Huang, Yun and Guerra-Hollstein, Julio and Barria-Pineda, Jordan and Brusilovsky, Peter
(2017)
Learner Modeling for Integration Skills.
In: UMAP 2018, July 09 - 12, 2017, Bratislava, Slovakia.
Abstract
Complex skill mastery requires not only acquiring individual basic component skills, but also practicing integrating such basic skills. However, traditional approaches to knowledge modeling, such as Bayesian knowledge tracing, only trace knowledge of each decomposed basic component skill. This risks early assertion of mastery or ineffective remediation failing to address skill integration. We introduce a novel integration-level approach to model learners' knowledge and provide fine-grained diagnosis: a Bayesian network based on a new kind of knowledge graph with progressive integration skills. We assess the value of such a model from multifaceted aspects: performance prediction, parameter plausibility, expected instructional effectiveness, and real-world recommendation helpfulness. Our experiments based on a Java programming tutor show that proposed model significantly improves two popular multiple-skill knowledge tracing models on all these four aspects.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Metrics
Monthly Views for the past 3 years
Plum Analytics
Altmetric.com
Actions (login required)
|
View Item |