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Emerging device technologies for nano-oscillators have inspired research in the use of oscillators 

to perform mathematical operations based on non-Boolean computations using the coupling 

behavior of an oscillator cluster, rather than CMOS logic gates. For example, circuits using 

coupled oscillators can be created to measure the Degree of Match (DOM) between two vectors. 

Coupled oscillators synchronize through a range of frequencies, called the locking region, 

depending on coupling strength. The output behavior of coupled oscillators with a DOM detector 

in the locking range has been shown to be the Euclidean distance squared, where larger DOM 

voltages correspond to more similar vectors. The convolution of two vectors can be calculated 

using three DOM oscillator clusters based on the algebraic expansion of Euclidean distance 

squared. 

 Because the nano-oscillator devices have not matured enough to build large systems, it is 

important to design models of coupled oscillator behavior. Modeling oscillators is required 

across a hierarchy consisting of device models, circuit and logic models, and system models in 

order to support the entire scope of design abstractions. Device models are created by trial and 

error matching of the model to measured data. The system level model is then created by a 

polynomial fit to the output of a SPICE simulation of coupled oscillator circuits built using the 
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circuit model. The result is a closed-form system level mathematical model usable in MATLAB 

and C++. 

 This thesis presents a study of three models that span the discussed hierarchy: one STO 

model created based on two different circuit models with different detector characteristics, a VO2 

oscillator model, and a generic parameterized model used to evaluate variations in oscillator 

parameters. All versions were tested at each level of the hierarchy and the results compared to 

control values to verify the models. The device level model was compared to the empirical data. 

The circuit level models were used to calculate DOM and convolution; these calculations were 

compared to MATLAB calculations. The system level models were tested in an image 

processing pipeline (IPP) and the accuracy of these models was compared to conventional 

floating-point calculations. 
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1.0  INTRODUCTION 

The standard technology used for computation has been logic gates designed using 

complimentary metal-oxide semiconductors (CMOS). However, emerging technologies, 

specifically nano-oscillators, have inspired research in new computation paradigms utilizing the 

coupling behavior of nano-oscillators rather than CMOS devices. The non-linear behavior of 

these devices can be exploited to perform useful computation depending on coupling schemes 

such as nearest neighbor mesh, star, and random configurations. In this thesis, nano-oscillators 

are electrically coupled in a star-configuration and driven by a voltage input. When the 

frequencies of individual oscillators match or are near-similar, the oscillators lock in phase which 

drives the voltage at the common node. The common node is a measure of the amount of 

coupling among all oscillators in the cluster that is input to a Degree of Match (DOM) detector. 

In this circuit configuration, input vectors that match are at a maximum DOM voltage while 

input vectors that are not similar decrease in voltage. The use of coupled nano-oscillator arrays 

may prove to be faster and more power efficient than CMOS technologies. 

Two such emerging nano-oscillator technologies are Spin-Torque Oscillators (STOs) and 

Vanadium Dioxide (VO2) oscillators. The two technologies exhibit oscillatory behavior by 

exploiting different internal physics. STOs use magnetic layers and magnetic field line coupling 

while VO2 devices behave with insulator to metal transitions and vice-versa with direct electrical 

coupling.  
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In order to use these devices, the question of how to design and build circuits using these 

devices has been the focus of recent research. At this time, it is difficult to build large oscillator 

clusters using these devices, so the demonstration of the technology in large designs depends on 

simulation models. By modeling oscillators in a hierarchy, the complexity of the lower level 

models can be hidden from the upper levels. In this thesis, we use five levels of modeling in the 

hierarchy modeled after CMOS VLSI design: physical, device, circuit, logic, and system. 

Physical models measure the physics the device by typically using electromagnetic simulators or 

direct measurements of the device in hardware. Device models describes the pin-to-pin behavior 

of individual devices. Circuit models form the basic computational unit to be used to create 

specialized systems.  In this thesis, there is no distinction between the circuit and logic levels 

since all coupled oscillator circuits are tested with a DOM detector. System models are high-

level models that describe the behavior of nano-oscillator devices through mathematical 

equations or program code.  

This thesis focuses on modeling the STO, VO2, and generic parameterized oscillator 

technologies through all levels of the design hierarchy. The physical model is empirical data 

measured from devices in hardware. The data for VO2 devices was provided by Nikhil Shukla 

and Matthew Jerry from the University of Notre Dame. The device model is a SPICE model 

based on the measured data from the physical model. The device level for VO2 oscillators is used 

in a circuit level model consisting of a coupled oscillator network with a DOM detector circuit 

output. The circuit level model data for STOs was simulated and provided by Gyorgy Csaba 

from the University of Notre Dame. The data collected from the circuit level model is used to 

generate a closed-form system level oscillator model that can be used in MATLAB, Verilog, and 

C code. The system level model is tested in an image processing pipeline to evaluate and 
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compare the computational performance of the nano-oscillator devices to a conventional 

floating-point pipeline configuration. The generic parameterized oscillator model is tested in the 

pipeline in a parametric analysis of three oscillator parameters to test the sensitivity of the 

oscillator model. 

1.1 PURPOSE OF STUDY 

The purpose of this thesis consists of three parts. The first goal of this thesis is to create a system 

level model of STOs and device, circuit, and system level models for VO2 oscillators. The 

second goal is to verify the circuit and system models against MATLAB and C++ and to test 

system level model in image processing pipeline (IPP). The third goal is to perform a study to 

analyze the impact of oscillator parameters of the system level model in the IPP. 

1.2 STATEMENT OF WORK 

The following steps were performed in order to achieve the goals previously listed. 

1. Create a device model in SPICE of a VO2 oscillator using data collected from hardware 

provided by Nikhil Shukla and Matthew Jerry from University of Notre Dame. 

2. Use device model to build a circuit model of a four-coupled VO2 oscillator cluster 

including a Degree of Match detector in virtuoso. This forms a basic computational block 

of coupled oscillator logic. 
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3. Simulate the four-coupled circuit model to create a 4-Dimensional surface of DOM 

values for the entire range of voltage inputs. 

4. Create a system level model by curve-fitting the circuit model data to create closed-form 

polynomial model for use in high level modeling tools such as MATLAB, Verilog, and 

C. Encode this model in a software library including functions for DOM and convolution.  

5. Repeat 4 using STO circuit level model data provided by Gyorgy Csaba from the 

University of Notre Dame. 

6. Verify system level model by comparing the DOM and convolution library functions to 

standard functions in MATLAB. 

7. Test image processing pipeline using system level STO model and system level VO2 

model. 

8. Use a parametrized model that captures three key model parameters including coupling 

asymmetry, locking range, and output noise. 

9. Perform a parametric analysis of the three oscillator model parameters to measure the 

impact of each parameter the performance of the image processing pipeline. 

1.3 CONTRIBUTION 

• Creation of a hierarchical set of oscillator models for use in designing large-scale nano-

oscillator based computational systems. These models will capture the behavior of 

oscillator clusters spanning the physical level model to the system level model. 

• Verification of oscillator models in an IPP by showing that the system level models 

performed similarly to a conventional floating-point pipeline configuration. 
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• Analyses of oscillator model parameters on the IPP showing the performance impact of 

the variation of the three parameters. 

1.4 THESIS ORGANIZATION 

This thesis is organized into six chapters. Chapter 2 discusses background information including 

the motivation for oscillator research is discussed and the various physical domains of nano-

oscillator devices. Research using coupled oscillators in associative memories for pattern 

matching is discussed as well as research in hierarchical modeling. Also, research in modeling 

techniques similar to those used in this thesis is discussed. Chapter 3 discusses the approach and 

methods used to create each oscillator model in the hierarchy. Chapter 4, experimental design, 

explains the verification methods used for each level of the hierarchy. Chapter 5 presents the 

results for the oscillator models in the IPP. Chapter 6 discusses the conclusions of this thesis. 
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2.0  BACKGROUND 

Research in coupled oscillators was first inspired by Christian Huygens in 1673. While studying 

pendulum clocks, Huygens discovered that two pendulum clocks hung from a common object 

will synchronize either in phase or exactly out of phase [1]. Nano-oscillators that are electrically 

coupled also exhibit this phenomenon. In recent years, there has been research in a variety of 

fields including magnetics [2], neuro computing [3], and quantum computing [4]. In [2], Shi et 

al. used spin torque nano-oscillators for information carriers by controlling precession in 

skyrmions. In [3], Datta et al. used coupled relaxation oscillators in brain-inspired, neuromorphic 

models. In [4], Alexander et al. used a single optical parametric oscillator to create a 

computationally universal continuous-variable cluster state that enables universal quantum 

computing.  

 A cluster of coupled oscillators can be configured to lock in either phase or frequency. In 

[5], Gupta and Buckwalter used phase-locked coupled oscillators to achieve automatic self-

steering for beam-forming arrays. A coupled oscillator array and coupled-phase-locked loop 

were used to implement a self-steering receiver. The magnitude that the coupled oscillators differ 

in phase was used to determine the beam direction as well as the necessary adjustments. As an 

alternative, Fang et al. [6] performed image segmentation using a two-dimensional array of 

coupled oscillators. In this network, each oscillator corresponded to an image pixel. Oscillators 
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corresponding to pixels of similar intensity tended to synchronize to the same frequency 

resulting in groups of oscillators locked to a different frequency. 

Coupled oscillators have been shown to have the potential to be used in numerous 

computation applications. There has been research that focuses on using coupled oscillators as 

associative memory for pattern matching through synchronization [7] [8]. In [7], Nikonov et al. 

built a coupled oscillator associative memory array with the memorized patterns and test patterns 

encoded as the differences of frequencies of the oscillators. Test patterns similar to memorized 

patterns cause the oscillators to synchronize in phase indicating a match. Vodenicarevic et al. [8] 

proposed two counter-based protocols to detect and evaluate the output of a coupled oscillator 

based associative memory that showed comparable results to a variance measure and had strong 

resilience to noise. Coupled oscillators have also been shown to be able to compute convolution. 

Nikonov [9] demonstrated approximate convolution using coupled oscillator arrays based on 

synchronization and the resulting output voltage on the summation node. 

Simulations of coupled oscillators with a DOM detector output showed behavior that 

closely resembled Euclidean distance squared. Following the research of Nikonov, Chiarulli et 

al. [10] presented a method of using coupled oscillators to calculate exact convolution using the 

DOM. The DOM circuit was created with a coupled oscillator network in a star configuration 

where the input to the circuit was two vectors of analog voltages representing image pixels. Each 

oscillator was controlled by the pairwise difference of these input voltages. The voltage on the 

coupled node was integrated to the output where the output was the DOM of the input vectors. In 

his thesis, Jennings [11] showed the use of DOM oscillator clusters in numerous signal 

processing algorithms, including convolution and discrete cosine transform. He then showed the 

impact of circuit parameters on these algorithms.  
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In order to develop large-scale systems, modeling must be done at multiple levels, 

starting at physical models up to system level models. One of the most recognizable model 

hierarchies is CMOS technology. At the lowest level, the physical characteristics of 

semiconductors can be used to design transistors. At the next level, pin-level circuit models of 

transistors can be configured into logic gates. At the top level, the behavior of collections of 

logic gates are used to generate system models used to design complex systems. Many modeling 

methods in research follow a similar hierarchical structure to CMOS technology. Ventrice et al. 

[12] developed a compact model of phase change memory (PCM) devices based on 

measurements collected from the PCM. This model accurately described key physical features of 

the PCM including bias and temperature dependence for use by other designers to research 

applications of PCM. Similar research by Cobley and Wright [13] in Phase-Change RAM 

devices have also developed parameterized models at the device level. 

As emerging devices develop, a model hierarchy can be used to design systems before 

large scale hardware is available. At the lowest level, empirical data measured from a single 

device can be used as the basis of device models. In some cases, empirical data can extend 

higher up in the hierarchy than just the device level. For example, Lovin et al. [14] claimed that 

prior work with 6T SRAM cells focused too much on detailed circuit simulation. In order to be 

used by computer architects, empirical data of memory needed to be integrated to chip level 

simulators and also must be computationally efficient. To do this, the empirical models were 

created using information from the circuit simulation and algorithms of regression modeling 

[14]. Also, Puglisi et al. [15] made similar claims regarding RRAM where an empirical model 

was created from measurements in hardware and is validated from circuit simulations. At several 

levels of our hierarchy, empirical data from device measurements is used. 
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This thesis builds upon the work done by Jennings [11] by creating a hierarchy of 

oscillator models tied to oscillators in hardware, similar to [12 – 15].  A system model of STO 

[16] devices was created based on SPICE simulation data of a coupled oscillator circuit and a 

device model for VO2 [17] devices was created using empirical data. Circuit models of these 

devices are created as SPICE device models designed to match the empirical data. Using SPICE 

model, circuit models for DOM circuits were implemented and measured data from these circuits 

were used to create a system level closed-form model. The system level models were used in an 

image processing pipeline to perform object detection and object classification using a 

convolutional neural network, which has been shown have low classification error [18] [19]. 
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3.0  APPROACH 

This chapter discusses the methods used to develop the models in the hierarchy. Although there 

are numerous configurations for oscillators to be coupled, this thesis focuses on star-coupled 

oscillator clusters with resistive coupling. Also, this thesis focuses on frequency-locking of 

oscillators rather than phase locking. This architecture is required for our DOM detector to 

function properly because this is the fundamental computation unit on which our systems are 

built. Then, each level of the hierarchy is discussed along with the verification of the model at 

that level. The final section is a listing of the elements of the C++ library of oscillator functions 

that make up the system model. 

3.1 HOW OSCILLATORS COMPUTE 

This section discusses how coupled oscillators can be used to compute the DOM and convolution 

of input vectors of analog voltages. 

3.1.1 Oscillator Based Degree of Match (DOM) Computation 

Figure 1 shows an array of coupled oscillators configured to compute the DOM. Each oscillator 

was connected in a star-configuration in a resistor array where each oscillator was controlled by 
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the pairwise analog difference in voltages between input vectors. The voltage at the coupling 

node was integrated at the output of the circuit which measures the degree to which the 

oscillators synchronized, or the DOM between the input vectors.  

 

 

Figure 1. Coupled Oscillator Circuit with DOM detector output [20] 

 

Research by Chiarulli et al. [10] has shown that the behavior of the DOM circuit is 

similar to Euclidean distance squared. In Figure 2a, the surface plot shows a curve-fit and data 

points generated from a three-coupled oscillator DOM circuit where the control voltage on two 

oscillators were swept over the operating region and the control voltage on the third was held 

constant. Figure 2b shows an inverted cross-section of Figure 2a where the solid line shows a 

curve-fit to the data points. This plot shows that the DOM behaves as a distance metric 

corresponding to Euclidean distance squared (L2
2). Equation 1 shows the DOM equation of two 

vectors based on coupled oscillator circuits. 
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a) 

 

b) 

 

Figure 2. DOM simulation data of three coupled oscillators [20]. A curve fit to the simulation points is 
shown in (a) and an inverted cross-section with L2

2
 plot is shown with the simulation data in (b). 

 

 

Equation 1. Degree of Match 

3.1.2 Generic Parameterized Oscillator Model 

Equation 1 describes an ideal oscillator model. However, actual oscillator implementations 

exhibit variability from the ideal model. These variations can be described by three oscillator 

parameters: Coupling Asymmetry (CA), Locking Range (LR), and Noise (N). Figure 3 shows 

plots that illustrate the impact of these parameters. 
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Figure 3. Plot of 3-Oscillator simulations with oscillator parameters [20] 

CA describes the difference in coupling strength between each individual oscillator. LR 

represents a range of frequencies over which an oscillator cluster will synchronize. Depending on 

coupling strength, oscillator frequencies that are near similar can lock to the same frequency over 

a small range of input voltages making input vectors of small differences indistinguishable from 

other vectors of similarly small differences. Noise is a common parameter of any circuit. Output 

noise is the focus of this thesis where the noise is modeled by a Gaussian distribution of white 

noise. Equation 2 shows the DOM equation taking into account the three model parameters. 

 

Equation 2. DOM equation with oscillator parameters 
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3.1.3 Convolution with Coupled Oscillators 

The parabolic behavior of the DOM curve can be exploited to perform convolution, a common 

computational primitive in signal processing. Convolution is the summation of the dot product 

between two vectors, as defined in Equation 3, where ai and bi represent the ith elements of two 

vectors A and B, each of length N. 

 
Equation 3. Convolution of Two Vectors 

 

Chiarulli et al. [10] showed that oscillator-based DOM can be used to calculate exact 

convolution. The convolution of two vectors can be calculated by the algebraic expansion of 

Euclidean Distance squared as shown in Equation 4. The oscillator convolution is performed 

using three clusters of oscillator arrays in parallel; one cluster for vectors A and B, one cluster 

for A and 0, and one cluster for 0 and B. The remaining -2 is divided out by hardware leaving the 

AB term. Figure 4 shows the block diagram of oscillator convolution. 

 

 

 

 
Equation 4. Convolution based on algebraic expansion of Euclidean distance squared 
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Figure 4. Oscillator-Based Convolution using three coupled oscillator clusters for A and B terms A terms and B 
terms 

 

Based on DOM behavior, we have an important computational primitive and an important signal 

processing operation created from that computational primitive. 

3.2 MODELING OSCILLATOR COMPUTATION 

The physical level model aims to capture the pin-out behavior of individual nano-oscillator 

devices while the circuit level model aims to capture the behavior of coupled oscillator arrays. 

This section discusses the two nano-oscillator technologies, STO and VO2, at the physical, 

device, and circuit levels.  

3.2.1 Physical Level Model for STO and VO2 

Physical models are often build from electromagnetic simulations of the device physics of a 

nano-device. In our case, the physical level models for STO and VO2 devices were based on 

measured data from devices in hardware. This level of the hierarchy was conducted by 

collaborators at the University of Notre Dame and the Pennsylvania State University. Gyorgy 
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Csaba used measurements of an STO device to design a device model. Nikhil Shukla and 

Matthew Jerry collected measurements of a VO2 nano-oscillator device and provided the data to 

us. 

3.2.2 VO2 Device Level Model 

The VO2 device model used was based on the research of Maffezzoni et al. [21] and matched to 

measure device data obtained from the University of Notre Dame. Figure 5 shows the 

implementation of this model. The VO2 oscillator is an Insulator-to-Metal (IMT) and Metal-to-

Insulator (MIT) transition device. At low voltages, the VO2 device is in the high-resistance 

(insulator) state. When the voltage approaches some critical value, the device transitions to the 

low-resistance (metal) state. The transitions were modeled using a driving-point equivalent 

circuit where the state is controlled by a voltage comparator. The output of the comparator is low 

(0V) or high (1V) which controls a voltage-controlled resistor switch which allows voltage to 

flow to the output. 
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Figure 5. VO2 Relaxation Oscillator Model [21] 

 

Data collected from a single VO2 device configured as a relaxation oscillator in hardware 

was provided by the University of Notre Dame. Using this data and the VO2 device model 

configured as a relaxation oscillator, the model parameters were adjusted and internal 

capacitance was added until the model suitably matched the data provided through trial-and-

error. To verify the model, the VO2 device model and a transistor in series were used to create a 

test circuit. Figure 6 below shows the SPICE model frequency as a function of the drain-to-

source current compared to the data. Figure 7 shows the voltage response of the SPICE model 

compared to the data. These figures show that our device model closely corresponded to the data. 
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Figure 6. VO2 SPICE Model compared to hardware data 

 

 

Figure 7. Voltage response of VO2 model compared to hardware measurements 
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3.3 CIRCUIT LEVEL MODEL 

The circuit level model uses the device level model to create a coupled oscillator cluster with a 

DOM detector circuit, which forms the basic computation unit. Therefore, there is no distinction 

between the circuit level and logic level of the model hierarchy because circuit models were 

always tested with DOM detectors. This section describes the DOM circuit models using STO 

and VO2 oscillators. 

3.3.1 STO Circuit Level Model 

The STO circuit level model was developed and simulated by Gyorgy Csaba at the University of 

Notre Dame. Four STOs were coupled in a star configuration through a magnetic field line and 

the coupling node used as input to an integrator to produce a DOM response similar to the circuit 

shown in Figure 1. The circuits were simulated by holding the driving current of three oscillators 

constant while the driving current of a fourth oscillator was a time-dependent current sweep. 

Figure 8 shows a three-dimensional surface of the output from the circuit simulations. 

 

Figure 8. Surface plot of DOM data from STO circuit level model 
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3.3.2 VO2 Circuit Level Model 

Once the device model of the VO2 was tuned and verified, a coupled oscillator circuit was 

created in Cadence Virtuoso with a Degree of Match detector circuit based on the DOM circuit 

in Figure 1. Figure 9 below shows the schematic of the four-coupled oscillator circuit.  

Figure 9. Four-Coupled Oscillator Circuit with DOM detector output 

The DOM detector is an envelope detector that outputs the envelope of the coupled 

oscillator mixed signal. The frequencies of each oscillator were controlled using the gate voltage 

on the transistors. A critical component of this circuit was the coupling of the oscillators. An 

issue with using an IMT device as an oscillator was that the switching behavior was non-

sinusoidal. A sinusoidal behavior was important for an accurate DOM response. Various 

configurations of resistive and capacitive coupling were used to generate sinusoidal behavior at 

the output of the circuit.  
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In order to perform curve-fitting, a 4-dimensional surface of VO2 data was generated. 

This was done by holding the controlling voltages on three oscillators constant while the fourth 

oscillator was time-swept over a range of values. The constant voltages were swept using a 

parametric analysis for 11 points in the range over which the oscillators were locked. Once the 

simulations were completed, the DOM surface was created in MATLAB by smoothing the data 

collected by the circuit simulation 

Resistive and capacitive coupling were used in a two-coupled oscillator circuit in order to 

find a configuration that has appropriate output behavior. The circuits were simulated holding 

one oscillator at a constant frequency while the second oscillator was swept over a range of 

frequencies. With capacitive coupling, the oscillators lock in frequency and do not lock in phase. 

Frequency only locking was not useful because the DOM detector used does not output parabolic 

behavior, which is critical to the DOM calculation. The oscillators lock in both phase and 

frequency with resistive coupling as shown in Figure 10 below. This gives the desired output 

response for DOM. The VO2 DOM data was generated by the four-coupled oscillator circuit, 

shown in Figure 11, and was used to create a polynomial a curve-fit. 
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a) 

 

b) 

 

Figure 10. Two VO2 Oscillator circuit with resistive coupling. a) Shows the output voltage of both oscillators 
showing phase locking in the locking region and b) shows the output frequency of both oscillator devices and the 

locking region 

 

 
Figure 11. VO2 DOM Response Surface 
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3.4 SYSTEM LEVEL MODEL 

The system level model utilizes the data from the circuit level to create a mathematical 

representation of the behavior of four-coupled oscillator circuit. Based on the four-coupled 

oscillator circuit, we generalize the four-coupled oscillator arrays into larger array clusters. The 

system level models for STO and VO2 oscillators are discussed in the following sections. 

3.4.1 System Level Model Generation Methodology 

The system level model is a polynomial curve-fit to the 4-Dimensional DOM surface for the 

STOs and VO2 oscillators. The polynomial fit was performed by the polyfitn function in 

MATLAB set to generate a combination of squared and linear terms. Polyfitn calculates three 

metrics used to evaluate the goodness of the curve-fit: R2, Adjusted R2, and Root Mean Square 

Error (RMSE). R2 is a measure of the goodness of fit between the curve-fit and the data as a 

percentage of how much variation is explained by the curve-fit model. The Adjusted R2 is a 

modified R2 calculation that takes into consideration the degrees of freedom in the model. 

Adjusted R2 penalizes independent variables that do not improve the model which helps to 

prevent overfitting the model to the data. Curve-fit results with R2 and Adjusted R2 values closer 

to 1 are considered better than those with values closer to 0. 

Using only squared terms, as in Equation 1, the curve-fit does not create a good enough 

fit to use for DOM. The linear terms can be used to create a more accurate curve-fit, because the 

linear terms cancel out in the process of calculating convolution, as shown in Equation 5. The 

curve-fit was performed over different regions in the 4-dimensional surface in order to find the 

best goodness of fit (Adjusted R2) value. 
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Equation 5. Convolution using linear and squared curve-fit terms 

 

The curve-fit model equation for a four-oscillator cluster was not sufficient for creating 

and simulating large clusters of oscillators. Figure 12 shows the steps used to generalize the four-

oscillator curve-fit model to an N oscillator system level model. First, the original system level 

model equation was inverted by subtracting the original equation from the constant term. Next, 

the statistical mean and standard deviation for both the squared coefficients and linear 

coefficients were calculated. Two vectors of N coefficients were generated from a random 

normal distribution centered around the statistical mean with the calculated standard deviation 

for both the squared and linear terms. The final steps of the model derivation were simply 

factoring and normalization. For models generated using this method, the accuracy of any 

individual model can change because of a potentially large standard deviation. Models with a 

small standard deviation likely are more accurate as opposed to models with a large standard 

deviation. 
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Figure 12. Model Generalization Methodology 

3.4.2 STO System Level Model 

A polynomial fit to the STO data was performed using only the squared terms. However, there 

was some anomalous readings in the time-swept variable, oscillator 1, which led to a poor curve-

fit. Figure 13 shows a curve-fit of STO model 1 using only oscillators 2, 3, and 4 using squared 

terms, which led to an improved curve-fit. To further improve the accuracy, a curve-fit was 

performed using squared and linear terms as shown in Figure 14. As stated previously, this does 

not affect the results of convolution. 
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Figure 13. Three STO Curve-Fit using Squared Terms 

 

Figure 14. Three STO Curve-Fit using Squared and Linear Terms 

 

A system model for STO model 2 was made based on data using a new detection method 

over a narrower range of values. This method uses new integrator circuitry where the output 

capacitor in the DOM circuit was fully discharged at the beginning of each matching step. 

Similar curve-fitting was performed as with STO model 1. Figure 15 shows the resulting curve-
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fit using squared terms for oscillators 2, 3, and 4. As before, Figure 16 shows the curve-fit with 

squared and linear terms which resulted in better R2, Adjusted R2, and RMSE values. 

 

 

Figure 15. Three STO Curve-Fit with discharged capacitor using squared terms 

 

Figure 16. Three STO Curve-Fit using discharged using squared and linear terms 

 

Both three-oscillator STO curve-fit models were generalized into a closed-form system 

model using the generalization method discussed above. The standard deviation of STO models 
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1 and 2 were 0.0037 and 0.0165, respectively. For these models, the standard deviation was 

small, and the system level models were likely to be accurate within a small margin of error 

compared to conventional floating-point calculations. Equations 6 and 7 show the closed-form 

system model used for STO model 1 and model 2, respectively. 

 

 

Equation 6. Generalized mathematical DOM model for STO model 1 

 

 

Equation 7. Generalized mathematical DOM model for STO model 2 

 

The system level STO model 1 was tested in MATLAB to verify that the model could 

perform accurate computation. The first test was calculating the DOM between two vectors. Two 

vectors of 64 values were generated using a MATLAB script that, given a specific DOM value, 

outputs two random vectors constrained to result in that DOM. Figure 17 shows the results of 

performing the DOM for the set of STO model coefficients generated using Equation 6 and 

Figure 18 shows the DOM results for the set of STO model coefficients generated using 

Equation 7. 
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Figure 17. Degree of Match results for STO Model 1. This plot compares the generic oscillator model, STO model 
1, and MATLAB Euclidean distance 

 

Figure 18. Degree of Match results for STO Model 2. The plot compares the generic oscillator model, STO model 
2, and MATLAB Euclidean distance 
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Figures 17 and 18 verify the STO model for calculating the DOM between two vectors. 

To explore the impact of the standard deviation on DOM accuracy, a study of all possible models 

within a 95% confidence interval was conducted. Figures 19 and 20 below show a 95% 

confidence interval for the STO system models of 5000 STO models with model coefficients 

within two standard deviations of the mean for STO model 1 and model 2, respectively. Because 

of the small standard deviation in both models, the range of the 95% confidence interval was 

small and DOM values fall within a narrow range compared to conventional floating-point. 

 

Figure 19. DOM calculation for STO Model 1 system level model with 95% Confidence Interval 
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Figure 20. DOM calculation for STO Model 2 system level model with 95% Confidence Interval 

 

The system level STO models were then tested to verify that accurate convolution can be 

calculated. Figures 21 and 22 below show the convolution of 64 different input vector pairs for a 

set of model coefficients with a 95% confidence interval and MATLAB convolution for STO 

models 1 and 2, respectively. As before, the 95% confidence interval has a small range indicating 

that for any set of coefficients generated, the accuracy was likely to be nearly equal to 

conventional floating-point. As shown in the figures, the plots closely correspond to MATLAB 

convolution for both STO model 1 and model 2. 
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Figure 21. Model Convolution compared to MATLAB convolution. This plot shows the generic oscillator 
model, STO model 1, and MATLAB convolution 

 

 

Figure 22. Convolution results for STO Model 2. The plot compares model convolution to MATLAB 
convolution for the generic model and STO model 2 
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3.4.3 VO2 System Level Model 

The system level model was created by a polynomial curve-fit for the VO2 circuit model data. 

The curve-fit was generated over various lower and upper bounds on the input in order to find 

the most parabolic region of the four-coupled oscillator data. Figure 23 below shows the best 

curve-fit to the four-coupled oscillator data. 

 

Figure 23. Polynomial Curve-Fit to VO2 DOM data using squared and linear terms in the fit equation 
 

A system level model for the four VO2 oscillator curve-fit was generated using the same 

method use for STOs. The standard deviation of the VO2 model was 5.8117 due to the 

coefficient of the time-swept oscillator. Because of the standard deviation of the VO2 model, the 

accuracy of this model was not likely to fall within as small of a margin of error as the STO 

models. Equation 8 shows the system level model for VO2 oscillators. 
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Equation 8. Generalized mathematical equation for VO2 oscillators 
 

The system level VO2 model was tested in MATLAB in the same manner as the STO 

models for DOM calculations. The results of calculating DOM using the VO2 model was shown 

in Figure 24 below where the DOM calculations for the VO2 model are compared to the generic 

oscillator model and the calculation of Euclidean distance in MATLAB. 

 

Figure 24. DOM calculation comparing three methods for calculating Euclidean Distance squared: 1) 
Generic Oscillator model with baseline parameters 2) VO2 System level model 3) MATLAB 

 

Figure 24 verifies the VO2 model for calculating the DOM between two vectors. 

However, the system level VO2 model contains a potentially significant standard deviation as 

explained above. This variability can cause different model coefficient vectors to result in the 

same DOM values. Because of the higher standard of individual models, a study of all possible 
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models within a 95% confidence interval was conducted to explore the impact on model 

accuracy. Figure 25 below illustrates shows a 95% confidence interval for the VO2 system mode 

of 5000 VO2 models with model coefficients within two standard deviations of the mean. 

 

Figure 25. DOM calculation for VO2 system level model with 95% Confidence Interval 
 

The VO2 system model was further tested by performing convolution calculations using 

the oscillator-based methodology. Figure 26 below shows the convolution results of 5000 

simulations in MATLAB with at 95% confidence interval where the input vectors were held 

constant while the VO2 model coefficients were regenerated each time. 
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Figure 26. Convolution results for VO2 system level model compared to MATLAB convolution with 95% 
Confidence Interval 

 

The blue plotted points show the mean convolution result for all runs. These points very 

closely follow the expected convolution results. This verifies the ability of the system level VO2 

model to perform convolution. However, as before, the standard deviation of the squared 

coefficients in the system model impacts the accuracy of the convolution calculation. In Figure 

26, a 95% confidence interval is plotted, representing the region that the convolution values will 

occur. For both the upper and lower bound, the coefficients that most closely resulting in each 

bound and the mean coefficient values were selected for testing in the IPP, discussed later. 
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3.5 C++ OSCILLATOR MODEL LIBRARY 

A set of oscillator functions was created to test the oscillator models in the IPP in a C++ library 

and a MATLAB mex library. Below is a description of the elements contained in the oscillator 

library. 

• An oscillator convolution function used by the IPP the uses oscillator DOM 

• A DOM function used for the generic parameterized oscillator model containing the three 

oscillator parameters (CA, LR, and N) 

• A DOM function used for hardware models (STO and VO2) that uses both squared and 

linear terms 

• A DCT function used by the IPP to perform 2-D DCT using oscillator convolution 

• An IDCT function used by the IPP to perform 2-D IDCT using oscillator convolution 
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4.0  EXPERIMENTAL DESIGN 

The purpose of the experiments was to verify the models. In the case of the device level 

model, empirical data was used to create the model which did not require verification. Since the 

circuit model was designed to generate a Euclidean distance squared response, the curve-fit the 

curve-fit process serves as a means to verify the model by using the R2 and RMSE values of the 

curve-fit. This section discusses the IPP used to verify the system level model, the test procedure 

and test images. The IPP was tested with three sets of video sequences: NeoVision Tower [22], 

DARPA Helicopter [23], and DARPA Vivid [24]. 

4.1 VERIFICATION OF SYSTEM LEVEL MODEL 

The system level model was used to test the performance of coupled oscillator DOM and 

convolution in an image processing pipeline. The image processing system used in this thesis 

was developed in collaboration with HRL Laboratories as part of the DARPA UPSIDE project 

[25]. The pipeline consists of two parts. First, the front-end saliency identifies salient areas or 

regions that may contain objects of interest. The front-end is a bottom-up spatial frequency 

analysis. It consists of a discrete cosine transform kernel, sign operation, and inverse discrete 

cosine transform kernel to identify salient regions in the image which were then extracted as 

image chips. Second, the back-end classifier classifies the image chips with object labels using a 
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convolutional neural network trained to recognize five classes of objects (car, truck, bus, cyclist, 

and person) with back propagation learning. Figure 27 below shows a block diagram of the IPP.  

 

Figure 27. Block Diagram of Image Processing Pipeline 
 

It is in the DCT, IDCT, and CNN where convolution operations occur and the oscillator 

model can be embedded into the pipeline. It is in these stages that the most computationally 

intensive operations occur and an oscillator-based accelerator can be used. 

4.1.1 Discrete Cosine Transform 

The DCT is an important function for image processing applications. The DCT is similar 

to the fast Fourier transform (FFT) and can be calculated using a convolution operation. 

Equation 9 below shows expression for DCT. 

 

where 
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Equation 9. Discrete cosine transform equation 
 

Given Equation 9, the DCT can be calculated using DOM convolution, where x(n) 

corresponds to input A and each cosine vector corresponds to input B. 

In this pipeline, a 2-D DCT is used which consists of a series of convolutions between the 

input vector first along each row of the cosine coefficients and then along each column. Equation 

10 shows 2-D DCT. 

 

where 

 

 

and 

 

Equation 10. 2-D Discrete Cosine Transform 
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4.1.2 Inverse Discrete Cosine Transform 

The IDCT returns a sequence of elements given a vector of discrete cosine transform 

values. The expression for IDCT is given in Equation 11 below. 

 

Equation 11. Inverse Discrete Cosine Transform Equation 
 

where w(k) is the same as Equation 9. Similar to DCT, IDCT can be calculated using 

DOM convolution. As with DCT, 2-D IDCT is used in this IPP as shown in Equation 12, where 

w(a) and v(b) are the same as in Equation 10. 

 

where 

 

Equation 12. 2-D Inverse Discrete Cosine Transform 

4.1.3 IPP Performance Evaluation 

The image chips generated by the front end were input to the back end where the CNN attempted 

to classify each chip into a defined set of classes (i.e. car, truck, person, etc.). The image chips 

were processed by the neural network and the classification was compared to the ground truth. 

The image chips were then marked as a hit (true positive), miss (false negative), or false alarm 

(false positive). The IPP output was two scores: Weighted Normalized Multiple Object 

Thresholded Detection Accuracy (WMNOTDA) and F1. WNMOTDA accounts more for errors 
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in saliency because the WNMOTDA is calculated based on the NMOTDA which penalizes false 

detections, missed detections, and object fragmentation [26]. NMOTDA is calculated by 

Equation 14 for each class of objects. 

 
Equation 13. NMOTDA calculation used by IPP for each class 

 

 
Equation 14. WNMOTDA calculation used by IPP 

 

The F1 score accounts for accuracy in the CNN classification because it is based on the precision 

and recall. The F1 score is given by Equation 15. 

 
Equation 15. F1 score for IPP test accuracy 

where 

 
Equation 16. Precision Equation. Precision is the number of correctly classified objects divided by the 

number of objects classified to that class 
and 

 
Equation 17. Recall equation. Recall is the number of objects correctly classified to a class divided by the 

total number of objects that should have been assigned to the class 
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4.2 TEST PROCEDURE 

The image processing pipeline was configured with a generically trained convolutional neural 

network. The training set for NeoVision Tower dataset contained 45,000 image frames made up 

of over 571,000 image chips; the DARPA Helicopter dataset contained 22,700 image frames 

with over 47,700 image chips; the DARPA Vivid dataset contained 31,900 image frames with 

over 19,200 image chips. For the Tower dataset, the CNN was trained for only one epoch while 

forty and twenty epochs were needed to train Helicopter and Vivid, respectively. 

Each dataset consisted of numerous video sequences for use in the IPP. The Tower 

dataset contains 50 video scenes each with 900 image frames. The Helicopter dataset also 

consisted of 50 video scenes each containing on average 435 image frames. The Vivid dataset 

contained 20 video scenes captured over two days. Each scene contained an average of 1,594 

image frames. For testing the IPP with the Tower dataset, 750 images from Scene 15 were used 

to measure the performance of the oscillator models. The test set for the Helicopter Dataset was 

450 images from Scene 001. The test set for the Vivid dataset contains 1557 images from Day 1 

Scene 6 C009. All datasets contain five classes: Car, Truck, Bus, Bicycle, and Person. A sample 

image sequence for each data set is shown in Figure 28. 
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   Figure 28. Sample Image Frames from the NeoVision Tower (top), DARPA Helicopter (middle), and 
DARPA Vivid (bottom) datasets 

 

Figure 29 shows a sample image that has been processed by the image processing pipeline. The 

left image is the image input and the right is an image of the bounding box regions generated by 

the front-end. Each bounding box is color-coded to represent the class to which the bounding box 

is classified. 

  

Figure 29. Sample Input and Output image frame from the IPP. The image on the right shows the input 
image to the IPP. The image on the left shows the bounding boxes for the identified salient regions as well as the 

regions that were classified by the CNN. 
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5.0  RESULTS 

This chapter of the thesis shows the performance results of the IPP for STO and VO2 oscillator 

models. STO models 1 and 2 are discussed first. Then, the VO2 oscillator model performance is 

discussed along with an analysis of VO2 variability. Finally, a parametric analysis of each 

oscillator parameter is discussed. 

5.1 STO IMAGE PROCESSING PIPELINE 

Once the system level models were verified in MATLAB, they were tested in the IPP. The 

results in Tables 1 and 2 are from IPP simulations using an older version of the pipeline for 

which we received trained CNN’s for Tower, Helicopter and Vivid datasets. Table 1 below 

shows the summary tables, WNMOTDA, and F1 score for STO models 1 in the IPP for the three 

datasets compared to conventional floating-point calculations. These results were comparable to 

the conventional floating-point results. 
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Table 1. Summary Tables from IPP for STO Model 1 compared to Conventional Floating-Point 
calculations.   

 

 

 

Table 2 below shows the summary tables, WNMOTDA, and F1 score of STO model 2 compared 

to conventional floating-point for the three image datasets. This table shows that STO model 2 

also was comparable to conventional floating-point calculations. 
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Table 2. Summary Tables from IPP for STO Model 2 compared to Conventional Floating-Point 
calculations. 

 

 

5.2 VO2 IMAGE PROCESSING PIPELINE 

Table 3 below shows the summary table for a pipeline using the VO2 model for the mean case of 

coefficients, where the model coefficients were the mean coefficients generated from 5000 

simulations using the system level model in Equation 8. When compared to the conventional 
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floating-point pipeline, the VO2 model for the average case was comparable to conventional 

floating-point calculations. However, because of the standard deviation in the model, the pipeline 

performance can vary depending on the values of the coefficients generated. 

Table 3. Summary Table of IPP using system level VO2 model using NeoVision Tower dataset 

 

 

 

 
 

As discussed earlier, the statistical variability in the VO2 model can result in a range of 

convolution values. The IPP was tested using coefficients that corresponded to the upper and 

lower bounds of Figure 26 above. As expected, the performance of the pipeline decreases as the 

coefficients become farther from the mean coefficient case, as shown in Table 4 below. 

 
Table 4. WNMOTDA and F1 Scores using Tower dataset for three VO2 models: 1) Mean Coefficient 

values from MATLAB simulations 2) Lower Bound Coefficients from 95% confidence interval 3) upper bound 
coefficient from 95% confidence interval 
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5.3 IMAGE PROCESSING PIPELINE SIMULATIONS WITH GENERIC 

OSCILLATOR MODEL 

The C++ oscillator model was embedded into the image processing pipeline code for DCT, 

IDCT, and convolution operations. The generic oscillator model with baseline parameters was 

used to test the performance of oscillator-based convolution compared to conventional floating-

point calculations. Table 5 below shows the summary tables and the corresponding WNMOTDA 

and F1 scores for the generic oscillator model compared to conventional floating-point. 

Table 5. Summary Tables and pipeline scores for Generic Oscillator Model with baseline parameters and 
Conventional Floating-Point. Three datasets were tested to compare the two pipeline models. a) NeoVision Tower 

Scene 15 (750 Frames). b) DARPA Helicopter Scene 
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The number of hits, misses, and false alarms for baseline parameters matches exactly to 

conventional floating-point calculations. The equivalence of the oscillator model and 

conventional floating-point algorithms was further demonstrated by the equivalent WNMOTDA 

and F1 scores. 

5.4 PARAMETRIC ANALYSIS 

A plot showing the F1 scores for a parametric analysis of each of the three oscillator parameters 

is shown in Figure 30 below. Figure 30a shows the impact of coupling asymmetry for the three 

datasets. The plot shows that as the coupling asymmetry varies from 0% to 10%, the 

performance of the pipeline was not severely affected. Figure 30b shows the performance as 

locking range varies from 0 to 0.1. This plot shows that locking region had a significant impact 

on pipeline performance, indicating that coupling strength between the oscillators was important 

to computation accuracy. Finally, Figure 30c shows the effect of output noise on pipeline 

performance. The plot shows that as output noise varies from 0% to 1%, accuracy of the pipeline 

decreases. This shows that, as with any analog computational circuit, it is important to minimize 

the effects of noise. 
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Figure 30. Parametric Analysis of CA, LR, and N for the NeoVision Tower, DARPA Helicopter, and 
DARPA Vivid datasets. a) CA sweep from 0% to 10% b) LR sweep from 0 to 0.1 c) N sweep from 0% to 1% 

 

However, in the Vivid plot, the locking range did not impact pipeline performance. In 

this pipeline implementation, the locking range is represented as a fraction of the dynamic range 

of vector input to the DOM and is sensitive to input array sizes. This is acceptable for DOM 

operations in the front-end of the pipeline because the input array size does not change. 

However, in the back-end, the input sizes to convolution layers in the CNN were not constant. 

For this reason, the dynamic range of the Vivid dataset was significantly larger that the locking 

range does not significantly affect performance.  

This parametric analysis shows three trends relating to the oscillator parameters. First, in 

designing coupled oscillator circuits, the coupling asymmetry does not pose a significant 

problem for slight differences in coupling strength. Second, the locking range needs to remain 
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small as coupled oscillator circuits with a small locking range performs more accurately than 

those with a large locking range. The locking range can be decreased by increasing the coupling 

coefficients, which means, in the case for the circuits in this thesis, increasing the resistor size. 

Third, noise affects the accuracy of pipeline performance as it would in any analog 

computational circuit. When designing coupled oscillator circuits, it is important to minimize the 

effects of noise as much as possible. 
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6.0  CONCLUSION 

This thesis has shown the hierarchy of models for a generic parameterized oscillator, STO, and 

VO2 nano-oscillator models. Oscillator models based on current nano-oscillator technologies 

were created and tested at all levels of the hierarchy. A device model of VO2 oscillators was 

created based on data measured in hardware. A four-coupled oscillator circuit model was created 

using the VO2 device model with a DOM detector circuit. This circuit was simulated by holding 

the controlling voltages on three of the oscillators constant while sweeping a fourth to create a 4-

Dimensional surface of DOM values. A system model for STO and VO2 nano-oscillator 

technologies using a polynomial curve-fit to circuit level data in order to generalize to larger 

oscillator clusters.  

The system level models were verified by testing in MATLAB by comparing the 

Euclidean Distance Squared calculations and convolution calculations for the oscillator models 

and MATLAB calculations. In the case of the VO2 oscillator model, the high standard deviation 

in the curve-fit model impacted the accuracy of the DOM and convolution calculations. In order 

to improve accuracy and decrease the standard deviation in model coefficients, better curve-fit 

models need to be generated either by adjusting coupling or modifying the coupled-circuit 

configuration.  

The system level models were tested in the IPP. The mean VO2 coefficient model and 

STO models performed comparable to the IPP using conventional floating-point calculations. 
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The upper and lower bounds of the VO2 model were also tested in the IPP and the accuracy 

decreased compared to the mean VO2 model. However, this difference was not significant 

compared to conventional floating-point which showed that the VO2 system model could 

perform reliable convolution within a small margin of error. 

The generic oscillator model with baseline parameters was shown to perform 

mathematically equivalent to conventional floating-point calculations in the IPP. A parametric 

analysis of each oscillator parameter (coupling asymmetry, locking range, and output noise) 

showed the impact of each parameter on the IPP performance. The IPP was least sensitive to the 

coupling asymmetry. Conversely, the IPP was more sensitive to locking range, indicating the 

importance of the coupling between the oscillators. The coupling needs to be adjusted so that the 

oscillators lock over a small range of frequencies in order to avoid significant impact of locking 

range. The pipeline performance also worsened for increasing noise. This was not a surprising 

observation considering noise should be minimized in any analog computation circuit. 

The thesis has shown that the system level models created for current nano-oscillator 

technologies were shown to perform oscillator-based computation comparable to conventional 

floating-point calculations. Oscillator models can be implemented in image processing 

algorithms. Further research in these and other nano-oscillator technologies may lead to even 

more accurate computation models that can eventually be used to accelerate mathematically 

intensive operations in hardware. 
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