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MODELLING AND DISRUPTING PROTEIN INTERACTIONS 

Nicolas Arcenio Pabon, Ph.D. 

University of Pittsburgh, 2018 

Rational drug design requires a deep understanding of protein interactions, both in terms of the structural 

mechanisms that regulate binding of individual molecules and the broader, pathway- and cell-level effects 

of disrupting protein interaction networks. This thesis presents work that stems from these ideas, 

discussing contributions to a number of current challenges in the field of drug discovery. First, we describe 

how structural flexibility is leveraged by ‘selectively promiscuous’ protein interfaces – enabling them to 

bind specifically to several distinctly shaped ligands. Taking PD-1 as a case study, we demonstrate using 

molecular dynamics simulations how the flexible receptor interface recognizes conserved ‘trigger’ motifs 

on its cognate ligands’ interfaces. Trigger interactions, which we show are also exploited by a recent 

blockbuster PD-1 inhibitor, drive the initial steps of an induced-fit binding pathway that then ‘splits’ into 

distinct, ligand-specific bound states. Second, we present a hybrid genomic and structural pipeline for 

genome-scale identification of protein targets for bioactive compounds. We train a random forest 

classifier to predict compound-target interactions from compound treatment and gene knockdown gene 

expression signatures in multiple cell types. Refining genomic predictions with a structure-based screen, 

we achieve top-10/top-100 target prediction accuracies of 26%/41%, respectively, on a validation set of 

152 FDA-approved drugs, and validate previously unknown small molecule modulators of HRAS, KRAS, 

CHIP, and PDK1. Third, we present a strategy that combines transcriptomic and structural analyses with 

single-cell microscopy to predict small molecule inhibitors of TNF-induced NF-kB signaling and elucidate 
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the network response. Validating two novel pathway inhibitors that disrupt the protein network upstream 

of IKK and NF-kB, our findings suggest that a network-centric drug discovery approach is a promising 

strategy to evaluate the impact of pharmacologic intervention in signaling. Last, we introduce DrugQuery 

(DQ), a structure-based public web server for small molecule target prediction. DQ docks user-submitted 

small molecules against a target library of 7957 predicted binding sites on 1245 human proteins. The 

server achieved a top-decile target prediction accuracy of 68% on a validation set of 95 FDA-approved 

drugs and 86% on a validation set of 102 FXR-binding compounds from the 2017 D3R Grand Challenge 2. 
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1.0 INTRODUCTION 

Rational drug design is, in essence, the effort to develop leads in drug discovery by leveraging all known 

theoretical and experimental knowledge of the system one is trying to drug [1]. Owing to decades of 

progress in fields such as computer science, statistics, machine learning, genomics, molecular biology, 

and biochemistry, rational drug design has obtained a central role in medicinal chemistry as a more cost- 

and time-efficient complement to traditional high-throughput screening [2]. Despite significant 

technological and scientific advances, however, global attrition rates in pharmaceutical programs are 

climbing, as is the average R&D cost per drug approved [3-5]. We currently face important challenges in 

two key areas of rational drug design: structure-based methods [6], which attempt to leverage the 3D 

structures of protein disease targets to discover small molecule (ant)agonists, and genomic methods [7], 

which attempt to leverage gene expression and other multi-omic data to identify disease targets and 

predict potential inhibitors. These challenges include: (1) understanding how the flexibility of protein 

interfaces regulates specificity and promiscuity to binding partners, (2) predicting the protein targets of 

bioactive small molecules, (3) developing strategies for small molecule modulation of complex signaling 

networks, and (4) large-scale structure-based compound-centric target screening. In this dissertation we 

will discuss our advances in these four areas.  

1.1 OUTLINE 

This dissertation is organized as follows: 
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In Chapter 2.0 we discuss how the human PD-1 receptor exploits interface flexibility to achieve 

“selectively promiscuous” binding to structurally-distinct cognate ligands. We use molecular dynamics 

simulations to identify the mechanisms that trigger structural transitions between the unbound and 

bound PD-1 interface conformations. Our results show that conserved “triggers” on the ligand interfaces 

drive the initial steps of an induced-fit binding pathway that then splits into two distinct bound states, 

with PD-1’s flexibility accommodating the non-conserved, trigger-adjacent ligand features. We 

demonstrate that PD’s ‘selective promiscuity’ results largely from the displacement of its interface 

residue Asn66 by trigger interactions, which switches the receptor interface from flat and polar to either 

a hydrophobic patch or a hydrophobic cavity, depending on which ligand drives the induced fit 

transition. A recently published crystal structure of Pembrolizumab, a blockbuster PD-1 - targeting 

immune checkpoint inhibitor, confirms the importance of conserved triggering interactions in binding to 

flexible protein interfaces. 

 

In Chapter 3.0 we demonstrate a hybrid genomic & structural target prediction pipeline for bioactive 

small molecules. Using gene expression data from thousands of small molecule treatment and gene 

knockdown experiments in live cells, we train a random forest classifier to predict compound-protein 

interactions from correlations between compound & knockdown expression signatures. We then refine 

our genomic target predictions with structural modeling and molecular docking. On a validation set of 

152 FDA-approved drugs and 3104 potential targets we achieve top-10 and top-100 target prediction 

accuracies of 26% and 41%, respectively, doubling the accuracy of previous gene expression-based 

methods. We additionally validate several previously unknown small molecule modulators of HRAS, 

KRAS, CHIP, and PDK1. 
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In Chapter 4.0 we discuss an application of the insight we gained from Chapter 3.0 – an extension of our 

pipeline that combines its transcriptomic and structural analysis with single-cell microscopy to predict 

small molecule disruptors of TNF-induced NF-kB signaling and characterize the response of the 

disrupted protein interaction network. Using live-cell fluorescence assays to monitor signaling dynamics 

of cells treated with predicted disruptors of the canonical NF-kB pathway, we identify two compounds 

that inhibit formation of the mature TNFR1 complex, preventing recruitment of the IKK complex and 

eliminating NF-kB translocation to the nucleus. 

 

In Chapter 5.0 we present a public web server that we developed for molecular docking-based small 

molecule target fishing. The server, called DrugQuery (DQ), docks user-uploaded small molecules against 

1245 human proteins and returns ranked target predictions and structural models of predicted binding 

modes. Approximately 8000 precomputed binding sites across the DQ target library are stored in a 

database and used to accelerate docking, which enables results to be returned in mere hours for most 

small molecules. On a validation set of 95 FDA-approved with known target structures, DQ correctly 

predicts the known target in the top decile of potential targets 68% of the time. On a separate validation 

set of 102 congeneric FXR-binding compounds from the 2017 D3R Grand Challenge 2, DQ achieves a 

86% top decile prediction accuracy. 
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2.0 PROBING PROTEIN FLEXIBILITY REVEALS A MECHANISM FOR SELECTIVE PROMISCUITY 
 
 
 
 

2.1 INTRODUCTION 
 
 

Structural and proteomic research over the past decade has supplanted the traditional structure-function 

paradigm by establishing the functional relevance of protein dynamics [8-13]. In particular, eukaryotic 

regulatory and signaling proteins are skewed towards notably higher degrees of flexibility when compared 

to other functional categories [14, 15]. Regulatory proteins also tend towards comparatively higher 

degrees of binding promiscuity, and we have previously shown thermodynamically how the entropy 

associated with their flexibility can relate to their specificity towards multiple binding partners [14]. 

However, a structural understanding of how this selective promiscuity is achieved is still lacking. 

 

Flexible human regulatory proteins such as MDM2 and PD-1 usually only crystallize when ligand-bound. 

Although Nuclear Magnetic Resonance (NMR) can occasionally resolve unbound (apo) structures of these 

proteins, it is noteworthy that their apo NMR ensembles often deviate from their bound crystal structures 

[16-22]. Thus, for many such proteins, available structural data do not capture the full binding dynamics, 

and the pathway from the apo, non-bound-like state to the bound-like state is unclear. This lack of data 

obscures the mechanistic connection between interface flexibility, binding promiscuity, and ligand 

specificity. Moreover, given that many regulatory proteins are promising drug targets, this missing puzzle 

piece often spells failure for drug design efforts that only target the bound-like state, assuming that this 

state is available in the apo ensemble. Rational approaches to target flexible proteins will thus benefit 
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from new methods that can reveal the binding pathways connecting the non-bound-like to the bound-

like states.  

 

Binding to flexible receptors is traditionally described by conformational selection [23, 24] or induced fit 

[25] mechanisms, and NMR techniques are often used to distinguish between these two (Figure 2.1). 

Generally speaking, one assumes a conformational selection scenario if the apo protein ensemble samples 

bound-like states (apoBL) [26, 27]. If not, one assumes induced fit [16]. In reality, whether a protein-protein 

interaction occurs via conformational selection or induced fit depends on the flux of the system through 

the two alternate pathways from the non-bound-like apo state (apoNBL) to the bound-like encounter 

complex (ECBL) [28]. Flux through the conformational selection pathway is limited by the free energy 

difference between the apoBL and apoNBL states, ∆𝐺#$
%&', which determines the fractional population of the 

bound-like state and thus restricts when selection-association with the ligand can occur. On the other 

hand, flux through the induced fit pathway is for the most part independent of ∆𝐺#$
%&', as the ligand is 

presumed to be able to associate with all apo receptor microstates. Instead, flux through this pathway is 

limited by the free energy difference between the ECBL and the non-bound-like encounter complex (ECNBL), 

∆𝐺#$() , which is a function of specific interactions between receptor and ligand, and the energy barrier 

between these states. Both pathways terminate via a ubiquitous optimization step in which minor 

structural rearrangements at the ECBL interface lead to the high affinity complex. 
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Figure 2.1. General mechanism for ligand binding to flexible receptor. In the conformational selection 

pathway, the ligand docks to the bound-like (BL) form of the apo receptor (apoBL) to form the bound-like 

encounter complex (ECBL). In the induced fit pathway, the ligand docks to the non-bound-like (NBL) form 

of the apo receptor (apoNBL) to form the non-bound-like encounter complex (ECNBL). Intermolecular 

interactions then drive structural transitions to the ECBL. Both pathways end with a final induced fit step 

that optimizes interface side chains, transitioning to the high affinity complex (HAC). The binding 

mechanism also highlights an anchor residue often found to be important in molecular recognition [29]. 

  



 7 

To shed light on the structural basis of selective promiscuity in the aforementioned class of flexible-

interface multi-ligand proteins, we study the binding mechanism of PD-1 to its cognate ligands PD-L1 and 

PD-L2. Human PD-1 is a T cell receptor and immune response regulator that has recently emerged as a 

breakthrough anti-cancer target [30, 31]. NMR and crystallographic studies have revealed the flexibility 

of the PD-1 interface by showing that its apo and bound conformations are very different [19-22] (Figure 

2.2, Figure 2.13), suggestive of an induced fit mechanism. Specifically, while the apo PD-1 interface shows 

a polar surface around Asn66 with an unmatched NH2 (Figure 2.2a), in complex this NH2 group forms two 

hydrogen bonds, with the PD-L1 – bound interface exhibiting a hydrophobic patch around Ile126 (Figure 

2.2b), and the PD-L2 – bound interface forming a large hydrophobic cavity flanked by Ile126 and Ile134 

(Figure 2.2c, Figure 2.14).  

 

To date, no small molecular weight PD-1 inhibitors have been reported in the literature despite the 

importance of this blockbuster target [30-32]. This was somewhat surprising, since the Trp110 binding site 

observed in the PD-L2 – bound cocrystal (Figure 2.2c) displays two key characteristics known to be 

favorable for ligand binding: concavity [33, 34] and hydrophobicity [35]. It is reasonable to assume that 

the flexibility of the Trp110 pocket, and the fact that in the apo state it is largely occluded by the 

unmatched, polar NH2 group of Asn66 (Figure 2.2a,d), would present significant obstacles to traditional 

structure-based drug-design methods attempting to target this cavity [36]. Thus, efforts to model the 

binding mechanism of PD-1 would not only shed light on nature’s design principles for flexible and 

promiscuous protein-protein interfaces, but they may also offer novel avenues for pursuing rational drug 

design against this and other high-impact targets. 
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Figure 2.2. Flexibility of the PD-1 binding interface. (a) The apo PD-1 binding interface [19], showing a 

flat, polar, core binding interface. Surface residues that shape the core binding interface are labelled. (b) 

The core PD-1 (green) - PD-L1 (yellow) binding interface, showing a flat hydrophobic receptor surface [20]. 

White dashed lines indicate hydrogen bonds between PD-L1 side chains. (c) The core PD-1 (cyan) – PD-L2 

(orange) binding interface, showing a large hydrophobic receptor cavity [21]. White dashed lines indicate 

hydrogen bonds between PD-L2 side chains. Note that the conserved anchor residue Tyr123/112 is 

present in both (b) and (c). (d) Fractional occlusion of each bound-like Trp110 and Tyr123/112 atom 

position in the NMR ensemble of apo PD-1. Numerical values at each atom position denote the fraction 

of NMR frames that overlap, or “occlude”, that position (see Chapter 2.4 Methods for full details of how 

fractional occlusion is calculated). Aside from the Cβ, the Trp110 pocket is mostly occluded in the apo PD-

1 ensemble, whereas the Tyr123/112 anchor pocket is largely open. (e) Overlay of apo, PD-L1 – bound, 

and PD-L2 – bound structures of PD-1 defining the “open” and “closed” states of PD-1 residues Asn66 and 

Ile126 in relation to the open and closed states of the Trp110 binding pocket.    
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To study the mechanism of PD-1 binding we use molecular dynamics simulations (MDs) to identify and 

quantify the effects of intermolecular interactions on the PD-1 binding interface. We first estimate ∆𝐺#$
%&' 

for the free receptor and demonstrate that apoBL states are exceedingly rare. We then estimate ∆𝐺#$()  for 

PD-1 interacting with various peptide constructs that mimic distinct subsets of ligand interface motifs 

(Figure 2.3) and identify the critical features that trigger shifts in the PD-1 conformational ensemble 

towards the bound-like states. By quantifying the energetic contribution of each triggering contact in the 

ECNBL, we rationalize how PD-1 uses flexibility to simultaneously achieve both promiscuity, i.e., binding to 

multiple ligands, and specificity. We show that a conserved set of three contacts in the PD-1 encounter 

complexes with PD-L1/2 progressively lowers the free energy of bound-like receptor states with respect 

to the non-bound-like state. These molecular triggers reshape the non-bound-like hydrophilic interface 

around Asn66 into a bound-like hydrophobic surface. A fourth contact that differs by a single atom 

stabilizes this surface into either a shallow patch that interacts with Ala121 in PD-L1, or a deep cavity that 

buries Trp110 in PD-L2.  

 

We find that these triggers, which include the anchor Tyr123/112 in PD-L1/PD-L2 (Figure 2.2b,c,d) [29], 

are highly conserved across species [21] and drive quantitatively similar, kinetically efficient downhill 

binding pathways. The importance of these triggers is underscored by the PD-1 – targeting, anti-cancer 

antibody pembrolizumab, which evolved via a distinct evolutionary pathway yet, as we show, exploits 

some of the same triggering machinery as PD-1’s natural ligands. Finally, we suggest how these induced-

fit triggers could be used in rational, small-molecule drug discovery by studying the binding mode of a 

potent macrocyclic PD-1 inhibitor. Collectively, our findings demonstrate how nature exploits structural 

flexibility to achieve selective binding promiscuity in regulatory proteins.  
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Figure 2.3. Structures of PD-L1/2 – mimicking peptides used to probe PD-1 interface dynamics. Left: core 

interface binding residues of (a) PD-L1 and (b) PD-L2 in their bound-like conformations. Right: peptides 

that were simulated in the presence of apo PD-1 in order to identify the triggers of induced fit interface 

deformations: (c) Y, (d) DY, (e) GGG, (f) GGY, (g) GDG, (h) ADG, (i) GDY, (j) ADY, and (k) mGDV. 
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2.2 RESULTS 
 
 

2.2.1 Open and closed states of PD-1 Asn66 and Ile126 describe a hydrophilic or hydrophobic 

interface.  

 
Analysis of aligned PD-1 structures (Figure 2.2) led us to classify the bound-like and non-bound-like 

conformational states using two binary order parameters defined by the ‘open’ or ‘closed’ states of Asn66 

and Ile126. Namely, for a non-bound-like interface Asn66 is closed and Ile126 is open; for the PD-L1-

specific bound-like state Asn66 is open and Ile126 is closed; and for the PD-L2-specific bound-like state 

both Asn66 and Ile126 are open (Figure 2.2e). In the PD-L1 – bound state, the interface exhibits a large 

hydrophobic patch that interacts with the side chain of ligand interface residue Ala121 (Figure 2.2b). In 

the PD-L2 – bound state, the interface exhibits a deep hydrophobic cavity that buries ligand residue 

Trp110 (Figure 2.2c). Neither this hydrophobic patch nor deep cavity is sampled in the apo PD-1 NMR 

ensemble, where, instead, the closed state of Asn66 blocks the Trp110 binding pocket by exposing its NH2 

group (Figure 2.2a,e, Figure 2.14), making a hydrophilic site. MDs of apo PD-1 confirm that Asn66 remains 

closed (Figure 2.4a), stabilized by a hydrogen bond with Lys78 that is also present in NMR structures 

(Figure 2.5a). These findings suggest that specific interactions between apo PD-1 and a nearby ligand 

might be required to open Asn66 and reshape the hydrophilic interface into its hydrophobic bound-like 

states. 
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Figure 2.4. Dynamics of PD-1 binding interface in the presence of different ligands. (a) Rolling averages 

of distance between Trp110_NE1 (from bound PD-L2) and Asn66_ND2 from MDs of apo PD-1 (blue) alone 

and interacting with GGG (maroon) and GDG (red) peptides. Only GDG peptide sequesters Asn66 away 

from Trp110 binding pocket. (b) Rolling averages of PD-1 binding cavity volume from simulations of apo 

PD-1 alone (blue) and interacting with GDG (red) and GDY (orange) peptides shows that only GDY stabilizes 

an open cavity. (c) Ile126 Χ1 rotamer angle from MDs of apo PD-1 interacting with GDG (red), GDY 

(orange), and ADY (yellow) peptides. Peptide ADY and GDY position Ile126 in the closed and open states, 

respectively (as in Figure 2.2e). Replicate trajectories for panels a, b, and c are shown in Figure 2.16.   (d) 

Fractional occlusion of each bound-like Trp110 atom position in simulations of PD-1 interacting with the 

GDY peptide show an open Trp110 binding pocket. The fractional occlusion of a Trp110 atom position is 

defined as the percentage of simulation frames in which a PD-1 atom overlaps, or “occludes”, that position 

(see Chapter 2.4 Methods for full details of how fractional occlusion is calculated). (e) Fractional occlusion 

of each bound-like Trp110 atom position in simulations of PD-1 interacting with the ADY peptide show a 

closed Trp110 binding pocket. 
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Figure 2.5. Hydrogen bond network of PD-1 Asn66 in different contexts. (a) NMR structure of the 

dominant apo, non-bound-like state of the human PD-1 interface [19]. Asn66 is in the closed state, 

forming a single hydrogen bond with Lys78. (b) Cocrystal structure of the human PD-1 – PD-L1 complex 

[20]. PD-1 bound-like interface shows Asn66 in the open state, forming two hydrogen bonds with the 

ligand Ala121 backbone and the neighboring Tyr68. For clarity only relevant ligand atoms are shown. (c) 

Cocrystal structure of the murine PD-1 – PD-L2 complex [21]. PD-1 bound-like interface shows Asn66 is in 

the open state, forming two hydrogen bonds with the ligand Trp110 backbone and a crystal water 

stabilized by neighboring residue Asn68. (d) Simulation snapshot of human PD-1 interacting with the GDG 

peptide, showing the same hydrogen bond network as in (b). (e) Simulation snapshot of human PD-1 Y68N 

mutant interacting with the GDG peptide, showing the same water-mediated hydrogen bond network as 

in (c). 
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2.2.2 Bound-like conformations of unbound Tyr123/112 in PD-L1/2 facilitates molecular recognition.  

 
For both induced fit and conformational selection, the association of the apo receptor and ligand is driven 

mainly by diffusion [37, 38]. It has been shown that often protein-protein interactions stabilize the initial 

encounter complex through the burial of a bound-like anchor motif on the ligand [29], which allows 

subsequent, longer-timescale intermolecular interactions to take shape. Co-crystal structures, MDs and 

docking studies of PD-L1/2 suggest that the homologous interface residues Tyr123/112 (see Figure 2.2b,c) 

may serve as anchors. Specifically, MDs of apo PD-L1/2 show that Tyr123/112 remain within 0.5 Å heavy 

atom RMSD of their bound-like conformations 88 ± 16 % of the time. Furthermore, the Tyr123/112 binding 

pocket is unobstructed in the apo PD-1 NMR ensemble (Figure 2.2d), facilitating immediate burial of the 

side chain upon association. Docking exercises also point to the stabilizing role of the Tyr anchor. Namely, 

ClusPro [39] successfully re-docked the wild-type human PD-1 – PD-L1 co-crystal [20], but it failed for 

single-residue PD-L1 mutants Y123G and Y123A (Table 2.1). Collectively, these results suggest an anchor 

role for Tyr123/112 that facilitates molecular recognition between non-bound-like apo PD-1 and its 

ligands (as sketched in Figure 2.1). 
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Table 2.1. Anchor Tyr123 is key determinant of bound-like docked conformations. Backbone RMSD of 

top 10 ClusPro [39] predicted PD-L1 binding modes to the human PD-1 – PD-L1 cocrystal (PDB: 4ZQK). 

RMSDs shown for docked wild type human PD-L1 (WT) and for docked PD-L1 anchor mutants Y123G and 

Y123A. 

 
Docked PD-L1 Backbone RMSD 

(Å) to 4ZQK PD-L1 

ClusPro Model WT Y123G Y123A 
0 4.65 8.8 49.7 
1 54.0 38.2 49.1 
2 49.5 49.1 39.2 
3 47.5 40.4 40.4 
4 39.4 49.4 48.5 
5 48.0 40.07 53.2 
6 45.8 53.2 49.5 
7 40.6 46.5 48.1 
8 48.6 47.8 47.6 
9 50.7 48.7 50.4 

 
 
 
2.2.3 Conserved PD-L1/2 Asp122/111 form a specific intermolecular hydrogen bond network that 

opens PD-1 Asn66 and switches the receptor interface from hydrophilic to hydrophobic.  

 
Co-crystal structures of bound PD-1 exhibit an open Asn66 that forms two hydrogen bonds: the first with 

the backbone oxygen of homologous PD-L1/2 Ala121/Trp110, and the second with either PD-1 Tyr68 

(human PD-1 - PD-L1 complex) or a crystal water (murine PD-1 – PD-L2 complex) (Figure 2.5b,c). MDs of 

PD-1 in complex with a GGG peptide positioned to mimic the backbone of PD-L1/2 residues ADY123 and 

WDY112, respectively, show that Asn66 fluctuates back and forth between a bound-like open state, where 

it makes the aforementioned backbone hydrogen bond to the GGG peptide, and the non-bound-like 

closed state, where it is bonded to PD-1 Lys78 (Figure 2.4a). On the other hand, simulations with a GDG 

peptide show that the Asp122/111 mimic forms a hydrogen bond to the Tyr68 OH group, stabilizing a 
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Tyr68 rotamer that can simultaneously hydrogen bond to the NH2 of Asn66 (Figure 2.5d). Together, this 

Asn66 – Tyr68 hydrogen bond and the aforementioned Asn66 – backbone hydrogen bond stabilize the 

bound-like open state of Asn66 (Figure 2.4a).  

 

The robust, four-membered hydrogen bond network between the Ala121/Trp110 backbone mimic, 

Asn66, Tyr68, and the Asp122/111 mimic that we observe in GDG MDs is fully consistent with all available 

structures and mutagenesis experiments. Namely, the hydrogen bonds rationalize the conservation of 

Asp122/111 in all known PD-L1/2 sequences and explain PD-L2 mutagenesis studies showing that the 

D111A mutation abolishes binding to PD-1 [21]. MDs of apo PD-L1/2 further support the importance of 

Asp122/111 interactions in the encounter complex by showing that this side chain remains within 0.4 Å 

RMSD of its bound-like conformation 82 ± 25 % of the time. The stabilization of the bound-like Asp122/111 

side chain in simulation is achieved via hydrogen bonds with the neighboring Lys124/113, bonds which 

are also observed in bound cocrystal structures of PD-1 (Figure 2.2b,c). The importance of this stabilizing 

interaction is underscored by the fact that the K124S and K113A point mutations in PD-L1 and PD-L2, 

respectively, both abolish binding to PD-1 [21, 22]. 

 

PD-1 ligands open Asn66 by offering two novel hydrogen bonds (with the Ala121/Trp110 backbone and 

Tyr68) that out-compete the single Lys78 hydrogen bond that stabilizes the closed state. Interestingly, the 

one known PD-1 sequence that diverges at the Tyr68 position is murine PD-1, which has a Y68N mutation. 

The murine PD-1 – PD-L2 co-crystal shows that although the shorter Asn68 side chain cannot hydrogen 

bond directly to Asn66 or Asp111, it hydrogen bonds to a crystal water molecule that forms the same 

hydrogen bond network as Tyr68 (Figure 2.5c). MDs of a human Y68N PD-1 mutant and the GDG peptide 

suggest a functional equivalence of Asn68 to Tyr68: the Asn68 side chain spontaneously recruits a stable 
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water to the co-crystal position that then opens Asn66 via a specific hydrogen bond network analogous 

to that formed by Tyr68 (Figure 2.5e). 

 
2.2.4 ADY/GDY ligand motifs stabilize distinct bound-like states for PD-L1/2.  
 
 
While GDG MDs show an open Asn66 (Figure 2.4a) that exposes a hydrophobic surface, this surface 

remains flexible and fluctuates between a deep open cavity and closed shallow patch (Figure 2.4b). 

Contrary to the GGG MDs that exhibited open-closed fluctuations of Asn66 (Figure 2.4a), the pocket 

instability observed in GDG MDs is caused by open-closed fluctuations of PD-1 residue Ile126 (Figure 2.4c). 

In contrast, MDs show that the GDY peptide stabilizes the open states of both Asn66 and Ile126 and 

maintains the open hydrophobic interface cavity seen in the PD-L2 bound-like state of PD-1 (Figure 

2.4b,c,d). Comparison of the GDG and GDY MDs reveal that the Tyr side chain serves as a ‘wedge’ that 

stabilizes the flexible loop surrounding Ile134 into a bound-like configuration that is observed in both the 

PD-L1 and PD-L2 co-crystal structures (Figure 2.6). In the presence of the GDY peptide, the bound-like 

Ile134 makes a hydrophobic contact with the long arm of Ile126, which pulls the latter residue out of the 

pocket and stabilizes its open state (Figure 2.15). 

 

Although the PD-L1 interface exhibits the GDY scaffold, Ile126 is closed in the PD-L1-specific ECBL state, 

suggesting that an additional ligand motif not contained in the GDY scaffold is responsible for closing the 

pocket. MDs with an ADY peptide that mimics Ala121 show that the extra Cβ carbon of the Ala side chain 

out-competes Ile134 for the long arm of Ile126, stabilizing its closed state (Figure 2.4c,e). Interestingly, 

MDs with GDG and ADG peptides both show similarly unstable open-closed fluctuation of Ile126 (see 

Figure 2.7 below), which suggests that the effect of the Ala121 Cβ carbon on Ile126 dynamics only emerges 

in the presence of the anchor Tyr123/112. Thus, in addition to facilitating molecular recognition, 
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stabilization of the Ile134 loop by the burial of Tyr123/112 is shown to enable ligand-specific induced fit 

responses by the PD-1 interface. 

 

 
 

Figure 2.6. Stabilization of bound-like Ile134 by conserved tyrosine (Y) anchor. Average and standard 

deviation heavy atom RMSD of PD-1 Ile134 to the PD-L1/2 bound-like state (measured from human PD-1 

– PD-L1 cocrystal, 4ZQK; Ile134 has < 0.2 Å heavy atom RMSD between 4ZQK and the PD-L2 cocrystal 

3BP5). Data is shown for three 200ns replicate simulations for each system, including apo human PD-1 

and PD-1 interacting with various peptides.  

 

Although the PD-L1 interface exhibits the GDY scaffold, Ile126 is closed in the PD-L1-specific ECBL state, 

suggesting that an additional ligand motif not contained in the GDY scaffold is responsible for closing the 

pocket. MDs with an ADY peptide that mimics Ala121 show that the extra Cβ carbon of the Ala side chain 

out-competes Ile134 for the long arm of Ile126, stabilizing its closed state (Figure 2.4c,e). Interestingly, 

MDs with GDG and ADG peptides both show similarly unstable open-closed fluctuation of Ile126 (see 

Figure 2.7 below), which suggests that the effect of the Ala121 Cβ carbon on Ile126 dynamics only emerges 

in the presence of the anchor Tyr123/112. Thus, in addition to facilitating molecular recognition, 
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stabilization of the Ile134 loop by the burial of Tyr123/112 is shown to enable ligand-specific induced fit 

responses by the PD-1 interface. 

 

 

Figure 2.7. Downhill binding pathways of PD-1 triggers of induced fit for each cognate ligand. Points on 

the plot represent average and standard deviation equilibrium free energy differences (from three 

replicate simulations) between the open and closed states of receptor residues Asn66 and Ile126 for apo 

PD-1 and PD-1 interacting with nine distinct ligand-mimicking peptides. The corresponding numerical 

values can be found in Table 2.2. Yellow and orange lines represent the ligand-specific induced fit binding 

pathways from the apo receptor ensemble to the PD-L1 and PD-L2 bound-like ensembles, respectively. 
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Table 2.2. Free energy difference between the non-bound-like and bound-like states of PD-1 interface 

residues Asn66 and Ile126 in various systems. Listed values show the average and standard deviation of 

∆𝐺#$ (from three replicate simulations) for Asn66 and Ile126 in the different PD-1 systems. Since the 

bound-like state of Ile126 is closed when PD-L1 – bound and open when PD-L2 - bound, the ∆𝐺#$ values 

for this residue take opposite signs. The trivial relationship between ∆𝐺#$ and ∆𝐺'&*+ are indicated for 

each column. Values shown are in units of kBT, with T = 300 K. 

 
 

 PD-L1 / PD-L2 PD-L1 PD-L2 

PD-1 
Simulation 

∆𝐆𝐁𝐋(𝐀𝐬𝐧𝟔𝟔)  
∆𝐺'&*+(𝐴𝑠𝑛66) 

(kBT)  

∆𝑮𝑩𝑳(𝑰𝒍𝒆𝟏𝟐𝟔	)  
−∆𝐺'&*+(𝐼𝑙𝑒126) 

(kBT) 

∆𝑮𝑩𝑳(𝑰𝒍𝒆𝟏𝟐𝟔)  
∆𝐺'&*+(𝐼𝑙𝑒126) 

(kBT) 
apo (∆𝐺#$

%&') 3.6 ± 0.60 4.4 ± 1.2 -4.4 ± 1.2 

Y (∆𝐺#$H ) 1.7 ± 0.61 1.3 ± 0.3 -1.3 ± 0.3 

DY (∆𝐺#$IH) 0.11 ± 0.44 -0.21 ± 0.74 0.21 ± 0.74 

GGG (∆𝐺#$JJJ) -0.28 ± 0.52 0.7 ± 0.8 -0.7 ± 0.8 

GGY (∆𝐺#$JJH) 0.02 ± 0.17 0.58 ± 0.22 -0.58 ± 0.22 

GDG (∆𝐺#$JIJ) -2.3 ± 0.32 -0.46 ± 0.36 0.46 ± 0.36 

ADG (∆𝐺#$KIJ) -3.0 ± 0.45 0.35 ± 0.60 -0.35 ± 0.60 

GDY (∆𝐺#$JIH) -3.0 ± 0.7 2.3 ± 0.72 -2.3 ± 0.72 

ADY (∆𝐺#$KIH) -2.7 ± 0.44 -2.0 ± 0.36 2.0 ± 0.36 

mGDV (∆𝐺#$LJIM) -3.0 ± 0.47 -1.8 ± 0.48 1.8 ± 0.48 
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2.2.5 PD-L1/2 triggers ADY/GDY produce energetically downhill induced fit binding pathways.  
 

We applied Maxwell-Boltzmann statistics to our peptide simulations (see Chapter 2.4 Methods) to 

quantify the role played by each trigger in the structural transitions at the PD-1 interface. We evaluate 

∆𝐺'&*+ , i.e., the free energy differences between the open and closed states of Asn66/Ile126 for PD-1 in 

isolation and PD-1 interacting with nine different peptides representing distinct PD-L1/2 interface motifs 

(Figure 2.3, Table 2.2; note that ∆𝐺'&*+  and ∆𝐺#$ are trivially related). These ∆𝐺'&*+  values are plotted 

in Figure 2.7. Remarkably, the ADY and GDY motifs respectively shift the ratio of our predefined bound-

like to non-bound-like states from 1 : 44 ± 24 (based on ∆𝐺'&*+
%&' (𝐴𝑠𝑛66)) to 7.4 ± 2.8 : 1 for the PD-L1 

bound-like state (based on ∆𝐺'&*+KIH (𝐼𝑙𝑒126)) and 12 ± 9.6 : 1 for the PD-L2 bound-like state (based on 

∆𝐺'&*+JIH (𝐼𝑙𝑒126)). More importantly, we show that each triggering contact monotonically lowers the 

relative free energy of ligand-specific bound-like states starting from no contacts (apo), to the first, 

conserved contact with the anchor (Y), to the second, conserved contact with Asp122/111 (DY), to the 

final, unconserved contact with the backbone O of A/G in the complete triggering motifs (ADY/GDY) 

(Figure 2.7). The fact that these downhill binding pathways do not encounter energy barriers strongly 

suggests that the PD-1 binding mechanism is primarily one of induced fit (see Figure 2.1). 

 

In the apo simulation Asn66 is closed (∆𝐺'&*+
%&' (𝐴𝑠𝑛66) ≈ 	3.6	𝑘#𝑇), repelling Ile126 into an open 

conformation (∆𝐺'&*+
%&' (𝐼𝑙𝑒126) ≈ 	−4.4	𝑘#𝑇). Docking of the Tyr anchor (Y) and formation of the 

encounter complex destabilizes the non-bound-like apo PD-1 interface, causing increased open-closed 

fluctuations in both Asn66 and Ile126. The subsequent docking of Asp122/111 (DY) allows Tyr68 to 

compete with Lys78 to form one hydrogen bond with Asn66, causing it to swap back and forth between 

open and closed (∆𝐺'&*+IH (𝐴𝑠𝑛66) ≈ 	0). Fluctuations of Asn66 correlate with simultaneous fluctuations 

of Ile126 (∆𝐺'&*+IH (𝐼𝑙𝑒126) ≈ 	0). Adding the adjacent Ala121/Trp110 backbone from PD-L1/2 (ADY/GDY) 
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provides the second hydrogen bond for the NH2 of Asn66 that fully stabilizes its open state 

(∆𝐺'&*+
JIH/KIH(𝐴𝑠𝑛66) ≈ 	−3.0	𝑘#𝑇). With Asn66 open, the Cβ atom of Ala121 modulates Ile126 dynamics. 

When present (ADY), the Cβ hydrophobically recruits Ile126 into the closed pocket state 

(∆𝐺'&*+KIH (𝐼𝑙𝑒126) ≈ 	2.0	𝑘#𝑇). Without Cβ (GDY), Ile126 remains open (∆𝐺'&*+JIH (𝐼𝑙𝑒126) ≈ 	−2.3	𝑘#𝑇).  

 

Our ∆𝐺'&*+  calculations also quantify the critical role of the anchor residue Tyr123/112 in ensuring the 

ligand specificity of PD-1 interface deformations. This is demonstrated by the fact that GDY and ADY 

peptides impose clear differential influence on the dominant rotamer state of Ile126, while for both GDG 

and ADG, Ile126 fluctuates about evenly between the open and closed state (∆𝐺'&*+
JIJ/KIJ(𝐼𝑙𝑒126) ≈ 0) 

(Figure 2.7). 

 
2.2.6 Encounter complex simulations suggest chronology of induced fit triggering interactions.   
 

We ran MDs of the PD-L1/2 encounter complexes starting from docked poses of apo PD-1 and the 

interacting domains of PD-L1/2 that anchored Tyr123/Y112 (see Chapter 2.4 Methods). Encounter 

complex MDs recapitulated the triggering mechanisms we identified in our peptide simulations and their 

resulting PD-1 interface transitions from the ECNBL to the ligand-specific ECBL states. The chronology for 

these interactions (Table 2.3) is the same for both ligands. Consistently, the first interaction to take place 

after docking the conserved anchor is the formation of the hydrogen bond between receptor residue 

Tyr68 and ligand residue Asp122/111. This is followed by stabilization of Asn66 in the open pocket state 

via hydrogen bonds with neighboring Tyr68 and the ligand Ala121/Trp110 backbone. The Ala121/Trp110 

side chains then proceed to stabilize a closed/open hydrophobic pocket. Note that the Trp in the WDY 

motif of PD-L2 readily fills the hydrophobic pocket as the XDY motif latches and opens Asn66 (Figure 2.8). 

Consistent with a downhill free energy induced fit mechanism, the realization of these four contacts takes 

less than 10 ns total. On a longer timescale, encounter complex simulations demonstrate the formation 
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of secondary hydrogen bonds at the interface periphery that are also observed in co-crystal structures of 

human and murine PD-1. These secondary hydrogen bonds, including the bond from PD-1 Lys78 to PD-

L1/2 Phe19/21 and from Gln75 to Arg125/Tyr114 (Figure 2.9), were consistently observed to form 

approximately 10 nanoseconds after the aforementioned Asn66 and Tyr68 hydrogen bonds (Table 2.3), 

suggesting that ECBL contacts shaped by the triggers of induced fit are enough to drive the subsequent 

transition to the HAC. 

 

Table 2.3. Chronology of the formation of intermolecular interactions between PD-1 and PD-L1/2 in 

encounter complex simulations. Listed values show the average and standard deviation time to formation 

(from three replicate simulations) of various inter- and intra-molecular hydrogen bonds following the 

burial of the ligand anchor and formation of the key Tyr68–Asp122/111 hydrogen bond. 

 

 Δt (ns) after Tyr68 – Asp122/111  
hydrogen bond formation 

Hydrogen Bond PD-1 - PD-L1 
Encounter Complex 

PD-1 - PD-L2 
Encounter Complex 

Asn66 – Ala121/Trp110 6.3 ± 2.9 6.7 ± 7.2 

Asn66 – Tyr68 5.0 ± 1.7 8.3 ± 7.5 

Gln75 – Arg125/Tyr114 15 ± 7.8 17 ± 11 

Lys79 – Phe19/21 13 ± 15 15 ± 20 
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Figure 2.8. Modulation of the PD-1 interface binding cavity in encounter complex simulations with PD-

L1 and PD-L2. Plot shoes the (rolling average) number of atoms in the bound-like Trp110 side chain 

reference that are occluded by the PD-1 interface throughout encounter complex simulations with PD-

L1/2 (see Chapter 2.4 Methods for full details of how occlusion is calculated). Both encounter complexes 

begin with a closed Trp110 pocket, as this is the dominant state of apo PD-1. The PD-L2 trigger then 

stabilizes the hydrophobic cavity (no overlap), while the PD-L1 trigger stabilizes the hydrophobic patch 

(significant overlap). 

 

 

Figure 2.9. Secondary, non-triggering contacts in PD-1 encounter complexes. Specific hydrogen bonds 

observed in the PD-1 – PD-L1 (a) [20] and PD-1 – PD-L2 (b) [21] cocrystal structures. In simulation these 

contacts form approximately 10 ns after triggering interactions and their resulting induced fit 

deformations of the receptor (Table 3). Note also that the conserved Tyr123/112 anchor forms identical 

hydrogen bonds with Glu136 in the PD-L1 – and PD-L2 – bound states.     
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2.2.7 PD-1 – targeting antibody validates the critical role of Asn66 and suggests an anchor-

independent binding mechanism with closed Ile126 and Ile134.  

 
Recently, two FDA-approved PD-1 –  targeting antibodies have emerged as part of a new generation of 

anti-cancer immune checkpoint inhibitors. Published crystal structures of one of these antibodies, 

pembrolizumab, bound to extracellular PD-1 show a hydrophobic receptor binding surface that overlaps 

that which binds PD-L1/2 (Figure 2.10b) [40-42]. Comparison of the pembrolizumab – PD-1 interface to 

the PD-L1 – PD-1 interface using the FastContact server [43] highlights several differences in the main 

contacts that characterize the two binding modes (Figure 2.10a, Tables 2.4, 2.5). Remarkably, the 

pembrolizumab-bound crystal structures reveal that the antibody stabilizes the same open state of 

Asn66 as PD-L1/2 using an analogous hydrogen bond network (Figure 2.10c). The fact that this antibody, 

designed via a distinct evolutionary pathway, shares PD-L1/2’s mechanism for opening Asn66 and 

revealing a hydrophobic binding surface (Figure 2.2a,b,c, Figure 2.10b) underscores the role of this 

specific interaction in PD-1 interface remodeling.  
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Figure 2.10. Pembrolizumab – bound PD-1 interface resembles PD-L1 – bound interface with a closed 

Ile134. (a) Alignment of crystal structures of the pembrolizumab antibody (Ab) [40] and PD-L1 [20] binding 

modes, showing distinct but partially overlapping binding interfaces on PD-1. The light chain of the Ab is 

shown in magenta and the heavy chain is shown in purple.  (b) Detailed comparison of the aligned Ab – 

bound (grey) and PD-L1 – bound (green) PD-1 interfaces. Most receptor interface residues exhibit near-

identical conformations, except Ile134 which is open when bound to PD-L1 but closed when bound to 

pembrolizumab. Heavy chain Ab interface residues are shown in purple. (c) Detail of the Ab – PD-1 

interface, highlighting the hydrogen bond (hydrogen bond) network that stabilizes the open state of 

Asn66. This hydrogen bond network is functionally analogous to those observed in the PD-L1 and PD-L2 – 

bound cocrystals (Figure 2.5), although the OD1 and ND2 atoms of Asn66 are flipped. (d) Simulation 

snapshot of human PD-1 interacting with the mGDV motif from Bristol-Myers Squibb macrocyclic PD-1 

inhibitor, highlighting the canonical hydrogen bond network that opens Asn66.    
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Table 2.4. Top 5 PD-1 residues contributing to electrostatic energy when binding to PD-L1 and 

pembrolizumab. Binding energies were calculated using the FastContact web server [43] and cocrystal 

structures of PD-1 bound to PD-L1 [20] and pembrolizumab [40]. 

PD-L1 – bound Pembrolizumab – bound 
Residue Energy (kcal/mol) Residue Energy (kcal/mol) 
Glu136 1 -11.531 Asp85 3 -8.367 

Asp77 -5.073 Ser87 -3.629 
Lys78 2 -4.266 Asp77 -2.417 
Gln75 -4.027 Tyr68 -2.156 
Glu84 -3.119 Glu136 -2.096 

1 The E136A mutation abolishes binding of PD-1 to PD-L1 and greatly reduces binding to PD-L2 [21]. 
2 The K78A mutation abolishes binding of PD-1 to PD-L1 and greatly reduces binding to PD-L2 [21]. 

3 The D85G mutation abolishes binding of PD-1 to pembrolizumab [42]. 
 

 

Table 2.5. Top 5 PD-1 residues contributing to desolvation energy when binding to PD-L1 and 

pembrolizumab. Binding energies were calculated using the FastContact web server [43] and cocrystal 

structures of PD-1 bound to PD-L1 [20] and pembrolizumab [40]. 

PD-L1 – bound Pembrolizumab – bound 
Residue Energy (kcal/mol) Residue Energy (kcal/mol) 
Ile126 1 -1.853 Leu128 2 -2.886 

Leu128 2 -1.673 Pro89 -2.486 
Ile134 3 -1.361 Val64 -1.721 
Val64 -0.463 Pro130 -1.586 

Ala132 -0.37 Pro83 -1.131 
1 The I126A mutation greatly reduces binding of PD-1 to both PD-L1 and PD-L2 [21]. 

2 The L128A mutation abolishes binding of PD-1 to PD-L1 and partially reduces binding to PD-L2 [21]. 
3 The I134A mutation abolishes binding of PD-1 t oPD-L1  and greatly reduces binding to PD-L2 [21]. 
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Although pembrolizumab’s interaction with Asn66 mimics the native-like contacts of PD-L1/2, the 

antibody-bound receptor exhibits a novel configuration of Ile134, with both Ile126 and Ile134 in inward-

flipped, ‘closed’ states (Figure 2.10b). The result is a large hydrophobic surface where, like in the PD-L1 – 

bound state, the closed Ile126 occludes the Trp110 binding pocket, but where, unlike the PD-L1/2 – bound 

states, a closed Ile134 partially fills the Tyr/123/112 anchor cavity. In fact, pembrolizumab has no anchor 

analog. Instead, the Arg102 side chain extends along the PD-1 interface such that the CZ carbon overlaps 

the Cg position of Tyr123/112 (Figure 2.18), and the NH1/2 groups hydrogen bond to a crystal water above 

the receptor interface (Figure 2.10b). In this configuration, the hydrophobic carbon chain of Arg102 forms 

a ‘cap’ above the closed Ile126 and Ile134, desolvating their hydrophobic interactions with each other and 

the neighboring Gly124 and stabilizing a flat hydrophobic surface (Figure 2.10b).  

 

A similar closed conformation of Ile134 is observed in our MDs of PD-1 interacting with the GDG peptide 

(Figure 2.15). This is unsurprising: like pembrolizumab, the GDG peptide has the necessary machinery to 

trigger the opening of Asn66, but lacks an anchor ‘wedge’ that prevents the resulting inward collapse of 

Ile134. Results of the GDG MDs thus rationalize the pembrolizumab binding mode and suggest an anchor-

independent induced fit PD-1 binding pathway: one in which the antibody opens Asn66 using the 

canonical hydrogen bond network and stabilizes the resulting flat hydrophobic interface by ‘capping’ the 

closed states of Ile126/134 with the carbon chain of Arg102. 

 
2.2.8 Can molecular triggers be exploited to drug PD-1?  
 

Although two PD-1 targeting antibodies already exist on the market, there are no small-molecule PD-1 

inhibitors in clinical trial, despite the enormous interest in this blockbuster immunotherapy target [30-

32]. Given that ligand binding sites tend to be concave [33, 34] and largely hydrophobic [35], the 

undruggability of PD-1 might be due to the closed Asn66 and the resulting flat polar interface in the apo 
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form (Figure 2.2a). However, the highly specific hydrogen bond network presented by PD-L1/2 and 

pembrolizumab strongly suggests a path to open Asn66 and transform the hard to drug hydrophilic patch 

into a hydrophobic one. Interestingly, Brystol-Myers-Squibb recently patented a 1.03 nM macrocyclic 

inhibitor of the PD-1 – PD-L1 interaction [44]. Although no mechanism of action has been described, the 

macrocycle includes a peptidic mGDV motif that is structurally similar to the aforementioned ADY induced 

fit trigger, with an N-methylated Gly and an Asp side chain that resemble PD-L1’s Ala121 and Asp122, 

respectively (Figure 2.18, Figure 2.19). This alignment puts the mGDV motif’s short Val side chain at the 

position of the much longer Tyr123 anchor, where it aligns with the C∆ side chain carbon of pembrolizumab 

residue Arg112 (Figure 2.18).  

 

Given the resemblance of the mGDV motif to the interface residues of both PD-L1 and pembrolizumab, 

we used our MDs method to evaluate whether this motif was capable of remodeling the apo, non-bound-

like PD-1 interface into a bound-like state. We observed that mGDV opened Asn66 using a native-like 

hydrogen bond network analogous to those seen in previous simulations (Figure 2.5, 2.7, 2.10d). However, 

Ile126 and Ile134 dynamics mirrored those seen in the pembrolizumab cocrystal, with both sidechains 

favoring inward-flipped ‘closed’ configurations (Figure 2.11).  Simulation trajectories showed that the 

short Val side chain of the mGDV motif, unlike the cognate Tyr123/112 anchors, did not penetrate deep 

enough into the PD-1 interface to be a ‘wedge’ stabilizing an open Ile134. Instead, like the carbon chain 

of pembrolizumab residue Arg102, the Val ‘capped’ stable hydrophobic interactions between a closed 

Ile134, a closed Ile126, and the neighboring Gly124. 
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Figure 2.11. Macrocyclic mGDV motif induces structural changes in the PD-1 interface towards the 

pembrolizumab – bound state. Heat maps show the distributions of PD-1’s Ile126 and Ile134 X1 rotamer 

angles in MDs of the receptor interacting with the ADY PD-L1 trigger (left), the BMS macrocycle mGDV 

motif (center), and the GDV peptide. Data for each ligand was gathered from three distinct 200ns 

simulations. White dots on the plots indicate the rotamer angles of the same two residues in the 

pembrolizumab (Ab) – bound [40] and PD-L1 – bound [20] cocrystal structures. 

 

Our GDG, ADG, GDY, and ADY simulations demonstrated that precise regulation of the closed/open states 

Ile126 via the Ala121 Cß is realized only when the Tyr123/112 anchor is buried (Figure 2.7). Thus, given 

that mGDV lacks an anchor, a natural question to ask is whether a Ile126 would be opened by a GDV 

peptide without the N-methyl group. Interestingly, MDs of PD-1 interacting with a GDV peptide revealed 

identical Ile126 and Ile134 dynamics to mGDV simulations (Figure 2.11), indicating that the N-methyl 

group was not recruiting Ile126 into the closed state in the style of Ala121 Cß. These results help to further 

illuminate the role of the conserved anchor Tyr123/112, which in its absence does not wedge Ile134 into 

the open state, disabling the capability of PD-1 to stabilize an open Ile126 and form a hydrophobic cavity 

at that site. 
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Compared to GDG simulations in which Ile126 fluctuated between open and closed (Figure 2.4b,c), in GDV 

simulations it remained closed, suggesting a stabilizing role for the Val side chain. The overlap of (m)GDV’s 

Val with the carbon chain of pembrolizumab’s Arg102 (Figure 2.18) and the similarity between the 

(m)GDV-induced PD-1 interface and the pembrolizumab – bound interface supports the ‘capping’ role of 

Arg102 in stabilizing the flat hydrophobic surface of PD-1. This mechanism is also consistent with models 

of macrocycle conformations generated by Balloon [45] docked to PD-1, which readily identify poses that 

align the mGDV motif to corresponding PD-L1 and pembrolizumab interface residues (Figure 2.18, Figure 

2.19), rationalizing the potency and specificity of the compound. 

 
 
 

2.3 DISCUSSION 
 

2.3.1 Induced fit motif XDY shared by PD-1 ligands modulates the flexible PD-1 binding interface from 

hydrophilic to hydrophobic.  

 
Our studies show that apo PD-1 does not sample bound-like hydrophobic interface conformations, but 

instead presents a non-bound-like hydrophilic patch around Asn66 at the core of its binding interface 

(Figure 2.2). By mapping the effect of specific ligand contacts on the apo PD-1 interface, we identify a 

highly-conserved subset of PD-L1/2 motifs responsible for coordinating Asn66 and triggering the 

transition from the hydrophilic to hydrophobic interface. Namely, Asp122/111 and the backbone O of PD-

L1/2 Ala121/Trp110 form a robust, four-membered hydrogen bond network with Tyr68 and Asn66 that 

neutralizes the latter residue into a bound-like open state. Simultaneously, the conserved anchor 

Tyr123/112 stabilizes Ile134 into a bound-like state that, with Asn66 open, creates a hydrophobic surface 

that fluctuates between a patch and a cavity modulated by Ile126. These three linear ligand motifs (XDY), 

shared by both PD-L1/2, comprise the molecular key that unlocks the promiscuity of PD-1 by revealing a 

flexible hydrophobic binding surface (Figure 2.4). 
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2.3.2 A single carbon atom difference can shift the hydrophobic PD-1 binding surface from a stable 

patch to a stable cavity.  

 
With XDY triggering the transition to the flexible hydrophobic surface, specificity towards the two PD-1 

ligands is actualized by the formation of the hydrophobic patch when binding PD-L1 vs. the formation of 

hydrophobic cavity when binding PD-L2. These two states can be distinguished by the conformation of 

Ile126 (Figure 2.2e). For PD-L1, we show that the ADY motif is sufficient to stabilize the hydrophobic patch 

(Figure 2.4c). Specifically, the Ala121 Cβ atom, which does not overlap with PD-1 apo NMR structures 

(Figure 2.2d), recruits Ile126 into the closed (patch) state. On the other hand, in the absence of Cβ, the 

GDY trigger stabilizes the open state of Ile126, producing a large hydrophobic interface cavity consistent 

with the pocket that buries PD-L2 Trp110. Note that the Trp in the WDY motif of PD-L2 readily fills the 

hydrophobic pocket as the XDY motif latches and opens Asn66 (Figure 2.8). 

 
2.3.3 Bound-like XDY residues and molecular recognition.  
 

The pre-arrangement of PD-L1/2 motifs XDY in bound-like conformations in the absence of the receptor 

is important for efficient ligand recognition and binding. Docking studies and peptide MDs highlight a 

critical role for the conserved Tyr123/112 anchor both in both molecular recognition and in modulating 

Ile134 during induced fit, both of which require the Tyr side chain to maintain a stable bound-like rotamer. 

Furthermore, simulations demonstrate that peptides such as GDG, mGDV, and GDV, which either lack or 

have a modified anchor analogue, cannot stabilize an open state of Ile126, highlighting an allosteric role 

for Tyr123/112 in splitting the PD-1 induced fit binding pathway.  

 

Several anchors substitutes were tested in simulation starting in bound-like configurations similar to the 

cognate Tyr112/123. These MDs produced three broad types of PD-1 interface dynamics (Figure 2.17): (1) 
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aromatic substitutions XDF and XDW stabilized either an open (X=G) or closed (X=A) pocket like the 

cognate XDY motif. (2) Polar substitutions XDH, XDR, and XDK were not accommodated in the hydrophobic 

anchor pocket and their side chains laid along the receptor surface, consistent with pembrolizumab’s 

bound Arg102 (Figure 2.10b), producing a closed pocket like that of (m)GDV. (3) XDG or XDA resulted in 

open-closed fluctuations of both Ile134 and Ile126 (Figure 2.4b,c). These observations suggest that certain 

anchor mutations are tolerated by PD-1 and are consistent with mutagenesis studies showing that the 

Y112A PD-L2 point mutation slightly reduces, but does not abolish, binding to PD-1 [21]. However, the 

observed conservation of Tyr123/112 in mammalian species [21] might suggest specific kinetic constraints 

on ligand recognition arising from hydrophobic contacts with Ile134 and the hydrogen bond with Glu136 

(Figure 2.9), which are not shared by other sidechains.  

 

In addition to the anchor residue, our peptide MDs also suggest an essential role for the conserved 

Asp122/111 in erecting a stable hydrogen bond network that opens PD-1 Asn66, which can only be 

achieved by a bound-like Asp side chain. The primacy of these intermolecular interactions to PD-1 binding 

is reinforced by our MDs of apo PD-L1/2, which reveal that Tyr123/112 and Asp122/111 all remain in 

bound-like conformations in the absence of the receptor, primed to interact immediately upon interface 

association. Equally important is the fact that apo PD-1 structures all accommodate (i.e. do not block) any 

of contacts of the XDY scaffold, ensuring a rapid recognition process that facilitates subsequent induced 

fit transitions. 

 
2.3.4 Downhill binding pathways strongly suggest an induced fit binding mechanism.  
 

Our MDs demonstrate that the set of consecutive intermolecular interactions triggered by ADY and GDY 

peptides lead to energetically downhill binding pathways with no opposing energy barriers. These 

pathways strongly suggest that PD-1 occurs mostly by induced fit (Figure 2.1). Specifically, simulations and 
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estimated ∆𝐺'&*+  values show that apoBL states of PD-1 are rare, which undermines a conformational 

selection mechanism. On the other hand, ligand-specific triggers are shown to efficiently shift the PD-1 

interface conformational ensemble from a non-bound-like : bound-like ratio of roughly 44 : 1 (in the apo 

ensemble) to roughly 1 : 7 (in the encounter complex ensemble) (Figure 2.7). Unconstrained MDs of PD-

L1/2 encounter complexes show that the geometry and chronology of triggering contacts is highly 

optimized, driving the transition from the non-bound-like to the bound-like states in less than 10 ns. This 

time scale promotes rapid recognition and ensures fast activation of this important T-cell checkpoint. 

 
2.3.5 Two step binding pathway of PD-1 reveals a simple mechanism for selective promiscuity. 
 

 Although regulatory proteins are promiscuous in that they bind multiple targets, they must also be 

specific so as to limit binding to just those targets. Our analysis of the binding mechanism to PD-1 reveals 

how these two seemingly contradictory requirements can be simultaneously achieved. Here, we show 

that apo PD-1 samples an ensemble of non-bound-like conformations that present an obstructive Asn66 

on its interface, which likely prevents non-specific binding. The apo PDL1/2 interfaces feature a conserved, 

bound-like, XDY binding motif that holds the key to opening Asn66 and forming a flexible hydrophobic 

surface, which completes the first binding step. In the second step, the ligands then attune the flexible 

interface via specificity-determinant contacts (X=A for PD-L1, X=W for PD-L2) that modulate Ile126, 

splitting the binding pathway and stabilizing either a hydrophobic patch or a binding pocket (Figures 2.2, 

2.4, 2.7). The key structural properties in this pathway are: (a) a flexible, non-bound-like apo receptor 

interface ensemble that presents an unfavorable binding surface, (b) a core subset of shared ligand 

binding motifs clustered about an anchor residue that latch the receptor interface but allow it to remain 

flexible, and (e) ligand-specific motifs that split the binding pathway by stabilizing different conformations 

of the flexible interface.  
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2.3.6 Molecular triggers could be exploited to design small-molecule PD-1 antagonists.  
 

Bound cocrystal structures of the PD-1 – targeting antibody pembrolizumab reveal that it exploits an 

evolutionarily-designed induced fit trigger: the four-membered hydrogen bond network that opens Asn66 

and makes the receptor interface hydrophobic. This same principle can be applied to design smaller 

molecular weight PD-1 inhibitors. We have shown that the mGDV motif of the Brystol-Myers-Squibb PD-

1 inhibitor combines key pharmacophore features of both PD-L1 and pembrolizumab interfaces: the 

backbone O of the Gly resembles that of PD-L1’s Ala121, the Asp side chain resembles PD-L1’s Asp122, 

and the Val side chain resembles pembrolizumab’s Arg102. Simulations suggest that this structural 

resemblance produces functionally similar dynamics by displacing receptor residue Asn66 (Figure 2.10d) 

and stabilizing a bound-like, flat hydrophobic surface formed by closed Ile126 and Ile134 (Figure 2.7, 2.11). 

Docked conformations of the full inhibitor recapitulate most secondary native-like contacts in addition to 

the core triggering interactions (Figure 2.18, Figure 2.19). Taken together these results support the idea 

that nature’s mechanisms for modulating receptor surfaces might be exploited to design novel 

chemistries capable of transforming hard to drug targets into more druggable candidates. 

 
2.3.7 Selective promiscuity via induced fit offers potential advantages over conformational selection 

for multi-ligand regulatory proteins.  

 
Promiscuous regulatory proteins must optimize binding kinetics for multiple ligands by exploiting 

structural flexibility. Given nature’s general mechanisms for flexibility-mediated binding (Figure 2.1), 

specificity towards multiple ligands could, in principle, be conferred either through conformational 

selection, by evolving the receptor to intrinsically sample different ligand-specific apoBL states, or by 

induced fit, by evolving interface interactions that efficiently drive transitions to the ligand-specific ECBL 

states. If conformational selection is used to achieve multi-ligand specificity, the binding pathway flux will 

de facto be limited by ∆𝐺#$
%&', the free energy difference between each ligand-specific bound-like states 
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and other states in the apo ensemble. In this scenario, a natural bottleneck would emerge as an increasing 

number of ligands would lead to lower association rates. 

 

On the other hand, if selective promiscuity is conferred through induced fit, binding pathway flux will not 

depend on the fractional populations of apo ensemble microstates, but instead will be determined by the 

ligand-specific triggering mechanisms. We show here that induced fit can efficiently reshape the shallow 

polar interface of a flexible receptor into a hydrophobic interface amenable to binding multiple ligands by 

co-evolving a common set of intermolecular contacts. From an evolutionary perspective, this is an efficient 

approach to spawning novel protein interactions, since these core contacts can be designed just once. 

Selectivity to novel ligands can then be achieved by evolving relatively small sequence modifications 

around these core contacts. Perhaps more importantly, we note that contrary to conformational 

selection, the induced fit approach to selective promiscuity is in principle not limited by the total number 

of ligands. 

 

It is interesting to note that many well-characterized eukaryotic regulatory domains [46] bind to several 

linear binding sequences that share common motifs around an anchor residue and differ in other nearby 

regions. This trend suggests that the selective promiscuity via induced fit mechanism proposed here for 

PD-1 might apply elsewhere in nature. This possibility is currently being studied by analyzing the triggers 

of induced fit in other systems. 

 
 
 

2.4 METHODS 
 

2.4.1 Initial protein structures used in simulations.  
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Molecular dynamics simulations (MDs) of the extracellular domain of PD-1 were run in triplicate using the 

first three solution NMR structures of apo human PD-1 (PDB ID: 2M2D [19]). Before simulating specific 

receptor - ligand interactions, MDs of apo PD-1 were evaluated to ensure that the resultant dynamics are 

consistent with the experimentally derived apo NMR ensemble. As shown in Figure 2.12, apo MDs stabilize 

within about 2.0 Å backbone RMSD of their respective NMR starting points, suggesting that we can 

successfully sample native-like unbound states. 

 

Available co-crystal structures of human PD-1 / human PD-L1 (PDB ID: 4ZQK [20]), murine PD-1 / human 

PD-L1 (PDB ID: 3BIK [22]) and murine PD-1 / murine PD-L2 (PDB ID: 3BP5 [21]) complexes were used as 

templates for placement of peptides in bound-like loci at the receptor interface, and the dynamics of the 

PD-1 binding interface in response to interactions with different structural motifs on the ligands were 

analyzed. We focus on interactions relevant for the opening and closing of the pocket around Asn66. 

Based on co-crystals, we noticed that the core interacting residues of PD-L1 (Ala121, Asp122, Tyr123) and 

the homologous residues on PD-L2 (Trp110, Asp111, Tyr112) form critical hydrogen bonds (hydrogen 

bonds) shaping this pocket. Thus, to dissect the contribution of each contact, we simulate the effects of 

the receptor interacting with a diverse set of peptide derivatives of these specific ligand residues. 

 

 

Figure 2.12: Stability of apo PD-1 simulations. Backbone RMSD of apo PD-1 to the first three NMR 

models (shown in blue, red, and yellow, respectively). Data is shown for six simulations: two replicates 

(a,b) starting from each of the first three NMR models (1,2,3).    
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2.4.2 Peptide ligand mimics used in simulations.  
 
 
Ten distinct PD-1 systems were simulated in order to dissect the ligand groups that trigger induced fit 

interface deformations on the receptor. These systems included the apo receptor in isolation and in 

complex with nine different peptides that mimic cognate ligand backbone and side chain interactions with 

the receptor (Figure 2.3): the anchor residue Tyr, the backbone peptide GGG, five peptides to probe role 

of ligand side chain contacts DY, GGY, GDG, ADG, GDY, the PD-L1 peptide ADY, and the mGDV peptide, 

which mimics a patented PD-1 inhibitor.  

 
2.4.3 Simulating PD-1 – peptide interactions.  
 

To generate initial structures for our receptor-peptide MDs, NMR models 1-3 of the human PD-1 were 

backbone aligned to the murine receptor co-crystal [22] and peptides were modeled after the 

corresponding human PD-L1 interface residues Ala121 – Tyr123, homologous to PD-L2 interface residues 

W110 - Tyr112. Systems are simulated for 200 ns, resulting in three replicate MDs per system (including 

the apo PD-1 system, which does not include any peptide), and receptor interface dynamics are compared 

across systems to identify the ligand motifs and interactions responsible for structural transitions towards 

the bound-like receptor state. Harmonic restraints (100.0 kcal/mol) on all heavy atoms of ligand-

mimicking peptides were used in simulation to prevent dissociation of the peptide from the receptor 

interface. 

 

In peptide MDs, harmonic restraints (100.0 kcal/mol) were also placed on backbone atoms of non-

interface PD-1 beta sheets residues 50-55, 80-81, 96-98, 106-109 and 120-122. These residues exhibit < 

0.35 Å backbone RMSD in the apo NMR ensemble, and previous studies have also shown that the 

conformational changes induced by ligand binding do not propagate through the major fold of PD-1 [19]. 

Hence, these restraints should not prevent our ability to sample the native-like binding dynamics of the 
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receptor interface in biological conditions. The resolved portion of the N-terminal tail of PD-1 (residues 

33-36), which in NMR models has < 0.65 Å backbone RMSD, was also restrained so as to limit artificial 

mobility that might result from the fact that residues 1-32 were missing from simulation. 

 
2.4.4 Encounter complex modeling and simulation.  
 

Human PD-1 – PD-L1 and PD-1 – PD-L2 encounter complexes were modeled and then simulated in 

triplicate to probe induced fit trajectories and determine the chronology of inter-molecular interactions 

and specific interface deformations. We modeled encounter complexes by rigid body docking the 

extracellular domain of the apo receptor and the Ig-like V-type domains of the apo ligands, allowing no 

structural overlaps. Docked models of PD-L1 had an average backbone RMSD of 5.7 ± 1.2 to the human 

PD-1 – PD-L1 cocrystal. Docked models of PD-L2 had an average backbone RMSD of 4.8 ± 1.8 to the murine 

PD-1 – PD-L2 cocrystal (no human cocrystal is currently available for the PD-1 – PD-L2 complex).  

 

Structural models of apo human PD-L1 and PD-L2 that we used when building encounter complexes were 

generated by simulating the ligands in solution for 400 ns, using a VMD [47] clustering plugin 

(https://github.com/luisico/clustering) to cluster frames by backbone RMSD using a 3 Å cutoff, and taking 

the centroid frame of the largest cluster for each ligand. The initial structure for the PD-L1 clustering MDs 

was taken as the structure of the bound human ligand from the co-crystal complex with murine PD-1 (PDB 

ID: 3BIK). As there are currently no available crystal structures of human PD-L2, a homology model was 

built as a starting point for the clustering simulation by manually mutating the bound structure of murine 

PD-L2 (PDB ID: 3BP5) and minimizing the resulting structure. We used the ClusPro protein-protein docking 

server [39] to dock the top apo PD-L1 and PD-L2 centroid structures from their respective MDs to the first 

three NMR structures of apo human PD-1 (all three receptor structures are non-bound-like). Three bound-

like candidate models for the PD-1 – PD-L1/2 encounter complexes that correctly anchored Tyr123/112 
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were chosen from the ClusPro output. We then simulated these encounter complexes for 400 ns to probe 

the dynamics of the induced fit binding pathway.  

 
2.4.5 Simulation parameters.  
 

We ran MDs using AMBER14’s [48] pmemd.cuda module [49] and the AMBER ff12SB force field. The cutoff 

for non-bonded interactions was set at 10 Å. Systems were simulated in an octahedral TIP3P water box 

with periodic boundary conditions and a 12 Å buffer around the solute. Cl- ions were added to the solvent 

to neutralize the charge of the systems. We minimized each system twice and then equilibrated them 

before beginning production runs. In the first minimization, solute atoms were held fixed through 500 

steps of steepest descent and 500 steps of conjugate gradient minimization. In the second minimization 

only the solute backbone atoms were restrained through 2000 steps of steepest descent and 3000 steps 

of conjugate gradient. After minimization, system temperatures were raised to 300 K over the course of 

a 200 ps constant volume simulation (with an integration step of 2 fs) during which the solute was fixed 

with weak (10.0 kcal/mol) restraints. Bonds involving hydrogens were held at constant length. For the 

production MDs, the 200 - 400 ns simulations were held at 300 K under constant pressure with the 

constraints as listed above for each system and an integration step size of 2 fs. 

 
2.4.6 Analysis tools. 
 

The PyMOL Molecular Graphics System v1.7.4.0 was used for structure preparation and analysis [50]. 

Trajectories were analyzed using VMDv1.9.2 [47] and the MDpocket software package v2.0 [51, 52] for 

cavity detection and volume / surface area measurement. Measurements of PD-1 binding pocket 

occlusion, shown in Figures 2.2d and 2.4d,e, were calculated from molecular dynamics simulations of PD-

1 using a Python script [46]. Briefly, the script takes a molecular dynamics trajectory and a set of static 

reference atoms and identifies which reference atoms are overlapped in each frame of the simulation. 
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Overlap occurs when any simulated atom crosses the “clash radius” of a reference atom, the clash radius 

being equal to the sum of the van der Waals radii of the two atoms. The output of the script is the 

fractional occlusion of each reference atom position, equal to the percentage of simulation frames in 

which that reference atom is overlapped by simulated atoms. This script was used to evaluate the extent 

to which the Trp110 and Tyr112/123 binding cavities are open in simulations of PD-1 interaction with 

various peptides, simulations of apo PD-1, and the apo NMR ensemble of PD-1. 

 
2.4.7 Relative free energies of bound-like versus non-bound-like interfaces.  
 

We classified PD-1 interface conformations using two binary order parameters that define whether 

interface residues Asn66 and Ile126 are in their ‘open’ or ‘closed’ rotamer states. These parameters are 

used to distinguish the non-bound-like interface, where Asn66 is closed and Ile126 is open, from the PD-

L1-specific bound-like state, where Asn66 is open and Ile126 is closed, and the PD-L2-specific bound-like 

state, where both Asn66 and Ile126 are open (Figure 2.2e). We estimated the energy differences ∆𝐺#$
%&' 

and ∆𝐺#$() (Figure 2.1) using Maxewell-Boltzmann statistics by assessing the bound-like (BL) and non-

bound-like (NBL) state population distributions in the apo and encounter complex (EC) receptor 

ensembles: 

 

  
〈+WX
YZ[/\]〉

〈+_WX
YZ[/\]〉

= 𝑒
a∆bWX

YZ[/\]

cWd   (1) 

 

In the above equations, 〈𝑛#$
%&'/()〉 and 〈𝑛e#$

%&'/()〉 denote fractional equilibrium populations of the apo / 

encounter complex receptor ensembles in the bound-like and non-bound-like macrostates, and kBT is the 

product of the Boltzmann constant and temperature. We used MDs to generate the equilibrium 

ensembles of receptor conformations and analyzed the trajectories to calculate 〈𝑛#$/e#$
%&'/() 〉 values. 
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MDs trajectories were analyzed as follows. Reference structures for the open and closed states of Asn66 

were defined using its side chain configuration in the first apo NMR model and PD-L1-bound human 

cocrystal, respectively (Asn66 has < 0.2 Å heavy atom RMSD between PD-L1 and PD-L2 cocrystals 4ZQK 

and 3BP5). Each frame of the MDs trajectory is labeled with the state to which the simulated Asn66 had 

the smaller side chain RMSD to the reference structure. Reference structures for the open and closed 

states of Ile126 were defined using its Χ1 rotamer angle in the murine PD-L2 and human PD-L1 

cocrystals, respectively, this angle being the main distinguishing feature between the two different 

ligand-bound interfaces (Figure 2.2e). Each frame of the MDs was labeled with the state to which the 

simulated Ile126 had the closest rotamer angle. The free energy changes of opening Asn66 and Ile126 

are calculated using eq. (1) and then compared across different simulations in order to identify triggers 

of interface deformations. 
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2.5 SUPPLEMENTARY FIGURES  
 

 

 

Figure 2.13. The cognate ligands of PD-1. Cocrystal structures of the extracellular domain of PD-1 bound 

to the Ig-like V-type domains of its two cognate ligands: (a) PD-L1 [20], and (b) PD-L2 [21]. Dashed lines 

indicate hydrogen bonds between the PD-L1/2 anchor and PD-1 residue Glu136. 
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Figure 2.14. Modulation of PD-1’s flexible interface cavity. Aligned structures of the apo (white) [19], PD-

L1 – bound (green) [20], and PD-L2 – bound (cyan) [21] PD-1 interfaces. Key PD-1 interface residues that 

line the cavity are shown as small sticks and labelled, with Asn66 and Ile126 shown as large sticks as in 

Figure 2.2c. The interface cavity volume of each structure is indicated by the transparent surface of 

matching color. PD-L2 interface residues Trp110 and the conserved Tyr112 anchor are shown as small 

orange sticks, for reference. The anchor pocket is unstructured in all three receptor states, but only the 

PD-L2 bound state accommodates Trp110.       
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Figure 2.15. Apo PD-1 interactions with GDY peptide opens a hydrophobic cavity. Panels (a) and (b) 

illustrate the PD-1 interface cavity volume which is plotted in Figure 2.4b. (a) Snapshot from simulation of 

human PD-1 interacting with the GDG peptide. The PD-1 interface cavity volume is shown in red surface. 

Although Asn66 is in the open state, the cavity is closed by the closed state of I126. (b) Snapshot from 

simulation of human PD-1 interacting with the GDY peptide. The PD-1 interface cavity volume is shown in 

orange surface. The Y anchor side chain positions Ile134 to pull Ile126 out of the pocket via hydrophobic 

interaction, leaving a large open cavity. 
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Figure 2.16. Replicate trajectories from Figure 2.4a,b,c. Top: Rolling averages of distance between 

Trp110_NE1 (from bound PD-L2) and Asn66_ND2 from MDS of apo PD-1 (blue) alone and interacting with 

GGG (maroon) and GDG (red) peptides. Middle: Rolling averages of PD-1 binding cavity volume from 

simulations of apo PD-1 alone (blue) and interacting with GDG (red) and GDY (orange) peptides. Bottom: 

(f) Ile126 Χ1 rotamer angle from MDS of apo PD-1 interacting with GDG (red), GDY (orange), and ADY 

(yellow) peptides. 
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Figure 2.17. Dynamics of PD-1 binding cavity in the presence of different anchor substitutes. Ile126 Χ1 

rotamer angle from MDs of apo PD-1 interacting with GDF (orange), GDK (grey), and GDH (blue) peptides. 

GDF produces a mostly open interface cavity, while GDK and GDH stabilize the closed surface. 
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Figure 2.18. Model of potent Brystol-Myers-Squibb macrocyclic PD-1 inhibitor. Predicted macrocycle 

binding mode is shown brown, with certain side chains omitted for clarity (see Figure 2.19 for full 

macrocycle structure). Key PD-L1 (yellow)  [20] and pembrolizumab (purple and magenta) [40] interface 

residues from their bound cocrystal structures are shown to highlight predicted native-like contacts. Inset: 

the mGDV segment of the macrocycle aligned to PD-L1’s ADY trigger and pembrolizumab’s corresponding 

interface residues. Green and red spheres represent hydrophobic and polar pharmacophores matched by 

both pembrolizumab and the mGDV macrocycle motif.     
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Figure 2.19. Predicted interactions of Brystol-Myers-Squibb macrocyclic PD-1 inhibitor. Figure shows the 

2D structure of the patented Brystol-Myers-Squibb macrocycle with the mGDV sequence highlighted in 

magenta. Dashed lines indicate the specific interactions between the macrocycle and the PD-1 interface 

(green circles) that are observed in our binding model. Amino-acid components of the macrocycle are 

labeled, and analogous PD-L1 cocrystal [20] residues that participate in the same interactions are 

indicated in parenthesis. Our binding model recapitulates most native-like contacts present in the human 

PD-1 – PD-L1 cocrystal. 
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3.0 PREDICTING PROTEIN TARGETS FOR DRUG-LIKE COMPOUNDS USING TRANSCRIPTOMICS 
 
 
 
 

3.1 INTRODUCTION 
 
 

Most protein research still focuses on roughly 10% of proteins, and this bias has a profound effect on drug 

discovery, as exemplified by the popular kinase target [53-55]. The origin for this relatively limited 

exploration of the human interactome and the resulting lack of novel drugs for emerging ‘genomic-era’ 

targets has been traced back to the availability of small molecular weight probes for only a narrow set of 

familiar protein families [53]. To break this vicious circle, a new approach is needed that goes beyond 

known targets and old scaffolds, and that benefits from the vast amount of information we now have on 

gene expression, protein interactions, their structures and related diseases. 

 

The current target-centric paradigm relies on high-throughput in-vitro screening of large compound 

libraries against a single protein [56]. This approach has been effective for kinases, GPCRs, and proteases, 

but has produced meager yields for new targets such as protein-protein interactions, which require 

chemotypes often not found in historical libraries [57, 58]. Moreover, these in-vitro biochemical screens 

often cannot provide any context regarding drug activity in the cell, multi-target effects, or toxicity [59, 

60]. On the other hand, the goal of leveraging new chemistries would entail a compound-centric approach 

that would test compounds directly on thousands of potential targets. In principle, this is regularly done 

in cell-based phenotypic assays, but it is often unclear how to identify potential molecular targets in these 

experiments [61-63]. Understanding how cells respond when specific interactions are disrupted is not only 
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essential for target identification but also for developing therapies that might restore perturbed disease 

networks to their native states. 

 

Compound-centric computational approaches are now commonly applied to predict drug–target 

interactions by leveraging existing data. However, many of these methods extrapolate from known 

chemistry, structural homology, and/or functionally related compounds, and excel in target prediction 

only when the query compound is chemically or functionally similar to known drugs [64-69]. Other 

structure-based methods such as molecular docking are able to evaluate novel chemistries, but are limited 

by the availability of protein structures [70-72], inadequate scoring functions, and excessive computing 

times, which render structure-based methods ill-suited for genome-wide virtual screening [73].  

 

More recently, a new paradigm for predicting molecular interactions using cellular gene expression 

profiles has emerged [74-76]. Previous work has shown that distinct inhibitors of the same protein target 

produce similar transcriptional responses [77]. Related studies have predicted secondary pathways 

affected by known inhibitors by identifying genes that, when null-mutated, diminish the inhibitory 

expression signature of drug-treated cells [78].  When no target information is available for the compound 

in question or related compounds, alternate approaches have mapped drug-induced differential gene 

expression levels onto known protein interaction network topologies and prioritized potential targets by 

identifying highly perturbed subnetworks [79-81]. These studies predicted roughly 20% of known targets 

within the top 100 ranked genes (see Chapter 3.4 for details), but did not predict or validate any previously 

unknown interactions. 

 

The NIH’s Library of Integrated Cellular Signatures (LINCS) project presents an opportunity to leverage 

gene expression signatures from other types of cellular perturbations for the purpose of drug-target 



 52 

interaction prediction. Specifically, the LINCS L1000 dataset contains cellular mRNA signatures from 

treatments with 20,000+ small molecules and 20,000+ gene over-expression (cDNA) or knockdown (sh-

RNA) experiments. Based on the hypothesis that drugs which inhibit their target(s) should yield similar 

network-level effects to silencing the target gene(s) (Figure 3.1a), we calculated correlations between the 

expression signatures of thousands of small molecule treatments and gene knockdowns in the same cells. 

We used the strength of these correlations to rank potential targets for a validation set of 29 FDA-

approved drugs tested in the seven most abundant LINCS cell lines. We evaluate both direct signature 

correlations between drug treatments and knockdowns of their potential targets, as well as indirect 

signature correlations with knockdowns of proteins up/down-stream of potential targets. We combined 

these correlation features with additional gene annotation, protein interaction and cell-specific features 

in a supervised learning framework and use Random Forest (RF) [82, 83] to predict each drug’s target, 

achieving a top 100 target prediction accuracy of 55%, which we show is due primarily to our novel 

correlation features.  

 

Finally, to filter out false positives and further enrich our predictions, we used molecular docking to 

evaluate the structural compatibility of the RF-predicted compound–target pairs. This orthogonal analysis 

significantly improved our prediction accuracy on an expanded validation set of 152 FDA-approved drugs, 

obtaining top-10 and top-100 accuracies of 26% and 41%, respectively, more than double that of 

aforementioned previous methods. We applied our pipeline to 1680 small molecules profiled in LINCS and 

experimentally validated seven potential first-in-class inhibitors for high-impact cancer targets HRAS, 

KRAS, CHIP, and PDK1. 
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Figure 3.1. Drug and gene knockdown induced mRNA expression profile correlations reveal drug-target 

interactions. (a) Illustration of our main hypothesis: we expect a drug-induced mRNA signature to 

correlate with the knockdown signature of the drug’s target gene and/or genes on the same pathway(s). 

(b,c) mRNA signature from knockdown of proteasome gene PSMA1 does not significantly correlate with 

signature induced by tubulin-binding drug mebendazole, but shows strong correlation with signature from 

proteasome inhibitor bortezomib. Data points represent differential expression levels (Z-scores) the 978 

landmark genes measured in the LINCS L1000 experiments. (d,e) Signature from tubulin-binding drug 

vinblastine shows little signature correlation with knockdown of its target TUBA1A, but instead correlates 

with the knockdown of functionally related genes, such as RUVBL1.       
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These novel inhibitor candidates validated our hypothesis that drug treatments and target knockdowns 

cause similar disruptions of cellular protein networks that produce directly correlating differential 

expression patterns. More interestingly, we discover that these correlations can occur for knockdowns of 

the drug’s actual protein target(s) and/or for genes up/downstream of the target(s). We refer to the latter 

as “indirect correlations”. Several aspects of our approach represent significant step forwards from 

previous work exploring expression correlations as a means of predicting molecular interactions [84, 85]. 

Primarily, we do not assume anything about the small molecule or its likely protein target/pathway and 

our evaluation of both direct and indirect correlations allow us to screen compounds at a much larger 

scale and with higher accuracy than has been done previously. Furthermore, to our knowledge, this is the 

first time that pathway connectivity is explicitly considered by indirect correlational effects between drugs 

and knockdowns of target interaction partners. This approach helps to visualize and quantify the impact 

of drugs at the cell level and significantly improves in the translational potential of gene expression data 

to various realms of chemical biology and medicine. Finally, we open source our predictions and methods, 

providing enriched sets of likely active compounds for hundreds of human targets and presenting a new 

avenue for identifying suitable (multi-) targets for novel chemistries and accelerating the discovery of 

chemical probes of protein function. 

 
 
 

3.2 RESULTS 
 

3.2.1 Preliminary prediction of drug targets using expression profile correlation features.  
 

We constructed a validation set of 29 FDA-approved drugs that had been tested in at least seven LINCS 

cells lines, and whose known targets were among 2634 genes knocked down in the same cell lines. For 

these drugs, we ranked potential targets using the direct correlation between the drug-induced mRNA 

expression signature and the knockdown-induced signatures of potential targets (Figure 3.1b,c). For each 
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cell line, the 2634 knockdown signatures were sorted by their Pearson correlation with the expression 

signature of the drug in that cell line. We used each gene’s lowest rank across all cell lines to produce a 

final ranking of potential targets for the given drug. Using this approach, we predicted known targets in 

the top 100 potential targets for 8/29 validation compounds (Table 3.1). Indirect correlations were 

evaluated by the fraction of a potential target’s known interaction partners (cf. BioGrid [86]) whose 

knockdown signatures correlated strongly with the drug-induced signature. Ranking by indirect 

correlations predicted the known target in the top 100 for 10 of our 29 validation compounds (Table 3.1). 

Interestingly, several of these compounds showed little correlation with the knockdown of their targets 

(Figure 3.1d,e), with only 3/10 targets correctly predicted using the direct correlation feature alone. 

 

It is well known that expression profiles vary between cell types [87]. Thus, we constructed a cell selection 

feature to determine the most “active” cell line, defined as the cell line producing the lowest correlation 

between the drug-induced signature and the control signature. Ranking by direct correlations within the 

most active cell line for each drug predicted six known targets in the top 100 (Table 3.1). However, all six 

of these targets were already predicted by either direct or indirect correlations, strongly suggesting that 

scanning for the optimal correlation across all cell lines is a better strategy than trying to identify the most 

relevant cell type by apparent activity. 
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Table 3.1. Performance of target prediction using different features and methods on the 29 FDA-

approved drugs tested in 7 cell lines. DIR: direct correlation feature; IND: indirect correlation feature; CS: 

cell selection feature; MAX: maximum differential expression feature; MEAN: mean differential 

expression feature; LR: logistic regression; RF: random forest. Values are for the ranking of the top known 

target for each drug.  

Drug Random DIR IND CS MAX MEAN LR RF 
vinorelbine 310 126 128 1318 1690 425 28 88 
dexamethasone 1498 1891 284 943 315 1143 757 157 
dasatinib 2325 1009 94 222 290 2621 182 532 
vincristine 1979 473 439 386 2231 2196 456 37 
mycophenolate-mofetil 564 1100 1263 2986 100 301 3064 3086 
amlodipine 995 1338 2439 1801 1875 974 3037 650 
lovastatin 1712 72 811 2078 1124 1068 1334 55 
clobetasol 2194 820 21 157 74 15 38 65 
calcitriol 2514 1059 2938 221 125 1814 1299 252 
flutamide 919 2604 69 2806 463 298 702 647 
prednisolone 2382 1439 206 787 402 1068 257 23 
nifedipine 940 1225 1465 1285 88 322 3037 2249 
vemurafenib 1042 1 82 1 1149 1403 22 2 
glibenclamide 29 1415 2028 409 1059 740 1300 366 
digoxin 2376 73 1470 118 828 567 732 44 
bortezomib 1882 1 1 2 2546 2513 24 5 
vinblastine 1612 515 56 100 224 377 38 2 
digitoxin 573 89 430 216 521 653 79 50 
losartan 645 489 988 770 636 31 735 1931 
pitavastatin 1855 1976 1036 1117 90 527 1632 373 
digoxin 69 521 776 194 127 559 208 64 
hydrocortisone 303 312 72 58 93 122 29 17 
paclitaxel 2299 74 121 47 371 1862 79 19 
lovastatin 988 1 735 1587 1698 1484 128 100 
irinotecan 1742 1023 20 236 128 1886 46 160 
vincristine 1394 96 74 17 1272 69 28 9 
vinblastine 1359 490 75 1383 373 1735 35 2 
raloxifene 2080 2883 1818 1172 1064 479 1114 2520 
digoxin 1005 102 1066 112 2096 2027 252 167 
Mean Ranking 1365 800.6 724.3 776.9 794.9 1009.6 712.8 471.4 
Top 100 2 8 10 6 5 3 11 16 
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Finally, to incorporate the findings of previous studies that suggest that drug treatments often up/down 

regulate the expression of their target’s interaction partners [79-81], we constructed two features to 

report directly on the drug-induced differential expression of potential targets’ interaction partners. 

These features compute the maximum and the mean differential expression levels of potential targets’ 

interaction partners in the drug-induced expression profile. The lowest rank of each potential target 

across all cell lines is used in a final ranking. Though neither expression feature produces top 100 

accuracies better than those of our correlation features, maximum differential expression identifies three 

new targets that were not identified using any of the previous features (Table 3.1). 

 
3.2.2 Combining individual features using random forest (RF).  
 

While each of the features in Table 3.1 performed better than random, combining them further improved 

results. Using Leave-One-Out Cross Validation (LOOCV) for each drug, logistic regression [83] correctly 

identified known targets in the top 100 predictions for 11 out of 29 drugs and improved the average 

known target ranking of all drugs (Table 3.1). However, logistic regression assumes that features are 

independent, which is not the case for our dataset given the complexity and density of cellular protein 

interaction networks. Hence, we used RF, which is able to learn more sophisticated decision boundaries 

[88]. Following the same LOOCV procedure, the RF classifier led to much better results than the baseline 

logistic regression, correctly finding the target in the top 100 for 16 out of 29 drugs (55%) (Table 3.1). 

Without further training, we tested the RF approach on the remaining 123 FDA-approved drugs that had 

been profiled in 4, 5, and 6 different LINCS cell lines, and whose known targets were among 3104 genes 

knocked down in the same cells. We predicted known targets for 32 drugs (26%) in the top 100 (Additional 

File 3.1), an encouraging result given the relatively small size of the training set and the expected decline 

in accuracy as the number of cell lines decreases (Table 3.2). 
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Table 3.2. Performance of two random forest models on validation set of 152 FDA-approved drugs as 

a function of cells tested. The number of drugs with targets ranked in top 100/50 are shown for the “on-

the-fly” and “two-level” RF classification models. Results are divided into subsets of drugs profiled in 

different numbers of cell lines. Note that the success rate for RF is significant with p < 10-6 based on 

randomization tests (Figure 3.8). 

 

# of Cells All 7 6 5 4 
# of Drugs 152 29 30 42 51 
On-the-fly      
Top 100 58 13 15 16 14 
Top 50 42 10 10 12 10 
Top 100% 38% 45% 50% 38% 27% 
Top 50% 28% 34% 33% 29% 20% 
Two-level      
Top 100 63 14 15 22 13 
Top 50 54 12 14 20 8 
Top 100% 41% 48% 50% 52% 25% 
Top 50% 36% 41% 47% 48% 16% 

 

 
Re-training on the full set of 152 drugs and validating using LOOCV, we tested two alternative RF models: 

“on-the-fly”, which learns drug-specific classifiers trained on the set of drugs profiled in the same cell 

types, and “two-level”, which learns a single classifier trained on experiments from all training drugs (see 

Chapter 3.4 for details). The performances of both methods as a function of the number of cell lines 

profiled are summarized in Table 3.2. On-the-fly RF correctly ranked the targets of 58 out of 152 drugs in 

the top 100 (38%), with 42 of them in top 50 (28%). Two-level RF produced better enrichment, correctly 

predicting targets for 63 drugs in the top 100 (41%), and for 54 drugs in the top 50 (36%). In sharp contrast, 

random rankings (based on 20000 permutations) leads to only 7% of drugs with targets in the 100, 

indicating that both our training/testing and LOOCV results are extremely significant (Figure 3.8). It is also 
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noteworthy that the top-100 accuracy of the two-level RF analysis increases to 50% if we only consider 

drugs treated in 5 or more cell lines. 

 
3.2.3 Gene ontology analysis of protein targets.  
 

Next, we analyzed in what context our Random Forest analysis was most successful. To do this, we divided 

the 152 drugs in our training data into “successful” predictions (the 63 drugs for which the correct target 

was ranked in the top 100), and “unsuccessful” predictions. We also divided the known targets into those 

that were correctly predicted and those that were not. We considered several different ways to 

characterize small molecules including molecular weight, solubility, and hydrophobicity, but none of these 

seemed to significantly correlate with our “successful” and “unsuccessful” classifications. Next, we used 

gene ontology to test for enrichment of “successful” and “unsuccessful” targets. Interestingly, we found 

that “successful” targets were significantly associated with intracellular categories, while the 

“unsuccessful” targets were mostly associated with transmembrane and extracellular categories (Table 

3.4). 

 

Based on this result we further incorporated cellular component as a feature in our two-level RF. We 

encode this feature by assigning 1 to the intracellular genes and -1 to the extracellular ones. We ran the 

two-level random forest with this additional feature included and demonstrated that the cellular 

component increases the number of top 100 genes to 66 and top 50 genes to 55. 

 
3.2.4 Structural enrichment of genomic predictions.  
 

Figures 3.1d,e show that the gene regulatory effects of TUBA1A inhibition by the drug vinblastine manifest 

primarily as indirect correlations with knockdowns of the target’s interaction partners, such as RUVBL1, 

rather than via direct correlation with knockdown of the target. Such cases reflect the intrinsic 
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connectivity of cellular signaling networks, which sometimes produce gene expression correlations that 

are ambiguous with respect to which of the interacting proteins in the affected pathway is the drug’s 

actual target. Our pipeline eliminates some of these false positives using an orthogonal structure-based 

docking scheme that, although limited to targets with known structure, allows us to significantly improve 

our prediction accuracy. After performing RF classification on the validation set, we mined the Protein 

Data Bank (PDB) [89] to generated structural models of the potential targets for our 63 “hits” - drugs for 

which we correctly identified the known target in the top 100. We selected one or more representative 

crystal structures for each potential target gene, optimizing for sequence coverage and structural 

resolution (see Chapter 3.4). We then docked hits to their top 100 potential targets and ranked using a 

prospectively validated pipeline [90-93]. 

 

On average, crystal structures were available for 69 out of the top 100 potential targets for each 

compound, and structures of known targets were available for 53 of the 63 hits. In order to avoid 

redocking into cocrystals of our hits, we made sure to exclude from our analysis all crystal structures 

containing these 53 ligands, ensuring that our results would not depend on prior knowledge of 

interaction partners or binding modes. As shown in Figure 3.2, molecular docking scores improved the 

re-ranking of the known target for 40 of the 53 drugs, with a mean and median improvement of 13 and 

9, respectively. Based on genomic data alone, the known target was ranked in the top 10 for 40% of the 

63 hits. After structural re-ranking, 65% had their known targets in the top 10 candidates, and this value 

improved to 75% in the subset of 53 drugs with known target structures. These results demonstrate the 

orthogonality of the genomic and structural screens, showing that molecular docking can efficiently 

screen false positives in our gene expression-based predictions. 
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Figure 3.2. Structural enrichment of genomic target predictions. Predicted ranking (lower is better) of 

the highest-ranking known target for the 53 hits in our validation set with known target structures. 

Percentile rankings are shown following RF analysis (blue), and following structural re-ranking (orange). 

Drug names/IDs are listed in Additional File 3.2. 

 
3.2.5 Identifying new interactions in the LINCS dataset.  
 

After validating our approach on known drug targets, we applied our pipeline to a test set of 1680 small 

molecules and 3333 gene knockdowns and predicted several novel interactions. We applied our pipeline 

(Figure 3.3) in both compound-centric (target prediction) and target-centric (virtual screening) contexts, 

in each case producing a final, enriched subset of roughly 10 predictions (either compounds or targets) 

that we tested experimentally. In compound-centric analyses, we performing molecular docking on the 

available structures of the input compound’s top-100 RF-predicted targets. In target-centric analyses, we 

ran the RF on our full test set, identified compounds for which the input protein is ranked in the top 100 

potential targets, and then docked these candidate inhibitors to the target. In both applications, we 

analyzed the final docking score distributions and applied a 50% cutoff threshold to identify highly 

enriched compound/target hits. Structural analysis further facilitated visual validation of the docking 

models of predicted hits, thereby minimizing false positives. 
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Figure 3.3. Workflow of combined genomic (green) and structural (blue) pipeline for drug-target 

interaction prediction. Approximate numbers of proteins/compounds in each phase are indicated on the 

left. 
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3.2.6 Target-centric prediction of novel RAS inhibitors.  
 

Our first application consisted in identifying novel binders of the high-impact and historically 

“undruggable” RAS-family oncoproteins. HRAS and KRAS are among the most frequently mutated genes 

in human cancers [94, 95]. However, despite the extensive structural data available and tremendous 

efforts to target them with small-molecule therapeutics, as of yet no RAS-targeting drug candidates have 

shown success in clinical trials [96-98].  

 

 

 
Figure 3.4. HRAS/KRAS inhibitors predicted based on direct correlations and docked poses show direct 

binding in SPR assays. Differential gene expression profiles of (a) Phloretin and (b) RS-39604 cell 

treatments and KRAS and HRAS knockdown experiments, respectively. Several functionally related genes 

listed in BioGrid [86] are indicated to demonstrate the relevance of these profiles as suggestive of direct 

drug-target interactions. Models of (c) phloretin and (d) RS-39604 bound to an allosteric site on the KRAS 

and HRAS catalytic domains, respectively. (e) SPR titration response curves for (e) phloretin and (f) RS-

39604 binding to KRAS and HRAS, respectively, compared to DCAI positive control. 

  



 64 

Among the 1680 compounds in our test set, 84 and 156 were predicted (within the top-100) to target 

KRAS and HRAS, respectively. These compounds produced mRNA perturbation signatures that correlated 

strongly with knockdowns of KRAS (Figure 3.4a), and HRAS (Figure 3.4b). Of note, differential expression 

of genes functionally related to K/HRAS, i.e. FGFR4, FGFR2, FRS1, inform on novel regulatory phenotypes 

responding to both compound inhibition and gene knock out. We docked predicted compounds to our 

representative structures of KRAS (PDB ID: 4DSO [96]) and HRAS (PDB ID: 4G0N [99]) (Figure 3.4c,d). RF 

ranking and docking score distributions were compared to select compounds from our enriched datasets 

that were both commercially available and moderately priced. Docking models of promising candidates 

were also examined visually such that to reject models with unmatched hydrogen bonds [100] and select 

those that showed suitable mechanisms of action (see, e.g., Figure 3.4c,d). We purchased six potential 

HRAS inhibitors and five potential KRAS inhibitors for experimental validation (Table 3.5). 

 

Our SPR assay measured direct binding of predicted inhibitors to AviTagged HRAS and KRAS. Initial 100 

µM screens showed binding response for compounds RS-3906 against HRAS and phloretin against KRAS, 

and subsequent titrations confirmed binding at µM concentrations (Figure 3.4e,f), comparable to the DCAI 

positive control [96]. 

 
3.2.7 Target-centric prediction of novel CHIP inhibitors.  
 

Next, we targeted STUB1, also known as CHIP (the carboxy-terminus of Hsc70 interacting protein), an E3 

ubiquitin ligase that manages the turnover of over 60 cellular substrates [101], which to our knowledge 

lacks specific inhibitors. CHIP interacts with the Hsp70 and Hsp90 molecular chaperones via its TPR motif, 

which recruits protein substrates and catalyzes their ubiquitination. Thus, treatment with small molecules 

that inhibit CHIP may prove valuable for pathologies where substrates are prematurely destroyed by the 

ubiquitin-proteasome system [102].  
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The screening of the 1680 LINCS small molecules profiled in at least four cell lines predicted 104 

compounds with CHIP among the top 100 targets. We docked these molecules to our representative 

structure of the TPR domain of CHIP (PDB ID: 2C2L [103]), for which we had an available fluorescence 

polarization (FP) assay. The RF ranking and docking score distributions were compared to select 

compounds highly enriched in one or both scoring metrics. We next visually examined the docking models 

of top ranking/scoring hits to select those that show suitable mechanisms of action, and purchased six 

compounds for testing (Table 3.6). In parallel, we performed a pharmacophore-based virtual screen of the 

ZINC database [104] using the ZincPharmer [93] server, followed by the same structural optimization [90-

93] performed on the LINCS compounds. We purchased seven of the resulting ZINC compounds for 

parallel testing. 

 

Our FP assay measured competition with a natural peptide substrate for the CHIP TPR domain. We found 

that four (out of six) of our LINCS compounds reliably reduced substrate binding (Figure 3.5a,b), while 

three (out of seven) ZINC compounds did so to a modest degree (Figure 3.9). The two strongest binders 

were LINCS compounds 2.1 and 2.2. A functional assay also verified that 2.1 and 2.2 prevented substrate 

ubiquitination and CHIP autoubiquitination (Figure 3.5c,d, Figure 3.10). Compounds 2.1 and 2.2 also 

prevented ubiquitination of an alternate substrate that was tested subsequently (Figure 3.11). 

Importantly, the predicted binding modes of these two compounds did not match the pharmacophore 

model of the TPR-HSP90 interaction [103], which was used to screen the ZINC database (Figure 3.12). The 

latter emphasizes the power of our approach to identify novel compounds and mechanisms of action to 

targets without known inhibitors. 
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Figure 3.5. Predicted inhibitors show direct binding to and functional inhibition of CHIP. (a,b) Predicted 

CHIP inhibitors disrupt binding to chaperone peptide by fluorescence polarization. High ranked (a) and 

low ranked (b) compounds were tested for the ability to compete with a known TPR ligand (5-FAM-

GSGPTIEEVD, 0.1 µM) for binding to CHIP (0.5 µM). Results are the average and standard error of the 

mean of two experiments each performed in triplicate. (c,d) CHIP inhibitors prevent ubiquitination by 

CHIP in vitro. (c) Quantification of substrate ubiquitination by CHIP from Anti-GST western blot 

experiments with tested compounds at 500µM, blotted as in Figure 3.10a and normalized to DMSO 

treated control (2.1, 2.2: N=4; all other compounds: N=2). (d) Quantification of total ubiquitination by 

CHIP from Anti-GST western blot experiments with tested compounds at 500µM, blotted as in Figure 

3.10b and normalized to ubiquitination by a DMSO treated control (all compounds: N=2). 
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Figure 3.6. mRNA expression signature of CHIP inhibitor 2.1 correlates with knockdown of CHIP 

interacting partners. The figure illustrates the correlation between the mRNA expression profile 

signatures produced by treating cells with 2.1 and by knocking down CHIP interaction partners UbcH5 and 

HSP90. These three perturbations have similar network effects (left), as illustrated by their resulting 

differential expression signatures (right). For clarity, expression signatures show only the subset of LINCS 

landmark genes that are functionally related to CHIP according to BioGRID [86]. 

 

Contrary to the RAS compounds that were identified based on direct correlations between compound 

treatments and RAS knockdowns (Figure 3.4a,b), CHIP hits show almost no direct correlation (𝜌g.h =

0.15, 	𝜌g.g = 0.02), but were predicted based on indirect correlations with CHIP interaction partners. 

Figure 3.6 shows the correlating differential gene expression profiles for compound 2.1 and knockdowns 

of the CHIP interaction partners UbcH5 and HSP90, which, along with CHIP, were also predicted as 

potential targets by the RF classifier. However, structural screening ruled out these two partners as 

potential targets because of a lack of favorable binding modes. 
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3.2.8 Compound-centric prediction of a novel target for the drug Wortmannin.  
 

We demonstrated a compound-centric application of our pipeline by analyzing Wortmannin, a selective 

PI3K covalent inhibitor and commonly used cell biological tool. DrugBank [105] lists four known human 

targets of Wortmannin: PIK3CG, PLK1, PIK3R1, and PIK3CA. Of the 100 targets predicted for Wortmannin, 

the PDB contained structures for 75, which we used to re-rank these potential targets. Only one known 

kinase target of Wortmannin, PIK3CA, was detected, and ranked 5th. Our pipeline also ranked 2nd the 

human kinase PDPK1 (PDK1). Although PDK1 is a downstream signaling partner of PI3Ks [106], there is no 

prior evidence of a direct Wortmannin-PDK1 interaction in the literature. Nevertheless, both the strong 

direct correlation of wortmannin with the PDK1 knockdown (Figure 3.7a), and the native-like binding 

mode predicted by our pipeline (Figure 3.7b) suggested a possible interaction. 

 

We experimentally tested this interaction using an alphascreen PDK1 interaction-displacement assay. 

Since we predicted that Wortmannin binds to the PH domain of PDK1 (Figure 3.7b), we measured the 

effect of increasing Wortmannin concentrations on the interaction of PDK1 with the second messenger 

PIP3. We found that Wortmannin specifically increased PDK1-PIP3 interaction, relative to control (Figure 

3.7c). Given that PIP3-mediated recruitment of PDK1 to the membrane is thought to play an important 

regulatory role in the activity of the enzyme [107, 108], a disruptive increase in PDK1-PIP3 interaction 

following treatment with Wortmannin supports our prediction. 
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Figure 3.7. Wortmannin promotes PDK1 – PIP3 binding in vitro. (a) Wortmannin treatment and PDK1 

knockdown experiments produce directly correlating differential gene expression profiles. Several 

functionally related genes listed in BioGrid [86] are indicated to demonstrate the relevance of these 

profiles as suggestive of direct drug-target interactions. (b) Model of wortmannin bound to the PH domain 

of PDK1, compared to known ligand 4PT (PDB ID: 1W1G [109]). (c) Alphascreen PDK1-PIP3 interaction-

displacement assay results for increasing concentrations of wortmannin. Error bars represent the 

standard error on the mean from two parallel runs. (d) Effect of wortmannin on the in-vitro 

phosphorylation of the substrate T308tide by the isolated catalytic domain of PDK1. The two lines are 

from two replicates of the activity assay, with error bars representing the standard error on the mean 

from two parallel runs for each replicate. 
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3.2.9 Comparison to existing target prediction methods.  
 

For completeness, we compared results for our 63 hits from the validation set to those produced by 

available structure and ligand-based methods. HTDocking (HTD) [110] is a structure-based target 

prediction method that docks and scores the input compound against a manually curated set of 607 

human protein structures. For comparison, in our analysis we were able to extract high-quality domain 

structures for 1245 (40%) of the 3104 potential gene targets. PharmMapper (PHM) [111] is a ligand-based 

approach that screens the input compound against pharmacophore models generated from publicly 

available bound drug-target cocrystal structures of 459 human proteins, and then ranks potential targets 

by the degree to which the input compound matches the binding mode of the cocrystalized ligands. The 

scope of HTD is limited by the availability of the target structure, while PHM is limited by chemical and 

structural similarity of active ligands.  

 

HTD and PHM rankings for known targets are shown in Table 3.3, and complete results are shown in 

Additional File 3.3. Our combined genomics-structure method outperforms the structure-based HTD 

server (average ranking of the known target is 13 for our method vs. 50 for the HTD server). This suggests 

that limiting the structural screening to our genomic hits allowed us to predict targets with higher accuracy 

than docking alone. Results when using the PHM server are on average similar to ours. However, PHM 

relies on the availability of ligand-bound crystal structures, which in practice makes this class of methods 

more suitable for drug repurposing than assessing new chemistries or targets. 
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Table 3.3. Comparison of our pipeline to existing drug-target prediction methods. The average ranking 

of the highest ranked known target is listed for all 63 validation ‘hits’, for the subset of 53 validation hits 

with known target structures, and for our seven predicted interactions. ‘Structures available’ indicates the 

average number of top-100 potential targets with available crystal structures for the compound set. 

Rankings are compared between the initial random-forest genomic ranking, the structural re-ranking of 

the top 100 RF predicted targets, the HTDocking server (HTD), and the PharmMapper server (PHM). 

  
Structures 

available 
Genomic 

Rank  
Structural 

Re-rank  
HTD PHM 

All hits  
(n=63) 

69   22 24 56 23 

Hits w/ known target structures 
(n=53) 

71   23 13 50 12 

New predictions 
(n=7) 

73 28 31 n/a n/a 

 

 
With regards to new validated interactions, alternative approaches failed to predict the interactions with 

HRAS, KRAS, and CHIP that were verified by our assays. However, a Wortmannin-PDK1 interaction was 

predicted at the catalytic site by HTD, ranked 540th, and by PHM, ranked 56th. Although we cannot rule 

out a possible kinase domain interaction, a catalytic activity assay showed that Wortmannin had no 

measurable effect on the in vitro phosphorylation of the substrate T308tide by the isolated catalytic 

domain of PDK1 (Figure 3.7d). 

 
 
 

3.3 DISCUSSION 
 

Delineating the role of small molecules in perturbing cellular interaction networks in normal and disease 

states is an important step towards identifying new therapeutic targets and chemistries for drug 

development. To advance on this goal, we developed a novel target prediction method based on the 
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hypothesis that drugs that inhibit a given protein should have similar network-level effects to silencing 

the inhibited gene and/or its up/downstream partners. Using gene expression profiles from knockdown 

and drug treatment experiments in multiple cell types from the LINCS L1000 dataset, we developed 

several correlation-based features and combined them in a random forest (RF) model to predict drug-

target interactions.  

 

On a validation set of 152 FDA-approved drugs we achieve top-100 target prediction accuracy more than 

double that of previous approaches that use differential expression alone [80, 81]. Consistent with our 

underlying hypothesis, the RF results highlight the importance of both direct expression signature 

correlations between drug treatment and knockdown of the gene target (Figure 3.1c, Figure 3.4a,b, Figure 

3.7a) and indirect correlations between the drug and the target’s interacting partners (Figure 3.1e, Figure 

3.6). Contrary to earlier work [79-81], our method is capable of predicting potential targets for any 

compound, even those unrelated to known drugs, and our predictions are open source and available for 

immediate download and testing (http://sb.cs.cmu.edu/Target2/). These include potential targets for 

1680 LINCS small molecules from among 3000+ different human proteins. 

 

Unlike most available ligand-based prediction methods [64-69], the accuracy of our approach does not 

rely on chemical similarity between compounds in the training/test sets. For instance, our screen against 

CHIP, a target with no known small molecule inhibitors, delivered four out of six binding compounds, 

whereas a parallel analysis using a state-of-the-art structure-based virtual screening [90, 112] yielded only 

two weak-binding compounds. Moreover, the predicted mechanisms of actions of the more potent LINCS 

compounds suggest novel interactions that were not prioritized by the ligand-based screen (Figure 3.12).  

 

In contrast to other machine learning methods, our approach reveals important, human-interpretable 
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insights into perturbation-response properties of cellular networks. Direct and indirect gene expression 

profile correlations inform on global regulatory responses triggered by small molecule cell treatments 

(see, e.g., Figures 3.4, 3.6, 3.7). Namely, our genomic screening not only identifies compounds targeting a 

given protein, but also highlight related genes that are affected by the chemical modulation of the target. 

This knowledge is bound to play an important role in the design of polypharmacological therapies. 

 

The experimental validation of our predictions for HRAS, KRAS, CHIP and Wortmannin demonstrate the 

power of our combined genomic and structural pipeline in identifying novel targets and chemotypes. Our 

prospectively identified modulators are the first of their kind – in that they represent the results of a 

virtual target-screening process, rather than traditional high-throughput small molecule screening 

approaches. 

 

Detailed analyses of our predictions suggest several avenues to improve enrichment. We established a 

clear correlation between the number of cell-types screened and the target prediction accuracy. We 

identified that a significant source of false positives are indirect correlations that while important to detect 

the true target, also tend to predict interacting partners as potential targets. Incorporating compound- or 

target-specific features are also likely to improve our results. For instance, we noticed that our prediction 

results were less accurate for membrane proteins, and incorporating a cellular localization feature into 

our RF model increased the number of top-100 hits in our validation set from 63 to 66. 

 

In sum, our method represents a novel application of gene expression data for small molecule–protein 

interaction prediction, with structural analysis further enriching hits to an unprecedented level in our 

proteome-scale screens. The success of our proof-of-concept experiments opens the door for a 

compound-centric drug discovery pipeline that can leverage the relatively small fraction of potentially 
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bioactive compounds that could be of interest for further investigation to become drugs [113]. Compared 

to alternative approaches, our method would be particularly suitable for scanning for targets of newly 

synthesized scaffolds. We are hopeful that our open source method and predictions might be useful to 

other labs around the world for identifying new drugs for key proteins involved in various diseases and 

for better understanding the impact of drug modulation of gene expression. Moreover, our approach 

represents a new framework for extracting robust correlations from intrinsically noisy gene expression 

data that reflect the underlying connectivity of the cellular interactome. 

 

 
3.4 METHODS 

 

3.4.1 Data sources 
 

LINCS: LINCS is an NIH program that generates and curates gene expression profiles across multiple cell 

lines and perturbation types at a massive scale. To date, LINCS has generated millions of gene expression 

profiles (over 150 gigabytes of data) containing small-molecules and genetic gain- (cDNA) and loss-of-

function (sh-RNA) constructs across multiple cell types. Specifically, the LINCS dataset contains 

experiments profiling the effects of 20,143 small-molecule compounds (including known drugs) and 

22,119 genetic constructs for over-expressing or knocking-down genes performed in 18 different cell 

types selected from diverse lineages which span established cancer cell lines, immortalized (but not 

transformed) primary cells, and both cycling and quiescent cells. 

 

The gene expression profiles were measured using a bead-based assay termed the L1000 assay1. To 

increase throughput and save costs, this assay only profiles a set of 978 so-called “landmark genes” and 

                                                        
1 http://support.lincscloud.org/hc/en-us/sections/200437157-L1000-Assay 
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the expression values of other genes can be computationally imputed from this set. Note however, that 

in our analysis we do not rely on such imputation and our methods only need to use the values for the 

measured genes. In our analysis we used level-4 signature values (containing z-scores for each gene in 

each experiment based on repeats relative to population control). Data processing of LINCS was done 

using the l1ktool.2 

 

ChEMBL: To obtain a list of known targets for the drugs in our validation set we used ChEMBL, an open 

large-scale bioactivity database [114]. We retrieved the records of all FDA-approved drugs using the 

ChEMBL web service API3. These records contain the designed targets for the drugs along with their 

synonyms (alternate names) and unique chemical IDs. We used this information to cross-reference these 

drugs with those in LINCS. 

 

Protein-protein interaction and gene ontology: We obtained PPI information for our feature sets from 

BioGRID [86] and HPRD [115], both of which contain curated sets of physical and genetic interactions. We 

retrieved all the records corresponding to protein-protein interactions (PPI) from these data sources and 

converted them to an adjacency list representation. We obtained the cellular localization of proteins from 

the Gene Ontology database [116]. We relied on prior analysis [117] to assign the location of for each 

protein as either “intracellular” (inside of cell) or “extracellular” (outside of cell).  

 
3.4.2 Extracting experiments from LINCS 
 

After determining the subsets of small molecules and cell lines, we obtained the associated experiment 

identifiers known as “distil IDs” from LINCS meta- information. We included only the reproducible distil 

                                                        
2 http://code.lincscloud.org/ 
3 https://www.ebi.ac.uk/chembl/ 
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IDs known as “Gold” IDs. We then extracted the corresponding signature values from LINCS using the 

L1000 Analysis Tools (l1ktools)4. We only extracted the signature values of the 978 “landmark" genes 

because their expression was directly measured, whereas the values of other genes were imputed from 

the data of these landmark genes. 

 

Drug response experiments  

There exist multiple experiments (distil IDs) corresponding to a combination of drug d and cell line c 

(applying drug d to cell line c). Denote the Ndc as the number of experiments for the combination d,c. We 

extracted a matrix of signature values of size 978 × Ndc (number of landmark genes × number of 

experiments) per combination. We next took the median of signature values across different experiments, 

and obtained a 987 × 1 signature vector per combination. The overall drug-response data Δ, therefore, is 

implemented as a MATLAB structure with D = 152 entries, each containing the following fields. 

 
 name:  𝑃𝑒𝑟𝑡𝐼𝐷p  (string) 
 cells:  𝐶𝑒𝑙𝑙𝑠)r (|𝐶p| × 1 string array) 

 signature:  ∆p∙∙ (978 × |𝐶p|) 
 

where 𝑃𝑒𝑟𝑡𝐼𝐷p is the unique internal identifier of a small molecule d in LINCS. ∆p∙∙ contains the expression 

values of drug d across Cd different cell lines. The 𝐶𝑒𝑙𝑙𝑠)r field contains cell line names corresponding to 

the column of ∆p∙∙. 

 

Gene knockdown experiments  

We follow a similar protocol to extract the signature values of gene knockdown experiments. Denote Ngc 

as the number of experiments for the combination of gene g and cell line c (knocking down gene g in cell 

line c). Then, for each combination of g and c we extracted signature values of size 978 × Ngc. After taking 

                                                        
4 https://github.com/cmap/l1ktools 
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the medians across different experiments, we obtain a 978 × 1 vector per combination. The overall gene 

knockdown data Γ has C = 7 entries and each entry contains the following fields: 

 
 name:  𝐶𝑒𝑙𝑙𝑠u (string) 
 genes:  𝑆𝑦𝑚𝑏𝑜𝑙𝑠J{  (|𝐺u| × 1 string array) 
 signature:   Γu∙∙ (978 × |𝐺u|) 
 

where 𝐶𝑒𝑙𝑙𝑠u is the name of the cell line indexed by c.  Γu∙∙ contains the signature values of the knockdown 

of genes in cell line c. The 𝑆𝑦𝑚𝑏𝑜𝑙𝑠J{ field is a subset of gene symbols corresponding to the column 

identifiers of Γu∙∙ under the HGNC naming scheme. 

 

Control experiments 

We also extracted the signatures of control experiments. The signature values for each cell line were 

extracted and we obtained a 978 × 1 vector after taking the medians. We denote the overall control 

experiment data as Ψ. Ψ is of size 978 ×	C and implemented with the following format: 

 
 name:  𝐶𝑒𝑙𝑙𝑠u (string) 
 control: Ψ∙u  (978 × 1) 
 

where Ψ∙u  is the signature column vector for a cell line c. 

 
3.4.3 Building a validation dataset from LINCS 
 

We used ChEMBL to retrieve the reported targets and other meta-information of all FDA-approved drugs, 

and then cross referenced these drugs with the small molecules profiled in LINCS using their primary 

product names, synonyms, canonical SMILES strings and standard InChIKey. Based on this analysis we 

identified 1031 out of approximately 1300 FDA-approved drugs reported in LINCS. However, most of these 

drugs were profiled in only one or very few cell lines, which meant that relatively little response data was 

available for them. We thus further reduced this set to 152 drugs profiled in at least 4 cell lines (Table 3.2) 
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and used these drugs and their known targets as the positive training set. Table 3.9 lists the number of 

drugs and knockdown experiments available for the seven most abundant cell lines in terms of known 

targets profiled that we used in our analysis. 

 
3.4.4 Extracting and integrating features from different data sources 
 

The notation and symbols that we use in constructing and using the genomic features are described in 

Table 3.7 and Table 3.8. Feature construction is summarized below. 

 

Direct correlation: The first feature 𝑓u'� ,computes the correlation between the expression profiles 

resulting from a gene knockdown and treatment with the small molecule. The correlation feature, 

denoted as fcor, is constructed as follows: 

 

- For each drug d in Δ (∆p∙∙): 
 

- Denote Td as the intersection of gene symbol indices for cells in Cd: 
  

𝑇p = � 𝐺u
u�)r

 

 
- Obtain the knockdown signature values of Td  from Γ. Denote this data matrix as Γ)r∙�r , which is of 

size |𝐶p| × 978 × |𝑇p|, where for each cell line in Cd  there is a signature matrix of size 978 × |𝑇p|. 

 
- Compute the Pearson's correlation between ∆p∙∙ (978 × |𝐶p|) and Γ)r∙�r  (|𝐶p| × 978 × |𝑇p|). 

Specifically, for each cell line 𝑐 ∈ 𝐶p, we compute the correlation between ∆p∙u  and Γu∙�r , and obtain 

a correlation vector of size |𝑇p|. This is the correlation between the responses of the cells to the drug 

treatment and their response to the gene knockdown. Each entry in this vector is the correlation of 

978 landmark genes of the drug d in one cell line (∆p∙u) and a knockdown of gene g in the same cell 
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line (Γu∙�). In other words, if we collect these correlation vectors for all cell lines in Cd and denote the 

overall correlation feature as fcor: 

 
𝑓u'�(𝑑, 𝑔, 𝑐) = 𝑐𝑜𝑟𝑟(∆p∙u, Γu∙�)     ∀𝑔 ∈ 𝑇p 

 
 
The correlation feature for one drug d, 𝑓u'�(𝑑,∙,∙), has a dimension of |𝑇p| × |𝐶p|. 
 
 

Indirect correlation: Information about protein interaction networks may be informative about additional 

knockdown experiments that we might expect to be correlated with the small molecule treatment profile. 

To construct a feature that can utilize this idea we did the following: for each molecule, protein, and cell 

line we computed 𝑓�)(𝑑, 𝑔, 𝑐), which encodes the fraction of the known binding partners of g (i.e. the 

proteins interacting with g) in the top X knockdown experiments correlated with this molecule/cell 

compared to what is expected based on the degree of that protein (the number of interaction partners - 

this corrects for hub proteins). We used X = 100 here, though 50 and 200 gave similar results. 

 

The indirect correlation score is constructed as follows: 

 

- For each drug d in Δ (∆p∙∙): 
 

- Obtain Td, as defined above. 
 
- For each cell line c in Cd: 
 

- Sort Td in descending order using the correlation values 𝑓u'�(𝑑,∙, 𝑐) 
 
- Denote the sorted gene symbol indices for cell line c as 𝜎u(𝑇p) 
 
- For each knockdown gene g in Td: 
 

- Obtain the set of neighbor gene symbol indices from the PPI adjacency list, denote it as Ng. 
 
- Compute fPC as: 
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𝑓�)(𝑑, 𝑔, 𝑐) =
�𝑁� ∩ 𝜎u(𝑇p)h:h���
�𝑁� ∩ 𝜎u(𝑇p)� + 50

 

 

𝑓�)(𝑑, 𝑔, 𝑐) has the same dimension as 𝑓u'�  (|𝑇p| × |𝐶p|). It reflects the fraction of gene g's binding 

partners that are more correlated with drug d in the context of cell line c. We use 50 as the pseudo-count 

to penalize hub proteins, which have substantially more neighbors than others. 

 

Cell selection: While the correlation feature is computed for all cells, it is likely that most drugs are only 

active in certain cell types and not others. Since the ability to consider the cellular context is one of the 

major advantages of our method we added a feature to denote the impact a drug has on a cell line. For 

each drug/molecule d we compute a cell specific feature, 𝑓)�(𝑑,∙), which measures the correlation 

between the response expression profile and the control (WT) experiments for that cell. We expect a 

smaller correlation if the drug/molecule is active in this cell, and a larger correlation if it is not. The cell 

selection feature is calculated 

 

Differential expression: In addition to determining the correlation-based rankings of interacting proteins, 

we also took their drug-induced differential expression into account. We constructed two features that 

summarize this information for each protein. These features either encode the average or the max 

(absolute value) expression level of the interaction partners of the potential target protein. 

 

We compute two types of PPI expression scores, denoted as 𝑓�(�Y�  and 𝑓�(Y�� , as follows: 

 

- For each drug d in Δ (∆p∙∙): 
 

- For each knockdown gene g in Td: 
 

- Obtain Ng, as above (the list of neighbors, or interaction partners, of g) 
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- For each cell line c in Cd: 
 

- Find the set of signature values for the neighbors of g, ∆p,e�,u  (size �𝑁�� × 1) 
 
- Compute the two PPI expression scores as: 
 

𝑓�(�Y�
(𝑑, 𝑔, 𝑐) = max	(∆p,e�,u) 

 
𝑓�(Y��(𝑑, 𝑔, 𝑐) = avg	(∆p,e�,u) 

 
 

Feature data structure 

We combined the features for all drugs in a MATLAB structure Ω. Ω has D entries, and each entry Ω(d) has 

the following fields: 

 

 name:  𝑃𝑒𝑟𝑡𝐼𝐷p  (string) 
 targets: 𝑃p (protein targets for d) 

 cells:  𝐶𝑒𝑙𝑙𝑠)r (|𝐶p| × 1 string array) 
 genes: 𝑇p  (common genes across Gc) 
 correlation: 𝑓u'�(𝑑,∙,∙) (|𝑇p| × |𝐶p|) 
 PPI correlation: 𝑓�)(𝑑,∙,∙) (|𝑇p| × |𝐶p|) 
 max PPI expression: 𝑓�(�Y�(𝑑,∙,∙) (|𝑇p| × |𝐶p|) 
 avg  PPI expression: 𝑓�(Y��(𝑑,∙,∙) (|𝑇p| × |𝐶p|) 
 cell selection: 𝑓)�(𝑑,∙) (|𝐶p| × 1) 
 

There are a total of D = 152 drugs in Ω, and the number of drugs with different values of |𝐶p| are 

summarized in Table 3.2. 

 
3.4.5  Subcellular localization assignment 
 

We obtained the cellular localization of genes from the Gene Ontology Consortium. The GO database 

provides web services to query genes in terms of their associated biological processes, cellular 
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components and molecular functions in a species-independent manner5. We further assign the locations 

as either “intracellular” (inside of cell) or “extracellular” (outside of cell). The detailed assignments are 

shown in Table 3.4. 

 
3.4.6  Classification procedure 
 

Criterion of successful classification 

Due to the intrinsic noise from the data, we define a successful classification for a drug if any of its correct 

targets is enriched into the top K ranked genes, where K can be either 50 or 100. 

 

Analysis of feature importance 

The evaluation of single features was performed using the drugs that have been applied on all seven cell 

lines. There are 29 of these drugs from Ω. We sort (descendingly) the common genes Td for a drug d and 

cell line c using an individual feature 𝑓(𝑑,∙, 𝑐), where 𝑓 is either 𝑓u'�  or 𝑓�) . Denote 𝜎p(𝑔, 𝑐) as the ranking 

of a gene 𝑔 ∈ 𝑇p in the context of cell line c. Then, we define the overall ranking of a gene, 𝜎p(𝑔), to be 

the best ranking across all seven cell lines: 𝜎p(𝑔) = min	(𝜎p(𝑔, 𝑐)) for 𝑐 ∈ 𝐶p . 

  

Constructing training dataset 

Next, we wish to learn and evaluate classifiers that predict drug targets using all features from the feature 

dataset Ω. We first construct a training data set (design matrix X and its associated labels y) from the 

feature dataset Ω. 

 

For each drug d in Ω, we select the rows corresponding to the targets in Pd from the other feature matrices 

and concatenate them into a row vector. The same cell selection vector is appended to every row of 

                                                        
5 http://geneontology.org/page/go-enrichment-analysis 
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targets. These rows are assigned with a positive label 1. We then randomly sampled 100 non-target genes 

(denoted as 𝜈p) and construct the row vectors the same way as the target genes, and these rows are 

assigned with a negative label 0. In other words, the training matrix and label vector constructed from a 

drug d are of the following format: 

 

𝑋p =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑓u'�(𝑑, 𝑃ph,∙) 𝑓�)(𝑑, 𝑃ph,∙) 𝑓�(�Y�(𝑑, 𝑃ph,∙) 𝑓�(Y��(𝑑, 𝑃ph,∙) 𝑓)�(𝑑,∙)

𝑓u'�(𝑑, 𝑃pg,∙) 𝑓�)(𝑑, 𝑃pg,∙) 𝑓�(�Y�(𝑑, 𝑃pg,∙) 𝑓�(Y��(𝑑, 𝑃pg,∙) 𝑓)�(𝑑,∙)

⋮ ⋮ ⋮ ⋮ ⋮

𝑓u'�(𝑑, 𝑃pL,∙) 𝑓�)(𝑑, 𝑃pL,∙) 𝑓�(�Y�(𝑑, 𝑃pL,∙) 𝑓�(Y��(𝑑, 𝑃pL,∙) 𝑓)�(𝑑,∙)

𝑓u'�(𝑑, 𝜈ph,∙) 𝑓�)(𝑑, 𝜈ph,∙) 𝑓�(�Y�(𝑑, 𝜈ph,∙) 𝑓�(Y��(𝑑, 𝜈ph,∙) 𝑓)�(𝑑,∙)

𝑓u'�(𝑑, 𝜈pg,∙) 𝑓�)(𝑑, 𝜈pg,∙) 𝑓�(�Y�(𝑑, 𝜈pg,∙) 𝑓�(Y��(𝑑, 𝜈pg,∙) 𝑓)�(𝑑,∙)

⋮ ⋮ ⋮ ⋮ ⋮

𝑓u'�(𝑑, 𝜈ph��,∙) 𝑓�)(𝑑, 𝜈ph��,∙) 𝑓�(�Y�(𝑑, 𝜈ph��,∙) 𝑓�(Y��(𝑑, 𝜈ph��,∙) 𝑓)�(𝑑,∙)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

; 𝑦p =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1

1

⋮

1

0

0

⋮

0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

where 𝑚 = |𝑃p|, the total number of targets for drug d. Therefore, the training matrix Xd for drug d is of 

size (𝑚 + 100) × 	5|𝐶p|, and label vector 𝑦p has length (𝑚 + 100). 

 
3.4.7 Extending random forests to drugs with missing features 
 

Since our goal here is to predict targets for as many small molecules as possible, we did not want to restrict 

our analysis to molecules that were only profiled in a large number of cell lines. As noted above, requiring 

at least seven cell lines reduces the number of known drugs that can be evaluated from 152 to 29 and 

leads to a similar reduction in the number of novel small molecules that can be evaluated. Thus, it is highly 

desirable that our classifiers can handle missing data (i.e., cells for which experiments were not 

performed). To this end, we developed two distinct methods to deal with different compound-specific cell 

line combinations and extended the random forest [82, 83] model so that can handle molecules profiled 

in less than seven (but more than four) cell types.  
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In the first method we simply build the random forest “on-the-fly”. For a given drug i, we iterate through 

all other drugs in Ω and test if a drug d was profiled in at least all cells which drug i was profiled in. In other 

words, we test if 𝐶§ ⊆ 𝐶p  and if so we extract the features of corresponding cell lines in Ci from Ω(p) and 

include them in the training data. After we include data for all compatible drugs we can use the training 

data to train and apply a random forest for the given drug i. We note that for any drug in Ω, there are at 

least 28 compatible drugs because 29 drugs have been applied to all seven cell lines. However, the main 

disadvantage of this method is that we need to train separate random forest for every test drug. 

 

In the second method we perform a “two-level” random forest construction process. Here, in addition to 

the standard step of selecting a (random) subset of the features for each of the trees in the forest we 

included a step that selected a (random) subset of cells for each of the trees. Specifically, in the first step, 

we randomly sample four cell lines from the seven total cell lines (denoted as Ci). In the second step, we 

find all drugs 𝑑 ∈ Ω such that 𝐶§ ⊆ 𝐶p , extract their features, and use them to train that tree. We repeat 

this process 3500 times, such that each combination of four cell lines is expected to have roughly 100 

trees (©74« = 35). To apply this two-level random forest to a test drug t with cell line profile Ct, we select 

from the forest those decision trees i for which 𝐶§ ⊆ 𝐶¬  and use them to predict the targets for t. Note 

that unlike the on-the-fly method above, here we only need to train one forest for the entire prediction 

task. 

 
3.4.8 Generating structural models for docking 
 

In order to use molecular docking to enrich of our random forest predictions, we needed to generate 

structural models for the genes profiled in LINCS. The union of our top 100 target predictions for the 1680 

small molecules profiled in LINCS in at least four cell lines consisted of 3333 unique human genes. We 
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used a python script (available on github6) to mine the PDB for structures of these genes via its RESTful 

Web Service interface7 using Uniprot primary gene name as the search criteria. Crystal structures were 

available for 1245 of the 3333 human genes in our analysis. The mean and median numbers of structures 

for these 1245 genes were 11 and 3, respectively. We then analyzed the structures for each gene and 

selected representative structures that would be used for docking. Representative structure selection was 

performed automatically using a procedure (explained below) that attempts to optimize sequence 

coverage, structural resolution, and structural diversity. 

 

To select representative structures, we first divided each gene’s structures into “high” and “low” 

resolution categories using a 2.0 Å threshold. Small structures with less than 20 amino acids were 

discarded. We then used a greedy algorithm to assess sequence coverage for the remaining structures 

and select (as representative) the fewest and highest resolution structures that would cover the most of 

the protein sequence. Redundant structures, defined as structures that did not contain at least 10 residues 

that were not contained in any of the larger or higher resolution structures, were discarded unless they 

represented a unique conformation of the protein. Protein conformation was evaluated using ProDy [118] 

and was considered “unique” if the redundant structure had an all atom RMSD to each of the other 

representative structures that was above a cutoff threshold that could range between 4.0 Å and 10.0 Å. 

The specific value of the threshold used for each gene was chosen to try to minimize the number of 

redundant structures that would be docked against, and higher cutoffs were used for genes that had many 

redundant structures representing different conformations. After selection, the mean and median 

numbers of representative structures per gene were 2 and 1, respectively. Each representative structure 

consisted of exactly one amino acid chain and coordinated ions but without cocrystal ligands or 

                                                        
6 https://github.com/npabon/generate_gene_models 
7 https://www.rcsb.org/pdb/software/rest.do 
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crystallographic waters. We note that this automated procedure is not necessarily tailored to produce 

representative structures for functional oligomers, since only one chain is considered at a time.  

 
3.4.9 Docking procedure 
 

Compounds were docked to representative structures of their predicted targets with smina [91], using 

default exhaustiveness and a 6 Å buffer to define the box around each potential binding site. Docked 

poses across predicted binding sites [119] on a given target were compared and the highest scoring pose 

of each compound was selected for further analyses [90-93] and comparison to other targets/compounds.   

 
3.4.10 Comparison to previous expression perturbation target prediction methods 
 

Unlike our method which uses both drug-induced and knockdown-induced mRNA expression 

perturbations, previous target prediction methods analyzed only the drug data within the context of 

protein interaction networks [80, 81]. As their primary measurement of prediction accuracy, these works 

generally report the aggregate Area Under the Curve (AUC) of their gene rankings across all validation 

compounds. The studies mentioned above achieve AUC values of 0.9 and higher in ranking between 

11,000 and 18,000 potential gene targets for each compound. To compare these results against our 

method, we examined the reported AUC curves and calculated the percentage of compounds for which 

the correct target was ranked within the top 100 potential targets. Both studies achieved top-100 accuracy 

of 20-21%. 

 
3.4.11 Experimental Assays involving HRAS and KRAS 
 

Surface Plasmon Resonance Spectroscopy: SPR binding experiments were performed on a Biacore S200 

instrument (GE, Piscatawy, NJ).  Neutravidin (Pierce) was coupled to the carboxymethylated dextran 

surface of a CM5 sensor chip (GE, Piscatawy, NJ) using standard amine coupling chemistry to capture 
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approximately 10,000 RU.  Avi-tagged HRAS and KRAS GDP were captured on flows 2, 3 4 with densities 

of 2450, 2550 and 2960 RU respectively. A titration series of compounds 6, 7, and 12 diluted from 200 – 

0.78 µM (seven 2-fold serial dilutions) and compound 15 diluted from 100 – 1.56 µM (six 2-fold serial 

dilutions) were prepared in 20mM Hepes, 150mM NaCl, 5mM MgCl2, 1mM TCEP, 0.01% Tween 20, 5% 

DMSO, 5µM GDP, pH 7.4. A positive control for KRAS-GDP of 250 µM DCAI was included. All compounds 

were injected over all flow cells at 30 µl/min. The data was processed by subtracting binding responses 

on the reference flow cells, buffer injections and in addition samples were also corrected for DMSO 

mismatches using a DMSO standard curve. 

 

Protein production: Avi-HRAS(1-189) and Avi-KRAS4b(2-188) were expressed in E. coli as His6-MBP-tev-

Avi-HRAS(1-189) and His6-MBP-tev- Avi-KRAS4b(2-188), respectively, and purified essentially as 

previously described [120] for a His6-MBP-tev-fusion protein. 

 
3.4.12 Experimental assays involving CHIP 
 

Materials: Rabbit anti-GST polyclonal antibody conjugated to HRP was purchased from Abcam (ab3416), 

mouse anti-ubiquitin monoclonal antibody was purchased from Santa Cruz Biotechnology (sc-8017), and 

horse anti-mouse polyclonal antibody conjugated to HRP was purchased from Cell Signaling Technology 

(7076S). E2 enzyme UbcH5b and recombinant human ubiquitin were obtained from Boston Biochem (E2-

662 and U-100H, respectively). 

 

Protein purifications: His-Ube1, His-CHIP, GST-Hsc70395-646, and GST-AT-3 JD were expressed in and 

purified from E. coli BL21(DE3) competent cells (New England Biolabs). Ube1/PET21d was a gift from Dr. 

Cynthia Wolberger (Addgene plasmid #34965) [121], pET151/D-TOPO CHIP and pGST‖2 Hsc70395-646 were 

gifts from Dr. Saurav Misra [122, 123], and pGEX6p1 AT-3 JD was a gift from Dr. Matthew Scaglione [124, 
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125]. Transformed cultures were incubated in Luria broth with 100 µg/mL ampicillin at 37°C and shaken 

at 225 rpm until an OD600 of 0.3 was attained.  Protein expression was then induced with 500µM isopropyl 

β-D-1-thiogalactopyranoside (IPTG) and cultures were incubated for 24 hrs. at 18°C (15°C for cells 

expressing GST-Hsc70395-646 or GST-AT-3 JD) before the cells were harvested at 5000 rpm for 10 min at 4°C 

using an F7S-4x1000y rotor for the Sorvall RC-5B Plus Superspeed centrifuge. Cell pellets were stored at -

80°C.  

 

Cells harboring His-Ube1 or His-CHIP were thawed and lysed by incubation in lysis buffer (10 mM 

imidazole, 50 mM NaPO4 pH 8, 300 mM NaCl, 5 mM 2-mercaptoethanol, 0.25% Triton-100X, 2 mg/mL 

lysozyme) for 30 min on ice followed by sonication. Purification of Ube1 required addition of protease 

inhibitors (1% PMSF, 0.2% leupeptin, 0.1% pepstatin A) during lysis and throughout purification. After 

centrifugation, lysates were applied to Ni-NTA agarose resin (Qiagen), the column was washed with 30 

mM imidazole, and proteins were eluted with 200 mM imidazole. Peak fractions containing His-Ube1 were 

pooled, dialyzed into 20 mM HEPES pH 7.4, 20 mM NaCl, and further purified by anion exchange 

chromatography over DEAE-Sepharose (GE Healthcare). Bound protein was eluted with a 50-300 mM NaCl 

gradient. Purified His-Ube1 and His-CHIP were dialyzed into 50 mM HEPES pH 7, 50 mM NaCl, and His-

CHIP was further concentrated by centrifugal filtration (Millipore). 

 

Cells harboring GST-Hsc70395-646 or GST-AT-3 JD were similarly thawed and lysed by incubation in lysis 

buffer (50 mM Tris pH 7.5, 150 mM NaCl, 5 mM 2-mercaptoethanol, 0.25% Triton-100X, 2 mg/mL 

lysozyme, with protease inhibitors) followed by sonication. After centrifugation, lysates were applied to 

glutathione agarose (Sigma), the column was washed, and proteins were eluted in 6.8 mg/mL reduced 

glutathione. Peak fractions for each substrate were pooled and dialyzed into 50 mM HEPES pH 7, 50 mM 

NaCl. 
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After isolation, the purity of all proteins was verified by SDS-PAGE followed by Coomassie Brilliant Blue 

staining.  Protein concentration was determined by either Bradford (Bio-Rad) or BCA (Thermo Scientific) 

protein concentration assays. Purified proteins were flash frozen in liquid nitrogen and stored at -80°C. 

 

Fluorescence polarization assay: Fluorescence polarization (FP) studies were carried out as previously 

described [126]. Briefly, the FP tracer was composed of a peptide derived from Hsp72/HSPA1A 

(GSGPTIEEVD) that was coupled at the N-terminus to 5-carboxyfluorescein (5-FAM) via an aminohexanoic 

acid spacer. This tracer (KD ~ 0.51 ± 0.03 µM) was used in a competition FP format to estimate binding to 

CHIP. Tracer concentration was 1 µM, and the CHIP concentration was 0.5 µM in a total volume of 20 µL 

in 50 mM HEPES, 10 mM NaCl, 0.01% Triton X-100, pH 7.4. The final DMSO concentration was 

approximately 1%. After mixing the components, each black 384 well plate (Corning) was covered from 

light and incubated at room temperature for 30 min. Polarization values were measured at Excitation 

485 nm and Emission 530 nm using a Molecular Devices Spectramax M5 plate reader (Sunnyvale, CA). 

Data were analyzed using GraphPad Prism 6 software. 

 

CHIP in vitro ubiquitination assay: Reactions were initiated by pre-incubating 125 nM Ube1, 1 µM UbcH5b, 

and 200 µM ubiquitin for 30 min at 37°C in 50 mM HEPES pH 7.0, 50 mM NaCl, 2 mM ATP, and 4 mM 

MgCl2. In a separate reaction tube, 10 µM purified CHIP and up to 500 µM compound dissolved in DMSO 

were combined and incubated for 15 min on ice, followed by the addition of 3 µM of either GST-Hsc70395-

646 or GST-AT-3 JD, which served as substrates for CHIP-dependent ubiquitination. DMSO in these 

reactions was <5%. After pre-incubation, the ubiquitin-charged E1/E2 mixture was dispensed after which 

all reactions proceeded for 15 min at 37°C. Reactions were quenched by addition of SDS sample buffer 

supplemented with 50 mM EDTA, 20 mM DTT. Quenched reactions were resolved by 10% SDS-PAGE, 
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transferred to nitrocellulose membranes and western blotted with either anti-GST HRP-conjugated 

antibody to visualize substrate ubiquitination, or anti-ubiquitin primary antibody, followed by an HRP-

conjugated secondary antibody to visualize the amount of total ubiquitination. Products were visualized 

using a Bio-Rad ChemiDoc XRS+ imaging system and quantified using ImageJ software. 

 
3.4.13 Experimental assays involving PDK1 
 

Materials: Soluble biotin-phosphatidylinositol3,4,5-triphosphate, biotin-PIP3, labeled with biotin at sn1-

position, was from Echelon Biosciences Inc. Bio-GST, used as a control in the alphascreen system, 

corresponds to biotinylated GST, (Perkin-Elmer). The peptide substrate T308tide (KTFCGTPEYLAPEVRR; > 

75% purity) were synthesized using Pepscan. 

 

PDK1 constructs: PDK1 CD (1-359) and PDK1 PH (360-556) were cloned in pEBG2T vector in frame with 

GST, expressed in HEK293 by transient transfection and purified using glutathione-sepharose, as 

described previously for different GST-fusion constructs [127].  

 

Alphascreen interaction assay: The interaction between GST-PDK1 PH (10 nM) and biotin-PIP3 (20 nM) 

was measured using alphascreen technology (Perkin-Elmer), a bead-based proximity assay. The 

displacement of the interaction by Wortmannin was performed as previously described for the catalytic 

domain of PDK1 [128, 129]. Briefly, the assays were performed in a final volume of 25 µL in white 384-

well microtiter plates (Greiner Bio-One), including the interacting partners in a buffer containing 50 mM 

Tris-HCl pH 7.4, 100 mM NaCl, 2 mM DTT, 0.01% (v/v) Tween-20, 0.1% (w/v) BSA, and the corresponding 

concentration of the compound (1% final DMSO concentration). 5 µL of beads (anti-GST conjugated 

acceptor beads and streptavidin-coated donor beads) at a 20 µg/ml (microg/ml) were then added to the 

mixture and after an incubation of 60 minutes, alphascreen counts were measured in an EnVision 



 91 

Multiplate reader. To set-up the assays, cross-titration experiments were performed, where the 

concentration of both interacting partners were varied. The concentration of binding partners in the 

assays were chosen so that both inhibitors and enhancers of the interaction could be identified. Controls 

using Bio-GST were performed to rule out unspecific effects on the biotin-GST alphascreen interaction 

assay system. 

 

PDK1 protein kinase activity assay: The in vitro activity of PDK1 was tested using 100-300 ng purified 

protein, following the transfer of 32P from radiolabelled [g32P]ATP to the polypeptide substrate T308tide 

at room temperature (22 °C) in a mix containing 50 mM Tris pH 7.5, 0.05  mg/ml BSA, 0.1% �-

mercaptoethanol, 10 mM MgCl2, 100 µM [g32P]ATP (5-50 cpm/pmol) and 0.003% Brij, as previously 

performed. [129]  
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3.5 SUPPLEMENTARY FIGURES  
 

 

 

Figure 3.8. Comparing random forest approaches with a random classifier for predicting known targets 

of validation compounds. The red arrow indicates the success rate of on-the-fly random forest and the 

green arrow represents the two-level random forest. 

 

 

 

Figure 3.9. ZINC compounds weakly disrupt CHIP binding to chaperone peptide as measured by 

fluorescence polarization. Results are the average and standard error of the mean of two experiments 

each performed in triplicate. 
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Figure 3.10. CHIP inhibitors prevent ubiquitination by CHIP in vitro. (a) Anti-GST western blot showing 

substrate ubiquitination by CHIP in reactions treated with high ranked (2.1, 2.2) and low ranked (2.5) 

compounds. (b) Anti-ubiquitin western blot showing total ubiquitination by CHIP in reactions treated with 

high ranked (2.1, 2.2) and low ranked (2.5) compounds. 

 

  



 94 

 

 

Figure 3.11. Predicted CHIP inhibitors prevent ubiquitination of an alternate substrate. (A) Anti-GST 

western blot showing AT-3 JD substrate ubiquitination by CHIP in reactions treated with compounds. (B) 

Quantification of all reactions as in A treated with up to 500 µM compound 2.1, 2.2, or 2.6, normalized to 

ubiquitination by a DMSO treated control (all compounds: N=4). 
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Figure 3.12. Comparison of gene expression-based and pharmacophore-based virtual screens against 

CHIP. HSP90 shows structure of the CHIP (grey) - HSP90 (magenta) interface (PDB ID: 2C2L [103]), 

indicating the hydrophobic (green spheres) and polar contact (blue surface / dashed lines) 

pharmacophores used to screen the ZINC database. Strong binders show predicted binding modes for 

compounds 2.1 and 2.2 from the LINCS screen, which showed the strongest FP signal and robust inhibition 

of CHIP ligases activity. Interestingly, 2.1 and 2.2 are the only predicted hits to make a novel hydrogen 

bond to CHIP residue Q102, a contact whose importance is not obvious from the cocrystal structure. Weak 

binders show predicted binding modes for compounds 2.3 and 2.4 from the LINCS screen, and compounds 

1.1, 1.2, and 1.7 from the ZINC screen, which showed modest FP signal. Non-binders show predicted 

binding modes for non-binding LINCS compounds 2.5 and 2.6, and non-binding ZINC compounds 1.3 – 1.6. 
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3.6 SUPPLEMENTARY TABLES 
 

 

Table 3.4. The cellular localization of successful and unsuccessful drug targets enriched by gene 

ontology. P-values were computed by intersecting proteins assigned to GO terms listed below with 

proteins in the sets compared (successful and failed) using the hypergeometric distribution. 

 

  Cellular Component p-value 
Successful 
Targets 

proteasome core complex 7.81E-37 
proteasome core 1.10E-28 
proteasome alpha-subunit 5.68E-18 

cytosol 7.53E-12 
protein complex 1.88E-11 

Failed 
Targets 

transmembrane transporter complex 7.77E-15 
sodium-exchanging ATPase complex 4.42E-14 
cation-transporting ATPase complex 8.74E-13 
plasma membrane part  2.19E-11 

chloride channel complex 2.33E-09 
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Table 3.5. Predicted HRAS/KRAS-targeting compounds purchased for experimental validation. ‘Target 

Rank’ indicates the ranking of HRAS/KRAS in the RF-predicted list of potential targets for each compound. 

‘Cpd Rank’ indicates the structure-based ranking of the compound after docking all candidate inhibitors.  

 

Target Name ID Target Rank Cpd Rank 

HRAS 

BRD-A18725729 BRD-A18725729 90 52 
BRD-K00954209 BRD-K00954209 73 1 
BRD-K95858622 BRD-K95858622 92 34 
mefloquine BRD-K40645748 56 34 
procaterol BRD-A22684332 99 70 

RS-39604 BRD-K20742498 21 81 

KRAS 

KM_00799 BRD_K87375115 6 84 
phloretin BRD_K15563106 65 3 
zardaverine BRD_K37561857 34 67 
BRD_K85275009 BRD_K85275009 1 80 
amodiaquine BRD_K91290917 35 32 

 

 

Table 3.6. Predicted CHIP-targeting compounds purchased for experimental testing. ‘Chip Rank’ 

indicates the ranking of CHIP in the random-forest predicted list of potential targets for each compound. 

‘Cpd Rank’ indicates the structure-based ranking of the compound after docking all candidate inhibitors. 

 

Cpd # Name ID CHIP Rank Cpd Rank 

2.1 phenolphthalein BRD_K19227686 2 22 
2.2 HSP90_inhibitor BRD_K65503129 2 4 
2.3 axitinib BRD_K29905972 8 13 
2.4 BRD_K59556282 BRD_K59556282 11 92 
2.5 SB_431542 BRD_K67298865 34 17 
2.6 MW_STK33_2B BRD_K78930611 51 16 
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Table 3.7. Symbols and notations. 

 

Symbol Meaning 
d Index for a drug 
c Index for a cell line 
g Index for a gene 
ND Total number of genes 
NC Total number of cell lines 
Cd The set of cell line indeces for drug d 
Pd The set of protein target indeces for drug d 
Gc The set of knockdown gene indeces for cell line c 
Td The intersection of knockdown gene indeces Gc for all cell lines in Cd 
Ndc Number of experiments for applying drug d to cell line c 
Ngc Number of experiments for knocking down gene g in cell line c 
Ng Neighbors, or protein-protein interaction partners, of gene g 
Δ Drug-response data 
Γ Gene-knockdown data 
Ψ Control data 
Ω Full feature data 
Xd Training data derived from drug d 
yd Training label derived from drug d 
νd Negative (non-target) genes for drug d 

 

  



 99 

Table 3.8. Summary of constructed feature sets. Note that different feature sets can have different 

dimensions (some contain values for each of the cell lines, etc…). The exact dimension and content of 

each feature set is discussed in the text. 

 

Feature Name Symbol Meaning 
Direct 
Correlation fcor 

Correlation between a drug treatment experiment and a 
gene knockdown experiment 

Indirect 
Correlation fPC Fraction of the known binding partners of a gene in the top 

X correlated knockdown experiments 

Cell Selection fCS 
Correlation between a drug treatment experiment and the 
control experiment for the cell line 

PPI Expression fPE 
The average or the max (absolute value) expression for the 
known binding partners of a gene 

 

 

 

Table 3.9. Cell lines included in the validation dataset. The number of drugs, knockdown genes, and 

control experiment are shown. For a given cell line, we only include drugs that have their target 

knockdown experiments available in that cell line. 

 

Cell Line Drugs Knockdowns Controls 
A549 188 11947 52 
MCF7 180 12031 54 
VCAP 175 13225 56 
HA1E 172 11968 53 
A375 143 11696 58 
HCC515 129 7828 52 
HT19 96 10185 52 
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3.7 ADDITIONAL FILES 

Additional File 3.1. (additional_file_3.1.xls) Results of testing our random forest classifier on the 123 

FDA approved drugs profiled in 4-6 LINCS cell lines after having trained our model on the 29 FDA 

approved drugs profiled in all 7 LINCS cell lines. The rank of the highest-ranking known target for each 

compound is listed next to their LINCS ID. We achieve top-100 predictions for 32 drugs, a 26% success 

rate.  

Additional File 3.2. (additional_file_3.2.xls) The names and LINCS IDs of the validation compounds 

shown in Figure 3.2. 

Additional File 3.3. (additional_file_3.3.xls) Structural enrichment of random forest predictions for 

validation hits and comparison with existing methods. Table lists the 63 `hits' from our validation drug 

set, including their names, LINCS ID and the number of top-100 predicted targets that had structures 

available in the PDB. The ranking of the known targets for each compound are shown after our genomic 

random forest target prediction (GEN), and after our structural re-ranking (STR), along with the 

percentile rankings produced by alternative target prediction methods HTDocking (HTD) and 

PharmMapper (PHM). STR, HTD, and PHM values of 100 indicate that the structure of the known target 

either is not known or was not included in the set of potential targets used by the method. 
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4.0 DRUGGING THE TNF-INDUCED NF-kB SIGNALING NETWORK 
 
 
 
 

4.1 INTRODUCTION 
 

The nuclear Factor kB (NF-kB) transcription factor regulates expression for hundreds of genes that 

mediate signals for inflammation, proliferation, and survival [130-135]. Deregulation of NF-kB has been 

linked to chronic inflammation in addition to development and progression of various cancers [136-139]. 

As a pleiotropic regulator of disease-related genes, chemicals that modulate the NF-kB signaling pathway 

have therapeutic relevance. However, the complexity of this pathway makes it difficult to understand the 

mode of action and side effects of these agents. Traditional ‘target-centric’ drug development strategies 

that prioritize single-target potency in-vitro, and the difficulty of modulating specific protein-protein 

interactions in-vivo, exacerbates the challenges of drugging this pathway in the cell [140]. Not surprisingly, 

there are no clinically approved inhibitors of NF-kB pathway components. 

 

An alternative approach is a network-centric strategy to identify small-molecules that inhibit a signaling 

pathway. Tumor necrosis factor (TNF) is an inflammatory cytokine that initiates dynamic intracellular 

signals when bound to its cognate TNF receptor (TNFR1). In response to TNF, the IkB-kinase (IKK) complex 

is rapidly recruited from the cytoplasm to poly-ubiquitin scaffolds near the ligated receptor where it is 

activated through induced proximity with its regulatory kinase, TAK1 (Figure 4.1a) [141-146]. When 

phosphorylated by activated IKKs, NF-kB inhibitor proteins (IkB) are degraded and NF-kB accumulates in 

the nucleus to regulate transcription. Because the components of the molecular network are well-defined, 



 102 

disruptors of the signaling network can be predicted from transcriptomic alterations that are shared by i) 

exposure to small molecules, and ii) genetic knockdowns of pathway components. Through structural 

screening and live-cell experiments that monitor signaling dynamics in single cells, the dominant mode of 

action on the signaling network can be inferred.  

 

To meet this challenge and demonstrate a network-centric strategy for targeting TNF-induced NF-kB 

signaling, we focused on differential gene expression signatures from the NIH Library of Integrated 

Network-Based Cellular Signatures (LINCS) L1000 dataset [147]. We compared transcriptional profiles 

between genetic knockdowns of proteins in the NF-kB signaling pathway and responses of the same cell 

types to thousands of distinct bioactive compounds. Using a random forest classification model, we 

identified compounds whose transcriptomic perturbations resembled genetic disruption. For each 

compound, the probability of a compound-protein interaction was evaluated in terms of ‘direct’ 

correlation with the knockdown signatures, and ‘indirect’ correlations with knockdown signatures of other 

proteins in the network. Correlations that cluster on specific protein subnetworks (Figure 4.1a) suggest 

chemical inhibition within the signaling pathway that mimic genetic inhibition of those network 

components (Figure 4.4). Note that because of the connectivity of the protein interaction network, it is 

difficult to precisely identify a single binding target from the gene profiles alone. For example, a compound 

that disrupts TRADD or TRAF2 might have similar signatures relative to the knockdown of upstream and 

downstream genes in the pathway such as TNFR1, UBC, or NEMO. Hence, the genomic screening would 

be expected to show all of these as targets with some probability. 
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Figure 4.1. Small molecule treatments produce transcriptional responses in that correlate with genetic 

knockdowns of proteins involved in NF-kB signaling. (a) Schematic of the cytoplasmic multi-protein 

complex that assembles following ligation of TNF to TNFR1. The color for each protein species in the 

complex is the average Pearson correlation between gene expression profiles for the species’ genetic 

knockdown and the transcriptional response to compounds 2 and 3. (b) Correlation between 

transcriptomic perturbations by compounds 1, 2, and 3 and the knockdown of genes functionally involved 

in NF-kB according to the KEGG PATHWAY Database. (c) Unbiased molecular docking predicts binding of 

compounds 2 (yellow) and 3 (magenta) to the TRADD-binding interface of TRAF2. Hydrogen bonds with 

key TRAF2 interface residues are indicated by dotted lines. 
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4.2 RESULTS 
 

To identify compounds that inhibit TNF-induced NF-kB signaling we focused on disruptions of the TNFR1 

complex at the level of TRADD, TRAF2, and RIP1, interacting proteins that are necessary to form ubiquitin 

scaffolding upon TNF stimulation (Figure 4.1a). We reasoned that these disruptions will restrict the 

dynamics of IKK recruitment and effectively prevent transcriptional signals encoded through nuclear 

translocation of NF-kB [148]. Transcriptional signatures for more than 860 compounds showed strong 

correlations with knockdown of TRADD, TRAF2, and RIP1, so we focused on three compounds (1: BRD-

K43131268; 2: BRD-K95352812; and 3: BRD-A09719808) that also correlate broadly with NF-kB signaling 

in the KEGG pathway database (Figure 4.1b). For compounds 1, 2, and 3 respectively, predicted targets 

from our dataset include: TRAF2, UBC, NFKB1, and RIP1; TRAF6, NEMO, TRAF2, NFKB1, UBC, TAB2, and 

IKKb; and, NFKB1, TRAF2, UBC, UBB and NEMO. Furthermore, compounds 2 and 3 both showed significant 

correlations with HOIL, TAK1, clAP1/2 and UbcH5 knockdowns (Figure 4.1a). Compounds 2 and 3 also had 

similar chemical structures (Figure 4.1c) and transcriptional profiles (Figure 4.1b), strongly suggesting a 

similar mechanism of action. 

 

To better predict the likely target of these compounds, we performed molecular docking on available 

structures/domains in the pathway. The only target suggested by our screening of available structures 

was TRAF2. The predicted binding modes of all three compounds corresponds to the same binding site as 

that of TNFR2 (PDB code 1CA9 [149]) and TRADD (PDB code 1F3V [150]) with TRAF2. Compounds 2 and 3 

formed hydrogen bond contacts with TRAF2 residues S453, S454, S455, and S467, which are predicted to 

compete with TRADD interface residues Q143, D145, and R146 based on the co-crystal (Figure 4.1c). 

Compound 3 is predicted to be a stronger binder due to the extra hydrogen bond formed by its amide 

group with TRAF2 residue G468. Competitive binding should disrupt the native TRADD-TRAF2 interface 

and could prevent maturation of the full TNFR1 signaling complex by promoting dissociation or allosteric 



 105 

stabilization of a non-native conformation.  The predicted binding mode of compound 1 is less specific 

and did not form any of the aforementioned contacts (Figure 4.5). Thermal shift assays showed that 

compounds 2 and 3 respectively exert a subtle to moderate dose-dependent stabilizing effect on full 

length TRAF2 (Figure 4.2a, b), suggestive of direct binding, whereas compound 1 did not show a clear 

trend (Figure 4.6). We note that the observed thermal shifts are consistent with the relatively small 

stability effect that the compounds are expected to exert on the stable trimer formed by the soluble full 

length TRAF2 protein [149].   

 

 

 

Figure 4.2. Thermal shift assays indicate moderate dose-dependent stabilization of TRAF2 by 

compounds 2 and 3. Normalized melt curves (left) and melting temperature (Δtm; right) of full length 

TRAF2 were recorded in the presence of DMSO or indicated concentrations of (a) compound 2 and (b) 

compound 3. The rightward shift of the melt curve in the presence of compounds, quantified by the Δtm 

in replicate experiments, suggest increased thermal stability of the protein-compound complex. 
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We set out to determine whether the compounds are effective inhibitors of NF-kB signaling in living cells. 

For this, the endogenous gene locus for the transcriptionally active RelA subunit of NF-kB was modified 

using CRISPR/Cas9 to encode a fluorescent protein (FP) fusion in U2OS cells (Figure 4.7), a cell line that 

forms IKK-recruiting polyubiquitin scaffolds in response to TNF [151]. Responses of single cells exposed to 

TNF showed transient and variable translocation of NF-kB into the nucleus when measured from time-

lapse images (Figure 4.3a), comparable with other human cancer cell lines that express FP-RelA fusions 

[148, 152, 153]. When cells were pre-treated with compounds 2 and 3 before exposure to TNF, nuclear 

mobilization of NF-kB was reduced in proportion with the concentration of the inhibitory compound 

(Figure 4.3b). To quantify the compounds’ effect on NF-kB dynamics, each single-cell trajectory was 

decomposed into a series of descriptors (Figure 4.3c) that transmit information within the cell about 

extracellular TNF [152]. Although some descriptors did not show a clear trend (Figure 4.8), the most 

informative descriptor (area under the fold change curve, or ‘AUC’) was significantly reduced by 1µM 

pretreatment with either compound before exposure to TNF, and most descriptors were nearly 

indiscernible from untreated control cells when pretreated with 10µM (Figure 4.3d). By contrast, 

compound 1 did not significantly alter the TNF-induced dynamics of nuclear NF-kB (Figure 4.9). These data 

suggest that compounds 2 and 3 target the upstream TNFR1 multi-protein complex in the signaling 

network to restrict NF-kB activation.  

 

To test this hypothesis, and directly observe the recruitment of IKK to the TNFR1 complex, we used 

CRISPR/Cas9 to target the γ-subunit of the IKK complex (also known as NEMO) for FP fusion in U2OS cells 

(Figure 4.10). FP-IKK was diffuse within the cytoplasm and rapidly localized to punctate structures near 

the plasma membrane after exposure to TNF (Figure 4.3e). The number of punctate FP-IKK structures in 

single cells peaked at 15 minutes and dissolved within an hour of TNF stimulation (Figure 4.3f). Although 

the recruitment and dissolution dynamics of FP-IKK are prolonged when compared with a previous study 
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that overexpressed a fusion of mouse IKKγ [151], they are otherwise qualitatively similar. Consistent with 

our observations for NF-kB, the number of TNF-induced puncta were greatly reduced in single cells that 

were pretreated with compounds 2 or 3 before exposure to TNF (Figure 4.3f). Unexpectedly, the 

compounds also reduced the overall expression level of IKKγ (Figure 4.11) through an unknown 

mechanism that may relate to TRAF-dependent ubiquitination cascades that regulate the ambient 

stability of other NF-kB-inducing kinases [154]. 
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Figure 4.3. Small molecules disruptors of NF-kB signaling reduce nuclear translocation of NF-kB and the 

formation of NEMO puncta in TNF-stimulated cells. (a) Time-lapse images of FP-RelA expressed from its 

endogenous gene locus in U2OS cells exposed to TNF. The nuclear subcellular compartment is indicated 

with a broken yellow line. Scale bar 20µm for all. (b) Single cell time courses of nuclear FP-RelA measure 

the change in the nuclear abundance of NF-kB in response to the indicated conditions. Red numbers 

indicate the number of single cell trajectories in each condition. (c) Descriptors used to quantify single cell 

responses. AUC, Max, and tmax, respectively, describe the area under the curve, the maximum, and the 

time of maximal nuclear FP-RelA fluorescence. Ratein and Rateout describe the maximal rate of nuclear 

entry and exit. (d) Box (first and third quartile) and whisker (1.5 times interquartile range) plots showing 

the condition-specific variation for descriptors of nuclear FP-RelA localization. Red bars indicate the 

median; * p<0.05, **p<<10-5, t test. (e) Time-lapse images of FP-IKK expressed from its endogenous gene 

locus in U2OS cells exposed to TNF. (f) Single-cell time courses for the number of FP-IKK puncta in cells 

stimulated with the indicated conditions. In all TNF conditions, a concentration of 10 ng/mL was used.   
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4.3 DISCUSSION 
 

 

Taken together our results show that compounds 2 and 3 inhibit the TNF-induced NF-kB signaling pathway 

by limiting the formation of the mature TNFR1 complex. We also highlight the much broader effects of 

disrupting a pathway component within the larger network, including the downregulation of IKKγ protein 

expression, and the limitations of single-target molecular modelling as a basis for drug design. The 

regulatory complexity of the NF-kB signaling pathway, which enables highly specific and stimulus-

dependent transcriptional responses, also confounds drug discovery efforts that do not account for 

network-scale responses to chemical disruption. Consequently, successful therapeutic intervention in 

complex signaling pathways may require a network-centric strategy guided explicitly by a compounds’ 

anticipated effects on signaling dynamics as a pharmacologic target. [155] 

 

Correlations in gene expression signatures and single-cell experiments can be used to respectively predict 

and validate the network effects of bioactive compounds, and structural analysis can further inform on 

their mechanism of action. Here, our models suggest that compounds 2 and 3 destabilize interactions 

between TRADD and TRAF-family proteins. Mechanistically, disruption at this upstream junction will 

preclude ubiquitin scaffold assembly, and this rationalizes the correlations observed between our 

compounds and knockdowns of UBB and UBC, in addition to other signaling proteins that are recruited to 

these poly-ubiquitin chains (see Figure 4.1a).  

 

Although the LINCS dataset does not explicitly report the transcriptional response of cells to TNF in the 

presence of chemical or genetic perturbations, compounds that impinge on TNF-induced dynamics could 

still be inferred using a machine learning algorithm with prior knowledge of the signaling network. This 

pipeline therefore represents an alternative strategy to single-target-based drug discovery that can be 
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more generally applied to discover novel inhibitors of protein subnetworks in a variety of signaling 

pathways. Because mechanism of action is not constrained a priori, it is possible to discover a chemical 

agent that disrupts multiple points in the same protein subnetwork, or to predict chemical combinations 

that produce specific network-level responses. It is unlikely that the “magic bullet” drug discovery 

paradigm will uncover the full therapeutic potential of compounds that modulate dynamic intracellular 

signals, such as the TNF-induced NF-kB signaling pathway. Rather, more effective drug development 

efforts may require approaches like the one presented here, that embrace the complexity of regulatory 

networks and dynamic phenotypes associated with their disruption. 

 
 
 

4.4 METHODS 
 
 

4.4.1 Analysis of gene expression data  
 

Preparation and analysis of gene expression (GE) data was performed as described in Chapter 3.4. Briefly, 

gene knockdown (KD) and compound treatment GE signatures were extracted from the LINCS L1000 

Phase I and Phase II datasets (GEO accession IDs: GSE70138 and GSE92742). We collected signatures for 

the 1680 small molecules and 3104 gene KD experiments that had been performed in at least four of the 

seven most common LINCS cells lines (A549, MCF7, VCAP, HA1E, A375, HCC515, HT19). We hypothesized 

that compounds that disrupt the TNF-inducible NF-kB signaling pathway should produce similar network-

level effects, and thus similar differential GE signatures, to genetic knockdowns of proteins in the pathway. 

Thus, for each compound – KD signature pair in our dataset, we computed several cell-specific 

quantitative features, most importantly: 

 

Direct correlation: the Pearson correlation coefficient between the compound treatment and the 

gene KD expression signatures in the given cell line, and 
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Indirect correlation: the fraction of the KD protein’s interaction partners, as defined by BioGrid[86], 

whose respective KD signatures were highly correlated with the compound signature. 

 

Three additional features, quantifying baseline drug activity in the cell and the maximum & average 

compound-induced differential expression levels of NF-kB pathway proteins[156], were also calculated 

and used in subsequent classification.  

 

Using a Random Forest (RF) classifier trained the expression signatures of 152 FDA-approved drugs with 

known mechanism(s) of action (see Chapter 3.4), features for every compound-KD pair (n=5,214,720) 

were used to predict the probability that the compound would inhibit the KD protein’s interaction 

network. The top-100 predicted interactions for each compound were extracted, and compounds whose 

predicted targets were enriched in TNF-induced NF-kB signaling genes (n=501) were collected for 

structural analysis. 

 
4.4.2 Structural analysis 
 

Structural docking of RF – predicted inhibitors proceeded as previously in Chapter 3.4. Briefly, 

representative crystal structures of TNF-inducible NF-kB signaling proteins (Supplementary Fig. 1) were 

mined from the PDB [157], optimizing for sequence coverage, structural resolution, and structural 

diversity. Domain structures were available for all proteins in Figure 4.1a with the exception of IKKa. 

Potential small-molecule binding sites on each protein structure were identified by clustering the output 

of computational solvent mapping software FTMap [119]. RF-predicted inhibitors were docked to 

predicted binding sites on each protein structure using smina [91], and a prospectively validated pipeline 

[90, 92]. Three promising candidate inhibitors of TRAF2, which showed both biophysical complementarity 
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and broad spectrum transcriptomic correlations with knockdowns in the pathway, were purchased from 

MolPort for experimental validation. 

 
4.4.3 Thermal shift assay and analysis 
 

TRAF2 - compound interactions were measured by fluorescence-based thermal shift using an Applied 

Biosystems ABI QuantStudio(TM) 6 Flex System. All assay experiments used 1uM GST-TRAF2 (Rockland) 

per well and 2 X Sybro Orange (Invitrogen) in a buffer containing 50mM HEPES, pH 7.5, 150Mm NaCl in a 

total reaction volume of 15ul in 384 well plates. Compounds were diluted with DMSO, and each reaction 

had a final DMSO concentration of 1.5%. PCR plates were covered with optical seal, shaken, and 

centrifuged after protein and compounds were added. The instrument was programmed in the Melt 

Curve mode and the Standard speed run. The reporter was selected as Rox and None for the quencher. 

Each melt curve was programmed as follows: 25 °C for 2 min, followed by a 0.05°C increase per second 

from 25 °C to 99 °C, and finally 99°C for 2min. Fluorescence intensity was collected continuously. In the 

Melt Curve Filter section, X4 (580 ±10)-M4 (623±14) was selected for the Excitation Filter-Emission Filter. 

The raw data was extracted in MS-Excel format. Each melt curve was normalized between 0 and 1 and the 

midpoint of the curve was used to determine the melting temperature. 

 
4.4.4 Establishing EGFP- RELA /IKKγ CRISPR Knock-in Cells 
 

Construction of Repair Templates for EGFP-IKKγ CRISPR Knock-in: The RelA repair template consisted of 

DNA sequences for a left homology arm (LHA -544bp, chromosome 11_65663376 - chromosome 

11_65662383) followed by an EGFP coding sequence with a start codon but no stop codon and a sequence 

encoding 3x GGSG linker followed by a right homology arm (RHA +557bp, chromosome 11_65662829 - 

chromosome 11_65662276) were assembled from plasmids synthesized by GeneArt. Synonymous 

mutations that are not recognized guide RNAs were introduced to prevent interaction the repair template 
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and Cas9. IKBKG DNA sequences for left homology arm (LHA -861bp, chromosome X 154551142- 

chromosome X 154552002) and right homology arm (RHA +797bp, chromosome X_154552006 - 

chromosome X 154552798) were amplified from Hela genomic DNA using the following primer pairs: 

IKBKG_LHA_F: 5’GGG CGA ATT GGG CCC GAC GTC GTT TCA CCG TGT TAG CCA GG3’, IKBKG_LHA_R: 5’ CAC 

ATC CTT ACC CAG CAG A3’; IKBKG_RHA_F: 5’AGA GTC TCC TCT GGG GAA GC3, IKBKG_RHA_R: 5’CCG CCA 

TGG CGG CCG GGA GCA TGC GAC GTC AGT CTA GGA AAG AAC TCC CCA GTC3’. In order to generate the 

fragment containing EGFP overlapping with LHA and RHA, we synthesized the sequence from GeneArt, 

then we amplified the sequence containing EGFP with the primer pairs: IKBKG_EGFP_F 5’ TCT GCT GGG 

TAA GGA TGT G3’, IKBKG_EGFP_R 5’ GCT CTT GAT TCT CCT CCA GGC AG 3’. After PCR products were 

purified, the fragments LHA, RHA, EGFP were cloned to pMK plasmid that was digested with AatII by 

gibson assembly from NEB. 

 

Construction of Guide RNA: The guide RNAs were designed by the CRISPR Design Tool 

(http://crispr.mit.edu). Oligonucleotide pairs Rel A sg1 (top): 5’-CACCGCTCGTCTGTAGTGCACGCCG-3’, Rel 

A sg1 (bottom): 5’-AAACCGGCGTGCACTACAGACGAGC-3’; RELA Sg2 (top)   5’-

CACCGAGAGGCGGAAATGCGCCGCC-3’, RELA Sg2 (bottom)   5’- AAACCGCGGCGCATTTCCGCCTCTC-3’; 

IKBKG Sg1 (top) 5’-CACCGGCAGCAGATCAGGACGTAC-3’, IKBKG Sg1 (bottom) 5’-

AAACGTACGTCCTGATCTGCTGCC-3’; and IKBKG Sg2 (top)   5’-CACCGCTGCACCATCTCACACAGT-3’, IKBKG 

Sg2 (bottom) 5’-AAACACTGTGTGAGATGGTGCAGC-3’ were cloned into the vector pSpCas9n (BB)-2A-Puro 

(PX462) (Addgene). The pSpCas9n (BB)-2A-Puro-IKKγ_gRNAs vector encoded the guide RNA and the Cas9 

nuclease with D10A nickase mutant. 

 

Transfection and Clone Isolation: U2OS cells (2 × 105 cells per well) were seeded in 6-well plates in 

complete growth medium. The following day, with pSpCas9n (BB)-2A-Puro-RELA/IKKγ_gRNAs and repair 
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template donor plasmids were linearized using BGLII, and cells were transfected using FuGENE HD 

(Promega) with a transfection reagent to DNA ratio of 3.5 to 1 and a total DNA amount of 4μg. After two 

weeks, cells were subjected to single cell sorting into 96-well plates using Beckman Coulter MoFlo Astrios 

High Speed. Cells underwent clonal isolation and a positive clone was identified via western blot and 

confirmed by live-cell imaging. 

 
4.4.5 Western blot analysis 
 

U2OS cells (parental and expressing EGFP-RelA/IKKγ via CRISPR Knock-in) were cultured for 24 hrs 

in complete growth medium. After treatments, cells were lysed in SDS-based lysis buffer consisting of 120 

mM Tris-Cl, pH 6.8, 4% SDS supplemented with protease and phosphatase inhibitors at 4°C for 30 

min. Protein extracts were clarified by centrifugation at 4°C at 12,000 × g for 10 min. Lysate protein levels 

were quantified by BCA assay (Pierce). Samples were separated by SDS-PAGE, 25 μg total protein per lane, 

then transferred to PVDF membranes. Blocking was done in 5% milk in TBS for 1 hour. Primary antibodies 

directed at RelA and β-actin (#4764 and #3700 respectively; Cell Signaling Technology), IKKγ and GAPDH 

(sc-8330 and sc25778 respectively; Santa Cruz) were diluted in 5% milk in TBS-T and incubated overnight 

at 4°C. Alexa 680/800-conjugated secondary antibodies (LICOR) were used in combination with an 

Odyssey (LI-COR) scanner for detection and quantification of band intensities. 

 
4.4.6 Live-cell imaging and analysis 
 

Live cells were imaged in an environmentally controlled chamber (37°C, 5% CO2) on a DeltaVision Elite 

microscope equipped with a pco.edge sCMOS camera and an Insight solid-state illumination module (GE). 

U2OS cells expressing FP-RelA/IKKγ were seeded at a density of 25000 cells/well 24 hours prior to live-cell 

imaging experiments on no. 1.5 glass bottom 96 well imaging plates (Matriplate). For imaging of FP-RelA 

nuclear translocation, live-cells were pre-treated with DMSO or indicated concentrations of compounds 
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for 2 hours before exposure to 100ng/ml TNF. Wide-field epifluorescence and DIC images were collected 

using a 20x LUCPLFLN objective (0.45NA; Olympus). Cells were imaged for at least 30 minutes prior to 

addition of compounds. For detection of IKKγ puncta, , live-cells were pre-treated with DMSO or indicated 

concentration of compounds for 2 hours before exposure to 100ng/ml TNF. Wide-field epifluorescence 

and DIC images were collected using a 60x LUCPLFLN objective. For all treatments, cytokine mixtures were 

prepared and pre-warmed so that addition of 120uL added to wells results in a final concentration as 

indicated. Time-lapse images were collected over at least 4 fields per condition with a temporal resolution 

of 5 minutes per frame. Quantification of nuclear FP-RelA localization and the formation IKKγ puncta from 

flat-field and background corrected images was performed using customized scripts in Matlab and ImageJ. 

 
4.4.7 Fixed-cell immunofluorescence and analysis 
 

For fixed-cell measurement of endogenous RelA (Supplementary Figure 4), U2OS cells were seeded into 

plastic bottom 96 well imaging plates (Fisher) at 6000 cell/well 24 hours prior to treatment. On the day of 

the experiment, media containing TNF was prepared at 15X the desired concentration for each well. 

Timing of TNF treatment was planned so fixation (0, 10, 30, 60, 90, 120 minutes) occurred simultaneously 

for all time points at the same time. Pre-warmed 15X cytokine mixture was spiked into wells and mixed. 

Between treatments the cells remained in environmentally controlled conditions (37°C and 5% CO2). 

 

At time zero, media was removed from the wells, 185 μL of PBS was used to wash the wells, and wells 

were incubated at room temp in 120 μL of 4% paraformaldehyde (PFA) in 1X PBS for 10 minutes. Wells 

were then washed 3X three minutes with 185 μL 1X PBS and then incubated in 120 μL 100% methanol for 

10 min at room temp. Next wells were washed 3X three minutes in PBS-T (1XPBS 0.1% Tween 20) followed 

by 120 μL of primary antibody solution (3% BSA PBS-T, 1 μg/mL NF-ĸB p65 F-6 (sc-8008; Santa Cruz)). 

Plates were wrapped in para-film and left to incubate at 4°C overnight. The following morning, wells were 
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washed 3X five minutes in 185 μL PBS-T followed by incubation for 1 hour in 120 μL of the secondary 

antibody solution (3% BSA PBS-T, 4 μg/mL Goat anti-Mouse IgG Alexa Fluor 647 (Thermo Fisher)). 185 μL 

PBS-T was used to wash the wells for 5 minutes and they were put into 120ul Hoechst solution (PBS-T, 

200ng/mL Hoechst) for 20 min. Finally, wells were washed five minutes with PBST and then 185 μL PBS 

was used to fill the wells and keep the cells hydrated during imaging. Cells were imaged using Delta Vision 

Elite imaging system at 20x magnification with a LUCPLFLN objective (0.45NA; Olympus). Analysis was 

done using Cell Profiler to segment cells and quantify median nuclear intensity values. Further analysis 

was performed using custom scripts in MATLAB. 
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4.5 SUPPLEMENTARY FIGURES  
 

 

 

Figure 4.4. Prediction pipeline used to identify small molecule inhibitors of TNF-inducible NF-kB 

signaling. Input includes cell-specific gene expression (GE) signatures from 1680 bioactive small molecules 

and 3104 gene knockdowns, taken from the LINCS L1000 dataset [147], and the protein interaction 

networks of knockdown genes, inferred from their BioGrid [86] – defined interaction partners. 

Correlations between compound and knockdown GE signatures and their distribution on the TNF-

inducible NF-kB pathway (see Figure 4.1a) are evaluated by a random forest classifier to predict candidate 

inhibitors. Structural models of pathway proteins are mined from the PDB [157] and used as molecular 

docking targets for candidates. Docking results are assessed to identify high-confidence predicted 

inhibitors.   
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Figure 4.5. Predicted binding mode of compound 1 to TRADD-binding interface of TRAF2. Hydrogen 

bonds are indicated with dotted lines. 

 

 

 

 

Figure 4.6. Thermal shift assays indicate no clear effect of compound 1 on TRAF2 stability. (a) Normalized 

melt curve of full length TRAF2 in the presence of DMSO or indicated concentrations of compound 1. (b) 

Melting temperature of TRAF2 in the presence of compound 1 are not significantly altered in replicate 

experiments. 
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Figure 4.7. Quantification of FP-RelA expression in U2OS cells. (a) Western blot of RelA in lysates from 

parental U2OS cells (P) and U2OS cells that were modified using CRISPR to express EGFP-RelA. The 

molecular weight of the dominant FP-RelA band in the CRISPR-modified cell line is shifted upward by 32 

kDa, consistent with the expected molecular weight of the EGFP fusion protein. The presence of the wild 

type RelA band in the CRISPR-modified cell line suggests that only one allele of the RelA-encoding gene 

integrated the EGFP-encoding sequence. (b) Subcellular localization of RelA from fixed-cell 

immunofluorescence images of parental U2OS cells (left) and FP-RelA quantified from CRISPR-modified 

live cells (right) exposed to 10 ng/mL TNF show similar temporal dynamics. 

 

 

 

 

Figure 4.8. Other descriptors of nuclear FP-RelA. Descriptors tmax (a) and Rateout (b) do not show 

statistically significant differences in response to TNF.        
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Figure 4.9. Compound 1 does not have a significant effect on FP-RelA translocation. (a) Single cell time 

courses measure the change in nuclear abundance of FP-RelA in cells exposed to 10ng/mL TNF after pre-

incubation with compound 1. (b) Descriptors of nuclear FP-RelA dynamics do not change significantly 

even in the presence of a high concentration of compound 1. 

 
 

 
 

Figure 4.10. Western blot of IKKγ. Western blot of IKKγ in lysates from parental U2OS cells (P) and U2OS 

cells that were modified using CRISPR to express EGFP-IKKγ. The molecular weight of the FP-IKKγ band in 

the CRISPR-modified cell line is shifted upward by 32 kDa, consistent with the expected molecular weight 

of the EGFP fusion protein. The absence of wild type IKKγ in the CRISPR-modified cell line suggests that 

both alleles of the IKKγ-encoding gene integrated the EGFP sequence. 
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Figure 4.11. IKKγ expression in the presence of compounds 2 and 3. (a) Western blot of IKKγ in lysates 

from CRISPR-modified U2OS cells in the indicated conditions. (b) Quantification of Actin-corrected IKK 

band intensity, normalized to control cells that were not pre-treated with compounds, suggest that the 

presence of compounds 2 and 3 significantly downregulate the expression of IKKγ. Indicated p values 

were calculated from t tests of biological triplicates. 
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5.0 DRUGQUERY: STRUCTURE-BASED SMALL MOLECULE VIRTUAL SCREENING OF HUMAN 

PROTEINS 

 
 
 

5.1 INTRODUCTION 
 

Rising efficacy- and safety-related failure rates in pharmaceutical development programs [3-5] suggest 

the decline of the target-centric “magic bullet” drug discovery paradigm and its emphasis on single-target 

in-vitro potency [158]. In its place are emerging more global, network-centric approaches that embrace 

the complex regulatory environments in which drugs function and seek to account for multi-target effects 

[159-161]. Considering that the average drug currently on the market exhibits activity towards six 

molecular targets [162, 163], often resulting in unexpected and unwanted side effects [164-167], this shift 

in focus away from single proteins and towards multi-target networks is perhaps a natural step. The new 

drug discovery paradigm of polypharmacology seeks to anticipate and exploit the off-target effects of 

promiscuous small molecules [159, 160, 168-170], raising an immediate need for robust methods of 

predicting the protein targets of bioactive compounds, or target fishing.  

 

As experimental approaches to target fishing are often cost- and time-inefficient [171], more efficient 

computational approaches that leverage existing data have become popular  [172, 173]. Many are ligand- 

or network-based methods that extrapolate from known interactions of compounds that are structurally 

or functionally similar to the query compound [65-69, 174-176]. The main alternatives are structure-based 

methods, which evaluate the 3-D complementarity of potential ligand-target pairs using their atomic 

structures [70-72, 111, 177]. With the rapid growth of protein crystal structures in the PDB [157], 
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structure-based methods like reverse molecular docking offer a number of advantages over ligand-based 

similarity searching such as being unbiased with respect to novel chemical scaffolds and being able to 

predict the query compound’s binding mode [72]. These features are highly desirable in a drug discovery 

context, where new chemistries are often being tested and where knowledge of binding mode is 

necessary for lead optimization [178]. 

 

Despite these advantages, there currently exist no user friendly, publicly available tools for reverse 

docking at a large scale (1000+ potential targets). Published reverse-docking software has either been 

decommissioned [70], is prohibitively slow [71], or is unavailable for public use [177, 179]. To fill this void, 

we present DrugQuery (DQ): a fast, user-friendly, and publicly available web server for reverse-docking-

based target fishing. The DQ target library currently contains 7957 predicted binding sites on 2069 high 

quality crystal structures of 1245 unique human proteins, all easily searchable and available for download. 

User-submitted small molecules, accepted in all standard molecular file formats, are docked against the 

DQ library using the smina implementation of AutoDock Vina [91, 180]. Results, including a ranked list of 

potential targets and the query compound’s predicted binding modes, are returned in hours for most 

small molecules, facilitating fast and easy target fishing for any chemist or biologist.   

 

On a validation set of 95 FDA-approved drugs with known protein targets, DQ achieved top-10 and top-

100 target prediction accuracies of 35% and 58% percent, respectively, with at least one known target 

ranked in to top decile for 68% of compounds. Within the same validation set, DQ correctly identified 

multiple known protein targets for 10 drugs with promiscuous activity. Remarkably, without re-docking, 

76% of successful predictions were associated with binding modes < 2 Angstrom RMSD from known bound 

configurations. On a separate validation set of 102 congeneric FXR-binding compounds taken from the 
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2017 D3R Grand Challenge 2, DQ achieved top-10 and top-100 target prediction accuracies of 27% and 

72%, respectively, with FXR ranked in to top decile for 86% of compounds. 

5.2 METHODS 

5.2.1 The DrugQuery target library 

The DQ target library currently contains 2069 high quality crystal structures of 1245 human genes. 

Representative structures were extracted from the Protein Data Bank (PDB) [157] using a previously 

described greedy algorithm8 that considers all available human protein structures of a gene and selects a 

small number that maximize total sequence coverage and structural resolution (see Chapter 3.4.8). The 

selection process accounts for conformational diversity by allowing multiple representative structures of 

a single domain if they are separated by backbone RMSD above a sliding threshold, which iteratively 

increases if too many representative structures are identified. The selection process does not explicitly 

consider the presence of cocrystalized ligands in protein structures, which reduces DQ’s bias towards 

known druggable targets. The distribution of representative structure counts for targets in the DQ library 

is shown in Figure 5.1a. 

8 https://github.com/npabon/generate_gene_models 
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Figure 5.1. Profiles of protein structures and predicted binding sites in the DrugQuery library. (a) 

Distribution of the representative structure counts for the 1245 genes in the DQ library. (b) Distribution 

of predicted binding site counts for DQ genes. (c) Distribution of predicted binding site counts for DQ 

protein target structures. 

Druggable binding sites on representative target structures are identified using the Atlas computational 

solvent mapping software employed by the FTMap web server [119], which has been demonstrated to 

identify known ligand-binding pockets with high accuracy [181]. Atlas output is clustered to combine 

fragments separated by a minimum distance of less than five Angstroms and (up to) the five largest 

clusters for each protein structure are stored in the DQ library, though occasionally fewer than five 

clusters are produced for a given target. The distributions of predicted binding site counts per-gene and 

per-target structure are shown in Figure 5.1b,c. 

5.2.2 Docking and scoring 

Docking to predicted binding sites is performed using the smina9 implementation of Autodock Vina [91, 

180]. Smina achieved state-of-the-art accuracy in both pose prediction and affinity ranking in recent 

community wide challenges including Drug Design Data Resource (D3R) and Community Structure-Activity 

Resource (CSAR) [90, 91, 182]. Docking to predicted binding sites is performed using a box padding of four 

9 https://sourceforge.net/projects/smina/ 
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Angstroms and standard rigid-receptor smina sampling and exhaustiveness parameters. For each 

compound – target – binding-site combination up to nine score-ranked docked poses are generated and 

saved to the DQ database. When dockings are completed for a given query compound, target structures 

are ranked by the top docking score achieved across each target's predicted binding sites.  

 
5.2.3 RMSD analysis of predicted binding modes 
 

During validation, when a crystal structure of a validation compound’s known binding pose was available 

in the PDB, we compared it to the binding mode predicted by DQ. We computed root-mean-squared 

deviations (RMSDs) between heavy atoms in the predicted vs. known poses using OpenBabel [183]. For 

compounds without reference binding poses available in the PDB, we searched for crystal structures of 

similar compounds bound to the same protein target. Structural similarity between compounds was 

evaluated in terms of the Tanimoto coefficient, computed using OpenBabel. “Similar” compounds were 

defined as having Tanimoto similarity > 0.7 to the validation compound. When a similar compound was 

available, the Python RDKit10 module was used to identify the maximum common scaffold (MCS) between 

it and the validation compound. We then used MCS heavy atoms to compute a partial RMSD between the 

DQ-predicted poses of the validation compound and the known binding mode of the similar compound. 

 
5.2.4 Web server  
 

The DQ interface was written using the Python web framework Django (2.0.4). DQ compounds, targets, 

and docking results are stored in a MySQL database (14.14). All cheminformatic operations, including 

validating user uploads and computing compound similarities, are carried out using the Open Babel (2.3.1) 

Python wrapper PyBel [183]. 3Dmol [184] is used to create interactive, three dimensional renderings of 

user-uploaded compounds and the targets in the DQ library. Job runtimes scale roughly with the number 

                                                        
10 http://www.rdkit.org/ 
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of rotatable bonds in the compound and can range from one hour for small, rigid ligands to several hours 

for large, flexible molecules. 

 

 
5.3 USING DRUGQUERY 

 
 
5.3.1 Uploading a new small molecule 
 

On the DQ upload page (Figure 5.2a) users submit a ligand file and enter an email address to which a job 

completion notification will be sent. DQ accepts all standard small molecule file formats recognized by 

Open Babel [183] (SMI, SDF, PDB, MOL2, CIF, etc…). Before docking, DQ screens uploaded compounds 

against a database of previously uploaded compounds to check for duplicates. If the compound already 

exists in the DQ database, docking is skipped and the user is redirected to its existing results page. If not, 

DQ adds the compound to the database, assigns it a unique numerical ID reflecting the chronology of its 

upload, submits a docking job to the queue, and initializes an empty results page. The user is then 

redirected to the newly created results page (Figure 5.2b), which is populated upon completion of the 

docking job. 
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Figure 5.2. The DrugQuery user interface. (a) The DQ compound upload page. (b) The unpopulated results 

page for a newly-submitted compound.    
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5.3.2 Tracking a job 

Tracking the status of a docking job is achieved using by visiting the associated compound’s results page, 

accessible at drugquery.csb.pitt.edu/compounds/<id>/, which displays the status of the docking job 

(Figure 5.2b). To check a queued job’s place in line, users can inspect the DQ queue, accessible at 

drugquery.csb.pitt.edu/queue/. Once a docking job is completed, a link to the query compound’s results 

page is sent to the email address associated with the compound upload. 

5.3.3 Downloading results 

As shown in Figure 5.2b, a compound’s results page displays an interactive 3Dmol[184] rendering of the 

ligand and a table listing of the top-100 predicted protein targets. Each table entry lists the HUGO gene 

symbol of the target, the PDB and chain IDs of the protein model, the pocket ID of the predicted binding 

site, and the smina-predicted affinity score. There are several download options available to the user for 

retrieving results: (1) a columnated text file containing the complete target rankings and affinity scores, 

(2) a zipped directory containing the compound docking models (SDF format) and target structures (PDB

format) for the top-100 predicted targets, or (3) a zipped directory containing the complete set of 

compound docking models and structures for all DQ targets. Docking results (2) and (3) are organized 

hierarchically in directories by gene name, PDB ID, and chain ID. 

5.4 VALIDATION 

5.4.1  Predicting targets of FDA-approved drugs 

To demonstrate the usage of DQ we constructed a validation set of 95 FDA approved drugs with known 

targets listed in DrugBank [185] and ChEMBL [186] whose target genes were present in the DQ library 
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(Additional File 5.1).  Hereby referred to as Validation Set 1 (VS1), the distributions of known target counts, 

masses, and rotatable bonds for these compounds are shown in Figure 5.3. As several compounds had 

multiple known targets (Figure 5.3A), VS1 contained total of 169 pairwise interactions. 

 

 

Figure 5.3. Properties of FDA-approved compounds in Validation Set 1 (n=95). (a) Distribution of the 

number of known target genes present in the DQ library. (b) Molecular weight distribution. (c) Distribution 

of number of rotatable bonds. 

 

For each VS1 compound, DQ ranked the 2069 potential target structures by maximum docking score 

across the targets’ predicted binding sites. For 33 (35%), 55 (58%), and 65 (68%) of VS1 compounds, 

respectively, DQ predicted at least one known target in the top-10, top-100, and top-10% of potential 

targets. For 36 (21%), 66 (39%), and 84 (50%) of VS1 interactions, respectively, DQ predicted the known 

target in the top-10, top-100, and top-10%. Out of 30 compounds in VS1 with multiple known targets in 

the DQ library, DQ correctly ranked multiple targets in the top-10% for 10 (33%). The compound- and 

interaction-specific receiver operating characteristic (ROC) curves produced by DQ on VS1 are shown in 

Figure 5.4 and have area-under-the-curves (AUCs) of 0.89 and 0.80, respectively, demonstrating 

accuracies comparable to recent ligand-based [187] and genomic [80, 81] target prediction methods of a 

similar scale. 
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Figure 5.4. DrugQuery target prediction accuracy on Validation Set 1. (a) Compound-specific ROC curve, 

generated by sorting the 95 VS1 compounds by the rank of each one’s top-ranked known target. (b) 

Interaction-specific ROC curve, generated by sorting the 169 VS1 interactions by the rank of the known 

target for the relevant compound. 

One important advantage of DQ over alternative target prediction methods, however, is its ability to 

predict the 3D binding modes of the query compound to potential targets. 54 of the 84 VS1 interactions 

for which DQ predicted the known target in the top-10% had corresponding cocrystals in the PDB 

depicting the known binding mode of the interaction compound or a similar compound sharing a common 

scaffold (see Chapter 5.2.3 – RMSD analysis of predicted binding modes). Remarkably, for 34 (63%) of 

these interactions, the first DQ-predicted pose had RMSD < 2 Angstroms from the native pose, whereas if 

we considered the top-5 predicted poses then 41 (76%) had RMSD < 2 Angstroms (Figure 5.5). It is worth 

noting that re-docking – docking a compound into the receptor structure from a cocrystal in which it is 

already bound to the compound being docked – was explicitly avoided during validation by removing the 

offending target structures in the DQ library from consideration. 
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Figure 5.5. DrugQuery predicts native-like poses for compounds in Validation Set 1. (a) The DQ-predicted 

binding pose of calcifediol (magenta) aligned to a crystal structure (PDB ID: 1IE8) of KH1 (cyan) bound to 

the VDR protein (green). (b) The DQ-predicted binding pose of rimexolone (magenta) aligned to a crystal 

structure (PDB ID: 3MNE) of DEX (cyan) bound to the NR3C1 protein (green). (c) The DQ-predicted binding 

pose of olmesartan (magenta) aligned to a crystal structure (PDB ID: 4ZUD) of OLM (cyan) bound to the 

AGTR1 protein (green). 

 
5.4.2 Predicting targets of non-drug bioactive compounds 
 

To evaluate the performance of DQ in predicting the targets of non-drug small molecules, we constructed 

a second validation set (VS2) of 102 congeneric compounds from the 2017 community-wide D3R Grand 

Challenge 2. All VS2 compounds had known activity against the human protein NR1H4 (FXR), for which 

there are two representative structures (PDB IDs 4OIV & 3OKI) in the DQ library. The mass and rotatable 

bond distributions of VS2 compounds are shown in Figure 5.6a,b. For 28 (27%), 73 (72%), and 88 (86%) of 

VS2 compounds, respectively, DQ predicted FXR in the top-10, top-100, and top 10% of 2069 ranked 

potential targets. DQ’s VS2 ROC curve is shown in Figure 5.6c and has an AUC of 0.94. 
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Figure 5.6. Properties of compounds in Validation Set 2 (n=102) and DrugQuery target prediction 

accuracy. (a) Molecular weight distribution. (b) Distribution of number of rotatable bonds. (c) Compound-

specific ROC curve, generated by sorting the 102 VS2 compounds by FXR’s position among their ranked 

potential targets. 

 

As part of the D3R challenge, bound poses for 36 VS2 compounds were released to the PDB and we used 

them to evaluate the compounds’ DQ-predicted poses. For 10 (28%) of these compounds, the first DQ-

predicted pose had RMSD < 2 Angstroms from the native pose, whereas if we considered the top-5 

predicted poses then 16 (44%) had RMSD < 2 Angstroms (Figure 5.7). We observed that DQ’s 

comparatively weaker pose prediction accuracy for VS2 vs. VS1 was due largely to the fact that several 

VS2 FXR structures deviated significantly from the representative FXR structures in the DQ library (Figure 

5.8a). Predicted poses for these VS2 compounds were thus often “flipped” with respect to their true 

binding modes - maintaining specific, native-like hydrogen bond contacts but “swapping” the positions of 

nonspecific hydrophobic groups (Figure 5.8b,c). 
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Figure 5.7. Native-like predicted poses for compounds in Validation Set 2. DQ-predicted poses (magenta) 

aligned to bound cocrystal structures (green & cyan) for (a) FXR19, (b) FXR20, and (c) FXR22. 

 

 

Figure 5.8. Unique receptor conformations in Validation Set 2 produce “swapped” hydrophobic contacts 

in predicted poses. (a) Bound crystal structure of FXR4 (green & cyan) aligned to DQ’s representative FXR 

structure (orange, PDB ID 3OKI), highlighting significant conformational differences in binding-pocket-

adjacent protein regions. (b) DQ-predicted pose (magenta) of FXR14 aligned to bound cocrystal structure 

(green & cyan). Dashed black lines denote conserved, native-like hydrogen bonds. Solid black arrow 

indicates the “swapped” nonspecific hydrophobic groups of FXR14. (c) DQ-predicted pose (magenta) of 

FXR25 aligned to bound cocrystal structure (green & cyan). Native contacts and hydrophobic “swapping” 

indicated as in (b). 
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5.5 SUMMARY 

Predicting the protein targets of bioactive compounds has many critical applications in drug discovery 

including side effect prediction, drug repurposing, and the design of multi-target drugs. In lieu of costly 

wet lab target identification pipelines, ligand- and structure-based computational approaches have 

emerged. Of these, docking-based multi-target screening has the significant advantage of predicting the 

structural binding modes of query compounds. With the growth of available 3D protein structures in the 

PDB, docking-based methods are becoming increasingly well suited for target prediction and have in 

several cases predicted novel interactions that were subsequently verified experimentally [179, 188]. 

Currently, however, there are no fast and easy-to-use tools available to the scientific community for multi-

target docking at a large scale. 

Presented here is a public web server called DrugQuery (DQ) that meets this need – providing a simple 

and intuitive interface for to predict potential protein targets for small molecules of interest. The DQ 

library currently contains 2069 domain structures of potential protein targets from 1245 unique human 

genes and has the potential to scale up to the 10,000+ unique human proteins in the PDB. Using DQ, users 

can upload a compound of interest in any standard molecular file format and in a short time, a few hours 

for most small molecules, can easily download the complete DQ potential target rankings and the 

predicted binding modes of the query compound.  

DQ has been extensively tested for both target identification and binding site prediction on a chemically 

diverse validation set of 95 multi-target FDA-approved drugs, as well as a second validation set of 102 

congeneric FXR-binding compounds from the 2017 D3R Grand Challenge 2. In both cases, target ranking 

ROCs achieve AUCs above 0.89 (Figure 5.4, Figure 5.6c), demonstrating significant discriminative power in 

league with recent, non-structure-based, computational target prediction methods [80, 81, 187]. 
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Furthermore, DQ demonstrated multi-target prediction accuracy by correctly identifying multiple known 

protein targets for 10/30 multi-target drugs in VS1. In binding pose prediction, DQ achieved impressive 

accuracy considering that redocking was explicitly avoided. In VS1, DQ predicted poses with < 2 Angstrom 

RMSD from the native pose for 76% of compounds with bound cocrystal structures. In VS2, sub-2 

Angstrom RMSDs were achieved for 44% of compounds.  

DQ is in active development and there are a number of avenues for future improvement. In addition to 

expanding the DQ target library, we plan to implement compound-specific score normalization strategies 

to account for the so called “reverse docking scoring bias” - a phenomena that has been characterized for 

most available docking software [189] in which target predictions are artificially biased towards structures 

with larger, more hydrophobic cavities. Potential improvements to the representative structure selection 

process are also being considered, such as explicitly considering the presence of bound ligands and 

attempting to maximize binding-site diversity. 

5.6 ADDITIONAL FILES 

Additional File 5.1. (additional_file_5.1.xlsx) Table of compounds in Validation Set 1 and their known 

protein targets that have representative structures in the DurgQuery target library. 
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6.0 CONCLUSIONS AND FUTURE RESEARCH 
 
 
 
 

The research presented in this dissertation has focused on improving rational drug discovery by applying 

insights into the biophysics that regulate protein interactions and the network-scale effects of disrupting 

them. We focused on four major challenges in this arena: protein flexibility and selective promiscuity, 

protein target prediction for bioactive small molecules, disrupting complex signaling networks, and large-

scale structure-based target screening. Below, we will briefly recap our contributions to each of these 

areas and the computational approaches employed therein. 

 

In Chapter 2.0 we discussed our efforts to model how structural flexibility at the surface of immune 

checkpoint receptor PD-1 facilitates ‘selectively promiscuous’ binding – binding specifically to multiple 

protein ligands with structurally distinct binding interfaces. Using molecular dynamics simulations, we 

identified evolutionarily conserved “trigger” motifs on the ligands’ interfaces that, upon recognition by 

PD-1, displace polar Asn66 and transforms PD-1’s interface from flat and hydrophilic to flexible and 

hydrophobic. Ligand-specific, trigger-adjacent interactions then stabilize distinct bound-like receptor 

interfaces: a flat hydrophobic patch for PD-L1 and a large hydrophobic cavity for PD-L2. The importance 

of trigger interactions was demonstrated by a recent crystal structure of the blockbuster PD-1 – targeting 

antibody pembrolizumab, which, although having evolved via an entirely different pathway than PD-1’s 

cognate ligands, exploits analogous triggering interactions to displace Asn66. This, and the structural 

modelling of a recently patented PD-1 inhibiting macrocycle suggest the potential for triggering to guide 

rational drug design against challenging, high-impact targets like PD-1. Future work will in this area will 
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consist of: (1) incorporating conserved trigger motifs in virtual screening for inhibitors potentially capable 

of transforming hard-to-drug interfaces like PD-1’s into surfaces more amenable to small molecule 

binding, and (2) evaluating the generality of the trigger model of selective promiscuity by studying other 

flexible, multi-ligand regulatory proteins. 

 

In Chapter 3.0 we examined a hybrid genomic & structural pipeline for small molecule protein target 

prediction. Based on the hypothesis that small molecule protein inhibitors should yield similar 

transcriptomic responses in live cells to the genetic knockdown of the target protein, we trained a random 

forest classifier to predict drug-target interactions from gene expression data. We found that in addition 

to direct correlations between the gene expression signatures of drugs and the knockdowns of potential 

targets, accurate predictions required considering indirect correlations between the drug and other 

knockdowns in the potential target’s pathway. By refining our genomic predictions with structure-based 

modelling, we demonstrate that we can accurately predict the known targets of FDA-approved drugs as 

well as predicting previously unknown interactions, of which we validate several. Future work in this area 

will involve searching for ways to improve random forest classification accuracy, such as distinguishing 

between inhibitors and agonists during training or testing additional gene expression-based features. We 

may also explore the feasibility of employing alternative classification models like neural networks. 

 

In Chapter 4.0 we describe an extension of the genomic insight we gained from Chapter 3.0 and its 

application to identifying small molecule disruptors of the TNF-induced NF-kB signaling pathway. By 

virtually screening for compounds that produced broad-spectrum transcriptomic correlations with the 

genetic inhibition of proteins in the TNFR1 signaling complex, we identified two compounds that inhibited 

IKK recruited and prevented NF-kB in live cell fluorescence assays. Structural modelling suggested a 



 139 

mechanism of action involving disruption of the native TRADD-TRAF2 interface, which would likely have 

downstream effects affecting ubiquitin scaffolding and recruitment of downstream signaling proteins.  

 

Finally, in Chapter 5.0 we present DrugQuery a first-of-its-kind public web server for docking-based small 

molecule target prediction. With over 2000 target structures and 1200 unique human genes currently 

represented in the DrugQuery library, we validated the server extensively in both target ranking and 

binding pose prediction contexts. DrugQuery’s simple web interface was designed with special 

consideration for potential users with limited computational cheminformatic or structural modelling 

experience, such that any biologist or chemist with a computer can quickly and easily obtain a ranked 

target list and predicted binding modes for their small molecule of interest. As a project in still in active 

development, we plan to scale-up the DrugQuery target library to exploit the full diversity of the Protein 

Data Bank as well as evaluate alternative strategies for rational representative structure selection. We 

may also make changes to DrugQuery’s backend docking and scoring pipeline as the Camacho group 

continues to participate in and learn from community-wide challenges in small molecule affinity ranking 

and pose prediction. 
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