
MEAN-FIELD ANALYSIS FOR MODEL-BASED SPIKING NETWORKS  

 

 

 

 

 

 

 

 

by 

Valentin Paquin 

B.S in Electrical Engineering, ENSEA (Cergy, FRANCE), 2015 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

Master of Science 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

2018 

 



 

 ii 

 

  

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 

 

 

 

 

 

 

 

 

This thesis was presented 

 

by 

 

 

Valentin Paquin 

 

 

 

It was defended on 

May 30, 2018 

and approved by 

Zhi-Hong Mao, Ph. D., Associate Professor, Department of Electrical and Computer Engineering 

Ahmed Dallal, Ph. D., Assistant Professor, Department of Electrical and Computer Engineering 

Robert Kerestes, Ph. D., Assistant Professor, Department of Electrical and Computer Engineering 

 Thesis Advisor: Dr. Zhi-Hong Mao, Associate Professor, Department of Electrical and Computer 

Engineering 

 

 



 

 iii 

  

Copyright © by Valentin Paquin 

2018 



 

 iv 

 

 

 

 

 

MEAN-FIELD ANALYSIS FOR MODEL-BASED SPIKING NETWORKS 

Valentin Paquin, M.S. 

University of Pittsburgh, 2018 

 

The human brain is composed of millions of neurons, firing spikes according to their membrane 

potentials. The difficulty in studying the brain exists partly because of the randomness property of 

neurons firing in a network. To understand more about the dynamics of a neuron’s firing rate, we 

choose to study a specific set of nonlinear dynamical equations that represent a neural network 

based on a spiking point of view with adaptation qualities. The dynamic membrane potential of a 

single neuron is a challenge to study since we can hardly know the number of spikes fired at a 

certain time. In this thesis, we use phase-plane analysis and more precisely mean-field analysis to 

address the random nature of the dynamic of model-based spiking networks. We find that the 

dynamics of neurons in a network offer exploitable and relevant information such as patterns of 

stable or unstable oscillations in certain circumstances.  
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1.0  INTRODUCTION 

The brain has always been one of the greatest challenge concerning the understanding of a human 

being. Most of the advanced life we know works with a brain, from a simple brain for a mouse to 

a more complex tool for humans. Biologists and all kind of scientists have already made a lot of 

progress in the field and have given us a lot of knowledge, from the understanding of action 

potential with the Hodgkin-Huxley model [24] to large scale brain networks [7]. Most of the 

neurons are spiking neurons, that is they fires a spike or an action-potential when their membrane 

potential reaches a certain threshold. However, to study the dynamics of the brain, focusing on the 

dynamic of a single neuron is not sufficient since the variability of neurons is tremendous, in the 

number first but also, in the temporal distribution of spikes, making the response of a single neuron 

hard to cope with [42]. 

The brain’s learning model is an inspiration for applications that want to be defined as 

intelligent. For this reason, neural networks have been and are still used and studied in many 

applications in the current world, from the classification algorithm, speech recognition, data 

exploitation, to self-driving car and robots. Many scientists came up with different neural network 

approaches, from firing-rates networks, to spiking networks, with different ways of training, with 

first the training of weights associated to each neuron in network or with the training of the exact 

spike timing studied in this thesis. Although, some of these approaches highlight such or such 
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cognitive function, only spiking network attempts to mimic the biological mechanisms generating 

behaviors of neurons living in our brain.  

One specific spiking-based model constructed by M. Boerlin, C. K. Machens and S. 

Denève [6] have drawn our attention for its abilities and properties. In this thesis, we are not aiming 

to create an artificial neural network able to realize certain tasks, but we want to bring new 

unobserved dynamical properties to this neural network using tools at our disposal such as phase-

plane analysis and specifically mean-field analysis. 

This thesis aims to use a phase-plane analysis in order to study the dynamics of the spikes 

on a spike-based neural network. Our mathematical analysis is relevant when it helps to get a better 

understanding of a promising model. That is why, it is significant to review the main principles of 

neural network history to highlight the network we selected to work on. Therefore, this thesis will 

start with describing two different breakthroughs in neuroscience that has allowed the derivation 

of such a spiking-based network. The integrate and fire model [2], and the recurrent neural network 

[21] constitute the essential characteristics of a spiking neural network. Once the spike-based 

temporal neural network derived, it makes sense to apply nonlinear standard analyses and technics. 

This thesis shows how mean field analysis is addressed to extract the random nature of 

spike’s dynamics using some population measure tools. Pattern of stable oscillations are found for 

an individual neuron’s spike timing, and mean field analysis’s tool seen as the momentary state of 

the network at time 𝑡 opens the door to new dynamic analyses. Some ideas for these new analyses 

will finally be presented to conclude this thesis. We expect, that our analytical result will offers 

interesting insights in the mechanisms behind the spike and their exact timing.
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2.0  BACKGROUND 

2.1 A NON-LINEAR DYNAMICAL NEURAL NETWORK MODEL 

2.1.1 Leaky Integrate and Fire Model  

To develop the main network of this thesis, we start from one of the simplest neural network model. 

That is the leaky integrate and fire neuron model (LIF), that we explore more deeply in the 

following section. First time introduced very early on the twentieth century by Lapicque, when 

neural action potentials mechanisms were far away from being known. However, only highlighted 

in 1999 thanks to Abbott [2], LIF neurons focus essentially on sensory neurons, that have the 

characteristic to convert a specific type of stimulus into an action potential assimilated to a spike. 

 A LIF neuron model is one of the simplest neuron model. To start, we model a neuron as 

a leaky integrator of its input 𝐼(𝑡). Neurons are described as ionic currents flowing through the 

cell membrane when neurotransmitters are released through a combination of channels and gates 

[25]. The following classic LIF equation shows the membrane potential 𝑣 described at time 𝑡 and 

conducted by a simple 𝑅𝐶 circuit [19]. The resistor membrane 𝑅 and the capacitive integration of 

the input under a membrane potential timescale 𝜏𝑚: 

 𝜏𝑚

𝑑𝑣(𝑡)

𝑑𝑡
= −𝑣(𝑡) + 𝑅𝐼(𝑡). (2.1.1) 
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In this model, we don’t define spikes explicitly, but instead we use an instantaneous reset to an 

initial membrane potential value 𝑣𝑟, when the membrane potential reaches a certain threshold 

𝑣𝑡ℎ. Figure 1 precises the action potential of a neuron along the gated channels of the neuron.  

 

Figure 1: Action potential of a neuron associated with the equilibrium potentials for sodium 𝑬
𝑵𝒂𝟐+  and potassium 

𝑬𝑲+  . Adopted from [17]. 

 

From the biophysics of a neuron, let’s assume the neuron’s membrane potential is first on 

an initial state known as the resting membrane potential. At this point, the different sodium 

𝑁𝑎2+
and potassium 𝐾+ channels are all closed. But when a neuron fires a spike (action 

potential), the different gated channels open alternatively to depolarize, repolarize and 

hyperpolarize the membrane potentials. These different terms correspond to different parts of the 

action potential, see Figure 1, and to the changes in concentration gradient between sodium and 

potassium. However, when they are inactivated after the action potential, the neuron is prevented 

to spike again by the absolute refractory period ∆𝑎𝑏𝑠. This period is applied immediately after 
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𝑣(𝑡) hit 𝑣𝑡ℎ and prevent second stimulus to excite the neuron a second time. For further details 

on the biophysical details of the action potential of a neuron, see [15]. 

2.1.2 Recurrent Neural Network 

Feedback plays an important role in neurons communication when in the brain, in many different 

ways, that are for short-term memory tasks [4], decision making [12] or more deeply in focus and 

attention [18]. There are defined as any network whose neurons send feedback signals to each 

other. Artificial recurrent neural networks (aRNNs) are an interesting alternative to feed-forward 

networks (FFNs) and convolutional neural networks (CNNs) for different reasons, particularly in 

machine learning. FFNs and CNNs are built on the principle that information only moves in only 

one direction from a layer including the input nodes to a layer that represent the output nodes and 

going through one or some hidden layers as showed on Figure 2. Because of this unique direction 

of information propagation, these two types of networks can’t reproduce synapses as much as we 

would like.  

 

Figure 2: Example of a feed-forward neural network architecture. Adopted from [37]. 

 

Researchers came up with RNNs to answer the following biological rules of neural 

networks. A neuron is an input-output unit acting under a spiking rule, more than receiving its own 
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input, neurons also receive the collective output of other neurons in its neighborhood, through 

synaptic connections. Therefore, RNNs can be view as non-linear dynamical systems with two 

specific attributes that drawn our attention. As discussed above, RNNs are highly recurrent with 

feed-back loops at multiple spatial scales as biological circuits. Secondly, they are commonly 

known as really good when answering to a task with temporal structure, in other words, the 

system’s dynamic is of the most importance. Mathematically, we can write them as systems of 

coupled ordinary differential equations (ODEs). Starting from scratch, we define:   

 �̇�  =  𝐹(𝒙) (2.1.2) 

where 𝒙 is a 𝑁-dimensions state vector and 𝐹 is the evolution function of the current state 𝒙. In 

this case every state 𝒙𝑖 is led by its ODE �̇�𝑖 and where the derivative not only depends on its 

current state 𝑥𝑖 but also on the current states of its neighbors. The network states the different 

interactions between neurons or synapses and associate to each of them a specific weight according 

to the importance of the information given by this particular interaction. We often say this weight 

is related to the strength of the synapse. We remind from last section that a neuron is an electrically 

excitable cell and that neural networks are built as electrical circuits [12]. Thus, the nonlinear 

function 𝜙(𝑥𝑖) is often introduced to define the relationship between the membrane potential and 

the electrical activity, respectively 𝑥𝑖 and 𝑆𝑖, so that we have 𝑆𝑖(𝑡) = 𝜙(𝑥i(t)).  For instance, 𝑥𝑖 

might be related to the membrane potential of neuron 𝑖 and 𝑆𝑖 to its firing rate, that is a temporal 

average of the spike count over a time window 𝑇 = 𝑡 + ∆𝑡. Under realistic conditions, neuron’s 

firing usually become smoother around the threshold and for that particular reason, the descriptive 

function 𝜙(𝑥) is often seen has a sigmoid shape function [43]. Therefore, we have the following 

constraints:  

 −1 ≤ 𝑆𝑖(𝑡) ≤ 1     and     − ∞ < 𝑥𝑖(𝑡) < ∞.  (2.1.3) 



 

 7 

This kind of realizations is called rate-based network. However, the relationship between 𝑥𝑖(𝑡) 

and 𝑆𝑖(𝑡) and the interpretation of each variable are specific for each model. The majority of the 

RNNs models define a matrix 𝐽 which is a 𝑁 ∗ 𝑁 matrix as the synaptic efficacy coupling the 

output of a presynaptic neuron 𝑗 and the input of a postsynaptic neuron 𝑖. Thanks to these 

consideration, we describe the dynamics of a RNN using 𝑁 first-order and coupled differential 

equations:  

 �̇�𝑖  =  −𝑥𝑖 + ∑ 𝐽𝑖𝑗  𝑆𝑗 
𝑁
𝑗=1  =  𝐹(𝑥). (2.1.4) 

This classic RNN equation relates the membrane potential of a neuron on the left hand-side, the 

first term on the right hand-side represents a leak term reflecting the membrane passive nature 

[39]. Finally, the last term depicts synaptic currents going through neuron 𝑖 and coming from all 

the other neurons in the network. Another thing we want to add when creating a recurrent network, 

is an external input to drive the network to mimic a certain feature chosen beforehand. Commonly, 

recurrent neural networks are used in natural language processing meaning then we introduce an 

external input to drive the network according to the RNN application we want to use that can be 

in speech or image recognition or ever image generation [20][21][27][41]. 

The more the input becomes complex and realistic, the more RNNs can bring us 

information and intuition on how the artificial black box operates. Finally, the main operation in 

building a RNN consists to simply reduce the complex dynamic of spiking neurons in order to 

study the derivation of its equations. Nevertheless, the rate-based interpretation using RNNs 

networks has been giving really good results when learning features and for long term 

dependencies. From their names, rate-based neural networks favor the information contained in 

the instantaneous firing rate (when ∆𝑡 is considered really small) of a neuron instead of the exact 

spikes time.  
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From an artificial recurrent network point of view, the training process begins when all the 

parameters are chosen and the equations derived. Before training, the synaptic efficacy matrix 

representing the decoding weights is intuitively initialized using Gaussian random variables. Then 

to get the network to execute a specific task, the decoding weights need to be properly trained. 

There are many existing training methods for RNNs [29] that we won’t introduce here since it is 

not of the most importance for this thesis. Recurrent neural networks have been a great 

breakthrough for neuroscientists [22]. Nevertheless, our goal is not to use a RNN in any application 

but to complete our understanding of its dynamics, that is we want to study the exact times of firing 

for neurons in the network and therefore focus on the study of spiking neural networks.  

2.1.3 Spiking Neural Network 

A third generation of neural networks called spiking neural network (SNN) have emerged and 

aims to bridge the gap between neuroscience and machine learning. Originally, a neuron reacts to 

an input according to a certain threshold. If the input’s value is equal or get stronger than its 

threshold, the neuron responds with a linearly increasing number of spikes. After spiking, the 

membrane potential of the respective neuron gets back to a resting value. Using, the same notation 

as in the previous section and 𝑠𝑖 as the spike counting variable for a specific neuron or also called 

spike train, the following set of equations describe a spiking network: 

 𝑥(𝑡) = 𝐹(𝑥(𝑡)) (2.1.5) 

  𝑥𝑖 ≥ 𝑥𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (2.1.6) 

 𝑥𝑖 → 𝑥𝑟𝑒𝑠𝑡 (2.1.7) 

 𝑠𝑖 → 𝑠𝑖 + 1. (2.1.8) 
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This model can easily incorporate biological details including voltage activation channels and 

gates in order to observe realistic spike generations as we can see in [19]. Besides, the concepts of 

artificial neuron and synaptic state as seen in section 2.1.2, spiking neural networks include time 

in its dynamics. SNNs use the idea of membrane potential developed above. The information 

transferred in SSNs are then transferred via the precise timing of spike or of a sequence of spikes. 

This type of network has the potential to work with large neural network [29]. Also, it allows us 

to study the dynamics of the spike generation for individual neurons and neurons in a network. 

However, since training methods are still not generalized for this kind of network, this is not the 

mainly used type of neural network. Indeed, we don’t know any general supervised training 

methods for SNN yet. Spike trains are not differentiable, thus usual supervised learning algorithm 

are not good solutions anymore to train this kind network even if supervised learning algorithm 

can still be used in some cases [27][38]. However, more complicated training methods might still 

be a reason why SNNs are not well used in application. Another reason is just about the notoriety 

of firing rates or recurrent networks as convenient and universally understood for certain simple 

tasks.  

Since researchers have already proven that SNN are computationally really powerful [28], 

studying the behavior of brain’s neurons is relevant. SNNs allow us to analyze the different spike 

trains and the exact time at which a neuron in the network will fire. The precision of the spike 

times composing the spike train are then analyzed through phase-plane analysis in this thesis.  
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2.2 PHASE PLANE ANALYSIS 

Phase plane analysis is useful to apply when studying the behavior of any system in time. Indeed, 

while studying the dynamics of a system, we don’t need to know any closed-form solutions of the 

system to draw its phase portrait and to get an intuition of how the system behave in time [34]. 

Let’s take the particular case of a 2-dimensional system of linear differential equations of the 

following form: 

 �̇� =  𝐴𝑥 (2.2.1) 

 𝐴 =  [
𝑎11 𝑎12

𝑎21 𝑎22
]. (2.2.2) 

Its phase portrait is a representative set of the solutions for a system. In the context of a two-

dimensional system, the phase plane or in this case, phase portrait describes the trajectory traced 

by every solution in time, on the plane (𝑥, 𝑦)  =  (𝑥1(𝑡), 𝑥2(𝑡)). To predict the different 

trajectories of a system’s solutions, a classic study of eigenvalues and eigenvectors is needed. In 

this thesis, we want to develop a nonlinear phase plane analysis but to do so it is necessary to 

briefly remind the main idea behind linear system analysis, since the same technics would be use 

when working with nonlinearities.  

2.2.1 Linear Systems 

We first decided to generalize the phase-plane behavior of a linear system. Every linear system 

can be described in the form of equations (2.2.1, (2.2.2), in this case we have the following set of 

eigenvalues: 

 𝜆1,2 =
𝑡𝑟(𝐴) ± √𝑡𝑟(𝐴)2 − 4𝑑𝑒𝑡(𝐴)

2
 (2.2.3) 

with 𝐴 called the state matrix of the system, and 𝜆1,2, the eigenvalues. This system is written: 
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 {
�̇�1 = 𝑎11𝑥1 + 𝑎12𝑥2

�̇�2 = 𝑎21𝑥1 + 𝑎22𝑥2
 (2.2.4) 

when 𝑑𝑒𝑡(𝐴) ≠ 0, the system has exactly one solution at the origin but and when 𝑑𝑒𝑡(𝐴) = 0, 

many different solutions. In both cases, there are different types of critical points and trajectories 

that can be observed. For clarity reasons, we are just going to develop the case where determinant 

of 𝐴 is non-zero, but this can be expanded to critical points not located at the origin. 

In the next sections, we are going to briefly explore the different dynamics of linear and nonlinear 

systems thanks to a general study of its ODEs. 

2.2.1.1 Phase portraits of Linear Systems 

In this section, we want to classify the different critical points and trajectories that you can find 

when applying the phase plane analysis theory and the eigenvalues and eigenvectors of system for 

an only critical point located at (0,0). 

• When eigenvalues are both distinct and real, 𝑥 = 𝐶1𝑘1𝑒
𝜆1𝑡 + 𝐶2𝑘2𝑒

𝜆2𝑡 . 

o Either 𝜆1 and  𝜆2 are both positive or both negative. 

▪ 𝜆1, 𝜆2 > 0, Trajectories move from the critical point to infinite and we 

have unstable nodes that are also called Sources.  

▪ 𝜆1, 𝜆2 < 0, Trajectories move from infinite toward the critical point and 

we have asymptotically stable or stable nodes that are also called Sinks. 
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Figure 3: Represents the analysis from above. Stable or unstable node according to 

circumstances and eigenvalues values. Adopted from [45]. 

 

o  𝜆1 and  𝜆2 have opposite signs. There are two different trajectories to denote in 

this case. Either the eigenvalue is negative, 𝜆1 < 0, the associated eigenvector 

trajectory starts from infinite to converge toward the critical point, either the 

eigenvalue is positive, 𝜆2 > 0, the associated eigenvector trajectory starts from 

the critical point to move to infinite. All the other trajectories start from infinite, 

then get close to one of the previous eigenvector trajectory and move back to 

infinite by changing direction when getting close of the critical point. In this 

case, we have unstable nodes called Saddles. 
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    Figure 4: Represents the analysis from above. Saddle point representation, this is always 

unstable. Adopted from [45]. 

 

• When eigenvalues are repeated and real, 𝑥 =  𝐶1𝑘1𝑒
𝜆𝑡  +  𝐶2𝑘2𝑒

𝜆𝑡  =  𝑒𝜆𝑡(𝐶1𝑘1 +

 𝐶2𝑘2). 

o The vector  (𝐶1𝑘1 + 𝐶2𝑘2) gives the direction of every nonzero solutions. So, 

the trajectories have 2 different movements possible. 

▪ Either 𝜆 < 0, the trajectory moves toward infinite. This gives us an 

asymptotically stable trajectory. 

▪ Either 𝜆 > 0, the trajectory converges toward the critical point, and we 

have an asymptotically unstable trajectory. 
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Figure 5: Represents the analysis from above. We call it a proper node or star point, 

unstable or asymptotically unstable according to eigenvalues. Adopted from [45]. 

 

o When eigenvalues are linearly associated to a same independent eigenvector 𝑘 

then the solution looks like, 𝑥 =  𝐶1𝑘1𝑒
𝜆𝑡  +  𝐶2(𝑘𝑡 𝑒𝜆𝑡 +  𝜂𝑒𝜆𝑡). 

▪ Either 𝜆 < 0 and all trajectories converge toward the critical point and 

are asymptotically stable. 

▪ Either 𝜆 > 0 and all trajectories converge toward the critical point and 

are asymptotically unstable. 
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Figure 6: Represents the analysis from above. We call it an improper node unstable or 

asymptotically stable according to eigenvalues. Adopted from [45]. 

 

• When eigenvalues are complex and conjugated, 𝑥 = 𝐶1𝑒
𝜆𝑡(𝑎 𝑐𝑜𝑠(𝜇𝑡) − 𝑏 𝑠𝑖𝑛(𝜇𝑡)) +

𝐶2𝑒
𝜆𝑡(𝑎 𝑠𝑖𝑛(𝜇𝑡) + 𝑏 𝑐𝑜𝑠(𝜇𝑡)).  

 

o 𝜆 has a zero-real part then the trajectories never converge to the critical point 

but never go to infinite as well. They either are constant, elliptical or orbits.  
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Figure 7: Represents the analysis from above. We call it a center, this is always stable. 

Adopted from [45]. 

 

o 𝜆 has a nonzero real part then the trajectories are still elliptic but the distance to 

the critical point or to the infinite grows or decays.  

▪ 𝑅𝑒(𝜆) > 0, the trajectory goes to infinite in spirals and the trajectory is 

unstable. 

▪ 𝑅𝑒(𝜆) < 0, the trajectory converges to the fixed point in spirals and the 

trajectory is asymptotically stable. 
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Figure 8: Represents the analysis from above. We call it a spiral, this is unstable or 

asymptotically stable according to eigenvalues. Adopted from [45]. 

 

To summarize the linear system analysis, it is a description of the different equilibriums 

obtained looking at the trace and the determinant of the state matrix 𝐴. 
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Figure 9: Types of nodes according to the trace and the determinant of the state matrix 𝑨. Adopted from 

[31]. 

2.2.1.2 Nonhomogeneous Linear Systems with Constant Coefficients 

There is a last part we need to consider here, this is when the linear system is nonhomogeneous 

where 𝑏 is a constant vector: 

 �̇� = 𝐴𝑥 + 𝑏. (2.2.5) 

The system is then written: 

 {
�̇�1 = 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑏1

�̇�2 = 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑏2.
 (2.2.6) 

The critical point is no longer located at the origin but at the solution of this linear system. Then 

when 𝑥1̇ = 0, and 𝑥2̇ = 0. In order to find the 𝐴 matrix, we first find out the new critical point 

(𝛼, 𝛽) and then we wrote the new system using an update of 𝑥1and 𝑥2. 

  𝑥′̇ = 𝐴𝑥′ (2.2.7) 

 {
�̇�′1 = 𝑥1 − 𝛼

�̇�′2 = 𝑥2 − 𝛽.
 (2.2.8) 

The two systems (2.2.5) and (2.2.7) have the same 𝐴 matrix and then we can solve this equation 

as a homogeneous linear equation. With this whole analysis, we are now able to identify most of 

the simple trajectories possible around a critical point.  
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2.2.2 Nonlinear Systems 

In the case of nonlinear system, there is no general analytic solution helping us to save any 

nonlinear system. In this case, a good alternative is to phase portraits. These are simple graphical 

tool used to visualize how solutions of a given set of differential equations behave in time. Using 

eigenvalues and eigenvector, we classify the different stabilities and the different equilibrium 

points we can find in a given system. Then, we can draw the shape and behavior of the trajectories 

starting from different initial conditions along time.  

 

2.2.2.1 Phase portraits of Nonlinear Systems 

 {
�̇�1 = 𝐹(𝑥1(𝑡), 𝑥2(𝑡))

�̇�2 = 𝐺(𝑥1(𝑡), 𝑥2(𝑡)).
 (2.2.9) 

When 𝐹(𝑥) and 𝐺(𝑥) are two nonlinear functions of two variables. Recalling from above, a good 

start to study any system is to find out the equilibrium points and to describe the behavior of their 

trajectories. In the nonlinear case, the system can have from 0 to an infinite amount of critical 

points. The phase portrait is then, harder to interpret since every trajectory might be influenced by 

more than one critical point. When working with an ordinary nonlinear system, our best call is to 

give a look at the local behavior [26]. Indeed, for many types of critical points, it has been proven 

than close to an equilibrium point, a nonlinear system can qualitatively be determined by the 

behavior of the linear system [32]: 

 �̇� = 𝐴𝑥|𝑥0
    (2.2.10) 

where 𝐴 is called the linear part of 𝐹 at a critical point 𝑥0, and is defined as the Jacobian matrix 

applied to a critical point 𝑥0. 
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 𝐴 =  𝐽|𝑥0
= 

[
 
 
 
 
𝜕𝐹(𝑥1, 𝑥2)

𝜕𝑥1
(𝑥0)

𝜕𝐹(𝑥1, 𝑥2)

𝜕𝑥2
(𝑥0)

𝜕𝐺(𝑥1, 𝑥2)

𝜕𝑥1
(𝑥0)

𝜕𝐺(𝑥1, 𝑥2)

𝜕𝑥2
(𝑥0)]

 
 
 
 

 . (2.2.11) 

Thus, we apply a linearization of the system around every critical point. In other terms, we compute 

the Jacobian matrix for each critical point, and we write equation(2.2.9) as a linear form equation 

in (2.2.10). For instance, if 𝑥0 = (𝑥10
, 𝑥20

) =  (𝛼, 𝛽) depicts a specific critical point, then the 

linearization gives us the following expressions:  

 {
𝑥1̇ =  𝐹(𝑥1, 𝑥2) = 𝐹𝑥1

(𝛼, 𝛽)(𝑥1 − 𝛼) + 𝐹𝑥2
(𝛼, 𝛽)(𝑥2 − 𝛽)

𝑥2̇ =  𝐺(𝑥1, 𝑥2) = 𝐺𝑥1
(𝛼, 𝛽)(𝑥1 − 𝑎) + 𝐺𝑥2

(𝛼, 𝛽)(𝑥2 − 𝛽).
 (2.2.12) 

Then we compute the Jacobian matrix applied on ( 𝛼, 𝛽 ). Finally, we just have to follow the 

method in the previous section to characterize all the different critical points for linear system. 

𝐴 = 𝐽 = 

[
 
 
 
 
𝜕(𝛼, 𝛽)

𝜕𝑥1

𝜕𝐹(𝛼, 𝛽)

𝜕𝑥2

𝜕𝐺(𝛼, 𝛽)

𝜕𝑥1

𝜕𝐺(𝛼, 𝛽)

𝜕𝑥2 ]
 
 
 
 

=  [
𝐹𝑥1

(𝛼, 𝛽) 𝐹𝑥2
(𝛼, 𝛽)

𝐺𝑥1
(𝛼, 𝛽) 𝐺𝑥2

(𝛼, 𝛽)
]. 

2.2.3 Limit Cycles  

At this point, we studied many of the simplest different critical points for nonlinear system, we 

expect the trajectories of a critical point’s neighbors to be similar to a the one of the critical point. 

Another important possibility which can influence how the trajectories look is if we find a 

trajectory tracing a closed curve 𝐶. In this case, points in the closed curve round around the curve 

for all 𝑡 with a period 𝑇. 

 

𝑥1(𝑡 + 𝑇) = 𝑥1(𝑡)  

𝑥2(𝑡 + 𝑇) = 𝑥2(𝑡). 
(2.2.13) 
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If there is such an isolated closed curve, we call it 𝐶 a limit cycle, it can be either stable when the 

neighbor trajectories spiral around and toward the limit cycle, unstable when they spiral away the 

limit cycle or even semi-stable when we find trajectories that spiral toward and other away of 𝐶. 

 

 

Figure 10: Different types of limit cycles. Adopted from [31]. 

 

A lot of periodic processes in nature can be described as stable limit cycles, so knowing 

how to find out and study limit cycle is necessary. Specifically, in this thesis, we aim to find a 

pattern of oscillations in the evolution of the membrane potential of postsynaptic neurons in a 

network. As much as limit cycles might be important to study the dynamics of nonlinear system, 

this is a current subject of research and the theory behind the analysis of limit cycle is not always 

really convenient. The Poincare-Bendixson criterion allows to prove the existence of a limit cycle 

in a two-dimensional space, and some other theorems can either prove the non-existence of limit 

cycles or talked about the number of limit cycles found in specific systems.
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3.0  METHODS 

3.1 COMPUTATION OF AN AUTONOMOUS SPIKING NEURAL NETWORK  

In the context of neural network’s principles previously discussed, we addressed the issue of 

understanding how discontinuous spikes and action potentials can describe continuous motions of 

our bodies. To answer this problematic, researchers are currently studying spiking networks. Our 

approach consists to take the phase plane analysis of a promising spiking network in order to bring 

some light on the spike dynamics. Our work focuses on the exact spike timing. To do so, we choose 

to work on the following spiking network based and built on exact spike timing. 

3.1.1 Single Input Dimension 

3.1.1.1 A Spiking Neural Network Defined as an Optimization Problem 

The problem we are addressing is the following: we want to represent a simple one-dimensional 

signal 𝑓(𝑡) in the output activity of a spiking neural network. Then, we built a set of weights given 

by 𝐽 describing synapses between neurons. This means that, neuron’s spikes, answers to the input 

signal, are filtered and summed to define the output. Moreover, as previously stated, 𝑓(t) is 

assumed to be decodable after synaptic integration. Let’s define the response of neuron 𝑖 (𝑖 =

1,2… ,𝑁) to the current striking its membrane potential to be the spike train:  
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 𝛿𝑖(𝑡) = ∑𝛿(𝑡 − 𝑡𝑖
𝑘)

𝑘

 (3.1.1) 

with 𝛿(. ), a Dirac function and {𝑡𝑖
𝑘}, the spike times of neuron 𝑖. From the spike train, we define 

the normalized synaptic current, 𝑠𝑖(𝑡) to be its filtered version using an exponential filter: 

 𝑠𝑖(𝑡) =  𝛿𝑖 ∗ 𝑒
−

𝑡
𝜏𝑠  . (3.1.2) 

We call, 𝑒
−

𝑡

𝜏𝑠,  the decaying exponential kernel with 𝜏𝑠, the timescale of the filter. Now, we assume 

that neural membrane has capacitive properties that brings a temporal filtering of its input and 

gives the following dynamical equation for the filtered spike train:  

 𝜏𝑠  
𝑑𝑠𝑖

𝑑𝑡
 =  − 𝑠𝑖  +   𝜏𝑠 𝛿𝑖 .  (3.1.3) 

Note that this equation depicts a model of simplified postsynaptic potential so that each presynaptic 

spike from neuron 𝑖 causes the normalized synaptic current to increase instantaneously by 1 and 

decay exponentially to 0 with a time constant 𝜏𝑠 between spikes. The network output is defined as, 

𝑧(𝑡), a weighted sum of the normalized synaptic currents.  

 𝑧(𝑡) =  ∑𝑖𝑠𝑖(𝑡)

𝑁

𝑖=1

.  (3.1.4) 

Where 𝑖  is the fixed contribution of neuron 𝑖 to the network’s output. We remind that the goal of 

this experiment is to figure out a dynamical model to describe a neural network producing 

appropriate spike trains at appropriate times in order to provide an accurate representation of the 

input signal 𝑓(𝑡).  

What should be an individual neuron’s response to contribute to the collective cause?  This 

is one of the question answered in [6], they came up with the idea to solve the classic credit-

assignment problem for this network. An intuitive way to progress in the derivation of our network 

is to notice we can view this problematic as a simple optimization problem. It prevents to use any 
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gradient based method that we recall hard to use with SNNs. Therefore, let’s define a loss function, 

as the cumulative mean squared decoding error:  

 𝐸(𝑡𝑜) =  ∫ [𝑓(𝑡) − 𝑧(𝑡)]2 𝑑𝑡
𝑇

𝑡0

. (3.1.5) 

An important subject to keep in mind is that optimization is focused over the spike times. We want 

to find the minimal set of spike times so that 𝑧(𝑡) follows 𝑓(𝑡). Weights should stay fixed, they 

are a-priori chosen and always known. So, the following optimization problem is given:  

 𝑚𝑖𝑛
𝛿1𝛿2…,𝛿𝑁

𝐸(𝑡0).  (3.1.6) 

The main idea is to use the previously stated assumption. Neuron 𝑖 should fire a spike at time 𝑡 if 

and only if its firing would reduce the decoding error at time 𝑡. This relates a greedy minimization 

of the cost function 𝐸(𝑡0) using the previous specific spike rule. By tracking, the evolution of the 

cost term along the dynamic of the neural network, 

 (𝑓(𝑡) − 𝑧(𝑡))
2

< (𝑓(𝑡) − �̅�(𝑡))
2

 (3.1.7) 

We find the dynamical equation for the output 𝑧(𝑡). Using past assumptions and definitions, we 

get:  

 

𝑑𝑧

𝑑𝑡
= ∑ 𝑖

𝑑𝑠𝑖

𝑑𝑡

𝑁

𝑖=1

  

𝜏𝑠

𝑑𝑧

𝑑𝑡
=  −𝑧 + ∑ 𝜏𝑠𝑖  𝛿𝑖 

𝑁

𝑖=1

.  

(3.1.8) 

As in Eq. (3.1.3), the output 𝑧 is increased instantaneously by 𝑖  for each spike of neuron 𝑖 and 

then decreases exponentially to 0 with a constant 𝜏𝑠 between spikes. Eventually, the network 

derives his own spike rule where we respectively, define a membrane voltage 𝑣𝑖 and a threshold 

𝑇𝑖 for each neuron 𝑖 as in the leaky integrate and fire model, 
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𝐸(𝑡|𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 𝑠𝑝𝑖𝑘𝑒𝑠)  <  𝐸(𝑡|𝑛𝑜 𝑠𝑝𝑖𝑘𝑒𝑠) 

{

𝑣𝑖(𝑡) = 𝑖  (𝑓 −  𝑧)

𝑇𝑖 =  
𝑖

2

2
.

 

 

(3.1.9) 

Neuron 𝑖 only fires when 𝑣𝑖(𝑡) is larger than 
𝑖

2

2
 and the dynamical equation for the membrane 

potential 𝑣𝑖(𝑡) is computed:  

 𝜏𝑠

𝑑𝑣𝑖

𝑑𝑡
=  − 𝑣𝑖  +  𝑖  (𝜏𝑠 �̇�  + 𝑓) + ∑(−𝜏𝑠𝑖𝑗)𝛿𝑗.

𝑁

𝑗=1

 (3.1.10) 

As an analogy with the dynamical equation of the output, our network implements a self-reset of 

its membrane potential after each spike. Indeed, the equation implies that when neuron 𝑖 fires, it 

causes the membrane voltage to decrease instantaneously by 𝑖
2, that mean to reset its membrane 

potential reset to a value 𝑣𝑖 = 𝑇𝑖 − 𝑖
2 = −𝑇𝑖. We can, now, be sure that this network is derived 

from LIF neurons (2.1.1). 

3.1.1.2 Starting from Driven Network to Autonomous System 

(a) Driven Network Computation 

The goal of a spiking neural network is to reproduce a specific activity through its spiking dynamic. 

In that sense, when we need to evaluate the network, we make use of a driven function 𝑓𝐷, that 

will intrinsically depend of the original input 𝑓, to get the desired output. The mathematical 

development we used above, allowed to find a good set of decoding synapses (−𝜏𝑠𝑖𝑗) in order 

to get the right output. Now the ultimate goal for a SNN would be to be autonomous, meaning that 

the network doesn’t need the original input 𝑓 anymore, but needs a simple input signal to generate 

the driven function by itself and get to the desired output. To accomplish that, we need to compute 
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the set of recurrent connections that accomplishes the task with a reasonable degree of accuracy 

and by keeping the network dynamic stable.  

Let’s first introduce the function 𝑓𝐷(𝑡) as an input to drive the network to the desired output 

function. Figure 11 sets the model and call: 

𝑓𝐷(𝑡) through the weights 𝑢𝐷(𝑡), a set of synapses strength between all neurons of the model in a 

𝑁 ∗ 𝑁 matrix, commonly named 𝐽𝐹𝑎𝑠𝑡 , and finally call the fixed decoding . When running, an 

accurate representation 𝑧(𝑡) should be given as an output of the signal 𝑓(𝑡). Afterwards, to get the 

autonomous network, we want to observe neuron’s behavior when the network track the error 

function thanks to the driven function. In other words, the driven function provides targets for 

building an autonomous network.  
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Figure 11: (a) Structure of the driven network. A defined input 𝒇𝑫(𝒕) is provided to the 

network through weights 𝒖𝑫. Neurons in the network are connected through synapses 

whose strengths are defined by the matrix 𝑱𝑭𝒂𝒔𝒕. Specifically, the synaptic current generated in a post-

synaptic neuron 𝒊 by a presynaptic neuron 𝒋 is given by the synaptic weight, 𝑱𝒊𝒋
𝑭𝒂𝒔𝒕(𝒕) multiplied by the 

normalized synaptic current  𝒔𝒊(𝒕). The output of the network is read out by summing, the normalized 

synaptic currents of the neurons with weights . (b) Example of a spike train from neuron 𝒊, 𝜹𝒊(𝒕) and (c) 

depicts the corresponding normalized synaptic current with 𝝉𝒔 = 𝟏𝟎𝟎 msec. 

 

The next goal is now to find good driven function to the network. Hopefully, using a high-

pass filter, phase advanced version of the output, the driven network eventually treats the error 

pretty well: 

 𝑔𝑖𝑣𝑒𝑛 𝑖𝑛𝑝𝑢𝑡: 𝑓𝐷(𝑡) = 𝜏𝑠  𝑓̇  + 𝑓 (3.1.11) 

 𝐹𝑎𝑠𝑡 𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛: 𝐽𝑖𝑗
𝑓𝑎𝑠𝑡

= −𝜏𝑠𝑖𝑗 (3.1.12) 

 𝑖𝑛𝑝𝑢𝑡 𝑤𝑒𝑖𝑔𝑡ℎ𝑠: 𝑢𝐷. (3.1.13) 

We now, appreciate the expressions of 𝑢𝐷 and  𝐽𝑖𝑗
𝑓𝑎𝑠𝑡

 in terms of . However, 𝑓𝐷 is still in terms 

of the signal 𝑓. This auto-encoder receives the desired signal 𝑓(𝑡) as an input and represents it on 

the neuron’s activity, then recovers 𝑓(𝑡) at the output, by decoding the spike trains. 
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(b) Autonomous Network Computation 

For autonomous network, we need to find an input that can be self-generated by the network. 

Fortunately, we are able to find such an input when 𝑓 is generated from a linear dynamic system, 

where 𝐴 is the desired dynamic and 𝑐(𝑡) a control signal: 

 𝜏𝑠  = �̇�  − 𝑓 + 𝐴𝑓 + 𝑐(𝑡). (3.1.14) 

Using this new form for 𝑓, we re-write our general dynamic equation for the membrane potential: 

 𝜏𝑠

𝑑𝑣𝑖

𝑑𝑡
=  − 𝑣𝑖  +  ∑𝑖𝐴𝑗𝑠𝑗

𝑁

𝑗=1

∑(−𝜏𝑠𝑖𝑗)𝛿𝑗

𝑁

𝑗=1

+ 𝑖𝑐. (3.1.15) 

We have the same fast-synaptic connection than for a driven network,  𝐽𝑖𝑗
𝑓𝑎𝑠𝑡

= −𝜏𝑠𝑖𝑗 , we also 

have what we will call the slow synaptic connection  𝐽𝑖𝑗
𝑠𝑙𝑜𝑤 = 𝑖𝐴𝑗 since this new set of 

connection only applies on normalized synaptic currents which are, due to their decaying kernel 

of time constant τs, much slower than the dynamic of spike train tuned by  𝐽𝑖𝑗
𝑓𝑎𝑠𝑡

. Thanks to these 

two sets of connections, the network is able to predict the future trajectory of 𝑓(𝑡).  

Even if 𝑓(𝑡) is a constant function, (𝑓̇ = 0, 𝐴 = 1, and 𝑐(𝑡) = 0) then these two sets of 

connections still maintain activity in the network preventing 𝑓(𝑡) from decaying to zero. On Figure 

12, we describe the system as an encoder of 𝑓, then implementing 𝐽𝑆𝑙𝑜𝑤, we make the system 

autonomous. Doing so we use a function 𝑓 respecting: 𝜏𝑠 𝑓̇ = −𝑓 + 𝐴𝑓 + 𝑐(𝑡) as discussed above. 

This comes back to get the previous output tuned with the desired dynamic as an input.  
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Figure 12: (a) Schematic highlighting the output feedback mechanism used to generate the input in terms of the 

output, assuming 𝒇(𝒕) satisfy Eq. (3.1.14)  (b) Schematic illustrating an equivalent network implemented using an 

extra set of synapses (𝑱𝑺𝒍𝒐𝒘) with strengths given by Eq.(3.1.15). Red connections represent slow synaptic 

connections and black connections fast ones. 𝒄(𝒕) is the control signal. 

 

3.1.2 Multidimensional Input Function 

So far, we described a way to create an autonomous network that can mimic a function 𝑓(𝑡) only 

when it is a scalar function. In this case, we can only describe a low-pass filter or an integrator. 

input and as an output to implement sensory responses and real biologically realistic scenario. The 

extension of the previous work is straightforward, since we follow exactly the same steps using 

now a vector 𝑓(𝑡), a matrix  and a vector 𝑧(𝑡). The system is autonomous when 𝑓𝑘(𝑡) are 

generated by: 

 𝜏𝑠 𝑓�̇� = −𝑓𝑘 + ∑ 𝐴𝑘𝑝𝑓𝑝

𝑘

𝑝=1

+ 𝑐𝑘(𝑡). (3.1.16) 

This gets us the following membrane voltage dynamical equation for an autonomous system, 

associated to its spiking rule: 
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𝜏𝑠

𝑑𝑣𝑖

𝑑𝑡
=  − 𝑣𝑖  + ∑𝑖𝑘 ∑ 𝐴𝑘𝑝

𝐾

𝑝=1

𝐾

𝑘=1

 ∑𝑝𝑗𝑠𝑗

𝑁

𝑗=1

− 𝜏𝑠 ∑𝑖𝑘

𝐾

𝑘=1

∑𝑘𝑗𝛿𝑗 − 

𝑁

𝑗=1

𝜏𝑠𝜇𝛿𝑖 + ∑𝑖𝑘𝑐𝑘

𝐾

𝑘=1

. 

(3.1.17) 

 

Where the fast synapses are described by  𝐽𝑖𝑗
𝑓𝑎𝑠𝑡

=  − 𝜏𝑠 ∑ 𝑖𝑘𝑘𝑗 + 𝜇𝛿𝑗𝐾
𝑘=1  and the slow ones are 

described by  𝐽𝑖𝑗
𝑠𝑛𝑜𝑤 = ∑ ∑ 𝑖𝑘  𝐴𝑘𝑝

𝐾
𝑝=1 𝑝𝑗

𝐾
𝑘=1 . 

This network can implement any linear dynamical system autonomously of the form: 𝜏𝑠 𝑓̇ = −𝑓 +

𝐴𝑓 + 𝑐 as long as 𝐴 is chosen appropriately. In matrix notation, we have the following respectively 

spiking rule and dynamic: 

  𝑻 =
1

2
(𝑑𝑖𝑎𝑔(𝛀𝐓𝛀) + 𝜇𝑰) (3.1.18) 

 𝜏𝑠�̇� =  −𝒗 + 𝛀Slow𝒔 + 𝛀Fast  𝜹 + 𝛀T𝒄 (3.1.19) 

  𝜏𝑠�̇� =  −𝒔 + 𝜏𝑠  𝜹 (3.1.20) 

  𝛀Fast = −𝜏𝑠(𝛀
𝐓𝛀 + 𝜇𝑰)  (3.1.21) 

 𝛀Slow = 𝛀𝐓𝐀𝛀. (3.1.22) 

3.1.2.1 Balanced neural network  

Biologically speaking, neurons are not all the same, an important differentiation between two types 

of neurons can be made. Excitatory and inhibitory neurons have different neurotransmitters that 

bind different receptors. Although we still don’t know all the different neurotransmitters and their 

roles, excitatory neurons are often associated with a positive weight since they trigger a positive 

change in the membrane potential when inhibitory neurons get a negative one for triggering a 

negative change [24].  
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Dale’s law implies that a neuron only can release the same neurotransmitter to all of the other 

units. In this case, Dale’s law is violated. Then to fix this issue, we make use of a balanced network 

separating the total population in two groups, one excitatory and another one inhibitory. When 

studying the dynamics of large-scale populations of LIF neurons, the balanced random network is 

commonly used, [9]. In this framework, we think network as balanced regime of excitatory and 

inhibitory neurons. Balanced networks have first been theoretically highlighted [13], then it has 

also been experimentally proven in vivo [23]. The collaboration or opposition, depending of the 

point of view, act to keep the average activity under the threshold and then keep the activity of the 

whole network stable. The balanced network provokes irregularities in spiking that can be found 

in a brain as well. More details on the dynamics of balanced network can be found in [9]. In this 

section, we derive a balanced network to comply with Dale’s rule. Before this we need to assume 

what are the different population goals, we assume the excitatory population track the actual signal 

𝑥(𝑡) and the inhibitory population tracks the estimate of the excitatory one. 

(a) Inhibitory Membrane Potential  

As mentioned above, the inhibitory population is tracking the estimation of the excitatory one 𝑧𝐸.  

 𝐸𝐼(𝑡𝑜) =  ∫ [𝑧𝐸(𝑡) − 𝑧𝐼(𝑡)]
2 𝑑𝑡.

𝑇

𝑡0

 (3.1.23) 

Following the exact same steps described earlier, we get the following spike rule associated with 

the following membrane potential all determined for an inhibitory population. 

 {

𝑣𝐼,𝑖(𝑡) = 𝐼,𝑖 (𝑧𝐸 − 𝑧𝐼)

𝑇𝐼,𝑖 =  
𝐼,𝑖

2

2
.

 (3.1.24) 

 𝜏𝑠

𝑑𝑣𝐼,𝑖

𝑑𝑡
=  − 𝑣𝐼,𝑖  +  𝜏𝑠[𝐼,𝑖

∑(𝐸,𝑗)𝛿𝐸,𝑖

𝑁𝐸

𝑗=1

− 𝐼,𝑖 ∑(𝐼,𝑗)𝛿𝐼,𝑖].

𝑁𝐼

𝑗=1

 (3.1.25) 
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The dynamic of the inhibitory membrane potential now obeys Dale’s law since the input of the 

excitatory neurons depolarizes the voltage when the input of inhibitory neurons hyperpolarizes the 

voltage. 

(b) Excitatory Membrane Potential 

In a similar way, we now assume that excitatory neurons track the general input, the general error 

becomes: 

 𝐸𝐸(𝑡) =  ∫ [𝑓(𝑡) − 𝑧𝐸(𝑡)]2 +  𝑑𝑡.
𝑇

𝑡0

 (3.1.26) 

The spike rule and the dynamic of an excitatory membrane potential is given in the following: 

 {

𝑣𝐸,𝑖(𝑡)  =  𝐸,𝑖  (𝑓 − 𝑧𝐸)

𝑇𝐸,𝑖 =  
𝐸,𝑖

2 + 𝜇

2
.

 (3.1.27) 

 𝜏𝑠

𝑑𝑣𝐸,𝑖

𝑑𝑡
=  − 𝑣𝐸,𝑖  + 𝐸,𝑖  ∑𝐴𝐼,𝑗 𝑠𝐼,𝑖

𝑁𝐼

𝑗=1

 – (𝜏𝑠 𝐸,𝑖 ∑(𝐼,𝑗))𝛿𝐼,𝑖 +

𝑁𝐼

𝑗=1

 𝐸,𝑖𝑐𝑖 . (3.1.28) 

In the spiking neural network developed above, the coding spike rule chosen leads to balance 

networks: 

•  When two neurons are said similar, meaning 𝑖𝑗 > 0, a spike from neuron 𝑖 inhibit 

the similar neuron, instantaneously decreases its voltage membrane by an amount 𝑖𝑗  

and resets its own to 𝑇𝑖. 

• However, when two neurons are not similar 𝑖𝑗 < 0, then a spike from neuron 𝑖 

exhibit the not similar neuron, instantaneously increases its voltage membrane by  𝑖𝑗  

and resets its own to 𝑇𝑖. 
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3.2 MEAN-FIELD ANALYSIS 

3.2.1 From Current-Based to Conductance-Based Model 

3.2.1.1 Introduction to Conductance-Based Model 

In section 3.1, we chose a spiking neural network that is driven by current-based synapses only. 

However, biologically neurons modify their behavior and their firing rate through the opening or 

closing of different channels and gates. In 2016, a mapping between current-based and 

conductance-based synapses has been published [35]. Their results highlight the big realistic 

difference between both models. Current-based synapses substantially affect the network stability, 

mostly when the input described in the background synaptic activity is particularly noisy. An 

equivalent spiking model but as a conductance-based model would be the following [44]:  

 𝐶𝑖𝑑𝑉𝑖(𝑡)

𝑑𝑡
= 𝑔𝑖

0 (𝑉𝑖
0 − 𝑉𝑖(𝑡))

+ 𝑔𝑖
𝐾 (𝑉𝑖

𝐾 − 𝑉𝑖(𝑡) + ∑𝑔𝛼

𝛼

(𝑡)(𝑉𝛼 − 𝑉𝑖(𝑡)) + 𝐼𝑖(𝑡)). 

(3.2.1) 

Where 𝐶𝑖 is the capacity of the cell membrane, 𝑔𝑖
0 its passive conductance, 𝑉𝑖

0, the resting potential, 

𝑔𝑖
𝐾, the active potassium conductance that produce firing adaptation, 𝑔𝛼, the conductance of each 

input synapse 𝛼, 𝑉𝑖
𝐾 and 𝑉𝛼, the different equilibrium potentials associated with the respective 

conductance and 𝐼𝑖(𝑡), the input transmits to the cell.  

As in the main model described in this thesis, when 𝑉𝑖(𝑡) reached a threshold 𝑉𝑖
𝑡ℎ, the neuron fires 

a spike and its membrane potential directly reset to a reset value 𝑉𝑖
𝑟𝑒𝑠𝑒𝑡  due to a repolarization of 

conductances: 

 𝑑𝑔𝛼(𝑡)

𝑑𝑡
=  −

𝑔𝛼(𝑡)

𝜏𝛼
+ ∆𝑔𝛼 ∑𝛿(𝑡 − ∆𝑡 − 𝑡𝑘,𝑗𝛼)

𝑘

 (3.2.2) 
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  𝑑𝑔𝐾(𝑡)

𝑑𝑡
=  −

𝑔𝑖
𝐾(𝑡)

𝜏𝐾 + ∆𝑔𝐾 ∑ 𝛿(𝑡 − 𝑡𝑘,𝑖)𝑘 . (3.2.3) 

These two equations genuinely describe the polarization of conductances after a spike, a respective 

fixed amount is instantaneously added to the conductance over time when an exponential 

relaxation term associated to a specific time constant brings back the conductance to its resting 

state. Despite all these new conductance features, this simple integrate and fire model is still not 

enough to reproduce complex neuronal behavior but it allows us to include the basic features of a 

neuronal network and specifically the quality of adaptation in frequency of the network. In order 

to map both models, we first need to apply the different assumptions we made earlier to this model. 

For instance, 𝑔𝛼(𝑡) that represents the set of decoding weights is chosen and a-priori fixed. Before 

mapping, let’s divide Eq. (3.2.1) in two classes of neurons: excitatory and inhibitory. As in the 

main paper, subscripts 𝐹, 𝐺, will represent either excitatory or inhibitory population. Let’s keep 

our notations simple adding a subscript 𝑥𝐹, with 𝐹 that could be either 𝐸 or 𝐼 meaning either 

excitatory or inhibitory population. Also, the general set of equation has been rescaled as follow: 

 
𝑥 =

𝑉 − 𝑉𝐹
𝑟𝑒𝑠𝑒𝑡

𝑉𝐹
𝑡ℎ − 𝑉𝐹

𝑟𝑒𝑠𝑒𝑡 . (3.2.4) 

The firing rates variable determined by the potassium conductance is rescaled as well: 

 
𝑦 =

𝑔𝑖𝐾

∆𝑔𝑖
𝐾 . (3.2.5) 

After rescaling all parameters, here is the final dynamics of the membrane potential of this 

conductance-based model: 

 𝑑𝑥𝐸,𝑖(𝑡)

𝑑𝑡
= −𝑥𝐸,𝑖(𝑡)[𝜔𝐸

0 + 𝜔𝐸
𝐸  𝑧𝐸

𝐸 +  𝜔𝐸
𝐼 𝑧𝐸

𝐼 − 𝜔𝐸
𝑆𝑠𝐸] + 𝜔𝐸

𝐾𝑥𝐸,𝑖
𝐾 (𝑡)𝑦𝐸,𝑖(𝑡)      

+ 𝜔𝐸
𝑆𝑥𝐸,𝑖

𝐸 (𝑡)𝑠𝐸 + 𝜔𝐸
0𝑥𝐸,𝑖

0 (𝑡) + 𝜔𝐸
𝐸  𝑧𝐸

𝐸𝑥𝐸,𝑖
𝐸 (𝑡) +  𝜔𝐸

𝐼 𝑧𝐸
𝐼 𝑥𝐸,𝑖

𝐼 (𝑡) 

(3.2.6) 
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 𝑑𝑥𝐼,𝑖(𝑡)

𝑑𝑡
= −𝑥𝐼,𝑖(𝑡)[𝜔𝐼

0 + 𝜔𝐼
𝐸  𝑧𝐼

𝐸 +  𝜔𝐼
𝐼𝑧𝐼

𝐼 − 𝜔𝐼
𝑆𝑠𝐼] + 𝜔𝐼

𝐾𝑥𝐼,𝑖
𝐾 (𝑡)𝑦𝐼,𝑖(𝑡)      

+ 𝜔𝐼
𝑆𝑥𝐼,𝑖

𝐸 (𝑡)𝑠𝐼 + 𝜔𝐼
0𝑥𝐼,𝑖

0 (𝑡) + 𝜔𝐼
𝐸  𝑧𝐼

𝐸𝑥𝐼,𝑖
𝐸 (𝑡) +  𝜔𝐼

𝐼𝑧𝐼
𝐼𝑥𝐼,𝑖

𝐼 (𝑡) 

(3.2.7) 

 

 
𝜏𝐾

𝑑𝑦𝐸,𝑖(𝑡)

𝑑𝑡
= −𝑦𝐸,𝑖(𝑡) + 𝜏𝐾 ∑ 𝛿𝐸(𝑡 − 𝑡𝑖

𝑗
)

𝑁𝐸

𝑗=1
 (3.2.8) 

 
𝜏𝐾

𝑑𝑦𝐼,𝑖(𝑡)

𝑑𝑡
= −𝑦𝐼,𝑖(𝑡) + 𝜏𝐾 ∑ 𝛿𝐼(𝑡 − 𝑡𝑖

𝑗
)

𝑁𝐼

𝑗=1
. (3.2.9) 

Defining two variables, we re-write the dynamics: 

 

 𝐴𝐹,𝑖(𝑡) = 𝜔𝐹
𝑆𝑥𝐹,𝑖

𝐸 (𝑡)𝑠𝐹 + 𝜔𝐹
0𝑥𝐹,𝑖

0 (𝑡) + 𝜔𝐹
𝐸  𝑧𝐹

𝐸𝑥𝐹,𝑖
𝐸 (𝑡) +  𝜔𝐹

𝐼 𝑧𝐹
𝐼𝑥𝐹,𝑖

𝐼 (𝑡) (3.2.10) 

 𝐵𝐹,𝑖 = [𝜔𝐹
0 + 𝜔𝐹

𝐸  𝑧𝐹
𝐸 +  𝜔𝐹

𝐼 𝑧𝐹
𝐼 − 𝜔𝐹

𝑆𝑠𝐹] (3.2.11) 

 𝐶𝐹,𝑖(𝑡) = 𝜔𝐹
𝐾𝑥𝐹,𝑖

𝐾 (𝑡). (3.2.12) 

Then we get: 

 𝑑𝑥𝐹,𝑖(𝑡)

𝑑𝑡
= 𝐴𝐹,𝑖(𝑡) − 𝐵𝐹𝑥𝐹,𝑖(𝑡) +  𝐶𝐹,𝑖(𝑡)𝑦𝐹,𝑖(𝑡) (3.2.13) 

 
𝜏𝐾

𝑑𝑦𝐹,𝑖(𝑡)

𝑑𝑡
= −𝑦𝐹,𝑖(𝑡) + 𝜏𝐾 ∑ 𝛿𝐹(𝑡 − 𝑡𝑖

𝑗
)

𝑁𝐹

𝑗=1
. (3.2.14) 

3.2.2 Population Measure Tool 

One of the main idea we exported is to compute the variable they called the density. As we will 

develop later in the result section of this thesis, this variable represents the probability of a neuron 

in the network to spike at a defined time. This mean field analysis’s tool seen as the momentary 

state of the network at time 𝑡 opens the door to new dynamic analyses, 
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𝜌𝐹(𝑥, 𝑡) =

1

𝑁𝐹
∑ 𝛿(𝑥 − 𝑥𝑖(𝑡)).

𝑖

 (3.2.15) 
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4.0  RESULTS  

4.1 ANALYSIS OF THE SPIKE-CODING NETWORK 

After the previous chapters, we derived a network of leaky integrate-and-fire neurons governed by 

the following dynamical equations that we want to remind before applying a mean field analysis:  

 𝜏𝑠

𝑑𝑣𝑖

𝑑𝑡
=  − 𝑣𝑖  +  ∑𝑖𝐴𝑗𝑠𝑗

𝑁

𝑗=1

+ ∑(−𝜏𝑠𝑖𝑗)𝛿𝑗

𝑁

𝑗=1

+ 𝑖𝑐        (4.1.1) 

 𝜏𝑠

𝑑𝑠𝑖

𝑑𝑡
=  − 𝑠𝑖  + 𝜏𝑠𝛿𝑖 (4.1.2) 

where 𝐽𝑖𝑗
𝑠𝑙𝑜𝑤 = 𝑖𝐴𝑗  and 𝐽𝑖𝑗

𝐹𝑎𝑠𝑡 = −𝜏𝑠𝑖𝑗  are the recurrent connections between neurons 

𝛿𝑖(𝑡) =  ∑ 𝛿(𝑡 − 𝑡𝑖
𝑘)𝑘  is the spike train of neuron 𝑖 with spike times {𝑡𝑖

𝑘}. Figure 13 shows the 

computation of this model when following an input signal 𝑐(𝑡). Part (𝑏) of the figure show 

the computed density used a measure of the probability of the population to spike at an 

instant 𝑡 + ∆𝑡. For visual reasons, we decided to use an important bin, 25 steps per bin. 
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Figure 13: (a) Spiking neural network trained on spike times tracking a specific input signal. 

(b) Histogram that depicts the density 𝝆 (𝒗, 𝒕) with a size bin of 25 steps per bin. 

 

4.1.1 Periodic Behavior of the Isolated Neuron 

For simplicity, let’s start with the analysis of a single isolated neuron in this network. The network 

we provided in the previous sections contains an adaptive current 𝑠(𝑡) fed back to the neurons 

associated with a slow variable. This mechanism is also known as spike-triggered adaptation. 

Biologically, it depicts a more complex mechanism of opening or closing calcium gates in the 

neuron in order to monitor its own spike train. Thanks to this mechanism, it is possible to analyze 
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the dynamics of a single isolated neuron in the network. According to our previous work, we 

describe the dynamics of a single neuron using the following: 

 𝜏𝑠

𝑑𝑣(𝑡)

𝑑𝑡
=  − 𝑣(𝑡) +  𝛼𝑠(𝑡) − 𝜏2 ∑𝛿(𝑡 − 𝑡𝑘)

𝑘

+  𝑐 (4.1.3) 

 𝜏𝑠

𝑑𝑠(𝑡)

𝑑𝑡
=  − 𝑠(𝑡) + 𝜏𝑠 ∑ 𝛿(𝑡 − 𝑡𝑘)

𝑘

 (4.1.4) 

with 𝛼 defined as 2𝐴𝑗. As seen earlier when 𝑡 = 𝑡𝑘, we suppose a neuron has fired and in this 

case following the leaky integrate-and fire model, the membrane voltage is reset to a certain value 

((𝑣(𝑡𝑘)+) = −𝜗 = −
 2

2
) and the normalized synaptic current 𝑠(𝑡𝑘) = 𝑠𝑘 . Let’s define the 

interspike interval value 𝑇(𝑠𝑘) as the amount of time required for the neuron to reach the threshold 

again after firing. By solving this system between spikes, we obtain the new set of solutions valid 

for 𝑡𝑘 < 𝑡 ≤  𝑡𝑘+1 = 𝑇(𝑠𝑘): 

 𝑣(𝑡) = −𝜗𝑒−
𝑡−𝑡𝑘

𝜏 +
𝛼𝑠𝑘

𝜏
(𝑡 − 𝑡𝑘) 𝑒−

𝑡−𝑡𝑘

𝜏 + ∫ 𝑒−
𝑠
𝜏

𝑡−𝑡𝑘

0

𝑐(𝑡 − 𝑠)𝑑𝑠  (4.1.5) 

 𝑠(𝑡) = 𝑠𝑘𝑒−
𝑡−𝑡𝑘

𝜏 . (4.1.6) 

 

Proceeding, at time 𝑡 = 𝑡𝑘+1 , the neuron will fire again, and we have 𝑣(𝑡𝑘+1) = 𝜗 =
 2

2
. We 

remember from Eq.(3.1.3)  that when a neuron fire, the adaptation mechanism directly implies that 

feedback current increases by 1 as follows: 𝑠(𝑡𝑘) → 𝑠(𝑡𝑘) + 1. Therefore, we can derive the 

following map for the adaptation current: 

 𝑠𝑘+1 = 𝑠(𝑡)|𝑡=𝑡𝑘+1 + 1 = 𝑠𝑘𝑒−
𝑇(𝑠𝑘)

𝜏 + 1. (4.1.7) 

Hence, we can draw a map in the phase-plane spanned by 𝑣 and 𝑠 where each of this solution 

describes a ‘sub-trajectory’ starting from the reset potential and finishing at the threshold potential, 
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let’s respectively call them 𝛤𝑘. When the input 𝑐 is big enough to drive the membrane potential 

towards the threshold, it makes the exponential decay to become more and more important when 

𝑘 increases. At some point when 𝑘 goes to infinity, the overall trajectory converges to the limit 

cycle 𝛤∗. Furthermore, since each sub-trajectory 𝛤𝑘 is uniquely determined by its starting current 

𝑠𝑘, the feedback current also converges toward a certain value 𝑠∗. 

 𝑙𝑖𝑚
𝑘→∞

𝛤𝑘 =  𝛤∗ (4.1.8) 

 𝑙𝑖𝑚
𝑘→∞

𝑠𝑘 = 𝑠∗. (4.1.9) 

Therefore, the system has a stable limit cycle 𝛤∗ solution, if only if, the map has a stable fixed 

point: 

 𝑠∗ = 𝑠𝑒−
𝑇∗

𝜏 + 1 (4.1.10) 

where 𝑇∗ denotes the limit cycle period as computed in (4.1.5) at 𝑣 = 𝜗 

 𝜗 = −𝜗𝑒−
𝑇∗

𝜏 +
𝛼𝑠𝑘

𝜏
(𝑇∗) 𝑒−(𝑇∗)/𝜏 + ∫ 𝑒−

𝑠
𝜏

𝑇∗

0

𝑐(𝑡 − 𝑠)𝑑𝑠.  (4.1.11) 

Hence, the limit cycle can be parametrized by: 

 

𝛤∗ ∶                   𝑠(𝑡) = 𝑠∗𝑒−
𝑡
𝜏,

𝑣(𝑡) = −𝜗𝑒−
𝑡
𝜏 +

𝛼𝑠𝑘

𝜏
 𝑡𝑒−

𝑡
𝜏 + ∫ 𝑒−

𝑠
𝜏

𝑡

0

𝑐(𝑡 − 𝑠)𝑑𝑠,

0 ≤ 𝑡 ≤ 𝑇∗.   

(4.1.12) 
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Figure 14: Solutions (4.1.5) visualized as ‘sub-trajectories’ in the phase plane. Each sub-trajectory is a curve 𝜞𝒇(in 

orange and made straight for sake of simplicity and clarity) that starts at the reset potential and finishes at the 

threshold. At threshold, the phase point hops to the beginning of the next curve 𝜞𝒇+𝟏. In the limit 𝒇 → ∞, the overall 

trajectory converges to the limit cycle 𝜞∗(red curve). 

 

4.1.2 Analysis of the Spike-Coding Network 

In reality, it is not possible to isolate a neuron as done in the previous section. As discussed 

previously in this thesis, when a neuron fire, the spike affects other neuron’s membrane potential. 

Therefore, a single neuron is bombarded with spikes from thousands presynaptic neurons in the 

network. The analysis reproduced above only consider the spike coming from the unique neuron 

itself. When adding the coupling terms, or synapses, accounting for neural interactions to the 

model, we lose the precedent method. The membrane potential of a neuron after it spiked can’t be 
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predicted anymore. In the next section, we come to discuss an interesting approach to cope with 

this difficulty. 

4.1.2.1 Population Activity  

In this second section, we will make use of a deeper analysis. Suppose a particular neuron in the 

network fired a spike at time 𝑡𝑖
𝑘, integration of the system        (4.1.1)(4.1.2) states: 

 𝑠𝑖(𝑡) = 𝑠𝑖
𝑘𝑒−

𝑡−𝑡𝑖
𝑘

𝜏  (4.1.13) 

   

𝑣𝑖(𝑡) = −𝜗𝑖𝑒
−

𝑡−𝑡𝑖
𝑘

𝜏 − ∑∑𝑖𝑗ℋ(𝑡 − 𝑡𝑖
𝑘)

𝑘

𝑁

𝑗=1

       

+ ∑∑
(

𝑖
𝐴𝑗𝑠𝑗

𝑘)

𝜏
∑𝑖𝑗ℋ(𝑡 − 𝑡𝑖

𝑘)

𝑘

(𝑡 − 𝑡𝑗
𝑘) 𝑒−

𝑡−𝑡𝑗
𝑘

𝜏

𝑘

𝑁

𝑗=1

  

            + 𝑖 ∫ 𝑒−
𝑠
𝜏

𝑡−𝑡𝑖
𝑘

0

𝑐(𝑡 − 𝑠)𝑑𝑠 

(4.1.14) 

where ℋ(𝑡) denotes the Heaviside function, {𝜗𝑖} are the membrane thresholds, {𝑡𝑖
𝑘} corresponds 

to the spike times and {𝑠𝑖
𝑘} are the correspondent adaptation currents at these respective times. 

This set of solutions and precisely the double summation terms highlight the previous discussed 

issues. Indeed, the interspike times {𝑇𝑖
𝑘} are random variables and the membrane potentials 𝑣𝑖(𝑡) 

can’t be predicted. Therefore, it is not possible to conclude on the convergence to a limit cycle as 

discussed in section 4.1.1. However, we can compute the membrane potential density 𝜌 (𝑣, 𝑡) that 

has been introduced in 3.2.2. In this case, 𝜌 (𝑣, 𝑡) indicates the momentary state of the population 

as a whole. When the population is large enough, the number of neurons with membrane potential 

𝑣0 < 𝑣(𝑡) < 𝑣0 + ∆𝑣 is calculated as the density: 
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 𝑙𝑖𝑚
𝑁→ ∞

{
𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑣0 < 𝑣𝑖(𝑡) ≤ 𝑣0 + ∆𝑣

𝑁
} = ∫ 𝜌(𝑣, 𝑡)𝑑𝑣

𝑣𝑜+∆𝑣

𝑣0

 (4.1.15) 

with the normalization condition: 

 ∫ 𝜌(𝑣, 𝑡)𝑑𝑣
𝑉

−∞

= 1. (4.1.16) 

We remind that the output of spike-coding network is a weighted average of the synaptic currents 

(Eq. (3.1.4) and our interest in the collective behavior of the network. Consequently, it seems 

reasonable to describe the activity of a large network using a population measure rather than the 

spike trains of individual neurons. Furthermore, since we are interested in the stationary state 

𝜌 (𝑣, 𝑡) = 𝜌(𝑣) (convergence to a limit cycle, for instance), the idea is to replace the double 

summation terms by an appropriate population measure based on the stationary density 𝜌(𝑣). One 

can guess a solution of replacement of these double summations terms and test such ansätz per 

simulation afterwards. If we assume that the density 𝜌(𝑣 = 𝜗𝑗) represents the probability of neuron 

𝑗 hitting its firing threshold 𝜗𝑗. Hence, the expected change of the membrane potential of the 

postsynaptic neuron 𝑖 due to firing of the presynaptic neurons, is the average of the expected 

individual contributions 𝑗𝜌(𝜗𝑗). Therefore, we replace the first double summation of Eq.(4.1.14) 

to get: 

 ∑∑𝑖𝑗ℋ(𝑡 − 𝑡𝑖
𝑘)

𝑘

𝑁

𝑗=1

 ≈  𝑖 ∑𝑗𝜌(𝜗𝑗).

𝑁

𝑗=1

 (4.1.17) 

The second assumption is more far-fetched. The double sum looks like the total amount of current 

entering neuron 𝑖 at time 𝑡, so from the point of view of the postsynaptic neuron, it is as its 

membrane conductance is depending of time. Moreover, if we assume that the network reaches a 

stationary state, then currents from presynaptic neurons are a periodic function of voltage. For 

example, if the network converges to a limit cycle as in Error! Reference source not found., then 
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the variable 𝑠 can be parametrized using 𝑣. Therefore, we assume the pulse-based variable can be 

replaced by a conductance-based input which by definition depends on the voltage (see section 

3.2.1). 

 ∑∑
(

𝑖
𝐴𝑗𝑠𝑗

𝑘)

𝜏
(𝑡 − 𝑡𝑗

𝑘) 𝑒−
𝑡−𝑡𝑗

𝑘

𝜏

𝑘

𝑁

𝑗=1

 ≈  𝑖 ∑𝐴𝑗�̅�𝑗𝜌((𝜗𝑗 − 𝜗�̅�)).

𝑁

𝑗=1

 (4.1.18) 

Where the precise form of �̅�𝑗  may be ∑ 𝑠𝑗
∗𝜌(𝜗𝑗)

𝑁
𝑗=1 . In summary, we are using population metrics, 

such as the membrane potential density to approximate the stationary dynamics of a model neuron 

embedded in a population of leaky integrate-and-fire neurons with spike-triggered adaptation. We 

expect the dynamic of a postsynaptic neuron interacting with thousands of presynaptic neurons to 

be understandable and to provide limit cycles possibilities under certain circumstances. 

Specifically, we expect that the effective membrane time constant to change, that is we want that 

some inputs 𝑐(𝑡), those that cause individual neuron to have limit cycles behavior, change the 

period of oscillation 𝑇∗ (see section 4.1.1).
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5.0  CONCLUSION AND FURTHER WORK  

Traditionally, analyses of neural networks activity are based on rate coding rather than spike 

temporal coding [40]. When considering large population of networks, a reason that make rate 

coding prevail over spike temporal coding was given by computational efficiency, since spike 

temporal coding needs the exact spike timing of every neuron, it was thought as computationally 

more efficient. Rate-coding networks are also extremely efficient for lots of application, often to 

describe properties of all types of sensory neurons and particularly for brain-machine interfaces 

[11].  

However, this type of network can’t take into account most of the recent experimental 

results in spike-based networks [8]. Despite a tremendous amount of spike trains and a high degree 

spike-train variability, powerful methods to construct spike-based networks have been recently 

derived [16]. More realistic and event-driven, spiking neural networks are finally found 

computationally more efficient if well implemented, since we need fewer neurons to accomplish 

the same task [29]. 

 Evidences for spike-based networks include that an efficient coding spiking rule leads to 

balanced network [6]. An excitatory-inhibitory tight balance has numerous advantages. First the 

actual deviation between the input and desired output is improved. Furthermore, spike trains of 

individual neurons in spike-coding can be highly variable without affecting the collective output 
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accuracy thanks to adaptation mechanisms, that is if a neuron fails to emit a spike, neighbors 

quickly adjust their spiking to prevent an error [3].  

Eventually the network modeled in this thesis gains in robustness when compared to 

alternative spike-coding network [5]. Nevertheless, it also has its own limitation, one could notice 

that robustness of the network comes from highly-recurrent property associated to fast 

connections. Unfortunately, it is not accounting for long range communication neither for a rich 

repertoire of states from synchronous to asynchronous as sparse balanced network can offer [9].  

In this thesis, we suggested a new alternative for studying the dynamic of this type of 

spiking neural network, which stemmed from the increasing interest in the mechanisms behind 

spiking time generation and its implication in the whole dynamic of the brain [33]. As mentioned, 

the high amount of spike trains coming as input of a neuron makes the exact timing of a spike 

appears as a noise to the neuron itself and therefore is still really difficult to analyze. However, the 

use of the membrane potential density 𝜌 (𝑣, 𝑡), an analytic tool indicating the momentary state of 

the population as a whole, answers this issue and points out a direction for the early stage of a 

phase plane analysis using the mean field theory. Indeed, this approach offers different 

perspectives for further work. 

First, we started to explore the dynamics of the membrane potential density but some 

rigorous computation of its derivation should be made. Also, further analyses of its dynamics itself 

may led us to explore different critical points, if some [44]. This thesis finds that a single isolated 

neuron dynamic accesses a limit cycle when on a stationary state. Does the analysis of the density 

variable, that replace the random character of spike times in a large network, can bring new 

information on pattern of oscillations for the spike trains? For instance, could we observe any 

particular patterns of spikes when the network processes a specific task?  
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To go further, maybe, we could also adapt the work and the idea behind [5]. They discussed 

how neurons and networks adapt to an unexpected event, as the killing of some neurons for 

example. How does the density variable would react to the adaptation mechanism of the neural 

network? And what do the different patterns that we might have observed earlier, become along 

the adaptation process? What about after a stationary state is reached? This work only focuses on 

a theoretical idea but it now needs to be developed along real task-processing. 
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