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Economic benefits of shale gas production in addition to its potential for enabling energy 

security are driving the strategic development of unconventional natural gas in the U.S. 

However, shale gas production poses potential detrimental impacts on the surrounding 

ecosystems. In particular, sustainable management of high salinity wastewater is one of the 

critical challenges facing shale gas industry. While recycling shale gas wastewater is a practical 

short-term solution to minimize total water use in the fracturing process it may not be a viable 

strategy from a long-term management perspective. Moreover, direct disposal into Salt Water 

Disposal (SWD) wells which is the most common management strategy in the U.S. is not cost 

effective in Marcellus shale play due to limited disposal capacity. 

This work develops a systems-level optimization framework for guiding economically 

conscious management of high salinity wastewater in Marcellus shale play in Pennsylvania (PA) 

with a focus on using membrane distillation (MD) as the treatment technology. Detailed techno-

economic assessment (TEA) is performed to assess the economic feasibility of MD for treatment 

of shale gas wastewater with and without availability of waste heat. Natural gas compressor 

stations (NG CS) are chosen as potential sources of waste heat and rigorous thermodynamic 

models are developed to quantify the waste heat recovery opportunities from NG CS. The 

information from waste heat estimation and TEA are then utilized in the optimization framework 
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for investigating the optimal management of shale gas wastewater. Wastewater management 

alternatives ranging from direct disposal into SWD wells to advanced centralized, decentralized, 

and onsite treatment options using MD are included in the optimization model. 

The optimization framework is applied to four case studies in Greene and Washington 

counties in southwest and Susquehanna and Bradford counties in Northeast PA where major 

shale gas development activities take place. The results of this analysis reveal that onsite 

treatment of wastewater at shale gas extraction sites in addition to treating wastewater at NG CS 

where available waste heat could be utilized to offset the energy requirements of treatment 

process are the most economically promising management options that result in major economic 

benefit over direct disposal into SWD. 
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1.0  INTRODUCTION 

The United States (U.S.) energy landscape is dramatically changing as a result of recent shift 

toward increased natural gas production [1, 2]. Natural gas production increased from 0.3 trillion 

cubic feet in 2000 to 9.6 trillion cubic feet in 2012 in the U.S. [2]. Unconventional shale gas 

represents a promising source of energy that plays a fundamental role in the U.S. energy security 

as U.S. has become a natural gas exporter in 2017 and it is expected to continue to export more 

natural gas than it imports throughout 2018 [3, 4]. Besides all these potential benefits of shale 

gas industry, shale gas production has been controversial as it is accompanied by potential 

negative impacts on the surrounding ecosystems and raises concerns associated with greenhouse 

gas (GHG) emissions [5-7], health issues [8, 9], the potential for drinking water [10] and 

groundwater contamination [11], high water footprint [12], and high salinity wastewater 

management [13, 14].  

In particular, shale gas development poses a critical challenge of managing vast quantities of 

wastewater with salinity level more than 10 times the salinity of seawater generated in the 

process of hydraulic fracturing [15]. Wastewater generated during hydraulic fracturing and shale 

gas production includes flowback and produced water. During hydraulic fracturing, a mixture of 

water and chemicals (Table 1) known as fracturing fluid [16] is injected in a horizontal well to 

fracture the formation rock, increase its permeability and facilitate the flow of oil and gas into 
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the well. Flowback returns to the surface after well fracturing and before shale gas production 

stage, taking up to several weeks while produced water returns to the surface after fracturing is 

completed and during the shale gas production stage and, therefore, will be generated during the 

entire gas production stage [17]. The salinity and flowrate of shale gas wastewater changes over 

time. While the salinity of this wastewater can be less than 1,000 mg/Liter in the first week of 

hydraulic fracturing it can dramatically increase to about 350,000 mg/Liter by end of gas 

extraction phase [18]. On the other hand, the volumetric flowrate of this wastewater decreases 

over time as it can fluctuate between about 500 m3/day to less than 1 m3/day [19, 20]. Hence, 

flowback water is usually associated with lower salinity and higher flow rates compared to 

produced water which can be saturated with salt but in lower volumetric flow rates [21]. Figure 1 

shows how the quantity and quality of flowback water changes over time [20]. The composition 

of produced water over the lifetime of a well is shown in Figure 2 [22]. 

However, it is important to note there is no typical fractured well and the quality and 

quantity of shale gas generated wastewater varies greatly across geographical sites due to 

differences in the geologic formation, well operator, either the well is drilled vertically or 

horizontally, and recycling rate of wastewater at wellpads [23, 24]. The high salinity of flowback 

and produced water calls for proper management of this wastewater [25]. Long-term adoption of 

shale gas resources requires a comprehensive understanding of the economics and environmental 

impacts associated with shale gas wastewater management which has been relatively 

understudied in the existing work on shale gas sustainable development. Currently, a number of 

shale gas wastewater management strategies are being used including injection in underground 

wells evaporation, recycling, and advanced treatment. Each of these management strategies is 

described in the following section.  
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Table 1. Common chemical additives for hydraulic fracturing [14] 

Additive type Example compounds Purpose 

Acid Hydrochloric acid Clean out the wellbore, dissolve minerals, 

and initiate cracks in rock 

Fiction reducer Polyacrylamide, petroleum 

distillate 

Minimize friction between the fluid and 

the pipe 

Corrosion inhibitor Isopropanol, acetaldehyde Prevent corrosion of the pipe by diluted 

acid 

Iron control Citric acid, thioglycolic acid Prevent precipitation of metal oxides 

Biocide Glutaraldehyde, 2,2-dibromo-3-

nitrilopropionamid (DBNPA) 

Bacterial conrol 

Gelling agent Guar/xanthan gum or 

hydroxyethyl cellulose 

Thicken water to suspend the sand 

Crosslinker Borate salts Maximize fluid viscosity at high 

temperatures 

Breaker Ammonium persulfate, 

magnesium peroxide 

Promote breakdown of gel polymers 

Oxygen scavenger Ammonium bisulfite Remove oxygen from fluid to reduce pipe 

corrosion 

pH adjustment Potassium or sodium hydroxide 

or carbonate 

Maintain effectiveness of other compounds 

(such as crosslinker) 

Proppant Silica quartz sand Keep fractures open 

Scale inhibitor Ethylene glycol Reduce deposition on pipes 

surfactant Ethanol, isopropyl alcohol, 2-

butoxyethanol 

Decrease surface tension to allow water 

recovery 

 

 

 

 

Figure 1. Total dissolved solids (TDS) and flowback volume in the early stage of well completion [20] 
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Figure 2. Total dissolved solids in produced water during well production for 14 wellpads represented by 

different colors over a 100-week time period [26]  

1.1 SHALE GAS WASTEWATER MANAGEMENT STRATEGIES 

The high salinity of flowback and produced water calls for proper management of this 

wastewater. Currently, a number of shale gas wastewater management strategies are being used 

including injecting, evaporation, recycling, and advanced treatment. Each of these management 

strategies is described in the following section. 

1.1.1 Injection 

The business-as-usual (BAU) management strategy in the U.S. is to inject high salinity shale gas 

wastewater at high pressure into disposal wells at depths of several thousand feet [27, 28]. There 
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is a total of about 144,000 class II disposal wells in the U.S. of which 20% is allocated for salt 

water disposal (SWD) [29]. However, there is not sufficient disposal capacity in states such as 

Pennsylvania (PA) as there are only 9 SWD wells in this state, with only three of them being 

commercial wells, as compared to 12,000 and 800 SWD wells in Texas and Oklahoma, 

respectively [30]. Moreover, this strategy has come under increased scrutiny due to increased 

seismic activity in the proximity of disposal wells [31]. 

1.1.2 Evaporation 

Shale gas produced wastewater could also be stored in large evaporation ponds where the 

majority of wastewater evaporates to the atmosphere. However, this strategy may only be used in 

areas with arid or semi-arid climate because of higher evaporation rate [32]. In addition, this 

management strategy raises a number of environmental concerns including leakage of 

wastewater into soil or groundwater sources as well as releasing the volatile compounds present 

in shale gas wastewater into the atmosphere [32, 33], thus making its utility restricted. 

1.1.3 Recycling 

In areas of limited disposal capacity (e.g., Pennsylvania) or where water resources are stressed 

(e.g., Texas and Oklahoma), recycling of shale gas wastewater is an effective alternative to direct 

underground injection of wastewater.  Shale gas wastewater is blended with a portion of 

freshwater in order to meet the fracturing fluid requirements. This strategy is increasingly being 
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used in PA primarily due to insufficient disposal capacity in the state and long transportation 

distances to disposal wells in Ohio [32].   

1.1.4 Treatment at Centralized Wastewater Treatment (CWT) Facilities 

Shale gas wastewater could also be processed at CWT facilities. However, the volumetric 

flowrate of shale gas wastewater stream is limited to 1% of the plant daily flowrate due to high 

salinity of shale gas wastewater which may disrupt microbial digestion processes at high 

concentration [13]. Moreover, while treatment processes at CWT facilities will be effective to 

remove total suspended solids (TSS) and oil and grease, these processes are not able to provide 

sufficient treatment for removing total dissolved solids (TDS) in shale gas wastewater [13]. 

Therefore, Pennsylvania department of environmental protection (PA DEP) requested to cease 

the discharge of shale gas wastewater into wastewater treatment plants [13]. 

1.1.5 Advanced Treatment 

Although recycling may be an effective short-term solution for shale gas wastewater 

management, it cannot guarantee the long-term sustainability of shale gas industry especially 

after all the wells in a given shale play are in the producing stage and no water is needed for 

future fracturing jobs. This calls for development of innovative desalination technologies 

designed specifically for shale gas generated wastewater. Desalination technologies such as 

reverse osmosis (RO) and forward osmosis (FO) have been proposed for shale gas wastewater 

management [22, 34], however, the applicability of these technologies is limited to wastewater 
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with up to 40,000 and 70,000 mg/L of TDS, respectively, [15, 26, 35] primarily because of the 

high osmotic pressure requirements [36, 37]. Membrane distillation (MD) is a promising 

treatment technology for high salinity wastewaters [38]. Recent studies demonstrated the 

potential of MD to treat very high salinity wastewaters generated from shale gas operations [39, 

40]. The performance of six commercially available hydrophobic microfiltration membranes was 

compared in a direct contact membrane distillation (DCMD) system for treating wastewater with 

up to 300,000 mg/L total dissolved solids (TDS) [39]. All membranes showed excellent rejection 

of dissolved ions, including naturally occurring radioactive material (NORM), which is a 

significant environmental concern with this high salinity wastewater [39].  

1.2 MEMBRANE DISTILLATION FOR DESALINATION OF HIGH SALINITY 

WASTEWATERS 

Desalination has emerged as a promising solution to address the world’s water scarcity problem 

by removing dissolved salts from saline or brackish water, thus making it applicable for a 

number of water sources and uses [41, 42]. Membrane-based processes such as reverse osmosis 

(RO) and electrodialysis (ED) and thermal processes such as multi effect distillation (MED), 

multi stage flash (MSF), and vapor compression distillation (VCD) are the two main categories 

of commercial desalination technologies with RO and MSF accounting for 78% of the 

desalination capacity worldwide [43]. However, RO is limited to about 40,000 mg/l of total 

dissolved solids (TDS) in the feed as the hydraulic pressure required for RO systems can be up to 

380 bar at the solubility limit of sodium chloride [44]. Among thermal based desalination 
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technologies, membrane distillation (MD) shows the most promising performance for 

desalination of high salinity wastewaters [45]. Over the past two decades, there have been 

noticeable improvements in the design of membranes and technical performance of this 

technology [46]. Prior studies have shown that MD has the potential to achieve up to 99.9% of 

salt rejection [47-50] and 99.5% rejection of organic materials [51, 52].  These characteristics 

make MD one of the most promising technologies for treatment of high salinity wastewaters.  

Membrane distillation operates at near ambient pressure and requires significantly lower capital 

investment [41]. Desalination of saline waters using different configurations of membrane 

distillation has been studied extensively [53-57]. With low operating temperatures, relatively low 

fouling propensity and lower energy requirements for pumping compared to pressure driven 

membrane processes, membrane distillation may be an attractive alternative for treatment of high 

salinity wastewaters. MD has been shown to be effective in removing heavy metals from 

wastewater [58] and concentrating radioactive waste [59] so that the concentrate could be 

disposed safely. Direct Contact Membrane Distillation (DCMD), where both the hot feed and the 

recirculating cold permeate are in direct contact with the membrane, has been evaluated for 

desalination of sea water [47, 54, 60] as well as fruit juice concentration [61-63] and acid 

recovery [64]. A previous study has demonstrated the potential of membrane distillation to treat 

very high salinity wastewaters generated from shale gas operations [39]. The performance of six 

commercially available hydrophobic microfiltration membranes was compared in a direct contact 

membrane distillation (DCMD) system for treating wastewater with up to 300,000 mg/L total 

dissolved solids (TDS). All membranes showed excellent rejection of dissolved ions, including 

naturally occurring radioactive material (NORM), which is a significant environmental concern 

with this high salinity wastewater [39].  
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1.3 MARCELLUS SHALE PLAY 

Marcellus Shale (Figure 3) is a major natural gas (NG) reservoir with steadily increasing 

production since 2008 that currently accounts for about 40% of the total U.S. shale gas 

production [65]. Natural gas extraction from the Marcellus shale in Pennsylvania, West Virginia 

and Ohio is accompanied by large amounts of produced water that contains high total dissolved 

solids (TDS). Figure 4 shows shale gas production in different shale plays in the U.S. from 200-

2016 [66]. Figure 5 and Figure 6 show shale gas production and flowback and produced water 

generation in Pennsylvania [30]. 

Future extraction of shale gas requires economical management of wastewater while also 

minimizing potential environmental impacts. Produced water injection into Class II Underground 

Injection Control (UIC) wells is the dominant management alternative in many shale plays with 

sufficient disposal capacity [15, 67, 68].  There are a total of about 144,000 Class II disposal 

wells in the U.S. with the majority of wells located in Texas (50,000 wells), California, Kansas, 

and Oklahoma [69]. Salt water disposal (SWD) wells account for 20% of total disposal wells of 

which 12,000 are located in Texas, 800 in Oklahoma, and only 8 in Pennsylvania [69]. In the 

Marcellus shale region, the average cost of produced water transportation from the well site in 

Pennsylvania to injection wells in Ohio or West Virginia ranges from 10 to 20 $/barrel (bbl) [70, 

71].  In addition, the costs associated with deep well injection is estimated at $1/bbl [70]. Lack of 

sufficient disposal capacity in Pennsylvania requires the development of alternative approaches 

for management of high TDS produced water [72]. In areas of limited disposal capacity (e.g., 

Pennsylvania) or where water resources are stressed (e.g., Texas and Oklahoma), reuse and 

recycling of produced water is an attractive alternative to direct underground injection of 
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produced water. Recent studies have also documented concerns over induced seismic activities 

due to deep well injection [73-76], further emphasizing the need for the development of 

innovative management strategies for produced water to avoid unintended environmental 

consequences. Management strategies such as injecting wastewater into disposal wells, residual 

waste processing and reuse, roadspreading, and landfilling that are currently used in 

Pennsylvania may not guarantee the long-term sustainability of shale gas development [30]. 

 

 

 

 

Figure 3. Structure map of Marcellus formation [77] 
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Figure 4. U.S. Energy Information Administration (EIA) official shale gas production data through July 

2016 [78] 

 

Figure 5. Shale gas production in PA from 2010-2014 stated as trillion cubic feet (TCF) [30] 
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Figure 6. Flowback/produced water generation in PA from 2010-2014 stated as million barrels (MMbbl) 

[30] 

 

1.4 SYSTEMS LEVEL OPTIMIZATION 

Understanding the potential economic impacts of shale gas produced water treatment prior to its 

widespread commercialization and use is pivotal for avoiding unintended consequences and for 

guiding the sustainable development of the shale gas industry. As such, techno-economic assessment 

(TEA) is performed to evaluate the economics of produced water treatment using MD under two 

scenarios: 1) base case in which thermal energy requirements of the treatment process are met by 

adding external steam to the process and 2) waste heat integration scenario in which thermal energy 

requirements for the MD process are met by integrating the treatment process with available waste 

heat sources at NG CS. 
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Moreover, holistic assessment of the economic impacts of shale gas wastewater treatment in 

comparison to other management strategies is imperative. Systems-level optimization has emerged as 

the prevalent methodological framework for optimal design of shale gas supply chain. Accordingly, a 

systems-level optimization model is developed in this study that takes into account associated costs 

of treatment, transportation, and injection of different strategies for shale gas wastewater 

management, thus aiding to identify the optimum management strategy for a given shale play.  

 

1.5 OBJECTIVES OF THIS STUDY 

Several studies evaluated the use of MD to treat high salinity produced water from steam assisted 

gravity drainage process [79-81], oilfield produced water [82], coal seam gas produced water 

[83, 84] and produced water generated from natural gas exploration [85]. The feed water used in 

these studies had total dissolved solids (TDS) ranging from 4,000 to 70,000 mg/l and was 

concentrated up to 230,000 mg/l [85]. However, none of the studies with oil and gas produced 

waters included a comparison of different hydrophobic membranes or discussed the potential for 

membrane fouling by inorganic deposits that are likely to form at high water recoveries and after 

a prolonged period of operation. 

DCMD was evaluated for treatment of high salinity wastewaters from unconventional gas 

extraction. Initial screening of hydrophobic membranes to select the most promising ones in 

terms of mechanical stability and permeate flux also evaluated the key membrane parameters 

that affect its permeability. The morphology and composition of the inorganic deposit formed on 
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the membrane surface when actual produced waters are concentrated up to halite saturation were 

assessed together with their impact on permeate flux and quality. 

Due to low operating temperatures, MD could be employed using solar energy or waste 

heat to increase the temperature of the feed solution [86]. While many studies reported that 

integrating MD with waste heat sources can lower its operating cost [41, 87, 88], the focus of 

those studies was often on a qualitative understanding without identifying specific sources of 

waste heat or conducting a systems analysis to evaluate the feasibility of integrating full scale 

MD technology with actual waste heat sources. Furthermore, there are no studies in the literature 

that are focused on the feasibility of MD technology utilizing waste heat for treatment of high 

salinity produced water from shale gas extraction.  

Relatively abundant and unutilized source of waste heat is available at existing natural 

gas compressor stations (NG CS) in the U.S. [89].  This study evaluated the synergies and 

potential of MD technology for treatment of shale gas produced water utilizing this specific 

source of waste heat. A mathematical model based on the fundamentals of heat and mass transfer 

processes was developed and calibrated for a DCMD process using laboratory-scale experiments. 

The model was then used to optimize the design and operating parameters of a full-scale DCMD 

system. The energy analysis from this model was combined with the information about available 

waste heat at NG CS in Pennsylvania (PA) region of Marcellus shale to estimate the amount of 

produced water that can be treated in distributed DCMD wastewater treatment plants. Results 

from this study provide important insights in the operation of an integrated system and can be 

extended to other sources of industrial waste heat combined with other thermally-driven water 

treatment technologies. 
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While MD offers several advantages over other desalination techniques, techno-economic 

assessment is necessary to evaluate the economic feasibility of MD for treatment of shale gas 

produced water treatment. To date, little emphasis has been placed on evaluating the economic 

performance of MD technology for treating produced water. As such, TEA is also needed to 

develop a comprehensive understanding of the cost drivers for MD treatment of high salinity 

shale gas wastewaters. 

1.6 RESEARCH OBJECTIVES 

The goals of this research are to investigate the water-energy nexus opportunities in shale gas 

wastewater management. This work will utilize metrics and methodologies derived from 

multiple disciplines including thermodynamics, applied statistics, economics, industrial ecology, 

and systems engineering. This interdisciplinary approach allows for a broader understanding of 

an emerging produced water management technology and potential environmental implications 

and tradeoffs of commercial scale adoption of this technique as compared to business-as-usual 

management strategies. Specific objectives include: 

1. Investigate the waste heat recovery opportunities from NG CS on a state level in the U.S. via 

thermodynamic modeling of the waste heat generation process while accounting for the 

uncertainty in operating hours of NG CS and the type of compressor engines.  

2. Perform techno-economic assessment (TEA) of MD for shale gas produced water 

management under two scenarios: a) base case scenario with process heating requirements 

met by external steam b) integration of MD with waste heat available at NG CS. 
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3.  Estimate the theoretical treatment capacity at individual NG CS using the amount of 

available waste heat at each station and specific heat requirements for treatment of produced 

water using MD.  

4. Propose and develop an optimization framework to determine the most economical shale gas 

produced water management strategy while including regional opportunities for integration 

of MD technology with available waste heat at NG CS in Marcellus shale play. 

1.7 ORGANIZATION OF DISSERTATION 

The dissertation is organized as follows: 

Chapter 2 presents the energy and exergy content of available waste heat at Natural Gas 

Compressor Stations (NG CS), avoidable life cycle greenhouse gas (GHG) emissions by using 

available waste heat at NG CS, and electricity generation potential of available waste heat at NG 

CS for 1,380 nonzero capacity compressor stations in the lower 48 states in the U.S. For each 

compressor station, comprehensive thermodynamic modeling is performed to estimate the 

quantity and quality of available waste heat in the exhaust stream of Gas Turbine (GT) and 

Internal Combustion (IC) compressor engines. Monte Carlo simulation is conducted to capture 

the uncertainty in the operating hours of compressor stations as the operation of NG CS may not 

be continuous due to daily or seasonal variability in gas demand.  

Chapter 3 develops a Techno-economic Assessment (TEA) model to evaluate the 

economic feasibility of membrane distillation (MD) for shale gas produced water treatment 

under two scenarios: (1) base case with external purchase of steam and (2) integrating MD with 
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waste heat from flue gas at NG CS. TEA model accounts for capital as well as operating and 

maintenance costs for a hypothetical MD plant. This work also compares total cost of treatment 

with the most common produced water management strategy at shale gas plays in the nation to 

provide a broader understating of the economics of produced water treatment.  

Chapter 4 develops an optimization framework for integrated shale gas produced water 

treatment. Management alternatives ranging from direct disposal in Class II injection wells to 

advanced centralized MD plant, treatment plants at NG CS, and onsite MD treatment units are 

evaluated. The model accounts for associated cost of transportation, treatment, and injection of 

produced water with each management strategy in order to find the optimum management 

strategy for four counties in Pennsylvania (PA). 

Chapter 5 summarizes the main conclusions of this dissertation and provides direct for 

future work. 

Additional information including detailed calculations and tabulated datasets are provided in 

the Appendices. Supporting information (S.I.) for Chapter 2 is provided in Appendix A, and S.I. for 

Chapter 3 is provided in Appendix B. 

 

1.8 INTELLECTUAL MERITS AND BROADER IMPACTS 

The results of this dissertation aid in identifying which management strategies are best suited for 

Marcellus shale play in Pennsylvania; and provide a broader understanding of regional water-energy 

nexus opportunities in shale gas development. Further, the findings of this research identify potential 
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opportunities for advanced treatment of shale gas wastewater using waste heat sources and provide 

insights regarding the economics of produced water treatment with and without integrating waste 

heat sources to the treatment process. This broad-based approach allows for a comprehensive 

examination of the economics of BAU management strategies as compared to more novel sustainable 

strategies—information that is pivotal for guiding the sustainable development of shale gas industry. 

Additionally, this research advances the concepts and framework of shale gas sustainable 

development via the development, utilization, and coupling of rigorous thermodynamic modeling, 

statistical models, detailed techno-economic modeling, and systems-level optimization. The body of 

this work takes the form of several peer-review articles that are at various stages of publication 

during the final writing herein: 

 

Refereed Journal Articles 

1. Lokare, O. R.; Tavakkoli, S.; Khanna V.; Vidic, R. D., Importance of Feed 

Recirculation for the Overall Energy Consumption in Membrane Distillation Systems. 

Desalination 2018, 428, pp 250-254 

2. Tavakkoli, S.; Lokare, O. R.; Vidic, R. D.; Khanna, V., A Techno-economic 

Assessment of Membrane Distillation for Shale Gas Produced Water. Desalination 2017, 

416, pp 24-34. (Chapter 3 in Thesis) 

3. Lokare, O. R.; Tavakkoli, S.; Khanna V.; Vidic, R. D., Fouling in Direct Contact 

Membrane Distillation of Produced Water from Unconventional Gas Extraction. Journal of 

Membrane Science 2017, 524, pp 493–501. 
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4. Lokare, O. R.; Tavakkoli, S.; Rodriguez, G.; Khanna, V.; Vidic, R. D., Integrating 

Membrane Distillation with Waste Heat from Natural Gas Compressor Stations for Produced 

Water Treatment in Pennsylvania. Desalination 2017, 413, pp 144-153 

5. Tavakkoli, S.; Lokare, O. R.; Vidic, R. D.; Khanna, V., Systems-Level Analysis of 

Waste Heat Recovery Opportunities from Natural Gas Compressor Stations in the US. ACS 

Sustainable Chemistry & Engineering 2016, 4 (7), pp 3618–3626. (Chapter 2 in Thesis) 

 

 

Manuscripts in preparation 

1. Tavakkoli, S.; Lokare, O. R.; Vidic, R. D.; Khanna, V., Shale Gas Wastewater 

Management Using Membrane Distillation: An Optimization Based Approach. Expected 

Submission February 2018 

2. Tavakkoli, S.; Chopra, S. S.; Khanna, V., Unraveling the Structure and Resilience of the 

United States Aviation Network. RSC Open Science, under review 

 

Specific Research Questions (RQ) and the corresponding chapter in which they are 

addressed are provided in Table 2 below: 

 

 
Table 2. Research Question (RQ) and corresponding thesis chapter in which they are addressed 

# Research Question (RQ) Paper Chapter 

1

1 

How much waste heat is available at natural gas 

compressor stations (NG CS) in the U.S.? What is 

the quality of available waste heat? What is the 

geographical distribution of available waste heat 

across the contiguous United States? What are the 

environmental sustainability implications of 

recovering available waste heat? 

Tavakkoli, S.; Lokare, O. R.; 

Vidic, R. D.; Khanna, V., 

Systems-Level Analysis of 

Waste Heat Recovery 

Opportunities from Natural Gas 

Compressor Stations in the US. 

ACS Sustainable Chemistry & 

CH2 
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Engineering 2016, 4 (7), pp 

3618–3626. 

2

2 

What is total cost of produced water treatment using 

membrane distillation (MD) with and without 

integrating available waste heat from natural gas 

compressor stations (NG CS)? 

Tavakkoli, S.; Lokare, O. R.; 

Vidic, R. D.; Khanna, V., A 

Techno-economic Assessment 

of Membrane Distillation for 

Shale Gas Produced Water. 

Desalination 2017, 416, pp 24-

34. 

CH3 

3

3 

What is the optimum strategy for produced water 

management in Pennsylvania? How does cost of 

produced water treatment using onsite membrane 

distillation (MD) units and centralized MD plants 

compare with other strategies such as business-as-

usual (BAU) management strategy which is direct 

disposal into salt water disposal (SWD) wells and 

installing treatment units at natural gas compressor 

stations (NG CS) where available waste heat could 

be utilized to offset the energy requirements of MD 

process? 

Tavakkoli, S.; Lokare, O. R.; 

Vidic, R. D.; Khanna, V., Shale 

Gas Wastewater Management 

Using Membrane Distillation: 

An Optimization Based 

Approach. Expected 

Submission February 2018 

CH4 

 

Chapter 2 is the peer reviewed version of the following article:  

Tavakkoli, S.; Lokare, O. R.; Vidic, R. D.; Khanna, V., Systems-Level Analysis of Waste Heat 

Recovery Opportunities from Natural Gas Compressor Stations in the US. ACS Sustainable 

Chemistry & Engineering 2016, 4 (7), pp 3618–3626. DOI: 10.1021/acssuschemeng.5b01685 

 

which has been published in final form at 

http://pubs.acs.org/doi/abs/10.1021/acssuschemeng.5b01685. This article may be used for non-

commercial purposes in accordance with ACS Publications Terms and Conditions for Self-

Archiving. 

 

 

Table 2 (continued).

http://pubs.acs.org/doi/abs/10.1021/acssuschemeng.5b01685
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2.0  A SYSTEMS-LEVEL ANALYSIS OF WASTE HEAT RECOVERY 

OPPORTUNITIES FROM NATURAL GAS COMPRESSOR STATIONS IN THE U.S. 

 

2.1 INTRODUCTION 

Depleting fossil fuels and heightened awareness of climate change have accelerated 

efforts for alternative energy sources and energy efficiency improvements [90, 91]. At the 

national level, approximately 62% of the primary energy consumed in the United States is 

dissipated as waste heat [92]. As such, recovery and productive use of waste heat offers a 

promising means for mitigating reliance on greenhouse gas (GHG) intensive fossil fuels. The 

industrial sector is responsible for about one third of total energy use and fossil fuel related GHG 

emissions in the Unites States. Simultaneously, about 20-50% of the energy consumed in 

industrial manufacturing processes is ultimately lost as unrecovered waste heat [93]. While 

developing alternative energy sources is critical for reducing dependence on fossil fuels and a 

secure energy future, recovery and reuse of waste heat is particularly attractive for improving the 

overall energy efficiency and environmental impacts of existing industrial processes [94]. 
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The majority of waste heat in industrial processes escapes via combustion exhaust gases, 

cooling water systems, and sidewall losses. Although industrial waste heat is a relatively 

abundant source of energy, it often has a low quality (at temperatures below 4500 F) [93] making 

it uneconomical and impractical to recover for most heat transfer applications [93]. One 

approach is to capture and reuse this low quality waste heat to meet the thermal energy demands 

of low temperature processes, thus minimizing the high exergy loss in converting high grade 

fossil fuels to low grade energy uses such as space heating and water heating [91]. However, the 

economic and technical viability of such waste heat recovery technologies still remains 

uncertain, which in turn, limits their effectiveness and application.  

Previous research has focused on minimizing waste heat losses and improving energy 

efficiency in the industrial sector by employing heat recovery technologies. Existing studies have 

quantified the potential for waste heat recovery in different processing steps of distinct industrial 

sectors such as glass manufacturing [95, 96], cement manufacturing [95, 97, 98], iron and steel 

manufacturing [99, 100], textile industry [101], aluminum production [95, 102], metal casting 

[103, 104], industrial boilers [105], and ethylene furnaces [105]. Goswami and Kreith provided a 

comprehensive overview of waste heat recovery potential and associated economic benefits 

resulting from about 70 waste heat recovery analyses in North America including paper, 

petroleum, food, minerals, and metals industries [106]. They concluded that annual economic 

savings of $150 million could be realized if waste heat recovery is employed in the 

manufacturing sector [106]. A recent study by the U.S. Department of Energy (U.S. DOE) 

quantified the amount of available waste heat in industrial manufacturing processes and 
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concluded that a total of about 1.6 million TJ (Tera Joules)/yr remains unrecovered in exhaust 

gases [93].  

Waste heat available at thermoelectric power plants has garnered particular attention 

primarily because of the significant portions of primary energy dissipated as low grade heat. 

Butcher and Reddy [107] evaluated the efficiency of waste heat recovery based power generation 

systems using the second law of thermodynamics. They investigated the effect of different 

operating conditions on heat recovery efficiency and concluded that gas inlet temperature and 

composition significantly influence the efficiency of power generation using waste heat in 

thermoelectric power plants [107]. Morrow et al. developed a theoretical model to quantify the 

available waste heat in three different energy streams in a typical thermoelectric power plant: (1) 

boiler blowdown, (2) steam diverted from bleed streams, and (3) the cooling water system. They 

further evaluated the potential for using waste heat streams to run a membrane distillation 

system.[108, 109] More recently, Gingerich and Mauter evaluated the quantity, quality, and 

spatial availability of waste heat from thermoelectric power plants.[110] Using the plant level 

data from Energy Information Agency (EIA), they estimated a total of 18.9 billion GJth (thermal 

Giga Joules) of residual heat to be available at power plants, 4% of which is discharged at 

temperature of 90°C or more.  

A relatively poorly understood source of high-grade waste heat are the existing natural 

gas (NG) compressor stations (CS) in the U.S. The U.S. NG pipeline network is a highly 

integrated transmission and distribution grid comprised of more than 300,000 [111-113] miles of 

interstate and intrastate transmission pipelines. To boost and maintain the pressure for forward 

movement of NG flowing through the pipeline network, 1,799 [111, 113, 114] CS with over 17 
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[111] million installed horsepower (see Figure 7) are located within this network. The pipeline 

network moves approximately 25 [115] trillion cubic feet (Tcf) of NG annually to residential, 

commercial and industrial consumers in the lower 48 States [111]. In each CS, a portion of the 

NG flowing through the network is combusted to provide energy for compressor engine to 

pressurize and move the gas through the system. While the size and layout of NG CS vary 

widely, all CS are comprised of two basic components: a compressor for enhancing the pressure 

of NG and a mechanical drive [116] used to provide power for the compressor. Internal 

Combustion (IC) and gas turbine (GT) engines are the two main types of mechanical drive at 

existing NG CS. Electric motors are not used widely in the U.S. as most NG CS are in remote 

locations where providing a reliable source of electricity is an operating challenge. Concurrently, 

about two-thirds of the fuel energy consumed by IC engines and GT is lost as waste heat mainly 

in the form of high temperature (>8000F) [117] exhaust combustion gases that are ideally suited 

for heat recovery [118]. However, to date, there has been little emphasis on identifying waste 

heat recovery potential at existing NG CS.  
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Figure 7. Installed horsepower (HP) at NG CS by state in 2008. Data was obtained from United States 

Energy Information Administration (EIA) 

 

Previous studies on waste heat has mainly focused on optimizing operation and planning 

of NG CS [119-123] or minimizing the fuel consumption [124, 125]. Wu et al. proposed a 

mathematical model to optimize the fuel cost in a network of CS by considering pressure drops 

at each CS and mass flow rate at each pipeline leg [126]. Ohanian and Kurz analyzed series and 

parallel arrangements of compressor units in a CS to determine the optimum outlet pressure 

mode [127]. A 2008 study by the International Natural Gas Association of America (INGAA) 

evaluated the energy recovery potential of the U.S. NG pipeline network [128]. The study 

identified the technical and economic factors affecting the energy recovery potential for three 

options including waste heat recovery for (1) power systems in pipeline compressor drivers, (2) 

turbo-expanders for pressure letdown recovery, and (3) turbine inlet air-cooling. However, the 

INGAA study only considered CS with an installed capacity of at least 15,000 HP and an annual 

load factor at or above 60% for economic viability considerations.  
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Given the increasing role of NG as a source of primary energy in the U.S. energy mix and 

the critical need for less-costly energy resources, as well as a desire to mitigate energy related 

carbon emissions and associated environmental impacts, this work develops a systems-level 

approach to quantify the available waste heat at existing NG CS in the United States.  Using 

actual data on installed capacity and spatial location of NG CS, we utilize rigorous 

thermodynamic and Monte Carlo uncertainty analysis for a comprehensive assessment of 

quantity, quality, and spatial availability of waste heat at existing NG CS. This work serves to 

add to the existing thin body of literature on waste heat recovery opportunities in the U.S. with a 

specific focus on NG CS, a highly underappreciated source of high temperature waste heat. The 

results from this investigation provide several important insights including (1) quantifying the 

magnitude and spatial availability of waste heat at the state level in the U.S., (2) quantifying the 

potential of NG CS waste heat in reducing life cycle greenhouse gas emissions, (3) discussing 

the potential beneficiary end uses for the NG CS available waste heat. These insights can be 

synthesized with prior studies to inform policy decisions into synergistic energy recovery and 

environmental improvement opportunities.  
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2.2 MATERIALS AND METHODS 

2.2.1 Compressor stations capacity and uncertainty quantification 

There are several steps and challenges in estimating the available waste heat at NG CS. 

The first step involves acquisition of installed capacity of NG CS. We acquired actual installed 

horsepower (HP) and spatial location of all NG CS in the U.S. via personal communications with 

contacts at the U.S. Energy Information Administration (EIA) [129]. Based on EIA report, a total 

of 1,380 non-zero capacity CS were operating in lower 48 states in 2008 which is in close 

agreement with a recent study that estimated a total of 1,375 CS on the national level [114].  

While other data sources such as the Environmental Protection Agency’s Greenhouse Gas 

Inventory (EPA GHGI) publish more updated information on NG CS [130], location and 

capacity information for individual CS are not included in these data sources. The installed 

horsepower of CS aggregated at the state level is shown in Figure 7. The operation of NG CS 

may not be continuous and is dependent on several factors including daily or seasonal variability 

in gas demand as well as the capacity of stations. In order to obtain realistic estimates of 

available waste heat, real data on cyclic operation including annual volume of NG processed at 

CS is required. However, such operating data is not publicly available and is almost impossible 

to obtain for individual CS. We address this challenge by considering the installed capacity of 

each CS and the concept of load factor. Load factor refers to the fraction of time per year the NG 

CS are actually operating compared to the maximum possible operating time. Based on personal 

communications with oil and gas companies [131, 132] and Interstate Natural Gas Association of 

America (INGAA), we account for underlying uncertainty in load factor by representing it using 
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a triangular [133] probability distribution function (PDF) with a minimum value of 20% [133], 

maximum of 90% [131-133], and mode of 50% [133] instead of considering a single point 

estimate. Next, we employ Monte Carlo uncertainty analysis with 10,000 trials to randomly 

sample from the triangular PDF to capture the uncertainty in load factor. A broader 

understanding of the expected range of available waste heat at NG CS is achieved by addressing 

uncertainty in a stochastic manner.  

2.2.2 Compressor stations mechanical drive type and uncertainty quantification 

The type of compressor engine information for all 1,380 NG CS is not publicly available 

and is critical for quantifying available waste heat from NG CS. In order to obtain realistic 

estimates of available waste heat, we need to classify each compressor station by type of 

compressor engine (i.e., GT, IC engine, or electric motor). This information is virtually 

impossible to obtain for every single operating NG CS. We address this challenge by using a 

sample of 382 compressor stations with the capacity and type of compressor engine information 

provided in a recent study by Zimmerle and co-workers [114]. Utilizing the information provided 

by Zimmerle et al. for 382 NG CS, we develop a statistical pattern recognition approach to 

assign the type of compressor engine to all compressor stations. We use the concept of k-nearest 

neighbors algorithm to find the probability of having a specific type of compressor drive within a 

specific range of capacities [134]. To identify the engine type of a CS, this algorithm chooses the 

type to which the majority of the CS neighbors (i.e., CS with similar capacities) belong to, with 

the CS being assigned to the type of compressor engine most common among its k nearest 

neighbors. Using 90% of the data points in the 382 CS data set available from Zimmerle et al. as 
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the training set, we develop a probability distribution of having a specific type of engine within 

various predefined capacity ranges. The remaining 10% of the data points in the 382 data set 

serve as the validation set and are utilized to test the validity of the model. The capacity range 

size is updated in each trial of the model to get an accuracy of greater than 85% in predicting the 

type of engine in the validation set. The resulting probability distribution pattern is provided in 

the Appendix A (Table 5).  

It is important to note that all compressor engines in the available data set from Zimmerle 

et al. are either GT or IC engine and no electric motor compressor engine is reported in the data. 

Accordingly, we classify each NG CS as either GT or IC engine. However, a recent study [114] 

suggests that up to 9% of NG transmission compression capacity is accomplished by electric 

motor based compressor engines. While waste heat estimate for electric motor CS is likely 

different than the results of this work and merits further investigation, their relative compression 

capacity is marginal compared to GT or IC CS and thus does not alter the broad-based 

conclusions of this study.  

2.2.3 Operation of NG CS and thermodynamics-based waste heat estimation 

2.2.3.1 Gas turbine CS 

Figure 27 in the Appendix A shows a process schematic of a typical NG CS. At each CS, 

a portion of the NG flowing through the pipeline system (typically about 2-5%) [122, 126] is 

burned in a combustion unit to provide the energy required for the operation of the compressor 

engine (gas turbine). Gas turbine supplies the energy required to drive the NG through the gas 

network by compressing NG in the compressor unit.  This process releases waste heat in the 
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form of exhaust gas from the gas turbine [135]. We analyze the quantity and quality of available 

waste heat by a combination of thermodynamic analysis and best available engineering 

knowledge as follows. It is important to note that the waste heat in this study considers the 

thermal energy in the exhaust gas of compressor engine, and does not account for losses via 

conduction, convection, or radiation from hot surfaces and heated equipment.  

We assume that the output power of gas turbine ( ) is equal to the installed capacity 

of CS ( ) (equation 1). In equation 1, we assume a mechanical efficiency of 100% for gas 

turbine which is a conservative assumption for estimating the amount of waste heat and is 

consistent with the existing literature [136]. As such, the resulting estimates of available waste 

heat at NG CS are conservative lower bounds. The generated power by a gas turbine is a function 

of the difference between input enthalpy ( ) and output enthalpy ( ) and the mass flow rate 

( ) of combustion gases as shown in equation 2 [137]. In addition, enthalpy of combustion gases 

is a function of temperature as shown in equations 3 and 4.  

                                                             (1) 

 

                                                                               (2) 

 

                                                                                                                                (3)  

 

                                                             (4) 
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The inlet stream to the gas turbine comes from the combustion process. In order to find 

the inlet temperature  of combustion gases to the turbine, we model the combustion process in 

the combustion chamber as an adiabatic process by assuming complete combustion of NG with 

10% excess air which results in an adiabatic flame temperature of 2140°K (Kelvin). However, 

gas turbines typically operate with a higher percentage of excess air [138, 139]. As such, we 

model the combustion process with 100% excess air which results in an adiabatic flame 

temperature of 1478°K and compares favorably with gas turbine inlet temperature reported in the 

literature [140]. However, in order to be conservative, we assume a typical inlet temperature of 

1400°K for subsequent calculations [141]. Detailed information on natural gas composition and 

the procedure for determining adiabatic flame temperature is available in Appendix A. The outlet 

and inlet stream temperatures of gas turbine are related as shown in eq 5 [142] where we assume 

an isentropic efficiency ( ) of 80% [136, 143] for gas turbine. The ratio of specific heat ( ) for 

NG is assumed to be 1.3 and is consistent with the literature values [144, 145]. It is assumed that 

a typical gas turbine expands the outlet stream pressure ( ) to one fourth of the inlet pressure 

( ) [146]. By using equation 5, the temperature of exhaust gas is estimated to be 921°K. 

 

                                                (5) 

 

We next calculate the mass flow rate of the exhaust flue gas stream. To do so, we first 

need to calculate the mole fraction and enthalpy content of all species in the flue gas [137]. 
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Assuming the thermal efficiency of gas turbine to be 80%, the mass flow rate of exhaust gases 

( in equation 2) is calculated and subsequently the total waste heat ( ) is estimated for each 

CS using eq 6 where  is the enthalpy of exhaust stream at 921°K and  corresponds to the 

enthalpy of this stream when it is cooled down to 333°K (60°C) [93, 147]. Detailed procedure for 

determining the flue gas composition and enthalpy of each species in the exhaust stream is 

available in Appendix A. 

                                                (6) 

2.2.3.2 Reciprocating IC engine CS 

This section describes the procedure for estimating the temperature, flow rate, and 

subsequently the amount of available waste heat contained in the exhaust of reciprocating IC 

engine compressor stations. IC engines include 2-stroke cycle lean-burn, 4-stroke lean-burn, and 

4-stroke rich-burn designs [128, 148] differing in characteristic exhaust temperatures ranging 

from 533 to 922°K [128] Most IC engines are lean-burn 2-stroke cycle which have lower exhaust 

temperature [128], as such, we assume an average temperature of 645°K as the representative 

flue gas exhaust temperature for IC engines in our analysis based on the existing literature [128]. 

In an IC engine, four internally reversible processes occur in series representing four principal 

states of a cycle (see Figure 28 in Appendix A) shown by  to  in equation 7. We calculate 

the exhaust mass flow rate for each compressor station using equation 7 where  is the net 

work per cycle  is the mass of air. 
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                                               (7) 

We use typical values for minimum, maximum and intermediate temperatures and find 

the corresponding specific internal energy for each principal state of cycle for IC engines [137]. 

Then, we assume that total required power by compressor is being provided by the IC engine 

( , and calculate the air mass flow rate using equation 7. The mass flow rate of flue gas 

exhaust is calculated using stoichiometric ratios in the combustion equation (see equation 65 in 

Appendix A). Next, we calculate the heat content of exhaust gases using the same procedure 

described for GT compressor drives and assuming that the waste heat is cooled down to 333°K 

(60°C) [93, 147]. We also quantify the exergy content of available waste heat from NG CS. The 

detailed procedure and results of exergy calculation are provided in Appendix A.  

2.2.3.3 Estimation of available GHG emissions and electricity generation potential of waste 

heat 

 

We also quantify the life cycle GHG emissions reduction potential associated with the 

available waste heat at NG CS. We assume that if recovered, the waste heat at NG CS will 

displace the heat that would otherwise have to be derived by combustion of NG. The life cycle 

GHG emissions of NG is obtained from the Ecoinvent database [149]. This information is then 

utilized to quantify the aggregate life cycle GHG reduction potential of NG CS waste heat at the 

state level. We also quantify the electricity generation potential of available waste heat at NG CS 

by assuming an overall efficiency of 30% for the power generation process [91, 150, 151]. This 

efficiency includes real losses for a typical organic Rankine cycle, however, the detailed 
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electricity generation modeling from NG CS waste heat recovery systems is beyond the scope 

and goal of this work. 

Finally, we quantify the life cycle GHG emissions reduction potential associated with 

electricity generation using the available waste heat at NG CS. We assume that the electricity 

generated via waste heat will displace the existing generation mix for individual states reported 

by the EIA [152]. The average life cycle GHG emissions intensity of state-level electricity 

generation mixes is estimated using the latest state specific electricity mix reported by EIA for 

the year 2013 [152] and US life cycle inventory (USLCI) database [153]. 

2.3 RESULTS 

Figure 8 shows the estimated quantity of available waste heat from NG CS in the U.S.  

These results indicate that available waste heat from NG CS range from 0.005 TJ/day in 

Delaware to 64.7 TJ/day in Louisiana. As shown in Figure 8, the top four states with the 

maximum amount of waste heat are Louisiana, Pennsylvania, Mississippi, and Texas, which also 

have the greatest share of total installed horsepower (Figure 7). Collectively, these four states 

account for 30% of total average available waste heat at NG CS in the U.S. The error bars in 

Figure 8 represent the 10th and 90th percentile for available waste heat obtained via Monte Carlo 

simulations to account for uncertainty in load factor.  
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Figure 8. Estimates of available waste heat from NG CS in the U.S. stated as Tera Joules (TJ) per day. The 

box represents the middle 80% of the data; average value of available waste heat in each state is shown in the middle 

of each box. Upper and lower whiskers represent the upper and lower 10% of the distribution and extend from the 

maximum to the minimum value of available waste heat. 

 

The results in Figure 9 show the spatial distribution of available waste heat from NG CS 

aggregated by states. Average point estimates are reported in Figure 9 and all subsequent 

analyses involving waste heat including associated GHG emissions reduction and electricity 

generation potential. The black triangles show the location of CS in each state. No CS are 

reported to be located in Hawaii, New Hampshire, and Vermont in 2008 and, as a result, these 

states have zero estimated available waste heat and are not considered in subsequent analyses. 
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Figure 9. Spatial distribution of estimated available waste heat at NG CS in the U.S. stated as Tera Joules 

(TJ) per day; Average values obtained via Monte Carlo analysis are shown. Black triangles represent the actual 

location of CS obtained from the U.S. Energy information Agency. 

 

To provide a broader understanding of the environmental significance of utilizing waste 

heat, Figure 10 shows the avoidable life cycle GHG emissions potential of waste heat available 

at NG CS. The avoidable GHG emissions potential ranges from 1 to 4430 metric tonnes of CO2 

equivalent per day. The general trend in Figure 10 mirrors those in Figure 9 with the waste heat 

available in Louisiana, Pennsylvania, Mississippi, and Texas having the maximum life cycle 

GHG reduction potential. It is important to note that the results in Figure 10 do not consider the 

GHG emissions associated with building the infrastructure that would be needed to capture waste 

heat.  
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Figure 10. Average avoidable life cycle GHG emissions of available waste heat at NG CS. It is assumed 

that the available waste heat could substitute the heat generated using NG. Average values of available waste heat 

obtained via Monte Carlo simulation are used to calculate the avoidable life cycle GHG emissions. 

 

Figure 11 plots the theoretical electricity generation potential of available waste heat at 

NG CS in the U.S. It also shows the avoidable life cycle GHG emissions if the waste heat were 

to be utilized for generating electricity. The findings in Figure 11 on the theoretical amount of 

electricity production potential of waste heat from NG CS compare favorably with prior 

estimates. For example, our estimates show an electricity generation potential of 21.6 MW from 

NG CS in North Carolina (NC) state with total installed horsepower of 170,000 HP. This is in 

close agreement with a prior study that reported an actual electricity production of 26.6 MW 

from existing power recovery systems at five compressor stations with total installed horsepower 

of about 176,000 HP [128]. It is important to note that states such as Kentucky (KY), Indiana 

(IN), and Wyoming (WY) have relatively low electricity generation potential using available 

waste heat at NG CS but a high carbon footprint of existing electricity generation as the majority 

of the electricity in these states is currently generated using carbon intensive fossil fuels (details 

are shown in Table 9 in Appendix A). Additionally, the total amount of avoidable life cycle 
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GHG emissions by using available waste heat as a substitute for NG is about 47,000 metric 

tonnes CO2-equiv./day while the total avoidable life cycle GHG emissions by utilizing waste 

heat for electricity generation is about 34,400 metric tonnes CO2-equiv./day. This finding 

highlights the greater potential of avoidable environmental burdens of utilizing waste heat for 

direct heat applications.  

 

 

Figure 11. Electricity generation potential of available waste heat from NG CS and accompanying 

avoidable life cycle greenhouse gas emissions. 

 

2.4 DISCUSSION 

This work estimates the quantity and spatial availability of waste heat at NG CS in the 

United States. An estimated total maximum of 757 TJ/day of waste heat was produced at NG CS 
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in the United States in 2008 with the amount of waste heat varying across states primarily due to 

differences in installed capacity and load factor. Analysis also indicates that recovering available 

waste heat at NG CS has the potential to reduce environmental impacts in the U.S. by offsetting 

consumption of carbon intensive fossil fuels. It is important to note that states such as 

Pennsylvania, West Virginia, and Ohio have major NG development primarily due to 

unconventional gas production from Marcellus and Utica shale plays. Unconventional NG 

production from Marcellus and Utica shale plays accounted for 85% of the increase in total NG 

production in the U.S. between 2012-2015 and is projected to further increase steadily [154]. 

This is expected to lead to increases in available waste heat from NG CS as the demand for NG 

compression capacity is projected to rise to meet the growing NG production in these states. It is 

important to note that the waste heat recovery potential from existing NG CS is based on the 

compression capacity as opposed to NG production/consumption data. Although NG production 

has increased since 2008, it is more likely that the existing CS operate longer hours as these 

stations are already overdesigned. Furthermore, most of the existing CS roughly have a 50% load 

factor based on personal communications with oil and gas industry professionals further 

suggesting that increases in NG flowing through the pipeline network and hence the increased 

compression requirements are likely to be met via increases in load factor. This uncertainty in 

load factor is already captured using Monte Carlo analysis and the resulting error bars shown in 

Figure 8.        

Currently more than 60% of energy input to CS is ultimately lost as waste heat in the 

form of high temperature exhaust flue gases making NG CS a particularly attractive avenue for 

waste heat recovery. Recovering the waste heat has gained traction and is appealing for its ability 
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to increase the energy efficiency of industrial processes while simultaneously reducing the 

external fuel input, GHG emissions, and other environmental impacts [155, 156]. However, there 

has been little emphasis on quantifying and recovering the large quantity of waste heat from 

existing NG CS, with only one practical example of waste heat recovery at CS [128]. Several 

technical and economic challenges must be addressed to make waste heat recovery from existing 

NG CS feasible on a commercial scale. NG CS are very sophisticated systems consisting of 

several compressor units with different configurations and characteristics, which makes the 

waste heat recovery a complicated task. Additionally, most existing NG CS do not run 

continuously and the resulting temporal availability of waste heat raises practical constraints on 

waste heat recovery. Additionally, the economic feasibility of waste heat recovery is likely to be 

strongly influenced by the capacity and temporal availability of NG CS and must be evaluated in 

future studies.  

Besides identifying potential sources of waste heat and heat recovery technologies, a 

comprehensive understanding of waste heat end uses must be established [93]. Typical existing 

uses of waste heat include preheating combustion air and other feed streams [157] to improve the 

overall thermal efficiency of heating systems [158, 159]. A large range of waste heat from low to 

high quality could also be utilized for space heating. Collectively, space heating and water 

heating are responsible for 38% of low temperature energy consumption in the U.S. [91]. The 

use of waste heat for space heating offers the advantage of eliminating the need for fuel as well 

as the space heating equipment [160]. However, temporal and spatial availability of waste heat 

limits its viable applications. While some NG CS are located adjacent to industrial or 

commercial users offering the potential for space heating, most NG CS are in isolated locations 
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rendering the waste heat of limited value for space heating unless it is transported. Heat transport 

has its own set of challenges including significant loss of heat to the environment and varying 

economic feasibility under fluctuating NG prices [110].  

The use of high temperature waste heat available at cement kilns, refineries, and 

thermoelectric power plants to generate power is another attractive option that is discussed in the 

literature [161-165]. More recently, selectricity generation using the available waste heat at NG 

CS has gained attention. However, more research and development is needed to ensure that 

electricity generation using waste heat at NG CS stations is technically feasible and 

economically viable. Additionally, it has been argued that power generation using NG CS waste 

heat is economically feasible for CS with a minimum operating capacity of 15,000 HP thus 

making electricity generation using NG CS waste heat of limited value as only 30% of 

compressor stations in the U.S. have installed capacity greater than 15,000 HP. The results 

presented in our work indicate that a total of 2,100 MW of electricity can be produced from the 

waste heat available at NG CS. This translates into 0.5% of total electricity generation capacity 

in the U.S. for the year 2013. Moreover, converting waste heat to electricity is accompanied by 

high unavoidable exergy losses compared to direct thermal use of waste heat [91].  

Many end-uses do not necessarily require the high grade energy inherent to fossil fuels. 

On-site water/wastewater treatment is a promising application for available waste heat at NG CS. 

Water treatment technologies such as Forward Osmosis (FO) [166], Reverse Osmosis [167, 168], 

Multi Effect Distillation (MEF) process [169], and Membrane Distillation (MD) [170, 171], have 

low thermal energy requirements and offer the potential to be integrated with waste heat sources. 

It is worth noting that NG pipeline capacity is increasing primarily due to increases in domestic 
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NG production, demand of NG imported from Canada, and expansion of NG fired electricity 

generation, which results in expansion of current compression capacity by adding new 

compressor stations or upgrading existing stations with additional compressor units [172]. 

Between 1996 and 2006, total installed horsepower of NG pipeline network increased by 

653,000 HP. During the same period, 290 NG pipeline expansion projects were completed of 

which 195 involved expanding the capacity of existing CS or adding new CS. An increase of 

1,000-1,500 miles of new transmission pipeline is anticipated to occur each year between 2013 

and 2030 in order to meet the U.S. and Canadian NG consumption needs [117]. Subsequently, 

the compression capacity is expected to follow an increasing pattern with an anticipated increase 

of 250,000 HP/year [117]. This is expected to translate into a 10 TJ/day increase in available NG 

CS waste heat between 2013 and 2030, thus further highlighting the importance of potential 

waste heat recovery opportunities at NG CS in the U.S.  

The results of this work provide information about the geospatial distribution of waste 

heat at NG CS across the U.S. Analysis reveals that a large amount of high quality waste heat is 

available at existing NG compression stations. Additional research is required to fully understand 

the technological and economic feasibility, and environmental implications of commercial scale 

implementation of waste heat recovery at NG CS. Furthermore, a comprehensive evaluation of 

integrating waste heat to end-uses applications is encouraged as the economic performance of 

reusing waste heat depends on cost of fuel, electricity, and the distance for transferring the waste 

heat to its end-use applications [173]. 
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3.0  TECNO-ECONOMIC ASSESSMENT OF MEMBRANE DISTILLAION FOR 

TREATMENT OF MARCELLUS SHALE PRODUCED WATER 

3.1 INTRODUCTION 

Desalination has emerged as a promising solution to address the world’s water scarcity 

problem by removing dissolved salts from saline or brackish water, thus making it applicable for 

a number of uses [41, 42]. Membrane separation based processes such as reverse osmosis (RO) 

and electrodialysis (ED) and thermal processes such as multi effect distillation (MED), multi 

stage flash (MSF), and vapor compression distillation (VCD) are two main categories of 

commercial desalination technologies with RO and MSF accounting for 78% of the desalination 

capacity worldwide [43]. Among thermal based desalination technologies, novel membrane 

distillation (MD) shows the most promising performance for desalination of high salinity 

wastewaters [45]. Specially, over the past two decades there has been noticeable improvements 

in the design of membranes and technical performance of this technique [46]. Prior studies have 

shown that MD has the potential for achieving up to 99.9% of salt rejection [47-50] and 99.5% 

of organic materials removal [51, 52] where most pure thermal processes or pressure driven 

membrane processes have limited applicability [54, 174], thus making MD one of the most 

promising technologies for treatment of high salinity wastewaters.   
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One potential application of MD is for management of high salinity wastewater generated 

by the rapidly developing unconventional shale gas industry. Unconventional shale gas is a 

promising energy resource with major economic benefits but is accompanied by a host of 

environmental challenges including increased level of methane emissions at shale gas production 

sites [6, 7], and the potential for drinking water [10] and groundwater contamination [11]. One of 

the critical challenges is the management of vast quantities of high salinity wastewater generated 

in the process of hydraulic fracturing [175]. Shale gas produced wastewater has significantly 

higher salinity than seawater and also contains various organic and inorganic fractions including 

dissolved and dispersed oil compounds and dissolved minerals, toxic metals, and radioactive 

materials [176-179]. Produced water from Marcellus shale play has an average salinity of 

100,000 mg/Liter [18] while typical seawater has salt concentration of 35,000 mg/Liter [180, 

181]. This type of wastewater is different from those commonly treated by membrane and 

thermal based desalination techniques. Subsequently, there is an urgent need to develop new 

techniques for treating oil and gas industry produced water [82, 176, 182, 183]. Although 

treatment techniques such as RO and forward osmosis (FO) have been suggested for treating oil 

and gas produced wastewater [22, 34], their application is expected to be economically infeasible 

for wastewaters containing more than 40,000 and 70,000 mg/Liter total dissolved solids (TDS), 

respectively, [15, 26, 35] primarily because of the high osmotic pressure requirements [36, 37]. 

MD can treat wastewaters with up to 350,000 mg/Liter TDS and can operate at lower 

temperatures (30-900C) and pressure relative to conventional desalination technologies [184]. 

The low operating temperature of MD also makes it ideally suited for integration with renewable 

energy sources such as wind and solar or low grade waste heat sources [185-188] to make it 

attractive for treatment of high salinity wastewaters from shale gas activities [184]. This may be 
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of economic interest under rising energy prices as mature commercialized desalination 

technologies such as MSF and RO require high quality energy sources [189, 190].  

While MD offers several advantages over other desalination techniques, techno-economic 

assessment is necessary to evaluate the economic feasibility of MD for treatment of shale gas 

produced water treatment. To date, little emphasis has been placed on evaluating the economic 

performance of MD technology for treating produced water. As such, TEA is also needed to 

develop a comprehensive understanding of the cost drivers for MD treatment of high salinity 

shale gas wastewaters. It is important to note that cost estimates are site-specific and vary from 

installation to installation [191] primarily due to differences in system boundaries, site-specific 

economic indexes, and life expectancy of the project [191]. As such, comparing the results of 

different studies as well as drawing conclusions based on studies carried out in a different 

geographic location requires specific consideration as it can significantly change the real cost of 

treated water [192]. 

Previous work on TEA of desalination technologies was focused on economic evaluation 

of seawater purification using MSF, MED, RO, and MD. The unit cost of water production from 

seawater by conventional desalination technologies is around $1.4/m3 of permeate for MSF 

[193], $1/m3 for MED [193, 194], and $0.5/m3 for RO [195]. Previous studies also report a wide 

range of cost estimates for desalination of seawater using MD with estimates varying from 0.5 

$/m3 to more than 15 $/m3 of purified water [41, 196]. The large difference in cost estimates 

across studies is attributable to several factors including plant capacity, feed water salinity, and 

energy sources. Al-Obaidani et al. conducted an extensive exergy analysis and cost assessment 

for a direct contact membrane distillation (DCMD) unit and identified the most sensitive 

parameters in MD performance and total cost of water treatment. They performed a TEA for a 
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hypothetical DCMD plant with permeate capacity of 24,000 m3/day and estimated a water cost 

of $1.17/m3 for DCMD which can be reduced to $0.5/m3 if a low-grade thermal energy source is 

available [196]. Kesieme et al. evaluated the performance of a laboratory scale DCMD unit for 

desalination of seawater with an overall recovery of about 90%. They also presented a cost 

analysis framework and reported a cost of $0.66/m3 for a hypothetical 30,000 m3/day DCMD 

desalination plant [41].  

Previous studies have also argued that integrating MD with industrial waste heat has the 

potential for significant improvements in economic viability of this desalination technology. 

Sirkar et al. operated a small pilot plant for DCMD based desalination using various 

configurations of membrane modules and membrane surface area in order to study the plant 

performance. They reported a permeate production rate achieved of 3.38 m3/day for feed rate of 

92.67 m3/day and total water cost of $0.7/m3 under the assumption that industrial waste heat is 

available to meet the thermal energy requirements of the MD process [197]. Burrieza et al. 

performed a TEA for a pilot-scale MD unit (100 m3/day of permeate) with thermal energy 

requirements met by solar energy and concluded that solar MD is cost competitive with 

photovoltaic RO for small plant capacities [198].   

While MD holds great promise for treatment of high salinity wastewaters [38] , there has 

been little emphasis on using MD for treating shale gas produced water with only a handful of 

recent studies focusing on experimental evaluation of MD for treating this water [80, 81, 85, 

199] and only one study on TEA of MD for oilfield produced water [82]. Macedonio et al. 

concluded that MD has an overall salt and carbon rejection of over 99% and 90% respectively, 

for treatment of oilfield produced water and estimated that the total water cost varies from 

$0.72/m3 to $1.28/m3 depending on feed water temperature and MD recovery factor [82]. 
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Previous research has also proposed a combination of membrane based techniques for enhancing 

the performance and economics of water treatment process [82, 200-203]. For example, 

Macedonio et al. have evaluated the economics of seven different configurations of integrated 

membrane systems including microfiltration, NF, RO, MD, and membrane crystallization and 

concluded that adoption of integrated membrane systems provides an opportunity for increasing 

plant recovery factor, reducing the brine disposal problem, and environmental impacts [204].    

The business-as-usual (BAU) strategy for shale gas produced water management is 

injecting produced water into Class II underground injection control (UIC) wells. However, this 

strategy has come under increased scrutiny because of heightened seismic activity [73, 75, 205, 

206] in regions in close proximity to injection wells and potential for groundwater contamination 

[26]. Underground injection of produced water is also not feasible for shale gas production sites 

far away from the UIC wells.  Finally, with increasing shale gas production, there is a critical 

need for developing economical and environmentally conscious alternative management 

strategies for shale gas produced water. 

This work presents a detailed TEA to understand the cost drivers and assess the total cost 

of treating high salinity produced water using DCMD. The TEA is conducted for Marcellus shale 

play with a specific focus on Pennsylvania primarily due to its limited UIC disposal capacity 

necessitating produced water recycling and other alternative management strategies. The TEA 

model is developed by a combination of experimentally determined MD performance, an 

ASPEN process model, cost data for equipment available in the literature and provided by 

manufacturers, and best available engineering knowledge. We also performed sensitivity analysis 

to identify technical and economic parameters that have the major influence on the TEA results. 

We also assess the impact of integrating waste heat with the MD process on the total cost of 
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produced water treatment. One potential source of waste heat is the heat contained in the exhaust 

stream of compressor engines at natural gas (NG) compressor stations (CS) with highly 

understudied waste heat recovery opportunities. Chapter 2 evaluated the quantity and quality of 

available waste heat at NG CS and concluded that an average of 43 TJ (terajoules) per day is 

available in Pennsylvania at temperatures above 645 K [207]. This work serves to add to the 

sparse literature on the economics of shale gas produced water management in the U.S. by 

providing a comprehensive economic assessment of MD treatment of produced water in 

Marcellus shale play as an alternative management strategy to the current practice of reuse for 

hydraulic fracturing or disposal in Class II UIC wells. It is important to note that although treated 

produced water could also be used for hydraulic fracturing operations, the quality of permeate 

generated by MD is well suited for other beneficial purposes such as agricultural or industrial 

uses. The results from our work provides several important insights including (1) quantifying  

the total treatment cost of produced water using MD under base case and waste heat integration 

scenarios, (2) identifying technical and economic parameters with the highest impact on cost of 

produced water treatment using MD, and (3) comparison of our findings with the BAU produced 

water management strategy to highlight the potential and limitations of the MD technology for 

produced water treatment in Marcellus shale play. These insights can be informative to guide 

decision-making into best strategies for shale gas produced water management.  
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3.2 METHODOLOGY 

3.2.1 MD experimentation and process description 

Produced water samples used for experiments were collected from Marcellus shale region 

in Pennsylvania. The samples obtained from Tioga and Washington counties have a TDS of 

308,300 and 92,800 mg/Liter, respectively. The experimental setup used for evaluating DCMD 

performance consists of a custom made acrylic module with a channel width of 2 cm and length 

of 20 cm. The membrane used for the study is polytetrafluoroethylene membrane with 

polypropylene support and a membrane distillation coefficient of 5.6 kg/m2/hr/kPa. Previous 

work by Lokare et al. has established mathematical models for predicting permeate flux for 

DCMD module while explicitly accounting for temperature and concentration polarization 

effects. The model was also validated with experimental findings [39]. Details regarding 

produced water compositions and the experimental setup can be found in [39]. The experimental 

results were then used to develop an ASPEN model to simulate the plant-level setup for DCMD.  

Figure 12 shows the plant-level process flow sheet adapted from a case study of DCMD 

based desalination [197] for produced water treatment using MD technology. The original flow 

sheet is modified with a series of internal heat recovery steps in order to minimize the external 

thermal energy requirements for the MD treatment plant. The stream numbers along with the 

temperature and mass flow rate are shown in Figure 12 with brine and permeate streams shown 

in red and blue colors, respectively. It is assumed that produced water (stream 1) enters the MD 

plant at an ambient temperature of 20 oC and TDS of 10%, expressed as weight-to-volume 

fraction (w/v). A series of heat exchangers (HX-3 and HX-4) is used to increase the feed stream 
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(stream 9) temperature to 90 oC before it enters the MD array. The temperature of feed stream 

decreases to 40 oC as it moves through the MD array primarily due to the latent heat of 

vaporization corresponding to permeate flux as well as conduction heat losses through the 

membrane. On the other hand, the permeate stream (stream 13) enters the MD array at 30 oC and 

leaves at 67 oC. Heat exchanger HX-2 is used to recover a portion of heat energy from the 

permeate stream to increase the inlet feed temperature (stream 6). In addition, heat exchanger 

HX-1 is used to cool down the permeate stream further to 30 oC while simultaneously raising the 

temperature of the fresh feed. In order to reach the desired concentration level, the feed side 

solution has to be recycled through the MD system multiple times; however, to avoid salt 

accumulation in the system, a purge stream (stream 11) is necessary. The concentration of 

dissolved salts in the purge stream leaving the MD system is fixed at 30% salinity (w/v). 

Theoretically, MD could concentrate the feed solution to the saturation limit (~ 35% for sodium 

chloride for water). However, we assumed a final TDS of 30% for the purge stream in order to 

ensure a safety factor to prevent the salts from crystallizing in the MD system. While the internal 

heat recovery can increase the feed temperature to 57 oC (stream 8), it still needs to be heated 

further to the operating temperature of 90 oC required by the MD array. This is accomplished via 

HX-3 using medium pressure steam (360 kPa, 140 oC). We consider two scenarios for medium 

pressure steam: 1) base case with external purchase of steam and 2) integrating MD with waste 

heat from flue gas at NG CS that is used to produce medium pressure steam using HX-4. 
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Figure 12. Proposed plant scale MD configuration adapted from [197] and modified for concentrating 

produced water from 10% to 30% salinity. A steam loop is incorporated into the configuration to recover the waste 

heat from flue gases at natural gas compressor stations. 

 

3.2.2 Techno-economic (TEA) model 

The total cost of produced water desalination includes direct and indirect capital costs 

and annual operating and maintenance costs. The TEA model is developed for a prospective 0.5 

million gallons per day (MGD) DCMD plant concentrating produced water from 10% (100,000 

mg/Liter) to 30% salinity (i.e. recovery factor of 66.7%) for two different scenarios: 1) base case 

scenario in which the thermal energy requirements are met by external steam 2) thermal energy 

requirements are met by integration of MD with waste heat. It is important to note that plant 
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capacity in this study, refers to feed water capacity as opposed to plant distillate capacity used in 

the majority of the existing literature on TEA of desalination technologies that are focused on 

seawater desalination. However, the goal of this study is to provide estimates of associated costs 

of treating produced water using MD technology as a possible strategy for shale gas wastewater 

management. Additionally, it is important to note that the analysis and results are presented for a 

feed water salinity of 100,000 mg/Liter. In reality, produced water salinity varies over a wide 

range of TDS levels in Marcellus shale play. We performed sensitivity analysis to analyze the 

effect of changing feed TDS and other parameters on the results of the TEA model. The TEA 

model is developed based on a combination of experimental results, ASPEN Plus process model, 

and best available engineering knowledge combined with the most recent economic data. For 

equipment specific to produced water handling and treatment, cost data were obtained via 

personal communications with equipment manufacturers; otherwise, data available in the peer-

reviewed literature were used. Table 11 in Appendix B summarizes all economic assumptions 

used in this analysis. 

Capital cost also known as capital expenditure (CAPEX) includes direct and indirect 

capital costs. Direct capital costs refer to costs associated with the land purchase, plant 

construction, purchasing process equipment, and installation charges [208]. Indirect capital cost 

includes freight and insurance, construction overhead, owner’s, and contingency costs [82]. Two 

approaches are common for calculating indirect capital costs: (1) each element of indirect cost 

can be estimated as a percentage of total direct cost or total direct material and labor cost. Freight 

and insurance costs make up 5% of the total direct cost [208]. Construction overhead costs 

include labor cost, fringe benefits, field supervision, temporary facilities (canteen, common 

room, recreational facilities, restrooms, etc.), construction equipment, small tools, miscellaneous 
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items, and contractor’s profit and is generally estimated as 15% of the direct material and labor 

cost [209, 210]. The owner’s cost includes land acquisition, engineering design, contract 

administration, administrative expenses, commissioning and/or start-up costs, and legal fees and 

generally works out at 10% of the direct materials and labor costs [209, 210]. The cost of 

contingencies account for possible additional services and are typically estimated at 10% of the 

total direct costs [209, 210]. (2) Total indirect capital cost can also be estimated as a percentage 

of total direct capital cost. In this analysis, we used the second approach and estimated the total 

indirect capital cost as 10% of total direct capital cost. Details for direct capital cost estimation 

are presented below. 

Land cost and site development 

Land cost is site-specific and varies from location to location, therefore, this cost is not 

included in this analysis. Site development is a one-time cost including the cost of buildings, 

roads, fences, and other modifications that are needed for equipment installation. Site 

development cost is calculated using equation 8 in which the representative site development 

cost for an MD plant is assumed to be 26.42  [211]. 

                         (8)    

Pretreatment 

Before introducing feed to the MD unit, the feed water needs to be pretreated to remove 

suspended matters, free oil and grease (FOG), iron, and microbiological contaminants [68]. 
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Capital cost of pretreatment is calculated using equation 9 where the representative cost of 

pretreatment is adopted from the literature to be $79.25/m3/day [197]. It is important to note that 

the present study did not consider any additional pretreatment for removing organics as the 

produced water from Marcellus shale play typically has very low organic content [39].  

                                (9) 

Pumps and heat exchangers 

Capital cost for pumps is calculated based on the required pump capacity expressed as 

corresponding flow rate of streams passing through each pump (please see Figure 12) obtained 

from ASPEN plus simulations. The corresponding prices are then determined using the pump-

cost curves published by National Energy Technology Laboratory (NETL) [212]. Additionally, 

in the base case scenario, three heat exchangers are considered in the plant configuration in order 

to recover the heat from hot streams and minimize the total heat requirement of desalination 

process. The total cost of heat exchangers is calculated based on the required heat exchanger area 

obtained from ASPEN Plus simulations and corresponding size-specific cost curves published by 

NETL [212]. Cost curves published by NETL dates back to the base year 1998 and we used the 

most recent chemical engineering plant cost indices (CEPCI) for heat exchangers and pumps to 

convert all costs to year 2015 prices [213, 214]. It is important to note that the material used for 

pumps and heat exchangers needs to be resistant to corrosive nature of the produced water 

stemming from high TDS content. As such, we selected Monel as the material of construction for 

pumps and heat exchangers using the detailed corrosion data on construction materials [215].   
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Membrane and membrane module 

Required membrane area is calculated based on the total required permeate mass flow 

rate of the plant and the trans-membrane flux (see equation 10) obtained from experimental 

results and ASPEN Plus simulations. Process simulations showed that the optimum flux rate is 

obtained when 12 membrane modules in series with a total membrane area of 2.4 m2 are 

arranged in parallel configuration to meet the total membrane area requirement of the plant. 

Details regarding membrane configuration optimization are provided in the previous study [216]. 

Total membrane cost is then calculated using equation 11 where membrane cost per unit area is 

obtained via personal communications with membrane manufacturers [217]. Membrane cost 

varies from $60-115/m2 with lower range (i.e., $60/m2) corresponding to larger purchases (i.e., 

more than 1850 m2) due to economies of scale. We assumed $60/m2 as the unit cost of 

polytetrafluoroethylene (PTFE) membrane used in this study corresponding to a total membrane 

area of 1997 m2 required for the DCMD plant considered in our analysis. 

                                              (10) 

           (11)  

The cost of membrane modules varies significantly depending on the chosen application 

and membrane type. Spiral wound, hollow fiber, tubular, and plate and frame are four different 

types of membrane modules [196]. We used the plate and frame modules in the experimental set-

up and hence used the corresponding representative cost data available in the literature [197]. 
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Storage tanks and utilities 

The size of storage tanks needed for both feed wastewater and permeate is calculated 

based on the plant capacity and recovery factor assuming that feed water and permeate can be 

stored at the plant location for up to five days. The price of storage tanks is obtained via personal 

communications with storage tank suppliers in order to get the most updated prices [218, 219]. 

Utilities include power supply systems for electricity and high voltage alternating current, and 

external plumbing required for water supply, heating, and sanitation in the desalination plant. 

Cost of utilities is calculated using representative value of $42.27/m3/day [197, 211].  

 

Other capital costs 

Controls, pressure vessels, and electrical subsystems, shipping and installation, and 

equipment related engineering are other capital cost elements in a DCMD treatment plant. Each 

of these costs are calculated using the representative costs available in the literature [197]. 

3.2.2.1 System size correction factor 

Economies of scale is an important consideration in total cost estimation of an industrial 

project as the plant size affects the cost of individual unit operations and hence the overall plant 

costs. Size correction factor method can be applied to estimate the total direct cost of a plant for 

which specific cost data are unavailable or for specific categories of direct cost for which data 

are not available. The cost of a new system is correlated to the cost of a known system using a 

nonlinear relationship between the capacity and cost as shown in equation 12, where n is the 

scale factor (also known as the capacity factor) which is derived from actual cost data. Scale 
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factor varies depending on the type of process plant. Many conventional distillation processes 

follow the “six-tenth” scaling rule wherein the scale factor is 0.6. Membrane based systems have 

a higher scaling factor in the range of 0.75 to 1. In this study, representative costs for site 

development, utilities, pretreatment, membrane modules, controls, pressure vessel, electrical 

subsystems, shipping and installation, and equipment related engineering are adopted from a 

plant with a capacity of 1 million gallons per day [197, 211]. Equation 13 is used to estimate 

these costs for our proposed system given the known cost for a plant of 1 MGD capacity.  

                                                                                                                                                     (12)  

                                                                                                                                                     (13)  

3.2.2.2 Annual capital cost 

The annual capital cost is calculated using the net present value (NPV) method shown in 

equation 14 and 15.  In equation 15, n is the lifetime of the plant and is assumed to be 30 years 

[41] in this study, and r is the interest rate which is assumed to be 5% [41, 208, 220]. The effect 

of variation in interest rate on the total cost is captured via sensitivity analysis. 
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       (14)                    

                                  (15) 

3.2.2.3 Normalized annual capital cost           

Plant availability factor refers to the fraction of time per year the plant is operating 

compared to the maximum possible operating time. We assumed the plant availability to be 0.9 

[41, 194, 196, 221] and calculated the annual production capacity using equation 16. The 

normalized annual capital cost (annual cost per unit amount of treated water) is then calculated 

using total annual capital cost and annual production capacity. 

                                 

                                                                                                                                         (16) 

3.2.2.4 Operating and maintenance cost 

Annual O&M costs represent the costs incurred after plant commissioning and during 

plant operation including the costs for energy (heating and electricity), equipment replacement, 

chemicals, labor, and regular maintenance inspections.  

Thermal energy cost 

In a DCMD plant, the main energy requirement is the thermal energy required to heat the 

feed stream to the operating temperature of the MD unit. Thermal energy requirement is 

calculated in ASPEN Plus utilizing experimental flux rates. Thermal energy cost is then 
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estimated based on the most recent thermal energy cost available in the literature as shown in 

equation 17. 

        

                                                                                                                                         (17) 

It is important to note that unlike capital expenses, utility prices do not correlate simply 

with conventional inflationary indexes as both inflation and energy cost influence utility prices 

[222]. Basic energy costs, such as fuel cost in an electricity generation plant, vary erratically and 

are not dependent on capital and labor as compared to manufacturing expenses that rely on labor 

and capital and follow inflationary indexes [222]. A two-factor cost equation is suggested in the 

literature to account for this dual dependence [222]. We utilized the most recent thermal energy 

prices available in the literature [41] for  the year 2013 and conducted sensitivity analysis to 

account for variability in the energy prices.  

Electricity cost 

In addition to thermal energy, DCMD plant requires electricity for pumping. Four 

centrifugal pumps are included in the proposed DCMD plant configuration: (1) produced water 

feed pump, (2) produced water circulation pump, (3) permeate circulation pump, and (4) steam 

condensate pump. The electricity requirement for each pump was calculated using equation 18 

where is the mass flow rate through the pump,  is the pressure difference, and  is the 

pump efficiency. Electricity cost is then calculated as shown in equation 19 using specific 

electricity cost obtained from the U.S. Energy Information Administration (US EIA) for the base 

year 2015 [223]. 
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                           (18)        

                                                                                                                                                     (19)        

 

Intake 

Feed water intake cost is one of the significant factors in the capital and operating cost of 

a desalination plant that varies greatly with intake configuration. Surface open intake, beach 

well, horizontal well, radial well, and constructed seabed/infiltration gallery are different types of 

intake configurations mainly for conventional seawater desalination plants [224]. In the case of 

shale gas produced water, transportation via pipeline or trucking are the two possible intake 

alternatives to transport the produced water from shale gas production wells to treatment plants. 

When comparing the results of this study with the BAU management strategy, we assumed that 

produced water is transported via trucks to a prospective MD plant. Therefore, the capital cost 

associated with feed water intake is assumed to be zero and the operating cost is calculated as a 

function of transportation distance. We assumed a 100 miles trucking distance to the prospective 

MD plant and estimate the operating cost of produced water intake using the unit cost of trucking 

shale gas produced water in Marcellus shale play which is assumed to be $0.25/mile/m3 based on 

existing documented costs [20, 68] for the year 2014.   
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Filter 

Filters that are used for pretreatment of produced water have varying lifetime depending 

on the quality of feed water. We assumed that the plant is equipped with standard filters rated at 

5-25 µm and used representative cost information available in the literature to estimate the filter 

cost [197]. 

 

Brine disposal cost 

Brine disposal cost for desalination plants is typically assumed to be $0.0015/m3 [41, 

196] which is the representative cost for disposing of the concentrate for RO based desalination 

plants. However, as this study deals with desalination of shale gas produced water, we accounted 

for the cost of transportation as well as injecting the concentrate into disposal wells when 

comparing with the BAU produced water management strategy i.e., disposal in class II injection 

wells. It is important to note that only 33.3% of the high salinity feed water is sent to disposal 

wells as the remaining 66.7% is desalted in the MD plant. Shale gas wastewater transportation 

cost varies in different shale regions depending on the proximity of disposal wells to produced 

water generation location. Due to limited disposal capacity in Pennsylvania, the majority of 

produced water is transported to Ohio. As such, an average of 500 miles is considered for two-

way transportation distance from shale gas wells to Class II disposal wells for the BAU 

management strategy [20]. The two-way transportation distance from the hypothetical MD plant 

to disposal wells is considered to be 400 miles assuming that the centralized plant is located 100 

miles from shale gas sites [20]. We also assumed a unit transportation cost of $0.25/mile/m3 for 
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the year 2014 [20, 68] and concentrate injection cost of $6.29/m3  [69, 225] to calculate brine 

disposal cost.  

 

Cost of chemicals, spares, and labor 

Produced water needs to be pretreated before entering the MD unit, which typically 

requires chemical addition. We estimated the cost of typical chemicals utilized for pretreatment 

of produced water (e.g., acids, alkalis, surfactants, oxidants, chelates [226]) using the 

representative cost of chemicals ($0.018/m3) for MD plants available in the literature [197, 202, 

211]. Cost of spares refers to the cost of replacing parts needed to maintain the system operating 

including pumps, valves, and miscellaneous parts. Cost of replacing filters, membrane, and 

membrane modules as well as consumable chemicals is not included in this category. The 

representative cost of spares for MD plants is assumed to be $0.033/m3 [197, 211]. Cost of labor 

varies depending on the region where the plant is located as well as the number of operators 

required to operate a desalination plant. We assumed the labor cost to be $0.03/m3 [41, 196, 

197]. 

Membrane replacement cost 

Membrane replacement cost varies between 10-20% of total membrane cost per year for 

membranes treating low-salinity and high salinity wastewaters, respectively. We assumed a 20% 

rate of membrane replacement because of the high salinity of produced water in Marcellus shale 

play. 
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3.2.3 Integrating MD with waste heat 

We also investigated the economics of MD for treating produced water under the 

scenario where waste heat is utilized to meet the thermal energy requirements of the MD process. 

Specifically, we focused on utilizing waste heat available at natural gas compressor stations in 

the Marcellus shale play. Our prior analysis of waste heat from existing NG CS in the U.S. 

revealed that a total of 43 TJ/day of high quality waste heat is available in the form of hot flue 

gases at NG CS in Pennsylvania [207]. Our recent work highlighted that waste heat available at 

NG CS in Pennsylvania is sufficient to meet the thermal energy requirements for MD treatment 

of all produced water generated in the state from shale gas activities [227]. For the scenario 

where the MD plant is integrated with waste heat, we assumed that medium pressure steam is 

generated by recovering heat from the flue gas generated at NG CS (HX-4). The resulting 

medium pressure steam is then utilized to heat the high salinity wastewater to the inlet operating 

temperature of the MD unit. While the focus of our analysis is on utilizing waste heat from NG 

CS, MD process could be integrated with other available sources of waste heat. 

3.3 RESULTS 

Table 12 in Appendix B provides a detailed split of the capital and O&M expenses for a 

0.5 MGD DCMD plant. As shown in Table 12, the total cost of treating produced water using 

MD is $5.70/m3
feed of desalted water for the base case scenario which decreases significantly to 

$0.74/m3
feed when MD is integrated with a source of waste heat. These findings are compelling 
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as they suggest that integrating MD with a source of waste heat could result in significant 

reduction in produced water treatment using MD technology. It is important to note that 

integrating MD with waste heat available at NG CS could contribute to a total savings of $3.11 

million/year in O&M costs corresponding to 0.43 million metric tonnes of steam consumption. 

However, the total capital cost is $436,000 higher for the DCMD plant with waste heat 

integration due to additional cost of heat exchangers for heat recovery. Nonetheless, savings in 

O&M costs will compensate the additional capital cost in the first two months of plant operation. 

In addition, utilizing available waste heat will potentially increase the environmental 

sustainability of shale gas produced water treatment as it results in avoided environmental 

impacts associated with combustion of primary fuels to generate thermal energy for the MD 

process as compared to capturing the waste heat that would be otherwise lost to the environment. 

Figure 13 shows the percentage contribution of different cost elements to the capital and O&M 

expenses for the proposed MD plant under base case and waste heat integration scenarios. The 

results in Figure 13 show that heat exchangers and storage tanks are the two major cost drivers of 

the capital cost while thermal energy cost constitutes the largest share of O&M costs for the base 

case scenario. This finding compares favorably with prior work on cost estimation of seawater 

desalination that concluded thermal heat requirement to be the major cost driver for MD 

technology [196]. While thermal energy constitutes the largest share of O&M for base case, 

electricity and membrane replacement are the major contributors to O&M for the waste heat 

integration scenario. 
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Figure 13. Fractional contribution of capital and O&M costs by various cost elements for base case and 

MD with waste heat integration scenarios 

 

We performed sensitivity analysis to understand how variations in technical and 

economic parameters affect the total cost of produced water treatment using MD technology 

under base case and MD with waste heat integration scenarios (Figure 14). This analysis 

revealed that the total cost of produced water treatment is most sensitive to changes in feed TDS 

level and steam price for the base case scenario (Figure 14a). The results in Figure 14a show that 

a 25% increase in the steam price (i.e., from $0.008/kg to $0.01/kg) resulted in 22% increase in 

total water cost indicating the high sensitivity of MD process to thermal energy price. Moreover, 

the total water cost increases with an increase in the feed water salinity for base case as well as 

MD with waste heat integration scenarios. It is interesting to note that changes in parameters 
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such as interest rate, number of days for storing produced water and purified water at the MD 

plant, membrane price, and plant capacity have a much less effect on the total cost  of produced 

water treatment. 

 Figure 15 presents the impact of feed water salinity on thermal energy requirements for 

the base case scenario as well as total cost of produced water treatment using MD. It is important 

to note that the salinity of final brine leaving the system is assumed to be fixed at 30% (300,000 

mg/Liter), which is achieved by recirculating produced water through the MD array. As a direct 

consequence, lower salinity produced water consumes significantly higher amount of energy as it 

needs to be recirculated more to reach the desired TDS level, resulting in higher thermal energy 

requirement and O&M costs. While lower TDS feed has higher O&M costs, it also results in 

larger volume of permeate compared to higher TDS produced water where a larger portion of the 

feed water is rejected as the purge stream. As a result, the energy requirement per unit amount of 

permeate varies slightly across different TDS levels, which compares favorably with prior 

studies [228, 229].  
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Figure 14. Sensitivity analysis of total water cost for produced water treatment using MD technology for a) 

base case scenario, and b) MD with waste heat integration scenario 

 

Figure 15. Impact of feed TDS level on the base case scenario thermal energy cost and total cost of 

produced water treatment using MD technology 

 

MD treatment of produced water provides environmental benefits by generating high 

quality permeate that can have beneficial use and by avoiding greenhouse gas (GHG) emissions, 
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specifically when waste heat is utilized by the MD facility. To provide a broader understanding 

of the economic benefits of treating shale gas produced water with MD technology, the results of 

the present study are compared to associated costs of the most dominant management strategy 

which is injection in Class II disposal wells. Figure 16a shows that the capital and O&M costs 

for the base case scenario of $0.51/m3feed and $5.19/m3feed, respectively are reduced to 

$0.55/m3
feed and $0.19/m3

feed when the waste heat is available for the operation. However, even 

when MD treatment is considered, the cost of produced water transportation from shale gas wells 

to the DCMD plant (cost of intake) and the cost of transporting and injecting concentrated brine 

in class II injection wells (brine disposal cost) needs to be accounted for to provide a realistic 

comparison with the BAU strategy. After accounting for cost of intake and brine disposal, the 

results in Figure 16b show that the total cost of produced water management using MD 

technology of $66/m3
feed for the base case scenario can be reduced $61/m3

feed if a source of waste 

heat is available for the MD process. The cost of BAU management strategy is calculated 

assuming an average transportation distance of 500 miles [20] and unit transportation cost of 

$0.25/mile/m3 [20, 68] and $6.29/m3  [69, 225] for injecting produced water into disposal wells 

which translates into total cost of $132.1/m3
feed. As shown in Figure 16, the cost of produced 

water treatment using MD technology shows a steep change when feed intake and brine disposal 

costs are included. Nonetheless, produced water treatment using MD technology can result in 

over 50% reduction in total cost of produced water management over the BAU strategy. These 

results are promising as they suggest that adoption of MD technology for shale gas produced 

water management could result in lower total cost when compared to current management 

strategies. 
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Figure 16. a) Split of capital and O&M costs for base case and MD with waste heat integration scenarios, 

and b) Comparison of total cost (including intake and brine disposal) of shale gas produced water management using 

MD technology with the BAU management strategy 

3.4 DISCUSSION 

This study evaluated the cost of shale gas produced water desalination using DCMD. The 

results of this work indicate that total cost of produced water desalination is $5.70/m3 of feed 

water with thermal energy comprising around 88% of the total cost. Further analysis revealed 

that integrating MD with waste heat available from NG CS could significantly reduce the cost of 

produced water desalination resulting in total water treatment cost of $0.74/m3
feed. Additionally, 

the results of sensitivity analysis revealed that variations in thermal energy cost and feed water 

TDS have the greatest overall impact on the cost of treating produced water. The TEA model and 

results presented in this study are subject to several sources of uncertainty. Some of these are 

addressed via sensitivity analysis, while others are discussed as follows. 
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The TEA model for produced water treatment presented in this study focused on 

Marcellus shale gas play. Produced water from Marcellus shale play has negligible amount of 

organic compounds [39, 230]. As a result, no additional pretreatment is considered in the TEA 

model beyond suspended solids removal. However, the produced water from other shale plays 

such as Eagle Ford and Barnett is expected to have different characteristics and may require 

additional pretreatment [230]. The cost of pretreatment and hence the total water treatment cost 

may increase for produced water containing significant amount of organics, and should be 

evaluated in future TEA studies. Second, the TEA model presented in this study assumes that the 

produced water is concentrated to a final concentration of 30% with subsequent disposal of the 

reject stream in disposal wells. However, innovative techniques aimed at reducing the total 

amount of rejected brine including the membrane distillation-crystallization (MDC) could offer 

further cost reduction associated with brine disposal by concentrating the brine beyond halite 

supersaturation [54, 231] in addition to generating salt as a useful byproduct for deicing 

applications in Marcellus shale region [232-235]. The TEA model also did not account for the 

revenue generation associated with sale and beneficial reuse of high quality permeate for 

industrial or agricultural purposes, thus resulting in higher estimates of produced water 

treatment.  

A comparison of the shale gas produced water treatment using MD with business-as-

usual strategy in Marcellus shale gas play revealed interesting and promising results. The current 

dominant produced water management strategy is disposal in Class II injection wells. There are a 

total of about 144,000 class II disposal wells in the U.S. with the majority of wells located in 

Texas (50,000 wells), California, Kansas, and Oklahoma [69]. Salt water disposal (SWD) wells 

account for 20% of total disposal wells of which 12,000 are located in Texas, 800 in Oklahoma, 
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and only 8 in Pennsylvania [69]. In areas of limited disposal capacity (e.g., Pennsylvania) or 

where water resources are stressed (e.g., Texas and Oklahoma), reuse and recycling of produced 

water is an effective alternative to direct underground injection of produced water. When feed 

water transportation and brine transportation and injection costs are taken into account, the total 

cost of produced water treatment using MD for the base case scenario is $66/m3
feed which can be 

reduced to $61/m3
feed for MD with waste heat integration. In comparison, the total cost of BAU 

strategy for produced water treatment is $132.1/m3
feed when trucking and injection of produced 

water in disposal wells is taken into account. These results are compelling and highlight that MD 

technology (with or without integration with waste heat) may offer both economic and 

environmental advantages over the BAU strategy for produced water management from shale 

gas plays. It is important to note that we assumed a 100 miles transportation distance for feed 

water intake and 400 miles transportation distance from the MD plant to disposal wells for reject 

brine disposal [20, 68]. However, future analysis using rigorous optimization techniques for 

identifying the location of prospective MD treatment facilities can aid in minimizing the total 

transportation distance and associated costs of wastewater management.  
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4.0  OPTIMIZATION OF SHALE GAS WASTEWATER MANAGEMENT 

4.1 INTRODUCTION 

The economics of desalination technologies has been evaluated in the existing literature [193-

195], however, to date, there has been only a handful of studies on techno-economic assessment 

(TEA) of these technologies for shale gas high salinity wastewaters [236]. Chapter 3 describes a 

detailed TEA of DCMD for produced water treatment in Marcellus shale gas has revealed that 

the total cost of produced water treatment using DCMD is about $5.8/m3
feed. However, due to 

relatively lower operating temperatures, MD can be integrated with available waste heat sources 

in the industrial processes to offset the energy requirements of desalination process. We 

specifically investigated the economics of MD under the scenario of integrating this technology 

with available waste heat sources at natural gas compressor stations (NG CS) [207, 216]. The 

results of this analysis have shown that total cost of produced water treatment can be reduced to 

$0.8/m3
feed when a source of waste heat is available. In addition, thermal energy price as well as 

produced water TDS level are shown to have a significant impact on total treatment cost. 

In addition to choosing a treatment technology that is suitable for the salinity level of 

shale gas wastewater and accounting for the associated cost of treatment process, it is imperative 

that a holistic approach is employed for integrated shale gas wastewater management for a given 

shale gas region. Direct disposal of shale gas wastewater involves wastewater transportation and 
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its injection into SWD. However, it is important to recognize that even when treatment of shale 

gas wastewater is considered, wastewater needs to be transported to treatment facilities and then 

the concentered brine needs to be transported and injected into SWD. Therefore, a systematic 

optimization framework is required that takes into account associated costs of treatment, 

transportation, and injection of various management strategies as opposed to ad hoc strategies. A 

handful of recent studies have focused on shale gas water management using optimization 

techniques. However, the majority of existing work is focused on short-term planning where 

shale gas wastewater could be recycled for future hydraulic fracturing requirements with little 

emphasis on long-term planning of wastewater management.  

Prior studies have focused on using life cycle assessment (LCA) to quantify the 

environmental impacts including greenhouse gas emissions, and water consumption of shale gas 

production [7, 237-240]. However, existing LCA studies ignore the impact of available treatment 

technologies on the economic sustainability of shale gas water management. Recent work in the 

field of process systems engineering (PSE) has also focused on the strategic planning and design 

of shale gas supply chain networks for water management [22, 68, 241-243]. Cafaro and 

Grossman developed a mixed-integer nonlinear programming (MINLP) model to determine the 

optimal design of shale gas supply chain including well drilling schedule, hydraulic fracturing 

strategy, size and location of gas separation plants and compressors as well as pipeline 

infrastructure in order to maximize the net-present value (NPV) of the project [241]. While this 

study accounts for freshwater availability and the possibility of recycling flowback water, long-

term planning of shale gas wastewater treatment and final disposal are not considered [241]. 

Previous research has also focused on integration of water management into shale gas supply 

chain design [244] as well as investigating the optimal shale gas wastewater management under 
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uncertainty [245-247]. Yang et al. have addressed the problem of optimizing freshwater 

acquisition and wastewater handling in shale gas development through a mixed-integer linear 

programming (MILP) model  using average cost data reported by industry and concluded that 

using desalination technologies for shale gas wastewater treatment can be cost-effective [26]. 

Moreover, transportation cost is shown to contribute significantly to total cost of shale gas 

supply chain management [26]. However, prior studies on shale as supply chain optimization use 

average transportation distances from shale gas sites to treatment facilities or disposal wells. This 

simplification could considerably affect the cost of shale gas wastewater management and may 

lead to sub-optimal economic solutions [248].  

Given the critical need for developing strategies that could guarantee the long-term 

sustainability of shale gas, this work develops an optimization framework to tackle the problem 

of managing high salinity shale gas wastewater by focusing on advanced treatment of shale gas 

wastewater using MD technology. Moreover, this study proposes to explore industrial waste heat 

sources to be integrated with shale gas wastewater treatment process using the concept of 

industrial ecology defined as the science studying industrial systems to minimize the 

environmental impacts where waste equals food [249, 250]. To the best of our knowledge, there 

is no other study in the literature on shale gas supply chain management that takes into account 

the regional synergistic industrial ecology opportunities to understand the economic suitability of 

shale gas wastewater management. The optimization model will be applied to Marcellus shale 

play in PA where 34 out of 67 counties are shale gas producing as is shown in Figure 17. 

Marcellus shale is a major natural gas (NG) reservoir with steadily increasing production since 

2008 that currently accounts for about 40% of the total U.S. shale gas production [65]. This work 

serves to add to the emerging literature on optimization studies on shale gas wastewater 
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management by (1) incorporating detailed cost estimates obtained from TEA of MD technology 

for shale gas wastewater treatment utilizing the results of experimental studies on MD 

performance for shale gas wastewater treatment in Marcellus shale play; (2) accounting for 

detailed transportation distances using actual location of shale gas wells as well as treatment and 

disposal facilities; (3) applying the optimization framework to four real world case studies with 

major shale gas development in PA. Furthermore, the framework and insights provided in this 

study can be applied to other shale gas plays to provide a holistic understanding of using 

alternative management strategies as compared to BAU management strategy. 

 

 

 

Figure 17. Shale gas production on the county level in PA stated as million cubic feet per day (MMcf/day) 

4.2 METHODOLOGY 

The quality of shale gas wastewater varies over a wide range after well stimulation and during 

gas production stage. The results of sampling on Marcellus shale flowback water has shown that 
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TDS level can reach up to 100,000 mg/L in the first two weeks after hydraulic fracturing and 

during well completion stage [251]. In addition, the TDS level could further increase to above 

250,000 mg/L during the production stage [26]. We performed the analysis for TDS levels of 

100,000 mg/L and 250,000 mg/L in order to capture two extremes and the consequential 

influence the TDS level may impose on optimum management strategy. 

Shale gas production data for each well is obtained from PA DEP for the year 2014 

which is the most updated available statistics at the time of this analysis [252]. 5,188 active 

unconventional gas wells were operating in 2014 in PA with a total natural gas production of 

5.1×1010 m3 [253]. Produced water generation from shale gas wells is estimated through a 

deterministic scenario in which the produced water generation is correlated to shale gas 

production. However, produced water generation per amount of gas production varies across 

shale gas extraction sites primarily due to differences in the geology of shale formation [254]. 

The amount of produced water generation is estimated using county specific produced water 

generation reported in the literature [30]. Four different counties are included in this analysis; 

Susquehanna and Bradford counties in Northeast PA and Greene and Washington counties in 

Southwest PA, collectively accounting for about 75% of total shale gas production in PA [252].  

 

4.2.1 Problem statement 

In the proposed model, we address the problem of finding the optimal design for shale gas 

produced water management including transportation, treatment and disposal of produced water 

over the planning horizon of one year as well as determining the size and location of treatment 
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facilities in order to minimize the total cost of handling produced water. Figure 18 shows the 

superstructure of shale gas produced water management strategies presented in this study for the 

specific case of using MD as the treatment technology. Figure 18 includes 1) existing drilling 

sites where produced water is generated ( ), 2) potential sites for installation of centralized 

MD plants to treat the shale gas produced water ( ) 3) existing compressor stations with 

available waste heat that can be utilized as the energy source for produced water treatment using 

MD technology ( ), 4) potential on-site treatment facilities using MD ( ), 5) existing 

SWD wells to inject the produced water ( ), 6) existing transportation routes to connect 

nodes i to m (shale gas production sites to centralized MD plants), i to j (shale gas production 

sites to MD units at compressor stations), and i to d (shale gas production sites to disposal wells) 

, 7) existing transportation routes to transport the concentrate brine from nodes m to d 

(centralized treatment plants to disposal wells), j to d (compressor stations to disposal wells), and 

o to d (onsite treatment units to disposal wells). 
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Figure 18. Superstructure of shale gas produced water management options 

 

Given the problem described above, the goal is to optimally determine: a) the size and 

location of centralized MD treatment plants, MD plants at NG CS, and onsite MD treatment 

units and b) the amount of shale gas produced water transported to each treatment option and/or 

disposal wells. 

The main assumptions for present optimization problem can be summarized as follows: 

1. Produced water volume and composition are known. 

2. Produced water trucking cost is volume and distance dependent. The unit costs for 

produced water and brine transportation is given. 

3. A fixed time horizon consisting of days as time intervals is considered. 
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4. A set of produced water management strategies are available including direct disposal in 

SWD wells, onsite treatment at wellpads using MD, centralized MD plants, and MD 

treatment at NG CS. 

5. Each treatment option is associated with capital and operating cost.  In addition, cost of 

transporting wastewater to treatment facilities as well as transportation of concentrated 

brine and its injection into SWD wells are included in total cost of wastewater 

management. 

6. Direct disposal option is associated with transporting shale gas wastewater to disposal 

wells and its injection into SWD wells.  

7.  The maximum capacity for MD plants at NG CS is constrained by theoretical treatment 

capacity at each NG CS. 

8. The maximum capacity or size for each treatment option is provided. 

9. A set of storage/pits are available to store the produced water at shale gas sites; associated 

costs for storage are not included in this model as it is assumed that storage facilities are 

constructed as part of site development operations. 

10. MD technique concentrates produced water to maximum of 30% salinity. 

11. MD can desalinate the produced water to surface water discharge standard. 

12. Cost of desalination is normalized per amount of produced water. Unit cost of treatment 

calculated from TEA model is used in the optimization model. 

13. Only one capacity range of each treatment facility is installed at each location. 

14. The transportation distance from drilling sites to onsite treatment units is negligible 

compared to other transportation distances considered in the model. 

15. This study does not consider any constraints on the capacity of disposal wells. 
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4.2.2 Model inputs 

Treatment cost calculation  

Associated cost with each treatment strategy ($/m3
produced water) is estimated using detailed TEA 

framework developed for shale gas produced water treatment using MD technology as described 

in Chapter 3 [236]. The TEA model accounts for capital as well as operating and maintenance 

costs of produced water treatment. It is assumed that thermal energy requirements for the 

treatment process is met by external purchase of steam for onsite and centralized MD plant 

treatment options while for treatment at NG CS using available waste heat the cost of thermal 

energy is set to zero [236].  

Transportation cost calculation 

It is important to note that trucks transporting produced water will be loaded one way but empty 

on the return trip, thus making it necessary to account for the round trip of trucks. In addition, 

TDS level of produced water will impact the fuel economy as higher salinity produced water has 

higher density. We have addressed this issue by considering round trip trucking charges and 

assumed a unit transportation cost of $0.25/mile/m3 obtained from peer-reviewed literature and 

personal communications [20, 68, 255, 256]. 

Injection cost calculation  

Injection cost varies across different shale plays. An injection cost of $6.29/m3
produced water for 

Marcellus shale play obtained from peer-reviewed literature [69, 225]. 

The location of centralized plants  

The location of centralized MD plant is defined in a separate optimization procedure to minimize 

the transportation distance associated with the treatment of wastewater at centralized MD plant. 
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We used the Haversine formula shown in equations 20-22 to calculate the great circle distance 

between two points which is the shortest distance over the earth’s surface between the points 

[257].  

 

 

    (20) 

 

    (21) 

   

    (22) 

where  and  are latitude and longitude of the points, respectively and R is earth’s 

radius. The model is implemented in Python programming language and particle swarm 

optimization algorithm is used to find the optimum location of centralized MD plant accounting 

for the location and amount of production from each shale gas well in addition to location of 

disposal wells as the concentrated brine from treatment process is transported to disposal wells. 

It is important to note that we find the optimum location of centralized MD plant for each TDS 

level as it is assumed that MD technology concentrates produced water to a maximum of 30% 

salinity, as such, depending on the salinity of feed water, a percentage of input feed water to the 

centralized MD plant will be sent to disposal wells. 

 

Treatment capacity at NG CS  

Chapter 2 describes the thermodynamic modeling of NG CS to evalute the spatial availability of 

waste heat at NG CS in the U.S. and concludes that a total of 43 TJ (terajoules) per day is 
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available at NG CS in PA at temperatures above 645 K [207]. In order to explore beneficial 

synergies between produced water treatment and available waste heat at NG CS, an ASPEN 

model is developed for a hypothetical MD plant assuming that waste heat contained in the flue 

gas of NG CS is used to produce medium pressure that can be used as the energy source to drive 

the MD process [207, 216]. The treatment capacity at each NG CS is calculated based on the 

available waste heat at the station and required thermal energy per unit amount of produced 

water obtained from ASPEN simulation. Details regarding treatment capacity at NG CS can be 

found in [216]. 

Distance matrix calculation  

 It is assumed that shale gas wastewater and concentrated brine are transported using trucks. 

Accurate driving distance is then calculated between each origin-destination pair locations using 

one of google Application Program Interface (APIs) [258] in MATLAB programming language.  

 

4.2.3 Model Formulation 

 

The optimization problem for the long-term planning of shale gas produced water management is 

formulized in terms of a linear programming (LP) model described in the following section. 

 

 



 84 

4.2.3.1 Constraints 

 

Mass balance constraints  

Total amount of produced water at shale gas sites equals the produced water routed to 

compressor stations, centralized treatment plants, onsite treatment units, and disposal wells as is 

shown in equation 23. 

 

           (23) 

where pwi,t is total produced water at shale gas site i at time period t, wji,j.t  is the amount 

of produced water from shale gas site i transported to compressor station j at time period t, 

wmi,m,t is amount of produced water from shale gas site i transported to centralized MD treatment 

plant m at time period t, wdi,d,t is the amount of produced water from shale gas site i transported 

to disposal well d at time period t, and woi,o,t  is the  amount of produced water from shale gas 

site i treated at onsite treatment o at time period t.  

At each treatment facility, produced water is treated and recovered by a certain recovery 

factor and the rest is disposed at SWD wells, expressed by equations 24-26. 

 

 

(24) 

 

(25) 
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(26) 

where sjj,d,t is the amount of concentrated brine from compressor station j transported to 

disposal well d at time period t, CR is the recovery factor at a given TDS level, wji,j,t  is the 

amount of produced water from shale gas site i transported to compressor station j at time period 

t, smm,d,t is the amount of concentrated brine from centralized MD plant m transported to disposal 

well d at time period t, wmi,m,t is the amount of produced water from shale gas site i transported 

to centralized MD treatment plant m at time period t, soo,d,t is the amount of concentrated brine 

from onsite treatment unit o transported to disposal well d at time period t, and woi,o,t is the total 

amount of produced water from shale gas site i transported to onsite treatment unit o at time 

period t.  

 

Treatment capacity constraints  

 Total amount of produced water transported from all shale gas sites to a treatment facility should 

not exceed the capacity of that facility as in shown in equations 27-29. 

 

 

           (27) 

 

           (28) 

 

           (29) 
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where wji,j,t  is the amount of produced water from shale gas site i transported to 

compressor station j at time period t, TJj is the maximum treatment capacity at compressor 

station j, wmi,m,t  is the amount of produced water from shale gas site i transported to centralized 

MD plant m at time period t, TMm is the maximum treatment capacity at centralized MD plant m, 

where woi,o,t  is the amount of produced water from shale gas site i transported to onsite treatment 

unit o at time period t, TOo is the maximum treatment capacity at onsite treatment unit o. 

Maximum treatment capacity at centralized MD plants is determined to be 20% higher than total 

wastewater generated in each case study as different counties are considered as case studies and 

three potential locations are identified for constructing a centralized MD plant in each county. 

Moreover, maximum treatment capacity at onsite treatment units is determined to be equal to 

total wastewater generated in each county as it is possible that wastewater from one wellpad is 

transported to other wellpads for onsite treatment. 

4.2.3.2 Objective function 

 

The model objective is to minimize the total cost of shale gas wastewater management, as 

expressed in equation 30.  

              (30)   

 

where  denotes the total cost of transportation;  denotes the 

total cost of treatment; and  denotes the total cost of injection.  
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Total cost of transportation is given by equation 31. 

 

 (31) 

 

where  denotes the total transportation cost from shale gas sites to compressor 

stations;  denotes the total transportation cost from compressor stations to disposal wells; 

 denotes the total transportation cost from shale gas sites to centralized MD plants; 

 denotes the total transportation cost from centralized MD plants to disposal wells; 

 denotes the total transportation cost from shale gas sites to disposal wells; and  

denotes the total transportation cost from onsite treatment units to disposal wells. 

 

Total transportation cost from shale gas sites to compressor stations is given by equation 

32 where VTC is variable transportation cost of produced water using trucks, wji,j,t is the amount 

of produced water from shale gas site i transported to compressor station j at time period t, and 

DJi,j is the driving distance from shale gas site i to compressor station j.  

 

 

  (32) 
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, , , ,  are given in equations 33-37 where SJj,d is 

the driving distance from compressor station j to disposal well d, DMi,m denotes the driving 

distance from shale gas site i to centralized MD plant m, SMm,d denotes the driving distance from 

centralized MD plant m to disposal well d, DDi,d denotes the driving distance from shale site i to 

disposal well d, and SOo,d denotes the driving distance from onsite treatment unit o to disposal 

well d. 

 

 

  (33) 

 

  (34) 

 

  (35) 

 

  (36) 

 

  (37) 

 

Total cost of treatment is given by equation 38. The unit cost of treatment for each 

treatment option is obtained from detailed techno-economic assessment and varies for feed TDS 

levels [236]. 
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(38) 

 

 denotes the total cost of treatment at NG CS;  denotes the total cost of 

treatment at centralized MD plants; and  denotes the total cost of treatment at onsite 

treatment units.  

 

Treatment cost at NG CS is given by equation 39.  

 

 

(39) 

where wji,j,t is the amount of produced water from shale gas site i transported to 

compressor station j at time period t, and CJ is the unit cost of treating produced water with a 

specific TDS level at compressor station j.  

 

Similarly,  and  are given by equations 40 and 41. CM is the unit cost of 

treating produced water with a specific TDS level at centralized MD plant m. CO is the unit cost 

of treating produced water with a specific TDS level at onsite treatment unit o.  

 

 

      (40) 
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      (41) 

 

Total cost of injection is given by equation 42  

 

 

(42) 

 

where  denotes the cost of injecting produced water routed from shale gas sites 

to disposal wells which is expressed as equation 43 in which wdi,d,t is the amount of produced 

water routed from shale gas site i to disposal well d at time period t, and  is the unit cost of 

injecting produced water into SWD wells.  

 

 

         (43) 

 denotes the cost of injecting concentrated brine routed from compressor station j 

to disposal wells d expressed as equation 44.  

 

 

         (44) 
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 denotes the cost of injecting produced water routed from shale gas sites to 

disposal wells, expressed as equation 45. 

 

 

(45) 

 

 denotes the cost of injecting produced water routed from shale gas sites to 

disposal wells, expressed as equation 46. 

 

 

(46) 

4.2.3.3 Modeling the problem as mixed-integer nonlinear program (MINLP) model 

It is important to note the problem of finding the optimum management strategies for shale gas 

produced water could also be modeled through a mixed-integer nonlinear programming 

(MINLP) model where staircase function is used for treatment cost calculation [259]. Different 

capacity ranges are considered for each treatment option and depending on the amount of 

produced water allocated to each treatment facility, the size of a treatment option is defined. 

Associated cost of treatment is then calculated using a staircase total cost function. In the original 

model explained above, we have simplified the MINLP model to an LP model since the results of 

TEA have shown that plant capacity plays an insignificant role in total cost of treatment [236]. 
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However, the model formulation as an MINLP model is described in the following section. As an 

example, if three levels of sizing denoted as a1, a2, and a3 are considered for treatment facilities at 

NG CS as is explained in equations 47-49, Equations 50-52 will be used as additional constraints 

to decide the optimum installed capacity, and then Equation 33 will replace Equation 19 in the 

objective function to account for the cost of treatment at NG CS.  

 

If  then capacity range a1 is selected                      

 

(47) 

If  then capacity range a2 is selected 

 

(48) 

If   then capacity range a3 is selected 

 

(49) 

 

Capacity range constraints 

In Equations 30-32, wji,j,t denotes the amount of produced water transported from wellpad i to 

compressor station j at time period t,  is a very small number and U1 and U2 are binary 

variables. 

 

 

  (50) 
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  (51) 

 

 

  (52) 

In equation 53,  denotes the treatment cost at compressor station with capacity a1; 

 denotes the treatment cost at compressor station with capacity a2; and  denotes the 

treatment cost at compressor station with capacity a3.  

 

 

(53) 

 

Similarly, if three levels of sizing k1, k2, and k3 are considered for treatment facilities at 

centralized MD plants, Equations 54-56 will be used to decide the optimum installed capacity, 

and then equation 57 will replace equation 40 in the objective function to account for the cost of 

treatment at centralized MD plants. wmi,m,t denotes the amount of produced water transported 

from wellpad i to centralized MD plant m at time period t 

 

 

             (54) 
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 (55) 

 

 (56) 

  

In equation 57,  denotes the treatment cost at compressor station with capacity 

k1;  denotes the treatment cost at compressor station with capacity k2; and  

denotes the treatment cost at compressor station with capacity k3.  

 

 

(57) 

 

If we consider three levels of sizing l1, l2, and l3 for onsite treatment facilities, equations 

58-60 will be used to decide the optimum installed capacity, and then Equation 61 will replace 

equation 40 in the objective function to account for the cost of treatment at onsite treatment 

units. In equations 58-61, woi,o,t denotes the amount of produced water transported from wellpad 

i to onsite treatment unit o at time period t. 

 

   (58) 
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   (59) 

 

   (60) 

  

In equation 61,  denotes the treatment cost at onsite treatment unit with capacity 

l1;  denotes the treatment cost at onsite treatment unit with capacity l2; and  

denotes the treatment cost at onsite treatment unit with capacity l3.  

 

 

(61) 

 

4.3 RESULTS 

The optimization model is applied to four real-world case studies with major shale gas 

development activities in Marcellus shale play in PA. Each case study includes one county, and 

in total four counties of Susquehanna and Bradford in the Northeast PA and Washington and 

Greene in the Southwest PA are examined (see Figure 19). These case studies differ in terms of 
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their proximity to disposal wells in Ohio as well as the distribution of available waste heat 

sources at NG CS in each county. 

 

 

Figure 19. Case studies examined in this work. Spatial location of waste heat sources at NG CS, shale gas 

wellpads, and SWD wells in Ohio are shown. 

 

Table 3 presents the number of active shale gas wells, number of wellpads, shale gas 

production, and produced water generation per unit of shale gas production for each county. 

Shale gas wells with same longitude-latitude are integrated into wellpads based on the location 

data published by PA DEP [252]. It is important to note that shale gas production is not linearly 

correlated with the amount of produced water generation across the counties primarily due to 

differences in the geology of shale gas extraction regions. Figure 20 shows the county level 

produced water generation as well as the theoretical treatment capacity at NG CS in each county. 

Details regarding treatment capacity estimation can be found in [216]. As shown from Table 3, 

Susquehanna county is the top shale gas producing county according to the statistics published 
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by PA DEP [252], however, it is ranked number three in terms of produced water generation (see 

Figure 20) [30].  

 

Table 3. Number of wells and wellpads, shale gas production, and produced water generation in four case 

studies 

County 
Number of 

Wells 

Number of 

Wellpads 

shale gas production 

(MMcf-6months 

period) 

produced water 

per amount of 

shale gas 

(bbl/MMcf) 

Susquehanna 614 217 389,595 3 

Bradford 801 399 349,857 3 

Washington 758 189 197,505 13 

Greene 528 162 172,099 9 

 

 

 

Figure 20. produced water generation and theoretical treatment capacity at NG CS in four case studies 

 

The results of optimization modeling are shown in Table 4. These results are presented 

for two TDS levels: 100 and 250 g/L. The optimal solution in all four counties comprises of two 
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different management strategies: (1) onsite treatment at shale gas sites either at the same site 

where produced water is generated or another shale gas site where the produced water from 

multiple sites is gathered and being treated and (2) treatment at NG CS where available waste 

heat can be exploited to offset the thermal energy requirements of the MD treatment process. The 

breakdown of total cost into transportation, treatment, and injection is also shown in Table 4. 

Associated cost of produced water management for Greene, Washington, Susquehanna, and 

Bradford counties is 5.19, 12.7, 14.5, and $12.1 million/year for TDS level of 100 g/L and 

increases to 8.8, 17.2, 31.0, and $26.3 million/year for TDS level of 250 g/L, respectively. The 

results reveal that the total management cost is sensitive to the TDS level of produced water as 

the recovery factor for MD treatment decreases with an increase in TDS level, indicating that a 

greater portion of produced water must be disposed at SWD wells. 

Moreover, for each case study two additional scenarios are examined: (1) a scenario in 

which all the produced water is managed using BAU strategy which is direct disposal into SWD 

wells without any treatment processes and (2) a scenario in which available waste heat at NG CS 

is not utilized. In the latter scenario, the optimal solution includes onsite treatment of wastewater. 

The total cost of optimal management strategy is then compared to associated cost of these two 

scenarios in order to provide insights regarding the benefits of optimal management strategy. The 

results of this comparison are shown in Figure 21-Figure 24. Optimal management strategy can 

provide 31% benefit over the BAU strategy in Washington county, 47% in Greene county, and 

above 60% in Susquehanna and Bradford counties as these counties in Southwest PA are in close 

proximity to disposal wells in Ohio as compared to the counties in Northeast PA. These findings 

are compelling as they suggest that treatment of high salinity produced water using MD could 

result in significant reduction in produced water management cost. It is important to note that 
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MD is an advanced desalination technology with higher associated cost compared to 

conventional desalination technologies when it is not integrated with a source of waste heat, 

nonetheless, treating produced water using MD is accompanied with major economic benefit 

over BAU management strategy primarily due to significant reduction in cost of transportation of 

wastewater. 

 

Table 4. Optimal solution for four case studies 

County 

 

TDS 

(g/L) 

Treatment Cost Injection Cost Transportation Cost Total Cost 

million USD/year 

G
re

en
e 

Optimal 

Solution 

100 1.08 1.10 3.02 5.19 

250 0.76 2.77 5.28 8.80 

Onsite 

Treatment 

100 3.06 1.10 2.18 6.33 

250 2.77 0.93 5.23 8.93 

Direct 

disposal 

100 0.00 3.32 6.65 9.97 

250 0.00 3.32 6.65 9.97 

W
as

h
in

g
to

n
 

Optimal 

Solution 

100 6.49 2.37 3.82 12.68 

250 2.02 5.99 9.22 17.23 

Onsite 

Treatment 

100 6.63 2.37 3.71 12.72 

250 2.02 5.99 9.22 17.23 

Direct 

disposal 

100 0.00 7.19 11.27 18.46 

250 0.00 7.19 11.27 18.46 

S
u

sq
u
eh

an
n
a 

Optimal 

Solution 

100 2.18 0.90 11.44 14.52 

250 0.76 2.26 27.95 30.97 

Onsite 

Treatment 

100 2.50 0.90 11.21 14.61 

250 0.76 2.26 27.95 30.97 

Direct 

disposal 

100 0.00 2.71 33.92 36.63 

250 0.00 2.71 33.92 36.63 

B
ra

d
fo

rd
 

Optimal 

Solution 

100 1.71 0.84 9.56 12.11 

250 0.66 2.12 23.53 26.32 

Onsite 

Treatment 

100 2.35 0.84 9.34 12.53 

250 0.72 2.12 23.50 26.34 

Direct 

disposal 

100 0.00 2.55 28.32 30.87 

250 0.00 2.55 28.32 30.87 
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Figure 21. Optimal solution versus direct disposal and onsite treatment for Greene county 

 

 

Figure 22. Optimal solution versus direct disposal and onsite treatment for Washington county 
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Figure 23. optimal solution versus direct disposal and onsite treatment for Susquehanna county 

 

 

Figure 24. Optimal solution versus direct disposal and onsite treatment for Bradford county 

 

Sensitivity analysis is performed to understand how variations in cost of different 

strategies affect the choice of optimum produced water management strategy. The results of 

sensitivity analysis are shown for produced water with TDS level of 100 g/L in the Greene 

county. This analysis revealed that the result of optimization model is most sensitive to changes 

in transportation cost (Figure 25). The results in Figure 25 show that a 20% increase in the 

transportation cost (i.e., from $0.25/m3/mile to $0.3/m3/mile) resulted in 12% increase in total 
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management cost indicating the high sensitivity of produced water management to transportation 

cost. Moreover, we investigated at which point direct disposal into SWD wells will be included 

in the optimal solution. As shown from Figure 25, direct disposal is not included in optimum 

management strategy unless the transportation cost could be as low as $0.07/m3/mile which is 

not currently a realistic transportation cost. However, it is important to note that direct disposal is 

chosen as part of optimal solution along with onsite treatment at shale gas sites and treatment at 

NG CS when transportation cost is $0.07/m3/mile. It is interesting to note that changes in 

treatment cost have a comparatively minimal impact on the total cost of produced water 

treatment (Figure 26). 

 

 

Figure 25. Sensitivity analysis of transportation cost on total produced water management cost for Greene 

County  
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Figure 26. Sensitivity analysis of treatment cost using MD on total cost of produced water management 

cost 

4.4 DISCUSSION 

This work is proof of concept that shale gas produced water treatment using MD technology is a 

promising strategy which could be significantly more economical than BAU management 

strategy in addition to potential benefits it can provide in terms of environmental sustainability. 

The results of this work have shown that treating produced water at shale gas sites or NG CS 

using available waste heat has the highest economic performance for the examined case studies 

in PA, and suggest that volume reduction close to source of generation can achieve enormous 

cost savings, with more than 60% reduction in total management cost relative to the BAU in the 

best case. Furthermore, the results of this work have shown that transportation cost dominates 

every other cost element in the entire management process, constituting about 80% of total 

wastewater management cost in Northeast PA.  
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It is important to note that this study does not consider any economic benefit for the 

permeate generated from the treatment process which is a conservative assumption for the 

present study primarily because PA is a water rich state. This could be of interest in water scarce 

shale regions such as Texas or Oklahoma. Specifically, when MD is used as the treatment 

technology, the permeate has pure water quality [174, 260-262] and hence is above the standard 

limits for re-injection purposes which makes it applicable for agriculture uses or surface water 

release. Inclusion of potential beneficiary uses of the permeate and subsequent economic benefits 

merits further investigation. 

 

In addition to feed TDS level, the temperature of feed water could play an important role 

in associated cost of onsite treatment of produced water as it will significantly impact the energy 

requirements of MD process. In the results presented here, it is assumed that produced water is at 

ambient temperature and it must be heated up to reach the desired temperature for MD operation 

which is a conservative assumption, nonetheless, onsite treatment is chosen as the optimum 

management strategy in the optimization model. However, the temperature of produced water 

could be as high as 100oC [38] which could result in major cost savings for onsite treatment of 

produced water.   

 

While MD technology proposed in this study has been demonstrated at the laboratory 

scale with over 99.9% of TDS removal capability [39], and the performance of this technique has 

been simulated at the plant scale [216], additional pilot-scale testing and techno-economic 

analysis is necessary as MD is plagued with technological uncertainty and is yet to be effectively 

demonstrated at a commercial scale to ensure that the process is practically and economically 
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feasible at larger scales. Further, membrane distillation crystallization (MDC) systems should be 

considered for their potential for enhanced volume reduction and improving the economics of 

shale gas wastewater management as it results in minimization of transportation costs [174, 231] 

and simultaneously generating salt as a useful byproduct [263, 264]. Waste heat integrated MDC 

systems with promising thermal energy requirements and waste minimization show merit for the 

coproduction of permeate and salt and should be considered in future shale gas wastewater 

management studies.  

 

While the results of this study suggest that transportation of produced water should be 

minimized from an economic point of view, it is important to note that transportation is also 

associated with high GHG emissions which may result in more favorable results for treatment of 

shale gas high salinity wastewater. Worldwide transportation-related energy demand is projected 

to increase by 25% between 20 and 2040, as such, reducing emissions from the transportation 

sector could play a critical role in global GHG emissions reduction [265]. Inclusion of carbon 

footprint of different management strategies merits further investigation as single-objective 

optimization fails to capture the environmental impacts that may compromise the long-term 

sustainability of these strategies. Accordingly, additional criteria such as infrastructure (roads) 

damage and traffic-related environmental impacts of hydraulic fracturing must be considered so 

that shale gas production does not inadvertently shift environment impacts [266]. In addition, it 

is important to recognize that available waste heat at NG CS will displace the heat that would 

otherwise have to be derived by combustion of NG, as such, avoided GHG emissions should be 

credited to the treatment of produced water using waste heat management strategy. 
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The optimization model developed here has been applied to four case studies differing in 

terms of their proximity to disposal wells in Ohio as well as the amount and spatial distribution 

of available waste heat sources, however, direct disposal into SWD wells is not part of the 

optimal management strategy for any of the examined case studies. However, cost of 

transportation and transportation distance to disposal wells could significantly alter the results of 

optimization. Transportation cost varies across the states and counties primarily due to changes 

in average speed limit and road conditions. As such, the results could be different across shale 

plays in the U.S. and merits further investigation. 

 

Shale gas wells are integrated into wellpads based on longitude-latitude information 

published by PA DEP [252]. While it is technically feasible to drill 12 wells or more per 

wellpad, the majority of wellpads contain 1, 2, or 3 wells as development of singular wells could 

help companies to secure the long-term rights to the mineral acreage [24, 267]. As shale gas sites 

mature, the number of wells per wellpad will have a more even distribution which is likely to 

marginally alter the results of this work and merits further investigation, however, the broad-

based conclusions of this study remain unchanged. In addition, it is important to recognize that 

two types of NG are trapped in Marcellus shale play: dry NG which mainly comprised of 

methane and is more prevalent in central and northeast PA and wet NG that constitutes other 

hydrocarbons such as ethane and butane, collectively known as natural gas liquids (NGL) in 

addition to methane. Due to increased interest in NGL, future studies should take into account 

the profit gained from natural gas and NGL production and its consequent impact on the 

economics of shale gas wastewater management.  

 



 107 

Notation 

Sets: 

I = set of shale gas sites (wellpads) indexed by i 

J = set of natural gas compressor stations sites indexed by j 

A= set of capacity ranges for compressor stations (a1, a2, a3) 

O = set of on-site treatment sites indexed by o 

L= set of capacity ranges for on-site treatment units (l1, l2, l3) 

M = set of centralized MD plants indexed by m 

K= set of capacity ranges for centralized MD plants (k1, k2, k3) 

D = set of disposal wells indexed by d 

T = set of time periods indexed by t 

 

Parameters: 

PWi,t = total produced water at shale gas site i at time period t 

TJj = maximum treatment capacity at compressor station j  

TMm = maximum treatment capacity at centralized MD plant m  

TOo = maximum treatment capacity at on-site treatment facility o 

DJi,j = Transportation distance from shale gas site i to compressor station j 

DMi,m = Transportation distance from shale gas site i to centralized treatment plant m 

DOi,o = Transportation distance from shale gas site i to onsite treatment o 

DDi,d = Transportation distance from shale gas site i to disposal well d 

SJj,d = Transportation distance from compressor station j to disposal well d (sludge disposal) 

SMm,d = Transportation distance from centralized treatment plant m to disposal well d  
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SOo,d = Transportation distance from on-site treatment o to disposal well d  

VTC = variable transportation costs by trucking ($/m3.mile)  

CJj,c,a = unit treatment cost at compressor station j with size a 

CMm,c,k = unit treatment cost at centralized MD plant m with size k 

COo,c,l = unit treatment cost at onsite treatment unit o with size l 

CD = unit cost of injecting produced water at disposal wells ($/m3)  

CR = correlation coefficient for recovery factor (1-CR = concentrated brine production) 

 

Continuous variables 

 

wji,j,t = amount of produced water transported from shale gas site i to compressor station j at time 

period t  

wmi,m,c,t = amount of TDS concentration level c produced water from shale gas site i transported 

to centralized MD treatment plant m at time period t  

wdi,d,c,t = amount of TDS concentration level c produced water from shale gas site i transported to 

disposal well d at time period t  

woi,o,c,t = amount of TDS concentration level c produced water from shale gas site i treated at 

onsite treatment o at time period t  

sjj,d,t = amount of sludge from compressor station j transported to disposal well d at time period t  

smm,d,t = amount of sludge from centralized MD plant m transported to disposal well d at time 

period t  

soo,d,t = amount of sludge from onsite treatment unit o transported to disposal well d at time 

period t  
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Binary variables 

U1-U6 =0-1 variable used to decide the size of treatment facilities at NG CS, centralized 

treatment plants, and onsite treatment units. 
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5.0  CONCLUSIONS AND FUTURE WORK 

Shale gas is touted as a revolutionary source of clean energy with lower GHG emissions relative 

to other fossil fuels. However, its large-scale commercialization without proper consideration of 

the potential widespread consequences for the environment could be problematic. Multiple 

studies have shown that the extraction and production of unconventional natural gas has resulted 

in detrimental impacts on the ecosystem and environment including increased greenhouse gas 

(GHG) emissions at shale gas extraction sites [5-7], high water footprint [12], and high salinity 

wastewater management [13, 14]. As energy systems are inherently interconnected and complex, 

it is crucial to understand the potential widespread impact of shale gas production on economics, 

environment, and human welfare prior to their widespread adoption and commercialization. To 

date, the scientific consensus is inconclusive on several pivotal questions within the shale gas 

sustainability discourse, including: (I) the quality and quantity of wastewater generated from 

hydraulic fracturing, (II) the cost of shale gas wastewater treatment using advanced treatment 

technologies such as emerging membrane distillation (MD), (III) how the cost of shale gas 

wastewater treatment can be improved by exploring regional industrial ecology opportunities 

e.g., offsetting the energy requirements of the treatment process by utilizing available industrial 

waste hear sources, (IV) how much waste heat is available at NG CS that could potentially be 

integrated into shale gas wastewater treatment process, and (V) the optimum management 
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strategy for shale gas wastewater management which can provide the greatest potential economic 

benefits,  and (VI) how treatment of shale gas high salinity wastewaters compares with BAU 

strategy. This work sought to answer these questions piecewise using a case-study approach.  

Chapter 2 investigated the waste heat recovery opportunities from NG CS on a state level 

in the contiguous United States (RQ #1). Thermodynamic analysis based on energy and exergy 

provided a scientifically rigorous approach for quantifying the amount of waste heat in the 

exhaust stream of compressor engines, while concurrently addressing several existing 

uncertainties in waste heat estimation due to lack of specific information on configuration and 

operation of individual compressor stations by applying statistical approaches. The results 

indicate that a large amount of high quality waste heat is available at NG CS. Although the waste 

heat recovery is plagued with technological uncertainty it has potential for improving energy 

efficiency via synergies with industrial process.  In addition, the results of waste heat estimation 

revealed that states with major shale gas development such as Pennsylvania, Texas, and 

Oklahoma have also the greatest share of available waste heat recovery opportunities, thus 

making it suitable for developing industrial symbiotic opportunities for shale gas wastewater 

treatment using available waste heat.  

The critical parameters in waste heat estimation were determined to be installed capacity 

of compressor stations, the type of compressor engines, and the operating hours of compressor 

stations. Due to lack of information on compressor engine type and operating hours of individual 

compressor stations, a combination of k-nearest neighbor algorithm for pattern recognition and 

Monte-Carlo simulation for modeling the load factor of compressor stations were employed to 

capture the uncertainty in waste heat estimation. Key research opportunities and challenges in 

waste heat recovery from NG CS are discusses in this work, however, for actual implementation 
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of waste heat recovery facilities in a compressor station and its integration with shale gas 

wastewater treatment, detailed information on compressor engine type and operating hours of 

specific compressor stations are required and merits further investigation in order to determine 

their technical feasibility and commercial applicability. Future work should focus on 

understanding the technological and economic feasibility of implementing commercial scale 

waste heat recovery facilities at NG CS in addition to waste heat integrated MD technology. 

Moreover, a comprehensive evaluation of end-uses for available waste heat at NG CS is 

encouraged in the future work particularly in states with no shale gas activities where waste heat 

cannot be integrated with shale gas wastewater treatment process as the available waste heat at 

NG CS is of high quality, thus making the recovery of waste heat thermodynamically feasible for 

a wide range of uses. 

 

Chapter 3 developed a techno-economic assessment (TEA) model to quantify the cost of shale 

gas produced water treatment using membrane distillation (MD) as well as evaluating the total 

cost of treatment when available waste heat at NG CS could be utilized to provide the energy 

requirements of desalination process (RQ #2). This work revealed that the cost of treating shale 

gas high salinity wastewater is highly dependent on thermal energy price reflected in the 

decreased treatment cost when MD is coupled with a source of waste heat. Waste heat integrated 

MD treatment is more cost-efficient compared to conventional desalination technologies such as 

reverse osmosis (RO) and forward osmosis (FO) which are not energetically viable for treatment 

of high salinity wastewaters in addition to being more energy intensive in terms of electricity 

requirements for their operation. Additionally, total cost of water treatment using MD technology 

is found to be highly dependent on the salinity level of feed water and the uncertainty in total 
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cost is captured by sensitivity analysis in this work. Given that wastewater characteristics, 

including the presence of organics, is highly dependent on the shale formation location, further 

investigation for other shale plays as the results of this study are presented for Marcellus shale 

play in Pennsylvania.   

In addition, this work has shown that produced water treatment could result in substantial 

economic benefits as compared to BAU management strategy which is direct disposal into SWD 

wells primarily due to high transportation cost associated with disposal of produced water. This 

work highlighted the fallacies of traditional TEA for desalination of produced water, and showed 

that inclusion of cost of produced water intake and disposal can provide valuable insights into 

the economic sustainability of shale gas wastewater treatment. However, technological 

maturation and optimization as well as commercial scale adaptation of membrane distillation 

technology in addition to coupling treatment process with waste heat sources have the potential 

for enhancing the economics of produced water treatment while concurrently increasing the 

sustainability of shale gas production. Future work should focus on understanding the 

technological and economic feasibility of implementing commercial scale MD plants in addition 

to waste heat integrated MD systems. 

 

Chapter 4 proposes a novel optimization framework for long-term planning of shale gas 

wastewater management to guarantee the sustainable development of unconventional natural gas 

industry. A systems-level optimization model is developed to identify the optimum shale gas 

wastewater management strategy for multiple shale gas development regions in Pennsylvania 

accounting for associated cost of transportation, treatment, and injection of shale gas wastewater 

with each management strategy (RQ #3). This work revealed that optimum shale gas wastewater 
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management which includes: (1) onsite treatment of produced water using MD at shale gas 

extraction sites and (2) treatment of produced water at NG CS sites where available waste heat 

could be utilized to offset the energy requirements of treatment process has economic advantage 

over the most common management strategy in the U.S. which is disposal into SWD wells. 

Optimum management strategies were found to have promising economic savings, with up to 

60% reduction in total wastewater management cost relative to direct disposal in northeast PA. 

Transportation cost was found to constitute up to ~80% of total wastewater management in the 

worst-case and 30% in the best-case which calls for further wastewater volume reduction and 

show merit for evaluation of membrane distillation crystallization technologies, and thus should 

be considered in future studies.  

This dissertation has shown that shale gas wastewater treatment has the capacity for cost 

abatement relative to BAU management strategy. However, MD technology proposed in this 

study is highly energy intensive and requires substantial thermal energy for the distillation 

process. In addition, technologies for treatment of shale gas high salinity wastewater are 

emerging fields, which in part explains why treatment cost using MD in the base-case is higher 

than that of conventional desalination technologies. This indicates that broad advances in 

commercialization of this technology is required if advanced treatment of produced water is to be 

competitive with established wastewater management strategies in shale plays in the U.S. 

However, the differential in cost between treatment and direct disposal is substantial and is 

expected to further increase over time. It is important to recognize that the economic benefits of 

reducing transportation cost occurs by concentrating the produced water using MD, and that the 

thermal energy required for the distillation process could be provided by synergistic integration 

of MD process with available waste heat sources in the industrial sector including NG CS.  
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Future work should investigate the carbon footprint of different shale gas wastewater 

management strategies in order develop a multi-objective optimization framework accounting for 

economic and environmental impacts criteria that can guarantee the long-term sustainability of 

these strategies. Moreover, each management strategy is accompanied by a range of harmful 

impacts such as infrastructure (roads) damage and traffic-related environmental impacts that 

should also be considered in future work. In addition, variations in wastewater management 

strategy according to location i.e., state or shale play would further improve the conclusions 

drawn from this study. In particular, availability of SWD wells in states such as Texas and 

differences in transportation cost are likely to alter the results of the optimization model 

presented here and merits further investigation. 
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APPENDIX A 

SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

A.1 COMPRESSOR STATIONS MECHANICAL DRIVE TYPE 

 

Table 5. Probability distribution for having an internal combustion engine within different installed 

capacity ranges stated as horsepower (HP) 

Lower capacity range 

(HP) 
Upper capacity 

range (HP) 
Probability of being  

Internal Combustion 

42 800 1.00 

800 1558 0.91 

1558 2316 0.98 

2316 3075 1.00 

3075 3833 0.83 

3833 4591 0.75 

4591 5349 0.62 

5349 6107 0.71 

6107 6865 0.63 

6865 7624 0.40 

7624 8382 0.67 

8382 9140 0.13 

9140 9898 0.00 

9898 10656 0.29 

10656 11414 0.25 

11414 12173 0.33 

12173 12931 0.00 

12931 13689 0.00 

13689 14447 0.00 
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14447 15205 0.00 

15205 15963 0.00 

15963 16722 0.00 

16722 17480 0.00 

17480 18238 0.00 

18238 18996 0.00 

18996 19754 0.00 

19754 20512 0.00 

20512 21270 0.00 

21270 22029 0.00 

22029 22787 0.00 

22787 23545 0.00 

23545 24303 0.00 

24303 25061 0.00 

25061 25819 0.00 

25819 26578 0.00 

26578 27336 0.00 

27336 28094 0.00 

28094 28852 0.00 

28852 29610 0.00 

29610 30368 0.00 

30368 31127 0.00 

31127 31885 0.00 

31885 32643 0.00 

32643 33401 0.00 

33401 34159 0.00 

34159 34917 0.00 

34917 35676 0.00 

35676 36434 0.00 

36434 37192 0.00 

37192 37950 0.00 

 

 

Table 5 (continued).
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A.2 THERMODYNAMIC ANALYSIS FOR WASTE HEAT ESTIMATION 

A.2.1  

A.2.1. Gas turbine CS 

 

 

Figure 27 shows a process schematic of a typical gas turbine NG CS. 

 

 

 

Figure 27. Simplified flow diagram of compressing NG and generating waste heat at gas turbine NG CS 

[135] 
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Adiabatic flame temperature calculation 

 

In order to calculate the adiabatic flame temperature,[268] we define the initial condition 

of 1 atm pressure, 298°K initial temperature and a 3.76 molar ratio for nitrogen to oxygen  in the 

air. We also need to calculate fuel-air equivalence ratio ( ) which is defined as the ratio of actual 

fuel-to-air ratio ( ) to stoichiometry fuel-to-air ratio ( ) for a given mixture.[269, 

270] The actual combustion reaction with 100% excess air is written as equation 62 and the 

stoichiometric reaction is shown as equation 63. The equivalence ratio is then calculated as 

shown in equation 64. 

 

                                (62) 

                                                   (63) 

                                                                                             (64) 

We use Cantera online software toolkit[271] to calculate the adiabatic flame temperature 

and the resulting temperature is 1478°K for combustion of methane with 100% excess air. 
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Flue gas composition and enthalpy calculations  

 

The fuel composition for natural gas is shown in Table 6. We assume complete 

combustion with 10% excess air where air is composed of 21% oxygen and 79% Nitrogen.  

 

Table 6. Assumed fuel composition (volumetric percentage) 

Natural Gas 

Methane (CH4) 93.27% 

Ethane (C2H6) 3.79% 

Propane (C3H8) 0.57% 

Butane (C4H10) 0.29% 

Nitrogen 1.19% 

Water 0.00% 

Carbon Dioxide 0.79% 

 

 

Methane is the primary constituent of the NG and the stoichiometric equation for 

combustion of methane with 10% excess air is shown equation 65.  

  

                 (65) 

The combustion equation is written for each species in the fuel and the mole fraction of 

combustion products in the exhaust gas is determined as shown in Table 7. These values are used 

to calculate the enthalpy for each constituent of exhaust gas. 
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Table 7. Exhaust gas composition [93] 

Flue Gas Species Natural Gas 

CO2 9.7% 

H2O 18.7% 

N2 71.6% 

 

 

Enthalpy values for each species in gas turbine inlet and outlet stream are calculated 

based on the temperature as following [137].  

 

@ : 

 

 

 

@ : 

 

 

 

 



 122 

The mass flow rate of exhaust gas is calculated as shown in equation 66. These 

calculations are carried out as an example for a compressor station with the capacity of 12000 

HP (32214236.6 kJ/hr) which is the average capacity of a compressor station in the U.S. 

 

                                                                                                                                               (66) 

 

In order to estimate the heat contained in the exhaust stream, we assume that the exhaust 

stream will be cooled down to 60°C (333°K) [93, 147]. Available waste heat at this compressor 

station is calculated as shown in equation 67. 

 

@ : 

 

 

 

 

@ : 
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                                                                                                                                               (67) 

 

Table 8. List of all mathematical symbols and definition 

Symbol Definition 

 

Power of compressor station 

 

Power of gas turbine 

 

Mass flow rate 

 

Inlet enthalpy 

 

Outlet enthalpy 

 

Inlet temperature 

 

Outlet temperature 

 

Inlet Pressure 

 

Outlet Pressure 

 

Gas turbine isentropic efficiency 

 

Ratio of specific heat 

 

Enthalpy of Carbon Dioxide 

 

Enthalpy of Steam 

 

Enthalpy of Nitrogen Gas 
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A.2.2. Reciprocating internal combustion (IC) engine CS 

Figure 28 shows the schematic of four principal states of a cycle in an IC engine. Each 

cycle consists of two processes (processes 1-2 and 3-4) in which there is work but no heat 

transfer and two processes (processes 2-3 and 4-1) in which there is heat transfer but no work 

[137]. 

 

 

Figure 28. T-s diagram of four principal states of a cycle in an IC engine [137] 

A.3 STATE SPECIFIC ELECTRICITY MIX 

 

Table 9. Electricity generation mix by state [272] 

Alaska (AK) % Montana (MT) % 

Coal 9.61 Coal 53.74 

Hydroelectric Conventional 22.10 Hydroelectric Conventional 34.81 

Natural Gas 52.66 Natural Gas 2.22 

Other Biomass 0.80 Other 1.20 

Petroleum 12.60 Other Gases 0.00 

Wind 2.24 Petroleum 1.67 
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Alabama (AL)   Wind 6.34 

Coal 31.25 Wood and Wood Derived Fuels 0.02 

Hydroelectric Conventional 8.57 North Carolina (NC)   

Natural Gas 30.94 Coal 37.38 

Nuclear 27.11 Hydroelectric Conventional 5.48 

Other Biomass 0.01 Natural Gas 22.22 

Other Gases 0.18 Nuclear 31.95 

Petroleum 0.05 Other 0.45 

Wood and Wood Derived Fuels 1.90 Other Biomass 0.33 

Arkansas (AR)   Petroleum 0.17 

Coal 52.89 Solar Thermal and Photovoltaic 0.27 

Hydroelectric Conventional 4.40 Wood and Wood Derived Fuels 1.75 

Natural Gas 20.13 North Dakota (ND)   

Nuclear 19.81 Coal 78.46 

Other 0.03 Hydroelectric Conventional 5.29 

Other Biomass 0.17 Natural Gas 0.15 

Petroleum 0.07 Other 0.11 

Wood and Wood Derived Fuels 2.48 Other Biomass 0.02 

Arizona (AZ)   Other Gases 0.12 

Coal 38.39 Petroleum 0.09 

Hydroelectric Conventional 5.22 Wind 15.76 

Natural Gas 26.20 Nebraska (NE)   

Nuclear 27.74 Coal 72.14 

Other Biomass 0.06 Hydroelectric Conventional 3.03 

Petroleum 0.04 Natural Gas 1.18 

Solar Thermal and Photovoltaic 1.86 Nuclear 18.50 

Wind 0.40 Other Biomass 0.18 

Wood and Wood Derived Fuels 0.09 Petroleum 0.11 

California (CA)   Wind 4.86 

Coal 0.44 New Hampshire (NH)   

Hydroelectric Conventional 12.66 Coal 7.40 

Natural Gas 63.72 Hydroelectric Conventional 7.22 

Nuclear 9.55 Natural Gas 20.73 

Other 0.44 Nuclear 55.25 

Other Biomass 1.52 Other 0.31 

Other Gases 0.75 Other Biomass 0.69 

Petroleum 0.04 Petroleum 0.53 

Solar Thermal and Photovoltaic 2.03 Wind 1.97 

Wind 6.84 Wood and Wood Derived Fuels 5.91 

Wood and Wood Derived Fuels 2.02 New Jersey (NJ)   

Colorado (CO)   Coal 3.11 

Coal 63.33 Hydroelectric Conventional 0.03 

Hydroelectric Conventional 2.28 Natural Gas 41.69 

Natural Gas 20.12 Nuclear 51.39 

Other 0.09 Other 0.96 

Other Biomass 0.15 Other Biomass 1.54 

Petroleum 0.02 Other Gases 0.34 

Solar Thermal and Photovoltaic 0.47 Petroleum 0.25 

Wind 13.54 Solar Thermal and Photovoltaic 0.67 

Table 9 (continued).
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Wood and Wood Derived Fuels 0.01 Wind 0.02 

Connecticut (CT)   New Mexico (NM)   

Coal 1.91 Coal 67.31 

Hydroelectric Conventional 1.13 Hydroelectric Conventional 0.26 

Natural Gas 44.31 Natural Gas 25.02 

Nuclear 47.96 Other Biomass 0.05 

Other 2.00 Petroleum 0.16 

Other Biomass 1.82 Solar Thermal and Photovoltaic 1.08 

Petroleum 0.86 Wind 6.11 

Wood and Wood Derived Fuels 0.01 Nevada (NV)   

Delaware (DE)   Coal 15.56 

Coal 19.90 Hydroelectric Conventional 7.94 

Natural Gas 76.43 Natural Gas 73.33 

Other Biomass 0.74 Other 0.08 

Other Gases 2.00 Other Biomass 0.07 

Petroleum 0.30 Other Gases 0.02 

Solar Thermal and Photovoltaic 0.58 Petroleum 0.06 

Wind 0.06 Solar Thermal and Photovoltaic 2.21 

Florida (FL)   Wind 0.74 

Coal 20.84 New York (NY)   

Hydroelectric Conventional 0.11 Coal 3.44 

Natural Gas 62.49 Hydroelectric Conventional 18.29 

Nuclear 11.93 Natural Gas 39.80 

Other 1.39 Nuclear 32.77 

Other Biomass 1.04 Other 0.65 

Petroleum 1.15 Other Biomass 1.23 

Solar Thermal and Photovoltaic 0.09 Petroleum 0.74 

Wood and Wood Derived Fuels 0.96 Solar Thermal and Photovoltaic 0.05 

Georgia (GA)   Wind 2.59 

Coal 33.15 Wood and Wood Derived Fuels 0.44 

Hydroelectric Conventional 3.06 Ohio (OH)   

Natural Gas 33.23 Coal 68.88 

Nuclear 27.11 Hydroelectric Conventional 0.40 

Other 0.07 Natural Gas 15.80 

Other Biomass 0.34 Nuclear 11.74 

Petroleum 0.23 Other 0.01 

Solar Thermal and Photovoltaic 0.01 Other Biomass 0.35 

Wood and Wood Derived Fuels 2.81 Other Gases 0.69 

Hawaii (HI)   Petroleum 1.01 

Coal 14.05 Solar Thermal and Photovoltaic 0.03 

Hydroelectric Conventional 0.78 Wind 0.83 

Other 3.94 Wood and Wood Derived Fuels 0.25 

Other Biomass 3.30 Oklahoma (OK)   

Other Gases 0.41 Coal 40.68 

Petroleum 72.28 Hydroelectric Conventional 2.95 

Solar Thermal and Photovoltaic 0.19 Natural Gas 40.75 

Wind 5.04 Other Biomass 0.17 

Iowa (IA)   Petroleum 0.01 

Coal 58.76 Wind 15.14 

Table 9 (continued).



 127 

Hydroelectric Conventional 1.32 Wood and Wood Derived Fuels 0.30 

Natural Gas 2.52 Oregon (OR)   

Nuclear 9.39 Coal 6.29 

Other Biomass 0.28 Hydroelectric Conventional 55.41 

Petroleum 0.25 Natural Gas 24.05 

Wind 27.47 Other 0.06 

Idaho (ID)   Other Biomass 0.49 

Coal 0.60 Petroleum 0.01 

Hydroelectric Conventional 55.94 Solar Thermal and Photovoltaic 0.03 

Natural Gas 22.39 Wind 12.48 

Other 0.51 Wood and Wood Derived Fuels 1.17 

Other Biomass 1.31 Pennsylvania (PA)   

Wind 16.24 Coal 38.91 

Wood and Wood Derived Fuels 3.00 Hydroelectric Conventional 1.11 

Illinois (IL)   Natural Gas 21.97 

Coal 43.31 Nuclear 34.63 

Hydroelectric Conventional 0.06 Other 0.37 

Natural Gas 3.36 Other Biomass 0.81 

Nuclear 47.85 Other Gases 0.29 

Other 0.14 Petroleum 0.20 

Other Biomass 0.30 Solar Thermal and Photovoltaic 0.03 

Other Gases 0.18 Wind 1.47 

Petroleum 0.04 Wood and Wood Derived Fuels 0.22 

Solar Thermal and Photovoltaic 0.03 Rhode Island (RI)   

Wind 4.74 Hydroelectric Conventional 0.07 

Indiana (IN)   Natural Gas 98.28 

Coal 83.94 Other Biomass 0.77 

Hydroelectric Conventional 0.35 Petroleum 0.81 

Natural Gas 8.18 Solar Thermal and Photovoltaic 0.03 

Other 0.40 Wind 0.04 

Other Biomass 0.34 South Carolina (SC)   

Other Gases 2.18 Coal 25.41 

Petroleum 1.42 Hydroelectric Conventional 3.29 

Solar Thermal and Photovoltaic 0.03 Natural Gas 12.32 

Wind 3.15 Nuclear 56.49 

Kansas (KS)   Other 0.06 

Coal 61.41 Other Biomass 0.22 

Hydroelectric Conventional 0.03 Petroleum 0.11 

Natural Gas 4.09 Solar Thermal and Photovoltaic 0.00 

Nuclear 14.79 Wood and Wood Derived Fuels 2.10 

Other Biomass 0.12 South Dakota (SD)   

Petroleum 0.11 Coal 28.19 

Wind 19.46 Hydroelectric Conventional 40.19 

Kentucky (KY)   Natural Gas 4.97 

Coal 92.83 Petroleum 0.07 

Hydroelectric Conventional 3.65 Wind 26.59 

Natural Gas 1.58 Tennessee (TN)   

Other 0.01 Coal 40.76 

Other Biomass 0.11 Hydroelectric Conventional 15.61 

Table 9 (continued).
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Petroleum 1.57 Natural Gas 6.29 

Wood and Wood Derived Fuels 0.25 Nuclear 35.75 

Louisiana (LA)   Other Biomass 0.11 

Coal 20.43 Other Gases 0.02 

Hydroelectric Conventional 1.02 Petroleum 0.16 

Natural Gas 51.48 Solar Thermal and Photovoltaic 0.03 

Nuclear 16.62 Wind 0.06 

Other 0.67 Wood and Wood Derived Fuels 1.20 

Other Biomass 0.08 Texas (TX)   

Other Gases 2.20 Coal 34.47 

Petroleum 4.85 Hydroelectric Conventional 0.11 

Wood and Wood Derived Fuels 2.65 Natural Gas 47.03 

Massachusetts (MA)   Nuclear 8.84 

Coal 11.91 Other 0.06 

Hydroelectric Conventional 2.98 Other Biomass 0.17 

Natural Gas 63.92 Other Gases 0.55 

Nuclear 13.02 Petroleum 0.22 

Other 2.63 Solar Thermal and Photovoltaic 0.04 

Other Biomass 3.19 Wind 8.28 

Petroleum 1.17 Wood and Wood Derived Fuels 0.23 

Solar Thermal and Photovoltaic 0.32 Utah (UT)   

Wind 0.62 Coal 81.25 

Wood and Wood Derived Fuels 0.23 Hydroelectric Conventional 1.20 

Maryland (MD)   Natural Gas 15.66 

Coal 43.34 Other 0.38 

Hydroelectric Conventional 4.82 Other Biomass 0.17 

Natural Gas 8.05 Petroleum 0.06 

Nuclear 39.79 Solar Thermal and Photovoltaic 0.00 

Other 0.84 Wind 1.28 

Other Biomass 1.15 Virginia (VA)   

Petroleum 0.53 Coal 27.10 

Solar Thermal and Photovoltaic 0.18 Hydroelectric Conventional 1.61 

Wind 0.90 Natural Gas 29.01 

Wood and Wood Derived Fuels 0.40 Nuclear 37.56 

Maine (ME)   Other 0.61 

Coal 0.45 Other Biomass 1.23 

Hydroelectric Conventional 25.38 Petroleum 0.40 

Natural Gas 34.74 Wood and Wood Derived Fuels 2.49 

Other 2.86 Vermont (VT)   

Other Biomass 1.57 Hydroelectric Conventional 18.68 

Petroleum 1.70 Natural Gas 0.04 

Wind 7.47 Nuclear 70.39 

Wood and Wood Derived Fuels 25.84 Other Biomass 0.37 

Michigan (MI)   Petroleum 0.07 

Coal 52.96 Solar Thermal and Photovoltaic 0.25 

Hydroelectric Conventional 1.34 Wind 3.43 

Natural Gas 11.61 Wood and Wood Derived Fuels 6.76 

Nuclear 27.21 Washington (WA)   

Other 0.29 Coal 5.90 

Table 9 (continued).
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Other Biomass 0.93 Hydroelectric Conventional 68.46 

Other Gases 0.90 Natural Gas 10.01 

Petroleum 0.50 Nuclear 7.41 

Wind 2.63 Other 0.11 

Wood and Wood Derived Fuels 1.62 Other Biomass 0.25 

Minnesota (MN)   Other Gases 0.36 

Coal 45.85 Petroleum 0.02 

Hydroelectric Conventional 1.00 Solar Thermal and Photovoltaic 0.00 

Natural Gas 12.28 Wind 6.14 

Nuclear 20.87 Wood and Wood Derived Fuels 1.34 

Other 0.70 Wisconsin (WI)   

Other Biomass 1.12 Coal 61.62 

Petroleum 0.05 Hydroelectric Conventional 3.00 

Solar Thermal and Photovoltaic 0.01 Natural Gas 12.28 

Wind 16.10 Nuclear 17.70 

Wood and Wood Derived Fuels 2.02 Other 0.10 

Missouri (MO)   Other Biomass 0.73 

Coal 83.33 Petroleum 0.46 

Hydroelectric Conventional 1.24 Wind 2.36 

Natural Gas 4.82 Wood and Wood Derived Fuels 1.74 

Nuclear 9.16 West Virginia (WV)   

Other 0.02 Coal 95.28 

Other Biomass 0.07 Hydroelectric Conventional 2.29 

Petroleum 0.07 Natural Gas 0.36 

Wind 1.28 Other Biomass 0.01 

Wood and Wood Derived Fuels 0.01 Other Gases 0.04 

Mississippi (MS)   Petroleum 0.20 

Coal 16.48 Wind 1.83 

Natural Gas 60.17 Wyoming (WY)   

Nuclear 20.57 Coal 88.48 

Other 0.01 Hydroelectric Conventional 1.35 

Other Biomass 0.03 Natural Gas 0.98 

Petroleum 0.03 Other 0.13 

Wood and Wood Derived Fuels 2.71 Other Gases 0.54 

    Petroleum 0.07 

    Wind 8.45 

 

 

 

 

 

 

Table 9 (continued).
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A.4 LIFE CYCLE GHG EMISSIONS INTENSITY FOR DIFFERENT ELECTRICITY 

GENERATION TECHNOLOGIES 

 

Table 10. Life cycle GHG emissions intensity for different electricity generation technologies 

Fuel Source Database 
GHG emission factor for 

producing 1 MJ electricity   

Coal USLCI[153] 0.301 

Hydroelectric Conventional ELCD[273] 0.00678 

Natural gas USLCI[153] 0.203 

Nuclear USLCI[153] 0.00322 

Other Ecoinvent[149] 0.0407 

Other Biomass USLCI[153] 0.0126 

Other Gases Ecoinvent[149]  0.524 

Petroleum USLCI[153] 0.315 

Solar Thermal and Photovoltaic Ecoinvent[149] 0.0132 

Wind ELCD[273] 0.00184 

Wood and Wood Derived Fuels USLCI[153] 0.0144 

 

A.5 ENERGY CONTENT OF AVAILABLE WASTE HEAT  

 

The waste heat estimation procedure described in the methodology section of main paper 

only takes into account the first law of thermodynamics and quantifies the thermal energy 

content of waste heat streams available at existing NG CS. The first law of thermodynamics has 

the limitation of assuming substitutability between energy resources and failing to distinguish 

between the quality of energy (e.g. heat vs work). For example, as per the first law of 
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thermodynamics, 1 Joule of heat available at 4000K is substitutable with 1 Joule of heat at 

5000K. We address this limitation by quantifying the exergy content of available waste heat at 

existing NG CS. Exergy represents the maximum amount of work that can be extracted from a 

system when it is brought in thermodynamic equilibrium with the surroundings (also defined as 

the reference state). Exergy is particularly appealing since it considers both the first and second 

law of thermodynamics and provides a better representation of the ability of different energy 

streams to do work.[274-276] Specifically, we quantify the thermal aspect of exergy,[277] E, 

which is induced by the temperature difference between exhaust stream and the surrounding 

environment using  eq 7[278] where Q and T are the energy and temperature of exhaust stream, 

and T0 is the ambient temperature. The results for exergy content of available waste heat from 

NG CS are provided Figure 29. 

 

                                                                             (7) 

 

Figure 29. Exergy content of available waste heat at NG CS by state 
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APPENDIX B 

SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

 

Table 11. Summary of data and assumptions used in the TEA model 

Plant life time      30 years 

Plant capacity      500,000 gallon/day 

Plant availability      90% [41, 194, 196, 221] 

Interest rate      5% [41, 208, 220] 

Amortization factor      0.065 

Electricity cost      $0.069/kWh [223] 

Steam price      $0.008/kg [41] 

Membrane cost      $60/m2 [217] 

Membrane replacement      20%/year 

Feed water storage tank      0.5($/gal) [218, 219] 

Permeate storage tank      0.4($/gal) [218, 219] 

Site development      $26.42/m3/day [211] 

Controls, pressure vessels, and electrical subsystems      $140/(m3/day) [197] 

Shipping and installation      $44.9(m3/day) [197] 

Equipment related engineering      $44.9(m3/day) [197] 

Filter      $0.0132/m3 [197] 

Pretreatment      $80/m3/day [197] 

Utilities      $42.27/m3/day [197, 211] 

Spares cost      $0.033/m3 [197, 211] 

Labor cost      $0.03/m3 [41, 196, 197] 

Chemicals cost      $0.018/m3  [197, 202, 211] 
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Produced water transportation cost       $0.25/mile/m3[20, 68]  

Brine injection cost      $6.29/m3  [69, 225] 

Transportation distance from shale gas sites to hypothetical 

DCMD plant 

     100 miles  

Transportation distance from hypothetical DCMD plant to 

disposal wells 

     400 miles 

Transportation distance from shale gas sites to disposal wells      500 miles [20, 68] 

 

 

The detailed calculation process for capital and O&M costs for a 0.5 MGD DCMD plant 

is shown in Table 12. 

 

 

Table 12. Water desalination cost calculations for a 0.5 MGD MD plant 

 Capital cost  

Direct capital cost  

Site development 

1893(m3/day)×0.667×26.42($/m3/day)×1.245=$41,545 

Controls, pressure vessels, electrical subsystem 

1,893(m3/day)×0.667×140($/m3/day)×1.245=$220,149 

 

Heat exchanger 

Required heat exchanger area based on ASPEN simulation: 

HX-1=2430m2, HX-2=719m2, HX-3=208m2, HX-4=975m2 

Total cost of heat exchangers: 

2) MD base case:  

($298,940+$88,473+$34,000)×2.08a×(598.45/382.8)b= 

$1,370,336 

2) MD with waste heat integration:  

($298,940+$88,473+$34,000+$119,958)×2.08a×(598.45/382.8)b= 

$1,760,410 

Feed pumps 

Required pump capacity based on plant flowsheet: 

Feed pump flowrate: 900(m3/hr) 

Recycle pump flowrate: 714(m3/hr) 

Permeate pump flowrate: 814(m3/hr) 

Condensate pump flowrate: 53(m3/hr) 

Total cost of pumps= ((19811+17000) 

×3.33c+(17911+4400)×1.8d)×(956.2/648.5)e=$239,964 

Shipping and installation 

1,893(m3/day)×0.667×44.9($/m3/day)×1.245=$70,605 

Pretreatment 

1893(m3/day)×0.667×79.25($/m3/day)×1.245=$124,620 

Equipment related engineering 

1,893(m3/day)×0.667×44.9($/m3/day)×1.245=$70,605 

Membrane 

Required membrane area=52914(kg/hr)/26.5(kg/m2.hr)=1997 m2 

Cost of membrane=1997m2×60$/m2=$119,805 

Total direct capital cost 

$4,408,724 

Membrane module 

1,893(m3/day)×0.667×103($/m3/day)×1.245=$161,967 

Indirect capital cost 

4,408,724×0.1=$440,872 
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Permeate storage tank 

1893(m3/day)×0.667×264.17(gal/m3)×0.4($/gal)×5 days=$666,667 

Total capital cost 

4,408,724+440,872=$4,849,506 

Feed water storage tank 

1893(m3/day)×264.17(gal/m3)×0.5($/gal)×5 days=$1,250,000 

Annual capital cost 

4,849,506× =$315,473/year 

Utilities 

1893(m3/day)×0.667×42.27($/m3/day)×1.245=$66,469 

Normalized annual capital cost 

1) 315,473/(1893×0.9×365)=$0.51/m3
feed 

Operating and maintenance 

Thermal energy 

Required amount of steam based on ASPEN simulation: 49272 kg/hr 

Cost of thermal energy=49272(kg/hr)×0.008($/kg)×24(hr/day) 

×0.9×365(day/year)=$3,107,653/year 

Filter 

1,893(m3/day)×0.667×0.9×365×0.0132($/m3)=$5,478/year 

Electricity 

Electricity requirement for each pump is calculated as follows: 

 

 

 

 

Cost of electricity 

=(43.1+17.1+19.5+19.1)(kW)×0.069($/kWh)×24hr/day×0.9×365days/year= 

$53,738/year 

Chemicals 

1893(m3/day)×0.667×0.9×365×0.018($/m3)=$7,465/year 

Spares 

1893(m3/day)×0.667×0.9×365×0.033($/m3)=$13,685/year 

Labor 

1893(m3/day)×0.667×0.9×365×0.03($/m3)=$12,441/year 

Membrane replacement 

0.2×119805=$23,961/year 

Total annual O&M cost 

 

$3,225,620/year 

Annual normalized O&M charges 

 

3,225,620/(1893×0.9×365)=$5.19/m3
feed 

Total water cost 

MD base case: 0.51+5.19=$5.70/m3
feed 

MD with waste heat integration: 0.55+0.19=$0.74/m3
feed 

a Correction coefficient for material use. NETL cost curves are provided for carbon steel heat exchangers and we 

used the correction coefficient to adjust all cost for Monel. 

b Correction coefficient used to account for inflation. Cost curves published by NETL dates back to the base year 

1998 and we used the most recent CEPCI for heat exchangers to convert all costs to year 2015. 

Table 12 (continued).
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c Correction coefficient for material use. NETL cost curves are provided for carbon steel pumps and we used the 

correction coefficient to adjust all cost for Monel (produced water feed pump and produced water circulation pump). 

d Correction coefficient for material use. NETL cost curves are provided for carbon steel pumps and we used the 

correction coefficient to adjust all cost for stainless steel 316 (permeate circulation pump and steam condensate). 

e Correction coefficient used to account for inflation. Cost curves published by NETL dates back to the base year 

1998 and we used the most recent CEPCI for pumps to convert all costs to year 2015. 
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