu55 (top row) and Cu54Zr (bottom

row) NPs.The color code on the structure is as in Figure 3.2.
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3.2.6 Experimental Observations for CO2 Adsorption on CuZr Catalysts

In our recent work we qualitatively verified the computational observation that the presence

of surface Zr on Cu NPs results in the strong adsorption of CO2 [108]. We synthesized

CuZr bimetallic catalysts and evaluated their CO2 adsorption by using TPD. The catalysts

were prepared by a simple wet impregnation approach and were characterized thoroughly to

confirm the presence of a mixed CuZrO3 phase, pure Cu, and ZrO2 phases on the catalyst

surface [108]. The presence of both phase-separated pure Cu and ZrO2 particles, was as

expected from the tendency of Cu and Zr to phase segregate (see segregation energy values in

Figure 3.1). TPD analysis verified that pure Cu only physisorbed CO2 while both bimetallic

CuZr and pure ZrO2 showed strong adsorption of CO2 as indicated by desorption peaks

(see supporting information Figure A7 in Appendix A.1 for the TPD analysis). Thus our

experimental results qualitatively confirmed the major computational results that is: i) Cu

NPs do not adsorb CO2, ii) Cu and Zr metals have a strong tendency to segregate, iii) Zr

has high propensity to oxidize, and iv) even if the Zr sites are oxidized (to form a mixed

copper zirconium oxide), they are still able to adsorb CO2 effectively.

3.3 CONCLUSIONS

In summary, we investigated the electronic and CO2 adsorption properties of Cu55-xZrx (x=0,

1, 2, 4, 6, 8, 10, 12) NPs. These Cu-based NPs, which consist of 55-atoms, have a decorated

distribution of Zr atoms on the surface. Segregation energy analysis identified that Zr prefers

to reside on the surface of the NPs, especially at the lower coordinated sites. Adsorption

calculations revealed that the Zr site at the NP surface is the most favorable site for CO2

adsorption. The CO2 binding energy varies slightly when the decorated Zr increases from 2

to 6 atoms on the Cu NP surface. However, a significant increase in the CO2 binding energy

was observed when we decorated 8-12 Zr atoms on the Cu NP surface. Furthermore, the

elongation of C=O bond lengths and the bending of O=C=O bond angles were observed

for all CO2 adsorption cases on the Cu55-xZrx NPs, which indicates that CO2 is activated
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when it adsorbs on Cu55-xZrx NPs (compared to the linear gaseous CO2). We found the

chemisorption of CO2 on the Zr-decorated Cu NPs to be barrierless and exothermic, while

it is endothermic on monometallic Cu55 NP. This chemisorption behavior was attributed to

a strong charge transfer from the CuZr NPs to CO2, resulting in the activation of CO2. We

further identified two descriptors for CO2 adsorption: the d-band center (dC) localized on

the Zr atom interacting with CO2 and the ionization potential (IP) of the whole NP. Both

descriptors correlate with the CO2 adsorption energies. The latter descriptor is significant

since it can be experimentally measured and, as we demonstrate in this work, it can be tuned

with the Zr content (composition variation) on the NP surface.

To assess the effectiveness of CuZr NPs as catalysts for CO2 conversion, we investigated

the CO2 dissociation to CO and O on Cu54Zr and Cu55. We found that the barriers towards

CO2 dissociation on the Cu54Zr NP were much lower than that on the Cu55 NP. Our work

demonstrates that Zr-decorated Cu-based NPs enhance the adsorption and activation of

CO2, which in turn, results in lower barriers towards the dissociation of CO2. As a result of

the highly exothermic adsorption of CO2 on Zr-doped Cu NPs relative to monometallic Cu

and the oxophilicity of Zr, we further investigated CO2 adsorption on oxidized Cu-Zr NPs.

We observed chemisorption of CO2 on the oxidized Zr sites on each NP investigated.

These computational observations were confirmed qualitatively by performing experi-

ments on a mixed CuZr catalyst. The catalysts showed the presence of both pure (i.e.,

phase-segregated) Cu and ZrO2 phases (in agreement with the computational prediction

that Cu and Zr have a high segregation energy), as well as a mixed CuZrO3 phase. Al-

though pure Cu was not able to adsorb any CO2, the mixed CuZrO3 phase showed strong

CO2 adsorption.

Overall, our computational and experimental results suggest that Zr-doped Cu NPs can

adsorb and activate CO2 strongly, even if the surface Zr sites become oxidized. The resulting

bimetallic system could be a promising material for CO2 utilization by hydrogenation.
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4.0 INFLUENCE OF ATOMIC-LEVEL GOLD CATALYST MORPHOLOGY

ON CO2 ELECTROREDUCTION

The content of this chapter is taken from Zhao, S., Austin, N., Li, M., Song, Y., House, S.

D., Bernhard, S., Yang, J. C., Mpourmpakis, G., and Jin, R., ”Influence of Atomic-Level

Morphology on Catalysis: The Case of Sphere and Rod-Like Gold Nanoclusters for CO2

Electroreduction”, ACS Catal., 8, 4996-5001 (2018) [63]

4.1 COMPUTATIONAL METHODS

In this work, we investigated two types of Au nanoclusters (NCs) of identical size (i.e., 25

atoms) but distinctly different atomic packing structures or morphology (i.e., Au25 nanosphere

and Au25 nanorod) as electrocatalysts for CO2 reduction. DFT calculations were performed

using the PBE [73] functional and the double-ζ plus polarization (DZVP) basis set [97]

with a 500 Ry cutoff in combination with the Goedecker, Teter, and Hutter (GTH) pseu-

dopotentials [98] as implemented in the computational package CP2K [95]. The thiol lig-

ands in the nanosphere and nanorod clusters, were simulated with methylthiols resulting to

Au25(SCH3)18 and Au25Cl2(SCH3)5(PH3)10 NCs. This R-group simplification of the ligands

is a commonly used approach to reduce computational cost, without affecting the interfacial

bond strength (i.e. Au-SR) of the NCs [48, 59, 60, 64, 109]. The nanosphere and nanorod

exist in -1 and +2 charge states, respectively. To simulate realistic systems, counterions

were added to the NCs which results in overall neutral systems. Specifically, one NH4+ ion

was added to the nanosphere and two SbF6- ions were added to the nanorod. Bader [100]

charge analysis was used to verify the charge state on the NCs in the presence of the coun-

32



terions. The initial geometries of the NCs in the presence of the counterions were generated

from experimentally-derived crystallographic data of the NCs. The geometries were opti-

mized until forces were less than 0.02 eV/Å-1. The ligand(s) considered for removal from the

nanosphere is SCH3 and from the nanorod are SCH3, -Cl, and PH3. The free energies for

ligand removal and COOH* formation were calculated using thermodynamic methods where

the zero-point energy (ZPE), heat capacity (CP), and entropic (TS) terms were added to

the electronic energy (E) as shown in Equation 4.1:

∆G = ∆E + ∆ZPE +

∫
CPdT − T∆S (4.1)

In addition, the computational hydrogen electrode model (CHE) [42] was applied to treat

the free energy of a proton(H+)–electron(e-) pair in electrochemical reduction reactions as

equivalent to the free energy of one-half of molecular hydrogen. Thus the free energy of the

pair with consideration of an applied potential (U) is defined as G(H+ + e-) = G(1
2

H2)-neU

where n is the number of electrons transferred and e is the electronic charge. In this study

we report energetics at 0 V vs RHE (U = 0, no applied potential). Thus, the ∆G for ligand

removal of -SCH3 and -Cl, treated as a reduction reaction using hydrogen, is as shown in the

following Equation 4.2 example for -SCH3 removal from the nanosphere (with counterions):

∆Gthiol−removal = G[(Au25(SCH3)17NH4)
0] +G[HSCH3]−G[(Au25(SCH3)18NH4)

0]

−1

2
G[H2]

(4.2)

Where G[(Au25(SCH3)17NH4)
0], G[HSCH3], G[(Au25(SCH3)18NH4)

0], and G[H2] are the gas

phase free energies of the isolated nanosphere with a removed thiol, the HSCH3 molecule,

the fully-protected nanosphere, and the H2 molecule, respectively. Removal of a PH3 ligand

from the nanorod (with counterions) was calculated as a ligand desorption (non-reduction)

step using the following Equation 4.3:

∆GPH3−removal = G[Au25Cl2(SCH3)5(PH3)9] +G[PH3]−G[Au25Cl2(SCH3)5(PH3)10]

(4.3)
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Where G[(Au are the gas phase free energies of the isolated nanorod with a PH3 ligand

removed, the PH3 molecule, and the fully protected nanorod, respectively. The ∆G for

*COOH formation (∆G*COOH) on each NC of interest is calculated using Equation 4.4 as

shown:

∆G*COOH
= G[*COOH] +G[NC]− 1

2
G[(H2]−G[CO2] (4.4)

Where G[*COOH], G[NC], G[H2], G[CO2] are the gas phase free energies of the isolated

*COOH adsorbed on a NC, the bare NC, the H2 molecule, and the CO2 molecule, respec-

tively.

4.2 RESULTS AND DISCUSSION

4.2.1 Experimental Observations for CO2 Reduction on Au25 Nanoclusters

The Au25 nanosphere and nanorod clusters were synthesized following reported protocols

[110, 111] in the lab of Proffesor Rongchao Jin at Carnegie Mellon University. The Au25

NCs, supported by carbon black, were then evaluated for the electrocatalytic reduction

of CO2. Higher catalytic performance was observed on the Au25 nanosphere compared to

the Au25 nanorod as shown by analysis of the total current density (see Figure A8(a) of

Appendix A.2). In Figure A8(b) of Appendix A.2, the better catalytic performance of the

Au25 nanosphere was more distinct under high voltages where the Au25 nanosphere cluster

exhibited a CO Faradiac Efficiency (FE) of 73.7% at -0.57 V, which is 1.63 times higher

than that of the Au25 nanorod cluster (CO FE ∼ 28.0%). At -0.67 V, a CO FE difference of

30% (i.e., 69.3% vs 39.7%) between the two clusters was also prominent. Catalyst selectivity

in CO2 reduction is crucial in practical applications due to the competing water reduction

generating H2 as well as the formation of CO2 reduction products other than CO. As for

the distribution of carbon-containing products, Au25 NCs exhibit excellent selectivity for the

CO product [48] than other carbon-containing products. Only CO and H2 were detected

in these experiments, which is consistent with previous results [48, 58, 59]. Analysis of FE

showed that both the nanosphere and nanorod were more selective towards CO than H2.
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However, in Figure A8(b-c) of Appendix A.2, the Au25 nanosphere exhibited a much higher

CO selectivity with smaller FE toward H2 (H2 FE 24.9%) compared to the Au25 nanorod

(H2 FE 41.2%) around -1.0 V . The Au25 nanosphere also formed CO at higher rate than

that of the Au25 nanorod (see Figure A8(d) in Appendix A.2). Thus the larger FE for CO

as well as higher CO formation rates over Au25 nanosphere consistently demonstrated its

higher catalytic performance for CO2 reduction compared to the Au25 nanorod.

4.2.2 Computational Analysis of CO2 Reduction on Au25 Nanoclusters

Our experiments clearly show the Au25 nanosphere possesses higher CO2 reduction activity

and selectivity for CO product than the Au25 nanorod. To further understand their dif-

ferent catalytic behavior, DFT calculations were performed. In recent work, Alfonso et al.

assessed CO2 reduction to CO on the fully protected Au25(SCH3)18
− spherical NC as well

as the partially ligand-removed Au25(SCH3)17
− spherical NC [60]. They determined that

the Au25(SCH3)17
− species would promote CO2 reduction more favorably, compared to the

Au25(SCH3)18
−, because the Au25(SCH3)17

− species stabilized the *COOH intermediate on

the exposed Au atoms of the ligand-removed site. Therefore, the removal of one ligand from

the NCs is critical for generating active sites for CO2 reduction. As a result, herein we first

compare the ability of the two NCs to partially release ligands and expose Au active sites,

from the different sites of the nanosphere and nanorod.

Figure 4.1(a) illustrates the two NCs and sites from which ligands are removed. For

the nanosphere, removal of a single SCH3 is considered, whereas for the nanorod, removal

of SCH3, -Cl, or PH3 is considered. The SCH3 and -Cl ligands are removed as reduction

reaction steps using hydrogen while the removal of PH3 is considered as a desorption step.

Figure 4.1(b) shows the ∆G values for removing different ligands from the nanosphere and

nanorod at 0 V vs reversible hydrogen electrode (RHE). Of note, the removal of the PH3 is

not included in Figure 4.1(b) due to different pathways (reduction versus desorption steps).

The desorption of PH3 from the nanorod is calculated to be ∆G: 0.54 eV which is equivalent

to the removal of -Cl (green line, ∆G: 0.54 eV) as shown in Figure 4.1(b). For the nanorod,

the removal of PH3 and -Cl is more favorable than the removal of SCH3 (blue line, ∆G:
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0.95 eV). Comparing ligand removal from the nanorod to the nanosphere, the removal of

SCH3 is less endergonic from the nanosphere (red line, ∆G: 0.49 eV) than from the nanorod.

It is observed that ligand removal from the nanosphere is slightly more favored than the

ligand removal from the nanorod. Therefore, the ligand removal to release active sites on

the nanosphere cluster is more energetically favorable than the nanorod cluster.

Figure 4.1: (a) Structures for the nanorod and the nanosphere in the presence of the NH4
+

and SbF6
- counterions, respectively. Au atoms are shown in pink, S atoms shown in yellow,

C atoms shown in grey, H atoms shown in white, N atoms shown in bright blue, Sb shown

in purple, and F shown in light blue. The circled regions on the NCs demonstrate sites of

ligand removal on the nanosphere (-SCH3) and nanorod (SCH3, -Cl, and PH3) (b) ∆G values

for ligand removal (in eV) from the NCs at 0 V vs RHE, where LR NC represents ”ligand-

removed nanocluster”, NS is nanosphere, and NR is nanorod. The blue and green lines

represent removing a SCH3 and -Cl from the nanorod with SbF6
- counterions, respectively

and the red line represents removing SCH3 from the nanosphere with a NH4
+ counterion.

All ligand removal steps are treated as electrochemical reduction steps.
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After the ligand removal, gold active sites on the nanosphere and nanorod are revealed

for CO2 reduction catalysis. We then calculated the energetics for CO2 reduction to CO

at 0 V vs RHE on the ligand-removed (i.e., active sites) of the NCs. The formation of

*COOH (∆G*COOH) has been shown to be an important intermediate in CO2 reduction

to CO on Au [46, 47, 60]. Figure 4.2 illustrates that *COOH is more stabilized on the

Au25(SCH3)17NH4 (SCH3 removed) nanosphere (0.43 eV) than on any of the ligand-removed

systems of the nanorod (∆G*COOH), SCH3 removed: 0.65 eV, -Cl removed: 0.56 eV, and PH3

removed: 1.15 eV). Illustrations of the adsorbed *COOH and *CO structures are provided

in Figures A9 and A10 of Appendix A.2, respectively. It should be noted that even though

PH3 and -Cl can be removed from the nanorod at a comparative ∆G to SCH3 removal from

the nanosphere, the resulted active species do not stabilize *COOH comparatively as shown

in Figure 4.2. Therefore, the energetically favorable removal of SCH3 from the nanosphere

to release active sites as well as the stabilization of *COOH over the obtained Au25(SCH3)17

species contribute to the higher catalytic performance of the Au25 nanosphere over the Au25

nanorod.

Kauffman et al. previously investigated CO2 reduction on the Au25(SCH3)18
q nanosphere

in three charge states (q = +1,0,-1) [59]. The negatively charged Au NC was found to pro-

mote CO2 reduction more significantly, compared to the neutral and positively charged NCs,

by stabilizing the reaction intermediates. To verify the role of NCs charge on CO2 reduc-

tion, we performed Bader charge analysis calculations and determined that, in the presence

of counterions, the nanosphere remained negatively charged (q = -0.77), whereas the nanorod

positively charged (q = +1.94). Thus, the negative charge that the nanosphere possesses

contributes to its higher activity in CO2 reduction observed in experiments compared to the

nanorod. Thus, overall, the negative charge and the favorable exposure of an active site on

the nanosphere stabilize the important *COOH intermediate, which, in turn, contribute to

enhanced activity of the nanosphere than the nanorod. Although we have not investigated

multiple ligand removal steps from the surface of the NCs, in the Supporting Information

we report a preliminary analysis on removing 1 and 2 additional ligands from the NCs (see

Figure A11 of Appendix A.2) and find that additional ligand removal remains endothermic,

but still probable under the experimentally applied potentials.
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Figure 4.2: Free energy diagrams (∆G) for CO2 reduction to CO on the ligand-removed

NCs at 0 V vs RHE. The black, blue, green, and red lines represent CO2 reduction to CO

on the nanorod with PH3 removed, the nanorod with SCH3 removed, the nanorod with -Cl

removed, and on the nanosphere with SCH3 removed, respectively.
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4.3 CONCLUSIONS

In this combined experimental and theoretical study we have investigated the atomic-level

morphology effect of Au25 NCs (sphere vs rod) as electrocatalysts for CO2 reduction. The

distinctly different atomic-level morphology and charge states render the Au25 nanosphere

more active for CO2 reduction than the Au25 nanorod. At -0.67 V, the nanosphere cluster ex-

hibits a higher FE (69.3% for CO) than that of the nanorod cluster (39.7%). We have further

performed DFT calculations based on their X-ray crystallographic structures and obtained

mechanistic insights for the observed difference in catalytic performance. It is revealed that

the negative charge state of the nanosphere as well as the energetically favorable removal

of -SCH3 from the nanosphere to expose active sites contribute to the higher catalytic fea-

tures due to the stabilization of the important *COOH intermediate. This work explicitly

demonstrates that the atomic-level morphology and electronic properties can greatly influ-

ence the catalytic performance; thus, the attainment of atomic structures of NCs is of critical

importance in order to elucidate the fundamentals of catalytic reactions. The distinct mor-

phology dependence of NCs and the obtained mechanistic insights are expected to provide

some guidelines for future design of advanced catalysts for CO2 reduction.
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5.0 ELUCIDATING THE ACTIVE SITES FOR CO2

ELECTROREDUCTION ON LIGAND-PROTECTED GOLD

NANOCLUSTERS

The content of this chapter is taken from Austin, N., Zhao, S., McKone, J. R., and Mpourm-

pakis, ”Elucidating the Active Sites for CO2 Electroreduction on Ligand-protected Au25

Nanoclusters”, Catal. Sci. Technol.,(2018). Accepted, DOI: 10.1039/C8CY01099D.

5.1 COMPUTATIONAL METHODS

Using computational tools, we investigated the electrochemical reduction of CO2 and the

competing H2 evolution reaction on ligand-protected Au25 nanoclusters (NCs) of different

charge states. DFT calculations were performed using the PBE [73] functional and the

double-ζ plus polarization (DZVP) basis set [97] with a 500 Ry cutoff in combination with

the Goedecker, Teter, and Hutter (GTH) pseudopotentials [98] as implemented in the compu-

tational package CP2K [95]. This combination of DFT parameters (functional, pseudopoten-

tials, and basis set) has been successfully used to investigate reaction energetics on Au-based

catalysts [112–116]. The initial geometries of the NCs were generated from experimentally-

derived crystallographic data of the Au25(SC2H4)18
− [117]. The ligands of the Au25 NC

were represented by methylthiolate groups (-SCH3) generating the Au25(SCH3)18 NC. Sim-

plification of the ligands, from -SC2H4Ph to -SCH3, is a typical approach used to reduce

computational cost while maintaining the structural integrity of the NCs [48,59,60,64,109].

As shown in Figure 5.1, the Au25(SCH3)18
q NC is composed of a Au13 icosahedral core

protected by a shell network of six Au2(SCH3)3 units. The geometries of the NCs were op-
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timized in a 30 x 30 x 30 Å3 non-periodic cell until the forces were less than 0.02 eV/Å. All

systems with an even number of electrons had a singlet multiplicity and all systems with an

odd number of electrons in this study had a doublet multiplicity (see Table A1 in Appendix

A.3 for more details). The energetics for ligand removal, CO2 reduction, and H2 evolution

were calculated using thermodynamic methods where the zero-point energy (ZPE), heat ca-

pacity (CP), and entropic (TS) terms were added to the electronic energy (E) as follows:

∆G = ∆E + ∆ZPE +
∫

CP dT - T∆S. Additionally, the computational hydrogen electrode

model (CHE) [42, 118] was applied to represent the free energy of a proton (H+) and elec-

tron (e−) pair in reduction reactions and thereby, calibrate the calculated free energy on

an electrochemical scale. Thus, the total free energy for a proton-electron pair where an

applied potential (U) is defined as G(H++ e−) = G(1
2
H2) - neU where n is the number of

electrons transferred and e is the electronic charge. Gas phase corrections as calculated by

Peterson et al., were also applied to the electronic energies of the gaseous molecules [42].

For the free energies of the adsorbates the vibrational components of the heat capacity and

entropic terms were considered. The vibrational modes of the adsorbates were determined by

keeping the optimized NC fixed and computing the frequencies of the adsorbate within the

harmonic oscillator approximation. This approach has been successfully applied using DFT

in electrocatalysis [49,60,119,120] including to the Au25(SCH3)18 NC. The computationally

predicted limiting potential (UL) [42, 121] was calculated as the applied potential required

for the rate determining step, to become thermoneutral (∆G = 0).
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Figure 5.1: Schematic of the fully-ligand protected Au25(SCH3)18 NC. The system is com-

posed of a Au13 icosahedral core protected by a shell network of six Au2(SR)3. The Au, S,

C, and H atoms are colored yellow, blue, grey, and white, respectively. The labels A and B

on the Au2(SR)3 shell network represent the two distinct types of coordinated sulfur in the

NC shell.

The Au25
q NC which has been stably synthesized in multiple charge states (q = -1, 0, +1)

[122–124] has also been used for catalysis in each of the charge states [59]. In the supporting

information (see Table A2 in Appendix A.3) we assess the relative stability of the Au25 NC

in relation to the charge states using adiabatic electron affinity (AEA, Au25(SCH3)x
0 + e−

→ Au25(SCH3)x
-) and adiabatic ionization potential (AIP, Au25(SCH3)x

0 → Au25(SCH3)x
+

+ e−) [125, 126]. Studies have also suggested that under reaction conditions, the Au25 NC

can partially lose ligands [57, 60]. Therefore we calculate the energy required to remove

ligands from the Au25(SCH3)18 NC. We initially focus on the removal of -SR (-SCH3) from

the 6[Au2(SCH3)3] shell of the fully ligand-protected NC in each different charge state. The

removal of a -SR ligand would expose an Au atom and enable interaction with adsorbates.

However, theoretical studies on CO2 reduction on Ni-Fe-S Cubanes [119] and MoS2 [127]

catalysts have shown that the COOH intermediate can be stabilized more favorably on the

S atoms of the catalysts compared to other available sites. Thus, we also considered removal

of -R (-CH3) from the Au25 NCs to expose an S atom to the reaction intermediates for CO2

reduction to CO.
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The ∆G for ligand removal of -SR from Au25(SCH3)18 was calculated as an electro-

chemical reduction step, using Equation 5.1, which was derived according to the following

reduction reaction: Au25(SCH3)18
q + H+ + e− → HSCH3 + Au25(SCH3)17

q.

∆Gmethylthiol−removal = G[Au25(SCH3)17
q]+G[HSCH3]−G[Au25(SCH3)18

q]−1

2
G[H2] (5.1)

Where G[Au25(SCH3)17], G[HSCH3], G[Au25(SCH3)18], and G[H2] are the gas phase free

energies of the isolated NC with a removed thiol, the HSCH3 molecule, the fully ligand-

protected NC, and the H2 molecule, respectively. The ∆G for removal of -R was calculated

in the same manner as for -SR with G[Au25(SCH3)17]
q and G[HSCH3] in Equation 5.1 being

replaced by G[Au25S(SCH3)17]
q and G[CH4], respectively. An overview of the potential states

of the Au25
q NC under reaction conditions that we consider in this study are shown in Figure

5.2 (shown for -SCH3 removal). Prior studies have suggested [42,47,60] that CO2 reduction

and hydrogen evolution can take place through the following steps:

CO2 +H+ + e− + ∗ → *COOH (5.2)

*COOH +H+ + e− → *CO +H2O(l) (5.3)

*CO → CO(g) + ∗ (5.4)

H+ + e− → *H (5.5)

*H +H+ + e− → H2(g) + ∗ (5.6)

An example for determining reaction energetics using the first step of CO2 reduction on

the NCs (Equation 5.2), is calculated as follows in Equation 5.7:

∆G∗COOH = G[*COOH] +G[NC]−G[CO2]−
1

2
G[(H2] + neU (5.7)

Where G[COOH*], G[NC], G[CO2], G[H2] are the gas phase free energies of the COOH

adsorbed on a NC, the NC, the CO2 molecule, and the H2 molecule, respectively. In the

supporting information (see Figure A12 in Appendix A.3) we also assessed CO2 adsorption

on the NCs and observed only physisorbed CO2 as previously reported [48].
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Figure 5.2: A cycle which illustrates potential states of the Au25 NC under reaction condi-

tions. The top and bottom rows, show electron transfer to form the fully ligand-protected

and partially ligand removed NCs in each charge state, respectively. The vertical steps

indicate ligand removal from Au25(SR)18
q to form Au25(SR)17

q .

5.2 RESULTS AND DISCUSSION

5.2.1 CO2 Reduction and H2 Evolution on Fully Ligand-Protected Nanoclusters

DFT geometry optimizations illustrated that the final structures of the fully ligand-protected

Au25(SR)18
q (q = -1, 0, +1) NCs are nearly structurally identical to the experimental crystal

structure [59, 122, 124, 128]. The calculated free energy diagrams for CO2 reduction and H2

evolution on the fully ligand-protected Au25(SCH3)18
q NCs (q= -1, 0, +1), at U=0 V (solid

lines) are shown in Figure 5.3. The ∆G values of the reactions were also evaluated at an

applied potential of -1.0 V vs RHE (U = -1.0 V, dashed lines in Figure 5.3), the potential at

which peak production of CO was observed in experimental studies on the NCs [48,58]. As

shown in Figure 5.3(a), CO2 reduction to CO on the fully ligand-protected NCs Au25(SCH3)18

in each charge state, appears to be unfavorable due to the largely endergonic step for COOH

stabilization (∆G > 1.82 eV) . The observed unfavorable ∆G (*COOH), agrees with previous

computational observations by Alfonso et al., for CO2 reduction on the Au25(SCH3)18
- NC
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[60]. Although for the hydrogen evolution reaction at U=0 V, the H adsorption step is

also endergonic (5.3(b)), the ∆G for H adsorption (Equation 5.5) is more favorable than

the COOH adsorption (Equation 5.2). Furthermore, at U = -1.0 V, the hydrogen evolution

reaction becomes exergonic on the Au25(SCH3)18
q (q = 0, +1) NCs. Overall, the large

positive ∆G values for CO2 reduction on the fully ligand-protected NCs suggest that the

production of CO is not feasible on these NCs. Thus, we focused on partially ligand-removed

NCs, which have been experimentally shown to be active catalysts [57,64–68].
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Figure 5.3: Free energy diagrams (∆G) for the (a) reduction of CO2 to CO and (b) hydrogen

evolution on the fully ligand-protected Au25(SCH3)18
q (q= -1, 0, +1) NCs. The black, red,

and blue lines represent the energy diagrams generated using a NC in the -1, 0, and +1

charge states, respectively. The solid lines illustrate the energy diagrams at U = 0 V, while

the dashed lines represent the energy diagrams at an applied potential of U = -1.0 V. (c)

Illustrations of the CO2 reduction and the hydrogen evolution reactions. The Au, S, C, and

O, atoms are colored yellow, blue, grey, and red, respectively. The H atoms are white, except

for H on the carboxyl (in CO2 reduction) and the adsorbed H (in hydrogen evolution) which

are colored lime green for clarity.
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5.2.2 CO2 reduction and H2 Evolution on Partially Ligand-Removed Nanoclus-

ters

Figure 5.4(a) illustrates partial ligand-removal from the Au25(SCH3)18 NC via a reduction

reaction. We focus on removing one -SCH3 ligand, connected to a core Au atom of the NC

(labeled in Figure 5.1 as site ”A” and also shown in Figure 5.4(a)), as has been done in

previous studies [60]. It should be noted that removing -SCH3 from site ”A” in Figure 5.4 is

more energetically favorable than from site ”B” (see Figure A13 in the supporting information

Appendix A.3). In the resulting partially ligand-removed Au25(SCH3)17 NC, the Au atom

of the shell, which was previously bound to the removed -SCH3 ligand, is now connected to

an Au atom of the core. According to our geometry optimization calculations, aside from

the site where the -SCH3 ligand was removed, the Au25(SCH3)17
q NCs remain geometrically

similar to the Au25(SCH3)18
q NC. To assess the ability of the Au25(SCH3)18

q NCs to release a

-SCH3 ligand, we calculated the ∆G for the electrochemical step of Au25(SCH3)17
q formation

from Au25(SCH3)18
q as shown in Figure 5.4(b). The observed trend in ∆G for removing a

ligand from Au25(SCH3)18
q at U = 0 V and -1.0 V is as follows (from most favorable to

least favorable): Au25(SCH3)18
0 < Au25(SCH3)18

+ < Au25(SCH3)18
-. This trend follows the

order of increasing stability of the fully ligand-protected NCs as depicted on the increasing

HOMO LUMO gaps, calculated by Akola et al [129]. At U = 0 V the formation of the

partially ligand-removed Au25(SCH3)17
q NCs is less endergonic than the COOH adsorption

on the fully ligand-protected Au25(SCH3)18
q NCs. Interestingly, at U = -1.0 V, the ∆G for

Au25(SCH3)17 formation becomes exergonic in each charge state, as shown by the dashed

lines in Figure 5.4(b). Thus, under reaction conditions (-1.0 V vs. RHE) calculations clearly

predict the formation of partially ligand-removed catalysts.
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Figure 5.4: (a) Schematic for reduction of the fully ligand-protected NCs (Au25(SCH3)18
q) to

partially ligand-removed, Au25(SCH3)17
q. (b) Free energy diagram for removing one -SCH3

from the NC. As described in Figure 5.3, the colored, solid, and dashed lines represent the

different charge states and energetics at U = 0 V and at U = -1.0 V, respectively.

Following the observation of exergonic ∆G for Au25(SCH3)17
q formation at U = -1.0 V,

we assessed CO2 reduction and H2 evolution on the Au25(SCH3)17
q NCs (q = -1, 0, +1). As

shown in Figure 5.5(a), we found that the partially ligand-removed NCs better stabilized

the COOH intermediate (∆G < 1.42 eV) relative to the fully ligand-protected NCs (∆G

> 1.82 eV). Thus, in each charge state the presence of ligand-removed sites on the NCs

enhances COOH surface stabilization compared to the fully ligand-protected NCs. The lower

∆G(*COOH) observed on the Au25(SCH3)17
q NCs suggests that ligand removal is important

for the Au NCs to become active, as highly endergonic free energies were observed on the

fully ligand-protected NCs even with an applied potential (U = -1.0 V). The Au25(SCH3)17
-

NC had the least endergonic ∆G(*COOH) compared to Au25(SCH3)17
q (q= 0, +1) at U

= 0 V, which is conceptually consistent with the Lewis acidity of CO2. Thus, we would

expect the partially ligand-removed NCs to be most active in a negative charge state. Given

the exergonic ∆G(*H) shown in Figure 5.5(b), we would also expect competition with H2

evolution on partially ligand-removed NCs. It should be noted that adsorbate interactions

can be influenced by solvation [121]. Thus, in the supporting information (see Figure A14
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in Appendix A.3) we assessed the H2O solvent effect on CO2 reduction and H2 evolution

energetics on the Au25(SCH3)17
- NC. The results showed an enhancement in stabilizing

the COOH intermediate in the presence of H2O. Additionally, the trends observed without

solvation (i.e. competition with H2 evolution), remained in the solvated case studied.

Figure 5.5: Free energy diagrams (∆G) for the (a) reduction of CO2 to CO and the (b)

hydrogen evolution reaction on the Au25(SCH3)17
q (q= -1, 0, +1) NCs (with a ligand re-

moved). (c) Illustrations of CO2 reduction and H2 evolution reaction steps. The color code

for the diagrams is as described in Figure 5.3.
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Having shown that the ligand removal on the NCs can generate active sites for CO2

electroreduction and knowing that catalysts with surface sulfur atoms, such as Ni-Fe-S

Cubanes [119] and MoS2 [127], stabilize the COOH intermediate in CO2 reduction, we in-

vestigated the removal of -CH3 from the Au25(SCH3)18 NC to generate a surface sulfur site

instead of a bare Au site (Figure 5.6(a)). Similarly, to -SCH3 removal, we focus on removing

-CH3 from site A as indicated in Figure 5.1, in each charge state of the Au25 NC. The ob-

served trend for removing a -CH3 from Au25(SCH3)18
q (see Figure 5.6(b)) at U = 0 V and -1.0

V is the same as removing -SCH3 from Au25(SCH3)18
q: Au25(SCH3)18

0 < Au25(SCH3)18
+ <

Au25(SCH3)18
- (from most favorable to least favorable). Remarkably, unlike the endergonic

∆G observed for -SCH3 removal at U = 0 V, the ∆G for -CH3 removal is exergonic in each

charge state. Thus, under reaction conditions (-1.0 V vs. RHE) calculations predict that

bare Au sites (due to -SCH3 removal) and S sites (due to -CH3 removal) may coexist. We

note that we have not assessed here the free energies for ligand removal associated with

an experimentally utilized ligand (i.e. -SC2H4Ph) due to computational constraints. How-

ever, in the supporting information (see Figure A15 in Appendix A.3) we present an energy

analysis comparing -SC2H4Ph removal to -C2H4Ph removal in the negatively charged state

of the Au25 NC. These results indicate that under reaction conditions the formation of the

partially-ligand removed NCs is still plausible.
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Figure 5.6: (a) Schematic for reduction of the fully ligand-protected NC (Au25(SCH3)18
q) to

one with -CH3 removed, Au25S(SCH3)17
q. (b) Free energy diagram for removing one -CH3

from the NC. As described in Figure 5.3, the colored, solid, and dashed lines, represent the

charge states, the energetics at U = 0 V and at U = -1.0 V, respectively.

Due to the preferable ∆G(*COOH) on Au25(SCH3)17
- relative to Au25(SCH3)17

q (q= 0,

+1), we examine CO2 reduction and H2 evolution on the Au25S(SCH3)17
- NC (-CH3 removed)

and compare the energetics to the Au25(SCH3)17
- NC (-SCH3 removed). As shown in Figure

5.7(a), we found that Au25S(SCH3)17
- stabilizes COOH more favorably (∆G(*COOH) =

0.33 eV) relative to Au25(SCH3)17
- NC (∆G(*COOH) = 0.81 eV). This enhanced COOH

adsorption could be attributed to the larger negative charge on the exposed S site of the

Au25S(SCH3)17
- NC compared to the exposed Au site of the Au25(SCH3)17

- NC (see Figure

A16 in Appendix A.3). In addition, the exposed S site of the Au25S(SCH3)17
- NC contributes

to increased electron density near the Fermi level of the Au25S(SCH3)17
- NC compared to

the fully protected NC, Au25(SCH3)18
-, which in turn contributes to the reactivity of the

NC (see Figure A17 in Appendix A.3). However, in Figure 5.7(b), we also observe that H

adsorption at U = 0 V is more exergonic on Au25S(SCH3)17
- than on Au25(SCH3)17

-. This

indicates that H2 evolution would compete with CO2 reduction on Au25S(SCH3)17
- NCs.
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Figure 5.7: Free energy diagrams (∆G) for the (a) reduction of CO2 to CO and the

(b) hydrogen evolution on the -CH3 removed Au25S(SCH3)17
- NC and on the -SCH3 re-

moved Au25(SCH3)17
- NC. The orange and black lines represent the energy diagrams for the

Au25S(SCH3)17
- and Au25(SCH3)17

- NCs, respectively. The solid lines illustrate the energy

diagrams at U = 0 V, while the dashed lines represent the energy diagrams at an applied

potential of U = -1.0 V. The color code for (c) the illustrations of CO2 reduction and H2

evolution are as described in Figure 5.3.
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5.2.3 CO vs H2 Product Selectivity

Determining the selectivity between CO2 reduction and hydrogen evolution would typically

require an in depth kinetic analysis. However, to give a qualitative estimate of the selectivity

we determine the difference between the limiting potentials for CO2 reduction and H2 evolu-

tion (UL(CO2) - UL(H2)) [127,130,131]. The more positive UL(CO2) - UL(H2) corresponds to

a higher selectivity towards CO2 reduction relative to the set of NCs. As shown in Table 5.1,

on the Au25(SCH3)18
q and Au25(SCH3)17

q NCs, the limiting step which determines UL(CO2)

is the COOH formation step. However, on the Au25S(SCH3)17
- NC, the limiting step is CO

(and H2O) formation, which results in the smallest |UL (CO2)| amongst all of the NCs in

this study. H adsorption is the limiting step that determines UL(H2) on the Au25(SCH3)18
q

and the Au25(SCH3)17
+ NCs, while the formation of H2(g) is the limiting step responsi-

ble for UL(H2) on the Au25(SCH3)17
q (q = +1, -1) and Au25S(SCH3)17

- NCs due to the

exothermic H adsorption on the NCs. In Figure 5.8, the calculated UL(CO2) - UL(H2) shows

that the negatively charged species, Au25(SCH3)18
-, Au25(SCH3)17

-, and Au25S(SCH3)17
- are

the least selective towards H2 production relative to the set of NCs. Although our results

show that only the partially-ligand removed clusters, Au25(SCH3)17
- and Au25S(SCH3)17

-,

are most active for CO2 reduction, it is only the Au25S(SCH3)17
- NC which is selective to

CO2 reduction over H2 evolution (positive value of UL(CO2) - UL(H2)) . Therefore, the ex-

posure of S atoms, within the NCs are important to tune selectivity towards CO2 reduction.

In experiments, the conditions that control the selectivity of the Au25 catalyst towards CO

include applied potentials, CO2 flow rate, catalyst loading, and concentration of the elec-

trolyte [58, 132]. These Au25 catalysts are also clearly active toward H2 evolution. Shuo et

al., showed that an Au25/MoS2 system enhanced the hydrogen evolution reaction activity

compared to MoS2 alone [133]. This enhanced activity was attributed to the electronic in-

teractions at the Au-MoS2 interface. Therefore, these Au NCs can display exceptional but

different catalytic behavior depending on the chemical environment. The observed differ-

ences in catalytic behavior with changes to NC structure (fully-protected vs partially-ligand

removed) shown in this study can be connected to the frontier orbitals HOMO-LUMO of

the clusters (see supporting information Figure A18 in Appendix A.3). As shown in Figure
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A18(b), the HOMO-LUMO gap of the NCs with a removed ligand becomes much smaller

compared to the fully protected NC. In addition, the electron density observed on the ligand

removed sites of Au25(SCH3)17
- and Au25S(SCH3)17

- becomes more localized and directional

compared to Au25(SCH3)18
- which is important because changes in orbital localization and

directionality has been shown to contribute to the reactivity of Au clusters [89,134].

Table 5.1: Limiting step and potential of the Au25 NCs. H+ + e− omitted for simplicity.
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Figure 5.8: (a) Difference in limiting potentials of CO2 reduction and hydrogen evolution

(UL(CO2) - UL(H2)). The color code represents the three charge states of the Au25 NC

(black: negative, red: neutral, blue: positive).
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As a final note, although our results rationalize a series of experimental observations, they

are solely based on thermodynamic viewpoints and do not take into consideration kinetic

limitations in the form of activation barriers. Barriers for proton-electron transfer in CO2

reduction to CH4 and CH3OH have been calculated on Pt, Cu, and Au surfaces [135, 136].

The calculated barriers for the steps relevant to this study (see Equations 5.2 and 5.3) were

less than 1 eV which is surmountable under room temperature at experimentally applied

potentials (U = -1.0 V). Thus, we would expect the proton-electron transfer barriers for

CO2 reduction on the Au NCs to be thermally accessible at room temperature. Furthermore,

assuming the activation energies for the proton-electron transfer steps scale with ∆Grxn, as

in the the Brønsted-Evans-Polanyi relationship, we would expect the lowest barriers to be

observed on the ligand removed NCs [135].

5.3 CONCLUSIONS

In this work, we applied Ab initio electronic structure calculations to assess CO2 reduction

and H2 evolution on fully ligand-protected (Au25(SR)18
q) and partially ligand-removed (re-

moval of -SR and -R) NCs in three charge states q = -1, 0, and +1. Our results demonstrate

that regardless of charge state, the Au25(SR)18
q NC is inactive for CO2 reduction due to the

relative instability of the associated COOH intermediate. On the contrary, our calculations

showed that the formation of partially-ligand removed NCs, Au25(SR)17
q (q = -1, 0, +1) and

Au25S(SR)17
q, are feasible under reaction conditions. Moreover, Au25(SR)17

q NCs and the

Au25S(SR)17
- NC stabilized the COOH intermediate more favorably than the Au25(SR)18

q

NCs. We therefore conclude that partially-ligand removed clusters, which expose Au and S

sites, are the most active for CO2 reduction under experimentally applied potentials. We

found that hydrogen evolution likely competes with CO2 reduction over the entire potential

range of interest. By assessing selectivity, we determined that only the active Au25(SR)17
- NC

would be selective towards CO2 reduction over H2 evolution. Overall, this work elucidates

NC charge state and generation of active surface sites during electrocatalysis as responsible

for the stabilization intermediates in CO2 reduction to CO.
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6.0 FUTURE WORK

6.1 KINETIC ANALYSIS FOR LIGAND REMOVAL

In the work detailed in Chapters 4 and 5 we focused on thermodynamic analysis of ligand

removal from the Au25 NCs. However, an understanding of the kinetic barriers towards

ligand removal would further verify the feasibility of this process under reaction conditions.

To this end, we generated and optimized a Au25(SEthPh)18 NC surrounded by 158 H2O

molecules using CP2K as shown in Figure 6.1, to study the ligand removal process. We

performed Ab initio Molecular Dynamics calculations with the PBE [73] functional, the

DZVP basis set [97] in combination with the GTH pseudopotentials [98] with a 500 Ry

cutoff. Grimme’s D3 method [80] was used to account for dispersion interactions. The

calculations were carried out in the NVT ensemble with a timestep of 0.5 fs at 300K. The

Nosé-Hoover thermostat [137, 138] was used for temperature control. The system reached

equilibrium within 6000 steps (3 ps). In future work CI-NEB and Metadynamics calculations

will be performed on the Au25(SEthPh)18 NC with 158 H2O molecules to identify transition

states for ligand removal of the solvated system.
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Figure 6.1: Optimized geometry of the solvated Au25(SEthPh)18 NC with 158 H2O.

58



APPENDIX

SUPPORTING INFORMATION

A.1 CO2 ACTIVATION ON CU-BASED ZR-DECORATED

NANOPARTICLES

Figure A1: Three initial adsorption configurations of CO2 on the Cu54Zr NP were considered:

(a) CO2 molecule parallel to the Cu-Zr bond, (b) CO2 adsorption to the NP with C of CO2

interacting with Zr on the NP, and (c) perpendicular CO2 adsorption with the O atom

pointing to Zr.
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Figure A2: Different dopant sites of two Zr atoms in the 55-atom Cu53Zr2 NP. The value be-

low each NP is the stability of the NPs relative to the most stable structure found (Cu53Zr2 1).

Figure A3: Chemisorbed CO2 on Cu53Zr2 1 (most stable Cu53Zr2 NP as shown in Figure

A2). The binding energy of CO2 has been calculated to be -1.18 eV, which is strong and

comparable to the segregated case of Zr.
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Figure A4: Local partial density of states (PDOS) of the d electrons for the Cu55-xZrx NPs.

The asterisks and the solid lines below the PDOS represent the HOMO orbital energies

and dC of the Cu55-xZrx NPs. (x = 2 -12), respectively. The green asterisk corresponds

to the LUMO orbital of the CO2 molecule. It should be noticed that the increasing Zr

content brings the NP HOMO orbitals closer to the CO2 LUMO, resulting to stronger CO2

adsorption. The IP correlations presented in Figure 5(b) of the manuscript are relevant to

the energy of the HOMO orbitals (HOMO energy can approximate the IP).

61



Figure A5: Surface oxidation configurations for the studied Cu54Zr NPs, for which the Zr

atom is oxidized with either two or four oxygen atoms: a) Cu54ZrO2 with Zr on a CN=6 site

before oxidation. One oxygen atom bridges a Zr-Cu bond, and the other is on a hollow-site

position between Cu and Zr. b) Cu54ZrO4 with Zr on a CN=6 site before oxidation. All

four oxygen atoms occupy hollow-site positions between Cu and Zr. c) Cu54ZrO2 with Zr on

a CN=8 site before oxidation. Both oxygen atoms are on hollow sites between Cu and Zr.

d) Cu54ZrO4 with Zr on a CN=8 site before oxidation. All four oxygen atoms are on hollow

sites between Cu and Zr.

Figure A6: Lowest-energy adsorption configurations of CO2 on Cu54ZrO2 with Zr in a) CN=6

and b) CN=8 adsorption sites before oxidation and Cu54ZrO4 with Zr in c) CN=6 and d)

CN=8 before oxidation
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Figure A7: CO2-TPD profiles of CuZr/SiC, Cu/SiC, and ZrO2/SiC

A.2 INFLUENCE OF ATOMIC-LEVEL GOLD CATALYST

MORPHOLOGY ON CO2 ELECTROREDUCTION
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Figure A8: Electrocatalytic CO2 reduction performance of the two Au25 NCs. (a) Total

current density of CO2 reduction, (b) Faradaic Efficiency (FE) for CO production over Au25

nanosphere and nanorod catalysts, (c) FEs for CO and H2 at the potential of -1.07 and

-1.17 V over Au25 nanosphere and nanorod, respectively. (d) CO formation rates over Au25

nanosphere and nanorod.
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Figure A9: Different structures and associated free energies (∆G) for the *COOH formation

step (with respect to our reference state) on the surface of the NCs with a ligand removed.
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Figure A10: Different structures and associated free energies (∆G) for the CO (and H2O)

formation step (with respect to our reference state) on the surface of the NCs with a ligand

removed.
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Figure A11: (a) Electronic energies in eV for ligand removal from the nanosphere (black

line) and the nanorod (red line). The text on the lines refers to the type of ligand that

was removed. From the nanosphere, -SCH3 ligands were removed from the numbered sites

shown in (b). Note that site 1 is where -SCH3 was removed from in the manuscript. From

the nanorod, ligands were removed from the numbered sites shown in (c). Note that site 1

is where -Cl was removed from in the manuscript.
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A.3 ELUCIDATING THE ACTIVE SITES FOR CO2

ELECTROREDUCTION ON LIGAND-PROTECTED GOLD

NANOCLUSTERS

Table A1: Relative energies (to the lowest energy system) in eV of the Au25 nanoclusters

optimized with different multiplicities.

Table A2: Computed adiabatic electron affinities (AEA) and adiabatic ionization potentials

(AIP) of Au25(SCH3)10
0, Au25(SCH3)17

0, and Au25S(SCH3)17
0 in eV.
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Figure A12: CO2 adsorption on the negatively charged nanoclusters (a) Au25(SCH3)18
−,

(b) Au25(SCH3)17
−, (c)Au25S(SCH3)17

−. Note that physisorption was observed on all the

nanoclusters in this study (range: -0.07 to -0.16 eV).

Figure A13: Changes in electronic energy (∆E) for the reaction step of SCH3 removal from

Site A and Site B (shown in manuscript) of the Au25(SCH3)18
- NC (values are in eV).
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Figure A14: Free energy diagrams (∆G) for the (a) reduction of CO2 to CO and the (b)

hydrogen evolution reaction on the Au25(SCH3)17
- NC with and without solvation effects in

red and black, respectively. The Au25(SCH3)17
- NC and all reaction species were reoptimized

with and without solvation in Turbomole using PBE/TZVP to utilize the implicit solvation

model, COSMO.
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Figure A15: Electronic energy comparison for the reaction step of -SR and -R removal from

Au25(SCH3)18
- and Au25(EthPh)18

-. The similar magnitude of the electronic energies be-

tween ligand removal on Au25(SCH3)18
- and Au25(EthPh)18

- suggests that similar trends

would hold for free energies, as electronic energies capture the majority of enthalpic con-

tributions. This indicates that under reaction conditions removal of experimentally utilized

ligands (-SEthPh) is possible.
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Figure A16: Bader charge analysis of select atoms from the negatively charged nanoclusters

(a) Au25(SCH3)18
-, (b) Au25(SCH3)17

-, (c) Au25S(SCH3)17
-.

Figure A17: The projected density of states, PDOS (top graphs) for a ligand Au atom and

a S atom of (a) Au25(SCH3)18
-, the exposed Au atom of (b) Au25(SCH3)17

-, and the exposed

S atom of (c) Au25S(SCH3)17
-. Comparison of the exposed S atom PDOS (s and p states)

to the S atom PDOS of the fully protected NC, shows an increase in the electron density

near the Fermi level (0 eV) of the Au25S(SCH3)17
- NC which contributes to the reactivity

of the NC. The total density of states for the (a) Au25(SCH3)18
-, (b) Au25(SCH3)17

-, (c)

Au25S(SCH3)17
- NCs are shown in the bottom graphs.
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Figure A18: (a) HOMO-LUMO energy gaps (in eV) of the fully-protected and partially

ligand-removed NCs. A dramatic decrease in the gap is observed with ligand removal. (b)

Plots of the HOMO-LUMO orbitals. The white arrows point to the ligand removed sites

(-SCH3 and -CH3) from the NCs. Compared to Au25(SCH3)18
-, the electron density on

the exposed Au site of Au25(SCH3)17
- becomes more localized and the exposed S site of

Au25(SCH3)17
- becomes more directional, both of which contribute to the reactivity of these

generated sites.
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	3.2. CI-NEB calculations for the physisorbed to activated state of CO2 on the (a) Cu54Zr and (b) Cu55 NP. The values in red in (a) and (b) is the change in energy (E) from the phyisorbed to activated state of CO2 (E= Eactivated – Ephysisorbed). The negative (red) value in (a) represents an exothermic step, whereas, the positive value in (b) represents an endothermic step. The color code on the structure is as in Figure 3.1 with the addition of C and O (from CO2) colored grey and red, respectively.
	3.3. (a) Cu55-xZrx (x = 2, 4, 6, 8, 10, 12) decoration on the 55-atom NPs. (b) CO2 adsorption as a function of surface fraction of Zr on the Cu55-xZrx NPs. The dashed lines serve as a guide to the eye. The color code on the structure is as in Figure 3.1.
	3.4. (a) Deviation of adsorbed CO2 geometric properties from gas phase CO2 (b) CO2 BE as a function of total charge on CO2 for each Cu55-xZrx (x= 2, 4, 6, 8, 10, 12) NP. The inset figure shows chemisorbed CO2 on Cu43Zr12. The dashed lines in (a) and (b) serve as a guide to the eye. The color code on the structure is as in Figure 3.2.
	3.5. (a) Cu55-xZrx (x = 2, 4, 6, 8, 10, 12) decoration on the 55-atom NPs. The color code is as in Figure 1. (b) CO2 adsorption as a function of surface fraction of Zr on the Cu55-xZrx NPs. The dashed lines serve as a guide to the eye. The color code on the structure is as in Figure 3.2.
	3.6. (a) CO2 dissociation reaction path on Cu55 (black line) and Cu54Zr (red line). For Cu55, TS represents breaking of a C-O bond, with a C-O bond length of 1.87 Å. For Cu54Zr, TS1 represents the breaking of a C-O bond, with a C-O bond length of 1.73 Å and TS2 represents the diffusion of O from a top site to hollow site configuration. (b) Optimized structures for the CO2 dissociation to CO and O on the Cu55 (top row) and Cu54Zr (bottom row) NPs.The color code on the structure is as in Figure 3.2.
	4.1. (a) Structures for the nanorod and the nanosphere in the presence of the NH4+ and SbF6- counterions, respectively. Au atoms are shown in pink, S atoms shown in yellow, C atoms shown in grey, H atoms shown in white, N atoms shown in bright blue, Sb shown in purple, and F shown in light blue. The circled regions on the NCs demonstrate sites of ligand removal on the nanosphere (-SCH3) and nanorod (SCH3, -Cl, and PH3) (b) G values for ligand removal (in eV) from the NCs at 0 V vs RHE, where LR1ex.4ptNC represents "ligand-removed nanocluster", NS is nanosphere, and NR is nanorod. The blue and green lines represent removing a SCH3 and -Cl from the nanorod with SbF6- counterions, respectively and the red line represents removing SCH3 from the nanosphere with a NH4+ counterion. All ligand removal steps are treated as electrochemical reduction steps.
	4.2. Free energy diagrams (G) for CO2 reduction to CO on the ligand-removed NCs at 0 V vs RHE. The black, blue, green, and red lines represent CO2 reduction to CO on the nanorod with PH3 removed, the nanorod with SCH3 removed, the nanorod with -Cl removed, and on the nanosphere with SCH3 removed, respectively.
	5.1. Schematic of the fully-ligand protected Au25(SCH3)18 NC. The system is composed of a Au13 icosahedral core protected by a shell network of six Au2(SR)3. The Au, S, C, and H atoms are colored yellow, blue, grey, and white, respectively. The labels â•œAâ•š and â•œBâ•š on the Au2(SR)3 shell network represent the two distinct types of coordinated sulfur in the NC shell. 
	5.2. A cycle which illustrates potential states of the Au25 NC under reaction conditions. The top and bottom rows, show electron transfer to form the fully ligand-protected and partially ligand removed NCs in each charge state, respectively. The vertical steps indicate ligand removal from Au25(SR)18q to form Au25(SR)17q .
	5.3. Free energy diagrams (G) for the (a) reduction of CO2 to CO and (b) hydrogen evolution on the fully ligand-protected Au25(SCH3)18q (q= -1, 0, +1) NCs. The black, red, and blue lines represent the energy diagrams generated using a NC in the -1, 0, and +1 charge states, respectively. The solid lines illustrate the energy diagrams at U = 0 V, while the dashed lines represent the energy diagrams at an applied potential of U = -1.0 V. (c) Illustrations of the CO2 reduction and the hydrogen evolution reactions. The Au, S, C, and O, atoms are colored yellow, blue, grey, and red, respectively. The H atoms are white, except for H on the carboxyl (in CO2 reduction) and the adsorbed H (in hydrogen evolution) which are colored lime green for clarity. 
	5.4. (a) Schematic for reduction of the fully ligand-protected NCs (Au25(SCH3)18q) to partially ligand-removed, Au25(SCH3)17q. (b) Free energy diagram for removing one -SCH3 from the NC. As described in Figure 5.3, the colored, solid, and dashed lines represent the different charge states and energetics at U = 0 V and at U = -1.0 V, respectively.
	5.5. Free energy diagrams (G) for the (a) reduction of CO2 to CO and the (b) hydrogen evolution reaction on the Au25(SCH3)17q (q= -1, 0, +1) NCs (with a ligand removed). (c) Illustrations of CO2 reduction and H2 evolution reaction steps. The color code for the diagrams is as described in Figure 5.3.
	5.6. (a) Schematic for reduction of the fully ligand-protected NC (Au25(SCH3)18q) to one with -CH3 removed, Au25S(SCH3)17q. (b) Free energy diagram for removing one -CH3 from the NC. As described in Figure 5.3, the colored, solid, and dashed lines, represent the charge states, the energetics at U = 0 V and at U = -1.0 V, respectively. 
	5.7. Free energy diagrams (G) for the (a) reduction of CO2 to CO and the (b) hydrogen evolution on the -CH3 removed Au25S(SCH3)17- NC and on the -SCH3 removed Au25(SCH3)17- NC. The orange and black lines represent the energy diagrams for the Au25S(SCH3)17- and Au25(SCH3)17- NCs, respectively. The solid lines illustrate the energy diagrams at U = 0 V, while the dashed lines represent the energy diagrams at an applied potential of U = -1.0 V. The color code for (c) the illustrations of CO2 reduction and H2 evolution are as described in Figure 5.3.
	5.8. (a) Difference in limiting potentials of CO2 reduction and hydrogen evolution (UL(CO2) - UL(H2)). The color code represents the three charge states of the Au25 NC (black: negative, red: neutral, blue: positive).
	6.1. Optimized geometry of the solvated Au25(SEthPh)18 NC with 158 H2O.
	A1. Three initial adsorption configurations of CO2 on the Cu54Zr NP were considered: (a) CO2 molecule parallel to the Cu-Zr bond, (b) CO2 adsorption to the NP with C of CO2 interacting with Zr on the NP, and (c) perpendicular CO2 adsorption with the O atom pointing to Zr.
	A2. Different dopant sites of two Zr atoms in the 55-atom Cu53Zr2 NP. The value below each NP is the stability of the NPs relative to the most stable structure found (Cu53Zr2_1).
	A3. Chemisorbed CO2 on Cu53Zr2_1 (most stable Cu53Zr2 NP as shown in Figure A2). The binding energy of CO2 has been calculated to be -1.18 eV, which is strong and comparable to the segregated case of Zr.
	A4. Local partial density of states (PDOS) of the d electrons for the Cu55-xZrx NPs. The asterisks and the solid lines below the PDOS represent the HOMO orbital energies and dC of the Cu55-xZrx NPs. (x = 2 -12), respectively. The green asterisk corresponds to the LUMO orbital of the CO2 molecule. It should be noticed that the increasing Zr content brings the NP HOMO orbitals closer to the CO2 LUMO, resulting to stronger CO2 adsorption. The IP correlations presented in Figure 5(b) of the manuscript are relevant to the energy of the HOMO orbitals (HOMO energy can approximate the IP).
	A5. Surface oxidation configurations for the studied Cu54Zr NPs, for which the Zr atom is oxidized with either two or four oxygen atoms: a) Cu54ZrO2 with Zr on a CN=6 site before oxidation. One oxygen atom bridges a Zr-Cu bond, and the other is on a hollow-site position between Cu and Zr. b) Cu54ZrO4 with Zr on a CN=6 site before oxidation. All four oxygen atoms occupy hollow-site positions between Cu and Zr. c) Cu54ZrO2 with Zr on a CN=8 site before oxidation. Both oxygen atoms are on hollow sites between Cu and Zr. d) Cu54ZrO4 with Zr on a CN=8 site before oxidation. All four oxygen atoms are on hollow sites between Cu and Zr.
	A6. Lowest-energy adsorption configurations of CO2 on Cu54ZrO2 with Zr in a) CN=6 and b) CN=8 adsorption sites before oxidation and Cu54ZrO4 with Zr in c) CN=6 and d) CN=8 before oxidation
	A7. CO2-TPD profiles of CuZr/SiC, Cu/SiC, and ZrO2/SiC
	A8. Electrocatalytic CO2 reduction performance of the two Au25 NCs. (a) Total current density of CO2 reduction, (b) Faradaic Efficiency (FE) for CO production over Au25 nanosphere and nanorod catalysts, (c) FEs for CO and H2 at the potential of -1.07 and -1.17 V over Au25 nanosphere and nanorod, respectively. (d) CO formation rates over Au25 nanosphere and nanorod.
	A9. Different structures and associated free energies (G) for the *COOH formation step (with respect to our reference state) on the surface of the NCs with a ligand removed. 
	A10. Different structures and associated free energies (G) for the CO (and H2O) formation step (with respect to our reference state) on the surface of the NCs with a ligand removed. 
	A11. (a) Electronic energies in eV for ligand removal from the nanosphere (black line) and the nanorod (red line). The text on the lines refers to the type of ligand that was removed. From the nanosphere, -SCH3 ligands were removed from the numbered sites shown in (b). Note that site 1 is where -SCH3 was removed from in the manuscript. From the nanorod, ligands were removed from the numbered sites shown in (c). Note that site 1 is where -Cl was removed from in the manuscript.
	A12. CO2 adsorption on the negatively charged nanoclusters (a) Au25(SCH3)18-, (b) Au25(SCH3)17-, (c)Au25S(SCH3)17-. Note that physisorption was observed on all the nanoclusters in this study (range: -0.07 to -0.16 eV). 
	A13. Changes in electronic energy (E) for the reaction step of SCH3 removal from Site A and Site B (shown in manuscript) of the Au25(SCH3)18- NC (values are in eV). 
	A14. Free energy diagrams (G) for the (a) reduction of CO2 to CO and the (b) hydrogen evolution reaction on the Au25(SCH3)17- NC with and without solvation effects in red and black, respectively. The Au25(SCH3)17- NC and all reaction species were reoptimized with and without solvation in Turbomole using PBE/TZVP to utilize the implicit solvation model, COSMO. 
	A15. Electronic energy comparison for the reaction step of -SR and -R removal from Au25(SCH3)18- and Au25(EthPh)18-. The similar magnitude of the electronic energies between ligand removal on Au25(SCH3)18- and Au25(EthPh)18- suggests that similar trends would hold for free energies, as electronic energies capture the majority of enthalpic contributions. This indicates that under reaction conditions removal of experimentally utilized ligands (-SEthPh) is possible.
	A16. Bader charge analysis of select atoms from the negatively charged nanoclusters (a) Au25(SCH3)18-, (b) Au25(SCH3)17-, (c) Au25S(SCH3)17-.
	A17. The projected density of states, PDOS (top graphs) for a ligand Au atom and a S atom of (a) Au25(SCH3)18-, the exposed Au atom of (b) Au25(SCH3)17-, and the exposed S atom of (c) Au25S(SCH3)17-. Comparison of the exposed S atom PDOS (s and p states) to the S atom PDOS of the fully protected NC, shows an increase in the electron density near the Fermi level (0 eV) of the Au25S(SCH3)17- NC which contributes to the reactivity of the NC. The total density of states for the (a) Au25(SCH3)18-, (b) Au25(SCH3)17-, (c) Au25S(SCH3)17- NCs are shown in the bottom graphs.
	A18. (a) HOMO-LUMO energy gaps (in eV) of the fully-protected and partially ligand-removed NCs. A dramatic decrease in the gap is observed with ligand removal. (b) Plots of the HOMO-LUMO orbitals. The white arrows point to the ligand removed sites (-SCH3 and -CH3) from the NCs. Compared to Au25(SCH3)18-, the electron density on the exposed Au site of Au25(SCH3)17- becomes more localized and the exposed S site of Au25(SCH3)17- becomes more directional, both of which contribute to the reactivity of these generated sites.
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