New Boron–Hydrogen Insertion Reactions of Ligated Boranes

by

Thomas H. Allen

B.S. Chemistry, Magna Cum Laude, Ohio Northern University, 2012

Submitted to the Graduate Faculty of the
Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

University of Pittsburgh

2018
This dissertation was presented

by

Thomas H. Allen

It was defended on

July 17, 2018

and approved by

Sruti Shiva, Associate Professor, Department of Pharmacology and Chemical Biology

W. Seth Horne, Associate Professor, Department of Chemistry

Kay M. Brummond, Professor, Department of Chemistry

Committee Chair: Dennis P. Curran, Distinguished Service Professor and Bayer Professor,

Department of Chemistry
Chemical transformations of ligated borane complexes, including \(N \)-heterocyclic carbene boranes, are demonstrated. Chapter 1 begins with an introduction of Lewis base borane complexes, rhodium carbene chemistry, and B–H insertion of ligated boranes. The second part of Chapter 1 describes the insertion of rhodium carbenes, previously demonstrated with NHC-boranes, into the B–H bonds of other ligated boranes. Stable ligated \(\alpha \)-boryl esters were isolated. A series of competitive B–H insertion experiments are described that were used to develop a relative reactivity profile of ligated boranes toward rhodium-catalyzed B–H insertion. The enantioselective B–H insertion of NHC-boranes with chiral dirhodium catalysts was also investigated. Finally, the synthesis and application of two chiral bridged dirhodium catalysts is described.

Chapter 2 describes the discovery and isolation of NHC-boryl hydrazones by non-chain radical recombinations of NHC-boranes, diazomalonates, and azo initiators. Thermal 1,1-hydroborations of a diazo dione and a diazonium salt to give boryl hydrazone and boryl diazene products are demonstrated. Chapter 3 explores the use of electrophilic NHC-borane complexes to catalyze B–H insertion reactions with diazoesters. The boryl iodide catalyzed method is adept at producing \(\alpha \)-substituted-\(\alpha \)-NHC-boryl esters. A small family of NHC-boryl esters with amino acid side chains was synthesized. Chapter 4 describes the basic hydrolyses of ligated \(\alpha \)-boryl esters to yield ligated \(\alpha \)-boryl acetic acids. The boryl acetic acid derivatives were characterized by X-ray crystallography and acidity constant measurements. They are among the least acidic
carboxylic acids known. The electron-donating ability of ligated borane substituents was further quantified by using derived Hammett constants from 13C NMR chemical shift correlation experiments.
TABLE OF CONTENTS

PREFACE... XX

1.0 RHODIUM(II)-CATALYZED B–H INSERTION CHEMISTRY & SYNTHESIS OF CHIRAL BRIDGED RHODIUM(II) CATALYSTS .. 1

1.1 INTRODUCTION .. 1

1.1.1 Lewis Base Borane Adducts.. 1

1.1.2 Rhodium(II)-Catalyzed Carbene Insertion into C–H Bonds 4

1.1.2.1 Rhodium-catalyzed C–H Insertion Mechanism ... 5

1.1.2.2 Donor/Acceptor Diazo Compounds ... 7

1.1.2.3 Bridged Rh(II) Tetracarboxylate Catalysts .. 8

1.1.2.4 Chiral Rh(II) Catalysts with Bridging Ligands .. 10

1.1.3 Catalytic Carbene Insertion into B–H Bonds ... 11

1.2 RESULTS AND DISCUSSION ... 17

1.2.1 Rhodium-catalyzed B–H Bond Insertions with Lewis Base Adducts of Borane ... 17

1.2.1.1 Synthesis of Stable Lewis Base Complexes of α-Boryl Carbonyl Compounds .. 17
1.2.1.2 Determination of Relative Rates of Ligated Boranes and a Borohydride Salt in Rhodium(II)-Catalyzed Competitive B–H Insertion Experiments .. 26

1.2.1.3 Enantioselective NHC B–H Insertions with Donor/Acceptor Rhodium Carbenes .. 31

1.2.1.4 Enantioselective NHC B–H Insertion with Rhodium Carbenes (Boron Stereocenter) .. 34

1.2.2 Exploring the Synthesis and Application of a Chiral Rh₂.esp₂ Analog... 38

1.2.2.1 Synthesis of Methyl and Benzyl Chiral Rh₂.esp₂ Analogs 38

1.2.2.2 Application of Methyl and Benzyl Chiral Rh₂.esp₂ Analogs 46

1.3 CONCLUSIONS .. 48

2.0 RADICAL AND THERMAL REACTIONS OF N-HETEROCYCLIC CARBENE BORANES WITH ELECTROPHILIC DIAZO COMPOUNDS 50

2.1 INTRODUCTION .. 50

2.1.1 Radical Initiators .. 50

2.1.1.1 Azo initiators ... 50

2.1.2 Radical chemistry of NHC-boranes ... 51

2.1.3 Radical chemistry of diazo compounds ... 52

2.2 RESULTS AND DISCUSSION .. 53

2.2.1 Reaction of NHC-boranes and Diazocompounds with Radical Initiators .. 53

2.2.2 Synthesis of an NHC-boryl Hydrazone via 1,1-Hydroboration 60

2.2.3 Thermal Reaction of an NHC-borane with a Diazonium Salt.......... 65
2.3 CONCLUSIONS.. 69

3.0 BOREN ION EQUIVALENT CATALYZED B–H INSERTION REACTIONS OF N-HETEROCYCLIC CARBENE BORANES ... 71

3.1 INTRODUCTION .. 71

 3.1.1 Borenium ion chemistry of NHC-boranes................................. 71

3.2 RESULTS AND DISCUSSION .. 73

 3.2.1 Optimization of B–H Insertion Reaction Conditions with Excess Diazocomponent ... 73

 3.2.2 Preparative B–H Insertion Reactions of NHC-boranes with Ethyl Diazooacetate .. 77

 3.2.3 Diiodine-Catalyzed B–H Insertion Screening with other Ligated Boranes ... 79

 3.2.4 Preparative Reactions of 1,3-Dimethylimidazol-2-ylidine Borane with Substituted Diazooacetates .. 80

 3.2.5 Optimization of B–H Insertion Reaction Condition with Excess Borane Component ... 83

 3.2.6 Structure and Stability of α-NHC-Boryl Esters .. 85

 3.2.7 Mechanistic Experiments .. 86

3.3 CONCLUSIONS .. 89

4.0 SYNTHESIS AND CHARACTERIZATION OF LIGATED BORYL ACETIC ACIDS ... 91

4.1 INTRODUCTION .. 91

 4.1.1 α-Boryl Carboxylic Acids ... 91
4.2 RESULTS AND DISCUSSION ... 93
4.2.1 Hydrolysis of Ligated α-Boryl Esters .. 93
4.2.2 X-ray Structures of Ligated α-Boryl Acetic Acids ... 97
4.2.3 Acidity Constant Measurements .. 100
4.2.4 NHC-borane Hammett Values Derived from 13C NMR Chemical Shift Correlation ... 104
4.3 CONCLUSIONS ... 108

5.0 EXPERIMENTAL ... 109
5.1 GENERAL INFORMATION .. 109
5.2 EXPERIMENTAL DATA FOR CHAPTER 1 ... 110
5.3 EXPERIMENTAL DATA FOR CHAPTER 2 .. 124
5.4 EXPERIMENTAL DATA FOR CHAPTER 3 ... 131
5.5 EXPERIMENTAL DATA FOR CHAPTER 4 ... 143

BIBLIOGRAPHY ... 151
LIST OF TABLES

Table 1. Solvent effect of rhodium-catalyzed asymmetric cyclopropanation 11
Table 2. Enantioselective C–H insertion of dimethylphosphine-borane 34 with Zhou ligand 35 14
Table 3. B–H insertion of Lewis base borane adducts ... 20
Table 4. Lewis base additives in Rh(II) B–H insertion system .. 26
Table 5. Competitive B–H insertion experiments ... 29
Table 6. Relative rates toward B–H insertion, BDE values, and Mayr N values for various boranes ... 30
Table 7. Relative rate of boranes toward B–H insertion .. 31
Table 8. Synthesis of racemic standard NHC-borane insertion products 32
Table 9. Chiral rhodium(II) catalyst screening with NHC B–H insertion (α-carbon stereocenter) .. 34
Table 10. Chiral rhodium(II) catalyst screening with NHC B–H insertion (boron stereocenter). 36
Table 11. Complexation of methyl diacid 72 with Rh2(tfa)4 ... 43
Table 12. Enantioselective NHC B–H insertion (α-carbon stereocenter) 47
Table 13. Enantioselective styrene cyclopropanation ... 48
Table 14. Radical initiator screening .. 54
Table 15. Screening substituted diazo compounds ... 57
Table 16. Screening differentially substituted NHC-boranes .. 58
Table 17. Formation of NHC B–N and B–C adducts with dione diazo 100 63
Table 18. Initial discovery of B–H reaction with NHC-boranes and activators 74
Table 19. Reaction conditions screening with diazo compound in excess 76
Table 20. Isolated yields in preparative reaction of NHC-boranes with ethyl diazoacetate 79
Table 21. Diiodine-catalyzed B–H insertion of ligated boranes ... 80
Table 22. Isolated yields in preparative reactions of NHC-borane 5 with substituted diazoacetates .. 82
Table 23. Reaction conditions screening with NHC-borane in excess 84
Table 24. Hydrolysis of NHC-boryl ester 114 ... 94
Table 25. Synthesis of ligated boryl acetic acids ... 97
Table 26. Acidity constant measurements of ligated boryl acetic acids 102
Table 27. Electrophilic Hammett constants for ligated borane substituents 107
LIST OF FIGURES

Figure 1. Representative Lewis base borane adducts ... 2
Figure 2. Examples of NHC-boranes .. 3
Figure 3. (a) Dirhodium tetracarboxylate, Rh₂(OAc)₄, and (b) Rh(II)-catalyzed C–H insertion of 2-methylbutane ... 5
Figure 4. Diazo decomposition and carbene insertion mechanism ... 6
Figure 5. Metastable carbenoid intermediate 13 ... 6
Figure 6. Retention of stereoconfiguration during cyclization¹⁷ and Doyle's three-centered transition state ... 7
Figure 7. Transition state model of Nakamura's intermediate Rh(II) carbene/alkane complex 7
Figure 8. Structures of diazoacetate and two donor/acceptor diazo compounds 8
Figure 9. Davies' chiral bridged dirhodium catalysts .. 11
Figure 10. Examples of carbene insertion into B–H bonds, (a) alkynylcarbene insertion, (b) samarium carbene insertion, (c) dichlorocarbene insertion .. 12
Figure 11. B–H insertion using Rh(I) catalysts ... 15
Figure 12. Borane isomer equilibria ... 18
Figure 13. Phosphonium ylide 56 .. 22
Figure 35. Correlation of $\delta(C_p)$ of monosubstituted benzenes with σ_p^+ 104

Figure 36. Hammett correlation equation applied to NHC-boryl arene 171 104
LIST OF SCHEMES

Scheme 1. Synthesis of NHC-borane 6 .. 3
Scheme 2. Preparation of monochelated bridged dimer 15 .. 9
Scheme 3. Cyclization of α-diazo β-keto ester 16 .. 9
Scheme 4. Preparation of Rh2(esp)2 19 .. 10
Scheme 5. Rhodium-catalyzed B–H insertion of NHC-borane 5 .. 12
Scheme 6. Copper-catalyzed B–H insertion of triphenylphosphine-borane 3 ... 13
Scheme 7. Enantioselective B–H insertion synthesis of boryl furan 37 .. 14
Scheme 8. Enzyme catalyzed enantioselective B–H insertion of NHC-borane 5 16
Scheme 9. Triphenylphosphine scavenging with Merrifield resin .. 21
Scheme 10. Competition experiment between NHC-borane 5 and pyridine-borane 4 28
Scheme 11. B–H insertion of benzimidazole aryl borane 67 ... 35
Scheme 12. Boron stereocenter racemization study with mixed starting material 37
Scheme 13. Proposed synthetic pathway to a chiral Rh2(esp)2 analog .. 39
Scheme 14. Finkelstein reaction of bis(bromoethyl)benzene 70 ... 40
Scheme 15. Double alkylation of bis(iodomethyl)benzene 74 ... 40
Scheme 16. Hydrolysis of bis alkylated benzene 71 ... 41
Scheme 17. Reduction of diacid 72 with LAH .. 41
Scheme 18. Mosher's acid esterification of 75 .. 42
Scheme 19. Synthesis of hydrocinnamoyloxazolidinone 79 .. 45
Scheme 20. Synthesis of chiral benzyl diacid 81 .. 45
Scheme 21. Complexation of benzyl diacid 81 with Rh2(tfa)2 .. 46
Scheme 22. Radical fragmentation of AIBN .. 51
Scheme 23. Preparative scale synthesis of NHC-boryl hydrazone 91 .. 56
Scheme 24. Synthesis of azo initiator NHC-boryl hydrazone analogs ... 59
Scheme 25. Proposed mechanism for the formation of NHC-boryl hydrazone 91 60
Scheme 26. Reaction of NHC-borane 5 with diazo dione 100 (AIBN present) 61
Scheme 27. Reaction of NHC-borane 5 and diazo dione 100 without AIBN 64
Scheme 28. Pathway to proposed NHC boryl diazene 104 .. 65
Scheme 29. Synthesis of NHC boryl diazene oxide 108 ... 68
Scheme 30. Electrophilic halogenation of NHC-borane 6 ... 72
Scheme 31. Nucleophilic substitutions of NHC-boryl iodide 109 with NaN3 or NaCN 72
Scheme 32. Hydroboration of 2,3-dimethyl-2-butene by NHC-borane 5 73
Scheme 33. Preparation of α-NHC boryl ester 114 .. 77
Scheme 34. Experimental confirmation of turnover step ... 87
Scheme 35. Yudin’s synthesis of α-MIDA-boryl acid 157 ... 91
Scheme 36. Synthesis of NHC-boryl acetic acid 163 ... 95
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>ACN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>Ad</td>
<td>1-adamantyl</td>
</tr>
<tr>
<td>AHCN</td>
<td>1,1′-azobis(cyclohexanecarbonitrile)</td>
</tr>
<tr>
<td>AIBN</td>
<td>2,2′-azobis(2-methylpropionitrile)</td>
</tr>
<tr>
<td>BArF</td>
<td>tetrakis[3,5-bis(trifluoromethyl)phenyl]borate</td>
</tr>
<tr>
<td>BDE</td>
<td>bond dissociation energy</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>BTF</td>
<td>(trifluoromethyl)benzene (benzotrifluoride)</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>CBS</td>
<td>Corey–Bakshi–Shibata</td>
</tr>
<tr>
<td>CHD</td>
<td>1,4-cyclohexadiene</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCC</td>
<td>N,N'-dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DCE</td>
<td>dichloroethane</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-dimethylaminopyridine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DTBP</td>
<td>di-tert-butyl peroxide</td>
</tr>
<tr>
<td>dipp</td>
<td>1,3-bis(2,6-diisopropylphenyl)</td>
</tr>
<tr>
<td>dr</td>
<td>diasteromeric ratio</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>EPR</td>
<td>electron paramagnetic resonance</td>
</tr>
<tr>
<td>er</td>
<td>enantiomeric ratio</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>HMDS</td>
<td>bis(trimethylsilyl)amine</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry</td>
</tr>
<tr>
<td>HSQC</td>
<td>heteronuclear single quantum coherence</td>
</tr>
<tr>
<td>iPr</td>
<td>iso-propyl</td>
</tr>
<tr>
<td>LAH</td>
<td>lithium aluminum hydride</td>
</tr>
<tr>
<td>LB</td>
<td>Lewis base</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamide</td>
</tr>
<tr>
<td>LFP</td>
<td>laser flash photolysis</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MIDA</td>
<td>N-methyliminodiacetic acid</td>
</tr>
<tr>
<td>MTPA</td>
<td>α-methoxy-α-(trifluoromethyl)phenylacetyl chloride</td>
</tr>
<tr>
<td>N</td>
<td>Mayr nucleophilicity parameter</td>
</tr>
<tr>
<td>NHC</td>
<td>N-heterocyclic carbene</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
</tbody>
</table>
\begin{align*}
p-\text{ABSA} & \quad 4\text{-acetamidobenzenesulfonyl azide} \\
\text{Ph} & \quad \text{phenyl} \\
\text{ppm} & \quad \text{parts per million} \\
\text{pyr} & \quad \text{pyridine} \\
R_f & \quad \text{retention factor} \\
\text{rt} & \quad \text{room temperature} \\
\sigma^+_p & \quad \text{electrophilic substituent constant} \\
t\text{Bu} & \quad \text{tert-butyl} \\
10\text{-CSA} & \quad \text{camphor sulfonic acid} \\
\text{TEP} & \quad \text{Tolman electronic parameter} \\
\text{Tf} & \quad \text{triflate} \\
\text{TFA} & \quad \text{trifluoroacetic acid} \\
\text{THF} & \quad \text{tetrahydrofuran} \\
\text{TLC} & \quad \text{thin layer chromatography} \\
\text{TS} & \quad \text{transition state} \\
\text{t}_R & \quad \text{retention time} \\
\text{V-65} & \quad 2,2^{\prime}\text{-azobis}(2,4\text{-dimethylvaleronitrile}) \\
\text{UV} & \quad \text{ultraviolet}
\end{align*}
PREFACE

The completion of my dissertation represents a capstone on a six-year journey nearing its conclusion. A cast of individuals from my youth, my studies at ONU, and my time at University of Pittsburgh has led me to this point. I would like to take this opportunity to thank many of these individuals who have had a positive impact on my graduate studies.

Foremost, I would like to express my sincere gratitude to my advisor, Professor Dennis Curran, for his outstanding mentorship over the last six years. His professionalism was instrumental toward fostering an atmosphere of mutual respect that made working in his group a first-rate experience. Learning from his research philosophy and collaborative spirit has allowed me to mature as a chemist, in both my research and my writing. I am truly honored to have had the opportunity be a part of such a storied career, and I will always owe him a great deal.

I am appreciative toward my dissertation committee members Professors Kay Brummond, Seth Horne, and Sruti Shiva, for their attention and valued input on my comprehensive exam, research proposal, and dissertation writing. Professor Peng Liu is also acknowledged for his expedient guidance through the proposal writing process.

The NHC-borane project has been successful in part to the collaborations that have taken place with colleagues within the Curran group. Hanmo Zhang’s positive mentorship during my first summer was a wonderful introduction to the Curran group. I am grateful for the excellent research conducted by Xiben Li that laid the foundation for many of my eventual contributions
to the project. I would also like to express thanks to the following researchers involved with the NHC-borane project: Tsuyoshi Taniguchi, Xiangcheng Pan, Everett Merling, Swapnil Nerkar, Timothy McFadden, Wen (David) Dai, and Daniel Bolt. Their many contributions and cherished friendship are hopefully well-reflected in my work, and I wish them well.

I would like to thank the following co-authors on my publications: Takuji Kawamoto and Sean Gardner for initiating the NHC-boryl iodide catalysis project; and Anthony Horner and Prof. Stephen Weber whose acidity constant measurements and analytical chemistry expertise were critical for the completion of the NHC-boryl acid project.

My thanks also go to Dr. Damodaran Krishnan and Dr. Bhaskar Godugu for maintaining the excellent NMR and HRMS facilities. Dr. Steve Geib was always a pleasure to work with during the process of solving X-ray crystal structures.

Special thanks to Prof. Brian Myers whose hands-on mentorship at ONU set me on the path toward organic chemistry research, and his recommendation to apply to Pitt no doubt changed the course of my life. Also thanks to Mrs. Judy Johnston whose stern tutelage in my first chemistry classes imparted discipline on my studies carried through to this day.

I have been able achieve much in life due to the unconditional love and support from my family, especially my parents, Dave and Melinda. Their sacrifices through the years are not forgotten.

My six years in Pittsburgh would have been a duller experience without the friendship of James, Miles, Erin, Eric, Tyler, Halina, Andreas, Greg, Chad and Nadine. Best wishes to them all. Finally, I would like to thank Hannah. She has been an inspiration for the last two and a half years. I am truly grateful that she is a part of my life.

I dedicate this dissertation to John Harmon and Nancy Allen.
1.0 RHODIUM(II)-CATALYZED B–H INSERTION CHEMISTRY & SYNTHESIS OF CHIRAL BRIDGED RHODIUM(II) CATALYSTS

1.1 INTRODUCTION

1.1.1 Lewis Base Borane Adducts

Trivalent borane species are rare. Neutral Lewis bases complex with borane (BH$_3$) to produce tetravalent, neutral borane adducts. Borane exists as a dimer (B$_2$H$_6$) when a Lewis base is absent. Trimethylamine-borane 2, triphenylphosphine-borane 3 and pyridine-borane 4 are representative examples of ligated tetravalent boranes (Figure 1). These compounds have a formal negative charge on boron and a formal positive charge on the Lewis base. The 2-electron, 2-center bond is variously depicted as a covalent bond (R_3N–BH$_3$), a dative bond (R_3N···BH$_3$ or R_3N→BH$_3$), or as a bullet (R_3N•BH$_3$). Here we use the common covalent bond depiction because Lewis base adducts with non-labile bonds are the predominant borane species tested in the following experiments.
Borane complexes with THF (BH$_3$–THF 1) or dimethyl sulfide (BH$_3$–SMe$_2$) undergo rapid Lewis base exchange with alkenes and alkynes. Following exchange, reaction of borane (BH$_3$) with an alkene results in the syn-addition of H$_2$B–H across a π-bond through a 4-center transition state. In contrast, borane adducts 2, 3, and 4 resist Lewis base exchange at ambient temperature, thereby allowing for additional synthetic applications beyond hydroboration. Amine-boranes have been used as hydrogen-storage reagents, organocatalysts (for example, the CBS reagent), and as amine protecting groups. Secondary phosphine-boranes undergo hydrophosphinylation with alkenes and alkynes rather than hydroboration. Pyridine-boranes are weak hydride donors that have higher solubility in aprotic organic solvents than borohydride.

Related to amine- and phosphine-boranes, NHC-boranes are complexes of an N-heterocyclic carbene (Lewis base) with a borane (Lewis acid). Several typical NHC-boranes are shown in Figure 2.
NHC-boranes can be prepared on gram scale by deprotonation of an imidazolium salt followed by complexation with a borane source. For example, NHC-borane 6 is synthesized by deprotonation of imidazolium salt 7 with the strong base t-BuOK to generate an \textit{in situ} carbene (Scheme 1). Addition of BH$_3$–THF 1 as a borane source gives NHC-borane 6 in 40% yield as a stable solid.7 NHC-boranes resist dissociation even under heating,6 which allows for access to borenium, boryl radical and anion reactive intermediates. Applications of NHC-boranes as reagents have included radical reductions of alkyl and aryl halides,8 and ionic reductions of halides, sulfonates and ketones.9

Scheme 1. Synthesis of NHC-borane 6
1.1.2 Rhodium(II)-Catalyzed Carbene Insertion into C–H Bonds

An efficient strategy for formation of heteroatom–carbon (C–X) bonds is the insertion of transient carbenes into an X–H bond (X = N, S, O, Si). Thermally or photochemically generated free carbenes (:CH₂ or :CCl₂) have limited utility due to poor selectivity in insertion reactions. The reactivity of metal carbenes generated from diazoalkanes by transition metals (Cu or Rh) can be fine-tuned to allow for greater synthetic utility in selective intra- and intermolecular functionalizations.¹⁰

The dirhodium tetracarboxylate complexes (Rh₂L₄, L = CO₂R) are constructed from a dinuclear core surrounded by four equatorial carboxylate ligands. The core is held together by a rhodium–rhodium single bond.¹¹ Dirhodium tetraacetate [Rh₂(OAc)₄] is a representative example of rhodium carboxylates, exhibiting D_{4h} symmetry (Figure 3).

The Teyssie group first reported the intermolecular C–H insertion of ethyl diazoacetate into various alkanes, catalyzed by dirhodium tetraacetate.¹² For example, Rh₂(OAc)₄ catalyzed C–H insertion of ethyl diazoacetate 11 with 2-methylbutane gave the insertion product 12 in 90% yield.
1.1.2.1 Rhodium-catalyzed C–H Insertion Mechanism

A simplified catalytic cycle for a diazo decomposition/carbene insertion reaction involving dirhodium tetracarboxylate (Rh$_2$L$_4$) is pictured in Figure 4. First, the negatively-polarized carbon of diazoester complexes at the axial site of the coordinately-unsaturated dirhodium tetracarboxylate to form Rh/diazoester species I (step i). According to Doyle, nitrogen extrusion from the diazoester generates the metastable rhodium–carbene complex II (step ii). Step II is thought to be rate-limiting. Davies and coworkers recently reported the direct characterization of metastable dirhodium-carbene intermediate 13 by vibrational and NMR spectroscopy, and X-ray absorption analysis (Figure 5).
Carbene transfer (step iii) is concerted but nonsynchronous as C–H insertion occurs in a single step through a three-centered transition state (TS) with low activation energy (Figure 6). Doyle originally proposed14 that the empty π-orbital on the carbene carbon overlaps with the σ-orbital of the C–H bond. Carbene insertion into a C–H bond occurs with retention of configuration. Doyle’s three-centered concerted TS for the carbene transfer step is generally accepted.

Figure 5. Metastable carbenoid intermediate 13
A theoretical analysis of the carbene transfer by Nakamura supported Doyle’s three-centered TS while further elucidating the mechanistic contribution of the dimetallic core.16 The RhI atom detached from the RhIII–C moiety serves as an ‘electron sink’, increasing the electrophilicity of the carbene center. After hydride transfer, the RhII–RhII bond is regenerated, facilitating cleavage of the RhIII–C bond alongside C–C bond formation (Figure 7).

\begin{align*}
\text{Rh}_2L_4^+ (R) \quad \text{OMe} \\
\text{O} \\
\text{O} \\
\text{Rh}_2L_4 \\
\text{Me} \quad \text{H} \\
\text{Me} \\
\text{C} \quad \text{Rh}_2L_4 \\
\text{Me} \quad \text{R} (R)
\end{align*}

Figure 6. Retention of stereoconfiguration during cyclization17 and Doyle's three-centered transition state

\begin{align*}
\text{Me} \quad \text{H} \\
\text{Rh}_2L_4^+ (R) \quad \text{OMe} \\
\text{O} \\
\text{O} \\
\text{Rh}_2L_4 \\
\text{Me} \quad \text{H} \\
\text{Me} \\
\text{C} \quad \text{Rh}_2L_4 \\
\text{Me} \quad \text{R} (R)
\end{align*}

Figure 7. Transition state model of Nakamura's intermediate Rh(II) carbene/alkane complex

1.1.2.2 Donor/Acceptor Diazo Compounds

Diazoalkanes and aryldiazo methanes are impractical carbene precursors for intermolecular C–H insertion reactions due to safety concerns (dangerously explosive) and low regioselectivity.18 In contrast, α-diazo esters and related compounds (pictured in Figure 8) are popular substrates for catalytic C–H insertion reactions due to their relative stability and ease of formation.19 Diazocarbonyl compounds are resistant to uncatalyzed decomposition over
prolonged storage. For example, the flash point of ethyl diazoacetate is 117 °C20 and is stable toward treatment with glacial acetic acid at room temperature.21

![Chemical structures of diazoacetate and two donor/acceptor diazo compounds](image)

\textbf{Figure 8.} Structures of diazoacetate and two donor/acceptor diazo compounds

Davies investigated the reaction scope toward C–H functionalization with diazo compounds that have two adjacent substituents.22 Diazo compounds with one or two ‘acceptor’ substituents (for example, diazoacetates and diazomalonates) gave high yields only in intramolecular reactions. Selective intermolecular C–H insertion requires attenuated metal carbene reactivity. A ‘donor’ group, typically an aryl or vinyl substituent, stabilizes the electron-deficient metal carbene. Davies’ ‘donor’ nomenclature implies that an aryl substituent stabilizes the carbene through electron donation, but more accurately, the aryl group dissipates positive charge buildup in the C–H insertion TS through resonance delocalization.23

\textbf{1.1.2.3 Bridged Rh(II) Tetracarboxylate Catalysts}

Taber first reported the ligation of two carboxylate groups connected by an organic bridge to a Rh–Rh core with the preparation of monochelated bridged dimer \textbf{15} (\textbf{Scheme 2}).24 Benzenedipropionic acid \textbf{14} was added to rhodium(II) trifluoroacetate and the reaction mixture was heated at 105 °C for 5 h to give bridged dimer \textbf{15} in 38% yield. When Taber used 2 equiv of diacid \textbf{14}, polymeric material was obtained rather than a bis-chelated bridged dimer. Bridged
dimer 15 catalyzed the cyclization of long chain α-diazo β-keto ester 16 to corresponding cyclopentane 17 in 77% yield (Scheme 3).

Scheme 2. Preparation of monochelated bridged dimer 15

Scheme 3. Cyclization of α-diazo β-keto ester 16

Following earlier work by Bonar-Law,25 Du Bois synthesized tetramethyl diacid 18 where the methyl groups added additional preorganization of the diacids prior to complexation. Tetramethyl benzenedipropionic acid 18 was substituted onto Rh₂(O₂CCF₃)₄ to give the fully chelated Rh₂.esp₂ 22 in 64% yield (Scheme 4). Du Bois demonstrated that a Rh₂.esp₂ 19 catalyzes C–H bond amination.26
1.1.2.4 Chiral Rh(II) Catalysts with Bridging Ligands

Joining two chiral carboxylate ligands through a linker was first accomplished by Davies to confirm the D_2-symmetric conformation model of Rh$_2$(S-DOSP)$_4$. Second generation prolinate complexes 20, 21 and 22 have their aryl-sulfonyl groups conformationally locked in an α, β, α, β-arrangement (Figure 9). An advantage of the bridged prolinate catalysts compared to Rh$_2$(S-DOSP)$_4$ is higher observed enantioselectivities in cyclopropanations carried out in polar CH$_2$Cl$_2$ versus non-polar hexanes. Vinyldiazoacetate 23 was reacted with styrene and a dirhodium catalyst in either hexanes or CH$_2$Cl$_2$ (Table 1). When Rh$_2$(S-biTISP)$_2$ was the catalyst, the % ee of cyclopropane (S,S)- or (R,R)-24 equaled or exceeded the % ee observed with Rh$_2$(S-DOSP)$_4$ in hexanes (90% / 98% vs 90%).
Table 1. Solvent effect of rhodium-catalyzed asymmetric cyclopropanation

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>% ee for the formation of 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexanes</td>
<td>25</td>
<td>Rh$_2$(S-biTISP)$_2$ 74 (S,S)</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>25</td>
<td>Rh$_2$(S-biTISP)$_2$ 90 (S,S)</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>−50</td>
<td>Rh$_2$(S-DOSP)$_2$ 98 (S,S)</td>
</tr>
</tbody>
</table>

1.1.3 Catalytic Carbene Insertion into B–H Bonds

Examples of carbene insertion reactions into B–H bonds are relatively rare when compared to insertion into C–H bonds. B–H insertion reactions have typically required the use of carbene-precursors in large excess (7–40 equiv).$^{28-31}$ Prior B–H insertion reactions include reaction of Fischer alkynylcarbene complexes with NaBH$_3$CN,28 photo-generated carbethoxycarbene into o-carborane B–H bonds,29 samarium carbene insertion into phosphine-borane B–H bonds,30 and dichlorocarbene insertion into phosphine- and amine-boranes (Figure 10).31
Recently, Curran and Li reported rhodium (II)-catalyzed carbene insertion into the B–H bonds of NHC-boranes. NHC-boranes are among the most nucleophilic neutral hydride donors on Mayr’s nucleophilicity scale \(N = 11.88 \) and are excellent carbenophiles. In a representative example, donor acceptor diazo 31 was added to NHC-borane 5 with Rh\(_2\)(esp)\(_2\) to give the insertion product 32 in 74% yield (Scheme 5). Rh\(_2\)(esp)\(_2\) consistently gave higher yields compared to Rh\(_2\)(OAc)\(_4\). This is a reliable procedure for boron-carbon bond formation gives stable α-NHC-boryl carbonyl compounds.

Figure 10. Examples of carbene insertion into B–H bonds, (a) alkynylcarbene insertion, (b) samarium carbene insertion, (c) dichlorocarbene insertion
Shortly after Li’s work appeared, a copper-catalyzed carbene insertion into B–H bonds of amine- and phosphine-borane adducts was reported by Zhou.36 For example, diazo 31 was added to triphenylphosphine-borane 3 with Cu(MeCN)\textsubscript{4}PF\textsubscript{6} as the catalyst to give the insertion product 33 in 80% yield (Scheme 6).

\[\begin{align*}
\text{Ph}_3\text{P}^+\text{BH}_3 & + \text{Ph}_2\text{C}=\text{O}_{\text{Me}} \xrightarrow{\text{Cu(MeCN)}_4\text{PF}_6 (5 \text{ mol} \%) \text{ DCE, 25 °C}} \text{Ph}_3\text{P}^-\text{BH}_2\text{O} \\
3 & 31 \quad 0.5 \text{ equiv} \\
& 33, 80%
\end{align*}\]

Scheme 6. Copper-catalyzed B–H insertion of triphenylphosphine-borane 3

Zhou optimized both the Lewis base and diazo ester moiety to achieve high enantioselective B–H insertion through the use of a chiral bisoxazoline ligand. Zhou observed a 88–92% enantiomeric excess (ee) when using 2,6-dimethylphenyl diazo acetate or 2,6-dichlorophenyl diazo acetate (Table 2). More recently, Zhou demonstrated transition metal catalyzed B–H insertion of borane adducts with ene-yne-carbonyls as carbene precursors.37 An asymmetric B–H insertion with ene-yne-carbonyls was achieved by using chiral dirhodium catalysts. Reaction between trimethylamine-borane 2, ene-yne-carbonyl 36, and Rh\textsubscript{2}(R-BTPCP)\textsubscript{4} afforded excellent yields (97%) and high enantioselectivity (97/3 er) of the target ligated boryl furan product 37 (Scheme 7).
Table 2. Enantioselective C–H insertion of dimethylphosphine-borane 34 with Zhou ligand 35

<table>
<thead>
<tr>
<th>R</th>
<th>Time (h)</th>
<th>Yield</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,6-Me₂C₆H₃</td>
<td>20</td>
<td>86%</td>
<td>88</td>
</tr>
<tr>
<td>2,6-Cl₂C₆H₃</td>
<td>4</td>
<td>96%</td>
<td>92</td>
</tr>
</tbody>
</table>

Scheme 7. Enantioselective B–H insertion synthesis of boryl furan 37

The catalyst scope of B–H insertion reactions have been extended to include rhodium(I) salts. Xu and co-workers reported asymmetric rhodium(I)-catalyzed insertions with amine- and NHC-boranes (Figure 11a).³⁸ Optimized conditions with methylpyrrolidine-borane 38, tert-butyl
diazophenylacetate 40, divinylrhodium chloride dimer, and the C1-symmetric diene 40 yielded insertion product 41 in 92% yield and >99/1 er. Similar unoptimized conditions with NHC-borane 5 gave modest enantioinduction (80/20 er). The insertion of methyl 2-diazo-2-phenylacetate 31, catalyzed by a cyclobutadiene rhodium(I) complex, into the B–H bond of triethylamine-borane 42 was demonstrated by Perekalin and co-workers (Figure 11b).39

![Chemical structures](image)

Figure 11. B–H insertion using Rh(I) catalysts

The first B–H insertion reaction of NHC-boranes that produced enantiopure α-NHC-boryl esters was reported by Arnold through the use of an engineered enzyme. Directed evolution of *Rhodothermus marinus* (*Rma cyt c*) facilitated carbon–boron bond formation in the
presence of Lewis base borane adducts. Guided evolution of the bacterial catalyst toward improved enantioinduction allowed access to 16 chiral organoboranes. For example, incubation of NHC-borane 5 and ethyl 2-diazopropanoate 44 with E. coli harboring engineered Rma cyt c gave boryl ester 45 in excellent enantioselectivity (97:3 er) (Scheme 8).

![Scheme 8. Enzyme catalyzed enantioselective B–H insertion of NHC-borane 5](image)

Dr. Li’s Rh(II)-catalyzed B–H insertion report contains three unanswered questions: 1) can Rh(II) catalysis conditions be extended to include ligated boranes other than NHC-boranes, 2) can enantioselective B–H insertion be achieved with chiral Rh(II) catalysts, and 3) can the diazo substrate scope be broadened by improving reaction conversion when using 2-alkyl substituted diazo compounds.

The goals addressed in Section 1.2 are: i) to expand the scope of Rh(II)-catalyzed carbene insertion to include ligated boranes beyond NHC-boranes, ii) to develop a relative reactivity profile of ligated boranes in Rh(II)-catalyzed B–H insertion reactions, iii) to apply chiral dirhodium catalysts to enantioselective B–H insertion of NHC-boranes, and iv) to synthesize a chiral variant of Du Bois’ Rh$_2$(esp)$_2$ benzenedipropionic acid ligand and apply toward B–H insertion reactions and cyclopropanations.
1.2 RESULTS AND DISCUSSION

1.2.1 Rhodium-catalyzed B–H Bond Insertions with Lewis Base Adducts of Borane

The method described in Section 1.1.3 to form carbon-boron bonds through rhodium(II) catalysis was previously applied to reactions between N-heterocyclic carbene boranes and diazocarbonyl compounds.32 We sought to expand the scope of this insertion reaction by exploring other stable donor-acceptor complexes of borane, including amine-, phosphine-, and pyridine-boranes. We also chose tetrabutylammonium borohydride and cyanoborohydride as representative tetravalent, anionic boron reagents, with the cyano group serving as a NHC analog.

1.2.1.1 Synthesis of Stable Lewis Base Complexes of α-Boryl Carbonyl Compounds

Neutral organoboron compounds can exist in either an enol or carbonyl form depending on the nature of the boron functional group. Trivalent boranes usually favor the enol form 46 (Figure 12). Tetravalent boron compounds with strongly bound ligands to boron, such as amines,38 phosphines,36 NHCs, and N-methyliminodiacetic acid (MIDA),41 prefer to form as isomeric α-boryl carbonyl compounds 47 rather than enol isomers. The resulting α-boryl aldehydes, ketones and esters (X = H, C, or O) are bench-stable compounds, whose stability also translates into reaction tolerance.32, 36, 38, 41
Figure 12. Borane isomer equilibria

Pinacolborane, catecholborane, BH₃•THF, and BH₃•SMe₂ do not undergo insertion with Fischer-type metal carbenes;³⁶ however, the B–H bond becomes more electron rich upon formation of an amine or phosphine adduct to allow for possible B–H insertion with metal carbenes. We sought to learn whether B–H insertion occurs with a donor/acceptor diazo compound, and if so whether B–H insertion products are stable to isolation by flash chromatography.

Table 3 summarizes the preparation of several ligated borane B–H insertion products. In a typical experiment (Table 4, entry 1, standard conditions), trimethylamine-borane 2 (1 mmol) and Rh₂(esp)₂ (1 mol%) were dissolved in CH₂Cl₂ (0.2 M). Then 1.2 equiv of methyl 2-diazo-2-phenylacetate 31 dissolved in CH₂Cl₂ (0.24 M) was added over 2 h via syringe pump. After addition of the diazo species was complete, the solution color changed from green to orange. Du Bois and coworkers have reported green coloration denotes the presence of the catalytically active Rh²⁺/Rh³⁺ dimer, thus disappearance of green coloration signifies consumption of (Rh₂esp₂).⁴²

Conversion of starting amine-borane 2 to the desired B–H insertion product 48 was monitored by recording an ¹¹B NMR spectrum of the crude reaction mixture after 2 h. This showed the appearance of a new triplet at –0.9 ppm (J_BH = 99 Hz) that we attributed to the B–H
mono-insertion product 48. The quartet of the starting trimethylamine-borane 2 appeared at –8.3 ppm. Based on integration of the two signals, the ratio of mono-insertion product 48 to unreacted trimethylamine-borane 2 was 70/30.

After evaporation and purification by flash chromatography, α-trimethylamine-boryl ester 48 was isolated in 43% yield as a white solid. In addition to the 11B NMR spectrum, the structure of 48 was supported by 1H and 13C NMR spectra, and mass spectroscopy analysis. Li was not able to observe resonances of carbon bonded to the boron atom (labeled α) in many of the NHC α-boryl carbonyl compounds due to quadrupole broadening. However, the 13C NMR spectrum of insertion product 48 displayed a broad, weak resonance at 46.5 ppm that we attributed to the α-carbon.

Upon addition of triphenylphosphine-borane 3 to a solution containing Rh$_{2}$esp$_{2}$, the solution color changed from green to light orange. When diazo 31 was added, 3 was not consumed and product 33 was not formed. We hypothesized that the presence of free triphenylphosphine in the sample of 3 inactivated the catalyst by complexation. Indeed, a 31P NMR spectrum of the precursor showed triphenylphosphine-borane 3 (20.80 ppm) was contaminated with about 3% free triphenylphosphine (–6.00 ppm).
Table 3. B–H insertion of Lewis base borane adducts

![Chemical structure diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>¹¹B NMR ppm (mult.)</th>
<th>¹¹B NMR pdt ppm (mult.)</th>
<th>Conv.ᵃ</th>
<th>Yieldᵇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me₃N–BH₃</td>
<td>48</td>
<td>-8.3 (q)</td>
<td>-0.9 (t)</td>
<td>70%</td>
<td>43%</td>
</tr>
<tr>
<td>2</td>
<td>Ph₃P–BH₃</td>
<td>33</td>
<td>-38.0 (sex)</td>
<td>-23.1 (br)</td>
<td>70%</td>
<td>50%</td>
</tr>
<tr>
<td>3</td>
<td>Bu₃P–BH₃</td>
<td>50</td>
<td>-41.7 (sex)</td>
<td>-25.8 (br)</td>
<td>86%</td>
<td>30%</td>
</tr>
<tr>
<td>4</td>
<td>pyr–BH₃</td>
<td>51</td>
<td>-12.6 (q)</td>
<td>-3.2 (t)</td>
<td>80%</td>
<td>79%</td>
</tr>
<tr>
<td>5</td>
<td>Bu₄NBH₄</td>
<td>52</td>
<td>-39.5 (quin)</td>
<td>-22.1 (q)</td>
<td><15%ᵈ</td>
<td>N/Aᵉ</td>
</tr>
<tr>
<td>6</td>
<td>Bu₄NBH₃CN</td>
<td>53</td>
<td>-42.4 (q)</td>
<td>-27.3 (t)</td>
<td>100%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

ᵃ Estimated from ¹¹B NMR spectrum of crude reaction mixture;ᵇ Isolated yield after flash chromatography;ᶜ 4 mol % Rh₂.esp₂;ᵈ 52 reacted directly with Rh₂.esp₂, multiple side reactions.
products present in crude 11B NMR spectrum; Product is a salt and was not isolated after column chromatography.

Our initial approach to circumvent the triphenylphosphine impurity was the Merrifield resin scavenging method. In this method, the resin chloride is converted to iodide, which traps the Ph$_3$P impurity on the resin by alkylation. The resin-bound phosphonium salt is then filtered and pure starting material is recovered from concentrating the filtrate (Scheme 9). Stirring 3 containing 3% Ph$_3$P with a slurry of Merrifield resin and sodium iodide in acetone gave pure 3 but in only 10% recovery after filtration. When purified phosphine-borane 3 was reacted with diazo 31 and 1 mol % Rh$_2$(esp)$_2$ we observed formation of B–H insertion product 33. However, the low yield of recovered pure phosphine-borane 3 prompted us to look for a more practical method.

![Scheme 9. Triphenylphosphine scavenging with Merrifield resin](image)

We accounted for the impurity by increasing the rhodium(II) catalyst loading to 0.04 equiv, and upon addition of triphenylphosphine-borane 3, the solution color remained green signifying that the catalyst remained. Reaction between triphenylphosphine-borane 3 (1 mmol) and 1.2 equiv methyl diazo phenylacetate 31 with 4 mol % Rh$_2$(esp)$_2$ (Table 4, entry 2) resulted in 71% conversion to the B–H insertion product 33 (broad singlet at –23.1 ppm) as shown in the 11B NMR spectrum of the crude product. Flash chromatography gave the mono-insertion product 33 in 50% yield as an orange solid. The orange coloration is likely due to a trace amount of
rhodium impurity. A 31P NMR spectrum of 33 showed 93% of target insertion product 33 (13.42 ppm) along with 3.5% triphenylphosphine (–5.40 ppm) and 3.5% triphenylphosphine ylide 56 (29.24 ppm) as impurities. The latter impurity is formed through a modified Staudinger mechanism where triphenylphosphine attacks the terminal diazo nitrogen, resulting in formation of a diazo-ylide. Subsequent loss of dinitrogen leads to the triphenylphosphine ylide 56 (Figure 13).

![Figure 13. Phosphonium ylide 56](image)

Next, we reacted commercially available pyridine-borane 4 (6 M solution in THF) with diazo compound 31 under the standard B–H insertion reaction conditions. Unfortunately, formation of B–H mono-insertion product 51 was again not observed in the 11B NMR spectrum of the crude reaction mixture. We again hypothesized that an impurity, this time pyridine, was inactivating the rhodium catalyst.

To obtain a pyridine-borane sample without free ligand, we synthesized pyridine-borane 4 through a Lewis base exchange between pyridine and a borane-tetrahydrofuran complex (1 M in THF). Stirring 0.95 equiv of pyridine with the borane-THF complex at room temperature for 1 h followed by column chromatography gave pyridine-borane 4 as an oil in 64% yield. Subsequent reaction of the homemade pyridine-borane 4 under the standard conditions (Table 4, entry 4) resulted in 79% conversion to mono-insertion product 51 (triplet at –3.2 ppm, $J_{\text{BH}} = 101$ Hz), and flash chromatography purification yielded 79% of a colorless oil.
As shown in Table 3 (Entries 1–5), the α-boryl carbonyl compounds of amine-, phosphine-, and pyridine-boranes reliably exhibit downfield resonances in 11B NMR spectra compared to non-functionalized Lewis base borane precursors. This trend is consistent with Li’s data on NHC-boranes and Zhou’s copper-catalyzed insertion of amine- and phosphine-boranes.32, 36

The stability of amine-borane insertion product 48 to flash chromatography was examined first by two-dimensional TLC analysis. Moderate streaking of the product spot suggested at least partial instability of insertion product 48 to silica gel. Purification of amine-borane product 48 and phosphine-borane products 33 and 50 by flash chromatography resulted in 20-50% lower isolated yield than expected by 11B NMR spectra conversion estimates (amine: 70% conversion, 43% yield; triphenylphosphine: 70% conversion, 50% yield; tributylphosphine: 86% conversion, 30% yield).

Purification of pyridine-borane insertion product 51 gave a 79% yield (80% conversion). Li reported a 20% reduction between conversion and recovered yield with B–H insertion products of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate 5.32 Quantitative recovery was achieved using bulkier NHC substrates such as dipp-imidazolylidene borane 6.

Taken together, these results suggest that pyridine-borane α-boryl carbonyl compounds are stable to flash chromatography, whereas analogous amine-, phosphine-, and N-alkyl substituted NHC-borane compounds are only partially stable. For these classes of compounds, purification by flash chromatography should be as rapid as possible to minimize product loss. In contrast, once the purified products are isolated, they are quite stable to storage.

Moving beyond neutral donor-acceptor borane complexes, we also sought to apply B–H insertion methodology to borohydrides. Tetrabutylammonium borohydride 52 was initially
chosen for its solubility in CH$_2$Cl$_2$. When B–H insertion reaction of borohydride 52 was attempted under the standard conditions, the solution color changed from green to dark brown prior to addition of diazo compound 31. Diazo compound 31 was slowly added anyway, but no insertion product 53 was observed by 11B NMR spectra. In a second experiment, diazo compound 33 was premixed with borohydride 52 and Rh$_2$(esp)$_2$ was then added to the reaction mixture. Low conversion (<15%) to the borohydride insertion product 53 (–22.4 ppm, $J_{BH} = 178$, 90 Hz) was observed in the 11B NMR spectrum of the crude reaction mixture. These two experiments suggest that Rh$_2$(esp)$_2$ reacts with borohydride faster than with diazo 31.

We turned to tetrabutylammonium cyanoborohydride 54 as a milder reducing borohydride. On Mayr’s nucleophilicity scale, cyanoborohydride has a smaller N value of 11.5 compared to the borohydride N value of 15.0.46 The scale is logarithmic so the reactivity difference is large. When 54 was subjected to the standard B–H insertion conditions, we observed 100% conversion to the borohydride insertion product 55 as evidence by a triplet at –27.3 ppm ($J_{BH} = 94$ Hz) in the 11B NMR. Isolation by flash chromatography was attempted, but the desired cyanoborohydride insertion product was not isolated, presumably because it is a salt. In addition to 11B NMR spectra of the crude product mixture, observance of the typically weak α-carbon signal in the 13C NMR spectrum at 44.7 ppm supported the formation of the insertion product (Figure 14).
Figure 14. 13C NMR spectra of crude reaction mixture containing cyanoborohydride product 54

The initial difficulties with B–H insertion reactions of phosphine- and pyridine-boranes suggested that Rh$_2$(esp)$_2$ was incompatible with triphenylphosphine and pyridine impurities. To validate this hypothesis, a series of B–H insertion reactions using pyridine-borane as a control were undertaken (Table 4). In the control reaction, pyridine-borane 4 (0.2 mmol) and Rh$_2$(esp)$_2$ (1 mol %) were dissolved in CH$_2$Cl$_2$ (0.5 M). Then 1.8 equiv of methyl phenyl diazo 31 dissolved in CH$_2$Cl$_2$ (0.4 M) was added dropwise. Due to the larger amount of diazo 31 used (1.8 rather than 1.2 equiv), the double insertion product 57 (d, –13.9 ppm, $J_{BH} = 98$ Hz) was observed in the control reaction along with the expected product 51 ($51 / 57$ ratio, 74/26) (entry 1). For entries 2–4, the pyridine-borane and Rh$_2$(esp)$_2$ reaction mixture was spiked with 0.2 equiv of a Lewis base, then 1.8 equiv of diazo compound 31 was slowly added.

Tetrahydrofuran as an additive decreased conversion of pyridine-borane product 51 from 100% to 93% (entry 2) likely due to competitive C–H insertion of THF. Addition of pyridine and triphenylphosphine gave no conversion of 4 (entries 3 and 4). In the latter cases, the reaction solution color transitioned from green, signifying catalytically active Rh(II) species, to pink or
orange, respectively, prior to diazocarbonyl addition. Rhodium(II) dimers have been reported to be solvatochromic upon binding of axial ligands; furthermore, such modified rhodium(II) dimer complexes are not catalytically active.42 These results firmly show that pyridine and triphenylphosphine inactivate the catalyst. Further, the simple observation of solution color prior to diazocarbonyl addition indicates whether catalytically active Rh(II) is present (green) or absent (pink or orange) in solution. When ligated boranes are used for B–H insertions, the samples must not contain free ligands as impurities.

![Rh(II) B–H insertion system](image)

Table 4. Lewis base additives in Rh(II) B–H insertion system

<table>
<thead>
<tr>
<th>Entry</th>
<th>Additive (0.2 Equiv)</th>
<th>Conversiona</th>
<th>Ratio 51 / 57</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>100%</td>
<td>74/26</td>
</tr>
<tr>
<td>2</td>
<td>THF</td>
<td>93%</td>
<td>100/0</td>
</tr>
<tr>
<td>3</td>
<td>C\textsubscript{5}H\textsubscript{5}N</td>
<td>0%</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Ph\textsubscript{3}P</td>
<td>0%</td>
<td>—</td>
</tr>
</tbody>
</table>

[a] Estimated from 11B NMR spectrum of crude reaction mixture.

1.2.1.2 Determination of Relative Rates of Ligated Boranes and a Borohydride Salt in Rhodium(II)-Catalyzed Competitive B–H Insertion Experiments

Li’s competition experiments with NHC-borane 5 with various carbenophiles established that the B–H bonds in 5 are much more reactive than typical C–H bonds toward electrophilic
rhodium carbenes.32 For example, NHC-borane 5 is approximately 10–12 times more reactive than 1,4-cyclohexadiene (1,4-CHD), and over 100 times more reactive than THF.

Next, we set out to learn the relative reactivity of the NHC-borane B–H bond toward insertion in comparison to other donor-acceptor complexes of borane and borohydrides. Reactions of 0.5 equiv of diazoacetate 31 with equal equiv (1.0) of different ligated boranes and a borohydride were undertaken to produce a relative reactivity profile for boranes toward B–H insertion conditions. The product formation ratios were determined through integration of the 11B NMR signals of the two insertion products.

The initial competitive insertion reaction between NHC-borane 5 and pyridine-borane 4 used Rh$_2$(esp)$_2$ and 2-phenyl-diazoacetate 31. Diazo compound 31 was selected because it was used in Davies and Li’s competitive rate experiments and gave high product yields during intermolecular C–H and B–H insertion reactions.32, 47 In a typical experiment (Scheme 10, standard conditions), NHC-borane 5 (1.00 equiv, 0.37 mmol), pyridine-borane 4 (1.00 equiv, 0.37 mmol) and Rh$_2$(esp)$_2$ (1 mol %) were dissolved in CH$_2$Cl$_2$ (0.2 M). An 11B NMR spectrum of the crude reaction mixture was taken to determine the accurate starting ratio of the two borane species. Then a solution of diazo compound 31 (0.50 equiv, 0.10 mmol) in CH$_2$Cl$_2$ (0.1 M) was added over 15 s by syringe. After addition of the diazo species was complete, the solution color remained light green.
Conversions of NHC-borane 5 and pyridine-borane 4 to the B–H insertion products 32 and 51 were determined by recording 11B NMR spectra of the crude reaction mixture immediately after addition of the diazo compound. This showed the appearance of new triplets at –3.4 ppm ($J_{BH} = 104$ Hz) and –23.7 ppm ($J_{BH} = 94$ Hz) that belong to B–H mono-insertion products 32 and 51, respectively. Based on integration of the two signals, a 28 / 72 ratio of 32 / 51 was observed (Table 5, entry 1).

This preliminary experiment suggested that pyridine-borane is approximately two times more reactive ($k_{rel} = 2.3$) than the NHC-borane towards B–H insertion. We next tried to verify the relative rate by repeating the experiment with increased equivalents of pyridine-borane 4 (entry 2, 5.8 equiv) or NHC-borane 5 (entry 3, 5.0 equiv). Although 4 and 5 were used in small excess, there was not a noticeable decrease in starting material 11B NMR peak integration after the reaction. The relative rates obtained from entries 2 and 3 (2.7 and 2.8) confirm that pyridine-borane is a more reactive substrate in B–H insertion reactions than NHC-boranes.

Moving beyond pyridine-borane, competitive reaction between equimolar amounts of NHC-borane 5 and trimethylamine-borane 2 show that NHC-borane 5 is three times more reactive ($k_{rel} = 0.33$) than amine-borane 2 (entry 4).

Initial competitive reactions between equimolar amounts of NHC-borane 5 and triphenylphosphine-borane 3 resulted in no formation of phosphine-borane insertion product 33,
implying that phosphine-boranes are significantly less reactive than NHC-boranes. Competitive reaction of equal equivalents of triphenylphosphine-borane 3 and trimethylamine-borane 2 showed that phosphine-borane is about five times less reactive \((k_{\text{rel}} = 0.19) \) than amine-boranes (entry 5). The competitive reaction result between equal equiv of tributylphosphine-borane\(^{48}\) \(^{49}\) with trimethylamine-borane 2 (entry 6) was consistent with phosphine-borane being about five times less reactive than amine-boranes.

Table 5. Competitive B–H insertion experiments

<table>
<thead>
<tr>
<th>Entry</th>
<th>Unknown (ukn)</th>
<th>Standard (stn)</th>
<th>Equivalents () (unk/stn)</th>
<th>Ratio(^a)</th>
<th>(k_{\text{rel}}) (unk/stn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pyr–BH(_3) 4</td>
<td>NHC–BH(_3) 5</td>
<td>1.0 / 1.0</td>
<td>72/28</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>pyr–BH(_3) 4</td>
<td>NHC–BH(_3) 5</td>
<td>5.8 / 1.0</td>
<td>94/6</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>pyr–BH(_3) 4</td>
<td>NHC–BH(_3) 5</td>
<td>1.0 / 5.0</td>
<td>36/64</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>Me(_3)N–BH(_3) 2</td>
<td>NHC–BH(_3) 5</td>
<td>1.1 / 1.0</td>
<td>27/73</td>
<td>0.33</td>
</tr>
<tr>
<td>5(^b)</td>
<td>Ph(_3)P–BH(_3) 3</td>
<td>Me(_3)N–BH(_3) 2</td>
<td>1.0 / 1.0</td>
<td>16/84</td>
<td>0.19</td>
</tr>
<tr>
<td>6(^b)</td>
<td>Bu(_3)P–BH(_3) 49</td>
<td>Me(_3)N–BH(_3) 2</td>
<td>1.0 / 1.0</td>
<td>17/83</td>
<td>0.20</td>
</tr>
<tr>
<td>7</td>
<td>Bu(_4)NBH(_3)CN 54</td>
<td>Me(_3)N–BH(_3) 2</td>
<td>1.0 / 1.0</td>
<td>35/65</td>
<td>0.54</td>
</tr>
</tbody>
</table>

\(^{[a]}\) Determined by integration of the \(^{11}\)B NMR spectrum of the reaction mixture; \(^{[b]}\) 4 mol % Rh\(_2\)(esp)\(_2\).

In addition to Lewis base borane adducts, we probed the relative reactivity of cyanoborohydride as well. Reaction between cyanoborohydride 54 and amine-borane 2 produced a relative rate of 0.54; suggesting that cyanoborohydride reactivity is between amine- and phosphine-boranes in B–H insertion reactions (entry 7).
When taken together, a trend of ligated borane reactivity toward B–H insertion can be summarized as shown in the top row of Table 6. All k_{rel} values are based on NHC-borane 5, $k_{rel} = 1$.

Table 6. Relative rates toward B–H insertion, BDE values, and Mayr N values for various boranes

<table>
<thead>
<tr>
<th></th>
<th>pyr–BH₃</th>
<th>NHC–BH₃ 5</th>
<th>Me₃N–BH₃</th>
<th>[BH₃CN]⁻</th>
<th>R₃P–BH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{rel}</td>
<td>2.5</td>
<td>1</td>
<td>0.33</td>
<td>0.18</td>
<td>0.06<sup>a</sup></td>
</tr>
<tr>
<td>BDE (kcal/mol)<sup>49</sup></td>
<td>68.8</td>
<td>80.0</td>
<td>102.6</td>
<td>N/A</td>
<td>92.8<sup>b</sup></td>
</tr>
<tr>
<td>Mayr’s Value (N)</td>
<td>10.01<sup>49</sup></td>
<td>11.88<sup>35</sup></td>
<td>7.97<sup>49</sup></td>
<td>11.52<sup>46</sup></td>
<td>N/A</td>
</tr>
</tbody>
</table>

^aPh₃P–BH₃ and Bu₃P–BH₃; ^bMe₃P–BH₃

Also shown in Table 6 are BDEs and Mayr’s nucleophilicity values of the various ligated boranes. A correlation between the relative reactivity trend in B–H insertion and either BDE values⁵⁰ or Mayr’s nucleophilicity values is not readily apparent. The high reactivity of pyridine-borane is consistent with its low BDE (68.8 kcal/mol). The trend remains consistent with NHC-borane (80.0 kcal/mol) and trimethylamine-borane (102.6 kcal/mol) decreasing in relative reactivity. However, the BDE of Me₃P–BH₃ (92.8 kcal/mol) is smaller than Me₃N–BH₃ (102.6 kcal/mol) yet the B–H insertion of triphenyl- and tributylphosphine-borane was significantly slower than expected. Likewise, a connection cannot be drawn when comparing our relative reactivity data and Mayr’s nucleophilicity scale. NHC-borane 5 is a good hydride donor (11.88) but the similarly nucleophilic cyanoborohydride (11.52) reacts slower under B–H insertion reaction conditions.

When the new scale and Li’s³² scale are combined, a general reactivity profile of ligated boranes versus other carbenophiles begins to emerge. The relative reactivity of borane B–H insertion compared with C–H insertion is summarized as shown in Table 7.
Table 7. Relative rate of boranes toward B–H insertion

<table>
<thead>
<tr>
<th></th>
<th>Pyr-BH₃</th>
<th>NHC-BH₃ 5</th>
<th>Me₃N-BH₃</th>
<th>[BH₃CN]⁻</th>
<th>1,4-CHD</th>
<th>R₃P-BH₃</th>
<th>THF</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_rel</td>
<td>2.5</td>
<td>1</td>
<td>0.33</td>
<td>0.18</td>
<td>0.08</td>
<td>0.06</td>
<td>0.01</td>
</tr>
</tbody>
</table>

1.2.1.3 Enantioselective NHC B-H Insertions with Donor/Acceptor Rhodium Carbenes

Davies and coworkers have demonstrated that the tetraprolinate Rh₂(DOSP)₄ exhibits exceptional stereocontrol during intermolecular C–H functionalization when used in conjunction with donor/acceptor stabilized carbenes.⁴⁷ When phenyl diazoesters are used as the donor/acceptor rhodium carbene for NHC-borane B–H insertions, the α-carbon stereocenter of the insertion product (labeled α in Table 8), from the donor/acceptor fragment, provides a suitable substrate to probe stereocontrol using various chiral rhodium(II) catalysts.

We first conducted the reaction between NHC-borane 5 and phenyl diazoacetate 31 to determine if insertion product 32 enantiomers can be resolved by chiral HPLC analysis. The racemic standard 32 was synthesized using Li’s method for NHC-borane B–H insertion between NHC-borane 5 and 1.2 equiv of diazo compound 31 (Table 9, entry 1). After purification by flash chromatography, a 1 mg/1 mL solution of 32 was injected onto an (S,S)-Whelk-O1 column with a 30/70 mixture of isopropanol and hexanes as the eluent. UV detection at 231 nm showed the 50/50 ratio of enantiomers.

Two racemic standards with varying diazo ester substitution were also prepared (entries 2 and 3). Reaction of NHC-borane 5 (0.2 mmol) with 2,6-dichlorophenyl diazo 58 (0.5 equiv) gave 27% conversion and recovery of mono-insertion product 58 (t, –23.2 ppm, \(J_{BH} = 96 \) Hz). Similar conditions between NHC-borane 5 (0.2 mmol) and 2,6-dimethylphenyl diazo 60 (1.2 equiv) resulted in 63% conversion and recovery of mono-insertion product 61 (t, –23.0 ppm, \(J_{BH} = 91 \) Hz).
Hz). The 30/70 isopropanol/hexanes HPLC protocol successfully resolved enantiomers of 59 and 61.

Table 8. Synthesis of racemic standard NHC-borane insertion products

<table>
<thead>
<tr>
<th>Entry</th>
<th>R’</th>
<th>Diazo equiv</th>
<th>Conversion(^a)</th>
<th>Yield(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>1.2</td>
<td>77%</td>
<td>62%</td>
</tr>
<tr>
<td>2</td>
<td>2,6-Cl(_2)C(_6)H(_3)</td>
<td>0.5</td>
<td>27%</td>
<td>27%</td>
</tr>
<tr>
<td>3</td>
<td>2,6-Me(_2)C(_6)H(_3)</td>
<td>1.2</td>
<td>63%</td>
<td>63%</td>
</tr>
</tbody>
</table>

\(^a\) Estimated from \(^{11}\)B NMR spectrum of crude reaction mixture; \(^b\) Isolated yield after flash chromatography.

Next, we studied these reactions catalyzed by chiral rhodium(II) catalysts of three symmetry classes: \(D_2\), \(C_2\) and \(C_4\) (Figure 15). Dr. Joseph Fox provided chiral dirhodium catalysts 65 and 66 that are structurally similar to \(\text{Rh}_2(\text{PTTL})_3\text{TPA} \, 63\). We also varied reaction temperature and the diazo ester moiety (Table 9).
Screening NHC-borane 5 B–H insertion with Rh₂(S-DOSP)₄ and dichloro diazo compound 58 resulted in a 34/66 er (Table 9, entry 1). Rh₂(PTAD)₄ and dimethyl diazo 60, when reacted under reflux conditions, resulted in the highest observed stereoisinduction during chiral rhodium(II) catalyst screening (70/30 er) (entry 2).

We next turned to Fox’s C₄-symmetric Rh₂(PTTL)₃TPA.⁵¹ Due to the low conversions in entries 1–2, dichloromethane was freshly distilled prior to reaction in entries 3–5, resulting in significantly higher observed conversion. The observed enantiomeric ratios with the C₂-symmetric catalysts remained between 68/32 and 30/70 er.

After screening through three Rh(II) symmetry classes (D₂, C₂ and C₄), high stereoisinduction was not apparent for any catalyst. Larger diazo ester moieties also did not dramatically increase enantioselectivity.
Table 9. Chiral rhodium(II) catalyst screening with NHC B–H insertion (α-carbon stereocenter)

![Chemical structure diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Temperature (°C)</th>
<th>Rh(II) catalyst</th>
<th>Diazo equiv</th>
<th>Conversion[a] 5</th>
<th>er[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,6-Cl₂C₆H₃</td>
<td>20</td>
<td>(S-DOSP)₄</td>
<td>1.2</td>
<td>33%</td>
<td>34/66</td>
</tr>
<tr>
<td>2</td>
<td>2,6-Me₂C₆H₃</td>
<td>40</td>
<td>(S-PTAD)₄</td>
<td>1.2</td>
<td>21%</td>
<td>70/30</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>20</td>
<td>(PTTL)₃TPA</td>
<td>3.0</td>
<td>88%</td>
<td>30/70</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>20</td>
<td>65</td>
<td>1.2</td>
<td>51%</td>
<td>68/32</td>
</tr>
<tr>
<td>5</td>
<td>Me</td>
<td>20</td>
<td>66</td>
<td>1.2</td>
<td>70%</td>
<td>68/32</td>
</tr>
</tbody>
</table>

[a] Estimated from ¹¹B NMR spectrum of crude reaction mixture; [b] Ratio of first and second eluting enantiomer.

1.2.1.4 Enantioselective NHC B–H Insertion with Rhodium Carbenes (Boron Stereocenter)

Through back-to-back B–H insertion reactions of two different diazo compounds with benzimidazole NHC-borane 8, Li isolated a chiral NHC-borane whose only stereocenter is on boron. Currently, there is no enantioselective B–H insertion reaction at the boron stereocenter.

We turned to benzimidazole NHC borane 8 because extended conjugation should provide UV active products. Dr Tsuyoshi Taniguchi discovered that NHC-boranes can hydroborate benzyne to give aryl substituted NHC-boranes. The B–H insertion of ethyl diazoacetate of prochiral aryl NHC-borane 67 affords insertion product 68 with the lone stereocenter at boron.
The racemic standard of benzimidazole aryl borane 68 was synthesized by mixing aryl borane 70 (0.1 mmol) and Rh2esp2 (5 mol %) in CH2Cl2 (0.03 M). Then 1.2 equiv of ethyl diazoacetate, dissolved in CH2Cl2 (0.1 M), was added via syringe pump over 1 h under reflux conditions. An 11B NMR spectrum of the crude reaction mixture showed 46% conversion to benzimidazole aryl 68 (−18.8 ppm, d, $J_{BH} = 88$ Hz). Purification by flash chromatography gave insertion product 68 as a white solid in 37% yield (Scheme 11). During purification, benzimidazole product 68 exhibited strong UV activity on the CombiFlash UV detector at 254 nm. This suggested that benzimidazole 68 was a suitably UV active substrate for HPLC analysis.

Scheme 11. B–H insertion of benzimidazole aryl borane 67

Injection of racemic standard 68 onto the (S,S)-Whelk-O1 column using 30/70 isopropanol to hexanes, gave two peaks at 12.4 and 15.9 min in a 60/40 ratio. As the isopropanol content of the eluting solvent was increased, the two peaks emerged faster and their ratio approached but did not reach 50/50. At the 85/15 ratio of isopropanol to hexanes, we observed two peaks at 6.3 and 7.2 min in a 53/47 ratio. These unusual results suggest that 68 is somewhat unstable on the Whelk column. The slower eluting enantiomer always under-integrates. Further, as retention time increases, observed under-integration worsens. In practice, we decided that the observed 53/47 ratio was reliable enough for further experiments. We applied a 3% correction to these chromatograms through subtraction from the first eluting enantiomer.
With a method to resolve enantiomers of insertion product 68 in hand, we screened Fox’s chiral rhodium(II) catalysts under the standard conditions (Table 10). Fox’s Rh$_2$(PTTL)$_3$TPA produced a racemic mixture of enantiomers (entry 1), while catalyst 65 (entry 2), induced mild enantioselectivity (57/43 er).

Table 10. Chiral rhodium(II) catalyst screening with NHC B–H insertion (boron stereocenter)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Rh(II) Catalyst</th>
<th>Diazo equiv</th>
<th>Conversiona</th>
<th>er</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PTTL$_3$(TPA)</td>
<td>1.8</td>
<td>29%</td>
<td>50/50</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>1.8</td>
<td>50%</td>
<td>57/43</td>
</tr>
</tbody>
</table>

a Estimated from 11B NMR spectrum of crude reaction mixture.

Because we observed poor stereoinduction at the boron stereocenter, we became concerned that during the B–H insertion mechanism, the stereocenter racemizes during the borenium ion transition state. We hypothesized that if equal amounts of the starting benzimidazole 67 and a resolved enantiomer of insertion product 68 were resubjected to the B–H insertion conditions, the resultant chromatogram would maintain a stereoenriched ratio of enantiomers if racemization at boron is not occurring. Alternatively, observing a 50/50 mixture of enantiomers would confirm racemization.

The racemate insertion product 68 was preparatively resolved on the chiral column to give both component enantiomers in high enantiopurity. Optical rotations were -156° (first
eluting enantiomer 68-1) and +154° for 68-2 (both $c = 1$, CHCl$_3$). The first eluting enantiomer 68-1 (1.00 equiv, 0.02 mmol) was premixed with racemic aryl borane 67 (1.0 equiv), and then reacted with ethyl diazoacetate (1.2 equiv). After isolation the enantioenriched insertion product 68-1’ was injected onto chiral HPLC, resulting in an 82/18 er with the larger component being the previously resolved enantiomer 68-1 (Scheme 13). Repeating the reaction with 68-2’ gave 18/82 er in favor of the other enantiomer. In both experiments, 35% of 68-1’ / 68-2’ was attributed to converted 67 as observed in the 11B NMR spectra. Thus, 17 to 18% of the minor enantiomer was expected in the mixture of 68-1’ / 68-2’ which matched both HPLC chromatograms. This suggests that the boron stereocenter of insertion product 68 does not racemize when subjected to the borenium ion transition state. Thus, the ers in Table 10 reflect poor stereoselectivity.

The enantioselective B–H insertion products of phenyl diazo 31 with NHC-boranes and ethyl diazoacetate with aryl NHC-boranes can be reliably resolved by chiral HPLC analysis. Only moderate stereoinduction has been observed with various chiral rhodium catalysts and the Zhou bisoxazoline ligand in the former system. Rh$_2$(S-PTAD)$_4$ and Rh$_2$(S-PTTL)$_3$TPA have resulted in the highest observed stereoinduction during chiral rhodium(II) catalyst screening.
(70/30 and 30/70 er). Little to no stereoinduction has been observed at the NHC boron stereocenter during B–H insertion.

1.2.2 Exploring the Synthesis and Application of a Chiral Rh$_2$(esp)$_2$ Analog

Du Bois’ Rh$_2$(esp)$_2$ is a robust catalyst in facilitating intramolecular26 and intermolecular C–H amination42, alongside the synthesis of unprotected aziridines.53 Additionally, Rh$_2$(esp)$_2$ typically provides the highest yields within Li’s NHC-borane B–H insertion methodology.32 However, there are few examples of chiral Rh(II) catalysts incorporating a bridged dicarboxylate design other than Davies’ second-generation prolinites27 and Du Bois’ bis-chelated sulfonamide dirhodium catalyst.42 We became interested if a chiral variant of Rh$_2$(esp)$_2$ could be synthesized and the unique reactive properties of Rh$_2$(esp)$_2$ would be retained while also facilitating stereoinduction in various transformations.

1.2.2.1 Synthesis of Methyl and Benzyl Chiral Rh$_2$(esp)$_2$ Analogs

We proposed that a proof-of-concept chiral analog of Rh$_2$(esp)$_2$ could be obtained through deletion of two methyl groups on the dicarboxylate ligand. Synthesis of the C_2-symmetric dicarboxylic acid 72 could be achieved through double alkylation of 1,3-bis(bromomethyl)benzene 70 with propionyloxazolidinone 69, followed by hydrolysis.54 Subsequent complexation of 72 with Rh$_2$(tfa)$_4$ would afford chiral Rh$_2$(esp)$_2$ 73 (Scheme 13).
Moving forward with the bisbromobenzene double alkylation, reaction progress of the treatment of propionyloxazolidinone 69 (1.00 mmol, 2.2 equiv) with LDA (1.10 mmol, 2.4 equiv) followed by reaction with bis(bromomethyl)benzene 70 (1.0 equiv) was monitored by 1H NMR spectra of the crude reaction mixture. Only several unidentified side-products were observed. In a second double alkylation experiment, using NaHMDS (1.10 mmol, 2.4 equiv) gave an inseparable mixture of monoalkylated bisbromo benzene and propionyloxazolidinone 69.

The partial alkylation of bis(bromomethyl)benzene 70 when using NaHMDS prompted us to convert the bromide to an iodide via a Finkelstein reaction (Scheme 14).55 Bis(bromomethyl)benzene 70 (4.20 mmol, 1.0 equiv) was mixed with sodium iodide (42.0 mmol, 10 equiv) in acetone (0.04 M). The mixture was heated to reflux in absence of light for 14 h. The reaction progress was monitored by a 13C NMR spectrum of the crude product mixture. The bromobenzyl carbon resonance (42.0 ppm) disappeared in favor of the iodobenzyl resonance
(4.8 ppm), signifying complete conversion to bis(iodomethyl)benzene 74. Aqueous workup and evaporation gave bis(iodomethyl)benzene 74 as a light yellow solid in 93% yield.

Scheme 14. Finkelstein reaction of bis(bromoethyl)benzene 70

Next, propionyloxazolidinone 72 (7.80 mmol, 2.2 equiv) was deprotonated with NaHMDS (8.51 mmol, 2.4 equiv) (Scheme 15). Reaction of the in situ enolate with freshly prepared bis(iodomethyl)benzene 74 (3.55 mmol, 1.0 equiv) resulted in observing bis alkylated product 71 in the 1H NMR spectrum of the crude product mixture. After aqueous workup and flash chromatography purification, we recovered bis alkylated product 71 in 66% yield as a light yellow, foamy solid.

Scheme 15. Double alkylation of bis(iodomethyl)benzene 74

Next, the hydrolysis of bis alkylated benzene 71 (0.17 mmol, 1.0 equiv) proceeded by addition of 30% H$_2$O$_2$ (1.34 mmol, 7.8 equiv) and lithium hydroxide monohydrate (0.69 mmol, 4.0 equiv) to a solution of 71 in THF (0.03 M) and stirred at 0 °C for 5 h (Scheme 16). The
reaction mixture was acidified with 6 M HCl and after aqueous workup we obtained methyl diacid 72 as a colorless oil in 85% yield.

![Scheme 16. Hydrolysis of bis alkylated benzene 71](image)

We next used a Mosher acid to determine the enantiopurity of diacid 72. Methyl diacid 72 (0.20 mmol, 1.0 equiv) was dissolved in THF (0.13 M) and LAH was added (0.60 mmol, 3.0 equiv) at 0 °C for 3 h (Scheme 17). Aqueous workup and flash chromatography purification afforded dialcohol 75 in 30% yield as a colorless oil.

![Scheme 17. Reduction of diacid 72 with LAH](image)

Dialcohol 75 (0.06 mmol, 1.0 equiv) was first dissolved in DCM (0.03 M). Then (S)-MTPA (0.36 mmol, 6.2 equiv), DCC (0.36 mmol), and DMAP (0.36 mmol, 6.2 equiv) were added sequentially at rt (Scheme 18). After stirring for 45 h, full consumption of dialcohol 75 was confirmed by TLC and 1H NMR spectra analysis. Following flash chromatography purification, we recovered methyl ester 76 in addition with co-eluted DCC and (S)-MTPA. A
single diastereomer (dr >98:2) was present in 1H, 13C, and 19F NMR spectra of the methyl ester 76, signifying that bis alkylated 71 did not undergo epimerization during hydrolysis.

![Chemical structure](image)

Scheme 18. Mosher’s acid esterification of 75

With the enantiopure methyl diacid 72 ligand in hand, we first attempted complexation of 72 with Rh$_2$(tfa)$_4$ through replication of Du Bois’ original complexation procedure for Rh$_2$(esp)$_2$. Rh$_2$(tfa)$_4$ (0.07 mmol, 1.0 equiv) was dissolved in 1,2-DCE (0.30 M) and the solution was heated to 125 °C in a pressure tube. Diacid 72 (1 M in 1,2-DCE) was added in 0.2 equiv portions every 20 min. This was continued for the first 1.0 equiv of diacid 72, and then the reaction was heated at 125 °C for 5 h. The process was repeated for the addition of another 1.0 equiv of diacid 72 (Table 11, entry 1).

A significant amount of green precipitate crashed out of solution during the second 5 h heating period. We then filtered off the precipitate and concentrated the remaining crude product mixture. Flash column chromatography of the crude product mixture resulted in the elution of three green bands. The first eluted band was Rh$_2$(tfa)$_4$, the second band was monochelated methyl rhodium 77, and the third band was an uncharacterized oligomeric rhodium species. The monochelated rhodium 77 could be differentiated from the fully chelated rhodium 73 by a strong signal at −76.9 ppm in the 19F NMR spectrum elucidating the presence of a TFA ligand.
In a second pressure tube experiment, reaction concentration was reduced to 0.07 M and methyl diacid 72 equiv was doubled. Again, a green precipitate crashed out of solution during heating. The three eluted bands from flash column chromatography were characterized in order of elution as monochelated rhodium 77, the target bischelated methyl rhodium 73 in 10% yield, and an oligomeric rhodium species. The fully complexed bischelated methyl rhodium 73 was characterized by 1H, 13C and 19F NMR spectra and mass spectroscopy analysis. Unlike monochelated rhodium 77, there are no signals in the 19F NMR spectrum of bischelated methyl rhodium 73.

Table 11. Complexation of methyl diacid 72 with Rh$_2$(tfa)$_4$

<table>
<thead>
<tr>
<th>Entry</th>
<th>Concentration (M)</th>
<th>Temperature (°C)</th>
<th>Diacid 72 equiv</th>
<th>Yielda (73)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.30</td>
<td>125</td>
<td>2.0</td>
<td>0%</td>
<td>3 bands (starting material, monochelated 77, oligomer) + polymer</td>
</tr>
<tr>
<td>2</td>
<td>0.07</td>
<td>125</td>
<td>4.0</td>
<td>10%</td>
<td>3 bands (monochelated 77, 73, oligomer) + polymer</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>84</td>
<td>2.0</td>
<td>26%</td>
<td>100% conv (74% 77, 26% 73)</td>
</tr>
<tr>
<td>4</td>
<td>0.02</td>
<td>84</td>
<td>3.0</td>
<td>34%</td>
<td>100% conv (66% 77, 34% 73)</td>
</tr>
</tbody>
</table>

a Isolated yield after flash chromatography.
Transitioning from a pressure tube to a round bottom flask, the reaction concentration was further reduced from 0.07 M to 0.02 M (entry 3). Diacid 72 (2.0 equiv) was added in 0.5 equiv portions in 1 h intervals and the reaction mixture was refluxed at 84 °C for 5 h. Following flash chromatography, a 74/26 ratio of monochelated methyl rhodium 77 and bischelated methyl rhodium 73 was obtained. Treatment of recovered monochelated methyl rhodium 77 (0.03 mmol, 1.0 equiv) with diacid (0.03 mmol, 1.0 equiv) over 12 h at 84 °C gave a 56/44 ratio of mono to bischelated product. The combined yield over the two experiments was 59%. Repeating the conditions of entry 3 with 3.0 equiv of diacid 72 gave a 66/34 ratio of mono to bischelated product (entry 4).

Taber reported that m-benzenedipropionic acid 14 only gave monochelated product 15 upon complexation with Rh2(tfa)4. Du Bois reasoned that Rh2.esp)2’s geminal methyl groups provided needed conformational rigidity for diacid preorganization prior to complexation. The ability for a singly methylated diacid to fully complex with Rh2(tfa)4 was not known. Ultimately, we obtained a 59% yield of bischelated methyl rhodium 73 using 3.0 equiv of diacid 72, which is comparable to Du Bois’ 64% yield using 2.0 equiv of diacid in his Rh2.esp)2 synthesis. In general, the complexation of methyl diacid 72 with Rh2(tfa)4 requires low concentration to avoid formation of polymeric by-products. The highest yielding pathway that also conserves both synthetically useful chiral diacid 72 and monochelated rhodium 77 is to treat Rh2(tfa)4 with 2.0 equiv of diacid, and then resubject recovered monochelated rhodium 77 with 1.0 equiv of diacid.

With a viable synthetic route to a chiral analog of Rh2.esp)2 accessible, we increased the steric bulk of the chiral ligand through substituting methyl with a benzyl group. The necessary hydrocinnamoyloxazolidinone 78 chiral auxiliary was synthesized through deprotonation of (S)-
benzyl oxazolidinone 78 (1.00 mmol, 1.0 equiv) with n-BuLi (1.00 mmol, 1.0 equiv) at –78 °C followed by treatment with hydrocinnamoyl chloride (1.10 mmol, 1.1 equiv) at 0 °C (Scheme 19). Flash chromatography purification gave hydrocinnamoyloxazolidinone 79 in 80% yield as a white solid.

Scheme 19. Synthesis of hydrocinnamoyloxazolidinone 79

Reaction of hydrocinnamoyloxazolidinone 79 (8.70 mmol) under the chiral diacid standard conditions gave bis alkylated benzene 80 in 70% yield and benzyl diacid 81 in 83% yield (Scheme 20).

Scheme 20. Synthesis of chiral benzyl diacid 81

Replicating the high yielding, two-reaction method that gave bis-chelated rhodium 73, we reacted Rh2(tfa)4 (0.29 mmol, 1.0 equiv) with benzyl diacid 81 (0.58 mmol, 2.0 equiv) in a round bottom flask for 18 h under reflux (Scheme 21). After flash column chromatography, we
obtained 87% monochelated and 13% bischelated benzyl rhodium 82. Subjecting the monochelated benzyl rhodium dimer (0.29 mmol, 1.0 equiv) to the same conditions with 1.0 equiv of diacid 81, resulted in reappearance of the insoluble polymeric species. A 93/7 mixture of mono to bischelated benzyl rhodium 82 was recovered after flash column chromatography. The combined yield between the two reactions was 20%, a decrease from 59% of the methyl diacid 72 complexation.

![Diagram](image)

Scheme 21. Complexation of benzyl diacid 81 with Rh$_2$(tfa)$_2$

1.2.2.2 Application of Methyl and Benzyl Chiral Rh$_2$(esp)$_2$ Analogs

Preliminary organic transformations that we have explored with chiral Rh$_2$(esp)$_2$ analogs include B–H insertion of a NHC-borane and a styrene cyclopropanation.

First, we applied chiral methyl dirhodium 73 to our NHC-borane B–H insertion system in Section 1.2.1.3. Reaction between NHC-borane 5 and phenyl diazo 31 resulted in 9% conversion to insertion product 32 and 69/31 er (Table 12, entry 1). Chiral benzyl dirhodium 82 gave a mildly higher yield of 19% but er decreased to 63/37 (entry 2). Li had observed that the reactivity of Rh$_2$(DOSP)$_4$ and Rh$_2$(PTAD)$_4$ decreased dramatically in contrast to Rh$_2$(esp)$_2$ when solvent was not freshly distilled. Presumably the chiral Rh(II) catalysts are not stable to oxygen.
dissolved in solvent. Unfortunately, based on product conversions our chiral Rh$_2$(esp)$_2$ analogs do not retain the same stability of achiral Rh$_2$(esp)$_2$.

Table 12. Enantioselective NHC B–H insertion (α-carbon stereocenter)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Conversiona</th>
<th>er</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>73</td>
<td>9%</td>
<td>69/31</td>
</tr>
<tr>
<td>2</td>
<td>82</td>
<td>19%</td>
<td>63/37</td>
</tr>
</tbody>
</table>

a Estimated from 11B NMR spectrum of crude reaction mixture.

We next screened the cyclopropanation of styrene. In the control reaction, styrene (1.00 mmol, 5.0 equiv) and Rh$_2$(DOSP)$_4$ (1 mol%) was dissolved in pentane (0.5 M). Then diazo 31 was added over 1 h by syringe pump. Flash chromatography yielded 60% 83 as a white solid in 93/7 er (Table 13, entry 1)57 Chiral methyl dirhodium 73 (entry 2) gave 45% 83 in 59/41 er, while chiral benzyl dirhodium 82 (entry 3) resulted in increased yield (51%) and er (73/27).
Table 13. Enantioselective styrene cyclopropanation

![Chemical structure of the reaction](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Yielda</th>
<th>er</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S-DOSP)_{4}</td>
<td>60%</td>
<td>93/7</td>
</tr>
<tr>
<td>2</td>
<td>73</td>
<td>45%</td>
<td>59/41</td>
</tr>
<tr>
<td>3</td>
<td>82</td>
<td>51%</td>
<td>73/27</td>
</tr>
</tbody>
</table>

[a] Isolated yield by flash chromatography.

1.3 CONCLUSIONS

Li’s dirhodium catalyzed intermolecular B–H insertion methodology was expanded beyond NHC-boranes to amine-, phosphine-, pyridine-boranes and a cyanoborohydride salt. The boryl adducts are stable in regards to purification by flash chromatography and long term storage. A reactivity profile of ligated borane adducts toward B–H insertion reaction conditions was developed. All of the substrates are either comparable to or more reactive than 1,4-cyclohexadiene. The range of reactivity between the most reactive pyridine-borane and the least reactive phosphine-borane is a factor of approximately 40.

Continued efforts to solve the enantioselective B–H insertion of NHC-boranes, at either a carbon or boron stereocenter, have yielded low to moderate enantiomeric ratios. Various chiral dirhodium catalysts have resulted in only mild stereoinduction.
Chiral Rh$_2$(esp)$_2$ analogs have been successfully isolated and characterized, although additional project goals may include i) obtain an X-ray crystal structure to elucidate the symmetry class of this group of catalysts, and ii) find a signature enantioselective reaction and continue optimizing the catalyst alkyl substituents.
2.0 RADICAL AND THERMAL REACTIONS OF N-HETEROCYCLIC CARBENE BORANES WITH ELECTROPHILIC DIAZO COMPOUNDS

2.1 INTRODUCTION

2.1.1 Radical Initiators

The homolytic cleavage of a covalent bond often initiates a radical chain reaction. The conditions required to achieve homolysis can be harsh. Accordingly, compounds that can be used to initiate radical chain processes under mild conditions are valued in modern radical synthesis. Radical initiators are compounds that are susceptible to homolytic cleavage at lower temperatures. Radical initiators contain relatively weak covalent bonds that are usually cleaved through thermolysis or photolysis. Common radical initiators include azo compounds, organic peroxides, and hyponitrites.

2.1.1.1 Azo initiators

Azo compounds are a class of radical initiator consisting of R–N=N–R functional groups. The R–N bond (usually a C–N bond) can be cleaved with either heat or light as an initiation step. Two of the most commonly used azo initiators are 2,2′-azobis(2-methylpropionitrile) (AIBN) and 2,2′-azobis(2,4-dimethylvaleronitrile) (V-65). The temperature of the reaction can have a dramatic effect on which azo initiator should be used in a particular reaction. For example, AIBN
has a half-life of 10 h in toluene at 65 °C, whereas V-65 has a half-life of 10 h in toluene at 51 °C. Thermolysis or photolysis of AIBN causes homolysis of the C–N bonds to generate two 2-cyanoprop-2-yl radicals 84 and dinitrogen (Scheme 22). Typically, 40% of the newly formed cyanopropyl radicals 84 recombine before escaping the surrounding solvent cage while the remaining 60% escape for initiation.

![Scheme 22. Radical fragmentation of AIBN](image)

2.1.2 Radical chemistry of NHC-boranes

Boranes (BR₃) react with oxygen, nitrogen, sulfur, and halogen radicals (X•) to expel carbon radicals (C•). Triethylboron and related boranes are common initiators and reagents in synthetic radical chemistry. In contrast, homolytic substitution reactions with ligated boranes instead generate boron-centered radicals. The relatively weak NHC-borane B–H bond can be cleaved to give an NHC-boryl radical (NHC–BH₂•). Evidence for NHC–BH₂• formation has been obtained from observation of NHC-boryl radicals by EPR spectroscopy and by UV-visible spectroscopy during laser flash photolysis (LFP).

Since the discovery of NHC-boryl radicals in 2008, their synthetic application has included addition to xanthates and electron-poor alkenes, bromine and iodine abstraction from alkyl and aryl halides, and reaction with disulfides to yield boryl sulfide and boryl...
thioamide products.69 Recently, Kawamoto and Curran observed that NHC boryl radicals can abstract cyano groups from dinitriles to give NHC-boryl cyanides.70

\subsection{Radical chemistry of diazo compounds}

The synthetic utility of diazo compounds is broad, including common reaction classes such as carbenoid heteroatom insertions and 1,3-dipolar cycloadditions.71 However, radical reactions of diazo compounds have received less attention in comparison. There are a few examples of triorganotin radical addition to diazo compounds to afford carbon-centered radicals after dinitrogen extrusion. Kim investigated the use of α-diazocarbonyl compounds as radical precursors.72 Reaction of diazomalonate 85 with Bu$_3$SnH and AIBN in refluxing benzene-d_6 initially generates diazo tin radical intermediate 86 or 87 (Figure 16). Subsequent loss of dinitrogen gives tin malonate radical 88, and Kim isolated reduced tin malonate 89. Soon after, Karady and coworkers demonstrated that benzophenone radicals, derived from the corresponding diazonium salts, undergo rapid 1,5-hydrogen transfer to give an equilibrium of three aryl radical intermediates.73 Subsequent Pschorr cyclization affords several fluorenone isomer products.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure_16.png}
\caption{Tributyltin hydride radical addition to diazomalonate 85}
\end{figure}
Given that NHC-boranes and diazo compounds are both subject to radical reactions, we hypothesized that when an NHC-borane is reacted under conditions of radical generation with a diazo compound, an α-NHC-boryl insertion product would be formed upon boryl radical addition to a diazo compound and subsequent dinitrogen extrusion.

2.2 RESULTS AND DISCUSSION

2.2.1 Reaction of NHC-boranes and Diazo Compounds with Radical Initiators

The initial aim was to study the reaction between NHC-boranes and diazo compounds with radical initiators. We chose dimethyl diazomalonate 85 as the diazo substrate because it undergoes radical chemistry when reacted with azo-bis-isobutyronitrile (AIBN) and tributyltin hydride.72 Table 14 summarizes the results of reaction between 1,3-dimethylimidazol-2-ylidene borane 5 and diazo malonate 85 with di-tert-butyl peroxide (DTBP) and AIBN radical initiators.

In an initial control experiment (entry 1), a mixture of diazomalonate 85 and NHC-borane 5 in benzotrifluoride (C₆H₅CF₃, abbreviated BTF) was heated to 120 °C. The ¹¹B NMR spectrum of the crude reaction mixture showed 19% conversion of the starting material. A trace amount (5%) of product with the same shift as B–H insertion compound 90 (~25.4 ppm) was formed.

In a standard reaction (entry 2), 0.2 mmol NHC-borane 5, 1.2 equiv diazomalonate 85, and 20 mol % DTBP was loaded into a pressure tube with 2 mL BTF. The reaction mixture was then heated to 120 °C. Over 16 h, the reaction mixture turned a yellow-orange color. The ¹¹B NMR spectrum of the crude reaction mixture showed 39% conversion of NHC-borane 5. We observed a small triplet (2%) in the ¹¹B NMR region where expected B–H insertion product 90
appears (–25.4 ppm). Additional resonances were observed at –19.1 ppm (15%), –13.3 ppm (4%) and 18.0 ppm (18%). The 18.0 ppm resonance can be attributed to boric acid-like decomposition products. Increasing the DTBP loading to 100 mol % (entry 3) resulted in higher conversion (84%) but also a larger amount of decomposition products.

Table 14. Radical initiator screening

<table>
<thead>
<tr>
<th>Entry</th>
<th>Initiator</th>
<th>Conversion a</th>
<th>Product 90 b (%)</th>
<th>Other 11B NMR resonances (NMR Yield) a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>19%</td>
<td>5%</td>
<td>–13.4 (5%), 18.0 (9%)</td>
</tr>
<tr>
<td>2</td>
<td>DTBP (20 mol %)</td>
<td>39%</td>
<td>2%</td>
<td>–19.1 (15%), –13.3 (4%), 18.0 (18%)</td>
</tr>
<tr>
<td>3</td>
<td>DTBP (100 mol %)</td>
<td>84%</td>
<td>0%</td>
<td>–23.7 (3%), –19.1 (12%), –13.3 (5%), 18.0 (64%)</td>
</tr>
<tr>
<td>4</td>
<td>AIBN (20 mol %)</td>
<td>14%</td>
<td>0%</td>
<td>–17.6 (14%)</td>
</tr>
<tr>
<td>5</td>
<td>AIBN (100 mol %)</td>
<td>85% b</td>
<td>0%</td>
<td>–19.0 (15%), –17.7 (60%), 18.0 (10%)</td>
</tr>
</tbody>
</table>

[a] Estimated from 11B NMR spectrum of crude reaction mixture; [b] 22% isolated yield of NHC-boryl hydrazone 91.

When 20% AIBN was used in place of DTBP (entry 4), we observed formation of a broad resonance at –17.6 ppm. After increasing AIBN loading to a stoichiometric amount (entry 5), the resonance was resolved as a pair of triplets with major boron-containing components at –17.7 (60%) and –19.0 ppm (15%). Following flash chromatography purification of the reaction
mixture, we concentrated a polar fraction at 100% EtOAc. The isolated yellow solid (22% yield, mp 113–116 °C) exhibited a broad triplet at –17.9 ppm in the 11B NMR spectrum (CDCl$_3$). The product exhibited a methyl proton resonance (1.71 ppm) and cyano carbon resonance (118.8 ppm) in the 1H and 13C NMR spectra, showing that it possessed a 2-cyanoprop-2-yl group. It also exhibited the vinyl NHC-borane resonances and two methyl esters. This suggests that the structure is 91. In addition, the product was identified as N-boryl-N-2-(2-cyanopropyl) hydrazone 91 based on HRMS data.

Crystals of the compound were grown from a dichloromethane/pentane solution, and the X-ray structure was solved by Dr. Steve Geib. As shown in Figure 17, both the 2-cyanopropyl group and the NHC-boryl group are bonded to the same nitrogen atom of the hydrazone 91.

![Figure 17. X-ray structure of NHC-boryl hydrazone 91](image)

We next increased the amounts of AIBN and NHC-borane 5 in an effort to improve the isolated yield of NHC-hydrazone 91. A BTF solution of 1 equiv of NHC-borane 5, 1.2 equiv of diazomalonate 85, and 1.2 equiv of AIBN was heated in a pressure tube at 120 °C for 2 h (Scheme 23). About 95% of NHC-borane 5 was consumed, and NHC-boryl hydrazone 91 was isolated as a yellow solid in 40% yield by standard flash chromatography (100% EtOAc).
We briefly surveyed this reaction with four other diazo compounds, and the results are summarized in Table 15. Reaction of NHC-borane 5 and AIBN (1.2 equiv) with ethyl diazoacetate (entry 1) provided the corresponding NHC-boryl hydrazone in 7% yield as a yellow solid after isolation by flash chromatography. In separate reactions with ethyl diazo ketone, phenyl diazoacetate 31, and benzyl diazoacetate (entries 2–4), we observed moderate formation (40–60%) of presumed NHC-boryl hydrazone products (peaks at –17 ppm region in 11B NMR spectrum), but the target hydrazone products were not isolated after flash chromatography purification.
Next, we screened three different NHC-boranes. Table 16 summarizes the results. Reactions of diazomalonate 85 and AIBN with 1,2,4,5-tetramethylimidazol-2-ylidene borane 92 and 1,3-diisopropylimidazol-2-ylidene borane 7 provided the corresponding NHC-boryl hydrazones 93 (33%) and 94 (43%) after isolation by flash chromatography (entries 1 and 2). Both products were stable yellow solids. When hindered dipp-NHC-borane 6 was used (entry 3), low conversion was observed and target hydrazone 95 was not isolated after flash chromatography.
<table>
<thead>
<tr>
<th>Entry</th>
<th>NHC-borane</th>
<th>NMR Yield(^a)</th>
<th>Isolated Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>92%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>78%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>11%</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Estimated from \(^{11}\)B NMR spectrum of crude reaction mixture.

Finally, we tested two other thermally labile azo initiators, 2,2′-azobis[2,4-dimethylvaleronitrile] (V-65) and 1,1′-azobis(cyclohexanecarbonitrile) (ACHN). Reactions of 85 and 1,3-dimethylimidazol-2-ylidene borane 5 with V-65 (Scheme 24a) and AHCN (Scheme 24b) produced the yellow hydrazones 96 (17%) and 97 (18%) after flash chromatography.
The moderate isolated yields of the NHC-boryl hydrazone compounds (17–43%) support the notion that these products are formed in nonchain radical reactions from radical recombinations. The NHC-boryl radical (NHC–BH$_2$• 98) is presumably formed by reaction of a 2-propanenitrile radical with the starting borane. Then 98 adds to the diazomalonate 85 to boryl hydrazone radical intermediate 99 (Scheme 25). Finally, termination with 2-propanenitrile radical 84 produces NHC-boryl hydrazone 91. Some radical reactions of diazo compounds occur on the carbon atom (which typically leads to loss of N$_2$), but these new reactions evidently occur on the terminal nitrogen atom. In short, we hypothesized that boryl radicals would add to the carbon atom of diazomalonate, but instead, they added to the nitrogen atom.

Scheme 24. Synthesis of azo initiator NHC-boryl hydrazone analogs
2.2.2 Synthesis of an NHC-boryl Hydrazone via 1,1-Hydroboration

Diester 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione 100 is a cyclic analog of diazo malonate 85. The reaction conditions established in Scheme 23 were repeated by heating of NHC-borane 5, AIBN, and diazo dione 100 in BTF. The 11B NMR spectrum of the crude reaction mixture showed the complete consumption of NHC-borane 5 and appearance of a boron–nitrogen resonance at -19.3 ppm. However, the polar product 101 isolated after flash column chromatography (100% EtOAc in 14% yield) incorporated the diazo dione and the NHC-borane, but had no 2-cyanopropyl group (Scheme 26).
The structure of 101 was evident from the similarities of its spectra to the spectra of the previous N-boryl hydrazone adduct 91. For example, 101 exhibited a triplet at –18.7 ppm in its 11B NMR spectrum, which is very close to the resonance of 91. A broad singlet at –12.42 ppm in the 1H NMR spectrum of 101 was attributed to an N–H proton. We also considered that the product could be structure 102, a compound previously reported by Li. However, compound 101 has a plane of symmetry perpendicular to that of 102, and the observed simplification in both 1H and 13C NMR spectra (the geminal methyl groups are equivalent) is consistent with 101, not 102. The HRMS confirmed that dinitrogen was not eliminated in 101, which is a direct adduct of 5 and 100. Like 91, N-boryl hydrazone 101 is a stable yellow solid. Crystals were grown from dichloromethane/pentane, mp 193–195 °C, and the X-ray structure shown in Figure 18 confirmed the structure assignment.
Product 101 has the same spectra as those reported for the Rh-catalyzed insertion product 102 by Dr. Xiben Li (Scheme 26, right). These results mean the assigned structure of 102 reported in 2013 as the product of the Rh-catalyzed reaction of 5 and 100 is incorrect.

To verify this, we conducted three reactions of 5 and 100, with Rh2.esp2 (Table 17). The first reaction mimicked Li’s conditions. The diazo dione 100 was added via syringe pump into a refluxing solution of NHC-borane 5 and 1% Rh2.esp2 in DCM (entry 1). After 4 h, 11B NMR analysis showed clean formation of 101, with no evidence of 102. Next, we changed the reaction vessel from a round-bottom flask to a pressure tube. NHC-borane 5, dione diazo 100, and 1% Rh2.esp2 were mixed in DCM and the mixture was heated at 60 °C for 2 h (entry 2). The 11B NMR spectrum of the crude reaction mixture exhibited two peaks: the boryl hydrazone product (41%) and a new triplet at –24.0 ppm (56%). This chemical shift is consistent with Li’s other α-NHC boryl ester products, so the new product is probably 102. Finally, we repeated the pressure tube experiment with increased Rh2.esp2 loading (5 mol %). After 2 h, all starting NHC-borane 5 was consumed and the α-NHC B–C adduct 102 was the only product (entry 3). Unfortunately, the NHC boryl diaone ester product was not isolated by column chromatography purification. These results show that the thermal 1,1-hydroboration of 5 and 100 can supersede the Rh-catalyzed insertion reaction under reaction conditions with low catalyst loadings.
Table 17. Formation of NHC B–N and B–C adducts with dione diazo 100

<table>
<thead>
<tr>
<th>Entry</th>
<th>Rh$_2$(esp)$_2$ (Equivalents)</th>
<th>Method</th>
<th>NMR yield 101a</th>
<th>NMR yield 102a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>Syringe pump</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
<td>Pressure tube</td>
<td>41%</td>
<td>59%</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>Pressure tube</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

a Estimated from 11B NMR spectrum of crude reaction mixture.

With the new spectra and information, we then checked the data for the 14 structures of the Rh-catalyzed B–H insertion products in the original 2013 report.32 However, only the structure in the reaction of 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione 100 is incorrect as indicated by its 11B NMR resonance (–18.7 ppm). All the other products are correctly assigned as α-NHC-boryl esters, with 11B NMR shifts at approximately –25 ppm, resulting from B–H insertion reactions of diazocarbonyl compounds.

A control reaction in BTF without the AIBN initiator provided boryl hydrazone 101 in 18% yield; a mild improvement compared to the 14% yield from the original reaction with AIBN (Scheme 27). Furthermore, heating 5 and 100 (1.2 equiv) in CH$_2$Cl$_2$ for 20 h afforded target boryl hydrazone 101 in much improved yield (61%). This result is consistent with the NHC boryl hydrazone 101 yield originally reported by Li.
N-boryl hydrazone 101 is a product of 1,1-hydroboration of 100 by 5. Since AIBN has no effect, this is probably an ionic reaction that is led by hydride transfer from 5 to the terminal nitrogen atom of 100. This gives a species resembling a borenium cation/hydrazide anion pair (Figure 19), which collapses to the product 101. This reaction is distantly related to the 1,2-hydroboration of arynes by NHC-boranes, which is also thought to occur by hydride transfer.52 The propensity of 100 to undergo rapid thermal 1,1-hydroboration is so far unique among all the diazo compounds studied.
Finally, we speculated that more electrophilic diazo compounds could also lead to 1,1-hydroboration products. If 1,1-hydroboration occurs between NHC-borane 5 and a diazonium salt, then the product will be a NHC boryl diazene salt ([NHC-BH₂NH=NAr⁺]).

Slow addition of 4-bromobenzenediazonium tetrafluoroborate 103 in acetonitrile to a refluxing solution of NHC-borane 5 in acetonitrile (Scheme 28) gave a crude product that showed three substantial resonances in the ¹¹B NMR spectrum. There is a sharp peak at –0.48 ppm from BF₄⁻, a quartet at 0.42 ppm from 1,3-dimethylimidazol-2-ylidene trifluoroborane (NHC-BF₃), and a very broad peak between –18.0 and –22.0 ppm. We anticipated that the third signal corresponded to the proposed boryl diazene product 104.

![Scheme 28. Pathway to proposed NHC boryl diazene 104](image)

Purification of the crude reaction mixture by flash chromatography with 100% EtOAc yielded a light yellow oil. The residue exhibited two resonances in the ¹¹B NMR spectrum: a sharp BF₄⁻ singlet at –1.31 ppm and a broad very broad peak at –20.0 ppm (Figure 20). The NHC-BF₃ impurity was removed by column chromatography purification. The BF₄⁻ peak integrated 2:1 with the B–N peak, hinting that the isolated residue was a dicationic salt.
Furthermore, two broad singlets at 5.55 ppm (1H) and 6.58 ppm (2H) in the 1H NMR spectrum (Figure 21) disappeared upon addition of D$_2$O to the NMR sample. We attributed these two resonances to exchangeable protons on the diazene nitrogen atoms. Finally, the residue exhibited satisfactory HRMS data (m/z [M$^+$] calculated for C$_{11}$H$_{17}$N$_4$BBr 295.0724, found 295.0718.

Figure 20. 11B NMR spectra of isolated boryl salt intermediate
Based on this spectroscopic data, we propose that the structure of the isolated dicationic salt to be either NHC diazaborirane \(105\) or NHC boryl hydrazine \(106\) (Figure 22).
To access target boryl diazene product **104** from the salt intermediate, we proposed that addition of a base would deprotonate the nitrogen atoms of either **105** or **106**. Treatment of the NHC-boryl salt intermediate in CH$_2$Cl$_2$ with aqueous K$_2$CO$_3$ resulted in the solution immediately turning a dark maroon color. A triplet at –12.0 ppm ($J = 95$ Hz) was now present the crude 11B NMR spectrum (Scheme 29). The combined organic layers were dried over Na$_2$SO$_4$ and concentrated to give a purple solid in 10% yield (mp 67–70 °C). This was identified by its spectra as the diazene N-oxide **108**. The added oxygen atom of the N-oxide was evident from HRMS. Presumably **108** arises from air oxidation of NHC-boryl diazene **107**.

Figure 22. Proposed structures of dicationic boryl salt intermediate

Scheme 29. Synthesis of NHC boryl diazene oxide **108**
Crystals of 108 were grown from THF/pentane, and the structure was confirmed by X-ray crystallography, as shown in Figure 23. Compound 108 is the first example of an NHC-borane bonded to an azoxy group.

![Figure 23. X-ray structure of NHC boryl diazene oxide 108](image)

2.3 CONCLUSIONS

In summary, thermal reactions of NHC-boranes with several diazo compounds and one diazonium salt have been studied. We originally hypothesized that NHC-boryl radicals would add to the carbon atom of diazo compounds to afford α-NHC-boryl esters after dinitrogen extrusion. Chain reactions between NHC-boranes and diazo compounds are not initiated by azo initiators such as AIBN. Instead, N-(cyanoalkyl)-N-borylhydrazones are formed, probably from nonchain radical reactions. Contrary to our hypothesis, NHC-boryl radicals add to the terminal nitrogen atom of diazo compounds. This type of reaction does not occur with diazo 2,2-dimethyl-1,3-dioxane-4,6-dione. Instead, this reacts directly with the NHC-borane (no azo initiator needed) to give an N-boryl hydrazone product arising formally from 1,1-hydroboration. A similar thermal reaction of an NHC-borane with a diazonium salt gave an intermediate that upon neutralization underwent air oxidation to provide an NHC-boryl azoxy compound.
The structures of three key compounds (one of each structural type) have been confirmed by X-ray crystallography. The new classes of products join a small list of stable NHC-boryl compounds with boron–nitrogen bonds, including several boryl azides and triazoles,77 and a boryl isonitrile and nitro.78
3.0 BORENIUM ION EQUIVALENT CATALYZED B–H INSERTION REACTIONS OF N-HETEROCYCLIC CARBENE BORANES

3.1 INTRODUCTION

3.1.1 Borenium ion chemistry of NHC-boranes

The activation of amine- and phosphine-boranes generates a borenium ion (LB−BH₂⁺) or a borenium ion equivalent.⁷⁹ These equivalents include charged complexes of borenium ions with solvent or another Lewis base, or neutral, covalent LB–borane complexes with a good leaving group (LB−BH₂X where X is the leaving group). Borenium ions and borenium ion equivalents are reactive in hydroboration.⁸⁰

Like amine- and phosphine-boranes, NHC-boranes react with strong acids and various electrophiles to give electrophilic substitution products (Scheme 30).⁷⁷ For example, the reaction of dipp-NHC-borane 6 and 1 equiv of HI or 0.5 equiv of I₂ gave the mono-substituted product dipp-NHC–BH₂I 109.
Although boron bears a formal negative charge in NHC-boranes, nucleophilic substitutions on a boron atom with a good leaving group can be achieved. For example, substitution of electrophilic NHC-boryl iodide 109 with sodium azide or cyanide provided boryl azide 110 or boryl cyanide 111 (Scheme 31).\(^7^7\)

Pan and Curran demonstrated that NHC-boranes activated with 10 mol % diiodine can hydroborate alkenes.\(^8^1\) For example, reaction of NHC-borane 5 with 10% I\(_2\) followed by addition of 2,3-dimethyl-2-butene 112 gave the xyl NHC-borane 113 in 75% yield (Scheme 32).
3.2 RESULTS AND DISCUSSION

Diazooesters can function as nucleophiles on carbon in the absence of metal catalysts.82-83 For example, ethyl diazoacetate is a weak neutral nucleophile with an N value of 4.91 on the Mayr scale.84 Unlike uncatalyzed ligated tetravalent boranes, trivalent boranes typically react with diazoesters by addition and 1,2-shift.85 However, electrophilic borenium ions or their functional equivalents sometimes mimic the reactivity of trivalent boranes. Thus, we hypothesized that boryl electrophile catalysts would be alkylated by diazoesters and would thereby provide a pathway to B–H bond insertion reaction between diazo compounds and ligated boranes.

3.2.1 Optimization of B–H Insertion Reaction Conditions with Excess Diazo Component

The beginning purpose of this study was to test the mutual reactivity between ethyl diazoacetate and a NHC-boryl electrophile. Dr. Takuji Kawamoto and Mr. Sean Gardner first observed that reaction of 1,3-dimethylimidazol-2-ylidene borane 5 with ethyl diazoacetate 11, upon addition of a substoichiometric amount of electrophiles or strong acids, gave NHC-boryl ester 114. The results of the preliminary screening reactions by Kawamoto and Gardner are summarized in Table 18. The first activators screened were triflic acid (TfOH) and triflimide (Tf$_2$NH) (entries 1
and 2). Moderate conversions (38–47%) of NHC-borane 5 to the target B–H insertion product 114 were observed in the 11B NMR spectra. A small amount of double adduct 115 was present in both cases. When the activator was switched to diiodine (entry 3), NHC-boryl ester 114 was isolated in 58% yield after flash column chromatography. A weaker acid, camphor sulfonic acid (10-CSA), did not produce the target product.

Table 18. Initial discovery of B–H reaction with NHC-boranes and activators

<table>
<thead>
<tr>
<th>Entry</th>
<th>5 (mmol)</th>
<th>Activator</th>
<th>Concentration</th>
<th>Conversiona</th>
<th>114 / 115</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>TfOH (10 mol %)</td>
<td>0.7 M</td>
<td>47%</td>
<td>94/6</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>Tf$_2$NH (10 mol %)</td>
<td>0.6 M</td>
<td>38%</td>
<td>92/8</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>I$_2$ (10 mol %)</td>
<td>1.0 M</td>
<td>58%b</td>
<td>–c</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>10-CSA (1.0 equiv)</td>
<td>0.2 M</td>
<td>0%</td>
<td>None</td>
</tr>
</tbody>
</table>

a Estimated from 11B NMR spectrum of crude reaction mixture; b Isolated yield after flash chromatography; c 11B NMR spectrum of crude reaction mixture was not obtained.

Based on the preliminary results in **Table 18**, we sought to further develop reaction conditions with electrophilic activators to afford α-NHC-boryl esters in good yields. The donor-acceptor diazo compound 31 and 10 mol % I$_2$ activator were applied in the first reaction. At 0.1 M concentration (**Table 19**, entry 1), the reaction proceeded slowly, requiring 18 h to reach 50% conversion of the starting NHC-borane. A tenfold increase in concentration (entry 2) resulted in
complete conversion after 1 h. The less sterically bulky diazo compound 11 was then used to screen the activators as to determine the ratio between single and double insertion products.

Next, we screened four other activators: bromine, triflic acid, triflimide, and camphor sulfonic acid (entries 4–7). Twenty mol % loading of activator was used for each experiment. The bromine-catalyzed reaction proceeded to 95% consumption of NHC-borane with a 98/2 ratio of single and double adducts in the 11B NMR spectrum after 1 h (entry 4). After an additional 17 h, the starting material was consumed and the double adduct increased moderately to 25%. NHC-borane was completely consumed after 1 h with triflic acid activation (entry 5). The ratio of single and double adduct changed slightly from 90/10 to 86/14 after 18 h. Triflimide catalysis gave a similar result to triflic acid with complete conversion after 1 h, and a minimal change in double adduct formation after 18 h (93/7 to 91/9) (entry 6). No target product was observed after 18 h when the weak acid, camphor sulfonic acid, was used as the activator (entry 7). The control reaction with activator absent (Entry 8) also resulted in no conversion to the insertion product.

To reduce conversion to the double insertion product, the amount of 11 was reduced to 1.2 equiv and the reaction was stopped after 1 h (entry 9). The observed product ratio of 82/18 favored the single adduct compared to similar conditions with 1.3 equiv 11 (63/37). On a larger scale reaction of NHC-borane (10 mmol), a reduced loading of I$_2$ (3 mol %) was screened (entry 10). After 1 h, gas evolution ceased and only 7% conversion of NHC-borane was observed by 11B NMR analysis.

When the reaction with diiodine as activator proceeded over 18 h (entry 3), the ratio of single and double adducts in the 11B NMR spectrum changed from 63/37 to 36/64. A ratio of 36/64 is not theoretically possible given 1.3 equiv of diazo 11 used in the reaction. Therefore, the single adduct 114 is likely unstable when exposed to the diiodine activated reaction condition.
over an extended time period. Limiting the reaction time to 1 h prevents degradation of the desired mono insertion product 114.

In summary, the optimized reaction conditions to form a mono NHC-boryl ester product are shown in Entry 9: 1.2 diazo equivalents, 10 mol % I₂, CH₂Cl₂ (1.0 M), 1 h, rt.

Table 19. Reaction conditions screening with diazo compound in excess

<table>
<thead>
<tr>
<th>Entry</th>
<th>Activator</th>
<th>Conversion after 1 h (114 / 115)</th>
<th>Conversion after 18 h (114 / 115)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I₂ (10 mol %)</td>
<td>8% (100/0)</td>
<td>50% (100/0)</td>
</tr>
<tr>
<td>2</td>
<td>I₂ (10 mol %)</td>
<td>>99% (100/0)</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>I₂ (10 mol %)</td>
<td>>99% (63/37)</td>
<td>>99% (36/64)</td>
</tr>
<tr>
<td>4</td>
<td>Br₂</td>
<td>95% (98/2)</td>
<td>>99% (75/25)</td>
</tr>
<tr>
<td>5</td>
<td>TfOH</td>
<td>>99% (90/10)</td>
<td>>99% (86/14)</td>
</tr>
<tr>
<td>6</td>
<td>Tf₂NH</td>
<td>>99% (93/7)</td>
<td>>99% (91/9)</td>
</tr>
<tr>
<td>7</td>
<td>10-CSA</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>8</td>
<td>None</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>9</td>
<td>I₂ (10 mol %)</td>
<td>>99% (82/18)</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>I₂ (3 mol %)</td>
<td>7% (100/0)</td>
<td>–</td>
</tr>
</tbody>
</table>

[a] 0.1 M, 1.2 equiv diazo 31; [b] 1.2 equiv diazo 31; [c] 1.2 equiv diazo 11; [d] 10 mmol NHC-borane 5.
3.2.2 Preparative B–H Insertion Reactions of NHC-boranes with Ethyl Diazoacetate

The next goal was to study the scope of this reaction with other NHC-boranes. For preparative scale reactions, we selected iodine as the activator because it reacts quickly and quantitatively with NHC-boranes to make NHC-boryl iodides. Iodine is easier to handle than bromine and triflic acid, and does not require manipulation under inert atmosphere compared to triflimide. In a standard reaction, NHC-borane 5 (1 mmol) was dissolved in dichloromethane (1 mL), and then diiodine (10 mol %) was added. The iodine color dissipated quickly accompanied by bubbling due to the formation of hydrogen gas. After 5 min, the neat diazo compound 11 (1.2 equiv) was added. Vigorous bubbling ensued, this time due to formation of nitrogen gas. After 1 h, an 11B NMR spectrum of the reaction mixture showed that starting NHC-borane 5 was absent. Present were monoinsertion product 114 (t, –28.2 ppm) and the corresponding double insertion product NHC-BH(CH$_2$CO$_2$Et)$_2$ (d, –20.3 ppm) in a ratio of about 80/20. Solvent evaporation and flash chromatography of the residue provided stable α-boryl ester 114 in 53% yield.86

Table 20 summarizes preparative reactions of 11 with other NHC-boranes under the conditions described in Scheme 33. The stable α-boryl ester products were isolated by concentration and direct flash chromatography. Reaction of 1,3-diisopropyl-imidazol-2-ylidene
borane 7 provided 116 in 57% yield (entry 1). Differentially substituted imidazolium boranes 117 (N-Me, N-iPr) and 119 (N-Me, N-Bu) provided products 118 and 120 in 50% and 58% yield, respectively (entries 2 and 3). 1,3,4,5-Tetramethylimidazol-2-ylidene borane 92 gave α-boryl ester 121 in 37% yield (entry 4), while the corresponding benzimidazole analog 8 gave 122 in 63% yield (entry 5). In contrast to these successes, the reactions with N-Me, N-Bn substituted NHC-borane 123 and the hindered 1,3-bis-(2,6-diisopropylphenyl)imidazole-2-ylidene borane 6 did not give the corresponding insertion products (entries 6 and 7). Similarly, Dr. Xiangcheng Pan reported that diiodine catalyzed hydroboration of alkenes did not occur when using dipp-NHC borane 6. In both cases, the steric environment around the boryl iodide is likely too hindered for the incoming nucleophile to access.

Most of the products in Table 20 are new compounds, though benzimidazole NHC-boryl ester 122 has been made by the rhodium-catalyzed reaction in about the same isolated yield. In the diiodine-catalyzed reactions, the formation of both the boryl iodide and the boryl ester can be conveniently followed by 11B NMR spectroscopy, if desired. Spectra of most reaction mixtures showed that small amounts (roughly 10%) of double insertion products were formed. These are rather polar and were not isolated. The exception was entry 4, the reaction of tetramethylimidazol-2-ylidene borane 92. In this case, the ratio of monointersection product 121 to the corresponding double insertion product was 66/34 according to the 11B NMR spectrum of the crude product. Thus, the lower yield in entry 4 is due at least in part to over-reaction of the product 121.
Table 20. Isolated yields in preparative reaction of NHC-boranes with ethyl diazoacetate

<table>
<thead>
<tr>
<th>Entry</th>
<th>NHC-borane<sup>a</sup></th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>iPr</td>
<td>iPr</td>
<td>116</td>
<td>57%</td>
</tr>
<tr>
<td>2</td>
<td>117</td>
<td>Me</td>
<td>iPr</td>
<td>118</td>
<td>50%</td>
</tr>
<tr>
<td>3</td>
<td>119</td>
<td>Me</td>
<td>Bu</td>
<td>120</td>
<td>58%</td>
</tr>
<tr>
<td>4</td>
<td>123</td>
<td>Me</td>
<td>Bn</td>
<td>124</td>
<td>0%</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>dipp</td>
<td>dipp</td>
<td>125</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Conditions: 1 mmol of NHC-borane, 10 % I₂, 1.2 equiv of 11, 1 mL dichloromethane, 1 h at rt.

3.2.3 Diiodine-Catalyzed B–H Insertion Screening with other Ligated Boranes

Next, we briefly surveyed other kinds of stable ligated boranes with ethyl diazoacetate 11 under the standard conditions, summarized in **Table 21**. Reactions with trimethylamine borane (Me₃N–BH₃ 2) and triphenylphosphine borane (Ph₃P–BH₃ 3) gave small amounts of boryl iodide.
intermediates but no target insertion products as assessed by 11B NMR spectroscopy. The reaction with pyridine-borane (pyr–BH$_3$ 4) gave some product with the same 11B NMR chemical shift as insertion product 128 (t, $–5.7$ ppm) but the conversion was low (<40%) and there was also a significant unidentified peak in the spectrum ($\delta = 2.2$ ppm). At least under these conditions then, NHC-boranes are a superior class for the B–H insertion reaction.

Table 21. Diiodine-catalyzed B–H insertion of ligated boranes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>δ, 11B NMR</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me$_3$N–BH$_3$ 2</td>
<td>Me$_3$N–H$_2$(\stackrel{\text{CO}_2\text{Et}}{\text{B}})</td>
<td>–</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>Ph$_3$P–BH$_3$ 3</td>
<td>Ph$_3$P–H$_2$(\stackrel{\text{CO}_2\text{Et}}{\text{B}})</td>
<td>–</td>
<td>0%</td>
</tr>
<tr>
<td>3</td>
<td>pyr–BH$_3$ 4</td>
<td>pyr$^+$H$_2$(\stackrel{\text{CO}_2\text{Et}}{\text{B}})</td>
<td>t, ($–5.7$ ppm)</td>
<td><40%</td>
</tr>
</tbody>
</table>

3.2.4 Preparative Reactions of 1,3-Dimethylimidazol-2-ylidene Borane with Substituted Diazoacetates

Many boron analogs of amino acids exist, but typically the boron functionality replaces the carboxy carbon of the amino acid. Diazo compounds that gave B–H insertion products with
2-alkyl substituents gave low yields in Li’s rhodium-catalyzed reactions. The diazo esters chosen for this scope study feature natural or common unnatural amino acid side chains.

The diazo compounds were prepared by literature methods. 2-diazopropanoates with methyl (44) and benzyl (129) esters were obtained by treatment of 2-methylacetoacetate precursors with 4-acetamidobenzenesulfonyl azide (p-ABSA) in a Regitz diazo transfer reaction.89 Similarly, treatment of ethyl 2-isopropylacetoacetate with p-ABSA afforded methyl 2-diazo-3-methylbutanoate 131. The remaining diazo compounds, other than 31 and 85, were prepared by diazotization of the corresponding α-amino acid ester with isopentyl nitrite.90

Table 22 summarizes the results of a survey of reaction of various diazoesters with readily available NHC-borane 5. The standard conditions were used (1 mmol NHC-borane 5, 10% I₂, 1.2 equiv of diazo ester, 1 mL of dichloromethane, 1 h of rt) unless otherwise noted. Yields are reported after concentration and flash chromatography.

Reactions of 5 with 2-diazopropanoates with methyl (44) and benzyl (129) esters provided the corresponding NHC-boryl alanine esters 45 and 130 in 68% and 43% yields (entries 1 and 2). Reaction with methyl 2-diazo-3-methylbutanoate 131 gave the boryl valine analog 132 in only 20% yield (entry 3). However, reactions of diazoesters 133 and 135 with phenylalanine and methionine side chains gave 134 and 136 in 71% and 52% yields (entries 4 and 5). The reaction with 134 was slow and was allowed to progress for 18 h before purification.

The diazoesters with natural tyrosine and tryptophan side chains did not provide insertion products in reactions with 5 (entries 6 and 8). However, the corresponding methylated analogs 139 and 143 provided protected tyrosine and tryptophan NHC-boryl esters 140 and 144 in 58% and 46% yields (entries 7 and 9).
Table 22. Isolated yields in preparative reactions of NHC-borane 5 with substituted diazoacetates

<table>
<thead>
<tr>
<th>Entry</th>
<th>NHC-borane</th>
<th>R¹</th>
<th>R²</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>Me</td>
<td>Et</td>
<td>45</td>
<td>68%</td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td>Me</td>
<td>Bn</td>
<td>130</td>
<td>43%</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>iPr</td>
<td>Et</td>
<td>132</td>
<td>20%</td>
</tr>
<tr>
<td>4</td>
<td>133</td>
<td>Bn</td>
<td>Me</td>
<td>134</td>
<td>71%</td>
</tr>
<tr>
<td>5</td>
<td>135</td>
<td>CH₂CH₂SMe</td>
<td>Me</td>
<td>136</td>
<td>52%</td>
</tr>
<tr>
<td>6</td>
<td>137</td>
<td>CH₂C₆H₄OH</td>
<td>Me</td>
<td>138</td>
<td>0%</td>
</tr>
<tr>
<td>7</td>
<td>139</td>
<td>CH₂C₆H₄OMe</td>
<td>Me</td>
<td>140</td>
<td>58%</td>
</tr>
<tr>
<td>8</td>
<td>141</td>
<td>CH₂-tryptophan</td>
<td>Me</td>
<td>142</td>
<td>0%</td>
</tr>
<tr>
<td>9</td>
<td>143</td>
<td>CH₂-NMe-tryptophan</td>
<td>Me</td>
<td>144</td>
<td>46%</td>
</tr>
<tr>
<td>10</td>
<td>31</td>
<td>Ph</td>
<td>Me</td>
<td>32</td>
<td>64%</td>
</tr>
<tr>
<td>11</td>
<td>60</td>
<td>Ph</td>
<td>2,6-Me₂C₆H₃</td>
<td>61</td>
<td>54%</td>
</tr>
<tr>
<td>12</td>
<td>58</td>
<td>Ph</td>
<td>2,6-Cl₂C₆H₃</td>
<td>59</td>
<td>26%</td>
</tr>
<tr>
<td>13</td>
<td>85</td>
<td>CO₂Me</td>
<td>Me</td>
<td>90</td>
<td>0%</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>145</td>
<td>0%</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>147</td>
<td>0%</td>
</tr>
</tbody>
</table>

[a] Conditions: 1 mmol of NHC-borane 5, 10 % I₂, 1.2 equiv of diazo, 1 mL of dichloromethane, 1 h at rt; [b] 25% conversion of 5; [c] 18 h reaction time; [d] 61% conversion of 5.

Next, 2-phenyl-diazoacetates with methyl (31), 2,6-dimethylphenyl (60) and 2,6-dichlorophenyl (58) esters provided the corresponding NHC-boryl phenylglycines 32, 61, and 59 in 64%, 54%, and 26% yields, respectively (entries 10, 11, and 12).
Finally, dimethyl diazo malonate 85 did not yield target boryl ester product 90 (entry 13). Diethyl diazomalonate has an N value of -0.35 on the Mayr scale and, therefore, is less nucleophilic than the other tested diazo substrates. We also screened dimethyl 2-diazosuccinate 145 and dimethyl 2-diazopentanedioate 147 (aspartic and glutamic acid precursor analogs), but the desired products were also not obtained (entries 14 and 15).

The progress of these reactions was followed by 11B NMR spectroscopy as usual, and in many cases the conversion of 5 was high (90–100%). Exceptions were the lower yielding reactions in entries 3 and 10. These were not plagued by side-product formation. Instead, they seemed to stop with substantial amounts of NHC-borane 5 remaining (75% and 39%, respectively).

3.2.5 Optimization of B–H Insertion Reaction Condition with Excess Borane Component

To further reduce formation of the double insertion product, we screened several reactions with NHC-borane in excess (Table 23). Boron–hydrogen insertion reactions with N-methyl substituted NHC-boranes give a higher ratio of double insertion side product compared to NHC-boranes with bulky N-substituents. When 1.3 equiv of diMe-NHC borane 5 or benzimidazole-NHC borane 8 were reacted with 1 mmol ethyl diazoacetate (Entries 1 and 4), formation of the desired mono-insertion product was heavily favored (99/1 and 98/2 single to double adduct). Furthermore, the isolated yield of the mono-adduct was higher compared to the insertion reaction with excess diazo compound (75% and 78% versus 53% and 65%).

The double insertion product does not appear when the hindered diPr-NHC borane 7 or N-Bu NHC borane 119 are reacted with excess diazo compound. When either NHC borane is reacted in excess (Entries 2 and 3), no double adduct is formed and the isolated yield is within ±
6% of the standard conditions result (63% and 55% versus 57% and 58%). Similar results are obtained when the bulkier diazo methionine 135 and phenyl diazoacetate 31 are reacted with diMe-NHC borane 5 in excess (entries 5 and 6). Again, double adduct formation was not observed, and there was no improvement in isolated yield of the target product (49% and 61% versus 52% and 64%).

In summary, if a combination of NHC borane and diazo compound results in significant formation of undesired double insertion product, the NHC borane component should be used in excess to increase the isolated yield of the single insertion product.

Table 23. Reaction conditions screening with NHC-borane in excess

<table>
<thead>
<tr>
<th>Entry</th>
<th>NHC-borane</th>
<th>Product</th>
<th>Conversion (1 h)</th>
<th>Single/Double</th>
<th>Yield</th>
<th>Yield (std conditions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>114</td>
<td>84%</td>
<td>99/1</td>
<td>75%</td>
<td>53%<sup>a</sup></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>116</td>
<td>90%</td>
<td>100/0</td>
<td>63%</td>
<td>57%<sup>b</sup></td>
</tr>
<tr>
<td>3</td>
<td>119</td>
<td>120</td>
<td>96%</td>
<td>98/2</td>
<td>55%</td>
<td>58%<sup>c</sup></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>122</td>
<td>88%</td>
<td>100/0</td>
<td>78%</td>
<td>65%<sup>d</sup></td>
</tr>
<tr>
<td>5<sup>e</sup></td>
<td>5</td>
<td>136</td>
<td>70%<sup>f</sup></td>
<td>100/0</td>
<td>49%</td>
<td>52%<sup>g</sup></td>
</tr>
<tr>
<td>6<sup>h</sup></td>
<td>5</td>
<td>32</td>
<td>75%</td>
<td>100/0</td>
<td>61%</td>
<td>64%<sup>i</sup></td>
</tr>
</tbody>
</table>

^a Scheme 31; ^b Table 20, entry 1; ^c Table 20, entry 3; ^d Table 20, entry ; ^e Diazo 135; ^f 18 h;

^g Table 22, entry 5; ^h Diazo 31; ⁱ Table 22, entry 10.
3.2.6 Structure and Stability of α-NHC-Boryl Esters

Unlike the crystalline NHC-borane starting materials, many α-NHC-boryl esters in Table 20 and 22 are clear, free-flowing liquids. Exceptions included benzimidazole derivative 122, tryptophan analog 144, and the two aryl esters 59 and 61 with the phenylglycine motif. These four products are white solids. Crystals of the tryptophan analog 144 were grown by vapor phase diffusion from dichloromethane/pentane. The X-ray crystal structure was solved by Dr. Steve Geib, and the resulting ORTEP diagram is shown in Figure 24.

This is the first crystal structure of an NHC-boryl ester, and it confirms the assignment of constitution that was made by NMR methods (specifically, the compounds are α-NHC-boryl esters, not isomeric enol boranes). The molecule adopts an extended conformation from the tryptophan ring on the left through to the NHC-ring on the right. This leaves the bond from the chain to the ester (CH–CO$_2$Me) as gauche to both the CH$_2$–tryptophan bond on one side and the BH$_2$–NHC bond on the other side.

The chiral α-boryl esters in Table 22 are racemates. To learn if the individual enantiomers resist racemization, the two enantiomers of 2,6-dichlorophenyl ester 59 were resolved by chiral HPLC ((S,S)-Whelk-O column, hexane/iPrOH = 70:30, first enantiomer $t_R =$
12.04 min, second enantiomer $t_R = 15.45$ min). The enantioenriched samples were stable and did not racemize for several years at rt.

3.2.7 Mechanistic Experiments

Figure 25 shows a plausible mechanism for this reaction that is based on analogies between borane (BH$_3$) and NHC-borenium ions (NHC–BH$_2^+$), both of which are reactive Lewis acids. It is unlikely that free borenium ions are involved in this reaction, but NHC-boranes bearing excellent leaving groups (NHC–BH$_2$X) exhibit borenium-like reactivity.

The rapid formation of boryl iodide catalyst 150 by reaction of NHC–BH$_3$ 149 with diiodine was verified by 11B NMR spectroscopy. Subsequent C-borylation of diazoester 151 provides α-NHC-boryl diazonium iodide 152 that then undergoes 1,2-hydride shift with loss of dinitrogen. Collapse of the iodide upon the forming borenium ion generates boryl iodide 153.
The observed product **154** arises from hydride/iodide exchange between starting NHC–BH₃ **149** and **153** with regeneration of the catalyst **150**. The hydride/iodide exchange reaction has precedent in 1,2-hydroboration reactions of NHC-boranes, which are also catalyzed by NHC-boryl iodides and related molecules.⁹¹

The second hydride transfer step was probed by generation of an iodide like **154** by treatment of boryl ester **114** with 0.5 equiv of iodine (Scheme 34). The ¹¹B NMR spectrum showed formation of boryl iodide **155** as a doublet at –21.0 ppm (Figure 26, top). Next, the catalytic conditions were mimicked by addition of excess NHC-BH₃ **5** (10 equiv). The complete conversion of **155** back to boryl ester **114** (t, –28.0 ppm) after 1 h as observed in the ¹¹B NMR spectrum (Figure 26, bottom) confirmed that the hydride transfer step was viable.

![Scheme 34](image-url)
Figure 26. (Top) 11B NMR spectrum NHC-boryl iodide 155; (Bottom) Regeneration of NHC-boryl ester 114.
In summary, we have discovered that formal B–H insertion reactions of NHC-boranes with diazoesters are facilitated by substoichiometric amounts of diiodine and other activators. The diiodine is a precatalyst that reacts rapidly with the NHC-borane to produce an NHC-boryl iodide catalyst. In this new transformation, the NHC-BH$_2$I catalyst acts as an electrophile with the diazoester attacking as a nucleophile. Carbon–boron bond formation leads, then followed by hydride transfer by an NHC-borane molecule. The ability of NHC-boranes to donate hydride to borenium ion equivalent species is critical to the regeneration of the boryl iodide catalyst.

Overall, the borenium ion catalyzed B–H insertion reaction resembles Li’s previous Rh(II)-catalyzed transformation in both starting substrates and end products. However, the mechanisms of these two reactions are, generally, opposites of each other. In the Rh-catalyzed reactions, the key catalytic species (a rhodium carbene) comes from the diazo ester and reacts directly with the NHC-borane. In the leading step, the NHC-borane donates a hydride to the electrophilic rhodium carbene. Subsequent C–B bond formation gives the requisite boryl ester product.

These different mechanisms are reflected in the diverging scope of compatible diazo compounds. The two reactions give comparable yields with unsubstituted and α-aryl-substituted diazoacetates. In contrast, the previous Rh-catalysis method looks superior for electron-poor diazoesters (diazomalonates give high yields) while the boryl iodide catalysis method looks superior for 2-alkyl-substituted diazoacetates. Building on this feature, we have produced a number of α-NHC-boryl esters with amino acid side chains in the α-position. This paves the way for study of such molecules as analogs of amino acids where the unusual, electron-donating NHC-boryl group replaces the usual, electron-withdrawing amino group.
While NHC-boranes do not react like trivalent boranes, such borane-like reactivity can be expressed with a borenium ion equivalent catalyst. In turn, reactions of borenium ions loosely resemble those of trivalent boranes. The chemistry of tetravalent NHC-boranes could continue to broaden if additional reactions utilizing trivalent boranes are applied to activated NHC-boranes.

In conclusion, the boryl iodide catalysis method is the only reported methodology that is compatible with 2-alkyl substituted diazoesters, in contrast to Li’s Rh(II) catalyzed method and the other carbene B–H insertion methods mentioned in Section 1.1.3. However, the boryl iodide method is not compatible with ligated boranes other than NHC-boranes. The Rh(II) carbene method is applicable to non-NHC ligated boranes, N-aryl substituted NHC-boranes, and electrophilic diazo compounds. Another current limitation of the boryl iodide method is that the reaction produces only racemic products. Enantiopure boryl carbonyl products have been synthesized using Cu(I) salts (phosphine-boranes), Rh(I) salts (pyrrolidine-boranes), and a cytochrome c enzyme (NHC-boranes). The door is open to explore an asymmetric boryl iodide catalysis method by introduction of a chiral element to the NHC-borane starting substrate.
4.0 SYNTHESIS AND CHARACTERIZATION OF LIGATED BORYL ACETIC ACIDS

4.1 INTRODUCTION

4.1.1 α-Boryl Carboxylic Acids

Few examples of α-boryl carboxylic acids exist. Recently, Yudin and co-workers have described the synthesis of α-MIDA-boryl carboxylic acids. Yudin’s α-MIDA-boryl aldehyde 156 is oxidized with sodium chlorite to give MIDA-boryl carboxylic acid 157 in 73% yield (Scheme 35, left). Yudin then treated boryl acid 157 with diphenylphosphoryl azide to give the boryl isocyanate by which additional boryl functional groups can be accessed. MIDA-boryl carboxylic acid 157 is formally a derivative of unknown compound boronoacetic acid 158 (Scheme 35, right).

Scheme 35. Yudin’s synthesis of α-MIDA-boryl acid 157
Two acetic acid derivatives with carborane substituents are known. Zakharkin and Petrovskii reported the preparation α-carborane acid acid 159 and diacid 160 (Figure 27).94-95 Acid dissociation constants for either the MIDA-boryl acids or carborane acetic acids are not known.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure27.png}
\caption{\textit{\alpha}-Boryl acetic acids with carborane substituents (CH vertex indicated by black dot)}
\end{figure}

Similar to boronoacetic acid 158, there are no examples of the reduced analog boroacetic acid 161 (Figure 28), likely because of the mutual reactivity of boranes and acids. Boroacetic acid is formally a Lewis acid/base complexes of a borane and a carboxylic acid. Further, there are no known ligated α-boryl acid derivatives of borane. It is not clear that its ligated derivatives will be stable because ligated boranes and carboxylic acids are subject to acid/base reactions to form dihydrogen.2,6
Figure 28. Unknown compound boroacetic acid and its ligated derivative

Our goal for this study is to determine if ligated α-boryl esters can be hydrolyzed under basic conditions, and if the formed boryl acetic acid products are stable to isolation and storage. Stable ligated α-boryl acids will then be further characterized by X-ray crystallography and acidity constant (pKₐ) measurements.

4.2 RESULTS AND DISCUSSION

4.2.1 Hydrolysis of Ligated α-Boryl Esters

The hydrolysis study began with readily available α-ligated boryl esters that were prepared from both the rhodium(II) and borenium ion methods. NHC-boryl ester 114 (0.15 mmol) with 2.5 equiv NaOH in acetonitrile was heated at 70 °C in a sealed, 20 dram vial. Reaction progress was followed by ¹¹B NMR spectroscopy (Table 24, entry 1). Over 18 h, a new peak gradually appeared 1 ppm downfield from the boryl ester triplet at ~27 ppm. To verify that this new signal was the desired carboxylate intermediate, the hydrolysis experiment was repeated in MeOH-d₄ at 55 °C to monitor reaction progress by ¹H NMR analysis (entry 2). The appearance of a triplet at 0.99 ppm in the ¹H NMR spectrum after 18 h was consistent with the formation of ethanol. The corresponding triplet signal of the ester starting material also disappeared. The completion of the
hydrolysis was confirmed by a clean triplet at –26 ppm in the 11B NMR spectrum. A larger scale reaction with 1.6 mmol NHC-boryl ester 114 required 3 d for complete consumption of the starting material (entry 3).

Table 24. Hydrolysis of NHC-boryl ester 114

<table>
<thead>
<tr>
<th>Entry</th>
<th>NHC-boryl ester (mmol)</th>
<th>Solvent</th>
<th>Temperature ($^\circ$C)</th>
<th>Time</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
<td>CH$_3$CN</td>
<td>70</td>
<td>18 h</td>
<td>incomplete</td>
</tr>
<tr>
<td>2</td>
<td>0.15</td>
<td>MeOH-d_4</td>
<td>55</td>
<td>18 h</td>
<td>100%a</td>
</tr>
<tr>
<td>3</td>
<td>1.6</td>
<td>MeOH-d_4</td>
<td>55</td>
<td>3 d</td>
<td>100%a</td>
</tr>
</tbody>
</table>

a Monitored by formation of ethanol in 1H NMR spectrum of crude reaction mixture.

To isolate the NHC-boryl acetic acid, we first formed the NHC-boryl carboxylate by heating 5.8 mmol NHC-boryl ester 114 with 2.5 equiv NaOH for 2 d (Scheme 36). Because NHC-boranes undergo acid/base reactions when treated with strong acids, we initially chose a weak acid (formic) as the proton source during workup. After 2 d, the mixture was cooled, excess 1.0 M formic acid was added, and the resulting acidic aqueous phase was extracted with CH$_2$Cl$_2$. Drying and concentrating of the CH$_2$Cl$_2$ layer gave good quality α-NHC-boryl acid 163 in 45% yield as a stable white solid, melting point 137–140 $^\circ$C.96
Scheme 36. Synthesis of NHC-boryl acetic acid 163

Table 25 summarizes structures, hydrolysis times, and isolated yields of five other ligated α-boryl acids. Benzimidazole-NHC-boryl ester 122 hydrolysis required 2 days for complete consumption of the starting material as determined by 11B NMR analysis (entry 1). Formic acid workup gave benzimidazole-NHC-boryl acid 164 in 78% yield as a white solid, melting point 175–177 °C. Benzimidazole-NHC-boryl diester 165 in MeOH-d_4 was heated at 55 °C with 5.0 equiv NaOH for 3 days (entry 2). The NHC-boryl diester doublet in the 11B NMR spectrum broadened rather than exhibiting a discernable shift to carboxylate intermediates. Reaction progress was monitored by 1H NMR spectroscopy. Upon addition of the formic acid solution during workup, a white precipitate formed instantaneously. The solid was filtered and dried under reduced pressure. NMR analysis confirmed that the solid was the target benzimidazole-NHC-boryl diacid 166. Diacid 166 was isolated in 45% yield as a white solid, melting point 202–203 °C.

Next, we screened three ligated boryl esters: trimethylamine-borane, pyridine-borane, and tributylphosphine-borane B–H insertion adducts. The starting boryl ester products were prepared by Rh$_2$(esp)$_2$ catalyzed B–H insertion with ethyl diazoacetate. First, the hydrolysis of trimethylamine-boryl ester 126 was complete after heating 2.5 equiv NaOH at 55 °C for 1 day (entry 3). Subsequent acid workup afforded trimethylamine-boryl acid 167 in 24% yield as a white solid, mp 113–115 °C. Unlike the relatively clean 11B NMR spectra of the NHC-borane
ester hydrolyses, a significant impurity (~25%) was present at 2.5 ppm in the amine-boryl ester ^{11}B NMR spectrum. Pyridine-boryl ester 128 decomposed when heated at 55 °C with 2.5 equiv NaOH, probably because pyridine-borane adducts are prone to decomplexation at elevated temperature. The hydrolysis was repeated at rt and proceeded smoothly over 4 days (entry 4). Pyridine-boryl acid 168 was isolated in 54% yield (mp 76–78 °C) after acid workup. Hydrolysis of tributylphosphine-boryl ester 169 proceeded slowly over 2 weeks at rt (entry 5). Unfortunately, the desired boryl acid 170 was not isolated after acid workup. Reaction progress of the three ligated boryl esters was monitored by ^1H NMR of the crude reaction mixtures because the ^{11}B NMR signals were too broad to determine formation of the carboxylate intermediate.

The isolated yields are likely a reflection of partitioning of the small, polar acids into the aqueous phase during extractions. Trimethylamine-boryl acid 167 is the smallest and most water soluble of the boryl acids, and 167 was isolated in the lowest yield. Benzimidazole boryl acid 164 is less water soluble and was isolated in higher yield (78%) than imidazole boryl acid 163 (45%). The α-boryl acids in Table 25 are stable to strong base and mild acid, and they are stable to prolonged storage either in the solid state or in solution. They are not amenable to standard silica gel chromatography because they are highly polar ($R_f \approx 0$ in 100% EtOAc).
Table 25. Synthesis of ligated boryl acetic acids

<table>
<thead>
<tr>
<th>Entry</th>
<th>Boryl Ester</th>
<th>Boryl Acid</th>
<th>Time</th>
<th>Temperature (°C)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>2 d</td>
<td>55</td>
<td>78%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 d</td>
<td>55</td>
<td>45%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1 d</td>
<td>55</td>
<td>24%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4 d</td>
<td>rt</td>
<td>54%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>2 weeks</td>
<td>rt</td>
<td>0%</td>
</tr>
</tbody>
</table>

4.2.2 X-ray Structures of Ligated α-Boryl Acetic Acids

The X-ray crystal structures of all five ligated α-boryl acetic acids were solved by Dr. Steve Geib. Figures 29, 30, 31 and 32 show ORTEP representations of the imidazole-boryl acid 163, benzimidazole-boryl acid 164, trimethylamine-boryl acid 167, and pyridine-boryl acid 168.
Despite the unusually low acidity of these acids (see Section 4.2.3.), they all form hydrogen-bond complexes in the solid state. Imidazole-boryl acid 163 is a typical eight-membered ring dimer of two acids face-to-face as shown in Figure 29. The BH$_2$–CH$_2$ bond is gauche in both molecules. The benzimidazole-boryl acid 164 dimer has a BH$_2$–CH$_2$ bond anti in one molecule and gauche in the other (Figure 30). Trimethylamine-boryl acid 167 dimer has both BH$_2$–CH$_2$ bonds adopt an anti conformation (Figure 31), while the pyridine-boryl acid 168 dimer BH$_2$–CH$_2$ bonds adopt a gauche conformation (Figure 32).
For the diacid 166, the two acids form hydrogen bonds to two different molecules in the crystal. This organization then allows the benzimidazole NHC rings to exhibit a π stacking-like arrangement. A small segment of the resulting ladder-like structure is shown in Figure 33. In this structure, all the BH–CH₂ bonds are anti.
Acidity constant (pK_a) values for the isolated ligated α-boryl acetic acids were measured by Dr. Stephen Weber and Mr. Anthony Horner from fitting an equilibrium model to potentiometric titration data. In a representative titration experiment of imidazole-boryl acid 163, a syringe pump delivered titrant, 72.5 mM NaOH, to the analyte solution. The titrant was standardized using a potassium hydrogen phthalate solution and contained 100 mM NaCl to minimize change in ionic activity coefficient. The pH was acquired every three seconds by computer. Data of NHC-boryl acid 163 was fit between 20 and 80% of the equivalence point.97
The pKₐ values of the ligated boryl acetic acids are shown in Table 26. Imidazole- and benzimidazole-boryl acids 163 and 164 have pKₐ values of 6.88 ± 0.01 and 6.70 ± 0.02 (entries 1 and 2). Trimethylamine- and pyridine-boryl acids 167 and 168 are slightly more acidic, with pKₐ values of 6.42 ± 0.00 and 6.41 ± 0.01, respectively (entries 4 and 5). Benzimidazole-boryl diacid 166 has two pKₐ values (entry 3). Diacid 166 was poorly soluble, but the single deprotonated form was more soluble. The value of the second, more robustly fit, pKₐ was measured at 7.68 ± 0.02. The best estimate from comparisons to various pentanedioic acids for the first pKₐ is 6.5.

Few monosubstituted acetics acids, summarized in Figure 34,⁹⁸ are less acidic than acetic acid itself (pKₐ 4.76). Typically, alkyl-substituted acetic acids are modestly less acidic than unsubstituted acetic acid. For example, butanoic acid has a pKₐ of 4.82. The trimethylsilyl functional group is one of the strongest electron-donating substituents (σ₀ = –0.17). Yet, trimethylsilyl acetic acid has a pKₐ of only 5.22.⁹⁹ Compared to the ligated boryl acids in Table 26, the illustrated monosubstituted acetic acids are 50–100 times more acidic.

Select di- and trisubstituted acetic acids are markedly less acidic than monosubstituted variants. In comparison to alkyl-substituted butanoic acid, disubstituted cyclohexane carboxylic acid has a pKₐ of 4.90 while trisubstituted pivalic acid (2,2-dimethylpropanoic acid) has a pKₐ of 5.01. Certain bicyclic carboxylic acids have acidity constants that are nearly the same as the measured values in Table 26. For example, bicyclo[2.2.2]octane-1-carboxylic acid has a pKₐ of 6.75.
Table 26. Acidity constant measurements of ligated boryl acetic acids

<table>
<thead>
<tr>
<th>Entry</th>
<th>α-Boryl Acetic Acid</th>
<th>pKₐ ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6.88 ± 0.01</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6.70 ± 0.02</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6.5 and 7.68 ± 0.02</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6.42 ± 0.00</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6.41 ± 0.01</td>
</tr>
</tbody>
</table>

[a] Estimated value.

Diacid 166 can be viewed as pentanedioic acid (glutaric acid) with the third carbon atom substituted by a boron atom and a benzimidazole substituent. In contrast to either 166 pKₐ value, pentanedioic acid exhibits low pKₐ values of 4.34 and 5.42. The only second pKₐ values approaching 7.68 are exhibited by pentanedioic acids with 3,3-disubstitution. Accordingly, 3,3-
dipropylpentanedioic acid has a high second pK_a of 7.31, yet its first pK_a is consistent with most acetic acid derivatives (3.69). The two long-chain alkyl substituents forces the pentanedioic carboxylate anions to be in close proximity. The resulting anion repulsion (syn-pentane effect) elevates the second pK_a. Since diacid 166 does not have such proximity constraints, the high pK_a values are likely due to the electron-donating ability of the benzimidazole-borane substituent. In summary, ligated α-boryl acetic acids are among the least acidic carboxylic acids known.

<table>
<thead>
<tr>
<th>acetic acid and mono-substituted derivatives</th>
<th>di- and trisubstituted acetic acids</th>
<th>diacids</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetic acid</td>
<td>cyclohexane-carboxylic acid</td>
<td>pK_a</td>
</tr>
<tr>
<td>butanoic acid</td>
<td>(CH$_3$)$_3$CO$_2$H</td>
<td>4.90</td>
</tr>
<tr>
<td>2-TMS-acetic acid</td>
<td>pivalic acid</td>
<td>5.01</td>
</tr>
<tr>
<td></td>
<td>bicyclo[2.2.2]octane-1-carboxylic acid</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td>pentanedioic acid</td>
<td>4.34 and 5.42</td>
</tr>
<tr>
<td></td>
<td>3,3-dipropylpentanedioic acid</td>
<td>3.69 and 7.31</td>
</tr>
</tbody>
</table>

Figure 34. Acidity constant measurements of comparable acids

Ligated boryl acids have pK_a values equivalent to imidazolium (pK_a, 7.05) and 4-nitrophenol (pK_a, 7.14), a stabilized phenol. These compounds are approximately 100 times less acidic than pyridinium (pK_a, 5.14). Therefore, ligated boryl carboxylate salts are strong bases relative to most known carboxylates.
4.2.4 NHC-borane Hammett Values Derived from 13C NMR Chemical Shift Correlation

We next quantified the electron donating ability of L–BH$_2$ substituents by deriving electrophilic substituent constants (σ^{+}_p)100 from 13C NMR chemical shift correlation. Electrophilic substituent constant σ^{+}_p values were originally derived by Brown from the solvolysis of para-substituted (2-chloropropan-2-yl)benzene derivatives. A σ^{+}_p value quantifies how a substituent stabilizes a positive charge via resonance. Electron donating groups have increasingly negative σ^{+}_p values. Similar to other σ_{para} values, substituents that can participate via resonance have larger absolute σ^{+}_p values. Extensive correlations of 13C chemical shifts in monosubstituted benzenes with Hammett σ constants were first reported by Spiesecke and Schneider.101 By using the regression line for the $\Delta\delta(C_p)$ correlation, σ^{+}_p values were calculated for various substituents on benzene. Data for monosubstituted benzenes in acetone solution are summarized in Figure 35.102

$$\Delta\delta(C_p) = 9.809\sigma^{+}_p - 0.814$$

$n = 14$
n is number of substituted benzene derivatives tested

$r = 0.992$

Figure 35. Correlation of $\delta(C_p)$ of monosubstituted benzenes with σ^{+}_p

Figure 36. Hammett correlation equation applied to NHC-boryl arene 171
The 13C NMR chemical shift of a ligated boryl arene para carbon (Figure 36) provides a σ_{p}^+ value for a ligated boryl substituent when equation 1 is applied. Ligated boryl arenes were prepared by Dr. Tsuyoshi Taniguchi, Dr. Swapnil Nerkar, and Mr. Daniel Bolt. The chemical shifts of the para phenyl carbon in relation to other aromatic carbons must first be confirmed by HSQC NMR analysis. In a representative example, HSQC analysis of imidazole-BH$_2$Ph 171 in acetone-d_6 confirmed that the most upfield signal (123.72 ppm) in the aromatic region (excluding the imidazole carbon) was the para carbon resonance. A σ_{p}^+ value of –0.47 was calculated for imidazole-BH$_2$ substituent (Table 27, entry 3). The para carbon resonances of the other compounds were assigned by additional experiments conducted by Dr. Taniguchi. Table 27 summarizes the calculated σ_{p}^+ values for 11 ligated borane substituents. Also shown in Table 27 are Tolman electronic parameter (TEP) values for NHC ligands. TEP values are a measurement of the electron donating or withdrawing ability of a ligand. A smaller TEP value corresponds to a more electron donating ligand.

Benimidazolé-BH$_2$ has a slightly less negative Hammett value (entry 2) than imidazole-BH$_2$ which is reflected by benimidazolé-boryl acid 164 being more acidic than imidazole-boryl acid 163. Triazole-borane is the least electron donating of the NHC-BH$_2$ substituents (entry 1). Tetramethyl-NHC-borane and diisopropyl-NHC-borane are more electron donating than imidazole-BH$_2$ (entries 4 and 5), and the N-aryl dipp-NHC-BH$_2$ substituent is the most electron donating group of the NHC ligands (entry 6).

Substituting NHC-BH$_2$ boron–hydrogen atoms with fluorine dramatically reduces the electron donating ability of the substituent (entry 7). Trimethylamine-borane and pyridine-borane substituents have less negative sigma values than the NHC analogs (entries 8 and 9). These Hammett values are consistent with the lower pK_a values measured for amine-boryl acid 167 and...
pyridine-boryl acid 168. DMAP-borane has a more negative Hammett value than pyridine-
borane because of the addition of an electron donating dimethylamino group (entry 10). Finally,
the DBU-borane substituent is as strongly electron donating as the NHC-borane substituents
(entry 11).

The calculated sigma values correlate nicely with Tolman electronic parameter (TEP)
data of NHC ligands.104 In general for entries 1–6, a larger TEP value (more electron donating)
corresponds to a more negative sigma value. The range of NHC-BH₂ sigma values (–0.50 to –
0.40) lies below the sigma values for methyl (–0.31) and phenyl (–0.18) substituents, but is less
negative than methoxy (–0.78) and amine (–1.3) functional groups. This data suggests that NHC-
BH₂ substituents are among the strongest inductive electron donating groups. Only groups that
can participate in resonance have more negative σ⁺ values.
Table 27. Electrophilic Hammett constants for ligated borane substituents

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substituent, L</th>
<th>NHC TEP (cm$^{-1}$)104</th>
<th>13C$_{para} \delta$ (ppm)</th>
<th>σ_p^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>2060.0</td>
<td>124.23</td>
<td>-0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>2057.0</td>
<td>124.04</td>
<td>-0.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>2054.1</td>
<td>123.72</td>
<td>-0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>2051.7</td>
<td>123.61</td>
<td>-0.48</td>
</tr>
<tr>
<td></td>
<td>iPr</td>
<td>2051.5</td>
<td>123.67</td>
<td>-0.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>dipp</td>
<td>2050.5</td>
<td>123.33</td>
<td>-0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>N/A</td>
<td>126.92</td>
<td></td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>N/A</td>
<td>126.16</td>
<td></td>
<td>-0.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>N/A</td>
<td>125.40</td>
<td></td>
<td>-0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>N/A</td>
<td>124.69</td>
<td></td>
<td>-0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>N/A</td>
<td>123.93</td>
<td></td>
<td>-0.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 CONCLUSIONS

In summary, we have described the synthesis, structure, and acidity constants of the first ligated derivatives of the simple but unknown compound boroacetic acid. α-Boryl acetic acids with N-heterocyclic carbene, amine, and pyridine ligands are all stable solids that do not self-destruct by acid/base reactions, because they are exceptionally weak acids. Indeed, a series of pK_a measurements show that they are among the weakest of all known carboxylic acids. In turn, this means that their conjugate bases are among the strongest of all carboxylates. Finally, a series of electrophilic Hammett constants derived from 13C NMR chemical shift correlations further highlight the electron-donating potential of ligated borane substituents. Taken together, the pK_a measurements and Hammett constants confirm that ligated boranes are among the strongest of all organic inductive electron-donating groups.

Moving forward, the door is open to explore the synthetic utility of ligated α-boryl acetic acids. Conversion of the carboxylic acid functional group to an isocyanate (similar to Yudin’s MIDA-boryl acids) through a Curtius rearrangement would allow access to further downstream scaffold diversity. Further, hydrolysis of the boryl amino esters prepared in Chapter 3 would give arise the opportunity for solution phase coupling reactions, and allow for the boryl amino acid analogy to be extended to NHC-boryl peptides.
5.0 EXPERIMENTAL

5.1 GENERAL INFORMATION

All reactions were performed in oven-dried glassware under an argon atmosphere. Chemicals and solvents were purchased from commercial suppliers and used as received, excepting as follows. Dichloromethane was dried by passing through an activated alumina column. All flash chromatography was performed by CombiFlash Rf machine with pre-packed silica gel columns purchased from Teledyne Isco Inc. Melting points (mp) were determined with a Mel-Temp II apparatus. Proton (\(^{1}\text{H}\)), carbon (\(^{13}\text{C}\)), boron (\(^{11}\text{B}\)), and fluorine (\(^{19}\text{F}\)) nuclear magnetic resonance spectra (NMR) were performed on a Bruker Avance III 400 or 500. Chloroform (\(\delta \text{ 7.26 ppm}\)) or TMS (\(\delta \text{ 0.00 ppm}\)) was used as an internal standard for \(^{1}\text{H}\) NMR spectra and CDCl\(_3\) (\(\delta \text{ 77.00 ppm}\)) was used as an internal standard for \(^{13}\text{C}\) NMR spectra. The following abbreviations were used to describe coupling: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. IR spectra were recorded as thin films (CH\(_2\)Cl\(_2\)) or neat on KBr plates on an ATI Mattson Genesis Series FTIR spectrometer. Compound names were generated from ChemBioDraw (version 14.0).

The characterization of NHC-boranes and the monitoring of their reactions is conducted by \(^{11}\text{B}\) NMR spectroscopy. The NMR solvent used for NHC-borane samples is usually CDCl\(_3\). \(^{11}\text{B}\) NMR chemical shifts are relative to Et\(_2\)O–BF\(_3\) (\(\delta \text{ = 0.00 ppm}\)). The N-heterocyclic carbene
ligand does not significantly affect the upfield ^{11}B chemical shift values. For example, the ^{11}B NMR resonances of all currently known NHC–BH$_3$ complexes appear between -32 and -38 ppm. This is upfield compared to Me$_2$O–BH$_3$ ($\delta = 2.5$ ppm), Me$_3$N–BH$_3$ ($\delta = -8.3$ ppm), Me$_2$S–BH$_3$ ($\delta = -20.1$ ppm), and in a similar range to Me$_3$P–BH$_3$ ($\delta = -36.8$ ppm).

In contrast to the lack of information provided about the NHC group, the value of the ^{11}B chemical shift is often diagnostic of the nature of the atoms directly connected to boron. Downfield shifts are usually observed when the hydrogen atoms at the boron atom are substituted by alkyl groups or heteroatoms. For example, NHC–BH$_2$-alkyl ^{11}B chemical shifts are between -20 and -30 ppm, which is more upfield compared to NHC–BH$_2$-(N) compounds (-15 and -25 ppm) and NHC–BH$_2$-(O) compounds (-5 and -15 ppm).

NHC–BH$_3$ resonances are split into 1:3:3:1 quartets because of spin–spin coupling of ^{11}B with the three equivalent protons with $^{1}J_{\text{B-H}}$ values in the range of 80–90 Hz. Similar coupling constants are observed for NHC–BH$_2$R (R = alkyl, aryl, CN), but when the boron atom is substituted with a more electronegative atom [NHC–BH$_2$X (X = O, N, halide)], the $^{1}J_{\text{B-H}}$ value increases to 90–110 Hz.

^{11}B NMR spectroscopy is an excellent tool for real-time monitoring of reaction progress because excellent spectra can be recorded in non-deuterated solvents and because the ^{11}B chemical shift depends strongly on the boron substituents.

5.2 EXPERIMENTAL DATA FOR CHAPTER 1

(2-Methoxy-2-oxo-1-phenylethyl)(1λ4-pyridin-1-yl)dihydroborate (51):

Pyridine-borane (93.0 mg, 1.00 mmol, 1.0 equiv) and Rh₂(esp)₂ (7.9 mg, 0.01 mmol, 1 mol%) were dissolved in dry CH₂Cl₂ (5 mL) under argon. A solution of methyl 2-diazo-2-phenylacetate (211.0 mg, 1.20 mmol, 1.2 equiv) in dry CH₂Cl₂ (5 mL) was added via syringe pump over a period of 2 h. The solution color transitioned from light green to orange. ¹¹B NMR spectrum of the crude product showed 79% conversion to the desired single-insertion product. The reaction mixture was concentrated under vacuum and purified by flash chromatography (hexane: ethyl acetate, 1:1) to yield 189.4 mg (79%) of 51 as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 8.21–8.20 (m, 2H), 7.95–7.91 (m, 1H), 7.43–7.39 (m, 2H), 7.17–7.11 (m, 1H), 3.60 (s, 3H), 3.40 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.1, 147.4, 142.5, 140.0, 127.8, 127.7, 124.8, 124.3, 50.8, 48.8 (weak); ¹¹B NMR (128 MHz, CDCl₃) δ −2.8 (t, J₉H = 101 Hz); IR (neat) 3059, 3022, 2947, 2393, 2340, 1710, 1622, 1599, 1458, 1362; HRMS (ESI) m/z (M⁺ + Na) calcd for C₁₄H₁₆O₂NBNa 264.1166, found 264.1164.

(2-Methoxy-2-oxo-1-phenylethyl)(trimethyl-λ⁴-azanyl)dihydroborate (48):

Reaction of trimethylamine-borane (75.0 mg, 1.00 mmol), Rh₂(esp)₂ (7.9 mg, 0.01 mmol) and methyl 2-diazo-2-phenylacetate (211.0 mg, 1.20 mmol) according to the general procedure.
\[{^{11}B} \text{NMR spectrum of the crude product showed 72\% conversion to the desired single-insertion product. The residue was purified by flash chromatography (hexane: ethyl acetate, 1:1) to yield 95.0 mg (43\%) of 48 as a white solid: }{ ^1H \text{NMR (400 MHz, CDCl}_3) \delta \text{ 7.45–7.43 (m, 2H), 7.26–7.22 (m, 2H), 7.12–7.09 (m, 1H), 3.62 (s, 3H), 3.26 (s, 1H), 2.51 (s, 9H); }{ ^{13}C \text{NMR (100 MHz, CDCl}_3) \delta \text{ 178.5, 143.4, 129.1, 127.8, 124.9, 52.4, 51.2, 46.5 (weak); }{ ^{11}B \text{NMR (160 MHz, CDCl}_3) \delta \text{ –1.5 (t, } J_{BH} = 99 \text{ Hz); IR (film) 3022, 2946, 2367, 2309, 1715, 1480, 1451, 1353, 1171 \text{ cm}^{-1}; mp 95-97 °C; HRMS (ESI) m/z (M}^+ + \text{Na) calcd for C}_{12}\text{H}_{20}\text{O}_2\text{BNa 244.1479, found 244.1476.}} \]

![Image](image-url)

(2-Methoxy-2-oxo-1-phenylethyl)(triphenyl-\(\lambda^4 \)-phosphanyl)dihydroborate (33): Reaction of triphenylphosphine-borane (285.0 mg, 1.00 mmol), \(\text{Rh}_2(\text{esp})_2 \) (32 mg, 0.04mmol) and methyl 2-diazo-2-phenylacetate (211.0 mg, 1.20 mmol) according to the general procedure. \[{^{11}B \text{NMR spectrum of the crude product showed 71\% conversion to the desired single-insertion product. The residue was purified by flash chromatography (hexane: ethyl acetate, 3:2) to yield 211.0 mg (50\%) of 33 as an orange solid: }{ ^1H \text{NMR (400 MHz, CDCl}_3) \delta \text{ 7.49–7.47 (m, 9H), 7.43–7.39 (m, 6H), 7.35–7.32 (m, 2H), 7.17–7.13 (m, 2H), 7.06–7.02 (m, 1H), 3.33 (s, 1H), 3.17 (s, 3H); }{ ^{13}C \text{NMR (125 MHz, CDCl}_3) \delta \text{ 178.8, 178.7, 144.4, 133.5, 131.3, 128.9, 127.8, 127.7, 127.4, 124.8, 50.5, 41.7 (weak); }{ ^{11}B \text{NMR (160 MHz, CDCl}_3) \delta \text{ –23.4 (br); IR (film) 3058, 3023, 2946, 2375, 1720, 1484, 1436, 1136; mp 110-115 °C; HRMS (ESI) m/z (M}^+ + \text{Na) calcd for C}_{27}\text{H}_{26}\text{O}_2\text{BNaP 447.1656, found 447.1646.}} \]

112
(2-Methoxy-2-oxo-1-phenylethyl)(tributyl-\(\lambda^4\)-phosphanyl)dihydroborate (50):

Reaction of tributylphosphine-borane (216.0 mg, 1.00 mmol), \(\text{Rh}_2(\text{esp})_2\) (32 mg, 0.04 mmol) and methyl 2-diazo-2-phenylacetate (211.0 mg, 1.20 mmol) according to the general procedure. \(^{11}\text{B}\) NMR spectrum of the crude product showed 86% conversion to the desired single-insertion product. The residue was purified by flash chromatography (hexane: acetone, 30:1) to yield 110.0 mg (30%, 97% purity) of 50 as an orange oil: \(^1\text{H}\) NMR (500 MHz, CDCl\(_3\)) δ 7.43–7.41 (m, 2H), 7.23–7.20 (m, 2H), 7.32–7.35 (m, 2H), 7.10–7.07 (m, 1H), 3.62 (s, 1H), 3.21–3.16 (m, 1H), 1.43–1.29 (m, 20H), 0.88 (t, \(J = 7\) Hz, 9H); \(^{13}\text{C}\) NMR (125 MHz, CDCl\(_3\)) δ 179.3, 179.2, 144.4, 144.4, 128.7, 127.6, 124.8, 51.0, 41.9, 24.6, 24.3, 24.2, 20.7, 20.5, 13.4; \(^{11}\text{B}\) NMR (160 MHz, CDCl\(_3\)) δ –25.8 (br); IR (film) 2957, 2932, 2871, 2356, 1719, 1276, 1014, 700; HRMS (ESI) \(m/z\) (M\(^+ + 1\)) calcd for C\(_{21}\)H\(_{39}\)O\(_2\)BP 365.2775, found 365.2779.

Tetrabutylammonium cyano(2-methoxy-2-oxo-1-phenylethyl)dihydroborate (55):

Tetrabutylammonium cyanoborohydride (283.0 mg, 1.00 mmol) and \(\text{Rh}_2(\text{esp})_2\) (7.9 mg, 0.01 mmol) were dissolved in dry CH\(_2\)Cl\(_2\) (2 mL), under argon. A solution of methyl 2-diazo-2-phenylacetate (211.0 mg, 1.20 mmol) in CH\(_2\)Cl\(_2\) (2 mL) was added via syringe pump over 2h. The reaction mixture color transitioned from light blue to pink. \(^{11}\text{B}\) NMR spectrum of the crude
product showed 86% conversion to the desired single-insertion product and 14% of the double-insertion product. Isolation of pure insertion product 55 by flash chromatography was not attempted, but crude 1H and 13C NMR spectra supported the structure: 1H NMR (400 MHz, CDCl$_3$) δ 7.43–7.45 (m, 2H), 7.13–7.17 (m, 2H), 6.98–7.03 (m, 1H), 3.57 (s, 3H), 3.16 (br, 1H), 3.00–3.04 (m, 8H), 1.46–1.54 (m, 8H), 1.33–1.38 (m, 8H), 0.97 (t, $J = 7$ Hz, 12H); 13C NMR (100 MHz, CDCl$_3$) δ 180.1, 146.4, 129.2, 128.7, 123.7, 58.4, 50.4, 44.7 (weak), 23.8, 19.6, 13.6; 11B NMR (160 MHz, CDCl$_3$) δ –27.2 (t, $J_{BH} = 94$ Hz); HRMS (ESI) m/z (M$^+$) calcd for C$_{10}$H$_{11}$O$_2$NB 188.0877, found 188.0881.

General procedure for the competitive insertions between X–BH$_3$ 1 with X–BH$_3$ 2

Pyridine-borane 4 (34.5.0 mg, 0.4 mmol, 2.0 equiv) and NHC-borane 5 (41.2 mg, 0.4 mmol, 2.0 equiv) were dissolved in dry CH$_2$Cl$_2$ (1 mL) under argon. A crude 11B NMR spectrum of the reaction mixture was obtained prior to addition of the diazo substrate and catalyst to determine the initial 11B NMR integration of both borane species. After addition of Rh$_2$(esp)$_2$ (2.8 mg, 0.02 mol%), a solution of ethyl 2-diazo-2-phenylacetate diazoacetate 31 (38.5 mg, 0.2 mmol, 1.0 equiv) in 1mL CH$_2$Cl$_2$ was added by syringe pump to the reaction solution. After 2 h, the reaction mixture was concentrated and an 11B NMR spectrum was recorded.
(1,3-Dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)(phenyl)hydroborate

(68):

The borane adduct (1.0 equiv) and Rh$_2$esp$_2$ (3.3 mg, 0.085 mmol, 0.05 equiv) were dissolved in dry DCM (4 mL) under argon. A solution of the ethyl diazoacetate (14 mg, 0.102 mmol, 1.20 equiv) in dry DCM (5 mL) was added via syringe pump over a period of 1 h under reflux. The solution color transitioned from light green to dull green. 11B NMR spectrum of the crude product showed 46% conversion to the desired single-insertion product. The mixture was concentrated and purified by flash chromatography to give the product. The reaction mixture was concentrated under vacuum and purified by flash chromatography (hexane: ethyl acetate, 4:1) to yield 10.0 mg (37%) of product 68 as a white solid. Insertion product enantiomers were resolved by HPLC using an (S,S)-Whelk-O1 column. Column conditions were as follows: 85% IPA/Hexanes, 1.0 mL/min flow rate, 10 μL injection volume: 1H NMR (300 MHz, CDCl$_3$) δ 7.41–7.44 (m, 4H), 7.15–7.19 (m, 4H), 7.04–7.09 (m, 1H), 3.87 (s, 6H), 3.80 (q, $J = 14$, 7 Hz, 2H), 2.30 (br, 1H), 2.03 (br, 1H), 0.89 (t, $J = 7$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 180.3, 133.3, 132.6, 127.4, 124.4, 124.3, 111.0, 58.7, 32.6, 14.2; 11B NMR (128 MHz, CDCl$_3$) δ –18.8 (d, $J_{BH} = 88$ Hz).
1,3-Bis(iodomethyl)benzene (74):

Sodium iodide (6.30 g, 42.0 mmol, 10.0 equiv) was added to a solution of 1,3-bis(bromomethyl)benzene (1.11 g, 4.20 mmol, 1.00 equiv) in acetone (100 mL). The solution was refluxed for 18 h in a dark fume hood. The solvent was removed under reduced pressure and the light yellow crude solid was dissolved in DCM/water (1:1). To remove iodine impurities, both organic and aqueous layers were washed with sat. Na₂S₂O₃. The combined organic layers were washed with brine and dried over Na₂SO₄. Concentration under vacuum afforded 1.27 g of bis(iodomethyl)benzene 74 as a light yellow solid. The compound was stored wrapped in an aluminum foil wrapped flask under argon at 0 °C until needed for alkylation: ¹³C NMR (125 MHz, CDCl₃) δ 139.9, 129.3, 128.9, 128.3, 4.8.

(4S,4'S)-3,3'-(2S,2'S)-3,3'-(1,3-Phenylene)bis(2-methylpropanoyl)bis(4-benzyloxazolidin-2-one) (71):

To oven dried 1L round bottom flask, added freshly distilled THF (150 mL) and (S)-4-benzyl-3-propionyloxazolidin-2-one (1.82 g, 7.80 mmol, 2.2 equiv). Cooled to –78 °C and added NaHMDS (4.26 mL, 2 M in THF, 8.52 mmol, 2.4 equiv) dropwise. Allowed to stir at –78 °C for 30 min. Added freshly prepared diiodomethyl benzene (1.27 g, 3.55 equiv, 1.0 equiv) in 10mL THF and stirred for 60 min while warming from –78 °C to 0 °C. After 60 min, warmed to rt and stirred for 18 h. Desired product was observed in ¹H NMR spectrum of the crude product.
mixture. Quenched reaction with water, extracted with ether (x3), washed org layer with sat. Na₂S₂O₄ and brine. Dried over Na₂SO₄ and concentrated under reduced pressure. Purified by flash chromatography (100% EtOAc) to yield 1.00 g bis-alkylated product 71 as a light yellow, foamy solid (49%): ¹H NMR (400 MHz, CDCl₃) δ 7.07–7.30 (m, 14H), 4.63–4.65 (m, 2H), 4.08–4.18 (m, 6H), 3.10–3.16 (m, 4H), 2.61–2.67 (m, 2H), 2.51–2.57 (m, 2H), 1.16 (d, J = 7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 153.0, 139.2, 135.3, 130.5, 129.4, 128.9, 128.3, 127.4, 127.3, 65.9, 55.2, 39.7, 39.5, 37.8, 16.6.

(2S,2'S)-3,3'-(1,3-Phenylene)bis(2-methylpropanoic acid) (72):

Dissolved bis-alkylated compound (98 mg, 0.17 mmol, 1.0 equiv) in 5 mL THF from SPS. Cooled to 0 °C and added 0.16 mL H₂O₂ (30 wt%, 7.8 equiv) dropwise, followed by addition of LiOH.H₂O in 2 mL H₂O (29 mg, 0.69 mmol, 4.0 equiv). Allowed to stir at 0 °C for 5 h. Quenched with 1.5 mL sat. NaHCO₃ and 1.5 mL sat. Na₂SO₄. Removed solvent in vacuo and diluted with H₂O. Extracted aqueous layer with DCM (x3). Acidified aq. layer to ~1.5 pH with 6 M HCl. Extracted aq. layer with EtOAc (x3). Dried org. layers over Na₂SO₄, filtered and concentrated to yield methyl diacid 72 as a colorless oil (85%): ¹H NMR (400 MHz, CDCl₃) δ 7.19–7.22 (m, 1H), 7.00–7.04 (m, 3H), 2.93–3.01 (m, 2H), 2.67–2.78 (m, 4H), 1.15 (d, J = 7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 182.2, 139.0, 129.5, 128.4, 127.3, 41.3, 39.4, 16.4.
(2S,2'S)-3,3'-((1,3-Phenylene)bis(2-methylpropan-1-ol) (75):

To oven dried 20 dram vial, added diacid 72 (0.49 mg, 0.20 mmol, 1.0 equiv) and freshly distilled THF (1.5 mL) under an argon atmosphere. Cooled to 0 °C and added LAH (0.6 mL, 1 M in diethyl ether, 3.0 equiv) dropwise. A white precipitate immediately formed and the reaction mixture was stirred at 0 °C for 3 h. The reaction mixture was quenched with 1 N HCl and the white precipitate was filtered. The crude product mixture was extracted with EtOAc (x3). Org layers were washed with brine and dried over Na₂SO₄, filtered and concentrated. Purified by flash chromatography (1:1, hexanes : EtOAc) to yield the dialcohol 75 (30%) as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 7.17–7.26 (m, 1H), 6.99–7.02 (m, 3H), 3.43–3.55 (m, 4H), 2.69–2.75 (m, 2H), 2.38–2.45 (m, 2H), 1.88–1.99 (m, 2H), 0.91 (d, J = 7 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 140.6, 130.0, 128.2, 126.7, 67.7, 39.7, 37.8, 16.5.

(2S,2'S)-1,3-Phenylenebis(2-methylpropane-3,1-diyl)(2S,2'S)-bis(3,3,3-trifluoro-2-methoxy-2-phenylpropanoate) (76):

To 20 dram vial containing dialcohol 75 (13 mg, 0.06 mmol, 1.0 equiv) and 2 mL DCM, (S)-MTPA (85 mg, 0.36 mmol, 6.2 equiv), 1 M DCC (0.36 mL, 0.36 mmol, 6.2 equiv) and DMAP (44 mg, 0.36 mmol, 6.2 equiv) were added sequentially. White precipitate formed upon addition of DMAP. Allowed to stir for 45 h at rt and under native atmosphere. Reaction progress was monitored by TLC analysis; after 45 h, dialcohol spot (PMA stain) had disappeared. Filtered
dicyclohexyl urea and recorded 1H NMR spectrum of crude rxn mixture showed full conversion of dialcohol to diester. Purified crude residue by flash chromatography. Ester product 76, DCC and MTPA co-eluted at 20% EtOAc/Hex, while excess DMAP was removed: 1H NMR (500 MHz, CDCl$_3$) δ 7.41–7.43 (m, 10H), 7.15–7.18 (m, 1H), 6.89–6.91 (m, 2H), 6.83 (s, 1H), 4.12–4.19 (m, 4H), 3.57 (s, 6H), 2.62–2.66 (m, 2H), 2.38–2.42 (m, 2H), 2.10–2.16 (m, 2H), 0.92 (d, $J = 7$ Hz, 6H); 13C (125 MHz, CDCl$_3$) δ 166.5, 139.5, 132.3, 129.8, 129.6, 128.7, 128.4, 127.3, 126.9, 70.2, 55.4, 39.2, 34.9, 25.4, 25.2; 19F NMR (470 MHz, CDCl$_3$) δ –71.4.

Bis[rhodium((2S,2’S)-3,3’-(1,3-phenylene)bis(2-methylpropanoic acid))] (73):

A 10 mL round bottom equipped with a reflux condenser was charged with rhodium(II) trifluoroacetate (38 mg, 0.14 mmol, 1.0 equiv), 5.0 mL DCE and methyl diacid 72 (0.022 mL, 1 M in DCE, 0.5 equiv). Heated under reflux for 1 h. Cooled reaction mixture to rt and added additional 0.5 eq of diacid solution. Repeated heating/cooling cycle for additional 2 equiv diacid total in 0.5 eq aliquots, and continued heating for 12 h. Purified the crude product mixture by flash chromatography. First eluted band at 20% EtOAc/Hexanes was monochelated rhodium 77 (66%). Fully complexed rhodium 73 eluted at 30% EtOAc/Hexanes and 11.0 mg (34%) of the bright green solid was obtained: 1H NMR (300 MHz, CD$_3$CN) δ 7.08–7.13 (m, 2H), 6.87–6.90 (m, 4H), 6.83 (s, 2H), 2.76–2.82 (m, 4H), 2.48–2.82 (m, 8H), 0.87 (d, $J = 7$ Hz, 12H); 13C NMR (75 MHz, CD$_3$CN) δ 196.1, 140.0, 131.4, 128.7, 128.0, 44.9, 40.2, 17.1; HRMS (ESI) m/z (M$^+$ + 1) calcd for C$_{28}$H$_{33}$O$_8$Rh$_2$ 703.0280, found 703.0240.
(S)-4-Benzyl-3-(3-phenylpropanoyl)oxazolidin-2-one (79):

To oven dried round bottom flask flushed with argon, added 10 mL freshly distilled THF and (S)-4-benzyl-3-(3-phenylpropanoyl)oxazolidin-2-one (144 mg, 1.00 mmol, 1.0 equiv). Cooled to −78 °C and added 0.4 mL nBuLi (2.5 M, 1.0 equiv) dropwise. Allowed to stir for 15 min. Added hydrocinnamoyl chloride (0.17 mL, 1.10 mmol, 1.0 equiv) dropwise, warmed to 0 °C and stirred for 30 min. Added NaHCO₃ and stirred at 0 °C for 15 min. Extracted with DCM (x3). Washed org layers w/ brine and dried over Na₂SO₄, filtered and concentrated under reduced pressured. Purification by flash chromatography gave 248 mg (80%) benzyl chiral auxiliary 79 as a white solid: ¹H NMR (400 MHz, CDCl₃) δ 7.16–7.34 (m, 10H), 4.63–4.69 (m, 1H), 4.15–4.20 (m, 2H), 3.21–3.36 (m, 3H), 3.01–3.05 (m, 2H), 2.72–2.78 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 153.4, 140.4, 135.2, 129.4, 128.9, 128.6, 128.5, 127.3, 126.3, 66.2, 55.1, 37.8, 37.1, 30.2.

(4S,4'S)-3,3'-(2S,2'S)-3,3'-(1,3-Phenylenebis(2-benzylpropanoyl))bis(4-benzyl-3-(3-phenylpropanoyl)oxazolidin-2-one) (80):

To oven dried 300 mL round bottom flask, added freshly distilled THF (150 mL) and (S)-4-benzyl-3-(3-phenylpropanoyl)oxazolidin-2-one (2.69 g, 8.70 mmol, 2.2 equiv). Cooled to −78 °C and added NaHMDS (4.74 mL, 2 M in THF, 9.49 mmol, 2.4 equiv) dropwise. Allowed to stir at −78 °C for 30 min. Added freshly prepared diiodomethyl benzene (1.42 g, 3.95 equiv, 1.0
equiv) in 10 mL THF and stirred for 60 min while warming from −78 °C to 0 °C. After 60 min, warmed to rt and stirred for 20 h. Desired product was observed in 1H NMR spectrum of the crude product mixture. Quenched reaction with water, extracted with ether (x3), washed org layer with sat. Na2S2O4 and brine. Dried over Na2SO4 and concentrated under reduced pressure. Purified by flash chromatography (100% EtOAc) to yield 1.99 g of bis-alkylated product 80 as a colorless, foamy solid (70%): 1H NMR (400 MHz, CDCl3) δ 7.14–7.23 (m, 20H), 6.96–6.98 (m, 4H), 4.54–4.58 (m, 2H), 4.34–4.39 (m, 2H), 3.88–3.91 (m, 2H), 3.72–3.76 (m, 2H), 3.10–3.15 (m, 2H), 2.93–3.00 (m, 4H), 2.76–2.81 (m, 4H), 2.39–2.45 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 175.2, 152.7, 139.0, 138.8, 135.2, 130.5, 129.3, 129.0, 128.8, 128.5, 128.3, 127.3, 127.1, 126.3, 65.6, 55.1, 46.2, 38.5, 38.0, 37.5; HRMS (ESI) m/z (M+ + 1) calcd for C46H45O6N2 721.3272, found 721.3285.

(2S,2'S)-3,3'-(1,3-Phenylene)bis(2-benzylpropanoic acid) (81):

Dissolved benzyl bis-alkylated compound (1.97 g, 2.73 mmol, 1.0 equiv) in 100 mL THF from SPS. Cooled to 0 °C and added 0.64 mL H2O2 (30 wt%, 7.8 equiv) dropwise, followed by addition of LiOH•H2O in 40 mL H2O (468 mg, 10.9 mmol, 4.0 equiv). Allowed to stir at 0 °C for 5 h. Quenched with 30 mL sat. NaHCO3 and 30 mL sat. Na2SO4. Removed solvent in vacuo and diluted with H2O. Extracted aqueous layer with DCM (x3). Acidified aq. layer to ~1.5 pH with 6 M HCl. Extracted aq. layer with EtOAc (x3). Dried org. layers over Na2SO4, filtered and concentrated to yield benzyl diacid 81 as a colorless oil (83%): 1H NMR (400 MHz, CDCl3) δ 7.20–7.25 (m, 4H), 7.14–7.18 (m, 7H), 6.97–6.98 (m, 3H), 2.92–3.00 (m, 4H), 2.85–2.88 (m,
2H), 2.72–2.79 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ 180.5, 138.7, 138.7, 129.5, 128.9, 128.5, 128.5, 127.3, 126.5, 49.0, 37.8, 37.5; HRMS (ESI) m/z (M$^+$ – 1) calcd for C$_{26}$H$_{25}$O$_4$ 401.1747, found 401.1759.

![Bis[rhodium(2S,2'S)-3,3'-(1,3-phenylene)bis(2-benzylpropanoic acid)] (82):](image)

A 10 mL round bottom equipped with a reflux condenser was charged with rhodium(II) trifluoroacetate (202 mg, 0.29 mmol, 1.0 equiv), 20 mL DCE and benzyl diacid (0.58 mL, 1 M in DCE, 1.0 equiv). Heated under reflux for 1 h. Cooled reaction mixture to rt and added additional 1.0 equiv of diacid solution and continued heating for 18 h. Purified the crude product mixture by flash chromatography. First eluted band at 20% EtOAc/Hexanes was monochelated rhodium dimer (87%). Fully complexed rhodium 82 eluted at 30% EtOAc/Hexanes and 38.5 mg (13%) of the bright green solid was obtained: 1H NMR (500 MHz, CD$_3$CN) δ 7.25–7.26 (m, 8H), 7.14–7.18 (m, 12H), 7.07–7.10 (m, 2H), 6.84 (s, 2H), 6.77–6.84 (m, 4H), 2.59–2.67 (m, 12H), 2.49–2.53 (m, 4H), 2.37–2.42 (m, 4H); 13C NMR (125 MHz, CD$_3$CN) δ 195.4, 141.2, 140.1, 132.2, 130.5, 129.6, 129.3, 128.3, 127.4, 52.1, 38.0, 37.7; HRMS (ESI) m/z (M$^+$ + 1) calcd for C$_{52}$H$_{49}$O$_8$Rh$_2$ 1007.1516, found 1007.1466.
Methyl 1,2-diphenylcyclopropane-1-carboxylate (83):

An oven dried 10 mL round bottom was charged with pentane (1 mL), styrene (0.11 mL, 1.00 mmol, 5.0 equiv) and Rh₂(S-DOSP)₄ (3.7 mg, 1 mol%). Dissolved phenyldiazo 31 in 1 mL pentane and added via syringe pump over 1 h at rt. Concentrated crude product under reduced pressure and purified the residue by flash column chromatography (10% EtOAc/Hexanes) to give 30.4 mg (60%) cyclopropane 83 as a white solid. Column conditions were as follows: 1% IPA/Hexanes, 1.0 mL/min flow rate, 10 μL injection volume: ¹H NMR (400 MHz, CDCl₃) δ 7.13–7.14 (m, 3H), 7.02–7.07 (m, 5H), 6.76–6.79 (m, 2H), 3.67 (s, 3H), 3.10–3.15 (m, 1H), 2.13–2.17 (m, 1H), 1.87–1.91 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 136.3, 134.7, 131.9, 128.0, 127.6, 127.6, 127.0, 126.3, 52.6, 37.4, 33.1, 20.4.

General procedure for rhodium(II) catalyzed enantioselective B–H insertion

The borane adduct (1.0 equiv) and chiral rhodium(II) catalyst (0.01 equiv) were dissolved in dry DCM (5 mL) under argon. A solution of the diazo compound in dry DCM (5 mL) was added via syringe pump over a period of 2 h. The solution color transitioned from light green to orange. The reaction mixture was concentrated under vacuum and the crude ¹¹B NMR spectrum was recorded. The mixture was concentrated and purified by flash chromatography to give the product. Insertion product enantiomers were resolved by HPLC using an (S,S)-Whelk-O1 column. Column conditions were as follows: 30% IPA/Hexanes, 1.0 mL/min flow rate, 10 μL injection volume.
5.3 EXPERIMENTAL DATA FOR CHAPTER 2

![Chemical structure](image)

(1-(2-Cyanopropan-2-yl)-2-(1,3-dimethoxy-1,3-dioxopropan-2-ylidene)hydrazinyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (91):

In a pressure tube, (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (301.0 mg, 2.71 mmol, 1.0 equiv) was dissolved in degassed trifluorotoluene (27 mL). Dimethyl diazomalonate (515.0 mg, 3.25 mmol, 1.2 equiv) and AIBN (545.0 mg, 3.25 mmol, 1.2 equiv) were added and the reaction was heated to 120 °C for 2 h. The crude reaction mixture turned a yellow-orange. An 11B NMR spectrum of the crude product showed 95% conversion of the NHC–BH$_3$ starting material. The reaction mixture was concentrated under vacuum and purified by flash chromatography (ethyl acetate 100%) to yield 361.0 mg (40%) of 91 as a yellow solid: 1H NMR (500 MHz, CDCl$_3$) δ 1.71 (s, 6H), 3.45 (s, 3H), 3.66 (s, 6H), 3.72 (s, 3H), 6.81 (s, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 26.6, 35.4, 51.1, 51.5, 61.8, 118.8, 121.0, 123.1, 165.0, 167.1; 11B NMR (160 MHz, CDCl$_3$) δ –17.9 (br t); IR (film) 2949, 2368, 1720, 1534, 1436, 1316, 1234, 1169, 734 cm$^{-1}$; mp 113–116 °C; HRMS (ESI) m/z (M$^+ – 1$) calcd for C$_{14}$H$_{21}$BN$_3$O$_4$ 334.1687, found 334.1686.
(1-(2-Cyanopropan-2-yl)-2-(1,3-dimethoxy-1,3-dioxopropan-2-ylidene)hydrazinyl)(1,3,4,5-tetramethyl-1H-imidazol-3-ium-2-yl)dihydroborate (93):

In a pressure tube, (1,3,4,5-tetramethyl-1H-imidazol-3-ium-2-yl)trihydroborate (138.0 mg, 1.00 mmol, 1.0 equiv) was dissolved in degassed trifluorotoluene (10 mL). Dimethyl diazomalonate (190.0 mg, 1.20 mmol, 1.2 equiv) and AIBN (201.0 mg, 1.20 mmol, 1.2 equiv) were added and the reaction was heated to 120 °C for 2 h. The crude reaction mixture turned a yellow-orange. An 11B NMR spectrum of the crude product showed 92% conversion of the NHC–BH$_3$ starting material. The reaction mixture was concentrated under vacuum and purified by flash chromatography (ethyl acetate 100%) to yield 118.0 mg (33%) of 93 as a yellow solid:

1H NMR (500 MHz, CDCl$_3$) δ 1.73 (s, 6H), 2.12 (s, 6H), 3.47 (s, 3H), 3.51 (s, 6H), 3.74 (s, 3H);

13C NMR (125 MHz, CDCl$_3$) δ 8.7, 26.8, 31.6, 51.2, 51.6, 61.8, 118.8, 123.2, 123.9, 165.1, 167.3; 11B NMR (160 MHz, CDCl$_3$) δ −17.7 (br t); mp 129–131 °C; HRMS (ESI) m/z (M$^+$ – 1) calcd for C$_{16}$H$_{27}$BN$_5$O$_4$ 364.2151, found 364.2141.
(1-(2-Cyanopropan-2-yl)-2-(1,3-dimethoxy-1,3-dioxopropan-2-ylidene)hydrazinyl)(1,3-diisopropyl-1H-imidazol-3-ium-2-yl)dihydroborate (95):

In a pressure tube, (1,3-diisopropyl-1H-imidazol-3-ium-2-yl)trihydroborate (166.0 mg, 0.54 mmol, 1.0 equiv) was dissolved in degassed trifluorotoluene (5 mL). Diazo dimethyl malonate (102.0 mg, 0.65 mmol, 1.2 equiv) and AIBN (106.0 mg, 0.65 mmol, 1.2 equiv) were added and the reaction was heated to 120 °C for 2 h. The crude reaction mixture turned a yellow-orange. An 11B NMR spectrum of the crude product showed 78% conversion of the NHC–BH$_3$ starting material. The reaction mixture was concentrated under vacuum and purified by flash chromatography (ethyl acetate 100%) to yield 91.0 mg (43%) of 95 as a yellow solid: 1H NMR (500 MHz, CDCl$_3$) δ 1.43 (d, $J_{CH} = 6.5$ Hz, 12H), 1.72 (s, 6H), 3.51 (s, 3H), 3.74 (s, 3H), 4.79 (septet, $J_{CH} = 7.0$ Hz, 2H), 7.01 (s, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 23.0, 23.1, 26.9, 48.8, 51.1, 51.6, 61.8, 116.1, 118.8, 123.4, 165.1, 167.0; 11B NMR (160 MHz, CDCl$_3$) δ –17.8 (br t); mp 136–139 °C; HRMS (ESI) m/z (M$^+$ + 1) calcd for C$_{18}$H$_{31}$O$_4$N$_5$B 392.2464, found 392.2446.
(1-(2-Cyano-4-methylpentan-2-yl)-2-(1,3-dimethoxy-1,3-dioxopropan-2-ylidene)hydrazinyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (96):

In a pressure tube, (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (22.0 mg, 0.20 mmol, 1.0 equiv) was dissolved in degassed trifluorotoluene (2.0 mL). Diazo dimethyl malonate (43.0 mg, 0.24 mmol, 1.2 equiv) and V-65 (59.0 mg, 0.24 mmol, 1.2 equiv) were added and the reaction was heated to 120 °C for 2 h. The crude reaction mixture turned a yellow-orange. An 11B NMR spectrum of the crude product showed 50% conversion of the NHC-BH$_3$ starting material. The reaction mixture was concentrated under vacuum and purified by flash chromatography (ethyl acetate : hexanes 3:2) to yield 13.0 mg (18%) of 96 as a yellow solid: 1H NMR (500 MHz, CDCl$_3$) δ 1.01 (dd, $J_{CH} = 6.5$ Hz, 6H), 1.75 (s, 3H), 1.85 (m, 2H), 2.04 (m, 1H), 3.48 (s, 3H), 3.67 (s, 6H), 3.74 (s, 3H), 6.80 (s, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 23.8, 24.1, 24.7, 25.3, 35.5, 47.5, 51.2, 51.6, 65.2, 118.3, 121.0, 122.9, 165.1, 167.4; 11B NMR (160 MHz, CDCl$_3$) δ −18.0 (br t); mp 128–130 °C; HRMS (ESI) m/z (M$^+$ + 1) calcd for C$_{17}$H$_{29}$O$_4$N$_5$B 378.2307, found 378.2295.
(1-(1-Cyanocyclohexyl)-2-(1,3-dimethoxy-1,3-dioxopropan-2-ylidene)hydrazinyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (97):

In a pressure tube, (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (25.0 mg, 0.22 mmol, 1.0 equiv) was dissolved in degassed trifluorotoluene (2.0 mL). Diazomethyl malonate (43.0 mg, 0.27 mmol, 1.2 equiv) and AIBN (67.0 mg, 0.27 mmol, 1.2 equiv) were added and the reaction was heated to 120 °C for 2 h. The crude reaction mixture turned a yellow-orange. An 11B NMR spectrum of the crude product showed 100% conversion of the NHC–BH$_3$ starting material. The reaction mixture was concentrated under vacuum and purified by flash chromatography (ethyl acetate : hexanes 3:2) to yield 361.0 mg (17%) of 97 as a yellow solid: 1H NMR (500 MHz, CDCl$_3$) δ 1.26 (m, 1H), 1.65 (m, 3H), 1.86 (m, 2H), 2.05 (m, 2H), 2.19 (m, 2H), 3.47 (s, 3H), 3.67 (s, 6H), 3.74 (s, 3H), 6.80 (s, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 23.6, 24.7, 34.8, 35.5, 51.2, 51.6, 68.7, 118.5, 121.0, 121.4, 165.1, 167.4; 11B NMR (160 MHz, CDCl$_3$) δ −17.9 (br t); mp 150–152 °C; HRMS (ESI) m/z (M$^{+} + 1$) calcd for C$_{17}$H$_{27}$O$_4$N$_5$B 376.2151, found 376.2139.
(1,3-Dimethyl-1\textit{H}-imidazol-3-ium-2-yl)(2-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-
ylidene)hydrazinyl)dihydroborate (101):

(1,3-Dimethyl-1\textit{H}-imidazol-3-ium-2-yl)trihydroborate (111.0 mg, 1.00 mmol, 1.0 equiv) and diazo 2,2-dimethyl-1,3-dioxane-4,6-dione (204.0 mg, 1.20 mmol, 1.2 equiv) were dissolved in dry dichloromethane (5 mL). The reaction mixture was refluxed for 20 h, gradually turning a yellow color. An 11B NMR spectrum of the crude reaction mixture showed 100% conversion of the starting NHC-borane. The reaction mixture was concentrated under vacuum and purified by flash chromatography (ethyl acetate 100%) to yield 172.0 mg (61%) of 101 as a yellow solid: 1H NMR (500 MHz, CDCl$_3$) δ 1.69 (s, 6H), 3.84 (s, 6H), 6.96 (s, 2H), 12.42 (s, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 26.9, 36.5, 103.8, 110.8, 121.5, 160.9, 161.7; 11B NMR (160 MHz, CDCl$_3$) δ −18.7 (br t); IR (film) 3144, 2407, 1722, 1669, 1519, 1375, 1268, 1204, 1111, 936, 734 cm$^{-1}$; mp 193–195 °C; HRMS (ESI) m/z (M$^+$ + 1) calcd for C$_{11}$H$_{18}$O$_4$N$_4$B 281.1416, found 281.1404.
(Z)-(2-(4-Bromophenyl)-1-(\(1^1\)-oxidanyl)-1\(4\)^-diazeny1)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (108):

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (111.0 mg, 1.00 mmol, 1.0 equiv) was dissolved in dry acetonitrile (5 mL) and brought to reflux under argon. A solution of 4-bromobenzenediazonium tetrafluoroborate (282.0 mg, 1.00 mmol, 1.0 equiv) in dry acetonitrile (5 mL) was added via syringe pump over a period of 2 h. An \(^{11}\)B NMR spectrum of the crude product showed 95% conversion to the intermediate salt and NHC-BF\(_3\) side-product. The reaction mixture was concentrated under vacuum and purified by flash chromatography (ethyl acetate 100%) to give the intermediate salt as a light yellow oil. The salt was washed with aqueous K\(_2\)CO\(_3\) and the combined organic layers were dried over Na\(_2\)SO\(_4\). Concentrating the organic layers yielded 33.0 mg (10%) of 108 as a purple solid: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 3.77\) (s, 6H), 6.92 (s, 2H), 7.40 (d, \(J_{CH} = 8.5\) Hz, 2H), 7.50 (d, \(J_{CH} = 9.0\) Hz, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta 36.2, 120.8, 122.2, 122.3, 122.8, 131.6;\) \(^{11}\)B NMR (160 MHz, CDCl\(_3\)) \(\delta –12.0\) (t, \(J_{BH} = 94\) Hz); IR (film) 3386, 2923, 2331, 1658, 1575, 1468, 1233, 1089, 1005, 837, 730 cm\(^{-1}\); mp 67–70 °C; HRMS (ESI) \(m/z\) (M\(^+\) + 1) calcd for C\(_{11}\)H\(_{15}\)ON\(_4\)BBr 309.0517, found 309.0521.

Intermediate salt: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 3.83\) (s, 6H), 5.55 (br s, 1H), 6.58 (br s, 2H), 6.86 (d, \(J_{CH} = 9.0\) Hz, 2H), 7.00 (s, 2H), 7.37 (d, \(J_{CH} = 9.0\) Hz, 2H); \(^{13}\)C NMR \(\delta 36.5, 115.7, 117.2, 122.6, 132.4, 144.1;\) \(^{11}\)B NMR \(\delta –20.1\) (br), –1.3 (s); HRMS (ESI) \(m/z\) (M\(^+\) – 1) calcd for C\(_{11}\)H\(_{17}\)N\(_4\)BBr 295.0724, found 295.0718.
5.4 EXPERIMENTAL DATA FOR CHAPTER 3

General procedure for Reactions in Tables 20 and 22:

In a 1 dram vial, NHC-BH$_3$ (1.0 equiv) was dissolved in dichloromethane (1.0 M). Iodine (0.1 equiv) was added and allowed to stir for 5 min as gas evolution ceased. The diazo compound (1.2 equiv) was then added, and vigorous gas evolution was initially observed. The reaction mixture was allowed to stir for 1 h. Reaction progress was monitored by a 11B NMR spectrum of the crude reaction mixture. The reaction mixture was concentrated under vacuum and purified by flash chromatography (3:2 ethyl acetate:hexanes).

![Chemical Structure](image)

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)dihydroborate (114):

Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (5) (111.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and ethyl 2-diazoacetate (11) (166.5 mg, 1.2 equiv) according to the general procedure afforded 104.0 mg (53%) of product 114 as a colorless oil. Compound characterization data matched literature values.
(1,3-Diisopropyl-1H-imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)dihydroborate (116):

Reaction of (1,3-diisopropyl-1H-imidazol-3-ium-2-yl)trihydroborate (7) (166.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and ethyl 2-diazoacetate (11) (166.5 mg, 1.2 equiv) according to the general procedure afforded 143.3 mg (57%) of product 116 as a colorless oil: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 6.98\) (s, 2H), 5.12 (sept, \(J = Hz, 2H\)), 3.95 (q, \(J = Hz, 2H\)), 1.62 (br, 2H), 1.41 (d, \(J = 7.0\) Hz, 12H), 1.14 (t, \(J = 7.0\) Hz, 3H); \(^1\)C NMR (125 MHz, CDCl\(_3\)) \(\delta 180.6, 168.1\) (br), 115.4, 58.5, 49.1, 25.5, 23.0, 14.4; \(^{11}\)B NMR (160 MHz, CDCl\(_3\)) \(\delta -28.2\) (t, \(J_{BH} = 90\) Hz); IR (neat) 2978, 2335, 1691, 1440, 1245, 1205, 1031 cm\(^{-1}\); HRMS (ESI) \(m/z\) (M\(^+\) + 1) calcd for C\(_{13}\)H\(_{26}\)O\(_2\)N\(_2\)B 253.2082, found 253.2083.

(2-Ethoxy-2-oxoethyl)(3-isopropyl-1-methyl-1H-imidazol-3-ium-2-yl)dihydroborate (118):

Reaction of (3-isopropyl-1-methyl-1H-imidazol-3-ium-2-yl)trihydroborate (117) (138 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and ethyl 2-diazoacetate (11) (166.5 mg, 1.2 equiv) according to the general procedure afforded 112.7 mg (50%) of product 118 as a colorless oil: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 6.90\) (d, \(J = 2.0\) Hz, 1H), 6.83 (d, \(J = 2.0\) Hz, 1H), 4.99 (sept, \(J = 6.5\) Hz, 1H), 3.84–3.89 (m, 2H), 3.69 (s, 3H), 1.55 (br, 2H), 1.35 (d, \(J = 7.0\) Hz, 6H), 1.05–1.07 (m, 3H); \(^1\)C NMR (125 MHz, CDCl\(_3\)) \(\delta 180.7, 169.2\) (br), 120.8, 114.8, 58.5, 49.4, 35.5, 24.9 (br),
22.9, 14.3; 11B NMR (160 MHz, CDCl$_3$) δ –28.2 (t, $J_{BH} = 88$ Hz); IR (neat) 2980, 2332, 1690, 1466, 1243, 1034 cm$^{-1}$; HRMS (ESI) m/z (M$^+$ + 1) calcd for C$_{11}$H$_{22}$O$_2$N$_2$B 225.1769, found 225.1771.

(3-Butyl-1-methyl-1H-imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)dihydroborate (120):

Reaction of (3-butyl-1-methyl-1H-imidazol-3-ium-2-yl)trihydroborate (119) (152 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and ethyl 2-diazoacetate (11) (166.5 mg, 1.2 equiv) according to the general procedure afforded 137.5 mg (58%) of product 120 as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 6.81–6.82 (m, 2H), 4.04 (t, $J = 8.0$ Hz, 2H), 3.86 (q, $J = 7.0$ Hz, 2H), 3.70 (s, 3H), 1.69 (quin, $J = 7.0$ Hz, 2H), 1.54 (br, 2H), 1.31 (sex, $J = 7.5$ Hz, 2H), 1.06 (t, $J = 7.5$ Hz, 3H), 0.89 (t, $J = 7.5$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 180.7, 170.3 (br), 120.4, 118.7, 58.5, 48.2, 35.6, 32.4, 24.7 (br), 19.5, 14.3, 13.4; 11B NMR (160 MHz, CDCl$_3$) δ –28.3 (t, $J_{BH} = 93$ Hz); IR (film) 2958, 2344, 2295, 1687, 1476, 1250, 1106 cm$^{-1}$; HRMS (ESI) m/z (M$^+$ + 1) calcd for C$_{12}$H$_{24}$O$_2$N$_2$B 239.1925, found 239.1928.
(2-Ethoxy-2-oxoethyl)(1,3,4,5-tetramethyl-1H-imidazol-3-ium-2-yl)dihydroborate (121):

Reaction of (1,3,4,5-tetramethyl-1H-imidazol-3-ium-2-yl)trihydroborate (92) (138 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and ethyl 2-diazoacetate (11) (166.5 mg, 1.2 equiv) according to the general procedure afforded 82.9 mg (37%) of product 121 as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 3.92 (q, J = 7.0 Hz, 2H), 3.60 (s, 6H), 2.09 (s, 6H), 1.57 (br, 2H), 1.12 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 181.1, 168.1 (br), 123.3, 58.6, 32.3, 24.7 (br), 14.4, 8.7; 11B NMR (160 MHz, CDCl$_3$) δ –28.2 (t, J_{BH} = 88 Hz); IR (neat) 2952, 2310, 1691, 1441, 1252, 1096 cm$^{-1}$; HRMS (ESI) m/z (M$^+$ + 1) calcd for C$_{11}$H$_{22}$BN$_2$O$_2$ 225.1769, found 225.1770.

(1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)dihydroborate (122):

Reaction of (1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)trihydroborate (8) (160.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and ethyl 2-diazoacetate (11) (166.5 mg, 1.2 equiv) according to the general procedure afforded 160.7 mg (65%) of product 122 as a white solid. Compound characterization data matched literature values.
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(1-ethoxy-1-oxopropan-2-yl)dihydroborate (45):

Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (5) (111.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and ethyl 2-diazopropanoate (44) (219.7 mg, 1.2 equiv) according to the general procedure afforded 143.0 mg (68%) of product 45 as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 6.81 (s, 2H), 3.83–3.89 (m, 1H), 3.75–3.80 (m, 1H), 3.70 (s, 6H), 1.83 (br, 1H), 1.05 (br, 3H), 1.00 (t, $J = 7.5$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 183.2, 170.1 (br), 120.2, 35.8, 30.0 (br), 17.5, 14.2; 11B NMR (160 MHz, CDCl$_3$) δ –24.5 (t, $J_{BH} = 90$ Hz); IR (film) 2952, 2905, 2294, 1694, 1364, 1172, 1145 cm$^{-1}$; HRMS (ESI) m/z (M$^+$) calcd for C$_{10}$H$_{19}$O$_2$N$_2$BNa 233.1432; found 233.1424.

(1-(Benzyloxy)-1-oxopropan-2-yl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (130):

Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (5) (111.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and benzy 2-diazopropanoate (129) (228.3 mg, 1.2 equiv) according to the general procedure afforded 116.4 mg (43%) of product 130 as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.24–7.30 (m, 5H), 6.69 (s, 2H), 4.92 (s, 2H), 3.63 (s, 6H), 1.98 (br, 1H), 1.15 (br, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 182.9, 169.9 (br), 137.4, 128.1, 127.9, 127.4, 120.1, 64.5, 35.8, 30.2 (br), 17.6; 11B NMR (160 MHz, CDCl$_3$) δ –24.5 (t, $J_{BH} = 90$ Hz); IR
(1,3-Dimethyl-1\textit{H}-imidazol-3-ium-2-yl)(1-ethoxy-3-methyl-1-oxobutan-2-yl)dihydroborate (132):

Reaction of (1,3-dimethyl-1\textit{H}-imidazol-3-ium-2-yl)trihydroborate (5) (111.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and ethyl 2-diazo-3-methylbutanoate (131) (279.8 mg, 1.2 equiv) according to the general procedure afforded 48.0 mg (20%) of product 132 as a colorless oil: \textit{1H} NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 6.81 (s, 2H), 3.75–3.83 (m, 1H), 3.73 (s, 6H), 3.67–3.72 (m, 1H), 1.97 (br, 1H), 1.55 (br, 1H), 0.99–1.02 (m, 6H), 0.93 (d, \(J = 6.5\) Hz, 3H); \textit{13C} NMR (125 MHz, CDCl\textsubscript{3}) \(\delta\) 182.1, 171.5 (br), 120.2, 58.1, 45.9 (br), 35.9, 31.3, 23.7, 21.9, 14.3; \textit{11B} NMR (160 MHz, CDCl\textsubscript{3}) \(\delta\) –24.5 (t, \(J_{BH} = 90\) Hz); IR (film) 2944, 2347, 2302, 1688, 1481, 1103, 1052 cm-1; HRMS (ESI) m/z (M+ – 1) calcd for C\textsubscript{12}H\textsubscript{23}O\textsubscript{2}N\textsubscript{2}BNa 261.1745, found 261.1750.
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(1-methoxy-1-oxo-3-phenylpropan-2-yldihydroborate (134):

Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (5) (111.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and methyl 2-diazo-3-phenylpropanoate (133) (228.3 mg, 1.2 equiv) according to the general procedure afforded 194.0 mg (71%) of product 134 as a colorless oil. Compound characterization data matched literature values.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(1-methoxy-4-(methylthio)-1-oxobutan-2-yldihydroborate (136):

Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (5) (111.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and methyl 2-diazo-4-(methylthio)butanoate (135) (188.2 mg, 1.1 equiv) over 18 h according to the general procedure afforded 132.5 mg (52%) of product 136 as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 6.82 (s, 2H), 3.73 (s, 6H), 3.41 (s, 3H), 2.49–2.55 (m, 1H), 2.40–2.46 (m, 1H), 2.06 (s, 4H), 1.92 (br, 1H), 1.63 (br, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 182.0, 170.0 (br), 120.3, 50.3, 36.3 (br), 35.9, 34.7, 32.5, 15.2; ¹¹B NMR (160 MHz, CDCl₃) δ –25.4 (t, J_{BH} = 90 Hz); IR (neat) 2945, 2296, 1690, 1481, 1431, 1233 cm⁻¹; HRMS (ESI) m/z (M⁺ – 1) calcd for C₁₁H₂₀O₂N₂BS 255.1333, found 255.1332.
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(1-methoxy-3-(4-methoxyphenyl)-1-oxopropan-2-yl)dihydroborate (140):

Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (5) (88.0 mg, 0.80 mmol), iodine (25.4 mg, 0.1 equiv), and methyl 2-diazo-3-(4-methoxyphenyl)propanoate (139) (209.6 mg, 1.2 equiv) according to the general procedure afforded 140.0 mg (58%) of product 140 as a colorless oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.10 (d, J = 8.5 Hz, 2H), 6.80 (s, 2H), 6.74 (d, J = 8.5 Hz, 2H), 3.74 (s, 3H), 3.71 (s, 6H), 3.36 (s, 3H), 3.00–3.05 (m, 1H), 2.62–2.65 (m, 1H), 2.14 (br, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 181.8, 170.0 (br), 157.1, 136.9, 129.2, 120.3, 113.3, 55.1, 50.2, 39.5 (br), 38.1, 35.9; 11B NMR (160 MHz, CDCl$_3$) δ –25.1 (t, J_{BH} = 90 Hz); IR (neat) 2946, 2335, 2294, 1698, 1509, 1481, 1241, 1145 cm$^{-1}$; HRMS (ESI) m/z (M$^+$) calcd for C$_{16}$H$_{23}$O$_3$N$_2$BNa 325.1694, found 325.1698.
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(1-methoxy-3-(1-methyl-1H-indol-3-yl)-1-oxopropan-2-yl)dihydroborate (144):

Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (5) (111.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and methyl 2-diazo-3-(1-methyl-1H-indol-3-yl)propanoate (143) (292.0 mg, 1.2 equiv) according to the general procedure afforded 150.0 mg (46%) of product 144 as a light yellow solid. Crystals were grown via slow vapor diffusion of a dichloromethane / pentanes solution: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.58–7.59 (m, 1H), 7.21–7.22 (m, 1H), 7.13–7.16 (m, 1H), 7.02–7.05 (m, 1H), 6.80 (s, 3H), 3.76 (s, 6H), 3.68 (s, 3H), 3.39 (s, 3H), 3.18–3.23 (m, 1H), 2.80–2.84 (m, 1H), 2.31 (br, 1H); \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 182.4, 170.2 (br), 136.8, 128.2, 125.9, 120.8, 120.2, 119.1, 118.0, 117.4, 108.7, 50.2, 38.5 (br), 35.9 (br), 32.3, 28.2; \(^{11}\)B NMR (160 MHz, CDCl\(_3\)) \(\delta\) –25.0 (t, \(J_{BH} = 92\) Hz); IR (film) 2941, 2334, 1700, 1481, 1198 cm\(^{-1}\); mp 162–164 °C; HRMS (ESI) m/z (M\(^+\) + 1) calcd for C\(_{18}\)H\(_{25}\)O\(_2\)N\(_3\)B 326.2034, found 326.2030.
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-methoxy-2-oxo-1-phenylethyl)dihydroborate (32):

Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (5) (111.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and methyl 2-diazo-2-phenylacetate (31) (211.5 mg, 1.2 equiv) according to the general procedure afforded 141.2 mg (55%) of product 32 as a colorless oil. Compound characterization data matched literature values.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(2,6-dimethylphenoxy)-2-oxo-1-phenylethyl)dihydroborate (61):

Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (5) (111.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and 2,6-dimethylphenyl 2-diazo-2-phenylacetate (60) (319.6 mg, 1.2 equiv) according to the general procedure afforded 187.6 mg (54%) of product 61 as a white solid: 1H NMR (500 MHz, CDCl$_3$) δ 7.25–7.27 (m, 2H), 7.10–7.13 (m, 2H), 6.95–7.03 (m, 4H), 6.65 (s, 2H), 3.49 (br, 1H), 3.39 (s, 6H), 2.16 (s, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 176.7, 167.7 (br), 148.8, 145.1, 130.8, 128.1, 127.5, 127.4, 124.8, 123.8, 120.4, 45.2 (br), 35.6, 16.5; 11B NMR (160 MHz, CDCl$_3$) δ –22.8 (t, $J_{BH} = 91$ Hz); IR (film) 3175, 2953, 2354, 1720, 1483, 1113 cm$^{-1}$; mp 152–154 °C; HRMS (ESI) m/z (M$^+$ + Na) calcd for C$_{21}$H$_{25}$O$_2$N$_2$BNa 371.1901, found 371.1905.
(2-(2,6-Dichlorophenoxy)-2-oxo-1-phenylethyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (59):

Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (5) (111.0 mg, 1.00 mmol), iodine (25.4 mg, 0.1 equiv), and 2,6-dichlorophenyl 2-diazo-2-phenylacetate (58) (368.7 mg, 1.2 equiv) according to the general procedure afforded 104.7 mg (27%) of product 59 as a colorless solid. The two enantiomers were resolved by chiral HPLC ((S,S)-Whelk-O column, hexane/iPrOH = 70:30): ¹H NMR (500 MHz, CDCl₃) δ 7.27–7.31 (m, 4H), 7.14–7.17 (m, 2H), 7.04–7.07 (m, 2H), 6.75 (s, 2H), 3.65 (br, 1H), 3.46 (s, 6H); ¹³C NMR δ 175.5, 167.7 (br), 145.0, 144.0, 129.5, 128.3, 127.6, 127.3, 126.1, 124.0, 120.5, 44.3 (br), 35.7; ¹¹B NMR (160 MHz, CDCl₃) δ –23.2 (t, J_BH = 99 Hz); IR (film) 3141, 3072, 2370, 1737, 1445, 1237, 1069 cm⁻¹; mp 123–126 °C; HRMS (ESI) m/z (M⁺ + Na) calcd for C₁₉H₁₉O₂N₂BCl₂Na 411.0809, found 411.0815.

Preparation of diazo compounds:

The following diazo compounds were prepared according to literature procedures: 44 and 131,89 135, 139, and 143,⁺⁰ 129,¹⁰⁵ 58 and 60.³⁶
Methyl 2-diazo-3-(1-methyl-1H-indol-3-yl)propanoate (143):

Methyl 1-methyltryptophanate (2.53 g, 10.9 mmol, 1.00 equiv), isopentyl nitrite (1.68 mL, 12.0 mmol, 1.10 equiv), and acetic acid (0.06 mL, 1.09 mmol, 0.10 equiv) were dissolved in benzene (50 mL). The reaction mixture was heated to reflux for 1 h. The yellow solution was cooled, extracted with CH$_2$Cl$_2$, and washed with NaHCO$_3$ (aq). The combined organic fractions were dried over Na$_2$SO$_4$, filtered and concentrated under reduced pressure. The crude residue was purified by flash chromatography (7:3 hexanes:ethyl acetate) to afford 1.49 g (56%) of 143 as a yellow oil: 1H NMR (500 MHz, CDCl$_3$) δ 7.57–7.58 (m, 1H), 7.29–7.31 (m, 1H), 7.23- 7.25 (m, 1H), 7.11–7.14 (m, 1H), 6.95 (s, 1H), 3.79 (s, 5H), 3.76 (s, 3H); 13C NMR δ 167.7, 137.2, 127.3, 121.3, 119.2, 118.9, 109.6, 109.3, 51.9, 32.7, 19.5; IR (neat) 2940, 2075, 1680, 1435, 1327, 1103 cm$^{-1}$; HRMS (ESI) m/z (M$^+$ + 1) calcd for C$_{13}$H$_{14}$O$_2$N$_3$ 244.1081, found 244.1084.

Procedure for reaction between NHC-boryl ester 114 and iodine:

Iodine (12.7 mg, 0.05 mmol, 0.5 equiv) was added to a solution of NHC-boryl ester 114 (19.0 mg, 0.1 mmol) in CH$_2$Cl$_2$ (0.5 mL). The reaction mixture was allowed to stir for 1 h and then transferred to an NMR tube. The key intermediate NHC-boryl iodide 155 was detected as a broad doublet at –21.6 ppm by 11B NMR spectroscopy.

Procedure for regeneration of NHC-boryl ester 114 via reduction of 155 by NHC–BH$_3$ 5:

Iodine (12.7 mg, 0.05 mmol, 0.5 equiv) was added to a solution of NHC-boryl ester 114 (19.0 mg, 0.1 mmol) in CH$_2$Cl$_2$ (0.5 mL). The reaction mixture was allowed to stir for 1 h and
then transferred to an NMR tube. The key intermediate NHC-boryl iodide 155 was detected as a broad doublet at –21.6 ppm by 11B NMR spectroscopy and no starting material 114 remained. DiMe-Imidazole-BH$_3$ 5 (110.0 mg, 1 mmol, 10 equiv) was added to the mixture and allowed to stir for 1 h. NHC-boryl ester 114 was reformed.

5.5 EXPERIMENTAL DATA FOR CHAPTER 4

\[
\text{(Carboxymethyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (163):}
\]

In a 50 mL round bottom flask, (1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)dihydroborate 114 (1.36 g, 5.79 mmol) was dissolved in methanol (11.6 mL, 0.5 M). After the addition of 1.0 M NaOH (14.5 mL, 2.5 equiv), the flask was capped and heated at 55 °C for 48 h. Reaction progress was monitored by a 11B spectrum of the crude reaction mixture. The carboxylate intermediate manifested as a triplet signal approximately one ppm downfield from the starting ester signal. Full conversion was signified by the disappearance of the starting ester signal. The reaction mixture was quenched with a solution of 1.0 M formic acid, and the organic layer was then extracted with CH$_2$Cl$_2$. The organic layers were dried over Na$_2$SO$_4$ and
filtered. Concentrating under reduced pressure gave 436.0 mg (45%) of 163 as a white solid. Crystals were grown via slow vapor diffusion of a dichloromethane/pentanes solution: 1H NMR (500 MHz, CDCl$_3$) δ 10.41 (br, 1H), 6.82 (s, 2H), 3.77 (s, 6H), 1.62 (br, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 186.5, 120.5, 35.9, 24.4 (br); 11B NMR (160 MHz, CDCl$_3$) δ –28.0 (t, J_{BH} = 90 Hz); IR (neat) 3123, 2969, 2366, 2312, 1648, 1402, 1300, 1059 cm$^{-1}$; mp 137–140 °C; HRMS (ESI) m/z (M$^+$ + 1) calcd for C$_7$H$_{14}$N$_2$O$_2$B 169.1143, found 169.1140.

(Carboxymethyl)(1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)dihydroborate (164):

In a 20 mL scintillation vial, (1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)dihydroborate 122 (246.0 mg, 1.00 mmol) was dissolved in methanol (2.0 mL, 0.5 M). After the addition of 1.0 M NaOH (2.5 mL, 2.5 equiv), the flask was capped and heated at 55 °C for 48 h. Reaction progress was monitored by a 11B spectrum of the crude reaction mixture. The carboxylate intermediate manifested as a triplet signal approximately one ppm downfield from the starting ester signal. Full conversion was signified by the disappearance of the starting ester signal. The reaction mixture was quenched with a solution of 1.0 M formic acid, and the organic layer was then extracted with CH$_2$Cl$_2$. The organic layers were dried over Na$_2$SO$_4$ and filtered. Concentrating under reduced pressure gave 170.0 mg (78%) of 164 as a white solid. Crystals were grown from via slow vapor diffusion of a dichloromethane/pentanes solution: 1H NMR (500 MHz, CDCl$_3$) δ 10.65 (br, 1H), 7.40–7.46 (m, 4H), 3.97 (s, 6H), 1.71 (br, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 186.6, 133.1, 124.2, 110.9, 32.2, 24.6 (br); 11B NMR
(160 MHz, CDCl$_3$) δ –27.8 (t, $J_{BH} = 90$ Hz); IR (neat) 2948, 2317, 1669, 1463, 1261, 1034 cm$^{-1}$; mp 175–177 ºC; HRMS (ESI) m/z (M$^+$ – 1) calcd for C$_{11}$H$_{14}$N$_2$O$_2$B 217.1143, found 217.1148.

Bis(carboxymethyl)(1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)hydroborate (166):

In a 20 mL scintillation vial, (1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)bis(2-ethoxy-2-oxoethyl)hydroborate 165 (401.0 mg, 1.21 mmol) was dissolved in methanol-d$_4$ (2.4 mL, 0.5 M). After the addition of 1.0 M NaOH (6.0 mL, 5.0 equiv), the flask was capped and heated at 55 ºC for 78 h. Reaction progress was monitored by a 1H spectrum of the crude reaction mixture. Full conversion was signified by quantitative formation of free ethanol (1.19 ppm). The reaction mixture was quenched with a solution of 1.0 M formic acid, resulting in the formation of a white precipitate. The precipitate was filtered and the removal of residual solvent under reduced pressure gave 150.0 mg (45%) of 166 as a white solid. Crystals were grown from via slow vapor diffusion of an acetonitrile/methanol solution: 1H NMR (500 MHz, CD$_3$OD) δ 7.67–7.68 (m, 2H), 7.47–7.49 (m, 2H), 4.03 (s, 6H), 1.82 (br, 4H); 13C NMR (125 MHz, CD$_3$OD) δ 184.7, 134.8, 125.7, 112.4, 33.1; 11B NMR (160 MHz, CD$_3$OD) δ –19.7 (d, $J_{BH} = 89$ Hz); IR (neat) 2935, 2175, 1686, 1465, 1301, 911 cm$^{-1}$; mp 202–203 ºC; HRMS (ESI) m/z (M$^+$ – 1) calcd for C$_{13}$H$_{16}$N$_2$O$_4$B 275.1198, found 275.1207.
(Carboxymethyl)(trimethyl-λ^4-azaneyl)dihydroborate (167):

In a 20 mL scintillation vial, (2-ethoxy-2-oxoethyl)(trimethyl-λ^4-azaneyl)dihydroborate 126 (136.0 mg, 0.86 mmol) was dissolved in methanol-d_4 (1.8 mL, 0.5 M). After the addition of 1.0 M NaOH (2.14 mL, 2.5 equiv), the reaction mixture was stirred at rt for 7 d. Reaction progress was monitored by a ^1H spectrum of the crude reaction mixture. Full conversion was signified by quantitative formation of free ethanol (1.19 ppm). The reaction mixture was quenched with a solution of 1.0 M formic acid, and the organic layer was then extracted with CH_2Cl_2. The organic layers were dried over Na_2SO_4 and filtered. Concentrating under reduced pressure gave 27.0 mg (24%) of 167 as a white solid. Crystals were grown from via slow vapor diffusion of a dichloromethane/pentanes solution: ^1H NMR (500 MHz, CDCl_3) δ 11.01 (br, 1H), 2.62 (s, 9H), 1.69 (br, 2H); ^13C NMR (125 MHz, CDCl_3) δ 185.4, 52.1, 25.7 (br); ^11B NMR (160 MHz, CDCl_3) δ –3.7 (t, J_{BH} = 104 Hz); IR (neat) 2954, 2365, 1670, 1462, 1299, 1173 cm^{-1}; mp 113–115 °C; HRMS (ESI) m/z (M^+ – 1) calcd for C_7H_13N_2O_2B 130.1034, found 130.1032.

(Carboxymethyl)(1λ^4-pyridin-1-yl)dihydroborate (168):

In a 20 mL scintillation vial, (2-ethoxy-2-oxoethyl)(1λ^4-pyridin-1-yl)dihydroborate 128 (333.0 mg, 1.88 mmol) was dissolved in methanol-d_4 (3.8 mL, 0.5 M). After the addition of 1.0 M NaOH (4.70 mL, 2.5 equiv), the reaction mixture was stirred at rt for 4 d. Reaction progress was monitored by a ^1H spectrum of the crude reaction mixture. Full conversion was signified by
quantitative formation of free ethanol (1.19 ppm). The reaction mixture was quenched with a solution of 1.0 M formic acid, and the organic layer was then extracted with CH$_2$Cl$_2$. The organic layers were dried over Na$_2$SO$_4$ and filtered. Concentrating under reduced pressure gave 154.0 mg (54%) of 168 as a light yellow solid. Crystals were grown from via slow vapor diffusion of a dichloromethane/pentanes solution: 1H NMR (500 MHz, CDCl$_3$) δ 11.36 (br, 1H), 8.58–8.60 (m, 2H), 7.97–8.00 (m, 1H), 7.55–7.57 (m, 2H), 1.81 (t, $J = 5.0$ Hz, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 185.9, 147.2, 140.0, 125.5, 29.9 (br); 11B NMR (160 MHz, CDCl$_3$) δ –5.7 (t, $J_{BH} = 93$ Hz); IR (neat) 2975, 2381, 2333, 1660, 1620, 1442, 1303, 1077, 755 cm$^{-1}$; mp 76–78 °C; HRMS (ESI) m/z (M$^+$ – 1) calcd for C$_7$H$_9$N$_2$O$_2$B 150.0721, found 150.0719.

Preparation of α-boryl ester compounds:

NHC-boryl ester compounds were prepared by boryl-iodide catalyzed B–H insertion with ethyl diazoacetate.86 Trimethylamine-, pyridine-, and tributylphosphine-boryl ester compounds were prepared by Rh-catalyzed B–H insertion with ethyl diazoacetate.43

![NHC-boryl ester compound](image)

(1,3-Dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)bis(2-ethoxy-2-oxoethyl)hydroborate (122):

In a 20 mL scintillation vial, (1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)trihydroborate (978.0 mg, 6.11 mmol) was dissolved in dichloromethane (6.11 mL, 1.0 M). Iodine (155.1 mg, 0.1 equiv) was added and allowed to stir for 5 min as gas evolution ceased. Ethyl diazoacetate (1.59 g, 2.0 equiv) was then added, and vigorous gas evolution was initially observed. The reaction mixture was allowed to stir for 18 h. Reaction progress was monitored by
an 11B NMR spectrum of the crude reaction mixture. The ratio between single insertion and double insertion products was 63/37. The reaction mixture was concentrated under vacuum and purified by flash chromatography (2:3 ethyl acetate:hexanes) to give (1,3-dimethyl-1H-benzo[\textit{d}]imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)dihydroborate in 30% yield (451.1 mg) as a white solid. Compound characterization data matched literature values.

The double insertion product 165 was isolated (3:2 ethyl acetate:hexanes) in 20% yield (402.0 mg) as a colorless oil: 1H NMR (500 MHz, CDCl$_{3}$) δ 7.44–7.46 (m, 2H), 7.40–7.42 (m, 2H), 4.00 (s, 6H), 3.81–3.86 (m, 4H), 1.85 (br, 2H), 1.79 (br, 2H), 0.94 (t, J = 7.0 Hz, 6H); 13C NMR (125 MHz, CDCl$_{3}$) δ 179.3, 133.3, 124.4, 110.9, 58.7, 32.6, 25.5 (br), 14.3; 11B NMR (160 MHz, CDCl$_{3}$) δ –20.2 (d, J_{BH} = 93 Hz); IR (neat) 2976, 2368, 1692, 1461, 1242, 1094, 1033, 742 cm$^{-1}$; HRMS (ESI) m/z (M$^{+}$ + 1) calcd for C$_{17}$H$_{26}$O$_{4}$N$_{2}$B 333.1980, found 333.1994.

(2-Ethoxy-2-oxoethyl)(trimethyl-λ^{4}-azaneyl)dihydroborate (126):

Trimethylamine-borane (165.0 mg, 2.20 mmol, 1.0 equiv) and Rh$_{2}$(esp)$_{2}$ (17.3 mg, 0.01 mmol, 1 mol%) were dissolved in dichloromethane (9 mL) under argon. A solution of ethyl diazoacetate (569.0 mg, 2.00 mmol, 2.0 equiv) in dichloromethane (2 mL) was added via syringe pump over a period of 2 h. An 11B NMR spectrum of the crude product showed 52% conversion to the desired single-insertion product. The reaction mixture was concentrated under vacuum and purified by flash chromatography (hexane: ethyl acetate, 1:1) to yield 157.0 mg (79%) of 126 as a colorless oil: 1H NMR (500 MHz, CDCl$_{3}$) δ 4.04–4.09 (m, 2H), 2.60 (s, 9H), 1.66 (br, 2H), 1.21–1.24 (m, 3H); 13C NMR (125 MHz, CDCl$_{3}$) δ 179.6, 59.1, 52.0, 26.0 (br), 14.4; 11B NMR
(160 MHz, CDCl₃) δ −3.7 (t, J_BH = 102 Hz); IR (neat) 2951, 2359, 1697, 1466, 1247, 1113, 988, 842 cm⁻¹; HRMS (ESI) m/z (M⁺ − 1) calcd for C₁₇H₁₇O₂NB 158.1347, found 158.1345.

(2-Ethoxy-2-oxoethyl)(1λ⁴-pyridin-1-yl)dihydroborate (128):

Pyridine-borane (464.0 mg, 5.00 mmol, 1.0 equiv) and Rh₂(esp)₂ (39.4 mg, 0.01 mmol, 1 mol%) were dissolved in dichloromethane (20 mL) under argon. A solution of ethyl diazoacetate (776.9 mg, 1.20 mmol, 1.2 equiv) in dichloromethane (5 mL) was added via syringe pump over a period of 2 h. An ¹¹B NMR spectrum of the crude product showed 45% conversion to the desired single-insertion product. The reaction mixture was concentrated under vacuum and purified by flash chromatography (hexane: ethyl acetate, 1:1) to yield 335.0 mg (37%) of 128 as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 8.59–8.60 (m, 2H), 7.97–8.00 (m, 1H), 7.54–7.57 (m, 2H), 3.92–3.96 (m, 2H), 1.79–1.81 (m, 2H), 1.10 (t, J = 7 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 179.3, 147.2, 139.8, 125.3, 58.8, 30.0 (br), 14.4; ¹¹B NMR (160 MHz, CDCl₃) δ −5.7 (t, J_BH = 101 Hz); IR (neat) 2978, 2369, 1692, 1458, 1252, 1097, 1037, 690 cm⁻¹; HRMS (ESI) m/z (M⁺ − 1) calcd for C₉H₁₃O₂NB 178.1034, found 178.1031.
(2-Ethoxy-2-oxoethyl)(tributyl-\(\lambda^4\)-phosphanyl)dihydroborate (169):

Tributylphosphine-borane (452.0 mg, 2.09 mmol, 1.0 equiv) and Rh\(_2\)(esp)\(_2\) (66.1 mg, 0.01 mmol, 1 mol%) were dissolved in dichloromethane (8 mL) under argon. A solution of ethyl diazoacetate (256.1 mg, 2.00 mmol, 0.95 equiv) in dichloromethane (2 mL) was added via syringe pump over a period of 2 h. An \(^{11}\)B NMR spectrum of the crude product showed 100% conversion to the desired single-insertion product. The reaction mixture was concentrated under vacuum and purified by flash chromatography (hexane: ethyl acetate, 1:1) to give 169: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 4.04 (q, 2H, \(J = 7\) Hz), 1.62 (m, 6H), 1.41 (m, 12H), 1.32 (t, 2H, \(J = 8\) Hz), 1.24 (t, 3H, \(J = 7\) Hz), 0.95 (t, 9H, \(J = 7\) Hz); \(^{11}\)B NMR (160 MHz, CDCl\(_3\)) \(\delta\) –30.1 (br).
BIBLIOGRAPHY

2. Staubitz, A.; Robertson, A. P. M.; Manners, I., Ammonia-Borane and Related Compounds as Dihydrogen Sources. Chem. Rev. 2010, 110, 4079-4124.

Bond Insertion Reaction: A Highly Efficient and Enantioselective C–B Bond-Forming Reaction

Carbene Insertion into B–H Bonds: Highly Enantioselective Access to Functionalized

39. Loskutova, N. L.; Shvydkiy, N. V.; Nelyubina, Y. V.; Perekalin, D. S., Insertion of
carbenoids into X-H bonds catalyzed by the cyclobutadiene rhodium complexes. J. Organomet.

41. He, Z.; Zajdlik, A.; Yudin, A. K., α-Borylcarbonyl compounds: from transient

42. Fiori, K. W.; Du Bois, J., Catalytic Intermolecular Amination of C–H Bonds: Method

43. Allen, T. H.; Curran, D. P., Relative Reactivity of Stable Ligated Boranes and a
2016, 81, 2094-2098.

44. Blackborow, J. R., Resonance line broadening due to chemical exchange and quadrupole-

45. Lipshutz, B. H.; Blomgren, P. A., Efficient Scavenging of Ph₃P and Ph₃PO with High-

46. Richter, D.; Mayr, H., Hydride-Donor Abilities of 1,4-Dihydropyridines: A Comparison

47. Davies, H. M. L.; Morton, D., Guiding principles for site selective and stereoselective

48. McNulty, J.; Zhou, Y., A highly efficient general synthesis of phosphine–borane

