
 
 

ENVIRONMENTAL IMPACTS OF ACID ROCK DRAINAGE REMEDIATION IN A 

COAL WASTE PILE: AN EXPERIMENTAL AND HYDRO-GEOCHEMICAL 

MODELING APPROACH 

 

 

 

 

 

 

 

 

by 

Fernando J. Plaza Vera 

Civil Engineer, Catholic University of Guayaquil-Ecuador, 2001 

Master of Engineering, National Autonomous University of Mexico, 2010 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

2018 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 

 

 

 

 

 

 

 

 

This dissertation was presented 

 

by 

 

 

Fernando J. Plaza Vera 

 

 

 

It was defended on 

July 3, 2018 

and approved by 

Carla Ng, Ph.D., Assistant Professor, Department of Civil and Environmental Engineering 

Rosemary Capo, Ph.D., Associate Professor, Department of Geology and Environmental 

Science 

Jeen-Shang Lin, Ph.D., Associate Professor, Department of Civil and Environmental 

Engineering 

Dissertation Director: Xu Liang, Ph.D., Professor, Department of Civil and Environmental 

Engineering 

 



 iii 

  

Copyright © by Fernando J. Plaza Vera 

2018 



 iv 

 

 

 

 

 

 

The mining-related acid rock drainage (ARD) constitutes a serious type of pollution that causes 

widespread degradation of water resources in regions with mining activity. Despite of a large 

number of research activities carried out on this topic, studies about ARD passive remediation 

have shown various existing issues that require further investigation. For instance, what long-term 

impacts will the remediation techniques have? Is there an optimal content of the reactive material 

that should be applied in the field? What impacts will the hydrological processes have on the ARD 

remediation techniques at the watershed scale?  

To investigate these issues, a comprehensive and systematic approach is developed through 

this dissertation research work in which laboratory experiments (> 3 years), complemented with 

field measurements (> 5 years), and hydro-geochemical modeling have been combined to explore 

the effectiveness and long-term impacts of a remediation technique -- alkaline clay (AC), an 

industrial waste, used as the remediation material in coal refuse (CR) waste piles. Our study 

yielded the following main findings: 1) AC is an effective and environmentally sustainable 

material for passive ARD remediation, maintaining a neutral pH and immobilizing 

metals/metalloids; 2) There is a range for the mixing ratio between the amount of AC and CR to 
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achieve an optimal or close to optimal remediation effectiveness; 3) The appropriate depth for the 

amended layer was determined and it was found to be mostly constrained by the root zone depth; 

4) Complementary strategies such as a vegetated cover and a saturated sand layer are highly 

beneficial; 5) The utilization of a sophisticated hydro-geochemical model allowed to investigate 

the remediation effectiveness and its long-term performance at a watershed scale, making possible 

the assessment inside and outside the coal waste pile ; and 6) Both the laboratory experiments and 

modeling results show that the proposed remediation design can lead to the total alkalinity in the 

system exceeding the total acidity over a long time period. 

In summary, this study provides valuable new insights through three defined stages (i.e., 

laboratory experiments, field measurements and modeling) to demonstrate the effectiveness and 

sustainability of the proposed remediation approach. 
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1.0  INTRODUCTION 

1.1 BACKGROUND AND JUSTIFICATION 

The acid rock drainage (ARD) process associated with the mining industry constitutes one of the 

most serious types of water pollution in regions such as the Northern Appalachian Coalfield in the 

USA, where the mining activity has caused widespread degradation of water resources [Herlihy et 

al., 1990; Cravotta, 2008]. Surface and groundwater affected by this pollution are characterized 

by their acidity and high content of sulfates and metals/metalloids. The ARD process initiates 

when sulfide minerals, highly contained in mining wastes, oxidize through complex chemical 

reactions involving the combined action of oxygen (e.g. the oxidant) and water (e.g. the solvent). 

As pyrite is usually the sulfide mineral involved, this process is often referred as pyrite oxidation. 

Three main stoichiometric chemical reactions [Garrels and Thompson, 1960; Singer and 

Stumm, 1970] are often used to describe aqueous pyrite (FeS2) oxidation: 1) pyrite (e.g. the sulfide 

mineral) oxidizes and produces dissolved iron (Fe2+), sulfate (SO4
2−) and hydrogen (H+), that leads 

to the increase in the total dissolved solids and the acidity of the water, resulting in the decrease in 

pH, 2) in the presence of adequate oxygen (O2) and hydrogen (H+) concentrations, ferrous iron 

(Fe2+) will oxidize into ferric iron (Fe3+) and, 3) ferric iron may also oxidize pyrite into ferrous 

iron, sulfate and hydrogen. In addition, at low pH levels (< 3.5), ferric iron precipitates into iron 
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oxide hydroxide (Fe(OH)3 solid) and, simultaneously, produces hydrogen ions, thus resulting in 

lowering the pH. 

Due to the severity of this environmental problem, several strategies have been developed 

to neutralize ARD generation. The most common approach is to divide the treatment into active 

and passive remediation processes [Johnson and Hallberg, 2005]. Both strategies use biological 

and abiotic treatment. 

Passive abiotic treatment emerges as a low-cost and effective strategy for ARD 

remediation. It does not require continuous operation and, moreover, it may harness non-

conventional materials as neutralization agents (e.g. alkaline wastes). In other words, this treatment 

can operate in a more sustainable way [Younger et al., 2002]. It has been found that, to some 

extent, passive treatment could have lower overall environmental impacts compared to active 

treatment technologies [Hengen et al., 2014]. Hence, this study will focus on passive abiotic ARD 

remediation. 

Despite several previous studies of passive ARD remediation, there are still issues 

requiring improvement. For instance, the majority of the experimental strategies use complex 

systems for water addition (e.g. pumping), which sometimes generate artificial conditions that are 

difficult to replicate in-situ (e.g. limiting oxygen and water diffusion). Moreover, in most cases 

there is not a sufficient focus on the long-term impacts of the remediation technique nor is there 

an analysis of the optimal content of the reactive material to be applied in the field. On the 

modeling side, there are several conceptual and physically-based models that have been widely 

used to simulate ARD processes [Kimball et al., 1994, Wunderly et al., 1996, Gerke et al., 1998, 

Webster et al., 1998, Amos et al., 2004, Molson et al., 2005, Runkel et al., 2011, Petrilakova et al., 

2014, Masindi et al., 2015]. However, these models are usually limited to small scales (e.g. soil 
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column, point discharges or a river reach) and they often overlook the hydrological processes and 

the parameters involved in the generation of ARD (e.g. spatial scale, infiltration, 

evapotranspiration, surface and subsurface runoff, terrain characteristics, etc.). Due to the 

necessity of having a more sophisticatedd model, Xu [2014] developed the Hydro-Thermal-

Geochemical Model (HTGCM), in which the hydrological model DHSVM [Wigmosta et al.,1994] 

was coupled with the geochemical model PHREEQC [Parkhurst, and Appelo, 1999] and, in 

addition, adversion-dispersion, thermal transport and shrinking- core [Davis and Ritchie, 1986] 

modules were also coupled. This model was implemented for a remediation plot in a mine waste 

site in Southwestern Pennsylvania. However, HTGCM can be significantly improve to have a more 

complete geochemical characterization and a larger spatial scale. 

1.2 SCIENTIFIC QUESTIONS 

In this study, alkaline clay (AC), a highly basic nonhazardous industrial waste (according to the 

Resource Conservation and Recovery Act or RCRA) from the alumina refining process, is used as 

the remediation material to inhibit pyrite oxidation in waste coal piles. Through a series of static 

(i.e. batch and acid base accounting) and kinetic (i.e. flow through columns) experiments, 

complemented with field measurements and hydro-geochemical modeling (see Figure 1.1), the 

proposed research addresses at the following scientific questions: 

 Is alkaline clay (AC) an adequate material for ARD remediation in a waste coal pile? 

 What is the optimal AC/CR mixing ratio to be applied in the amended layer? 

 What is an appropriate depth for the amended layer in the study site? 



 4 

 What effects do complementary measures such as vegetation and saturated sand barrier 

might have in the amended layer? 

 What is the feasibility of modeling the acid rock drainage remediation processes in a 

watershed scale, utilizing a physically-based hydro-geochemical model? Can this model 

be extrapolated to another study site? 

 What are the implications of the long-term performance of the proposed remediation in the 

site (e.g. the trends of the main parameters involved in this process such as pH, 

concentrations of sulfate, ferrous iron and other metals)? 
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1.3 STATE OF THE ART 

Several ARD passive treatment approaches have been developed in recent years, where the main 

concern is the search for an adequate alkaline remediation material. The choice of the alkaline 

material depends on many factors such as: neutralization potential, cost, production distance from 

the site, and supply according to the treatment demand [Pérez-López et al., 2011]. For instance, 

an added value regarding passive remediation is the utilization of waste alkaline materials, thereby 

resulting in an environmentally friendly and sustainable solution. 

Jurjovec et al. [2002] investigated the mechanisms of acid mine neutralization, including 

the release of metals from mine tailings, through a complex column experiment setup where water 

was pumped at the bottom of the column and collected at the top. This study focused in the 

relationship between pH and metal concentration. It has been found that metal mobility in the 

effluent water is controlled by the pH. Non-oxidized fresh tailings with low content of Fe(III)-

(oxy)hydroxide were utilized, therefore, it would be expected that, for oxidized tailing, metal 

concentration in the leachate could be higher. 

Kannan et al. [2003] studied the potential use of fluidized-bed combustion (FBC) ash, a 

waste by-product of advanced coal combustion, in an underground coal mine for ARD control. 

This remediation mechanism consisted in mixing the FBC with other elements to form a grout that 

could be injected through boreholes in the mine tailings, thus restricting water and oxygen flow 

into pyrite and decreasing acid production. The key point of this approach was to optimize the 

number of boreholes needed per area of tailings. 

Gibert et al. [2003] explored a permeable reactive barrier (PRB) as a passive, in-situ 

treatment for ARD. PRB are trenches in the mine tailings where drainage water flows through. 
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These trenches are filled with an appropriate reactive material able to induce physicochemical 

and/or biological processes that remediate contaminated groundwater. Experimental columns were 

built, using limestone and compost as the main components of the PRB. Low oxygen conditions 

were maintained by pumping nitrogen into the columns. After 120 days, results indicated pH 

neutralization and metal depletion. However, no significant sulfate removal was observed. 

Another PRB approach was studied by Lapointe et al. [2006]. They ran, during around 90 

days, column experiments using Bauxsol, a chemically and physically treated bauxite refinery 

residue, as the ARD remediation material. Bauxsol is produced when red mud (a residue from 

alumina production) is treated with another material (e.g. seawater or other magnesium/calcium 

rich brines) in order to produce a near-neutral material that can be used to treat ARD [McConchie 

et al. 2003].Five columns, containing from 20 to 25% of Bauxsol, were tested. Acidic water (pH 

= 2) was pumped at the bottom and collected a top of each column. According to the results, on a 

short term basis, Bauxsol proved to be a valid ARD treatment, concerning metal removal from the 

leachate. pH showed a decreasing trend and, at the end of the experiments, pH had a range from 4 

to 7, depending on the column design. 

Paradis et al. [2006] conducted a study to neutralize ARD through batch and column 

leaching tests using red mud bauxite as the reactive material. After around 120 days, a stable and 

above the neutral level pH was obtained in all columns containing red mud bauxite (from 10 to 

20%). Metals and sulfate depletion was also observed. In this study, the hardpan formation at the 

surface of the mine tailings was analyzed. Hardpan is a low permeability thin layer that is formed 

due to the presence of alkaline materials in the mine waste piles, acting as a natural barrier that 

limits oxygen and water diffusion [Blowes et al., 1991].  
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The potential main benefits of the cemented layer–hardpan in sulfide-bearing mine tailings 

are a probable attenuation of some toxic compounds (e.g. Pb), a restriction of the downward 

movement of the oxidation front, and a protection of the surface of the tailings against erosion (e.g. 

by wind or water) [Graupner et al., 2007]. These potential benefits are increased with a 

heterogeneous distribution of grain sizes and low permeability surface layers. Cemented layers 

have a significant influence on natural attenuation of the toxic As and Pb species owing to their 

capacity of water retention [Kohfahl et al., 2010]. Furthermore, the grain size distribution was 

proved to have a major effect on oxygen diffusivity due to its control on the water saturation.  

Daubert et al. [2007] worked with crab shell chitin to design a passive remediation system 

for ARD. The experiments, conducted during only for 9 days, consisted in collecting ARD water 

and soil samples from a stream near Altoona, Pennsylvania, a few miles downstream of the nearest 

coal mine. These samples were treated before tested (e.g. degassed with nitrogen to obtain low 

dissolved oxygen) and then, mixed with crab shell chitin. Results showed pH increase (without 

reaching neutral level), acidity decrease and alkalinity increase. However, no long term impacts 

could be established due to the short duration of the experiments. 

Perez Lopez et al. [2007] investigated the iron-coating role on the oxidation kinetics of a 

pyritic sludge doped with fly ash. The iron-coating or “pyrite microencapsulation” [Evangelou, 

1995] is a process by which pyrite grains are coated by Fe precipitates, thus reducing grain surface 

subject to oxidation by its contact with oxidizing agents (i.e. water and oxygen). Non-stirred and 

stirred flow-through experiments with a controlled environment in terms of water addition (i.e. 

pumping) and oxygen content (i.e. low dissolved oxygen) were designed and carried out during 40 

days. Only for non-stirred conditions, there was a coating of the pyrite grains by Fe precipitates as 

ferric oxyhydroxide. The main finding of this kinetic approach was that fly ash is an ideal 
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remediation material to neutralize pyrite oxidation by inducing pyrite microencapsulation in a 

relatively short term. On the downside, fly-ash utilization might release some toxic elements in 

solution during the leaching [Querol et al., 2001]. Due to the fact that the coating of pyrite grains 

is enhanced in high alkalinity environments, this entails an additional benefit of ARD passive 

remediation, as this will implicate the decrease in the alkalinity demand in the mine tailings (i.e. 

in the long term) [Huminicki et al., 2009]. 

Yeheyis et al. [2009] carried on another ARD remediation study using coal fly ash 

(collected from a power plant), mixed with mine tailings, and tested in columns. The duration of 

the experiments (i.e. 80 weeks) enabled to observe the long term behavior of the system. This 

study also tested various columns with different coal fly ash content. However, it is not certain the 

effectiveness of this approach in highly oxidized mine tailings, as results show that, in the case of 

the control column (i.e. without fly ash), pH values are mostly above the neutral level. Moreover, 

sulfate concentrations in the control column are relatively low (i.e. around 2000 mg/l). 

Ouangrawa et al. [2010] analyzed ARD prevention with the elevated water table (ETW) 

technique. Results obtained through column experiments conducted for approximately 500 days, 

showed pH neutralization, iron and sulfate removal. However, some complications are faced with 

this strategy (e.g. controlling oxygen diffusion and water table elevation), making it a relatively 

expensive in-situ remediation. 

Toro et al. [2012] proposed pyrite oxidation inhibition by using limestone (i.e. inhibition 

by pH increase) and olive pomace (i.e. inhibition by organic compounds). They conducted a series 

of batch experiments during approximately one month to analyze the potential use of these 

remediation materials, acting together. They mainly focused in pH and Fe. This remediation 
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strategy was identified as potentially economical and environmentally friendly. No long term 

impacts were analyzed. 

Sahoo et al. [2013] studied ARD remediation through the potential use of two industrial 

wastes: coal fly ash and clinker dust. Three column experiments were conducted during around 40 

days. In general, results indicate that pyrite oxidation neutralization occurs, as pH values are 

around the neutral level (pH=7). There is also a removal of some metals and sulfate from the 

leachates, a clear indication of solid precipitates. 

In recent years, PHREEQC [Parkhurst and Appelo, 1995, 1999, 2013] has become a 

valuable tool for simulating geochemical processes in a variety of environmental conditions. Sahoo 

et al. [2013] utilized PHREEQC to calculate the saturation indices (SI) of various Fe-

oxyhydroxides (HFO) and calcium carbonates phases from the leachates of columns experiments. 

Appelo et al. [1998] modeled in PHREEQC the chemical composition of a column effluent. 

Motalebi et al. [2012] explored the effect that some input parameters of PHREEQC (e.g. flowrate, 

initial pH, grain size distribution) have on the transport of dissolved metals such as Mn, Ni and Cd 

in a mine tailing. MINTEQ2 [Jacques et al., 2008] is another model for geochemical modeling as 

it is able to calculate the equilibrium reaction in aqueous systems. 

Regarding hydro-geochemical modeling, the framework of the model HYDRUS [Šimůnek 

et al., 1998; Šimůnek et al., 1999] has been widely used for simulating pyrite oxidation based on 

hydrological processes and solute transport. Moreover, several models include the pyrite 

shrinking-core concept [Davis and Ritchie, 1986]. For example, the model POLYMIN [Molson et 

al., 2005] was developed based on HYDRUS with 2D transport. The model MINTEQA2 [Allison 

et al., 1991] was developed for hydro-geochemical simulations in a waste coal pile profile. The 
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model THERMOX [da Silva et al., 2009] was developed coupling the HYDRUS-2D with an 

early version of PHREEQC [Parkhurst et al., 1995]. The model HP1 [Jacques et al., 2006; 

Šimůnek et al., 2008] is a 1D hydro-geochemical model which was developed based on 

HYDRUS-1D and PHREEQC v2.0 [Parkhurst and Appelo, 1999]. 

The TOUGH AMD model [Lefebvre, 1994] was developed based on TOUGH2 [Pruess, 

1991], which emphasized the flow movement in porous media, does not use the 

HYDRUS framework. The idea of the shrinking core model was also applied into TOUGH AMD 

to include the physical process of pyrite oxidation. Likewise, the MIN3P model [Mayer et al., 

2002] also includes the shrinking core model and its own hydrological processes. The SWAT 

model [Neitsch et al., 2002 and 2005] is another tool that have been used for assessment of 

water quality through a hydrological processes.

HTGCM [Xu, 2014] is a hydro-thermal-geochemical model based on the framework of 

DHSVM [Wigmosta et al., 1994] model. It is able to deal with the processes of hydrology, 

thermal transport and geochemical transport at field scale and watershed scale. The shrinking 

core model, the heat generation modules, the different runoff mechanisms e.g. saturated runoff 

and infiltration excess runoff in DHSVM and the infiltration in the hilly region are all included. 

This model has been successfully calibrated and validated in four experimental plots in the 

Mather mine, located in Pennsylvania, USA, where AC has been used as a remediation 

material. However, there are improvements that can be made to this model to achieve a better 

performance in characterizing the ARD and ARD neutralization processes. Moreover, there is a 

great availability of geographical, meteorological and hydrological data from the model’s 

study site. Therefore, an improved HTGCM model will be utilized in this study. 
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1.4 RESEARCH DESIGN 

1.4.1 Study sites for sample collection, material characterization, field monitoring, 

calibration and validation 

1.4.1.1 Mather mine  The coal refuse (CR) samples were collected from a former coal mine in 

operation from 1925 to 1965, located in Mather, Greene County, Pennsylvania, USA [Figure 1.2]. 

In 2009, a reclamation plan was started through the construction of four experimental plots, 

covering an approximate area of 1 ha. Two of the test plots were constructed according to the 

following specifications: 

• Plot 1: 100% CR (control plot). 

• Plot 2: 90% CR with 10% AC mixed layer with a depth of 61 cm. 

 

Figure 1.2. Location of the Mather mine 
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a) 

 

b) 

 

Figure 1.3. a) Field work in Mather: data logger data download and coal refuse samples collection. b) 

Alkaline clay provided by Alcoa 
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At various points along the plots, instrumentation was installed to monitor the 

environmental impacts of the remediation, including lysimeters for collecting drainage water 

samples (at 61 cm and 91 cm) that were later tested in the laboratory for pH, sulfate, and 

metals/metalloids. Data loggers were also installed along the plots [Figure 1.3a]. These 

instruments were connected to sensors that measured soil moisture, soil water potential and soil 

temperature at various depths, from 5 cm to 91 cm. In addition, an X-Ray Diffraction (XRD) test 

was used to obtain the mineral composition for both coal refuse and alkaline clay [Table 1.1]. 

Table 1.1. Solid compositions of Coal Refuse (CR) and Alkaline Clay (AC) (Source: ALCOA) 

Coal refuse composition Percentage (%) 

Quartz: SiO2 55.6 

K-mica: KAl2(AlSi3O10(OH)2) 24.0 

Jarosite-K: KFe3(OH)6(SO4)2 9.9 

Kaolinite: Al2O32SiO22H2O 8.3 

Calcite: CaCO3 1.0 

Gypsum: CaSO4·2H2O 0.9 

Pyrite: FeS2 0.3 

  

Alkaline clay composition Percentage (%) 

Dicalcium silicate: 2CaO(SiO)2 57 

Sodalite: Na8(Al6Si6O24)Cl2 12 

Gehlenite: Ca2Al(AlSiO7) 10 

Hematite: Fe2O3 8 

Calcium aluminum sulfate: Ca6Al2(SO4)3(OH)12·26H2O 2 

Calcium titanium oxide:  CaTiO3 2 

Quartz: SiO2 3 

Titanium dioxide: TiO2 2 

Calcium carbonate: CaCO3 3 

Gibbsite: Al(OH)3 1 
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Mather was the study site for the development of HTGCM. However, the model was only 

tested at a plot scale (< 1 ha). In the proposed study, among other changes detailed in the 

subsequent sections, the model will be tested at a watershed scale. 

1.4.1.2 Ernest Mine The Ernest Mine operation is located in White and Rayne Townships, Indiana 

County, Pennsylvania, USA [Figure 1.4]. The operation is utilizing waste coal ash for alkaline 

addition to treat ARD. The refuse material is taken out, transported to the Cambria CoGeneration 

power plant, and FBC coal ash produced from burning the refuse is returned and placed on the 

site. Ash placement commenced in October 1996 and has continued to the present. However, 

results have shown the coal ash addition haven’t significantly improve the water quality at the 

mine discharge [Pennsylvania Minefill Study, 2007]. 

 

Figure 1.4. Location of the Ernest Coal Mine. 

This mine have been continuously monitored for over a decade. Moreover, the majority of 

the sampling sites are located at the mine’s drainage discharge, which makes possible the 

implementation of the HTGCM model in this watershed [Figure 1.5]. 
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Figure 1.5. Location of the sampling sites at the Ernest Coal Mine [Pennsylvania Minefill Study, 2007]. 

1.4.2 Laboratory Experiments 

1.4.2.1 Static tests: batch and acid base accounting For the batch experiments, dry CR (samples 

were collected since 2012, in a different location than the experimental plots, inside the Mather 

site) and AC samples were passed through a #16 sieve. A 30 g sample was packed into a 50 mL 

beaker [Figure 1.6]. Samples were moistened using deionized water and kept at room temperature 
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(25℃) for 0-7 days. The focus of the batch experiments was aimed at investigating the effect of 

the following factors: 

 AC content or mixing ratio with respect to coal refuse (from 0%/100% to 60% / 40%) 

 Water content, in order to reflect the effect of soil moisture in the column experiment.  The 

chosen water amounts were 0, 5, 10 and 15 mL 

 Reaction time, in order to reflect the effect of water flushing frequency in the subsequent 

column experiment. The chosen reaction times were 1, 3 and 7 days 

 

Figure 1.6. Batch reaction experiments 

Once the intended reaction time was reached, 90 mL of deionized water was mixed with 

the sample and stirred for 15 minutes. Then, the supernatant was extracted and filtered with a 0.45 

µm membrane. The pH of the filtered liquid was measured immediately. As a control, 30 g samples 

with 0 day reaction time and no water addition were prepared. The remaining treatment procedure 

for the control batch is the same as the one described above. 
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Figure 1.7. Acid base accounting experiments 

The acid base accounting test [Figure 1.7], based on the methodology developed by Sobek 

et al. [1978], was performed to establish a balance between the acid-producing and acid-

consuming components in the mixture. The main assumptions of this method are: a) pyrite is 

oxidized by oxygen, b) the acid production potential is based on the total sulfur content (%S), c) 1 

mole of S produces 2 moles of acid (H+), which is neutralized by 1 mole of calcium carbonate 

(CaCO3), thus requiring 31.25 kg of CaCO3 per ton of material to neutralize 1% S. The %S was 

calculated from the XRD analysis and the acid potential (AP) was calculated using the above-

mentioned relationship.  
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Samples of AC and CR were acidified with hydrochloric acid (HCl) and then titrated with 

sodium hydroxide (NaOH) in order to determine the acid consumption. Later, the acid 

neutralization potential (NP) in terms of Kg CaCO3/ton was calculated for both AC and CR.  

For both static tests, the sample analysis was triplicated and the results presented in this 

study correspond to the average value of each described case. 

1.4.2.2 Kinetic tests: flow-through columns Two sets of column experiments were designed to 

evaluate ARD remediation. The columns were built using polycarbonate tubes with an internal 

diameter of 10 cm. The columns were filled with uncompacted CR (samples were collected from 

2013) and AC, passing through a #4 sieve, to a height of 15 cm. A net containing 4 mm diameter 

glass beads was installed to prevent clogging at the bottom outlet of each column. 

The column sides were covered to prevent light from reaching the mixture [Figure 1.8a]. 

Deionized water (pH = 7) was added periodically (i.e. slowly to avoid water accumulation at the 

surface) at the top of the columns to simulate rainfall. The water was allowed to drain freely 

through the column. At the bottom, water was collected through a rubber hose. An acceptable 

amount of fine particles were lost through the beads at the outlet. For all of the columns, except 

one, 200 mL of water were added per week (equivalent to approximately 1,300 mm per year), 

which is similar to the average annual precipitation in southwestern Pennsylvania 

[www.usclimatedata.com]. Saturated conditions were maintained at the bottom of the columns, 

which inhibited oxygen diffusion through the outlet. Figure 1.8b shows a schematic column 

design. The conditions of some columns were duplicated to provide a comparative analysis of the 

kinetic tests for the amended and non-amended scenarios.   
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After the leachate was collected at the bottom of the columns, the sample was filtered using 

a 0.45 µm MF-Type (mixed cellulose esters) filter membrane and the pH was measured 

immediately. The sample was then subject to chemical composition analysis using an ICP-

MS:Perkin Elmer NeXION 300X inductively coupled plasma mass spectrometer (EPA Method 

200.8) [Figure 1.9a]  and an IC:DIONEX ICS-1100 (EPA Method 300.0) [Figure 1.9b] to 

measure the concentration of dissolved metals/metalloids and sulfate, respectively.  

 

Figure 1.8. Column experiments: a) image of the columns, showing the covered sides b) schematic design 

of the columns 
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a) 
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b 

b) 

 

 

Figure 1.9. a) ICP-MS. b) IC 

1.4.2.3 Acidity and alkalinity in the leachate To determine the balance between acidity and 

alkalinity (expressed as mg/L of CaCO3) in the leachate over time, a measured and calculated 

alkalinity was compared to a theoretical acidity for several collected water samples from the 

columns. This approach has been demonstrated to correctly reflect the amount of alkalinity 
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required to successfully neutralize the acidity [Kirby and Cravotta, 2005a,b]. The alkalinity was 

measured by a titration method [APHA, 1998a,b] and was also computed using the PHREEQC 

model. The acidity, assumed to be mostly due to metals, was calculated using Eq. (1-1) [Kirby and 

Cravotta, 2005a,b, Watzlaf et al., 2004 and Hedin et al., 1994]: 

Acidity (mg/L CaCO3) = 50(10(3-pH) + 2CFe/55.8 + 2CMn/54.9 + 3CAl/27.0)        (1-1) 

Where CFe, CMn and CAl are the concentrations in mg/L of Fe, Mn and Al, respectively. 

These concentrations were obtained from the procedure described in Section1.4.2.2. Later, the net 

alkalinity was computed according to Eq. (1-2): 

Net alkalinity (mg/L CaCO3) = Alkalinity – Acidity                            (1-2) 

1.4.2.4 Metals/metalloids measurements in grass To help assess the impact of vegetation in the 

ARD remediation process and explore the possible metal toxicity suffered by plants, metals were 

measured from vegetation (grass) samples, growing in mixed soil with CR and AC. As a control, 

the measurements were also done for grass grown in regular soil. The grown grass (various pots 

were used), excluding the roots, was washed with DI water, then oven-dried at 70°C, powdered, 

acidified (9 mL of concentrated nitric acid) and digested (0.5 and 0.25 g of the dry matter) at 180 

± 5°C during 9.5 minutes inside a microwave digester (EPA Method 3052) [Figure 1.10]. After 

digestion, the resultant solution was completely extracted from the microwave vessel and filtered 

using a 0.45 µm MF-Type (mixed cellulose esters) filter membrane. Finally, metals/metalloids 

will be measured using the same methodology detailed in Section 1.4.2.2. 
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Figure 1.10. The process of grass acid digestion 

1.4.3 ARD Modeling 

1.4.3.1 Geochemical modeling: PHREEQC In the first stage of the modeling framework, 

described in Chapters 2 and 3, PHREEQC simulations, assuming the column scenarios of the 

experiments, will provide an important input about the dissolution/precipitation processes through 

the interactions between the aqueous and minerals phases. In addition, PHREEQC will be utilized 

to predict the long-term behavior of the system, beyond the experimental time (i.e. ≈ 900 days). 
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ARD simulations (for amended and non-amended scenarios) using the PHREEQC model were 

made under the following main assumptions:  

1. Pyrite oxidation was only produced by dissolved oxygen (DO) or by ferrous iron (Fe3+) as 

the oxidants. This assumption was based on the theoretical principle developed by 

Williamson and Rimstidt [1994]. For pH < 3.5 (i.e. non-amended scenario in column 4), 

Fe3+ is the oxidant [Eq. (1-3)], while for pH > 3.5 (i.e. amended scenario in column 1), DO 

is the oxidant [Eq. (1-4)].  

𝑟 = 10−6.07   
𝑚

𝐹𝑒3+
0.93

𝑚
𝐹𝑒2+
0.4

                                                    (1-3) 

𝑟 = 10−8.19   
𝑚𝐷𝑂

0.5

𝑚
𝐻+
0.11                                                     (1-4) 

2. The initial dissolved oxygen saturation index was assumed to be -0.7 [Parkhurst et al., 

1999 and 2013]. The saturation index indicates the saturation with respect to the phase. In 

this case is the saturation of DO with respect to the aqueous phase. For gases, this number 

is the log of the partial pressure. A positive saturation index means an oversaturation and 

a negative saturation index means that the phase is not saturated.  

3. The mineral content, besides pyrite (e.g. quartz, gypsum, calcite, jarosite, etc.), identified 

in the XRD test, was initially assumed to be in equilibrium in the aqueous phase (saturation 

index = 0), which means that the minerals could either dissolve or precipitate. These 

minerals are compounds of Fe, S, Ca, Mn, Al, Mg, C, etc. 

4. The initial moles in the PHREEQC equilibrium and kinetic models were calculated based 

on Eq. (1-5), where: 𝑀𝑜𝑙𝑒𝑠𝑚𝑖𝑛𝑒𝑟𝑎𝑙 is the initial content of the mineral phase (moles), 
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%𝑋𝑅𝐷 is the percentage of the mineral detected in the XRD analysis, 𝑆𝑅𝑀 is the saturated 

rock mass (6.3 kg) considering a soil dry density and porosity of 2700 kg/m3 and 30%, 

respectively, 𝑀𝑜𝑙 𝑚𝑎𝑠𝑠 is the mineral molar mass (g/mol) and, The number “1000” means 

that the calculation refers to 1 liter (1000 g) of water. For instance, the initial pyrite content 

was calculated as 0.15 mol, from the initial pyrite content in the mixture (1.2 wt%),  

detected in the XRD test. The usual pyrite content range in the technical literature is from 

0.1 wt% to 5 wt%. 

 

𝑀𝑜𝑙𝑒𝑠𝑚𝑖𝑛𝑒𝑟𝑎𝑙  =
%𝑋𝑅𝐷

100
 𝑥 𝑆𝑅𝑀 𝑥  

1000

𝑀𝑜𝑙 𝑚𝑎𝑠𝑠
                               (1-5) 

 

5. The initial solutions (i.e. dissolved metals and non-metals, sulfate, pH) were approximately 

equal to the characterized solutions for column 1 (i.e. the amended scenario) and column 

4 (i.e. the non-amended scenario). These parameters were obtained from the pH meter, 

ICP-MS and IC.  

1.4.3.2 Hydro-Thermal-Geochemical Model (HTGCM) improvement and implementation 

The final stage of the modeling framework will be performed using a modified version of the 

Hydro-Thermal-Geochemical Model (HTGC), originally developed by Xu [2014] to simulate the 

acid rock drainage and alkaline neutralization processes in an amended and non-amended plots in 

the Mather mine site. Among the main objectives in this final modeling stage is to expand the 

modeling scale to a watershed scale, a more complete characterization of the output water quality 
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and the improvement of the physically-base component of the model. Several changes and 

improvements were made to the original model, aiming at the following particular issues:  

1. Setup to run the model in a watershed scale. Create a new mask file to represent the coal 

mine and outside-coal mine areas within the watershed. Currently, the model has been only 

tested in a plot scale. Since the model will be tested in a larger scale, a 10m resolution will 

be utilized, instead of the 3m resolution of the experimental plots in Mather. 

2. Add more dissolved metals to be calculated in the model: Zn, Cu, Cr, Ni and Co. These 

metals have been detected in the ICP-MS testing, for both the amended and non-amended 

columns. Accordingly, include these new chemicals in the PHREEQC input file (initial 

concentrations). Metals such as As, Pb and Cd, detected in other bituminous mine 

discharges, can be included in the model as well. 

3. Include new reactions in the PHREEQC database that involve all the new metals that are 

going to be included. Moreover, some buffer reactions such as the dissolution of calcite 

(CaCO3) can also be included into the model. Calcite combines with pyrite, water and 

oxygen to release iron precipitates, Ca and sulfate. Later, both Ca and sulfate can 

precipitate as gypsum (CaSO4 2H2O). In other words, the dissolution of calcite neutralizes 

acid and can help to increase the pH and alkalinity of the mine wáter. 

4. Include the “real” chemicals proportion (i.e. solid phase) within the soil (kg chemical / kg 

soil), based on the mineral composition obtained in the XRD test.  

5. In the pyrite oxidation – shrinking core module, include de effect of the pyrite grain coating 

by iron precipitates. Currently, this module assumes a constant oxygen diffusion coefficient 

over the entire simulation. However, in fact, the oxygen diffusion decreases over time due 

to the pyrite coating. Thus, introducing a variable oxygen diffusion as a function of time 
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will make the model take into account the effect of the pyrite coating. The continuous 

calculation of the diffusion coefficient will be a function of the amount of Fe released, the 

amount of Fe precipitated into the pyrite surface, the pyrite surface area per mass unit and 

the coating porosity. At the end, the pyrite dissolution, pyrite grain shrinking and the pyrite 

grain coating will be the factors that control pyrite oxidation.  

6. Modify the amended layer depths and/or the amended layers setup or the remediation 

design (e.g. two amended layers with different %AC), according to the outcomes of the 

research (i.e. laboratory experiments) and the model testing. 

All these changes will be first tested in the Mather mine watershed (Case Study 1) and then 

in the Ernest mine watershed (Case Study 2). 
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2.0  ACID ROCK DRAINAGE PASSIVE REMEDIATION: POTENTIAL USE OF 

ALKALINE CLAY, OPTIMAL MIXING RATIO AND LONG TERM IMPACTS 

2.1 INTRODUCTION 

Acid rock drainage (ARD) is one of the most adverse environmental problems of the mine industry. 

Surface water and ground water affected by this pollution are characterized by their acidity and 

the high content of sulfates and heavy metals. ARD loads may also cause high concentration of 

toxic elements at the bottom sediments of a reservoir [Sarmiento et al, 2009]. Damage associated 

with ARD might result in the total disappearance of the aquatic fauna in the affected ecosystem, 

as well as the impossibility of water resources to become suitable for human, agricultural or 

industrial consumption. 

The acid mine drainage process initiates when sulfide minerals, highly contained in mining 

wastes, oxidize through complex chemical reactions, involving the combined action of oxygen 

(e.g. the oxidant) and water (e.g. the solvent). Coal deposits might contain between 1 to 20% 

amounts of pyritic sulfur, which is a generic term that includes other iron sulfide minerals [Johnson 

et al, 2005]. As pyrite is usually the sulfide mineral involved, this process is often referred as pyrite 

oxidation, which results in the production of sulfate and ferrous iron, and other byproducts such 

as elemental sulfur, polysulfide, hydrogen sulfide, ferric hydroxide, iron oxide or iron 

oxyhydroxide [Chandra et al., 2010]. Acid mine drainage is mostly formed in the underground 
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water of deep mines and it is characterized by low pH and high concentrations of heavy metals 

and other toxic elements. It can severely contaminate surface and groundwater, as well as the soil 

[Peppas et al., 2000]. 

Three main stoichiometric chemical reactions [Garrels et al., 1960 and Singer et al., 1970] 

are often used to describe aqueous pyrite (FeS2) oxidation.  

FeS2 + 7/2 O2 (aq) + H2O → Fe2+ + 2SO4
2- + 2H+                            (2-1) 

Fe2+ + 1/4 O2 (aq) + H+ → Fe3+ + 1/2 H2O                                  (2-2) 

FeS2 + 14Fe3+ + 8H2O → 15Fe2+ + 2SO4
2- + 16H+                                       (2-3) 

Eq. (2-1) represents the oxidation of the pyrite (e.g. the sulfide mineral) into dissolved iron 

(Fe2+), sulfate (SO4
2-) and hydrogen (H+), that leads to the increase in the total dissolved solids and 

the acidity of the water, resulting in the decrease in pH. In the presence of adequate oxygen (O2) 

and hydrogen (H+) concentrations, ferrous iron (Fe2+) will oxidize into ferric iron (Fe3+), according 

to the reaction described in Eq. (2-2). Finally, ferric iron may also oxidize pyrite into ferrous iron, 

sulfate and hydrogen [Eq. (2-3)]. In addition, at low pH levels (< 3.5), ferric iron precipitates into 

iron oxide hydroxide (Fe(OH)3 solid) and, simultaneously, oxidizes into hydrogen, thus resulting in 

lowering of the pH [Eq. (2-4)].  

Fe3+ + 3H2O → Fe(OH)3 solid + 3H+                                         (2-4) 

These main reactions show that oxygen and ferric iron are the two most important oxidants 

in the pyrite oxidation process.  
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Despite several previous studies of passive ARD remediation, there are still issues 

requiring improvement. For instance, the majority of the experimental strategies use complex 

systems for water addition (e.g. pumping), which sometimes generate artificial conditions that are 

difficult to replicate in-situ (e.g. limiting oxygen and water diffusion). Moreover, in most cases 

there is not a sufficient focus on the long-term impacts of the remediation technique nor is there 

an analysis of the optimal content of the reactive material to be applied in the field.  

In this chapter, alkaline clay (AC), a highly basic nonhazardous industrial waste (according 

to the Resource Conservation and Recovery Act or RCRA) from the alumina refining process, was 

analyzed as a remediation material to inhibit pyrite oxidation in waste coal piles. The utilization 

of waste materials and by-products from other industries (e.g., AC) aims at the remediation 

sustainability. Through a series of static (i.e. batch and acid base accounting) and kinetic (i.e. flow-

through columns) experiments, complemented with field measurements and geochemical 

modeling, three important issues associated with this passive and sustainable ARD remediation 

method were investigated: 1) the potential use of AC as an ARD remediation material, 2) the 

adequate alkaline clay / coal refuse mixing ratio (AC/CR) to ensure pH values close to neutral 

conditions, and, 3) the implications for long-term performance, in terms of the trends of the main 

parameters involved in this process such as pH, concentrations of sulfate, ferrous iron and other 

metals. 

2.2 FIELD MEASUREMENTS 

Figure 2.1 shows data retrieved from the Mather samples over a five-year period (i.e. 2009 – 2014) 

for the non-amended plot 1 (i.e. 100% CR) and plot 2 with a 61 cm amended layer (i.e. 90% CR + 
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10% AC). Due to permanent damage suffered by the sensors in the control plot, it was covered 

with the same amended layer as plot 2 in the spring of 2011.    

Regarding pH levels, results showed a significant increase in pH in plot 2. At 61 cm, the 

pH varied approximately from 3 to 7. In the same plot, but underneath the amended layer (i.e. 91 

cm) the pH was acidic during the first two years, ranging from 2 to 3. However, near the end of 

the five-year period, the pH was almost neutral (i.e. 6.37). As expected, the pH in the non-amended 

plot 1 is acidic during the entire study period. However, after the amendment of plot 1 in early 

2011, the pH increases to nearly 4. As a direct consequence of the amendment of plot 1, in the 

long term, its pH is expected to have a similar behavior as the pH in the amended plot 2, but 

obviously, with a 2-year lag time, approximately. 

Sulfate (SO4) concentrations in Mather were mostly within the expected range. Sulfate is 

a major contaminant produced by the pyrite oxidation. Field measurements were made in 2010 

and 2011. In the amended plot 2, at 61 cm and 91 cm, sulfate ranged approximately from 1,700 to 

2,200 mg/L. In the non-amended plot 1, sulfate varied from around 4,000 to 6,000 mg/L. However, 

following the amendment of plot 1 in 2011, there was some reduction in sulfate concentrations to 

1,800 mg/L within the amended zone (i.e. 61 cm) and to 2,400 mg/L below the amended zone (i.e. 

91 cm), respectively. 
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Figure 2.1. Field measurements for plots 1 (100% CR) and 2 (90% CR + 10% AC). Plot 1 was replaced by 

the materials of plot 2 in spring of 2011. 
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A general decreasing trend in Iron (Fe) concentrations can be seen in Figure 2.1, even in 

the non-amended plot 1. One of the possible reasons for the decreasing concentration was that Fe 

tends to precipitate, therefore, its concentration is limited in aqueous solution. In the non-amended 

plot 1, the initial Fe data in 2009 had a wide range, from 500 to 7,000 mg/L. Fe was usually higher 

at 91cm than at 61 cm depth. Data from 2011, following the amendment of plot 1, yielded much 

lower Fe concentrations, from around 10 to 20 mg/L. In the case of the amended plot 2, the initial 

results at 61cm showed concentrations less than 60 mg/L and the results from June 2014 showed 

concentrations less than 1 mg/L. In the amended plot 2, at 91 cm (i.e. beneath the amended layer), 

the results showed a high influence of the amended layer (i.e. Fe concentrations reduced to 1.41 

mg/L by the end of the study period), which is likely due to the infiltration of high pH water from 

the overlying amended layer. 

Calcium (Ca) is likely to be produced by the dissolution of carbonates during the 

neutralization of acidity produced by the pyrite oxidation. Therefore, Ca has two main 

characteristics: it tends to be conservative and, it has similar concentration in the amended and 

non-amended zone. In both plots 1 and 2, Ca concentrations varied from about 400 to 550 mg/L. 

Manganese (Mn) also showed a clear decreasing trend in plots 1 and 2, but the orders of 

magnitude were different: in the amended plot, from 2009 to 2011, Mn decreased from 8 to 0.2 

mg/L and, in the non-amended plot, it decreased from 36 to 10 mg/L. In 2014, when the non-

amended plot had changed its settings, Mn concentration was around 2 mg/L.  

Figure 2.1 shows Aluminum (Al) following a similar decreasing trend as Fe. The amended 

layer in plot 2 had initial concentrations of Al of around 150 mg/L and, by 2014, they were less 

than 0.1 mg/L. Below the amended layer in plot 2 (i.e. at 91 cm), Al decreased from approximately 
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800 to 0.07 mg/L, in the same period of time. In the non-amended plot 1, Al concentrations were 

higher, ranging from around 1,500 to 200 mg/L, from 2009 to 2010.  

In general, results showed that the chemical concentrations in the Mather plots were highly 

representative of coal pile mine drainage. It was also shown that the use of AC was beneficial to 

remediate the acid drainage in the coal waste at least during the five years of measurements. In the 

amended plot 2, there was a clear indication of dissolved metal immobilization (e.g., Fe) that led 

to lower rates of H+ [Eq. (2-1) to Eq. (2-4)] and the consequent pH increase towards neutral levels. 

Moreover, it was shown that despite plot 2 only having a 61 cm amended layer, there was evidence 

that this amended layer was beneficial to the non-amended layer below at the depth of 91 cm (i.e. 

lower levels of dissolved metals and sulfate than in the non-amended plot 1). Finally, it is worth 

mentioning that the data gap observed in Figure 2.1 from 2011 to 2014 was due to access issues 

(i.e., getting permission enter the site) that didn’t allowed us to retrieve samples.  

2.3 STATIC TESTS 

2.3.1. Batch Reactions 

The pH values in the batch experiments are influenced by the AC/CR ratio and moisture content 

[Figure 2.2a]. It was noticeable that higher moisture content produced higher pH values. One 

possible reason could be lower oxygen diffusion rates due to higher saturated soil conditions. 

Another possibility may be due to a weathering effect (e.g. neutralization reactions), which would 

produce more alkaline substances available to react [Dold, 2014]. Alternatively, due to the fact 

that the AC content is several times lower than the CR and allowing the possibility that AC 
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particles are not homogeneously distributed throughout the mix, additional water is likely 

responsible for increasing reaction between the AC particles and the CR, which would explain the 

increase in the alkalinity during the short duration of the batch experiments. An experiment was 

designed to test the reaction time for various AC contents and, to initiate the reaction, 5 mL water 

were added. 

  

Figure 2.2. Results of batch experiments: a) pH versus percentage of AC with different reaction days and 

water addition amounts. b) pH versus percentage of AC with 5 mL water addition for 0 and 3 reaction days. 

c) pH versus reaction time with different percentage of AC. In a) and b), the control group corresponds to 

0 day reaction time and no water addition. 

It was observed that the pH for the batch reaction experiments for the control group was 

lower than almost every other sample tested [Figure 2.2b]. This was expected because the absence 

of initial soil moisture resulted in less dissolved alkalinity. Regarding the AC content, in all three 

cases the trend was similar. It was also noticed in Figure 2.2b that for 5% or less AC content, the 

pH was 4 or lower, which suggests that the pH in the leachate was primarily controlled by pyrite 

oxidation, both by oxygen and ferrous iron. For 8% AC, the pH was around 4 - 4.5, which is still 

close to the threshold where ferrous iron can oxidize pyrite. Therefore, it would appear that, in 

order to have a substantial positive impact, AC content should be higher than 8%. On the other 
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hand, at 16% AC, the pH was higher than 6, which is within the range of un-affected natural waters 

around the study area [Chaplin et al., 2007, Sams et al., 2000 and Williams et al., 1990].  

It is necessary to emphasize that these batch experiments were intended to replicate the 

initial conditions of the remediation, at the time of the first rainfall, right after the AC is mixed 

with the CR in the field. Therefore, these initial pH measurements were expected to be less than 

subsequent values, as the pyrite oxidation rates are initially faster than the generation of alkalinity 

[Huminicki et al., 2009].  

In order to have a narrower range from where to choose an optimal mixing ratio, Figure 

2.2c provides more clarification. This figure shows the pH results for various AC contents for three 

reaction times: 0, 3 and 7 days. It is clear that, for 5% AC or less, the pH did not seem to be 

influenced by the reaction time. In this case, it is probable that the AC content was not enough to 

rapidly increase the neutralization capacity. At 8% AC, the reaction time seemed to have some 

influence; however, the pH remained lower than 5. Although the pH can eventually reach neutral 

levels at 8% AC, there is some uncertainty regarding the long-term stability of this mixing ratio. 

In other words, for 8%AC, it is uncertain if the pH is going to be on the neutral side and how long 

it will remain this way until the alkalinity is consumed. 

The pH for the 10% AC mixture showed a more significant influence regarding the reaction 

time, increasing from 4.9 to 5.8. Similarly, the pH in the 20% AC and 30% AC mixtures also was 

influenced by the reaction time. In these two cases the AC content was relatively high; therefore, 

it took time for the alkalinity to reach a stable dissolving rate (i.e. a longer “activation” time). It is 

noticeable that, in the case of the 7-day reaction time, increasing the AC from 8% to 10%, increased 

the magnitude of the pH by 1.3. However, increasing the AC from 10% to 20%, only increased 

the magnitude of the pH by 1. This suggests that there might be an AC content within the range of 
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10%-20% whereby increasing the AC content does not necessarily improve the remediation in 

terms of the pH value.  

In summary, at the lower limit, it is clear that the optimal AC content should be higher than 

8%. The upper limit is slightly more complex to define. Our analysis might indicate that the 

optimal AC content should be less than 14%. In addition, considering that it is our intent to 

determine the least AC content possible that has an effective performance (i.e., having a neutral or 

near neutral pH and high metal immobilization), 10% AC seems to be a reasonable assumption to 

be close to optimal conditions. 

2.3.2. Acid Base Accounting 

Figure 2.3 shows the results from the acid base accounting test and its interpretation. It is necessary 

to be aware of the limitations of this methodology in order to have a proper interpretation of the 

results, as under real field conditions, not all S will produce acid, neither will all the alkaline 

material be available to react and neutralize the acidity.  

There are two main criteria to interpret the results. The first criterion is based on the Net 

Neutralization Potential (NNP), which is the difference between the Neutralization Potential (NP) 

and the Acid Potential (AP) (i.e. NNP = NP – AP) [Brady et al., 1992]. NNP values in the range 

of -20 to 20 g CaCO3 / kg are generally considered to be uncertain. NNP values less than -20 are 

typically taken to indicate acid producing potential while NNP values greater than 20 are usually 

identified with little potential to produce net acidity. Based on these criteria, Figure 2.3a shows 

that a minimum of 6% AC is required to be in the range of limited potential to produce net acidity 
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(i.e. NPP ≥ 20 g CaCo3 / kg). Mixed samples of AC between 1% and 6% are assumed to be in the 

uncertainty range. Samples with less than 1% AC have acid producing potential. 

The second criterion is based on the Neutralization Potential Ratio (NPR = NP/AP) [Price 

et al., 1997]. The results in Figure 2.3b show that samples with AC between 0% and 3.5% are 

likely to generate ARD. Samples with AC between 3.5% and 9.5% are less likely to produce ARD. 

With 9.5% and 20% of AC content, there is no potential for ARD generation, while for samples 

with more than 20% AC, it is assumed with more certainty that there will be no ARD. 

 

Figure 2.3. Acid base accounting test results interpretation, based on the sample's %AC. a) Net 

Neutralization Potential (NNP) criterion. b) Neutralization Potential Ratio (NPR) criterion. 

NP=Neutralization Potential, AP= Acid Production Potential, NNP= Net Neutralization Potential, NPR= 

Neutralization Potential Ratio. 

Based on these results, our assumption is strengthened that a minimum of 10% AC is 

required for long-term remediation purposes. Specifically, 10% AC is assumed to be the minimum 

amount of remediation material that could guarantee that sufficient alkalinity is provided to 

neutralize the acidity in the long term, even beyond the duration of the field measurements and the 
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kinetic experiments (i.e. > 5 years). Therefore, a 10% AC mixture will be adopted for the amended 

scenario of the kinetic tests (i.e., flow-through columns).   

2.4 KINETIC TESTS 

In the first stage of the kinetic experiments, four columns were started to explore the generation 

and remediation of ARD. The layer depth of all columns was 15 cm. The mixture in column 1 

consisted of 10% AC and 90% CR. Column 2 used the same mixture as column 1 except that the 

solid sample used to pack it was ground and, therefore, featured a smaller grain size in general. 

This column was designed for testing the effect of the particle size. Column 3 also used the same 

mixture as column 1 but varied the amount of water added. Only 100 mL of water was added to 

column 3 to simulate drier environmental conditions. Column 4 served as the control column 

(100% CR). At the beginning of the experiments, the water retention time varied from around 1 to 

3 h. Table 2.1 shows the columns specifications. 

Table 2.1. Settings of the first set of columns 
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2.4.1 pH 

Figure 2.4a shows the leachate pH from the columns previously described. The average pH for 

columns 1 and 2, during the experiment was 7.59 and 7.83, respectively. After a 600-day period, 

there was no indication of a pH decrease. It was noticeable that the pH in column 2 was slightly 

higher than in column 1. This is likely due to the fact that column 2 had smaller particles (i.e., 

samples were ground before sieved), which made the mixture more homogeneous, and also, there 

is a higher surface contact between the water and the AC particles. However, the smaller particle 

size in column 2 did not produce a significant difference compared to column 1.  

As previously mentioned, water addition frequency was 100 mL/week in column 3, which 

was assumed to be close to the moisture conditions in the field during the dry season. The leachate 

from column 3 took around two weeks to reach a neutral pH, after which the pH values remained 

mostly above 7.5. This column was neglected after approximately 200 days, as enough data were 

collected to note that reducing the water by half did not significantly change the pH compared to 

columns 1 and 2. 
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Figure 2.4. a) pH and b) sulfate results from the column leaching experiments. Column 1: 10%AC + 

90%CR. Column 2: 10%AC + 90%CR (ground particles). Column 3: 10%AC + 90%CR (less mount of 

water added). Column 4: 100%CR. 
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In all these three columns it was evident that the increase in pH conditions was due to the 

addition of the alkaline material (i.e., AC). As a consequence, these conditions should reduce the 

proliferation of bacteria (i.e., thiobacillus ferroxidans), increase the metal adsorption and enhance 

the precipitation of HFO [Doye and Duchesne et al., 2003]. These hydrous oxides of Fe (III) are 

fundamental in the transport and attenuation of trace metals via adsorption [Webster et al., 1998]. 

In addition, due to the low solubility of these Fe-oxide phases under alkaline conditions, they can 

eventually encapsulate the sulfide mineral grain (e.g. pyrite), and lower the amount of mineral 

surface in contact with the oxidants, thus inhibiting the oxidation process until a state is reached, 

where the coating’s effectiveness causes the acid generation to be less than the alkalinity of the 

ground water [Huminicki et al., 2009]. Additionally, higher water retention in column 2 (i.e. fine 

particles) could play an important role for the coating of pyrite, as hydrodynamic conditions are 

important in the early stages of the coating development, where higher flow rates might remove 

Fe (II) and HFO before they can react and attach to the pyrite surface [Huminicki et al., 2009].  

After 350 days, the pH in column 4 (i.e., control column) is within the range of 2.5 - 3. At 

pH < 3.5, the solubility of HFO increases and pyrite oxidation by Fe (III) is faster than oxidation 

by dissolved oxygen [Williamson et al., 2006]. Moreover, low pH conditions favor the growth of 

acidophilic bacteria (i.e., thiobacillus ferroxidans) that oxidize aqueous Fe(II) to Fe(III) [Doye and 

Duchesne et al., 2003]. Finally, low pH inhibits precipitation and sorption reactions. 

Consequently, metals such as Al, Cu, Mn and Zn are likely to experience a conservative transport 

[Runkel et al., 2012].  
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2.4.2 Sulfate 

In ARD chemistry, sulfate is usually seen as an indicator of sulfide mineral oxidation. Even 

without the contribution of dissolved oxygen, pyrite oxidation by Fe(III) produces sulfate [Doye 

and Duchesne et al., 2003]. Moreover, sulfate is also controlled by mineral solubility, as it is 

associated with several mineral phases that are present in mine tailings, among which are jarosite 

(KFe3(OH)6(SO4)2) and gypsum (CaSO42H2O). Secondary sulfate minerals associated with ARD 

include Fe and Al-hydroxysulfate minerals [Hammarstrom et al., 2005].  

Figure 2.4b shows sulfate (SO4) concentrations obtained from the columns’ leachates. It is 

noticeable that, while the orders of magnitude are different, a similar trend is present in the sulfate 

concentrations for all four columns, characterized by an early steep decrease followed by an 

apparent plateau.  

Column 1 had an average sulfate concentration of 1,872 mg/L during the first 100 days, 

after which the average plateaued around 1,481 mg/L. Column 2 had an average sulfate 

concentration of 2,865 mg/L during the first 100 days, after which the average plateaued 1,490 

mg/L. Once again the particle size has no significant impact (i.e. column 2 results compared to 

column 1) .It appears that the neutralization potential of the AC has a higher control compared to 

the other possible factors that might enhance the remediation process (e.g., higher water retention, 

less oxygen diffusion and more AC surface contact due to finer particles). 

In column 4, the non-amended scenario, sulfate experienced a very steep decrease during 

the first 100 days, dropping from an initial 22,000 mg/L to approximately 6,000 mg/L. This might 

indicate an initial high dissolution of sulfate minerals. After that, the sulfate continued to drop for 
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another 50 days (i.e., from 6,000 to 2,000 mg/L). From that point onward, the sulfate concentration 

stabilized at around 2,000 mg/L (i.e., at about day 200) for approximately 100 days and, then 

continued to gradually decrease until around 1,800 mg/L at day 350. 

2.4.3 Dissolved metals/metalloids 

Drainage water quality in reactive and remediated mine tailings is highly influenced by factors like 

water saturation level, particle size distribution and soil permeability, but may also be influenced 

by the mineral composition of the soil, which in turn controls the distribution of metals. 

Figure 2.5 shows concentrations for the most important metals dissolved in the leachate 

for the amended and non-amended scenarios (columns 1 and 4, respectively). There 

is approximately 450 days of measurements for column 1 and 200 days for column 4. The reason 

for this difference is that column 4 was started later than column 1. Average Fe 

concentration in column 1 was 2.85 mg/L (range 2.13 to 3.77 mg/L). Under alkaline pH 

conditions when pyrite is being oxidized, the released Fe rapidly precipitates as HFO phases 

such as ferrihydrite and goethite [Yee et al., 2006]. Considering the data length (i.e. 450 days), it 

seemed that the Fe concentrations in column 1 were controlled by the Fe mineral solubility. 

Eventually, it is expected that the Fe concentrations would decrease. As an evidence, actual 

field measurements from the Mather site show a decrease in Fe concentration Figure 2.1. 

Ca concentrations in the amended scenario showed two clear trends. The first was 

characterized by a relatively stable increase during the first 180 days, where the concentration of 

Ca is generally within the range of 300 - 600 mg/L. The second trend is where the Ca concentration 

increases from 500 to 700 mg/L. This relatively high concentration of Ca could be an indication 
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of ARD neutralization by the dissolution of Ca carbonates, such as calcite (CaCO3), due to the 

alkaline additive, thus releasing Ca. Usually, calcite is identified with acidic neutralization, 

enabling various metal removal mechanisms [Sun et al., 2013]. However, high dissolution rates 

of Ca minerals could also occur in active mine tailings (e.g., CR). 

Mn showed a decreasing trend in the amended scenario. In mine tailings, Mn is usually 

produced by the dissolution of ankeritic dolomite contained in rocks [Banks, 2006]. In column 1, 

Mn dropped from around 0.9 to 0.4 mg/L during the first 230 days, after that, it stabilized around 

0.2 mg/L, being 0.16 the lowest value. At neutral pH values, precipitation of Mn phases occurs via 

bacterial mediation [PlumLee et al., 1999]. 
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Figure 2.5. ICP-MS results for the column experiments (columns 1 and 4). 
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The Mg concentrations also showed a decreasing trend in the amended scenario, from the 

range 300 – 100 mg/L to 8 - 6 mg/L, a relatively low concentration, which might indicate the 

precipitation of Mg carbonates. Likewise, Na concentrations showed a dramatic decreasing trend, 

from 160 to approximately 10 mg/L, which might be an indication of flushing out of brines and 

Na minerals initially present at the CR waste piles and/or the alkaline remediation material (e.g., 

sodalite (Na8(Al6Si6O24)Cl12)). Decreasing concentrations of K (i.e. from 12 to 2 mg/L, 

approximately) might also be related to the flushing of brines. In the amended column, Zn had a 

very stable trend within the range of 0.5 – 2.5 mg/L, with an average concentration of 1.42. Zn is 

absorbed on Fe (II) oxides and hydroxides at moderately acidic and neutral pH conditions [Sracek 

et al., 2009].  

Other important metals that characterize ARD such as Al and Co, were mostly below the 

detection limits in the amended scenario. When detected, Al varied from 0.001 to 0.07 mg/L. One 

of the main reasons for the low Al concentrations in the amended columns is that, at a close to 

neutral pH, Al is limited by the precipitation of Al hydroxides [Nordstrom and Alpers, 1999]. Cu 

showed an oscillatory behavior within the range of 0.02 to 0.10 mg/L, with an approximate average 

of 0.04 mg/L. This low Cu concentration might be due to the fact that Cu hydroxide precipitates 

at pH > 5.3 Cu is strongly adsorbed onto HFO and other oxide phases [Britton, 1955]. Other 

important dissolved metals detected at relatively low concentrations were Ni and Cr, with average 

concentrations of 0.036 and 0.039 mg/L, respectively. Finally, Si concentrations had an increasing 

trend during the whole experiments from around 9 to 17 mg/L in column 1. It is clear that Si 

concentrations are controlled by Si minerals solubility (e.g., neo-formed silicates). 

In contrast, Fe concentrations in the non-amended scenario (column 4) went from an initial 

3,500 mg/L to a final 107 mg/L. Fe concentrations in the reactive tailings are controlled by a 
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complex set of minerals including pyrite, chalcopyrite, HFO, Fe oxides, and jarosite [Doye and 

Duchesne et al., 2003]. In fact, pyrite and jarosite were the main Fe minerals detected in the XRD 

analysis. The initial high concentrations of Fe might indicate high pyrite oxidation rates and high 

dissolution rates of Fe minerals. After that, it seemed that the rate of Fe precipitation was higher 

than the rate of oxidation and the coating of reactive grains, thus causing the concentration to drop.  

Ca had similar concentrations in the amended and non-amended scenarios. Many reactive 

tailings can have a high content of Ca minerals and still generate acidic pH. Calcite (CaCO3) and 

gypsum (CaSO4H2O) were the Ca minerals detected in the XRD analysis [Table 1.1].  

Mn is a very common metal that can be found in acidic mine waters. At near neutral level 

of pH, its removal is enhanced. However, in low pH conditions, formation of HMO is kinetically 

slow compared to HFO formation. For the non-amended scenario, Mn showed a decreasing trend 

from 25 to 0.3 mg/L, implicating precipitation of secondary Mn minerals. 

Al concentrations went from more than 1,500 mg/L to about 82 mg/L. Al might be 

controlled by the dissolution of gibbsite [Cravotta III et al., 2015]. A discontinuity of the Al curve 

is noticeable in the case of column 1, meaning that Al was not always detected in the amended 

scenario. Low and stable Na (i.e. average of 0.5 mg/L) and K (i.e. average of 1.2 mg/L) 

concentrations in column 4 indicate low brine content in the reactive tailings.   

Other potentially toxic metals, such a Cu, Co, Zn, Ni and Cr, had high concentrations in 

column 4. Since no minerals of these metals were detected in the XRD, they might be controlled 

by the dissolution / precipitation of secondary phases. Cu was within the range of 40 – 200 mg/L. 

Co was below the detection limits in column 1, but in the case of column 4, it had a decreasing 
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trend from 4 to 0.06 mg/L. Zn, Ni and Cr were within the ranges of  175 - 8 mg/L, 12 – 0.2 mg/L 

and 1.6 – 0.14 mg/L, respectively.  

In summary, the non-amended scenario (i.e., column 4) showed high concentrations of 

dissolved metals, while the amended scenario (i.e., column 1) showed high immobilization of 

dissolved metals. Table 2.2 shows the estimated removal efficiency, in percentage, for the most 

important metals based on their initial concentrations (i.e., comparing the amended and the non-

amended columns). This analysis, based on the initial concentrations (i.e., “day 0” in Figure 2.5) 

for both the amended and non-amended scenarios, shows the significance of having the 

remediation treatment in a mine tailing. For example, the proposed remediation design ensures 

that approximately 99.93% of the high Fe loads are neutralized and are not dissolved in water. 

Other metals, such as Al and Co are also unlikely to dissolve and be transported in the leachate of 

the amended environment. 

Table 2.2. Metal removal efficiency 

Description

Initial 

Concentration 

Column 4  

(mg/L)

Initial 

Concentration 

Column 1  

(mg/L)

Removal 

(%)

Fe 3496 2.33 99.93

Mn 24.9 0.90 96.39

Cu 160 0.04 99.98

Cr 1.6 0.003 99.84

Zn 106.5 0.50 99.53

Ni 11.7 0.07 99.40

Al 1518 0.01 100.00

Co 4.2 0.00 100.00
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2.4.4 Controls of pH on sulfate and dissolved metals/metalloids. Water quality analysis 

Based on the results presented in this study and those from previous studies [Nordstrom and Balls, 

1986, Nordstrom and Alpers, 1999 and PlumLee et al., 1999], it has been sufficiently demonstrated 

that low pH levels accelerate the release of heavy / toxic metals, which, in turn, can negatively 

affect the survival of aquatic life and have other harmful impacts on the environment.  

For the purpose of interpreting the variations of the mine drainage water chemistry, a 

Ficklin diagram can be utilized [PlumLee et al., 1992 and PlumLee et al., 1999]. The usual Ficklin 

diagram is a scattergram, in which the sum of the base metals Zn, Cu, Pb, Cd, Co, Ni is plotted 

against the pH. In addition, the Ficklin diagram can be adapted to create similar plots using 

parameters other than the above mentioned base metals. 

Figure 2.6a shows a Ficklin diagram based on the results presented in the previous 

sections, including the amended (columns 1 and 2) and non-amended (column 4) scenarios. For 

the non-amended scenario, the diagram shows that the quality of the leachate is categorized near 

the threshold of the high acid-extreme metal and high acid-high metal groups. As shown in the 

results, the non-amended scenario had initial high metal concentrations followed by a decreasing 

trend in metal concentrations with a pH within the range of 2 - 3 the entire time. Evidently, there 

was a dissolved metal reduction in column 4, but as the pH remained low, the metals concentrations 

were still high. For the amended scenario, the leachate quality is characterized by the near neutral-

high metal and the near neutral-low metal groups. Similar to column 4, columns 1 and 2 also 

showed a decreasing trend in the metal concentrations, but obviously the initial concentrations in 

the amended scenarios were much lower. As the pH remained on the neutral level (i.e. 7 – 8) the 

entire time, the immobilization of dissolved metals was enhanced.  
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Figure 2.6. Ficklin diagrams for the column leaching experiments (columns 1, 2 and 4). 
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In addition, Figure 2.6b shows adapted Ficklin diagrams for other important parameters 

like Fe, SO4, Al and Mn, for columns 1 and 4. For column 1, where all the samples have a pH 

above 7, the range of concentrations in sulfate and in other metals (i.e., Fe, Al, and Mn) is relatively 

narrow, thus it is evident that it has an effective ARD neutralization process. On the other hand, in 

column 4 there is a wide range in sulfate and metal concentrations with a very narrow pH range, 

indicating the release of metals due to the high acidity. 

For the implications of the outcome regarding water quality standards, U.S. Federal 

Regulations [EPA, 2002] provide general guidelines about effluent discharges related to coal 

mining. The only parameters that are regulated are Fe, Mn, pH and total suspended solids (TSS). 

The effluent in the amended scenario fully complies with these regulations, while for the case of 

the non-amended scenario, such standards are not met on both the instantaneous and average 

values as they are always higher than the maximum admissible. Moreover, the leachate in the 

amended scenarios complies, for many parameters (e.g., Ba, Cu, Pb, Ni, Zn), even with the higher 

quality standards [EPA, 1994] such as those related to drinking water. 

2.5 GEOCHEMICAL MODELING: PHREEQC 

Geochemical simulations were mainly focused in the amended scenario (i.e., column 1). However, 

some investigations for the non-amended scenario (i.e., column 4.) were also explored. Table 2.3 

shows the initial aqueous solutions for the amended and non-amended scenarios, which are the 

main inputs to the model.  
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Figure 2.7a shows the most important parameters (i.e. pH, SO4, Fe, Ca, Al, Mn) modeled 

by PHREEQC against the respective measurements from the leachate of column1 (i.e., amended 

scenario). In terms of pH and sulfate, the results from the simulation (shown in red) are close to 

the experiments (shown in blue).  

The simulation curves for these parameters had a decreasing trend, most clearly visible in 

the case of sulfate. In the case of pH, the model simulation began with a pH above 9, and was not 

able to replicate the initial behavior of the system for the first 120 days, approximately. A slow 

saturation process within the column may explain the discrepancy between the model and 

experimental results during this time. As the amount of particles reacting slowly increases, it takes 

some time until the introduced alkalinity in the mixture reaches higher dissolution rates. This is 

why the pH from the leachate of column 1 is acidic at the beginning (see Figure 2.4a) but after a 

few days it reaches the neutral level. Another important conclusion is that the model was not very 

sensitive to the initial pH value given to the solution [Table 2.3]. On the other hand, sulfate 

simulations showed a better adjustment to the experimental data during the entire time, indicating 

more sensitivity to the initial input sulfate concentration. 
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Figure 2.7. a) PHREEQC modeling results for the amended scenario (column 1). The small circles represent 

the laboratory measurements (column 1). The large triangles represent the field measurements at 61 cm 

depth (amended plot 2). b) PHREEQC 5-year simulation for the amended scenario (column 1).  
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Table 2.3. PHREEQC initial solutions (amended and non-amended scenarios) 

Amended 

Scenario

Non-amended 

Scenario

Description
Concentration  

(mg/L)

Concentration  

(mg/L)

Al 0.05 200

Ba 0.01 0.01

Ca 500 550

Cu 0.04 100

Fe 2.50 200

K 4.00 0.50

Mg 100 150

Mn 0.20 5.00

Na 120 0.40

SO4 1800 8000

Si 9.00 40

Zn 0.80 100

pH 7.00 2.50

 

Dissolved metal concentrations were also modeled. Fe and Ca are typically the most 

important dissolved metals to be analyzed in ARD, since they are related to the pyrite oxidation 

and alkaline neutralization, respectively. Fe had an initial oscillatory behavior within the range of 

2.5 – 3 mg/L and then experienced a small increase to 3 – 3.5 mg/L. Although the Fe simulation 

curve also had an increasing trend after 200 days, it stayed around 0.5 mg/L lower than the 

experimental data. Al and Mn simulations were highly influenced by the initial input 

concentrations and their curves did not show major changes from the initial values. This might be 

due to various factors such as the magnitude of the concentrations (e.g., Al was below the detection 

limits in the majority of the samples) and the mineral solubility control (i.e., precipitation of Al 

and Mn minerals). In the specific case of Mn, other factors such as bacterial activity might play an 

important role in its significant depletion. Microorganisms including heterotrophic bacteria 
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Pseudomonas, Clostridium and Desulfovibrio can directly reduce Mn [Kuyukak, 2002]. In other 

words, PHREEQC fails to replicate the initial behavior of metals such as Mn, where additional 

factors such as bacterial activity may have some control on Mn mobility. 

In addition, saturation indices (SI) were calculated to establish the probable mineral phases 

that might be controlling the aqueous composition of the leachates. Table 2.4 shows the SI 

calculations of the most important primary and secondary mineral phases in columns 1 and 4. In 

general, the leachate in this amended scenario showed supersaturation with respect to HFO phases, 

which led to low metal concentrations, especially Fe, because of the high sorption capacity of these 

phases that might also lead to the removal of SO4, for what the precipitation of jarosite could also 

contribute significantly [Jones et al., 2006]. The geochemical model showed equilibrium with 

respect to gypsum, (e.g. SO4 usually decreases due to precipitation of gypsum) which was 

reasonable as there is an obvious acid neutralization process in this scenario; however, sulfate 

showed a conservative behavior within the range 1000 – 1500 mg/L. Therefore sulfate 

concentrations were controlled by the dissolution of another sulfate mineral such as anhydrite. 

Despite an initial neutral pH, the sulfate concentrations were relatively high (> 2000 mg/L) which 

could be controlled by the dissolution of jarosite, which was undersaturated with respect to the 

solution composition. 

Low Al concentrations in the amended scenario were controlled by the precipitation of 

gibbsite, k-mica and kaolinite. Mn concentrations were controlled by the precipitation of 

manganite and rhodrochrosite. Moreover, bacterial activity could also contribute to precipitation 

of Mn phases at a near neutral pH. 
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Table 2.4. PHREEQC Saturation Indices (amended and non-amended scenarios) 

Description Chemical Formula Initial SI Final SI

Anhydrite CaSO4 -0.36 -0.36

Aragonite CaCO3 1.85 1.85

Dolomite CaMg(CO3)2 3.52 3.11

Iron(III) oxide-hydroxide Fe(OH)3 2.79 2.79

Gibbsite Al(OH)3 -0.92 1.66

Gypsum CaSO4.2H2O 0.00 0.00

Jarosite-K KFe3(SO4)2(OH)6 -6.28 0.76

K-mica KAl3Si3O10(OH)2 2.28 8.41

Kaolinite Al2Si2O5(OH)4 -1.25 4.59

Manganite MnO(OH) 9.03 3.79

Quartz SiO2 -0.11 0.24

Rhodochrosite MnCO3 0.60 0.19

Description Chemical Formula Initial SI Final SI

Anhydrite CaSO4 0.13 0.13

Iron(III) oxide-hydroxide Fe(OH)3 -1.83 -1.90

Gibbsite Al(OH)3 -4.25 -4.43

Gypsum CaSO4.2H2O 0.43 0.43

Jarosite-K KFe3(SO4)2(OH)6 1.71 1.68

K-mica KAl3Si3O10(OH)2 -12.98 -13.59

Kaolinite Al2Si2O5(OH)4 -6.02 -6.39

Manganite MnO(OH) -4.10 -4.22

Quartz SiO2 0.82 0.82

Geothite FeO(OH) 4.06 3.99

K-feldspar KAlSi3O8 -10.09 -10.34

Chlorite Mg5Al2Si3O10(OH)8 -58.42 -59.40

Amended Scenario

Non-amended Scenario

 

Typically, the leachates from non-amended tailings are highly reactive, thus facilitating the 

dissolution of most of the primary minerals and the formation of the secondary phases. The 

leachate in this non-amended scenario showed undersaturation with respect to HFO phases, which 

led to higher metal concentrations, especially Fe. Moreover, decreasing sulfate concentrations 

were controlled by the precipitation of sulfate minerals such as gypsum, anhydrite and jarosite. In 
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acid mine waters, Fe can reach saturation with respect to jarosite [Nordstrom and Balls, 1986]. 

Unlike the amended scenario, in this case the Al concentrations were relatively high, similar to 

most reactive tailings. Al was controlled by the dissolution of several minerals such as gibbsite, k-

mica, kaolinite, k-feldspar and chlorite. Al minerals like gibbsite are highly soluble with low pH 

[Nordstrom and Alpers, 1999]. Mn concentrations were controlled by the dissolution of 

manganite.   

Finally, an extended 5-year simulation was performed for the amended scenario (see 

Figure 2.7b). Although these results should not be taken as definitive, the fact that they were 

supported by a calibration process that replicated the initial 600 days of the system behavior made 

this exercise a valuable planning and decision making tool, especially in terms of the long-term 

effectiveness of the remediation approach described in this study. Obviously, these simulations are 

highly linked to the experimental data (e.g., calibration process). Upon retrieving more 

experimental data, another model validation should be performed. 

The three most important ARD parameters (i.e., pH, SO4 and Fe) were analyzed in the 

long-term simulations. The pH showed an expected decreasing trend until it reached around 6.8 

after 5 years of simulation. Sulfate data showed an initial decreasing trend, where simulations were 

adjusted to the experimental data, after that and until the end of the simulation time, it showed a 

more conservative behavior, only decreasing from approximately 1700 to 1500 mg/L. According 

to the SI calculations for the amended scenario, the main sulfate mineral, gypsum, was at 

equilibrium (SI ~ 0) at all times. This might indicate that gypsum formation occurs quickly enough 

on pyrite grain surfaces that it remains close to saturation in the bulk phase [Dold, 2014 and 

Hammarstrom et al., 2003]. Therefore, the factor controlling sulfate was the dissolution of 

secondary phases such as aragonite. This led to relatively low and conservative sulfate 
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concentrations. Fe simulations showed an increasing trend, until it reached a concentration of 3.3 

mg/L after 5 years. This low Fe concentration was controlled directly by the neutral pH, which 

favored the precipitation of Fe phases. 

In general, the model could fairly replicate most of the experimental results; however, 

several uncertainties related to the geochemical modeling remain. These uncertainties are related 

to the nonlinearity of the system [Amos et al., 2004]. Some of the main sources of error in the 

model could be the identification of the appropriate solid phases and the associated equilibrium 

constants for the precipitation reactions. 

2.6 IMPLICATIONS FOR LONG-TERM PERFORMANCE OF THE 

REMEDIATION 

Field measurements, laboratory experiments and geochemical modeling have been analyzed 

jointly to determine the possible long-term behavior of the remediation proposed in this study. The 

determination of the necessary alkalinity supply is an important initial strategy for long-term ARD 

remediation [Huminicki et al., 2009]. The static tests allowed to determine the minimum AC/CR 

mixing ratio that provides the amount of alkalinity that, potentially, will make the system not ARD-

generating. Furthermore, the performed kinetic tests and the field measurements validated the 

adoption of a 10%AC/90%CR mixing ratio in terms of pH, sulfate and metals/metalloids. At the 

end of the experiments, there was no indication of alkalinity exhaustion. 

It was observed that, for the amended scenario, the pH remained over 7 after 600 days. 

Moreover, there is a clear indication of metals/metalloids immobilization, as opposed to the non-
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amended scenario. However, even in the non-amended scenario, the concentrations of the majority 

of the metals (e.g. Fe, Mn, Cr, Cu, Ni, Zn, Al) and sulfate showed a decreasing behavior, hence 

suggesting a decreasing alkalinity demand. Based on the results of the kinetic tests and field 

measurements retrieved over a period of 5 years, a geochemical simulation was performed (i.e. 

600 days and 5 years) which indicated HFO formation in the amended scenario. This HFO 

formation can accelerate the consumption of sulfide minerals [Huminicki et al., 2009].  

The longer the leachate remains on the alkaline side, the more enhanced the generation of 

iron precipitates that could produce the pyrite grain coating becomes. In addition, the pyrite grains 

and other sulfide minerals will dissolve in time (alkaline minerals will also dissolve), which means 

that, in the long term, once the majority of the AC is dissolved, the alkalinity demand in the mine 

tailing will be relatively small due to the combined processes of dissolution and coating of pyrite 

and other sulfide minerals. Furthermore, the precipitation of some minerals will make the amended 

layer less porous, thus increasing water retention and reducing oxygen diffusion. In summary, the 

combined processes have shown that the pH value can be kept around 7 for at least 600 days based 

on the column experiments (see Figure 2.4) and for five years, based on the field measurements 

(see Figure 2.1) and numerical simulations (see Figure 2.7). Such results strongly suggest that the 

utilization of AC is beneficial for ARD long-term remediation. 

2.7 CONCLUSIONS 

This first stage of the research investigated the potential use of AC as a passive remediation 

material for waste coal mining that has the potential to generate ARD. Based on this study, AC is 
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shown to be an effective remediation material. Results indicated that a 10% AC/90% CR mixing 

ratio provides near-optimal remediation conditions. This mixing ratio is only considered as an 

upper remediation layer for the waste piles. Moreover, results suggested that this remediation 

approach has long-term stability (i.e., neutralization rate is equal to or higher than pyrite oxidation 

rate).  Immobilization of contaminants, such as Fe, Mn or SO4, and an increase in calcium 

carbonates implicated a strong pyrite ARD oxidation neutralization capability. Concentrations of 

other major contaminants, such as As and Al, were below the detection limits in the amended 

scenario.  

Field measurements have also proved that the use of AC is beneficial to remediate the acid 

drainage in the coal waste. During the period of time in which these measurements were made, pH 

showed an increase in the amended plots; at the same time, sulfate and dissolved metals showed a 

decreasing behavior in these plots. However, there are some future improvements that could be 

made to this field remediation approach in order to increase its effectiveness. These might include 

soil compaction in the amended layer and the utilization of ground particles of AC to increase the 

surface area of the neutralizer and decrease the porosity of the medium. However, further study is 

required to evaluate the potential benefits of these strategies. Long term and continuous data would 

also be crucial for this characterization. 
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3.0  ACID ROCK DRAINAGE PASSIVE REMEDIATION USING ALKALINE 

CLAY: HYDRO-GEOCHEMICAL STUDY AND IMPACTS OF VEGETATION AND 

SAND ON REMEDIATION 

3.1 INTRODUCTION 

In mining regions such as the Northern Appalachian Coalfield in the USA, the abundance of coal 

refuse deposits enables the generation of acid rock drainage (ARD), a serious type of water 

pollution (i.e. water with acidic pH and high concentrations of sulfate and metals/metalloids) that 

has caused a widespread degradation of water resources throughout the region [Herlihy et al., 1990 

and Cravotta, 2008a, 2008b]. 

Due to the severity of this environmental problem, over the past decades many states with 

coal mining activity, such as Pennsylvania, have been developing several reclamation projects to 

prevent or remediate ARD [Toffey et al., 1998]. Among the remediation approaches, passive 

abiotic treatment possesses many advantages such as low cost and the harnessing of non-

conventional materials as neutralization agents (e.g. alkaline wastes), thus operating in a more 

sustainable way [Younger et al., 2002] as well as having lower overall environmental impacts 

compared to active treatment technologies [Hengen et al., 2014 and Jia et al., 2016]. Usually, the 

main concern regarding passive remediation is the selection of an adequate remediation material, 
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which could depend on factors such as neutralization potential, cost, production distance from the 

site, and supply according to the treatment demand [Perez-Lopez et al., 2011].  

In addition, other approaches and complementary measures are also addressed in passive 

ARD remediation, such as the use of acid and metal-tolerant vegetation [Saalting et al., 2016, Ma 

et al., 2015, Adams et al., 2013, Padmavathiamma and Li, 2007, Batty et al., 2006] or saturated 

barriers to cover the tailings [Pabst et al., 2014, Ouangrawa et al., 2010, Ouangrawa et al., 2009, 

Waybrant et al., 2002].  

In Chapter 2, it was established the beneficial use of alkaline clay (AC), a highly basic 

nonhazardous industrial waste (according to the Resource Conservation and Recovery Act or 

RCRA) from the alumina refining process, for ARD passive remediation. Moreover, it was 

suggested that this passive remediation approach has long-term stability. This chapter aims to 

complement the research done in the previous chapter and published in Plaza et al., [2017] by 

focusing on the following particular issues: 1) the hydrogeochemical study of the mixture in terms 

of the percentages of AC and CR, and, 2) the implementation of complementary measures to 

enhance the remediation process such as use of a vegetation cover and a saturated sand barrier. To 

achieve this, a series of static (i.e. acid base accounting) and kinetic (i.e. flow-through columns) 

experiments, complemented with geochemical modeling were carried out.  Additional field data 

from Mather will be presented in this chapter to complement what is presented in the Chapter 2. 

The major focus in this stage is the setup of 12 columns, which characteristics are 

summarized and illustrated in Table 3.1 and Figure 3.1. For clarity purposes, the columns were 

divided into two groups based on the acidity or alkalinity of their leachate: neutral / near neutral 

pH (group A) and acidic pH (group B). These kinetic tests were designed to cover a wide range of 
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scenarios in terms of the AC/CR mixing ratio, vegetation and sand layer. It is worth mentioning 

that columns A1 and B1 constitute, respectively, the continuation of columns 1 (90% CR + 10% 

AC) and 4 (100% CR) from Chapter 2 and Plaza et al. [2017].  

Table 3.1. Columns design 

 

 

 

Layer 1 Layer 2 Layer 3 Layer 4 

 

Column                  

ID 

Height 

(cm) 

CR               

(%) 

AC               

(%) 

S                

(%) 

Height 

(cm) 

S                      

(%) 

Height 

(cm) 

CR               

(%) 

AC                         

(%) 

Height 

(cm) 

CR             

(%) 
Vegetation? 

A1 15 90 10 0        NO 

A2 15 90 10 0        YES 

A3 5 90 10 0 5 100 10 90 10   NO 

A4 15 92 8 0        NO 

A5 15 94 6 0        NO 

A6 15 97 3 0        NO 

B1 15 100 0 0        NO 

B2 15 99 1 0        NO 

B3 15 90 10 0      10 100 YES 

B4 5 90 10 0 5 100 5 90 10 10 100 YES 

B5 15 90 10 0      10 100 NO 

B6 10 90 10 0 5 100 5 90 10 10 100 NO 
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Figure 3.1. Column experiments: Specific design of the columns 

3.2 SAMPLE COLLECTION, MATERIAL CHARACTERIZATION AND 

PRELIMINARY LABORATORY TESTS 

Figure 3.2a shows a particle size distribution test (sieve analysis) for both AC and CR. The acid 

base accounting test considers that both CR and AC have a similar particle size distribution (D ≤ 

0.25 mm). However, CR and AC have different particle size distribution. For fresh samples, and 

considering the size used in the columns (D ≤ 4.76mm), it is observed  that AC features smaller 

particles than CR. Assuming the D50 as the mean diameter and assuming that the particles have 

spherical form, the estimated surface area (e.g. m2) per unit volume (e.g. m3) for AC is 
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approximately 48% greater than for CR. This high surface area difference could produce that the 

alkalinity, mainly contained in AC, would be released at faster rates than the acidity, mainly 

contained in CR. 

a) 
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b2) 

 

Figure 3.2. a) CR and AC particle size distribution and b) soil moisture (m3/m3) measured in the columns 

(b1) and in amended plot at Mather (b2). 

Fig 3.2b shows soil moisture (SM) measurements (m3/m3) retrieved at 5 cm from four of 

the columns, compared to the SM retrieved at the same depth from the amended plot in Mather. 

Since the columns were located in a controlled environment where some parameters are different 

from the field conditions (e.g., temperature, wind, humidity, sun light exposure), it is expected that 

the soil moisture from the column experiments and the field is not the same. However, the general 

range of the soil moisture and its relevant behaviors may be comparable since water dynamics and 

physical/chemical properties are the main players affecting the ARD generation and remediation 

processes. Fig 3.2b1 shows the SM retrieved from the columns A1, A2, B3 and B5 during 

approximately 50 days. SM in the columns ranges from 0.12 to 0.27. The peaks represent the days 

when water was added (i.e., “rainfall”). It is worth mentioning that columns A1 and A2 have 15 

cm depth and columns B3 and B5 have 25 cm depth. As a consequence, the A columns had higher 

water content due to the lower soil volume. Moreover, the columns that had vegetation on the top 

(i.e., A2 and B3) had less SM than their “counterpart” columns but without vegetation (i.e., A1 

and B5, respectively), which was expected due to water uptake by the roots and the higher porosity 
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of the soil. However, it is noticed that the SM in the columns had similar magnitude to that in the 

field, as seen from the SM measured in the amended plot in Mather for approximately one year 

[Figure 3.2b2].  

Initially, it was taken into consideration the idea of “correcting” the soil moisture factor 

(i.e., less soil moisture in the larger columns) by adding more water into the bigger columns, but 

this was later discarded for two main reasons:  

1) It is desirable to keep similar input parameters in all the columns, just like as it happens 

in natural conditions (i.e. water addition based on the column surface and not based on the soil 

depth). 

2) The water sample collected for all columns is the same (50 – 60 mL). In other words, 

once the columns are saturated at the beginning of the experiments, afterwards the change in 

storage is the same for all of them. It is needed to take notice that the measured moisture conditions 

are at 5 cm for all the columns, while the sample collection occurs at different depths, from 15 to 

30 cm, depending on the column’s depth, a location where the exact magnitude of soil moisture is 

unknown, so the difference in soil moisture at 5 cm was not considered a sufficiently strong factor 

to modify the water addition amount for some columns.  

3.3 ACID BASE ACCOUNTING TEST FOR ALREADY-REACTED SAMPLES 

In Chapter 2 (Section 2.3.2), it was measured that, based on the Net Neutralization Potential 

criterion (i.e. NNP = NP – AP) [Brady et al., 1992], a mixed sample with an AC content >6% has 

little potential to produce net acidity. Mixed sample with AC between 1% and 6% are assumed to 
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be in the uncertainty range [e.g., Brady et al., 1992; Skousen et al., 2002]. Samples with <1% AC 

have acid producing potential. On the other hand, based on Neutralization Potential Ratio criterion 

(NPR = NP/AP) [Price et al., 1997], mixed samples with AC between 0% and 3.5% are likely to 

generate AMD. Samples with AC between 3.5% and 9.5% are less likely to produce AMD. With 

9.5% and 20% of AC content, there is no potential for AMD generation, while for samples with 

<20% AC, it is assumed with more certainty that there will be no AMD at all. 

Figure 3.3 shows results from the new acid base accounting test for CR and AC samples 

already-reacted up to around 1000 days inside the columns. Some of the samples have illustrated 

that the alkalinity contained in the samples has been gradually consuming over time. For example, 

in column A1 (10%AC + 90%CR), the NP has decreased from 96 (day 0) to 63 (day 948) Kg 

CaCO3/ton, yielding an approximate alkalinity consumption rate of 0.035 Kg CaCO3/ton/day. If 

this rate is assumed to be constant over time, all the alkalinity would be exhausted in around 7.5 

years. 

Initially, AP was calculated based on the sulfur content (%S) given by the XRD analysis 

[Table 1.1]. Accordingly, it is also expected that certain amount of acidity has been consumed 

over the time the columns have been reacting. Therefore, it would not be adequate to assume that 

the AP remains the same. To make this adjustment, the results from a more recent XRD (Philips 

X'pert diffractometer) analysis were used. CR and AC samples that had been reacting over a year 

were tested. This analysis yielded that gypsum (CaSO4· 2H2O) has increased its composition in 

the mineral phase (from 1% to around 25%). The presence of gypsum is an indication of mineral 

precipitation by the reaction of SO4 with Ca [Hammarstrom et al., 2005, Nordstrom and Balls, 

1986, Nordstrom and Alpers, 1999 and PlumLee et al., 1999], in both AC and CR. Moreover, 
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gypsum has the particularity that it is little or none reactive and is therefore considered not acid 

producing [Nordstrom and Balls, 1986 and Nordstrom and Alpers, 1999]. 

 

Figure 3.3. Acid base accounting test results for AC and CR samples, in terms of Acid potential (AP) and 

neutralization potential (NP), in order to reflect acidity and alkalinity consumption over time. The time in 

the horizontal axis represents how long the samples have been reacting in the columns. 

Consequently, it was possible to calculate the approximate AP after a year, considering 

sulfur content (%S) in the last XRD test, but excluding the %S in gypsum. With this assumption, 

the AP also decreases and is consistent with the NP decrease [Figure 3.3]. For example, in column 

A1, the AP has decreased from 47 (day 0) to 30 (day 385) Kg CaCO3/ton, yielding an approximate 

acidity consumption rate of 0.044 Kg CaCO3/ton/day. If this rate is assumed to be constant over 

time, all the acidity would be exhausted in around 3 years.  

It is worth to emphasize that the estimations of the alkalinity and acidity consumption time 

should be taken more as a qualitative reference than a quantitative one, since they were based on 

the assumption that the system behaves linearly. However, these results provided us a clear 
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indication and important insights that AC is an effective material for ARD passive long-term 

remediation. This is because the alkalinity demand will not likely exceed the total alkalinity over 

an extensive period of time. Thus, the use of the AC material would make the remediation 

sustainable. 

3.4 COLUMN EXPERIMENTS 

3.4.1 pH 

The pH in the mine water environment, whether there is a remediation process or not, is indicative 

of the balance between acid and neutralization production by the minerals in the tailings, and it 

might also influence the dissolution, precipitation or adsorption reactions in the tailings [Heikkinen 

et al., 2009]. Overall, the rise in pH is inversely proportional to the rise in several metal 

concentrations. Moreover, the addition of alkaline material increases the metal adsorption and 

enhances the precipitation of HFO [Doye and Duchesne, 2003, Webster et al., 1998].  

Figure 3.4a shows the pH measurements from all the columns described in Section 3.1. On 

the alkaline side, column A1 shows a relatively stable trend around 7.5 after 3.7 years. This 

illustrates the effectiveness of the remediation designs in terms of keeping a neutral pH in the long 

term. Column A2, which is similar to A1 but with vegetation on the surface, has shown a similar 

behavior over around 800 days, indicating that, despite making the soil more porous and allowing 

more oxygen diffusing through it, vegetation does not affect the amended layer’s neutralization 

capability (i.e. keeping the pH at neutral levels). Such results from column A2 imply that, on the 

one hand, the increase of the porosity in the soil by vegetation roots facilitates the pyrite oxidation 
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by allowing more oxygen to diffuse into the CR over the drier period; and on the other hand, the 

more porous soil holds more water and keeps the soil wetter for a longer period of time, which in 

turn blocks the oxygen diffusion process.  But overall, due to transpiration from the vegetation, 

the soil moisture is lower with vegetation than without, i.e., columns A1 vs. A2 and columns B5 

vs. B3, as shown in Figure 3.2b1.  

Altogether, these results indicate that the overall impact of vegetation on the pH is 

insignificant. Moreover, previous studies [Conesa and Faz, 2010, Lupton et al., 2013 and Rufaut 

et al., 2015] show that vegetation exerts more influence in metal immobilization (i.e., metal uptake 

by roots) than in pH variation. Actually, pH is considered to be a key conditioning factor in plant 

growth and development in waste mine sites [Borden and Black, 2005]. Nevertheless, it is 

important to emphasize that the role played by vegetation in the ARD remediation proposed in this 

study will be secondary, since the main neutralization agent will be AC; so it is fair to assume that, 

under our remediation design, the vegetation will grow in a neutral or near-neutral environment. 

Other noticeable fact is that column A3 (similar to A1 but with a middle sand layer) shows 

the highest pH levels, after > 2 years. This result is consistent with previous studies with shorter 

durations [Pabst et al., 2014, Ouangrawa et al., 2010, Ouangrawa et al., 2009, Waybrant et al., 

2002]. For instance, this behavior was observed in Pabst et al. [2014] over 18 months and in 

Ouangrawa et al. [2010] over 500 days. In all of these studies, it was found that the sand layer 

acts like a saturated barrier that blocks oxygen diffusion and also decreases the amount of water 

draining downwards, enhancing the acid neutralization below and keeping the pH in higher levels 

for longer periods of time.  

The hydro-geological principle behind the sand layer saturation (more permeable layer 

alternating with less permeable layers such as AC+CR layers) can be explained by the fact that 
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water flows more easily through sand than through AC+CR, thus the less permeable layer (i.e., the 

sand layer) forms a type of semi-barrier to flow. In other words, when rainfall infiltrates and 

reaches the sand layer between the two AC+CR layers, the water in the sand layer will build up 

pressure (or head) because more water is coming in than can be pushed out downwards 

[Raffensperger et al., 2017 and Srinilta, 1967]. 
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Figure 3.4. a) pH and b) sulfate results from the column leaching experiments.  

To explore for an optimal content of the alkaline material for the CR remediation, different 

fractions of the AC material were added to the CR material. Figure 3.4a shows the impacts of 

these different AC fractions on the pH values over time: Columns A4 (8%AC), A5 (6%AC) and 

A6 (3%AC). As can be seen, the pH in these columns showed the same behavior as in column A1 

(10%AC), despite having lower AC contents. This can be explained based on the acid base 

accounting results and analysis (Section 2.3.2). For instance, column A6 has approximately the 

minimum %AC where the total amount of alkalinity is equal to the total amount of acidity, 

therefore the mixture is within an uncertainty level, in which ARD could or could not be produced. 

However, in the case of column A6, after > 600 days, the pH is still higher than 7 and there is no 

indication of a decreasing trend. The acid base accounting test and the leachate pH implied that as 

long as a sufficient amount of AC is provided in the mixture (i.e., alkalinity ≥ acidity), ARD is not 
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likely to be produced, since AC proved to be sufficiently reactive and it depletes at lower rates 

than the sulfide minerals in the mixture. 

On the acidic side, column B1 (i.e. non-amended scenario) has experienced a slight pH 

increase since it was started >1100 days ago. The pH in this column has increased from 2.2 to 3.8. 

This is a clear indication of a decreasing alkalinity demand over time, as reported in previous 

studies as well [Huminicki and Rimstidt, J. D., 2009]. This is mainly a consequence of iron and 

sulfur precipitates that will not generate acidity anymore. Column B2 (1%AC and pH~4.6 after > 

900 days), along with column A6 (3% and pH~7.6 after >650 days) show the complexity of the 

system in determining kinetically the exact threshold where the amount of alkalinity and acidity 

should be the same [Brady et al., 1992 and Price et al., 1997]. Column B6 (i.e., the only acidic 

column with a sand layer whose experiment is still carried on) shows the strong influence of the 

saturated layer on the pH levels, even in the acidic environment. This column is currently above 

the threshold (pH > 4.5) where the leachate has an alkalinity higher than zero. In addition, column 

B4 had to be stopped after around 200 days because the vegetation root zone reached the saturated 

sand layer, creating pathways that caused water to drain more easily downwards, rendering the 

sand layer ineffective for the purpose of preventing the water and oxygen diffusion downward 

towards the non-amended layer. In general, columns B3 to B6 were designed to investigate the 

influence of the upper amended layer on the lower non-amended layer. Moreover, the vegetation 

in B3, which reached the lower CR layer, showed signs of metals intoxication. At least in terms of 

pH, it was showed that even with an alkaline drainage produced above, the drainage underneath 

the amended layer is still acidic as expected. This fact, along with the root zone depth, could be 

important constraints to consider when we decide for an appropriate depth for the amended layer.  
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3.4.2 Sulfate 

In acid mine drainage chemistry, sulfate is usually seen as an indicator of sulfide mineral oxidation 

[Plaza et al., 2017]. However, even in highly acidic environments there can be sulfate reduction 

due, for example, to mineral solubility, as it is associated with several mineral phases that are 

present in mine tailings, among which are jarosite (KFe3(OH)6(SO4)2) and gypsum (CaSO42H2O). 

Moreover, mine water chemistry can be affected by bacterial sulfate reduction, where organic 

compounds use sulfate and release hydrogen sulfide and bicarbonate [Hammarstrom et al., 2005 

and Watzlaf et al., 2004]. In the case of the columns in this study, all of them showed a similar 

behavior in the long term (even though their initial values have different magnitudes), which might 

be an indication of sulfate reduction.    

Fig 3.4b shows sulfate (SO4) concentrations retrieved from the columns’ leachates. It is 

noticeable that, while the orders of magnitude are different at the beginning, sulfate concentrations 

show similar trends for all columns (i.e., amended and non-amended scenarios), with a very steep 

decreasing trend during the first few days and an apparent plateau of the sulfate curve with all 

columns approaching to similar level of the sulfate concentrations for the rest of the experiment 

time so far.  

In the case of the control column B1, it started with a sulfate concentration over 20,000 

mg/L, but that concentration decreased immediately and dramatically, and by the last 700 days it 

was close to the sulfate concentrations in the columns that contain AC. This might be an indication 

that at the beginning of the process there is some mineral solubility control that influences the 

relatively high sulfate concentrations in the control column (100%CR). The highly acidic pH in 

the control column eases the release of sulfate and heavy metals. Afterwards, the production of 
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sulfate is similar in the columns in which the main oxidant is either oxygen (CR + AC columns) 

or ferrous iron (CR column), as a probable consequence of sulfate mineral precipitation (e.g. 

gypsum), which was detected on a recent XRD analysis. Moreover, PHREEQC model calculations 

from Chapter 2 and [Plaza et al., 2017] showed the dissolution/precipitation of mineral phases 

that controlled sulfate concentrations. Other observed fact was that neither vegetation nor saturated 

sand barrier played a role in sulfate concentrations, as observed from columns A2, A3, B3, B4 and 

B6. 

3.4.3 Dissolved metals 

In this section, an adapted Ficklin diagram [Ficklin et al., 1992, PlumLee et al., 1992 and PlumLee 

et al., 1999] was utilized to analyze base dissolved metals in the columns’ leachate.  Figure 3.5 

shows an adaptation of the Flicklin diagram to present the results of the neutral (group A) and 

acidic (group B) columns. Compared to the original diagram, the only difference is that, in Figure 

3.5, the metal concentrations are a function of time and not a function of the pH. Therefore, the 

pH is considered neutral/near neutral if it is >5.5 (A columns). The pH is highly acidic if it falls 

within the 1 – 3 range (initially, all B columns except B2). Finally, the pH is acidic if it falls within 

the 3 – 5.5 range (the present status of all B columns). In general, this analysis allows one to 

identify geologic controls in the water composition, since not all acidic mine waters would 

transport significant quantities of some dissolved metals [PlumLee et al., 1999]. The 

concentrations of major ions (i.e. Fe, Al and Mn) and their relation with pH are addressed in 

Section 3.4.4.  
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Figure 3.5. Adapted Flicklin diagram for the a) alkaline and b) acidic columns.  
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Figure 3.5a shows the adapted Flicklin diagram for the alkaline columns (group A).It is 

observed that most of the columns have the metal concentrations close to the threshold (i.e., 1 

mg/L) that separates the high metal region from the low metal region. For columns A2 (i.e., with 

vegetation) and A3 (i.e., with sand layer), all the values are located inside and at the bottom part 

of the low metal region (< 0.15 mg/L). Moreover, column A1, the longest one (~1200 days), is in 

the low metal region for around the last 250 days of measurements. Similar to pH behavior, the 

general case in the A group columns is that, as long as a sufficient alkalinity amount is provided 

(i.e., > 3% AC, according to the acid base accounting test), the dissolved base metals 

concentrations will be similar among these columns and they will be on the lower side (i.e., inside 

or close to the low metal region). If additional variables (e.g., vegetation and sand layer) that 

enhance the neutralization potential of the system are introduced, these concentrations tend to be 

even lower. 

Figure 3.5b shows the adapted Flicklin diagram for the acidic columns (group B). It is 

observed that the control column (B1) started in the “extreme metal” region (i.e. > 100 mg/L) and 

remained there for around 200 days, and, for the rest of the time (~750 days) it remained in the 

“high metal” region (>10 mg/L). Most of the remaining acidic columns also started in the “extreme 

metal” region, but only for few days, and, for the rest of the time they were located in the “high 

metal” or “low metal” regions (i.e. 1 – 100 mg/l, <1 mg/l, respectively). However, a remarkable 

similarity was found between the two groups of columns: the columns with vegetation (i.e. A2 and 

B3) and/or sand layer (i.e. A3 and B6) had better performances, in their respective groups, in terms 

of metals immobilization. In the case of columns B3 and B6, it was noted that even with the bottom 

CR layer, which controlled pH [Figure 3.4a], their base metals concentrations are located in the 

lower metal region. In addition, it is evident that column B6 has the best performance of all the 
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acidic columns, achieving lower metal concentrations while keeping a higher pH (pH>5) than 

other columns in the B group. This constitutes another restriction when adopting an adequate 

amended layer depth that could ensure a high base metal immobilization and a near to neutral pH. 

The relevance of the analysis of the columns with the bottom CR layer (i.e., B3 to B6) is 

that these scenarios are closer to the real-world conditions in the field, where there is a non-

amended layer underneath the amended one. While both layers will contribute to subsurface 

runoff, these results emphasize the necessity to have an appropriate design of the amended layer 

in terms of depth, %AC and the presence of a complementary measure (i.e., vegetation or sand 

layer). Ultimately, it is desirable to guarantee an adequate acidic neutralization within the amended 

layer, while at the same time impeding water and oxygen diffusion downwards. Column B6 

provides a good example of fulfilling those conditions. 

In general, for both groups of columns, the order of metal mobility was the following: Zn 

> Cu > Ni > Co > Pb > Cd. The orders of magnitude of the first three metals are significant higher 

than the ones of the remaining metals. For instance, the reason because Zn is the most abundant 

dissolved base metals lies in the fact that Zn can become mobile even at moderate acidic pH (e.g. 

pH < 6) [Sracek et al., 2010 and Jurjovec et al., 2002]. The least dissolved metal, Cd, was below 

the detection limits (< 0.001 mg/L) in the majority of the columns. Only a few traces of Cd were 

found in some of the B columns.  

3.4.4 Acidity, alkalinity and major ions (Fe, Al, Mn) 

In mining environments, the drainages can be acidic or alkaline. In general, they have pH values 

between 2 and 9, and, in many cases they can degrade the aquatic habitat and change the water 
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quality due to their toxicity [Morin and Hutt, 2001, Skousen et al., 2002 and Ziemkewicz et al., 

2000]. A drainage is acidic when acid minerals exceed the alkaline ones, it may contain high 

concentrations of SO4, Fe, Mn, Al and other ions, it may or may not have low pH, but the presence 

of dissolved Fe, Al and Mn can generate H+  and lower the pH. Alkaline mine drainages (alkalinity 

equal to or greater than acidity) may also have high concentrations of SO4, Fe, Mn and other 

dissolved metals, but the dissolution of the carbonated minerals neutralize the acidity and remove 

Fe, Al and others metal ions, and yet does not significantly affect the concentration of SO4. In 

acidic drainage the major cations are Fe, Mn and Al [Skousen et al., 2002, Watlaf et al., 2002 and 

Ziemkewicz et al., 2000]. In alkaline drainage, carbonates (e.g. CaCO3) are more significant than 

SO4 and the contents of Ca, Mg and Na are higher than those of Fe, Al and Mn [Doye and 

Duchesne, 2003, Nordstrom and Alpers, 1999 and PlumLee et al., 1992]. 

In Section1.4.2.3, the procedure that was followed to determine the balance between acidity 

and alkalinity in the columns’ leachate over time was detailed. This procedure was based on the 

approach made by Kirby and Cravotta, [2005a,b], which used a titration method [APHA, 1998a,b] 

and the PHREEQC to calculate the alkalinity and Eq.(1-1) [Kirby and Cravotta, 2005, Watzlaf et 

al., 2004 and Hedin et al., 1994] to calculate the acidity. Kirby and Cravotta, [2005a,b] 

reproduced the data from Hedin [2004] and Watzlaf et al. [2004] and found good agreement 

between the measured and calculated acidity in large datasets with acidities up 15,000 mg/L as 

CaCO3 and with pH ranging from 1.6 to 8.5. 

The calculation of the acidity using Eq. (1-1) was a relatively simple procedure, since the 

measured pH and concentrations of Fe, Mn and Al are the only input needed. However, the 

measurement of the alkalinity posed a major challenge, since it needed the use of all the collected 

sample (60 – 90 mL), so it was not possible to replicate the test. Since most of the alkalinity data 
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will be limited, the PHREEQC model was used to calculate the alkalinity in this study, based on 

the columns scenarios (amended: A1 and non-amended: B1). Moreover, the Standard Method 

alkalinity titration is constrained to yield positive values (alkalinity > 0). However, for low-pH 

samples, alkalinity can be negative due to negative contributions by dissolved metals that may 

oxidize and hydrolyze [Kirby and Cravotta, 2005ab].  

Figure 3.6a shows the alkalinity (measured and calculated with PHREEQC) and acidity 

(calculated) for column A1 (the amended scenario). For this scenario, the leachate remained with 

positive net alkalinity (alkalinity – acidity > 0) [Eq. (1-2)] during the entire time. After around 

1100 days, the passive treatment with 10%AC (determined to be optimal) yielded a net alkalinity 

of >60 mg/L CaCO3, thus indicating that this treatment has been effective during the tested period. 

In addition, acidity data from columns A2 (10%AC + vegetation) and A3 (10%AC + sand layer) 

are included, showing lower acidity values (< 5 mg/L CaCO3), which is consistent with the lower 

concentrations of dissolved metals in these two columns. In summary, as expected, the net 

alkalinity in all A columns is controlled by the high pH [Figure 3.4a] and low levels of dissolved 

Fe, Mn and Al [Figure 3.7 and Figure 3.8], since the negative contribution of metal species to 

alkalinity in near-neutral pH mine water is negligible [Kirby and Cravotta, 2005ab]. 
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Figure 3.6. Leachate alkalinity and acidity for the a) alkaline and b) acidic columns. 

Similarly, Figure 3.6b shows the alkalinity (measured from the column experiments and 

calculated with PHREEQC) and acidity (calculated) for column B1. After almost 900 days, the 

control scenario (no remediation) yielded a negative net alkalinity (alkalinity – acidity < 0) that 

approximately varied from -200 to -14,000 mg/L CaCO3, indicating that this drainage needed 
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alkaline addition as expected. In addition, for reference purposes, data from column B6 is included, 

showing the same order of magnitude in the alkalinity values. Despite the fact that some of the 

columns in the B group had a drainage with low concentrations of base metals (Section 3.4.3), 

their acidic pH (< 4.5) [Figure 3.4a] and their high levels of acidic metals (ie., Fe, Mn and Al) 

[Figure 3.7 and Figure 3.8] controlled the negative net alkalinity in the leachate. As a reference, 

Pennsylvania DEP, [1998] provides chemical data for water samples from 749 mine discharges 

in Pennsylvania, where more than 90% of the samples have a net alkalinity ranging from -500 to 

500 mg/L CaCO3, with the corresponding pH ranging from 3 to 7. 

Figure 3.7 shows boxplots of Fe and Mn concentrations for some of the columns in groups 

A and B, respectively, as a function of the %AC and the presence of vegetation and sand layer. 

This analysis was based on the total number of samples collected from each of the columns, as 

seen in Figure 3.5, ranging from 700 to 1200 days of sampling, approximately.  It was clearly 

observed that the amount of the alkaline remediation material had a great incidence in the mobility 

of these acidic metals. Figure 3.7a shows clearly that the addition of only 1%AC to the coal waste 

(3500 to 30 mg/L, considering the maximum values in columns B1 and B2, respectively) 

significantly immobilizes Fe. In this case, the addition of the alkaline material (i.e., AC) increased 

pH levels from about 2.5 – 3.5 to about 3.5 – 4.5, immobilized the metals, and reduced the activity 

of Fe(III) via the precipitation of Fe oxyhydroxide. In addition, the addition of the AC material 

may also have some effects of reducing the proliferation of bacteria as indicated by previous 

studies [Doye and Duchesne, 2003]. 
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Figure 3.7. Boxplots for a) Fe and b) Mn concentrations for several %AC and the presence of vegetation 

and saturated sand layer.  
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  Moreover, the impact of vegetation and sand layer in immobilizing Fe and Mn was clearly 

present as a result of the extraction/accumulation by vegetation and the oxygen/water diffusion 

blockage by the saturated sand layer. The column experiment results also showed that there is a 

large variability of metal mobility in the non-amended scenario over time, especially having their 

highest levels [Figure 3.5 – 3.8] at the beginning period of time of the experiments. Such high 

levels of metal concentrations demonstrate a critical need not only to implement a mine 

remediation strategy but also to implement the remediation as soon as the coal waste is disposed 

on the site to avoid the generation and drainage of significant amounts of dissolved metals. 
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Figure 3.8. a) Ficklin diagram, b) acidity and c) Al related to pH, for alkaline and acidic columns 
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Finally, Figure 3.8 shows two distinguished groups, alkaline group (group A, blue circles) 

and acidic group (group B, red squares) based on the relations among pH, dissolved metals, acidity 

and Al. Figure 3.8a is basically a Ficklin diagram, where pH showed a good agreement on the 

relationships between metal concentrations and pH for most of the columns. It was also observed 

that a small number of columns in group A had high metal concentrations with acidic pH and, 

conversely, some columns in the B group had low metal concentrations with high acidic pH. This 

indicates that pH is not the only determinant for metal mobility. The relations between pH and 

metal concentrations can also be controlled by the interactions of other factors such as the dilution 

of acidic water by alkaline water (e.g., the columns with a bottom CR layer) and solubility controls 

of Fe, Mn and Al [Cravotta, 2006]. 

Figure 3.8b and c show the relationships between pH and acidity (based on pH, Fe, Mn, 

Al) and between the pH and an acidic metal (i.e., Al), respectively. Al is a good indicator as Al 

minerals are insoluble at near-neutral pH [Cravotta, 2008 ab], having their minimum solubility at 

pH 6 to 7 [Nordstrom and Ball, 1986 and Bigham and Nordstrom, 2000]. Likewise, acidity is a 

good indicator as well since the solubility of Fe and Mn becomes very limited at neutral pH 

[Valente et al., 2012, Hammarstrom et al., 2005, Nordstrom and Alpers, 1999 and PlumLee et al., 

1992].This is clearly presented in the relationship between acidity and pH.  

In summary, this analysis has shown that the relationships between the pH and 

concentrations of the major and trace elements in coal mine discharges vary among the 

constituents, which is consistent with other studies [Kirby and Cravotta, 2005ab, Cravotta, 2006, 

Cravotta, 2008ab and PlumLee et al., 1999]. All of these factors are important to be used to 

identify the potential environmental impacts of ARD. Moreover, the concentration levels of these 

factors/parameters are crucial in assessing the effectiveness of an ARD remediation design. As 
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indicated by [Cravotta, 2006] the appropriateness of a particular treatment method depends on the 

alkalinity and acidity balance among other variables. Finally, It is important to mention that the 

amended scenario, and, moreover, the amended scenario with complementary measures such as 

vegetation and saturated sand layer, ensured a drainage with low pH, positive net alkalinity and 

low metals concentrations 

3.4.5 Metals/metalloids accumulation in vegetation: environmental impacts and 

implications for the amended layer depth 

In general, metals (e.g., Fe, Pb, Zn, Cu, Cd, Al, Mn) are naturally present in soil and vegetation 

and, moreover, contamination also might come from other sources, such as the agriculture industry 

(e.g., irrigation with polluted water, contaminated manure and pesticide containing heavy metals) 

[Aghamirlou et al., 2015]. One of the main risks associated with metal accumulation in plants 

relies on the facts that some elements such as Cd are considered to be highly mobile in the food 

chain [Chaney, 1989]. Therefore, in terms of utilizing the vegetation as a complementary measure 

to enhance the remediation proposed in this study, it is important to do an analysis of the 

contamination magnitude suffered by vegetation growing in a potentially acidic environment and, 

furthermore, the tolerance of this vegetation before reaching metal intoxication.  

Since the desired role of vegetation in this proposed ARD remediation study is  to provide 

an additional “metal-immobilization/stabilization” factor, to have an additional natural barrier 

between the environment and the non-amended layer (e.g., vegetation grown in a topsoil above the 

amended layer serves as a retain water or water-movement-limiting agent, thus decreasing the 

influx of atmospheric oxygen into the underlying amended and non-amended layers, which in turn 

increases the neutralization capacity); and to have an environmentally-friendly solution with a 
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positive visual impact (i.e., green-vegetated area, as opposed to bare soil), while the primary goal 

is to neutralize the ARD through AC, it is not the focus of this study to test the suitability of several 

vegetation species to fulfill the remediation design requirements, or, even more, a study about 

phytoremediation, but to test one common grass species and perform the above-mentioned 

analyses. 

The selected species for this study was the centipede grass (Eremochloa ophiuroides 

munro), one of the most popular turf grasses around the world [Barampuram et al., 2009, Islam 

and Hirata, 2005], which is widely distributed in North America [Hook et al. 1992, Duble 1996, 

Liu et al. 2008]. Two important properties of centipede grass, for the purposed of this study, is that 

it can tolerate moderately acidic environments (pH ~ 4 – 6) and needs relatively low maintenance 

[McCarty 1995, Landry and Murphy 2002, Islam and Hirata 2005]. 

Table 3.2 shows the trace elements concentrations (mg/kg of dry matter) in grass shoots 

for two different amended mixtures (5%AC+95%CR and 10%AC+90%CR) and a control scenario 

(i.e. grass grown in regular soil), that were collected 30, 90 and 190 days after the seeds were 

planted. To provide an additional scenario, it was intent to grow grass in 100%CR, but this test 

was unsuccessful, due to the high acidity of the soil. The results shown in Table 3.2a represent the 

average of the triplicated tests, based on both 0.25 g and 0.5 g of dry grass, which was observed 

(from their concentrations) to proportionally achieve similar digestion levels (see Section 1.4.2.4). 

In decreasing order, the trace elements concentrations were found to be Ca > Mg > Al > Fe > Na 

for the higher values (71000 to 1000 mg/kg) and Mn > Zn > Cu > Cr > Ni > Pb > As > Co > Cd 

for the lower values (180 to 0.3 mg/kg).  
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Table 3.2. a) Trace element concentrations (mg/kg of dry matter) in centipede grass shoots extracted 30, 90 

and 180 days after the seeding. b) Normal ranges in plants, phytotoxic concentrations and toxic levels for 

livestock of several trace elements (Chaney [1989] and other authors, see table footnotes); levels in 

parentheses were estimated (by NRC) by extrapolating between animal species (Madejon et al., 2002) 

a)     

Element                     
(mg/kgDW) 

  30 days   90 days   180 days 

  
control 

5%AC                                 
+                         

95%CR 

10%AC                                                           
+                                                    

90%CR 
  control 

5%AC                                 
+                         

95%CR 

10%AC                                                           
+                                                    

90%CR 
  control 

5%AC                                 
+                         

95%CR 

10%AC                                                           
+                                                    

90%CR 

Al  100.55 613.94 569.37  179.22 1701.64 1646.16  231.47 2778.05 2541.04 
Ca  880.88 5497.11 5558.38  1475.01 25451.80 25334.72  1853.40 35580.11 38654.11 
Cr  0.30 0.51 0.47  0.66 2.86 2.70  0.79 5.88 5.61 

Mn  2.45 16.89 15.65  7.57 49.26 44.16  10.43 91.02 79.77 
Fe  54.41 520.91 490.31  101.09 1457.57 1357.36  141.22 2046.04 2035.77 
Co  0.02 0.14 0.13  0.04 0.38 0.37  0.05 0.68 0.70 
Ni  0.10 1.09 0.97  0.28 1.61 1.39  0.32 3.80 3.25 
Cu  0.66 4.30 3.52  0.95 11.70 10.04  1.36 19.92 15.50 
Zn  1.86 8.90 7.46  3.20 19.40 17.23  3.83 29.66 23.08 
Cd  0.01 0.02 0.02  0.02 0.07 0.07  0.03 0.14 0.16 
As  0.04 0.29 0.27  0.04 1.04 0.91  0.07 1.47 1.39 
Na  32.95 5109.80 6061.75  64.83 11052.38 11564.10  94.52 17948.47 20753.27 
Mg  76.61 498.81 464.89  226.99 1630.04 1568.11  296.40 4472.27 4302.06 
Pb   0.08 0.26 0.22   0.13 1.19 0.98   0.19 1.79 1.39 

b) 

Element 
Normal levels 

(mg kg−1 dry foliage) 

Phytotoxic levels 

(mg kg−1 dry foliage) 

Maximum levels tolerated by livestock 

(mg kg−1 dry diet) 

   Cattle Sheep Swine Chicken 

Asinorg. 0.01–1  3–10 50 50  50 50 

Cd  0.1–1  5–700 0.5 0.5   0.5 0.5 

Cu   3–20  25–40 100 25  250 300 

   10–70a    300–500b  

Fe2+  30–300 – 1000 500 3000 1000 

     5000b  

Mn  15–150 400–2000 1000 1000  400 2000 

     1000b  

Ni  0.1–5  50–100 50 (50) (100) (300) 

Pb   2–5 – 30 30  30 30 

Zn  15–150 500–1500 500 300 1000 1000 

    1000 2000b  

a 
Toxic levels for crops according to Gupta and Gupta [1998]. 

b 
Toxic levels according to Annenkov [1982]. 

https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S0048969701010701#TBLFN2
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S0048969701010701#TBLFN3
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S0048969701010701#TBLFN3
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S0048969701010701#TBLFN3
https://www-sciencedirect-com.pitt.idm.oclc.org/science/article/pii/S0048969701010701#TBLFN3
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The analysis of metal accumulation in plants and their toxicity is usually linked to the 

vegetation potential use (e.g. livestock consumption, recreation). As a reference, Chaney [1989] 

and NRC [1980] have estimates of normal and toxic levels of some elements in plant foliage 

(crops), along with tolerable levels for domestic livestock [Table 3.2b].  In the control scenario of 

Table 3.2a, as previously expected, all concentrations are within the normal levels, which was 

consistent with a visual examination, were the grass was observed to be in healthy conditions (e.g., 

green leaves and no dead leaves). On the other hand, in the ARD amended scenarios (AC + CR 

mixture), Fe and Asinorganic concentrations were higher than the normal levels, while other elements 

such as Ni and Cu were close to the upper threshold beyond which they would not to be considered 

as normal metal concentrations. From the livestock tolerance perspective, high quantities of Fe 

(>1000 mg/kg) would make this grass not suitable for most livestock types.  

Madejon et al. [2002] studied the bioaccumulation of As, Cd, Cu, Fe and Pb in two species 

of wild grass affected by a mine spill in Spain. Comparing the results from Madejon et al. [2002] 

and the ones presented in this study, the metals concentrations in Table 3.2a for the AC+CR 

mixture scenarios, have similar order of magnitude but are however lower. For instance, Fe and 

Cu concentrations in this study range from around 500 to 2000 and 4 to 20 mg/kg, respectively, 

while in Madejon et al. [2002] they range from around 600 to 4,000 and 12 to 28 mg/kg, 

respectively. Many other studies [Reilly and Reilly, 1973, Madejon et al., 2006, Yan et al., 2012, 

Qu et al., 2003] clearly show the impact of partially and highly contaminated soils in vegetation.  

In conclusion, this experiment has indicated that there has been occurring metals/metalloids 

accumulation in the grass, under the amended scenario, which can be previously inferred from a 

mass balance perspective in the kinetic experiments, where column A2 has had the best 

performance in terms of metals/metalloids immobilization in the leachate [Figure 3.5 and 3.7].  
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Moreover, the fact that the accumulation has not reached toxicity levels that could pose irreversible 

damage for the vegetation, showed that this is an effective approach for phytostabilization (i.e. 

grass acting as a metal mobility control factor). Therefore, a vegetated amended area has a 

beneficial impact that exceeds its potential risk (i.e. phytointoxication or wildlife consumption). 

Other elements that are important to analyze in terms of their toxic effect on plants and 

animals are Al and Na. Due to the abundance of Al in most soils, it is largely dependent on pH, 

which controls Al solubility. In natural soils, where the pH is moderately acidic (4 – 6), Al has 

little solubility and its toxicity is rarely reported; and there is no evidence of Al toxicity suffered 

by grazing animals [Gough et al., 1979]. Moreover, there is some experimental evidence about 

the Al levels that some animal species (e.g., rats) can tolerate [Bowen, 1966], but there is no 

relationship with the animal consumption of Al directly from the plant. However, further 

investigation is required to establish normal and toxic Al levels in vegetation and their impact on 

livestock or wildlife. 

In the case of Na, it is widely known that its presence in soils (in soluble form) significantly 

reduces the plant normal growth, which causes adverse economic impacts on industries such as 

the agriculture [Kopittke, 2012, Pitman and Läuchli, 2002]. Under natural conditions, Na has 

been measured in plants and concentrations have been found to vary between 3000 to 24000 

mg/kgDW [Tavakkoli et al., 2011]. In the case of our experimental study, Na concentrations for the 

amended scenario (10% AC + 90% CR) reached a magnitude of approximately 20700 mg/kgDW. 

This relatively high concentration makes this element an important parameter to evaluate because 

it could adversely affect the vegetation growth. Further study is required to search for a grass 

species that can tolerate high Na levels. 



95 

The outcome of these tests, jointly analyzed with the ones from the column experiments 

[Plaza et al., 2018] may also have a significant implication on the search for an adequate 

amended layer depth. Xu [2013] performed a sensitivity analysis of the amended layer 

depth from a modeling perspective using the HTGCM.  The amended layer depths were set 

from 0 to 2.6 m. Judging by SO4 and Fe results, it was determined that even a shallow 

amended layer of 0.40 m exerts an important influence to around 3 m depth, which means that 

SO4 and Fe are also reduced in the underneath non-amended layer. As expected, the 2.6 m 

amended layer achieved a major reduction of contaminants, but no as significant to have a very 

thick amended layer. Finally, the model calibration was done based on a 61 cm amended layer 

depth, same as in the amended plots in Mather. The original HTGCM does not consider oxygen 

diffusion reduction by pyrite coating, which could strengthen the hypothesis of not needing to 

have a thick amended layer. 

Based on the results from the columns with a CR layer at the bottom, there is a significant 

reduction of metals even though the pH remains on the acidic side. In the column with a bottom 

CR layer and vegetation, the metal reduction is more significant, and a slightly higher pH is 

achieved. However, the grass shows signs of metal intoxication [Fig 3.9]. 

This fact points out that the root length is a very important constraint when determining 

an adequate amended layer depth, because vegetation has been proved to be beneficial in 

the remediation. On the modeling side, the inclusion of a pyrite coating effect through an 

oxygen diffusion reduction over time, could dramatically improve the water quality 

underneath the amended layer. Based on previous studies [Murphy et al., 2017, Holdo and 

Brocato, 2015, Mazzacavallo and Kulmatiski, 2015, Han and Young, 2014, Mueller et al., 

2013, Nippert and Wieme, 2012, Kumar et al., 2010], it was found that, on average, for most 

grass species, the root 
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length ranges from 0.8 m to 1.5 m. However, the majority of the studies about grass root length 

consider that the roots are located within 1 m depth. 

 

Figure 3.9. Comparison between grass  conditions in alkaline and acidic column 

From the hydro-geochemical analysis, it has been demonstrated that it is not necessary to 

have a very thick amended layer for two main reasons: the drainage of neutralized and low metal 

water from the upper amended layer and the continuous decrease of the oxygen diffusion 

downwards due to the pyrite coating and other precipitates such as sulfate precipitates (e.g., 

gypsum) that will no longer produce acidity. 

However, from the experimental analysis, it has been established that the root length is a 

very important restriction factor - having a too shallow an amended layer might cause plant metal 

intoxication. Based on previous studies that have characterized the root depth of several grass 

species, the majority of the root biomass is located from the surface to 60 to 80 cm depth, 

approximately.  Therefore, for the purpose having a “safe” amended layer depth that could jointly 
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enhanced the acidic neutralization properties of AC and grass, an adequate amended layer depth 

could be established between 0.8 m to 1 m. 

3.5 CONCLUSIONS 

This study has presented an assessment of an ARD remediation approach from several 

perspectives: amount of acid neutralization material, acidity and alkalinity in the leachate, acidity 

and alkalinity balance in the mineral phase, complementary measures that could add up to the 

neutralization properties of the AC such as vegetation and saturated sand barrier.  

In general, AC has demonstrated to be an effective acidic neutralization agent. All columns 

with >3% AC have achieved major metal immobilization and a neutral pH. Moreover, the results 

from the kinetic experiments (columns) are consistent with the outcome from the acid base 

accounting test, namely, that the columns with a %AC ≥ 3 remain on the neutral side, while 

columns with less %AC are on the acidic side. It is likely that for the optimal amended scenario 

(10%AC + 90%CR) the alkalinity supply will be sufficient to maintain a neutral pH and lower 

metals/metalloids concentrations in the long term. The high net alkalinity resultant drainage is also 

a strong evidence of an effective ARD remediation. It is worth emphasizing that the context of the 

term “optimal mixing ratio” used through this study is to determine the approximate minimum 

amount of the remediation material (i.e., AC) that can guarantee a long-term ARD remediation in 

a coal waste pile. Further investigation should evaluate (e.g., based on a kinetic approach) the 

impacts of having higher amounts of AC (e.g., > 10%) applied in the amended layer. 

Vegetation seems to enhance the dissolved metals/metalloids immobilization. Results from 

microwave-digested grass, grown in an AC+CR mixture, shows evidence of phytostabilization, in 
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which the vegetation acts as a trace element accumulation sink, without reaching severe toxicity 

levels. However, in order to minimize the potential risks linked to metal accumulation in plants, 

future work should involve establishing the necessity to do a revegetation after certain period of 

time, in case the pollution levels become intolerable for the plants. It is also necessary to make a 

more detailed study about normal or toxic levels of metals in plants. 

The saturated sand layer seems to create a barrier that blocks oxygen and water diffusion 

through the soil and increases retention times, thus maintaining higher pH values over longer 

times. However, future work should consider the study of lower-cost, environmentally friendly 

alternatives to sand (e.g., a porous waste material). Another aspect that requires further 

investigation is the implementation and the effectiveness of this buffer layer under real field 

conditions, where many climatic factors are difficult to predict and impossible to control. For 

instance, it may be necessary to investigate how fast this layer can get saturated under wet and dry 

climatic conditions and what significant impacts can be distinguished from the implementation of 

this strategy in the field, as opposed to only having one amended layer (AC+CR) over a non-

amended layer (CR). 

The next stage of this research will focus on the simulation of the ARD remediation 

processes under a more physically-based modeling framework.
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4.0  ACID ROCK DRAINAGE PASSIVE REMEDIATION USING ALKALINE 

CLAY: IMPLEMENTATION OF THE REMEDIATION AT A WATERSHED SCALE 

UTILIZING A SOPHISTICATED HYDRO-THERMAL GEOCHEMICAL MODEL 

4.1 INTRODUCTION 

In Section 1.4.3.2, it is briefly explained the final stage of the modeling framework using a 

modified version of the Hydro-Thermal-Geochemical Model (HTGC), originally developed by Xu 

[2014] to simulate the acid rock drainage and alkaline neutralization processes in an amended and 

non-amended plots in the Mather mine site. As previously mention, the HTGCM model couples 

the hydrological model DHSVM with the following thermal and geochemical modules: 

 Pyrite Oxidation module: calculates pyrite oxidation produced by oxygen (i.e., SO4, Fe 

(total), and pH) based on a shrinking-core principle [Davis and Ritchie, 1986]. 

 PHREEQC module: calculates pH, soil temperature, oxygen concentrations, cations and 

anions in aqueous and mineral phases. 

 Advection-Dispersion module: calculates chemical transport.  

 Thermal Transport module: calculates the soil temperature profile influenced by solar 

radiation and heat generation from pyrite oxidation.  
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Figure 4.1 shows a flowchart of the original HTGCM model. The proposed improvements will 

result in a modification of the Pyrite Oxidation and PHREEQC modules.  

 

Figure 4.1. Flowchart of coupling HTGCM with PHREEQC (Source: Xu, [2014]). CC represent the 

concentrations of Fe (total), S (total), O (total), H (total), Al (total), Ca (total), Na (total), Mg (total), K 

(total), Si (total), P (total), Cl (total) and Mn (total) in solutions; C indicates the concentrations of Fe (total), 

S (total), O (total) and H (total) in solutions; SM is soil moisture, T is temperature, n is the ending time step 

and ADE is advection-dispersion equation. 
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In the following sections, the proposed changes and improvements to the current version 

of the model will be explained in detail. Finally, the resultant improved version of the HTGCM 

model will be tested in two different watersheds that have waste coal piles. 

4.2 DESCRIPTION OF THE CHANGES AND IMPROVEMENTS TO THE 

ORIGINAL HTGCM MODEL 

4.2.1 Model Scale 

For the purposes of testing and calibrating the originally developed HTGCM model, it was limited 

to only the Mather site scale, approximately 0.038 km2 [Figure 4.2]. This configuration helped to 

performed more complete and detailed calculations (e.g. sensitivity analysis) in several aspects of 

the model: PYROX, advection – dispersion, thermal transport and PHREEQC modules.  

Moreover, the field measurements within the study site (i.e. meteorological and 

geochemical data) provided valuable inputs for the model development. This justified the focus 

only on the site’s experimental plots to run the model. 
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Figure 4.2. HTGCM study watershed in Mather, Pennsylvania (Source: Xu, [2014]). The modeled area 

corresponds to the four experimental plots. 

Besides the Mather site, it is intended to implement the HTGCM model to other watersheds 

with AMD impacts. This involves having to deal with some important limitations: the lack of water 

quality data within the mine sites (the usual best case scenario is to have these kind of data on a 

stream discharge, a little bit far from the coal piles) and, the lack of subsurface water quality data 

(at the best, the data are limited to surface water). In terms of the model geographical scale, the 

general case to be modeled would be the one shown in Figure 4.3, below. 
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Figure 4.3. General case of a mine-impacted watershed 

In this general case, the mine site is located within a certain watershed [Figure 4.3]. The 

discharge of this abandoned mine can impact secondary streams and the mainstream inside the 

watershed and, furthermore, can impact another mainstream at the watershed’s discharge. By 

adding the model the capability to run from a watershed scale, some of the previously mentioned 

impacts can be assessed and, moreover, a comparison can be made against the retrieved water 

quality data, even if it’s located outside the coal pile limits. Finally, the influence of the drainage 

upstream of the mine site can be determined. Figure 4.4 illustrates the current and the proposed 

scales of the HTGCM model. 
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Figure 4.4. Spatial scales comparison between the current and modified HTGCM 

 

Figure 4.5. Schematic representation of the hydro-geochemical interaction between mine soil (amended 

and non-amended) and non-mine soil 
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One additional modification in the model settings can be made in order to enhance the 

watershed scale simulation advantages, that is, to activate the PHREEQC capabilities 

(geochemical simulation) in the entire watershed [Figure 4.5]. This added feature will result in a 

more realistic representation of a mine-impacted watershed, where surface and subsurface flow 

have contributions from the coal pile and from outside the coal pile, especially at the outlet (the 

importance of this feature will be especially observed in the second case study, the Ernest mine).  

4.2.2 Addition of new chemicals and reactions into the model 

Besides pH, sulfate and Fe, clearly the most important chemicals to analyze regarding pyrite 

oxidation and acid mine drainage, HTGCM has the capability to calculate dynamicly other 

important trace metals such as Ca, Na, Mg, K, Si, P and Al. It is worth mentioning that during the 

initial stages of the model development, experimental and field data was still very limited (i.e., a 

more complete characterization was needed), therefore, the model output (i.e., pH, sulfate and 

trace metals/metalloids) had to be assumed based on technical literature. All these elements are 

allowed to be transported in the model and are updated each time step. In other words, the model 

calculates the aqueous concentrations of these metals over time, wherever the PHREEQC is 

activated within the watershed. Moreover, the main reactions concerning pyrite oxidation that are 

included in the model are the following: 

                                 (4-1) 

                                   (4-2) 

                             (4-3) 
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                                          (4-4) 

                                        (4-5) 

                            (4-6) 

                           (4-7) 

                                                 (4-8) 

                                             (4-9) 

                                         (4-10) 

                      (4-11) 

Complete hydrochemical data for coal mine discharges are rarely reported Cravotta et al. 

[2008-Part 1]; in this lies the need to have a more detailed water characterization. Freshwater and 

drinking water standards [U.S. EPA, 2002] requires the analysis of trace elements suchs as Cr, Co, 

Cu, Mn, Ni and Zn. Moreover, these dissolved metals are frequently present in the discharges of 

many coal piles (e.g. in Pennsylvania) at levels that can be harmful to aquatic and terrestrial 

ecosystems [Cravotta et al., 2006]. Data from the Mather site and from the laboratory experiments 

have shown the presence of the above-mentioned elements in significant concentrations, thus it is 

important to extend the capabilities of the HTGCM model to calculate concentrations of these 

important elements. The final goal would be the acquisition to sufficient chemical data for a better 

evaluation of the AMD remediation. Furthermore, the addition of these new chemicals as output 
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will allow to evaluate correlations and geochemical controls on element concentrations [Cravotta 

et al., 2008-Part 1]. It has been found [Cravotta et al., 2008-Part 2] that bituminous mine 

discharges, which are located in western Pennsylvania, have higher concentrations of Mn, Ni and 

Zn than anthracite discharges (i.e. eastern Pennsylvania) [Cravotta et al., 2015]. With the inclusion 

of the new metals, the HTGCM model will include the calculation of most of the identified priority 

pollutants in coal mine discharges in Pennsylvania 

New reactions can also be added in the chemical database within the HTGCM model: 

reactions involving the new chemicals that are going to be included (i.e. Zn,. Cu, Pb, Cd, Co and 

Ni) and other reactions that can complement the ones in the original model. For instance, Ca 

concentrations in the experimental columns (i.e. amended scenario) could be an indication of acid 

mine drainage neutralization by the dissolution of Ca carbonates, such as calcite (CaCO3), due to 

the alkaline additive, thus releasing Ca [Eq. (4-12)].  

CaCO3 + H2SO4 → Ca2+ + SO4
2- + CO2(g) +H2O                             (4-12) 

Usually, Ca dissolution is identified with acidic neutralization and high pH, enabling 

various metal removal mechanisms [Sun et al., 2013]. However, high dissolution rates of Ca 

minerals could also occur in active mine tailings (e.g. CR). 

Another reaction that is worth including, especially based on our PHREEQC modeling 

under the column scenario, is the dolomite dissolution. Dolomite was calculated as a neo-formed 

mineral phase in the amended column. 

CaMg(CO3)2 + 2H+ → Ca2+ + Mg2+ + 2HCO3
-                              (4-13) 
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Moreover, pyrite is commonly associated with other sulphide minerals such as 

chalcopyrite, which dissolution reaction is also acid generating: 

CuFeS2 + 16Fe3+ + 8H2O→ 17Fe2+ + Cu2+ + 2SO4
2- + 16H+                      (4-14) 

Another important reaction is the precipitation of Mn as a carbonate, especially in alkaline 

environments (i.e. amended scenario): 

Mn2+ + HCO3- → MnCO3 + H+                                                                 (4-15) 

In summary, reactions like the ones shown above [Eq. (4-11) to Eq.(4-15)]can be added to 

the HTGCM chemical database to be taken into account in the calculations. Further research will 

be done to establish what other relevant reactions are to be included in the model. 

4.2.3 Including real chemical proportions into the model 

One of the first versions of the HTGCM model included hydro-geochemical coupling, formed by 

the hydrological model DHSVM, the advection-dispersion module (AD) and the oxygen diffusion 

- shrinking core module (OD-SC). OD-SC is used to calculate the production (i.e., SO4 and total 

Fe) of pyrite oxidation. This is the input for the AD, which is coupled with the DHSVM. 

The key connections between the AD and DHSVM are soil moisture, θ, and water flow, q. 

These two variables respond to the forcing data and the hydrological processes and are updated at 

each time step. After the soil moisture is updated in each layer, these two variables are passed to 

the AD. The ADE starts to run the solute transport process, which includes pyrite oxidation. 
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The interaction of chemical concentrations between grids is achieved by the surface and 

subsurface routing. Assuming the chemical concentrations are immediately mixed with input 

water, the concentration can be expressed by the mass balance: 

                                            (4-16) 

where Cin,i,j and Qin,i,j are the chemical concentration and inflow at the grid (i, j) respectively 

(in kg/m3), Fk is the weight of the flow in each direction (unitless) [Wigmosta and Lettenmaier, 

1999], Cout,k is the concentration in the kth direction and Qout,k is the flow in the kth direction. 

The final stage of HTGCM comprises the coupling with the PHREEQC model [Parkhurst 

et al.,1999] in order to perform more complete geochemical calculations. One of the main inputs 

is the initial solid and liquid compositions within the soil layer. The solid composition is assumed 

to be initially in equilibrium with the solution. For the purpose of taking into account the total 

availability of the main chemicals (e.g. Fe, S, K, Al, Mn and so on) involved in AMD, that are 

forming the mineral composition of the coal piles (i.e. CR) and the remediation materials (i.e. AC), 

it was introduced in the HTGCM model an input file with the proportion of all these chemicals in 

the solid phase (kg element / kg of total soil). Currently, these chemical proportions that were 

utilized for the model testing and calibration are based on the technical literature and not on the 

real measurements of these elements. Moreover, jarosite was neglected from the mineral analysis, 

which could underestimate the Fe mineral availability. Although this initial assumption is valid, 

there can be made an improvement to the model if we can use more realistic chemical proportions 

in the solid phase, based on our XRD measurements.  
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The calculations of the “real” chemical proportions in the solid phase for both the mine 

waste (i.e. coal refuse or CR) and the remediation material (i.e. alkaline clay or AC) can be 

performed using the XRD analysis obtained from Alcoa. Given the detected percentages of each 

mineral found in the soil, the amount of moles of each element is is determined from the chemical 

formula of the mineral. Then, using the molecular weight of each element, their proportions in the 

mineral phase (kg/kg) are calculated. Finally, these proportions are weighted by the mineral 

proportion (XRD) in either CR and AC. Once we have these two outputs, we can calculate the 

proportions for any CR/AC mixing ratio (e.g. 90%CR/10%AC). The detailed calculations are 

shown below [Table 4.1 to Table 4.3].    

Table 4.1. Calculation of chemical proportions in CR 

 

 

 

 

mineral proportion H O S K Mn Mg Fe Ca Ti Al Si Na Cl C

Quartz 0.5562 2 1

K-mica 0.24 2 12 1 3 3

Jarosite 0.099 6 14 2 1 3

Kaolinite 0.0826 4 7 2 2

Calcite 0.01 3 1 1

Gypsum 0.0092 4 6 1 1

Pyrite 0.003 2 1

# moles of each element

H O S K Mn Mg Fe Ca Ti Al Si Na Cl C

0.53 0.47

0.005 0.48 0.1 0.2 0.21

0.012 0.45 0.13 0.08 0.33

0.018 0.5 0.24 0.25

0.48 0.4 0.12

0.023 0.56 0.19 0.23

0.53 0.47

proportion of each element in the mineral compound (kg/kg)
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Table 4.1 (continued) 

 

Table 4.2. Calculation of chemical proportions in AC  

 

 

 

mineral proportion H O S K Mn Mg Fe Ca Ti Al Si Na Cl C

Quartz 0.03 2 1

Dicalcium silicate 0.57 4 1 2

Sodalite 0.12 24 6 6 8 12

Gehlenite 0.1 7 2 2 1

Hematite 0.08 3 2

Calcium aluminium sulfate 0.02 12 24 3 6 2

Titanium dioxide 0.02 2 1

Gibbsite 0.01 3 3 1

Calcite 0.03 3 1 1

calcium titanium oxide 0.02 3 1 1

# moles of each element

H O S K Mn Mg Fe Ca Ti Al Si Na Cl C

0.53 0.47

0.36 0.18 0.45

0.29 0.12 0.13 0.14 0.32

0.41 0.29 0.2 0.1

0.3 0.7

0.015 0.49 0.12 0.31 0.07

0.4 0.6

0.039 0.62 0.35

0.48 0.4 0.12

0.35 0.29 0.35

proportion of each element in the mineral compound (kg/kg)
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Table 4.2 (continued) 

 

Table 4.3. Calculation of chemical proportions in CR – AC mixtures  

 

There are some elements such as Cu or Mn that were not detected in the XRD analysis but 

they where detected as dissolved metals/metalloids in the leaching-column experiments. To take 

into account these mineral phases, it will be assumed a minimum chemical proportion based on 

the technical literature. 

4.2.4 Variable oxygen diffusion to simulate pyrite coating of iron precipitates 

The HTGCM model includes a pyrite oxidation – shrinking core module that is based on Davis 

and Ritchie [1986] and applies the PYROX model algorithm of Wunderly et al. [1996]. The main 

assumption of this model is that spherical sulphide mineral (e.g. pyrite) particles with radius R are 

surrounded by a thin inmobile water film. Oxygen within the pore space diffuses through the water 

90 % CR 0.0038 0.4931 0.0250 0.0282 0.0000 0.0000 0.0367 0.0368 0.0019 0.0656 0.3021 0.0017 0.0039 0.0014

10 % AC H O S K Mn Mg Fe Ca Ti Al Si Na Cl C

99 % CR 0.0041 0.5056 0.0169 0.0310 0.0000 0.0000 0.0347 0.0092 0.0002 0.0682 0.3284 0.0002 0.0004 0.0012

1 % AC H O S K Mn Mg Fe Ca Ti Al Si Na Cl C
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film and through the porous oxidized coating towards the unreacted core of the particle (i.e. radius 

= rc) [Figure 4.6]. All oxidation reactions are assumed to occur in the aqueous phase in contact 

with or near a reacting solid.  

The diffusion of oxygen into the particles is driven by the oxygen concentration gradient 

between the surface and  the core of the particles [Wunderly et al., 1996]. In this model, pyrite 

oxidation is assumed to occur only within the unsaturated zone, as oxygen diffusion is considered 

to be negligible under saturated soil conditions [Gerke et al., 1998]. 

The two main reactions included in the model are the following: 

FeS2 + H2O + 7/2 O2 => Fe2+ + 2SO4
2- + 2H+                              (4-17) 

Fe2+ + ¼ O2 + H+ => Fe3+ + 1/2H2O                                    (4-18) 

These reactions can be combined into a single one: 

FeS2 + 1/2H2O + 15/4 O2 => Fe3+ + 2SO4
2- + H+                                          (4-19) 
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Figure 4.6. Schematic of oxidation-shrinking-core conceptual model (Source: Wunderly et al., [1996] and 

INAP-The International Network for Acid Prevention) 

In the model, it is assumed that the sulphide mineral particles are spherically shaped and 

homogeneously distributed throughout the coal pile. The shrinking of the unreacted particle is 

represented by: 

                                     (4-20) 

where Dw is the effective oxygen diffusion coefficient containing the diffusion properties 

of the water and the oxidized mineral particle [L2∙T-1] and is equal to 3.2×10-11 m2/s [Gerke et al., 

1998], ρs is the sulfur bulk density [M∙L-3] which is equal to f ×ρb where ρb is soil bulk density 

[M∙L-3] and f is the proportion of sulfur in the soil [M∙M-1], ε is the mass ratio of the consumption 

of oxygen to the consumption of sulfur based on the reaction stoichiometry and it is determined 

by: 



 115 

    (4-21) 

Where WO2 and Ws are the molar mass for oxygen and sulfur respectively and ratio denotes 

the concentration of Fe2+ to total Fe: 

                   (4-22) 

 

In addition, in the oxygen diffusion sub-module, the advection-dispersion of oxygen in the 

pore space is described by: 

              (4-23) 

where θa(z) is the air content [L3∙L-3], Da(z) a is the oxygen diffusion coefficient [L2∙T-1] in 

the pore space, [O2]a is the concentration of oxygen in the pore space [M∙L-3], z is soil depth [L], 

and t is time [T]. Da(z) is calculated by the method of Elberling et al. [1993]: 

                                   (4-24) 
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where α is equal to 0.273 and β is equal to 3.28, Da
O2 is the oxygen diffusion coefficient in 

air [L2∙T-1], Dw
O2 is the oxygen diffusion coefficient in water [L2∙T-1], Φ is the relative water 

saturation which is equal to θ∙(θs - 0.01)-1 where θs is porosity [L3∙L-3] and the residual water 

content is 0.01, H is equal to 2.63 (Henry’s constant), Da
O2 and Dw

O2 are equal to 1.8 × 10-5 m2/s 

and 2.1 ×10-9 m2/s, respectively, based on the data provided by Gerke et al. [1998]. 

Eq. (4-20) and Eq. (4-23) (i.e. shrinking core and oxygen diffusion modules, respectively) 

allow to solve the unreacted particle radius (rc) and the oxygen concentration ([O2]a)  for each soil 

layer. Consequently, this will allow the estimation of total sulfate and total Fe produced by pyrite 

oxidation at each time step. Using a finite difference method, Eq. (4-20) and Eq. (4-23) can be 

expressed as follows:  

  (4-25) 

    (4-26) 

where the superscripts n and m are the current time step and the number of the soil layer. j 

denotes the jth iterative step of the shrinking-core equation and k denotes the iteration step of Eq. 

(4-26). The upper boundary of oxygen concentration in the air is set to be a constant with 0.31 

kg/m3 which is obtained based on a standard air condition. In the soil, an initial oxygen 
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concentration profile, which decreases with depth, is assumed. The pH value is assumed to be a 

constant over time. At the first time step, an initial value of rc should be estimated using Eq. (4-

27). 

                                                 (4-27) 

In order to solve [O2]a  and rc at the mth layer at the nth time step, one should peform the 

following iterative process: 1) Calculate intial rc with Eq. (4-27) and solve for [O2]a in Eq. (4-26); 

2) Calculate new rc using Eq. (4-25), with [O2]a from the previous step (i.e., Eq. (4-26)) and with 

ε from Eq. (4-21); 3) Calculate the ratio of [Fe2+ ] to Fe(total) using Eq. (4-22) with a constant pH 

and the solved [O2]a, then update ε with Eq. (4-21); 4) Use the rc from step 2) to calculate [O2]a in 

Eq. (4-26); 5) Repeat steps 2), 3) and 4) until rc and [O2]a are converged. Finally, the production 

of aqueous sulfur per time step can be calculated using: 

                                       (4-28) 

Where ΔCoxid
S,liquid is the amount of sulfur produced by the pyrite oxidation from the solid 

phase into the liquid phase at one time step [M∙L-3] and θ is the soil moisture at the mth layer [L∙L-

1]. In addition, the concentrations of Fe(total) in the liquid can be derived by the following: 

                                           (4-29) 
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where WFe is the molar mass for iron. Eqs. (4-28) and (4-29) do not consider solid precipitates, 

however, the products from pyrite oxidation may precipitate. 

When sulfide minerals within a coal pile, such as pyrite, oxidize and produce acidity in a 

faster way than it is neutralized by the surrounded alkalinity (e.g., minerals such as calcite), AMD 

is generated. However, at neutral or near-neutral pH conditons caused by the presence of sufficient 

alkalinity in the system, Fe minerals might precipitate and Fe oxyhydroxide coatings might form 

in the pyrite grain’s surface. As these coatings grow thicker and denser they block oxidant transport 

from the solution to the pyrite surface and reduce the rate of pyrite oxidation [Huminicki et al. 

2009].  

Huminicki et al. [2009] developed conceptual and quantitative model of declining pyrite 

oxidation rate caused by the formation of a Fe oxyhydroxide coating under high alkalinity 

conditions. Experiments were conducted to measure reaction rates for the underlying minerals, as 

coatings grew thicker. These experimental data were fit to a diffusion model to estimate diffusion 

coefficients of reactants through pore spaces in coatings. This model was extrapolated to longer 

times to predict the behavior of the coated grains under field conditions. 

The conducted experiments measured oxidation rates that were considered to represent two 

stages of iron oxyhydroxide coating formation: (1) the initial coating development and (2) the 

densification and inward propagation of the coating [Figure 4.7].  

The obtained data supports the idea that during the first stage of coating formation of a 

thin, highly porous and permeable layer of colloidal iron oxyhydroxide particles attach to the pyrite 

surface. The data also supports the idea that during the second stage of coating formation there is 

a transition from reaction-limited to diffusion-limited rates as coatings grow inward and become 
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thicker and denser. Their experimental results indicated that when Fe oxyhydroxide coatings grow 

on pyrite the rate of pyrite oxidation declines as a function of t-1/2. 

 

Figure 4.7. Pyrite coating by Fe precipitates. (Source: Huminicki et al., [2009]) 

Based on Fick’s first law, this model predicts the rate of H+ production over time: 

                                   (4-30) 
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f ppt                     fraction of reactant that precipitates as pyrite coating 

vi                        stoichiometric coefficient 

In general, this model predicts how coatings form, and how long it takes for coatings to 

become thick enough to effectively reduce alkalinity demand required to neutralize acid produced 

by pyrite oxidation. They determined the diffusion coefficient of oxygen through the pore spaces 

in the iron oxyhydroxide coating and used that value to calculate the rate of acid production by 

coated pyrite as a function of time.  

The coating thicknesses were calculated from the fraction of Fe reprecipitated on the pyrite 

surface, the molar volume of the coating, the surface area of pyrite, and the porosity of the coating: 

                                                        (4-31) 
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Where nFe is the total amount of Fe produced and f ppt was observed to be approximately 

3% of the total Fe. Finally, Φ, the coating’s porosity, was estimated to be around 0.1. Similarly as 

in Eq. (4-30), it was derived an equation to estimate the total Fe production, nFe: 

                                         (4-32) 

The time derivative of Eq. (4-32) yields the rate of pyrite oxidation as a function of time: 

                                      (4-33) 

Therefore, it is expected that because of the growth of the iron oxyhydroxide coatings, the 

rate of pyrite oxidation will decline as a function of t-1/2. Making the slope of the linear regression 

r vs t-1/2 is ½ c so that we can solve for the diffusion coefficient from the relationship: 

                                                  (4-34) 

Where c was found to be 9.3 x 10-10. Therefore, using values from the slopes of r vs t-1/2 

and substituting in the appropriate values for the constants into equation Eq. (4-34) yields diffusion 

coefficients for DO through Fe coating. 

In the oxygen diffusion – shrinking core model, Dw represents the effective oxygen 

diffusion coefficient containing the diffusion properties of the water and the oxidized mineral 
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particle [L2∙T-1]. In HTGCM, this coefficient is set to be constant and is equal to 3.2×10-11 m2/s 

[Gerke et al., 1998]. Therefore, to take into account the pyrite coating by Fe precipitates, it is 

proposed to introduce a variable diffusion coefficient using  the model developed by Huminicki et 

al. [2009]. The coefficient every time step will be derived from Eq. (4-32). Finally, in the HTGCM 

model, the term Dw will be assumed to be Di from the pyrite coating model.  

Solving Eq. (4-32) for we Di have 

𝐷𝑖 = [
n𝐹𝑒

2v𝑖f𝑝𝑝𝑡 𝑉𝑚

2000 𝑚(𝑠𝑜𝑙)𝐴 (1−∅)
] 𝑡−1                                              (4-35) 

Considering that nFe is the total amount of Fe produced by pyrite oxidation, per time step 

and m(sol) in the reactant concentration in the solution carriet out of the system, we can simplify 

Eq. (4-35) given that Fe is the reactant. According to the experimental data from [Huminicki et al., 

2009], Fe concentration in the solution was found to be around 40% of the total amount of Fe 

produced, the final equation for calculation oxygen diffusion is the following: 

𝐷𝑖 = [
𝐹𝑒(𝑠𝑜𝑙) v𝑖 f𝑝𝑝𝑡 𝑉𝑚

320 𝐴 (1−∅)
] 𝑡−1                                                 (4-36) 

Where 

Di = oxygen diffusion coefficient (Dw in HTGCM), m2/s 

Fe(sol) = Fe concentration in the solution (calculated in HTGCM each time step), mol/kg 

vi = stoichiometric coefficient. For oxygen diffusion, vi = 3.5 
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f ppt =  fraction (from 0 to 1) of reactant that precipitates as pyrite coating. In Huminicki et 

al. [2009] measured to be around 0.03. However, it can be adjusted. 

Vm = molar volume of the pyrite coating (e.g. geothite), in m3/mol 

A = surface area of pyrite, in m2. It can be calculated each time step, according to the 

unreacted particle with radius rc. 

Φ = porosity of the coating, from 0 to 1. In Huminicki et al. [2009] assumed to be 0.1. 

However, it can be adjusted. 

t = time, s 

320 = conversion factor  

The coupling strategy of the variable diffusion coefficient with the oxygen diffusion – 

shrinking core model will begin assuming an initial diffusion coefficient Dw(t) and applying the 

above mentioned algorithm (i.e. steps 1 to 5). At the end of the first time step it will be obtained 

the aqueous Fe concentration and the new unreacted core radius rc, which can be used to calculate 

the particle’s surface area. Finally, Eq. (4-36) will give us the new oxygen diffusion coefficient 

Dw(t+1) that will be used for the next time step and so forth.  

A basic example was performed to show the difference between the sulfate concentrations 

from the original oxygen diffusion – shrinking core module included in HTGCM and the sulfate 

concentrations considering a variable oxygen diffusion coefficient as in Huminicki et al. [2009]. 

This exercise was considered for only one pyrite particle with an inicial radius (Rc) of 2 mm (same 

as in HTGCM). The other assumptions were the following: 
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 The soil is homogeneus. In other words, the soil layers above and below the particle share 

the same properties, which leads to the neglection of some terms in Eq. (4-26).  

 The coating of the pyrite grain is formed by geothite, an Fe oxyhydroxide with a molar 

volume Vm = 2.2 x 10-5 m3/mol. 

 The porosity of the coating Φ and the fraction of reactant that precipitates as pyrite coating 

f ppt are the same as in Huminicki et al. [2009]: 0.1 and 0.03, respectively. 

 The surface area of pyrite is updated each time step, assuming an spherical particle with 

radious rc(t). Thus, the surface ares is equal to 4πrc(t)
2. 

 The initial diffusion coefficient Dw(t) is assumed to be 1.27 x 10-11 m2/s and is updated each 

time step. 

 

Figure 4.8. Sulfate concentrations produced by pyrite oxidation in one spherical pyrite particle with an 

initial radius Rc=2 mm 

Figure 4.8 shows the difference in sulfate concentrations in one particle, considering the 

original oxygen diffusion – shrinking core model and the one with the variable oxygen diffusion 

coefficient, in order to take into account the pyrite coating, and, Figure 4.9 shows the variation of 
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the oxygen diffusion coefficient Dw. The first figure shows the usual behavior of the sulfate 

concentrations in this model: as the pyrite particle shrinks down, less surface area is available for 

reaction, thus the production of sulfate and iron has a decreasing trend and, at some point, it is 

asymptothic to 0. The results show that including a variable (i.e. decreasing) oxygen diffusion 

coefficient due to the iron coating makes the concentrations to be smaller. This allows to simulate 

at the same time the effect of acid generation and acid neutralization processes.  

Figure 4.9. Variation of the oxygen coefficient Dw 

It is worth mentioning that this exercise was performed considering only one single 

particle. In the watershed scale, the effect of all the particles are summed up, thus resulting in the 

total sulfate and iron concentrations at a certain location and at a certain depth. In summary, the 

outcome of this example indicates the feasibility of including this oxygen diffusion variability in 

the HTGCM model. However, to thoroughly investigate the significance of the model 

improvement, a watershed simulation is recommended. 
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4.2.5 Hydrogeological parameters for HTGCM calibration and validation 

The understanding of the hydrogeological properties of the waste mine piles is essential for an 

adequate characterization and prediction of mine drainage quality. For instance, groundwater is 

considered to be an important chemical component in ARD formation because, among other 

things, it serves as the contaminant transport medium [Pennsylvania DEP, 1998].  

Since the HTGCM model utilizes the DHSVM model hydrological framework, some 

parameters such as soil porosity, hydraulic conductivity and bulk density are part of the model’s 

input. During the HTGCM development, some laboratory tests were conducted to determine the 

magnitude of the above mentioned parameters. These measurements were used to test and calibrate 

the model, but they were never crosschecked with the technical literature and/or previous studies. 

Therefore, the objective of this section is to establish if the adopted values (i.e., from laboratory 

measurements) for the hydrogeological input parameters of the HTGCM model were reasonable. 

Table 4.4. Adopted hydrogeological parameters for HTGCM (original model) calibration 

 

Table 4.4 shows the measured soil parameters used for HTGCM calibration. In waste coal 

piles, hydraulic conductivity (Ks) is considerably larger than that of the surrounding soil [Xu, 

2014]. Aljoe and Hawkins, [1994] indicated that the range of –log Ks in mine spoils is 

approximately 3 – 7, while for the HTGCM the measured range was 3.1 – 4.3. Pennsylvania DEP, 

[1998], based on measurements in 103 monitoring sites from 15 surface mines in northern West 

Paramenter Value

Porosity 0.45 - 0.52

Ks (m/s) 6x10-5 - 8.5x10-4

Bulk density (kg/m
3
) 1360
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Virginia and Western Pennsylvania, determined that Ks (m/s) ranged from 4.2 x 10-9 to 7.6 x 10-2. 

Regarding porosity, this parameter is very important to mine drainage quality characterization and 

prediction in terms of determining groundwater storage volumes and predicting water level 

changes stemming from recharge to discharge [Pennsylvania DEP, 1998]. Laboratory – measured 

porosity on Eastern Ohio waste mine samples ranged from 0.41 to 0.48 with a mean of 0.44 

[Mezga, 1973]. Measured values in Mather [Xu, 2014] ranged from 0.45 to 0.52. Finally, soil bulk 

density is the most common way to evaluate soil compactation. Delong et al., [2012] determined, 

based on four methods and five surface mine soils in West Virginia, that the bulk density ranged 

from 1350 to 1760 kg/m3. Moreover, Sheoran et al., [2010] shows that the characteristic bulk 

density in mine surface soils ranges from 1100 to 1500 kg/m3. In summary, previous investigations 

around the study area (i.e., Western Pennsylvania) have confirmed that the hydrogeologic 

parameters measured in Mather and utilized for the HTGCM model calibration and validation were 

adequately adopted. Moreover, it is worth mentioning that [Xu, 2014] made a sensitivity analysis 

for the calibration on these parameters in the HTGCM model. 

4.3 CASE STUDY 1: IMPLEMENTATION OF THE MODIFIED HTGCM MODEL 

IN THE MATHER COAL PILE WATERSHED 

4.3.1 Model Scale 

As previoulsy mentioned, the Mather coal pile, located in Greene County, Pennsylvania, USA, 

was the study site based on which the original HTGCM model was tested and calibrated, but only 

considering the experimetal plots described in Section 1.4.1.1, with approximately 0.038 km2. 
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Since one of the objectives of this study is to validate the HTGCM model beyond the plot scale 

(i.e., watershed scale), a sensitivity analysis was performed to test the model capabilities to predict 

the impact of the ARD generation and remediation in the watershed (e.g., at the outlet) where the 

coal pile is located.  

a)  

 

b)  
Figure 4.10. a) Mather watershed, coal pile and experimental plots. b) HTGCM model spatial scenarios and 

output locations 
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Three main spatial scenarios have been created : 1) the entire watershed (0.07 km2), 2) total 

coal pile area (0.037 km2) and 3) experimental plots (0.007 km2). At the same time, the model 

output will be analyzed from three different locations: 1) plot 1 (100% CR or the non-amended 

plot), 2) plot 2 (90% CR + 10%AC up to 61 cm depth or the amended plot) and 3) the watershed 

outlet (only possible for the first spatial scenario). The spatial scenarios and the output locations 

are shown in Fig 4.10. In addition, Table 4.5 shows the initial solutions that are included in the 

PHREEQC module input, for the amended and non amended scenarios, and for regular soil 

(outside the coal pile), based on the technical literature [Agnieszka  et al., 2012, Billett and Cresser, 

1992, Klaminder et al., 2011, Lidman et al., 2017, Meers et al., 2006, Tack et al., 2002, 

Vandecasteele et al., 2002]. 

Table 4.5. Mather simulations initial solutions 

 

Amended 

Scenario

Non-amended 

Scenario

Outside                         

Coal Pile

Description
Concentration  

(mg/l)

Concentration  

(mg/l)

Concentration  

(mg/l)

SO4 1880 5880 4.9

Fe 5 1200 1.4

Ca 570 430 0.9

Na 280 200 2.2

Mg 100 65 100

K 7.2 8 0.3

Si 60 178 8.4

P 0.5 15 0.5

Al 1.6 280 1.7

Cl 155 100 0.001

Mn 0.7 9 0.007

Zn 0.8 100 0.009

Cr 0.004 0.6 0.002

Ni 0.04 6 0.003

Co 0.001 2 0.001

Cu 0.04 100 0.002

pH 6 2.5 5.5
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Figure 4.11 shows the modeling results (1-year simulation) for the below-described 

scenarios, in terms of spatial scale (watershed, piles and experimental plots) and output locations 

(plot 1, plot 2 and the watershed outlet). The main objective of this set of simulations is a sensitivity 

analysis to determine if the model properly captures the incidence of the spatial scale and the 

output location (inside or outside the mine site).  

It is observed that, in all cases, the drainage at the outlet has lower sulfate and metals 

concentrations than in plots 1 and 2, which indicates the model’s capability to capture real field 

conditions, by taken into account the surface and subsurface drainage from outside the coal pile 

(approximate 0.03 km2) and, consequently, producing a dilution effect with the regular soil’s pore 

water composition (see Table 4.5).  The change in pH is less noticeable due to similar conditions 

both inside (the amended scenario) and outside the coal pile. Even though there is not observed 

data to compare with, the outlet modeling results fall within the expected magnitudes, due to the 

drainage from outside the Mather site.   

Moreover, the model is sensible to small scale changes. For example, in the plots 

simulations, it is observed that there is a difference between modeling the plot spatial scale and 

modeling the watershed scale (including the plots). As can be seen in Fig 4.10, there is a small 

drainage area upstream of both plots that contributes to the surface and subsurface drainage 

downstream (i.e., the plots). However, from the environmental assessment perspective, both 

modeling approaches are equally valid, compared to the observations. This justifies the original 

HTGCM development, testing and calibration only considering a plot scale.  
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Figure 4.11. 1-yr simulation in Mather watershed for several scenarios varying the spatial scale (WTRS = 

watershed, PILE = only coal pile) and the output location (OUTLET, PLOT 1 and PLOT 2). Observed field 

data shown in some plots were measured from June 2009 to May 2010 

In summary, the analysis presented in this section has emphasized the importance of the 

spatial scale regarding ARD modeling. By giving the model the possibility to simulate small and 

large areas and analyze the output from many desired locations, a more complete environmental 

assessment is achieved. It is possible, for instance, to determine the impact of a watershed that has 

a coal piles and other areas with different uses (e.g. agriculture, livestock). However, this could 

need the modification of the proper modules to characterize the water quality from other sources 

other than mine drainage. Likewise, it is possible to establish the impact of a neighboring 

watershed that receives the drainage from the watershed that is being studied. 
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4.3.2 Calculation of new metals: Zn, Cu, Ni, Cr, Co 

In the previous section, the model was setup to be able to run the entire Mather site watershed. In 

this section, a new improvement has been made to the model: the addition of new chemicals to be 

calculated in the model, which implied the modification of the PHREEQC module and database, 

along with the update of chemicals paremeters (see  Figure 4.1). Figure 4.12 shows the modeling 

results (5-year simulation) for both plot 1 (100% CR or the non-amended plot) and plot 2 (90% 

CR + 10%AC up to 61 cm depth or the amended plot) locations, at 61 and 91 cm. The observations 

from Mather lysimeters are also included. For an additional comparisson, the results from the 

column experiments are also included: the amended scenario of plot 1 at 61 cm is compared to 

column A1 and the non-amended scenario of plot 2 at 61 cm is compared to column B1.  
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Figure 4.12. 5-yr simulation in Mather watershed for the new metals added into the HTGCM model, 

compared to the field and columns observations. Observed field data shown in the plots were measured 

from June 2009 to June 2014 

          It is observed, in general, that the model properly replicates the observed behavior of these 

chemicals. For instance, the model is able to reproduce the oscillating behavior of Zn in the non-

amended plot 1, which has been measured both in the field and in the laboratory. In the case of 

Zn, this is a very important mine water pollutant whose aqueous concentrations are controlled by 

various hydro-geochemical processes acting at the same time: pH, soil moisture, soil texture, 

evaporation, particle size, secondary mineral formation and even the presence of nutrients (e.g., 

phosphorus) [Gutierrez et al., 2016, Plumlee et al., 1999, Blowes et al., 2003]. High acid 

neutralization (i.e., neutral pH, mineral precipitation) exerted by AC in the amended plot controls 
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the Zn concentrations and keeps them to be relatively low with a conservative behavior (< 3 mg/L); 

however, in the non-amended plot, high acidic conditions combined with low alkalinity supply 

makes Zn to be highly soluble and, at the same time, more sensitive to the variations of the above-

mentioned hydro-geochemical factors.  Furthermore, from previous studies about mine-impacted 

natural waters [Plumlee et al., 1999], it has been observed that Zn shows the same oscillating 

behavior that has been observed in Mather. 

In addition, the model also replicates the initial steep decrease and subsequent flattening of 

the observation curve for some metals such as Cu, Ni, Cr and Co. Cr, specifically, shows a very 

particular behavior in the modeling curve, making it similar to stairs; however, the overall 

performance of this curve is adequately described the observed data and, moreover, the 

concentrations magnitudes are relatively low for this particularity to have a significant adverse 

impact in the overall simulation. 

Finally, the results from the kinetic experiments (i.e. columns) showed a surprising 

similarity (both behavior and magnitude wise) to the field-observed and modeling data. This fact 

helped to validate the adoption of the kinetic experimental design and setting, which were intent 

to mimic the field conditions.  

4.3.3 Variable oxygen diffusion in the PYROX (shrinking-core module) 

The last proposed improvement to the HTGCM model is to introduce a factor that can take into 

account the decrease in pyrite oxidation rates due to the iron precipitates coating developed in the 

pyrite particle’s surface over time, especially under alkaline pH conditions. This condition was 

introduced to the model and tested for one single particle (see Section 4.2.4). Since the variable 
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diffusion coefficient will be introduced in the PYROX module (shrinking-core module), only pH, 

SO4 and Fe will be affected by this modification, since these are the only chemical parameters 

linked to this module (the other chemicals are calculated in the PHREEQC module). 

Fig 4.13 shows the modeling results (5.5-year simulation) for SO4, including both the 

HTGCM with the original and the modified PYROX modules, along with the observation in plot 

2 (amended). It is clearly observed the incidence of the decreasing oxygen diffusion in the 

generation of SO4. Even though both simulation curves start around the same concentrations, due 

to having the same initial conditions, at some point they begin to diverge from each other. There 

is an observed data limitation in the case of SO4 (less than 500 days of data), which does not 

allow to assess the behavior of the simulation curves in the long term. However, 

preliminarily, the modified HTGCM yielded the expected results (i.e. steeper depletion curve). 

The performance of the model in the long term is confirmed with the other two parameters, pH 

and Fe. 

Regarding Fe, the availability of more observed data (5 years) allowed a better 

assessment of the modified model in the long term. Similarly to Fe, the modified HTGCM 

model properly simulates the long-term pH conditions. In the modified HTGCM simulations, 

there is a clear indication of the pyrite oxidation inhibition as a consequence of the Fe 

precipitate coatings, and the resulting reduction of H+ concentrations. These pH modeling results 

utilizing the new version of the model is also more consistent to the data retrieved from the 

kinetic experiments and the field measurements and, moreover, it is consistent with the technical 

literature, where even in a highly acidic environments, there is a decrease of the alkalinity 

demand over time, thus a rise in the pH is produced. 
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Figure 4.13. 5.5-yr simulation of the amended scenario (plot 2) in the Mather watershed for the variable 

oxygen diffusion added into the HTGCM model, compared to the field observations. Observed field data 

shown in the plots were measured from June 2009 to June 2014 
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Even though the oxygen diffusion model included in the PYROX module is based on high 

alkaline conditions, one can hypothesize about the case of low alkaline conditions just like the 

ones found in the non-amended scenario. The high solubility of Fe mineral phases at low pH 

conditions makes less likely for the precipitates to produce and encapsulate the pyrite grain. 

Nonetheless, in this study the simulation of variable oxygen diffusion will also be implemented in 

the non-amended scenario. Moreover, it is worth mentioning that the settings in plot 1 (the non-

amended scenario) were modified after approximately two years to be identical as plot 2 

(10%AC+90%CR amended layer of 61 cm); so, in a way, a pyrite coating might have been also 

occurring at this plot after the amendment. However, one parameter will be modified in order to 

make the precipitation rates lower than in the case of the amended scenario. The proportion of Fe 

that is likely to precipitate will be decreased from 3% to 1%. 

Fig 4.14 shows the modeling results (5.5-year simulation) for SO4, including both the 

HTGCM with the original and the modified PYROX modules, along with the observation in plot 

1 (non-amended). For example, in the case of Fe, at 61and 91 cm, it is noticed that the modified 

model captures more adequately the steeper decrease in Fe concentrations, after the initial two 

years, approximately. However, in plot 1 at 91 cm, the observed data after two years is still lower 

than the simulation curve, which could show the influence of the amended layer in plot 1 after that 

period of time, but which also could imply that there is another factor that plays a role in the 

decreasing of Fe and that the model is not able to capture. Future research is needed to identify 

any new buffering factor that can be included in the model calculations. 
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Figure 4.14. 5.5-yr simulation of the non-amended scenario (plot 1) in the Mather watershed for the variable 

oxygen diffusion added into the HTGCM model, compared to the field observations. Observed field data 

shown in the plots were measured from June 2009 to June 2014 
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In order to have a more objective evaluation about the model performance, a statistical 

analysis was done to compare the original HTGCM (i.e. with constant oxygen diffusion in the 

PYROX module) and the modified HTGCM (i.e. with variable oxygen diffusion in the PYROX 

module) against the observations in plots 1 and 2, at 61 and 91 cm, retrieved over 5 years. The 

used assessment parameter was the root mean square error (RMSE). For all the scenarios presented 

in Figure 4.13 and Figure 4.14, the RMSE is shown for both original (top) and modified (bottom) 

model. It is observed that, in all cases, the RMSE is lower for the modified HTGCM simulations, 

thus indicating that, the inclusion of the pyrite coating factor through the decrease of the oxygen 

diffusion in the PYROX module, is an important added value that significantly improves the model 

performance for long-term simulations, in which the role played by this factor is even more 

influential in the ARD generation/neutralization processes.  

Additionally, Figure 4.15 shows a long-term simulation (i.e., 20.5 years) in the amended 

plot 2, at 61 and 91 cm. The input forcing data (i.e., meteorological) available for this simulation 

was from 2009 to 2017. For the remaining period of time (i.e., 2018 – 2029), the data from the 

previous period of time was repeated. The objective of this exercise is to observe, in the long term, 

how divergent from each other are the simulation curves with the original shrinking-core module 

and the modified one (i.e., with variable oxygen diffusion), although there is no observed data 

beyond 5 years. The divergence of the two simulation curves is more evident at 91 cm, because 

the orders of magnitude of the chemicals (i.e., SO4 and Fe) are higher. It is also noticed that, at all 

times, the simulation curve of the HTGCM with the modified shrinking core module has lower 

concentrations of SO4 and Fe and higher pH, thus confirming the direct incidence of the variable 

(i.e., decreasing) oxygen diffusion over time. This module has been successfully calibrated against 

the observed data over 5 years (Figure 4.13, Figure 4.14 and Table 4.5), meaning that the iron 
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coating of the pyrite grain has been taken into account. However, more measured data is needed 

to adjust the parameters of this module for longer simulations. 

 

Figure 4.15.Long-term (20.5-yr) simulation of the amended scenario (plot 2) in the Mather watershed for 

the variable oxygen diffusion added into the HTGCM model. 
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One final statistical analysis was made by using a hypothesis testing approach to evaluate 

whether the differences between the original and modified models are statistically significant or 

not. Both scenarios were considered as independent variables; the null hypothesis was that there 

is no significant difference between the two modeled scenarios (i.e.,µ1=µ2) and the alternative 

hypothesis was that these scenarios are different (i.e.,µ1≠µ2), based on a significance level of 5%. 

Table 4.6 shows the hypothesis testing results for the original and modified models and for the 

short and long-term simulations (i.e.,≈5-year and ≈20-year, respectively). It is worth mentioning 

that the long-term simulations where only conducted for the amended scenario of plot 2. 

Table 4.6. Hypothesis testing for short and long-term simulations, comparing the original model 

(constant oxygen diffusion) and the modified model (variable oxygen diffusion) 

In the 5-year simulation, it is observed that there is no statistical difference between the 

original and modified models for the amended scenario of plot 2. This might be explained by the 

fact that the pyrite coating is a long-term process that depends on several hydrological and 

geochemical factors (e.g., rainfall, soil moisture, particle size, pH, presence of Fe minerals). For 

instance, pyrite coating in early formation can be partially or totally washed off due to the rainfall 

/ runoff weathering effect [Huminicki et al. 2009]. For the same simulation period, results are 

different for the non-amended scenario of plot 1. In this case, the presence of higher amounts of 

sulfur and iron minerals lead to higher aqueous concentrations of SO4 and Fe, thus making this 
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scenario more sensible to oxygen diffusion variations (i.e., decrease). In addition, it is 

observed that there is no significant change of pH in the short term as well. 

In the 20-year simulation, it is noticed that for all cases, except for SO4 and Fe at 61 cm, 

the difference between the original and modified models is statistically significant. This confirms 

the long-term nature of the pyrite grain coating by iron precipitates and, at the same time, 

enhances the necessity of taking into account this coating effect for long-term ARD remediation 

prediction and assessment through physically-based hydro-geochemical models (e.g., HTGCM). 

Once every proposed improvement to the HTGCM model has been successfully 

implemented and tested in the Mather site (Case Study 1), the next step was to replicate these 

results in another watershed with similar characteristics: the Ernest mine watershed (Case Study 

2). 

4.4 CASE STUDY 2: IMPLEMENTATION OF THE MODIFIED HTGCM MODEL 

IN THE ERNEST COAL PILE WATERSHED 

The HTGCM model has been satisfactory tested and calibrated under different scenarios in the 

Mather site. However, it is fundamental to investigate the capabilities of the model to replicate the 

same type of results in other watersheds where coal piles are located. For this purpose, the Ernest 

coal pile, located in Indiana County, Pennsylvania, USA, was chosen as a second study site. Many 

shared similarities with Mather where identified as reasons to choose Ernest: both are coal refuse 

piles, with similar geographic locations (i.e. Western Pennsylvania, in the Northern Appalachian 

Coalfield) and fairly well characterized. In the specific case of Ernest, this site has around 2-year 
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data of non-amended conditions and about 8-year data of amended conditions (addition of 

fluidized bed combustion or FBC ash). The sampling site (MW-1) that was utilized for the 

HTGCM model implementation is located at the watershed outlet, at approximately 1.5 m depth. 

The parameters that were measured at this sampling site are pH, SO4, Fe, Al, Mn, Ca, Ni and Zn.  

The HTGCM version that will be used in Ernest is the modified version of the model that 

includes all the proposed changes (i.e., spatial scale, new chemicals, variable oxygen diffusion), 

widely described and tested in the previous sections. Figure 4.16 shows the entire Ernest 

watershed, including the mine site, the non-mine region and the location of MW-1 sampling site. 

The implementation of the watershed scale in the HTGCM model is particularly important in this 

case study, because the sampling site is located at the watershed outlet, and has an important 

drainage contribution from outside the mine region. 

 

Figure 4.16. Ernest Mine Watershed. 
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As previously mentioned, there is evidence [Pennsylvania Minefill Study, 2007] pointing 

at the fact that the addition of FBC ash not only did not improve the water quality conditions, but 

caused water quality degradation. In June, 2002, the Pennsylvania Department of Environmental 

Protection (PADEP) issued a report on the Ernest site responding to public concerns about water 

quality degradation from this operation. The last recorded water quality data available for this site 

is from November 2004. In the model results, all the available data will be presented, however 

only the data before the FBC ash placement, when the site was an unaltered coal refuse pile (like 

the Mather site), will be utilized for the purposes of the model assessment. 

Table 4.7. Ernest simulations initial solutions 

 

Amended 

Scenario

Non-amended 

Scenario

Outside                         

Coal Pile

Description
Concentration  

(mg/l)

Concentration  

(mg/l)

Concentration  

(mg/l)

SO4 1000 3000 4.9

Fe 2 400 1.4

Ca 550 400 0.9

Na 280 200 2.2

Mg 100 65 100

K 7.2 8 0.3

Si 60 178 8.4

P 0.5 15 0.5

Al 1.5 200 1.7

Cl 155 100 0.001

Mn 2.0 40 0.007

Zn 0.0 2 0.009

Cr 0.004 0.6 0.002

Ni 0.01 2 0.003

Co 0.003 6 0.001

Cu 0.01 16 0.002

pH 6 4.5 5.5
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Figure 4.17. Ernest Mine Watershed HTGCM 2-yr simulations for amended and non-amended conditions. 

The observed data is for the non-amended scenario. Observed field data shown in the plots were measured 

from November 1994 to August 1996 
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Figure 4.17 shows the simulation results (approximately 2 years) in the Ernest mine 

watershed. Table 4.7 shows the initial solutions in the PHREEQC module. The output location is 

the MW-1 sampling site, which data has also been included. In addition, even there is no observed 

data to compare with, a simulation considering the same remediation design as the one tested in 

Mather (10% AC + 90 % CR amended layer) is also presented. It is observed that the model 

properly captures the behavior of the system for the non-amended scenario in the Ernest mine site. 

Moreover, it is probable that the water quality in MW-1 is influenced by a dilution effect caused 

by the contribution of surface and subsurface drainage water from the non-mine region (9.51 km2). 

This can be inferred by the relatively low chemical concentrations and higher pH in MW-1, 

compared, for example, to those from another coal refuse site like Mather. For instance, in Mather 

(non-amended plot 1 at 91 cm) the pH, SO4, Fe, Ni and Zn concentrations range approximately 

from 3 – 2, 9000 – 7000 mg/L, 9000 – 5000 mg/L, 20 – 5 mg/L and 40 – 20 mg/L, respectively, 

while in Ernest (non-amended pile in MW-1 at 150 cm) the pH, SO4, Fe, Ni and Zn concentrations 

range approximately from 4 – 4.5, 5000 – 3000 mg/L, 600 – 500 mg/L, 1 – 0.8 mg/L and 2 – 1.5 

mg/L, respectively, considering the same period of time in both cases. This fact enhances the 

necessity to include the entire watershed in the simulation and the hydrogeochemical interaction 

of both mine and non-mine environments in the model, allowing to assess the environmental 

impacts in several locations, inside and outside the mine site. 

In addition, special attention needs to be addressed regarding the pH field measurements. 

The pH seems to follow a very particular trend, decreasing until approximately 280 days, 

afterwards, increasing until around 500 days, and, finally, having a more stable behavior for the 

remaining measurements. One of the main reasons for this particular behaviour is that the pH was 

measured directly at the field and not at a lab, so the pH temperature dependence plays a very 
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important role. For example, at 60°C the neutral point is 6.51 while at 10°C it is 7.26, a difference 

of three fourths of a unit. Thus the pH of a sample measured at field temperature is more likely to 

represent the true pH in the site water than the pH measured in that sample at a different 

temperature in the laboratory [Pennsylvania Minefill Study, 2007]. This explains why the 

decreasing trend occurs during the fall and winter months and, the subsequent increase in pH 

occurs in the spring time. In the case of the Mather measurements, this behaviour is not observed 

because the measurements took place in the laboratory. 

The amended scenario simulations in Figure 4.17 should be taken only as a reference to 

idealize how would the conditions in Ernest have changed if a similar remediation design as the 

one applied in the experimental plots in Mather and tested in the laboratory experiments presented 

in this study would have been applied in Ernest as well: neutral pH and high immobilization of 

SO4 and toxic metals. It is not necessary to extend this simulation, as there are no observed data to 

compared with. Since the initial conditions (i.e., initial aqueous solution) for this amended scenario 

was unknown, it was obtained by a simple mathematical relation based on the initial solutions of 

plots 1 and 2 in Mather.  
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Figure 4.18. Ernest Mine Watershed HTGCM 10-yr simulations and observed data before and after the 

addition of FBC ash. Observed field data shown in the plots were measured from November 1994 to August 

1996 (i.e., before FBC ash addition) and from November 1996 to September 2004 (i.e., after FBC ash 

addition). 
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In addition, an extended simulation (10-year) of the non-amended scenario is presented in 

Figure 4.18 and includes the water quality data retrieved from MW-1 sampling site, after the 

addition of FBC ash.  It is observed that some chemicals such as SO4, Fe, Al, Ni and Zn reached 

higher concentrations after the remediation was applied in the site, which might imply a lack of 

characterization study of the FBC ash as a remediation material, based on the fact that apparently 

this material generated the mobilization of higher amounts of some chemicals compared to the 

case of the non-amended conditions. Hence the importance of an extensive hydro-geochemical 

analysis of the remediation material, just like in the case of the presented study, where AC has 

been exhaustively tested from several perspectives (i.e. field measurements, modeling, static and 

kinetic experiments). On the other hand, other parameters such as pH and Ca remained stable and 

the last one, Mn, was observed to have an oscillatory behavior. It is worth to mention that the 

model calibration was solely based on the observed data before the addition of the FBC ash and 

the long-term simulation is intent to replicate the conditions that would have experienced the site 

if no remediation has ever been made. This conditions happened to be, in most cases, less critical 

than the observed conditions with the addition of a ARD remediation agent. 

4.5 CONCLUSIONS 

In this chapter, two case studies have shown the feasibility of implementing an improved version 

of the HTGCM model at a watershed scale. The following findings related to the application of 

this improved model have been identified: 
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 The modification of the model scale (i.e. watershed scale) allowed the assessment of the 

ARD generation and remediation impacts, inside and outside the waste coal pile. Based on 

the results from both case studies, the model has shown an improved and more versatile 

performance. The addition of watershed simulation capabilities with the interaction of both 

mine and non-mine soils, allowed the analysis of the model output in several locations. 

 The inclusion of new chemicals in the output allowed to have a much better water quality 

characterization, thus taking into account all the important pollutants in mine waters, some 

of which have been identified as priority pollutants in mine waters over Pennsylvania and 

other mine regions. 

 The inclusion of new reactions in the PHREEQC database: reactions involving the added 

chemicals (e.g. Zn, Cr, Co) and buffer reactions (e.g. dissolution of calcite), resulted in a 

more complete hydrogeochemical module that is able to deal with the calculation of the 

most important pollutants in mine waters. 

 The introduction of the Fe precipitation factor, through the continuous decrease of the 

oxygen diffusion in the pyrite grain, enhanced the physically-based component in the 

model. 

 The testing of new remediation designs (e.g. amended layer depths) allowed the 

exploration of different remediation conditions.  

In summary, the main contribution of the modified HTGCM is that this new version takes into 

account as posible all the factors that might cause pyrite oxidation and all the factors that might 

help to neutralize it. 
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On the downside, due to the larger model scale and the addition of the calculation of new 

metals and new chemical reactions, along with the consideration of the Fe precipitation, the 

running time increases (mainly depending on the watershed size and resolution) and, since 

HTGCM model strength relies in subsurface mine discharges, it is more difficult to retrieve this 

kind of data from other mine sites, for calibration/validation purposes. Usually, the availability of 

mine discharge data is very small, disperse, often limited to superficial discharges, and far enough 

from the mine site, thus causing the dilution of contaminants. In other words, although it has been 

shown, through the study of two watersheds, that the model is able to replicate real field conditions, 

it is always desirable to have measured data that can verify the model’s performance. 

Future work should include an exhaustive analysis about the impacts of different ameneded 

layer designs, especially in terms of the AC/CR mixing ratio (e.g., AC > 10%). However, 

additional field and experimental data are essential for such analyses. 
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5.0  CONTRIBUTIONS AND FUTURE WORK 

5.1 CONTRIBUTIONS 

An extensive study of ARD generation and remediation, from both experimental and modeling 

perspectives, have been presented. In addition, this study has also been supported by field 

measurements, which allowed to test the modeling stage and, at same time, validate the 

experimental design and results. A summary of the main identified findings, mostly aiming to 

address the proposed scientific questions, are listed below: 

1) Alkaline clay (AC), a byproduct of the aluminum refining process, has demonstrated to 

successfully neutralize pyrite oxidation and the consequent ARD generation in a waste coal pile. 

Once mixed with coal refuse (CR), AC quickly reacts and produces a significant decrease in the 

alkalinity demand, resulting in a positive net alkalinity solution with neutral pH, low sulfate and 

low dissolved metals. Moreover, the addition of AC to the waste coal pile has proved to be 

environmentally sustainable: on one hand it allows the use of a waste as a remediation material 

and on the other hand it maintains the drainage that goes out to the amended region in water quality 

levels that fully comply with regulations and standards for mine discharges.   

2) From several experimental and modeling designs, it has been found that a 

10%AC/90%CR is an adequate mixing ratio that guarantees an effective ARD remediation with 

sustainable conditions in the long term. The static experiments (batch reaction and acid base 
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accounting) have indicated that with this mixing ratio the total amount of alkalinity exceeds 

approximately by double the total amount of acidity. The kinetic experiments and the modeling 

have confirmed that the acidity is likely to be consumed before the alkalinity does. 

3) Defining the amended layer depth is crucial when designing an ARD remediation 

system. Xu [2014] has shown that an amended layer as shallow as 40 cm could be effective for 

ARD remediation. On the other hand, it is no feasible to have a much deeper amended layer (e.g., 

> 2 m). In this study, a new factor that plays an important role in the definition of the amended 

layer depth has been identified: the root depth. If a vegetated layer above the amended layer is 

intent to be applied, it is not desirable for the roots to reach a highly acidic environment (i.e., the 

non-amended region), otherwise the plats will likely reach harmful and irreversible toxicity levels. 

Several previous studies that have characterized the physiology of many grass species have 

determined that the usual root depth is from 0.8 to 1.0 m.  Therefore, to guarantee both an effective 

amended layer depth (i.e., for ARD neutralization) and the safety of the planted vegetation, an 

amended layer of 1 m is recommended. 

4) Two potential complementary measures to enhance the ARD remediation have been 

studied: a vegetation layer above the amended layer and a saturated sand layer within the amended 

region or underneath it. To have a vegetation cover on the amended region has determined to be 

highly beneficial from both biogeochemical and environmental perspectives. Biochemically, the 

vegetation plays the role of phytoaccumulation and phytoextraction factor, which means that it 

significantly lowers the levels of dissolved metals, which are extracted and accumulate in the plant 

tissue. From the kinetic experiments (i.e., columns) and the metal accumulation in plant 

experiments, it has been determined that as long as the roots don’t reach a highly acidic 
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environment (i.e., the non-amended layer), vegetation can accumulate higher amounts of metals 

but without reaching plant toxicity. Environmentally, it has been found that the accumulation of 

metals in plants is not significant high to have side impacts to the neighbor flora and fauna. Overall, 

the beneficial impacts of a vegetation cover exceeds its potential risks. The impact of the saturated 

sand layer is more direct and easy to predict. This saturated layer acted as a natural barrier that 

blocked oxygen and water diffusion to the underneath layer, thus lowering pyrite oxidation rates. 

5) The improved version of the HTGCM model has been successfully tested to model the 

ARD generation and remediation processes in a watershed scale. Through two case studies, the 

environmental impacts of the amended and non-amended scenarios have been identified at various 

locations, inside (higher chemicals concentrations) and outside (lower chemicals concentrations, 

due to the dilution factor) the waste coal piles. The original elements included in the model (e.g., 

pH, SO4, Fe, Al, Mn, Ca) and the newly added ones (i.e., Zn, Co, Cu, Cr, Ni), which are considered 

among the priority pollutants in the Northern Appalachian Coalfield, allowed a complete 

hydrogeochemical characterization of the drainage in the watershed. The addition of the pyrite 

coating factor through a variable (i.e., decreasing) oxygen diffusion coefficient, added a new 

feature that enhanced the physically-based component of the model. Even though the model was 

calibrated using a fairly large amount of data (5 years in Mather and 2 years in Ernest), it should 

continuously feed with more data in order to improve its performance.    

6) Finally, the experimental and modeling evidence strongly suggest that the proposed 

remediation has a sustainable and beneficial long term impact. The high ARD neutralization 

capability of AC ensures a sufficient alkalinity supply that will always exceed the existent acidity 

in the piles. Moreover, even in the non-amended scenario, the alkalinity demand tends to decrease, 
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and one of the main factor is the pyrite coating by iron precipitates. This has been observed both 

on the field and the column experiments, and replicated by the model as well. Also observed and 

replicated by the model, the addition of AC to the CR significantly lowers the dissolution of toxic 

metals into levels that are not harmful for the environment, thus resulting in a drainage with 

positive net alkalinity. 

5.2 FUTURE WORK 

The most important remaining work that has been identified through this study is listed below: 

1) Since vegetation has demonstrated, from the experimental perspective, to play an 

important role in the ARD remediation process (i.e., acting as a phytoextraction and 

phytoaccumulation factor), it would be important to include in the HTGCM a biogeochemical 

module that can take into account the physical-chemical interactions between soil and plants.  

2) A more complete mineralogical analysis (e.g., XRD analysis) could be useful to make a 

better assessment of the small-scale processes occurring in the acidic-alkaline mixture, such as 

secondary minerals formation, precipitates and pyrite coating. This analysis should be done under 

different scenarios, in terms of AC/CR mixing ratios and age of the mixture. 

3) The assessment of the impact of the soil characteristics inside and outside the waste coal 

pile (e.g. porosity, hydraulic conductivity, soil density) on the pyrite oxidation rates. 

4) Two complementary measures to enhance the ARD remediation have been proposed 

and analyzed in this study: the implementation of a vegetation cover over the amended layer and 

the introduction of a saturated sand layer over the non-amended layer. However, future work 
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should consider a deeper study about these two alternatives. For instance, in the case of vegetation, 

it would be fundamental to explore among several types of vegetation species in terms of their 

acidic tolerance, metal uptake or their capability to grow with no major maintenance. In the case 

of the saturated layer, it would be important to identify any other potential material that can replace 

the sand utilized in this study. In addition, a field study should be conducted to evaluate the impact 

of these complementary strategies under real field conditions.
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