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Salim Esmail Olia, PhD 

University of Pittsburgh, 2018 

Limited options exist for children (BSA<1.5 m2) requiring long-term mechanical circulatory 

support (MCS). Unlike adults where compact, 3rd generation, continuous-flow, implantable 

rotary blood pumps (RBPs) are now the standard for ventricular assist device (VAD)-indications, 

the only pediatric-approved chronic MCS device is the Berlin Heart® EXCOR®: a 1st generation 

pulsatile, pneumatically-driven, paracorporeal life-saving technology albeit with a substantial 

risk profile associated with frequent neurological and coagulation-related serious adverse events. 

In support of the smallest and most vulnerable patients, the goal of this research is to 

facilitate the development and translation of next-generation pediatric RBPs, including the 

University of Pittsburgh-led Consortium’s PediaFlow®: a miniature, implantable, rotodynamic, 

fully magnetically levitated, continuous-flow pediatric VAD intended to support patients 

between 3 to 15 kg at a flow rates of 0.3-1.5 L/min for up to six months. 

Presented here is the i) development of a standardized method for in vitro mechanical 

blood trauma testing of pediatric MCS devices; ii) design and ex vivo evaluation of a novel, 

pediatric-appropriate, suction resistant, placement insensitive, left ventricular drainage cannula; 

iii) creation of an MCS-tailored monitoring software for preclinical testing; iv) development of a 
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PediaFlow®-specific flow estimation algorithm; and v) hemocompatibility findings in vitro and 

in vivo of the 4th generation PediaFlow® (PF4) VAD.  

The PF4, comparable in size to an AA battery, is the embodiment of more than a decade 

of extensive computational and experimental efforts over the span of four device iterations to 

minimize size, optimize performance, and maximize safety. This dissertation represents the work 

and results to date of PediaFlow® PF4 on the path to preclinical testing to submit an 

Investigation Device Exception (IDE) application in anticipation of eventual clinical trials. 
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1.0  INTRODUCTION 

This section has been published in part in The Journal of Thoracic and Cardiovascular Surgery 

[1]. 

Within the United States, 25% of all neonates born with a congenital heart defect will 

require invasive treatment within the first 12 months of life [2]. Nearly 1,800 infants die from 

congenital heart disease each year while an additional 350 develop cardiomyopathy [3, 4]. 

Children under 15 kg listed for cardiac transplantation have the highest waiting list mortality rate 

(17%) in all solid-organ transplantation categories[5]. Cardiac transplantation remains the 

standard of care for refractory heart failure, but with limited donor availability, only 56% of 

infants listed received an organ over the last decade [6]. While the use of mechanical circulatory 

support (MCS) has successfully decreased waiting list mortality and has been used as a bridge-

to-recovery, availability of MCS devices (MCSDs) for children remains limited [7, 8]. 

1.1 MECHANICAL CIRCULATORY SUPPORT 

1.1.1 Adult Experience 

Heart disease is the leading cause of mortality in adults internationally and domestically, 

responsible for 1 in every 7 deaths within the United States.[9]. With MCSD development 
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spanning more than five decades for adults, multiple paradigm shifts from pulsatile total artificial 

hearts, to pulsatile (1st generation) ventricular assist devices (VADs), to continuous-flow (CF) 

rotary blood pumps (RBPs) have revolutionized the field of MCS in adults. Utilizing centrifugal- 

or axial-flow designs with a single moving impeller eliminates the flexible blood membranes, 

check valves, long cannulas, and tortuous blood paths required for prior pulsatile pumps. This 

increased simplicity allows for smaller blood-contacting surface area and reduced dead space, 

thereby reducing thrombosis potential and infection risks, in addition to decreasing the overall 

device size [10]. Similarly, controller size has been markedly reduced by the elimination of large 

percutaneous drivelines, compressors, vacuum pumps, solenoids, and large power supplies 

associated with positive-displacement VADs [11]. Supported by either blood bearings/seals (2nd 

generation) or suspended by hydrodynamic or electromagnetic forces (3rd generation), RBPs are 

now the standard for chronic MCS support clinically [11, 12]. With multiple adult CF VADs 

approved by the Food and Drug Administration (FDA) for bridge-to-transplant or destination 

therapy applications, these technologies have rescued thousands of adults with refractory end-

stage heart failure, with additional devices currently under development or in clinical trials [13]. 

1.1.2 Assisted Circulation in Pediatrics 

Extracorporeal membrane oxygenation (ECMO) is used extensively for providing temporary 

cardiac support to children from neonates to adolescents. Although resource intensive, it is cost 

effective, institutionally available, and rapidly initiated [14]. However, ECMO is indicated only 

for short durations requiring immobilization, sedation, and has a high complication rate related to 

bleeding and thromboembolism proportional to support length [15]. 
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For adolescents with sufficient Body Surface Area (BSA), the use of adult-indicated 

durable CF-VADs is partially reported in the PediMACs registry with a six month survival rate 

approaching 90% (n=126) since creation in 2012 [16]. The majority of CF-VADs were 

implanted in patients 6 years of age or older due to device size, though there is a growing off-

label usage of the smaller HeartWare® HVAD typically implanted with an outflow graft 

constriction or ran at lower speeds (RPM) to maintain pediatric-appropriate flow rates in younger 

patients [16-20]. Operating outside of its intended design range, pump performance is markedly 

reduced and therefore increasing the risk for potential complications. Unlike adults however, 

currently the only FDA approved, pediatric-specific, bridge-to-transplant MCS device is the 

Berlin Heart® EXCOR®; a paracorporeal, pneumatically-driven, pulsatile VAD that provides 

extended support for the pediatric population through the use of varying volume sized pumps 

coupled to a large pneumatic driver. The potential of the EXCOR® as a life-saving technology 

for children with heart failure is reflected in our center’s experience since 2004 [21]. However 

the EXCOR® has a substantial risk profile with approximately 80% of patients experiencing at 

least one significant adverse event, the majority (~50%) from severe bleeding or infection, and is 

associated with frequent pump exchanges due to device thrombosis around the valve leaflets 

[22]. 

1.2 MECHANICAL BLOOD TRAUMA 

This section has been published in part in International Journal of Artificial Organs [23]. 

Despite many decades of improvements in MCSDs, blood damage remains a serious 

problem during support, contributing to variety of adverse events, and consequently affecting 
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patient survival and quality of life. The mechanisms of cumulative cell damage in continuous-

flow blood pumps are still not fully understood despite numerous in vitro, in vivo, and in silico 

studies of blood trauma. Previous investigations have almost exclusively focused on lethal blood 

damage, namely hemolysis, which is typically negligible during normal operation of current 

generation MCSDs. The measurement of plasma free hemoglobin (plfHb) concentration to 

characterize hemolysis is straightforward, however sublethal trauma is more difficult to detect 

and quantify since no simple direct test exists. Similarly, while multiple studies have focused on 

thrombosis within blood pumps and accessories, sublethal blood trauma and its sequelae have yet 

to be adequately documented or characterized. This review summarizes the current 

understanding of lethal and sublethal trauma to red blood cells (RBCs) produced by the exposure 

of blood to flow parameters and conditions similar to MCS. 

1.2.1 Introduction 

Whole blood is a complex, heterogeneous, multi-cellular suspension, the importance of which 

cannot be overstated. Blood is responsible for gas exchange, nutrient transport, waste removal, 

cell signaling, immunomodulation and immunoprotection, wound healing, and overall 

homeostasis. The cellular (~45%) and plasma (~55%) components of blood, while distinct, are 

interdependent and essential for maintaining proper functions. The phenomenon of mechanical 

blood trauma arises from the exposure of flowing blood to non-physiological conditions found 

within MCSDs, summarized concisely as “too many non-physiological factors affecting too 

many physiological objects.” Although yet to be identified or discovered. These objects include 

blood cells (erythrocytes/RBCs, platelets, leukocytes) with various functions, cell volumes, 

rheological properties, life spans, and population sizes and other numerous components inside 
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blood plasma, like proteins (albumin/globulins), blood coagulation factors, immunoglobulins, 

nutrients, minerals, salts, ions, and hundreds of other dissolved constituents. The most common 

nonphysiological factors are mechanical stresses, excessive temperatures, turbulence, cavitation, 

flow rates, the presence (or absence) of flow pulsatility, incompatible foreign surfaces, etc. 

Inside a MCSD, these factors may act independently, collectively, or synergistically. All cellular 

species of blood are sensitive to these factors and can be activated, deactivated, or irreversibly 

damaged. Furthermore, many plasma components may be denatured due to exposure to MCSDs. 

Healthy, human denucleated red blood cells (RBCs) have the longest life span in 

circulation (100-120 days), maintaining an intravascular population of about 5.1 ± 1.0 

million/mm3 of blood or approximately 40% to 45% of blood volume [24]. Due to their 

remarkable deformability, RBCs with size of ~8 μm are able to easily enter and pass through 

blood capillaries with diameters as small as 3 μm. Best known for gas transport, they are also 

essential to the dynamic, non-Newtonian rheological properties of blood which provide adaptive 

viscosity in various compartments of the vascular system. This is in turn responsible for the 

vessel wall shear stresses that affect endothelial function. Healthy platelets are 2 μm to 3 μm in 

size, with an in vivo life span of about 10 days and a concentration of 0.15 to 0.45 million/mm3 

of blood. Their major function is to prevent and stop bleeding by creating plugs/clots involving 

the very complex coagulation cascade. As a key component in hemostasis, platelets are 

extremely sensitive to the factors listed above leading to their activation, aggregation, deposition, 

or dysfunction. Due to exposure to non-physiological environments, activated platelets may 

create microthrombi in the MCSD that can cause the device to fail and/or create emboli, 

potentially blocking blood flow to vital organs. Standard practice to temper the risk of MCSD 

thrombogenicity is to administer anticoagulant or antiplatelet therapies directly into the blood 
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intravenously (e.g.: heparin, bivalirudin) or indirectly enterically (e.g.: warfarin, clopidogrel, 

acetylsalicylic acid [asprin], etc.), an intervention that raises the risk of unintended bleeding. 

Consequently, coagulopathy related complications (including bleeding, thromboembolism, 

neurological dysfunction, and pump thrombosis) are the leading cause of adverse events in 

patients on mechanical circulatory support [16]. Therefore, the reduction of blood damage 

remains a major challenge for developers of blood-contacting devices. 

Over many decades, there have been an abundance of studies on blood damage to 

understand, reduce, and eliminate complications related to blood-contacting foreign surfaces and 

non-physiological flow conditions. The best known, easily detectable, and reproducible marker 

of in vivo or in vitro blood trauma is hemolysis, which is manifested by hemoglobin released 

from ruptured, overstretched, overheated, or prematurely aged RBCs, or some combination 

thereof. Numerous publications are dedicated to the in vitro, in vivo, and computational 

investigations of the fluid dynamic and microenvironmental conditions in MCSDs leading to 

device-induced hemolysis and the consequences of plfHb in blood. Despite considerable efforts 

by device developers to mitigate the risk of blood trauma, a significant increase in hemolysis 

takes place preceding the diagnosis of pump thrombosis. This phenomenon is associated with 

substantial morbidity and mortality of MCSD recipients, which is now increasingly reported [25-

27]. Sublethal trauma, which is difficult to detect and characterize compared to hemolysis, has 

yet to be extensively examined. Even mild hemolysis in vivo, which is not an abrupt threat to 

renal function, can be a harbinger of potential ongoing damage to other blood components 

(including platelets, white blood cells, von Willebrand factor, etc.), which can cause or indicate 

serious complications like thrombosis. Therefore, it is important to assess the susceptibility of 

blood to sublethal trauma or possibly the extent of sublethal damage incurred to serve as an early 
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diagnostic marker. While there are many questions regarding what tests could predict 

complications, unfortunately no machine or single experiment exists that can measure both lethal 

and sublethal injury in a MCSDs patient’s blood. Acknowledging the breadth and depth of 

sublethal blood damage, this subchapter will primarily focus on sublethal trauma to RBCs 

including the mechanisms of damage, the resulting physiological changes, and the consequences 

of pathological erythrocytes. 

1.2.2 Hemolysis 

Extensive experience with heart-assist devices has demonstrated that they have the propensity to 

damage blood to some extent. Therefore, special attention must be paid to the prediction and 

reduction of blood damage when designing, testing, and clinically operating MCSDs. The 

prolonged contact and collision between blood cells and foreign surfaces, cavitation, excessive 

exposure to high fluid stresses, and turbulence may cause the complete mechanical destruction of 

RBCs. These factors can also denature proteins, activate platelets and leukocytes, elevate 

inflammatory mediators, cause complement activation, and change the mechanical properties of 

red blood cells akin to accelerated aging [28-33]. The inverse relationship between the 

magnitude of shear stress and length of exposure time on hemolysis, first summarized by 

Leverett et al, has remained an active area of interest since the inception of MCS [34]. The 

eponymously named “Leverett curve”, a quantitative description of the hemolytic threshold as a 

function of shear stress and exposure time, is thus the primary driver for designers of any non-

static, blood-contacting medical device [35]. This is especially relevant as the evolution of RBPs 

towards 3rd generation (bearing-less) devices has resulted in lower peak shear stresses albeit with 

longer exposure times due to recirculation with specific suspension modalities [36-40]. 
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Hemolysis manifests clinically as anemia, fatigue, jaundice, hematuria, and kidney 

failure, among many other symptoms [41]. In addition to renal damage, mechanical hemolysis 

can cause hypercoagulation, bleeding, thromboembolism, and neurologic dysfunction (stroke, 

altered mental status, etc.) [28, 30, 42]. Even low levels of hemolysis have been shown to 

drastically increase RBC aggregation at low shear conditions [43]. Additionally, the release of 

hemoglobin from the overstretched RBCs into the plasma may have a toxic effect on the 

cardiovascular system due to its ability to bind nitric oxide, an endothelium-derived relaxing 

factor, leading to vasoconstriction, hypertension, renal damage, and platelet activation [44]. By 

the end of the 19th century, it was already recognized that hemolysis promotes intravascular 

thrombosis [45]. Experiments using stroma-free RBC lysate revealed that a hemoglobin 

concentration as low as 30 mg/dL induced spontaneous platelet aggregation, which increased in 

direct proportion to the concentration of lysate [46]. 

1.2.3 Sublethal RBC Damage 

For many decades, it has been observed that the mechanical properties of RBCs could be altered 

during prolonged exposure to shear stresses well below the hemolytic threshold [29]. The 

concept of sublethal RBC damage was first introduced by PM Galletti (a pioneering researcher in 

artificial organs and tissue engineering), who attributed the observed development of anemia and 

shortened RBC life spans in animals that underwent extracorporeal perfusion for 10 to 48 hours 

to a process of ongoing sublethal blood trauma [47]. Additional studies by Bernstein et al and 

Indeglia et al confirmed this relationship between subhemolytic shear stresses during assisted 

circulation and the premature removal of damaged RBCs, eventually leading to postperfusion 

anemia [48-50]. This sublethal trauma is much harder to detect and characterize than total lysis. 
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The experiments of Sandza et al, where isolated rabbit spleens were perfused by a mixture of 

sheared and non-sheared autologous RBCs, proved that the spleen could “recognize” and 

selectively remove cells that had been exposed to shear stresses lower than 10 Pa for 2 hours, 

suggesting that some changes had occurred to the mechanical or chemical properties of the RBCs 

[51]. Clinically observed, chronic anemia in patients supported with MCSDs is sometimes 

attributed to undetermined mechanisms [52]. However, it might directly result from the sublethal 

RBC damage and lifespan shortening as described by Galletti et al. This is corroborated by 

previously published clinical data on anemic patients with circulatory support devices and heart 

valves that showed alterations in patient blood rheology such as increased blood viscosity, RBC 

aggregation, and decreased RBC deformability [52-55]. Moreover, an increasing occurrence of 

thrombosis and inflammatory events without measurable hemolysis may be unknowingly 

triggered by sublethal damage to blood, as it is not yet a part of clinical practice. 

RBC Deformability 

RBC deformability is critically important for the passage of these cells through the entire 

vascular system, including the smallest capillaries in microcirculation, to provide adequate 

transport of gases, sufficient supply of nutrients, and efficient removal of waste products. It has 

been found that naturally aged RBCs are removed from circulation by the spleen as they become 

less deformable [56]. Each single RBC enters the spleen about twice per hour where it is “tested” 

for the ability to pass through tiny slits in the red pulp. The body applies this built-in “rheometer” 

to measure RBC deformability and remove those that fail this examination. Therefore, the 

deformability of RBCs appears to be the major determinant of their survival in the vascular 

system, and hence, their lifespan. RBCs exposed to extensive mechanical stress can therefore be 

prematurely removed from circulation because of an increase in their rigidity. In this context, 
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sublethal trauma may be considered analogous to an accelerated RBC aging process. Healthy 

RBCs are able to enter and pass through much smaller capillaries, thus decreasing blood 

viscosity 5 to 6 times below that of blood containing rigid RBCs [57]. Impairment of RBC 

deformability reduces the number of functioning capillaries due to RBC exclusion, inducing 

tissue ischemia. The decrease in RBC deformability after exposure to mechanical stress has been 

reported in many studies [58-64]. Baskurt et al illustrated this phenomenon by subjecting human 

RBCs to a uniform shear stress of 120 Pa for 15 to 120 seconds at 37°C. This level of stress 

significantly impaired RBC deformability as assessed by ektacytometry, with no visible 

hemolysis observed in the sheared RBC suspensions [61]. Kameneva et al demonstrated that the 

reduction of RBC deformability induced by mechanical stress was worsened when combined 

with hypothermia and a decrease in plasma protein concentration due to hemodilution, especially 

in cases of moderate and deep hypothermia widely applied during cardiopulmonary bypass in 

infants [58]. Dao et al found a reduction of human RBC filterability accompanied by significant 

changes in the RBC lipid bilayer due to exposure of RBC suspensions to sublethal shear stress of 

100 Pa for 120 seconds [65]. 

There are various methods for the assessment of RBC deformability described in the 

literature including but not limited to micropipette aspiration, filtration, viscometry, and 

imaging-based modalities [66]. Ektacytometry, a common imaging-based technique, uses laser 

diffraction analysis to assess cellular deformation in low hematocrit RBC suspensions under 

shear [67]. These authors prefer to assess RBC deformability with bright-field illumination 

instead, enabling direct visualization of cell shape, using the Linkam Optical Shearing Stage 

(CSS-450; Linkam Scientific Instruments) [59]. The apparatus consists of a parallel disc sample 

chamber with an adjustable height top plate (typically 10-20 μm) and rotating bottom stage. RBC 
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samples are suspended in a concentrated polyvinyl pyrrolidone (PVP) solution (μ = 30 cP or 

mPa·s) and exposed to Couette flow at various shear rates while simultaneously observed using a 

synchronized CCD camera (QICAM Fast Color, QImaging). The resulting images are then 

analyzed to quantitatively determine cell deformability using ImageJ (NIH) or automated 

software to yield an Elongation Index calculated as (L-W)/(L+W), where L is the length and W 

the width of the RBC under shear. A representative image produced by the Linkam System is 

shown in Figure 1, where a mixture of normal and rigidified RBCs was sheared at (A) 0 and (B) 

1000 s-1 (corresponding to a shear stress of 0 and 30 Pa, respectively). 

 

Figure 1. Bright-field illuminated normal and rigidified erythrocytes undergoing shear using the Linkam 

Shearing Stage. Assessment of RBC deformability at (A) 0 and (B) 1000 s-1 shows normal RBCs elongating and 

becoming ellipsoidal under shear stress while the rigid cells remain circular. 

RBC Aggregation 

The RBCs of human and some other mammalian species, especially active versus sedentary ones 

such as a horse, feline and antelope, build aggregates that can be observed in blood in vitro and 

in vivo under no flow or low flow states [68]. RBC aggregation is caused by fibrinogen and other 

large protein molecules in blood plasma. The physiological significance of RBC aggregation is 
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not yet fully understood, but it has been shown to promote the development of a cell-depleted 

plasma layer near walls of small blood vessels, thereby reducing wall shear stress loading and 

diminishing the release of endothelium-dependent vasodilators [69]. A drastic increase in RBC 

aggregation at low flow conditions has been seen even at low levels of hemolysis [70]. 

Furthermore, it is known that an increase in RBC aggregation relative to normal physiological 

levels is associated with inflammation, infection, or some other pathological states; which is 

usually related to an increase in the concentrations of plasma fibrinogen, immunoglobulin, and 

other plasma macromolecules [71, 72]. The majority of preclinical animal studies for MCSDs are 

performed in ruminants because of their acceptable size, docile behavior, long-term 

manageability, and cost effectiveness [73]. Despite a relatively high physiological concentration 

of fibrinogen for bovines (up to 0.5-0.8 g/dL), ovines and bovines typically exhibit no RBC 

aggregation. Nevertheless, it was possible to observe aggregation of RBCs in bovine blood 

during MCSDs implantations as shown in Figure 2 [74]. Figure 2-A is a micrograph of blood 

from a MCS-implanted animal with a fibrinogen concentration of 1.0 g/dL showing a very strong 

aggregation of RBCs. Due to a typical postsurgical reaction after MCSD implantation, these 

animals exhibited increased fibrinogen levels. Figure 2-B shows blood of a control calf with no 

tendency for RBC aggregation. When RBCs of this normal calf (B) were resuspended in the 

plasma of the implanted calf (A), they still did not show any tendency to aggregate (C). 

However, RBCs of the MCSD-supported calf (A) re-suspended in the plasma of the control calf 

(B) began aggregating (D) even at the much lower fibrinogen concentration of 0.2 g/dL in 

plasma. The same phenomenon was reported during testing of MCSD-implanted ovines [75]. 

These observations support the hypothesis that sublethal mechanical stress increases RBC 

aggregability, perhaps via decreased membrane sialic acid concentration and cell surface 
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negative charge, which normally creates repulsing forces between RBCs [64, 76-78]. While the 

difference in RBC aggregation behavior in these preclinical models should be noted, the 

abnormal aggregation of ovine or bovine erythrocytes may serve as an indicator for sublethal 

blood trauma during MCSD testing. RBC aggregation is of basic scientific and clinical interest, 

with a number of reports associating a strong increase in this parameter to multiple pathologies, 

and a variety of experimental studies aimed at finding and testing drugs that are able to reduce 

RBC aggregation. Yet the advantages and disadvantages of having low or no RBC aggregation 

are not clear. A significant increase in RBC aggregation from MCSD-induced sublethal 

mechanical blood damage could affect patient microcirculation by increasing the near- wall cell-

free layer, allowing more platelets and leukocytes to concentrate near the vessel wall. This in 

turn, may promote inflammation (due to excess leukocytes) and thrombosis (due to excess 

platelets), which are major complications of mechanically assisted circulation. 

 

Figure 2. Bovine RBC aggregation under Bright-field illumination. (A) Blood of a calf implanted with a 

MCSD (high RBC aggregation and high plasma fibrinogen concentration); (B) Blood of a control calf (no RBC 
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aggregation and low fibrinogen concentration); (C) Control RBCs placed in the MCSD animal’s plasma (no RBC 

aggregation at high fibrinogen concentration); and (D) MCSD calf RBCs placed in the control calf plasma (high 

RBC aggregation despite low fibrinogen concentration). The aggregation present in frames (A) and, especially, (D) 

indicate that there are RBC-specific changes directly induced by mechanical stress related to MCSD support. 

Reprinted with permission from IOS Press [74]. 

There are several methods used for evaluating RBC aggregation, namely, photometric 

techniques based on alterations of light reflectance or transmittance of RBC suspensions during 

the process of cell aggregation using special aggregometers (e.g., Myrenne Aggregometer or 

RheoScan) [79]. In addition, RBC aggregation can be assessed using low-shear blood viscosity 

and erythrocyte sedimentation rate (ESR) parameters [80]. Since the concentration of RBCs 

strongly affects the results of any aggregation measurement, the hematocrit of the blood sample 

should be always adjusted to a “standard” value (traditionally, 40% for most methods). 

Mechanical Fragility of Red Blood Cells 

The sensitivity of RBCs to mechanical stress is one indicator toward the extent of sublethal 

damage to blood. A sensitive method to assess the mechanical fragility (MF) of RBCs is the 

Rocker-bead MF test [81], which could be used during MCSD support to warn of blood damage 

preceding measurable hemolysis [82]. A corresponding Mechanical Fragility Index (MFI) is 

calculated by measuring the amount of free hemoglobin generated after blood vials containing 

stainless steel ball bearings are subjected to a defined amount of mechanical stress by rocking at 

specific parameters for a controlled period of time [81, 83, 84]. The Rocker-bead MF test was 

found to be a practical, straightforward, and reproducible way to determine changes in RBC 

susceptibility to mechanical stress related to aging, excessive exposure to mechanical stresses, or 

disease states. It is worth noting that RBC mechanical fragility in human neonates was found to 
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be higher than that in adults [85]. In all tested adult species, younger RBCs (less dense) were 

found to be less fragile than senescent RBCs (more dense) as sorted by density [64, 86]. This test 

also has demonstrated that RBCs from blood obtained from premenopausal women were 

significantly less susceptible to shear stress-induced hemolysis compared to those obtained from 

age-matched males due to RBC turnover from the menstrual cycle [87]. The Rocker-bead MF 

test has also been applied to compare mechanical blood damage produced by cell salvage suction 

devices and more recently was used for evaluating sublethal RBC injury induced by Blood Bank 

storage [88, 89]. While there was no significant difference in MF observed between ABO 

groups, there was a strong increase in RBC fragility proportional to storage time. In the same 

study of the Blood Bank-stored donor RBCs, the cells were tested for potential changes in their 

rheological properties using a viscoelasticity analyzer (Vilastic-3; Vilastic Instruments). All 

stored RBC suspensions demonstrated a progressive increase in viscosity and cell rigidity at 

equivalent shear rates over 7 weeks of storage, indicating a significant decrease in RBC 

deformability over that period of time [89, 90]. The clinical effects of storage time on donor 

RBC units, including cell membrane changes, decreased oxygen deliverability, and increased 

oxidative species – termed RBC storage lesion – is well established [91, 92]. 

Because of the dependence of the Rocker-bead MF test results on RBC concentration, 

any comparison between groups or time points requires the adjustment of the sample hematocrit 

to a “standard” value before testing as performed in the studies presented above [89, 92]. Further 

work to improve the test by Ziegler et al, including eliminating the additional time for hematocrit 

normalization and significantly reducing the blood volume requirement [93], was accomplished 

in conjunction with this dissertation and is included in Appendix A. The proposed reduced 
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volume Rocker-bead MF test and accompanying modified MFI (MMFI) now has the potential to 

become an important scientific and possibly clinical hematological parameter [23, 93]. 

1.2.4 Factors Affecting RBC Mechanical Trauma 

Several studies have demonstrated potential ways to reduce mechanical blood trauma caused by 

MCSD using biocompatible and rheologically active additives to blood [61, 94-97]. Kamada et 

al used albumin additives to the priming solution during extracorporeal circulation in patients 

undergoing coronary bypass surgery to prevent erythrocyte crenation, thus improving RBC 

deformability. This modification of the procedure also improved microcirculatory flow in 

patients undergoing open heart surgery [94]. It is important to note that current circuit priming 

strategies, especially in pediatrics, remain unsettled over the use of albumin, synthetic colloid 

suspensions, packed RBC units, fresh frozen plasma (FFP), or some combination therein, due to 

clinical concerns of hemodilution, inflammation, bleeding, and cost effectiveness [98-102]. 

Though as indicated in this review, sublethal mechanical blood trauma likely plays a role in 

some of these complications. Armstrong et al demonstrated that the nonionic surfactant 

poloxamer-188 (RheothRx) protected RBCs from damage caused by mechanical stress and 

reduced leakage of ADP from RBCs, thus potentially inhibiting ADP-induced platelet 

aggregation. The authors proposed that nonspecific adsorption of copolymer to the RBC surface 

via the hydrophobic polyoxypropylene moiety was responsible for shielding them from 

mechanical damage. RheothRx injection has subsequently been shown to effectively treat acute 

ischemic disorders such as myocardial infarction [95]. 

Various plasma proteins have likewise demonstrated protective effects on RBC 

mechanical damage [96]. In these studies, bovine cells suspended in various solutions were 
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simultaneously exposed to the same mechanical stress using the standard RBC Rocker-bead MF 

test in experiments performed at room temperature with controlled osmolality and viscosity of 

the suspension media. The lowest hemolysis was obtained for RBCs suspended in serum, 

plasma, and albumin solutions; while hemolysis in phosphate buffered saline (PBS) or in dextran 

(Dextran-40) suspensions was over 3 times greater than in plasma (p<0.001). The presence of 

relatively small amounts of plasma (30%) in PBS media significantly (p<0.001) decreased 

mechanical hemolysis compared to RBCs suspended in PBS only. The clinical significance of 

these results is that a decrease in the concentration of plasma proteins due to hemodilution may 

elevate blood damage during extracorporeal circulation [96]. Protective effects of a 4%-modified 

fluid gelatin solution and a 4% albumin solution on blood bank-stored RBC exposed to 

mechanical stress has been reported by Sumpelmann et al [103]. A similar protective effect was 

demonstrated by replacement of 20% of blood plasma with a perfluorochemical-based blood 

substitute in in vitro experiments, promising improvement in blood oxygenation as well [97]. An 

additional benefit of this additive was a decrease in low shear viscosity and erythrocyte 

sedimentation rate, both related to the ability of the perfluorochemical emulsion to reduce RBC 

aggregation. Finally, a significant reduction of mechanical hemolysis was observed in 

suspensions of bovine RBCs in autologous bovine plasma and/or polyethylene glycol (PEG 

~20,000 MW; Sigma) compared to Dextran-40 (40,000 MW; Sigma) and PBS as shown in 

Figure 3 [23, 104]. Therefore, in summary there are both biochemical and mechano-physical 

considerations towards the use of specific molecular additives or products in the protection of 

erythrocytes against mechanical hemolysis. 
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Figure 3. Effect of suspension media with matched viscosities on bovine RBC mechanical fragility; 

highlighting the protective effects of plasma proteins and PEG versus Dextran-40 solution. Data from Kameneva et 

al [104], and reprinted with permission from WICHTIG [23]. 

1.2.5 Sublethal RBC Damage Effects on Platelets 

Exposure of platelets to supraphysiological mechanical stress can cause their activation and 

eventual dysfunction with far-reaching implications [105-109]. However, in addition to 

hemolysis-induced platelet activation, there is growing evidence that sublethal erythrocyte 

damage promotes platelet activation as well. The potential loss of smaller molecules such as 

ATP and 2-3diphosphoglycerate (2-3 DPG) through 10 Å to 20 Å micropores in stretched RBCs 

was described by Sutera [29]. Alkhamis et al followed with a study that found a 2% release of 

ADP, from RBCs under shear, induced platelet aggregation in vitro [110]. The leakage of these 

platelet activating factors was also found after short exposure times of blood in extracorporeal 

systems [29, 111]. 

In addition to the agonistic effects from the release of intracellular RBC contents, there is 

a rheological aberration that contributes to platelet activation and behavior [112]. For example, 
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alterations in RBC deformability may modify their effect on platelet transport to boundary walls 

[113-115]. Using chemically-modified RBCs to change deformability, Aarts et al showed an 

increase in platelet adhesions with increasing RBC rigidity within isolated arteries in vitro [116]. 

This was corroborated in a follow-up, double-blind, clinical, in vivo study using isoxsuprine, a 

vasodilator found to increase erythrocyte deformability, which supported the previous findings 

that increased RBC deformability reduces platelet-wall interaction and adhesion [117]. The 

results of computational simulations demonstrated that at a wide range of shear rates and 

hematocrit values, the rate of platelet adhesion is mainly limited by the frequency of their near-

wall rebounding collisions with RBCs [118]. These findings suggest that to examine and address 

thrombotic complications without the consideration of the rheological and biochemical influence 

of erythrocytes may be a gross oversimplification and should not be overlooked when 

investigating thrombosis in MCSDs. 

1.2.6 Blood Transfusions in MCS 

First-generation, pulsatile-flow ventricular assist devices and now continuous-flow, rotary blood 

pumps have broadened the availability of MCSDs for adult patients with heart disease. While 

mechanical circulatory support has been gaining acceptance, there are growing reports of 

MCSD-associated complications that require consideration including device thrombosis and 

nonsurgical bleeding [16, 26, 27, 119-124]. Due to “first-in, first-out” policies to minimize 

waste, packed RBC units given to patients within the United States are typically close to their 

maximum storage duration limit (average 42 days) as dictated by the Food and Drug 

Administration (FDA). Since collected erythrocytes already have an age distribution before 

subsequently spending one-third of their lifespan deteriorating ex vivo, it is unsurprising that a 
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25% loss of donor RBCs within 24 hours of transfusion, while physiologically taxing, is still 

considered clinically acceptable [125, 126]. The potential consequences of administering blood 

products (e.g., inflammation, allosensitization, pulmonary hypertension, right heart failure, 

hepatic congestion, coagulopathy, and mortality) are well established, but acute and chronic 

postoperative transfusions remain prevalent for MCSD-implanted patients [124, 127, 128]. 

Although bleeding is unavoidable from surgical insult, one center reported an average packed 

RBC transfusion rate after implantation of 5.7 units per patient overall with an upper limit of 120 

units [129]. Understanding that there is a significant increase in the mechanical fragility of stored 

Blood Bank RBCs and the results of mechanical stress from MCSDs, one can question the utility 

of transfusing MCS patients only for these cells to lyse, be prematurely removed by the spleen, 

and unable to improve microcirculation. 

1.2.7 Conclusions 

With current technology, there is no way to completely avoid mechanical damage to blood cells 

produced by MCSDs. However, the negative impact produced by mechanically damaged blood 

cells on organ and tissue functionality necessitates the need continually strive to minimize the 

complications associated with MCS. In summary, the rheological and biochemical impact of 

blood trauma should not be overlooked when investigating thrombosis, hemolysis, or anemia in 

MCSD patients. Though mechanical trauma in blood pumps is commonly categorized as either 

erythrocyte destruction or coagulopathy centered, the interdependence of all blood and blood 

flow components must be kept in mind during the design, development, and use of MCSDs. 
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1.3 THE PEDIAFLOW® PEDIATRIC VAD 

While there continues to be a need for next-generation pediatric MCS technology, the small 

market potential has limited commercial interest. Driven by the lack of progress for this 

underserved population, the National Heart, Lung, and Blood Institute’s (NHLBI) Pediatric 

Circulatory Support Program (PCSP) awarded over $22 million in 2004 to fund five separate 

consortia towards the development of novel pediatric MCS devices [7]. As a follow on to this 

initiative, in 2010 NHLBI launched the Pumps for Kids, Infants, and Neonates (PumpKIN) – 

Pre-Clinical Program and awarded four contracts ($24 million) to support four pre-clinical 

efforts (three for pediatric devices funded under PCSP) to gain Investigational Device Exemption 

(IDE) from the FDA [130]. The PediaFlow® Consortium, consisting of the University of 

Pittsburgh, Children’s Hospital of Pittsburgh, Carnegie Mellon University and LaunchPoint 

Technologies™ (Goleta, CA), received an award in both NHLBI Programs. 

1.3.1 Development and Evolution 

As a participant in both NHLBI programs, the PediaFlow® Consortium designed an implantable, 

mixed flow, fully magnetically levitated (maglev), rotodynamic VAD to support the smallest 

(BSA <0.5 m2 with a cardiac index >3.0 L/min/m2) and most vulnerable patients (due to their 

large numbers and lack of any device) for durations consistent with bridge-to-transplant wait list 

times, with the objective of minimizing MCS-associated serious adverse events [5, 131]. From 

the first prototype (PF1) demonstrating the feasibility and biocompatibility of a de novo, mixed-

flow (or “diagonal”) maglev pump, the developmental evolution and miniaturization of the 

PediaFlow® pediatric VAD summarized in Figure 4 involved the implementation of 
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turbomachinery principles outside of the usual operating ranges. [132-134]. Designed to run at 

supercritical speeds (RPMs above resonance frequencies), the 3rd generation PediaFlow® (PF3) 

demonstrated excellent biocompatibility in vivo but was unable to achieve target flow rates due 

to rotor (impeller) instability precluding operation at uppermost pump speeds [134, 135]. 

 

Figure 4. Evolution and miniaturization of the PediaFlow® from the first prototype (PF1) to the 4th 

generation (PF4) pediatric VAD. 

1.3.2 PediaFlow® 4th Generation (PF4) 

Intended to provide up to six months of circulatory support for patients between 3 to 15 kg at 

flow rates of 0.3-1.5 L/min, the 4th generation PediaFlow® pediatric VAD (PF4) is the result of 

over 10 years of biomedical, mechanical, electrical, and computational engineering (Figure 5-



 23 

A). Representing the final/frozen pump topology design, the PF4’s optimized blood-flow path 

consists of a tapered cylindrical impeller with four blades on the conical inlet face, leading to a 

single 1.5 mm annular fluid gap region, before passing through a three vane flow straightener 

machined into the aft-housing upon exit (Figure 5-B) [135]. By increasing the voice (levitation) 

coil to motor stator size-ratio and optimizing the impeller blading, but otherwise similar to the 

PF3 design, the PF4 was able generate higher flows over greater pressure heads to reach the 

target design goals. Integrated ‘quick-connect’ coupling mechanisms, recessed within the 

housing, enable direct attachment to the pump inlet and outlet. Approximately the size of AA 

battery, a decrease in size of almost 75% from the initial PF1 prototype (Figure 5-C), the PF4 is 

intended to be fully implantable in infants as small as 5 kg through placement behind the left 

rectus abdominus muscle with a single percutaneous driveline for electrical power.  

 

Figure 5. The PediaFlow® PF4 prototype and implantable components. A) The PF4 pump topology, B) the 

disassembled pump showing the stator, rotor, and housing, and C) size comparison to an AA-size battery. 
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Benchtop evaluation of the PF4 to confirm hydraulic performance in vitro was performed 

by measuring pump flow rate and pressure differential in a closed flow loop using a 2.39 

centipoise (cP) blood analog glycerol-solution at room temperature to generate characteristic 

pump ‘H-Q’ curves following previously published methods [132]. The characteristic 

performance curves of the PF4 highlighted an expanded operating range between 0.3 to 2.0 

L/min at physiologically relevant pressure ranges in contrast to PF3 (Figure 6). 

 

Figure 6. Characteristic H-Q pump curves of PF3 and PF4 using a blood analog (viscosity = 2.39 cP). 

1.4 OBJECTIVES 

The overall goal of this research is to facilitate the translation of next generation, pediatric blood 

pumps from the bench top to the bedside by developing the framework to enable precise testing, 

optimal patient coupling, and accurate device diagnostics. 

The development and success of these next-generation devices are contingent on several 

areas that have remained unaddressed. The lack of a standardized practice for the in vitro 



 25 

assessment of pediatric MCSDs prevents intra- or inter-consortium comparisons [37, 136]. 

Equally important to RBP performance are the cannulae used to connect the device to the 

patient’s heart and great vessels, with a broad analysis required to determine a pediatric-

appropriate design [137-139]. Finally, there is no comprehensive, encompassing, off-the-shelf 

data acquisition platform that can serve to record pump parameters while providing alarm 

monitoring, real-time flow estimation, and diagnostic support services during preclinical testing. 

Towards this end, this dissertation describes the work and effort, in part, resulting in the 

optimized PediaFlow implantable system of today. 

Objective #1: Design, optimize, and validate new standards of practice for the in 

vitro measurement of mechanical blood trauma in pediatric blood pumps. 

Appropriate testing parameters and guidelines characteristic of pediatric patients was determined 

in order to accurately simulate in vivo operation on the bench top through the analysis of 

literature and hemorheological examination. A pediatric mock loop was optimized to enhance 

blood mixing, minimize blood damage unrelated to the tested device, and maximize 

reproducibility of the pump tests. The developed standards were used in the in vitro hemolysis 

assessment of the PF4 prototypes and the previously tested and clinically approved Thoratec® 

PediMAG® (Pleasanton, CA) extracorporeal blood pump for validation. 
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Objective #2: Evaluate the performance and suitability of an inflow cannula design 

for use with pediatric rotary blood pumps. 

Based on preliminary in vivo findings, a tailored approach was taken to verify and validate the 

inflow and outflow pathways used to connect the pediatric pump. A new inflow cannula was 

designed and evaluated against previous iterations to examine pressure losses, ventricle 

unloading, positional sensitivity, and resistance to ventricular suction. 

Objective #3: Develop a comprehensive Diagnostic Support System (DSS) for in vivo 

preclinical testing of the PediaFlow® pediatric VAD. 

The purpose of the DSS platform is to provide a straightforward user interface, enhanced data 

logging capability, complex real-time flow estimation, advanced alarm detection, basic 

resolution suggestions, and remote monitoring capabilities. Software architecture, data flow, and 

front panel layout was designed based on maximizing computation efficiency, redundancy, and 

usability. A flow estimation algorithm for the PF4 was developed from pulsatile mock-loop 

testing and implemented within the platform. The DSS iterations were implemented, evaluated, 

and improved “just-in-time” in conjunction with, and in support of on-going PF4 in vivo implant 

studies. 
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2.0  IN VITRO ASSESSMENT OF MECHANICAL BLOOD TRAUMA IN 

PEDIATRIC BLOOD PUMPS 

The characterization of blood damage is essential for the development and regulatory approval of 

any blood-contacting medical device [140, 141]. While computational fluid dynamics (CFD)-

simulations are used extensively during the design process of MCS devices and preclinical in 

vivo animal studies are considered the conclusive indicators for the biocompatibility, in vitro 

benchtop testing remains integral as both cost-effective and a requirement for demonstrating 

safety [36, 142]. 

2.1 INTRODUCTION 

2.1.1 Benchtop Hemolysis Testing 

A crucial component to the development of any mechanical circulatory support device is 

preclinical in-vitro hemolysis testing. Multiple publications have served as de-facto guidelines 

for examining full-support adult RBP, yet continued variability in blood preparation, 

experimental procedures, and reported results makes comparisons between devices or even 

laboratories impossible. As noted by Herbertson et al, the reported hemolysis results for the same 

pump at similar operating conditions can vary by two orders of magnitude [84, 143, 144]. The 
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ASTM F1841 standard is often cited for adult VADs tested at 5 L/min, however the priming loop 

volumes reported have varied from the suggested 450 ± 45 mL to 600 mL and even 1000 mL of 

blood [144-147]. It is apparent that the application of these guidelines would be inappropriate 

when evaluating RBPs for pediatric patients (<20 kg) at flow rates below 2 L/min with much 

lower total circulating blood volumes, yet literature remains sparse on the testing of pediatric- or 

partial- support devices.  

2.1.2 Previous PediaFlow® Testing  

In vitro hemolysis testing for the 1st thru 3rd generation PediaFlow® prototypes utilized a 

horizontally oriented flow loop using off-the-shelf, commercially-available components [132, 

134, 148] as shown in Figure 7-A. Initial concerns with stagnation due to extraneous ports, low 

test flow rates, and disproportionate blood priming-volume requirements led to the use of a 

magnetic stir plate under the blood reservoir to promote mixing (Figure 7-B). 

 

Figure 7. A) Benchtop hemolysis testing of the 1st generation PediaFlow®, and B) top view schematic of the 

in vitro mock loop for the PF1-PF3 prototypes utilizing a magnetic stir plate. 
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As the standard of practice is to use vertically-oriented flow loops to prevent artificial 

hemolysis from cavitation or outgassing (Appendix A), an attempt was made to increase 

hydrostatic preload during the testing of the PF3 by elevating the reservoir with respect to the 

pump with negligible results (Figure 8) [144, 149].  

 

Figure 8. The elevated reservoir and magnetic stir plate during in vitro testing of a PF3 prototype pump. 

Overall, the existing practice for in vitro hemolysis testing of pediatric RBPs was far 

from ideal. The addition of the magnetic stir bar, a source of shear stress and additional 

hemolysis (as evidenced by the resultant), now requires the use of an appropriate control to 

isolate and quantify only MCSD-induced hemolysis. The lack of standard operating procedures 

led to variable experimental setups, different blood preparation techniques, inconsistent results, 

and in one instance, the ingestion of a large air bolus after sampling from a stopcock proximal to 

the pump inlet.  

With the impending start of the PumpKIN trial and anticipated delivery of multiple 4th 

generation PediaFlow® prototypes, a new experimental system for benchtop hemolysis testing of 

pediatric MCSDs would be necessary. 
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2.2 A REUSABLE, COMPLIANT, SMALL VOLUME BLOOD RESERVOIR FOR IN 

VITRO FLOW LOOPS 

The work presented below has been published in part within Artificial Organs [150]. 

Bench-top in vitro hemolysis testing is a fundamental tool during the design and 

regulatory safety evaluation of blood-contacting medical devices. While multiple published 

experimental protocols exist, descriptions of the test loop reservoir remain ambiguous. A critical 

fixture within the circuit, there is no readily available blood reservoir that ensures thorough 

mixing and complete air evacuation: two major factors which can affect results. As part of the 

FDA Critical Path Initiative, a three-piece reservoir was developed consisting of a 3D-printed 

base, a plastic clamp set, and a medical-grade blood bag. This simple, reusable, and cost-

effective design was used successfully in the hemolysis assessment of FDA benchmark nozzles 

and prototype rotary blood pumps, and may be useful as an integral component to any in vitro 

blood circulation loop. 

2.2.1 Introduction 

The characterization of blood damage is essential for the development and safety evaluation of 

many blood-contacting medical devices including ventricular assist devices, cardiopulmonary 

bypass (CPB) components, and hemodialysis catheters [140, 141]. In addition to pre-clinical in 

vivo animal studies [142], in vitro hemolysis testing is an important tool for assessing the 

hemocompatibility of mechanical circulatory support devices [36]. Although multiple 

publications describe variations of the typical experimental loop (Figure 9-A), they lack details 
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regarding the blood reservoir [144, 146, 151]: a vital component towards ensuring accuracy and 

reproducibility. 

 

Figure 9. Example mock loops used for in vitro hemolysis testing of blood pumps: highlighting the A) typical 

generic reservoir representation and B) proposed reservoir design. 

Most commercial blood reservoirs cannot 1) accommodate a wide range of blood 

volumes, 2) provide thorough blood mixing, 3) eliminate the air-blood interface, while 4) 

remaining reusable or inexpensive. Hard-shell CPB or cardiotomy reservoirs, unable to be de-

aired, retain a large air interface. Single-use, soft-shell CPB reservoirs or clinical blood bags 

often contain extraneous or undersized ports leading to stagnation, pressure loss, and potential 

collapse (Figure 10). 

In support of the Food and Drug Administration (FDA) Critical Path Initiative 

Computation Fluid Dynamics (CFD)/Blood Damage Project, a cost-effective, small volume 

blood reservoir consisting of a disposable bag clamped to a reusable base (Figure 9-B) was 
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developed to enhance washout while allowing for the complete elimination of air during in vitro 

testing [84].  

 

Figure 10. Commercially available, pediatric (left) and adult (right) soft-shell reservoirs used in previous 

benchtop blood biocompatibility experiments highlighting the deficient extraneous and fenestrated ports. 

2.2.2 Materials and Methods 

½”-Port Reusable Base 

The rigid base was designed in SolidWorks® (Dassault Systemes®, Velizy, France) with two 

barb fittings to accept ½” ID tubing, a flow separator between the inlet and outlet ports, and a 

0.10” external circumferential lip (Figure 11-A). The flow separator was shelled to remove 

excess material while maintaining a minimum thickness of 3/64”. All corners and edges were 

smoothed on the model before manufacturing. Fabrication was accomplished with a 

stereolithography additive (SLA) printer (Viper™ SLA® System, 3D Systems® Inc, Valencia, 

CA, USA) using the Somos® Watershed XC11122 (DSM®, Elgin, IL, USA) photopolymer 

resin. Following light sanding to remove the printer-generated structural supports, a liquid coat 



 33 

of the same photopolymer resin was brushed onto the blood-contacting surfaces before a 30-

minute UV cure and a final isopropanol rinse. 

Disposable Blood Bag 

A medical-grade, three-port, 500-mL compliant polyvinyl chloride (PVC) blood bag (Qosina®, 

Edgewood, NY, USA) was diagonally heat-sealed and trimmed along the bottom to remove the 

existing orifices. An optional Luer fitting (Qosina®, Edgewood, NY, USA) was fixated into the 

apex with cyanoacrylate glue before fitting the bag over the base. 

Clamp Set 

The clamp set consisted of two plastic halves designed to secure the compliant bag against the 

rigid base (Figure 11-B). Milled from rigid PVC stock, the clamps have a 0.10” wide groove to 

accept the reservoir lip and two throughput holes for assembly using 10-32 machine bolts and 

wing-nuts. 

 

Figure 11. Schematic of the reusable ½”–port A) printed base, B) machined clamp set, and C) the 

manufactured reservoir components with the modified blood bag before assembly. 
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CFD Analysis 

A computational fluid dynamics (CFD) analysis to assess reservoir performance at low flow 

rates was conducted using SolidWorks® Flow Simulation and compared with a previously 

employed three-port (two ¼” ID, one ½” ID fenestrated), 1-L commercial CPB venous reservoir 

bag using a non-Newtonian, power-law blood model (asymptotic viscosity: 3.0 cP) [132, 148]. 

The reservoirs were assumed to be rigid with inlet flow set to 0.5 L/min to assess their stagnation 

potential, and an outlet boundary condition of atmospheric pressure at room temperature (20°C). 

2.2.3 Results 

The single-piece design of the 3D-printed, optically clear, reusable base, devoid of seams or 

adhesives, reduced the possibility of cracking and contamination. Sufficient wall thicknesses and 

fillets ensured rigidity and fluid washout of the reservoir base, while lowering printing time and 

resin cost. With similar material properties as clinically used ABS plastic, the Watershed 

XC11122 resin meets ISO 10993 standard specifications for cytotoxicity, sensitization, and 

irritation, along with USP Class VI standards. As the SLA printing process leaves an inherently 

porous exterior, the integrated liquid resin finish reduced surface roughness to an Ra<0.3 μm 

(Contour GT-KI®, Bruker AXS, Madison, WI, USA), avoiding concerns of delamination and 

wear associated with topical sealants. Compressing the PVC bag between the circumferential lip 

and clamp created a labyrinth face seal and a leak-proof assembly (Figure 11-C). Stain-resistant 

and easy to clean, the rigid bases have been washed and sanitized with degreasers, enzymatic 

detergents, 70% ethanol, and 10% bleach without issue before reuse with a new blood bag. 
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Figure 12. CFD predicted velocity contours at 0.5 L/min for the commercial venous blood bag with the 

fenestrated port defined as the reservoir A) inlet or B) outlet, and C) the developed ½”-port reservoir assembly. 

The cross-sectional velocity profiles from CFD-analysis of the commercial venous 

reservoir bag and proposed reservoir at 0.5 L/min are presented in Figure 12. Regions below 0.1 

cm/s shown in black designate possible areas of stagnation. After equally distributing blood flow 

through the two smaller ports to minimize dead space, the three-port commercial bag was 

examined in two flow configurations. Defining the fenestrated port as the reservoir inlet created 

large areas of stasis below the inlet sleeve and above the bag outlets (Figure 12-A). Reversing 

the reservoir fluid flow direction decreased those regions by the development of two distinct 

circulation patterns from the overlapping flows between the shared inlet ports (Figure 12-B). In 

both conditions, peak velocity of 10.8 cm/s was located inside the sleeve of the fenestrated port. 

In contrast, the designed reservoir assembly had a maximum velocity of 16.5 cm/s and 

maintained a well-developed, counter-clockwise flow regime (Figure 12-C). The flow fields 
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looked similar at higher flow rates (5 L/min, not shown) with reduced stagnation areas due to 

jetting, though with more pronounced secondary flow fields in the commercial reservoir. 

While vertical operation is suggested to ensure adequate preload and allow hanging using 

the existing reinforced opening (Figure 13), the reservoir has also been utilized horizontally 

allowing for possible water bath submersion [144]. Priming and air removal was straightforward 

with the Luer fitting deairing port. The angled heat seal reduces blood volume and, in 

conjunction with the flow separator within the base, directs flow to minimize stagnant regions 

within the reservoir. As assembled, the ½”–port reservoirs have a fluid capacity of 250 mL and 

are customizable by adjusting the bag size, heat-seal angle, and insertion depth of the base before 

clamping. 

 

Figure 13. The vertically hung, ½”–port blood reservoir assembly after clamping, filling and de-airing. 
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2.2.4 Summary 

This cost-effective assembly provides a useful in vitro, bench-top reservoir for hemolysis testing 

of blood-contacting devices. The reusable, single-piece base enables attachment to low cost, 

disposable blood bags. The rigid, large bore ports and flow separator minimize resistance, 

promote mixing, and prevent bag collapse, while the angled compliant bag allows for complete 

de-airing. The versatility of the reservoir makes it an effective component for any flow loop 

utilizing blood or other fluids, with an added heat exchanger if temperature control is required 

during vertical operation. Aside from possible natural yellowing of the reusable base due to 

ambient UV-light exposure, performance remains unchanged after four years of consistent use in 

a multi-laboratory study [84]. This novel reservoir has been used successfully during the 

hemolysis assessment in the FDA benchmark nozzles, rotary blood pump prototypes, and for 

flow visualization experiments [84]. 

2.3 RESERVOIR FOR INTRAVENTRICULAR MCS DEVICES 

Benchtop evaluation of intraventricular RBPs pose a unique challenge owing to features on the 

pump surfaces, which impacts hemocompatibility, but may be covered or obstructed after 

attachment to tubing, compliant blood bags, or clinical hard-shell reservoirs. Maintaining inlet 

clearance and adequate mixing during testing is crucial at the lower flows associated with 

pediatric and partial support VADs. An attempt was made to develop a new blood reservoir to 

address the growing pool of transmyocardial-type VADs, and support in-vitro hemolysis 

assessment. 



 38 

2.3.1 Methods 

Design requirements for an intraventricular-compatible MCS reservoir include: i) a non-

collapsible region around the pump inlet, ii) a target total loop blood volume < 1000 mL, iii) 

gravity assisted priming and drainage, iv) minimal stagnation zones, v) a pump orientation 

analogous to apical cannulation, vi) straightforward pump insertion and removal without 

requiring full submersion of the device. 

 

Figure 14. A) The intraventricular-RBP blood reservoir design, B) the reservoir inlet-entrance angles (φ = 60° 

& 80°) under consideration, and (inset) the generic RBP-model used during CFD.  

A two-piece, bottom-mount, cylindrical reservoir (Figure 14-A) was designed in 

SolidWorks® for SLA-printing using the same optically clear, ABS-like, biocompatible resin 

and fabrication process from 2.2.2 (Somos® Watershed XC11122). The assembly consists of a 

lug-type lid which mates flush with the inner lumen of the reservoir base with a radial seal 

(AS568-043 silicone o-ring, 9396K124, McMaster-Carr®, Elmhurst, IL) outside of the chamber. 
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Two interchangeable domed lids provide blood volumes of 300 or 500 mL and attach with a 

keyed, quarter-turn locking mechanism. The 3/8” ID tubing reservoir inlet barb, tangent to the 

reservoir base, provides washout with either lid size. Pump insertion is provided from the 

exterior through a 1.0 cm long interference/friction fit opening at the sloped base. Three luer 

fittings provide ports for fluid sampling, temperature measurement, and venting of the reservoir. 

A corresponding stand, consisting of three aluminum legs and an acrylic base, elevates the 

reservoir assembly to accommodate the extra-ventricular portion of the pump and outflow 

tubing. 

Computational Fluid Dynamics (CFD) was performed using SolidWorks® Flow 

Simulation to determine optimal reservoir entrance inlet angle (Figure 14-B) by visual 

assessment of overall washout, stagnation areas, and ability to remove air emboli removal during 

operation. Input conditions and assumptions include: i) reservoir inlet flow rate: 0.5-2.0 L/min, 

ii) pump inflow pressure: 760 mmHg, iii) Newtonian fluid µ = 3.5 cP (asymptotic viscosity of 

~30% Ht whole blood at 37°C), and iv) reservoir inlet entrance angle (φ): 60° & 80°. 

2.3.2 Results and Discussion 

Example screenshots from the CFD analysis of the 500 mL capacity reservoir for both inlet 

entrance angles at two flow rates are shown in Figure 15. While blood mixing appears 

equivalent, air entrapment at the offset vent luer fitting for removal was notably enhanced with 

the sharper entrance angle (φ: 60°) at the flow rates examined. This reservoir design was 

subsequently printed and evaluated on the bench. 
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Figure 15. Velocity pathlines of the intraventricular-MCS compatible, 500 mL, in vitro blood reservoir 

superimposed with an emboli particle study to assess air entrapment. 

The tapered, friction-fit orifice successfully secured and formed a fluid-tight seal with the 

use of a silicone tubing “sleeve” around the trans-myocardial portion of a RBP prototype 
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(VADovations® Inc, Oklahoma City, OK) undergoing evaluation, while the lid mechanism was 

both leak-proof and easy to operate. Finally, the complementary platform provided adequate 

stability and clearance for the pump and outflow tubing of the mock loop. 

 

Figure 16. Benchtop hemolysis loop with the SLA-printed blood reservoir and an inline compliance chamber 

during in vitro testing of an intraventricular RBP. 

2.3.3 Limitations and Future Work 

While the reservoir was used initially in several in vitro hemolysis experiments successfully 

(Figure 16), two significant shortcomings with this design soon became evident negating its 

utility and continued use. Due to the rigidity of the printed housing, a compliance chamber (R-38 

ECMO Bladder, Medtronic®, Columbia Heights, MN) was required for sampling during 

intermediate timepoints without blood volume replacement, and therefore a requisite each test. 

Of greater concern, however, was the formation of a large vortex at all hemodynamic 

conditions due to the cylindrical reservoir design and tangential inlet entrance. Contrary to the 
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CFD predictions, instead of remaining at the dome, any air present would travel down and be 

immediately ingested by the pump. In addition to the deleterious effect on blood trauma and 

micro-emboli generation leading to signal failure of the ultrasonic flow probes, the air can 

disrupt the hydraulic or magnetic suspension of the rotor causing damage to the pump itself.  

Therefore additional development is necessary to design an intraventricular RBP-

compatible blood reservoir that addresses these limitations, potentially through off-axis pump 

placement and an integral compliance component. 

2.4 MATERIALS AND METHODS 

Crucial to the development of any mechanical circulatory support device is preclinical in-vitro 

hemolysis testing. Multiple publications have served as de-facto guidelines for examining full-

support adult rotary blood pumps, yet continued variability in blood preparation, experimental 

procedures, and reported results makes comparisons between devices or even laboratories 

impossible. With the growing interest in pediatric- and partial- support ventricular assist devices 

(VADs), these existing standards are moreover inappropriate for in-vitro testing of lower flow 

devices. As part of the PediaFlow® Consortium, a new method is necessary that includes strict 

adherence to blood preparation, flow loop setup, and sampling procedures to determine the 

hemolytic potential of the next-generation MCSDs. 
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2.4.1 Blood Preparation 

Fresh, venipuncture ovine blood anticoagulated with sodium citrate was purchased (Lampire 

Biological Laboratories® Inc, Pepersville, PA) and shipped on ice overnight for use within 3 

days. The blood was gravity fed through a 40-µm leukocyte reducing filter (Pall Biomedical® 

SQ49S, Fajardo, PR) and hematocrit was adjusted to 30±1% with the addition or removal of 

autologous plasma. After examination under microscope for gross abnormalities, the blood pool 

was then measured for the follow parameters: total hemoglobin concentration (tHb), plasma-free 

hemoglobin (plfHb), blood density, whole blood and plasma viscosity (@ shear rate of 200 s-1), 

total plasma protein (TPP) and fibrinogen (FB) concentrations, and plasma osmolality. In 

addition, the RBC mechanical fragility index (MFI) of the blood pool each day was assessed 

using the large volume rocker bead test [84, 93]. 

2.4.2 Circulating Mock Loop 

A schematic of the loop design is shown in Figure 17, consisting of a de-airable reservoir (2.2), 

1/4” and 1/2” ID medical grade Tygon™ tubing (S-50-HL, Saint-Gobain™, Akron, OH), two 

pressure sensors (PCB Piezotronics® Inc., Depew, NY), a clamp-on tubing flow probe (TS410, 

Transonic®, Ithaca, NY), a thermistor (Cole-Parmer, Vernon Hills, IL), a manually-adjustable 

tubing-clamp throttle, high-flow stopcocks (Smith Medical, Minneapolis, MN), pressure 

monitoring line (Baxter), and polycarbonate barb fittings as appropriate (Qosina®, Edgewood, 

NY, USA). After assembly each day, the loop was washed with phosphate buffered saline (PBS) 

for no more than three minutes to ensure the system was sealed and operational. The loop was 

then drained, primed, and circulated with fresh 1% bovine serum albumin in PBS to passivate all 



 44 

blood contacting surfaces for five minutes before thoroughly emptying. Blood was gravity filled 

from the lowest point and walked through the loop components to minimize bubbles. After de-

airing the reservoir, the blood was circulated for 30 seconds before stopping to remove any 

additional visible air before commencing the experiment. 

 

Figure 17. A) Schematic of the pediatric in vitro hemolysis loop and B) actual experimental setup. 

Loop parameters and MCSD signals were recorded prior to pump start, after achieving 

desired testing conditions for pressure and flow rate (baseline), and every 30 minutes thereafter. 

The throttle, and pump speed if necessary, was adjusted as needed to maintain target flow rates, 

while temperature was monitored but not controlled. 

Between tests, the loop was drained and recirculated twice for 10 minutes with fresh 

PBS, passivating with albumin, and refilling with fresh blood as described above. At the end of 

each test day, following the multiple PBS rinses until minimal blood was visible, the loop was 

dismantled. The stopcocks and monitoring line were discarded, while the remaining individual 

components were cleaned using a 1% solution of lipid-remover (Simple-Green®, Sunshine 
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Makers Inc, Huntington Beach, CA) and enzymatic detergent (Tergazyme®, Alconox, Inc., 

White Plains, NY), rinsed (distilled water), dried, and saved for reuse.  

2.4.3 Blood Sampling 

Samples were taken from the loop one minute after pump start, and every hour subsequently, for 

the measurement of baseline parameters (e.g.: hematocrit, plasma-free hemoglobin) and trending 

of plasma-free hemoglobin for hemolysis throughout the experimental duration. All sampling 

was done from the outflow port, with an initial 0.5 mL discard drawn followed by two plfHb 

samples (~3 mL/ea) per timepoint. The stopcock port was then immediately cleaned using 4x4 

gauze and PBS until no blood remained visible. 

2.4.4 Measurements and Analysis 

Sample processing (i.e.: repeated centrifugation of the plasma supernatant) and measurement of 

plasma-free hemoglobin (i.e.: absorbance at 540nm) remained unchanged from previous 

PediaFlow® iterations [24, 132]. The Normalized Index of Hemolysis (NIH) was calculated for 

each pediatric hemodynamic test condition as follows [143]: 

 

where ∆Hb is the measured change in plasma free hemoglobin (g/L), V is the total circuit 

volume (L), Ht is the blood hematocrit (%), Q is the flow rate (L/min), and T is the test duration 

(min). All calculations and data analyses were done in Excel (Microsoft, Redmond, WA) and 

SPSS (IBM® Corp, Armonk, NY). 
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2.5 RESULTS 

Seven PF4.x prototypes plus a clinical control (PediMAG®, Thoratec® Corp, Pleasanton, CA) 

were evaluated at three flow rates (0.5, 1.0, and 1.5 L/min) for 120 minutes against a pressure 

head of ~100 mmHg at a starting blood loop volume of 300 mL. 

 

Figure 18. A) NIH results for the eight RBPs tested using the pediatric in vitro protocol, a summary of the 

daily blood pool parameters (inset), and B) a comparison between the PF3 and PF4 prototypes. 
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The mean NIH result for each pump at the three flow rates is shown in Figure 18-A, 

along with a table summarizing the daily blood pool parameters between the 17 days of 

experiments (Figure 18-inset). Figure 18-B is a comparison of the in vitro hemocompatibility 

performance between the 3rd and 4th generation PediaFlow® iterations.  

 

Figure 19. A) NIH results (AVG ± SD) over corresponding blood TPP concentration grouped by TPP less 

than 6.0 g/dL and/or RBC MFI greater than 0.6, and B) a histogram plot of the same data. 

2.6 DISCUSSION 

In vitro testing of hemolysis in pediatric circulatory assist devices is very challenging due to the 

low flow rates at which these devices are intended to operate. A major source of errors in these 

tests originates from poor mixing of blood in the flow loop, especially within the blood reservoir. 

Therefore, the first aim was to redesign the flow system to assure that blood samples collected 

during the test are representative of the entire blood volume for plfHb concentration. Important 

features of this flow system are i) the relocation of a significant portion of the loop volume into 

the large diameter tubing connecting the pump to the reservoir, and ii) the very smooth transition 
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of the tubing from the horizontally placed pump to vertically positioned blood bag. The second 

aim was to eliminate potential artifacts and extraneous sources of hemolysis by 1) applying a 

gravity-driven filling procedure to minimize air bubbles and pre-test blood trauma, 2) strict 

adherence to sampling procedures (i.e.: drawing from the outlet to minimize the introduction of 

air, performing a 0.5 mL discard to remove any stagnant blood within the stopcock, taking two 

samples for plfHb measurement each timepoint, not performing intermediate blood volume 

replacement, maintaining the luer sampling port, etc.), 3) using fresh blood between different test 

conditions, and finally 4) complete disassembly before cleaning/sanitizing to prevent 

contamination by leaching. 

 

Figure 20. NIH results (AVG ± SD) of the PF4.x prototypes after excluding donor blood pools with a rocker 

bead test mechanical fragility index above 0.6 or a total plasma protein concentration less than 6.0 g/dL. 
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As evidenced by the multilaboratory experimental arm of the FDA’s Critical Path 

Initiative and reflected here, both initial blood quality and proper preparation is critical for 

controlling variability and achieving repeatability. Units that appear to have any amount of 

clotting should not be used, as blood quality remains questionable regardless of filtration. 

Accordingly, the purchase of aseptically-drawn, venipuncture blood is less fraught with 

difficulties associated with abattoir-sourced resources (e.g.: contamination, debris, and clots). As 

with previous investigators, no correlation was found between RBC MFI and NIH (r=0.133, 

p=0.37) in these experiments. However, there was a mild inverse correlation between TPP and 

NIH (r=-0.495, p<0.01), which may be reflective of the plasma protein protective effect on 

RBCs and the original motivation for using autologous plasma for blood hematocrit 

normalization instead of more popular crystalloid solutions (i.e.: PlasmaLyte, or PBS) [93, 96, 

146]. As suggested by Figure 19, blood used for in vitro hemolysis testing should have an RBT-

MFI no more than 0.6 and a TPP concentration no less than 6.0 g/dL to minimize variability and 

accurately characterize device hemocompatibility. Figure 20 highlights the decreased variability 

shown in NIH results of the PF4.x prototypes after exclusion of the blood pools that did not meet 

the criteria. 

2.6.1 Limitations 

Acknowledging the deleterious effect of protein dilution, anticoagulating with sodium 

citrate is the compromise to ensure complete and stable anticoagulation, utilizing a well-known 

calcium chelator, while still remaining readily reversible. Unfortunately, as a weak acid, excess 

citrate concentrations can cause acidosis leading to increased RBC MF and poor experimental 
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outcomes. The pH of the blood pool, which was not measured in this study, should be checked 

and corrected with bicarbonate before proceeding with in vitro hemolysis testing.  

2.7 CONCLUSIONS 

Benchtop characterization of blood trauma remains an integral and required component for the 

design, development, and eventual regulatory approval of MCSDs. The increase in smaller and 

more hemocompatible RBP designs, indicated for pediatric or partial-support use, necessitates 

the development of new experimental protocols appropriate for these hemodynamic conditions.  

The experimental setup described here was successfully used in the hemocompatibility 

assessment of the 4th generation PediaFlow® prototypes, with the potential to support in vitro 

hemolysis testing of, the increasingly popular, intraventricular-type VADs. 
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3.0  DESIGN AND EVALUATION OF A PEDIATRIC INFLOW CANNULA FOR 

ROTARY BLOOD PUMPS 

This chapter has been published in part within ASAIO Journal [152].  

To address the challenge of unloading the left ventricle during pediatric mechanical 

circulatory support using next-generation rotary blood pumps, a novel inflow cannula was 

developed. This unique inflow cannula for pediatric, continuous-flow, left ventricular assist 

devices (VADs) with a parabolic-shaped inlet entrance was evaluated alongside a bevel-tip and 

fenestrated-tip cannula via an ex vivo, isolated-heart experimental setup. Performance was 

characterized using two clinical scenarios of over-pumping and hypovolemia, created by varying 

pump speed and filling preload pressure respectively, at ideal and off-axis cannula placement to 

assess ventricular unloading and positional sensitivity. Quantitative and qualitative assessments 

were performed on the resultant hemodynamics and intra-ventricular boroscopic visualization to 

classify conditions of non-suction, partial, gradual or severe entrainment, and ventricular 

collapse. The parabolic-tip cannula was found to be significantly less sensitive to placement 

position (p-values < 0.001) than the bevel-tip cannula under all conditions, while not statistically 

different from the fenestrated cannula. Visual analysis of the parabolic-tip cannula showed 

complete resistance to entrainment whereas the fenestrated-tip had partial entrainment in 90% 

and 87% of the over-pumping and hypovolemic studies, respectively. We conclude that future 
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pediatric VAD designs may benefit from incorporating the parabolic-tip inflow cannula design in 

order to maximize unloading of the left ventricle in ideal and non-optimal conditions. 

3.1 INTRODUCTION 

With approximately 36,000 new cases each year in the United States, congenital heart disease is 

the most frequent birth defect in children [9]. In addition, pediatric cardiomyopathy is a very 

serious disorder leading to end-stage heart disease with an incidence of 1.13 cases per 100,000 

children in the United States [3]. Some of these patients will require a heart transplantation, but 

with a waiting list mortality rate of 31% at 6-months many of these patients would potentially be 

saved by long-term mechanical circulatory support (MCS) [153]. 

Currently the only options for pediatric MCS in the smallest patients (BSA < 0.7 m2) are 

extracorporeal membrane oxygenation (ECMO) and the Berlin Heart® EXCOR® [154]. ECMO 

is limited to short term support, as the risk of bleeding and thromboembolism complications are 

proportional to the support length [15]. Indeed, the success rate for ECMO as a bridge to 

transplant in pediatrics is less than that of adults supported with ventricular assist devices 

(VADs) [155-157]. While the pulsatile, paracoporeal EXCOR® has greatly improved patient 

outcomes as the only U.S. Food and Drug Administration-approved pediatric VAD, 

approximately 80% of patients experienced a significant adverse event during the Investigational 

Device Exemption (IDE) study [22]. A subsequent multicenter, prospective study reported 

substantial significant adverse events within the 204 patient cohort, namely for major bleeding 

(44%), major infection (46%), and neurological dysfunction (29%) [158]. Additionally, both 

therapies immobilize or limit patient mobility due to pump size, cannulation strategies, and 
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controller equipment. Therefore, there is increased interest in the development of implantable, 

continuous-flow VADs for chronic, pediatric MCS [7, 12, 154]. 

While rotary blood pumps are ubiquitous within the adult population, less attention has 

been given to the development of similar technology for pediatric support [7]. Important to the 

safety and efficacy of a rotodynamic VAD is the interface between the inflow cannula and 

ventricle. As rotary VADs actively empty the heart throughout the cardiac cycle with the 

potential to generate negative inlet pressures, premature occlusion at the inflow can lead to 

complications including myocardial entrapment, inadequate support, thrombosis, hemolysis, 

inner wall bruising, ventricular collapse or arrhythmias [138, 139]. Pediatric MCS candidates, 

with smaller and variable anatomical configurations, may be more susceptible to misalignment 

and ventricular suction in comparison with current adult cannula designs. Therefore, design of an 

appropriate inflow cannula is of utmost importance in order to reduce the risk of post-surgical 

complications. 

3.1.1 Previous Cannulae (PF1-PF3) 

Until the 4th generation PF4, previous in vivo ovine implantations of the PediaFlow prototypes 

(PF1-PF3) utilized commercially-available ‘off-the-shelf’ pediatric CPB or ECMO venous 

drainage cannulae which were then modified for suitability. Ranging from 18-20 Fr with a 

fenestrated inlet cage, a sewing ring top-hat was added for LV apical cannulation in addition to 

the connector mechanism for pump attachment as shown in Figure 21. These cannulae provided 

an adequate test bed for assessing pump hydraulic performance and biocompatibility in vivo in 

the juvenile ovine model [132, 134, 148, 159].  
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Figure 21. Representative inflow cannula used for PF1-PF3 in vivo implants with custom sewing rings and 

pump connectors. 

3.1.2 Conformal Cannula 

With the introduction of PF4, a PediaFlow® specific cannula was desired to wholly-match the 

design goals of the pediatric LVAD system. The initial focus for the PF4 inflow cannula was 

towards a novel conformal cannula developed by the Consortium at Carnegie Mellon University 

(Figure 22-A). This conformal cannula would feature a soft flange at the entrance of the 

cannula, which would conform to the apex of the ventricle and allow the cannula to act as a more 

efficient drain to reduce the complications associated with ventricular suction and flow 

stagnation at the base of the LV. The ability to maximize LV unloading and minimize sensitivity 

to placement/alignment was previously proven ex vivo in a larger form-factor designed for adult 

VADs [160]. Initial prototypes of the PediaFlow® conformal cannula were carried out using a 

nitinol wire with a unique clover pattern to allow for the cannula to be malleable and collapsible 
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into a deployment vehicle (Figure 22-B,C). After insertion into the left ventricle, the cannula 

would unfold into the desired shape after releasing (Figure 22-D). 

 

Figure 22. The pediatric conformal inflow cannula assembly (A), loaded within the delivery vehicle (B, C) 

for insertion, and deployed into the LV of a silicone ventricle (D).Several bench tests of various deployment 

mechanisms on isolated sheep hearts were performed, with the ease of deployment and 

placement position within the ventricle encouraging, however the several acute in vivo studies 

that followed were met with some difficulty (Table 1). While deployment was relatively easy in 

an isolated animal heart and pressure flow data were encouraging, deployment in situ in a 

beating heart was not quite as feasible as anticipated. The in vivo studies also revealed that it was 

much more difficult to deploy the cannula completely through the trabeculae that are prevalent in 

the base of the left ventricle.  With only a single deployment attempt possible and lacking haptic 

feedback when securing locking nut, placement was difficult and inconsistent. 
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Table 1. Preliminary in vivo implants of a de novo conformal cannula using the Levitronix ® PediMAG® 

extracorporeal blood pump. 

      
Study Animal 
(IACUC #) 

Wt 
(kg) 

Inflow 
Cannula 

Length (days) 
Actual/Intended 

Avg. Q 
(L/min) Findings 

CC-S01 
(S001-11) 

36.6 Conformal 1 Acute (2 hrs) 1.2 1. Successful placement despite difficulty 
2. Modifications identified 

CC-S02 
(S002-11) 

34.0 Conformal 1 Acute (1 hr) 0.9 1. Continued difficulty in deployment 

CC-S03 
(S010-11) 

40.0 Conformal 2 3/6 0.9 1. Initial placement successful 
2. Drop in Q on POD 3 
3. NX: cannula inlet obstructed by 
trabeculae and tissue overgrowth 

CC-S04 
(S003-11) 

40.0 Conformal 2 6/6 1.25 1. Placement successful 
2. NX: myocardial irritation around the 
inlet flange and ingested thrombus within 
the pump housing 

 
 

The results of two 6-day intended chronic implants were also less than ideal, with large 

pannus growth found completely occluding the inflow flange prematurely ending one study at 

POD 3 (Figure 23-A). The second implant went to term, however examination at necropsy 

revealed myocardial irritation around the cannula inlet and a large thrombus ingested within the 

extracorporeal blood pump (Figure 23-B, C). 

 

Figure 23. Necropsy results of the two chronic conformal cannula implants. CC-S03- a large pannus growth 

(A) in the LV occluding the inlet entrance. CC-S04- myocardial irritation (B) around the inflow flange and an 

ingested thrombus (C) within the pump housing. 
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3.1.3 Initial PF4 Implants 

After initial setbacks up with a novel conformal cannula under parallel development, the 

Consortium proceeded to the back-up plan of developing a pediatric version of the standard 

stove-pipe cannula design used in other VADs. Taking cues from the FDA-approved EXCOR®; 

a bevel-tip apical inflow cannula was designed and fabricated for the in vivo PF4 implants 

(Figure 24-A). The Nitinol wire-reinforced, curved polyurethane body was easily deployable 

through a cruciate incision to a fixed depth owing to the rigid attachment of the sewing cuff 

(Figure 24-B). After several in vivo studies (Figure 24-C) revealed the cannula was prone to 

kinking or inlet occlusion, it was hypothesized that the curvature angle required for animals was 

greater than that of the design specifications used for humans. A second prototype created using 

a stiffer 316 Stainless-steel wire, additional strain-relief at the pump connector, and a sheep-

specific bend radius, however still suffered from similar complications in vivo (Figure 24-D) 

leading to reduced pump flows and limiting operation of PF4 below the design goal of 1.5 L/min. 

 

Figure 24. The bevel-type inflow cannula developed and used with the initial PF4 implants. A) Rendered 

apical EXCOR cannula, B) the first-generation Nitinol cannula susceptible to inlet occlusion and kinking (C), and 

D) the second-generation 316 SS cannula found kinked at explant. 
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3.2 MATERIALS AND METHODS 

3.2.1 Cannula Design 

In response to the need for a pediatric-appropriate, left ventricular drainage conduit, a new 5 mm 

nominal ID inflow cannula was designed and fabricated out of spring-reinforced (stainless steel 

flat-wire) polyurethane consisting of a parabolic-shaped inflow tip, a removable sewing ring, and 

tapered strain relief. A finger-operated clamping mechanism on the sewing ring provides a 

variable cannula insertion depth up to 2.9 cm. The parabolic cannula was compared against a 

similarly constructed bevel-tip and a commercially-available fenestrated cannula (20 Fr DLP 

shortened, Medtronic®, Minneapolis, MN, USA), both used for in vivo preclinical ovine studies 

previously (Figure 25) [159]. The three cannulae have similar characteristic pressure-flow 

profiles under static conditions as shown in Figure 25-D. 

 

Figure 25. The three pediatric inflow cannulae and respective tip geometries under consideration: the (A) 

bevel-tip and (B) fenestrated-tip inflow cannulae with fixed-depth sewing rings, and the (C) novel parabolic-tip 

inflow cannula with the adjustable depth sewing ring. D) Experimentally derived static characteristic pressure-flow 

(H-Q) curves of the three cannulae using an acellular 40% glycerol/saline solution (µ = 4.6 cP). 
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3.2.2 Experimental Setup 

Juvenile ovine or caprine hearts were obtained from a slaughter-house, cleaned, weighed, and 

trimmed of their pericardium for use in an ex vivo pediatric isolated heart model. A removable 

sewing ring was fixated to the apex of the left ventricle (LV) using 2-0 pledgeted sutures and a 

borescope was introduced from the left atrium (LA), secured with 2-0 purse string, through the 

mitral valve for visualization purposes. The aorta was closed with a 2-0 purse string around ¼” 

OD tubing with a stopcock to release trapped air within the ventricle. The test cannula was then 

inserted 2.4 cm past the sewing ring, through a cruciate incision in the myocardium. 

The experimental isolated-heart flow loop was setup as seen in Figure 26 [161]. The 

circulating fluid of 40% glycerol in saline (4.9 ± 0.1 cP), a blood analogue, was seeded with 

neutrally buoyant reflective particles (Amberlite IRA-96, Sigma Aldrich, St. Louis, MO). A 

constant preload into the ventricle was maintained in the vertically elevated fluid reservoir using 

an overflow chamber. A centrifugal pump (PediMAG®, Thoratec® Corp, Pleasanton, CA) was 

used to generate flow through the heart-cannula assembly, and a solenoid pinch-valve (ASCO® 

Valve Inc., Florham Park, NJ, USA) proximal to the LA inlet was utilized to induce contraction 

and free wall movement in the ventricle. The left atrial (LAP), left ventricular (LVP), and 

cannula outlet pressure (COP) were measured using three pressure transducers (648, PCB 

Piezotronics® Inc., Depew, NY), and a clamp-on flow probe (TS410, Transonic®, Ithaca, NY) 

was attached at the pump outlet to measure flow rate (Q) through the cannula. 
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Figure 26. (A) Schematic of the modified ex vivo isolated-flow loop used to assess cannula performance 

(aortic vent not shown) and (B) an image of the ex vivo flow loop in the normally aligned state. 

The three cannulae were evaluated using two protocol scenarios to mimic the clinical 

complications of over-pumping and hypovolemia to assess LV unloading ability. Over-pumping 

was achieved by continually increasing pump speed (PS), starting at an approximate flow rate of 

0.3 L/min. The hypovolemia protocol, representing inadequate blood volume, was performed by 

gradually decreasing LAP from 20 mmHg to 5 mmHg using a proximal tubing clamp while 

maintaining a constant PS. The over-pumping protocol was carried out with 7 hearts (nop = 21) 

and the hypovolemic protocol was completed with 5 hearts (nhv = 15). Both protocols were 

executed in normal and misaligned positions to assess positional sensitivity, with misalignment 

created by fixing the cannula posteriorly approximately 45 degrees [160]. 
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3.2.3 Data Analysis 

Acquired data was processed using MATLAB® (MathWorks, Natick, MA) for this study. The 

percent change in flow rate caused by misalignment, termed as the positional sensitivity index 

(Ips) was calculated using the following equation: 

 

for the maximum flows attained in the over-pumping protocol and flows at certain LAPs 

in the hypovolemic protocol for each cannula, where Q is the flow rate of a normally aligned 

cannula and Q’ is the flow rate when misaligned [160]. Statistical analysis was performed by 

one-way and repeated measures ANOVA with Bonferroni post hoc tests using SPSS® v23.0 

(IBM® Corp, Armonk, NY), with significance assumed at p<0.05. 

The boroscopic videos were manually analyzed for ventricular collapse and/or 

entrainment of the cannula orifice during the study [160]. Equal reduction of the LV wall around 

the cannula was categorized as “Concentric Collapse”, while entrainment was defined in three 

categories: partial, gradual, and severe. “Partial Entrainment” is defined as the blocking of only a 

portion of the cannula orifice, while the remaining is unrestricted to flow. In the event of full 

entrainment of the cannula orifice, a time-analysis was performed to determine the severity. 

Cases of full entrainment where the average flow rate fell 10% within a one second interval 

during the suction event were classified as “Severe Entrainment”, while the rest were considered 

“Gradual Entrainment”. The average flow rate in these cases was calculated for each time point 

with all data points half a second before and after in order to capture a full loading cycle. If no 

collapse or entrainment was observed, the experiment was categorized as “No Visible 

Collapse/Entrainment”. 
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3.3 RESULTS 

A total of seven hearts (average mass of 140.6 ± 15.2 g) were processed, prepared and used for 

the ex vivo analysis. Raw data from the over-pumping and hypovolemic protocols were 

processed in MATLAB® in order to calculate the positional sensitivities of the cannulae. Figure 

27 is a representative isolated heart experiment showing the hemodynamic performance of each 

cannula in both protocols in the normal and misaligned state. 

 

Figure 27. Sample data set from one experiment showing cannula performance as measured by achievable 

flow rate under both protocols. All three cannulae perform similarly with (A) increasing pump speed or (B) 

decreasing pre-load, however the bevel-tip had a marked drop in flow rate when misaligned (C, D). 
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3.3.1 Positional Sensitivity 

The maximum flow rates and calculated Ips values for the over-pumping protocol are 

summarized in Table 2. While there was no significant difference in flow rates when normally 

aligned, there was a significant drop in flow rate for the bevel cannula in comparison to the other 

two cannulae (p-value < 0.001) when misaligned. Correspondingly, there was no significant 

difference in Ips between the fenestrated and parabolic cannula, and both were significantly less 

sensitive to placement position than the bevel cannula (p-value < 0.001). 

Table 2. Positional sensitivity results for the three cannulae using the over-pumping protocol (nop = 21) 

 Cannula Type  

 Bevel Fenestrated Parabolic P 
Maximum flow rate (L/min)     

Normal alignment 1.27 ± 0.03 1.25 ± 0.04 1.28 ± 0.04 0.822 
Misaligned 0.63 ± 0.07 1.18 ± 0.03 1.19 ± 0.02 <0.001* 

Ips (%) 49.9 ± 2.2 4.7 ± 2.2 6.7 ± 1.8 <0.001† 
Data presented as mean ± standard error of the mean. 
*Bevel v Fenestrated p<0.001, Bevel v Parabolic p<0.001, Fenestrated v Parabolic p=1.000. 
†Bevel v Fenestrated p<0.001, Bevel v Parabolic p<0.001, Fenestrated v Parabolic p=1.000. 

 

Likewise, the resultant hypovolemia Ips values across preload pressures for each cannula 

are shown in Figure 28. The bevel-tip cannula was found to be significantly different than the 

parabolic-tip cannula at each preload pressure (p-value < 0.001), while no significant difference 

in positional sensitivity was found between the parabolic-tip cannula and the fenestrated-tip 

cannula (p = 1.000). 
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Figure 28. Positional sensitivity results of the three cannulae in the hypovolemic protocol (nhv = 15). 

Data presented as mean ± standard error of the mean. The bevel cannula was significantly more sensitive to 

positioning within the ventricle compared to the fenestrated and parabolic cannulae. aBevel v Fenestrated p<0.001, 

Bevel v Parabolic p<0.001, Fenestrated v Parabolic p=1.000. 

3.3.2 Borescope Results 

Manual inspection through the ventricular borescope tool was performed for each test in the 

over-pumping and hypovolemic protocols. Multiple cases led to both a concentric collapse and a 

partial entrainment assessment. In those cases, that experiment was tallied under both conditions, 

therefore leading to values over 100% for a particular cannula. The visual example in Figure 29 

shows the difference between each cannula in the normally aligned state and the misaligned 

state. Entrainment and ventricular collapse observations were made from these images, which are 

summarized in Figure 30. Also in this study, there were six separate instances where at least one 
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of the neutrally buoyant visualization particles were noted to be resting on the caged area of the 

fenestrated-tip cannula. 

 

Figure 29. Color enhanced representative intraventricular images of the normally aligned cannulae (top) and 

the misaligned cannulae (bottom) from the boroscope. The bevel, fenestrated, and parabolic cannulae are shown to 

have no obstructions with normal placement (A,C,E). However, while all cannulae are facing the LV free-wall when 

misaligned, the bevel and fenestrated tips are prone to premature myocardial entrainment leading to (B) severe or 

(D) partial occlusion of cannula inlet indicated by the arrows. In contrast, the parabolic cannula in the misaligned 

state (F) remains unobstructed. 

3.4 DISCUSSION 

The results from the over-pumping protocol, performed similarly to clinical echocardiography 

ramp studies, and hypovolemia protocol indicated that the newly developed parabolic cannula 

performed significantly better than the bevel cannula. The positional sensitivity results for both 

protocols suggest that the bevel cannula has a narrow optimal operating window to unload the 
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ventricle, which may explain the complications experienced in prior preclinical in vivo juvenile 

ovine LVAD implantations [162, 163]. Therefore, those complications may be alleviated through 

the use of the parabolic or fenestrated cannulae, which have a lower sensitivity to misalignment 

within the ventricle. 

 

Figure 30. Occlusion modality results of the left ventricle as determined by intraventricular imaging and flow 

rate analysis. In summary, the bevel cannula was severely dependent on intraventricular alignment, the fenestrated 

cannula was resistant to full entrainment, while the parabolic cannula showed resistance to all forms of premature 

ventricular suction. 

Visual analysis of the boroscopic images suggests that there may be subtle differences 

between the parabolic and fenestrated tip geometry, specifically during misalignment. While a 

clear and open path was observed for the parabolic cannula prior to any subsequent event, the 
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fenestrated cannula had one or more cage inlets blocked by the ventricular wall in 90% of over-

pumping and 87% of hypovolemic studies. This partial entrainment of the fenestrated cannula 

may lead to damage of the myocardium or hemolysis. Additionally, there were six separate 

observations of particles resting on the caged portion of the fenestrated cannula which indicates 

stagnation risk and may be associated with thromboembolic consequences. 

The ability to visualize and quantify ventricular ‘suck-down’ makes this a reasonably 

simple and accurate method for assessing cannula performance, but there are several limitations 

to this ex vivo isolated heart setup described in detail by Bachman et al [160]. Most notably, it is 

impossible to replicate directly on the benchtop the thrombogenic, thromboembolic, or pannus 

potential that in vivo assessment could provide. The addition of the new solenoid pinch valve 

cycling at 1.0 Hz (60 beats/min) to control LV preload induced measurable pulsatility (unsteady 

flow) and led to visible contraction of LV chamber. This dynamic, ‘pulsing-heart’ configuration 

allowed for the observation of partial or incomplete suction events. While still not a true beating-

heart preparation, this is an improvement over the previous static setup [160, 161]. 

Ultimately, this experiment showed that the parabolic cannula design is significantly 

superior to the bevel cannula in completely unloading the LV while avoiding the partial 

entrainment and stagnation zones associated with the fenestrated design. While literature is 

vague on the criticality of inflow cannula alignment, the efforts towards VAD suction detection 

algorithms and automatic speed controllers allude to the frequency and severity of complications 

associated with non-optimal unloading of the left ventricle [164, 165]. The use of entrapment 

resistant and position insensitive pump inlet cannulae may reduce intermittent suction episodes 

that necessitate speed reductions. This, in part, has served as a basis towards the development of 

‘beak’, ‘corona’, and ‘trumpet’ designs with varied success due to thrombosis or 
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thromboembolic complications related to insertion depth rather than inlet tip geometry [166-

168]. It is these depth concerns that may also explain the tradeoffs associated with the conformal 

cannula, whereby enabling the complete drainage from the base of the LV apex also allows the 

ingestion of any debris or thrombus into the pump and possibly further downstream in the form 

of thromboembolic events [167, 168]. 

With a reinforced parabolic inlet entrance, this cannula combines the efficiency and flow 

characteristics of standard ‘stovepipe’ designs, while providing secondary flow paths similar to 

the fenestrated venous drainage cannula. The novel parabolic-tip cannula is defined by a 

combination of features including a removable sewing ring for unobstructed visualization, a 

radiopaque tip to ease myocardial insertion, and a nitinol spring clamp for tool-less depth 

adjustment. These additions are highly significant for pediatric VADs, as variability in 

myocardium thickness and chamber geometry between patients would hinder optimal placement 

with only a single, fixed cannula available. The parabolic cannula allows for this versatility from 

patient to patient while maintaining optimal flow out of the ventricle. 

3.5 CONCLUSIONS 

These studies reinforce the importance of cannula placement for avoiding premature ventricular 

suction during assisted circulation, and the influence of inflow tip geometry on mitigating the 

effects of inlet obstructions. The novel parabolic-tip, adjustable depth, pediatric inflow cannula 

was insensitive to positional placement and enabled maximum unloading of the left ventricle. 

This information can help guide future pediatric and adult VAD inflow cannula designs to reduce 

complications during chronic, continuous-flow mechanical circulatory support. 
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4.0  A COMPREHENSIVE DIAGNOSTIC SUPPORT SYSTEM (DSS) FOR IN VIVO 

TESTING OF THE PEDIAFLOW® 

Despite continuing advances in MCS technology, post-operative complications after VAD 

implantation persists and can lead to significant morbidity and mortality if unaddressed. Basic 

device alarms with multiple source triggers and conflicting treatment options, require trained 

clinicians to qualitatively process pump, hematological, and physiological parameters to 

determine the most likely diagnosis and select an appropriate course of action. Traditionally 

beginning development in earnest only after pump finalization, the lack of a clinical interface 

poses an even greater challenge during in vivo studies due to the differences in species, staff 

expertise, and available resources. The work presented here describes the effort to develop a 

modular, reusable, and straightforward user interface for managing in vivo implants and 

supporting overall pump development. 

4.1 INTRODUCTION 

While 2nd and 3rd generation RBPs are significantly less complex mechanically than 1st 

generation pulsatile VADs, there is also an inherent decrease in available pump parameters with 

diagnostic utility. With flow sensors, pressure transducers, and/or fill/empty signals, variations in 

flow rate with a volume-displacement pump are easily attributed to either preload (inlet) or 
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afterload (outlet) variations solely through the device itself. In contrast, rotodynamic pumps 

operate at a fixed speed, whereby flow is inversely proportional to the pressure head/drop, or 

total resistance across the pump, and therefore indistinguishable without the use of derived, low-

specificity, time-dependent indices or algorithms (i.e.: pulsatility). 

A critical discrepancy during the acute post-operative recovery phase when the patient is 

most unstable, this is mediated clinically by the availability of supplementary diagnostics (e.g.: 

Swan-Ganz catheter, echocardiography, etc) providing hemodynamic and physiological 

parameters for feedback. However, these tools are largely unavailable in survival animal studies 

due to poor patency rates, infection risks, IACUC guidelines or protocol restrictions, or overall 

feasibility and animal husbandry considerations, necessitating a greater reliance on the pump 

parameters available for post-operative management. 

Additionally, preclinical testing of prototype blood pumps is a unique challenge due to 

the incomplete and ongoing nature of device design, with implants often utilizing unfinished 

controller, software, and alarm designs. Any adverse pump related event if not observed or 

recognized during the episode may lead to catastrophic failure of the pump or study. Therefore, it 

would be advantageous to have a software platform during preclinical studies that provides real-

time monitoring and alarm notifications to assist in study management and device 

troubleshooting, instead of serving only as a data recorder for subsequent processing and analysis 

offline. 

4.1.1 PediaFlow® Operation and Monitoring 

Since PF2, the controllers accompanying the PediaFlow® pump were first-in-man Levacor® 

controllers, provided by the Consortium’s corporate partner (MedQuest/WorldHeart), modified 
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to support the specific prototype. These controllers were to provide a temporary operating 

platform for the PediaFlow® technology while the clinical controller was under development. As 

the only goal was to design and develop the pump, the computer monitoring software provided 

minimal functionality aside from levitating the rotor and adjusting motor speed. 

Instead, the WinDAQ® (DATAQ®, Akron, OH) software system shown in Figure 31 

was used in tandem on the same netbook (Figure 31-inset) to monitor, trend, and record pump 

and hemodynamic signals. While used successfully for data acquisition (DAQ) since the first 

PediaFlow® in vivo study through the PF3 implants, it is difficult to read and is limited to only 

data logging and basic out-of-bounds alarm monitoring. It lacks the ability to program or create 

derived parameters (ie: flow estimation, pulsatility index), moving averages are only available 

through obscuring popup windows, and the previous history is only accessible through a separate 

program. These shortcomings make the program far from ideal for pump monitoring and medical 

management during implants. 

 

Figure 31. A screenshot of the WinDAQ® window and in vivo computer cart (inset) running the software. 
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Commercial DAQ Software 

While more advanced, feature-rich, off-the-shelf DAQ platforms exist, like LabChart 

(ADInstruments®, Colorado Springs, CO) or SignalExpress™ (National Instruments®, Austin, 

TX), these programs are computer intensive, unable to perform complex signal transformations 

or calculations, and are less-customizable for the ‘mission-critical’ environment within the ICU. 

system architecture and application development. 

4.2 SYSTEM ARCHITECTURE AND DEVELOPMENT 

The DSS was developed around the National Instruments® (NI) DAQ ecosystem which provides 

straightforward interoperability between NI® hardware and their LabVIEW® programming 

environment. 

Program Design Requirements 

The DSS should be informative yet uncluttered with all relevant data presented in an organized 

manner without overwhelming the user. Any interface should be responsive, exploit operator 

intuition, and be decoupled from logging functionality to prevent data loss [169]. The use of a 

modular architecture allows for enhanced functionality through straightforward upgrades. Proper 

interrogation, analysis, and troubleshooting of any complications would require the ability to 

easily review event and signal histories. Alarms should be distinguishable by priority to prevent 

‘alarm fatigue’ [169]. Message text should be clear and concise in stating the cause and potential 

resolutions of an alarm to minimize interpretation. Finally, a remote notification routine would 
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enable doctors and engineers the ability to accurately diagnose and troubleshoot both animal and 

pump issues without being physically present. 

4.2.1 Materials and Methods 

The multichannel, high-speed, bus-powered NI® USB-6218BNC DAQ was selected to collect 

the relevant signals from the pump controller and clinical monitor. This hardware also supports 

multiple digital input and output lines that were used to implement an alarm buzzer and can be 

used for potential physical controls in the future. 

The DSS was programmed in LabVIEW® 2009 - LabVIEW® 2014 in accordance with 

the following design guidelines and requirements in mind. The graphical user interface (GUI) 

should be informative yet uncluttered with all relevant data presented in an organized manner 

without overwhelming the user. Any interface should be responsive, exploit operator intuition, 

and be decoupled from logging functionality to prevent data loss [169]. The use of a modular 

architecture allows for enhanced functionality through straightforward upgrades. Proper 

interrogation, analysis, and troubleshooting of any complications would require the ability to 

easily review event and signal histories. Alarms should be distinguishable by priority to prevent 

‘alarm fatigue’ [169]. Message text should be clear and concise in stating the cause and potential 

resolutions of an alarm to minimize interpretation. Finally, a remote notification routine would 

enable doctors and engineers the ability to accurately diagnose and troubleshoot both animal and 

pump issues without being physically present. 

Initial shakedown assessment of each code iteration occurred during in vitro hemolysis 

testing of the PF4 pump to verify system stability, individual feature functionality, and conduct 

any necessary debugging. The preclinical, in vivo, PediaFlow® implants served as the validation 
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platform for the DSS with observations from the user groups, operator opinions, or noted 

struggling as the basis to change the GUI layout or upgrade functionality. 

4.2.2 Results and Discussion 

Since its introduction (Figure 32) at the start of first PF4.x hemocompatibility assessment, there 

have been four major iterations of the DSS program. The DSS software backbone consists of a 

three-loop parallel process, state-machine structure splitting acquisition, recording, and the 

operator interface into three separate threads. Separate configuration files save program, 

calibration, alarm, and flow estimation settings immediately after changing to allow for easy 

restoration of the previous parameters after a computer crash or failure. A three-second rolling 

buffer captures the full cardiac cycle for displaying mean signal values, calculating pulsatility 

index (PI), and determining out-of-bounds alarms. Pop-up menus maintain visibility of the main 

logging screen while performing any interaction. System responsiveness was maintained by 

reducing hard drive access programmatically through the use of a custom burst-write data 

logging algorithm. 

 

Figure 32. A screenshot of the first DSS1.1 program iteration used both in vitro and in vivo. 
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Immediately during the use, the need for each input signal to have its own digital display, 

alarm limits, a user-enterable linear calibration, and a reprogrammable flow estimator became 

abundantly evident and was changed in the next version (Figure 33). 

 

Figure 33. The DSS2.1 during an in vivo implant. 

Findings from the DSS2.1 included: 1) the desire for inputting a second pressure 

transducer signal either for pump inlet pressure (in vitro) or central venous pressure (in vivo), 2) 

accuracy indicators for the derived parameters (i.e.: estimated flow, and pulsatility index), 3) 

ability to change the log file path and recording structure from a single file (in vitro) or hourly 

files (in vivo), 4) ability to add free text comments to the event log file, and 5) moving workflow 

from left to right due to screen sharing with the controller software. This is reflected in the third 

iteration as shown in Figure 34. 
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Figure 34. The DSS3.2 and the PediaFlow®/Levacor® pump controller software. 

In the latest iteration (DSS4.1), the availability of the internet, through the prevalence of 

wireless access points, was exploited to provide remote notification and troubleshooting through 

the SMTP email protocol to desired recipients. The lightweight email sent includes a list of the 

triggered alarms and a compressed screenshot of the DSS window providing an ~6 sec window 

of the channel signals centered around the alarm event as highlighted in Figure 35. Providing a 

visual description and context of the alarm prior to receiving the phone call from the animal 

facility, minimizes the amount of time and information required before walking the veterinary 

technician through the steps required to rectify the situation. This also reduces the need for 

continual or overnight monitoring which is unnecessary and cost prohibitive during chronic, 

stable implants. Also addressed was a long-standing bug, related to the overlap of multiple items 

with screen refreshing, where the plot charts would occasionally clear and reset. A running 
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history with multiple timescales is now available, along with a super imposed H-Q curves plot 

for troubleshooting and a freeze screen for analysis without interrupting logging. 

 

Figure 35. A) An automated DSS4.1 email alarm and attached screenshot (B) sent using the SMTP service. 

4.2.3 Future Work 

With the DSS platform now fully operational, additional modules can be added for enhanced 

functionality like the simplified discriminant-analysis based suction detection system proposed 

by Ferreira, et al. moving away from less useful low threshold alarm limits to smarter and more 

robust algorithms to optimize MCS support [170]. While direct remote access and/or control may 

appear as the logical next steps, security concerns including university IT policies and firewall 

restrictions, along with the installation and dependence on additional 3rd party applications, could 

create unnecessary complications, vulnerabilities, and restrict the compatibility afforded by the 

out-going only connection afforded by the current design. 



 78 

4.3 PEDIAFLOW FLOW ESTIMATION 

Accurate quantification of MCSD output flow is critical for both patient management and pump 

control/operation. This section describes the development of the PediaFlow® flow estimation 

algorithm in support of preclinical in vivo PF4 implant studies and moving closer towards a 

clinical-use device. Due to the failed delivery of a finalized clinical controller from a corporate 

partner, the PediaFlow® flow estimation algorithm evolved over two distinct iterations to 

overcome the limitations of the preclinical controllers. Additional accuracy was gained with the 

second flow estimator by the implementation of two specific hardware upgrades within the 

controllers as evidenced by the most recent implant. 

4.3.1 Introduction 

Pump flow rate is an important parameter to quickly i) quantify the amount of support delivered, 

ii) optimize device operation, and iii) troubleshoot cardiovascular-related symptoms in patients. 

Simply a function of beat-rate and stroke volume in earlier pulsatile-flow positive displacement 

MCSDs, where stroke volume was either fixed (e.g.: Thoratec® XVE & PVAD, Berlin Heart® 

EXCOR®) or measured using mass airflow sensors (e.g.: Syncardia® TAH, Abiomed® 

AB5000), the calculated flow rate was both accurate and reliable. On the other hand, the flow 

rate of a RBP (at any given rotational speed) is dependent on (and inversely proportional to) the 

resistance, or pressure differential, across the pump. Concerns of hemocompatibility and fouling 

negate the use of inline, blood-contacting sensors; therefore, most extracorporeal RBPs (e.g.: 

CentriMAG®, PediMAG®, Tandem Heart®, RotaFlow®) use an ultrasonic, clamp-on, tubing 

flow probe for measurement of blood flow rate. As evidenced by the HeartAssist5® 
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(ReliantHeart®, Houston, TX), the only implantable LVAD with an integrated ultrasonic flow 

sensor, this approach is impractical for implantable RBPs due to several limitations. Because 

metallic interference necessitates an ultrasonic perivascular sensor located on the outflow graft 

with a discrete electrical tether, instead of within the pump housing, the HeartAssist5® is larger, 

less maneuverable, and more complex than similar devices (i.e.: Heartmate II®, Jarvik 2000®) 

[171]. 

As motor power consumption is simply work per unit time, all clinically used implantable 

RBPs (e.g.: VentrAssist™, Heartware® HVAD®, HeartMate® II & 3) estimate flow rate using 

device (pump) signals, namely motor speed (MS or ω) and motor current (MC), using 

rotodynamic principles and equations to relate these pump parameters to generated pressure head 

and flow rate [38, 172-174]. Of note, while all devices report or display the mean flow rate, some 

RBPs (e.g.: VentrAssist™, HVAD®) also provide the instantaneous flow rate, describing the 

entirety of the cardiac cycle, as a waveform display. 

4.3.2 Materials and Methods 

The pump controller, hydraulic, and hemodynamic data necessary for examining these 

relationships for the PediaFlow® was acquired in vitro in both static (Figure 36) and pulsatile 

mock loops using 40% glycerol-solution as a blood analogue. Two pressure transducers (648, 

PCB Piezotronics Inc., Depew, NY) were connected at the pump inlet (PIN) and outlet (POUT) 

while an in-line ultrasonic flow probe (6PXN+TS410, Transonic, Ithaca, NY) was located 

distally to measure pump flow rate (QPUMP). The aforementioned hemodynamic parameters and 

directly available pump controller signals (i.e.: motor speed, motor current, [axial] rotor position, 

and [axial rotor] levitation current) were acquired and recorded using the DSS (see 4.0 ) platform 
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modified for additional input signals. H-Q curves (see 1.3.2) were generated at several speeds 

(10-18 kRPM at ~2 kRPM intervals) through the use of the manual tubing-clamp throttle to 

control afterload in the circulation loop. As every hand-built PF4 pump is operated by a custom-

tuned controller, with variable performance characteristics and signal signatures, this process 

was repeated for each PF4.x prototype-controller pair to create unique datasets for subsequent 

analysis and derivation of the flow estimation parameters. 

 

Figure 36. A schematic (left) and example image (right) of the simple static loop used for H-Q testing to 

acquire hemodynamic and PF4 controller values under steady, non-pulsatile conditions. 

The mock circulatory system to acquire hemodynamic (H-Q curves) and controller data 

under pulsatile-flow conditions consisted of a silicone ventricle (Pulse Duplicator, ViVitro 

Labs® Inc., Victoria, BC, Canada) actuated by a fixed, pneumatic driver (Utah-TAH preclinical 

controller). As shown in Figure 37, the PF4.x prototype was placed parallel to the single 

ventricle system, with an additional throttle to adjust systemic vascular resistance (SVR) while a 

second in-flow probe (13PXN+TS410, Transonic Systems®, Ithaca, NY) measures total cardiac 

output (QCO).  
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Figure 37. The schematic (left) and actual setup (right) of the pulse duplicator setup mimicking PF4 pump 

operation in vivo for acquiring the H-Q data under pulsatile-flow conditions used to develop the parameters and 

coefficients for flow estimation. 

All processing, analysis, modeling, and fitting of the recorded data was done in 

MATLAB/Simulink (MathWorks, Natick, MA). A 10 Hz low pass filter was utilized on each 

signal, and all flow estimation coefficients were derived from the mean values of the in vitro 

pulsatile mock loop data. Validation was performed using PF4 in vivo implant signal data and 

compared against measured pump actual flow (AF) provided by a perivascular, transit-time 

ultrasonic flow probe (PS-series+TS420, Transonic, Ithaca, NY) placed on the outflow graft. 

4.3.3 Results and Discussion 

Identical in both hydraulic and topological design, the H-Q curves of the PF4 under steady 

conditions in vitro were similar across the PF4.x prototypes, as expected (see Figure 38, in red). 

Minute variations in the static performance between the hand-built pumps are instead namely 
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attributable to (in descending order): i) variable aqueous glycerol viscosities, ii) fabrication 

tolerances, and iii) motor-controller pairing differences. 

 

Figure 38. H-Q plots for two PF4.x prototypes generated from the in vitro mock loop experiments, 

representative of i) pump performance under steady versus dynamic conditions, ii) the hysteresis present in the 

latter, and iii) the differing signal phase offsets (inset) between the two pulsatile datasets accountable for the 

different loop shapes (inset). 

In contrast, while the pulsatile results approximate the static data in each pump, the H-Q 

‘loops’ varied considerably between the prototypes as shown in the example (Figure 38, in 

blue). This rate-dependent hysteresis, a function of pulsatility due to fluid inertial effects (from 

the beating heart/ventricle), presents natively in vivo as flat wide curves that narrow and steepen 

with increasing pump speeds in accordance with Starling’s response [175, 176]. The atypical and 

variable shape H-Q ‘loops’ here can be explained by; 1) changes in phase offset of the pressure 

and flow inputs among experiments (Figure 38-inset) due to i) flow meter signal conditioning 

delay and/or ii) dampening due to insufficient de-airing of the pressure transducers, and 2) the 

throttle adjusted control afterload as demonstrated by Figure 39-A. 
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Figure 39. Signal measurements of PF4.x prototype generated under pulsatile conditions by adjusting either 

pump (THROTTLEPUMP) or systemic (THROTTLESVR) afterload with the resultant (A) H-Q plot and (B) 

relationship between flow rate and motor current (MC). 

All flow estimators in clinically-used RBPs are based primarily on motor speed (MS or 

ω) and motor current (MC), since power consumption is essentially proportional to flow rate 

over the physiologically relevant range [38, 173, 174, 177]. While flow is typically a multivalued 

function of power in axial pumps due to friction and internal energy losses at low flow rates 

[177], the fully magnetically levitated PF4 has a singular relationship between flow rate and MC 

throughout its entire operating range as evidenced by Figure 39-B.  

 

Figure 40. Motor current signal shortcomings with the original PF4 preclinical controllers.  A) An in vivo 

MC signal from a prototypical maglev VAD able to distinguish the cardiac cycle in comparison to the PF4.3 and 
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controller with poor MC resolution but a rotor position (RP) signal reflective of the measured flow rate. B) At 

specific speeds (e.g. ω ~16 krpm), the controller MC signal became erratic with negative values preventing the use 

of any flow estimator utilizing MC.  

The ability to provide instantaneous flow, important for assessing LV unloading and 

suckdown events, necessitates distinguishing the cardiac cycle from available pump signals. The 

PF4 motor with the original sensor board on the preclinical controller yielded a noisy and non-

characteristic MC signal that was unacceptable for estimating flow rate due to being both 

inaccurate (Figure 40-A) and erratic at select operating speeds (Figure 40-B). Due to the unique 

MagLev design configuration of the PF4, the rotor position (RP) sensor used for the active 

levitation control mechanism in the axial direction provided an alternative signal reflective of the 

measured, actual flow (AF) waveform. 

Original Regression Model 

Since the rotor position (RP) signal is proportional to the pressure head across the pump, the 

initial flow estimator was based on a regression model using RP and MS: 

 

 

where ‘Q’ = flow rate (L/min), ‘ω’ = motor speed (kRPM), ‘RP’ = rotor position (Volts) 

and the coefficients of array ‘𝑎𝑎’ were determined for each pump build from the mean signal 

values of the in vitro, pulsatile data.  

While able to estimate instantaneous and mean flow rates in vivo, this ‘RP/MS 

regression’ was susceptible to RP inaccuracies including drift over time after implantation, 



 85 

attributed to the temperature difference between the sensor coil within the pump and the sensor 

circuitry within the controller, as evident in Figure 41. 

 

Figure 41. Rotor position (RP) signal drift (red) over the 115 post-operative hour (POH) period and ‘RP/MS 

regression’ flow estimator compared to the flow probe measurement (blue).  

Dimensional Analysis Model 

The inability to rely solely on absolute RP led to the adoption of a dimensional analysis approach 

to yield a robust estimation algorithm [178, 179]. Using pump-specific, physical and electrical 

constants, the PF4 characteristics at each operating speed can be nondimensionalized into three 

coefficients; pressure (Ψ), flow (Φ), and power (Π): 
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Table 3. The pump constants, parameters, and measurements for dimensional analysis, and the three 

nondimensional characteristic coefficient equations for the flow estimator algorithm. 

 

The original approach was to characterize Φ as a function of Π, through benchtop testing, 

which would then enable the calculation of flow rate through the estimation of the flow 

coefficient from ω and MC. Encountering the same quality issues with MC which lead to poor 

correlation between the power and flow coefficients, a modified approach was instead taken that 

utilized the relationship between the pressure and flow coefficient (Figure 42). Since pressure 

drop across the pump can be accurately estimated from coupling MC to RP and yielding the 

pressure coefficient, the hybrid approach characterized Φ as a function of Ψ to then enable the 

calculation of flow rate from all three relevant pump signals (ω, RP, and MC). 
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Figure 42. The original (left) and modified (right) algorithm for the dimensional analysis PF4 flow estimator. 

The use of dimensional analysis with the three pump signals eliminates introducing motor 

current noise into the flow waveform while making the mean flow rate less susceptible to RP 

sensor drift. This estimator was used for PF4.6.1 when implanted for nine days (S044-12) as 

shown in Figure 43; the trend for RP, MC, and flow rates are shown on the left, while the right 

is a snapshot of six beats showing the noise of the MC isolated from the flow estimator. 

 

Figure 43. S044-12 (PF4.6.1) implant showing the overall parameter trends (left) and a signal snippet (right). 
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Controller Hardware Upgrades 

Due to the 3-phase, 4-pole motor configuration of the PF4 and the fixed sampling 

frequency of the controller, the controller sensor measures a combination of actual and decayed 

motor current yielding the high frequency noise and resonance seen on the MC signal. After the 

indefinite suspension in the delivery of a clinical controller which would have addressed the 

signal quality, a ‘sample and hold’ alarm filter board was designed and fabricated for use within 

the preclinical controllers currently in use. Additionally, circuitry for temperature compensation 

was added to reduce the effect of temperature variations between the pump and controller on RP 

drift. The results of this additional circuitry are exemplified in the 60-day in vivo implant (PF4-

S010, see 5.0 ) shown in Figure 44, where RP remained stable and the cardiac cycle can be seen 

within the MC signal. 

 

Figure 44. S011-13 (PF4.6.1) with the upgraded controller showing the overall parameter trends (left) and a 

signal snippet showcasing the enhanced MC signal (right). 
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4.3.4 Future Work 

The ability to now accurately measure both MC and RP, due to the PediaFlow® 

preclinical controller upgrades, provides for an estimation that is more robust than current 

algorithms that only use MC, MS (ω), and occasionally blood viscosity (µ). The quality of the 

MC signal warrants revisiting the original dimensional analysis approach of characterizing the 

flow coefficient as a function of the power coefficient for flow estimation. With the addition of 

RP for estimating the pressure coefficient, changes in pump efficiency due to thrombus or 

electrical failure could be detected instead of reporting erroneous flow rates for smarter 

troubleshooting. 
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5.0  PRECLINICAL PERFORMANCE OF THE 4TH GENERATION PEDIAFLOW® 

PEDIATRIC VAD 

This chapter describes the in vitro and in vivo efforts to evaluate the hemocompatibility and 

biocompatibility of the PF4. The experimental findings and subsequent design changes presented 

here were both an impetus and a product of the work described in the previous chapters, with the 

two most-recent implants representing the preclinical performance to date of the current 

PediaFlow® implantable system. This chapter in part was published in The Journal of Thoracic 

and Cardiovascular Surgery [1] 

5.1 METHODS 

5.1.1 In Vitro Assessment 

Benchtop evaluation of the PF4 design was performed to confirm hemodynamic performance 

and characterize hemolysis potential. Using the developed standards (see 2.4), in vitro hemolysis 

testing was performed on several PF4 prototypes (Appendix C, Table 5) prior to in vivo 

implantation using purchased, citrated ovine whole blood (Lampire® Inc., Ottsville, PA) with a 

minimum total plasma protein concentration of 6.0 g/dL within three days of venipuncture [35, 
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84, 143, 144]. The clinically utilized, centrifugal PediMag® (Thoratec®, Pleasanton, CA) pump 

served as a control for comparison. 

5.1.2 In Vivo Evaluation 

Under UoP Institutional Animal Care and Use Committee approved protocols at the McGowan 

Institute’s Center for Preclinical Studies, six PF4 prototypes were implanted in lambs (n=11, 

19.0-30.3 kg) without cardiopulmonary bypass to evaluate the chronic in vivo hemodynamic 

performance and biocompatibility of the PediaFlow® and develop the implantable components 

(C.2, Table 8). Anesthesia, surgical approach, insertion, and post-operative management for the 

PF4 implants were similar to the 72-day PF3 implant described previously [132, 134]. Three 

sham studies, in which the aforementioned implant procedure was followed without actual 

device placement, were performed to serve as complementary ‘surgical controls’ (C.2.2). Blood 

samples were drawn at regular intervals during the course of the studies for hematology and 

biocompatibility assessments, including plasma-free hemoglobin, fibrinogen concentration, and 

platelet activation and functionality assays, followed by a complete necropsy and pump 

component examination [132, 159]. A summary of the initial PF4 implant findings (C.2), design 

modifications (C.1), and outflow graft iterations (C.1.2) can be found in Appendix C. 

5.1.3 Current PF4 Implantable Design 

Detailed here are the most recent PF4 implants (n=2) using the de novo designed 5 mm 

reinforced parabolic-tip inflow cannula (3.2.1) featuring a parabolic-shaped inlet entrance and 

detachable sewing ring to unload the left ventricle (Figure 45-B) and a 6 mm Gelweave® 
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(Vascutek® Ltd, Renfrewshire, Scotland, UK) outflow graft with graduated strain relief to return 

blood to the aorta (Figure 45-C) [152]. 

 

Figure 45. The PF4 PediaFlow® prototype and implantable components : A) the PF4 pump, B) the parabolic-

tip inflow cannula with detachable sewing ring, and C) the pre-assembled 6 mm outflow graft assembly. 

Surgical procedure with these implantable components varied only by first attaching the 

detachable sewing ring to the left ventricle (LV) apex using pledgeted sutures after gaining 

access. Following full anticoagulation with heparin, the outflow graft was anastomosed to the 

descending thoracic aorta and back-flushed before mating the graft connector to the pump outlet. 

The parabolic inflow cannula was inserted through the sewing ring after a cruciate incision 

without myocardium removal and a wet connection made to the pump inlet by the simultaneous 

removal of the inflow obturator and partial unclamping of the outflow graft. A perivascular 

ultrasonic probe (Transonic Systems®, Ithaca, NY) was placed on the outflow graft to measure 

pump flow rate. Pump support was initiated and cannula depth optimized before thoracotomy 

closure. Rotational speed was adjusted as needed for a target flow rate of 1.5 L/min. 
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5.2 RESULTS 

Hemolysis (NIH) in vitro varied somewhat among PF4 prototypes but was very low at the three 

pediatric flow rates tested and comparable to the PediMag® control (Figure 46). 

 

Figure 46. The calculated in vitro Normalized Index of Hemolysis (NIH) values (mean±SD) for the PF4.x 

prototypes compared to the PediMAG® control. 

The last two implants with the PF4 prototypes and implantable components were 

unremarkable for a study duration of 14- and 60-days. Pump support was initiated within an hour 

after first incision, achieving flow rates up to 2.0 L/min before reducing motor speed (RPM) to 

maintain a target flow rate of 1.5 L/min following chest closure (Figure 47-A). Due to the 

difficulty of titrating anticoagulation for an activated clotting time (ACT) target of 180-200 s 

during the previous PF3 study, a continuous infusion of heparin was maintained at 20 UI/kg/hr 

beginning on post-operative day (POD) 2 and 7 for PF4-S10 (60-day implant) and PF4-S11 (14-

day implant), respectively (Figure 47-D). 
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Figure 47. Results of the two PF4 ovine studies using the current-design cannulae system (PF4-S10, PF4-

S11), in comparison to the previous 3rd-gen. chronic implant (PF3-S01) and the non-implanted surgical control 

‘Shams’ (n=3, mean±SD): A) Measured pump flow rate (Q) for the implanted animals (gaps indicate durations of 

signal loss during post-operative acoustic recoupling of the outflow graft probe). Hematological and 

hemocompatibility measurements including B) plasma-free hemoglobin, C) fibrinogen, D) activated clotting time 

(ACT), and D) platelet biocompatibility as determined by the time course of platelet activation by P-selectin 

expression and platelet functionality by agonist stimulation using platelet activating factor (PAF). 

During the PediaFlow® implants, hemodynamic performance was within the pediatric 

physiological range, while serum chemistry, hematology and cellular biocompatibility 

parameters closely followed the trends observed in the three surgical control sham studies (Table 

9). Plasma-free hemoglobin remained within pre-operative levels and fibrinogen concentration 

values for the implants and surgical control animals returned to baseline by POD 14 (Figure 47-

B, C). Platelet activation, measured by flow cytometry as percent of CD62p+ platelets, had a 

marked post-surgical response before returning to pre-operative baseline values by POD 10. 
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Throughout the studies, platelets remained responsive to stimulation with platelet activating 

factor (Figure 47-E). 

 

Figure 48. Necropsy images of PF4-S11 (14-day) implant. A) the inflow cannula position in situ, B) cannula 

body free of deposition, C) adherent thrombus on the exterior of the outflow graft, outside of the blood flow path, 

possibly from the de-airing needle, D-E) kidneys without evidence of infarcts, and F-H) rotor, impeller blading, and 

stator free of deposition. 

Examination of the heart, lungs, liver, and spleen for the latest PF4 implants was 

unremarkable. The inflow cannulae were well healed within the LV apex with no myocardial 

injury evident, and the blood contacting surfaces of the pump, cannulae and outflow grafts free 

of adherent thrombus (Figure 48 & Figure 49). No surface lesions or infarcts were found on the 

kidneys of the two PF4 implants (Figure 48-D,E & Figure 49-G). 
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Figure 49. Explant photos of the PF4-S10 (60-day) implant. A) well encapsulated pump in situ, B) the inflow 

cannula tip position, C) the cannula body, D) inflow and E) outflow connections free of deposition within the flow 

path, F) the pump rotor and stator (inset) free of deposits, G) kidneys with no evidence of infarction. 

5.3 DISCUSSION 

Implantable pediatric VADs have the potential to expand the number of children in heart failure 

rescued by MCS [180]. The use of RBPs for the treatment of pediatric heart failure is appealing 

by reducing the immobilization and hospital in-patient restrictions that are currently associated 

with the EXCOR®. While the successful miniaturization of CF VADs will impact pediatric 

MCS options, the small market size and regulatory processes create a significant entry barrier for 

this technology in the United States. Supported by the bench and pre-clinical findings reported 

here, the PediaFlow® has the potential to serve as a bridge-to-transplant or bridge-to-recovery 

device. 

Consistent with the program goals for the two NHLBI contracts under which this work 

was conducted, the primary considerations for the design and development of the PediaFlow® 
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were miniaturization and reduction of serious adverse events by maximizing cellular 

biocompatibility, as judged on the bench and in situ [134, 181, 182]. In silico optimization of the 

rotodynamics, magnetodynamics, heat transfer, and fluid dynamics yielded four successively 

smaller prototypes that were built and tested both in vitro and in vivo. Figure 4 displays the 

marked reduction in profile of the PediaFlow® design in successive generations of prototypes 

(PF1 – PF4), with the PF4 prototype approximating the size of an AA cell battery (Figure 45-A). 

By increasing the voice (levitation) coil to motor stator size-ratio to enhance rotor stability and 

optimizing the pump blading from PF3, flow rates were improved enabling PF4 to reach the 

target design goals. With an NIH of < 0.02 g/100L for the final PF4 prototypes, the PediaFlow® 

PF4 device is non-hemolytic (e.g., the NIH for the PF4 approximates that of the maglev 

PediMag®) and less than published literature values for both adult and pediatric devices [143, 

146, 183]. We attribute the absence of hemolysis to the fully magnetically levitated rotor design, 

the optimized single blood flow path, and relatively large annular gap (1.5 mm), which 

eliminates the need for bearings or seals, thereby reducing hemolytic potential. As each PF4 

pump was hand-built, the variation in NIH among prototypes is likely due to assembly and 

polishing tolerances. 

Another design consideration for the PediaFlow® technology is that pediatric MCS 

should be rapidly deployable and customizable to support the representative patient population. 

The use of cardiopulmonary bypass for VAD implantation is expected, however limiting on-

pump time remains ideal. Within this context, and for the PediaFlow® inflow cannula, the 

removable sewing ring provides accurate and unencumbered placement onto the heart apex 

before allowing insertion and tool-less securement of the inflow body within the LV. The 

reinforced parabolic-shaped inflow tip (Figure 45-B) eases insertion and serves as a clinical 
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marker for echocardiography peri-operatively to adjust insertion depth and post-operatively 

when assessing cannula position. Along with the pre-assembled outflow graft and quick connect 

mechanisms (Figure 45-C, C.1.3), pump support was initiated in the latest studies in under an 

hour from first incision without the use of cardiopulmonary bypass. Without any evidence of 

ventricular suction supported by explant analysis in the PF3 and PF4 implant studies, we 

hypothesize that the additional flow paths provided by the inlet shape geometry render the 

parabolic-tip resistant to entrapment and less sensitive to positional variations [152]. 

While in vivo analysis is performed in healthy animals and does not necessarily reflect 

the etiologies of heart failure in children (i.e.: congenital, dilated, and/or restrictive 

cardiomyopathies), the results are nonetheless encouraging. The biocompatibility findings in vivo 

(Figure 47) and explant analyses (Figure 48 & Figure 49) are consistent with the in vitro results 

demonstrating no hemolysis, and neither platelet activation nor platelet dysfunction during 

implant periods up to 2-months. The lack of documented renal insufficiency or other evidence of 

thrombosis or thromboembolic events with only relatively low-dose heparin and sub-therapeutic 

ACTs is especially promising towards the design goal for the PediaFlow® pediatric VAD of 

solely anti-platelet therapies to minimize bleeding risk clinically [181, 182]. Additional implants 

using the current PF4 design and components are necessary to demonstrate reproducibility of the 

preclinical assessment for Investigation Device Exemption (IDE) application. 

5.4 CONCLUSIONS 

This report is the culmination of 10-years of NHLBI-supported development of a miniaturized, 

implantable rotary blood pump for the chronic support of infants/small children with congenital 
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and/or acquired cardiac defects. Over 20 design variations were evaluated and judged based on a 

multi-component objective function which factored several criteria including anatomic fit, 

cellular biocompatibility, heat generation and transfer, magnetically levitated suspension 

robustness, and manufacturability [134]. The design was improved and miniaturized through 

successive pump prototypes using computational fluid dynamics to minimize flow-induced blood 

damage via modification of the geometry of the predicted blood flow path [135]. The pump 

housing was modified to improve surgical fixation and the inflow/outflow attachments optimized 

to permit ease of insertion according to human factors engineering principles. 

The data presented herein document the exceptional biocompatibility and the potential of 

safely providing chronic mechanical circulatory support to neonates and infants using a 

miniature, implantable, magnetically levitated, rotodynamic blood pump. As per the 

requirements of the NHLBI contract programs, the PediaFlow® has been designated by the FDA 

as a Humanitarian Use Device (HUD) for “mechanical circulatory support in neonates, infants, 

and toddlers weighing up to 20 kg as a bridge to transplant, a bridge to other therapeutic 

intervention such as surgery, or as a bridge to recovery.” This important designation provides 

insight as to the remaining pre-clinical testing (both on the bench and in vivo) to be undertaken. 

While accurate flow estimation has been achieved (4.3, Figure 44), work remains including the 

final prototyping and testing of a clinical-use controller which is required for the final preclinical 

studies in anticipation of submitting an IDE application to the FDA. 
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6.0  FINAL CONCLUSIONS AND FUTURE DIRECTIONS 

The development of a pediatric-specific mechanical circulatory support device is both complex 

and perilous, as evidenced by the lone contractor remaining within the NHLBI PumpKIN trail 

[183]. Size remains the recurrent theme and obstacle throughout, whether in relationship to the i) 

device, ii) pump gap, iii) controller, iv) percutaneous driveline, v) mechanical blood trauma, or 

vi) market cap. Simply put, children are not “small adults”.  

This dissertation describes the efforts undertaken to support the design, optimization, and 

evaluation of the 4th generation PediaFlow® pediatric VAD and implantable system. A pediatric-

appropriate in vitro mock loop for benchtop mechanical blood trauma evaluation was developed 

and successfully implemented. A novel suction-resistant pediatric inflow cannula designed for 

optimal unloading and ease of implantation was created and validated. Finally, an MCS-specific 

DAQ system for preclinical testing was programmed and used effectively during in vivo animal 

implantations. This work along with the associated findings are largely applicable for all 

pediatric RBP under current and future development, as well as next-generation partial-support 

adult MCSDs too. However, additional avenues remain unaddressed and provide future 

opportunities for exploration, analysis, and development. 
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6.1.1 In Vitro Blood Trauma Testing 

As MCS hemocompatibility continues to improve with each subsequent generation, continued 

evaluation and comparison of MCSD biocompatibility will require both improving overall 

experimental sensitivity and finding new markers for pump-induced trauma. While reducing 

circulating blood volume and blood pool variability would enhance standard benchtop in vitro 

mechanical blood trauma testing, the current accepted practice of solely assessing lethal RBC 

hemolysis through free hemoglobin should also be expanded to include additional blood trauma 

components (e.g.: von Willebrand Factor degradation, platelet activation, sublethal RBC 

damage) reflective of on-going clinical complications. (i.e.: GI bleeding, thrombosis, stroke, 

chronic anemia). Furthermore, increasingly popular, transmyocardially-implanted RBPs for 

pediatric or partial support in adults should encourage the continued development of an 

intraventricular-appropriate MCS reservoir for in vitro circulation and benchtop evaluation.  

6.1.2 Sublethal RBC Damage 

Additional research is needed to further elucidate the factors, thresholds, and boundaries that 

define the realm of sublethal RBC trauma. A profile should be developed that describes sublethal 

RBC damage as a function of shear stress, exposure time, and cumulative history. This would be 

similar to how the “Leverett curve” has been used to suggest the hemolytic threshold between 

shear stress and exposure time [23, 34, 59, 184, 185]. 
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6.1.3 Outflow Graft Permeability 

The serious complications (i.e.: excessive serous chest drainage, plasma protein loss, local intra- 

and extra-luminal thrombus) noted during the initial PF4.x in vivo implants utilizing an ePTFE-

based outflow tract (C.1.2) warrant further investigation to elucidate the potential implications 

(e.g.: plasma weep, thrombogenicity) of different vascular prothesis compositions under the 

supra-physiological hemodynamics associated with VAD-applications.  

6.1.4 DSS Functionality 

In addition to the future diagnostic functionality (i.e.: flow estimation accuracy, pump 

thrombosis and LV suction detection) described above, a proper human factor analysis to 

characterize the GUI and response times between different users to acknowledge, manipulate, 

troubleshoot, and the resolve various scenarios would qualitatively validate the software and 

potentially identify areas of redesign or improvement to be made. 

6.1.5 Transfusions During MCS 

Acknowledging of the effects of storage lesion and the blood trauma induced from blood pumps, 

it appears paradoxical to transfuse patients on mechanical circulatory support where it will be 

immediately cleared. A study published in the New England Journal of Medicine (NEJM) 

showed no difference in outcomes for critical condition (not MCS-specific) patients who were 

transfused when blood hemoglobin dropped below a threshold of 7 g/dL versus 10 g/dL [186]. 

Even more promising, a community teaching hospital saw a 28.6% reduction in associated 
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complications after implementing an interventional monitoring program requiring physician 

adherence to restrictive transfusion criteria and blood product delivery protocols [187]. In the 

absence of active bleeding and clinically intolerable anemia, there is no evidence to suggest that 

blood transfusions improve outcomes of patients on MCS. 

An avenue for exploration is the use of fresh blood products or erythropoiesis-stimulating 

agents for use in MCS patients. Comparison of these interventions to current practice in vitro and 

in vivo to assess clearance rate (via hemolysis and/or cellular markers) and relevant clinical 

parameters, may yield vital data for improving outcomes through the development of MCS-

specific critical care policies. The use of bone marrow-stimulating therapies (e.g.: erythropoietin) 

may encourage native production of healthier and well deformable erythrocytes with longer 

circulation lifespans, if thrombosis-related complications do not significantly increase [188-190]. 

For those requiring immediate transfusion, the use of only recently donated blood products (for 

example: less than 7-days-old) and targeting a lower acceptable hemoglobin concentration goal, 

may maximize the clinical utility of each administered unit while minimizing immuno-activation 

[125, 126].  

Additionally, despite critical care studies that suggest no difference between crystalloid 

and colloid solutions during general fluid resuscitation [191], the use of albumin and/or fresh 

frozen plasma (FFP) for postoperative volume replacement in MCS patients should be 

thoroughly examined. As both the etiology (trauma/sepsis versus surgery/device-placement) and 

goal (resuscitation versus euvolemia/device-preload) of intravenous fluid administration is vastly 

different, the use of colloid solutions for this patient group cannot be dismissed. The effects of 

plasma proteins including enhanced microcirculation through reduced RBC aggregation, 
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protection of RBCs from mechanical shear stresses, and intravascular fluid retention, may yield 

significant benefits to for patients with VADs.  
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APPENDIX A 

RED BLOOD CELL MECHANICAL FRAGILITY TEST FOR CLINICAL RESEARCH 

APPLICATIONS 

The work presented below has been published within Artificial Organs [93]. 

Red blood cell (RBC) susceptibility to mechanically induced hemolysis, or RBC 

mechanical fragility (MF), is an important parameter in the characterization of erythrocyte 

membrane health. The rocker bead test (RBT) and associated calculated mechanical fragility 

index (MFI) is a simple method for the assessment of RBC MF. Requiring a minimum of 15.5 

mL of blood and necessitating adjustment of hematocrit (Ht) to a ‘standard’ value (40%), the 

current RBT is not suitable for use in most studies involving human subjects. To address these 

limitations, we propose a 6.5 mL reduced volume RBT and corresponding modified MFI 

(MMFI) that does not require prior Ht adjustment. This new method was assessed for i) 

correlation to the existing text, ii) to quantify the effect of Ht on MFI, and iii) validation by 

reexamining the protective effect of plasma proteins on RBC MF. The reduced volume RBT 

strongly correlated (r = 0.941) with the established large volume RBT at matched Hts, and an 

equation was developed to calculate MMFI: a numerical estimation (R2 = 0.923) of MFI if 

performed with the reduced volume RBT at “standard” (40%) Ht. An inversely proportional 
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relationship was found between plasma protein concentration and RBC MF using the MMFI-

reduced volume method, supporting previous literature findings. The new reduced volume RBT 

and modified MFI will allow for the measurement of RBC MF in clinical and preclinical studies 

involving humans or small animals. 

A.1 INTRODUCTION 

Red blood cell (RBC) mechanical fragility (MF) is a measure of erythrocyte susceptibility to 

mechanical stress. While a number of methods for the measurement of RBC MF have been 

proposed, a comparison of many existing methods has suggested that the rocker bead test (RBT) 

first described by Kameneva et al [96] is the most practical test for common use [83]. An 

important parameter in the characterization of erythrocyte membrane health, RBC MF tests have 

proven useful in assessing donor blood quality during in vitro hemolysis testing of blood-

contacting medical devices, sublethal cell damage induced by cell salvage suction devices, and in 

characterizing RBC storage lesion [84, 88, 89]. 

The original RBT mentioned earlier requires a minimum of 15.5 mL of RBC suspension. 

This large volume requirement has limited the use of the RBT to large animals, healthy adults, or 

banked blood, precluding assessment from adult and pediatric patients, as well as small animals. 

However, preliminary investigations have indicated certain disease states are associated with 

higher RBC MF compared to healthy control groups [192-194]. Additionally, neonates have 

proven to have higher RBC MF than adults, potentially implicating a yet-to-be-investigated 

higher degree of sublethal cell trauma in pediatric patients from supraphysiological stresses like 
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those found during mechanical circulatory support or extracorporeal membrane oxygenation 

(ECMO) [85]. 

In addition to sample volume requirements, the existing RBT is hematocrit (Ht) 

dependent. Comparisons between RBC MFIs can only be made if the RBT was performed at 

equal Hts. Blood obtained directly from patients would have varied Ht values, and manual 

adjustment requires additional blood volume and time. Therefore, development of an easily 

employed method or algorithm to calculate a standardized MF value despite sample 

measurement at varied Hts is certainly justified. 

A.2 MATERIALS AND METHODS 

A.2.1 Experimental Design 

Comparison of the traditional large volume RBT and our new, reduced volume RBT was 

accomplished by running these tests in parallel at the Ht values of 25, 30, 35, and 40% using 

matched bovine blood pools. 

Human blood (n = 4) was used to characterize the effect of Ht on MFI and create a Ht-

independent modified MF index (MMFI) for the reduced volume RBT. Each single-donor unit 

was assessed (n = 6) at four different Ht values (range 25–50%). Finally, validation of the 

reduced volume RBT’s ability to ascertain differences in RBC fragility was achieved by the 

variation of total plasma protein, previously shown to significantly affect RBC MF [96], using 

human RBCs from a single blood pool. 
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A.2.2 Blood Preparation 

All blood samples used in these studies were purchased from certified biological supply 

companies. Venipuncture-obtained, bovine whole blood anticoagulated in K2-EDTA was 

purchased (#7200807; Lampire Biological Laboratories, Pipersville, PA, USA) and used 2 days 

following draw date. Adult donor human whole blood anticoagulated in K2-EDTA was 

purchased (# HB1051K2; Valley Biomedical Products and Services, Inc., Winchester, VA, USA) 

and used within 4 days following withdrawal. Upon arrival, each unit was filtered (SQ40S blood 

transfusion filter; Pall Medical, Portsmouth, UK) to remove platelet microaggregates before 

storage at 0–4°C when not in use. 

Experiments were performed using autologous donor pools. Ht variations were achieved 

by dilution with autologous plasma. Variation of total plasma protein was performed by dilution 

of plasma with phosphate-buffered saline. Upon resuspension at the desired parameters, Ht 

(SurePrep 75 mm heparinized self-sealing capillary tubes; BD Clay Adams, Sparks, MD, USA) 

and total hemoglobin (tHb) (OSM3 Hemoximeter; Radiometer, Copenhagen, Denmark) 

concentration were measured in every blood aliquot. 

A.2.3 MF Measurement 

The rocker bead experiments were set up and performed as described previously [81], differing 

only in tube preparation for the proposed method. Each traditional large volume RBT utilized 

five 7.0 mL silicone-coated, glass collection tubes (Red-Top Serum Vacutainer ref: 366431; 

Becton-Dickinson, Franklin Lakes, NJ, USA) filled with 3.0 mL of whole blood. Three 

experimental tubes contained five 1/800 diameter stainless steel ball bearings (BBs) each 
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(BNMX-2, Type 316 balls; Small Parts, Inc., Miami Lakes, FL, USA), and the remaining two 

tubes without BBs served as controls. In contrast, the modified reduced volume method 

consisted of three tubes (two experimental with BBs, one control) using 3.0 mL plastic collection 

tubes (No Additive Vacutainer ref: 366703; Becton-Dickinson) filled with 2.0 mL of whole 

blood and only three BBs per experimental tube. 

 

Figure 50. A) Schematic of reduced volume and large volume rocker bead tests running simultaneously and 

B) comparison of MFI values obtained from reduced volume and large volume tests run simultaneously at matched 

hematocrits between 25 and 40% using bovine blood (Pearson’s correlation coefficient r = 0.941). 

The 7.0 mL tubes were placed on a rocker (Type M79735 Platform Vari-Mix rocker; 

Barnstead Thermolyne Corp., Dubuque, IA, USA) with their tops touching the edge of the 

platform, and 3.0 mL tubes were placed with their bottoms aligned to the bottoms of the 7.0 mL 

tubes. Rocking was performed for 1 h at 18 cycles/min at a rocking angle ±17° from horizontal 

on a platform mixer (Figure 50-A). The tubes were centrifuged for 15 min at 2750 × g (CR412; 

Jouan, Inc., Winchester, VA, USA) at which point the supernatant was transferred to 1.5 mL 

microcentrifuge tubes and spun at 20,800 × g for 20 min (Eppendorf 5417R, Westbury, NY, 

USA). Free hemoglobin (fHb) in the final supernatant was measured via spectrophotometer 
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(Genesys 5; Spectronic Instruments, Inc., Columbus, OH, USA) using the Wintrobe method 

(absorbance at 540 nm) [24]. All of the above procedures were carried out at room temperature 

(22 ± 1°C). 

The dimensionless MF index (MFI) value for each experiment was calculated as follows: 

 

where tHb is the total hemoglobin concentration of the blood sample in g/dL, and fHb is 

the average free hemoglobin concentration of the BB containing or control tubes in mg/dL. 

A.2.4 Statistical Analysis 

Descriptive statistics were expressed as mean ± one standard deviation. Linear correlation 

(Pearson’s correlation coefficient) was used to examine the relationship between the reduced 

volume and large volume methods, while multivariate linear regression (SPSS; IBM, Armonk, 

NY, USA) was used to establish the relationship of MFI with respect to Ht and create the 

reduced volume MMFI. One-way analysis of variance was applied to test MMFI significance 

between plasma protein concentrations, and a P value <0.05 was considered statistically 

significant. Post-hoc testing was conducted using the Tukey method. 
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A.3 RESULTS 

A.3.1 Comparison of Rocker Bead Methods 

While the new reduced volume RBT displayed lower MFI values relative to the older large 

volume method at each bovine blood matched Ht, a very strong linear relationship was observed 

between the two experimental protocols (r = 0.941) as shown in Figure 50-B. 

 

Figure 51. A) MFI values at hematocrit concentrations between 25 and 50% and B) the resultant regression 

analysis of the MFI residuals after linearization using the reduced volume RBT with human blood. 
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A.3.2 The Modified Mechanical Fragility Index (MMFI) 

A strong nonlinear relationship was observed between sample Ht of the reduced volume RBT 

and the resultant MFI using human blood as shown in Figure 51-A. Linear regression analysis 

on the MFI residuals (difference in MFI from the paired MFI value at 40% Ht) as a function of 

Ht deviation multiplied by the test Ht yielded a highly correlated fit (r = 0.965) at a forced y-

intercept of zero (Figure 51-B). The coefficient of determination predicting MFI from the 

experimental value at 40% Ht using the generated correction factor was R2 = 0.941. Defining 

MMFI as the MFI if run at a standard Ht of 40%, the MMFI equation for the reduced volume 

RBT became: 

 

where 3266 is the fitted correction constant derived from the slope of the linear 

regression analysis in Figure 51-B. 

 

Figure 52. Comparison of the reduced volume MMFI to the MFI (mean ± 1.0 SD) across four different 

human blood units at hematocrits between 25 and 50%. 
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The calculated MMFI for each experiment is shown in Figure 52 corresponding well to 

the MFI measured at 40% Ht for each unit of human blood (R2 = 0.923). 

A.3.3 MMFI Reduced Volume Validation: Plasma Protein Protective Effect 

There was a clear inverse linear relationship between total plasma protein concentration and 

RBC MF using the reduced volume RBT with human blood, with a statistically significant 

difference between 8.0 and 5.0 g/dL (P < 0.01) (Figure 53). There was a minor change in plasma 

viscosity associated with dilution, resulting in values of 1.74, 1.56, and 1.42 cP for the 8, 6.5, and 

5.0 g/dL solutions, respectively. 

 

Figure 53. Effect of total plasma protein on red blood cell modified mechanical fragility index values as 

measured by the reduced volume RBT at 40% hematocrit using human blood. ( * - P < 0.01). 
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A.4 DISCUSSION 

The previously utilized large volume RBT of RBC MF, while an inexpensive, easily employable, 

and precise test, is limited in its scope of possible applications due to large blood sample volume 

requirements. For example, while it has been used in assessing blood quality during in vitro 

biocompatibility testing of blood pumps, researchers have been previously incapable of 

measuring the level of sublethal blood damage occurring in patients on mechanical circulatory 

support. Large sample volume requirement has also made it impossible to assess preoperative 

baseline RBC MF as a potential biomarker indicative of degree of hemolysis or anemia 

following left ventricular assist device (LVAD) implantation [195]. Should this prove a relevant 

clinical biomarker, the new test may predict patient outcomes prior to LVAD implantation. 

As a function of MFI and a correction factor, MMFI remains dimensionless while 

retaining the familiar magnitude of scale. The same reasoning and principles applied with the 

selection of 40% Ht as the ‘standard’. While the Ht range examined (25–50%) represents typical 

clinical concentrations, MMFI values from reduced volume RBTs performed outside of this 

range may be less representative of RBC MF. 

While previously published data investigated the effect of total plasma protein 

concentrations on RBC MF at 50 and 0% relative to baseline whole blood, we investigated 

concentrations of ~80 and ~60% relative to baseline whole blood [96]. A similar inversely 

proportional relationship was found in this study with a statistically significant difference in 

RBC MF at ~60% from baseline. 

The new reduced volume RBT has some limitations. The large volume RBT has been 

previously shown to have excellent intralaboratory reproducibility but poor interlaboratory 

reproducibility [84]. While the phenomenon of interlaboratory reproducibility was not 
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investigated in our development of the reduced volume method, we hypothesize that it will be 

similar. There are a number of factors such as minor variations in rocker speed, rocker amplitude 

angle, and blood collection method that can influence results when performed in different 

laboratories. This does not decrease the efficacy or meaningfulness of our test because in the 

context of a single-center clinical or preclinical study, it is the relative differences in MMFI 

values between samples, not the absolute magnitude of the MMFI values, which is significant. 

The use of K2-EDTA, a dry-form calcium chelator, for these studies was to minimize 

hemodilution and possible plasma protein alternations. Since anticoagulation may affect RBC 

MF through plasma protein dilution, activity, and other direct or indirect mechanisms of actions, 

one anticoagulant should be used for all samples in a given study. 

This new test was created to be of use in single-center studies involving patients and/or 

small animal experiments. The possible applications other than the above-mentioned mechanical 

circulatory support patient studies are plentiful; examples include assessing mechanical RBC 

damage in patients supported by ECMO or dialysis, testing the effects of pharmaceutical 

treatments on blood diseases or blood bank stored donor RBC transfusion, and assessing the 

viability of modified RBCs acting as intravascular drug delivery vehicles [196]. 

A.5 CONCLUSION 

We have created a reduced volume rocker bead test of red blood cell mechanical fragility, and 

associated modified mechanical fragility index, that is easily employable, inexpensive, and 

requires a relatively small volume of blood. This method can be utilized in clinical and 

preclinical research studies as well as a part of diagnostics and/or treatment of patients. 
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APPENDIX B 

EFFECT OF INLET PRESSURE ON GAS EMBOLISM AND HEMOLYSIS IN 

CONTINUOUS-FLOW BLOOD PUMPS 

The work described here was presented in part at the 2011 ASAIO 57th Annual Conference 

[197]. 

The current standard for reporting the results of an in vitro continuous-flow blood pump 

hemolysis test is to provide a description of the test circuit along with the numerical values of 

certain test parameters including motor speed, flow rate, hematocrit, time duration, and pressure 

drop across the pump. Noticeably absent from the reported parameters is the pressure at the 

pump inlet, which is surprising considering that previous studies have described the hemolytic 

effect of large vacuums when coupled to air exposure. Furthermore, many clinicians routinely 

encounter these negative pressures while running these pumps on patients. These preliminary 

experiments attempt to examine the effect of inlet pressure on hemolysis and gaseous emboli 

generation. 
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B.1 INTRODUCTION 

There is increasing interest in high flow, low volume, biocompatible circulatory-assist devices 

leading to the development of small, high-speed rotary blood pumps for use in ECMO and as 

VADs. During clinical use, these pumps routinely encounter negative inlet pressures due to 

inadequate patient pre-load. Thus there is a need to quantify the effect of low preload on the in 

vitro hemolysis results of rotary blood pumps (RBPs). 

B.1.1 Experiences with CPB 

Previous cardiopulmonary bypass (CPB) studies have shown correlations between high vacuum 

pressures and hemolysis in reference to cardiotomy suction, in-adequate preload, or cannulae 

selection/placement [198-200]. While one study posited that extreme negative pressure does not 

cause hemolysis, this was supported in the absence of an air-blood interface and during pressure-

driven, single pass experiments [201]. These assumptions are lost with the application of RBPs, 

as motor suspension and biocompatibility performance may be adversely effected by the 

presence of air.  

B.1.2 Emboli Generation in Saline 

Initial studies in saline indicated a strong relationship linking inlet pressure and motor speed to 

spontaneous emboli generation within a fully magnetically levitated, continuous-flow, 

centrifugal blood pump (Table 4). Using embolism detectors (>50 µm diameter threshold) at the 

inlet and outlet of a Thoratec® PediMAG® within a simple mock loop, taking the difference in 
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emboli count between detectors excludes any re-circulating emboli revealing only air generated 

by the pump itself. 

Table 4. Emboli generation rate in saline with the Thoratec® PediMAG®. 
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Generation of gaseous emboli, whether from vacuum degasification or pump cavitation, 

pose a more serious risk when blood pumps are used as VADs due to the lack of an oxygenator 

to service as a ‘filter’. This preliminary study aims to examine the effect of inlet pressure on gas 

embolism and hemolysis in the Thoratec® PediMAG®. 

B.2 METHODS 

A ¼” flow loop circuit (Figure 54) was designed to evaluate hemolysis and gas embolism 

formation at 0.5 L/min (2300 rpm) and 1.5 L/min (2700 rpm) for four hours at three inlet 

pressures (0. -20, and -40 mmHg). The desired inlet pressures were reached by adjusting the inlet 
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and outlet throttle tubing clamps at the respective test flow rates, thereby maintaining the same 

pressure drops across the pump as well. 
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Figure 54. Schematic of the test loop for assessment of gas emboli and hemolysis. 

A rocker platform was used to ensure adequate mixing within the reservoir bags due to 

the low flow rates. All blood contacting surfaces were passivated with 1% bovine serum albumin 

solution before emptying and priming. The flow loop and control bag was filled with 200 mL of 

fresh ovine blood, adjusted to a hematocrit of 30 ± 2%, and completely de-aired before pump 

start. Samples (3 mL) were obtained every two hours for plasma free hemoglobin (plfHb) 

measurements and the Normalized Index of Hemolysis (NIH) calculated [143]. 
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Figure 55. Display screen of the EDAC Quantifier system. 

The Emboli Detection and Classification (EDAC) Quantifier (Luna Innovations®, 

Blacksburg, VA) was used to measure air emboli in real-time as shown in Figure 55. Two 

EDAC sensors cells (Figure 56-Inset), were placed (inlet and outlet of reservoir) in order to 

distinguish pump generated emboli from existing emboli circulating from the blood bag. 

 

Figure 56. In vitro test setup with the EDAC cells (inset) used to measure the emboli within the flow loop. 
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B.3 RESULTS AND DISCUSSION 

Hemolysis measurements suggest a threshold for increased NIH and inlet vacuum pressures at 

lower flow rates as shown in Figure 57. The larger NIH at the lower flow rate may be due to 

longer blood residence times within the pump, leaving the red blood cells exposed to high shear 

for longer periods. 
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Figure 57. Plot of NIH ± SDEV as a function of negative inlet pressure and flow rate. 

Emboli generation per minute (Figure 58) reflects the same trend seen within the 

hemolysis data, showing a strong correlation between emboli generation and blood trauma. 

0
500

1000
1500
2000
2500
3000
3500

-40-30-20-100

Em
bo

li/
m

in
 (>

10
μm

)

Inlet Pressure (mmHg)

Emboli Generation versus Inlet Pressure

1.5 Lpm
0.5 Lpm

 

Figure 58. Plot of emboli generation rate ± SDEV as a function of negative inlet pressure and flow rate. 
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While Figure 59 shows similar overall total emboli count for 0.5 and 1.5 L/min, it is 

clear through the comparison of inlet and outlet counts that more air is actually generated at 0.5 

L/min as opposed to simply recirculated within the loop. 
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Figure 59. Total gaseous emboli entering and exiting the pump at each inlet pressure and flow rate. 

Analysis of emboli size at the inlet and outlet EDAC cells (Figure 60) show greater 

counts of larger air emboli entering the pump while the exit has much higher counts of the 

bubbles at smaller diameters, indicating that there is bubble dispersion within the pump. 
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Figure 60. Histogram of total emboli segregated by size diameter for one 0.5 L/min study at -40 mmHg. 

These preliminary studies indicate that ensuring adequate preload to minimize negative 

pump inlet pressures is important during in vitro hemolysis testing and clinical operation. Pump 

biocompatibility performance appears to be affected by the presence of air which may destabilize 

the motor suspension and/or contribute with shear stress to hemolysis. For future studies, if 

adequate mixing can be ensured, performing these tests vertically (reservoir above the pump) 

will minimize air emboli re-entering the pump; thereby reducing the noise of these tests.  
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APPENDIX C 

SUMMARY RESULTS OF THE 4TH GENERATION PEDIAFLOW® DEVELOPMENT 

Table 5. Summary of the 4th generation PediaFlow® prototypes (PF4.x) fabricated by the Consortium. 

Prototype Extent of Testing Modifications Manufacturing Findings 

PF4.1 Non-operational - - 

PF4.2 In Vitro Epoxy-sealed feedthrough assembly 
and PCB board 

Ground failure at feedthrough 
requiring external grounding 
precluding in vivo assessment 

PF4.3 In Vivo Improved percutaneous cable 
feedthrough attachment design 

- 

PF4.4 Non-operational - Noncompliant components 

PF4.5 In Vivo - - 

PF4.6 In Vivo - - 

PF4.7 In Vivo Revised stator housing to 
accommodate a Gelweave®-
compatible outflow assembly 
connection 

Epoxy infiltration into driveline 
during hermetic sealing leading 
to eventual fracture from fatigue 

PF4.6.1* In Vivo 1. Reduced-size driveline connector 
2. Smoothing filter on motor current 
signal 
3. Axial sensor temperature 
compensation circuitry 

- 

PF4.8* In Vivo (refurbished PF4.7) 
Copper-shielded percutaneous cable 

- 

*Used in the 60- and 14-day implants representing the current PF4 implantable design. 
   A total of nine PF4.x prototypes were fabricated, with six builds remitted for in vivo implantation and 
biocompatibility testing. Aside from variations due to manufacturing tolerances, the pump topologies (i.e.: blood 
flow paths) are identical across the PF4 generation. Instead, each hand-built pump represents the incorporation of 
incremental improvements based on fabrication and/or implant findings of the previous prototype. 
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C.1 PF4 IMPLANTABLE DESIGN MODIFICATIONS 

C.1.1 Inflow Cannula Prototypes 

As summarized in Table 6 below, a total of seven (n=7) different inflow cannula were evaluated 

for use with the PediaFlow®. Additional information about the initial designs leading to the 

“parabolic”-cannula (3.2.1) can be found in 3.1. 

Table 6. The inflow cannulae developed, utilized or under consideration for use with the PF4. 

Prototype Iteration Design Features Findings 

Fenestrated - Modified 18-22 Fr commercial venous drainage 
Custom glue-fixed apical sewing ring 
Single-stage multi-port/caged-tip 
Malleable or right angle wire reinforced body 

3.1.1 

Conformal 1 Nitinol-reinforced silicone flange inlet 
Suture-less retention system (threaded nut) 
Deployment tool 

3.1.2 

Conformal 2 Increased flange diameter 3.1.2 

Bevel 1.0 Nitinol, round-wire reinforced polyurethane 
Blunt-tip inlet opening 
Pre-attached, fixed-depth, rotating sewing ring 

3.1.3 

Bevel 1.1 Reduced pump connection flange diameter 3.1.3 

Bevel 2 316 SS, flat-wire reinforcement 
Increased bend angle 
Graded strain relief at pump connector 

3.1.3 

Parabolic * 1 316 SS reinforced U-shaped inlet opening 
Removable, variable depth, tool-less sewing ring 

5.2 

*Used in the 60- and 14-day implants representing the current PF4 implantable design. 
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C.1.2 Outflow Grafts 

As described in Table 7, three outflow assembly iterations were implanted in conjunction with 

the PF4 in vivo studies. While previous generation PediaFlow® studies utilized polyester-based 

outflow grafts (including the 72-day PF3-S01 implant), concerns about commercial availability 

and patency led to the selection of an ePTFE based graft for the first PF4 implants. 

Table 7. The outflow graft assemblies used during the in vivo assessments of the PF4. 

 Outflow Graft  

Prototype 
OD (mm) 

Material 
Modifications /  

External Strain Relief 

Bard® ePTFE 5.0 thin-wall ePTFE - 

SEAL-PTFE™ 6.0 dual-layer, extraluminally 
gelatin-sealed ePTFE 

Reduced pump connector flange dia. 
8mm MAXIFLO™ ePTFE Wrap 

Gelweave™ * 6.0 gelatin-impregnated polyester 8mm MAXIFLO™ ePTFE Wrap 

*Used in the 60- and 14-day implants representing the current PF4 implantable design. 
Bard® ePTFE (5 mm Flex Thinwall Small Beading) is a product of Bard® Peripheral Vascular (Tempe, AZ, USA). 
SEAL-PTFE™ (standard-wall, external spiral support), MAXIFLO™ (standard-wall, external solid-PTFE spiral 
support), & Gelweave™ are products of Vascutek® Ltd (Renfrewshire, Scotland, UK). 

 

The initial PF4.x ovine studies using a 5.0 mm Bard® ePTFE graft suffered from 

excessive serous chest drainage and significant plasma loss requiring premature elective 

termination of the studies (C.2.1). A qualitative analysis of graft permeability on the explanted 

ePTFE outflow graft from PF4-S01 was performed impromptu following necropsy. Using a 

roller pump to simulate the in vivo flow conditions (Q = 1.2 L/min, ΔP = 100 mmHg), ovine 

blood (30% Ht) with Coomassie blue was circulated within a mock loop through the outflow 

graft submerged in a saline bath (Figure 61). 
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A)                                                                      B)                     Inset  

Figure 61. Qualitative analysis of outflow graft permeability A) experimental loop setup, and B) the 

explanted ePTFE graft with streak lines perpendicular to the graft surface highlighting “graft weep” (Inset). 

Substantial leakage was observed (Figure 61-Inset) suggesting that the large fluid loss 

experienced during the implant study was due to graft permeability. Typically used for 

anatomical repair or applications under physiological hemodynamics, the supra-physiological 

pressures from pediatric RBPs may adversely affect the material properties and permeability of 

the notably hydrophobic ePTFE grafts [162]. With similar findings in a subsequent implant 

(PF4-S02), there is a strong evidence suggesting ePTFE vascular grafts are susceptible to both 

aqueous and protein permeability, or “plasma weep”. 

Despite switching to a dual-layer, gelatin-coated exterior ePTFE graft for PF4 implants 

(PF4-S04, PF4-S05), questions still remained regarding biocompatibility with continued 

bleeding and decreased plasma protein concentrations, and findings including intraluminal and 

extraluminal outflow graft thrombus at necropsy (not shown). After evaluating two different 

ePTFE styles, continuing issues with excessive fluid and plasma protein loss (i.e.: “graft weep”), 

led to the decision to return to the Gelweave™ grafts previously used successfully. 
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C.1.3 Pump Connectors 

Introduced with the 4th generation PediaFlow® prototypes was a compact, tool-less, ‘quick-

connect’ coupling used with both the inflow cannula and outflow graft assembly. Consisting of a 

nitinol-wire retaining clasp on the pump mating face and a flanged inlet/outlet adapter, 

attachment or removal of the cannula/graft is achieved by depressing the loop to concentrically 

deform the two guidewires that hold the radial flange in place (Figure 62-A). After initial wet-

to-wet connections during surgical implantation were less than successful (Figure 62-B), a 

reduced flange diameter adapter was used for the PF4-S04 and subsequent implants that 

eliminated difficulties with non-seated pump connections (Figure 62-C). 

A) B) C)  

Figure 62. The PF4 ‘quick-connect’ attachment mechanism. A) The initial full-flange design was difficult to 

attach and B) prone to misalignment in vivo. C) The revised design with a smaller flange size to ease insertion past 

the guidewires. 

C.1.4 Driveline and Controller Upgrades 

Pending finalization of a clinical controller, the initial PF4.x prototypes in the interim 

utilized surplus Levacor® percutaneous cable and corresponding external driveline extension 

connector for connection to the preclinical controllers (Figure 63-A). After controller 
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development was halted, an analysis was undertaken to address the oversized threaded nut 

connector that was difficult to tunnel and unacceptable for clinical use with an excessive size 

different between the outer diameter (OD) of the connector and cable. A more traditional push-

pull, “Lemo”-type, connector was introduced with PF4.6.1 with a smaller OD and a watertight 

tunneling cap (Figure 63-B). Furthermore, concerns about signal noise and fatigue resistance 

due to the stainless steel braided shield of the existing driveline led to the selection of a copper-

braid shielded percutaneous cable in PF4.8 and future pumps. 

 

Figure 63. A) The original PF4.x threaded nut (A) driveline connector and the new push-pull connector (B) 

used in PF4.6.1 and subsequent prototypes. 

Two notable hardware upgrades on the preclinical controllers introduced with PF4.6.1 

were the axial sensor temperature correction circuitry to minimize rotor position signal drift post-

implantation and a new alarm filter board for accurate output readings of pump motor current. 

These upgrades were relevant in the development of the PediaFlow® flow estimator and are 

detailed in 4.3.3. 
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C.2 IN VIVO OVINE STUDIES & IMPLANTS 

C.2.1 PF4.x Implants 

A total of eleven juvenile sheep were implanted with the PF4.x prototypes to 1) evaluate the 

pump series from a physiological and biocompatibility standpoint, 2) the PediaFlow-specific 

inflow and outflow cannulae under development, and 3) the ease of surgical implantation and use 

of the pediatric LVAD system. A summary of these experimental studies and findings are shown 

in Table 8. 
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Table 8. Summary of the in vivo PF4-implanted juvenile ovine experiments. 

       Implant # 
(IACUC #) 

Weight 
(kg) Pump 

Inflow Cannula: 
Outflow Assembly: 

Time 
(days) 

Avg. Q 
(L/min) Pertinent Findings 

PF4-S01 
(S017-11) 

28.0 PF4.3 I: 18Fr Fen. DLP® 
O: Bard® ePTFE 

4/14 1.2 1. Serosanguinous fluid collection 
2. Constricted outflow 
anastomosis 

PF4-S02 
(S026-11) 

27.9 PF4.3 I: 22Fr Fen. Baxter® 
O: Bard® ePTFE 

15/28 0.9 1. Detached pump inlet 
connection 
2. Fibrous deposition surrounding 
outflow graft along entire length 
3. Graft kink at pump attachment 

PF4-S03 
(S027-11) 

23.0 PF4.5 I: Bevel 1.0 
O: Bard® ePTFE 

< 1 N/A 1. Respiratory failure peri-
operatively following chest 
closure 
2. Non-seated outflow connector 

PF4-S04 
(S034-11) 

24.5 PF4.5 I: Bevel 1.1 
O: SEAL-PTFE™ 

4/28 1.5 1. Respiratory failure secondary to 
thoracic blood collection 
2. Outflow graft thrombus 

PF4-S05 
(S033-11) 

28.0 PF4.6 I: Bevel 1.1 
O: SEAL-PTFE™ 

4/28 1.0 1. Cardiac compression secondary 
to large thoracic hematoma 
2. Tissue entrapped on cannula tip 
3. Thrombus at base of LV 

PF4-S06 
(S009-12) 

22.3 PF4.7 I: Bevel 1.1 
O: Gelweave™ 

28/28 1.3 1. Inflow cannula kink 

PF4-S07 
(S018-12) 

27.3 PF4.7 I: Bevel 1.1 
O: Gelweave™ 

12/28 1.5 1. Rotor position sensor failure 
secondary to driveline fracture 
2. Inflow cannula kink 

PF4-S08 
(S044-12) 

28.2 PF4.6.1 I: Bevel 2.0 
O: Gelweave™ 

9/28 2.0 1. Tamponade secondary to 
infectious pericarditis 
2. Large thoracic hematoma 

PF4-S09 
(S001-13) 

19.0 PF4.8 I: Bevel 2.0 
O: Gelweave™ 

15/30 1.0 1. Cardiovascular collapse 
2. Thoracic hematoma 
3. Inflow cannula kink 

PF4-S10 * 
(S011-13) 

28.7 PF4.6.1 I: Parabolic 
O: Gelweave™ 

60/60 1.6 1. Unremarkable 

PF4-S11 * 
(S012-13) 

28.7 PF4.8 I: Parabolic 
O: Gelweave™ 

14/28 1.4 1. Unable to restart after rotor 
delevitation due to wear 

* Current PF4 implantable design. 
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Despite the repeated challenges with the implantable peripherals in vivo, 

hemocompatibility as measured by plasma-free hemoglobin remained below 20 mg/dL for 7 of 

the 9 preliminary implants (Figure 64). 

 

Figure 64. Plasma-free hemoglobin values for the initial in vivo PF4 implants. 
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Table 9. Additional blood parameters of the 3rd and 4th generation PediaFlow® and sham in vivo animal 

studies presented in 5.2. All were within reference values. 

 

C.2.2 Surgical Shams (Controls) 

Three “sham” implants were performed for an intended 28-days duration for the purpose of 

obtaining “control” biocompatibility data for the PediaFlow® implantations. These “sham” 

 PF3-S01 
(72 days) 

PF4-S10 
(14 days) 

PF4-S11 
(60 days) 

Sham Implants 
(n = 3, mean) Reference Range 

Weight (kg) (24) (30) (28.7) (43.3 + 12.7)  
WBC (x 103/mm3) 7.3 + 1.2 (7.2) 8.6 + 2.8 (9.5) 13.4 + 3.4 (12.8) 5.0 + 0.5 (5.6) 4-12 
RBC (x 106/mm3) 7.6 + 0.5 (10.3) 8.2 + 0.7 (13.1) 10.0 + 0.7 (13.4) 8.5 + 0.7 (9.9) 9-15 
Hgb (g/dl) 8 + 0.9 (9.9) 7.7 + 0.6 (12.3) 10.7 + 0.7 (14.2) 9.6 + 1.0 (10.0) 9-15 
HCT (%) 23.3 + 2.7 (26.5) 24.1 + 1.3 (37.6) 31.9 + 1.9 (41.5) 26.6 + 2.2 (31.9) 27-45 
Platelets (x103/mm3) 626 + 248 (2000) 855 + 477 (634) 605 + 306 (518) 755 + 571 (1406) 250-750 
MCV (μm3) 29.7 + 1.8 (26) 29.7 + 1.5 (29) 31.9 + 1.0 (31) 31.4 + 2.3 (31) 28-40 
MCH (pg) 10.3 + 0.6 (9.6) 9.4 + 0.3 (9.4) 10.7 + 0.3 (10.7) 11.4 + 0.3 (10.2) 8-12 
MCHC (%) 34.9 + 1.2 (37.4) 31.8 + 1.3 (32.7) 33.7 + 0.9 (34.4) 35.8 + 4.6 (35.2) 31-34 
Neutrophils (x103/mm3) 3 + 1.3 (1.7) 3.8 + 1.7 (3.2) 3.7 + 2.4 (4.3) 2.2 + 0.5 (1.9) 0.7-6.0 
Lymphocytes (x103/mm3) 3.7 + 1.5 (4.6) 4.5 + 2.1 (6.2) 9.2 + 2.4 (8.2) 2.4 + 0.5 (3.2) 2-9 
PT (s) 22.1 + 6.2 (26.6) 16.5 + 7.3 (15.2) 16.9 + 2.2 (16.2) 17.1 + 3.4 (20.0) N/A 
INR 2.2 + 3.5 (2.3) N/A N/A N/A N/A 
PTT (s) 61.2 + 22.7 (29.7) 43.7 + 8.2 (44.5) 49.4 + 12.8 (33.9) 31.1 + 7.7 (38.2) N/A 
BUN (mg/dl) 21 + 15.3 (16) 16 + 5.4 (12) 11.2 + 2.7 (13) 14.3 + 1.9 (16) 10.3-26 
Glucose (mg/dl) 91.9 + 15.1 (88) 96.5 + 32.1 (74) 77.9 + 7.1 (86.5) 75.2 + 4.3 (77.3) 44-81.2 
Creatinine (mg/dl) 1.4 + 1.5 (0.8) 0.9 + 0.3 (0.7) 0.6 + 0.1 (0.5) 1.3 + 1.1 (0.6) 0.9-2.0 
Ca (mg/dl) 10 + 0.9 (10.5) 8.8 + 1.1 (10.8) 10.1 + 0.9 (10.9) 9.9 + 0.3 (10.2) 9.3-11.7 
Mg (mEQ/L) 1.1 + 0.2 (1.6) 1.4 + 0.3 (1.5) 1.6 + 0.2 (1.8) 1.6 + 0.0 (1.6) 2.0-2.7 
Cl (mmol/L) 111 + 4.7 (105) 109 + 5.5 (107) 109 + 3.3 (110) 109 + 2.7 (108) 100.8-113.0 
K (mmol/L) 6.1 + 1.6 (4.4) 4.3 + 0.7 (5.2) 5.2 + 0.6 (4.7) 5.5 + 0.8 (4.3) 4.3-6.3 
Na (mmol/L) 143 + 4 (144) 144 + 3.3 (144) 145 + 3.5 (150) 144 + 0.5 (148) 141.6-159.6 
SGPT(ALT) (IU/L) 11 + 9 (13) 12.3 + 10.5 (9) 10.4 + 8.6 (10.5) 21.0 + 17.6 (27.8) 14.8-43.8 
SGOT(AST) (IU/L) 76 + 46 (71) 212 + 127 (82) 99 + 67 (78) 71 + 30 (70) 49.0-123.0 
Albumin (g/dl) 2.7 + 0.6 (3) 2.2 + 0.3 (3.2) 2.8 + 0.5 (3.4) 2.9 + 0.1 (2.9) 2.4-3.0 
Tot. Bilirubin (mg/dl) 0.1 + 0 (0.2) 0.1 + 0.1 (0.1) 0.6 + 1.6 (0.1) 0.3 + 0.2 (0.2) 0.1-0.5 
GGT (IU/L) 44 + 13 (57) 36.4 + 6.0 (54) 36 + 3.6 (52) 67 + 25 (73) 10-118 
LDH (IU/L) 437 + 146 (325) 713 + 355 (383) 427 + 115 (439) 377 + 8 (365) 238-560 
Phos (mg/dl) 8.1 + 1 (7.5) 5.1 + 2.0 (6.2) 7.8 + 1.3 (6.4) 7.2 + 1.1 (6.4) 4.0-7.3 
Cholesterol (mg/dl) 71.1 + 26 (40) 47.8 + 26.2 (56) 48.9 + 13.8 (33.5) 71.7 + 19.3 (43) 44.1-90.1 
ALP (IU/L) 82.7 + 23.6 (139) 100.8 + 26.2 (144) 92.8 + 17.7 (195.5) 112.3 + 47.1 (230) 26.9-156.1 
CPK (IU/L)  500 + 1181 (111) 642 + 805 (145) 613 + 1678 (128) 270.8 + 147.4 (300) 47-4212 
Tot. Protein (g/dl) 5.2 + 0.4 (5.7) 4.0 + 0.5 (5.5) 5.1 + 0.7 (5.7) 5.3 + 0.2 (5.6) 5.9-7.8 
   Data presented as mean ± SD (pre-operative mean). 
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surgical implants mimic an actual PediaFlow® implant except for device implantation and allow 

us to account for surgical effects and post-operative recovery on rheology, platelet activation and 

other biocompatibility indices of interest. As pre-operative jugular venipuncture samples are 

prone to artifact from needle sticking an awake animal [159], a jugular venous catheter was 

placed under general anesthesia a week before sham surgery for collection of baseline 

biocompatibility parameters (ie: platelet activation and plasma free hemoglobin). 

For the actual “sham” surgery, following intubation and induction of anesthesia, the 

existing venous catheter in the left jugular vein was replaced and an arterial catheter was inserted 

in the left carotid artery. The thorax was entered via a left, fourth interspace thoracotomy and the 

left ventricular apex and descending aorta were exposed. The animal was anticoagulated with 

heparin to maintain the whole blood ACT at 1.5-2.0 times baseline. A lubricated sewing ring was 

fixed on the LV apex and a stab incision was made in the LV apex, which was then sutured 

closed. A 3 cm length of 6 mm diameter Gelweave™ (Vascutek® Ltd, Renfrewshire, Scotland, 

UK) graft was connected in an end-to-side fashion to the descending thoracic aorta to duplicate 

the pump outflow graft and anastomosis site. The graft was then “tied off” to prevent graft 

material being in contact with the blood. 

The “sham” surgical procedures proceeded without any major complications, the animals 

recovered from anesthesia and were returned to the ICU, where they were monitored for the 

duration of the study. Recovery and follow-up was uneventful with hemodynamic and 

respiratory parameters remaining within normal limits. During follow-up periods, the animals 

were cared for exactly as the 72 day PF3 implanted animal had been. After meeting the intended 

28-day study period, the three sham experiments were electively ended for gross necropsy 

examination per to surgeon availability. 
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Table 10. Summary of the surgical sham (control) animal studies. 

    Study Animal 
   (IACUC #) 

Weight 
(kg) 

Length (days) 
Actual/Intended Findings 

Sham-S01 
(S002-09) 

45 39/28 1. Two minor (<2 mm dia), surface infarcts on left kidney 
2. Two minor (<2 mm dia), surface infarcts on right kidneys 

Sham-S02 
(S003-09) 

55 32/28 1. Single minor (<2 mm dia), surface infarct on right kidney 

Sham-S03 
(S017-09) 

30 28/28 1. Unremarkable 

 

 

C.2.3 PF3-01 72-day Implant [134] 

The 3rd generation PediaFlow prototype (PF3) was implanted in a healthy lamb for 72 days in 

accordance with the Institutional Animal Care and Use Committee guidelines at the University 

of Pittsburgh. The pump was introduced into the circulation as a left ventricular assist device, 

interposed between the left ventricle and descending thoracic aorta. Surgical access was gained 

through a left thoracotomy, followed by heparinization for a target ACT >300s. A modified wire-

reinforced polyurethane cannula (18Fr DLP®, Medtronic®, Minneapolis, MN, USA) was 

inserted into the apex of the left ventricle through a stab incision and secured with a sewing ring 

fashioned from thick surgical felt (PTFE, C.R. Bard®, Murray Hill, NJ, USA). The outflow from 

the PF3 was 6 mm diameter polyester vascular graft (Vascutek® Ltd, Renfrewshire, Scotland, 

UK) anastomosed to the descending thoracic aorta using a partial occlusion clamp. The pump 

was operated at a fixed speed of 14.5 kRPM. The flow rate was measured via an ultrasonic 

transit-time flow probe (Transonic® Inc., Ithaca, NY, USA) attached to the outflow graft. 

Throughout the study, pump flow, power consumption, and carotid blood pressure were 
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recorded. Hemorheology and serum chemistry values were collected daily to assess the 

biological impact of the pump on blood damage and organ function. 

 

Figure 65. Necropsy images of the PF3-S01 (72-day) implant. A) pump placement in situ, B) the modified 

18Fr fenestrated inflow cannula (Medtronic® DLP, Minneapolis, MN, USA) free of thrombus within the LV, C) left 

kidney with a minor and well-healed cortical infarction, D) right kidney with a minor surface infarction that was not 

visible upon sagittal dissection, E) the pump rotor and F) stator free of deposition. 

Gross necropsy after the 72-day implant duration was unremarkable aside from a well-

healed, minor cortical infarction on the left kidney, most likely at the time of initial surgery 

(Figure 65-C). 
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APPENDIX D 

PROGRAMMING CODE 

D.1 MATLAB SCRIPTS 

D.1.1 Parsing Individual DSS Log File 

% script to read data from LabVIEW generated .txt files 
% specifically to examine individual files 
% 07-16-13 SEO 
 
nchan=9; 
SR=400; 
snip=5; 
     
[fname,pname]=uigetfile('E:\PediaFlow\ *.txt'); 
d = dir(pname); 
  
disp(['Processing file ' [pname fname]]); 
fid=fopen([pname fname],'r'); 
     
% mess=textscan(fid, '%s %s %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32'); 
% data=[mess{3},mess{4},mess{5},mess{6},mess{7},mess{8},mess{9},mess{10},mess{11}]; 
mess=textscan(fid,'%{M/d/yyyy}D %{HH:mm:ss.SSSSSS}D %f32 %f32 %f32 %f32 %f32 
%f32 %f32 %f32 %f32'); 
data=[mess{3},mess{4},mess{5},mess{6},mess{7},mess{8},mess{9},mess{10},mess{11}]; 
  
data=double(data); 
  
%time = linspace(0,60,length(data(:,1))); 
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%time = linspace(0,length(data(:,1))/SR,length(data(:,1))); 
mess{1}.Format='MM-dd-yyyy HH:mm:ss.SSS'; 
mess{2}.Format='MM-dd-yyyy HH:mm:ss.SSS'; 
  
time = mess{1}+timeofday(mess{2}); 
  
  
% LPF of data 
[b_five,a_five]=butter(1,5*2*(1/SR)); 
%[b_half,a_half]=butter(1,0.5*2*(1/SR)); 
[b_tenth,a_tenth]=butter(1,0.1*2*(1/SR)); 
  
% 10Hz LPF coeffs 
[b_ten,a_ten]=butter(1,10*2*(1/SR)); 
  
  for n=1:nchan 
%      data_tenth(:,n)=filtfilt(b_tenth,a_tenth,data(:,n)); 
%      data_five(:,n)=filtfilt(b_five,a_five,data(:,n)); 
       data_ten(:,n)=filtfilt(b_ten,a_ten,data(:,n)); 
        
       data_snip(:,n)=data(1:400*snip,n); 
        
       data_ten_snip(:,n)=data_ten(1:400*snip,n); 
%           
%      [~,locs]=findpeaks(data_five(:,n)-data_tenth(:,n)); 
%      data_peak(:,n)=filtfilt(b_tenth,a_tenth,interp1(time(locs),data(locs,n),time,'spline')); 
%       
%      [~,locs]=findpeaks(-(data_five(:,n)-data_tenth(:,n))); 
%      data_trough(:,n)=filtfilt(b_tenth,a_tenth,interp1(time(locs),data(locs,n),time,'spline')); 
%     
  end 
   
  time_snip=time(1:400*snip); 
   
% chan=["AP","CVP","RP","MS","LC","MC","AF","EF"]; 
  
% AP=data(:,1); 
% RP=data(:,3); 
% MS=data(:,4); 
% LC=data(:,5); 
% MC=data(:,6); 
% AF=data(:,7); 
% EF=data(:,8); 
% EF_adj=0.8*(460502097.944 + 45678592*(MS.^2) + 427128023.204.*MC + -
8268351850*abs(RP+0.9))./(173167168.*MS); 
%  
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createfigure(time,data(:,1),data(:,3),data(:,4),data(:,5),data(:,6),data(:,7)); 
createfigure(time,data_ten(:,1),data_ten(:,3),data_ten(:,4),data_ten(:,5),data_ten(:,6),data_ten(:,7)
); 
createfigure(time_snip,data_snip(:,1),data_snip(:,3),data_snip(:,4),data_snip(:,5),data_snip(:,6),d
ata_snip(:,7)); 
createfigure(time_snip,data_ten_snip(:,1),data_ten_snip(:,3),data_ten_snip(:,4),data_ten_snip(:,5
),data_ten_snip(:,6),data_ten_snip(:,7)); 

D.1.2 Parsing Hourly DSS Files from Implant 

% script to read data from LabVIEW generated .txt files 
% specifically to collate/combine hourly files generated from an implant 
% 07-16-13 SEO 
  
clear all 
clc 
  
nchan=9; 
SR=400; 
  
     
pname=[uigetdir('E:\PediaFlow','Select a directory') '\']; 
d = dir(pname); 
  
for t=3:length(d) 
  
    disp(['Processing file ' [pname d(t).name]]); 
  
    fid=fopen([pname d(t).name],'r'); 
     
    mess=textscan(fid, '%s %s %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32'); 
    data=[mess{3},mess{4},mess{5},mess{6},mess{7},mess{8},mess{9},mess{10},mess{11}]; 
  
    data=double(data); 
  
    time = linspace(0,60,length(data(:,1))); 
  
    % LPF of data 
    [b_five,a_five]=butter(1,5*2*(1/SR)); 
    [b_half,a_half]=butter(1,0.5*2*(1/SR)); 
    [b_tenth,a_tenth]=butter(1,0.1*2*(1/SR)); 
  
     for n=1:nchan 
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         data_tenth(:,n)=filtfilt(b_tenth,a_tenth,data(:,n)); 
         data_five(:,n)=filtfilt(b_five,a_five,data(:,n)); 
  
         [~,locs]=findpeaks(data_five(:,n)-data_tenth(:,n)); 
         data_peak(:,n)=filtfilt(b_tenth,a_tenth,interp1(time(locs),data(locs,n),time,'spline')); 
  
         [~,locs]=findpeaks(-(data_five(:,n)-data_tenth(:,n))); 
         data_trough(:,n)=filtfilt(b_tenth,a_tenth,interp1(time(locs),data(locs,n),time,'spline'));    
     end 
  
     time=downsample(time,400); 
     data_tenth=downsample(data_tenth,800); 
     data_peak=downsample(data_peak,800); 
     data_trough=downsample(data_trough,800); 
  
     if t==3 
         avg_data=data_tenth; 
         avg_peak=data_peak; 
         avg_trough=data_trough; 
     else 
         avg_data=[avg_data;data_tenth]; 
         avg_peak=[avg_peak;data_peak]; 
         avg_trough=[avg_trough;data_trough]; 
     end 
  
     clear('data'); 
     clear('data_tenth'); 
     clear('data_five'); 
     clear('data_peak'); 
     clear('data_trough'); 
      
    disp([' Data averaged and cleared, moving to next file...']) 
    fclose('all'); 
end 
  
disp(['DONE']); 
  
AP=avg_data(:,1); 
RP=avg_data(:,3); 
MS=avg_data(:,4); 
LC=avg_data(:,5); 
MC=avg_data(:,6); 
AF=avg_data(:,7); 
  
% createfigure(time,AP,RP,MS,LC,MC,AF); 
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% AP_LPF=data_LPF(:,1); 
% RP_LPF=data_LPF(:,3); 
% MS_LPF=data_LPF(:,4); 
% LC_LPF=data_LPF(:,5); 
% MC_LPF=data_LPF(:,6); 
% AF_LPF=data_LPF(:,7); 
%  
% figure 
% createfigure(time,AP_LPF,RP_LPF,MS_LPF,LC_LPF,MC_LPF,AF_LPF); 

D.1.3 Parse Individual Pulse Duplicator File 

% 06-13-18 SEO 
% modified to read DSS/DAPP flow estimator files used w/ pulse duplicator 
%    12 floating point columns (+ added 3 more %f32) 
  
%  1) date (M/d/yyyy) 
%  2) time (HH:mm:ss.SSSSSS) 
%  3) pump outlet (mmHg) - Pout_DP 
%  4) pump inlet (mmHg) - Pin_DP 
%  5) rotor position (V) - RP 
%  6) speed (krpm) - PS 
%  7) levitation current 
%  8) motor current (Arms) - MC 
%  9) pump flow (L/min) - PF 
%  10) total flow - TF 
%  11) ventricle pressure 
%  12) arterial pressure 
%  13,14) est flow, flow pulse (disregard) 
   
% 07-16-13 SEO 
% script to read data from LabVIEW generated .txt files 
% specifically to examine individual files 
  
clear; 
  
SR=400; 
     
[fname,pname]=uigetfile('D:\Box Sync\Lab Work\PF4.x\Flow Estimator\ *.txt'); 
d = dir(pname); 
  
disp(['Processing file ' [pname fname]]); 
fid=fopen([pname fname],'r'); 
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% Read from DAPP files - 9 channels 
%  1) date (M/d/yyyy) 
%  2) time (HH:mm:ss.SSSSSS) 
%  3) pump outlet (mmHg) - Pout_DP 
%  4) pump inlet (mmHg) - Pin_DP 
%  5) rotor position (V) - RP 
%  6) speed (krpm) - PS 
%  7) levitation current 
%  8) motor current (Arms) - MC 
%  9) pump flow (L/min) - PF 
%  10,11) est flow, flow pulse (disregard) 
mess=textscan(fid,'%{M/d/yyyy}D %{HH:mm:ss.SSSSSS}D %f32 %f32 %f32 %f32 %f32 
%f32 %f32 %f32 %f32'); 
data=[mess{3},mess{4},mess{5},mess{6},mess{7},mess{8},mess{9}]; 
  
  
% Read from pulse duplicator/ EF program files -12 channels 
%  1) date (M/d/yyyy) 
%  2) time (HH:mm:ss.SSSSSS) 
%  3) pump outlet (mmHg) - Pout_DP 
%  4) pump inlet (mmHg) - Pin_DP 
%  5) rotor position (V) - RP 
%  6) speed (krpm) - PS 
%  7) levitation current 
%  8) motor current (Arms) - MC 
%  9) pump flow (L/min) - PF 
%  10) total flow - TF 
%  11) ventricle pressure 
%  12) arterial pressure 
%  13,14) est flow, flow pulse (disregard) 
%mess=textscan(fid,'%{M/d/yyyy}D %{HH:mm:ss.SSSSSS}D %f32 %f32 %f32 %f32 %f32 
%f32 %f32 %f32 %f32 %f32 %f32 %f32'); 
%data=[mess{3},mess{4},mess{5},mess{6},mess{7},mess{8},mess{9},mess{10},mess{11},m
ess{12}]; 
 
  
data=double(data); 
  
nchan=length(data(1,:)); 
  
%time = linspace(0,60,length(data(:,1))); 
%time = linspace(0,length(data(:,1))/SR,length(data(:,1))); 
mess{1}.Format='MM-dd-yyyy HH:mm:ss.SSS'; 
mess{2}.Format='MM-dd-yyyy HH:mm:ss.SSS'; 
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time = mess{1}+timeofday(mess{2}); 
  
% LPF of data 
% [b_five,a_five]=butter(1,5*2*(1/SR)); 
% [b_half,a_half]=butter(1,0.5*2*(1/SR)); 
% [b_tenth,a_tenth]=butter(1,0.1*2*(1/SR)); 
  
% 10Hz LPF coeffs 
[b_ten,a_ten]=butter(1,10*2*(1/SR)); 
  
  for n=1:nchan 
%      data_tenth(:,n)=filtfilt(b_tenth,a_tenth,data(:,n)); 
%      data_five(:,n)=filtfilt(b_five,a_five,data(:,n)); 
  
      data_ten(:,n)=filtfilt(b_ten,a_ten,data(:,n)); 
%           
%      [~,locs]=findpeaks(data_five(:,n)-data_tenth(:,n)); 
%      data_peak(:,n)=filtfilt(b_tenth,a_tenth,interp1(time(locs),data(locs,n),time,'spline')); 
%       
%      [~,locs]=findpeaks(-(data_five(:,n)-data_tenth(:,n))); 
%      data_trough(:,n)=filtfilt(b_tenth,a_tenth,interp1(time(locs),data(locs,n),time,'spline')); 
%     
  end 
  
% round MS to nearest 0.01 
data_ten(:,4)=round(data_ten(:,4),2); 
      
% easy to use time column 
data_ten(:,nchan+1)=second(time,'secondofday'); 
  
% for plot code reuse 
aggregate(1,:)=[{fname(1:4)},{data_ten},'b']; 
compiled_data=data_ten; 
compiled_time=time; 
  
  
     clear('time'); 
     clear('mess'); 
%     clear('data'); 
     clear('data_ten'); 
  
disp(['DONE']); 
   
createfigure(compiled_data(:,nchan+1),compiled_data(:,1)-
compiled_data(:,2),compiled_data(:,3),compiled_data(:,4),compiled_data(:,5),compiled_data(:,6)
,compiled_data(:,7)); 
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% H-Q plot and overlay on time 
figure; 
subplot(2,1,1); 
yyaxis left; 
plot(aggregate{j,2}(:,8),aggregate{j,2}(:,1)-aggregate{j,2}(:,2)); 
yyaxis right; 
plot(aggregate{j,2}(:,8),aggregate{j,2}(:,7)); 
  
subplot(2,1,2); 
plot(aggregate{j,2}(:,7),aggregate{j,2}(:,1)-aggregate{j,2}(:,2)); 
  
%code to make individual pressure/flow vs time and H-Q plots 
% %PF4.8 
% for j=10:12 
% figure; 
% subplot(2,1,1); 
% yyaxis left; 
% plot(aggregate{j,2}(:,11),aggregate{j,2}(:,10)-aggregate{j,2}(:,9)); 
% yyaxis right; 
% plot(aggregate{j,2}(:,11),aggregate{j,2}(:,7)); 
%  
% subplot(2,1,2); 
% plot(aggregate{j,2}(:,7),aggregate{j,2}(:,10)-aggregate{j,2}(:,9)); 
% end 
%  
% %PF4.6 
% for j=8:10 
% figure; 
% subplot(2,1,1); 
% yyaxis left; 
% plot(aggregate{j,2}(:,11),aggregate{j,2}(:,1)-aggregate{j,2}(:,2)); 
% yyaxis right; 
% plot(aggregate{j,2}(:,11),aggregate{j,2}(:,7)); 
%  
% subplot(2,1,2); 
% plot(aggregate{j,2}(:,7),aggregate{j,2}(:,1)-aggregate{j,2}(:,2)); 
% end 

D.1.4 Load Pulse Duplicator DSS Files 

% 06-16-18 SEO 
% modified to read and compile all pulse duplicator files  
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%  1) date (M/d/yyyy) 
%  2) time (HH:mm:ss.SSSSSS) 
%  3) pump outlet (mmHg) - Pout_DP 
%  4) pump inlet (mmHg) - Pin_DP 
%  5) rotor position (V) - RP 
%  6) speed (krpm) - PS 
%  7) levitation current 
%  8) motor current (Arms) - MC 
%  9) pump flow (L/min) - PF 
%  10) total flow - TF 
%  11) ventricle pressure 
%  12) arterial pressure 
%  13,14) est flow, flow pulse (disregard) 
  
% script to read data from LabVIEW generated .txt files 
% 07-16-13 SEO 
  
clear all 
clc 
  
  
%  PFx = 'PF4.6'; 
   PFx = 'PF4.8'; 
  
SR=400; 
rpmcolors=['m';'c';'g';'r';'b';'m';'c']; 
plotcolors=[0.600000023841858 0.839215695858002 1; 
            0 0.541176497936249 0.898039221763611; 
            0.298039227724075 0.721568644046783 1; 
            0.815686285495758 0.909803926944733 0.686274528503418; 
            0.678431391716003 0.847058832645416 0.450980395078659; 
            0.537254929542542 0.780392169952393 0.215686276555061; 
            0.921568632125854 0.376470595598221 0.47843137383461; 
            0.886274516582489 0.109803922474384 0.254901975393295; 
            0.952941179275513 0.643137276172638 0.701960802078247; 
            1 0.298039227724075 1; 
            1 0 1; 
            1 0.600000023841858 1; 
            0.925490200519562 0.537254929542542 0.368627458810806; 
            0.890196084976196 0.337254911661148 0.105882354080677; 
            0.95686274766922 0.733333349227905 0.639215707778931; 
            0 0.447058826684952 0.74117648601532; 
            0 0.447058826684952 0.74117648601532; 
            0.466666668653488 0.674509823322296 0.18823529779911; 
            0.466666668653488 0.674509823322296 0.18823529779911; 
            0.466666668653488 0.674509823322296 0.18823529779911; 
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            0.709803938865662 0.0862745121121407 0.20392157137394; 
            0.709803938865662 0.0862745121121407 0.20392157137394; 
            0.709803938865662 0.0862745121121407 0.20392157137394; 
            0.749019622802734 0 0.749019622802734; 
            0.749019622802734 0 0.749019622802734; 
            0.749019622802734 0 0.749019622802734; 
            0.749019622802734 0 0.749019622802734; 
            0.850980401039124 0.325490206480026 0.0980392172932625; 
            0.850980401039124 0.325490206480026 0.0980392172932625; 
            0.850980401039124 0.325490206480026 0.0980392172932625; 
            0.850980401039124 0.325490206480026 0.0980392172932625  ]; 
 
 
pname=[uigetdir('D:\Box Sync\Lab Work\PF4.x\Flow Estimator','Select a directory') '\']; 
d = dir(pname); 
  
for t=3:length(d) 
  
    disp(['Processing file ' [pname d(t).name]]); 
  
    fid=fopen([pname d(t).name],'r'); 
     
%    mess=textscan(fid, '%s %s %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32'); 
%    
data=[mess{3},mess{4},mess{5},mess{6},mess{7},mess{8},mess{9},mess{10},mess{11}]; 
  
    mess=textscan(fid,'%{M/d/yyyy}D %{HH:mm:ss.SSSSSS}D %f32 %f32 %f32 %f32 %f32 
%f32 %f32 %f32 %f32 %f32 %f32 %f32'); 
    
data=[mess{3},mess{4},mess{5},mess{6},mess{7},mess{8},mess{9},mess{10},mess{11},mess
{12}]; 
  
    data=double(data); 
     
    nchan=length(data(1,:)); 
     
    % format time 
    mess{1}.Format='MM-dd-yyyy HH:mm:ss.SSS'; 
    mess{2}.Format='MM-dd-yyyy HH:mm:ss.SSS'; 
  
    time = mess{1}+timeofday(mess{2}); 
     
     
    %flow estimator for PF4.6 
    % data(:,10)=0.8*(460502097.944 + 45678592*(data(:,4).^2) + 427128023.204.*data(:,6) + -
8268351850*abs(data(:,3)))./(173167168.*data(:,4)); 
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    %flow estimator for PF4.7/4.8 
%    data(:,11)=0.8*(-513*121580*-42.81 + 0.0673*(data(:,4).^2)*1088*(0.64)*(10^6)  + -
513*121580*-6.82.*data(:,6) + -
513*121580*143.2*abs(data(:,3)))./((10^3).*data(:,4)*1088*159.161); 
  
%    time = linspace(0,60,length(data(:,1))); 
  
    % LPF of data 
%     [b_five,a_five]=butter(1,5*2*(1/SR)); 
%     [b_half,a_half]=butter(1,0.5*2*(1/SR)); 
%     [b_tenth,a_tenth]=butter(1,0.1*2*(1/SR)); 
      [b_ten,a_ten]=butter(1,10*2*(1/SR)); 
  
     for n=1:nchan 
%         data_tenth(:,n)=filtfilt(b_tenth,a_tenth,data(:,n)); 
%         data_five(:,n)=filtfilt(b_five,a_five,data(:,n)); 
  
          data_ten(:,n)=filtfilt(b_ten,a_ten,data(:,n)); 
% 
%          [~,locs]=findpeaks(data_five(:,n)-data_tenth(:,n)); 
%          data_peak(:,n)=filtfilt(b_tenth,a_tenth,interp1(time(locs),data(locs,n),time,'spline')); 
%  
%          [~,locs]=findpeaks(-(data_five(:,n)-data_tenth(:,n))); 
%          data_trough(:,n)=filtfilt(b_tenth,a_tenth,interp1(time(locs),data(locs,n),time,'spline'));    
     end 
  
%     time=downsample(time,400); 
%      data_tenth=downsample(data_tenth,800); 
%      data_peak=downsample(data_peak,800); 
%      data_trough=downsample(data_trough,800); 
  
     % round MS to nearest 0.01 
     data_ten(:,4)=round(data_ten(:,4),2); 
      
     data_ten(:,nchan+1)=second(time,'secondofday'); 
     
     if t==3 
%         avg_data=data_tenth; 
%          avg_peak=data_peak; 
%          avg_trough=data_trough; 
  
           compiled_data=data_ten; 
           compiled_time=time; 
            
           % first instance for rpm colors 



 148 

           i=1; 
     else 
%         avg_data=[avg_data;data_tenth]; 
%          avg_peak=[avg_peak;data_peak]; 
%          avg_trough=[avg_trough;data_trough]; 
  
            compiled_data=[compiled_data;data_ten]; 
            compiled_time=[compiled_time;time]; 
             
            % check rpm and iterate colors if changed 
            if strcmp(d(t).name(1:4),aggregate{t-2-1,1}) 
                i=i; 
            else 
                i=i+1; 
            end 
                                     
     end 
      
     aggregate(t-2,:)=[{d(t).name(1:4)},{data_ten},rpmcolors(i)]; 
      
      
     clear('mess'); 
     clear('data'); 
     clear('data_ten'); 
     clear('time'); 
      
%     clear('data_tenth'); 
%     clear('data_five'); 
%      clear('data_peak'); 
%      clear('data_trough'); 
      
    disp([' Data averaged and cleared, moving to next file...']) 
    fclose('all'); 
end 
  
disp(['DONE']); 
  
  
if strcmp(PFx,'PF4.6') 
      
    createfigure(compiled_data(:,nchan+1),compiled_data(:,1)-
compiled_data(:,2),compiled_data(:,3),compiled_data(:,4),compiled_data(:,5),compiled_data(:,6)
,compiled_data(:,7)); 
  
else if strcmp(PFx,'PF4.8') 
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    createfigure(compiled_data(:,nchan+1),compiled_data(:,10)-
compiled_data(:,9),compiled_data(:,3),compiled_data(:,4),compiled_data(:,5),compiled_data(:,6)
,compiled_data(:,7)); 
  
    end 
end 
  
% marker symbols 
marker=[ '- ' ; 
         ':x' ]; 
      
% marker     i)size  ii)spacing 
marker_prop=[   5     ,   50.0    ; 
                10    ,   100.0     ]; 
  
%H-Q Plot 
figure; 
hold on; 
for m=1:2 
    if m==1 
        aggregate=agg_svr; 
    else 
        aggregate=agg_clamp; 
    end 
     
    for j=1:length(aggregate(:,1)) 
         
        if strcmp(PFx,'PF4.6') 
             
            plot(aggregate{j,2}(:,7),aggregate{j,2}(:,1)-
aggregate{j,2}(:,2),[aggregate{j,3},marker(m,:)],'MarkerSize',marker_prop(m,1),'MarkerIndices',
1:marker_prop(m,2):length(aggregate{j,2}(:,7))); 
             
        else if strcmp(PFx,'PF4.8') 
                 
            plot(aggregate{j,2}(:,7),aggregate{j,2}(:,10)-
aggregate{j,2}(:,9),[aggregate{j,3},marker(m,:)],'MarkerSize',marker_prop(m,1),'MarkerIndices',
1:marker_prop(m,2):length(aggregate{j,2}(:,7))); 
                 
            end 
        end 
         
    end 
end 
    legend(aggregate{:,1},'Location','northwest'); 
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% static data... UNCOMMENT BELOW TO USE 
  
  
if strcmp(PFx,'PF4.6') 
   load 'D:\Box Sync\Lab Work\PF4.x\Flow Estimator\Programs\PF46_data\3-16-
12\PF46_Data_Shaun' 
else if strcmp(PFx,'PF4.8') 
   load 'D:\Box Sync\Lab Work\PF4.x\Flow Estimator\PF4.8 Flow 
Estimator\PF48_Data_Shaun_norm' 
    end 
end 
  
    % %     static(:,1)=A(:,3); %pressure head 
    % %     static(:,3)=A(:,5); %rp 
    % %     static(:,4)=A(:,1); %ms 
    % %     static(:,6)=A(:,6); %mc 
    % %     static(:,7)=A(:,2); %flow 
    % %     static(:,8)=A(:,7); %curves 
  
for d=1:5 
    i=(d-1)*5+1; 
    static{d}=[A(i:i+4,3),zeros(5,1),A(i:i+4,5),A(i:i+4,1),zeros(5,1),A(i:i+4,6),A(i:i+4,2)]; 
     
    plot(static{d}(:,7),static{d}(:,1)-static{d}(:,2),'k--','LineWidth',2.0); 
end 
  
% /static data... 
  
hold off; 
  
%MC-Q Plot 
figure; 
hold on; 
for m=1:2 
    if m==1 
        aggregate=agg_svr; 
        ycount=1; 
    else 
        aggregate=agg_clamp; 
    end 
     
    for j=1:length(aggregate(:,1)) 
         
        
plot(aggregate{j,2}(:,6),aggregate{j,2}(:,7),[aggregate{j,3},marker(m,:)],'Color',plotcolors(ycou
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nt,:),'MarkerSize',marker_prop(m,1),'MarkerIndices',1:marker_prop(m,2):length(aggregate{j,2}(:
,7))); 
        ycount=ycount+1; 
    end 
end 
    legend(aggregate{:,1},'Location','northwest'); 
     
     
for d=1:5 
    i=(d-1)*5+1; 
     
    plot(static{d}(:,6),static{d}(:,7),'LineWidth',2.0,'LineStyle','--','Color',[0.501960813999176 
0.501960813999176 0.501960813999176]); 
     
end 
     
hold off; 

D.1.5 Flow Estimation Coefficients Script 

% A. Ferreira 
% 3-19-2012 
% Reads pulsatile data from PF4.6 
% modified by SE Olia 1/31/13 for PF4.8 
  
clc 
clear 
close all 
  
% 1) timestamp (fyi: might appear as two columns because there is a space between the date and 
time) 
% 2) pump outlet (mmHg) - Pout_DP 
% 3) pump inlet (mmHg) - Pin_DP 
% 4) rotor position (V) - RP 
% 5) speed (krpm) - PS 
% 6) levitation current 
% 7) motor current (Arms) - MC 
% 8) pump flow (L/min) - PF 
% 9) total flow - TF 
% 10) ventricle pressure 
% 11) arterial pressure 
  
% 9,10) est flow, flow pulse (disregard) 
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fs = 400; 
dt = 1/fs; 
    
  % LPF  ----------------------------------- 
    filter_order = 101;      
    freq = 10;       % cut-off frequency in Hertz 
    wc = 2*freq/fs;  % FIR parameter 
    wo = 0;          % FIR parameters 
    [fir_coeff] = firdes(filter_order, wc, wo, 2, 1); % see firdes routine 
  % ---------------------------------------   
  
  % LPF  ----------------------------------- 
    filter_order = 51; 
    freq = 10;       % cut-off frequency in Hertz 
    wc = 2*freq/fs;  % FIR parameter 
    wo = 0;          % FIR parameters 
    [LPF_10] = firdes(filter_order, wc, wo, 2, 1); % see firdes routine 
  % ---------------------------------------   
   
MA_mean = [ones(1,1*fs)./(1*fs)];     
   
file_list = {'10.3krpm_0.0Lpm.txt', '10.3krpm_0.5Lpm.txt',... 
             '11.9krpm_0.0Lpm.txt', '11.9krpm_0.5Lpm.txt', '11.9krpm_0.8Lpm.txt', ... 
             '14.0krpm_0.0Lpm.txt', '14.0krpm_0.5Lpm.txt', '14.0krpm_1.1Lpm.txt',... 
             '16.1krpm_0.0Lpm.txt', '16.1krpm_0.5Lpm.txt', '16.1krpm_1.0Lpm.txt', 
'16.1krpm_1.4Lpm.txt', ... 
             '18.2krpm_0.0Lpm.txt', '18.2krpm_0.5Lpm.txt', '18.2krpm_1.0Lpm.txt', 
'18.2krpm_1.5Lpm.txt'}; 
     
  
ind = [1,2,3,4,5,6,7,8,9]; 
  
load PF46_Data_Shaun 
  
  
ms_S = A(:,1); 
pf_S = A(:,2); 
dp_S = A(:,3);  % pump head 
rp_S = abs(A(:,5)); 
mc_S = A(:,6);    
cl_S = A(:,7); 
  
figure; plot(rp_S, dp_S, 'ro') 
  
% to proces PF46 data of 3/16/2012 -------------------------- 
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ms = ms_S; 
dp = dp_S; 
pf = pf_S; 
mc = mc_S; 
cl = cl_S; 
  
flow = pf; 
c = [1 2 3 4 5]; 
ln = {'ko', 'ks', 'k*', 'k+', 'kv'}; 
  
Kt = 0.00065; %  Nm/Arms  
D = 0.8; % cm 
rho = 995.7*0.70 + 1259.37*0.30; % density kg/m^3 
  
c_p = 8.7082e9; 
c_phi = 159.161; 
c_psi = 1.2158e5; 
  
for i=1:5 
    switch c(i) 
        case 1 
            ii = find(cl == 1); 
            figure(1); subplot(1,2,1); plot(mc(ii), flow(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2); hold 
on, 
                       subplot(1,2,2); plot(flow(ii), dp(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2); hold on, 
             
            C_power{i} = power_coeff(Kt, c_p, rho, D, ms(ii), mc(ii)); 
            C_flow{i} = flow_coeff(c_phi, D, pf(ii), ms(ii)); 
            C_pressure{i} = pressure_coeff(c_psi, rho, D, dp(ii), ms(ii)); 
             
            figure(2); subplot(1,2,1); plot(C_power{i}, C_flow{i}, ln{i}, 'MarkerSize', 8, 
'LineWidth', 2); hold on 
                       subplot(1,2,2); plot(C_flow{i}, C_pressure{i}, ln{i}, 'MarkerSize', 8, 'LineWidth', 
2); hold on 
                        
        case 2 
            ii = find(cl == 2); 
           figure(1); plot(flow(ii), mc(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2);  
            figure(1); subplot(1,2,1); plot(mc(ii), flow(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2); hold 
on 
                       subplot(1,2,2); plot(flow(ii), dp(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2); hold on 
             
            C_power{i} = power_coeff(Kt, c_p, rho, D, ms(ii), mc(ii)); 
            C_flow{i} = flow_coeff(c_phi, D, pf(ii), ms(ii)); 
            C_pressure{i} = pressure_coeff(c_psi, rho, D, dp(ii), ms(ii)); 
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            figure(2); subplot(1,2,1); plot(C_power{i}, C_flow{i}, ln{i}, 'MarkerSize', 8, 
'LineWidth', 2); hold on 
                       subplot(1,2,2); plot(C_flow{i}, C_pressure{i}, ln{i}, 'MarkerSize', 8, 'LineWidth', 
2); hold on 
             
        case 3 
            ii = find(cl == 3); 
           figure(1); plot(flow(ii), mc(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2);           
             
            figure(1); subplot(1,2,1); plot(mc(ii), flow(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2); hold 
on 
                       subplot(1,2,2); plot(flow(ii), dp(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2); hold on 
             
            C_power{i} = power_coeff(Kt, c_p, rho, D, ms(ii), mc(ii)); 
            C_flow{i} = flow_coeff(c_phi, D, pf(ii), ms(ii)); 
            C_pressure{i} = pressure_coeff(c_psi, rho, D, dp(ii), ms(ii)); 
             
            figure(2); subplot(1,2,1); plot(C_power{i}, C_flow{i}, ln{i}, 'MarkerSize', 8, 
'LineWidth', 2); hold on 
                       subplot(1,2,2); plot(C_flow{i}, C_pressure{i}, ln{i}, 'MarkerSize', 8, 'LineWidth', 
2); hold on 
             
        case 4 
            ii = find(cl == 4); 
           figure(1); plot(flow(ii), mc(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2);  
             
            figure(1); subplot(1,2,1); plot(mc(ii), flow(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2); hold 
on 
                       subplot(1,2,2); plot(flow(ii), dp(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2); hold on 
             
            C_power{i} = power_coeff(Kt, c_p, rho, D, ms(ii), mc(ii)); 
            C_flow{i} = flow_coeff(c_phi, D, pf(ii), ms(ii)); 
            C_pressure{i} = pressure_coeff(c_psi, rho, D, dp(ii), ms(ii)); 
             
            figure(2); subplot(1,2,1); plot(C_power{i}, C_flow{i}, ln{i}, 'MarkerSize', 8, 
'LineWidth', 2); hold on 
                       subplot(1,2,2); plot(C_flow{i}, C_pressure{i}, ln{i}, 'MarkerSize', 8, 'LineWidth', 
2); hold on 
             
        case 5 
            ii = find(cl == 5); 
             
            figure(1); subplot(1,2,1); plot(mc(ii), flow(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2); hold 
on 
                       subplot(1,2,2); plot(flow(ii), dp(ii), ln{i}, 'MarkerSize', 8, 'LineWidth', 2); hold on 
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            C_power{i} = power_coeff(Kt, c_p, rho, D, ms(ii), mc(ii)); 
            C_flow{i} = flow_coeff(c_phi, D, pf(ii), ms(ii)); 
            C_pressure{i} = pressure_coeff(c_psi, rho, D, dp(ii), ms(ii)); 
             
            figure(2); subplot(1,2,1); plot(C_power{i}, C_flow{i}, ln{i}, 'MarkerSize', 8, 
'LineWidth', 2); hold on 
                       subplot(1,2,2); plot(C_flow{i}, C_pressure{i}, ln{i}, 'MarkerSize', 8, 'LineWidth', 
2); hold on 
    end 
end 
  
  
  
  
 figure(1); subplot(1,2,1); legend('10.0krpm', '12.2krpm', '13.9krpm', '16krpm', '18,1krpm', 4) 
                            ylabel('Pump Flow (l/min)'); xlabel('Motor Current (Arms)') 
            subplot(1,2,2); legend('10.0krpm', '12.2krpm', '13.9krpm', '16krpm', '18,1krpm',4) 
                            xlabel('Pump Flow (l/min)'); ylabel('Head pressure (mmHg)') 
                             
  
 figure(2); subplot(1,2,1); legend('10.0krpm', '12.2krpm', '13.9krpm', '16krpm', '18.1krpm', 4) 
                            ylabel('Flow coefficient (\Phi)'); xlabel('Power coefficient') 
            subplot(1,2,2); legend('10.0krpm', '12.2krpm', '13.9krpm', '16krpm', '18,1krpm',4) 
                            xlabel('Flow coefficient (\Phi)'); ylabel('Pressure coefficient (\Psi)')                             
                             
flow_coeff = []; 
pressure_coeff = []; 
power_coeff = []; 
  
  
  
for i=1:5 
    flow_coeff = [flow_coeff; C_flow{i}]; 
    pressure_coeff = [pressure_coeff; C_pressure{i}]; 
    power_coeff = [power_coeff; C_power{i}]; 
end 
  
22 
  
  
% call regression tool in Matlab -  
  
  
%  
%  
%  
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% load pf45_18_mloop 
% load PF45_coeffs 
  
% k1 = [1,6,13,20,28]; 
% k2 = [5,12,19,27,35]; 
  
c = [1 2 3 4 5]; 
% ps = []; DDP = []; FF = []; MMC = []; 
  
for i = 2 % 1:length(ind)   
     
fid = fopen(file_list{ind(i)});     
i; 
file_list{ind(i)} 
  
% fid = fopen('10.3K_100MAP.txt'); 
C = textscan(fid, '%s %s %f %f %f %f %f %f %f %f %f %f %f %f'); 
fclose(fid); 
  
N = length(C{1}); 
time = (0:N-1)*dt; 
% t1 = 5; 
% t2 = 8; 
t1 = 0; 
t2 = time(end); 
  
i0 = find(time >=t1 & time <= t2); 
time = time(i0); time = time'; 
  
Pout_h = C{3};   Pout_h = Pout_h(i0); 
Pin_h = C{4};  Pin_h = Pin_h(i0); 
RP = C{5};    RP = RP(i0); 
PS = C{6};    PS = PS(i0); 
LC = C{7};    LC = LC(i0); 
MC = C{8};    MC = MC(i0); % MC = 0.292*MC + 0.407; 
Flow = C{9};  Flow = Flow(i0); 
TF = C{10};    TF = TF(i0); 
LVP = C{11};  LVP = LVP(i0); 
AP = C{12};    AP = AP(i0); 
x1 = C{13};     x1 = x1(i0); 
x2 = C{14};     x2 = x2(i0); 
  
H = Pout_h - Pin_h; 
% 
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h = filtfilt(fir_coeff, 1, H); 
pf = filtfilt(fir_coeff, 1, Flow); 
rp = filtfilt(fir_coeff, 1, RP); 
%  
%  
% figure; plot(time, Pout_h) 
% figure; plot(time, Pin_h) 
%  
% figure; plot(pf ,h) 
% figure; plot(rp, h) 
%  
%  
% end 
%  
%  
% for simulink file 
%  
t1 = 0; 
t2 = time(end); 
  
PIN = [time - t1 Pin_h]; 
POUT = [time - t1 Pout_h]; 
PS = [time - t1 PS]; 
C = [time - t1 MC]; % calibration current  
Q = [time - t1 Flow]; 
RRP = [time - 1 RP]; 
  
tt = time(end)-5; 
X2 = [time - t1 x2]; 
  
F_est_PF46_2 
  
end 
  
p1 = -494.6; 
p2 = 0.06562; 
  
a1 = -7.658; 
a2 = -7.103; 
a3 = 137.5; 
  
  
%  
% X2 = filtfilt(fir_coeff, 1, x2); 
% X2 = filtfilt(MA_mean, 1, X2); 
%  
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% H = Pout_h - Pin_h; 
% a = diff(Pout_h); 
%  
% i3 = k1(i):k2(i); 
% figure(100); plot(FF(i3), DDP(i3), '-r'); hold on 
%              plot(Flow, H, 'b') 
%               
% figure(200); plot(time, Flow, 'b', time, X2, 'r')              
              
% figure(1); plot(time, Pout_h, time, Pin_h) 
% figure(2); plot(time, MC) 
% figure(3); plot(time, Flow) 
%  
%  22 
%  
%  
% t5 = ScopeData1.time; 
% v1 = ScopeData1.signals(1,1).values; 
% v2 = ScopeData1.signals(1,2).values; 
%  
% figure(110); subplot(211); plot(t5, v1); hold on 
%                            plot(time, H, ':k') 
%              subplot(212); plot(t5, v2); hold on 
%                            plot(time, Flow, ':k') 
% xx = [-0.5 2]; 
% yy = [-0.5 2]; 
% NN1 = length(v2); 
% NN2 = length(v4); 
% v3 = v1; v4 = v2; 
%  
% figure(213); subplot(121); plot(v2(1:100:NN1,1), v2(1:100:NN1,2), 'ro'); hold on 
%              plot(v4(1:100:NN2,1), v4(1:100:NN2,2), 'bs') 
%              xx = [-0.5 2]; 
%              yy = [-0.5 2];              
%              plot(xx, yy, 'k--') 
%              xlabel('Mean Q measured (l/min)') 
%              ylabel('Mean Q estimated (l/min)') 
%              subplot(122); plot(v1(1:100:NN1,1), v1(1:100:NN1,2), 'ro'); hold on 
%              plot(v3(1:100:NN2,1), v3(1:100:NN2,2), 'bs') 
%              xx = [0 150]; 
%              yy = [0 150]; 
%              plot(xx, yy, 'k--') 
%              xlabel('Mean H measured (mmHg)') 
%              ylabel('Mean H estimated (mmHg)') 
%               
%               
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% save flow_pulsatile v1 v2 
% load flow_pulsatile 
%    
  
% for simulink file 
  
% PIN = [time - t1 Pin_h]; 
% POUT = [time - t1 Pout_h]; 
% PS = [time - t1 MS]; 
% C = [time - t1 MC]; % calibration current  
% Q = [time - t1 Flow]; 
% tt = time(end); 
%  
% H_est_PF45_new_ml 
  
  
% So, using Q_est = f(motor speed, motor current), these are the new coefficients: 
% a = [-2.528, 0.04916, 7.014, -0.4856, 1.387]^T 
% Variable vector is X = [1, ms, mc, ms*mc, mc^2],  
% and Q_est = X*a. (ms = motor speed in Krpm, mc = motor current in Arms). 
  
  
  
%  
%  
% mc = filtfilt(fir_coeff, 1, MC); 
% mc = filtfilt(MA_mean, 1, mc); 
%  
% a = diff(Pout_h); 
% if Pout_h(10) > Pout_h(end-5) 
%     ii = find(a < -2); 
% else 
%     ii = find(a > 2); 
% end 
%  
% figure(i); subplot(211); plot(time, Pout_h); hold on 
%                          plot(time(ii), Pout_h(ii), 'ro') 
%            subplot(212); plot(time(2:end), a) 
%  
% H = Pout_h - Pin_h; 
%  
% for j=1:length(ii) 
%    h(j) = mean(H(ii(j)-20:ii(j)-10)); 
%    f(j) = mean(Flow(ii(j)-20:ii(j)-10)); 
%  mc2(j) = mean(mc(ii(j)-20:ii(j)-10));   
%  ps = [ps; mean(PS)]; 
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% end 
%  
% h(j+1) = mean(H(ii(j)+10:ii(j)+20)); 
% f(j+1) = mean(Flow(ii(j)+10:ii(j)+20)); 
% mc2(j+1) = mean(mc(ii(j)+10:ii(j)+20)); 
% DDP = [DDP; h']; 
% FF = [FF; f']; 
% MMC = [MMC; mc2']; 
%  
% ps = [ps; mean(PS)]; 
%  
% figure(i); subplot(211); plot(time, H); hold on 
%                          plot(time(ii), H(ii), 'ro') 
%            subplot(212); plot(time, mc) 
%  
% i2 = find(cl_S == i); 
%             
% figure(100); plot(pf_S(i2), dp_S(i2), '-bo', 'MarkerSize', 10, 'LineWidth', 3); hold on 
%              plot(f, h, '-rs', 'MarkerSize', 10, 'LineWidth', 3) 
%             
% figure(200); plot(pf_S(i2), mc_S(i2), '-bo', 'MarkerSize', 10, 'LineWidth', 3); hold on 
%              plot(f, mc2, '-rs', 'MarkerSize', 10, 'LineWidth', 3) 
%             
%                                     
%  end 
%  
% save pf45_18_mloop DDP FF MMC ps 
%  
%  
% 'fim' 
%  
%  
%  
%  
%  
  
  
  
  
  
  
% save pf45_16_loop2 MM 
  
  
% ii = 1:5; 
% ii = 6:10; 
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% ii = 17:21; 
% ii = 22:25; 
%  
%  
% figure(13); plot(MM(:,2), MM(:,5), 'rs'); hold on 
% plot(pf_S(ii), mc_S(ii), 'kv') 
% figure(11); plot(MM(:,2), MM(:,3), 'ro'); hold on 
% plot(pf_S(ii), dp_S(ii), 'kv') 
%  
% save pf45_16_loop MM 
  
%  
% xx = [0 2]; 
% yy = [0 2]; 
%  
% figure(211); plot(fl_m, fl_est_m, 'ro'); hold on 
% xlabel('Mean Q estimated (l/min)') 
% ylabel('Mean Q measured (l/min)') 
% figure(211); plot(xx, yy, 'k:') 
%  
%  
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