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Conventional approaches to radiologic response assessment are inadequate for early 

therapy response assessment (ETRA) of glioblastoma multiforme (GBM), as they rely on slowly 

changing measures of therapeutic effect, e.g., changes in tumor size or in contrast enhancement on 

magnetic resonance imaging (MRI). Positron emission tomography (PET) imaging of GBM 

glucose metabolism using 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) has exhibited some 

success in diagnostic imaging of GBM; however, false-positive uptake caused by inflammation at 

the tumor site as well as high background uptake in uninvolved brain tissue limits its use for ETRA. 

 

2-(5-[18F]fluoro-pentyl)-2-methylmalonic acid ([18F]ML-10) has recently been proposed as 

a PET radiotracer for imaging apoptosis. Molecular imaging of apoptosis is an attractive approach 

to ETRA of GBM, as it would provide a direct measure of therapeutic effect and a framework 

within which to interpret and compare efficacies of competing therapies. Previous studies have 

demonstrated the safety and bioavailability of [18F]ML-10 in healthy humans. However, the 

pharmacokinetic (PK) properties of [18F]ML-10 have not been evaluated. 
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This dissertation examines the PK properties of [18F]ML-10 in a cohort of human subjects 

receiving treatment for GBM. [18F]ML-10 time-course in GBM was studied on a whole tumor and 

voxelwise level. [18F]ML-10 uptake was modeled as the response of a linear system using the 

radiotracer concentration in blood (measured from the PET image) as the input function (IF). In 

the whole tumor analysis, candidate models for the IF and GBM impulse response function (IRF) 

were fit simultaneously using a maximum likelihood approach. The relative merits of the joint 

IF/IRF models were compared using the Akaike information criterion and model parameter 

estimability considerations. Spectral analysis was performed to support model selection and 

provide alternative estimates of standard PK uptake measures. The selected IF/IRF models were 

further interpreted through tissue compartmental modeling. Standard PK measures of radiotracer 

uptake derived from models were evaluated for their utility in ETRA for a limited number of 

subjects. Finally, GBM heterogeneity in response to therapy was evaluated through a voxelwise 

analysis of [18F]ML-10 uptake. Comparison was made between [18F]ML-10 uptake at an ETRA 

time-point and later change in tumor cellularity measured using diffusion weighted MRI. 
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1.0  INTRODUCTION 

Glioblastoma multiforme (GBM) is a World Health Organization (WHO) grade IV 

astrocytoma and is the most common and most aggressive form of primary brain tumor [1]. In the 

United States alone, GBM account for 60-70% of primary brain tumors diagnosed each year [1-

3]. The current standard of care for newly diagnosed GBM patients typically includes tumor 

debulking surgery followed by radiotherapy (RT) plus concomitant temozolomide (TMZ) 

chemotherapy [4]. Despite treatment, overall prognosis for patients suffering from GBM remains 

poor with tumor recurrence occurring in approximately 90% of patients [4]. Median overall 

survival for GBM patients enrolled in clinical trials is approximately 15-18 months, with a 5-year 

overall survival of less than 5% [4-6]. 

 

Image based biomarkers that quantify GBM response to therapy early after therapy 

institution may increase overall survival by quickly identifying patients that are not responding to 

a particular therapy, thereby providing radiologists and oncologists with a rationale for therapy 

modulation. Furthermore, methods for evaluation of therapeutic efficacy early after therapy 

institution are essential for reducing systemic toxicity, treatment delays, and drug trial expense.  
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Current methods for evaluating GBM response to therapy rely largely on assessing changes 

in tumor morphology on contrast enhanced (CE) magnetic resonance imaging (MRI) and then 

classifying tumor size reduction according to standard criteria such as the Response Evaluation 

Criteria in Solid Tumors (RECIST) [7] and the Response Assessment in Neuro-Oncology (RANO) 

[8]. However, such methodology for response assessment is limited, as changes in tumor size can 

be slow relative to the time scale of the underlying molecular physiology. Moreover, the degree of 

contrast enhancement by a GBM can be influenced by several non-tumor processes, including 

ischemia, radiation necrosis, and blood-brain-barrier breakdown, all of which can contribute to a 

transient increase in contrast enhancement on MRI mimicking true progression [9, 10]. In general, 

patients exhibiting this apparent radiologic progression, or “pseudoprogression”, on CE-MRI 

report no worsening of neurologic symptoms [11]. At present, there are no imaging methods that 

can reliably discern pseudoprogression from true progression. As a result, some radiologists have 

suggested that contrast enhancement observed on MRI in previously radiation treated regions 

should not be diagnosed as progression if the enhancement is observed less than 3 months after 

completion of radiotherapy [12, 13]. This represents a significant shortcoming in the management 

of GBM. 

 

Positron emission tomography (PET) imaging of GBM glucose metabolism using 2-

[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) has exhibited some success in diagnostic imaging of 

GBM; however, false-positive uptake caused by inflammation at the tumor site as well as overall 

high background uptake in uninvolved brain tissue limits the use of [18F]FDG PET for GBM early 

therapy response assessment [14]. 
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1.1 PURPOSE OF THIS DISSERTATION 

2-(5-[18F]fluoro-pentyl)-2-methylmalonic acid ([18F]ML-10) has recently been proposed 

as a PET radiotracer for imaging apoptosis. Molecular imaging of apoptosis is an attractive 

approach to early therapy response assessment of GBM, as it would: a) provide a direct measure 

of therapeutic effect (thereby potentially providing the earliest possible indication of therapy 

response) and b) provide a framework within which to interpret and compare efficacies of 

competing therapies. Previous studies have demonstrated the safety and bioavailability of 

[18F]ML-10 in healthy humans. However, the pharmacokinetic (PK) properties of [18F]ML-10 

have not been reported for healthy or diseased tissue anywhere in the body. 

 

This dissertation examines the PK and brain distribution properties of the novel PET 

apoptosis tracer [18F]ML-10 in a cohort of human GBM subjects receiving treatment for GBM. A 

detailed understanding of these properties is essential to the development of patient imaging 

protocols and accurate quantitative methodology. Moreover, evidence of favorable [18F]ML-10 

PK in GBM at either the whole tumor or voxelwise level will be used as support for future studies 

that address more specific questions regarding radiotracer uptake.  

 

As stated above, the PK of [18F]ML-10 have not been previously investigated. Therefore, 

a major focus of this study is on development of quantitative methodology. To this end, [18F]ML-

10 time-course in GBM was studied on a whole tumor and voxelwise level. In both cases, [18F]ML-

10 uptake was modeled as the response of a linear time-invariant system using the radiotracer 

concentration in blood as the input function. No arterial blood sampling was performed. Therefore, 
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for each [18F]ML-10 PET scan the radiotracer concentration in the blood was measured directly 

from the image, yielding an image-based input function (IBIF). 

 

In the whole tumor analysis, candidate models for the IBIF and GBM impulse response 

function (IRF) were fit simultaneously using a maximum likelihood approach. The relative merits 

of the joint IBIF/IRF models were compared using the Akaike information criterion and model 

parameter estimability considerations. Spectral analysis was performed to support model selection 

and provide alternative estimates of standard PK uptake measures. The selected IBIF/IRF models 

were further interpreted through tissue compartmental modeling. PK measures of radiotracer 

uptake derived from fitted joint IBIF/IRF models were evaluated for their utility in early therapy 

response assessment for a limited number of subjects using progression-free survival (PFS) and 

overall survival (OS) as clinical endpoints. Finally, the potential to quantify heterogeneity in GBM 

treatment response is explored through voxelwise modeling of [18F]ML-10 uptake measures.  
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2.0  PET PHYSICS 

As described in the following paragraphs, positron emission tomography (PET) is a method 

for producing an image of the distribution of positron emitting radioactivity in an object. The 

technique requires a scanner to detect the radiation and the implementation of processing 

algorithms to produce the image. Important to this work, PET allows the production of a time-

sequence of images from which the changing distribution of radioactivity can be determined. 

 

A positron is the antimatter conjugate of an electron. When an electron and a positron meet 

they interact and annihilate to produce 2 coincident photons, each with energy 511 keV, that are 

emitted at 180 degrees apart in the center-of-mass system [15]. Positron emission tomography 

imaging platforms are outfitted with detectors optimized for detecting 511 keV photons [15]. 

Generally, these detectors consist of scintillator elements (typical size 4 mm x 4 mm face, 20 mm 

depth) arranged in a grid pattern or “block” (64 or more elements per block, typical) with blocks 

(72 or more) arranged in a ring [16-18]. Several rings of block detectors (e.g. 4 or more) are 

arranged one after another creating a cylindrical field of view (FOV). The subject being imaged is 

placed in the cylinder so that the rings of detectors surround the subject [15]. Typical axial FOVs 

are: 15.5 cm for Siemens HR+ [16] and 25.8 cm for Siemens mMR [17, 18]. The cylindrical 

arrangement of detectors in PET scanners allows for the detection of both emitted photons in 
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coincidence in separate detectors [15]. The line defined by the two detectors is known as a line of 

response (LOR) and the various combinations of pairs detectors form a set of LORs [15]. 

Collection of annihilation count rates along the various LORs produces sufficient information to 

reconstruct an image of the distribution of radioactivity in the [15]. 

 

511 keV positrons have sufficiently high energy to penetrate bone, including the skull. This 

property allows for real-time, in vivo measurement of biologic processes using PET through use 

of radio-labeled probes that follow (or “trace”) the process of interest. In a typical PET experiment, 

a small amount of tracer labeled with a positron emitting nuclide is injected into the subject and 

the time-course of tracer radioactivity concentration (also called a time-activity curve) in the target 

region is measured and quantified. Essentially any biologic process, for which a suitable probe can 

be isolated/synthesized and labeled with a positron emitting isotope, can be quantified using PET. 

Some examples include: glucose metabolism using [18F]FDG [19, 20], dopamine receptor density 

in brain tissue using [11C]raclopride [21], and protein formation using methyl-[11C]-L-methionine 

[22].  

 

Lassen and Perl [23] define a tracer as a molecular indicator that exactly follows (i.e. traces) 

the path of the systemic substance (i.e. the tracee) of interest (e.g. albumin). As far as the body 

system is concerned, the tracer is indistinguishable from the tracee [23]. In practice this definition 

of tracer is often relaxed to include both radio-labeled molecules that only proceed through a 

portion of the metabolic pathway of the tracee, as well as radio-labeled indicator molecules that 

bind to systemic receptors. For example, [18F]FDG is by far the most commonly used PET radio-

labeled compound for cancer staging and follow-up, acting as a tracer for glucose metabolism in 
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the tumor. However once in the cell [18F]FDG gets phosphorylated by hexokinase to form 

[18F]FDG-6-phosphate, which is unable to continue through the Krebs cycle, in contrast to the 

tracee (i.e. glucose); effectively trapping the now 18F-labeled metabolite in the cell [19, 20]. Hence, 

by strict definition [18F]FDG is not a tracer, though it is commonly used as such. 

 

The Becquerel (Bq) is the unit of radioactivity in the International System of Units [24]. 1 

Bq is equal to 1 disintegration per second [24]. The Curie is also a commonly used unit of 

radioactivity in PET imaging (1mCi = 37 MBq). In research applications typical injected doses of 

radioactivity are between 5-15mCi, with the administered mass of tracer being on the order of 

20μg or less. Generally, a standard with known radioactivity concentration is used to convert the 

count-rate of detected annihilation events by the PET scanner to concentration of radioactivity. As 

such, the final reconstructed PET image will typically have units of kilobecquerel per milliliter 

(kBq/ml). 

 

Commonly used positron emitting radionuclides in PET imaging are 18F, 11C, 13N, and 15O 

though there are others [24]. Depending on the energy of the emitted positron, which depends on 

radionuclide, the emitted positron may travel a few millimeters from the emission site before 

interacting with an electron and annihilating (an effect known as positron range) [25]. Positron 

range is one effect that fundamentally limits the resolution of PET imaging. Additional 

fundamental limiters of PET resolution are non-collinearity of the emitted 511 keV photons, and 

scanner geometry/hardware.  
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In PET image reconstruction algorithms, the coincident photons are commonly 

approximated as having been emitted 180 degrees apart (i.e. a long a line) producing the LOR for 

that annihilation event. However, this is only true if the annihilation event occurs with both the 

positron and electron at rest. In general, the center of mass of the electron-positron pair will have 

some non-zero momentum at the time of the annihilation event. Hence the 2 emitted 511 keV 

photons are generally not emitted at a perfect 180 degrees apart (i.e. they are not co-linear) as is 

approximated. This produces additional uncertainty in the location of the annihilation event, and 

has been estimated to reduce image resolution by an additional 1.5 mm [26, 27]. Moreover, the 

impact of noncollinearity on image resolution is greater as the radius of the detector rings gets 

larger [26, 27].  

 

Finally, the design and arrangement of the detectors, the scintillation material used for 

stopping the emitted photons, and the scanner electronics used to process detected events all affect 

the fundamental resolution of the PET scanner. 

2.1 THE BASIC MATHEMATICS OF IMAGE RECONSTRUCTION FROM 

PROJECTION DATA 

Fundamentally, PET scanners measure the count rate of coincident 511keV photons along 

the LOR between each pair of detectors. The basic mathematics required for reconstruction of a 

PET image is most easily explained in 2-dimensions (2D); hence that will be the approach used in 

this dissertation. However, in practice PET projection data are generally acquired in 3-dimensions 
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(3D) and require some pre-processing before the reconstruction algorithms can begin. Further 

details on the processing required to prepare measured PET projection data for reconstruction as 

well as the mathematics required for image reconstruction of 3D projection data can be found in 

the following references [26, 28, 29]. 

 

Figure 2-1 shows a simplified cartoon of a PET scanner in 2D with Cartesian x-y coordinate 

system. The rectangles arranged along the perimeter of a circle represent individual PET detectors. 

The large blue-oval in the center of the PET scanner represents an object with a uniform amount 

of radioactivity, while the smaller gray and orange ovals represent objects that attenuate the transit 

of emitted photons; though they are assumed to contain no radioactivity themselves. The black-

dotted lines represent two LORs through the object that cross the line ℓ at right-angles. 

Mathematically, these two LORs represent individual line integrals of radioactivity that intersect 

the line ℓ at points 𝜌𝜌1 and 𝜌𝜌2. The angle 𝜃𝜃0 that the lateral line ℓ makes with the x-y axis is called 

the projection angle. The set of all possible line integrals that cross the lateral line ℓ  at right-angles 

is called the projection of the object at angle 𝜃𝜃0, and denoted 𝜙𝜙(ℓ,𝜃𝜃0). In the continuous case, 

𝜙𝜙(ℓ,𝜃𝜃0) has the form of a continuous distribution of line-integral values as shown in figure 2-1.  
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Figure 2-1. Two-Dimensional Cross-Section of PET Scanner with Coordinates System.  

 

The collection of individual projections 𝜙𝜙(ℓ,𝜃𝜃) over the angular range 𝜃𝜃 ∈ [0,𝜋𝜋] comprise 

the measured data in PET. Given the measured projection data, two common analytic methods of 

reconstructing the generating radioactivity distribution are: filtered back projection (Section 2.1.2) 

and convolution back projection (Section 2.1.3). However, both of these reconstruction methods 

make use of the Fourier slice theorem, which is describe in the next section. 
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2.1.1  The Fourier Slice Theorem 

The Fourier slice theorem is the fundamental relationship on which all projection-based 

image reconstruction methods are reliant [29-31]. It relates the Fourier transform of each 1D 

projection to the 2D Fourier transform of the activity distribution. Specifically, (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.1) gives 

the general equation for all possible 2D projections through the image data 𝑓𝑓(𝑥𝑥, 𝑦𝑦). Using figure 

2-1 above as a guide, ℓ represents the position along a lateral line with angle 𝜃𝜃 in the x-y coordinate 

system, �̅�𝑥 denotes the vector of x and y coordinates (i.e. �̅�𝑥 = [𝑥𝑥, 𝑦𝑦]𝑇𝑇), and  𝐸𝐸� denotes the unit 

vector [𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) , 𝑐𝑐𝑠𝑠𝐸𝐸(𝜃𝜃)]𝑇𝑇 that mathematically describes the angle 𝜃𝜃 that the line ℓ makes with 

the x-y axis. 

 

�
𝛟𝛟(𝓵𝓵,𝜽𝜽) = ∫ ∫ 𝒇𝒇(𝒙𝒙,𝒚𝒚)𝜹𝜹(𝒙𝒙�𝑻𝑻 ∙ 𝒏𝒏� − 𝓵𝓵)∞

−∞
∞
−∞ 𝒅𝒅𝒙𝒙𝒅𝒅𝒚𝒚

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘, 𝒏𝒏� = [𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽) , 𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽)]𝑻𝑻
 (Eqn. 2.1.1) 

 
 
 
The 1D Fourier transform of (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.1) with respect to ℓ is given in (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.2). 

 

𝚽𝚽(𝝆𝝆,𝜽𝜽) = 𝓕𝓕𝟏𝟏𝟏𝟏{𝝓𝝓(𝓵𝓵,𝜽𝜽)} = ∫ 𝝓𝝓(𝓵𝓵,𝜽𝜽)𝒘𝒘−𝟐𝟐𝟐𝟐𝟐𝟐𝝆𝝆𝓵𝓵𝒅𝒅𝓵𝓵∞
−∞  (Eqn. 2.1.2) 

 
 
 
Substitution of (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.2) into (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.1) gives (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.3), which yields 

(𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.4) by the sifting property of the Dirac delta-function. 
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𝚽𝚽(𝝆𝝆,𝜽𝜽) = ∫ ∫ 𝒇𝒇(𝒙𝒙,𝒚𝒚)∞
−∞ �∫ 𝜹𝜹(𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽) + 𝒚𝒚𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽) − 𝓵𝓵)𝒘𝒘−𝟐𝟐𝟐𝟐𝟐𝟐𝝆𝝆𝓵𝓵𝒅𝒅𝓵𝓵∞

−∞ �𝒅𝒅𝒙𝒙𝒅𝒅𝒚𝒚∞
−∞  (Eqn. 2.1.3) 

 

𝚽𝚽(𝝆𝝆,𝜽𝜽) = ∫ ∫ 𝒇𝒇(𝒙𝒙,𝒚𝒚)∞
−∞ 𝒘𝒘−𝟐𝟐𝟐𝟐𝟐𝟐𝝆𝝆�𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽)+𝒚𝒚𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽)�𝒅𝒅𝒙𝒙𝒅𝒅𝒚𝒚∞

−∞  (Eqn. 2.1.4) 

 
 
 
By defining the variables 𝑢𝑢 and 𝑣𝑣 such that 𝑢𝑢 ≜ 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) and 𝑣𝑣 ≜ 𝜌𝜌𝑐𝑐𝑠𝑠𝐸𝐸(𝜃𝜃), (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.4) 

can be re-written as in (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.5) to show the explicit relationship between Φ(𝜌𝜌,𝜃𝜃) and the 2D 

Fourier transform 𝐹𝐹(𝑢𝑢, 𝑣𝑣) of the object being imaged 𝑓𝑓(𝑥𝑥,𝑦𝑦). 

 

�
𝚽𝚽(𝝆𝝆,𝜽𝜽) = ∫ ∫ 𝒇𝒇(𝒙𝒙,𝒚𝒚)∞

−∞ 𝒘𝒘−𝟐𝟐𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙+𝒚𝒚𝒚𝒚)𝒅𝒅𝒙𝒙𝒅𝒅𝒚𝒚 = 𝑭𝑭(𝒙𝒙,𝒚𝒚) ∞
−∞

𝒙𝒙 ≜ 𝝆𝝆𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽); 𝒚𝒚 ≜ 𝝆𝝆𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽);
 (Eqn. 2.1.5) 

 
 
 
From (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.5) the Fourier slice theorem immediately follows and is written below in 

(𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.6). In English, the Fourier slice theorem says that the 1-D Fourier transform of a 

projection 𝜙𝜙(ℓ,𝜃𝜃) is equal to a line passing through the origin with angle 𝜃𝜃 in the Fourier space 

of the activity distribution. 

 

𝚽𝚽(𝝆𝝆,𝜽𝜽) = 𝑭𝑭�𝝆𝝆𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽),𝝆𝝆𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽)� (Eqn. 2.1.6) 
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2.1.2 Filtered Backprojection 

(𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.7) gives the general equation for the 2D inverse Fourier transform of the activity 

distribution 𝑓𝑓(𝑥𝑥,𝑦𝑦), which can be transformed using polar coordinates to give (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.8). 

 

𝒇𝒇(𝒙𝒙,𝒚𝒚) = ∫ ∫ 𝑭𝑭(𝒙𝒙,𝒚𝒚)∞
−∞ 𝒘𝒘𝟐𝟐𝟐𝟐𝟐𝟐(𝒙𝒙𝒙𝒙+𝒚𝒚𝒚𝒚)𝒅𝒅𝒙𝒙𝒅𝒅𝒚𝒚∞

−∞  (Eqn. 2.1.7) 

 

𝒇𝒇(𝒙𝒙,𝒚𝒚) = ∫ ∫ 𝝆𝝆𝑭𝑭�𝝆𝝆𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽),𝝆𝝆𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽)�∞
𝟎𝟎 𝒘𝒘𝟐𝟐𝟐𝟐𝟐𝟐𝝆𝝆�𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽)+𝒚𝒚𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽)�𝒅𝒅𝝆𝝆𝒅𝒅𝜽𝜽𝟐𝟐𝟐𝟐

𝟎𝟎  (Eqn. 2.1.8) 

 
 
 

As a result of the cylindrical symmetry of the PET scanner, (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.8) can be re-cast as 

(𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.9) below. 

 

𝒇𝒇(𝒙𝒙,𝒚𝒚) = ∫ ∫ |𝝆𝝆|𝑭𝑭�𝝆𝝆𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽),𝝆𝝆𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽)�∞
−∞ 𝒘𝒘𝟐𝟐𝟐𝟐𝟐𝟐𝝆𝝆�𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽)+𝒚𝒚𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽)�𝒅𝒅𝝆𝝆𝒅𝒅𝜽𝜽𝟐𝟐

𝟎𝟎  (Eqn. 2.1.9) 

 
 
 

From the Fourier slice theorem in (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.6), 𝐹𝐹�𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃),𝜌𝜌𝑐𝑐𝑠𝑠𝐸𝐸(𝜃𝜃)� can be replaced by 

the 1D Fourier transform of the projection data Φ(𝜌𝜌,𝜃𝜃) yielding (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.10).  

 

𝒇𝒇(𝒙𝒙,𝒚𝒚) = ∫ ∫ |𝝆𝝆|𝚽𝚽(𝝆𝝆,𝜽𝜽)∞
−∞ 𝒘𝒘𝟐𝟐𝟐𝟐𝟐𝟐𝝆𝝆�𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽)+𝒚𝒚𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽)�𝒅𝒅𝝆𝝆𝒅𝒅𝜽𝜽𝟐𝟐

𝟎𝟎  (Eqn. 2.1.10) 

 
 
 



 14 

 

(𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.10) can be further simplified by defining ℓ(�̅�𝑥,𝜃𝜃) ≜ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) + 𝑦𝑦𝑐𝑐𝑠𝑠𝐸𝐸(𝜃𝜃), to 

produce (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.11). (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.11) gives the general form of the filtered backprojection 

equation in 2D. The equation in brackets is called the filtering equation. From (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.11) it can 

be observed that the radioactivity distribution 𝑓𝑓(𝑥𝑥,𝑦𝑦) can be reconstructed by filtering the 1D 

Fourier transform of each projection with a ramp filter |𝜌𝜌|. 

 

𝒇𝒇(𝒙𝒙,𝒚𝒚) = ∫ 𝒅𝒅𝜽𝜽�∫ |𝝆𝝆|𝚽𝚽(𝝆𝝆,𝜽𝜽)∞
−∞ 𝒘𝒘𝟐𝟐𝟐𝟐𝟐𝟐𝝆𝝆𝓵𝓵𝒅𝒅𝝆𝝆�

𝓵𝓵(𝒙𝒙�,𝜽𝜽)=𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽)+𝒚𝒚𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽)
𝟐𝟐
𝟎𝟎  (Eqn. 2.1.11) 

 

2.1.3 Convolution Backprojection 

(𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.11) above gives the general formula for reconstructing the 2D radioactivity 

distribution 𝑓𝑓(𝑥𝑥,𝑦𝑦) from its corresponding set of projections. However, using the convolution 

theorem of Fourier transforms, the filtering equation can be re-written in terms the convolution 

operation as in (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.12), where ℱ1𝐷𝐷 
−1{|𝜌𝜌|} denotes the 1D inverse Fourier transform of the 

ramp filter |𝜌𝜌|, ϕ(𝜌𝜌,𝜃𝜃) denotes the set of projections obtained from 𝑓𝑓(𝑥𝑥,𝑦𝑦), and ⊛ denotes the 

convolution operation. Defining 𝑐𝑐(ℓ) ≜ ℱ1𝐷𝐷 
−1{|𝜌𝜌|} gives the general equation for convolution 

backprojection in 2D, (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.13). 

 

𝒇𝒇(𝒙𝒙,𝒚𝒚) = ∫ 𝒅𝒅𝜽𝜽�𝓕𝓕𝟏𝟏𝟏𝟏 
−𝟏𝟏 {|𝝆𝝆|}⊛𝛟𝛟(𝓵𝓵,𝜽𝜽)�

𝓵𝓵=𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽)+𝒚𝒚𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽)
𝟐𝟐
𝟎𝟎  (Eqn. 2.1.12) 

 

�
𝒇𝒇(𝒙𝒙,𝒚𝒚) = ∫ �∫ 𝛟𝛟(𝓵𝓵,𝜽𝜽)𝒄𝒄(𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽) + 𝒚𝒚𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽) − 𝓵𝓵)∞

−∞ 𝒅𝒅𝓵𝓵�𝒅𝒅𝜽𝜽𝟐𝟐
𝟎𝟎

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘, 𝒄𝒄(𝓵𝓵) = 𝓕𝓕𝟏𝟏𝟏𝟏 
−𝟏𝟏 {|𝝆𝝆|}

 (Eqn. 2.1.13) 
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However, the ramp filter |𝜌𝜌| is non-integrable and hence does not have an inverse Fourier 

transform. Therefore, in practice, the ramp filter |𝜌𝜌| is multiplied by an apodizing window function 

𝑊𝑊(𝜌𝜌), such that the inverse Fourier transform of the product |𝜌𝜌|𝑊𝑊(𝜌𝜌) exists. That is, in practice, 

the 2D radioactivity distribution is approximated by (𝐸𝐸𝐸𝐸𝐸𝐸. 2.1.14). Typical window functions 

𝑊𝑊(𝜌𝜌) used in PET image reconstruction are the square, Hann, and Gaussian windows [26, 29, 31]. 

 

�
𝒇𝒇(𝒙𝒙,𝒚𝒚) ≈ ∫ [𝒄𝒄�(𝓵𝓵) ⊛𝛟𝛟(𝓵𝓵,𝜽𝜽)]𝓵𝓵=𝒙𝒙𝒄𝒄𝒄𝒄𝒄𝒄(𝜽𝜽)+𝒚𝒚𝒄𝒄𝒔𝒔𝒏𝒏(𝜽𝜽)𝒅𝒅𝜽𝜽

𝟐𝟐
𝟎𝟎

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘, 𝒄𝒄�(𝓵𝓵) = 𝓕𝓕𝟏𝟏𝟏𝟏 
−𝟏𝟏 {|𝝆𝝆|𝑾𝑾(𝝆𝝆)}

 (Eqn. 2.1.14) 

 

2.2 METHODS OF PET IMAGE RECONSTRUCTION 

Several algorithms exist for reconstructing PET projection data, and can be broadly 

classified into two categories: analytic or iterative methods [30, 32]. The most commonly used 

methods for analytic image reconstruction are filtered back projection (FBP) or convolution back-

projection (CBP) [26, 30]. Analytic reconstruction methods essentially work to apply the inverse 

Radon transform to the measure projection data and generate the corresponding distribution of 

radioactivity [26, 30]. As a result, analytic methods are less computationally intensive compared 

to their iterative counter-parts and produce images for which their noise properties are easily 

evaluated, since each voxel represents the sum of a large number of random variables. However, 

the principal drawback of these methods is that they treat each measured projection as if it were, 
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in fact, a true (i.e. a non-random) projection of the tracer distribution; thereby ignoring the random 

nature of the radio-active decay processes that produced the measured LORs [26, 29, 30, 32]. 

 
 
In contrast, iterative reconstruction methods treat the set of measured projections as a single 

random realization of the set of true projections and explicitly include the randomness of the count 

rates as part of the reconstruction algorithm [26, 32]. Generally, these approaches involve 

optimization of a cost-function that contains information about the scanner hardware properties, 

the injected tracer, and the attenuation properties of the subject being scanned; though, additional 

information can also be included [26, 32]. The most popular method of iterative reconstruction is 

based on maximizing a log-likelihood function for which the detected coincident photons are 

assumed to follow a Poisson distribution [26, 32]. The most widely used optimization algorithms 

for maximizing this log-likelihood function are: expectation-maximization (EM) and its 

accelerated version ordered subset expectation maximization (OSEM) [26, 32].  

 

Iterative methods generally have the advantage of producing images with less streaking 

artifacts as well as better contrast in regions of low tracer uptake (especially with regard to PET 

imaging of the body) [26, 32]. Moreover, iterative methods that utilize Bayesian approaches can 

readily incorporate prior information about the tracer into image reconstruction [26, 32]. For 

example, iterative methods can be used to generate parametric maps of tracer pharmacokinetic 

model parameters as part of the image reconstruction process [33]. However, some disadvantages 

of iterative methods include high computational burden and the noise properties of the resulting 

images can be difficult to evaluate [26, 32]. 
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2.3 SOME IMPORTANT CORRECTIONS APPLIED TO PET DATA 

As part of the image reconstruction process, PET data need to be corrected for several 

degrading effects to produce an image set that can be accurately quantified. These include 

corrections for: photon attenuation, scatter and random coincidences, detector dead time, and 

detector normalization. The final reconstructed resolution of a PET scan is typically ~5-6 mm full 

width at half maximum (FWHM) and may vary as a function of position and direction in the FOV. 

2.3.1 PET Photon Attenuation Correction 

In order to be to be “counted” by the PET scanner both photons from an annihilation event 

must be detected. When one or both photons originating from an annihilation event are “lost” the 

photon/photons are said to have been attenuated. The probability of a photon being attenuated 

before reaching a detector increases with tissue density and distance traveled through a medium. 

Failure to account for photon attenuation in PET data will result in a gradual increase in 

underestimation of radioactivity from edge of skull/body to the center [31]. The underestimation 

of tracer activity concentration is especially dramatic in dense tissue. Therefore, without an 

accurate knowledge of attenuation, correctness of the final PET image is compromised. 

 
Attenuation measurements are a routine part of a PET imaging protocol. Because both 

annihilation photons are detected in coincidence, attenuation correction of PET data can be 

implemented via multiplication of the appropriate correction factors along each LOR. In 

standalone PET, attenuation factors are usually measured directly using a positron-emitting source 

[source-based attenuation correction (SAC)], e.g. 68Ge/68Ga. More recently, with the advent of 



 18 

 

dual modality PET/CT [34], the required attenuation information is obtained from CT data [CT-

based attenuation correction CTAC)]. The CTAC method is an indirect method in which 

attenuation is measured at CT energies and then transformed to values appropriate for 511 keV 

using some simple assumptions about the atomic make-up of the body [35-42].  

2.3.1.1 Approaches to MR-Based Attenuation Correction (MRAC) 

While the availability of dual modality PET/MR imaging provides opportunities in clinical 

oncology for and clinical trials, MRI-AC is fundamentally different from either of these 

approaches in that no actual measurement of attenuation is performed. In the Siemens mMR, MRI-

AC is implemented using the Dixon method [43, 44], in which both “in phase” and “opposed” T1 

spin echo images are acquired, from which are derived fat and water images. The manufacturer-

supplied software uses this data to classify voxels into one of 3 segments: air, fat, or soft tissue. 

Each of these segments is assigned a fixed 511 keV attenuation value. Because of the difficulty in 

imaging cortical bone, no such segment is included in the standard-release software.  

 

The review of Bezrukov et al [45] contains an in depth discussion of the state-of-the-art in 

production of a PET attenuation correction starting with MR data as well a concise summary of 

methods used in the head and body. Wagenknecht et al [46] provide an overview of methods with 

a special emphasis on the advantages and disadvantages of each. Here the two main approaches 

toward improving Dixon-based MRAC are summarized.  
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MR Pulse Sequence Based Methods 

In this approach, MR pulse sequences and methodologies are used to deduce attenuation 

properties given some assumptions about body makeup but without recourse to anatomical images 

from other modalities. Mainly, this work is based on the use of ultrashort echo time (UTE) pulse 

sequences to identify and characterize cortical bone. Historically, UTE has been evaluated as a 

method for MR-based assessment of bone-disease states e.g. [47]. Efforts are underway to adapt 

this method for improving MRAC in PET/MR. Assessment of MRAC employing UTE has been 

almost exclusively limited to the head, e.g., [48-50].  Application of UTE for whole-body scanning 

is technically difficult [51-53] although some authors have commented about the potential of 

MRAC/UTE in the body, e.g. [54]. Alternative pulse sequences and methodologies providing 

similar information to UTE, again, mainly in the head, are also being studied, e.g., the combination 

of short- and long-echo times [55].  

 

Atlas-Based and Template-Based Methods 

In this approach, an attenuation map is transformed to match the patient’s anatomy. A 

typical method employs an atlas of CT-based attenuation maps, each with a co-registered MR 

image. A subset of MR images is chosen from the atlas and warped to the patient’s MR. Each of 

the coregistered attenuation maps is warped using the transformation determined in MR warping 

process. The resulting patient aligned attenuation maps are then combined, for example, by 

averaging, to produce a patient-specific attenuation map. Additional operations may be used to 

improve the attenuation-map quality.  
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For example, Izquierdo-Garcia et al [56] developed a sophisticated atlas approach from 15 

subjects who had both a magnetization-prepared rapid gradient-echo (MPRAGE) MRI and a CT 

scan. Production of the atlas was accomplished using the freely available software SPM8 

(Wellcome Trust Centre for Neuroimaging http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The 

steps involved were to register each CT with the corresponding MPRAGE image, segment the 

MPRAGE images into 6 tissue classes with the assistance of a set of tissue priors contained within 

SPM8, warp the 15 subject segmentations into a common space, and co-warp the CTs. The 

resulting atlas consists of a tissue-class template and an averaged CT both in the same space. The 

atlas is used to generate a “pseudoCT” of a study-subject, again employing SPM8, by segmenting 

the study subject’s MPRAGE into tissue classes and warping this into the template space. The 

inverse transformation is then applied to the atlas CT to bring it into the study-subject’s space. 

This pseudoCT is then converted to a 511 keV linear attenuation coefficient image by scaling the 

pseudoCT values [57]. 

 

In 2017, Ladefoged et al [58] published a report comparing 11 post hoc attenuation 

correction methods for PET images acquired on integrated PET/MRI scanners. Their study 

concluded that all 11 tested AC method exhibited an acceptable average global performance [58]. 

However, they selected 5 of the tested methods as the best performing methods based on 

robustness, outlier analysis, and clinical feasibility [58]. The method of Izquierdo-Garcia et al [56] 

was selected as one of the 5 best performing post hoc AC methods [58]. 
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A Substitution Based Method Developed at the University of Pittsburgh 

Dual modality PET/MR, in which MR and PET data are acquired simultaneously is of great 

current interest in both the clinical and research domain. As noted elsewhere, quantitative PET 

requires compensation for events that are lost (or attenuated) due to the medium being imaged. In 

PET an exact compensation can be made for attenuated events. The correction requires a 

knowledge of the 511 keV attenuation factor along each LOR. The attenuation factor can be 

determined by placing a source at one end of the line of response and measuring the count rate in 

a detector at the other end of the LOR with attenuating material present and normalizing to the rate 

with attenuation material absent. Thus, attention factors range from 0-1. Attenuation information 

can also be encoded as an image of specific 511 keV attenuation or “𝜇𝜇-value” at each pixel (typical 

units, cm-1). In standalone PET, scanners typically are equipped with 511 keV radiation sources 

(e.g. 68Ge/68Ga) that can be used to make the required “transmission” measurements. In PET/CT, 

the CT data are used to generate a 511 keV 𝜇𝜇-image by scaling the CT-image [37-40].  

 

In contrast to standalone PET or PET/CT, in PET/MR attenuation information is deduced 

from the MR data and is not based on a transmission measurement. A common method of MR-

based attenuation correction uses the Dixon procedure [43, 44] in which fat and water images are 

used to classify voxels into one of several segments, typically air, fat, or soft tissue. Importantly, 

this method does not include a bone segment. Thus, while the method produces an overall useable 

attenuation correction, it does result in artifacts, particularly in the vicinity of bone. For example, 

in neuroimaging, Dixon MRAC has been shown [59, 60] to result in a bias that takes the form of 

a spatial gradient increasing from the skull (where attenuation is underestimated) toward the center 

of the head. However, improved algorithms for producing 𝜇𝜇-images from MR are being developed.  
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Recently, our facility has been producing 𝜇𝜇-images from MR data using the method of Izquierdo-

Garcia et al. [61] to replace the native 𝜇𝜇-images produced by our Siemens mMR PET/MR scanner.  

The method has been shown to perform well in a multisite evaluation of proposed techniques [62].  

The PET/MR images in this dissertation have all been produced using 𝜇𝜇-images generated using 

the method of ref. [61]. Thus, each 𝜇𝜇-image was created offline at some point after the original 

data acquisition. 

 

A complication of using a new attenuation correction is that it requires a new 

reconstruction, which itself requires the availability of the raw PET sinogram data, the scanner 

normalization, access to the manufacturer’s reconstruction engine, and the ability to load the new 

𝜇𝜇-image into the scanner’s database in a usable way. Due to initial problems with the Siemens 

mMR, a new product at the time of scan acquisition for this project, some blocks of sinogram data 

were lost. To remedy this particular situation as well as to generally provide a more usable pathway 

to attenuation replacement, we developed a new image-based 2D reprojection method, 

implemented in MATLAB, which does not require sinogram data or access to scanner software, 

for substituting one attenuation correction for another [63]. Briefly, approximate 2D sinograms are 

regenerated by applying the Radon transform (forward projection) to each plane of the PET image, 

performing the attenuation substitution, and then performing the inverse Radon transform (filtered 

back-projection). Additional details relating to this AC procedure can be found in Laymon et al 

[63]. The method was tested with both [18F]FDG [63] and [18F]ML-10 (unpublished) and found to 

provide accurate results.   
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2.3.2 Corrections for Scatter and Random Coincidences 

After the annihilation event, a coincident 511 keV photon may interact with an outer-shell 

electron of an atom in the tissue causing the photon to lose some fraction of its initial energy and 

deviate from its initial trajectory [31]. In this case, the photon is said to have undergone Compton 

scattering. If the scattered photon has not lost too much energy the during the interaction with the 

electron and is detected within the coincidence window of the detector pair, the un-scattered 

photon and the scattered photon will be counted as an annihilation event along the wrong LOR.  

 

A random detection event refers to the accidental counting of non-paired photons in 

coincidence [31]. Random events can occur if two annihilation events occur near simultaneously 

creating 2-pairs of annihilation photons. If one photon from each pair is lost due to attenuation, the 

two remaining photons may be detected in coincidence and, therefore, considered by the PET 

scanner to form a valid LOR. As in the case of photon scatter, the detection of random coincidence 

events leads to incorrect assignment of counts to a LOR and a general decrease in image contrast. 

 

A common approach to scatter correction in PET is to model it based on the attenuation 

map and the known behavior/properties of electromagnetic interactions [64, 65]. Additionally, one 

can set an energy threshold because the photons should be 511 keV but could be lower if scattered 

(could lose energy). The rate of random coincidences is generally estimated during each PET 

acquisition by using a delayed coincidence timing window or utilizing an approximation that 

relates the singles rate (i.e. the rate at which single un-paired photons are being detected) to the 

random coincidence rate [27]. 
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Finally, an additional degrading effect is the detection of multiple coincidence events. That 

is, the simultaneous detection of 3 or more annihilation photons within the coincidence detection 

widow of the scanner. Similar to random coincidence events, a multiple coincidence event may 

occur when two annihilation events occur at near simultaneous times producing 2-pairs of 

annihilation photons. However, if only one photon is lost to attenuation, then the remaining 3 

photons may be detected in coincidence; thereby producing more than one plausible LOR. The 

occurrence of multiple coincidence events ultimately leads to a loss of counts because the scanner 

throws them out when they occur. 

2.3.3 Correcting for Scanner Dead Time 

There is a non-zero minimum amount of time required by sub-systems within the PET 

scanner to process events, during which the system cannot process new events. The time window 

during which the scanner cannot process a new event is called “dead time”. Dead time depends on 

count-rate and the architecture of the PET system. Dead time models are routinely built into the 

scanner software by the manufacturer, and correction for loss of events due to scanner dead time 

is performed automatically. A more detailed discussion of detector dead-time and methods of 

correction can be found in the textbook by Knoll [66] as well as the review by Meikle and Badawi 

[27]. 
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2.3.4 Scanner Normalization 

As a result of several factors (e.g. differences in detector efficiencies), each LOR in a PET 

scanner will in general have differing detection sensitivities. Failure to account for these 

differences will result in several image artifacts, and, ultimately, prevent reconstruction of a 

quantitatively accurate image. The process of correcting for differences in LOR detection 

sensitivities is called normalization. Indeed, normalization correction of the measure projection 

data is required before most reconstruction algorithms can begin. The simplest approach to 

normalization, is to measure the individual correction factors for each LOR using a rotating 

positron line source (typically 68Ge); though other approaches can be followed [27]. 

2.4 TIME ACTIVITY CURVE MEASUREMENT FROM DYNAMIC PET 

ACQUISITIONS 

PET imaging allows for the study of physiologic processes in vivo through the acquisition 

of a time-series of images that each represent the distribution of radioactivity in the tissue of 

interest over a finite dwell time (or “frame”). Using the appropriate tracer, measures can be 

developed to quantify pathological changes in the physiologic process of interest. The principal 

means by which these measures are obtained and evaluated is via pharmacokinetic analysis of the 

time-course of radioactivity concentration in the tissue containing the physiologic process of 

interest. 
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The previous section detailed corrections that must be applied for accurate reconstruction 

of PET sinogram into a quantifiable image. However, from the stand-point of modeling the 

temporal profile of tracer uptake in tissue, additional corrections may be warranted to facilitate 

accurate quantification. These include correcting for contribution of radio-labeled metabolites to 

the tissue time-activity curve (TAC) as well as correction for radioactive decay. 

 

As mentioned above, PET detects annihilation events in vivo. This means that two tracers 

labeled with the same positron emitting radionuclide will be indistinguishable to the scanner, and, 

hence, the cumulative radioactivity from both tracers would be reconstructed into the same PET 

image. This feature of PET imaging is particularly important for tracers that undergo significant 

metabolism by the body, which results in the production of several different chemical species 

distinct from the parent tracer but are nonetheless labeled with a positron emitting nuclide. The 

effects of tracer metabolism are to reduce the overall concentration of parent tracer available for 

imaging, as well as to corrupt the true temporal profile of parent tracer concentration in the target 

tissue. Moreover, the effect of radio-labeled metabolites (or radio-metabolites) may be especially 

important in the blood as the blood tracer concentration is commonly used as the input tracer 

concentration for pharmacokinetic modeling. Thus, incorrect accounting of radio-metabolites in 

the blood may severely bias pharmacokinetic model parameters as well as any derived measures.  

 

Several approaches exists for identifying radio-metabolites from blood and tissue samples 

(e.g. high-performance liquid chromatography (HPLC) analysis) [67]. If a tracer is known to 

undergo significant metabolism in vivo and yield an appreciable concentration of radio-labeled 

biochemical species, then some method of correcting the blood and tissue TACs for radio-
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metabolites will be required. In the brain, the blood-brain-barrier (BBB) often prevents radio-

metabolites from leaving the vasculature and entering the tissue due to their usual high polarity, 

though exceptions do exist [68]. Approaches to metabolite correction can range from including 

radio-metabolite formation as part of the pharmacokinetic model of the tracer as in Price et al [68], 

to applying a population based correction [69]. However, caution is required when using a 

population-based metabolite correction for oncologic applications as the toxic effects of anti-

cancer therapy may modulate metabolite production [70, 71]. 

 

A second important consideration in the analysis of the time-course of tracer uptake is that 

of correcting measured TACs for radioactive decay. Often this correction is made during the image 

reconstruction process but is discussed here because of its importance in quantification of tracer 

uptake. The general equation describing the radioactive decay of a radioactive sample is given 

below in (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.1), where 𝐴𝐴0 denotes the initial radioactivity at time t = 0, and 𝜆𝜆 denotes the 

radioactive decay rate of the radionuclide. However, it is important to point out that this equation 

describes the instantaneous decay of a radioactive sample. This is a critical point since PET cannot 

reliably measure instantaneous radioactivity concentration, and, as a result, each PET frame is 

typically acquired over a finite time duration (e.g. minimum duration is typically 6 sec). 

 

𝑨𝑨(𝒕𝒕) = 𝑨𝑨𝟎𝟎𝒘𝒘−𝝀𝝀𝒕𝒕 (Eqn. 2.4.1) 

 
 
 
Therefore, in practice decay correction is applied to each PET frame by calculating the 

time of average decay for each frame dwell time. Specifically, let �̃�𝐴𝑘𝑘(𝑡𝑡) denote the time-averaged 



 28 

 

activity of the sample measured during the kth PET frame with corresponding frame start and end 

times denoted 𝑡𝑡𝑘𝑘𝑠𝑠 and 𝑡𝑡𝑘𝑘𝑒𝑒, respectively. Then, based on (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.1), the radioactivity at the start of 

the kth frame (decay corrected to the time of injection), 𝐴𝐴0𝑘𝑘, is given by (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.2), which yields 

(𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.3). 

 

𝑨𝑨𝟎𝟎𝒌𝒌 = 𝑨𝑨�𝒌𝒌(𝒕𝒕) � 𝟏𝟏
�𝒕𝒕𝒌𝒌
𝒘𝒘−𝒕𝒕𝒌𝒌

𝒄𝒄� ∫ 𝒘𝒘𝝀𝝀𝒕𝒕𝒕𝒕𝒌𝒌
𝒘𝒘

𝒕𝒕𝒌𝒌
𝒄𝒄 𝒅𝒅𝒕𝒕 � (Eqn. 2.4.2) 

 

𝑨𝑨𝟎𝟎𝒌𝒌 = 𝑨𝑨�𝒌𝒌(𝒕𝒕) �
�𝒘𝒘𝝀𝝀𝒕𝒕𝒌𝒌
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−𝒘𝒘𝝀𝝀𝒕𝒕𝒌𝒌
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𝒄𝒄�
� (Eqn. 2.4.3) 

 
 
 
For decay correction of PET data, the final decay correction factor for the kth frame, 𝑒𝑒𝜆𝜆�̅�𝑡𝑘𝑘, 

is obtained by defining a “time of average decay” 𝑡𝑡�̅�𝑘 as shown in (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.4), from which the 

value of 𝑡𝑡�̅�𝑘 for the kth frame is obtained: (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.5).  
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� (Eqn. 2.4.4) 
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� (Eqn. 2.4.5) 

 
 
 
With the definition of 𝑡𝑡�̅�𝑘 in (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.5) the measured sample activity �̃�𝐴𝑘𝑘(𝑡𝑡) can be decay 

corrected back to the injection time of the radiotracer using (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.6) below. 
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𝑨𝑨𝟎𝟎𝒌𝒌 = 𝑨𝑨�𝒌𝒌(𝒕𝒕)𝒘𝒘𝝀𝝀�̅�𝒕𝒌𝒌  (Eqn. 2.4.6) 

 

2.4.1 Approximate Model for Measurement Noise of Time-Activity Curve Data in PET 

A common assumption in PET quantification is to assume the measurement errors are 

independent and normally distributed with zero mean and individual variances proportional to the 

measured activity. This proposed error model is based on the Gaussian approximation to the 

Poisson distribution [66] as well as a heuristic argument relating the measured activity in a 

particular PET frame to an effective count-rate [72]. Moreover, the assumption of the measurement 

errors following a multivariate Gaussian distribution is particularly relevant when the PET image 

data have been re-constructed using filtered-backprojection and is based on the Central Limit 

Theorem, which states that the distribution of a sum of random variables converges to a Gaussian 

distribution with probability equal to one, independent of the distributions of the individual random 

variables being summed [73, 74]. 

 

Specifically, let 𝑁𝑁𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠 represent the number of effective counts that would have been 

emitted from a particular volume of interest during the ith PET frame of duration ∆𝑖𝑖𝑇𝑇, then the 

corresponding effective count-rate count rate, 𝑅𝑅𝑖𝑖, for the ith frame in that volume of interest is 

given by 𝑅𝑅𝑖𝑖 = 𝑁𝑁𝑖𝑖
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𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∆𝑖𝑖𝑇𝑇2
 under the assumption of Poisson counting noise. However, for each 

time window, the number of detected counts is proportional to the measured concentration 

multiplied by the time-length of the PET frame when no decay correction is applied.   
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Nevertheless, most PET imaging platforms automatically decay correct the reconstructed 

images, thus the final derivation of the sample variances of the time-activity curve will be 

presented in terms of the non-decay corrected signal, 𝑦𝑦𝑖𝑖, and the decay corrected signal, 𝑥𝑥𝑖𝑖. That 

is 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 ∗ 𝑒𝑒(�̅�𝑡𝑖𝑖∗𝜆𝜆) ,∀𝑠𝑠 where 𝑡𝑡�̅�𝑖 denotes the time of average radioactive decay over the ith PET 

frame, and 𝜆𝜆 denotes the decay rate of the positron emitter (e.g. for 18F, λ = 0.00631 min-1). 

Following this notation then, the effective measured counts in a particular volume of interest 

during the ith frame, 𝑁𝑁𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠, is proportional to  the non-decay corrected activity multiplied by the 

corresponding frame length, that is: 𝑁𝑁𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠 ∝ 𝑦𝑦𝑖𝑖 ∗ ∆𝑖𝑖𝑇𝑇 = �𝑥𝑥𝑖𝑖 ∗ 𝑒𝑒−(�̅�𝑡𝑖𝑖∗𝜆𝜆) � ∗ ∆𝑖𝑖𝑇𝑇. Therefore, an 

approximate formula for the noise variance of the non-decay corrected count rate in the ith frame 

is given by (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.7), where 𝛼𝛼 is a positive constant of proportionality.  
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𝝀𝝀�̅�𝒕𝒔𝒔 �
∆𝒔𝒔𝑻𝑻

� (Eqn. 2.4.7)  

 
 
 

While (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.7) gives an equation for the measurement variance associated with the 

non-decay corrected PET time-activity curve data, it is often useful to have an expression for the 

variance of the decay-corrected data. Since the decay corrected data are obtained by multiplying 

the uncorrected data by a factor of 𝑒𝑒𝜆𝜆�̅�𝑡𝑖𝑖 , the variance of the decay corrected data can be obtained 

by multiplying the variance of the uncorrected data by a factor of �𝑒𝑒𝜆𝜆�̅�𝑡𝑖𝑖 �
2
 resulting in (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.8) 

and (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.9) for the variance of the decay corrected data samples. 
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𝝈𝝈𝑵𝑵𝒄𝒄𝒘𝒘,𝒔𝒔
𝟐𝟐 = 𝜶𝜶𝟐𝟐 ��𝒙𝒙𝒔𝒔∗𝒘𝒘

𝝀𝝀�̅�𝒕𝒔𝒔 �
∆𝒔𝒔𝑻𝑻

� (Eqn. 2.4.8) 
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𝟐𝟐 = 𝜶𝜶𝟐𝟐𝒚𝒚𝒔𝒔𝟐𝟐; 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘, 𝒚𝒚𝒔𝒔𝟐𝟐 ≜

�𝒙𝒙𝒔𝒔∗𝒘𝒘𝝀𝝀�̅�𝒕𝒔𝒔 �
∆𝒔𝒔𝑻𝑻

 (Eqn. 2.4. 9) 

 

2.4.2 Partial Volume Effect is a Practical Limiter of PET Resolution 

In PET, the partial volume effect (PVE), sometimes called partial volume averaging, refers 

to a size dependent bias between the apparent radioactivity concentration in reconstructed voxel 

values on PET and the true radioactivity concentration [27, 75]. The PVE is a result of 2 separate 

effects that conspire to distort reconstructed voxel values from their true values [75]. The first 

effect is that of finite PET scanner resolution, which results in an overall blurring of the PET image 

[75]. The second contributor to PVE is the voxel sampling grid [75]. Specifically, the contours of 

the rectangular voxels will not in general match the contours of the radioactivity distribution [75]. 

As a result, most image voxels will contain more than one tissue type, each of which may have a 

different radioactivity concentration [75]. The observed activity in these voxels will be the average 

activity of the underlying tissue types [75]. 

 
Many methods have been suggested to correct brain PET images for PVE [76]. For 

example, the Meltzer method [77] treats each brain PET image as being composed of matter (MA, 

the combination of gray and white matter) from which PET signal originates or ‘’not matter’’ (NM; 

the rest of the PET FOV). The measured concentration (𝐶𝐶𝑃𝑃𝑃𝑃𝑇𝑇) within a VOI is assumed to have 

contributions from both MA and NM described by (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.10): 
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𝑵𝑵𝑷𝑷𝑬𝑬𝑻𝑻 = 𝝀𝝀𝑴𝑴𝑨𝑨𝒇𝒇 + 𝝀𝝀𝑵𝑵𝑴𝑴(𝟏𝟏 − 𝒇𝒇), (Eqn. 2.4.10) 

 
 
 
where 𝜆𝜆𝑀𝑀𝑀𝑀  and 𝜆𝜆𝑁𝑁𝑀𝑀 are the true tracer concentrations in MA and NM respectively. The 

goal is to correct 𝐶𝐶𝑃𝑃𝑃𝑃𝑇𝑇 to obtain the desired quantity 𝜆𝜆𝑀𝑀𝑀𝑀. The quantities f and (1-f) are the “signal 

weights” of MA and NM respectively. To determine these weights, the subject’s T1 MR is 

segmented into MA and NM and blurred by the assumed PET resolution. The Meltzer method has 

the advantage of being easily implemented but does not distinguish between GM and WM within 

an analysis region. An extended version of the Meltzer method has been proposed by Müller-

Gärtner et al [78] that explicitly includes white matter (WM) as part of partial volume correction 

(PVC). However, the method is subtractive in nature and can result in increased PET image noise 

in cases of high white matter signal. 

 

The Geometric Transfer Matrix (GTM) method [79] requires that the entire brain be 

segmented into a set of contiguous regions with the assumption that each region has a uniform 

tracer concentration but that concentrations in the different regions can be different. The blurring 

produced by the imaging process results in the measured concentration being a weighted average 

of the true concentrations in each region: 𝜆𝜆𝑖𝑖
𝑃𝑃𝑃𝑃𝑇𝑇 = ∑ 𝐺𝐺𝑖𝑖𝑖𝑖𝜆𝜆𝑖𝑖𝑖𝑖  where 𝜆𝜆𝑖𝑖𝑃𝑃𝑃𝑃𝑇𝑇 is the measured 

concentration in region i, 𝜆𝜆𝑖𝑖is the true concentration in region j (the things we wish to know) and 

𝐺𝐺𝑖𝑖𝑖𝑖 is the matrix of weights (the geometric transfer matrix) connecting the true concentrations to 

the measured concentration. The 𝐺𝐺𝑖𝑖𝑖𝑖values are determined from blurred (by the PET resolution) 

maps of the different regions. Once determined 𝐺𝐺𝑖𝑖𝑖𝑖 is inverted, allowing the recovery of the 𝜆𝜆𝑖𝑖 

values from the 𝜆𝜆𝑖𝑖𝑃𝑃𝑃𝑃𝑇𝑇. 
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Finally, modern scanners offer point spread function recovery (PSFR) reconstruction [80, 

81] as an option (Siemens: TrueX, GE: SharpIR, Philips: ×Sharp). Manufacturers make 

painstaking PSF measurements as a function of position throughout the FOV of the scanner. The 

PSF can then be modeled in the reconstruction with the goal of undoing the blurring inherent in 

the imaging process. PSFR is fundamentally different from the partial volume correction methods 

described above. While the other methods are applied post-reconstruction, PSFR is incorporated 

into the manufacturer’s reconstruction software. Further, PSFR knows nothing about the imaged 

object; it operates completely based on well-measured characteristics of the imaging process. The 

PVC methods on the other hand, employ both a measured PSF and an a priori model of tracer 

distribution. In particular, the PVC methods assume uniform tracer distributions within each of a 

set of anatomically defined regions of interest. It should be noted that the PSF model incorporated 

into PSFR reconstruction by the manufacturer is far more sophisticated than that used in practice 

in Meltzer, MG, or GTM.  
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3.0  APOPTOSIS IMAGING IN HUMAN CANCER RESPONSE ASSESSMENT: 

CURRENT STATE OF THE ART 

Non-invasive and early assessment of the efficacy of anticancer agents is a highly desirable 

and a generally unmet need in clinical oncology. Current methods for radiologic response 

assessment rely largely on measuring change in tumor morphology on CT or MRI [82, 83]. 

However, this approach to response assessment is limited as change in tumor size is a late 

indication of response. Furthermore, therapy induced scarring and fibrosis confound accurate 

assessment of viable tumor at early response assessment times.  

 

The major mechanism of cell kill by many chemotherapeutic agents is the induction of 

apoptosis in rapidly proliferating cells [84]. Doxorubicin (an intercalating agent that inhibits 

topoisomerase II), cisplatin (an interstrand DNA cross-linking agent), temozolomide (a DNA 

methylating agent), and 5-fluorouracil (anti-metabolite) are all commonly used chemotherapeutics 

that have been shown to cause apoptosis in cells cultured in vitro [85, 86]. Moreover, proposed 

mechanisms of resistance to many chemotherapeutics often include loss of function of pro-

apoptotic pathways [87]. Given the central role of apoptosis, it would be desirable to have a 

noninvasive imaging method to serially detect and monitor the extent of this process in cancer 
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patients undergoing conventional radiation and chemotherapy treatments as well as for the 

development and testing of new drugs [88, 89]. 

 

To date, in human apoptosis imaging trials have focused on evaluating the utility of 

radiolabeled Annexin V [90] and [18F]ML-10 [91] for therapy response assessment, with the 

majority of clinical imaging trials being performed using 99mTc-labeled Annexin V [92].  

3.1 THE PROCESS OF APOPTOSIS: AN OVERVIEW 

The process of apoptosis (or type I cell death) refers to a regulated, energy-dependent 

procedure, initiated by either intrinsic or extrinsic signals, that culminates in the death and removal 

of a cell [93, 94]. Hallmarks of apoptosis include: DNA cleavage, chromatin condensation in the 

cell nucleus, and plasma membrane blebbing [93, 94]. Another distinguishing trademark of 

apoptosis is the depolarization of the plasma membrane without loss of membrane integrity [93, 

94]. Specifically, in a non-apoptosing cell, the transmembrane protein flippase restricts the anionic 

phospholipids phosphatidylserine (PS) and Phosphatidylethanolamine (PE) to the inner leaflet of 

the cell, while cationic phospholipids such as phosphatidylcholine (PC) are transported to the outer 

membrane of the cell by the transport protein floppase [95]. In this way, a normal cell maintains 

an asymmetric distribution of anionic and cationic phospholipids in the inner and outer leaflets of 

the plasma membrane [95]. However, the process of apoptosis leads to a rapid redistribution of 

these membrane phospholipids, facilitated by Ca2+ dependent activation of a family of scramblase 
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phospholipids [96], resulting in loss of asymmetry of plasma membrane phospholipids [96] and 

ultimately plasma membrane depolarization [95].  

 

The two best characterized pathways of apoptosis are the mitochondrial (or intrinsic) and 

death receptor (or extrinsic) pathways; though other pathways have been reported (e.g. host 

defense pathway) [94]. The enzymes responsible for the physiological and morphological cell 

changes that characterize apoptosis are a family of cysteine-aspartic proteases called caspases [94, 

97]. In humans, these caspases can be further divided into at least two groups: initiator caspases 

(casepase-8 and casepase-9) and executioner caspases (caspase-3, caspase-6, and caspase-7) [94, 

97]. The initiator caspases exist in an inactive form in the most cells but become activated when 

two identical chains are brought together to form a protein dimer [94, 97]. This dimerization and 

subsequent activation of the initiator caspase is facilitated by adapter proteins [94, 97]. It is the 

unique adapter protein/initiator caspase relationship that distinguishes each of the pathways of 

apoptosis [94, 97]. Once activated, the initiator caspases activate the executioner caspases, which 

also preexist in almost all cells in an inactivated form, through proteolytic cleavage and apoptosis 

proceeds [94, 97]. As a further consequence of apoptosis, cells undergoing apoptosis produce 

“bind-me signals” (PS externalization is one of these) that promote rapid clearance of the dying 

cell by phagocytes [94]. 

3.1.1 The Intrinsic Pathway 

The mitochondrial pathway is orchestrated by the BCL-2 family of proteins, which are 

responsible for managing the integrity of the outer membranes of mitochondria [94]. This family 

of proteins is composed of three sub-groups: pro-apoptotic BCL-2 proteins, which act to disrupt 
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the outer membrane of mitochondria, anti-apoptotic BCL-2 proteins, which work to preserve 

mitochondria outer membrane integrity, and a group of regulatory proteins (the BH3-only 

proteins), which promote apoptosis through regulation of the pro-apoptotic and anti-apoptotic 

BCL-2 protein sub-families [94]. Once the pro-apoptotic BCL-2 proteins have been activated, they 

insert themselves into the mitochondria outer-membrane where they oligomerize forming holes in 

the membrane [94]. The formation of these opening facilitates mitochondrial outer-membrane 

permeabilization, which then allows for the release of cytochrome-c (and other soluble proteins) 

from the intermembrane space of the mitochondria into the cell cytosol [94]. Once released, 

cytochrome-c interacts with an adapter protein (apoptotic protease activating factor-1, APAF-1) 

causing this protein to oligomerize and bind to caspase-9 resulting in the activation of the initiator 

caspase, which proceeds to activate the executioner caspases and apoptosis proceeds [94]. 

 

Most events that stress the cell induce the mitochondrial pathway of apoptosis [94]. These 

cell stressors include excessive DNA damage, loss of growth factors, and cytoskeleton disruption 

[94]. However, the mitochondrial pathway can also be initiated through tumor-suppression 

mechanisms and by developmental signals (i.e. programmed cell death) [94]. 

3.1.2 The Extrinsic Pathway 

 In the case of the death receptor pathway, death ligands originating from outside the cell 

bind to death receptors found on the outer leaflet of cell plasma membrane [94]. These death 

ligands and their corresponding death receptors are all members of the tumor necrosis factor (TNF) 

and TNF receptor families, respectively [94]. The major members of the TNF receptor family 

include: tumor necrosis factor receptor-1 (TNFR1), CD95 (also called Fas and APO-1), death 
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receptor 3 (DR3), and the TNF-related apoptosis-inducing ligand (TRAIL) receptors (TRAIL 

receptor-1 and TRAIL receptor-2), and death receptor 6 (DR6) [94]. Once a death ligand is bound 

to its corresponding receptor, this induces conformational changes in the intracellular region of the 

death receptor protein, which then engages an adaptor protein that activates a specific initiator 

caspase (casepase-8) [94]. The activated caspase-8 then cleaves and activates the executioner 

caspases, thereby initiating the apoptosis process [94].  

3.1.3 Alternative Forms of Cell Death: Necrosis 

Finally, it should be mentioned that there are several forms of cell death in addition to 

apoptosis that have been discovered and characterized to varying degrees of detail in the literature 

[94]. In the context of anticancer treatment, necrosis (type III cell death) is probably the most 

important as this form of cell death has been associated with radiation therapy [94]. Necrosis refers 

to a form of cell death in which the cell swells, bursts and decomposes [94]. Necrosis is 

characterized by a loss of plasma membrane integrity resulting in the spilling of the cell contents 

in to its surroundings [94]. As a result, necrosis often elicits an immune response, in contrast with 

apoptosis [94].  

3.2 CELL DEATH IMAGING USING RADIOLABELD ANNEXIN-V 

One of the best characterized markers of cell death is annexin-V.  Numerous in vitro studies 

have demonstrated that annexin-V binds to membrane bound PS with high affinity (Kd = 7 nmol) 

[98], and have validated annexin-V binding as a marker for cell death [99-101], with the potential 
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for up to 8 Annexin V molecules being able to bind to a single PS molecule [102]. However, while 

PS functions as an “bind me” signal for phagocytic cells, annexin-V has not been shown to have 

any involvement in the process of apoptosis [94]. To date, the exact physiologic role of annexin-

V remains largely unclear. The protein has been found in the placenta, umbilical vessels, liver, 

spleen, kidney, heart and others [103]. 

 

In human imaging of radio-labeled annexin-V has primarily focused on the development 

of single photon emission computed tomography (SPECT) compounds, generally differing by 

which chealtor is used for attaching the 99mTc label. To date, all clinical studies evaluating the 

prognostic or predictive value of radio-labeled annexin-V imaging have used a 99mTc label; though 

other radiolabels appropriate for SPECT have been investigated [104, 105]. By far the most 

common chealtor has been hydrazinonicotinamide (HYNIC), though other chelators such as 4,5-

bis(thioacetamido)pentanoyl (BTAP) and ethylenedicysteine (EC) have also been used [98, 106, 

107]. Biodistribution studies for these compounds have generally shown physiologic uptake in the 

gut, spleen, kidney, and salivary glands, in addition to high liver and bone marrow uptake, common 

sites of metastasis for many cancers; though the degree of physiologic uptake depends on the 

chelator [98, 105, 106]. 

3.2.1 Therapy Response Assessment using 99mTc-labeled Annexin-V 

The first in human study specifically designed to evaluate the feasibility and potential 

utility of using radiolabeled-Annexin-V for predicting response to therapy in oncology was 

performed by Belhocine et al in 2002 [90], which was expanded upon in [108]. In this study, 15 



 40 

 

subjects (10 lung cancer, 3 lymphoma, and 2 breast cancer) received 99mTC-BTAP Annexin-V 

(Apopmate; Theseus Imaging Corporation, Boston, MA) planar scintigraphy before and within 

72h of receiving anti-cancer therapy [90, 108]. For each subject, change in 99mTC-BTAP Annexin-

V uptake between pre- and post-therapy time-points was quantified through calculation of relative 

tumor ratios and by evaluating change in tumor-to-background ratios (TBkgRs) [90]. No pre-

therapy 99mTC-BTAP Annexin-V uptake was observed at tumor sites for any subjects [90, 108]. 7 

subjects showed at least a 10% increase in TBkgR within 72 hr of completing first course of 

therapy compared to baseline, of which all demonstrated a partial or complete response [90, 108]. 

Of the remaining 8 subjects that showed no change in uptake between imaging time-points, 2 

exhibited a partial response to therapy and 6 demonstrated progressive disease [90, 108]. 

 

Since the publication of the aforementioned initial feasibility study, several in human 

studies have followed which investigate the utility of 99mTc-labeld-Annexin-V imaging to predict 

patient response to anti-cancer therapy. For example, Haas et al. [109] investigate the utility of 

99mTc-labeled Annexin-V SPECT for predicting response to radiotherapy in a cohort of recurrent 

folicular lymphoma patients (FL) [109]. Specifically, 11 histologically confirmed FL subjects 

received a baseline (no more that 1-week prior to therapy institution) and post-therapy (24hr after 

completion of therapy) 99mTc-labeled Annexin-V SPECT scan [109]. For each subject therapy 

consisted of involved field radiotherapy to total dose 4 Gy in 2 Gy fractions with a 48 hr interval 

between radiotherapy doses [109]. 5 subjects received 99mTc-Phentitotate-rh Annexin-V, while 

remaining subjects received 99mTc-HYNIC-rh Annexin-V [109]. FL uptake was evaluated using a 

visual grading method that comprised four classifications: absent, weak, present or intense [109]. 

Weak uptake was reported in pre-therapy images of 5 subjects, while 99mTc-labeled Annexin-V 
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uptake was reported as visually undetectable in FL sites for the remaining 6 subjects [109]. A 

visual concordance between change in cell death on cytology and change in apparent 99mTc-labeled 

Annexin-V uptake on SPECT was reported [109]. Moreover, pathology scoring was found to be 

consistent with patient outcome for all 11 subjects, while change in visual scoring of SPECT 

images was determined to be inconsistent with outcome for only a single subject [109].  

 

Using a similar scoring method, Kartachova et al. [110] investigated a relationship between 

change in 99mTc-HYNIC Annexin-V tumor uptake after therapy administration and tumor response 

assessed on anatomical imaging acquired 1-3 months after treatment initiation [110]. To this end, 

29 subjects (23 malignant lymphoma, 5 NSCLC, 1 SCCHN) received baseline and post-therapy 

(within 72hrs of initiating therapy) 99mTc-HYNIC Annexin-V SPECT imaging [110]. Therapy for 

these subjects consisted of either radiotherapy, platinum-based chemotherapy, or concurrent 

chemoradiation protocols [110]. Each visual grade category was assigned a numerical value 

(absent = 0, weak = 1, moderate = 2, and intense = 3) [110]. A significant correlation (Spearman 

rank test; = 0.62, 𝑃𝑃 ≤ 0.001) was reported between change in tumor uptake grade and tumor 

response (RECIST criteria) [82, 110].  

 

One of the first studies to evaluate the feasibility of quantitative response prediction was 

performed by Rottey et al [111], which used TBkgRs as a measure of  99mTc-HYNIC Annexin-V 

uptake [111]. Specifically, a sequential imaging protocol was used that consisted of a baseline 

time-point followed by 2 additional scans acquired at 5-7hrs and 40-44hrs post therapy initiation 

[111]. Results demonstrate that a greater than or equal to 25% increase occurring at one of or both 

of the post-therapy scans is predictive for tumor response (assessed using RECIST [82]) at 3 
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months (and 6 months for some subjects) post-therapy initiation [111]. The authors were able to 

correctly predict response in 16/17 subjects using this sequential imaging protocol [111]. However, 

the acquisition and quantification of both the 5-7 hrs and 40-44 hrs post-therapy initiation scans 

are required to obtain this prediction accuracy compared to acquisition and interpretation of either 

scan alone (table 1) [111]. 

 

In addition to TBkgR, percent injected dose of 99mTc-labeled Annexin-V has also been 

investigated as a response measure. For example, Kartachova et al. [112] investigated the utility 

of sequential 99mTc-HYNIC Annexin-V SPECT in predicting therapy response in 14 subjects with 

advanced lung cancer receiving platinum-based chemotherapy [112]. Subjects received 99mTc-

HYNIC Annexin-V SPECT scans prior to therapy initiation (baseline) and 24-48 hrs after injection 

of the first dose of therapy [112]. Radiotracer uptake was quantified by measuring the maximum 

pixel count within a tumor volume and normalizing this value by the injected dose and the 

corresponding subject's weight (denoted Cmax) [112]. All therapy responders exhibited an increase 

in tumor Cmax at the post-therapy time-point relative to baseline (range of percent increase: [16%, 

121%]) [112]. In contrast, the group of non-responders showed both decreases and increases in 

post-therapy Cmax compared to baseline (range in percent change: [-30%, 24%]) [112]. A 

significant correlation (linear regression analysis; r2 = 0.86; P ≤ 0.001) was reported between tumor 

size change and percent increase in Cmax [112]. 

 

In a follow-up study, Kartachova et al. [113] investigated and compared the value of visual 

and quantitative response assessment approaches to predict treatment outcome using 99mTc-

HYNIC Annexin-V SPECT [113]. Specifically, 33 subjects (25 fNHL, 4 NSCLC, 3 SCCHN, 1 
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mantel cell NHL) received 99mTc-HYNIC Annexin-V SPECT scans before and at either 24 hrs 

(NSCLC subjects only) or 48 hrs (remaining NHL and SCCHN subjects) post-therapy initiation 

[113]. Subjects that showed either a partial-response or complete-response to therapy exhibited a 

visual increase in 99mTc-HYNIC Annexin-V uptake at post-therapy compared to baseline [113]. 

Moreover, subjects with stable-disease or progressive-disease visually exhibited either a decrease 

or no change in radiotracer uptake at post-therapy compared to baseline [113]. Response using 

Cmax was determined by first calculating percent change in Cmax between corresponding pre- and 

post-therapy images, and then histograming the calculated percent change values into one of four 

possible grades (or bins): grade = -1 if tumor uptake decrease by greater than 25%, grade = 0 if 

tumor uptake decreased by between 1% and 25%, grade = 1 if tumor uptake increased by between 

1% and 25%, and grade = 3 if tumor uptake increased by more than 25% [113]. When this 

maximum pixel count-based grading scheme was used to predict response, 4 subjects demonstrated 

an increase in tumor uptake but were determined to have either stable-disease or progressive-

disease (see figure 3b), while all subjects that showed partial-response or complete-response 

exhibited an increase in Cmax grade [113]. Change in 99mTc-HYNIC Annexin-V tumor uptake 

between pre- and post-therapy time-points showed a significant correlation with subject outcome 

using either the visual (Spearman's rank test; r = 0.97; P ≤ 0.001) or quantitative response 

(Spearman's rank test; r = 0.99; P ≤ 0.001) assessment methods [113]. 

 

In an effort to account for tumor response heterogeneity between pre- and post-therapy 

time-points, Hoebers et al [114] measured the mean and maximum voxelwise change in tumor 

uptake of 99mTc-HYNIC Annexin-V uptake on SPECT in a cohort of 13 advanced stage inoperable 

SCCHN patients [114]. Clinical response to therapy was determined 6-8 weeks after completion 
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of each subject's prescribed therapy regimen (overall treatment duration was 7 weeks) using 

anatomical imaging as well as examination under anesthesia and biopsy in the case of suspicious 

findings [114]. Using this subtraction method, no significant correlation was found between 

change in 99mTc-HYNIC Annexin-V uptake by primary tumor and response rate, recurrence or 

overall survival [114]. Moreover, no significant correlation was found between 99mTc-HYNIC 

Annexin-V uptake and differences in treatment schedule or tumor volume (data not shown) [114].  

 

In an effort to reconcile the results of the above response assessment trials with each other, 

Belhocine et al [92] performed a meta-analysis on dedicated response assessment studies, for 

which the imaging protocol consisted of a pre-therapy and at least one post-therapy assessment 

scan, and for which response to therapy was evaluated quantitatively [92]. Specifically, they 

evaluated the pooled positive predictive value (PPV) and pooled negative predictive value (NPV) 

for six 99mTc-labled Annexin V clinical imaging studies (5 single-center, 1 multi-center), for which 

uptake was quantified at baseline and after therapy administration [92]. However, for the purposes 

of calculating pooled PPV and NPV estimates only the 5 single-center studies were considered for 

analysis, as the inclusion of the PPV and NPV values estimated from the multi-center study had 

been determined to create significant heterogeneity [92]. The reported pooled PPV and NPV 

estimates were 100% (95% CI: 92 – 100 %) and 70% (95% CI:  55 – 82 %), respectively [92]. 

These pooled estimates suggest that patients exhibiting a significant increase in 99mTc-labled 

Annexin V uptake are very likely to demonstrate a response to therapy, while approximately 30% 

of subjects exhibiting no significant increase in 99mTc-labled Annexin V but may still demonstrate 

a complete or partial response to therapy [92]. However, when using PPV and NPV one has to 
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consider the prevalence of response versus non-response in these studies as a possible driver for 

these estimates.  

 

3.2.2 Measuring Chemo-/Radio-Sensitivity using 99mTc-labeled Annexin-V Imaging 

In addition to investigating the predictive utility of Annexin V imaging, several studies 

have also evaluated the feasibility of Annexin V imaging to measure tumor chemo-/radio-

sensitivity at baseline and predict patient therapy response. For example, Rottey et al [115] 

investigated a relationship between TBkgR evaluated prior to therapy initiation on 99mTc-HYNIC 

Annexin-V SPECT and tumor response (RECIST) at approximately 2-3 months an 5-6 months 

post-therapy initiation in a cohort 23 subjects suffering from a variety of malignancies [115]. 

Therapy for each subject was not homogeneous, 3 subjects received radiotherapy only, 3 subjects 

received concurrent radiation and chemotherapy, and the remaining 17 subjects received 

chemotherapy alone (table 1) [115]. Results showed that subjects treated with radiation alone or 

concomitant radiation and chemotherapy that also demonstrated a  partial-response or complete-

response at response assessment had TBkgRs ≥ 2.3 prior to therapy start [115]. Moreover, subjects 

showing progressive-disease at response assessment had no detectable tumor uptake on pre-

therapy SPECT imaging [115]. In the group that received chemotherapy alone, 8 were determined 

to be responders (partial-response or complete-response) to therapy [115]. It was reported that pre-

therapy TBkgRs in these responders were significantly higher [median 2.5, range: 0.3-4.2] 

compared to non-responders (stable-disease/progressive-disease) [median = 1, range: 0.1-1.4] 

using an unpaired Wilcoxson test (P <= .001) [115]. 
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In a separate study, Loose et al [116] evaluated the prognostic potential of 99mTc-HYNIC 

Annexin-V SPECT in a cohort 29 SCCHN subjects each receiving a single 99mTc-HYNIC 

Annexin-V SPECT scan prior to therapy institution [116]. Primary tumor uptake was quantified 

via TBkgRs and compared to each subject's disease free and overall survival [116]. Results of this 

analysis revealed an inverse correlation between TBkgR and both disease free and overall survival 

[116]. Moreover, Loose et al [116] were able to determine a cut-point based on the sample TBkgR 

median (median = 2; range = 1.0 - 5.1), such that subjects exhibiting a TBkgR < 2 had a median 

disease free survival of 32.8 months and a median overall survival of 55.8 months compared to the 

subgroup of patients with a TBkgR > 2, which had a median disease free survival and median 

overall survival of 8.9 months and 12.9 months, respectively [116]. Moreover using the same 

TBkgR cut-point of TBkgR = 2, the authors were able to dichotomize lymph node status according 

to N0 versus N1-N2-N3 disease and found this threshold to be prognostic for both disease free and 

overall survival [116]. However, it is important to note that all study subjects received therapy 

(radiotherapy and/or chemotherapy) after SPECT imaging, and, in most cases (27 out of total 29 

subjects), subjects received a resection of their primary tumors [116]. 

 

Furthermore, Kurihara et al [107] evaluated the feasibility of using 99mTc-

ethylenedicysteine (99mTc-EC) Annexin V to image cell death in women with primary breast 

cancer [107]. A total of 9 women received a single 99mTc-EC Annexin V SPECT scan either before 

therapy initiation (4 subjects) or 16 hrs after chemotherapy initiation (5 subjects) [107]. In this 

study, it was found that the mean TBkgR for the subjects who received therapy (mean = 2.6; 

standard deviation = 0.5; range: 2.1 - 3.3) was larger than the average TBkgR between subjects 
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that had not received therapy prior to imaging (mean = 1.5; standard deviation = 0.2; range: 1.3 - 

1.7) [107].   

 

However, not all studies have observed a correlation between baseline 99mTc-HYNIC 

Annexin-V uptake and patient response. Specifically, as part of their analysis Kartachova et al. 

[112] observed measurable 99mTc-HYNIC Annexin-V uptake in all tumors prior to therapy 

initiation. However, it was reported that no significant correlation between baseline Cmax and 

subject outcome was found [112]. 

 

One potential explanation for this disagreement in predicting response to therapy based on 

pre-therapy 99mTc-HYNIC Annexin-V uptake may be that tumors in these studies had differing 

levels of necrosis. For example, van de Wiele et al. [117] performed a study to investigate a 

relationship between the degree of 99mTc-HYNIC Annexin-V uptake on SPECT and number of 

tumor cells undergoing apoptosis determined by histology. In this study 20 head and neck 

carcinoma subjects received pre-therapy 99mTc-HYNIC Annexin-V SPECT scans at 1 hr and 5-6 

hr post radio-pharmaceutical injection [117]. Results from this analysis revealed a significant (p ≤ 

.03) linear correlation between percent uptake of injected dose per cubic centimeter tumor volume 

assessed on SPECT and percent of apoptotic cells evaluated on histology when only the 11 subjects 

with the smallest corresponding percent necrosis were included [117]. However, progressive 

inclusion of tumors with increasing percent necrosis resulted in loss of correlation significance 

between percent apoptotic cells and image measures [117].  
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A second hurdle to using baseline 99mTc-labelded Annexin V imaging to presage patient 

therapy response is the inconsistent degree of radiotracer uptake at pre-therapy time-points [90, 

107-118]. For example, in their seminal study Belhocine et al [90] evaluated 15 subjects with 

various malignancies (10 lung cancer, 3 lymphoma, and 2 breast cancer) prior to therapy start and 

observed no pre-therapy 99mTC-BTAP Annexin-V uptake on planar scintigraphy [90]. In contrast, 

measurable 99mTc-HYNIC Annexin-V uptake was reported prior therapy for all 14 advanced lung 

cancer subjects evaluated by Kartachova et al [112]. Moreover, differences in the degree of 99mTc-

HYNIC Annexin-V pre-therapy accumulation have been observed between the primary tumor site 

and involved lymph nodes of subjects suffering from head and neck carcinoma [118]. Specifically, 

in a study that included 18 head and neck carcinoma patients, in which 7 subjects had associated 

lymph node involvement, Vermeersch et al [118] were able to visualize the primary tumor in nearly 

all subjects (17 out of 18 total) on SPECT; however, uptake was observed in involved lymph nodes 

for only 2 of 7 subjects [118]. 

3.3 2-(5-FLUORO-PENTYL)-2-METHYLMALONIC ACID (ML-10) AS A TRACER 

FOR EARLY STAGE APOPTOSIS 

Currently the only PET radiotracer to be evaluated in humans for imaging apoptosis is 

[18F]ML-10. In vitro assays performed using 3H-labled ML-10 ([3H]ML10) have shown that 

[3H]ML10 accumulates within cells (60% cytoplasm, 30% nucleus) that have permanently 

depolarized cell membranes, a signature of early phase apoptosis [119, 120]. Moreover, a positive 

correlation between [3H]ML-10 accumulation and validated markers of apoptosis including: 
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caspase-3 activity, mitochondrial membrane depolarization, and phosphatidylserine 

externalization was observed using Jurkat cells (human adult leukemia T-lymphocyte cells) 

incubated with anti-Fas antibody [97, 119]. Moreover, simultaneous incubation of Jurkat cells with 

anti-Fas antibody and Z-VAD-FMK (Z-Val-Ala-Asp-fluoromethyl ketone), a pan-caspase 

inhibitor, exhibited low, near control levels of [3H]ML-10 accumulation showing that [3H]ML-10 

accumulation could be significantly reduced via inhibition of caspase activation [119].  

 

[3H]ML-10 accumulation has been shown to occur prior to loss of plasma membrane 

integrity [119]. Moreover, subjection of untreated Jurkat T-cells to three cycles of freeze-thaw, 

which disrupts plasma membrane integrity, did not result in [3H]ML-10 accumulation above 

normal control [119], suggesting that [3H]ML-10 may be able to distinguish cells undergoing 

apoptosis from necrotic and non-viable cells. This hypothesis is further supported by fluorescence 

microscopy imaging of HeLa cells (human cervix carcinoma) and CT26 cells (murine colon 

carcinoma) treated with cisplatin and taxotere, respectively [119]. In both cases increased dansyl-

ML-10 accumulation was observed after treatment; however, propidium iodide positive cells 

(indicating non-viable cells) did not show fluorescence [119]. It should be noted that there is not 

uniform agreement as to the degree that labeled ML-10 can indicate cells proceeding through 

apoptosis; though some of this disagreement may be a result of differences in in vitro assays and 

pre-clinical imaging protocols [119, 121-128]  

 

In healthy humans, [18F]ML-10 exhibits a rapid clearance from blood and normal tissue, 

with low tracer metabolism and no defluorination [129]. Specifically, an analysis of plasma 

samples from 8 human subjects found a 97.5% ± 0.4% unchanged [18F]ML-10 fraction 150 min 
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post-injection [129]. In the same biodistribution study, selective accumulation of [18F]ML-10 was 

observed on PET in the testes of male humans and mice [129], a known site of apoptosis as a result 

of processes related to spermatogenesis [130]. Further investigation of this phenomenon using 

fluorescent microscopy imaging revealed that cells exhibiting dansyl-ML-10 fluorescence in the 

testicular tissue of male mice were positive for characteristic apoptotic DNA fragmentation 

assessed via terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) 

staining [129]. 

 

3.3.1 Therapy Response Assessment using [18F]ML-10 

While PET imaging of glucose metabolism in both brain metastasis and high grade primary 

brain tumors, including GBM, using [18F]FDG has exhibited some success in diagnostic imaging, 

false-positive uptake caused by inflammation at the tumor site as well as overall high background 

uptake in uninvolved brain tissue limits the use of [18F]FDG PET for early therapy response 

assessment. Moreover, in the case of GBM conventional approaches to radiologic response 

assessment are particularly inadequate for early therapy response assessment as they rely on slowly 

changing measures of therapeutic effect, i.e., changes in tumor size and degree of contrast 

enhancement on contrast enhanced MRI.  

 
As a result, in human PET imaging of using [18F]ML-10 has primarily focused on therapy 

response assessment of brain metastasis and GBM brain tumors. Allen et al [91] published the first 

phase 1 trial investigating the feasibility of [18F]ML-10 PET for early therapy response assessment 

of brain metastasis [91]. A total of 10 subjects with newly diagnosed brain metastases schedule to 
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receive whole brain radiation therapy (WBRT; total dose of 30 Gy in 2 Gy fractions over 2-weeks) 

were prospectively enrolled in this study [91]. Additionally, all were required 1) to have at least 

one brain metastasis ≥ 1.5cm in diameter, 2) no previous history of brain irradiation, and 3) have 

their primary tumors under control [91]. Each subject received 2 [18F]ML-10 scans; one prior to 

therapy (baseline) and a second, therapy response scan, after administration of WBRT to a total 

dose of 27-30 Gy [91]. Each PET scanning session consisted of three 16-20 min acquisitions, the 

first session initiating 20 min after intravenous injection of [18F]ML-10 (maximum dose 13.5 mCi) 

[91]. Response to therapy was assessed via evaluation of tumor size change on contrast enhanced 

MRI or CT obtained at baseline and at 6-8 weeks post-therapy completion using WHO-based [83] 

and volumetric based response criteria [91]. 

 

In this study, quantification consisted of measures of average overall radiotracer 

accumulation as well as a voxelwise change analysis [91]. Specifically, all PET voxels were 

converted to standardized uptake values (SUVs) and normalized to blood pool uptake [91]. Tumor-

to-background (contra-lateral healthy brain tissue) ratios were evaluated for each PET acquisition 

(total 3 per scanning time-point) and averaged across scanning time-points and subjects [91]. 

Results of this analysis revealed an overall increasing trend in average tumor-to-background ratios 

as a function of time post-tracer injection, consistent with [18F]ML-10 accumulation in the target 

tumor with simultaneous clearance in normal brain tissue [91]. Voxelwise quantification was based 

on approaches developed for quantification of MRI based parametric maps [131-133], and 

consisted of calculating percent change in normalized uptake between corresponding baseline and 

therapy response time points for each voxel [91]. Voxels were then categorized as having 

increased, decreased or not changed in normalized uptake based on a threshold [91]. Results 
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revealed a strong correlation between the percentage of voxels that increased between PET 

imaging time-points with percent reduction in tumor size using either the WHO (R = .92) or the 

volumetric based (R = .91) methods [91]. 

 

The first report using [18F]ML-10 for imaging response to therapy of primary brain tumors 

was published by Oborski et al [134]. In this case report, a single subject with newly diagnosed 

GBM received [18F]ML-10 imaging at baseline and after 3-weeks of concomitant radiation therapy 

(2 Gy fractions daily) and temozolomide (75 mg/m2 daily) [134]. In order to facilitate voxelwise 

comparison, all PET images were normalized to the maximum voxel value within a defined region 

of the superior sagittal sinus. Baseline PET imaging showed therapy naive uptake localized at the 

site of the GBM on contrast enhanced MRI [134]. Moreover, TUNEL staining performed on 

biopsied tumor tissue obtained via fine-needle MRI guided stereotactic biopsy confirmed the 

presence of cells undergoing apoptosis prior to therapy administration [134]. Visual comparison 

between pre- and post-therapy initiation time-points reveled new regions of [18F]ML-10 uptake at 

early therapy response assessment that had not previously existed at baseline [134]. 

 

Later a second report investigated a correspondence between changes in [18F]ML-10 

uptake and progression-free survival (PFS) for 4 GBM subjects [135]. Following a similar imaging 

schedule as that of Allen et al. [91], study subjects were scanned at baseline and at 2-3 weeks of 

post-therapy institution [135]. Each scanning session lasted for 30 min (5 min/frame) initiating 

120 min after injection of 10 mCi of [18F]ML-10. Each set of dynamic PET frames was averaged 

to form a single frame static image, which could be quantified using SUVs [135]. Findings were 

interpreted on a case-by-case basis for each subject, with each subject’s time-to-radiologic 
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progression serving as the clinical end-point [135]. Overall, this limited study did not clearly 

demonstrate an ability to predict time-to-radiologic progression based on maximum SUV 

evaluated between 120 min-150 min post-injection [135].  

 

The apparent incongruity in the ability to predict therapeutic response of brain metastasis 

[91] versus GBM [134-136] using [18F]ML-10 PET may be due to the different patho-physiologies 

of brain metastasis versus GBM. For example, brain metastases generally form in the vasculature 

of the brain, and thus the blood-brain-barrier (BBB) does not provide as much of an impediment 

to radiotracer delivery to the target tumor as it does for primary brain tumors. Unfortunately, 

limited published data is available regarding the clearance of [18F]ML-10 in normal human brain 

tissue. However preclinical studies using a mouse ischemic cerebral stroke model, induced by 

surgical occlusion of the middle cerebral artery (MCA), have observed areas of dansyl-ML-10 

accumulation that were simultaneously negative for Evans blue autofluorescence in the transition 

zones between healthy and infarct tissues on fluorescence microcopy [124]. This observation is 

consistent with the hypothesis that [18F]ML-10 can reach cells undergoing apoptosis in normal 

brain tissue through an intact BBB; however, further investigation is required to confirm this 

hypothesis in humans.  
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4.0  STUDY SUBJECTS AND PET IMAGING PROTOCOL 

Section 4.1 presents the recruitment and follow-up information for all study subjects. 

Section 4.2 presents the study design and imaging protocol for study subjects. The imaging study 

was designed such that each subject received a total of 3 [18F]ML-10 PET scans, 1 pre-therapy 

scan and 2 post-therapy administration scans.  

4.1 STUDY SUBJECTS 

Table 4-1 contains the full-list of subjects that were enrolled in the imaging study as well 

as subject demographics, and a record of which scanning sessions were completed by the enrolled 

subject. This research study was performed under the U.S. Food and Drug Administration 

Investigational New Drug program (Application #: 106662; Sponsor Investigator: James M. 

Mountz M.D., Ph.D.) with University of Pittsburgh Institutional Review Board (IRB) approval. 

The associated study subject cohort was accrued and imaged under a National Institutes of Health 

(NIH) grant awarded to Dr. James M. Mountz (Grant #: U01 CA140230) following a University 

of Pittsburgh IRB approved protocol. Written consent forms were signed by all study participants. 

The radiochemical synthesis process of [18F]ML-10 from precursor is described in Oborski et al 

[135]. 
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A total of 14 subjects (9 male; 5 female) with histologically confirmed high grade (WHO 

grade 3 or grade 4) astrocytoma were enrolled in this study. Of these subjects 1 did not report for 

imaging after enrollment. Of the 13 subjects that received a baseline scan, 11 subjects received an 

ETA PET scan, while 9 subjects received both ETA and FUA PET scans.  

 
   Table 4-1. Study Enrollment Table. 

 

Subject 
ID 

Gender 
(M/F) 

*Age 
(Years) 

WHO 
Grade 

Subject 
History 

BL Scan 
Completed 

ETA Scan 
Completed 

FUA Scan 
Completed 

ML-10 #1 F 64 Grade 4 newly 
diagnosed Yes No No 

ML-10 #2 M 72 Grade 4 newly 
diagnosed 

¥Yes Yes No  

ML-10 #3 M 63 Grade 4 newly 
diagnosed No No No 

ML-10 #4 M 54 Grade 4 newly 
diagnosed Yes Yes Yes 

ML-10 #5 F 58 Grade 4 newly 
diagnosed Yes Yes Yes 

ML-10 #6 F 57 Grade 4 recurrent Yes Yes Yes 

ML-10 #7 M 60 Grade 4 newly 
diagnosed Yes Yes Yes 

ML-10 #8 F 34 Grade 3 recurrent Yes Yes ∀Yes 

ML-10 #9 M 60 Grade 4 newly 
diagnosed Yes Yes Yes 

ML-10 #10 M 57 Grade 4 newly 
diagnosed Yes ‡Yes Yes 

ML-10 #11 M 49 Grade 4 recurrent Yes Yes Yes 

ML-10 #12 F 33 Grade 3 recurrent Yes No No 

ML-10 #13 M 72 Grade 4 recurrent aYes Yes No 

ML-10 #14 M 66 Grade 4 newly 
diagnosed Yes Yes Yes 

* Subject age refers to their age at time of enrollment into study. 
¥ Subject missing first 67 sec dynamic data.  
∀ Subject’s second acquisition acquired on HR+ due to mMR scanner failure; second scan started 34 min 
and 21 sec late. 
‡ Subject’s second acquisition started 54 min and 30 sec late. 
a Subject’s second acquisition started 68 sec late. 
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Table 4-2 contains therapy administered at time of enrollment, progression-free survival 

(PFS; assessed on subject contrast enhanced MRI scans) in months and overall survival (OS) data 

(in months) for all 13 subjects that received BL PET imaging. 8 subjects received standard of care 

for newly diagnosed GBM, which consisted of fractionated external beam radiation therapy (RT) 

to a total dose of 60Gy, in daily 2Gy fractions, with concomitant temozolomide (TMZ) at a dose 

of 75mg/kg/day (5 days/week for 6-weeks followed by a 4-week break), followed by adjuvant 

TMZ at 150-200mg/m2 per day on days 1-5 of 28-day cycles (starting at week 10). Therapies for 

the remaining 3 recurrent GBM and 2 recurrent grade 3 astrocytoma subjects varied between 

subjects. For example, ML-10 # 13 received the same TMZ regimen as the 8 newly diagnosed 

GBM subjects, but did not receive RT. In the specific case of ML-10 #12, they received craniotomy 

surgery with placement of Gliadel wafer after their first [18F]ML-10 PET scan, which resulted in 

their removal from our study.  
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 Table 4-2. Subject Treatment and Outcome. 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 STUDY IMAGING PROTOCOL 

The [18F]ML-10 imaging study was designed such that subjects would receive PET and 

MRI scans at three time-points: baseline (BL, prior to therapy initiation), early therapy assessment 

(ETA, approximately 14 ± 3 days after therapy initiation), and follow-up assessment (FUA, 

Subject 
ID 

*Therapy 
†PFS 

(months) 
¥OS 

(months) 

ML-10 #1 RT+TMZ ∆N/F N/F 

ML-10 #2 RT+TMZ 1 2 

ML-10 #4 RT+TMZ 4 5 

ML-10 #5 RT+TMZ 15 25 

ML-10 #6 ABT-888/TMZ 11 22 

ML-10 #7 RT+TMZ 11 26 

ML-10 #8 ANG1005 7 22 

ML-10 #9 RT+TMZ 25 35 

ML-10 #10 RT+TMZ 18 19 

ML-10 #11 ANG1005 <1 14 

ML-10 #12 
Craniotomy Surgery 
with placement of 

Gliadel wafer 
N/F N/F 

ML-10 #13 TMZ 2 13 

ML-10 #14 RT+TMZ 3 9 

* Initial therapy regimen prescribes prior to acquisition of BL PET scan. 
† PFS = Progression-free survival (in months from therapy initiation). PFS of more than 
15 days in a month equals 1 month. 
¥ OS = Overall survival (in months from therapy initiation). Survival of more than 15 
days in a month equals 1 month. 
∆ N/F = No follow-up available. 
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approximately 72 ± 3 days after therapy initiation). As illustrated in figure 4-1, each PET imaging 

time-point consisted of two acquisitions (but with a single tracer injection): (i) a 0-45 min scan 

initiating with intravenous injection of 10 mCi of [18F]ML-10, (ii) followed by a 30 min scan 

starting 120 min post-injection. Dynamic PET scans were performed on either a Siemens/CTI 

ECAT HR+ PET scanner (Siemens ECAT HR+; CTI/Siemens, Knoxville, TN), or a Siemens 

Biograph mMR combined dual modality PET/3T MRI scanner (Siemens, Munich, Germany). 

 

 

Figure 4-1. [18F]ML-10 PET Acquisition Protocol After Initial Injection of [18F]ML-10. 

 

 

Table 4-3 contains the number of days between therapy initiation and each subject’s BL, 

ETA, and FUA imaging time-points. For each subject, day 0 corresponds to the day they started 

therapy. A ‘-’sign indicates the PET scan was acquired prior to the subject’s therapy initiation date, 

while a ‘+’ sign indicates the PET scan was acquired post-therapy initiation. Two subjects, ML-

10 #13 and ML-10 #14 received their first [18F]ML-10 PET scans after already receiving therapy. 

These 2 subjects are listed in table 4-3 as having BL scans acquired +5 and +6 days prior to therapy, 

respectively; however, neither scan is a true baseline scan. ML-10 #12 received their BL PET scan 

41 days prior to therapy start. However, after receiving their BL PET scan the subject underwent 

craniotomy surgery for placement of Gliadel wafers and was removed from the [18F]ML-10 PET 

study as a result. 
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 Table 4-3. Subject Imaging Schedule. 

 

Table 4-4 contains a record of which scanner was used for each subject for each time-point. 

In general, each subject received their PET scans on the same scanner for all time-points. The only 

exception is ML-10 #8, who received their BL scan on the HR+, their ETA scan on the mMR, and 

acquisition 1 (i.e. the 45 min scan) of their FUA scan on the mMR and acquisition 2 (i.e. the 30 

min scan, following the 75min break) of the FUA scan on the HR+. ML-10 #8’s acquisition 1 and 

acquisition 2 were performed on two different scanners because the mMR malfunctioned during 

the FUA time-point after completion of acquisition 1. Due to the inconsistency in scanning, ML-

10 #8 was ultimately not considered for PK analysis in Chapter 5. 

 

Subject 
ID 

BL PET  
(days prior to therapy start) 

ETA PET  
(days post therapy start) 

FUA PET  
(days post therapy start) 

ML-10 #1 0 †N/A N/A 

ML-10 #2 a-21 +15 N/A 

ML-10 #4 -5 +16 +67 

ML-10 #5 0 +9 +72 

ML-10 #6 -14 +14 +77 

ML-10 #7 -5 +23 +79 

ML-10 #8 -2 +18 +41 

ML-10 #9 -5 +16 +72 

ML-10 #10 -27 +11 +68 

ML-10 #11 -10 +24 +55 

ML-10 #12 *-41 N/A N/A 

ML-10 #13 b+5 +21 N/A 

ML-10 #14 +6 +12 +68 
† N/A = Not acquired.  
a Therapy administered on day 0; ‘-’ indicates PET scan acquired prior to therapy initiation date. 
* Subject did not receive any [18F]ML-10 PET scans post-therapy start. 
b Therapy administered on day 0; ‘+’ indicates PET scan acquired after therapy initiation date. 
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All PET data were reconstructed using filtered back-projection (Fourier rebinning/2D 

backprojection, 3 mm Hann filter, zoom = 2.5) with the following framing: 0-45 min acquisition: 

10 sec/frame x 12 frames, 15 sec/frame x 8 frames, 30 sec/frame x 8 frames, 60 sec/frame x 12 

frames, 300 sec/frame x 5 frames; 120-150 min acquisition: 300 sec/frame x 6 frames. All images 

were corrected for photon attenuation, scatter, and random coincidences. Moreover, all 

acquisitions were decay corrected to the time of [18F]ML-10 injection, that is the 120-150 min 

acquisition was decay corrected back to the start time of the 0-45 min acquisition. Images acquired 

on the Siemens/CTI ECAT HR+ PET scanner were reconstructed using manufacturer’s software 

into a final matrix size of 128x128x63. Images acquired on the Siemens Biograph mMR were 

reconstructed using the manufacturer provided e7Tools software (Siemens Molecular Imaging, 

Knoxville, USA) into a final matrix size of 128x128x127.  
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Table 4-4. PET Scanner Used for Data Acquisition. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

While all PET acquisitions were corrected for attenuation, the method of attenuation 

correction utilized depended on which scanner was used to acquire the PET data (see Section 4.2.1 

below). All PET acquisitions were inspected for inter-frame motion, which, if necessary, was 

corrected for on a frame-by-frame basis. The 120-150 min PET scan was co-registered to the (0-

45 min scan) prior to image quantification. 

Subject 
ID 

BL PET 
Scanner 

ETA PET 
Scanner 

FUA PET 
Scanner 

ML-10 #1 HR+ †N/A N/A 

ML-10 #2 ¥HR+ HR+ N/A 

ML-10 #4 HR+ HR+ HR+ 

ML-10 #5 HR+ HR+ HR+ 

ML-10 #6 HR+ HR+ HR+ 

ML-10 #7 HR+ HR+ HR+ 

ML-10 #8 HR+ mMR mMR/∀HR+ 

ML-10 #9 mMR mMR mMR 

ML-10 #10 mMR ‡mMR mMR 

ML-10 #11 mMR mMR mMR 

ML-10 #12 mMR N/A N/A 

ML-10 #13 amMR mMR N/A 

ML-10 #14 mMR mMR mMR 
† N/A = Not acquired. 
¥ Subject missing first 67 sec of dynamic data. 
∀ Subject’s second acquisition acquired on HR+ due to mMR. 
scanner failure; second scan started 34 min and 21 sec late. 
‡ Subject’s second acquisition started 54 min and 30 sec late. 
a Subject’s second acquisition started 68 sec late. 
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4.2.1 Attenuation Correction Methods Applied to Study PET Images 

Table 4-5 contains a catalog of the attenuation correction methods used for reconstructing 

study PET images. For PET scans acquired on the Siemens/CTI ECAT HR+ PET scanner photon 

attenuation correction was performed using a 10 min transmission scan (68Ge/68Ga rods) prior to 

tracer injection. Images were then processed via the manufacturer’s software. With the exception 

of subject ML-10 #13, PET acquisitions acquired using the Siemens Biograph mMR were 

corrected for attenuation using the method of Izquierdo-Garcia et al [56] (referred to as the Pseudo 

CT attenuation correction method in table 4-5). In this method the attenuation µ-map is generated 

from the subject’s T1-weighted MPRAGE MRI. The e7tools reconstruction software toolbox 

provided by Siemens was then used to reconstruct the attenuation corrected PET image.  

 

For the case of ML-10 #13 at BL, a scanner error caused the loss of the PET sinogram data 

needed to reconstruct the attenuation corrected PET image using the e7tools software. As a result, 

attenuation correction of both the BL and ETA PET images was performed using the attenuation 

substitution method (previously described in Section 2.3.1.1 developed at the University of 

Pittsburgh Department of Radiology PET Facility [137]. The application of the attenuation 

substitution method to correct the BL scan was verified using the corresponding ETA time-point, 

for which both the e7tools and the attenuation substitution reconstructions were available. 
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 Table 4-5. Attenuation Correction Method used for PET Data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Subject 
ID 

BL PET  
Scanner 

ETA PET  
Scanner 

FUA PET  
Scanner 

ML-10 #1 Transmission Scan N/A N/A 

ML-10 #2 Transmission Scan Transmission Scan N/A 

ML-10 #4 Transmission Scan Transmission Scan Transmission Scan 

ML-10 #5 Transmission Scan Transmission Scan Transmission Scan 

ML-10 #6 Transmission Scan Transmission Scan Transmission Scan 

ML-10 #7 Transmission Scan Transmission Scan Transmission Scan 

ML-10 #8 Transmission Scan Pseudo CT 
ΘPseudo CT (acq. 1) 

‡Transmission Scan (acq. 2) 

ML-10 #9 Pseudo CT Pseudo CT Pseudo CT 

ML-10 #10 Pseudo CT Pseudo CT Pseudo CT 

ML-10 #11 Pseudo CT Pseudo CT Pseudo CT 

ML-10 #12 Pseudo CT N/A N/A 

ML-10 #13₤ Attenuation 
Substitution 

Attenuation 
Substitution N/A 

ML-10 #14 Pseudo CT Pseudo CT Pseudo CT 

* Subject age refers to their age at time of enrollment into study. 
† N/A = Not acquired. 
Θ = ML-10 #8 FUA 0-45 min acquisition was acquired on the Siemens Biograph mMR. 
‡ = ML-10 #8 FUA 120-150 min acquisition was acquired on the Siemens HR+. 
₤ = ML-10 #13 ETA binned sinogram data was lost due to mMR technical error preventing use 
of the Pseudo CT method; for consistency the attenuation substitution method was used for AC 
of both the BL and ETA PET scanning sessions.  



 64 

 

 

5.0  ANALYSIS OF [18F]ML-10 TISSUE UPTAKE PROPERTIES IN GBM AND 

NORMAL BRAIN TISSUE 

This chapter presents an analysis of [18F]ML-10 pharmacokinetics (PK) in GBM and 

normal brain tissue on a whole tumor and voxelwise level. As the PK of [18F]ML-10 have not been 

previously reported in either pre-clinical or clinical studies, the methodology for doing so needs to 

be developed from the ground-up. This process includes evaluating candidate models to describe 

both the radiotracer concentration in both the blood and tumor tissue.  

 

[18F]ML-10 concentration in the blood is measured on each dynamic PET scan from the 

internal carotid arteries of the brain. Section 5.1 evaluates a set of 8 candidate models for their 

ability to parsimoniously describe the image-based blood concentration profile. The goal of this 

analysis is to find a subset of the 8 candidate models that can be used as image-based input function 

(IBIF) models for simultaneous IBIF/tumor impulse response function (IRF) modeling (similar to 

that of Wong et al [138]).  

 

Section 5.2 contains the PK analysis results for [18F]ML-10 in GBM. Model selection 

criteria and model parameter estimability considerations are used to evaluate candidate tumor IRF 

models. Once appropriate IRF models are selected, macroparameters that quantifying radiotracer 
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uptake are estimated and studied using compartmental modeling. Spectral analysis (SA) is also 

performed to provide additional support for IRF model selection as well obtain additional 

macroparameter estimates. The utility of these macroparameters to predict treatment response is 

investigated in a subset of GBM subjects. Finally, heterogeneity in GBM response to treatment is 

evaluated through voxelwise analysis of [18F]ML-10 uptake measures. Diffusion MRI imaging 

was available at the ETA and FUA time-points for 2 subjects, allowing for a preliminary 

investigation comparing [18F]ML-10 uptake at ETA with later change in tumor density. 

5.1 INPUT FUNCTION MODELING 

5.1.1 Background: Image Based Input Functions 

In order to apply pharmacokinetic modeling to quantify [18F]ML-10 uptake in high grade 

brain tumors, measurements of the time-courses of tracer concentration in the blood and in the 

tumor tissue are required. In pharmacokinetic modeling, the concentration of [18F]ML-10 in the 

blood acts as the input function that perturbs the underlying tumor (treated as a linear system) to 

produce the measured tumor tissue uptake profile (i.e. the tumor system response function). The 

theory of pharmacokinetic modeling as well as its application to analyzing [18F]ML-10 uptake in 

high grade astrocytomas are described below in Section 5.2. The focus of this current section is on 

measuring and modeling the [18F]ML-10 concentration time-course in the blood (i.e. modeling the 

input function to the tumor system). 
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In PET, there are three basic approaches to obtaining the input blood tracer concentration. 

One approach is to insert a catheter into the forearm and draw blood samples from either of the 

ulna or radial arteries and measure the concentration of radioactivity in the blood directly. In the 

case of a well-studied tracer, it is sometimes possible to derive a population-based model for tracer 

concentration in the blood, thereby obviating the need for laborious arterial blood sampling; 

though a few blood samples are often obtained in order to normalize the population-based curve 

to the particular study subject [139-142]. The third approach is to measure the activity in the blood 

directly from the dynamic PET image obtaining what is referred to as an image-based input 

function (IBIF). Like population-based methods, IBIFs have the potential advantage of requiring 

no arterial blood sampling. 

 

Although it would be desirable, no arterial blood sampling was performed as part of this 

study based on the requirements of the referring physicians. Moreover, as this is the first study to 

evaluate the pharmacokinetics of [18F]ML-10 in humans, there are no established population-based 

input function models of [18F]ML-10 time-course in the blood. These considerations limit the 

analysis of [18F]ML-10 to IBIFs. As a result, the remaining background discussion will focus on 

approaches to modeling IBIFs. 

 

Several studies have demonstrated the capability of input function measurement noise to 

affect estimates of pharmacokinetic rate constants [143-146]. Moreover, for use in both regional 

and voxelwise pharmacokinetic analysis in this dissertation values for the IBIF must be available 

at arbitrary times from injection, which includes during the 75 min break between scanning 
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sessions. Taken together, these factors motivate the need for fitting a smooth model to the 

measured IBIF data. 

 

Currently there no uniformly agreed upon methods for modeling an IBIF [71, 147], and 

often the approaches used are tracer specific and dependent on the IBIF source (e.g. internal carotid 

arteries of the brain, descending aorta, etc...) [71, 148-150]. However, a popular IBIF model used 

commonly in exploratory situations is the input function model proposed by Feng et al [151]. The 

general form of their input function model is given in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.1), where θ0, θ1, and θ2 denote 

constant amplitudes, u(𝑡𝑡) represents the unit-step function, and the exponential rates: p0, p1, and 

p2 are all non-negative.   

 

𝒇𝒇(𝒕𝒕) =  [𝛉𝛉𝟎𝟎𝒕𝒕 − (𝛉𝛉𝟏𝟏 + 𝛉𝛉𝟐𝟐)]𝐞𝐞−𝐩𝐩𝟎𝟎𝒕𝒕𝐮𝐮(𝒕𝒕) +  𝛉𝛉𝟐𝟐𝐞𝐞−𝐩𝐩𝟐𝟐𝒕𝒕𝒙𝒙(𝒕𝒕) + 𝛉𝛉𝟑𝟑𝐞𝐞−𝐩𝐩𝟑𝟑𝒕𝒕𝒙𝒙(𝒕𝒕) (Eqn. 5.1.1) 

 
 
 
From the stand-point of pharmacokinetic modeling, 𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.1 has several advantageous 

properties. For example, because (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.1) is an analytic function composed of a sum of first 

and second-order causal exponentials, the gradient with respect to the model parameters of 

𝐸𝐸𝐸𝐸𝐸𝐸. %% is relatively easy to obtain. This property is greatly beneficial from the stand point of 

model fitting/optimization as well as obtaining an estimate for the covariance matrix of the model 

parameters, and linear system modeling. Furthermore, due to the simplicity of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.1), 

additional first order or second order causal exponentials can be added to account for long 

acquisition times or the presence of a re-circulation peak, respectively. Finally, like many IBIF 

models the Feng model is physiologically reasonable; the model is zero at time, t = 0, and naturally 
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produces a peak concentration followed by an exponentially decreasing tail. Therefore, due to its 

simplicity and stated advantages, the model in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.1) will form the basis from which all 

other candidate IBIF models are derived. 

 

A practical consideration when fitting any model to an IBIF is that the measured IBIF 

samples are really the time-averages of the true blood activity concentration over corresponding 

frame dwell times. Therefore, when fitting any model to an IBIF, it is actually the time-averaged 

version that must be fit to the data. This approach is described in, for example, Simoncic et al [152] 

at a high level. 

5.1.2 Background: Evaluation of Model Parameter Uncertainty 

 Random fluctuations between different realizations of time-course data due to stochastic 

noise and measurement errors means that the same estimation procedure applied to two different 

realizations will produce different parameter estimates for the same model. Ideally these estimates 

will not deviate significantly from one realization to the next and will on average obtain their true 

values. For the case of a deterministic signal embedded in noise, a model parameter is said to be 

ill-determined if the value of its estimate exhibits large changes in response to ostensibly random 

fluctuations in the measured data [153]. In practical application, this means that a parameter is ill-

determined if it has a large variance (or standard deviation) relative to the nominal value of the 

estimate [153, 154]. 
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When the joint probability distribution, 𝑝𝑝(𝑥𝑥;𝜃𝜃), of the measured data vector 𝑥𝑥 given the 

vector of true values of the model parameters 𝜃𝜃 is exactly known, the distribution can be used to 

compute the Cramer-Rao lower bound (CRLB) for all possible model parameter estimators. The 

CRLB provides an important benchmark for evaluating and comparing different estimators for the 

same model parameters, as the CRLB specifies the minimum possible variance that an unbiased 

estimator for the model parameters can have given the noise level in the data. For a vector of 

parameters, the CRLB is equal to the inverse of the Fisher information matrix 𝐼𝐼(𝜃𝜃). The Fisher 

information matrix is defined in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.2), where ℰ[∙] denotes the expected value operation. By 

definition, an unbiased estimator that achieves the CRLB is termed efficient [155]. Moreover, in 

some cases an estimator may achieve the CRLB only as the number of data samples N gets large. 

In this case the estimator is said to be asymptotically efficient [153, 156]. Similarly, an estimator 

that becomes unbiased for large data records is said to be consistent (or asymptotically unbiased) 

[153, 156]. 

 

[𝑰𝑰(𝜽𝜽)]𝒔𝒔𝟐𝟐 = −𝓔𝓔 �𝝏𝝏
𝟐𝟐(𝐥𝐥𝐥𝐥{𝒑𝒑(𝒙𝒙;𝜽𝜽)})
𝝏𝝏𝜽𝜽𝒔𝒔𝝏𝝏𝜽𝜽𝟐𝟐

� (Eqn. 5.1.2) 

 
 
 
For the case that the measurement errors follow a Gaussian distribution, the Fisher 

information matrix takes a particularly simple form given by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.3), where Σx(θ) is the 

covariance matrix of the measured data 𝑥𝑥 (which may depend on the model parameters) and μ(t;θ) 

represents the time-dependent deterministic model being fitted to the data [155]. 
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[𝑰𝑰(𝜽𝜽)]𝒔𝒔𝟐𝟐 = �𝝏𝝏𝛍𝛍(𝐭𝐭;𝛉𝛉)
𝝏𝝏𝜽𝜽𝒔𝒔

�
𝑻𝑻
𝚺𝚺𝐱𝐱−𝟏𝟏(𝛉𝛉) �𝝏𝝏𝛍𝛍(𝐭𝐭;𝛉𝛉)

𝝏𝝏𝜽𝜽𝟐𝟐
� + 𝟏𝟏

𝟐𝟐
𝑻𝑻𝒘𝒘 �𝚺𝚺𝐱𝐱−𝟏𝟏(𝛉𝛉) �𝝏𝝏𝚺𝚺(𝛉𝛉)

𝝏𝝏𝜽𝜽𝒔𝒔
� 𝚺𝚺𝐱𝐱−𝟏𝟏(𝛉𝛉) �𝝏𝝏𝚺𝚺(𝛉𝛉)

𝝏𝝏𝜽𝜽𝟐𝟐
�� (Eqn. 5.1.3) 

 
 
 
In practice, the general form of 𝑝𝑝(𝑥𝑥;𝜃𝜃) may be known but the true values of the model 

parameters, 𝜃𝜃, are generally unknown and need to be estimated from the measured data. 

Importantly, different estimators for the same parameter vector will generally produce different 

sampling distributions [153]. Hence the variance of a parameter estimate depends on the estimation 

procedure used [153]. However, as stated above, the CRLB specifies the minimum possible 

variance for an unbiased estimator of a set of model parameters. Therefore, the goal is to find an 

estimator 𝜃𝜃� that achieves the CRLB for a given 𝑝𝑝(𝑥𝑥;𝜃𝜃).  

 

In general, determining an efficient estimator (or estimators) for a set of model parameters 

is a difficult problem. However, defining the likelihood function as ℒ(𝜃𝜃) ≜ 𝑝𝑝(𝑥𝑥;𝜃𝜃), it can be 

shown that the value of 𝜃𝜃 that maximizes the likelihood function for the given data, denoted 𝜃𝜃�𝑀𝑀𝑀𝑀𝑃𝑃, 

has the properties of being asymptotically unbiased and asymptotically efficient [155, 157]. 

Therefore, the CRLB can be used as an approximate formula for calculating the covariance matrix, 

Σ𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀
, of the 𝜃𝜃�𝑀𝑀𝑀𝑀𝑃𝑃  estimator (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.4).  

 

𝚺𝚺𝜽𝜽�𝑴𝑴𝑴𝑴𝑬𝑬 ≈ 𝑰𝑰(𝜽𝜽)−𝟏𝟏 (Eqn. 5.1.4) 

 
 
 
However, since the true values of the model parameters are unknown, only an approximate 

expression for the covariance matrix in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.4) is calculable and is obtained by substituting 



 71 

 

the true value of 𝜃𝜃 with the most likely value for the model parameters (i.e. by setting 𝜃𝜃 equal to 

the MLE estimate 𝜃𝜃�𝑀𝑀𝑀𝑀𝑃𝑃 (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.5)). The accuracy of this approximation will depend on the 

shape of the likelihood function around its maximum (i.e. the quality of the fit); that is, the sharper 

the peak of the likelihood function is around 𝜃𝜃�𝑀𝑀𝑀𝑀𝑃𝑃  (i.e. the smaller the parameter variance) the 

better the approximation to the covariance matrix that (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.5) will be [153]. For the case of 

normally distributed errors the approximate formula for Σ𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀
 is obtained by substituting 

𝜃𝜃 = 𝜃𝜃�𝑀𝑀𝑀𝑀𝑃𝑃 into (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.3) giving (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.6). 

 

𝚺𝚺𝜽𝜽�𝑴𝑴𝑴𝑴𝑬𝑬 ≈ [𝑰𝑰(𝜽𝜽)−𝟏𝟏] 𝛉𝛉 = 𝜽𝜽�𝑴𝑴𝑴𝑴𝑬𝑬  (Eqn. 5.1.5) 

 

𝚺𝚺𝜽𝜽�𝑴𝑴𝑴𝑴𝑬𝑬 = ��𝝏𝝏𝛍𝛍(𝐭𝐭;𝛉𝛉)
𝝏𝝏𝜽𝜽

�
𝑻𝑻
𝚺𝚺𝐱𝐱−𝟏𝟏(𝛉𝛉) �𝝏𝝏𝛍𝛍(𝐭𝐭;𝛉𝛉)

𝝏𝝏𝜽𝜽
� + 𝟏𝟏

𝟐𝟐
𝑻𝑻𝒘𝒘 ��𝚺𝚺𝐱𝐱−𝟏𝟏(𝛉𝛉) �𝝏𝝏𝚺𝚺(𝛉𝛉)

𝝏𝝏𝜽𝜽
��
𝟐𝟐
��
𝛉𝛉 = 𝜽𝜽�𝑴𝑴𝑴𝑴𝑬𝑬

𝐰𝐰𝐰𝐰𝐞𝐞𝐰𝐰𝐞𝐞, 𝒙𝒙~𝑵𝑵(𝛍𝛍(𝐭𝐭;𝛉𝛉),𝚺𝚺𝐱𝐱(𝛉𝛉))
 (Eqn. 5.1.6) 

 

5.1.3 Methods 

5.1.3.1 Subjects 

Study subject characteristics were detailed in Chapter 4. While a total of 32 [18F]ML-10 

PET scans were acquired, only 29 were analyzed for IBIF modeling. As highlighted in table 4-4, 

subject ML-10 #2’s BL scan was started 67 sec after tracer injection making it impossible to model 

the initial peak tracer concentration in the blood. Additionally, subject ML-10 #8 received their 

BL, ETA, and FUA PET scans on different PET scanners depending imaging time-point, making 
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it difficult to compare fit results across time-points. Due to the above reasons, these PET scans 

were excluded from IBIF model selection analysis 

5.1.3.2 PET Image Processing 

All PET acquisitions were inspected for inter-frame motion, which, if necessary, was 

corrected for on a frame-by-frame basis using the motion correction tool available in PMOD 3.6 

(PMOD Technologies LLC; Zürich, Switzerland). Because each PET imaging time-point 

consisted of two PET acquisitions, between which the subject got off the scanner, the 120-150 min 

scan was co-registered to the 0-45 min scan. To this end, the entire (motion corrected if necessary) 

0-45 min acquisition was summed to produce a single static image. Next each frame of the 120-

150 min acquisition was individually co-registered to the summed static image derived from the 

0-45 min scan using the normalized mutual information method available in PMOD 3.6. The 

resulting transformation was then applied to each individual frame of the 120-150 min scan, which 

was then combined with the 0-45 min acquisition to form a single dynamic acquisition volume. 

5.1.3.3 Volume of Interest Definition and Image Based Input Function Measurement 

As part of the study design (due to clinical requirements) no arterial blood sampling was 

performed. Therefore, quantification of [18F]ML-10 kinetics for the GBM subjects in this study is 

limited to using image-based input functions (IBIFs), obtained from the internal carotid arteries of 

the brain.  

 

IBIF volumes of interest (VOI) were defined by first summing together the entire 51 frame 

PET image to create a single static image. Next a single preliminary VOI was defined around each 
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carotid separately (i.e. each carotid had its own initial loose VOI) with a margin of normal tissue, 

but not including tumor activity or activity from neighboring vessels. VOIs consisted of closed 

contours drawn on a set of transaxial imaging planes. Each preliminary carotid VOI spanned at 

least 4 consecutive planes. Next a 90% of max pixel threshold was applied to each preliminary 

carotid VOI. That is, the maximum value of the pixels within the preliminary VOI was determined; 

the final VOI included those pixels that fell within the preliminary VOI and had a value of 90% or 

greater of the maximum value. The final carotid VOI was generated by taking the union of the two 

thresholded carotid VOIs. It is from this final carotid ROI that the IBIF was extracted for each 

imaging time-point. Figure 5-1 shows an example IBIF VOI. 

 

 

Figure 5-1. Example [18F]ML-10 PET Image Section Showing IBIF VOI Defined on the Internal Carotid 

Arteries of the Brain. 

 

 

Previous studies have shown that [18F]ML-10 exhibits low tracer metabolism (97.5% ± 

0.4% unchanged [18F]ML-10 fraction 150 min post-injection) with no defluorination in healthy 
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humans [129]. Therefore, throughout this study no metabolite correction was applied to the IBIF. 

If it was found that tracer accumulation in the tumor region was touching one of the internal carotid 

arteries, the carotid touching the tumor activity was excluded from the final IBIF ROI, and thus 

did not contribute to the measured IBIF. 

5.1.3.4 Proposed Input Function Models and Selection Criteria 

For use in regional and voxelwise pharmacokinetic analysis, values for the IBIF must be 

available at arbitrary times from injection, which includes during the 75 min break between 

scanning sessions. In order to determine an appropriate IBIF model, 2 general input function model 

forms were evaluated. The two model forms are shown in table 5-1, and were based on a model 

originally proposed by Feng et al [151]. The principle difference between the two forms is that 

IBIF Model 2 allows for a second peak in the input function. Both models include a variable 

number of decaying exponentials.  

 

Table 5-1. Candidate Input Function Model Forms. 

 

IBIF 
Model IBIF Model Mathematical Form. 

Model 1 𝑓𝑓(𝑁𝑁)(𝑡𝑡) =  ��θ0(𝑡𝑡 − τ) −�θi

N

i=1

� e−p0(𝑡𝑡−τ) + �θi

N

i=1

e−pi(𝑡𝑡−τ)� 𝑢𝑢(𝑡𝑡 − τ);

N = 1, 2, 3, 4

 

Model 2 𝑔𝑔(𝑁𝑁)(𝑡𝑡) =  �α0�𝑡𝑡 − (τ + τα)�e−α1�𝑡𝑡−(τ+τα)�� 𝑢𝑢�𝑡𝑡 − (τ + τα)�+ 𝑓𝑓(𝑁𝑁)(𝑡𝑡);
N = 1, 2, 3, 4
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IBIF Model 1 consists of a second-order pole followed by a variable number of first-order 

decaying exponentials. For IBIF Model 1 the coefficients  𝜃𝜃1 … 𝜃𝜃𝑁𝑁  as well as the washout 

rates 𝑝𝑝1 … 𝑝𝑝𝑁𝑁 and the time-delay 𝜏𝜏 all need to be estimated for each nested model. IBIF Model 

2 is essentially IBIF Model 1 (𝑓𝑓(𝑁𝑁)(𝑡𝑡)) with an additional second-order pole term that allows for 

modeling of an additional recirculation peak [23, 158], and requires additional estimation of the 

parameters α0, α1, and an additional delay term τα, which allows independent movement of the 

additional peak with respect to 𝑓𝑓(𝑁𝑁)(𝑡𝑡). Figure 5-2 shows two representative IBIF model forms 

each composed of N=2 decaying exponentials, with IBIF Model 1 shown on the left and IBIF 

Model 2 shown on the right. Zoomed-in versions of each model are shown in the corresponding 

insets. Comparison between the two zoomed-in figures highlights corresponding differences in 

peak shape. 
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Figure 5-2. Example IBIF model curves with N=2 decaying exponentials. (Left) IBIF Model 1 from 0-150 min 

with zoomed view of 0-45 min (inset). (Right) shows IBIF Model 2 with corresponding zoomed 0-45 min (inset). 

 

 

Table 5-2 contains an explicit list of the candidate input function models tested for each 

subject at each imaging time-point. For the purposes of model selection, as few as 1 and as many 

as 4 decaying exponentials were tested for each model form, resulting in a total of 8 candidate 

IBIF models tested per subject per imaging time-point. Despite differences in the number of 

parameters and the number of second order pole terms, all models in table 5-2 describe a 

radioactivity concentration profile that is equal to zero prior to tracer injection, and approaches 

zero as the time following bolus injection of [18F]ML-10 approaches infinity. 
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 Table 5-2. List of Candidate Input Function Models Tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The overall forms of the models in table 5-2 were inspired by previously proposed input 

function model forms from the literature [151, 158]. Traditionally the Feng model [151], which 

refers to IBIF Model 1b, has been a common model form adopted by researchers interested in 

fitting as well as simulating [151] image-based input functions, though several other model forms 

have been proposed [71, 147, 159]. An advantage that the models in table 5-2 have over more 

complicated IBIF models, for example [148, 160], is that the models in table 5-2 are composed of 

sums of first and second-order poles, which have simple and well known Laplace transforms, and 

thus readily facilitate analytic expressions for compartmental modeling of the tracer in tissue. 

IBIF 
Model List of Tested Candidate IBIF Models. 

Model 1a 𝑓𝑓(1)(𝑡𝑡) =  �[θ0(𝑡𝑡 − τ) − θ1]e−p0(𝑡𝑡−τ) +  θ1e−p1(𝑡𝑡−τ)�𝑢𝑢(𝑡𝑡 − τ); 

Model 1b 𝑓𝑓(2)(𝑡𝑡) =  ��θ0(𝑡𝑡 − τ) −�θi

2

i=1

� e−p0(𝑡𝑡−τ) +  �θi

2

i=1

e−pi(𝑡𝑡−τ)� 𝑢𝑢(𝑡𝑡 − τ); 

Model 1c 𝑓𝑓(3)(𝑡𝑡) =  ��𝜃𝜃0(𝑡𝑡 − 𝜏𝜏) −�𝜃𝜃𝑖𝑖

3

𝑖𝑖=1

� 𝑒𝑒−𝑝𝑝0(𝑡𝑡−𝜏𝜏) +  �𝜃𝜃𝑖𝑖

3

𝑖𝑖=1

𝑒𝑒−𝑝𝑝𝑖𝑖(𝑡𝑡−𝜏𝜏)� 𝑢𝑢(𝑡𝑡 − 𝜏𝜏); 

Model 1d 𝑓𝑓(4)(𝑡𝑡) =  ��θ0(𝑡𝑡 − τ) −�θi

4

i=1

� e−p0(𝑡𝑡−τ) +  �θi

4

i=1

e−pi(𝑡𝑡−τ)� 𝑢𝑢(𝑡𝑡 − τ); 

  

Model 2a 𝑔𝑔(1)(𝑡𝑡) =  �α0�𝑡𝑡 − (τ + τα)�e−α1�𝑡𝑡−(τ+τα)�� 𝑢𝑢�𝑡𝑡 − (τ + τα)�+ 𝑓𝑓(1)(𝑡𝑡); 

Model 2b 𝑔𝑔(2)(𝑡𝑡) =  �α0�𝑡𝑡 − (τ + τα)�e−α1�𝑡𝑡−(τ+τα)�� 𝑢𝑢�𝑡𝑡 − (τ + τα)�+ 𝑓𝑓(2)(𝑡𝑡); 

Model 2c 𝑔𝑔(3)(𝑡𝑡) =  �α0�𝑡𝑡 − (τ + τα)�e−α1�𝑡𝑡−(τ+τα)�� 𝑢𝑢�𝑡𝑡 − (τ + τα)�+ 𝑓𝑓(3)(𝑡𝑡); 

Model 2d 𝑔𝑔(4)(𝑡𝑡) =  �α0�𝑡𝑡 − (τ + τα)�e−α1�𝑡𝑡−(τ+τα)�� 𝑢𝑢�𝑡𝑡 − (τ + τα)�+ 𝑓𝑓(4)(𝑡𝑡); 
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Moreover, since the entire IBIF is modeled, not just the portion of the IBIF occurring after the 

peak blood concentration [140, 160], a simultaneous fitting of the IBIF model and the tissue 

response can be performed allowing for an investigation of the impact of input function noise on 

compartmental model parameter estimates. 

5.1.3.5 Input Function Model Fitting 

Input function model fitting was carried out in two-stages using the optimization toolbox 

available in MATLAB (R2014a, The MathWorks, Natick, MA., USA). For each stage, a time-

averaged version of the input function model under investigation was fitted. Stage one focused on 

generating a good initial guess for the model parameters, which was then used as the initial starting 

point for maximization of a Gaussian log-likelihood function. The model parameter estimates 

obtained by maximizing this log-likelihood were used as the final model parameter estimates for 

model selection.  

 

Obtaining the Gaussian Likelihood Function to be Maximized 

The multivariate Gaussian likelihood function used for IBIF model fitting is given by 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.7), where 𝑦𝑦 denotes the (Nx1) column vector of measured samples of the image-based 

input function, 𝑡𝑡̅ denotes the corresponding (Nx1) column vector of frame mid-times, and 𝑀𝑀(𝜃𝜃; 𝑡𝑡̅) 

represents the candidate input function model being tested with model parameter vector 𝜃𝜃.  

 

𝓛𝓛(𝒚𝒚;𝜽𝜽) = (𝟐𝟐𝟐𝟐)−
𝑵𝑵
𝟐𝟐|𝚺𝚺|−

𝟏𝟏
𝟐𝟐𝐞𝐞−

𝟏𝟏
𝟐𝟐

[𝒚𝒚−𝑴𝑴(𝜽𝜽;�̅�𝒕)]𝑻𝑻𝚺𝚺−𝟏𝟏[𝒚𝒚−𝑴𝑴(𝜽𝜽;�̅�𝒕)] (Eqn. 5.1.7)  
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Use of this particular likelihood form assumes the measurement errors are distributed 

following a multivariate Gaussian distribution with zero-mean. This is a common assumption in 

PET quantitative methodology when image data have been re-constructed using filtered-

backprojection and is based on the Central Limit Theorem, which states that the distribution of a 

sum of random variables converges to a Gaussian distribution with probability equal to one, 

independent of the distributions of the individual random variables being summed [73, 74]. 

However, in order to make the maximization of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.7. ) more tractable, additional 

simplifying assumptions were made regarding the measurement noise characteristics. Specifically, 

it was assumed that the measurement errors were independently distributed and that their 

individual variances were proportional to the measured blood activity.  

 

Under the simplifying assumptions of: (i) independent errors and (ii) individual variances 

being proportional to the corresponding measured blood activity, the covariance matrix takes the 

form of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.8); where 𝜎𝜎𝑁𝑁𝑐𝑐𝐶𝐶,𝑖𝑖
2  is as defined by equation (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.9), and 𝜆𝜆 denotes the 18F 

decay-rate. 

 

𝚺𝚺𝐢𝐢𝐢𝐢 = �𝝈𝝈𝑵𝑵𝒄𝒄𝒘𝒘,𝒔𝒔
𝟐𝟐 𝐢𝐢 = 𝐢𝐢;
𝟎𝟎 𝐢𝐢 ≠ 𝐢𝐢;

 (Eqn. 5.1.8) 

 

𝝈𝝈𝑵𝑵𝒄𝒄𝒘𝒘,𝒔𝒔
𝟐𝟐 = 𝜶𝜶𝟐𝟐𝒚𝒚𝒔𝒔𝟐𝟐; 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘, 𝒚𝒚𝒔𝒔𝟐𝟐 ≜

�𝒚𝒚𝒔𝒔∗𝒘𝒘𝝀𝝀�̅�𝒕𝒔𝒔 �
∆𝒔𝒔𝑻𝑻

 (Eqn. 5.1.9) 
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Inserting (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.8) into (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.7) gives (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.10), which can be further simplified using 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.9) yielding (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.11), where 𝑣𝑣𝑖𝑖2 ≜
�𝑦𝑦𝑖𝑖∗𝑒𝑒𝜆𝜆𝑐𝑐

�𝑖𝑖 �

∆𝑖𝑖𝑇𝑇
 and 𝛼𝛼 is a positive constant (see Chapter 

2.4.1). 

𝓛𝓛(𝒚𝒚;𝜽𝜽) = 𝟏𝟏
�(𝟐𝟐𝟐𝟐)𝑵𝑵∏ 𝝈𝝈𝑵𝑵𝒄𝒄𝒘𝒘,𝒔𝒔

𝟐𝟐𝑵𝑵
𝒔𝒔=𝟏𝟏

𝐞𝐞
−𝟏𝟏𝟐𝟐∑ �𝒚𝒚𝒔𝒔−𝑴𝑴�𝜽𝜽;�̅�𝒕𝒔𝒔�

 𝝈𝝈𝑵𝑵𝒄𝒄𝒘𝒘,𝒔𝒔
�
𝟐𝟐

𝐍𝐍
𝐢𝐢=𝟏𝟏  (Eqn. 5.1.10) 

 

𝓛𝓛(𝒚𝒚;𝜽𝜽) = 𝟏𝟏
�(𝟐𝟐𝟐𝟐)𝑵𝑵∏ (𝜶𝜶𝒚𝒚𝒔𝒔)𝟐𝟐𝑵𝑵

𝒔𝒔=𝟏𝟏
𝐞𝐞−

𝟏𝟏
𝟐𝟐
∑ �𝒚𝒚𝒔𝒔−𝑴𝑴�𝜽𝜽;�̅�𝒕𝒔𝒔�

 𝜶𝜶𝒚𝒚𝒔𝒔
�
𝟐𝟐

𝐍𝐍
𝐢𝐢=𝟏𝟏  (Eqn. 5.1.11) 

 
 
 

Finally, taking the natural-log of both sides of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.11) and collecting terms gives the log-

likelihood function to me maximized, (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.12). 

 

𝒍𝒍𝒏𝒏�𝓛𝓛(𝒚𝒚;𝜽𝜽)� = −𝑵𝑵
𝟐𝟐
𝒍𝒍𝒏𝒏(𝟐𝟐𝟐𝟐)− ∑ 𝒍𝒍𝒏𝒏�𝒚𝒚𝒔𝒔𝟐𝟐�𝑵𝑵

𝒔𝒔=𝟏𝟏 − 𝑵𝑵𝒍𝒍𝒏𝒏(𝜶𝜶𝟐𝟐) − 𝟏𝟏
𝟐𝟐𝛂𝛂𝟐𝟐

∑ �𝒚𝒚𝒔𝒔−𝑴𝑴(𝜽𝜽;�̅�𝒕𝒔𝒔)
𝒚𝒚𝒔𝒔

�
𝟐𝟐

𝐍𝐍
𝐢𝐢=𝟏𝟏  (Eqn. 5.1.12) 

 
 
 
Note that maximizing (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.12) requires estimation of the proportionality constant 𝛼𝛼, 

which increases the total number of model parameters by 1 for AIC, and AICc calculations.  

Moreover, estimates of 𝛼𝛼 are required to be positive as the product (𝛼𝛼𝜎𝜎𝑖𝑖) is a standard deviation. 

 

A practical consideration of fitting any of the candidate models in table 5-2 is that the 

measured IBIF samples are really the time-averages of the true blood activity concentration over 

corresponding frame dwell times. Therefore, the time-averaged versions of each model in table 5-
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2 are actually used during IBIF model selection [152]. The time-averaged versions of input models 

1 and 2 and the derivations of these equations are given in Appendix A.1.  

 

IBIF Model Parameter Estimation Strategy: IBIF Model 1 

Figure 5-3 shows a high-level workflow illustrating the multi-step optimization method 

used for fitting candidate IBIF models: IBIF Model 1a, IBIF Model 1b, IBIF Model 1c, and IBIF 

Model 1d. Step 1 was composed of a multi-phase optimization procedure that began with 

constrained, unweighted (i.e. 𝛼𝛼 = 1; 𝑣𝑣𝑖𝑖 = 1,∀𝑠𝑠) ordinary least-squares (OLS) fitting of each 

candidate IBIF model to only the first 0-45 min worth of input function data using 500 random 

initial guesses. Random start points were generated using the MultiStart.m function in the 

MATLAB 2014a optimization toolbox. The solution to the OLS maximization from the 0-45 min 

data was then used as a starting point for un-weighted constrained OLS maximization using the 

complete set (0-150 min data) of measured blood concentration samples. The solution obtained 

from the constrained, un-weighted OLS maximization of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.12) using the complete 0-150 

min data set was then used as the initial guess for a weighted-constrained maximization fit to the 

complete 0-150min data set. The solution to the weighted and constrained fit, denoted 𝜃𝜃0, was 

used as initial guess for the final weighted and unconstrained maximization of the likelihood 

function in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.12), the solution to which was used as the final input function model 

parameter estimate, denoted 𝜃𝜃�.  

 

All constrained optimization was carried out using the fmincon.m function, while 

unconstrained optimization was performed using the fminunc.m function, both of which are 
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available in the MATLAB optimization toolbox (R2014a, The MathWorks, Natick, MA., USA). 

All constraints consisted of set constraints only, which restricted the possible ranges for the 

exponential washout-rates and the size of the time-delay, 𝜏𝜏. No constraints were placed on the 

linear coefficients of the IBIF models. Specifically, IBIF models of the form of Model 1 in table 

5-1 (i.e. IBIF Models: 1a, 1b, 1c, 1d) the second-order pole was restricted to be in the range 𝑝𝑝1 ∈

[0, 20] min−1 , while all first-order poles were restricted to the range 𝑝𝑝𝑖𝑖 ∈ [0, 1] min−1, and the 

time delay parameter was constrained to be 𝜏𝜏 ∈ [0, 2] min.  

 

 

Figure 5-3. IBIF Model 1 Optimization Workflow. 
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IBIF Model Parameter Estimation Strategy: IBIF Model 2 

Figure 5-4 shows a high-level workflow illustrating the multi-step optimization method 

used for fitting candidate IBIF Models: IBIF Model 2a, IBIF Model 2b, IBIF Model 2c, and IBIF 

Model 2d. The approach to obtaining initial guesses for IBIF Models: 2a, 2b, 2c, and 2d, consisted 

of first fitting the corresponding 𝑓𝑓(𝑁𝑁)(𝑡𝑡) component (see table 5-1) to the first 0-45 min worth of 

input function data using the same un-weighted OLS constrained maximization of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.12) 

procedure as for Model 1 IBIF models with 500 random initial start-points. Next, the solution to 

the unweighted OLS maximization using only the 𝑓𝑓(𝑁𝑁)(𝑡𝑡) component, denoted 𝜃𝜃45𝑚𝑚𝑖𝑖𝑐𝑐
𝑓𝑓(𝑁𝑁)

, was used 

to form an initial guess vector 𝜃𝜃45𝑚𝑚𝑖𝑖𝑐𝑐
𝑔𝑔(𝑁𝑁)

= �𝜃𝜃45𝑚𝑚𝑖𝑖𝑐𝑐
𝑓𝑓(𝑁𝑁)

| 𝜃𝜃0𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑒𝑒𝑑𝑑𝑘𝑘�
𝑇𝑇
; where  𝜃𝜃0𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑒𝑒𝑑𝑑𝑘𝑘 =

[−5, 10, 1.5]𝑇𝑇 contains the initial starting guesses for the second peak parameters: 𝛼𝛼0, 𝛼𝛼1, and τα, 

respectively. Next, a constrained OLS maximization was performed using only the 0-45min PET 

data and allowing only the 𝜃𝜃0𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑒𝑒𝑑𝑑𝑘𝑘 parameters to float (i.e. the 𝜃𝜃45𝑚𝑚𝑖𝑖𝑐𝑐
𝑓𝑓(𝑁𝑁)

 parameters were held fixed 

during this step). The solution to this step was then used as initial guess for a constrained OLS step 

that allowed all IBIF model parameters to float, the solution to which is denoted 𝜃𝜃150𝑚𝑚𝑖𝑖𝑐𝑐
𝑔𝑔(𝑁𝑁)

=

�𝜃𝜃150𝑚𝑚𝑖𝑖𝑐𝑐
𝑓𝑓(𝑁𝑁)

| 𝜃𝜃150𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑒𝑒𝑑𝑑𝑘𝑘�
𝑇𝑇
. 

 

The OLS solution 𝜃𝜃150𝑚𝑚𝑖𝑖𝑐𝑐
𝑔𝑔(𝑁𝑁)

 was then used as an initial guess for a weighted coordinate 

descent procedure that alternated between optimizing over the 𝜃𝜃𝑓𝑓(𝑁𝑁) and 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑒𝑒𝑑𝑑𝑘𝑘 parameters until 

the relative change in the log-likelihood value was less than or equal to 10-5. Finally, the gradient 

descent solution, denoted 𝜃𝜃0, was used as the initial guess for an unconstrained maximization of 
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the likelihood function in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.12), the solution to which was used as the final input function 

model parameter estimate, denoted 𝜃𝜃�. 

 

All constrained optimization was carried out using the fmincon.m function, while 

unconstrained optimization was performed using the fminunc.m function, both of which are 

available in the MATLAB optimization toolbox (R2014a, The MathWorks, Natick, MA., USA). 

All constraints consisted of set constraints only, which restricted the possible ranges for the 

exponential washout-rates and the size of the time-delays. The set constraints for the 𝑓𝑓(𝑁𝑁)(𝑡𝑡) 

component are the same as in the IBIF Model 1 fitting procedure described in the previous section.  

The decay rate and time delay of the additional IBIF peak were restricted to the ranges 𝛼𝛼1 ∈

[0, 20] min−1, and τα ∈ [0, 2] min. No constraints were applied to the linear coefficients of any 

candidate IBIF model. 
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Figure 5-4. IBIF Model 2 Optimization Workflow. 



 86 

 

5.1.3.6 Input Function Model Selection 

In terms of selecting an IBIF model for a particular acquisition, several criteria were 

evaluated and the candidate model in table 5-2 that best described the measured IBIF was chosen 

based on a preponderance of the evidence. Specifically, input models were ranked based on relative 

differences in the small sample Akaike Information Criteria (denoted AICc), where the model with 

the minimum AICc score was taken to be the best model supported by the data. The standard 

Akaike Information Criteria (AIC) is given by: AIC =  −2 ∗ log �L�θ���+  2K; where 𝐿𝐿�𝜃𝜃�� 

denotes the maximum-likelihood value of the model being fitted and K is equal to the number of 

model parameters (including any associated nuisance parameters). The AICc compensates for 

small sample sizes relative to the number of parameters in the model being fitted, and can be 

obtained from the AIC as: 𝐴𝐴𝐼𝐼𝐶𝐶𝑐𝑐 = 𝐴𝐴𝐼𝐼𝐶𝐶 + 2𝐾𝐾(𝐾𝐾+1)
𝑁𝑁−𝐾𝐾−1

 [161]. In cases where the ratio of the number of 

samples (here, N = 51) to number of parameters of the largest model is small (i.e. N
K

< 40 ), the 

AICc is generally recommended over the AIC [161].  

 

The differences in AICc , denoted by ∆AICci , and defined as ∆AICci = �AICci − AICcmin� 

were computed over all candidate models for the purposes of comparison and ranking of the 

candidate models [161]. By definition, the model best supported by the measured data will have 

∆AICci = 0 [161].  
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Statistical Evaluation of IBIF Model Fit & Parameter Estimates 

Estimates for parameter variances were obtained by calculating the inverse of the Fisher 

information matrix for each candidate IBIF model. Specifically, because the measurement errors 

are assumed to follow a Gaussian distribution, (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.6) can be used to compute the form of 

the Fisher Information matrix for the parameters of each candidate IBIF model. Using (𝐸𝐸𝐸𝐸𝐸𝐸. 2.4.9) 

and the formula for the Fisher information matrix in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.6) an estimate of the covariance of 

model parameters was then obtained for each candidate IBIF function. The explicit equations for 

the partial derivatives with respect to each parameter are given in Appendix A.1. 

 

Based on the obtained estimates of candidate IBIF model covariance matrices, the 

coefficient of variation (COV) for each model parameter was computed, were the COV of a 

particular model parameter 𝛾𝛾 is given by the ratio of the standard deviation of the estimate, 𝜎𝜎�𝛾𝛾, 

divided by the estimated value of that parameter, 𝛾𝛾�, that is 𝐶𝐶𝑐𝑐𝑉𝑉𝛾𝛾� = 𝜎𝜎�𝛾𝛾
𝛾𝛾�

. For the purposes of model 

fitting, a small COV for each model parameter is desired, as a large COV value for a model 

parameter suggests poor parameter estimability and can be indicative of model over-fitting and/or 

high correlation among model parameters [154]. 

5.1.4 Results 

Figure 5-5 shows an example IBIF model selection analysis for subject ML-10 #5 at BL. 

Figure 5-5A shows the model fits for the IBIF Model 1 (left) candidates (IBIF Model 1a, IBIF 

Model 1b, IBIF Model 1c, and IBIF Model 1d) and IBIF Model 2 (right) candidates (IBIF Model 
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2a, IBIF Model 2b, IBIF Model 2c, and IBIF Model 2d) to the measured IBIF data (circles). Figure 

5-5B shows IBIF Model 1 (left) and IBIF Model 2 candidate (right) fit results to the first 0-5 min 

of measured IBIF data. For both the IBIF Model 1 and IBIF Model 2 candidates, increasing the 

number of component exponentials produced visually better fits to the measured IBIF data. IBIF 

Model 1a and IBIF Model 2a both are visually poor fits to the IBIF data, while IBIF Model 2c and 

IBIF Model 2d show signs of overfitting after the peak [18F]ML-10 concentration. 

 

The corresponding model selection results for subject ML-10 #5 at BL are contained in 

table 5-3. The weighted residual sum of squares (WRSS), the value of the log-likelihood function 

for the model estimates �log�ℒ�𝜃𝜃�,𝜎𝜎2�|𝑑𝑑𝑣𝑣𝑡𝑡𝑣𝑣� ��, the number of model parameters, K, as well as the 

AIC and AICc are shown for each candidate IBIF model. IBIF Model 1b has the minimum AICc 

value among the tested models, as a result this row of table 5-3 is highlighted in bold. 
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Figure 5-5. Example Comparison of IBIF Model Selection Fit Results for ML-10 #5 at BL. (A) IBIF (circles) 

with candidate IBIF Model 1 (left) and IBIF Model 2 (right) fits for subject ML-10 #5 at BL over a period of 150 min 

following injection of [18F]ML-10. (B) shows candidate IBIF Model 1 (left) and IBIF Model 2 (right) fits to the first 

0-5 min of measured IBIF data. For both IBIF Model 1 and IBIF Model 2, increasing the number of component 

exponentials produced visually better fits to the data. Based on minimum AICc, IBIF Model 1b was determined to be 

the overall best fitting IBIF model. For IBIF Model 1b the maximum likelihood parameter estimates and their 

respective estimated percent coefficients of variation (%COV) were: θ�0 = -210.247 kBq/ml (%COV = 7.08%), θ�1 = 

-2183.541 kBq/ml/min-1 (%COV = 2.08%), and θ�2 = -115.537 kBq/ml/min-1 (%COV = 8.48%), while the estimated 

decay rates and delay parameter 𝜏𝜏 were: p�0 = 8.498 min-1 (%COV = 7.93%), p�1 = 8.421x10-3 min-1 (%COV = 3.46%), 
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p� ̂2 =0.159 min-1 (%COV = 10.57%), and τ� = 0.277 min (%COV = 2.14%). The estimated value of the noise parameter 

α2 was α2� = 0.0457 (%COV = 19.80%). 

 

 

 Table 5-3. ML-10 #5 Baseline Scan Input Function Model Selection Results. 

 

 

 

 

 

 

Across subjects IBIF Model 1a was consistently inadequate in describing the measured 

IBIFs, and generally exhibited an underestimation of the measured IBIF peak activity 

concentration as well as long runs of over and underestimation of data at times after the IBIF peak. 

IBIF Model 2a was determined to have the minimum AICc value among the candidate IBIF models 

only once (ML-10 #6 at ETA). However, IBIF Model 1b, which has 1 less parameter, was also 

found to visually well describe the IBIF of ML-10 #6 at ETA as illustrated in Figure 5-6. Table 5-

4 contains the model selection results for ML-10 #6 at ETA. 

 

 

 

IBIF 
Model WRSS 𝐥𝐥𝐥𝐥𝐥𝐥�𝓛𝓛�𝜽𝜽�,𝜶𝜶𝟐𝟐� |𝒅𝒅𝒅𝒅𝒕𝒕𝒅𝒅� � K AIC AICc ∆iAICc 

1a 17.88 -135.5 6 282.9 284.8 98.3 
1b 2.333 -83.54 8 183.1 186.5 0 
1c 2.388 -84.13 10 188.3 193.8 7.3 
1d 2.317 -83.37 12 190.7 198.9 12.4 
2a 3.733 -95.53 9 209.1 213.5 27.0 
2b 1.956 -79.05 11 180.1 186.9 0.4 
2c 2.525 -85.56 13 197.1 207 20.5 
2d 1.939 -78.83 15 187.7 201.4 14.9 
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Figure 5-6. Comparison of IBIF Model Fits for ML-10 #6 at ETA: IBIF Model 1b versus IBIF Model 2a. (Left) 

IBIF (circles) with candidate IBIF Model 1b and IBIF Model 2b for subject ML-10 #6 at ETA over a period of 150 

min following injection of [18F]ML-10. (Right) shows corresponding fits to the first 0-5 min of measured IBIF data 

(circles). IBIF Model 2a was found to have the minimum AICc of all candidate IBIF models. IBIF Model 1b, which 

has 1 less model parameter, can also be observed to well describe the overall trend in the measured IBIF data, 

especially near the IBIF peak concentration.  

 

 

Table 5-4. ML-10 #6 Early Therapy Assessment Scan Input Function Model Selection Results. 

 

 

 

 

 

 

IBIF 
Model WRSS 𝐥𝐥𝐥𝐥𝐥𝐥�𝓛𝓛�𝜽𝜽�,𝜶𝜶𝟐𝟐� |𝒅𝒅𝒅𝒅𝒕𝒕𝒅𝒅� � K AIC AICc ∆iAICc 

1a 10.017  -112.85  6 237.7 239.6 69.2 
1b 3.112 -83.046 8 182.1 185.5 15.1 
1c 5.088 -95.579 10 211.2 216.7 46.3 
1d 2.962 -81.78 12 187.6 195.8 25.4 
2a 2.185 -74.029 9 166.1 170.4 0 
2b 2.797 -80.317 11 182.7 189.4 19.0 
2c 2.134 -73.422 13 172.9 182.7 12.3 
2d 2.577 -78.227 15 186.1 200.2 29.8 
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Table 5-5 summarizes the IBIF model selected for each time-point. If one or more of the 

parameters of the minimum AICc IBIF model were not estimable the next best estimable model, 

in terms of minimum ∆AICc, is shown in parentheses. Based on the AICc criteria alone, the most 

commonly chosen IBIF model was that of IBIF Model-1b (10 times), while model IBIF Model 1c 

was selected for 6 acquisitions and IBIF Model 2b was chosen 7 times. In 5 of 6 of the remaining 

cases, the minimum AICc IBIF Model was determined to be either IBIF Model 1d, IBIF Model 2c, 

or IBIF Model 2d; however, in all cases the associated IBIF model parameter estimates were not 

statistically estimable. That is, either %COV values on some IBIF model parameters was large 

(e.g. %COV > 50%) or the estimate for the associated IBIF model parameter covariance matrix 

was not positive definite. 
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Table 5-5. Selected IBIF Model for each [18F]ML-10 PET Acquisition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.5 IBIF Model Selection Discussion 

In this section, a set of candidate IBIF models were fit to IBIF data derived from the internal 

carotid arteries of the brain and the relative support for each model was compared using standard 

model selection criteria and model parameter estimability considerations. VOI were defined using 

a manual segmentation approach applied directly to the PET image. Of the 29 [18F]ML-10 PET 

scans analyzed, the most commonly chosen models were IBIF Model 1b (selected 10 times), IBIF 

Subject ID BL ETA FUA 

ML-10 #1 IBIF Model 1b N/A N/A 

ML-10 #2 ¥N/A 
†IBIF Model 2d 

(IBIF Model 1b) N/A 

ML-10 #4 IBIF Model 1b IBIF Model 1b IBIF Model 2b 

ML-10 #5 IBIF Model 1b IBIF Model 2b IBIF Model 2b 

ML-10 #6 IBIF Model 1b IBIF Model 2a IBIF Model 1b 

ML-10 #7 IBIF Model 1b IBIF Model 1c IBIF Model 1b 

ML-10 #9 IBIF Model 1c IBIF Model 2b 
†IBIF Model 2d 
(IBIF Model 1b) 

ML-10 #10 IBIF Model 1c IBIF Model 2b IBIF Model 1c 

ML-10 #11 
†IBIF Model 1d 
(IBIF Model 1b) 

†IBIF Model-2c 
(IBIF Model 2b) IBIF Model 1b 

ML-10 #12 IBIF Model 2b N/A N/A 

ML-10 #13 IBIF Model 1b 
†IBIF Model-2c 
(IBIF Model 1c) N/A 

ML-10 #14 IBIF Model 2b IBIF Model 1c IBIF Model 1c 

N/A = Data not available 
¥ Subject Missing first 67 sec of dynamic data. 
† Indicates that the model parameters for the minimum AICc IBIF model were not 
estimable. The next best IBIF model in terms of minimum ∆AICc that also resulted 
in estimable model parameters is indicated below in parentheses.  
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Model 1c (selected 6 times), and IBIF Model 2b (selected 7 times).  In 5 of the 6 remaining cases, 

either IBIF Model 1d, IBIF Model 2c, or IBIF Model 2d was selected as the best fitting IBIF model 

based on minimum AICc. However, in all 5 cases estimates for one or more associated model 

parameters were found to have poor precision (i.e. %COV > 50%) or resulted in a non-positive 

definite estimate for the model parameter covariance matrix. For these 5 cases the next best (in 

terms of minimum ∆AICc) estimable model was determined to be one of either IBIF Model 1b, 

IBIF Model 1c, or IBIF Model 2b as indicated in table 5-5.  

 

The primary appeal of using image-based input functions (IBIFs) is that they, in principle, 

require no blood sampling from the patient. Gold standard arterial blood sampling is invasive, 

painful, and often discourages research subjects from enrolling in imaging trials. In many research 

institutions the procedure is so specialized that it requires the coordination of specialized teams, 

often including an anesthesiologist, to insert the catheter into one of the two main arteries (i.e. ulna 

or radial arteries) in the forearm. These factors often raise risk-benefit concerns of arterial blood 

sampling for the primary investigator and the referring physician. Finally, arterial sampling is a 

laborious process that exposes the PET technologist to additional radiation as well as to the 

potential risks associated with handling human blood. These factors combined impose practical 

challenges to arterial blood sampling in the clinic. 

 

The use of IBIFs removes all of the additional risk associated with arterial blood sampling. 

Essentially the same kinds of approaches that are used to measure activity in the tissue can be used 

to measure an IBIF. However, from the stand-point of producing accurate quantification of tracer 

pharmacokinetics, IBIF models have some drawbacks.  
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The primary drivers that influence IBIF accuracy are PET scanner spatial and temporal 

resolution. Specifically, the limited spatial resolution of PET scanners (e.g. ~ 6mm) produces an 

overall averaging of true activity between neighboring voxels in the PET image. Sometimes the 

effects of partial volume averaging are discussed from the standpoint of VOI definition, where the 

effects of spatial resolution are talked about as being a combination of the ‘spill-in’ of activity 

from neighboring voxels outside of the internal carotid arteries into the IBIF volume of interest as 

well as the ‘spill-out’ of activity in the internal carotids into the surrounding tissue voxels.  

 

The impact of partial volume on the measured IBIF depends on the size of the source from 

which the IBIF is being measured. For example, because of their small size (~5mm in diameter) 

internal carotid arteries of the brain will be especially affected by partial volume effects, likely 

resulting in some degree of distortion in the shape and scale of an IBIF measured there compared 

to the arterially sampled blood concentration. The degree to which this distortion biases 

compartmental parameter estimates is likely to be tracer and application specific. 

 

Several methods have been proposed for correcting IBIFs obtained from the internal 

carotid arteries of brain with varying degrees of success [71]. The performance of many of these 

methods depends on several factors including: the particular tracer, the resolution of the PET 

scanner used, and the image reconstruction method implemented [71]. Moreover, many of these 

methods are time consuming and complicated to implement while only providing a marginal 

improvement in the accuracy of compartmental model parameter estimates (compared to the gold 

standard arterial blood sampling) [71]. Currently, there does not exist a consensus method for 

correcting IBIF input functions from the internal carotid arteries of brain [71]. 
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Temporal resolution also greatly influences the shape of the IBIF curve compared to the 

true arterial concentration, especially with regard to IBIF curve shape around the fast-changing 

input peak [71]. Specifically, dynamic PET data are generally organized into finite time bins, or 

frames, where each PET frame contains the time-average of the measured activity during that 

frame duration. Moreover, below a certain frame duration, quantitative accuracy of the measured 

tracer concentration is dubious at best [71]. Therefore, it is not possible to recover the true peak 

tracer concertation in the blood using an IBIF alone. As a result, a mathematical model is often 

proposed to describe the measured IBIF. 

 

Assuming an accurate description of circulating radio-labeled metabolites, most IBIF 

models are able to estimate the tail of the input function to within a scale factor [71]. In cases 

where a limited number of blood samples are taken, this scale factor can be estimated to obtain 

good agreement between the true tracer concentration in the blood and the proposed IBIF model 

[71]. The importance of accounting for radio-metabolites in the blood cannot be overstated, since 

the PET scanner only detects radioactivity and cannot distinguish between the parent tracer and 

radio-labeled metabolite. Generally, the radio-metabolite concentration in the blood must be 

measured (which requires blood sampling, though limited) or a model-based metabolite correction 

must be used to correct the measured IBIF. However, it is not obvious to what degree anticancer 

therapies will modulate tracer metabolism, which cautions use of a population based approach in 

oncology applications [70]. 

 

Because no blood sampling was performed, it is not possible to compare the model results 

to the gold standard arterial based input function; nor is it possible to estimate the fraction of tracer 
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in the blood that is free to transition from the blood into the tissue (e.g. some [18F]ML-10 may 

become bound to albumin circulating in the blood) or to measure the concentration profile of any 

radio-labeled [18F]ML-10 metabolites in the blood.  

 

Currently no studies (clinical or pre-clinical) have been performed that quantify the free-

fraction of [18F]ML-10 in the blood. Incomplete knowledge of the [18F]ML-10 free fraction, means 

that the true input tracer concentration can only be estimated up-to to a scale factor, potentially 

biasing estimates of the rate of tracer transport from the blood into the tissue the described by 𝐾𝐾1 

below. However, [18F]ML-10 has been shown to exhibit low tracer metabolism (97.5% ± 0.4% 

unchanged [18F]ML-10 fraction 150 min post-injection) with no defluorination in healthy humans 

[129]. 

 

Although analysis using image-based input functions has its difficulties as described above, 

there are some situations in which it is more appropriate to use of an IBIF than others. Properties 

that appear to be common to tracers that are amenable to accurate IBIF modeling are: i.) low 

radiolabeled metabolites, and ii.) low tracer accumulation (especially early after injection) in the 

tissues surrounding the internal carotid arteries [71]. As mentioned [18F]ML-10 has been shown 

to have limited metabolism in healthy subjects. Moreover, in the above analysis it was observed 

that [18F]ML-10 exhibits low background tracer uptake in healthy tissue surrounding the internal 

carotid arteries (see Figure 5-1 for example). From this stand-point, it is encouraging to note that 

[18F]ML-10 exhibits properties that are consistent with tracers that afford good approximations of 

arterially sampled input functions using IBIFs.  
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Some empirical evidence has suggested that methods which simultaneously estimate the 

input function and the pharmacokinetic model parameters of the tissue model produce better 

estimates of the input function compared to IBIF from the internal carotids alone [71]. These 

approaches operate under the assumption that the tracer concentration in the blood is the same 

everywhere in the body, which includes the vascular bed of the target tissue in the brain (i.e. the 

brain tumor in the case of this dissertation). In other words, the vascular bed of the tumor provides 

a second (albeit attenuated) IBIF realization. Therefore, using simultaneous estimation methods, 

the [18F]ML-10 uptake in the brain tumor can assist in estimating the parameters of the IBIF model, 

while simultaneously reducing the influence that the uncertainty in the IBIF model parameters has 

on the estimates of the tumor pharmacokinetic rate constants. 

 

In the next section the pharmacokinetic properties of [18F]ML-10 are evaluated in a cohort 

of GBM subjects. To this end, a simultaneous estimation approach will be used. The knowledge 

gained in this current section is used to aid in the selection of minimum AICc tumor tissue 

compartmental model. Specifically, based on the results of this section, the number of candidate 

IBIF models to be tested simultaneously with the candidate tissue models can be reduced from 8 

to 3. Moreover, the IBIF model parameter estimates obtained for IBIF model still under 

consideration will serve as initial guesses to initiate the maximization of the log like-likelihood 

function used in the simultaneous estimation approach below. 
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5.2 CHARACTERIZATION OF REGIONAL TUMOR TISSUE TIME-ACTIVITY 

CURVES 

5.2.1 Background: Tracer Compartmental Modeling in PET 

The strength of PET imaging is in being able to measure and quantify physiologic 

processes in vivo. For example, an investigator may be interested in measuring change in the 

density of a particular neuro-receptor over time, or evaluating change in glucose metabolism by a 

tumor between follow-up imaging time-points. Pharmacokinetic (PK) modeling of the time-course 

of tracer concentration in the target tissue is the principle means by which radiotracer performance 

in vivo is evaluated. The results of PK modeling can be used to determine the utility of a novel 

radiotracer in measuring the target process. If the radiotracer PK results are found to be 

satisfactory, they can also provide the basis for development of clinically practical quantitative 

methodology and optimized imaging protocols. 

 

Fundamentally PET images the distribution of radioactivity concentration in the target 

tissue. This means that while the investigator maybe interested in only measuring radiotracer 

uptake in a specific cell type or binding at a specific receptor, in practice the measured tissue 

activity concentration will contain contributions from all tissue types in the region of interest. As 

a result, the central approach taken in PET PK modeling is to analyze the target tissue as being 

composed of a finite number of sub-systems, called compartments, that are each kinetically distinct 

from each other, but are allowed to interact. 
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Generally, several simplifying assumptions are made about the structure of the 

compartmental system used to analyze the measured tissue concentration time-course. 

Specifically, it is assumed that the physiologic system being interrogated is in steady-state, and 

that the introduction of the tracer does not appreciably perturb the underlying system away from 

this steady state [23, 162]. Additionally, it is assumed that each compartment is well-mixed, and 

that when a tracer molecule transits from one compartment to another it is assumed to be 

immediately spread throughout its new compartment [154, 162]. This assumption makes it so that 

each tracer molecule within a compartment has the same probability of transitioning to a different 

compartment as any other tracer molecule in its same compartment [154, 162]. Under these 

assumptions the target tissue can be treated as a linear system [162, 163], for which the measured 

tissue concentration curve is the system response function [164]. The overall goal then, is to 

determine the impulse response function (IRF) of the linear compartmental system. 

 

Two approaches to studying linear systems are commonly employed to quantify tracer PK 

in PET: input/output (i.e. convolution based) and state-space. In the input/output (I/O) approach, 

the IRF of the compartmental system is assumed to be composed of a superposition of first-order, 

causal exponentials, where each exponential mode describes the impulse response of a specific 

member compartment. (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.1) gives the form of the IRF for a general 2-compartment model, 

where it is assumed that: 𝛼𝛼1, 𝛼𝛼2, 𝛽𝛽1, 𝛽𝛽2 ≥ 0. 

 

𝒘𝒘(𝒕𝒕) = 𝜶𝜶𝟏𝟏𝐞𝐞−𝜷𝜷𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + 𝜶𝜶𝟐𝟐𝐞𝐞−𝜷𝜷𝟐𝟐𝒕𝒕𝒙𝒙(𝒕𝒕) (Eqn. 5.2.1) 
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The I/O formalism has several advantages that make it ideal for model development and 

parameter estimation in the case of investigating a novel radiotracer. For example: if the input 

function itself is modeled as a sum of exponential terms, then computation of the resulting 

convolution integral is comparatively easier in the I/O description compared to the state-space 

representation. This is particularly helpful for model order selection when the number of 

component exponentials of the tumor tissue IRF is unknown. Moreover, because the IRF, ℎ(𝑡𝑡), is 

the sum of causal exponentials with constant coefficients, calculation of the Fisher information 

matrix (assuming Gaussian distributed random errors, and an input function model) for IRF model 

parameters is comparatively straight forward. The disadvantage of this method lies in computing 

the inter-compartmental transfer rates for multi-compartmental structures. Theoretically, 

transformation equations can always be derived (see below) relating the IRF model parameters to 

the transfer rates of the state-space representation (assuming the state-space model parameters are 

globally identifiable); however, in practice this approach is limited to compartmental models with 

3 compartments or less. 

 

In the state-space approach the fractional transfer rates of radiotracer molecules between 

the individual tissue compartments are estimated; and, because the compartmental system is 

assumed to be linear and time-invariant, the transfer rates are necessarily constant [162, 165]. 

Figure 5-7 shows two example connectivity diagrams for a 2-tissue compartmental model 

appropriate for quantification of reversible (Figure 5-7A) or irreversible (Figure 5-7B) radiotracer 

pharmacokinetics in PET. The distinguishing feature between the two models is that there is no 

transfer of radiotracer back from compartment 2 to compartment 1 (i.e. 𝑘𝑘4 = 0) in the irreversible 

model, that is, in the irreversible model, compartment 2 is a trap. In contrast, the compartmental 
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model structure in Figure 5-7A allows for a radiotracer molecule in one compartment to reach the 

other compartment independent of in which compartment the radiotracer molecule began, that is 

the compartmental model structure in Figure 5-7A is ‘strongly connected’ [154, 162]. Both 

compartmental systems are; however, ‘open systems’, since both models allow for excretion of 

tracer into the surrounding environment (quantified by the fractional rate constant 𝑘𝑘2) [154, 162]. 

Moreover, both compartmental systems are ‘mamillary systems’ in that one compartment acts as 

the central compartment (compartment 1 in both cases) [154, 162], and radiotracer exchange takes 

place between the central compartment and each individual peripheral compartment (see figure 5-

8, for an example 3-tissue mamillary system). 

 

 

Figure 5-7. 2-Tissue Compartmental Model Structure Appropriate for PET. 
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(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.2) gives the system of first order differential equations that describe tracer 

kinetics for the 2-tissue, reversible compartmental model shown in figure 6-7A. The system of 

differential equations in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.2) can be re-expressed in state-space form [154, 163, 165] as in 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.3); where 𝑦𝑦(𝑡𝑡) in the observation equation, (𝑠𝑠𝑠𝑠),  is the quantity measurable by PET and 

is the superposition of the radioactivity profiles of the component compartments. 

 

�
𝒅𝒅𝒙𝒙𝟏𝟏(𝒕𝒕)
𝒅𝒅𝒕𝒕

=  [−(𝒌𝒌𝟐𝟐 + 𝒌𝒌𝟑𝟑)𝒙𝒙𝟏𝟏(𝒕𝒕) + 𝒌𝒌𝟒𝟒𝒙𝒙𝟐𝟐(𝒕𝒕)] +  𝑲𝑲𝟏𝟏𝒔𝒔(𝒕𝒕)
𝒅𝒅𝒙𝒙𝟐𝟐(𝒕𝒕)
𝒅𝒅𝒕𝒕

=  [𝒌𝒌𝟑𝟑𝒙𝒙𝟏𝟏(𝒕𝒕) −  𝒌𝒌𝟒𝟒𝒙𝒙𝟐𝟐(𝒕𝒕)]
  (Eqn. 5.2.2) 

 

�
(𝒔𝒔) ��̇�𝒙𝟏𝟏�̇�𝒙𝟐𝟐

� =  �−
(𝒌𝒌𝟐𝟐 + 𝒌𝒌𝟑𝟑) 𝒌𝒌𝟒𝟒
𝒌𝒌𝟑𝟑 −𝒌𝒌𝟒𝟒

� �
𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐� +  𝑲𝑲𝟏𝟏 �

𝒔𝒔(𝒕𝒕)
𝟎𝟎
�

(𝒔𝒔𝒔𝒔) 𝐲𝐲(𝒕𝒕) = [𝟏𝟏 𝟏𝟏] �
𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐�

  (Eqn. 5.2.3) 

 
 
 
As mentioned above, transformations can be derived relating the I/O and state-space 

representations. However, in order to guarantee that these transformation equations yield unique 

values for each compartmental rate constant, the proposed connectivity of the compartmental 

model must be globally identifiable [154, 162, 163]. (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.4) gives the general form of the 

state-space equations appropriate for compartmental modeling of PET data (assuming no direct 

transfer of the input function), where A denotes the nxn compartmental matrix of rate constants, 

B is a nx1 column vector with first element equal to 𝐾𝐾1 and the rest equal to zero, and C is an nx1 

row vector where each entry is equal to unity, and n denotes the number of tissue compartments 

[164, 165]. If all rate parameters in the compartmental matrix A can be determined uniquely, 

assuming perfect noise-free observations, given the connectivity of the individual compartments 
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and the observation matrix C, then the compartmental system is said to be globally identifiable 

[154, 163]. If there is a finite number of alternative values for the rate constants that explain the 

noise-free observations, then the system is said to be locally identifiable [154, 163]. Otherwise the 

compartmental system is said to be unidentifiable [154, 163].  

 

��̇�𝒙 = 𝑨𝑨𝒙𝒙 + 𝑩𝑩𝒔𝒔(𝒕𝒕)
𝒚𝒚 = 𝑵𝑵𝒙𝒙  (Eqn. 5.2. 4) 

 
 
 
Assuming the proposed compartmental model structure is globally identifiable, the 

transformation equations that relate the I/O description to the state-space fractional rate constants 

can be obtained by calculating the transfer functions of the linear system under each description 

and setting them equal to each other [154, 162, 163]. A system of equations is then obtained than 

can be solved uniquely (because the system is globally identifiable), thereby producing the desired 

transformations [154, 162, 163]. (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.5), (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.6), and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.7) give the 

transformations from I/O representation to state-space representation for the reversible (i.e. well-

connected) 1-tissue and 2-tissue compartment models, respectively. The derivations of these 

equations, and the transformation equations for the 3-tissue compartment model, can be found 

below. Moreover, the reverse transformations can be found in Gunn et al [164].  

 

�
𝑲𝑲𝟏𝟏
𝒌𝒌𝟐𝟐
� ⟶ �

𝜶𝜶𝟏𝟏
𝜷𝜷𝟏𝟏
� (Eqn. 5.2.5) 
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𝜶𝜶𝟏𝟏+𝜶𝜶𝟐𝟐

𝜶𝜶𝟏𝟏𝜶𝜶𝟐𝟐�𝜷𝜷𝟏𝟏
𝟐𝟐+𝜷𝜷𝟐𝟐

𝟐𝟐�−𝟐𝟐𝜶𝜶𝟏𝟏𝜶𝜶𝟐𝟐𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐
(𝜶𝜶𝟏𝟏+𝜶𝜶𝟐𝟐)(𝜶𝜶𝟏𝟏𝜷𝜷𝟏𝟏+𝜶𝜶𝟐𝟐𝜷𝜷𝟐𝟐)

(𝜶𝜶𝟏𝟏+𝜶𝜶𝟐𝟐)𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐
𝜶𝜶𝟏𝟏𝜷𝜷𝟏𝟏+𝜶𝜶𝟐𝟐𝜷𝜷𝟐𝟐 ⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

  (Eqn. 5.2.6) 

 
 
 
The transformation equations given for the 2-tissue and 3-tissue compartment models 

assume the systems are open with a single excretion compartment (being the central compartment) 

and that the peripheral compartments are arranged in a mamillary configuration. Moreover, the 

measured tissue concentration curve is assumed to be equal to the sum of the individual radiotracer 

concentration time-courses described by each member compartment, as is appropriate for PK 

modeling of PET data. If one compartment is turned into a trap in either the 2-tissue or 3-issue 

models, the corresponding transform equations can be obtained by setting the appropriate I/O IRF 

eigenvalues and state-space fractional rate constants to equal 0 (i.e. 𝛽𝛽2 = 0, and 𝑘𝑘4 = 0 for both 

models). 

 

While characterization of the target tissue impulse response ℎ(𝑡𝑡) and fractional rate 

constants is useful for evaluation of tracer performance, the individual parameters for each model 

are difficult to interpret in the context of cancer therapy response assessment. In order to bridge 

the gap between mathematical description and tumor physiology, derived measures (also called 

macroparameters) such as the total distribution volume (𝑉𝑉𝑇𝑇) and the overall uptake flux (𝐾𝐾𝑖𝑖) are 
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more commonly used to quantify therapeutic response in tumors demonstrating reversible and 

irreversible radiotracer kinetics, respectively [166-169].  

 

𝑉𝑉𝑇𝑇 can be conceptualized a few different ways; however, it is generally used as a proxy for 

the “amount” of tracer that would be in the tissue at equilibrium due to an infusion injection with 

unit tracer concentration. Said another way, 𝑉𝑉𝑇𝑇 is the equilibrium gain that would be obtained from 

calculating the step response of the compartmental system. Said one more way, if the radiotracer 

concentration in the blood was fixed to 1 kBq/cc, and 𝐶𝐶∞ equaled the resulting equilibrium 

concentration in the tissue, then 𝑉𝑉𝑇𝑇 = 𝑁𝑁∞
1 kBq/cc

. Following the convention established by Innis et al 

[170], the units of 𝑉𝑉𝑇𝑇 are ml*cm-3. The interpretation of 𝐾𝐾𝑖𝑖 is that it is a measure of overall flux of 

tracer from the blood into the tissue [19, 23, 168]. Multiplying Ki by the steady-state plasma 

concentration of the tracee can be used to calculate the physiologic metabolism or clearance rate 

of a physiologic protein or molecule of interest [23]. For example, glucose metabolism rate using 

[18F]FDG PET [19, 20, 166, 167]. The units of 𝐾𝐾𝑖𝑖 are ml*cm-3
*min-1. 

 

The calculation of the macroparameters 𝑉𝑉𝑇𝑇 and 𝐾𝐾𝑖𝑖 requires few assumptions regarding the 

pharmacokinetic model of the system, and, as a result, they can be obtained using either the I/O or 

state-space descriptions; in other words, they are robust to misspecification of the compartmental 

connectivity. Specifically, 𝑉𝑉𝑇𝑇 is equal to the area under the system impulse response function for 

the reversible kinetics case, while 𝐾𝐾𝑖𝑖 is equal to the coefficient in front of the step-function in the 

irreversible case (e.g. 𝛼𝛼2 in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.1) above when 𝛽𝛽2 = 0). As a result, these measures are 

much easier to determine accurately compared to the individual fractional rate constants. 
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(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.7) and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.8) give the equations for 𝑉𝑉𝑇𝑇 and 𝐾𝐾𝑖𝑖 for the reversible and irreversible 

systems in figure 5-7A and figure 5-7B, respectively.   

 

𝑽𝑽𝑻𝑻 = �𝜶𝜶𝟏𝟏
𝜷𝜷𝟏𝟏

+ 𝜶𝜶𝟐𝟐
𝜷𝜷𝟐𝟐
� = 𝑲𝑲𝟏𝟏

𝒌𝒌𝟐𝟐
�𝟏𝟏 + 𝒌𝒌𝟑𝟑

𝒌𝒌𝟒𝟒
� (Eqn. 5.2.7) 

 

𝑲𝑲𝒔𝒔 = 𝜶𝜶𝟐𝟐 = 𝑲𝑲𝟏𝟏 �
𝒌𝒌𝟑𝟑

𝒌𝒌𝟐𝟐+𝒌𝒌𝟑𝟑
� (Eqn. 5.2.8) 

 
 
 
A drawback of estimating the compartmental fractional rate constants (or 

microparameters), is that the rate constants tend to be strongly correlated with each other, which 

contributes to relatively higher noise sensitivity and overall larger parameter uncertainty compared 

to the I/O model parameters. On the other hand, knowledge of the microparameters allows the 

modeler to separate out the individual contributions of each compartment to the measured tissue 

activity profile; thereby allowing for investigation of the relative contributions of each component 

compartment to the total distribution volume, 𝑉𝑉𝑇𝑇.  

 

For example, figure 5-8 shows the compartmental connectivity diagram for an open, well-

connected (i.e. reversible), mamillary 3-tissuse compartment model with the central compartment 

being the only excretion compartment. Assuming this is a neuro-imaging example, the first (or 

central compartment) typically represents tracer molecules that have crossed the blood-brain-

barrier and are free to interact in the tissue (i.e. tracer molecules in the interstitial space). 

Compartment 2 would represent the specific binding or uptake by the target process, and 

compartment 3 generally represents non-specific binding of the tracer to non-target 
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proteins/tissues. Given a measure of 𝑉𝑉𝑇𝑇, it is useful to know what the fractional contribution of 

each compartment is to the total distribution volume. That is, one would like to know what the 

individual volumes of distribution 𝑉𝑉𝑓𝑓𝐶𝐶𝑒𝑒𝑒𝑒, 𝑉𝑉𝑁𝑁𝑁𝑁, 𝑉𝑉𝑁𝑁 for the component compartments is, where 𝑉𝑉𝑇𝑇 =

�𝑉𝑉𝑓𝑓𝐶𝐶𝑒𝑒𝑒𝑒 + 𝑉𝑉𝑁𝑁𝑁𝑁 + 𝑉𝑉𝑁𝑁�. Ideally, the volume of distribution of the specific, 𝑉𝑉𝑁𝑁, will account for the 

majority of tracer in the tissue at equilibrium. Assuming the compartmental structure in figure 5-

8 and that the measured tissue activity is the superposition of the compartmental component 

concentrations, the individual compartmental volumes are given in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.9).  

 

 

Figure 5-8. 3-Tissue Compartmental Model with Reversible Pharmacokinetics. 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑽𝑽𝒇𝒇𝒘𝒘𝒘𝒘𝒘𝒘 = 𝑲𝑲𝟏𝟏

𝒌𝒌𝟐𝟐

𝑽𝑽𝒏𝒏𝒄𝒄𝒏𝒏𝒏𝒏𝒑𝒑𝒘𝒘𝒄𝒄𝒔𝒔𝒇𝒇𝒔𝒔𝒄𝒄 = 𝑲𝑲𝟏𝟏
𝒌𝒌𝟐𝟐
�𝒌𝒌𝟓𝟓
𝒌𝒌𝟔𝟔
�

𝑽𝑽𝒏𝒏𝒑𝒑𝒘𝒘𝒄𝒄𝒔𝒔𝒇𝒇𝒔𝒔𝒄𝒄 = 𝑲𝑲𝟏𝟏
𝒌𝒌𝟐𝟐
�𝒌𝒌𝟑𝟑
𝒌𝒌𝟒𝟒
�

 (Eqn. 5.2.9) 

 
 
 
When the pharmacokinetics of the free and non-specific compartments are essentially 

indistinguishable, the compartmental structure in figure 5-8 reduces to that of a reversible 2-tissue 

compartmental model (i.e. figure 5-7A), where the central compartment represents the combined 

free and non-specific component (called non-displaceable component), and compartment 2 

represents the specific component [170]. For this case, the individual compartment volumes are 

given by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.10). 

 

⎩
⎪
⎨

⎪
⎧𝑽𝑽𝑵𝑵𝟏𝟏 = 𝑲𝑲𝟏𝟏

𝒌𝒌𝟐𝟐

𝑽𝑽𝒏𝒏 = 𝑲𝑲𝟏𝟏
𝒌𝒌𝟐𝟐
�𝒌𝒌𝟑𝟑
𝒌𝒌𝟒𝟒
�

 (Eqn. 5.2.10) 

 

Special Considerations in the Compartmental Modeling of PET Data 

The previous section presented the general compartmental modeling approach to modeling 

the time-course of radioactivity concentration in a target tissue. However, in general a few 

additional considerations are required including: accounting for radio-labeled metabolites in the 

target region, as well as the fraction of tracer in the blood that is free to be transported into the 
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target tissue (i.e. the blood free fraction: 𝑓𝑓) [72], and the whole body hematocrit (i.e. the volume 

of the red-blood cells divide by the total blood volume) [23]. The impact of not accounting for 

these effects on the input function 𝑠𝑠(𝑡𝑡) were discussed in section 5.1.5. Essentially the same 

discussion regarding incorrect metabolite correction applies here for the tissue response function. 

 

In the case of analyzing the radiotracer concentration time-course in the tissue, the free-

tracer in the tissue is accounted for as a compartment. However, as mentioned in section 5.1.5, if 

the blood free fraction or hematocrit are not accounted for in the input function, then the effect 

will be to attenuate the observed input function 𝑠𝑠(𝑡𝑡) by a scalar multiple. Indeed, the true input 

function, denoted 𝑠𝑠′(𝑡𝑡), will be related to the observed input function as: 𝑠𝑠(𝑡𝑡) = 𝑀𝑀𝑠𝑠′(𝑡𝑡), where M 

denotes a constant. Ultimately, because the system response is described through the convolution 

operation, this means that the estimate for 𝐾𝐾1 will be biased by a constant M; that is the observed 

𝐾𝐾1 will be related to the true value, denoted 𝐾𝐾1′, as: 𝐾𝐾1 = 𝑀𝑀𝐾𝐾1′.      

 

An additional consideration when analyzing PET tissue time-activity curves, especially in 

neuro-oncology imaging, is the contribution of radiotracer in the vascular bed of the tumor to the 

measured tissue activity concentration. The general approach to accounting for the blood 

component is to define the blood volume fraction 𝑉𝑉𝐵𝐵, where 𝑉𝑉𝐵𝐵 𝜖𝜖 [0,1], and add a direct transfer 

component to the impulse response function of the tissue. (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.11) and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.12) give 

the modified I/O and state-space representations for the case of a 2-tissue compartmental model 

with reversible tracer kinetics and a non-zero blood component. The blood activity component is 

accounted for in exactly the same way for the 1-tissue and 3-tissue compartment models.   
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𝒘𝒘(𝒕𝒕) = 𝑽𝑽𝑩𝑩𝜹𝜹(𝒕𝒕) + (𝟏𝟏 − 𝑽𝑽𝑩𝑩)�𝜶𝜶𝟏𝟏𝐞𝐞−𝜷𝜷𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + 𝜶𝜶𝟐𝟐𝐞𝐞−𝜷𝜷𝟐𝟐𝒕𝒕𝒙𝒙(𝒕𝒕)� (Eqn. 5.2.11) 

 

�
��̇�𝒙𝟏𝟏�̇�𝒙𝟐𝟐

� =  �−
(𝒌𝒌𝟐𝟐 + 𝒌𝒌𝟑𝟑) 𝒌𝒌𝟒𝟒
𝒌𝒌𝟑𝟑 −𝒌𝒌𝟒𝟒

� �
𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐� +  𝑲𝑲𝟏𝟏 �

𝒔𝒔(𝒕𝒕)
𝟎𝟎
�

𝐲𝐲(𝒕𝒕) = [(𝟏𝟏 − 𝐕𝐕𝐁𝐁) (𝟏𝟏 − 𝐕𝐕𝐁𝐁)] �
𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐� + 𝑽𝑽𝑩𝑩𝒔𝒔(𝒕𝒕)

 (Eqn. 5.2.12) 

 

Derivation of 1-Tissue Model Parameter Transformation 

The general form state-space representation is given by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.13) below, assuming no 

direct transfer component [165]. The general form of the transfer function 𝐺𝐺�(𝑐𝑐) of the system in 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.13) is given by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.14) [165]. 

 

��̇�𝒙 = 𝑨𝑨𝒙𝒙 + 𝑩𝑩𝒔𝒔(𝒕𝒕)
𝒚𝒚 = 𝑵𝑵𝒙𝒙  (Eqn. 5.2.13) 

 

𝑮𝑮�(𝒄𝒄) = 𝑵𝑵(𝒄𝒄𝒔𝒔 − 𝑨𝑨)−𝟏𝟏𝑩𝑩 (Eqn. 5.2.14) 

 
 
 
Figure 5-9 shows the connectivity diagram for a 1-tissue compartmental model.  

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.15) and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.16) give the impulse response function ℎ(𝑡𝑡) (where 𝑢𝑢(𝑡𝑡) denotes the 

step-function) and state-space equations with corresponding transfer functions 𝐻𝐻�(𝑐𝑐) and 𝐺𝐺�(𝑐𝑐) 

appropriate for the 1-tissue compartmental model, respectively. 
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(𝒔𝒔)  𝒘𝒘(𝒕𝒕) = 𝜶𝜶𝟏𝟏𝐞𝐞−𝜷𝜷𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)

(𝒔𝒔𝒔𝒔)  𝑯𝑯� (𝒄𝒄) = 𝜶𝜶𝟏𝟏
𝒄𝒄+𝜷𝜷𝟏𝟏

 (Eqn. 5.2.15) 

 

(𝒔𝒔) �
[�̇�𝒙𝟏𝟏] = [−𝐤𝐤𝟐𝟐][𝒙𝒙𝟏𝟏] + [𝑲𝑲𝟏𝟏]𝒔𝒔(𝒕𝒕)

𝐲𝐲(𝒕𝒕) = [𝟏𝟏][𝒙𝒙𝟏𝟏]

(𝒔𝒔𝒔𝒔)   𝑮𝑮�(𝒄𝒄) = 𝑲𝑲𝟏𝟏
𝒄𝒄+𝒌𝒌𝟐𝟐

  (Eqn. 5.2.16) 

 
 
 
In order to obtain the appropriate transformation equations relating IRF parameters {𝛼𝛼1,𝛽𝛽1} 

to the state-space parameters {𝐾𝐾1,𝑘𝑘2}, set the transfer function of the I/O equation, 𝐻𝐻�(𝑐𝑐), equal to 

the transfer function of the state-space representation, 𝐺𝐺�(𝑐𝑐); yielding the system of  2 equations in 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.17). For the 1-tissue compartmental model the solution to the system of equations is 

trivial, and the transformation equations relating the two descriptions is given in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.18). 

 

 

Figure 5-9. 1-Tissue Compartmental Model. 
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�
𝑲𝑲𝟏𝟏 = 𝜶𝜶𝟏𝟏
𝒌𝒌𝟐𝟐 = 𝜷𝜷𝟏𝟏

 (Eqn. 5.2.17) 

 

�
𝑲𝑲𝟏𝟏
𝒌𝒌𝟐𝟐
� ⟶ �

𝜶𝜶𝟏𝟏
𝜷𝜷𝟏𝟏
� (Eqn. 5.2.18) 

 

Derivation of 2-Tissue Model Parameter Transformation 

Figure 6-7A (above) shows the connectivity diagram for an open, reversible 2-tissue 

compartmental model with central compartment. (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.19) and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.20) give the 

appropriate impulse response function ℎ(𝑡𝑡) (where 𝑢𝑢(𝑡𝑡) denotes the step-function) and state-space 

equations, respectively, appropriate for the model in Figure 6-7A. The corresponding transfer 

functions 𝐻𝐻�(𝑐𝑐) and 𝐺𝐺�(𝑐𝑐) are given in (𝐸𝐸𝐸𝐸𝐸𝐸. 6.2.22), where 𝐺𝐺�(𝑐𝑐) was obtained using (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.14) 

above. 

 

𝒘𝒘(𝒕𝒕) = 𝜶𝜶𝟏𝟏𝐞𝐞−𝜷𝜷𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + 𝜶𝜶𝟐𝟐𝐞𝐞−𝜷𝜷𝟐𝟐𝒕𝒕𝒙𝒙(𝒕𝒕) (Eqn. 5.2. 19) 

 

�
��̇�𝒙𝟏𝟏�̇�𝒙𝟐𝟐

� =  �−
(𝒌𝒌𝟐𝟐 + 𝒌𝒌𝟑𝟑) 𝒌𝒌𝟒𝟒
𝒌𝒌𝟑𝟑 −𝒌𝒌𝟒𝟒

� �
𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐� +  𝑲𝑲𝟏𝟏 �

𝒔𝒔(𝒕𝒕)
𝟎𝟎
�

𝐲𝐲(𝒕𝒕) = [𝟏𝟏 𝟏𝟏] �
𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐�

  (Eqn. 5.2.20) 

 

⎩
⎪
⎨

⎪
⎧𝑯𝑯� (𝒄𝒄) = (𝜶𝜶𝟏𝟏+𝜶𝜶𝟐𝟐)𝒄𝒄+(𝜶𝜶𝟏𝟏𝜷𝜷𝟐𝟐+𝜶𝜶𝟐𝟐𝜷𝜷𝟏𝟏)

𝒄𝒄𝟐𝟐+(𝜷𝜷𝟏𝟏+𝜷𝜷𝟐𝟐)𝒄𝒄+𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐

𝑮𝑮�(𝒄𝒄) = 𝑲𝑲𝟏𝟏𝒄𝒄+𝑲𝑲𝟏𝟏(𝒌𝒌𝟑𝟑+𝒌𝒌𝟒𝟒)
𝒄𝒄𝟐𝟐+(𝒌𝒌𝟐𝟐+𝒌𝒌𝟑𝟑+𝒌𝒌𝟒𝟒)𝒄𝒄+𝒌𝒌𝟐𝟐𝒌𝒌𝟒𝟒

 (Eqn. 5.2.21) 
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To relate IRF parameters {𝛼𝛼1,𝛽𝛽1,𝛼𝛼2,𝛽𝛽2} to the state-space parameters {𝐾𝐾1,𝑘𝑘2,𝑘𝑘3, 𝑘𝑘4}, we 

again set the transfer function of the I/O equation, 𝐻𝐻�(𝑐𝑐), equal to the transfer function of the state-

space representation, 𝐺𝐺�(𝑐𝑐); yielding the system of  4 equations in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.22). The system of 

equations can be solved uniquely to obtain the transformation equations (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.23) relating the 

two linear system descriptions. 

 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑲𝑲𝟏𝟏 = (𝜶𝜶𝟏𝟏 + 𝜶𝜶𝟐𝟐)

𝑲𝑲𝟏𝟏(𝒌𝒌𝟑𝟑 + 𝒌𝒌𝟒𝟒) = (𝜶𝜶𝟏𝟏𝜷𝜷𝟐𝟐 + 𝜶𝜶𝟐𝟐𝜷𝜷𝟏𝟏)

(𝒌𝒌𝟐𝟐 + 𝒌𝒌𝟑𝟑 + 𝒌𝒌𝟒𝟒) = (𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐)

𝒌𝒌𝟐𝟐𝒌𝒌𝟒𝟒 = 𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐

  (Eqn. 5.2. 22) 

 

�

𝑲𝑲𝟏𝟏
𝒌𝒌𝟐𝟐
𝒌𝒌𝟑𝟑
𝒌𝒌𝟒𝟒

� ⟶

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

(𝜶𝜶𝟏𝟏 + 𝜶𝜶𝟐𝟐)

(𝜶𝜶𝟏𝟏𝜷𝜷𝟏𝟏+𝜶𝜶𝟐𝟐𝜷𝜷𝟐𝟐)
𝜶𝜶𝟏𝟏+𝜶𝜶𝟐𝟐

𝜶𝜶𝟏𝟏𝜶𝜶𝟐𝟐(𝜷𝜷𝟏𝟏−𝜷𝜷𝟐𝟐)𝟐𝟐

(𝜶𝜶𝟏𝟏+𝜶𝜶𝟐𝟐)(𝜶𝜶𝟏𝟏𝜷𝜷𝟏𝟏+𝜶𝜶𝟐𝟐𝜷𝜷𝟐𝟐)

(𝜶𝜶𝟏𝟏+𝜶𝜶𝟐𝟐)𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐
𝜶𝜶𝟏𝟏𝜷𝜷𝟏𝟏+𝜶𝜶𝟐𝟐𝜷𝜷𝟐𝟐 ⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

  (Eqn. 5.2.23) 

 

Derivation of 3-Tissue Model Parameter Transformation 

Figure 5-8 (above) shows the connectivity diagram for an open, reversible 3-tissue 

compartmental model with central compartment. (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.24) and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.25) give the 

appropriate impulse response function ℎ(𝑡𝑡) (where 𝑢𝑢(𝑡𝑡) denotes the step-function) and state-space 
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equations, respectively, appropriate for the 3-tissue compartment model. The corresponding 

transfer functions 𝐻𝐻�(𝑐𝑐) and 𝐺𝐺�(𝑐𝑐) are given in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.26) and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.27), respectively, 

where 𝐺𝐺�(𝑐𝑐) was obtained using (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.14) above. 

 

𝒘𝒘(𝒕𝒕) = 𝜶𝜶𝟏𝟏𝐞𝐞−𝜷𝜷𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + 𝜶𝜶𝟐𝟐𝐞𝐞−𝜷𝜷𝟐𝟐𝒕𝒕𝒙𝒙(𝒕𝒕) + 𝜶𝜶𝟑𝟑𝐞𝐞−𝜷𝜷𝟑𝟑𝒕𝒕𝒙𝒙(𝒕𝒕) (Eqn. 5.2.24) 

 

⎩
⎪
⎨

⎪
⎧
�
�̇�𝒙𝟏𝟏
�̇�𝒙𝟐𝟐
�̇�𝒙𝟑𝟑
� =  �

−(𝒌𝒌𝟐𝟐 + 𝒌𝒌𝟑𝟑 + 𝒌𝒌𝟓𝟓) 𝒌𝒌𝟒𝟒 𝒌𝒌𝟔𝟔
𝒌𝒌𝟑𝟑 −𝒌𝒌𝟒𝟒 𝟎𝟎
𝒌𝒌𝟓𝟓 𝟎𝟎 −𝒌𝒌𝟔𝟔

� �
𝐱𝐱𝟏𝟏
𝐱𝐱𝟐𝟐
𝐱𝐱𝟑𝟑
� +  𝑲𝑲𝟏𝟏 �

𝒔𝒔(𝒕𝒕)
𝟎𝟎
𝟎𝟎
�

𝐲𝐲(𝒕𝒕) = [𝟏𝟏 𝟏𝟏 𝟏𝟏] �
𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐
𝒙𝒙𝟑𝟑
�

  (Eqn. 5.2.25) 

 

𝑯𝑯� (𝒄𝒄) =

⎩
⎪
⎨

⎪
⎧

(𝜶𝜶𝟏𝟏+𝜶𝜶𝟐𝟐+𝜶𝜶𝟑𝟑)𝒄𝒄𝟐𝟐+[𝜶𝜶𝟏𝟏(𝜷𝜷𝟐𝟐+𝜷𝜷𝟑𝟑)+𝜶𝜶𝟐𝟐(𝜷𝜷𝟏𝟏+𝜷𝜷𝟑𝟑)+ 𝜶𝜶𝟑𝟑(𝜷𝜷𝟏𝟏+𝜷𝜷𝟐𝟐)]𝒄𝒄
𝒄𝒄𝟑𝟑+(𝜷𝜷𝟏𝟏+𝜷𝜷𝟐𝟐+𝜷𝜷𝟑𝟑)𝒄𝒄𝟐𝟐+(𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐+𝜷𝜷𝟏𝟏𝜷𝜷𝟑𝟑+𝜷𝜷𝟐𝟐𝜷𝜷𝟑𝟑)𝒄𝒄+𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐𝜷𝜷𝟑𝟑

+

+ (𝜶𝜶𝟏𝟏𝜷𝜷𝟐𝟐𝜷𝜷𝟑𝟑+𝜶𝜶𝟐𝟐𝜷𝜷𝟏𝟏𝜷𝜷𝟑𝟑+𝜶𝜶𝟑𝟑𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐)
𝒄𝒄𝟑𝟑+(𝜷𝜷𝟏𝟏+𝜷𝜷𝟐𝟐+𝜷𝜷𝟑𝟑)𝒄𝒄𝟐𝟐+(𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐+𝜷𝜷𝟏𝟏𝜷𝜷𝟑𝟑+𝜷𝜷𝟐𝟐𝜷𝜷𝟑𝟑)𝒄𝒄+𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐𝜷𝜷𝟑𝟑

 (Eqn. 5.2.26) 

 

𝑮𝑮�(𝒄𝒄) = 𝑲𝑲𝟏𝟏𝒄𝒄𝟐𝟐+𝑲𝑲𝟏𝟏(𝒌𝒌𝟑𝟑+𝒌𝒌𝟒𝟒+𝒌𝒌𝟓𝟓+𝒌𝒌𝟔𝟔)𝒄𝒄+𝑲𝑲𝟏𝟏[𝒌𝒌𝟒𝟒(𝒌𝒌𝟓𝟓+𝒌𝒌𝟔𝟔)+𝒌𝒌𝟑𝟑𝒌𝒌𝟔𝟔]
𝒄𝒄𝟑𝟑+�𝚺𝚺𝒔𝒔=𝟐𝟐

𝟔𝟔 𝒌𝒌𝒔𝒔�𝒄𝒄𝟐𝟐+[𝒌𝒌𝟐𝟐(𝒌𝒌𝟒𝟒+𝒌𝒌𝟔𝟔)+𝒌𝒌𝟒𝟒(𝒌𝒌𝟓𝟓+𝒌𝒌𝟔𝟔)+𝒌𝒌𝟑𝟑𝒌𝒌𝟔𝟔]𝒄𝒄+𝒌𝒌𝟐𝟐𝒌𝒌𝟒𝟒𝒌𝒌𝟔𝟔
 (Eqn. 5.2.27) 

 
 
 
In order to obtain the appropriate transformation equations relating IRF parameters 

{𝛼𝛼1,𝛽𝛽1,𝛼𝛼2,𝛽𝛽2,𝛼𝛼3,𝛽𝛽3} to the state-space parameters {𝐾𝐾1,𝑘𝑘2, 𝑘𝑘3,𝑘𝑘4, 𝑘𝑘5,𝑘𝑘6}, set the transfer function 

of the I/O equation, 𝐻𝐻�(𝑐𝑐), equal to the transfer function of the state-space representation, 𝐺𝐺�(𝑐𝑐); 

yielding the system of  6 equations in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.28).  
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝑲𝑲𝟏𝟏 = (𝜶𝜶𝟏𝟏 + 𝜶𝜶𝟐𝟐 + 𝜶𝜶𝟑𝟑)

𝑲𝑲𝟏𝟏(𝒌𝒌𝟑𝟑 + 𝒌𝒌𝟒𝟒 + 𝒌𝒌𝟓𝟓 + 𝒌𝒌𝟔𝟔) = 𝜶𝜶𝟏𝟏(𝜷𝜷𝟐𝟐 + 𝜷𝜷𝟑𝟑) + 𝜶𝜶𝟐𝟐(𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟑𝟑) + 𝜶𝜶𝟑𝟑(𝜷𝜷𝟐𝟐 + 𝜷𝜷𝟏𝟏)

𝑲𝑲𝟏𝟏𝒌𝒌𝟒𝟒(𝒌𝒌𝟓𝟓 + 𝒌𝒌𝟔𝟔) + 𝑲𝑲𝟏𝟏𝒌𝒌𝟑𝟑𝒌𝒌𝟔𝟔 = 𝜶𝜶𝟏𝟏𝜷𝜷𝟐𝟐𝜷𝜷𝟑𝟑 + 𝜶𝜶𝟐𝟐𝜷𝜷𝟏𝟏𝜷𝜷𝟑𝟑 + 𝜶𝜶𝟑𝟑𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐

(𝒌𝒌𝟐𝟐 + 𝒌𝒌𝟑𝟑 + 𝒌𝒌𝟒𝟒 + 𝒌𝒌𝟓𝟓 + 𝒌𝒌𝟔𝟔) = (𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 + 𝜷𝜷𝟑𝟑)

𝒌𝒌𝟐𝟐(𝒌𝒌𝟒𝟒 + 𝒌𝒌𝟔𝟔) + 𝒌𝒌𝟒𝟒(𝒌𝒌𝟓𝟓 + 𝒌𝒌𝟔𝟔) + 𝒌𝒌𝟑𝟑𝒌𝒌𝟔𝟔 = 𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐 + 𝜷𝜷𝟏𝟏𝜷𝜷𝟑𝟑 + 𝜷𝜷𝟐𝟐𝜷𝜷𝟑𝟑

𝒌𝒌𝟐𝟐𝒌𝒌𝟒𝟒𝒌𝒌𝟔𝟔 = 𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐𝜷𝜷𝟑𝟑

  (Eqn. 5.2.28) 

 
 
 
A unique solution to the system of equations in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.28) can be obtained by assuming 

𝑘𝑘4 ≤ 𝑘𝑘6 (i.e. by defining compartment 2 to be the specific binding compartment). In order to 

calculate this solution, it is helpful to make the definitions in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.29). 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝚫𝚫 ≜ 𝜶𝜶𝟏𝟏(𝜷𝜷𝟐𝟐 + 𝜷𝜷𝟑𝟑) + 𝜶𝜶𝟐𝟐(𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟑𝟑) + 𝜶𝜶𝟑𝟑(𝜷𝜷𝟐𝟐 + 𝜷𝜷𝟏𝟏)

𝛀𝛀 ≜ 𝜶𝜶𝟏𝟏𝜷𝜷𝟐𝟐𝜷𝜷𝟑𝟑 + 𝜶𝜶𝟐𝟐𝜷𝜷𝟏𝟏𝜷𝜷𝟑𝟑 + 𝜶𝜶𝟑𝟑𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐

𝚪𝚪 ≜ (𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 + 𝜷𝜷𝟑𝟑)

𝜷𝜷� ≜ 𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐 + 𝜷𝜷𝟏𝟏𝜷𝜷𝟑𝟑 + 𝜷𝜷𝟐𝟐𝜷𝜷𝟑𝟑

𝛈𝛈 ≜ 𝜷𝜷𝟏𝟏𝜷𝜷𝟐𝟐𝜷𝜷𝟑𝟑

  (Eqn. 5.2.29) 

 
 
 
From (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.29), the nonlinear system of equations in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.28) can be re-written 

as in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.30); where each equation has been labeled with a number. 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

(𝟏𝟏) 𝑲𝑲𝟏𝟏 = (𝜶𝜶𝟏𝟏 + 𝜶𝜶𝟐𝟐 + 𝜶𝜶𝟑𝟑)

(𝟐𝟐) 𝑲𝑲𝟏𝟏(𝒌𝒌𝟑𝟑 + 𝒌𝒌𝟒𝟒 + 𝒌𝒌𝟓𝟓 + 𝒌𝒌𝟔𝟔) = 𝚫𝚫

(𝟑𝟑) 𝑲𝑲𝟏𝟏[𝒌𝒌𝟒𝟒(𝒌𝒌𝟓𝟓 + 𝒌𝒌𝟔𝟔) + 𝒌𝒌𝟑𝟑𝒌𝒌𝟔𝟔] = 𝛀𝛀

(𝟒𝟒) (𝒌𝒌𝟐𝟐 + 𝒌𝒌𝟑𝟑 + 𝒌𝒌𝟒𝟒 + 𝒌𝒌𝟓𝟓 + 𝒌𝒌𝟔𝟔) = 𝚪𝚪

(𝟓𝟓) 𝒌𝒌𝟐𝟐(𝒌𝒌𝟒𝟒 + 𝒌𝒌𝟔𝟔) + 𝒌𝒌𝟒𝟒(𝒌𝒌𝟓𝟓 + 𝒌𝒌𝟔𝟔) + 𝒌𝒌𝟑𝟑𝒌𝒌𝟔𝟔 = 𝜷𝜷�

(𝟔𝟔) 𝒌𝒌𝟐𝟐𝒌𝒌𝟒𝟒𝒌𝒌𝟔𝟔 = 𝛈𝛈

 (Eqn. 5.2.30) 

 
 
 
From (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.30), 𝑘𝑘2 can be calculated by inserting (2) into (4) to give (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.31). 

 

𝒌𝒌𝟐𝟐 = 𝚪𝚪 − � 𝚫𝚫
𝑲𝑲𝟏𝟏
� (Eqn. 5.2.31) 

 
 
 
With a form for 𝑘𝑘2, 𝑘𝑘4 can be calculated by inserting (3) into (5) to obtain (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.32), 

which can be written in terms of the unknown 𝑘𝑘4 using (6) to obtain (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.33).  

 

𝒌𝒌𝟐𝟐(𝒌𝒌𝟒𝟒 + 𝒌𝒌𝟔𝟔) + 𝛀𝛀
𝐊𝐊𝟏𝟏

= 𝜷𝜷� (Eqn. 5.2.32) 

 

𝒌𝒌𝟒𝟒𝟐𝟐 −
�𝑲𝑲𝟏𝟏𝜷𝜷�−𝛀𝛀�
𝑲𝑲𝟏𝟏𝒌𝒌𝟐𝟐

𝒌𝒌𝟒𝟒 + 𝛈𝛈
𝐤𝐤𝟐𝟐

= 𝟎𝟎 (Eqn. 5.2.33) 

 
 
 
(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.33) will have 2 real solutions, 𝑣𝑣1and 𝑣𝑣2, under the assumption that: 𝛼𝛼1, 𝛼𝛼2, 𝛼𝛼3,

𝛽𝛽1, 𝛽𝛽2, 𝛽𝛽3 > 0 given in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.34). The existence of two solutions for 𝑘𝑘4 is a due to the 
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symmetry in the 3-tissue compartmental model between the two peripheral compartments 𝑥𝑥2and 

𝑥𝑥3. This symmetry can be broken, as suggested above, by assuming 𝑘𝑘4 ≤ 𝑘𝑘6 (i.e. that 𝑥𝑥2 is the 

specific compartment) yielding (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.35).  

 

𝒘𝒘𝟏𝟏, 𝒘𝒘𝟐𝟐 = �𝑲𝑲𝟏𝟏𝜷𝜷�−𝛀𝛀�
𝟐𝟐𝑲𝑲𝟏𝟏𝒌𝒌𝟐𝟐

± 𝟏𝟏
𝟐𝟐
���𝑲𝑲𝟏𝟏𝜷𝜷

�−𝛀𝛀�
𝑲𝑲𝟏𝟏𝒌𝒌𝟐𝟐

�
𝟐𝟐
− 𝟒𝟒𝛈𝛈

𝐤𝐤𝟐𝟐
 (Eqn. 5.2.34) 

 

⎩
⎪
⎨

⎪
⎧𝒌𝒌𝟒𝟒 = 𝒘𝒘𝟏𝟏;  𝒌𝒌𝟔𝟔 = 𝟒𝟒𝛈𝛈

𝐤𝐤𝟐𝟐𝒘𝒘𝟏𝟏
, 𝒔𝒔𝒇𝒇 𝒌𝒌𝟒𝟒 ≤ 𝒌𝒌𝟔𝟔 

𝐥𝐥𝐭𝐭𝐰𝐰𝐞𝐞𝐰𝐰𝐰𝐰𝐢𝐢𝐨𝐨𝐞𝐞,
𝒌𝒌𝟒𝟒 = 𝒘𝒘𝟐𝟐;  𝒌𝒌𝟔𝟔 = 𝟒𝟒𝛈𝛈

𝐤𝐤𝟐𝟐𝒘𝒘𝟐𝟐
;

 (Eqn. 5.2.35) 

 
 
 
With relations for 𝐾𝐾1,𝑘𝑘2,𝑘𝑘4, and 𝑘𝑘6 the two remaining equations in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.30) are (2) 

and (3). These equations can be re-arranged so that the dependence of 𝑘𝑘3 and 𝑘𝑘5 on the solved 

parameters is explicit as in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.36). 

 

�
(□) (𝒌𝒌𝟑𝟑 + 𝒌𝒌𝟓𝟓) = 𝜿𝜿

(⋆) [𝒌𝒌𝟒𝟒𝒌𝒌𝟓𝟓 + 𝒌𝒌𝟑𝟑𝒌𝒌𝟔𝟔] = 𝛀𝛀
𝐊𝐊𝟏𝟏
− 𝒌𝒌𝟒𝟒𝒌𝒌𝟔𝟔

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘, 𝜿𝜿 ≜ � 𝚫𝚫
𝑲𝑲𝟏𝟏
− (𝒌𝒌𝟒𝟒 + 𝒌𝒌𝟔𝟔)� 

 (Eqn. 5.2.36) 

 
 
 
Solving (□) for 𝑘𝑘3 an inserting into (⋆) gives (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.37) for 𝑘𝑘5, from which 𝑘𝑘3 can be 

obtained from (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.38). 
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𝒌𝒌𝟓𝟓 = �𝛀𝛀−𝑲𝑲𝟏𝟏𝒌𝒌𝟒𝟒𝒌𝒌𝟔𝟔−𝑲𝑲𝟏𝟏𝒌𝒌𝟔𝟔𝜿𝜿
𝐊𝐊𝟏𝟏(𝒌𝒌𝟒𝟒−𝜿𝜿) � (Eqn. 5.2.37) 

 

𝒌𝒌𝟑𝟑 = (𝜿𝜿 − 𝒌𝒌𝟓𝟓) (Eqn. 5.2.38) 

 

5.2.2 Background: Spectral Analysis of Tracer Uptake in PET 

Spectral analysis (SA) provides non-compartmental method that can be used to study the 

IRF of a tumor tissue time-activity curve (TAC) [171]. The measured tissue response function, 

𝐶𝐶𝑇𝑇(𝑡𝑡) is assumed to be described by the convolution of an IRF ℎ(𝑡𝑡) of the form in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.39) 

and the input tracer concentration from the blood 𝑠𝑠(𝑡𝑡); that is SA assumes the measured tissue 

concentration can be modeled as: 𝐶𝐶𝑇𝑇(𝑡𝑡) = ℎ(𝑡𝑡) ⊗ 𝑠𝑠(𝑡𝑡).  

 

𝒘𝒘(𝒕𝒕) = �𝜶𝜶−𝟏𝟏𝜹𝜹(𝒕𝒕) + 𝜶𝜶𝟎𝟎𝒙𝒙(𝒕𝒕) + ∑ 𝜶𝜶𝟐𝟐𝒘𝒘−𝜷𝜷𝟐𝟐𝒕𝒕𝒙𝒙(𝒕𝒕)𝑵𝑵
𝟐𝟐=𝟏𝟏  � (Eqn. 5.2.39) 

 
 
 
The βj in ℎ(𝑡𝑡) represent fixed candidate poles/eigenvalues of the system IRF. Usually a set 

of logarithmically spaced candidate βj are pre-specified by the user [171], but other approaches 

have been suggested [172]. The goal of SA is to determine the vector with the fewest non-zero 

coefficients  𝛼𝛼� = [𝛼𝛼−1 𝛼𝛼0 … 𝛼𝛼𝑁𝑁]𝑇𝑇 that explains the measured tissue response based on 

minimization of a specified cost-function.  
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From the estimated impulse response function, several parameters of interest can be 

estimated including: i.) the blood volume fraction, 𝑉𝑉𝐵𝐵 =  𝛼𝛼−1, ii.) the transport rate of tracer from 

blood to tissue, 𝐾𝐾1 = ∑ 𝛼𝛼𝑖𝑖𝑁𝑁
𝑖𝑖=1 , iii.) the total volume of tracer distribution, 𝑉𝑉𝑇𝑇 = ∑ 𝛼𝛼𝑗𝑗

𝛽𝛽𝑗𝑗
𝑁𝑁
𝑖𝑖=1  ,  and iv.) 

the overall flux of tracer from blood into the tissue 𝐾𝐾𝑖𝑖 = 𝛼𝛼0. By focusing on parameters that can 

be derived directly from the IRF of the system, SA does not require specification of a specific 

compartmental model structure.  

 

For the majority of SA implementations, the search for the optimal set of spectral 

coefficients is formulated in the framework of a matrix regression problem for which the matrix 

of regression vectors Φ is defined as: 

 

𝚽𝚽 =  �
𝝓𝝓𝟏𝟏,−𝟏𝟏 𝝓𝝓𝟏𝟏,𝟎𝟎 ⋯ 𝝓𝝓𝟏𝟏,𝑵𝑵
⋮ ⋮ ⋱ ⋮

𝝓𝝓𝑴𝑴,−𝟏𝟏 𝝓𝝓𝑴𝑴,𝟎𝟎 ⋯ 𝝓𝝓𝑴𝑴,𝑵𝑵

� (Eqn. 5.2.40)  

 
 
 

with, 

 

𝝓𝝓𝒔𝒔𝟐𝟐 =

⎩
⎪
⎨

⎪
⎧

𝟏𝟏
�𝒕𝒕𝒘𝒘𝒏𝒏𝒅𝒅
𝒔𝒔 − 𝒕𝒕𝒄𝒄𝒕𝒕𝒅𝒅𝒘𝒘𝒕𝒕𝒔𝒔 � ∫ 𝒔𝒔(𝒕𝒕)𝒅𝒅𝒕𝒕𝒕𝒕𝒘𝒘𝒏𝒏𝒅𝒅

𝒔𝒔

𝒕𝒕𝒄𝒄𝒕𝒕𝒅𝒅𝒘𝒘𝒕𝒕𝒔𝒔 ;  𝟐𝟐 = −𝟏𝟏

𝟏𝟏
�𝒕𝒕𝒘𝒘𝒏𝒏𝒅𝒅
𝒔𝒔 − 𝒕𝒕𝒄𝒄𝒕𝒕𝒅𝒅𝒘𝒘𝒕𝒕𝒔𝒔 � ∫ 𝒔𝒔(𝒕𝒕) ⊗𝒙𝒙(𝒕𝒕)𝒅𝒅𝒕𝒕𝒕𝒕𝒘𝒘𝒏𝒏𝒅𝒅

𝒔𝒔

𝒕𝒕𝒄𝒄𝒕𝒕𝒅𝒅𝒘𝒘𝒕𝒕𝒔𝒔 ;  𝟐𝟐 = 𝟎𝟎

𝟏𝟏
�𝒕𝒕𝒘𝒘𝒏𝒏𝒅𝒅
𝒔𝒔 − 𝒕𝒕𝒄𝒄𝒕𝒕𝒅𝒅𝒘𝒘𝒕𝒕𝒔𝒔 � ∫ �𝒔𝒔(𝒕𝒕) ⊗𝒘𝒘−𝜷𝜷𝟐𝟐𝒕𝒕𝒙𝒙(𝒕𝒕)�𝒕𝒕𝒘𝒘𝒏𝒏𝒅𝒅

𝒔𝒔

𝒕𝒕𝒄𝒄𝒕𝒕𝒅𝒅𝒘𝒘𝒕𝒕𝒔𝒔 𝒅𝒅𝒕𝒕 ;  𝟐𝟐 ≥ 𝟏𝟏

 (Eqn. 5.2.41) 
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where 𝑡𝑡𝑠𝑠𝑡𝑡𝑑𝑑𝐶𝐶𝑡𝑡𝑖𝑖  and 𝑡𝑡𝑒𝑒𝑐𝑐𝑑𝑑𝑖𝑖  are the start and stop times of the ith PET frame, respectively, and 

𝑢𝑢(𝑡𝑡) represents a step-function; thus Φ has size Mx(N+2), where M is the number of PET frames 

and N is the number of rates, βj, being tested. As mentioned in Chapter 2 each tissue time activity 

curve sample represents the time-averaged radioactivity concentration over the corresponding PET 

acquisition frame; that is, each measured tumor tissue response curve sample is given by �̃�𝐶𝑇𝑇𝑖𝑖 =

 1
�𝑡𝑡𝑒𝑒𝑐𝑐𝑒𝑒
𝑖𝑖 − 𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐

𝑖𝑖 � ∫ 𝐶𝐶𝑇𝑇(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑒𝑒𝑐𝑐𝑒𝑒
𝑖𝑖

𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐
𝑖𝑖 . Therefore, to account for this time-averaging, each component in 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.41) is shown time-averaged for the actual implementation of spectral analysis. 

Appendices A.2.1 and A.2.2 describe how, for a given probing rate, the corresponding time-

averaged spectral basis vector can be calculated using either the Feng model (Appendix A.2.1) or 

the generalized Feng model (Appendix A.2.2). 

 

In classical SA the spectral coefficients vector 𝛼𝛼� is obtained via constrained minimization 

of the L1 or L2 norm of the residuals; that is by solving the optimization problem: 

 

�
 𝐦𝐦𝐢𝐢𝐥𝐥

𝜶𝜶�
: �𝚺𝚺−

𝟏𝟏
𝟐𝟐(𝑵𝑵�𝑻𝑻 − 𝚽𝚽𝛂𝛂�)�

𝑴𝑴𝟏𝟏, 𝑴𝑴𝟐𝟐
 

 𝒄𝒄𝒙𝒙𝒔𝒔𝟐𝟐𝒘𝒘𝒄𝒄𝒕𝒕 𝒕𝒕𝒄𝒄:  𝜶𝜶� ≥ 𝟎𝟎
 (Eqn. 5.2.42) 

 
 
 
where 𝐶𝐶�̅�𝑇 = [�̃�𝐶𝑇𝑇1 … �̃�𝐶𝑇𝑇𝑀𝑀]𝑇𝑇, and Σ represents a matrix of weights. Minimization under 

either the L1 or L2 norms implies different assumptions regarding the probability distribution of 

measurement noise and are carried out using different optimization algorithms. Specifically, 

minimization under the L1 norm, min
𝛼𝛼�≥  0

: �Σ−
1
2(𝐶𝐶𝑇𝑇(𝑡𝑡) − Φα�)�, allows to recast the optimization 
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problem as a linear program, and implies that the independent measurement errors each follow a 

Laplace distribution. Minimization under the L2 norm results in the well-known non-negative least 

squares (NNLS) problem min
𝛼𝛼�≥0

: �Σ−
1
2(𝐶𝐶𝑇𝑇(𝑡𝑡) − Φα�)�

2
, implying independent Gaussian distributed 

measurement errors. However, the results of the two methods are generally consistent [171].  

 

The constraint 𝛼𝛼� ≥ 0 imposes a sparsity requirement on the solution to (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.42), 

which is required since the spectral basis matrix Φ is generally overcomplete (i.e. N > M). While 

SA does not require a priori knowledge of the size or connectivity of the underlying 

compartmental model system, the constraint 𝛼𝛼� ≥ 0 does imply that SA can only be applied to 

tumor TACs that can be written as a positive weighted sum of convolution integrals between the 

input concentration and a causal exponential [173]. One class of compartmental model systems 

that are guaranteed to produce IRFs with all non-negative coefficients are compartmental systems 

that are strongly connected, contain no cycles, and contain only a single compartment through 

which tracer can be excreted into the environment [173]. Moreover, any compartmental system 

containing a trap that can be created by setting a single transfer rate of a noncyclic, strongly 

connected compartmental system with only one compartment capable of tracer excretion to the 

environment equal to 0 can also be shown to produce IRFs that have all non-negative coefficients 

[173]. Essentially all practical compartmental models used in PET pharmacokinetic modeling are 

members of one of these classes of systems [173].  

 

An important aspect of utilizing SA is the requirement to specify a fixed set of candidate 

washout rates 𝛽𝛽𝑖𝑖. If too few 𝛽𝛽𝑖𝑖 are chosen, then the user risks not identifying all of the spectral 



 123 

 

components in the signal. On the other hand, if too many 𝛽𝛽𝑖𝑖 are chosen such that the interval 

between neighboring test 𝛽𝛽𝑖𝑖 is very small, then the analysis will produce spurious spectral 

components centering around each true decay rate. Moreover, for sufficiently small 𝛽𝛽𝑖𝑖, spectral 

components will be indistinguishable from integrated blood activity and, conversely, for 

sufficiently fast 𝛽𝛽𝑖𝑖, spectral components will be indistinguishable from the tumor blood pool. That 

is in the limit 𝛽𝛽𝑖𝑖 → 0, 𝐶𝐶𝑇𝑇 ≈ ∫ 𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0 . 

 

Several studies using spectral analysis in PET have proposed and analyzed different 

methods for generating distributions of 𝛽𝛽𝑖𝑖, which include linear and logarithmically spaced 

methods [172] and data adaptive methods have also been proposed [174, 175]. However, in most 

cases, a simple logarithmic spacing scheme has produced adequate results. 

 

Spectral Analysis using Linear Programming 

Using the L1 norm, (𝐸𝐸𝐸𝐸. 5.2.42) becomes (𝐸𝐸𝐸𝐸. 5.2.43), which can be written in component 

form as (𝐸𝐸𝐸𝐸. 5.2.44); where Σ is assumed to be a diagonal matrix with non-zero diagonal 

components denoted 𝜎𝜎𝑖𝑖2. 

 

𝐦𝐦𝐢𝐢𝐥𝐥
𝜶𝜶�≥  𝟎𝟎

: �𝚺𝚺−
𝟏𝟏
𝟐𝟐(𝑵𝑵𝑻𝑻(𝒕𝒕) −𝚽𝚽𝛂𝛂�)� (Eqn. 5.2.43) 

 

𝐦𝐦𝐢𝐢𝐥𝐥
𝜶𝜶�≥  𝟎𝟎

: ∑ �(𝑵𝑵𝑻𝑻(𝒕𝒕)−𝚽𝚽𝛂𝛂�)𝒔𝒔
𝝈𝝈𝒔𝒔

�𝑴𝑴
𝒔𝒔=𝟏𝟏  (Eqn. 5.2.44) 
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Since the minimization problem in (𝐸𝐸𝐸𝐸. 5.2.44) is composed of the summation of absolute 

value terms all with positive coefficients (i.e. this problem is convex) the solution to (𝐸𝐸𝐸𝐸. 5.2.44) 

can be obtained by solving the equivalent minimization problem in (𝐸𝐸𝐸𝐸. 5.2.45) below [176]. 

 

𝒎𝒎𝒔𝒔𝒏𝒏:∑ 𝒄𝒄𝒔𝒔𝑴𝑴
𝒔𝒔=𝟏𝟏

𝒄𝒄𝒙𝒙𝒔𝒔𝟐𝟐𝒘𝒘𝒄𝒄𝒕𝒕 𝒕𝒕𝒄𝒄:

⎩
⎪
⎨

⎪
⎧

−𝛂𝛂� ≤ 𝟎𝟎
−𝒄𝒄𝒔𝒔 ≤ 𝟎𝟎;  ∀𝒔𝒔

([𝑵𝑵𝑻𝑻(𝒕𝒕)]𝒔𝒔−[𝚽𝚽𝛂𝛂�]𝒔𝒔)
𝝈𝝈𝒔𝒔

≤ 𝒄𝒄𝒔𝒔;  ∀𝒔𝒔
−([𝑵𝑵𝑻𝑻(𝒕𝒕)]𝒔𝒔−[𝚽𝚽𝛂𝛂�]𝒔𝒔)

𝝈𝝈𝒔𝒔
≤ 𝒄𝒄𝒔𝒔;  ∀𝒔𝒔

 (Eqn. 5.2.45) 

 
 
 
(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.45) can be re-cast into standard form [177] by defining the (N+2+M)x1 cost 

vector 𝑐𝑐 = [0(𝑁𝑁+2)𝑥𝑥1 | 1𝑀𝑀𝑥𝑥1]𝑇𝑇 and the (N+2+M)x1 parameter vector 𝜃𝜃 =

[𝛼𝛼1 … 𝛼𝛼𝑁𝑁 | 𝑐𝑐1 … 𝑐𝑐𝑀𝑀]𝑇𝑇.  Moreover, define 𝒔𝒔𝟐𝟐 to denote the jth column of the spectral 

dictionary matrix Φ, so that the matrix product Φα� can be written as: Φα� = ∑ 𝛼𝛼𝑖𝑖𝒔𝒔𝟐𝟐𝑁𝑁
𝑖𝑖=−1 ; where 𝒔𝒔𝟐𝟐 

has elements 𝒔𝒔𝟐𝟐 = �𝑏𝑏𝑖𝑖1 … 𝑏𝑏𝑖𝑖𝑀𝑀�
𝑇𝑇
. Furthermore, let y be a 1xM column vector such that: 𝒚𝒚 =

[[𝐶𝐶𝑇𝑇(𝑡𝑡)]1 … [𝐶𝐶𝑇𝑇(𝑡𝑡)]𝑀𝑀]𝑇𝑇. 

 

Now consider the last two constraints in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.45). For a given index i, the second to 

last constraint can be re-written as in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.46). Re-arranging terms and substituting in: the 

vectors 𝒔𝒔𝟐𝟐 and 𝒚𝒚𝟐𝟐 gives (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.47). 
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([𝑵𝑵𝑻𝑻(𝒕𝒕)]𝒔𝒔 − [𝚽𝚽𝛂𝛂�]𝒔𝒔) ≤ 𝒄𝒄𝒔𝒔𝝈𝝈𝒔𝒔 (Eqn. 5.2.46) 

 

−�∑ 𝜶𝜶𝟐𝟐𝒔𝒔𝟐𝟐𝑵𝑵
𝟐𝟐=−𝟏𝟏 �

𝒔𝒔
− 𝒄𝒄𝒔𝒔𝝈𝝈𝒔𝒔 ≤ −𝒚𝒚𝒔𝒔 (Eqn. 5.2.47) 

 
 
 
By defining the Mx(N+2+M) matrix 𝐷𝐷1 as in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.48),  (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.47) can be re-

written in vector notation as in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.49). 

 

𝟏𝟏𝟏𝟏 = (−𝟏𝟏)𝒙𝒙

⎣
⎢
⎢
⎢
⎡𝒔𝒔−𝟏𝟏

𝟏𝟏 𝒔𝒔𝟎𝟎𝟏𝟏 ⋯ 𝒔𝒔𝑵𝑵𝟏𝟏 | 𝝈𝝈𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝒔𝒔−𝟏𝟏𝟐𝟐 𝒔𝒔𝟎𝟎𝟐𝟐 ⋯ 𝒔𝒔𝑵𝑵𝟐𝟐 | 𝟎𝟎 𝝈𝝈𝟐𝟐 ⋮ ⋮
⋮ ⋮ ⋮ ⋮ | ⋮ 𝟎𝟎 ⋱ 𝟎𝟎

𝒔𝒔−𝟏𝟏𝑴𝑴 𝒔𝒔𝟎𝟎𝑴𝑴 ⋯ 𝒔𝒔𝑵𝑵𝑴𝑴 | 𝟎𝟎 ⋯ 𝟎𝟎 𝝈𝝈𝑴𝑴⎦
⎥
⎥
⎥
⎤
 (Eqn. 5.2.48) 

 

𝟏𝟏𝟏𝟏𝜽𝜽 ≤ −𝒚𝒚 (Eqn. 5.2.49) 

 
 
 
Similarly, for a given index i, the last constraint in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.45 can be re-written as in 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.50). Re-arranging terms and substituting in: the vectors 𝒔𝒔𝟐𝟐 and 𝒚𝒚𝟐𝟐 gives (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.51). 

 

[𝚽𝚽𝛂𝛂�]𝒔𝒔 − 𝒄𝒄𝒔𝒔𝝈𝝈𝒔𝒔 ≤ [𝑵𝑵𝑻𝑻(𝒕𝒕)]𝒔𝒔 (Eqn. 5.2.50) 

 

�∑ 𝜶𝜶𝟐𝟐𝒔𝒔𝟐𝟐𝑵𝑵
𝟐𝟐=𝟏𝟏 �

𝒔𝒔
− 𝒄𝒄𝒔𝒔𝝈𝝈𝒔𝒔 ≤ 𝒚𝒚𝒔𝒔 (Eqn. 5.2.51) 
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By defining the Mx(N+2+M) matrix 𝐷𝐷2 as in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.52),  (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.51) can be written 

in vector notation as in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.53). 

 

𝟏𝟏𝟐𝟐 =

⎣
⎢
⎢
⎢
⎡𝒔𝒔−𝟏𝟏

𝟏𝟏 𝒔𝒔𝟎𝟎𝟏𝟏 ⋯ 𝒔𝒔𝑵𝑵𝟏𝟏 | −𝝈𝝈𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝒔𝒔−𝟏𝟏𝟐𝟐 𝒔𝒔𝟎𝟎𝟐𝟐 ⋯ 𝒔𝒔𝑵𝑵𝟐𝟐 | 𝟎𝟎 −𝝈𝝈𝟐𝟐 ⋮ ⋮
⋮ ⋮ ⋮ ⋮ | ⋮ 𝟎𝟎 ⋱ 𝟎𝟎

𝒔𝒔−𝟏𝟏𝑴𝑴 𝒔𝒔𝟎𝟎𝑴𝑴 ⋯ 𝒔𝒔𝑵𝑵𝑴𝑴 | 𝟎𝟎 ⋯ 𝟎𝟎 −𝝈𝝈𝑴𝑴⎦
⎥
⎥
⎥
⎤
 (Eqn. 5.2.52) 

 

𝟏𝟏𝟐𝟐𝜽𝜽 ≤ 𝒚𝒚 (Eqn. 5.2.53) 

 
 
 
Next, (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.49) and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.52) can be used to combine the constraint equations in 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.45) into a single set of constraint equations given in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.54), where the 

(2xM)x(N+2+M) matrix A and the (2xM)x1 column vector d are defined in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.55).  

 

�
𝟏𝟏𝟏𝟏𝜽𝜽 ≤ −𝒚𝒚
− − −
𝟏𝟏𝟐𝟐𝜽𝜽 ≤ 𝒚𝒚

� = 𝑨𝑨𝜽𝜽 ≤ 𝒅𝒅 (Eqn. 5.2.54) 

 

�
𝑨𝑨 ≜ �

𝟏𝟏𝟏𝟏
−
𝟏𝟏𝟐𝟐

�

𝒅𝒅 ≜ [−𝒚𝒚𝟏𝟏 ⋯ −𝒚𝒚𝑴𝑴 | 𝒚𝒚𝟏𝟏 ⋯ 𝒚𝒚𝑴𝑴]𝑻𝑻
 (Eqn. 5.2.55) 

 
 
 
Finally, using (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.54) the linear program in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.45) can be written in standard 

form [177] as in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.56) below. The linprog.m function available in the optimization toolbox 
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of MATLAB (R2014a, The MathWorks, Natick, MA., USA) can then be used to solve 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.56) for the spectral coefficients contained in 𝜃𝜃. 

 

𝒎𝒎𝒔𝒔𝒏𝒏: 𝒄𝒄𝑻𝑻𝜽𝜽
𝒄𝒄𝒙𝒙𝒔𝒔𝟐𝟐𝒘𝒘𝒄𝒄𝒕𝒕 𝒕𝒕𝒄𝒄: �𝑨𝑨𝜽𝜽 ≤ 𝒅𝒅

𝜽𝜽 ≥ 𝟎𝟎
 (Eqn. 5.2.56) 

 

5.2.2.1 Limitations of Spectral Analysis 

SA has several advantages for modeling PET tracer pharmacokinetics. Compared to 

conventional tracer compartmental modeling, in which the kinetic rate parameters are desired, SA 

makes few assumptions with respect to the connectivity of the tissue compartments and makes no 

a priori assumptions regarding the number of compartments. However, SA has limitations as well, 

which primarily arise from the sensitivity of the method to noise [178]. Indeed, measurement noise 

in the tissue TAC has been shown to result in the detection of spurious components as well as 

cause components to shift in location away from their true values [178]. Appreciable time-delays 

between the driving input function and the tissue TAC have also been observed to give rise to 

specious components and shifts in component locations [178]. To address this shortcoming 

Turkheimer et al [178] have proposed an approach using bootstrap resampling of the SA fit 

residuals (described below) to evaluate the uncertainty in the component spectrum estimate (as 

well as the derived macroparameters) and provide a method for bias estimation and removal [178]. 

 

Additional challenges result from the finite number of probing rates used to generate the 

spectral dictionary. Specifically, in experimental conditions 2 or more neighboring components 
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are often detected (usually with different values for their coefficients), suggesting that the true-

value of the spectral component falls somewhere in between [171, 172]. To date, there are no 

completely satisfactory methods for combing adjacent spectral components to obtain an accurate 

estimate of the true value; though approaches have been suggested [171, 172].  

 

Due in part to the aforementioned challenges, SA is most often used as an exploratory 

method in tracer pharmacokinetic modeling.  In this context the results of SA are used as a guide 

to support traditional compartmental modeling, especially for the purposes of model selection. 

 

Bootstrap Method for Variance & Bias Estimation of the Component Spectrum 

The goal of SA is to determine the coefficient vector 𝛼𝛼� = [𝛼𝛼0 … 𝛼𝛼𝑁𝑁]𝑇𝑇 and compute the 

compartmental macroparameters (eg. VT, K1, Ki) that can be derived from these coefficients; 

though, due to measurement noise, only an estimate of the spectral coefficient vector, denoted 𝛼𝛼��, 

is obtainable. As a result of the high sensitivity of SA to measurement noise, knowledge of the 

probability distribution of the components would be highly desirable for uncertainty analysis. 

Moreover, since the macroparameters K1, VT, and Ki are themselves a function of the 

corresponding estimate 𝛼𝛼��, their individual sampling distributions will depend on the multivariate 

sampling distribution for 𝛼𝛼��. However, even with the simplyfing assumptions of zero mean 

Gaussian errors (NNLS method) or Laplace Distibuted errors (L1 norm case), it is difficult to 

determine the joint-distribution of the spectral coefficients directly from the underlying error 

distributions.  
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Bootstrap resampling provides a simple method for assessing uncertainty in an estimator 

when the sampling distribution for that estimator is unknown or difficult to determine [179]. 

Initially introduced by Efron et al [180], the bootstrap method has the advantage of requiring very 

few assumptions regarding the estimator sampling distribution, and can be used to obtain 

percentile confidence intervals for the estimator [178, 179]. The application of the bootstrap to SA 

was first described by Turkheimer et al [178], who used the bootstrap to assess uncertainty in the 

location of the detected spectral components as well as investigate bias in the estimates. 

 

Following Turkheimer et al [178], SA is first performed using the measured tissue TAC 

from which the estimate for the spectrum (𝛼𝛼�) and a corresponding set of residuals 𝑅𝑅 =

{𝑣𝑣1, 𝑣𝑣1, ⋯ , 𝑣𝑣𝑀𝑀 } is obtained. If SA is performed as described in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.42) above, the 

residuals will all have the same variance. To see this consider that in the case of PET data, the 

errors are assumed to be normally distributed and independent between independent PET frames, 

with individual variances proportional to the measured signal (see Section 2.4.1), such that 𝜎𝜎𝑖𝑖2 =

𝛼𝛼02 �
𝑥𝑥𝑖𝑖𝑒𝑒

𝜆𝜆𝑐𝑐𝑖𝑖
∗ 

�𝑡𝑡𝑖𝑖
𝑒𝑒𝑐𝑐𝑒𝑒−𝑡𝑡𝑖𝑖

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐� 
�, where 𝑥𝑥𝑖𝑖 is the measure activity at the ith frame,  𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡𝑑𝑑𝐶𝐶𝑡𝑡 and 𝑡𝑡𝑖𝑖𝑒𝑒𝑐𝑐𝑑𝑑 denote the start 

and end times of the ith PET frame, 𝜆𝜆 is the 18F-decay rate, 𝑡𝑡𝑖𝑖∗ denotes the average time of decay 

over the ith frame, and 𝛼𝛼02 is a constant. Hence, the noise covariance matrix of the measured tumor 

TAC, Σ, is diagonal with the 𝜎𝜎𝑖𝑖2 along the diagonal. Therefore, in order to homogenize the variance 

a whitening transformation can applied to the data using a Cholesky factorization of Σ−1 where 

Σ−1 = 𝐷𝐷𝐷𝐷𝑇𝑇; however, since  Σ−1 is diagonal, 𝐷𝐷 = Σ−
1
2. 
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Note that the outcome of this transformation will cause the data to all have the same 

variance equal to 𝛼𝛼02. The value of 𝛼𝛼02 is generally unknown but typically ranges between 

[0.01, 0.1].  

 

Using the estimated spectrum as the ‘true spectrum’, simulated noise can be added to the 

computed spectrum from the set of fit residuals to generate a set of bootstrap tissue TACs that are 

then treated as repeated measurements of the generating component spectrum. That is, using 

bootstrap resampling, B bootstrap tissue TACs, 𝑦𝑦(𝑑𝑑), can be simulated based on the estimated 

spectrum and the estimated fit residuals such that 𝑦𝑦(𝑑𝑑) = 𝐷𝐷𝐴𝐴𝛼𝛼� + 𝑣𝑣(𝑑𝑑), where the bootstrapped 

residuals are sampled with replacement from the set of residuals {𝑣𝑣1, 𝑣𝑣1, ⋯ , 𝑣𝑣𝑀𝑀 }. Typically, 

the number of bootstrap samples, B, is equal to 1000 or more. With this simulated set of repeated 

tissue TAC measurements, the bias and uncertainty of the estimated component spectrum (𝛼𝛼�) can 

be estimated. 

 

Specifically, the bias of an estimate is defined as: 𝑏𝑏(𝛼𝛼) = (𝛼𝛼� − 𝛼𝛼𝑡𝑡𝐶𝐶𝑐𝑐𝑒𝑒), where 𝛼𝛼𝑡𝑡𝐶𝐶𝑐𝑐𝑒𝑒 is the 

true spectra. To use bootstrap resampling to estimate the bias, denote as the estimate for the bias: 

𝑏𝑏�(𝛼𝛼𝑡𝑡𝐶𝐶𝑐𝑐𝑒𝑒) = (𝛼𝛼�𝑑𝑑𝑐𝑐𝑐𝑐𝑡𝑡 − 𝛼𝛼�), where 𝛼𝛼�𝑑𝑑𝑐𝑐𝑐𝑐𝑡𝑡 is the average of all of the bootstrapped spectra. That is, let 

the estimate 𝛼𝛼� serve as the 'true' spectra and let the average of the bootstrap samples serve as the 

'estimate'. Hence the difference between 𝛼𝛼�𝑑𝑑𝑐𝑐𝑐𝑐𝑡𝑡 and 𝛼𝛼� provides an estimate of the true bias, from 

which the bias corrected spectra can then be obtained: 𝛼𝛼�∗ = 𝛼𝛼� − 𝑏𝑏�(𝛼𝛼𝑡𝑡𝐶𝐶𝑐𝑐𝑒𝑒). 
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Bootstrap resampling can also be used to estimate the probability distribution for the biased 

estimator 𝛼𝛼�. To this end, consider the jth spectral component 𝛼𝛼�𝑖𝑖 and the corresponding set of 

bootstrap estimates: �𝛼𝛼�𝑖𝑖
(1), ⋯ , 𝛼𝛼�𝑖𝑖

(𝐵𝐵)�. By ordering the 𝛼𝛼�𝑖𝑖
(𝑑𝑑)from smallest to largest, p-

percentiles can be computed, thereby giving an estimate of the cumulative distribution function of 

𝛼𝛼�𝑖𝑖. Now define 𝛼𝛼�𝑖𝑖
(𝑝𝑝) = �𝛼𝛼 | Pr

ℱ
�𝛼𝛼�𝑖𝑖 ≤ 𝛼𝛼� = 𝑝𝑝� , where Pr

F
�𝛼𝛼�𝑖𝑖 ≤ 𝛼𝛼� is the probability that the 

estimate 𝛼𝛼�𝑖𝑖 takes a value less than or equal to 𝛼𝛼 under the unknown distribution ℱ; thus 

𝛼𝛼�𝑖𝑖
(𝑝𝑝)denotes the pth bootstrap percentile of the probability distribution for 𝛼𝛼�𝑖𝑖.  

 

However, since each bootstrapped estimate 𝛼𝛼�𝑖𝑖
(𝑑𝑑)may be a biased estimate for the jth spectral 

component 𝛼𝛼�𝑖𝑖, the 𝛼𝛼�𝑖𝑖
(𝑝𝑝)bootstrap percentiles must also be corrected for this bias to get the correct 

CDF for the estimator 𝛼𝛼�𝑖𝑖. Thus, the bias corrected bootstrap percentiles for 𝛼𝛼�𝑖𝑖 are: 𝜌𝜌�𝛼𝛼�𝑖𝑖 ,𝑝𝑝� =

max�0,  𝛼𝛼�𝑖𝑖
(𝑝𝑝) − �[𝛼𝛼�𝑑𝑑𝑐𝑐𝑐𝑐𝑡𝑡]𝑖𝑖 − 𝛼𝛼�𝑖𝑖� �. If the estimate 𝛼𝛼�𝑖𝑖 is itself bias corrected to obtain the bias 

corrected estimator 𝛼𝛼�𝑖𝑖
∗ = 𝛼𝛼�𝑖𝑖 − 𝑏𝑏𝚥𝚥��𝛼𝛼𝑖𝑖𝑡𝑡𝐶𝐶𝑐𝑐𝑒𝑒�, then the bootstrap percentiles need to be corrected for 

this additional bias, such that the bootstrap percentiles for the bias corrected estimate 𝛼𝛼�𝑖𝑖
∗ are given 

by: 𝜌𝜌 �𝛼𝛼�∗𝑖𝑖
(𝑝𝑝),𝑝𝑝�= max �0, �𝛼𝛼�∗𝑖𝑖

(𝑝𝑝) − �[𝛼𝛼�𝑑𝑑𝑐𝑐𝑐𝑐𝑡𝑡]𝑖𝑖 − 𝛼𝛼�𝑖𝑖���= max�0,  𝛼𝛼�𝑖𝑖
(𝑝𝑝) − 2�[𝛼𝛼�𝑑𝑑𝑐𝑐𝑐𝑐𝑡𝑡]𝑖𝑖 − 𝛼𝛼�𝑖𝑖��. 

Using either 𝜌𝜌�𝛼𝛼�𝑖𝑖 ,𝑝𝑝� or 𝜌𝜌�𝛼𝛼�𝑖𝑖
∗,𝑝𝑝�, a 100p% one-sided confidence interval (CI) can be constructed 

for 𝛼𝛼�𝑖𝑖 or 𝛼𝛼�𝑖𝑖∗, respectively, by determining the minimum value of 𝛼𝛼�𝑖𝑖 or 𝛼𝛼�𝑖𝑖∗, below which 100p% of 

the corresponding bootstrap percentiles fall; where p 𝜖𝜖 [0,1].  
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Note that the method of bias estimation and generating CIs presented above is general, and, 

as a result the exact same arguments apply to evaluating estimation bias and generating CIs for 

estimates of the macroparameteres. That is, let 𝜃𝜃 denote the true value of one of the 

macroparameteres and let 𝜃𝜃� denote its estimate. Then, the approximate bias for the estimate is 

given by 𝑏𝑏�(𝜃𝜃) = ��̅�𝜃𝑑𝑑𝑐𝑐𝑐𝑐𝑡𝑡 − 𝜃𝜃��, where 𝜃𝜃𝑑𝑑𝑐𝑐𝑐𝑐𝑡𝑡 is the average of all of the bootstrapped estimates of 

𝜃𝜃�, such that the bias corrected estimate for 𝜃𝜃 is 𝜃𝜃�∗ = 𝜃𝜃� − 𝑏𝑏�(𝜃𝜃). Using either 𝜌𝜌�𝜃𝜃�,𝑝𝑝� or 𝜌𝜌�𝜃𝜃�∗, 𝑝𝑝�, 

a 100p% two-sided confidence interval (CI) can be constructed for 𝜃𝜃� or 𝜃𝜃�∗, respectively, by 

determining the upper and lower bounds within which 100p% of the bootstrap samples reside. 

That is, if 𝑣𝑣𝑀𝑀 and 𝑣𝑣𝑈𝑈 are the lower and upper bounds within which 100p% of the bootstrap samples 

reside, then 𝑣𝑣𝑀𝑀 = 𝜌𝜌 �𝜃𝜃�, (1−𝑝𝑝)
2
� and 𝑣𝑣𝑈𝑈 = 𝜌𝜌 �𝜃𝜃�, (1+𝑝𝑝)

2
� for the non-bias corrected case or 𝑣𝑣𝑀𝑀 =

𝜌𝜌 �𝜃𝜃�∗, (1−𝑝𝑝)
2
� and 𝑣𝑣𝑈𝑈 = 𝜌𝜌 �𝜃𝜃�∗, (1+𝑝𝑝)

2
� for the bias corrected case. 

5.2.3 Methods 

5.2.3.1 PET Image Processing 

All PET acquisitions were inspected for inter-frame motion, which, if necessary, was 

corrected for on a frame-by-frame basis using the motion correction tool available in PMOD 3.6 

(PMOD Technologies LLC; Zürich, Switzerland). Because each PET imaging time-point 

consisted of two PET acquisitions, in which the subject got off the scanner between the two 

acquisitions, the 120-150 min scan was co-registered to the 0-45 min scan. To this end, the entire 

(motion corrected if necessary) 0-45 min acquisition was summed to produce a single static image. 

Next each frame of the 120-150 min acquisition was individually co-registered to the summed 
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static image derived from the 0-45 min scan using the normalized mutual information method 

available in PMOD 3.6. The resulting transformation was then applied to each individual frame of 

the 120-150 min scan, which was then combined with the 0-45 min acquisition to form a single 

dynamic acquisition volume. 

5.2.3.2 Whole Tumor Tissue Time Activity Curve Extraction 

Tumor VOI were defined for each acquisition by first summing together the entire 51 frame 

PET image to create a single static image. Tumor VOI were defined by drawing an initial VOI 

around the tumor on the summed PET image and then applying a 30%-to-60% of the difference 

between the maximum and minimum voxel value threshold to the initial VOI, thereby creating the 

final VOI from which tumor tissue activity curves could be extracted. For the reasons described 

above in the IBIF VOI sub-section, no metabolite correction was applied to the measured tumor 

tissue TAC. 

5.2.3.3 Healthy Tissue Time Activity Curve Extraction 

Healthy tissue VOI were defined for each acquisition by first summing together the entire 

51 frame PET image to create a single static image. Next a 1.5 cm (radius) sphere was drawn in 

an uninvolved region of the brain, generally located in the lobe opposite to that containing the 

brain tumor, using the sphere VOI tool available in PMOD 3.6. For the reasons described above 

in the IBIF VOI sub-section, no metabolite correction was applied to the measured healthy tissue 

TAC. 
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5.2.3.4 Joint IBIF & Tumor IRF Model Order Selection 

Throughout this dissertation, the measured [18F]ML-10 uptake in each tumor, 𝐶𝐶𝑇𝑇(𝑡𝑡) is 

assumed to be a superposition of the [18F]ML-10 activity in the tumor vasculature with the activity 

in the tumor tissue. Mathematically, 𝐶𝐶𝑇𝑇(𝑡𝑡) is modeled as in  (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.57) where 𝑉𝑉𝐵𝐵 ∈ [0, 1] 

quantifies the fraction of the measured tumor tissue TAC that comes from the tumor vasculature, 

ℎ(𝑡𝑡) denotes the particular impulse response function (IRF) model, and ⊛ represents the 

convolution operation. 

 

𝑵𝑵𝑻𝑻(𝒕𝒕) = 𝑽𝑽𝑩𝑩𝑵𝑵𝑩𝑩(𝒕𝒕) + (𝟏𝟏 − 𝑽𝑽𝑩𝑩)[𝒘𝒘(𝒕𝒕) ⊛𝑵𝑵𝑩𝑩(𝒕𝒕)] (Eqn. 5.2.57) 

 
 
 
Initial IBIF model selection analysis was performed in Section 5.1, where the IBIF was 

measured from each subject’s internal carotid arteries. However, because the tumor tissue TAC is 

being modeled as a sum of the tracer concentration in the blood (i.e. attenuated IBIF) plus the 

tumor response to the IBIF, model order selection was carried out using a joint IBIF-IRF modeling 

approach. 

 

Table 5-6 contains the list of candidate tumor IRF models evaluated for each [18F]ML-10 

PET scan. For each IRF Model mathematical form, 𝐶𝐶𝐵𝐵(𝑡𝑡) represents a general IBIF model. IRF 

Model 1α-0β describes a tumor uptake profile that is attenuated blood activity only. IRF Model 

1α-1β , IRF Model 2α-2β , and IRF Model 3α-3β  describe tracer uptake profiles that are composed 

of a superposition of 1, 2, and 3 causal exponentials, respectively, that all have non-zero 

exponential decay rates. That is, these models describe reversible tracer PK. IRF Model 2α-1β  and 
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IRF Model 3α-2β  each describe a radiotracer uptake profile that is composed of a trapping 

component, modeled as a scalar times a step-function, in addition to 1 or 2 reversible components, 

expressed by a single causal exponential, respectively. 

 

Table 5-6. Candidate Impulse Response Models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Section 5.1.4, it was found that either IBIF Model 1b, IBIF Model 1c, or IBIF Model 2b 

was selected as the best candidate IBIF model (based on minimum AICc and model parameter 

estimability) to describe the measured [18F]ML-10 uptake profile in the internal carotid arteries for 

28 of 29 PET scans analyzed. The mathematical forms of these IBIF models are repeated in table 

5-7 below. Each model in table 5-7 was used as the 𝐶𝐶𝐵𝐵(𝑡𝑡) in the table of tissue response models. 

That is, a total of 18 candidate models (6 IRF models and 3 IBIF models) were tested per subject 

per time-point. 

IRF 
Model  Candidate IRF Model Mathematical Form. 

1α-0β 𝑅𝑅(0)(𝑡𝑡) = [𝛼𝛼0 𝛿𝛿(𝑡𝑡 − 𝜏𝜏)] ⊛𝐶𝐶𝐵𝐵(𝑡𝑡) 

1α-1β 𝑅𝑅(1)(𝑡𝑡) =  �𝛼𝛼1 𝑒𝑒−𝛽𝛽1(𝑡𝑡−𝜏𝜏)𝑢𝑢(𝑡𝑡 − 𝜏𝜏)� ⊛ 𝐶𝐶𝐵𝐵(𝑡𝑡) 

2α-2β 𝑅𝑅(2)(𝑡𝑡) =  ��𝛼𝛼𝑖𝑖𝑒𝑒−𝛽𝛽𝑖𝑖(𝑡𝑡−𝜏𝜏)𝑢𝑢(𝑡𝑡 − 𝜏𝜏)
2

𝑖𝑖=1

� ⊛ 𝐶𝐶𝐵𝐵(𝑡𝑡) 

3α-3β 𝑅𝑅(3)(𝑡𝑡) =  ��𝛼𝛼𝑖𝑖𝑒𝑒−𝛽𝛽𝑖𝑖(𝑡𝑡−𝜏𝜏)𝑢𝑢(𝑡𝑡 − 𝜏𝜏)
3

𝑖𝑖=1

� ⊛ 𝐶𝐶𝐵𝐵(𝑡𝑡) 

  

2α-1β 𝑇𝑇(1)(𝑡𝑡) = �𝛼𝛼1𝑒𝑒−𝛽𝛽1(𝑡𝑡−𝜏𝜏)𝑢𝑢(𝑡𝑡 − 𝜏𝜏) + 𝛼𝛼2𝑢𝑢(𝑡𝑡 − 𝜏𝜏)� ⊛ 𝐶𝐶𝐵𝐵(𝑡𝑡) 

3α-2β 𝑇𝑇(2)(𝑡𝑡) = ��𝛼𝛼𝑖𝑖𝑒𝑒−𝛽𝛽𝑖𝑖(𝑡𝑡−𝜏𝜏)𝑢𝑢(𝑡𝑡 − 𝜏𝜏)
2

𝑖𝑖=1

+ 𝛼𝛼3𝑢𝑢(𝑡𝑡 − 𝜏𝜏)� ⊛ 𝐶𝐶𝐵𝐵(𝑡𝑡) 

⨂ denotes the convolution operation. 
𝐶𝐶𝐵𝐵(𝑡𝑡) represents a general image-based input function model.  
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Table 5-7. List of Candidate IBIF Models. 

 

Derivation of the Joint Log-Likelihood Function 

As part of the derivation of the joint IBIF-IRF likelihood function, it was assumed that the 

measurement noise between independent PET frames is independent and that the measurement 

errors between the IBIF TAC obtained from the internal carotid arteries and the tumor TAC are 

not correlated. Moreover, it was assumed that the measured IBIF and tumor TAC values follow a 

multivariate Gaussian distribution. Under these assumptions, it can be shown that the cross-

correlation between the input measurements and the tissue response measurements is equal to 0 

such that the covariance matrix for each PET frame is diagonal. Hence, the uncertainties in the 

IBIF and IRF model parameters are related solely through the gradient of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.57) in the 

associated Fisher information matrix (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.3) in Section 5.1.2. 

 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.58) contains the general form of the joint Gaussian probability distribution for 

the ith PET frame. Specifically, 𝑀𝑀(𝜃𝜃, 𝛿𝛿;  𝑡𝑡�̅�𝑖) ≜ [𝑓𝑓(𝜃𝜃; 𝑡𝑡�̅�𝑖) 𝑔𝑔(𝜃𝜃, 𝛿𝛿; 𝑡𝑡�̅�𝑖)]𝑇𝑇 is a 2x1 column vector, 

where 𝑓𝑓(𝜃𝜃; 𝑡𝑡�̅�𝑖) and 𝑔𝑔(𝜃𝜃, 𝛿𝛿; 𝑡𝑡�̅�𝑖) denote the time-averaged values of the IBIF and tissue response 

models during the ith frame, respectively. 𝜃𝜃 and 𝛿𝛿 represent the corresponding IBIF and tissue 

IBIF Model Candidate IBIF Model Mathematical Form. 

Model 1b 𝑓𝑓(2)(𝑡𝑡) =  ��θ0(𝑡𝑡 − τ) −�θi

2

i=1

� e−p0(𝑡𝑡−τ) +  �θi

2

i=1

e−pi(𝑡𝑡−τ)� 𝑢𝑢(𝑡𝑡 − τ); 

Model 1c 𝑓𝑓(3)(𝑡𝑡) =  ��𝜃𝜃0(𝑡𝑡 − 𝜏𝜏) −�𝜃𝜃𝑖𝑖

3

𝑖𝑖=1

� 𝑒𝑒−𝑝𝑝0(𝑡𝑡−𝜏𝜏) +  �𝜃𝜃𝑖𝑖

3

𝑖𝑖=1

𝑒𝑒−𝑝𝑝𝑖𝑖(𝑡𝑡−𝜏𝜏)� 𝑢𝑢(𝑡𝑡 − 𝜏𝜏); 

Model 2b 𝑔𝑔(2)(𝑡𝑡) =  �α0�𝑡𝑡 − (τ + τα)�e−α1�𝑡𝑡−(τ+τα)�� 𝑢𝑢�𝑡𝑡 − (τ + τα)�+ 𝑓𝑓(2)(𝑡𝑡); 
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model parameter vectors, respectively. Furthermore, 𝑥𝑥𝑖𝑖 denotes the 2x1 column vector containing 

the ith input, 𝑢𝑢𝑖𝑖, and tumor tissue, 𝑣𝑣𝑖𝑖, sample pairs (i.e. 𝑥𝑥𝑖𝑖 ≜  [𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖]𝑇𝑇).  

 

𝒑𝒑(𝒙𝒙𝒔𝒔;𝜽𝜽,𝜹𝜹, �̅�𝒕𝒔𝒔) = (𝟐𝟐𝟐𝟐)−𝟏𝟏|𝚺𝚺𝐢𝐢|
−𝟏𝟏𝟐𝟐𝐞𝐞−

𝟏𝟏
𝟐𝟐

[𝒙𝒙𝒔𝒔−𝑴𝑴(𝜽𝜽,𝜹𝜹; �̅�𝒕𝒔𝒔)]𝑻𝑻 𝚺𝚺𝐢𝐢
−𝟏𝟏 [𝒙𝒙𝒔𝒔−𝑴𝑴(𝜽𝜽,𝜹𝜹; �̅�𝒕𝒔𝒔)] (Eqn. 5.2.58) 

 
 
 
(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.59) gives the form of the joint-covariance matrix for the ith PET frame, where 

𝜎𝜎1,𝑖𝑖
2  and 𝜎𝜎2,𝑖𝑖

2  are the input and tissue sample variances for the ith PET frame, respectively. For the 

ith PET frame, the measured IBIF and tissue response noise variances were assumed to have the 

form: 𝜎𝜎1,𝑖𝑖
2 = 𝛼𝛼0,𝑐𝑐

2 � 𝑐𝑐𝑖𝑖𝑒𝑒
𝜆𝜆𝑐𝑐𝑖𝑖
∗ 

�𝑡𝑡𝑖𝑖
𝑒𝑒𝑐𝑐𝑒𝑒−𝑡𝑡𝑖𝑖

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐� 
� and 𝜎𝜎2,𝑖𝑖

2 = 𝛼𝛼0,𝑣𝑣
2 � 𝑣𝑣𝑖𝑖𝑒𝑒

𝜆𝜆𝑐𝑐𝑖𝑖
∗ 

�𝑡𝑡𝑖𝑖
𝑒𝑒𝑐𝑐𝑒𝑒−𝑡𝑡𝑖𝑖

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐� 
�, respectively, where 𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡𝑑𝑑𝐶𝐶𝑡𝑡 and 𝑡𝑡𝑖𝑖𝑒𝑒𝑐𝑐𝑑𝑑 

are the start and end times of the ith PET frame, 𝜆𝜆 is the 18F-decay rate (λ = 0.00631 min-1),  𝑡𝑡𝑖𝑖∗ 

denotes the average time of decay over the ith frame, and 𝛼𝛼0,𝑣𝑣
2  and 𝛼𝛼0,𝑐𝑐

2  are constants of 

proportionality not necessarily equal to each other. 

 

𝚺𝚺𝒔𝒔 = �
𝝈𝝈𝟏𝟏,𝒔𝒔
𝟐𝟐 𝟎𝟎
𝟎𝟎 𝝈𝝈𝟐𝟐,𝒔𝒔

𝟐𝟐 � (Eqn. 5.2.59) 

 
 
 
Treating the measurement noise in each PET frame as statistically independent, the 

likelihood function for the simultaneous system is given by the product of the individual 

probability densities (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.60), which has log-likelihood function given by (𝐸𝐸𝐸𝐸𝐸𝐸.  5.2.61). 
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�
𝓛𝓛(𝜽𝜽,𝜹𝜹) = ∏ 𝒑𝒑(𝒙𝒙𝒔𝒔;𝜽𝜽,𝜹𝜹, �̅�𝒕𝒔𝒔)𝑵𝑵

𝒔𝒔=𝟏𝟏

𝓛𝓛(𝜽𝜽,𝜹𝜹) = 𝟏𝟏
(𝟐𝟐𝟐𝟐)𝑵𝑵

∏ |𝚺𝚺𝐢𝐢|
−𝟏𝟏𝟐𝟐𝐞𝐞−

𝟏𝟏
𝟐𝟐

[𝒙𝒙𝒔𝒔−𝑴𝑴(𝜽𝜽,𝜹𝜹; �̅�𝒕𝒔𝒔)]𝑻𝑻 𝚺𝚺𝐢𝐢
−𝟏𝟏 [𝒙𝒙𝒔𝒔−𝑴𝑴(𝜽𝜽,𝜹𝜹; �̅�𝒕𝒔𝒔)]𝑵𝑵

𝒔𝒔=𝟏𝟏
 (Eqn. 5.2.60) 

 

𝓵𝓵(𝜽𝜽,𝜹𝜹) ≜ 𝐥𝐥𝐥𝐥 {𝓛𝓛(𝜽𝜽,𝜹𝜹)} = �
−𝑵𝑵𝐥𝐥𝐥𝐥{𝟐𝟐𝟐𝟐} − 𝟏𝟏

𝟐𝟐
∑ 𝒍𝒍𝒏𝒏{|𝚺𝚺𝐢𝐢|}𝐍𝐍
𝐢𝐢=𝟏𝟏 −

− 𝟏𝟏
𝟐𝟐
∑ �[𝒙𝒙𝒔𝒔 −𝑴𝑴(𝜽𝜽,𝜹𝜹;  �̅�𝒕𝒔𝒔)]𝑻𝑻 𝚺𝚺𝐢𝐢−𝟏𝟏 [𝒙𝒙𝒔𝒔 −𝑴𝑴(𝜽𝜽,𝜹𝜹;  �̅�𝒕𝒔𝒔)]�𝑵𝑵
𝒔𝒔=𝟏𝟏

 (Eqn. 5.2.61) 

 

Joint IBIF/IRF Parameter Estimation 

The basic strategy of estimating both the IBIF and IRF model parameters will be to use a 

coordinate decent approach to maximize the log-likelihood function in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.61).  

 

As stated in the previous section, 𝒙𝒙𝒔𝒔 denotes the 2x1 column vector containing the input, 

𝒙𝒙𝒔𝒔, and tumor tissue, 𝒚𝒚𝒔𝒔, sample pairs (i.e. 𝒙𝒙𝒔𝒔 ≜  [𝒙𝒙𝒔𝒔, 𝒚𝒚𝒔𝒔]𝑻𝑻) for the ith PET frame. To see how both 

IBIF and IRF model parameters can be estimated, let ℎ(𝑡𝑡) denote a particular impulse response 

model from table 5-6, and 𝑓𝑓(𝑡𝑡;𝜃𝜃) represent a particular IBIF model from table 5-7. Then, from 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.57) above, the general tissue response model will be given by 𝐶𝐶𝑇𝑇(t;  𝜃𝜃, 𝛿𝛿) =

𝑉𝑉𝐵𝐵𝑓𝑓(𝑡𝑡;𝜃𝜃) + (1 − 𝑉𝑉𝐵𝐵)[ℎ(𝑡𝑡; 𝛿𝛿) ⊛𝑓𝑓(𝑡𝑡; 𝜃𝜃)]. Thus, with functional forms for the IBIF (i.e. 𝑓𝑓(𝜃𝜃; 𝑡𝑡)) 

and the tissue response model (i.e. 𝐶𝐶𝑇𝑇(𝜃𝜃, 𝛿𝛿; t)) the 2x1 model vector: 𝑀𝑀(ti;  𝜃𝜃, 𝛿𝛿) ≜

[𝑓𝑓(𝜃𝜃; 𝑡𝑡𝑖𝑖) 𝐶𝐶𝑇𝑇(𝜃𝜃, 𝛿𝛿; ti)]𝑇𝑇 can be formed for each PET frame and used for maximization of the log-

likelihood function in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.61). 

 

However, it is important to point out that in PET the measured IBIF and tissue response 

samples represent the time-averages of their true concentrations over corresponding frame dwell 
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times. As a result, it is the time-averaged versions of 𝑓𝑓(𝜃𝜃; 𝑡𝑡𝑖𝑖) and 𝐶𝐶𝑇𝑇(𝜃𝜃, 𝛿𝛿; ti) that are actually used 

during the weighted least squares fitting. The use of the time-averaged versions of the input and 

tissue models is emphasized in (𝐸𝐸𝐸𝐸𝐸𝐸.  5.2.61) by writing the 2x1 model vector as 𝑀𝑀(𝑡𝑡�̅�𝑖;  𝜃𝜃, 𝛿𝛿) 

where 𝑡𝑡�̅�𝑖 denotes time-averaging over the ith PET frame.  

 

In terms of the actual optimization a multi-stage approach was used, which consisted of a.) 

determining an initial guess, 𝛿𝛿0, for the candidate IRF model, given the corresponding vector of 

initial guess parameters for the IBIF model 𝜃𝜃0, followed by b.) a coordinate descent procedure to 

determine to obtain initial guess parameters for c.) a constrained nonlinear weighted maximization 

that allowed all IBIF and IRF model parameters to float. All constrained optimization was carried 

out using the fmincon.m function available in the optimization toolbox of MATLAB (R2014a, The 

MathWorks, Natick, MA., USA). 

 

Figure 5-9 shows the workflow for generating the IRF initial guess parameter vector 𝛿𝛿0. 

500 random initial guesses were generated using the MultiStart.m function in the MATLAB 

optimization toolbox (R2014a, The MathWorks, Natick, MA., USA). Each of these random initial 

guesses were used as starting points for un-weighted OLS constrained maximization of 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.61) using only the first 0-45 min worth of measured tissue data. The solution to the OLS 

maximization from the 0-45 min data was then used as a starting point for un-weighted constrained 

OLS maximization using the complete set (0-150 min data) of measured tumor tissue concentration 

samples. The  resulting solution obtained from the constrained, un-weighted OLS maximization 

of (𝐸𝐸𝐸𝐸𝐸𝐸 5.2.61) yielded the desired initial guess 𝛿𝛿0, for the final weighted, unconstrained 

maximization of the likelihood function in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.61. ). Throughout the entire process used to 
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obtain 𝛿𝛿0, the candidate IBIF model parameters, 𝜃𝜃0, were held fixed to equal the estimated IBIF 

model parameters obtained during the IBIF model selection analysis in Section 5.1. 

 

Figure 5-9 shows the workflow for the 3-stage coordinate descent procedure used to 

maximize (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.61) and obtain IBIF and tissue model parameter estimates, denoted as �̅�𝜃 and 

𝛿𝛿̅ respectively, to be used as initial guesses for the final constrained nonlinear weighted 

optimization of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.61), in which all parameters were allowed to float simultaneously. The 

initial parameter guesses for the candidate IBIF model (𝜃𝜃0) and candidate tissue model (𝛿𝛿0) were 

used as initial starting points for the constrained nonlinear optimization.  The first stage of the 

coordinate descent held the IBIF model parameters fixed while performing a weighted-constrained 

optimization of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.61) allowing only the tissue model parameters to float. Next, a 

weighted-constrained maximization of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.61) was performed allowing only the IBIF 

model parameters to float while keeping the tissue model parameter estimates fixed to their 

previously estimated values. Finally, the new value of the log-likelihood was calculated using the 

updated tissue and IBIF model parameters and compared to the previous value. If the relative 

change between the new value of the log-likelihood function and the previous value increased by 

less than 10-10, the algorithm was said to converge.  

 

Finally, the IBIF and IRF model estimates from the coordinate descent procedure were 

then used as initial guesses for constrained nonlinear weighted optimization of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.61), in 

which all parameters were allowed to float simultaneously. The IBIF and IRF model estimates 

obtained from this final optimization step were used as the final estimates 𝜃𝜃� and 𝛿𝛿. For both the 

coordinate descent and the final simultaneous weighted optimization procedures, the frame-by-
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frame weights matrices used during maximization were obtained from the inverses of the joint 

covariance matrices (Σ𝑖𝑖−1; (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.59)).  

 

All constraints for IBIF and IRF model fitting consisted of set constraints only. The set 

constraints used for IBIF model fitting were the same set constraints described previously in 

Section 5.1.3.5. For the case of IRF model fitting, the linear coefficients (i.e. 𝛼𝛼𝑖𝑖) were restricted to 

be in the range 𝛼𝛼𝑖𝑖 ∈ [0,∞)  min−1 while exponential washout rates 𝛽𝛽𝑖𝑖 were restricted to the range 

𝛽𝛽𝑖𝑖 ∈ [0, 10] min−1. The IRF time delay parameter was constrained to be 𝜏𝜏 ∈ [0, 2] min.  
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Figure 5-10. Procedure for Generating Initial Tissue Model Parameter Guesses for Maximization of the Joint 

IBIF and Tissue Model Log-Likelihood Function. 
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Figure 5-11. Coordinate Descent Procedure for Maximizing Joint IBIF and Tissue Model Log-Likelihood 

Function. 
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Statistical Evaluation of Joint IBIF/IRF Model Fit & Parameter Estimates 

The residuals from each IBIF and IRF model fit were evaluated for normality via the 

Kolmolgorov-Smirnov test,  as well as correlation using the runs test [181], which counts the 

number of sign changes in the residuals.  

 

Estimates for parameter variances were obtained by calculating the inverse of the Fisher 

information matrix for each joint IBIF/IRF model. Specifically, because the measurement errors 

are assumed to follow a Gaussian distribution, (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.3) can be used to compute the form of 

the Fisher Information matrix for the parameters of each candidate joint IBIF/IRF model, the 

inverse of which provides an estimate for the model parameter covariance matrix, (𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.4).  

 

Based on the obtained estimates of candidate joint IBIF/IRF model covariance matrices, 

the COV for each model parameter was computed, were the COV of a particular model parameter 

𝛾𝛾 is given by the ratio of the standard deviation of the estimate, 𝜎𝜎�𝛾𝛾, divided by the estimated value 

of that parameter, 𝛾𝛾�, that is 𝐶𝐶𝑐𝑐𝑉𝑉𝛾𝛾� = 𝜎𝜎�𝛾𝛾
𝛾𝛾�

. For the purposes of model fitting, a small COV for each 

model parameter is desired, as a large COV value for a model parameter suggests poor parameter 

estimability and can be indicative of model over-fitting and/or high correlation among model 

parameters [154]. 

 

Joint IBIF/IRF Model Selection 

Candidate joint IBIF/IRF models were compared based on minimum AICc as well as model 

parameter estimability considerations. The AICc was previously described in Section $$$. Briefly, 
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the standard Akaike Information Criteria (AIC) is given by: AIC =  −2 ∗ log �L�θ���+  2K; where 

𝐿𝐿�𝜃𝜃�� denotes the maximum-likelihood value of the model being fitted and K is equal to  the total 

number of estimated parameters. The noise model (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.58) (also see paragraph below 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.58)) included 2 additional parameters (𝛼𝛼0,𝑣𝑣
2  and 𝛼𝛼0,𝑐𝑐

2 ) that were estimated in addition to 

the parameters specific to the IBIF and IRF models being fitted.  The AICc compensates for small 

sample sizes relative to the number of parameters in the model being fitted, and can be obtained 

from the AIC as: 𝐴𝐴𝐼𝐼𝐶𝐶𝑐𝑐 = 𝐴𝐴𝐼𝐼𝐶𝐶 + 2𝐾𝐾(𝐾𝐾+1)
𝑁𝑁−𝐾𝐾−1

 [161]. In cases where the ratio of the number of samples 

(here, N = 102) to number of parameters of the largest model is small (i.e. N
K

< 40 ), the AICc is 

generally recommended over the AIC [161].  

 

Candidate joint IBIF/IRF models were first ranked based on relative differences in the 

small sample AICc, where the joint IBIF/IRF model with the minimum AICc score was taken to 

be the preliminary best model supported by the data. Next, the %COV (where %COV is the COV 

expressed as a percentage) of each parameter in the minimum AICc joint IBIF/IRF model was 

estimated. If the minimum AICc IRF model yielded one or more parameter estimates with %COV 

> 50%, then the IRF model was deemed not estimable, then the complexity of the IRF model (but 

not the IBIF model) was reduced by 1 parameter. If the reduced IRF model also yielded one or 

more parameter estimates with %COV > 50% the IRF model was again reduced by 1 parameter 

until an estimable IRF model was obtained. The same model reduction technique was implemented 

if the minimum AICc IBIF model yielded one or more parameter estimates with %COV > 50%, 

with the only difference being that the IBIF model (but not the IRF model) was reduced in 

complexity until an estimable IBIF model was obtained. 
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5.2.3.5 Estimating the Compartmental Rate Constants 

All compartmental rate constants were calculated using the corresponding IRF model 

parameters (i.e. 𝛼𝛼1, 𝛼𝛼2, … ,𝛽𝛽1,𝛽𝛽2, …) and the systems of equations in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.17), (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.22), 

and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.28) appropriate for a 1-tissue, 2-tissue and 3-tissue compartmental model, 

respectively. In the specific cases of the 2-tissue (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.22) and 3-tissue 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.28) compartmental models, the solve.m function available in the MATLAB symbolic 

toolbox (R2018a, The MathWorks, Natick, MA., USA) was used to obtain the associated 

transformation equations relating the IRF and compartmental rate constants. In order to obtain a 

unique solution for the 3-tissue compartment system, (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.28), it was assumed 𝑘𝑘4 ≤ 𝑘𝑘6. 

 

Estimating the Covariance Matrix of the Compartmental Rate Constants 

All compartmental rate constants were calculated from algebraic transformations applied 

to the corresponding IRF model estimates (see above paragraph). Define the 𝑣𝑣𝑥𝑥1 column vector 

𝜽𝜽 = [𝛼𝛼1, 𝛼𝛼2, … 𝛼𝛼𝐾𝐾 𝛽𝛽1 𝛽𝛽2 … 𝛽𝛽𝐾𝐾 ]𝑇𝑇, where K equals the number of tissue 

compartments in the compartmental model. Next, let 𝒈𝒈(𝜽𝜽) be an 𝑣𝑣𝑥𝑥1 column vector containing as 

its elements the algebraic transformation equations relating the compartmental rate constants 

(𝐾𝐾1,𝑘𝑘2, … 𝑘𝑘𝐶𝐶) to the IRF parameters in 𝜽𝜽. That is, define 𝑔𝑔(𝜃𝜃) as in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.62) below.  

 

𝒈𝒈(𝜽𝜽) =

⎣
⎢
⎢
⎢
⎡
𝑲𝑲𝟏𝟏(𝜽𝜽)
𝒌𝒌𝟐𝟐(𝜽𝜽)
𝒌𝒌𝟑𝟑(𝜽𝜽)
⋮

𝒌𝒌𝒘𝒘(𝜽𝜽)⎦
⎥
⎥
⎥
⎤

  (Eqn. 5.2.62) 
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Because the measurement errors are assumed to follow a Gaussian distribution, 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.1.3) can be used to compute the form of the Fisher information matrix 𝐼𝐼(𝜽𝜽) for the 

parameters of each candidate joint IBIF/IRF model. Moreover, because the IRF model estimates 

in 𝜃𝜃 are maximum likelihood estimates (MLEs), the rate constant estimates in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.62) are 

all MLEs as well, with estimated covariance matrix given by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.63) where 𝝏𝝏𝒈𝒈(𝜽𝜽)
𝝏𝝏𝜽𝜽

 is defined 

as in  (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.64) [153, 155]. 

 

𝚺𝚺𝒈𝒈(𝜽𝜽) = �𝝏𝝏𝒈𝒈(𝜽𝜽)
𝝏𝝏𝜽𝜽

� [𝑰𝑰(𝜽𝜽)]−𝟏𝟏 �𝝏𝝏𝒈𝒈(𝜽𝜽)
𝝏𝝏𝜽𝜽

�
𝑻𝑻

 (Eqn. 5.2.63) 

 

𝝏𝝏𝒈𝒈(𝜽𝜽)
𝝏𝝏𝜽𝜽

=

⎣
⎢
⎢
⎢
⎡
𝝏𝝏𝒈𝒈𝟏𝟏(𝜽𝜽)
𝝏𝝏𝜽𝜽𝟏𝟏

⋯ 𝝏𝝏𝒈𝒈𝟏𝟏(𝜽𝜽)
𝝏𝝏𝜽𝜽𝒑𝒑

⋮ ⋮ ⋮
𝝏𝝏𝒈𝒈𝒘𝒘(𝜽𝜽)
𝝏𝝏𝜽𝜽𝟏𝟏

… 𝝏𝝏𝒈𝒈𝒘𝒘(𝜽𝜽)
𝝏𝝏𝜽𝜽𝒑𝒑 ⎦

⎥
⎥
⎥
⎤
 (Eqn. 5.2.64) 

 
 
 
Therefore, when required, the covariance matrix of the associated compartmental rate 

constants for a particular IRF model was estimated using (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.63). The required gradients in 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.64) were computed using the diff.m function in the symbolic toolbox of MATLAB 

(R2018a, The MathWorks, Natick, MA., USA). 

 

Sensitivity Analysis. 

Sensitivity analysis can be used to evaluate the influence of the compartmental rate 

constants on the corresponding tissue model, 𝐶𝐶𝑇𝑇(𝑡𝑡), independent of measurement noise 
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considerations [182, 183]. For this analysis, a sensitivity function 𝑆𝑆𝑘𝑘𝑖𝑖(𝑡𝑡) is calculated for each 

compartmental rate constant that quantifies the influence of a small change in value of the 𝑘𝑘𝑖𝑖𝑡𝑡ℎ rate 

constant (with the others held fixed) on 𝐶𝐶𝑇𝑇(𝑡𝑡) [182, 183]. Based on these functions, the portion of 

the measured tumor TAC data that most heavily influences the estimated value of each rate 

constant can be determined. Ideally, different portions of the measured tumor TAC will relate to 

different compartmental rate constants [183]. In the case that two or more rate constants are 

primarily influenced by the same portion of the measured tumor TAC, these parameters will be 

strongly correlated and, in the extreme case, it may not be possible to uniquely separate estimates 

for these parameters [183].  

 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.65) gives the general form of the tissue model fit to each [18F]ML-10 tumor TAC 

for a general input function model 𝑓𝑓(𝑡𝑡) and a general IRF model composed of K causal 

exponentials, ℎ(𝑡𝑡; 𝛿𝛿), where 𝛿𝛿 denotes the 𝑣𝑣𝑥𝑥1 column vector of IRF parameters. The parameter 

𝑉𝑉𝐵𝐵 represents the blood volume fraction in the tumor, while ⊛ denotes the convolution operation. 

The transformation equations relating the general tumor IRF model to the 1-tissue, 2-tissue, and 

3-tissue compartmental models appropriate for PET were derived in Section 5.2.1.  

 

�
𝑵𝑵𝑻𝑻(𝐭𝐭;𝜹𝜹) = 𝑽𝑽𝑩𝑩𝒇𝒇(𝒕𝒕) + (𝟏𝟏 − 𝑽𝑽𝑩𝑩)[𝒘𝒘(𝒕𝒕;𝜹𝜹) ⊛𝒇𝒇(𝒕𝒕)]

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘,
𝜹𝜹 = [𝜶𝜶𝟏𝟏, 𝜶𝜶𝟐𝟐, … 𝜶𝜶𝑲𝑲 𝜷𝜷𝟏𝟏 𝜷𝜷𝟐𝟐 … 𝜷𝜷𝑲𝑲 ]𝑻𝑻

 (Eqn. 5.2.65) 
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The sensitivity function 𝑆𝑆𝑘𝑘𝑖𝑖(𝑡𝑡), characterizing the influence of a 𝛾𝛾% increase in value of 

the 𝑘𝑘𝑖𝑖𝑡𝑡ℎrate constant is given by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.66); where 𝜃𝜃(𝑖𝑖), (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.67), denotes the (r-1)x1 

column vector of rate constants that are held constant.  

 

𝒏𝒏𝒌𝒌𝒔𝒔(𝒕𝒕) = �𝐂𝐂𝐓𝐓�𝒕𝒕,𝒌𝒌𝒔𝒔+𝛄𝛄𝐤𝐤𝐢𝐢;𝜽𝜽(𝒔𝒔)�−𝐂𝐂𝐓𝐓�𝒕𝒕,𝒌𝒌𝒔𝒔;𝜽𝜽(𝒔𝒔)��
𝐂𝐂𝐓𝐓�𝒕𝒕,𝒌𝒌𝒔𝒔;𝜽𝜽(𝒔𝒔)�

  (Eqn. 5.2.66) 

 

𝜽𝜽(𝒔𝒔) = [𝑲𝑲𝟏𝟏,𝒌𝒌𝟐𝟐, … ,𝒌𝒌𝒔𝒔−𝟏𝟏,𝒌𝒌𝒔𝒔+𝟏𝟏, …𝒌𝒌𝒘𝒘]𝑻𝑻  (Eqn. 5.2.67) 

 
 
 
Because the compartmental rate constants are calculated from estimates of the IRF model 

parameters in 𝛿𝛿, the sensitivity functions 𝑆𝑆𝑘𝑘𝑖𝑖(𝑡𝑡) cannot be directly obtained from model fitting. 

However, they can be approximated using a first order Taylor expansion of CT�𝑡𝑡,𝑘𝑘𝑖𝑖;𝜃𝜃(𝑖𝑖)� in the 

neighborhood of the 𝑘𝑘𝑖𝑖𝑡𝑡ℎ rate constant. (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.68) gives the first order Taylor approximation to 

CT�𝑡𝑡,𝑘𝑘𝑖𝑖;𝜃𝜃(𝑖𝑖)� in the neighborhood of the estimate 𝑘𝑘𝑖𝑖 for a 𝛾𝛾 increase in the value of 𝑘𝑘𝑖𝑖. Re-

arranging terms in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.68) and dividing both sides by CT�𝑡𝑡,𝑘𝑘𝑖𝑖;𝜃𝜃(𝑖𝑖)� produces 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.69). Thus, for small γ (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.65) can be approximated using (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.70). For the 

present analysis 𝛾𝛾 = 0.01. 

 

𝐂𝐂𝐓𝐓�𝒕𝒕,𝒌𝒌𝒔𝒔 + 𝛄𝛄𝐤𝐤𝐢𝐢;𝜽𝜽(𝒔𝒔)� ≈ 𝐂𝐂𝐓𝐓�𝒕𝒕,𝒌𝒌𝒔𝒔;𝜽𝜽(𝒔𝒔)� + 𝝏𝝏𝑵𝑵𝑻𝑻
𝝏𝝏𝒌𝒌𝒔𝒔

([𝒌𝒌𝒔𝒔 + 𝛄𝛄𝐤𝐤𝐢𝐢] − 𝒌𝒌𝒔𝒔) (Eqn. 5.2.68) 

 

 �𝐂𝐂𝐓𝐓�𝒕𝒕,𝒌𝒌𝒔𝒔+𝛄𝛄𝐤𝐤𝐢𝐢;𝜽𝜽
(𝒔𝒔)�−𝐂𝐂𝐓𝐓�𝒕𝒕,𝒌𝒌𝒔𝒔;𝜽𝜽(𝒔𝒔)��

𝐂𝐂𝐓𝐓�𝒕𝒕,𝒌𝒌𝒔𝒔;𝜽𝜽(𝒔𝒔)�
≈ � 𝛄𝛄𝐤𝐤𝐢𝐢

𝐂𝐂𝐓𝐓�𝒕𝒕,𝒌𝒌𝒔𝒔;𝜽𝜽(𝒔𝒔)�
� �𝝏𝝏𝑵𝑵𝑻𝑻

𝝏𝝏𝒌𝒌𝒔𝒔
� (Eqn. 5.2.69) 
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 𝒏𝒏𝒌𝒌𝒔𝒔(𝒕𝒕) ≈ � 𝛄𝛄𝐤𝐤𝐢𝐢
𝐂𝐂𝐓𝐓�𝒕𝒕,𝒌𝒌𝒔𝒔;𝜽𝜽(𝒔𝒔)�

� �𝝏𝝏𝑵𝑵𝑻𝑻�𝒕𝒕,𝒌𝒌𝒔𝒔;𝜽𝜽
(𝒔𝒔)�

𝝏𝝏𝒌𝒌𝒔𝒔
� (Eqn. 5.2.70) 

 
 
 

The values of the partial derivatives 𝜕𝜕𝑁𝑁𝑇𝑇�𝑡𝑡,𝑘𝑘𝑖𝑖;𝜃𝜃(𝑖𝑖)�
𝜕𝜕𝑘𝑘𝑖𝑖

 can be obtained using the chain rule for 

differentiation and solving the resulting linear system in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.71). The elements of the matrix 

of partial derivatives of the rate constants with respect to the IRF model parameters were computed 

using the diff.m function in the symbolic toolbox of MATLAB (R2018a, The MathWorks, Natick, 

MA., USA). 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝝏𝝏𝑵𝑵𝑻𝑻
𝝏𝝏𝛂𝛂𝟏𝟏
⋮

𝝏𝝏𝑵𝑵𝑻𝑻
𝝏𝝏𝛂𝛂𝐊𝐊
𝝏𝝏𝑵𝑵𝑻𝑻
𝝏𝝏𝛃𝛃𝟏𝟏
⋮

𝝏𝝏𝑵𝑵𝑻𝑻
𝝏𝝏𝛃𝛃𝐊𝐊⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝝏𝝏𝐊𝐊𝟏𝟏
𝝏𝝏𝛂𝛂𝟏𝟏

𝝏𝝏𝐤𝐤𝟐𝟐
𝝏𝝏𝛂𝛂𝟏𝟏

… 𝝏𝝏𝐤𝐤𝐰𝐰
𝝏𝝏𝛂𝛂𝟏𝟏

⋮ ⋮ … ⋮
𝝏𝝏𝐊𝐊𝟏𝟏
𝝏𝝏𝛂𝛂𝐊𝐊

𝝏𝝏𝐤𝐤𝟐𝟐
𝝏𝝏𝛂𝛂𝐊𝐊

… 𝝏𝝏𝐤𝐤𝐰𝐰
𝝏𝝏𝛂𝛂𝐊𝐊

𝝏𝝏𝐊𝐊𝟏𝟏
𝝏𝝏𝛃𝛃𝟏𝟏

𝝏𝝏𝐤𝐤𝟐𝟐
𝝏𝝏𝛃𝛃𝟏𝟏

… 𝝏𝝏𝐤𝐤𝐰𝐰
𝝏𝝏𝛃𝛃𝟏𝟏

⋮ ⋮ ⋮ ⋮
𝝏𝝏𝐤𝐤𝐰𝐰
𝝏𝝏𝛂𝛂𝟏𝟏

𝝏𝝏𝐤𝐤𝐰𝐰
𝝏𝝏𝛂𝛂𝟏𝟏

𝝏𝝏𝐤𝐤𝐰𝐰
𝝏𝝏𝛂𝛂𝟏𝟏

𝝏𝝏𝐤𝐤𝐰𝐰
𝝏𝝏𝛂𝛂𝟏𝟏⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝝏𝝏𝑵𝑵𝑻𝑻
𝝏𝝏𝐊𝐊𝟏𝟏
𝝏𝝏𝑵𝑵𝑻𝑻
𝝏𝝏𝐤𝐤𝟐𝟐
𝝏𝝏𝑵𝑵𝑻𝑻
𝝏𝝏𝐤𝐤𝟑𝟑
⋮
⋮

𝝏𝝏𝑵𝑵𝑻𝑻
𝝏𝝏𝐤𝐤𝐰𝐰⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (Eqn. 5.2.71) 

 

5.2.3.6 Exploratory Spectral Analysis 

SA was performed using both NNLS and L1 norm minimization methods following the 

approaches described in Section 5.2.2. For both methods, SA was performed on tumor TACs that 

were corrected for radioactive decay. 151 logarithmically spaced rates, 𝛽𝛽𝑖𝑖, in the interval [10-4 

min-1, 200 min-1] were chosen for the basis vectors. The IBIF model selected as part of the joint 

IBIF/IRF model selection analysis (see Section 5.2.3.4) for each [18F]ML-10 acquisition served as 

the 'true' (assumed noiseless) input function driving each corresponding measured tissue response. 
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All spectra were corrected for estimation bias using the bootstrap resampling approach described 

in Section 5.2.2 with B = 1000 bootstrap samples. Furthermore, bias corrected one-sided 95% 

bootstrap confidence intervals were generated for each spectral component as described in Section 

5.2.2 in order to evaluate the veracity of detected spectral components. 

 

Both the NNLS and L1 norm minimization methods were carried out using MATLAB 

(2014a, The MathWorks, Natick, MA., USA) built-in functions. Specifically, NNLS was 

performed using the default settings of the nonneglsq.m function available in the optimization 

toolbox of MATLAB (2014a, The MathWorks, Natick, MA., USA). Solution to the minimum L1 

norm method was obtained by first re-writing the SA problem into standard form [177] for a linear 

program (see Section 5.2.2.). The actual optimization was performed using the using the simplex 

algorithm and default settings of the linprog.m function available in the optimization toolbox of 

MATLAB (2014a, The MathWorks, Natick, MA., USA). 

 

Estimating a Fast-Rate Threshold: A Data Adaptive Approach 

For sufficiently fast 𝛽𝛽𝑖𝑖, spectral components will be indistinguishable from the tumor blood 

pool. That is in the limit 𝛽𝛽𝑖𝑖 → ∞, then 𝐶𝐶𝑇𝑇 ≈
1
𝛽𝛽𝑗𝑗
𝑓𝑓(𝑡𝑡). Here we describe a data-adaptive approach 

that can be used to determine a fast-rate threshold, such that any spectral components detected at 

𝛽𝛽𝑖𝑖 larger than the threshold can be interpreted as noise components from blood pool.  

 

The approach utilizes a Neyman-Pearson detector [156, 184] to determine the maximum 

possible spectral component that when convolved with the input function (i.e. 𝑓𝑓(𝑡𝑡) ⊛ 𝑒𝑒−𝛽𝛽𝑗𝑗𝑡𝑡𝑢𝑢(𝑡𝑡)), 
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is still distinguishable from the scaled input function (i.e. 1
𝛽𝛽𝑖𝑖
𝑓𝑓(𝑡𝑡)) given the noise level in the 

measured data. Following standard convention [156, 184], define the null (H0) and alternative 

hypotheses (H1) as in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.72), where 𝜀𝜀 ~ 𝑁𝑁(0𝑇𝑇𝑥𝑥1, Σ) and the Tx1 vector 𝜇𝜇0 and 𝜇𝜇1 are as 

defined in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.73) and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.74), respectively, where T is the total number of PET 

frames. In (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.73) and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.74) 𝑡𝑡𝑖𝑖𝑠𝑠 and 𝑡𝑡𝑖𝑖𝑒𝑒 denote the start and stop times of the ith PET 

frame. 

 

�𝑯𝑯𝟎𝟎:𝒙𝒙 = 𝝁𝝁𝟎𝟎 + 𝜺𝜺
𝑯𝑯𝟏𝟏:𝒙𝒙 = 𝝁𝝁𝟏𝟏 + 𝜺𝜺 (Eqn. 5.2.72) 

 

⎩
⎪
⎨

⎪
⎧𝝁𝝁𝟎𝟎 = [𝒄𝒄𝟎𝟎(�̅�𝒕𝟏𝟏) 𝒄𝒄𝟎𝟎(�̅�𝒕𝟐𝟐) ⋯ 𝒄𝒄𝟎𝟎(�̅�𝒕𝑻𝑻)]𝑻𝑻

𝐰𝐰𝐰𝐰𝐞𝐞𝐰𝐰𝐞𝐞, 𝒄𝒄𝟎𝟎(�̅�𝒕𝒔𝒔) = 𝟏𝟏
𝜷𝜷
� 𝟏𝟏
�𝒕𝒕𝒔𝒔
𝒘𝒘− 𝒕𝒕𝒔𝒔

𝒄𝒄� ∫ 𝒇𝒇(𝒕𝒕)𝒅𝒅𝒕𝒕𝒕𝒕𝒔𝒔
𝒘𝒘

𝒕𝒕𝒔𝒔
𝒄𝒄 �

 (Eqn. 5.2.73) 

 

�
𝝁𝝁𝟏𝟏 = [𝒄𝒄𝟏𝟏(�̅�𝒕𝟏𝟏) 𝒄𝒄𝟏𝟏(�̅�𝒕𝟐𝟐) ⋯ 𝒄𝒄𝟏𝟏(�̅�𝒕𝑻𝑻)]𝑻𝑻

𝐰𝐰𝐰𝐰𝐞𝐞𝐰𝐰𝐞𝐞, 𝒄𝒄𝟏𝟏(�̅�𝒕𝒔𝒔) = 𝟏𝟏
�𝒕𝒕𝒔𝒔
𝒘𝒘− 𝒕𝒕𝒔𝒔

𝒄𝒄� ∫ �𝒇𝒇(𝒕𝒕) ⊗𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�𝒅𝒅𝒕𝒕𝒕𝒕𝒔𝒔
𝒘𝒘

𝒕𝒕𝒔𝒔
𝒄𝒄

 (Eqn. 5.2.74) 

 
 
 
Following the normally distributed, independent, heteroscedastic errors assumptions 

appropriate for PET tissue TAC data described in Chapter 2, the likelihood functions for the scaled 

input function (H0) and the jth probing function (H1) are given by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.75) and (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.76), 

respectively; where the covariance matrix, Σ, is diagonal and the same under both H0 and H1. 
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𝒑𝒑(𝒙𝒙;𝑯𝑯𝟎𝟎) = (𝟐𝟐𝟐𝟐)
−𝑵𝑵
𝟐𝟐 �∏ 𝝈𝝈𝒔𝒔𝟐𝟐𝑵𝑵

𝒔𝒔=𝟏𝟏 �
−𝟏𝟏𝟐𝟐𝐞𝐞−

𝟏𝟏
𝟐𝟐

(𝐱𝐱−𝝁𝝁𝟎𝟎)𝐓𝐓𝚺𝚺−𝟏𝟏(𝐱𝐱−𝝁𝝁𝟎𝟎) (Eqn. 5.2.75) 

 

𝒑𝒑(𝒙𝒙;𝑯𝑯𝟏𝟏) = (𝟐𝟐𝟐𝟐)
−𝑵𝑵
𝟐𝟐 �∏ 𝝈𝝈𝒔𝒔𝟐𝟐𝑵𝑵

𝒔𝒔=𝟏𝟏 �
−𝟏𝟏𝟐𝟐𝐞𝐞−

𝟏𝟏
𝟐𝟐

(𝐱𝐱−𝝁𝝁𝟏𝟏)𝐓𝐓𝚺𝚺−𝟏𝟏(𝐱𝐱−𝝁𝝁𝟏𝟏) (Eqn. 5.2.76) 

 
 
 
The Neyman-Pearson detector chooses H1 if the ratio of the likelihood functions is greater 

than a fixed threshold, 𝛾𝛾, for a fixed probability of false alarm [156, 184]. The ratio of the 

likelihood functions under H1 and H0 is given below by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.77) with corresponding 

Neyman-Pearson decision rule given in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.78) 

 

𝓛𝓛(𝒙𝒙) = 𝒑𝒑(𝒙𝒙;𝑯𝑯𝟏𝟏)
𝒑𝒑(𝒙𝒙;𝑯𝑯𝟎𝟎) = 𝐞𝐞−

𝟏𝟏
𝟐𝟐�𝐱𝐱−𝝁𝝁𝟏𝟏�

𝐓𝐓
𝚺𝚺−𝟏𝟏�𝐱𝐱−𝝁𝝁𝟏𝟏�

𝐞𝐞−
𝟏𝟏
𝟐𝟐�𝐱𝐱−𝝁𝝁𝟎𝟎�

𝐓𝐓
𝚺𝚺−𝟏𝟏�𝐱𝐱−𝝁𝝁𝟎𝟎�

 (Eqn. 5.2.77) 

 

𝐞𝐞−
𝟏𝟏
𝟐𝟐�𝐱𝐱−𝝁𝝁𝟏𝟏�

𝐓𝐓
𝚺𝚺−𝟏𝟏�𝐱𝐱−𝝁𝝁𝟏𝟏�

𝐞𝐞−
𝟏𝟏
𝟐𝟐�𝐱𝐱−𝝁𝝁𝟎𝟎�

𝐓𝐓
𝚺𝚺−𝟏𝟏�𝐱𝐱−𝝁𝝁𝟎𝟎�

> 𝜸𝜸 (Eqn. 5.2.78) 

 
 
 
Taking the logarithm of both sides of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.78) and re-arranging terms leads to 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.79) below. 

 

(𝝁𝝁𝟏𝟏 − 𝝁𝝁𝟎𝟎)𝑻𝑻𝚺𝚺−𝟏𝟏𝒙𝒙 > 𝐥𝐥𝐥𝐥(𝜸𝜸) + �𝝁𝝁𝟏𝟏
𝑻𝑻𝚺𝚺−𝟏𝟏𝝁𝝁𝟏𝟏−𝝁𝝁𝟎𝟎

𝑻𝑻𝚺𝚺−𝟏𝟏𝝁𝝁𝟎𝟎� 
𝟐𝟐

 (Eqn. 5.2.79) 
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With the definitions given in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.80), the Neyman-Pearson decision rule of 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.72) reduces to (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.81). 

 

�
𝑻𝑻(𝒙𝒙;𝜷𝜷) ≜ (𝝁𝝁𝟏𝟏 − 𝝁𝝁𝟎𝟎)𝑻𝑻𝚺𝚺−𝟏𝟏𝒙𝒙;

𝜸𝜸′ ≜ 𝐥𝐥𝐥𝐥(𝜸𝜸) + �𝝁𝝁𝟏𝟏
𝑻𝑻𝚺𝚺−𝟏𝟏𝝁𝝁𝟏𝟏−𝝁𝝁𝟎𝟎

𝑻𝑻𝚺𝚺−𝟏𝟏𝝁𝝁𝟎𝟎� 
𝟐𝟐

 (Eqn. 5.2.80) 

 

𝑻𝑻(𝒙𝒙;𝜷𝜷) > 𝜸𝜸′ (Eqn. 5.2.81) 

 
 
 
(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.82) gives the equations for the probability of false alarm (𝑃𝑃𝐹𝐹) and probability of 

detection (𝑃𝑃𝐷𝐷) for a specified threshold 𝛾𝛾′ and the test statistic 𝑇𝑇(𝑥𝑥;𝛽𝛽) given in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.80); 

where 𝑝𝑝(𝑇𝑇(𝑥𝑥;𝛽𝛽);𝐻𝐻0) denotes the probability distribution of 𝑇𝑇(𝑥𝑥;𝛽𝛽) assuming H0 is true 

and 𝑝𝑝(𝑇𝑇(𝑥𝑥;𝛽𝛽);𝐻𝐻1) denotes the probability distribution of 𝑇𝑇(𝑥𝑥;𝛽𝛽) assuming H1 is true. 

 

�
𝑷𝑷𝑭𝑭 = ∫ 𝒑𝒑(𝑻𝑻(𝒙𝒙;𝜷𝜷);𝑯𝑯𝟎𝟎)𝒅𝒅𝑻𝑻∞

𝜸𝜸′

𝑷𝑷𝟏𝟏 = ∫ 𝒑𝒑(𝑻𝑻(𝒙𝒙;𝜷𝜷);𝑯𝑯𝟏𝟏)𝒅𝒅𝑻𝑻∞
𝜸𝜸′

 (Eqn. 5.2.82) 

 
 
 
Since the measured tumor TAC data are assumed to be corrupted by independent, additive, 

heteroscedastic, Gaussian noise, 𝑝𝑝(𝑇𝑇(𝑥𝑥;𝛽𝛽);𝐻𝐻0) and 𝑝𝑝(𝑇𝑇(𝑥𝑥;𝛽𝛽);𝐻𝐻1) will both be Gaussian 

distributions. Therefore, in order to calculate 𝑃𝑃𝐹𝐹 and 𝑃𝑃𝐷𝐷 in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.82), only the first two 

moments of 𝑇𝑇(𝑥𝑥;𝛽𝛽) are needed under H0 and H1. (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.83) gives the expected value of 

𝑇𝑇(𝑥𝑥;𝛽𝛽) under H0 (𝑇𝑇�𝐻𝐻0) and H1 (𝑇𝑇�𝐻𝐻1), while (𝐸𝐸𝐸𝐸𝐸𝐸.  5.2.84) gives the variance, 𝜎𝜎𝑇𝑇2, when either H0 

or H1 is true (i.e. 𝜎𝜎𝑇𝑇2 is the same regardless if H0 or H1 is true). 
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�
𝑻𝑻�𝑯𝑯𝟎𝟎 =  �𝝁𝝁𝟏𝟏𝑻𝑻(𝒕𝒕;𝜷𝜷𝒔𝒔) − 𝝁𝝁𝟎𝟎𝑻𝑻(𝒕𝒕)�𝚺𝚺−𝟏𝟏𝝁𝝁𝟎𝟎(𝒕𝒕)

𝑻𝑻�𝑯𝑯𝟏𝟏 =  �𝝁𝝁𝟏𝟏𝑻𝑻(𝒕𝒕;𝜷𝜷𝒔𝒔) − 𝝁𝝁𝟎𝟎𝑻𝑻(𝒕𝒕)�𝚺𝚺−𝟏𝟏𝝁𝝁𝟏𝟏(𝒕𝒕;𝜷𝜷𝒔𝒔)
 (Eqn. 5.2.83) 

 

𝝈𝝈𝑻𝑻𝟐𝟐 = (𝝁𝝁𝟏𝟏 − 𝝁𝝁𝟎𝟎)𝑻𝑻𝚺𝚺−𝟏𝟏(𝝁𝝁𝟏𝟏 − 𝝁𝝁𝟎𝟎) (Eqn. 5.2.84) 

 
 
 
The final challenge to using the Neyman-Pearson detector to compute a data-adaptive fast-

rate threshold for SA is to use 𝛾𝛾 ′ to write 𝑃𝑃𝐷𝐷 as a function of 𝑃𝑃𝐹𝐹. To this end, define the function: 

𝑄𝑄(𝑥𝑥) ≜ 1
√2𝜋𝜋

∫ 𝑒𝑒−
𝑧𝑧2

2 𝑑𝑑𝑑𝑑∞
𝑥𝑥 , then 𝑃𝑃𝐹𝐹 and 𝑃𝑃𝐷𝐷 can be re-written as in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.85).  

 

�
𝑷𝑷𝑭𝑭 = 𝑸𝑸�

𝜸𝜸′− 𝑻𝑻�𝑯𝑯𝟎𝟎
𝝈𝝈𝑻𝑻

�

𝑷𝑷𝟏𝟏 = 𝑸𝑸�
𝜸𝜸′− 𝑻𝑻�𝑯𝑯𝟏𝟏

𝝈𝝈𝑻𝑻
�

 (Eqn. 5.2.85) 

 
 
 
Moreover, since 𝑄𝑄(𝑥𝑥) is monatonically decreasing the inverse of 𝑄𝑄(𝑥𝑥), denoted 𝑄𝑄−1(𝑥𝑥), 

is guaranteed to exist [156, 184]. Hence the threshold 𝛾𝛾′ can be written in terms of 𝑃𝑃𝐹𝐹 as in 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.86) below. 

 

𝜸𝜸′ = 𝝈𝝈𝑻𝑻𝑸𝑸−𝟏𝟏(𝑷𝑷𝑭𝑭) + 𝑻𝑻�𝑯𝑯𝟎𝟎  (Eqn. 5.2.86) 

 
 
 
Inserting (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.86) into the equation for 𝑃𝑃𝐷𝐷 in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.85) gives (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.87), 

which reduces to (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.88).  

mailto:%ED%A0%B5%ED%B0%B8%ED%A0%B5%ED%B1%9E%ED%A0%B5%ED%B1%9B.7.@.@
mailto:%ED%A0%B5%ED%B0%B8%ED%A0%B5%ED%B1%9E%ED%A0%B5%ED%B1%9B.7.@.@
mailto:%ED%A0%B5%ED%B0%B8%ED%A0%B5%ED%B1%9E%ED%A0%B5%ED%B1%9B.7.$
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𝑷𝑷𝟏𝟏 = 𝑸𝑸�
𝜸𝜸′− 𝑻𝑻�𝑯𝑯𝟏𝟏

𝝈𝝈𝑻𝑻
� = 𝑸𝑸�

𝝈𝝈𝑻𝑻𝑸𝑸−𝟏𝟏(𝑷𝑷𝑭𝑭)−�𝑻𝑻�𝑯𝑯𝟏𝟏−𝑻𝑻�𝑯𝑯𝟎𝟎�

𝝈𝝈𝑻𝑻
� (Eqn. 5.2.87) 

 

𝑷𝑷𝟏𝟏 = 𝑸𝑸�𝑸𝑸−𝟏𝟏(𝑷𝑷𝑭𝑭) −�(𝝁𝝁𝟏𝟏 − 𝝁𝝁𝟎𝟎)𝑻𝑻𝚺𝚺−𝟏𝟏(𝝁𝝁𝟏𝟏 − 𝝁𝝁𝟎𝟎)� (Eqn. 5.2.88) 

  
 
 
(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.88) describes is the receiver operating characteristics (ROC) curve of the test 

statistic 𝑇𝑇(𝑥𝑥;𝛽𝛽). A perfect test would be one where ∫ 𝑃𝑃𝐷𝐷𝑑𝑑𝑃𝑃𝐹𝐹 = 11
0 ; that is, H1 (i.e. 𝑓𝑓(𝑡𝑡) ⊛

𝑒𝑒−𝛽𝛽𝑗𝑗𝑡𝑡𝑢𝑢(𝑡𝑡)) is perfectly distinguishable from H0 (i.e. 1
𝛽𝛽𝑖𝑖
𝑓𝑓(𝑡𝑡) ) given the noise. This result can be 

used to define an optimization problem (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.89) for which the maximum 𝛽𝛽 can be obtained 

under the constraint that ∫ 𝑃𝑃𝐷𝐷𝑑𝑑𝑃𝑃𝐹𝐹 ≥ 𝛿𝛿1
0 , where 𝛿𝛿 𝜖𝜖 [0.5, 1] controls degree of misidentification of 

H1 as H0 that is allowed. 

 

𝐦𝐦𝐦𝐦𝐱𝐱:𝜷𝜷

𝒄𝒄𝒙𝒙𝒔𝒔𝟐𝟐𝒘𝒘𝒄𝒄𝒕𝒕 𝒕𝒕𝒄𝒄: �
𝜷𝜷 ≥ 𝟎𝟎

∫ 𝑷𝑷𝟏𝟏𝒅𝒅𝑷𝑷𝑭𝑭 ≥ 𝜹𝜹𝟏𝟏
𝟎𝟎

 (Eqn. 5.2.89) 

 
 
 
Finally, one parameter is still to be defined, which is the constant of proportionality 𝛼𝛼02 in 

the covariance matrix Σ. As described in Chapter 2, Σ is a diagonal matrix with elements of the 

form: 𝜎𝜎𝑖𝑖2 = 𝛼𝛼02 �
𝑥𝑥𝑖𝑖𝑒𝑒

𝜆𝜆𝑐𝑐𝑖𝑖
∗ 

�𝑡𝑡𝑖𝑖
𝑒𝑒𝑐𝑐𝑒𝑒−𝑡𝑡𝑖𝑖

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐� 
� along its diagonal. The terms inside the brackets are known (see 

Chapter 2); however,  𝛼𝛼02 needs to be estimated based on the data. The approach used in this 

dissertation is to estimate 𝛼𝛼02 from the normalized residuals obtained after SA. That is, let 𝛼𝛼� denote 
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the estimated spectrum after performing SA using either the NNLS or simplex methods. Then a 

method dependent estimate for 𝛼𝛼02 is given by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.90), where W is a diagonal matrix with 

elements of the form 𝑤𝑤𝑖𝑖 =  𝑥𝑥𝑖𝑖𝑒𝑒
𝜆𝜆𝑐𝑐𝑖𝑖
∗ 

�𝑡𝑡𝑖𝑖
𝑒𝑒𝑐𝑐𝑒𝑒−𝑡𝑡𝑖𝑖

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐� 
 along its diagonal and T denotes the total number of PET 

frames. 

 

𝜶𝜶𝟎𝟎𝟐𝟐� = 𝟏𝟏
𝑻𝑻

[𝒙𝒙 − 𝑨𝑨𝜶𝜶�]𝑻𝑻𝑾𝑾−𝟏𝟏[𝒙𝒙 − 𝑨𝑨𝜶𝜶�] (Eqn. 5.2.90) 

 
 
 
In this dissertation 𝛿𝛿 = 0.99, and a unique estimate for 𝛼𝛼02 was computed for each of the 

NNLS and simplex methods. 

 

Obtaining Macroparameter Estimates using Spectral Analysis 

Estimates for tumor tissue compartmental macroparameteres: K1, Ki and VT, were obtained 

for every PET imaging time-point (see Section 5.2.2 for more detail). Following the suggestion of 

Cunningham and Jones [171], the blood volume fraction term VB was treated as a high-frequency 

component and not specifically estimated. That is, IBIF model was not included as a basis vector 

in the SA basis matrix for either SA method used. 

 

Following the definitions given in Section 5.2.2, (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.91) gives the estimators used 

for K1, Ki and VT. Spectral components corresponding to probing rates 𝛽𝛽𝑖𝑖 faster than 80% of the 

fast-rate threshold, 𝛽𝛽𝑓𝑓𝑑𝑑𝑠𝑠𝑡𝑡, (defined above) were not allowed to contribute to the estimation of either 

𝐾𝐾1 and 𝑉𝑉𝑇𝑇.  Moreover, 𝛽𝛽 = 10−4 min-1 was the slowest spectral probing rate tested. Hence, a non-
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zero spectral component observed at 𝛽𝛽 = 10−4 min-1 was taken to indicate tracer trapping. 

Therefore, if a component was detected at the probing rate 𝛽𝛽 = 10−4 min-1, this component was 

not allowed to contribute to the estimate for 𝑉𝑉𝑇𝑇.  All detected components in the interval 

𝛽𝛽𝑖𝑖𝜖𝜖�10−4, 0.8�𝛽𝛽𝑓𝑓𝑑𝑑𝑠𝑠𝑡𝑡�� were allowed to contribute to the value of 𝐾𝐾1. 

 

⎩
⎨

⎧ 𝑲𝑲𝒊𝒊� = 𝜶𝜶𝟎𝟎;  𝜷𝜷𝟐𝟐 = 𝟏𝟏𝟎𝟎−𝟒𝟒 𝒎𝒎𝒔𝒔𝒏𝒏−𝟏𝟏

𝑲𝑲𝟏𝟏� = ∑ 𝜶𝜶𝟐𝟐𝑵𝑵
𝟐𝟐=𝟏𝟏 ;  𝜷𝜷𝟐𝟐𝝐𝝐�𝟏𝟏𝟎𝟎−𝟒𝟒,𝟎𝟎.𝟖𝟖�𝜷𝜷𝒇𝒇𝒅𝒅𝒄𝒄𝒕𝒕��

𝑽𝑽𝑻𝑻� = ∑ 𝜶𝜶𝟐𝟐
𝜷𝜷𝟐𝟐

𝑵𝑵
𝟐𝟐=𝟏𝟏 ;  𝜷𝜷𝟐𝟐𝝐𝝐�𝟏𝟏𝟎𝟎−𝟒𝟒,𝟎𝟎.𝟖𝟖�𝜷𝜷𝒇𝒇𝒅𝒅𝒄𝒄𝒕𝒕��

 (Eqn. 5.2.91) 

 
 
 
While performing SA, it is common to observe 2 non-zero spectral components 

neighboring each other on the grid of 𝛽𝛽𝑖𝑖; an effect that has been referred to as “line doubling” 

[172]. If 2 or more adjacent spectral components were observed, then to compute 𝐾𝐾1� the approach 

of Cunningham and Jones [171] was followed where all spectral components were summed to 

produce the K1 estimate; essentially ignoring the ‘line-doubling’ effect. For the case of the 

estimator 𝑉𝑉𝑇𝑇�, where a specific 𝛽𝛽𝑖𝑖 must be assigned to the adjacent peaks, the neighboring spectral 

components were summed and then divided by the spectral rate that corresponded to the 

component with the largest 𝛼𝛼𝑖𝑖. That is, suppose after performing SA only 2 non-zero, adjacent 

spectral components are detected 𝛼𝛼𝑘𝑘 and 𝛼𝛼𝑘𝑘+1 with corresponding spectral rates 𝛽𝛽𝑘𝑘 and 𝛽𝛽𝑘𝑘+1 such 

that 𝛽𝛽𝑘𝑘,𝛽𝛽𝑘𝑘+1 𝜖𝜖�10−4, 0.8�𝛽𝛽𝑓𝑓𝑑𝑑𝑠𝑠𝑡𝑡��. To compute the corresponding 𝑉𝑉𝑇𝑇�, define 𝛼𝛼∗ ≜ (𝛼𝛼𝑘𝑘 + 𝛼𝛼𝑘𝑘+1) 

and 𝛽𝛽∗ ≜ {𝛽𝛽𝑘𝑘,𝛽𝛽𝑘𝑘+1} ∩ �𝛽𝛽𝑖𝑖|𝛼𝛼𝑖𝑖 = max(𝛼𝛼𝑘𝑘,𝛼𝛼𝑘𝑘+1)�, such that the estimate for VT becomes: 𝑉𝑉𝑇𝑇� = 𝛼𝛼∗

𝛽𝛽∗
. 
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Estimates obtained using (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.91) were not corrected for bias. One-sided, 95% 

bootstrap confidence intervals were generated for each estimator in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.91) using the 

bootstrap resampling approach described in Section 5.2.2 with B = 1000 bootstrap samples. 

5.2.3.7 Voxelwise Impulse Response Function Modeling 

Voxelwise IRF modeling was performed for the purpose of generating voxelwise maps of 

tumor Ki and VT. To this end, a maximum likelihood approach is used to fit the 2α-1β and 2α-2β 

IRF models on a voxel-by-voxel basis for a subset of GBM subjects exhibiting a tumor of sufficient 

size for voxelwise analysis. The VOI used to define the tumor for whole tumor uptake modeling 

(Section 5.2.3.2) is the same VOI used for voxelwise modeling. For each [18F]ML-10 PET scan, 

tumor voxels are assumed to have the same input [18F]ML-10 concentration, which is described 

by the corresponding IBIF model that was determined during joint IBIF/IRF model selection. 

Moreover, for each voxelwise fit the blood volume fraction, VB, is constrained to equal the 

corresponding value of VB estimated during whole tumor joint IBIF/IRF modeling. Therefore, only 

the exponential coefficients and exponential rates corresponding to the 2α-1β and 2α-2β IRF 

models are estimated for each tumor voxel. 

 

The Voxelwise Log-Likelihood Function 

In this dissertation, tumor voxels are modeled as statistically independent. Measurement 

noise for each tumor voxel is assumed to follow a Gaussian distribution with zero mean and 

homogeneous variance.  
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Let 𝑥𝑥(𝑖𝑖) represent the Tx1 column vector of measured tumor concentration samples for the 

jth tumor voxel, where T is equal to the number of PET frames (T=51 for this dissertation). 

Additionally, let 𝐶𝐶𝑇𝑇�𝑡𝑡;  𝛿𝛿(𝑖𝑖)� denote the tissue response model to be fit to the jth tumor voxel, where 

𝛿𝛿(𝑖𝑖) is the vector of IRF model parameters to be estimated for that voxel. For voxelwise modeling, 

𝐶𝐶𝑇𝑇�𝑡𝑡;  𝛿𝛿(𝑖𝑖)� is assumed to have the general form given by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.92). For a particular [18F]ML-

10 PET scan to which voxelwise modeling was applied, 𝑓𝑓(𝑡𝑡;𝜃𝜃) represented the corresponding 

selected best candidate IBIF model obtained from the results of joint IBIF/IRF modeling, where 𝜃𝜃 

denotes the vector of IBIF model parameters. ℎ(𝑡𝑡; 𝛿𝛿(𝑖𝑖)) represents the IRF model being fit during 

the voxelwise analysis, and ⊛ denotes the convolution operation. In this dissertation, only the 2α-

1β and 2α-2β tumor IRF models are considered for voxelwise modeling. VB denotes the blood 

volume fraction, which is constrained to equal the corresponding value of VB that was estimated 

during whole tumor IBIF/IRF model selection. For example, when voxelwise analysis using the 

2α-1β IRF model was applied to ML-10 #6 at ETA, the value of VB at every voxel was fixed to 

equal the value of VB that was obtained when IBIF Model 1b (i.e. the selected IBIF model for this 

subject and time-point) and IRF model 2α-1β were fit to the subject’s average tumor TAC during 

joint IBIF/IRF model selection. Similarly, non-zero tissue delays estimated during joint IBIF/IRF 

modeling were applied to every voxel during voxelwise modeling. 

 

𝑵𝑵𝑻𝑻
(𝟐𝟐)�𝐭𝐭;𝜹𝜹(𝟐𝟐)� = 𝑽𝑽𝑩𝑩𝒇𝒇(𝒕𝒕;𝜽𝜽) + (𝟏𝟏 − 𝑽𝑽𝑩𝑩)�𝒘𝒘(𝒕𝒕;𝜹𝜹(𝟐𝟐)) ⊛𝒇𝒇(𝒕𝒕;𝜽𝜽)� (Eqn. 5.2.92) 

 
 
 
Equation (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.93) gives the Gaussian likelihood function for the jth tumor voxel, 

assuming constant variance 𝜎𝜎𝑖𝑖2 and statistical independence between PET frames. The log-
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likelihood function ℓ(𝑖𝑖)�𝛿𝛿(𝑖𝑖);  𝑥𝑥(𝑖𝑖)� for the jth tumor voxel can be obtained by taking the natural 

log of both sides of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.93) and is given in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.94).  

 

𝒑𝒑�𝒙𝒙(𝟐𝟐);𝜹𝜹(𝟐𝟐)� = �𝟐𝟐𝟐𝟐𝝈𝝈𝟐𝟐𝟐𝟐�
−𝑻𝑻𝟐𝟐𝐞𝐞

− 𝟏𝟏
𝟐𝟐𝝈𝝈𝟐𝟐
𝟐𝟐�𝒙𝒙𝒔𝒔−𝑴𝑴

(𝟐𝟐)�𝜹𝜹(𝟐𝟐); �̅�𝒕𝒔𝒔��
𝑻𝑻
�𝒙𝒙𝒔𝒔−𝑴𝑴(𝟐𝟐)�𝜹𝜹(𝟐𝟐); �̅�𝒕𝒔𝒔�� (Eqn. 5.2.93) 

 

𝓵𝓵(𝟐𝟐)�𝜹𝜹(𝟐𝟐);  𝒙𝒙(𝟐𝟐)� = −𝑻𝑻
𝟐𝟐
𝒍𝒍𝒏𝒏�𝟐𝟐𝟐𝟐𝝈𝝈𝟐𝟐𝟐𝟐� −

𝟏𝟏
𝟐𝟐𝝈𝝈𝟐𝟐

𝟐𝟐 �𝒙𝒙𝒔𝒔 − 𝑵𝑵𝑻𝑻
(𝟐𝟐)�𝐭𝐭;𝜹𝜹(𝟐𝟐)��

𝑻𝑻
�𝒙𝒙𝒔𝒔 − 𝑵𝑵𝑻𝑻

(𝟐𝟐)�𝐭𝐭;𝜹𝜹(𝟐𝟐)�� (Eqn. 5.2.94) 

 
 
 
From (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.94), the maximum likelihood estimate for the noise variance 𝜎𝜎𝑖𝑖2 is given 

by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.95). From the standpoint of voxelwise fitting, it is convenient to substitute this 

expression for the estimate 𝜎𝜎𝚥𝚥2�  into the log-likelihood in (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.94) to obtain the corresponding 

concentrated log-likelihood function (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.96).  

 

𝝈𝝈𝒋𝒋𝟐𝟐� = 𝟏𝟏
𝑻𝑻
�𝒙𝒙(𝟐𝟐) − 𝑵𝑵𝑻𝑻

(𝟐𝟐)�𝐭𝐭;𝜹𝜹(𝟐𝟐)��
𝑻𝑻
�𝒙𝒙(𝟐𝟐) − 𝑵𝑵𝑻𝑻

(𝟐𝟐)�𝐭𝐭;𝜹𝜹(𝟐𝟐)�� (Eqn. 5.2.95) 

 

𝓵𝓵𝒄𝒄
(𝟐𝟐)�𝜹𝜹(𝟐𝟐);  𝒙𝒙(𝟐𝟐)� = −𝑵𝑵𝑻𝑻

𝟐𝟐
𝐥𝐥𝐥𝐥 �𝟐𝟐𝟐𝟐

𝑵𝑵𝑻𝑻
� − 𝐍𝐍𝐓𝐓

𝟐𝟐
+ −𝑵𝑵𝑻𝑻

𝟐𝟐
𝐥𝐥𝐥𝐥 �∑ �𝐘𝐘𝒕𝒕 − 𝝁𝝁𝒕𝒕(𝜷𝜷)�

𝐓𝐓
�𝐘𝐘𝒕𝒕 − 𝝁𝝁𝒕𝒕(𝜷𝜷)�𝑻𝑻

𝒕𝒕=𝟏𝟏 � (Eqn. 5.2.96) 

 

Maximizing the Voxelwise Log-Likelihood Function 

For each voxel, a constrained maximization of the concentrated log-likelihood function in 

(𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.96) was preformed using the fmincon.m function available in the MATLAB 
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optimization toolbox (R2014a, The MathWorks, Natick, MA., USA). The same constraints for 

joint IBIF/IRF modeling (Section 5.2.3.4) were applied during voxelwise fitting. Specifically, the 

linear coefficients for each voxel IRF model were restricted to be in the range [0,∞) min−1 while 

IRF exponential washout rates were restricted to the range [0, 10] min−1. The corresponding IRF 

model parameters estimated during joint IBIF/IRF modeling of the average tumor TAC were used 

as the initial parameter guess for nonlinear maximization of (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.96) at each tumor voxel. 

 

Generation of Standard Uptake Value PET Images 

The last 6 frames of dynamic [18F]ML-10 PET data (120-150 min post-injection) were 

averaged together to create a single “static” image. Static images were then converted to units of 

standard uptake values (SUVs) over the entire field of view using the commercially available 

software PMOD 3.6 (University Hospital Zurich, Zurich, Switzerland). The formula for 

calculating an SUV value for a particular voxel is given by (𝐸𝐸𝐸𝐸𝐸𝐸. 5.2.97),where the injected tracer 

dose and voxel activity are each decay-corrected to the start time of the PET scan. 

 

𝒏𝒏𝑺𝑺𝑽𝑽 = 𝑽𝑽𝒄𝒄𝒙𝒙𝒘𝒘𝒍𝒍 𝑨𝑨𝒄𝒄𝒕𝒕𝒔𝒔𝒚𝒚𝒔𝒔𝒕𝒕𝒚𝒚

�𝑰𝑰𝒏𝒏𝟐𝟐𝒘𝒘𝒄𝒄𝒕𝒕𝒘𝒘𝒅𝒅 𝑻𝑻𝒘𝒘𝒅𝒅𝒄𝒄𝒘𝒘𝒘𝒘 𝟏𝟏𝒄𝒄𝒄𝒄𝒘𝒘
𝒏𝒏𝒙𝒙𝒔𝒔𝟐𝟐𝒘𝒘𝒄𝒄𝒕𝒕 𝑾𝑾𝒘𝒘𝒔𝒔𝒈𝒈𝒘𝒘𝒕𝒕 � (Eqn. 5.2.97) 
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5.2.4 Results 

5.2.4.1 Time Activity Curve Analysis 

Figure 5-12 shows representative IBIF, tumor tissue, and healthy tissue activity data 

measured for two representative subjects, ML10 #9 at BL (left) and ML-10 #12 at BL (right). 

Across all figure panes, adjacent data points are shown connected by a solid line as a visual aid, 

no model fitting has been performed. Figure 5-12A shows measured IBIF data for subjects ML10 

#9 at BL (left) and ML-10 #12 at BL (right). The illustrated IBIF uptake profiles are typical of all 

measured [18F]ML-10 IBIFs. 

 

Across [18F]ML-10 PET scans, a distribution of tumor tissue TACs was observed, for 

which each measured tumor TAC could be visually placed into one of two categories: ‘blood-like’ 

or ‘accumulation-like’. ML-10 #9 illustrates a ‘blood-like’ example (figure 5-12B left), reflecting 

a relatively strong contribution from the vasculature to the tumor TAC, compared to the 

‘accumulation-like’ quality demonstrated by ML-10 #12 (figure 5-12B right). Also shown in figure 

5-12B are average TACs from healthy tissue (asterisks) for subjects ML10 #9 at BL (left) and ML-

10 #12 at BL (right). For both subjects, the healthy tissue TACs are characterized by low-uptake 

and fast-clearance. Measured healthy tissue TACS were similar across subjects and imaging time-

points. 

 

Tumor-to-IBIF (Tumor:IBIF) ratios were also calculated for each imaging time-point. 

Figure 1C shows representative Tumor:IBIF ratios for subjects ML-10 #9 at BL (figure 5-12C, 

left) and ML-10 #12 BL (figure 5-12C, right). Tumor:IBIF ratios are observed to increase over the 
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entire 150 min acquisition time for both cases. Visual comparison between scans reveals that 

Tumor:IBIFs for ML-10 #12 at BL increase at a faster rate compared to those of ML-10 #9 at BL. 

Measured Tumor:IBIFs were similar across subjects and imaging time-points; however, the rate 

of increase in Tumor:IBIF ratios varied across [18F]ML-10 PET scans. 

 

 

Figure 5-12. Representative IBIF, Tumor, and Healthy Tissue PET Time-Activity Curves. Across all figure 

panes, adjacent data points are shown connected by a solid line as a visual aid, no model fitting has been performed. 



 165 

 

(A) Representative [18F]ML-10 IBIFs for subjects ML-10 #9 at BL (left) and ML-10 #12 at BL (right). Insets show 

the first 0-5 min of IBIF data post-injection of [18F]ML-10. The measured IBIFs were similar across subjects and 

imaging time-points. (B) Average PET time-activity data measured from tumor (circles) and healthy (asterisks) tissue 

regions for subjects ML-10 #9 BL (left) and ML-10 #12 at BL (right). Across [18F]ML-10 PET scans, measured tumor 

data could be visually placed into one of two categories exhibiting either a blood-like’ or an ‘accumulation-like’ 

quality. ML-10 #9 illustrates a ‘blood-like’ example (B, left), reflecting a relatively strong contribution from the 

vasculature to the tumor TAC, compared to the ‘accumulation-like’ quality demonstrated by ML-10 #12 (B, right). 

For all [18F]ML-10 PET scans, the healthy brain tissue data visually appeared as an attenuated version of the 

corresponding IBIF. (C) Average Tumor:IBIF ratios (circles) for tumor tissue of subjects ML-10 #9 (left) and ML-10 

#12 (right) at BL. Tumor:IBIF ratios are observed to increase over the over the entire 150 min acquisition time for 

both cases. Visually, Tumor:IBIFs for ML-10 #12 at BL increase at a faster rate compared to those of ML-10 #9 at 

BL. Measured Tumor:IBIFs were similar across subjects and imaging time-points; however, the rate of increase in 

Tumor:IBIF ratios varied across [18F]ML-10 PET scans. 

 

5.2.4.2 Model Selection via Simultaneous Estimation of IBIF and Tumor Tissue IRF Model 

Parameters 

IBIF and tumor IRF model selection were performed as part of a simultaneous maximum 

likelihood fitting approach for each dynamic [18F]ML-10 acquisition (a total of 29). For this 

analysis the measured tumor TAC was modeled as a convolution between the blood input 

concentration, modeled using a candidate IBIF model, and an IRF composed of a variable number 

of causal exponentials.  

 

Figure 5-13 and figure 5-14 illustrate an example joint IBIF-IRF model selection analysis 

using measured IBIF and tumor TACs obtained from ML-10 #6 at ETA, who demonstrates an 
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‘accumulation-like’ [18F]ML-10 uptake profile. For ML-10 #6 at ETA, the joint minimum AICc 

IBIF and IRF models were IBIF Model 1b and IRF model 3α-2β, respectively. Figure 5-13 shows 

a comparison of the candidate IBIF model fits to the measured IBIF data (black circles) for the 3α-

2β tumor IRF model. The inset plot shows the corresponding fits to the first 0-5min of data. 

Visually, IBIF Model 2b (black dashed line) fits the measured input [18F]ML-10 concentration 

peak well but demonstrates overfitting between 2-3 min post tracer injection (blue circle). IBIF 

Model 1c (red dot-dash line) fits the IBIF peak well but, as a result, underestimates the IBIF 

concentration just after the peak tracer concentration (arrow). Visually, IBIF Model 1b (blue solid 

line) fits the overall trend of the measured IBIF data well. 

 

Figure 5-14A-F shows representative IRF tissue model fits using IBIF Model 1b with 

maximum log-likelihood value (logLikeVal) and AICc values shown as insets for each IRF model 

fit. The simplest IRF model fit to the subject’s tumor TAC data was a scaled version of the IBIF 

model (Figure 5-14A). From left-to right, the fitted IRF models increase in complexity: (B) single 

exponential IRF model 1α-1β, (C) single exponential IRF model with a trap 2α-1β, (D) two-

exponential reversible IRF model 2α-2β, (E) two-exponential IRF model with a trap 3α-2β, and 

(F) three-exponential reversible IRF model 3α-3β. For IRF model fitting, the exponential 

coefficients, α, were constrained to be positive while the exponential rates were constrained to be 

greater than or equal to zero as described in the methods. Across figure panes, increasing the 

number of simple causal exponentials in the IRF produced visually better fits to the measured 

tumor TAC data. However, little overall difference in fit quality is visually apparent between the 

selected 3α-2β IRF model and the more complex 3α-3β IRF model. 
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Figure 5-13. Representative IBIF Model Fits for ML-10 #6 at ETA Assuming a 3α-2β Tumor IRF Model. Figure 

shows a comparison of the candidate IBIF model fits to the measured IBIF data (black circles) for ML-10 #6 at ETA 

assuming simultaneous maximum likelihood fit of a 3α-2β tumor IRF model. Inset shows the IBIF and model fit for 

the first 0-5 min following injection of [18F]ML-10. The selected IBIF model based on minimum AICc was IBIF 

Model 1b. Visually, IBIF Model 2b (black dashed line) fits the measured input [18F]ML-10 concentration peak well 

but demonstrates overfitting between 2-3 min post tracer injection (blue circle). IBIF Model 1c (red dot-dash line) fits 

the IBIF peak well but, as a result, underestimates the IBIF concentration just after the peak tracer concentration 

(arrow). Visually, IBIF Model 1b (blue solid line) fits the overall trend of the measured IBIF data well. 
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Figure 5-14. Representative Candidate IRF Model Fits for ML-10 #6 at ETA Assuming IBIF Model 1b as the 

Selected Input Model. Figure shows representative IRF tissue model fits assuming joint maximum likelihood fitting 

using IBIF Model 1b as input model. Estimated maximum log-likelihood value (logLikeVal) and AICc values shown 
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as insets for each IRF model fit. The simplest IRF model fit to the subject’s tumor TAC data was a scaled version of 

the IBIF model (A). From left-to right, the fitted IRF models increase in complexity: (B) single exponential IRF model 

1α-1β, (C) single exponential IRF model with a trap 2α-1β, (D) two-exponential reversible IRF model 2α-2β, (E) two-

exponential IRF model with a trap 3α-2β, and (F) three-exponential reversible IRF model 3α-3β. For IRF model fitting, 

the exponential coefficients, α, were constrained to be positive while the exponential rates were constrained to be 

greater than or equal to zero as described in the methods. Across figure panes, increasing the number of simple causal 

exponentials in the IRF produced visually better fits to the measured tumor TAC data. However, little overall 

difference in fit quality is visually apparent between the 3α-2β IRF model and the more complex 3α-3β IRF model. 

Based on minimum AICc criteria, IRF model 3α-2β was selected as the best IRF model among the tested candidates. 

 

 

Table 5-8 contains the joint IBIF/IRF model selection results for subject ML-10 #6 at ETA. 

From left to right, the table contains: the candidate IBIF model, candidate IRF model, the total 

number of model parameters, K, to be estimated during the joint IBIF-IRF fitting (including IBIF 

and IRF noise variance parameters), and the sum of the squared weighted residuals (WRSS) for 

the IBIF and IRF models separately. Also tabulated are the values of the log-likelihood function 

for the model estimates �log�ℒ�𝜃𝜃�,𝜎𝜎2�|𝑑𝑑𝑣𝑣𝑡𝑡𝑣𝑣� ��, the AIC, and the AICc. Also shown is the 

differences between each AICc value and the overall minimum AICc value (i.e. ∆AICc = AICc – 

(minimum AICc)). The table row containing the joint IBIF/IRF model with minimum AICc values 

among the tested models is highlighted in bold. 
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Table 5-8. Joint IBIF-Tumor IRF Model Selection Results for ML-10 #6 at Early Therapy Response Assessment. 

IBIF Model IRF Model aK bWRSS 𝐥𝐥𝐥𝐥𝐥𝐥�𝓛𝓛�𝜽𝜽�,𝝈𝝈𝟐𝟐�|𝒅𝒅𝒅𝒅𝒕𝒕𝒅𝒅� � AIC AICc ∆AICc 
IBIF Model 1b (1α-0β) 11 3.177   (83.648) -218.487 458.974 461.907 322.271 
IBIF Model 1b (1α-1β) 13 3.769   (0.376) -84.000 195.999 200.135 60.499 
IBIF Model 1b (2α-1β) 14 2.323   (0.291) -66.110 160.221 165.049 25.412 
IBIF Model 1b (2α-2β) 15 2.093   (0.210) -55.126 140.253 145.834 6.198 
IBIF Model 1b (3α-2β) 16 2.089   (0.176) -50.618 133.236 139.636 0 
IBIF Model 1b (3α-3β) 17 2.094   (0.202) -54.140 142.280 149.565 9.929 

        

IBIF Model 1c (1α-0β) 13 3.435   (84.921) -220.863 467.727 471.863 332.227 
IBIF Model 1c (1α-1β) 15 4.661   (0.473) -96.290 222.579 228.160 88.524 
IBIF Model 1c (2α-1β) 16 5.090   (0.914) -115.332 262.663 269.063 129.427 
IBIF Model 1c (2α-2β) 17 5.088   (0.234) -80.574 195.148 202.434 62.798 
IBIF Model 1c (3α-2β) 18 5.088   (0.232) -80.385 196.769 205.010 65.374 
IBIF Model 1c (3α-3β) 19 5.090   (0.218) -78.789 195.577 204.846 65.210 

        

IBIF Model 2b (1α-0β) 14 2.845   (97.227) -219.505 467.009 471.837 332.201 
IBIF Model 2b (1α-1β) 16 3.429   (0.466) -88.0918 208.184 214.584 74.948 
IBIF Model 2b (2α-1β) 17 3.495   (0.286) -76.157 186.314 193.599 53.963 
IBIF Model 2b (2α-2β) 18 1.882   (0.222) -53.861 143.722 151.963 12.327 
IBIF Model 2b (3α-2β) 19 1.847   (0.186) -48.822 135.644 144.912 5.276 
IBIF Model 2b (3α-3β) 20 1.871   (0.213) -52.659 145.319 155.689 16.053 

aK = Total number of model parameters to be estimated (including IBIF and IRF noise variance parameters). 
bWRSS (weighted sum of squared residuals) are given in the form: IBIF Model WRSS (IRF Model WRSS). 
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Figure 5-15 and figure 5-16 show a second example model selection analysis for a subject 

exhibiting a ‘blood-like’ tumor TAC (subject ML-10 #13 at BL). For ML-10 #13 at BL, the joint 

minimum AICc IBIF and IRF models were IBIF Model 1b and IRF model 2α-1β, respectively. 

Figure 5-15 shows a comparison of the candidate IBIF model fits to the measured IBIF data (black 

circles) for the 2α-1β tumor IRF model. The inset plot shows the corresponding fits to the first 0-

5min of data. Visually, little difference is observed between IBIF Model 1b (blue solid line) and 

IBIF Model 1c (red dot-dash line). IBIF Model 2b (black dashed line) shows signs of overfitting 

to the IBIF data (circle).  

 

Figure 5-16A-F shows representative IRF tissue model fits using IBIF Model 1b with 

maximum log-likelihood value (logLikeVal) and AICc values shown as insets for each IRF model 

fit. The simplest IRF model fit to the subject’s tumor TAC data was a scaled version of the IBIF 

model (Figure 5-16A). As can be observed, the attenuated input concentration model over 

estimates both the peak tumor tissue [18F]ML-10 concentration and the tumor tracer uptake 

concentration early after the peak concentration.  From left-to right, the fitted IRF models increase 

in complexity: (B) single exponential IRF model 1α-1β, (C) single exponential IRF model with a 

trap 2α-1β, (D) two-exponential reversible IRF model 2α-2β, (E) two-exponential IRF model with 

a trap 3α-2β, and (F) three-exponential reversible IRF model 3α-3β. For IRF model fitting, the 

exponential coefficients, α, were constrained to be positive while the exponential rates were 

constrained to be greater than or equal to zero as described in the methods. An increase in the 

visual quality of the IRF model fit is observed as the IRF model complexity increases from 

attenuated IBIF (figure 5-16A), to 1α-1β IRF model (figure 5-16B), to 2α-1β IRF model (figure 5-
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16C). However, little overall difference between the fits of IRF model 2α-1β and the higher 

complexity IRF models (figure 5-16D-F) is apparent. 

 

 

Figure 5-15. Representative IBIF Model Fits for ML-10 #13 at BL Assuming a 2α-1β Tumor IRF Model. Figure 

shows a comparison of the candidate IBIF model fits to the measured IBIF data (black circles) for ML-10 #13 at BL 

assuming simultaneous maximum likelihood fit of a 2α-1β tumor IRF model. Inset shows the IBIF and model fit for 

the first 0-5min following injection of [18F]ML-10. The selected IBIF model based on minimum AICc was IBIF Model 

1b. Visually, little difference is observed between IBIF Model 1b (blue solid line) and IBIF Model 1c (red dot-dash 

line). IBIF Model 2b (black dashed line) shows signs of overfitting to the IBIF data (circle). 
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Figure 5-16. Representative Candidate IRF Model Fits for ML-10 #13 at BL Assuming IBIF Model 1b as the 

Selected Input Model. Figure shows representative IRF tissue model fits assuming joint maximum likelihood fitting 

using IBIF Model 1b as input model. Estimated maximum log-likelihood value (logLikeVal) and AICc values shown 
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as insets for each IRF model fit. The simplest IRF model fit to the subject’s tumor TAC data was a scaled version of 

the IBIF model (A). From left-to right, the fitted IRF models increase in complexity: (B) single exponential IRF model 

1α-1β, (C) single exponential IRF model with a trap 2α-1β, (D) two-exponential reversible IRF model 2α-2β, (E) two-

exponential IRF model with a trap 3α-2β, and (F) three-exponential reversible IRF model 3α-3β. For IRF model fitting, 

the exponential coefficients, α, were constrained to be positive while the exponential rates were constrained to be 

greater than or equal to zero as described in the methods. An increase in the visual quality of the IRF model fit is 

observed as the IRF model complexity increases from attenuated IBIF (A), to 1α-1β IRF model (B), to 2α-1β IRF 

model (C). However, little overall difference between the fits of IRF model 2α-1β and the higher complexity IRF 

models (D-F) is apparent. Based on minimum AICc criteria, IRF model 2α-1β was selected as the best IRF model 

among the tested candidates. 

 

 

Table 5-9 contains the joint IBIF/IRF model selection results for subject ML-10 #13 at BL. 

From left to right, the table contains: the candidate IBIF model, candidate IRF model, the total 

number of model parameters, K, to be estimated during the joint IBIF-IRF fitting (including IBIF 

and IRF noise variance parameters), and the sum of the squared weighted residuals (WRSS) for 

the IBIF and IRF models separately. Also tabulated are the values of the log-likelihood function 

for the model estimates �log�ℒ�𝜃𝜃�,𝜎𝜎2�|𝑑𝑑𝑣𝑣𝑡𝑡𝑣𝑣� ��, the AIC, and the AICc. Also shown is the 

differences between each AICc value and the overall minimum AICc value (i.e. ∆AICc = AICc – 

(minimum AICc)). The table row containing the joint IBIF/IRF model with minimum AICc value 

among the tested models is highlighted in bold. 
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Table 5-9. Joint IBIF tumor IRF Model Selection Results for ML-10 #13 at Baseline. 

IBIF Model IRF Model aK bWRSS 𝐥𝐥𝐥𝐥𝐥𝐥�𝓛𝓛�𝜽𝜽�,𝝈𝝈𝟐𝟐�|𝒅𝒅𝒅𝒅𝒕𝒕𝒅𝒅� � AIC AICc ∆AICc 
IBIF Model 1b (1α-0β) 11 0.853   (1.744) -72.492 166.983 169.916 63.211 
IBIF Model 1b (1α-1β) 13 0.814   (0.610) -44.516 115.032 119.168 12.463 
IBIF Model 1b (2α-1β) 14 0.778   (0.474) -36.939 101.878 106.705 0 
IBIF Model 1b (2α-2β) 15 0.776   (0.476) -36.973 103.945 109.527 2.82147 
IBIF Model 1b (3α-2β) 16 0.811   (0.571) -42.757 117.514 123.914 17.209 
IBIF Model 1b (3α-3β) 17 0.778   (0.474) -36.939 107.878 115.163 8.4582 

        

IBIF Model 1c (1α-0β) 13 0.851   (1.749) -72.498 170.996 175.132 68.427 
IBIF Model 1c (1α-1β) 15 0.814   (0.611) -44.550 119.099 124.681 17.976 
IBIF Model 1c (2α-1β) 16 0.767   (0.497) -37.761 107.521 113.921 7.216 
IBIF Model 1c (2α-2β) 17 0.767   (0.497) -37.761 109.521 116.807 10.102 
IBIF Model 1c (3α-2β) 18 0.767   (0.497) -37.761 111.521 119.762 13.057 
IBIF Model 1c (3α-3β) 19 0.767   (0.497) -37.761 113.521 122.790 16.084 

        

IBIF Model 2b (1α-0β) 14 0.843   (1.795) -72.919 173.838 178.665 71.960 
IBIF Model 2b (1α-1β) 16 0.817   (0.612) -44.664 121.329 127.729 21.023 
IBIF Model 2b (2α-1β) 17 0.811   (0.544) -41.534 117.068 124.354 17.649 
IBIF Model 2b (2α-2β) 18 0.810   (0.595) -43.768 123.537 131.778 25.073 
IBIF Model 2b (3α-2β) 19 0.770   (0.464) -36.143 110.285 119.553 12.848 
IBIF Model 2b (3α-3β) 20 0.810   (0.589) -43.483 126.965 137.336 30.630 

aK = Total number of model parameters to be estimated (including IBIF and IRF noise variance parameters). 
bWRSS (weighted sum of squared residuals) are given in the form: IBIF Model WRSS (IRF Model WRSS). 
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Table 5-10 summarizes the joint IBIF/IRF model selection results based on minimum AICc 

alone for each subject at each imaging time-point. For each scan, the selected IBIF model is written 

in parenthesis below the selected IRF model. In 10 of the 29 cases the 2α-1β irreversible tissue 

model was selected as the best candidate IRF model, independent of which IBIF model was being 

fitted simultaneously. In 6 of the remaining 19 cases a 2α-2β reversible IRF model was selected to 

be the best candidate tumor IRF model. Tumor TACs for subject ML-10 #13 were best fitted using 

a 2α-1β model at all time-points. A 3α-2β or a 3α-3β IRF model was selected as the best candidate 

IRF model for 8 scans based on minimum AICc value alone. For one acquisition, ML-10 #7 at BL, 

the candidate tissue models failed to fit the measured data using the joint-estimation approach. As 

a result, the tumor uptake profile of ML-10 #7 at BL was also analyzed using the kinetic modeling 

tool in the commercially available image analysis software PMOD 3.6 (PMOD Technologies LLC; 

Zürich, Switzerland). However, PMOD also failed to fit the average tumor activity curve for ML-

10 #7 at BL. 
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   Table 5-10. Joint IBIF-Tissue Model Selected using AICc Alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-17 shows an example case, ML10 #14 at ETA, for which the selected joint 

IBIF/IRF models were IBIF Model 1c and IRF model 3α-3β based on minimum AICc value alone. 

For each IRF model fit the IBIF model was IBIF Model-1c. Figure 5-17A shows the selected 3α-

3β IRF model fit to the measured tumor [18F]ML-10 uptake profile over the entire 150min 

acquisition time (left) as well as a zoomed in version of the fit over the first 5 min post racer 

injection (right). Model estimates are shown as insets with %COV in parentheses. From the inset, 

the coefficient and exponential rate corresponding to the third IRF exponential are not estimable 

((%COV)α3 = 201% and (%COV)β3 = 117%). This poor estimability in IRF model parameters 

Subject ID BL ETA FUA 

ML-10 #1 2α-2β 
(IBIF Model 1b) 

†N/A N/A 

ML-10 #2 N/A 3α-2β 
(IBIF Model 1b) N/A 

ML-10 #4 2α-1β 
(IBIF Model 1b) 

2α-2β 
(IBIF Model 1b) 

1α-1β 
(IBIF Model 2b) 

ML-10 #5 3α-2β 
(IBIF Model 2b) 

2α-2β 
(IBIF Model 1c) 

2α-1β 
(IBIF Model 2b) 

ML-10 #6 2α-1β 
(IBIF Model 1b) 

3α-2β 
(IBIF Model 1b) 

3α-2β 
(IBIF Model 1b) 

ML-10 #7 Failed fit 1α-1β 
(IBIF Model 1c) 

(2α-1β) 
(IBIF Model 1b) 

ML-10 #9 3α-3β 
(IBIF Model 2b) 

2α-1β 
(IBIF Model 2b) 

3α-2β 
(IBIF Model 1c) 

ML-10 #10 2α-2β 
(IBIF Model 1c) 

€2α-1β 
(IBIF Model 2b) 

1α-1β 
(IBIF Model 1c) 

ML-10 #11 1α-1β 
(IBIF Model 2b) 

2α-1β 
(IBIF Model 2b) 

2α-1β 
(IBIF Model 2b) 

ML-10 #12 2α-2β 
(IBIF Model 2b) N/A N/A 

ML-10 #13 2α-1β 
(IBIF Model 1b) 

2α-1β 
(IBIF Model 1c) N/A 

ML-10 #14 3α-2β 
(IBIF Model 2b) 

3α-3β  
(IBIF Model 1c) 

2α-2β 
(IBIF Model 1c) 

† N/A = Not available. 
€ Only first acquisition considered for IRF model fitting. 
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is likely to produce equally poor estimates of compartmental rate constants. Moreover, the 

estimated value for 𝛽𝛽3 is equal to the maximum value of the constraint (i.e.  𝛽𝛽3=10 min-1). 

 

Figure 5-17B and figure 5-17C show IRF model fits using the 3α-2β and 2α-2β models, 

respectively. For IRF model 3α-2β the accumulation coefficient (α3) is nearly zero, contributing 

to its poor estimability. Similarly, β1is poorly estimated with (%COV)β1 = 152%. For IRF model 

2α-2β, all IBIF and IRF model parameter estimates exhibit a %COV of less than 50%. Visually, 

little difference between the IRF model selected via information criteria, IRF model 3α-3β, and 

the simplified IRF model, model 2α-2β, is observed.  

 

Figure 5-18 shows a comparison of the IBIF Model 1c fits obtained through simultaneous 

estimation with the selected IRF model based on information theoretic considerations, 3α-3β IRF 

model (black dashed line), and with the reduced IRF models: 2α-2β (blue solid line) and 3α-2β red 

dot-dash line). For all 3 three IRF models, the fit of IBIF Model 1c to the measured IBIF data is 

visually similar.  

 

Table 5-11 contains the joint IBIF/IRF model selection results for subject ML-10 #14 at 

ETA. The table row containing the joint IBIF/IRF model with minimum AICc value among the 

tested models is highlighted in bold. For IBIF Model 1c, the WRSS of the IBIF and candidate IRF 

models are observed to decrease as estimated IRF model increases in complexity. The WRSS for 

the fit of IBIF Model 1c are essentially unchanged across IRF models starting with the 2α-2β IRF 

model and increasing in complexity. Moreover, the associated IRF model WRSS shows marginal 

decrease in value starting with the 2α-2β IRF and increasing tin complexity to the 3α-3β IRF model. 
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Figure 5-17. Comparison of IRF Model Parameter Fits for ML-10 #14 at ETA Assuming Joint Estimation using 

IBIF Model 1c. Figure shows a comparison of IRF Model fits in decreasing order of model complexity for ML10 #14 
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at ETA. IBIF Model 1c was used for simultaneous fitting of each IRF model fit. (A) shows the selected 3α-3β IRF 

model fit to the measured tumor [18F]ML-10 uptake profile over the entire 150 min acquisition time (left) as well as a 

zoomed in version of the fit over the first 5 min post racer injection (right). Model estimates are shown as insets with 

%COV in parentheses. From the inset, the coefficient and exponential rate corresponding to the third IRF exponential 

are not estimable ((%𝑵𝑵𝒄𝒄𝑽𝑽)𝜶𝜶𝟑𝟑 = 𝟐𝟐𝟎𝟎𝟏𝟏% and (%𝑵𝑵𝒄𝒄𝑽𝑽)𝜷𝜷𝟑𝟑 = 𝟏𝟏𝟏𝟏𝟏𝟏%). Moreover, the estimated value for 𝜷𝜷𝟑𝟑 is equal to 

the maximum value of the constraint (i.e. 𝜷𝜷𝟑𝟑 = 10 min-1). For model 3α-2β (B) the accumulation coefficient 𝜶𝜶𝟑𝟑 is 

nearly zero, contributing to its poor estimability. Similarly, 𝜷𝜷𝟏𝟏 is poorly estimated with (%𝑵𝑵𝒄𝒄𝑽𝑽)𝜷𝜷𝟏𝟏 = 𝟏𝟏𝟓𝟓𝟐𝟐%. For IRF 

model 2α-2β (C), all IRF model parameter estimates exhibit a %COV of less than 50%. Visually, little difference is 

apparent between the selected 3α-3β IRF model and the simplified 2α-2β IRF model. 

 

 

 

Figure 5-18. Comparison of the IBIF Model 1c Fits Obtained through Simultaneous Estimation with the 3α-3β, 

3α-2β, and 2α-2β tumor IRF Models for ML-10 #14 at ETA. Figure shows a comparison of the IBIF Model 1c fits 

obtained through simultaneous estimation with the selected IRF model based on information theoretic considerations, 

3α-3β IRF model (black dashed line), and with the reduced IRF models: 2α-2β (blue solid line) and 3α-2β red dot-

dash line). For all 3 three IRF models, the fit of IBIF Model 1c to the measured IBIF data is visually similar.
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Table 5-11. Joint IBIF tumor IRF Model Selection Results for ML-10 #14 at Early Therapy Assessment. 

 

 

 

 

 

 

 

 

 

 

 

 

IBIF Model IRF Model aK bWRSS 𝐥𝐥𝐥𝐥𝐥𝐥�𝓛𝓛�𝜽𝜽�,𝝈𝝈𝟐𝟐�|𝒅𝒅𝒅𝒅𝒕𝒕𝒅𝒅� � AIC AICc ∆AICc 
IBIF Model 1b (1α-0β) 11 0.761   (24.105) -131.869 285.739 288.672 275.403 
IBIF Model 1b (1α-1β) 13 0.856   (0.391) -29.782 85.564 89.7000 76.431 
IBIF Model 1b (2α-1β) 14 0.768   (0.173) -6.148 40.295 45.123 31.854 
IBIF Model 1b (2α-2β) 15 0.790   (0.125) 1.266 27.469 33.050 19.781 
IBIF Model 1b (3α-2β) 16 0.760   (0.124) 2.492 27.016 33.416 20.147 
IBIF Model 1b (3α-3β) 17 0.761   (0.121) 3.170 27.6603 34.946 21.677 

        

IBIF Model 1c (1α-0β) 13 0.462   (24.280) -119.320 264.640 268.776 255.507 
IBIF Model 1c (1α-1β) 15 0.495   (0.402) -16.502 63.004 68.585 55.316 
IBIF Model 1c (2α-1β) 16 0.472   (0.181) 5.063 21.873 28.273 15.003 
IBIF Model 1c (2α-2β) 17 0.462   (0.160) 8.698 16.604 23.889 10.620 
IBIF Model 1c (3α-2β) 18 0.462   (0.160) 8.698 18.604 26.844 13.575 
IBIF Model 1c (3α-3β) 19 0.461   (0.116) 17.000 4.001 13.269 0 

        

IBIF Model 2b (1α-0β) 14 0.450   (24.288) -118.661 265.323 270.150 256.881 
IBIF Model 2b (1α-1β) 16 0.481   (0.408) -16.162 64.324 70.724 57.455 
IBIF Model 2b (2α-1β) 17 0.480   (0.184) 4.197 25.606 32.892 19.623 
IBIF Model 2b (2α-2β) 18 0.497   (0.129) 12.391 11.219 19.460 6.191 
IBIF Model 2b (3α-2β) 19 0.465   (0.180) 5.639 26.722 35.991 22.722 
IBIF Model 2b (3α-3β) 20 0.463   (0.163) 8.194 23.612 33.982 20.713 

aK = Total number of model parameters to be estimated (including IBIF and IRF noise variance parameters). 
bWRSS (weighted sum of squared residuals) are given in the form: IBIF Model WRSS (IRF Model WRSS). 
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Table 5-12 summarizes the joint IBIF/IRF model selection results for each subject at each 

imaging time-point based on minimum AICc and with the requirement that all model parameters 

be estimable (i.e. %COV ≤ 50% for IBIF and IRF model parameters). For each scan, the selected 

IBIF model is written in parenthesis below the selected IRF model. IRF models that were replaced 

by less complex models are indicated with an asterisk. 5 of the original 8 three-exponential IRF 

models in table 5-10 were replaced with a less complex IRF model. When IRF model parameter 

estimability was considered, the number of times the 2α-1β irreversible tissue model was selected 

as the best candidate IRF model remained unchanged at 10, while the number of times the 2α-2β 

reversible IRF model was selected increased from 6 to 9 times. The 1α-1β IRF model was selected 

as the best candidate IRF model in 4 cases. For 2 subjects, ML-10 #4 and ML-10 #10, the selected 

IRF model changed from the 2α-1β model at BL and ETA to a 1α-1β model at FUA.  

 

In 2 cases, both the IBIF model and tissue IRF model were decreased in complexity for 

ML-10 #5 at BL and ML-10 #9 at FUA. For the case of ML-10 #5 at BL, the IBIF model coefficient 

describing the second peak was not estimable ((%COV)θ1 = 58.8%). As a result, the IBIF model 

was reduced in complexity from IBIF Model 2b to IBIF Model 1c. However, the joint IBIF Model 

1c and 3α-2β IRF model returned a non-positive definite parameter co-variance matrix, indicating 

that this combination of IBIF and IRF model was also not estimable. Similarly, the joint IBIF 

Model 1c and 2α-2β IRF model was not estimable. Reducing the complexity of the IBIF model 

further to IBIF Model 1b yielded estimable IBIF and IRF model parameters. 

 

For the case of ML-10 #9 at FUA the K-L best joint IBIF/IRF model pair were IBIF Model 

1c and 3α-2β IRF model. When model parameter estimability were considered in conjunction with 
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AICc, the best candidate IBIF-IRF model pair was determined to be IBIF Model 1b and IRF model 

2α-1β. Specifically, the fast washout rate after the peak IBIF concentration contributed to the poor 

estimability of the IBIF model parameters when IBIF Model 1c was used. To increase 

identifiability of IBIF parameter estimates, the complexity of the IBIF model was reduced from 

IBIF Model 1c to IBIF Model 1b. However, the joint estimation of IBIF Model 1b with either IRF 

models 3α-2β or 2α-2β resulted in IBIF model parameters that were again not estimable.  

 

   Table 5-12. Joint IBIF-Tissue Model Selected using AICc and Parameter Estimably Considerations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subject ID BL ETA FUA 

ML-10 #1 2α-2β 
(IBIF Model 1b) 

†N/A N/A 

ML-10 #2 N/A 3α-2β 
(IBIF Model 1b) N/A 

ML-10 #4 2α-1β 
(IBIF Model 1b) 

*2α-1β 
(IBIF Model 1b) 

1α-1β 
(IBIF Model 2b) 

ML-10 #5 *2α-2β 
*(IBIF Model 1b) 

2α-2β 
(IBIF Model 1c) 

2α-1β 
(IBIF Model 2b) 

ML-10 #6 2α-1β 
(IBIF Model 1b) 

3α-2β 
(IBIF Model 1b) 

3α-2β 
(IBIF Model 1b) 

ML-10 #7 Failed fit 1α-1β 
(IBIF Model 1c) 

2α-1β 
(IBIF Model 1b) 

ML-10 #9 *2α-2β 
(IBIF Model 2b) 

2α-1β 
(IBIF Model 2b) 

*2α-1β 
*(IBIF Model 1b) 

ML-10 #10 2α-2β 
(IBIF Model 1c) 

€2α-1β 
(IBIF Model 2b) 

1α-1β 
(IBIF Model 1c) 

ML-10 #11 1α-1β 
(IBIF Model 2b) 

*1α-0β 
(IBIF Model 2b) 

*1α-0β 
*(IBIF Model 1b) 

ML-10 #12 2α-2β 
(IBIF Model 2b) N/A N/A 

ML-10 #13 2α-1β 
(IBIF Model 1b) 

2α-1β 
(IBIF Model 1c) N/A 

ML-10 #14 *2α-2β 
(IBIF Model 2b) 

*2α-2β  
(IBIF Model 1c) 

2α-2β 
(IBIF Model 1c) 

† N/A = Not available. 
€ Only first acquisition considered for IRF model fitting. 
* Less complex IRF model replacing the minimum AICc IRF model.  
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In the case of ML-10 #11, who exhibited the shortest PFS of less than 1 month, a scaled 

version of the corresponding IBIF model was selected as the best model describing the [18F]ML-

10 time-course in the tumor for both the ETA and FUA time-points, consistent with poor 

therapeutic effect. Figure 5-19 shows a comparison of IRF model fits for ML-10 #11 at ETA 

assuming IBIF Model 2b as the IBIF model for each. IRF model parameters and associated %COV 

are shown as insets. The IBIF and IRF models selected based on minimum AICc for ML-10 #11 

at ETA were IBIF Model 2b and the 2α-1β IRF model. Figure 5-18A shows the fit of IRF model 

2α-1β to the entire tumor TAC (left) and the first 5 min of data (right). Similarly, Figure 5-19B 

and Figure 5-19C contain the IBIF model fits simultaneously estimated with the 1α-1β and 1α-0β 

IRF models. Thus, by visually moving from figure 5-19A thru figure 5-19C the effect of reducing 

the complexity of the IRF model on the estimates for the IRF model parameters can be observed. 

The IRF model coefficients and exponential rates for IRF models 2α-1β and 1α-1β are not 

estimable. The 1α-0β IRF model (figure 5-19C) results in a blood volume fraction of VB = 0.307 

with %COV = 1.4% Visually, the 1α-0β IRF model describes the overall trend of the tumor TAC. 

 

Figure 5-20 shows fits of IBIF Model 2b to the measure blood TAC data assuming the (A) 

2α-1β, (B) 1α-1β, and (C) 1α-0β tumor IRF models. For each case, IBIF model fits are shown for 

the entire blood TAC (left) and the first 5min of data (right). Comparison across figure panes 

reveals a slight bias is incurred in fitting IBIF Model 2b to the measured IBIF data, in exchange 

for better parameter estimability gained by simultaneous estimation using the 1α-0β IRF model in 

place of the more complex 2α-1β and 1α-1β IRF models. 
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Figure 5-19. IRF model fits for ML-10 #11 at ETA Assuming Joint Maximum Likelihood Estimation with IBIF 

Model 2b. For ML-10 #11 at ETA, the selected IBIF and IRF models based on minimum AICc alone were IBIF 
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Model 2b and the 2α-1β IRF model, respectively. Figure shows resulting fits using the (A) 2α-1β, (B) 1α-1β, and (C) 

1α-0β models, assuming IBIF Model 2b for each fit. IRF model fits are shown for the entire 150 min tumor TAC (left) 

and the first 5 min of data (right), with parameter estimates and %COV shown as insets to the 150 min data fits. The 

IRF model coefficients and exponential rates for IRF models 2α-1β and 1α-1β are not estimable. The 1α-0β IRF model 

(C) results in a blood volume fraction of VB = 0.307 with %COV = 1.4% Visually, the 1α-0β IRF model describes the 

overall trend of the tumor TAC. 
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Figure 5-20. Comparison of fits for IBIF Model 2b to Measured Blood TAC Data for ML-10 #11 at ETA 

Assuming Joint Estimation with Different IRF Models. For ML-10 #11 at ETA, the selected IBIF and IRF models 



 188 

 

based on minimum AICc alone were IBIF Model 2b and the 2α-1β IRF model, respectively. Figure shows resulting 

fits of the IBIF model IBIF Model 2b and simultaneous estimation with IRF models (A) 2α-1β, (B) 1α-1β, and (C) 

1α-0β models. IBIF Model 2b fits are shown for the entire 150 min tumor TAC (left) and the first 5 min of data (right). 

Comparison across figure panes reveals a slight bias is incurred in fitting IBIF Model 2b to the measured IBIF data, 

in exchange for better parameter estimability gained by simultaneous estimation with the 1α-0β IRF model in place 

of the more complex 2α-1β and 1α-1β IRF models. 

 

 

Table 5-13 contains macroparameter estimates obtained from each IRF model fit in table 

5-12 above with coefficient of variation expressed as a percentage given in parentheses. For 

reversible models the corresponding macroparameter is VT, while for irreversible models the 

macroparameter is Ki. Across all acquisitions, estimates for the blood volume fraction (VB) ranged 

from 0.025 to 0.391 (mean = 0.148 and median = 0.123). For tumor TACs for which the selected 

best model was a 2α-1β IRF model, VB ranged from 0.036 to 0.276 (mean = 0.132, median = 

0.116), K1 ranged from 0.006 ml/cm3/min to 0.030 ml/cm3/min (mean = 0.015 ml/cm3/min, median 

= 0.012 ml/cm3/min), and associated Ki values ranged from 4.787x10-4 ml/cm3/min to 1.829x10-3 

ml/cm3/min (mean = 1.225 x10-3 ml/cm3/min, median = 1.145 x10-3 ml/cm3/min). For tumor TACs 

for which the selected best model was a 2α-2β IRF model, VB ranged from 0.0469 to 0.2111 (mean 

= 0.1194, median = 0.1154), K1 ranged from 0.0113 ml/cm3/min to 0.0658 ml/cm3/min (mean = 

0.0216 ml/cm3/min, median = 0.0266 ml/cm3/min), and associated VT values ranged from 0.0275 

ml/cm3 to 0.7157 ml/cm3 (mean = 0.5318 ml/cm3, median = 0.4554 ml/cm3).   
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 Table 5-13. Estimated Macroparameter Values for Each Subject and Time-point using the Corresponding Selected IBIF and IRF Models in Table 5-12.

Subject ID 
VB K1 (ml/cm3/min) Ki (ml/cm3/min) VT (ml/cm3) 

†BL *ETA ₴FUA BL ETA FUA BL ETA FUA BL ETA FUA 

ML-10 #1 
a0.1460 
(8.90%) N/A N/A 0.0658 

(32.26%) N/A N/A --- N/A N/A 0.4558 
(3.53%) N/A N/A 

ML-10 #2 N/A 0.1529 
(6.29%) N/A N/A 0.0802 

(24.14%) N/A N/A 4.105x10-4 
(14.45%) N/A N/A --- N/A 

ML-10 #4 0.0683 
(11.42%) 

0.0254 
(23.12%) 

b0.0452 
(14.17%) 

0.0201 
(10.63%) 

0.0276 
(7.13%) 

b0.0069 
(7.37) 

1.002x10-3 

(11.87%) 
9.887x10-4 

(15.19%) --- --- --- 
b0.3041 
(4.49%) 

ML-10 #5 0.1374 
(3.90%) 

0.1407 
(3.27%) 

0.1390 
(2.78%) 

0.0181 
(10.92%) 

0.0157 
(14.58%) 

0.0152 
(4.02%) --- --- 1.190x10-3 

(7.88%) 
0.6159 

(4.16%) 
0.6174 

(2.75%) --- 

ML-10 #6 0.0705 
(6.66%) 

0.0635 
(8.99%) 

0.0599 
(11.12%) 

0.0304 
(3.81%) 

0.0588 
(12.16%) 

0.1004 
(18.15%) 

1.143x10-3 

(12.43%) 
8.013x10-4 
(25.60%) 

8.262x10-4 
(22.46%) --- --- --- 

ML-10 #7 N/A 
b0.1231 
(3.28%) 

0.1314 
(5.63%) N/A 

b0.0051 
(5.2%) 

0.0170 
(15.20%) N/A --- 1.778x10-3 

(4.14%) N/A 
b0.4085 
(4.27%) --- 

ML-10 #9 0.2111 
(6.75%) 

0.2692 
(2.53%) 

0.1080 
(5.53%) 

0.0349 
(8.03%) 

0.0211 
(9.12%) 

0.0278 
(7.87%) --- 8.365x10-4 

(10.01%) 
1.086x10-3 

(6.38%) 
0.6078 

(13.16%) --- --- 

ML-10 #10 0.0811 
(3.67%) 

₹0.0428 
(6.85%) 

b0.0407 
(7.24%) 

0.0265 
(5.21%) 

₹0.0191 
(3.61%) 

b0.0074 
(3.21%) --- 5.483x10-3 

(3.41%) --- 0.7014 
(2.13%) --- 

b0.5214 
(3.19%) 

ML-10 #11 0.2871 
(14.53%) 

0.3074 
(1.42%) 

0.3910 
(0.08%) 

6.363x10-4 
(37.57%) --- --- --- --- --- 0.1781 

(89.89%) --- --- 

ML-10 #12 0.0469 
(23.28%) N/A N/A 0.0305 

(7.15%) N/A N/A --- N/A N/A 0.7157 
(1.57%) N/A N/A 

ML-10 #13 0.2343 
(3.95%) 

0.2977 
(2.68%) N/A 0.0119 

(37.85%) 
0.0168 

(13.18%) N/A 3.675x10-4 

(16.55%) 
3.783x10-4 

(28.56%) N/A --- --- N/A 

ML-10 #14 0.1194 
(3.01%) 

0.0997 
(3.29%) 

0.0563 
(4.67%) 

0.0150 
(9.32%) 

0.0113 
(12.36%) 

0.0216 
(8.36%) --- --- --- 0.3896 

(3.95%) 
0.3642 

(5.89%) 
0.3675 

(1.85%) 
a Parameter estimates are reported as:  estimated value (percent coefficient of variation). 
† BL    = Baseline. 
⃰ ETA = Early therapy assessment. 
₴ FUA = Follow-up assessment. 
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5.2.4.3 Spectral Analysis of Tumor Tissue TACs 

Spectral Analysis (SA) can be used to obtain additional evidence to support joint IBIF-IRF 

model selection results as well as provide an alternative method for estimation of [18F]ML-10 

uptake macroparameters. However, a principal difference between SA and the joint IBIF-IRF 

model fitting approach of the previous section is that SA requires a priori knowledge of the input 

concentration into the linear system. That is, SA requires knowledge of the IBIF model to estimate 

the spectrum of the measured [18F]ML-10 uptake profile of the tumor. Therefore, for each 

[18F]ML-10 PET scan, the selected IBIF model from the joint IBIF/IRF tumor model selection 

contained in table 5-12 will be used as the selected IBIF model.  

 

Figure 5-21 shows the results from applying SA to the 0-150 min PET data of ML-10 #6 

at ETA. The NNLS spectra is shown in the top pane while the spectra obtained by minimizing the 

L1 norm is shown in the bottom pane. For each pane, spectral coefficients (blue circles) are plotted 

versus spectral probing rates (on log10-scale). The thick vertical red dot-dashed line denotes the 

data-adaptive fast rate cut-off. Also plotted are one-sided 95% bootstrap confidence intervals 

(dashed-curves) to aid in assessing variability in peak locations. SA was performed on [18F]ML-

10 tumor time activity curves corrected for radioactive decay in all cases. 

 

Visual analysis of figure 5-21 reveals 2 strong components between the slow and fast rate 

thresholds for both spectral solutions, supporting an IRF model contain at least 2 causal 

exponentials. A weak trapping component (i.e. a spectral peak at βmin = 10-4 min-1) is also observed 

for both SA methods. The appearance of a weak trapping component in addition to the 2 strong 
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reversible components is suggestive for 3α-2β IRF tumor model for this subject and time-point, 

consistent with the nonlinear joint IBIF-IRF modeling results in table 5-12.  Both SA methods also 

detect a strong component above their respective data-adaptive fast-rate cutoff values resulting 

from a strong blood component in the measured [18F]ML-10 tumor TAC. 
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Figure 5-21. Tumor TAC Spectra for ML-10 # 6 at ETA using IBIF Model 1b. Spectral coefficients (blue circles) 

plotted versus spectral rates (on log10-scale) for ML-10 #6 at ETA assuming IBIF Model 1b. (Top) shows NNLS, 

while (bottom) shows and L1 norm solution. SA is performed on PET data corrected for radioactive decay. 151 

logarithmically spaced rates in the interval [10-4 min-1, 200 min-1] were used for the basis vectors. Spectral coefficients 

are shown corrected for estimation bias via bootstrap resampling using 1000 bootstrap samples. One-sided bootstrap 

95% confidence intervals (95% CIs) for each spectral probing rate are plotted as a dashed-curve for both methods. 

The estimated fast-rate thresholds are shown as vertical red dot-dash lines. Both methods detect 2 reversible 

components below the fast rate threshold. A comparatively weak trapping component at the smallest probing rate βmin 
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= 10-4 min-1, suggestive for a 3α-2β tumor IRF model. A spurious component is detected above the fast-rate threshold 

for both methods resulting from a strong blood signal in the measured tumor time activity curve. 

 

 

A similar spectral profile to that of ML-10 #6 at ETA is observed for ML-10 #12 at BL as 

shown in figure 5-22. That is, 2 strong reversible components are observed between 10-4 min-1 and 

fast rate thresholds for both the NNLS (top) and L1 norm (bottom) spectral solutions, along with a 

weak component observed at 10-4 min-1. The strengths of the trapping components are considerably 

smaller in comparison with the detected reversible components. The appearance of a weak trapping 

component in addition to the 2 strong reversible components is suggestive for 3α-2β IRF tumor 

model for this subject and time-point, in contrast to nonlinear joint IBIF-IRF modeling results, 

which support a 3α-2β IRF tumor model (table 5-12).  
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Figure 5-22. Tumor TAC Spectra for ML-10 # 12 at BL using IBIF Model 2b. Spectral coefficients (blue circles) 

plotted versus spectral rates (on log10-scale) for ML-10 #12 at BL assuming IBIF Model 2b. (Top) shows NNLS, while 

(bottom) shows and L1 norm solution. SA is performed on PET data corrected for radioactive decay. 151 

logarithmically spaced rates in the interval [10-4 min-1, 200 min-1] were used for the basis vectors. Spectral coefficients 

are shown corrected for estimation bias via bootstrap resampling using 1000 bootstrap samples. One-sided bootstrap 

95% confidence intervals (95% CIs) for each spectral probing rate are plotted as a dashed-curve for both methods. 

The estimated fast-rate thresholds are shown as vertical red dot-dash lines. Both methods detect 2 reversible 

components below the fast rate threshold. A comparatively weak trapping component at the smallest probing rate βmin 

= 10-4 min-1, suggestive for a 3α-2β tumor IRF model.  
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Figure 5-23 shows the SA results for ML-10 #14 at FUA assuming IBIF Model 1c as input 

[18F]ML-10 concnetration model. For this subject and time-point no spectral peak is observed at 

the slowest tested rate βmin = 10-4 min-1. The NNLS solution (top) detects 3 reversible components 

as part of the tumor tissue IRF (suggestting a 3α-3β IRF model), while the L1 norm solution 

(bottom) detects only 2 components supporting a 2α-2β tumor tissue IRF. The selected IRF model 

from joint IBIF/IRF modeling was a 2α-2β model (table 5-12). Both SA methods are in agreement 

over the location of the slowest detected component. However, the NNLS method detects 2 

additional components in the same spectral range that the L1 norm solution detects only a single 

component. Interestingly, the bootstrap one-sided 95%CI of the NNLS solution covers the location 

of the single peak in the L1 solution. This suggests that the 2 components observed from the NNLS 

solution may be due to an inability of the NNLS method to resolve a single component within this 

spectral range. Both SA methods also detect a strong component above their respective data-

adaptive fast-rate cutoff values resulting from a strong blood component in the measured [18F]ML-

10 tumor TAC. 
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Figure 5-23. Tumor TAC Spectra for ML-10 # 14 at FUA using IBIF Model 1c. Spectral coefficients (blue circles) 

plotted versus spectral rates (on log10-scale) for ML-10 #14 at FUA assuming IBIF Model 1c. (Top) shows NNLS, 

while (bottom) shows and L1 norm solution. SA is performed on PET data corrected for radioactive decay. 151 

logarithmically spaced rates in the interval [10-4 min-1, 200 min-1] were used for the basis vectors. Spectral coefficients 

are shown corrected for estimation bias via bootstrap resampling using 1000 bootstrap samples. One-sided bootstrap 

95% confidence intervals (95% CIs) for each spectral probing rate are plotted as a dashed-curve for both methods. 

The estimated fast-rate thresholds are shown as vertical red dot-dash lines. No spectral peak is observed at the slowest 

tested rate βmin = 10-4 min-1 for either method. Both SA methods are in agreement over the location of the slowest 

detected component. However, the NNLS method detects 2 additional components in the same spectral range that the 
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L1 norm solution detects a single component. The bootstrap one-sided 95%CI of the NNLS solution covers the location 

of the single peak in the L1 solution, suggesting that the 2 components observed from the NNLS solution may be due 

to an inability of the NNLS method to resolve a single component within this spectral range. A spurious component 

is detected above the fast-rate threshold for both methods resulting from a strong blood signal in the measured tumor 

time activity curve. 

 

 

SA can provide additional support for reducing IRF model complexity in nonlinear joint 

IBIF/IRF modeling in addtion to parameter estimability arguments. For example, based on 

minimum AICc value alone a 2α-1β IRF model was determined to be the best IRF model to 

describe the measured Tumor TAC of ML-10 #11 at ETA (see table 5-10). However, the 

parameters of the 2α-1β IRF model were observed to be poorly estimated (figure 5-19). Figure 5-

24 shows the corresponding NNLS (top) and L1 norm (bottom) SA solutions for ML-10 #11 at 

ETA assuming IBIF Model 2b. Both methods detect a strong component above their respective 

fast-rate cutoff values resulting from a strong contribution from blood pool to the measured tumor 

TAC, as well as a single weak component near log10(β) ≈ -2 below their fast-rate cutoffs. These 

spectra are suggestive for a tumor TAC that is primarily composed of [18F]ML-10 concentration 

in the blood, consistent with the reduced IRF model in table 5-12. 

 

Similarly, joint IBIF/IRF model selection applied to ML-10 #14 at ETA minimum AICc 

alone supported a reversible 3α-3β tumor IRF model. However, both the 3α-3β and 3α-2β IRF 

models produced parameter estimates that were not statistically estimable (figure 5-17). Reducing 

the IRF model complexity further to the 2α-2β IRF model produced statistically reliable parameter 

estimates (figure 5-17).  Figure 5-25 shows the corresponding NNLS (top) and L1 norm (bottom) 
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SA solutions for ML-10 #14 at ETA assuming IBIF Model 1c. For both solutions, 2 strong 

components are observed between the minimum probing rate βmin = 10-4 min-1 and the fast-rate 

cut-offs with no component trapping component observed. The NNLS solution detects an 

additional weak component (α = 2.032x10-3) with spectral rate greater than 1 min-1 that lies outside 

it’s bootstrap one-sided 95%CI (95%CI upper-bound = 1.915 x10-3), suggesting this additional 

peak maybe a result of noise. Taken together, these SA results provide additional support for a 2α-

2β IRF model. 
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Figure 5-24. Tumor TAC Spectra for ML-10 # 11 at ETA using IBIF Model 2b. Spectral coefficients (blue circles) 

plotted versus spectral rates (on log10-scale) for ML-10 #11 at ETA assuming IBIF Model 2b. (Top) shows NNLS, 

while (bottom) shows and L1 norm solution. SA is performed on PET data corrected for radioactive decay. 151 

logarithmically spaced rates in the interval [10-4 min-1, 200 min-1] were used for the basis vectors. Spectral coefficients 

are shown corrected for estimation bias via bootstrap resampling using 1000 bootstrap samples. One-sided bootstrap 

95% confidence intervals (95% CIs) for each spectral probing rate are plotted as a dashed-curve for both methods. T 

The estimated fast-rate thresholds are shown as vertical red dot-dash lines. No spectral peak is observed at the slowest 

tested rate βmin = 10-4 min-1 for either method. Both methods detect a strong component above their respective fast-

rate cutoff values resulting from a strong blood contribution to the tumor TAC, as well as a single weak component 
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near log10(β) ≈ -2 below their fast-rate cutoffs. These spectra are suggestive for a tumor TAC that is primarily 

composed of [18F]ML-10 concentration in the blood, consistent with a 1α-0β IRF model. 

 

 

 

Figure 5-25. Tumor TAC Spectra for ML-10 # 14 at ETA using IBIF Model 1c. Spectral coefficients (blue circles) 

plotted versus spectral rates (on log10-scale) for ML-10 #14 at ETA assuming IBIF Model 1c. (Top) shows NNLS, 

while (bottom) shows and L1 norm solution. SA is performed on PET data corrected for radioactive decay. 151 

logarithmically spaced rates in the interval [10-4 min-1, 200 min-1] were used for the basis vectors. Spectral coefficients 

are shown corrected for estimation bias via bootstrap resampling using 1000 bootstrap samples. One-sided bootstrap 
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95% confidence intervals (95% CIs) for each spectral probing rate are plotted as a dashed-curve for both methods. 

The estimated fast-rate thresholds are shown as vertical red dot-dash lines. No spectral peak is observed at the slowest 

tested rate βmin = 10-4 min-1 for either method. For both solutions, 2 strong components are observed between the 

minimum probing rate βmin = 10-4 min-1 and the fast-rate cut-offs with no component trapping component observed. 

The NNLS solution detects an additional weak component (α = 2.032x10-3) with spectral rate greater than 1 min-1 

that lies outside it’s bootstrap one-sided 95%CI (95%CI upper-bound = 1.915 x10-3), suggesting this additional peak 

maybe a result of noise. A spurious component is detected above the fast-rate thresholds for both methods resulting 

from a strong blood signal in the measured tumor time activity curve. Taken together, these SA results provide 

additional support for a 2α-2β IRF model. 

 

 

Table 5-14 summarizes the ranges in number of reversible components detected, estimated 

values of K1, Ki, and VT across subjects and time-points for each SA method. SA results of ML-

10 #10 at ETA are not included in the calculation of macroparameter ranges, because SA was 

applied to only the first acquisition (0-45 min PET data) for this time-point. The minimum number 

of detected reversible components was 0 and occurred for ML-10 #11 at FUA using both SA 

methods. This finding is consistent with joint IBIF/IRF model selection results above, in which 

the 1α-0β (i.e. scaled blood concentration) IRF model determined to be the best candidate IRF 

model (table 5-12).   
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 Table 5-14. Summary of Macroparameter Estimates for NNLS and L1 Norm Spectral Analysis Methods. 

 

 

 

 

 

 

Table 5-15 and table 5-16 contain the number of reversible components detected for each 

subject and time-point along with whether a trapping component was detected using the NNLS 

and L1 norm methods, respectively. For the 29 total tumor TACs analyzed using SA, trapping 

component was detected using the NNLS method 13 times and using the L1 norm method 15 times.  

However, the strength of the trapping component for each of these cases was small compared to 

the strengths of the reversible spectral components (as in figure 5-20 and figure 5-21). 

 

ML-10 #5 at BL is found to have 4 spectral components detected using both SA methods. 

Figure 5-25 shows the corresponding spectra for this subject. A spectral peak is observed at the 

slowest tested rate βmin = 10-4 min-1 for the NNLS solution but not the L1 norm solution. Both SA 

methods detect a strong component near log10(β) = 0. Further comparison between the NNLS and 

L1 norm methods suggest that the 2 detected components centering around log10(β) = -2 for the L1 

norm method may be due to an inability of the L1 norm method to resolve a single component 

within this spectral range. Both SA methods also detect a strong component above their respective 

data-adaptive fast-rate cutoff values resulting from a strong blood component in the measured 

[18F]ML-10 tumor TAC. 

 NNLS SA Method L1 Norm SA Method 
Num. Reversible 

Components [0, 3] [0, 4] 

₹K1 (ml/cm3/min) [ 2.062x10-5, 0.1033] [ 2.574x10-5, 0.1003] 
₹Ki (ml/cm3/min) [0, 1.489x10-3] [0, 1.466x10-3] 

₹VT (ml/cm3) [0, 0.7929] [0, 0.7234] 
₹ SA results of ML-10 #10 at ETA are not included in calculation of macroparameter range. 
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Table 5-17 and table 5-18 contain the macroparameter estimates with associated one-sided 

95% bootstrap confidence intervals using the NNLS (table 5-17) and L1 norm (table 5-18) SA 

methods. Macroparameter estimates for K1, Ki. and VT across subjects and time-points are 

consistent with corresponding estimates from simultaneous IBIF/IRF nonlinear fitting (table 5-13) 

above. Consistent with the joint IBIF/IRF modeling results, SA using both the NNLS and L1 norm 

methods failed to fit the tumor TAC of ML-10 #7 at BL. 
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    Table 5-15. Number of Detected Spectral Components using NNLS SA Method.      

 

   

 

 

 

 

 

 

 

 

 Table 5-16. Number of Detected Spectral Components using L1 Norm SA Method. 

 

Subject ID 
Total Number of Detected 

Reversible Components 
Trapping Component 

Detected 
†BL *ETA ₴FUA BL ETA FUA 

ML-10 #1 3 N/A N/A No N/A N/A 
ML-10 #2 N/A 3 N/A N/A No N/A 
ML-10 #4 3 3 2 No Yes No 
ML-10 #5 3 2 3 Yes Yes No 
ML-10 #6 2 2 3 Yes Yes Yes 
ML-10 #7 N/A 2 2 N/A No Yes 
ML-10 #9 3 2 3 No Yes Yes 
ML-10 #10 2 ₹2 3 No ₹No No 
ML-10 #11 1 1 0 Yes No Yes 
ML-10 #12 2 N/A N/A Yes N/A N/A 
ML-10 #13 1 2 N/A Yes Yes N/A 
ML-10 #14 3 3 3 No No Yes 
† BL    = Baseline. 
 ⃰ ETA = Early therapy assessment. 
₴ FUA = Follow-up assessment. 
₹ Only first acquisition (0-45 min PET data) was used for spectral analysis. 

Subject ID 
Total Number of Reversible 

Spectral Components 
Trapping Component 

Detected 
†BL *ETA ₴FUA BL ETA FUA 

ML-10 #1 3 N/A N/A No N/A N/A 
ML-10 #2 N/A 3 N/A N/A No N/A 
ML-10 #4 3 3 2 No Yes No 
ML-10 #5 4 2 3 No Yes No 
ML-10 #6 3 2 2 Yes Yes Yes 
ML-10 #7 N/A 2 2 N/A No Yes 
ML-10 #9 3 2 3 No Yes Yes 
ML-10 #10 3 ₹4 2 No ₹No No 
ML-10 #11 2 1 0 Yes No Yes 
ML-10 #12 2 N/A N/A Yes N/A N/A 
ML-10 #13 1 3 N/A Yes Yes N/A 
ML-10 #14 3 2 2 No No No 
† BL    = Baseline. 
 ⃰ ETA = Early therapy assessment. 
₴ FUA = Follow-up assessment. 
₹ Only first acquisition (0-45 min PET data) was used for spectral analysis. 
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Figure 5-26. Tumor TAC Spectra for ML-10 # 5 at BL using IBIF Model 1b. Spectral coefficients (blue circles) 

plotted versus spectral rates (on log10-scale) for ML-10 #5 at BL assuming IBIF Model 1b. (Top) shows NNLS, while 

(bottom) shows and L1 norm solution. SA is performed on PET data corrected for radioactive decay. 151 

logarithmically spaced rates in the interval [10-4 min-1, 200 min-1] were used for the basis vectors. Spectral coefficients 

are shown corrected for estimation bias via bootstrap resampling using 1000 bootstrap samples. One-sided bootstrap 

95% confidence intervals (95% CIs) for each spectral probing rate are plotted as a dashed-curve for both methods. 

The estimated fast-rate thresholds are shown as vertical red dot-dash lines. A spectral peak is observed at the slowest 

tested rate βmin = 10-4 min-1 for the NNLS solution but not the L1 norm solution. Further comparison between the NLSS 

and L1 norm methods suggest that the 2 detected components centering around log10(β) = -2 for the L1 norm method 
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may be due to an inability of the L1 norm method to resolve a single component within this spectral range. A spurious 

component is detected above the fast-rate threshold for both methods resulting from a strong blood signal in the 

measured tumor time activity curve. 



 207 

 

 Table 5-17. Macroparameter Estimates Obtained from Spectral Analysis using NNLS Method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subject ID 
K1 (ml/cm3/min) Ki (ml/cm3/min) VT (ml/cm3) 

†BL ⃰ETA ₴FUA BL ETA FUA BL ETA FUA 

ML-10 #1 
a0.0845 

[0, 0.334] N/A N/A 0 
[0, 1.04x10-3] N/A N/A 0.4261 

[0, 0.719] N/A N/A 

ML-10 #2 N/A 0.0718 
[0, 0.126] N/A N/A 0 

[0, 3.21x10-4] N/A N/A 0.3265 
[0, 0.382] 

N/A 
 

ML-10 #4 0.0196 
[0, 0.130] 

0.0458 
[0, 0.125] 

0.0072 
[0, 0.121] 

0 
[0, 1.05x10-3] 

6.536x10-4 

[0, 9.56x10-4] 
0 

[0, 6.45x10-4] 
0.7929 

[0, 0.879] 
0.4054 

[0, 0.638] 
0.2903 

[0, 0.348] 

ML-10 #5 0.0264 
[0, 0.102] 

0.0141 
[0, 0.059] 

0.0154 
[0, 0.052] 

5.748 x10-4 
[0, 1.37x10-3] 

7.979x10-4 

[0, 1.34x10-3] 
0 

[0, 9.54x10-4] 
0.4071 

[0, 0.900] 
0.3510 

[0, 0.766] 
0.5291 

[0, 0.822] 

ML-10 #6 0.0316 
[0, 0.121] 

0.0513 
[0, 0.141] 

0.1033 
[0, 0.222] 

8.729x10-4 

[0, 1.01x10-3] 
7.386x10-4 

[0, 9.07x10-4] 
7.154x10-4 

[0, 9.01x10-4] 
0.5450 

[0, 0.982] 
0.6211 

[0, 0.940] 
0.7033 

[0, 1.106] 

ML-10 #7 N/A 0.0055 
[0, 0.205] 

0.0217 
[0, 0.186] N/A 0 

[0, 1.22x10-3] 
1.48910-3 

[0, 1.61x10-3] N/A 0.4034 
[0, 0.560] 

0.1319 
[0, 1.403] 

ML-10 #9 0.0346 
[0, 0.066] 

0.0246 
[0, 0.086] 

0.0436 
[0, 0.114] 

0 
[0, 8.97x10-4] 

5.391x10-4 
[0, 6.38x10-4] 

6.900x10-4 

[0, 9.29x10-4] 
0.5827 

[0, 1.556] 
0.2078 

[0, 0.459] 
0.2576 

[0, 0.733] 

ML-10 #10 0.0245 
[0, 0.079] 

₹0.0186 
[0, 0.044] 

0.0455 
[0, 0.121] 

0 
[0, 6.91x10-4] 

₹0 
[0, 5.46x10-3] 

0 
[0, 1.48x10-3] 

0.6490 
[0, 0.687] 

₹2.4957 
[0, 2.59] 

0.5546 
[0, 0.691] 

ML-10 #11 0.0012 
[0, 0.041] 

3.74x10-5 
[0, 0.034] 

2.06x10-5 
[0, 0.035] 

2.739x10-4 

[0, 3.25x10-4] 
0 

[0, 4.41x10-5] 
2.062x10-5 

[0, 3.85x10-5] 
0.0224 

[0, 0.167] 
0.0078 

[0, 0.021] 
0 

[0, 0.018] 

ML-10 #12 0.0306 
[0, 0.063] N/A N/A 1.039x10-3 

[0, 1.31x10-3] N/A N/A 0.4975 
[0, 0.968] N/A N/A 

ML-10 #13 0.0090 
[0, 0.127] 

0.0179 
[0, 0.273] N/A 2.833x10-4 

[0, 3.31x10-4] 
2.319x10-4 

[0, 3.18x10-4] N/A 0.0561 
[0, 0.237] 

0.1649 
[0, 0.304] N/A 

ML-10 #14 0.0224 
[0, 0.214] 

0.0110 
[0, 0.054] 

0.0232 
[0, 0.064] 

0 
[0, 9.70x10-4] 

0 
[0, 7.73x10-4] 

1.598x10-5 

[0, 6.40x10-4] 
0.4728 

[0, 1.037] 
0.3285 

[0, 0.443] 
0.3651 

[0, 0.425] 
a Macroparameter estimates are reported as: estimated value [one-sided 95% confidence interval]. 
† BL    = Baseline. 
 ⃰ ETA = Early therapy assessment. 
₴ FUA = Follow-up assessment. 
₹ Only first acquisition (0-45 min PET data) was used for spectral analysis. 



 208 

 

 Table 5-18. Macroparameter Estimates Obtained from Spectral Analysis using L1 Norm Method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subject ID 
K1 (ml/cm3/min) Ki (ml/cm3/min) VT (ml/cm3) 

†BL ⃰ETA ₴FUA BL ETA FUA BL ETA FUA 

ML-10 #1 
a0.0764 

[0, 0.298] N/A N/A 0 
[0, 8.75x10-4] N/A N/A 0.4181 

[0, 0.481] N/A N/A 

ML-10 #2 N/A 0.0925 
[0, 0.172] N/A N/A 0 

[0, 2.89x10-4] N/A N/A 0.3415 
[0, 0.365] N/A 

ML-10 #4 0.0255 
[0, 0.142] 

0.0573 
[0, 0.106] 

0.0111 
[0, 0.153] 

0 
[0, 1.01x10-3] 

5.370x10-4 

[0, 9.50x10-4] 
0 

[0, 8.57x10-4] 
0.4929 

[0, 0.560] 
0.4304 

[0, 0.609] 
0.3045 

[0, 0.368] 

ML-10 #5 0.0327 
[0, 0.118] 

0.0149 
[0, 0.049] 

0.0158 
[0, 0.043] 

0 
[0, 1.33x10-3] 

9.771x10-4 

[0, 1.43x10-3] 
0 

[0, 9.22x10-4] 
0.5705 

[0, 0.752] 
0.3298 

[0, 0.739] 
0.5262 

[0, 0.690] 

ML-10 #6 0.0473 
[0, 0.190] 

0.0448 
[0, 0.156] 

0.1003 
[0, 0.200] 

1.008x10-3 

[0, 1.13x10-3] 
9.050x10-4 

[0, 1.04x10-3] 
8.316x10-4 

[0, 1.01x10-3] 
0.5053 

[0, 1.230] 
0.5915 

[0, 1.109] 
0.7234 

[0, 1.121] 

ML-10 #7 N/A 0.0060 
[0, 0.280] 

0.0248 
[0, 0.258] N/A 0 

[0, 1.21x10-3] 
1.466x10-3 

[0, 1.58x10-3] N/A 0.3798 
[0, 0.549] 

0.1243 
[0, 1.833] 

ML-10 #9 0.0360 
[0, 0.060] 

0.0328 
[0, 0.124] 

0.0404 
[0, 0.078] 

0 

[0, 8.70x10-4] 
6.094x10-4 

[0, 6.72x10-4] 
8.006x10-4 

[0, 9.52x10-4] 
0.5088 

[0, 0.826] 
0.2187 

[0, 0.619] 
0.2327 

[0, 0.759] 

ML-10 #10 0.0256 
[0, 0.083] 

₹0.0221 
[0, 0.047] 

0.0099 
[0, 0.089] 

0 
[0, 7.22x10-4] 

₹0 

[0, 5.57x10-3] 
0 

[0, 1.68x10-3] 
0.6430 

[0, 0.699] 
₹1.1737 

[0, 1.844] 
0.5119 

[0, 0.686] 

ML-10 #11 0.0021 
[0, 0.028] 

6.110x10-5 
[0, 0.024] 

4.574x10-5 
[0, 0.025] 

3.296x10-4 

[0, 3.51x10-4] 
0 

[0, 4.43x10-5] 
2.574x10-5 

[0, 5.11x10-5] 
0.0194 

[0, 0.339] 
0.0079 

[0, 0.027] 
0 

[0, 0.016] 

ML-10 #12 0.0316 
[0, 0.055] N/A N/A 8.030x10-4 

[0, 1.16x10-3] N/A N/A 0.5527 
[0, 0.842] N/A N/A 

ML-10 #13 0.0121 
[0, 0.122] 

0.0840 
[0, 0.343] N/A 2.904x10-4 

[0, 3.40x10-4] 
2.224x10-4 

[0, 2.80x10-4] N/A 0.0691 
[0, 0.309] 

0.2007 
[0, 0.325] N/A 

ML-10 #14 0.0142 
[0, 0.134] 

0.0091 
[0, 0.058] 

0.0183 
[0, 0.049] 

0 
[0, 9.48x10-4] 

0 

[0, 8.84x10-4] 
0 

[0, 5.65x10-4] 
0.4319 

[0, 0.817] 
0.3304 

[0, 0.497] 
0.3376 

[0, 0.375] 
a Macroparameter estimates are reported as: estimated value [one-sided 95% confidence interval]. 
† BL    = Baseline. 
 ⃰ ETA = Early therapy assessment. 
₴ FUA = Follow-up assessment. 
₹ Only first acquisition (0-45 min PET data) was used for spectral analysis. 
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5.2.4.4 Compartmental Modeling 

Compartmental modeling provides a means to understand and interpret macroparameter 

estimates. For example, radiotracer compartmental modeling can be used to determine what 

fraction of total distribution volume is related to the volume of the specific, or what proportion of 

tracer that enters the tissue gets irreversibly trapped in the tissue. IBIF Model 1b and IRF model 

2α-2β were selected as the best IBIF and tumor tissue IRF models among the tested candidates for 

ML-10 #5 at BL (table 5-12). Figure 5-27 shows the corresponding 2T-4K model fit results for 

ML-10 #5 at BL obtained via simultaneous modeling with IBIF Model 1b. The associated 2-tissue 

compartment model rate constants (K1, k2, k3, and k4) are shown as an inset table of the tissue 

model fit along with VB. Assuming radiotracer exchange is accurately described by a 2T-4K 

compartmental model, the ratio of VS/VT quantifies the proportion of radiotracer bound to the 

target tissue at steady-state if the radiotracer concentration in the blood were held constant. 

Interpreted this way, results suggest that approximately 63.48% of the [18F]ML-10 uptake for this 

subject is by GBM tissue undergoing apoptosis. 
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Figure 5-27. Example 2-Tissue Compartment Model Fit Obtained from Joint Maximum Likelihood Estimation 

with IBIF Model 1b for ML-10 #5 at BL. IBIF Model 1b (left) and 2T-4K tumor tissue model (right) fits obtained 

for subject ML-10 #5 at BL using the joint maximum likelihood estimation method. The associated 2-tissue 

compartment model rate constants are shown as an inset table of the tissue model fit. Normalized residuals from both 

the IBIF and 2T-4K model fits were consistent with following a standard Gaussian distribution based on the 

Kolmogorov-Smirnov test (IBIF Model 1b: p ≤ 0.7008; 2T-4K model: p ≤ 0.5626). Furthermore, both sets of residuals 

passed the runs test (IBIF Model 1b: p ≤ 0.6932; 2T4K model: p ≤ 0.9551).  

 

 

Figure 5-28 shows example tissue compartmental modeling results for ML-10 #12 at BL. 

The selected best candidate IBIF and tumor IRF models for this subject were IBIF Model 2b and 

IRF model 2α-2β (table 5-12). Figure 5-28A shows the resulting 2T-4K model fit consistent with 

a 2α-2β IRF model (left) and corresponding compartmental rate constant sensitivity analysis 

(right). The estimated values of the 2T-4K rate constants are shown as inset to the tissue model fit 

with corresponding parameter %COV in parentheses. For this case, the estimated influx rate k3 of 

[18F]ML-10 into the apoptotic tissue (i.e. the specific compartment) is larger than the efflux rate 
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of radiotracer returning from the compartment of the specific to the interstitial space (i.e. the non-

displaceable compartment) quantified by k4.  

 

Figure 5-28A (right) shows the corresponding sensitivity functions for each rate constants 

as well as VB. The sensitivity functions for the influx rates K1, and k3 are positive over the duration 

of the scan, indicating an increase in either one of these parameters results in an increase in the 

value of the tissue model CT. Similarly, the sensitivity functions for the efflux parameters k2 and 

k4 are negative over the scan duration, indicating that an increase in either of these parameters 

corresponds to a decrease in CT. Visually, the sensitivity functions for k3 (green curve) and k4 

(magenta curve) are nearly scaled versions of each other and are primarily influenced by the same 

portion of the measured tumor TAC data. These results suggest that it is not possible to 

simultaneously separate the influence of k3 from k4 on the [18F]ML-10 uptake profile for this scan 

using the measured tumor TAC alone.  

 

Figure 5-28B shows the fit results when the reduced 2-tissue 3-rate constant (2T-3K) is fit 

to the same tumor TAC data for ML-10 #12 at BL. The estimated values of the 2T-3K rate 

constants are shown as inset to the tissue model fit with corresponding parameter %COV in 

parentheses. For this simplified case, the efflux parameter k4 is constrained to equal 0, resulting in 

increased precision on the estimate for k3 compared to the 2T-4K model. Figure 5-28B (right) 

shows corresponding sensitivity functions for the 2T-3K model. The individual sensitivity function 

profiles for each rate constant are visually different, suggesting it is possible to separate the 

influence of each rate constant on the measured tumor TAC assuming the 2T-3K model. 
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Figure 5-28. Comparison of 2T-4K and 2T-3K Compartmental Model Fit Results from Joint Maximum 

Likelihood Estimation with IBIF Model 2b for ML-10 #12 at BL.  (A) 2T-4K compartmental model fit consistent 

with a 2α-2β IRF model (left) with corresponding rate constant sensitivity functions (right). (B) 2T-3K compartmental 

model fit consistent with a 2α-1β IRF model (left) with corresponding rate constant sensitivity functions (right). 

Compartmental rate constants for both tissue models are shown as insets. Normalized residuals from both the 2T-4K 

and 2T-3K model fits were consistent with following a standard Gaussian distribution based on the Kolmogorov-

Smirnov test (2T-4K model: p ≤ 0.8516; 2T-3K model: p ≤ 0.9441). Furthermore, both sets of residuals passed the 

runs test (2T-4K model: p ≤ 0.9551; 2T-3K model: p ≤ 0.9551). 
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From table 5-12 the most complex tumor IRF model selected was a 3α-2β model, consistent 

with a 3-tissue 5-rate constant (3T-5K) tissue compartmental model. Figure 5-29, figure 5-30, and 

figure 5-31 show comparisons of corresponding 3T-5K, 2T-4K, and 2T-3K tissue model fits for 

ML-10 #2 at ETA, ML-10 #6 at ETA and ML-10 #6 at FUA, respectively. IBIF Model 1b (table 

5-12) was used for each tissue model fit. Inset for each plot are the estimates for the corresponding 

compartmental transfer rates with %COV in parentheses. Across these 3 cases, the %COV of the 

rate constant estimates decreased as the complexity of the compartmental model being fit was 

reduced from the 3T-5K model to the 2T-3K model. For each subject, sensitivity functions of k2, 

k5, and k6 in the 3T-5K model plateau over nearly the same time range in measured tumor TAC 

samples. Moreover, compared to the 3T-5K tissue model, the less complex 2T-4K model yields 

estimate for corresponding compartmental transfer rates that have smaller %COV in exchange for 

a slight increase in bias of the overall model fit. For the cases of ML-10 #6 at ETA and ML-10 #6 

at FUA, further reduction in complexity to the 2T-3K compartmental model produces visually 

worse fits to the respective tumor TAC data. 
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Figure 5-29. Comparison of 3T-5K, 2T-4K and 2T-3K Compartmental Model Fit Results from Joint Maximum 

Likelihood Estimation with IBIF Model 1b for ML-10 #2 at ETA.  (A) 3T-5K compartmental model fit consistent 
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with a 3α-2β IRF model (left) with corresponding rate constant sensitivity functions (right). (B) 2T-4K compartmental 

model fit consistent with a 2α-2β IRF model (left) with corresponding rate constant sensitivity functions (right). (C) 

2T-3K compartmental model fit consistent with a 2α-1β IRF model (left) with corresponding rate constant sensitivity 

functions (right). Compartmental rate constants for all three tissue models are shown as insets. Normalized residuals 

from all three compartmental model fits were consistent with following a standard Gaussian distribution based on the 

Kolmogorov-Smirnov test (3T-5K model: p ≤ 0.9858; 2T-4K model: p ≤ 0.7876; 2T-3K model: p ≤ 0.9457). 

Furthermore, all three sets of residuals passed the runs test (3T-5K model: p ≤ 0.9551; 2T-4K model: p ≤ 0.6932; 2T-

3K model: p ≤ 0.6932). 
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Figure 5-30. Comparison of 3T-5K, 2T-4K and 2T-3K Compartmental Model Fit Results from Joint Maximum 

Likelihood Estimation with IBIF Model 1b for ML-10 #6 at ETA.  (A) 3T-5K compartmental model fit consistent 
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with a 3α-2β IRF model (left) with corresponding rate constant sensitivity functions (right). (B) 2T-4K compartmental 

model fit consistent with a 2α-2β IRF model (left) with corresponding rate constant sensitivity functions (right). (C) 

2T-3K compartmental model fit consistent with a 2α-1β IRF model (left) with corresponding rate constant sensitivity 

functions (right). Compartmental rate constants for all three tissue models are shown as insets. Normalized residuals 

from all three compartmental model fits were consistent with following a standard Gaussian distribution based on the 

Kolmogorov-Smirnov test (3T-5K model: p ≤ 0.7881; 2T-4K model: p ≤ 0.3083; 2T-3K model: p ≤ 0.5350). 

Furthermore, all three sets of residuals passed the runs test (3T-5K model: p ≤ 0.5353; 2T-4K model: p ≤ 0.3380; 2T-

3K model: p ≤ 0.9551). 
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Figure 5-31. Comparison of 3T-5K, 2T-4K and 2T-3K Compartmental Model Fit Results from Joint Maximum 

Likelihood Estimation with IBIF Model 1b for ML-10 #6 at FUA. (A) 3T-5K compartmental model fit consistent 



 219 

 

with a 3α-2β IRF model (left) with corresponding rate constant sensitivity functions (right). (B) 2T-4K compartmental 

model fit consistent with a 2α-2β IRF model (left) with corresponding rate constant sensitivity functions (right). (C) 

2T-3K compartmental model fit consistent with a 2α-1β IRF model (left) with corresponding rate constant sensitivity 

functions (right). Compartmental rate constants for all three tissue models are shown as insets. Normalized residuals 

from all three compartmental model fits were consistent with following a standard Gaussian distribution based on the 

Kolmogorov-Smirnov test (3T-5K model: p ≤ 0.6846; 2T-4K model: p ≤ 0.8483; 2T-3K model: p ≤ 0.8975). 

Furthermore, all three sets of residuals passed the runs test (3T-5K model: p ≤ 0.7781; 2T-4K model: p ≤ 0.4637; 2T-

3K model: p ≤ 0.7781). 

 

 

The two most commonly selected IRF models obtained as part of the joint IBIF/ IRF model 

order selection analysis (table 5-12) were the 2α-2β (selected in 9 out of 29 cases) and 2α-1β 

(selected in 10 out of 29 cases) IRF models, consistent with the 2T-4K and 2T-3K tissue 

compartment models, respectively. Moreover, in the 3 cases for which the 3α-2β IRF model was 

selected (figures 5-29, 5-30, and 5-31), the corresponding compartmental transfer rates were not 

well estimated and showed evidence of strong correlation on sensitivity analysis. Model fitting 

using the reduced 2T-4K and 2T-3K compartmental models resulted in increased precision of rate 

constant estimates. Therefore, 26 of the 29 tumor TACS were evaluated using the 2T-4K and 2T-

3K tissue compartment models. The exceptions being ML-10 #11 at ETA and ML-10 #11 at FUA, 

for which the selected tumor IRF model was attenuated blood concentration, and ML-10 #7 at BL 

whose tumor TAC did not support nonlinear modeling. 

 

Table 5-19 and table 5-20 contain estimates for VB and the associated compartmental rate 

constants, respectively, obtained by analyzing each measured [18F]ML-10 tumor TAC using a 2T-
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4K tissue compartmental model. The coefficient of variation on each model estimate is expressed 

as a percentage given in parentheses. From table 5-20, [18F]ML-10 PET scans for which the 1α-1β 

IRF model was selected as the best tumor IRF model produced estimates for the 2T-4K rate 

constants that were generally not estimable. Ignoring these cases, estimates for the blood volume 

fraction (VB) ranged from 0.0162 to 0.2818 (mean = 0.1215 and median = 0.1096) and K1 ranged 

from 0.0113 ml/cm3/min to 0.0809 ml/cm3/min (mean = 0.030513349 ml/cm3/min and median = 

0.026836568 ml/cm3/min), respectively. 

 

Table 5-21 contains estimates for the distribution volume VT, as well as the volume of the 

specific (VS) and volume of the non-displaceable (VND) compartments (ignoring the scans for 

which the 1α-1β IRF model was selected as the best tumor IRF model). From table 5-21, the ratio 

of VS/VT ranged from 0.3093 to 0.7997.  

 

Table 5-22 contains estimates for VB and the associated compartmental rate constants 

obtained from analyzing each measured [18F]ML-10 tumor TAC using a 2T-3K tissue 

compartmental model. The coefficient of variation on each model estimate is expressed as a 

percentage given in parentheses. As in the 2T-4K modeling case, scans for which the 1α-1β IRF 

model was selected as the best tumor IRF showed poor estimability when analyzed as a 2T-3K 

model. Ignoring these subject, estimates for VB and K1 ranged from 0.0254 to 0.2977 (mean = 

0.1310 and median = 0.115) and from 0.0093 ml/cm3/min to 0.0347 ml/cm3/min (mean = 0.0211 

ml/cm3/min and median = 0.0196 ml/cm3/min), respectively. 
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Table 5-23 contains the estimated value for the flux parameter Ki as well as the ratio of Ki-

to-K1 (denoted Ki/K1). The uptake measure Ki/K1 can be interpreted as the overall fraction of 

[18F]ML-10 in the tumor tissue that is taken up by cells undergoing apoptosis. Ignoring the scans 

for which the 1α-1β IRF model was selected as the best tumor IRF model, the associated Ki values 

ranged from 3.675x10-4 ml/cm3/min to 5.483x10-3 ml/cm3/min, with corresponding Ki/K1 values 

ranging from 0.0142 to 0.2873.  

 

Table 5-19. 2-Tissue Reversible Tracer Kinetics: Blood Volume Fraction VB. 

 Subject ID 
VB 

†BL *ETA ₴FUA 

ML-10 #1 
a0.1460 
(8.90%) N/A N/A 

ML-10 #2 N/A 0.1754 
(3.66%) N/A 

ML-10 #4 0.0679 
(11.94%) 

0.0162 
(43.39%) 

b0.0445 
(114.14%) 

ML-10 #5 0.1374 
(3.90%) 

0.1407 
(3.27%) 

0.1328 
(3.84%) 

ML-10 #6 0.0640 
(8.75%) 

0.0695 
(8.85%) 

0.0646 
(10.14%) 

ML-10 #7 N/A 
b0.0426 

(407.74%) 
0.1260 

(6.84%) 

ML-10 #9 0.2111 
(6.75%) 

0.259 
(7.55%) 

0.0997 
(6.31%) 

ML-10 #10 0.0811 
(3.67%) 

₹0.0427 
(7.39%) 

b0.0275 
(38.05%) 

ML-10 #11 
b0.3247 
(9.22%) --- --- 

ML-10 #12 0.0469 
(23.28%) N/A N/A 

ML-10 #13 0.2343 
(3.95%) 

0.2818 
(3.86%) N/A 

ML-10 #14 0.1194 
(3.01%) 

0.0997 
(3.29%) 

0.0563 
(4.67%) 

a Parameter estimates are reported as: estimated value (percent coefficient of variation). 
† BL    = Baseline. 
* ETA = Early therapy assessment. 
₴ FUA = Follow-up assessment. 
b Selected best tissue model is a 1-tissue compartmental model. 
₹ Rate constant estimates obtained from first acquisition only (i.e. only using 0-45 min PET 
data). 
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 Table 5-20. 2-Tissue Reversible Tracer Kinetics: Compartmental Rate Constants. 

 

Subject 
ID 

K1 (ml/cm3/min) k2 (min-1) k3 (min-1) k4 (min-1) 
†BL *ETA ₴FUA BL ETA FUA BL ETA FUA BL ETA FUA 

ML-10 
#1 

a0.0658 
(32.26%) N/A N/A 0.5748 

(29.14%) N/A N/A 0.0432 
(16.72%) N/A N/A 0.0145 

(9.09%) N/A N/A 

ML-10 
#2 N/A 0.0381 

(7.77%) N/A N/A 0.1447 
(10.40%) N/A N/A 0.0102 

(35.44%) N/A N/A 0.0228 
(23.61%) N/A 

ML-10 
#4 

0.0203 
(13.04%) 

0.0395 
(17.89%) 

b0.0109 
(9.32x103) 

0.0768 
(22.45%) 

0.1804 
(38.58%) 

b3.3599 
(3.07x104%) 

0.0049 
(127.54%) 

0.0566 
(50.08%) 

b5.739 
(6.84x103%) 

0.0027 
(575.73%) 

0.0408 
(17.35%) 

b0.0616 
(1.60x104%) 

ML-10 
#5 

0.0181 
(10.92%) 

0.0157 
(14.58%) 

0.0191 
(11.15%) 

0.0804 
(24.05%) 

0.0858 
(41.11%) 

0.0858 
(29.15%) 

0.0302 
(34.86%) 

0.0542 
(44.03%) 

0.0418 
(41.10%) 

0.0174 
(20.50%) 

0.0229 
(14.01%) 

0.0301 
(12.91%) 

ML-10 
#6 

0.0359 
(8.89%) 

0.0531 
(10.96%) 

0.0809 
(14.23%) 

0.0956 
(25.57%) 

0.2050 
(23.96%) 

0.4541 
(24.41%) 

0.0392 
(50.58%) 

0.0927 
(22.10%) 

0.1757 
(13.38%) 

0.0435 
(17.60%) 

0.0466 
(7.60%) 

0.0450 
(6.46%) 

ML-10 
#7 N/A 

b0.8561 
(321.54%) 

0.0213 
(22.29%) N/A 

b9.9462 
(135.87%) 

0.1542 
(29.88%) N/A 

b0.0537 
(209.92%) 

0.0224 
(33.72%) N/A 

b0.0124 
(8.12%) 

0.0060 
(53.36%) 

ML-10 
#9 

0.0349 
(8.03%) 

0.0272 
(27.54%) 

0.0358 
(10.41%) 

0.1203 
(7.81%) 

0.1128 
(29.09%) 

0.1805 
(13.64%) 

0.0062 
(19.22%) 

0.0086 
(17.18%) 

0.0184 
(23.58%) 

0.0056 
(38.69%) 

1.09x10-14 
(176.68%) 

0.0164 
(18.83%) 

ML-10 
#10 

0.0265 
(5.21%) 

₹0.0194 
(5.35%) 

b0.0417 
(126.77%) 

0.0881 
(12.76%) 

₹0.0829 
(17.89%) 

b1.8104 
(133.07%) 

0.0289 
(22.54%) 

₹0.0401 
(38.55%) 

b0.3716 
(48.89%) 

0.0217 
(11.49%) 

₹0.0100 
(126.02%) 

b0.0169 
(26.25%) 

ML-10 
#11 

b0.0013 
(5.15x104%) 

c--- c--- 
b0.0113 

(5.1x107%) 
c--- c--- 

b1.984 
(1.43x104%) 

c--- c--- c--- 
b3.0695 

(2.22x103%) 
c--- 

ML-10 
#12 

0.0305 
(7.15%) N/A N/A 0.0798 

(19.50%) N/A N/A 0.0262 
(45.83%) N/A N/A 0.0300 

(20.61%) N/A N/A 

ML-10 
#13 

0.0118 
(37.80%) 

0.0295 
(32.20%) N/A 0.1532 

(32.86%) 
0.2007 

(49.15%) N/A 0.0050 
(25.25%) 

0.0432 
(59.82%) N/A 2.01x10-13 

(8885.85%) 
0.0427 

(23.20%) N/A 

ML-10 
#14 

0.0150 
(9.32%) 

0.0113 
(12.36%) 

0.0216 
(8.36%) 

0.0998 
(16.92%) 

0.0901 
(25.66%) 

0.1791 
(13.21%) 

0.0227 
(27.57%) 

0.0268 
(38.38%) 

0.0391 
(13.35%) 

0.0143 
(19.97%) 

0.0140 
(25.88%) 

0.0191 
(7.01%) 

a Parameter estimates are reported as: estimated value (percent coefficient of variation).  
† BL    = Baseline. 
 ⃰  ETA = Early therapy assessment. 
₴ FUA = Follow-up assessment. 
b Selected best tissue model is a 1-tissue compartmental model.  
₹ Rate constant estimates obtained from first acquisition only (i.e. only using 0-45 min PET data). 
c Selected best tissue model is an attenuated blood concentration model. 
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   Table 5-21. 2-Tissue Reversible Tracer Kinetics: Total Volume of Distribution VT.

Subject ID 
VT (ml/cm3) VS (ml/cm3) VND (ml/cm3) VS /VT 

†BL *ETA ₴FUA BL ETA FUA BL ETA FUA BL ETA FUA 

ML-10 #1 0.4558 
(3.53%) N/A N/A 0.3412 N/A N/A 0.1146 N/A N/A 0.7486 N/A N/A 

ML-10 #2 N/A 0.3816 
(2.68%) N/A N/A 0.1180 N/A N/A 0.2636 N/A N/A 0.3093 N/A 

ML-10 #4 0.7359 
(298.27%) 

0.5226 
(2.74%) 

b0.3043 
(12.81%) 0.4714 0.3037 0.3010 0.2645 0.2189 0.0032 0.6406 0.5811 b0.9894 

ML-10 #5 0.6159 
(4.16%) 

0.6174 
(2.75%) 

0.5304 
(1.88%) 0.3910 0.4341 0.3082 0.2250 0.1832 0.2222 0.6348 0.7032 0.5810 

ML-10 #6 0.7150 
(1.97%) 

0.7732 
(1.62%) 

0.8743 
(1.27%) 0.3393 0.5143 0.6962 0.3757 0.2589 0.1781 0.4745 0.6652 0.6962 

ML-10 #7 N/A 
b0.4599 

(21.47%) 
0.6537 

(26.42%) N/A 0.3739 0.5155 N/A 0.0861 0.1382 N/A b0.8129 0.7885 

ML-10 #9 0.6078 
(13.16%) 

#--- 0.4214 
(3.57%) 0.3174 #--- 0.2229 0.2904 0.2409 0.1985 0.5222 #--- 0.5290 

ML-10 #10 0.7014 
(2.13%) 

₹1.1673 
(82.45%) 

b0.5311 
(21.47%) 0.4008 0.9335 0.5081 0.3006 0.2338 0.0230 0.5714 ₹0.7997 b0.9566 

ML-10 #11 
b0.1124 

(38.07%) 
c--- c--- 0.0012 c--- c--- 0.1112 c--- c--- b0.0105 c--- c--- 

ML-10 #12 0.7157 
(1.57%) N/A N/A 0.3342 N/A N/A 0.3815 N/A N/A 0.4669 N/A N/A 

ML-10 #13 #--- 0.2956 
(4.84%) N/A #--- 0.1486 N/A 0.0769 0.1470 N/A #--- 0.5028 N/A 

ML-10 #14 0.3896 
(3.95%) 

0.3642 
(5.89%) 

0.3675 
(1.85%) 0.2390 0.2391 0.2468 0.1506 0.1251 0.1207 0.6135 0.6564 0.6716 

a Macroparameter estimates are reported as: estimated value (percent coefficient of variation). 
† BL    = Baseline. 
* ETA = Early therapy assessment. 
₴ FUA = Follow-up assessment. 
₹ Rate constant estimates obtained from first acquisition only (i.e. only using 0-45 min PET data). 
b Selected best tissue model is a 1-tissue compartmental model. 
c Selected best tissue Model is an attenuated blood concentration model. 
# VT and VS are undefined for k4 ≈ 0. 
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 Table 5-22. 2-Tissue Irreversible Kinetics: Compartmental Rate Constants.

Subject ID 
VB K1 (ml/cm3/min) k2 (min-1) k3 (min-1) 

†BL *ETA ₴FUA BL ETA FUA BL ETA FUA BL ETA FUA 

ML-10 #1 
a0.1883 
(3.70%) N/A N/A 0.0135 

(13.22%) N/A N/A 0.0705 
(16.79%) N/A N/A 0.0083 

(10.62%) N/A N/A 

ML-10 #2 N/A 0.1807 
(3.53%) N/A N/A 0.0336 

(6.45%) N/A N/A 0.1130 
(6.40%) N/A N/A 0.0016 

(13.99%) N/A 

ML-10 #4 0.0683 
(11.42%) 

0.0254 
(23.12%) 

b0.0438 
(17.67%) 

0.0201 
(10.63%) 

0.0276 
(7.13%) 

b0.0073 
(15.51%) 

0.0747 
(13.53%) 

0.0709 
(10.12%) 

b0.0271 
(37.4%) 

0.0039 
(15.95%) 

0.0026 
(18.86%) 

b0.0014 
(189.89%) 

ML-10 #5 0.1454 
(3.24%) 

0.1472 
(2.60%) 

0.1390 
(2.78%) 

0.0142 
(6.09%) 

0.0121 
(5.58%) 

0.0152 
(4.02%) 

0.0419 
(10.76%) 

0.0340 
(11.75%) 

0.0414 
(6.78%) 

0.0059 
(11.59%) 

0.0066 
(13.24%) 

0.0035 
(11.15%) 

ML-10 #6 0.0705 
(6.66%) 

0.0902 
(5.52%) 

0.0992 
(4.86%) 

0.0304 
(3.81%) 

0.0331 
(3.61%) 

0.0347 
(3.13%) 

0.0536 
(5.87%) 

0.0539 
(5.56%) 

0.0480 
(5.23%) 

0.0021 
(14.92%) 

0.0021 
(13.73%) 

0.0018 
(15.73%) 

ML-10 #7 N/A 
b0.0455 

(564.64%) 
0.1314 

(5.63%) N/A 
b0.9927 

(344.96%) 
0.0170 

(15.20%) N/A 
b8.3379 

(154.45%) 
0.1048 

(17.38%) N/A 
b0.0164 
(226%) 

0.0122 
(8.83%) 

ML-10 #9 0.2124 
(2.70%) 

0.2692 
(2.53%) 

0.1080 
(5.53%) 

0.0329 
(5.55%) 

0.0211 
(9.12%) 

0.0278 
(7.87%) 

0.1083 
(5.88%) 

0.0773 
(10.43%) 

0.1159 
(8.42%) 

0.0038 
(6.84%) 

0.0032 
(12.83%) 

0.0047 
(8.47%) 

ML-10 #10 0.0874 
(3.31%) 

₹0.0428 
(6.85%) 

b0.0376 
(8.95%) 

0.0221 
(2.92%) 

₹0.0191 
(3.61%) 

b0.0083 
(7.00%) 

0.0513 
(4.67%) 

₹0.0763 
(8.34%) 

b0.0223 
(21.53%) 

0.0043 
(6.98%) 

₹0.0308 
(8.62%) 

b0.0042 
(46.29%) 

ML-10 #11 
b0.3338 

(10.11%) 
c--- c--- 

b0.0005 
(1.44x105%) 

c--- c--- 
b0.0004 

(4.5x109) 
c--- c--- 

b7.195 
(1.71x109) 

c--- c--- 

ML-10 #12 0.0521 
(17.10%) N/A N/A 0.0266 

(3.38%) N/A N/A 0.0514 
(5.31%) N/A N/A 0.0029 

(9.52%) N/A N/A 

ML-10 #13 0.2343 
(3.95%) 

0.2977 
(2.68%) N/A 0.0118 

(37.85%) 
0.0168 

(13.18%) N/A 0.1544 
(32.84%) 

0.0734 
(14.62%) N/A 0.0049 

(25.26%) 
0.0017 

(32.39%) N/A 

ML-10 #14 0.1229 
(2.25%) 

0.1031 
(2.68%) 

0.0659 
(3.99%) 

0.0126 
(4.76%) 

0.0093 
(6.47%) 

0.0137 
(4.98%) 

0.0648 
(6.17%) 

0.0545 
(9.64%) 

0.0707 
(6.52%) 

0.0064 
(5.03%) 

0.0072 
(8.00%) 

0.0060 
(6.00%) 

a Parameter estimates are reported as: estimated value (percent coefficient of variation). 
† BL    = Baseline. 
* ETA = Early therapy assessment. 
₴ FUA = Follow-up assessment. 
b Selected best tissue model is a 1-tissue compartmental model. 
₹ Rate constant estimates obtained from first acquisition only (i.e. only using 0-45 min PET data). 
c Selected best tissue model is an attenuated blood concentration model. 
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Table 5-23. 2-Tissue Irreversible Kinetics: Influx Rate Ki. 

5.2.4.5 Response Evaluation using Compartmental Modeling of [18F]ML-10. 

In addition to radiotracer characterization, a principle motivation for the study of [18F]ML-

10 uptake in GBM was to evaluate the radiotracer for potential use in early therapy response 

assessment. From the above analysis, the macroparameters VT and Ki generally have better 

precision than their associated compartmental rate constants. Moreover, VT and Ki do not rely on 

assuming specific compartmental structure to describe [18F]ML-10 exchange in the tumor.  

 

Subject ID 
Ki (ml/cm3/min) Ki /K1  

†BL *ETA ₴FUA BL ETA FUA 

ML-10 #1 
a1.423x10-3 

(5.78%) N/A N/A 0.1057 N/A N/A 

ML-10 #2 N/A 4.750x10-4 

(12.74%) N/A N/A 0.0142 N/A 

ML-10 #4 1.002x10-3 

(11.87%) 
9.887x10-4 

(15.19%) 
b3.677x10-4 
(159.28%) 0.0499 0.0359 b0.0504 

ML-10 #5 1.757x10-3 

(6.58%) 
1.955x10-3 

(6.91%) 
1.190x10-3 

(7.88%) 0.1238 0.1616 0.0781 

ML-10 #6 1.143x10-3 

(12.43%) 
1.228x10-3 

(11.40%) 
1.24x10-3 

(13.19%) 0.0377 0.0371 0.0357 

ML-10 #7 N/A 
b1.947x10-3 
(27.33%) 

1.778x10-3 

(4.14%) N/A b0.0020 0.1046 

ML-10 #9 1.110x10-3 

(5.29%) 
8.365x10-4 

(10.01%) 
1.086x10-3 

(6.38%) 0.0337 0.0396 0.0391 

ML-10 #10 1.715x10-3 

(5.03%) 
₹5.483x10-3 

(3.41%) 
b1.330x10-4 
(27.57%) 0.0776 ₹0.2873  b0.1596 

ML-10 #11 
b5.146x10-4 
(12.22%) 

c--- c--- b0.9999 c--- c--- 

ML-10 #12 1.436x10-3 

(7.11%) N/A N/A 0.0539 N/A N/A 

ML-10 #13 3.675x10-4 

(16.55%) 
3.783x10-4 

(28.56%) N/A 0.0310 0.0226 N/A 

ML-10 #14 1.121x10-3 

(3.10%) 
1.089x10-3 

(4.53%) 
1.061x10-3 

(3.95%) 0.0893 0.1174 0.0776 
a Macroparameter estimates are reported as: estimated value (percent coefficient of variation).  
† BL    = Baseline. 
 ⃰ ETA = Early therapy assessment. 
₴ FUA = Follow-up assessment. 
b Selected best tissue model is a 1-tissue compartmental model.  
₹ Estimates obtained from first acquisition only (i.e. only using 0-45 min PET data). 
c Selected best tissue model is an attenuated blood concentration model. 
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Since a consistent tumor IRF model was not observed across [18F]ML-10 PET scans, both 

VT and Ki are evaluated as measures for early therapy response assessment. Additionally, the ratio 

Ki-to-K1, denoted as Ki
*, was also evaluated for use as a quantitative measure of response. Under 

the assumptions of the 2T-3K model Ki
* = 𝑘𝑘3

(𝑘𝑘2+𝑘𝑘3)
 and quantifies the fraction of tracer entering the 

tissue that is irreversibly taken up by the GBM tissue, while (1- Ki
*) quantifies the proportion of 

[18F]ML-10 that is transported from the blood to the tissue but ultimately escapes back into the 

tumor vasculature. While this measure assumes a particular compartmental model structure, it was 

investigated because it can be calculated directly from the macroparameters. Importantly, neither 

of the macroparameters VT or Ki depended on the specific number or arrangement of 

compartments. 

 

A total of 8 subjects (including ML-10 #11) had at least a BL and an ETA scan, allowing 

for analysis of VT, Ki and Ki* as response measures though, ML-10 #13 and ML-10 #14 do not 

have a true BL scan as they both started therapy prior to their first [18F]ML-10 PET scans (see 

Section 4.2, Table 4-3).  However, because the tumor [18F]ML-10 uptake concentration for ML-

10 #11 at both the ETA and FUA time-points was determined to be primarily composed of 

radiotracer concentration in the vasculature, ML-10 #11 was not included for response assessment 

evaluation. Therefore, the evaluation of VT, Ki and Ki* as measures of GBM response to therapy 

using [18F]ML-10 PET was limited to just 7 subjects. 

 

Table 5-24 contains the percent change in VT from: BL to ETA (denoted ΔVT(ETA, BL)), 

BL to FUA (ΔVT(FUA,BL) ), and ETA to FUA (denoted ΔVT(FUA,ETA) ). Subjects are ordered 

in decreasing rank order according to their progression-free survival (PFS). For subject imaging 
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time-points that were best modeled using a 1α-1β IRF model (i.e. a 1T-2K tissue compartment 

model), the associated 1α-1β values for VT were used in the percent change calculation.  

 

The median PFS for a newly diagnosed GBM subject receiving standard of care 

concomitant radiotherapy plus temozolomide chemotherapy is 6.9 months [4]. This makes a PFS 

of 6.9 months a natural threshold for categorizing subjects as exhibiting a poor PFS (i.e. PFS < 6.9 

months). For the limited number of subjects analyzed, no obvious association between ΔVT(ETA, 

BL) and subject PFS is apparent. For example, ML-10 #9 exhibited the longest PFS (25 months) 

but showed a 41.185% decrease in VT between the pre-therapy BL and the post-therapy 

administration ETA time-points suggesting an overall decrease in apoptosis at ETA compared to 

BL. In contrast, subject ML-10 #13 demonstrated the shortest PFS (2 months) post-therapy 

initiation, consistent with a poor response to therapy, but exhibited the largest percent increase in 

VT between BL and ETA.  

 

Table 5-25 contains percent change in Ki from: BL to ETA (ΔKi(ETA, BL)), BL to FUA 

(ΔKi(FUA, BL)), and ETA to FUA (ΔKi(FUA, ETA)), while table 5-26 contains percent change 

in Ki
* from BL to ETA (ΔKi

*(ETA, BL)), BL to FUA (ΔKi
*(FUA, BL)), and ETA to FUA 

(ΔKi
*(FUA, ETA)). For the limited number of subjects analyzed, no obvious association between 

ΔKi(ETA, BL) and subject PFS is apparent. Overall percent change in Ki compared to PFS showed 

a similar pattern to percent change in VT compared to PFS. For example, ML-10 #9 exhibited the 

longest PFS (25 months) but showed a 24.61% decrease in Ki between the BL and ETA time-

points suggesting an overall decrease in apoptosis at ETA compared to BL. In contrast, subject 

ML-10 #13 demonstrated the shortest PFS (2 months) post-therapy initiation, consistent with a 
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poor response to therapy, but exhibited an increase in Ki (though the percent increase observed for 

Ki was not as large as the corresponding percent increase in VT). Furthermore, percent change in 

Ki between BL and FUA and between ETA and FUA decreased for all subjects except ML-10 #6.  

 

In contrast to ΔVT(ETA, BL) and ΔKi(ETA, BL), Ki
* showed an increased from BL to 

ETA for all subjects with PFS > 11 months. Moreover, a 1.42% decrease in Ki
* between BL and 

ETA time-points was observed for ML-10 #6 who exhibited a PFS of 11 months. Furthermore, 2 

out of 3 subjects with a poor PFS (i.e. PFS < 6.9 months) did not increase in in Ki
* between the 

BL and ETA time-points. The exception being ML-10 #14 (PFS = 2 months) who exhibited an 

increase in Ki
* from the BL to ETA; though, this result is confounded by the fact that ML-10 #14 

does not have a true BL scan.  

 

Table 5-24. Percent Change in VT Compared to Subject Clinical End-points. 

 

Subject ID a𝚫𝚫𝐕𝐕𝐓𝐓(@ETA, †BL) 𝚫𝚫𝐕𝐕𝐓𝐓(₴FUA, BL) 𝚫𝚫𝐕𝐕𝐓𝐓(FUA, ETA) 
&PFS 

(months) 
#OS 

(months) 
ML-10 #9 d-41.185% -30.665% d17.887% 25 35 

cML-10 #10 66.425% b-25.660% b-55.331% 18 19 
ML-10 #5 0.233% -13.885% -14.086% 15 25 
ML-10 #6 8.133% 22.2706% 13.0739% 11 22 
ML-10 #4 -28.979% b-58.670% b-41.805% 4 5 

fML-10 #14 -6.506% -5.674% 0.89% 3 9 
gML-10 #13 e185.696% N/A N/A 2 13 

aΔ𝑉𝑉𝑇𝑇(x, y) = 100 ∗ �VT
(x)−VT

(y)

VT
(𝑦𝑦) �. 

† BL = Baseline. 
@ ETA= Early therapy assessment. 
₴ FUA = Follow-up assessment. 
&PFS = Progression-free survival. 
# OS = Overall survival. 
b Indicates VT for FUA time-point obtained from a 1-tissue model. 
c ML-10 #10 VT estimate for ETA time-point used first acquisition only (i.e. only 0-45 min PET data). 
d Indicates VT for ETA time-point obtained from a 1-tissue model. 
e Indicates VT for BL time-point obtained from a 1-tissue model. 
f Subject does not have a true BL scan, since therapy was initiated 5 days prior to receiving first [18F]ML-10 PET scan. 
g Subject does not have a true BL scan, since therapy was initiated 6 days prior to receiving first [18F]ML-10 PET scan. 
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 Table 5-25. Percent Change in Ki Compared to Subject Clinical End-points. 

 

 

 Table 5-26. Percent Change in Ki* Compared to Subject Clinical End-points. 

 

Subject ID a𝚫𝚫𝐊𝐊𝐢𝐢(@ETA, †BL) 𝚫𝚫𝐊𝐊𝐢𝐢(₴FUA, BL) 𝚫𝚫𝐊𝐊𝐢𝐢(FUA, ETA) 
&PFS 

(months) 
#OS 

(months) 
ML-10 #9 -24.61% -2.07% 29.89% 25 35 

cML-10 #10 219.61% -22.49% -75.75% 18 19 
ML-10 #5 11.27% -32.27% -39.14% 15 25 
ML-10 #6 7.42% 8.46% 0.97% 11 22 
ML-10 #4 -1.31% -63.30% -62.81% 4 5 

fML-10 #14 -2.83% -5.27% -2.52% 3 9 
gML-10 #13 2.94% --- --- 2 13 

a ΔKi(x, y) = 100 ∗ �Ki
(x)− Ki

(y)

Ki
(y) �. 

† BL = Baseline. 
@ ETA= Early therapy assessment. 
₴ FUA = Follow-up assessment. 
&PFS = Progression-free survival. 
# OS = Overall survival. 
c ML-10 #10 Ki estimate for ETA time-point used first acquisition only (i.e. only 0-45 min PET data). 
f  Subject does not have a true BL scan, since therapy was initiated 5 days prior to receiving first [18F]ML-10 PET scan. 
g Subject does not have a true BL scan, since therapy was initiated 6 days prior to receiving first [18F]ML-10 PET scan. 

Subject ID a𝚫𝚫𝐊𝐊𝐢𝐢
∗(@ETA, †BL) 𝚫𝚫𝐊𝐊𝐢𝐢

∗(₴FUA, BL) 𝚫𝚫𝐊𝐊𝐢𝐢
∗(FUA, ETA) 

&PFS 
(months) 

#OS 
(months) 

ML-10 #9 17.45% 15.83% -1.38% 25 35 
cML-10 #10 270.40% 105.67% -44.47% 18 19 
ML-10 #5 30.50% -36.92% -51.66% 15 25 
ML-10 #6 -1.42% -5.19% -3.81% 11 22 
ML-10 #4 -28.14% 1.00% 40.56% 4 5 

fML-10 #14 31.57% -13.03% -33.90% 3 9 
gML-10 #13 -27.19% --- --- 2 13 

a ΔKi
∗(x, y) = 100 ∗ �Ki

∗(x)
− Ki

∗(y)

Ki
∗(y) �. 

† BL = Baseline. 
@ ETA= Early therapy assessment. 
₴ FUA = Follow-up assessment. 
&PFS = Progression-free survival. 
# OS = Overall survival. 
c ML-10 #10 Ki

* estimate for ETA time-point used first acquisition only (i.e. only 0-45 min PET data). 
f  Subject does not have a true BL scan, since therapy was initiated 5 days prior to receiving first [18F]ML-10 PET scan. 
g Subject does not have a true BL scan, since therapy was initiated 6 days prior to receiving first [18F]ML-10 PET scan. 
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5.2.4.6 Voxelwise Compartmental Modeling 

PK macroparameters were estimated on a voxelwise basis to investigate voxelwise change 

in response to treatment for 6 out of the 7 subjects in table 5-24. ML-10 #4 was not considered for 

voxelwise analysis due to the small size of their tumor. Figure 5-32 shows example voxelwise IRF 

model fits for (A) tumor voxel number 55 and (B) tumor voxel number 108 using the 2α-2β IRF 

model (left) and 2α-1β IRF model (right) for ML-10 #6 at ETA. IBIF Model 1b was used for each 

voxelwise fit. VB = 0.070 for the 2α-2β IRF model fits (left; A and B) and VB = 0.090 for the 2α-

1β IRF model fits (right; A and B). 
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Figure 5-32. Example Voxelwise Fits for Subject ML-10 #6 at ETA using the 2α-2β and 2α-1β IRF models. (A) 

Representative fits using a 2α-2β IRF model with VB fixed to VB = 0.070 (left) and a 2α-1β IRF model with VB fixed 

to VB = 0.090 (right) for tumor voxel number 55 for ML-10 #6 at ETA estimated using IBIF Model 1b as IBIF model. 

(B) Representative fits using a 2α-2β IRF model with VB fixed to VB = 0.070 (left) and a 2α-1β IRF model with VB 

fixed to VB = 0.090 (right) for tumor voxel number 108 for ML-10 #6 at ETA estimated using IBIF Model 1b as IBIF 

model. 
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Figure 5-33 shows representative (A) SUV PET sections at BL (left), ETA (center), and 

FUA (right) time-points for ML-10 #6. Also shown are voxelwise maps of (B) VT and (C) Ki 

overlaid on their corresponding PET time-point (e.g. the ETA VT map is overlaid on the ETA SUV 

PET image). All images were co-registered to the BL PET scan. No MR imaging was acquired for 

ML-10 #6. Across imaging time-points [18F]ML-10 uptake is observed to increase in SUV. 

Visually, VT maps at BL, ETA, and FUA exhibit similar intensity distribution to their 

corresponding SUV PET counterparts. Similarly, a local increase in [18F]ML-10 uptake rate is 

visually apparent between ETA and FUA Ki maps (arrows).  

 

Figure 5-34 shows the corresponding voxelwise histograms of VT and Ki for ML-10 #6. 

Specifically, figure 5-34A shows histograms of VT at BL and ETA only and at BL, ETA, and FUA 

all together (right). Histograms of VT were generated using 200 bins over the range of 0-2 ml/cm3 

(VT histogram binwidth = 0.01). Purple color indicates areas overlap between BL and ETA VT 

histograms. Similarly, figure 5-34B shows histograms of voxelwise Ki at BL and ETA (left) and 

BL, ETA, and FUA (right). Purple color indicates areas overlap between BL and ETA Ki 

histograms. Histograms of Ki were generated using 200 bins over the range of 0-0.01ml/cm3/min 

(Ki histogram binwidth = 0.00005). The progression-free survival for this subject was 11 months.  
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Figure 5-33. Example Voxelwise Analysis for ML-10 #6. Figure shows representative (A) SUV PET sections at BL 

(left), ETA (center), and FUA (right) time-points. Also shown are voxelwise maps of (B) VT and (C) Ki overlaid on 

their corresponding PET time-point (e.g. the ETA VT map is overlaid on the ETA SUV PET image). All images were 

co-registered to the BL PET scan. No MR imaging was acquired for this subject. Across imaging time-points [18F]ML-

10 uptake is observed to increase in SUV. Visually, VT maps at BL, ETA, and FUA exhibit similar intensity 

distribution to their corresponding SUV PET counterparts. Similarly, a local increase in [18F]ML-10 uptake rate is 

visually apparent between ETA and FUA Ki maps (arrows).  
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Figure 5-34. Histograms of Voxelwise VT and Ki for ML-10 #6 Across Imaging Time-points. (A) Histogram of 

voxelwise VT at baseline (BL) and early therapy assessment (ETA; left) and BL, ETA, and follow-up assessment 

(FUA; right). Purple color indicates areas overlap between BL and ETA VT histograms. (B) Histogram of voxelwise 

Ki at BL and ETA (left) and BL, ETA, and FUA (right). Purple color indicates areas overlap between BL and ETA Ki 

histograms. The progression-free survival for this subject was 11 months. Histograms of VT were generated using 200 

bins over the range of 0-2 ml/cm3 (VT histogram binwidth = 0.01). Histograms of Ki were generated using 200 bins 

over the range of 0-0.01 ml/cm3/min (Ki histogram binwidth = 0.00005). 
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Figure 5-35 shows representative (A) contrast enhanced (CE) MRI and (B) SUV PET 

sections at BL (left), ETA (center), and FUA (right) time-points for ML-10 #5. Also shown are 

voxelwise maps of (C) VT and (D) Ki overlaid on their corresponding PET time-point (e.g. the 

ETA VT map is overlaid on the ETA SUV PET image). All images were co-registered to the BL 

PET scan. Across imaging time-points the GBM increases in both size and extent of [18F]ML-10 

uptake on CE MRI and [18F]ML-10 PET, respectively. The distribution in VT intensity does not 

markedly change between BL and ETA time-points; however, an overall reduction in VT intensity 

is visually apparent when comparing the FUA VT map to either the BL or ETA maps. Similarly, 

the distribution in Ki values at FUA are visually lower in value compared to the BL and ETA time-

points.  

 

Figure 5-36 shows the corresponding voxelwise histograms of VT and Ki for ML-10 #5. 

Specifically, figure 5-36A shows histograms of VT at BL and ETA only and at BL, ETA, and FUA 

all together (right). Histograms of VT were generated using 200 bins over the range of 0-2 ml/cm3 

(VT histogram binwidth = 0.01). Purple color indicates areas overlap between BL and ETA VT 

histograms. Similarly, figure 5-36B shows histograms of voxelwise Ki at BL and ETA (left) and 

BL, ETA, and FUA (right). Purple color indicates areas overlap between BL and ETA Ki 

histograms. Histograms of Ki were generated using 200 bins over the range of 0-0.01ml/cm3/min 

(Ki histogram binwidth = 0.00005). The progression-free survival for this subject was 15 months.  
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Figure 5-35. Example Voxelwise Analysis for ML-10 #5. Figure shows representative (A) contrast enhanced (CE) 

MRI and (B) SUV PET sections at BL (left), ETA (center), and FUA (right) time-points. Also shown are voxelwise 

maps of (C) VT and (D) Ki overlaid on their corresponding PET time-point (e.g. the ETA VT map is overlaid on the 

ETA SUV PET image). All images were co-registered to the BL PET scan. Across imaging time-points the GBM 

increases in both size and extent of [18F]ML-10 uptake on CE MRI and [18F]ML-10 PET, respectively. The distribution 

in VT intensity does not markedly change between BL and ETA time-points; however, an overall reduction in VT 

intensity is visually apparent when comparing the FUA VT map to either the BL or ETA VT maps. Similarly, the 

distribution in Ki values at FUA are visually lower in value compared to the BL and ETA time-points.  
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Figure 5-36. Histograms of Voxelwise VT and Ki for ML-10 #5 Across Imaging Time-Points. (A) Histogram of 

voxelwise VT at baseline (BL) and early therapy assessment (ETA; left) and BL, ETA, and follow-up assessment 

(FUA; right). Purple color indicates areas overlap between BL and ETA VT histograms. (B) Histogram of voxelwise 

Ki at BL and ETA (left) and BL, ETA, and FUA (right). Purple color indicates areas overlap between BL and ETA Ki 

histograms. The progression-free survival for this subject was 15 months. Histograms of VT were generated using 200 

bins over the range of 0-2 ml/cm3 (VT histogram binwidth = 0.01). Histograms of Ki were generated using 200 bins 

over the range of 0-0.01 ml/cm3/min (Ki histogram binwidth = 0.00005). 
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For 2 subjects (ML10 #10 and ML-10 #14) maps of apparent diffusion coefficients 

(ADCs), obtained from diffusion weighted imaging, were available at the ETA and FUA time-

points. In brain tumors, increased diffusion of water molecules (measured on a voxelwise basis 

using maps of ADC) has been shown to correlate with the breakdown of cellular membranes and 

an overall decrease in cellular density after successful therapy [185]. Thus, the subject ADC 

images allow for comparison [18F]ML-10 uptake at ETA with later change in tumor cellularity at 

FUA.  

 

Figure 5-37 shows representative (A) CE MRI and (B) SUV PET sections for ML-10 #10 

(left) and ML-10 #14 (right) at ETA with (C) corresponding voxelwise VT maps. (D) shows color 

coded histograms of VT values for ML-10 #10 (left) and ML-10 #14 (right). Voxels are binned 

into 1 of 3 bins based on the total range of VT values observed: voxels with VT values in the lower-

third of values (green), voxels with VT values in the middle-third of values (yellow), and voxels 

with VT values in the upper-third of values (red). Representative sections of ADC maps are shown 

at (E) ETA and (F) FUA for ML-10 #10 (left) and ML-10 #14 (right). Each set of images is co-

registered to the corresponding subject’s ETA SUV PET image.  

 

Compared to ML-10 #14, ML-10 #10 shows overall higher values of VT at ETA. 

Furthermore, visual comparison of the ADC maps for ML-10 #10 (figure 5-37E and F; left) and 

ML-10 #14 (figure 5-37E and F; right) reveals a marked increase in tumor ADC for ML-10 #10 

compared to ML-10 #14. The region of marked increase on ML-10 #10’s FUA map corresponds 

to the region of tumor exhibiting the upper third of VT
 values. By comparison, ML-10 #14 exhibits 

overall lower VT values at ETA.  
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Figure 5-38 shows representative (A) CE MRI and (B) SUV PET sections for ML-10 #10 

(left) and ML-10 #14 (right) at ETA with (C) corresponding voxelwise maps Ki. (D) shows color 

coded histograms of Ki values for ML-10 #10 (left) and ML-10 #14 (right). Voxels are binned into 

1 of 3 bins based on the total range of Ki values observed: voxels with Ki values in the lower-third 

of values (green), voxels with Ki values in the middle-third of values (yellow), and voxels with Ki 

values in the upper-third of values (red). Representative sections of ADC maps are shown at (E) 

ETA and (F) FUA for ML-10 #10 (left) and ML-10 #14 (right). Each set of images is co-registered 

to the corresponding subject’s ETA SUV PET image. Comparatively higher Ki values for ML-10 

#10 at ETA are observed to correspond to the region of marked increase in ADC values. 

 

Figure 5-39 shows histograms of voxelwise VT for (A) ML-10 #10 and (B) ML-10 #14 at 

BL and ETA alone (left) and BL, ETA, and FUA all together (right). Areas of overlap between 

BL and ETA VT histograms are indicated by the purple color. In the case of ML-10 #10, the 

frequency of voxels with VT ≤ 0.5 ml/cm3 is increased at ETA compared to BL, indicating an 

overall decrease in tumor VT values between time-points. Moreover, the total number tumor of 

voxels decreases steadily from BL to ETA to FUA time-points, consistent with subject response 

to therapy. By comparison, VT histograms for ML-10 #14 are visually unchanged in extent and 

location of distribution across time-points. Moreover, a marked reduction in the total number 

tumor of voxels over time is not observed as in the case of ML-10 #10, consistent with poor 

response to treatment. PFS for ML-10 #10 and ML-10 #14 were 18 months and 3 months, 

respectively.  
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Figure 5-40 shows histograms of voxelwise Ki for (A) ML-10 #10 and (B) ML-10 #14 at 

BL and ETA alone (left) and BL, ETA, and FUA all together (right). Areas of overlap between 

BL and ETA Ki histograms are indicated by the purple color. In the case of ML-10 #10, the 

distribution of Ki at ETA exhibits a marked increase in frequency of Ki values above Ki = 0.004 

ml/cm3/min compared to BL consistent with an overall increase in tumor apoptosis between time-

points. In contrast, Ki histograms for ML-10 #14 are visually unchanged in extent and location of 

distribution across time-points. Moreover, a marked reduction in the total number tumor of voxels 

over time is not observed as in the case of ML-10 #10, consistent with poor response to treatment.  
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Figure 5-37. Example Voxelwise Maps of VT at ETA Compared to ADC Change on Diffusion MRI for ML-10 

#10 and ML-10 #14.  Figure shows representative (A) contrast enhanced (CE) MRI and (B) SUV PET sections for 

ML-10 #10 (left) and ML-10 #14 (right) at ETA with (C) corresponding voxelwise maps VT. (D) shows color coded 

histograms of VT values for ML-10 #10 (left) and ML-10 #14 (right). Voxels are binned into 1 of 3 bins based on the 
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total range of VT values observed: voxels with VT values in the lower-third of values (green), voxels with VT values 

in the middle-third of values (yellow), and voxels with VT values in the upper-third of values (red). Representative 

sections of apparent diffusion coefficient (ADC) maps are shown at (E) ETA and (F) FUA for ML-10 #10 (left) and 

ML-10 #14 (right). Each set of images is co-registered to the corresponding subject’s ETA SUV PET image.  
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Figure 5-38. Example Voxelwise Maps of Ki at ETA Compared to ADC Change on Diffusion MRI for ML-10 

#10 and ML-10 #14.  Figure shows representative (A) contrast enhanced (CE) MRI and (B) SUV PET sections for 

ML-10 #10 (left) and ML-10 #14 (right) at ETA with (C) corresponding voxelwise maps Ki. (D) shows color coded 

histograms of Ki values for ML-10 #10 (left) and ML-10 #14 (right). Voxels are binned into 1 of 3 bins based on the 
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total range of Ki values observed: voxels with Ki values in the lower-third of values (green), voxels with Ki values in 

the middle-third of values (yellow), and voxels with Ki values in the upper-third of values (red). Representative 

sections of apparent diffusion coefficient (ADC) maps are shown at (E) ETA and (F) FUA for ML-10 #10 (left) and 

ML-10 #14 (right). Each set of images is co-registered to the corresponding subject’s ETA SUV PET image.  
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Figure 5-39. Histograms of Voxelwise VT Over Time for ML-10 #10 and ML-10 #14. (A) Histogram of voxelwise 

VT at baseline (BL) and early therapy assessment (ETA; left) and BL, ETA, and follow-up assessment (FUA; right) 

for ML-10 #10. Purple color indicates areas overlap between BL and ETA VT histograms. The frequency of voxels 

with VT ≤ 0.5 ml/cm3 is increased at ETA compared to BL, indicating an overall decrease in tumor VT values between 

time-points. Moreover, the total number tumor of voxels decreases steadily from BL to ETA to FUA time-points, 

consistent with subject response to therapy. (B) Histogram of voxelwise VT at BL and ETA (left) and BL, ETA, and 

FUA (right) for ML-10 #14. Purple color indicates areas overlap between BL and ETA VT histograms. VT histograms 

for ML-10 #14 are visually unchanged in extent and location of distribution across time-points. Moreover, a marked 

reduction in the total number tumor of voxels over time is not observed as in the case of ML-10 #10, consistent with 

poor response to treatment. PFS for ML-10 #10 and ML-10 #14 were 18 months and 3 months, respectively. 

Histograms of VT were generated using 200 bins over the range of 0-2 ml/cm3 (VT histogram binwidth = 0.01). 
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Figure 5-40. Histograms of Voxelwise Ki Over Time for ML-10 #10 and ML-10 #14.(A) Histogram of voxelwise 

Ki at baseline (BL) and early therapy assessment (ETA; left) and BL, ETA, and follow-up assessment (FUA; right) 

for ML-10 #10. Purple color indicates areas overlap between BL and ETA Ki histograms. The distribution of Ki at 

ETA exhibits a marked increase in frequency of Ki values above Ki = 0.004 ml/cm3/min compared to BL consistent 

with an overall increase in tumor apoptosis between time-points. (B) Histogram of voxelwise Ki at BL and ETA (left) 

and BL, ETA, and FUA (right) for ML-10 #14. Purple color indicates areas overlap between BL and ETA Ki 

histograms. Ki histograms for ML-10 #14 are visually unchanged in extent and location of distribution across time-

points. Moreover, a marked reduction in the total number tumor of voxels over time is not observed as in the case of 

ML-10 #10, consistent with poor response to treatment. Progression-free survival for ML-10 #10 and ML-10 #14 were 

18 months and 3 months, respectively. Histograms of Ki were generated using 200 bins over the range of 0-0.01 

ml/cm3/min (Ki histogram binwidth = 0.00005). 
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5.2.5 Discussion and Conclusions: Tumor Tissue Modeling and Response Assessment 

This dissertation presents a detailed study of [18]ML-10 pharmacokinetics in a cohort of 11 

GBM subjects and 1 grade three astrocytoma (ML-10 #12). The results of this analysis are the first 

reported analysis of [18F]ML-10 PK in humans for any indication. The unprecedented nature of 

this study meant that methodology for quantifying [18F]ML-10 uptake in arterial blood and brain 

tissue needed to be developed and evaluated based on PK first principles. To this end, [18F]ML-10 

time-course in GBM was studied on a whole tumor and voxelwise level. In both cases, [18F]ML-

10 uptake was modeled as the response of a linear time-invariant system using the radiotracer 

concentration in blood as the input function.  

 

In the whole tumor analysis, candidate models for the IBIF and GBM IRF were fit 

simultaneously using a maximum likelihood approach. The relative merits of the joint IBIF/IRF 

models were compared using the Akaike information criterion and model parameter estimability 

considerations. Spectral analysis was performed to support model selection and provide alternative 

estimates of standard PK uptake measures. The selected IBIF/IRF models were further interpreted 

through tissue compartmental modeling. Based on findings from linear and nonlinear model 

fitting, measures of whole tumor tracer uptake were derived and compared across subjects. For a 

limited number of subjects, the macroparameters VT, Ki, and Ki/K1 were evaluated for their utility 

in early therapy response assessment for a limited number of subjects using progression-free 

survival and overall survival as clinical endpoints. 

 

Voxelwise compartmental modeling of [18F]ML-10 uptake was also performed to 

investigate heterogeneity in apoptosis over the entire tumor volume, to identify regions of GBM 
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undergoing the highest and lowest rates of apoptosis. For 2 subjects, comparison of voxelwise 

maps of [18F]ML-10 uptake at ETA was made with change in tumor density (quantified via 

diffusion MRI) between ETA and FUA time-points. 

5.2.5.1 [18F]ML-10 Uptake Profile in Healthy Brain Tissue 

A central question to be answered for any radiotracer to be used for neuro-imaging 

applications is to determine how readily the tracer under study is transported across an intact blood-

brain-barrier (BBB) [186, 187]. Generally, radiotracers that readily cross an intact BBB (allowing 

for homogeneous delivery of tracer in the target brain tissue) while simultaneously exhibiting a 

fast clearance from non-target tissue are highly desirable for good contrast between target and 

background tissue uptake. 

 

Several factors can influence the ease that a radiotracer crosses the BBB, including: i) the 

lipophilicity of the radio-labeled compound, ii) its molecular weight, iii) the ability of the molecule 

to form hydrogen bonding, and iv) the existence of a formal charge on the radiotracer [186, 188]. 

Ideally, a radiotracer that is to be used for neuro-imaging will show moderate lipophilicity as 

molecules with high lipophilicity generally result in a low free fraction of tracer in the blood as 

well as high nonspecific binding to brain fats and proteins [186, 187, 189]. Moreover, an ideal 

radioligand will possess a low molecular weight ( < 500 Da), low propensity for hydrogen bonding, 

and be electrostatically neutral [187].  

 

 [18F]ML-10 was rationally designed with a low molecular weight (206 Da) to aid in 

passage across an intact BBB [119, 124]. Pre-clinical fluorescence imaging in mouse stroke 

models using dansyl-ML-10 observed green fluorescence of dansyl-ML-10 in brain tissue sections 
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without concomitant BBB disruption, suggestive for passage of dansyl-ML-10 across an intact 

mouse BBB [124]. However, due to the attached malonic acid (composed of two carboxylic acid 

groups) in the chemical structure of [18F]ML-10, the radiotracer molecules are generally negatively 

charged at physiologic pH [119].  

  

To date, no results have been reported regarding passage of [18F]ML-10 across an intact 

BBB into healthy human brain tissue. Figure 5-12B shows average tumor tissue time activity 

curves (circles) for two representative subjects, ML10 #2 at ETA (left) and ML-10 #12 at BL 

(right) measured from both tumor (circles) and healthy (asterisks) tissues. For both subjects, the 

healthy tissue TACs are characterized by overall low-uptake after the initial peak concentration 

and fast-clearance. Visually both curve shapes have the appearance of attenuated blood 

concentration, consistent with [18F]ML-10 not being able to appreciably cross an intact BBB. The 

healthy tissue TACs for these subjects are representative of the measured healthy tissue TACs 

across all subjects and imaging time-points.  

5.2.5.2 Tumor TAC Discussion 

The primary goal of this dissertation was to investigate the pharmacokinetic properties of 

[18F]ML-10 in GBMs and obtain preliminary evidence that supports [18F]ML-10 imaging, in 

combination with appropriate quantitative methodology, as an imaging biomarker for early therapy 

response assessment of GBMs in humans. To date, cancer response assessment using [18F]ML-10 

in humans has been limited to so called static imaging studies, in which a series of PET image 

volumes are acquired over a 20-30 min period, initiating 20 min or more post tracer injection, and 

then averaged together to create a single ‘static’ PET image [91, 129, 134-136]. 

 



 250 

In the case of Allen et al [91] [18F]ML-10 static PET images were obtained from a cohort 

of 10 subjects suffering from brain metastases. PET images were quantified using tissue activity 

concentration normalized to blood pool activity concentration and compared to tumor size change 

on MRI [91]. Results revealed a strong correlation between the percentage of voxels that increased 

between PET imaging time-points with percent reduction in tumor size using either the WHO (R 

= .92) or the volumetric based (R = .91) methods [91]. 

 

The potential utility of [18F]ML-10 static PET imaging to predict early therapy response in 

GBM has also been reported for a limited number of subjects [134-136]. For each of these studies, 

either tumor-to-blood ratio (TBR) or SUV were the principal quantitative measures of tumor 

uptake [134-136]. Fractional change in SUV or TBR, either on a whole tumor or voxelwise basis, 

was compared to subject PFS or OS. However, the ability of these simplified measures to predict 

response to therapy in GBM was less obvious compared to the brain metastases study of Allen et 

al [91], as changes between BL and ETA [18F]ML-10 PET SUV images were not clearly associated 

with patient clinical outcome [135, 136]. 

 

The differences in findings between these studies may be due to several factors. First, Allen 

et al [91] used tumor size change on contrast enhanced MRI or CT between baseline and at 6-8 

weeks post-therapy as their response measure, not subject PFS or OS as in Oborski et al [135, 

136]. Second, brain metastases and GBM have very different etiology and physiology (e.g. brain 

metastases generally do not form behind the BBB). Finally, differences in findings may indicate 

limitations of SUV and TBR as measures of tumor [18F]ML-10 uptake in GBM.  
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The primary advantage of using simplified uptake measures such as SUV and TBR is their 

ease of measurement and clinical practicality. However, in the case of GBM SUV and TBR cannot 

distinguish between increased [18F]ML-10 uptake that is due to increased tumor apoptosis and 

increased [18F]ML-10 uptake due to increased radiotracer transport resulting from BBB 

breakdown. Moreover, SUV and TBR are measures of total radioactivity in the tumor at a specific 

instant post-tracer injection. Therefore, these measures can be biased by radioactivity in the tumor 

vasculature and, in the case of SUV, often depend on time-of-measurement post-injection. 

Generally, the use of SUV or TBR as measures of radiotracer uptake requires validation with 

radiotracer PK modeling. 

 

Figure 5-12C shows plots of TBR for ML-10 #9 at BL and ML-10 #12 at BL. For both 

cases the TBR is observed to increase over time. More generally, a time dependent TBR was 

observed across subjects and imaging time-points; however, the rate of increase in TBRs varied 

across [18F]ML-10 PET scans. 

5.2.5.3 PK Modeling of the Tumor Tissue Impulse Response Function 

Tracer compartmental modeling provides a principled approach to quantifying the time-

course of [18F]ML-10 concentration in tumor, and is a ubiquitous tool used in PET imaging to 

evaluate the in vivo PK of novel radiotracers. However, compartmental modeling makes specific 

assumptions regarding the state-space properties of the tumor tissue IRF (and thus assumptions 

regarding [18F]ML-10 transport in the tumor) that should be supported by in vitro or pre-clinical 

data. However, limited published results are available on the specific mechanism of [18F]ML-10 

uptake by cells undergoing apoptosis. For this reason, a model selection approach was first used 
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to study the tumor system IRF without making any assumptions regarding underlying 

compartmental (or state-space) structure.  

 

As part of the IRF model selection process, models for describing the [18F]ML-10 

concentration profile in the blood were also evaluated. Candidate IBIF and IRF models were fit to 

the measured [18F]ML-10 concentration time-course data simultaneously and selected for by using 

the model order selection criterion AICc and with the requirement that the parameters of the 

selected IBIF and IRF models be estimable (that is % COV ≤ 50% on all model parameters). 

 

Figure 5-14 shows an example IRF model selection analysis for ML-10 #6 at ETA. Table 

5-12 summarizes the model selection results using AICc and parameter estimability considerations. 

Of the 29 subjects analyzed, the 2α-2β IRF model was chosen as the best fitting IRF model 9 times 

while the 2α-1β IRF model was selected 10 times. In 2 cases an attenuated IBIF model was 

selected, suggesting for each case that the dominant component in the measure GBM uptake profile 

comes from the vascular component. Interestingly these 2 cases occurred for the same subject, 

ML-10 #11, at ETA and FUA who exhibited a PFS of less than 1 month. 

 

The total distribution volume, VT, can be interpreted as the ratio of [18F]ML-10 

concentration in tumor to [18F]ML-10 concentration in blood at equilibrium, assuming the tracer 

concentration in blood was held constant. Table 5-13 contains VT estimates for subject scans in 

which a reversible tumor IRF model was selected. For all cases the VT < 1, indicating that for these 

cases there is a higher concentration of [18F]ML-10 in the arterial blood than in tumor at 

equilibrium. For tumor TACs for which the selected best model was a 2α-1β IRF model, VB ranged 
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from 0.036 to 0.276 (mean = 0.132, median = 0.116) and associated Ki values ranged from 

4.787x10-4 ml/cm3/min to 1.829x10-3 ml/cm3/min (mean = 1.225 x10-3 ml/cm3/min, median = 

1.145 x10-3 ml/cm3/min). For tumor TACs for which the selected best model was a 2α-2β IRF 

model, VB ranged from 0.0469 to 0.2111 (mean = 0.1194, median = 0.1154) and associated VT 

values ranged from 0.0275 ml/cm3 to 0.7157 ml/cm3 (mean = 0.5318 ml/cm3, median = 0.4554 

ml/cm3). 

 

As mentioned above, [18F]ML-10 is the first and only PET radiotracer designed for in vivo 

imaging of apoptosis to be evaluated in humans to date. Therefore, there are no other PET 

apoptosis radiotracer in human results with which findings of [18F]ML-10 macroparameters VT or 

Ki can be directly compared. However, in the case of the blood-to-tissue transport rate parameter 

K1, comparison of K1 estimates from [18F]ML-10 scans with published K1 values of well 

understood radiotracers evaluated in GBM can reasonably be made.  

 

For example, [18F]FDG is actively transported across an intact BBB [190]. Previous studies 

using [18F]FDG PET have observed average K1 values of 0.064 ± 0.02 ml/g/min [166] and 0.072 

± 0.032 ml/g/min[167] in GBM subjects. In contrast, 3'-deoxy-3'-18F-fluorothymidine ([18F]FLT), 

is PET tracer of cell proliferation, that is known to require loss of BBB integrity for efficient 

transport from blood into GBM tissue [168]. Representative reported ranges in K1 observed for 

[18F]FLT PET studies [0.06, 0.164] ml/g/min [191] and [0.013, 0.126] ml/g/min [192] in newly 

diagnosed and recurrent GBM subjects, respectively. 
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For tumor TACs for which the selected best model was a 2α-1β IRF model, K1 ranged from 

0.006 ml/cm3/min to 0.030 ml/cm3/min (mean = 0.015 ml/cm3/min, median = 0.012 ml/cm3/min), 

while for tumor TACs for which the selected best model was a 2α-2β IRF model, K1 ranged from 

0.0113 ml/cm3/min to 0.0658 ml/cm3/min (mean = 0.0216 ml/cm3/min, median = 0.0266 

ml/cm3/min). Comparison with established neuro-oncology radiotracers in this narrow context, 

suggests [18F]ML-10 exhibits overall poor transport from blood to GBM tissue and is limited to 

brain tumors with significant BBB breakdown. 

 

Another key finding was the range in estimates for the blood volume fraction, VB, across 

scans. VB controls the relative contribution of the vascular and tumor tissue components to the 

measured tumor TAC.  The largest values for VB were observed for ML-10 #11 at ETA (VB 

=0.3074) and FUA (VB = 0.3910). For both cases, the selected best IRF model was an attenuated 

IBIF model, suggesting that the large vascular component renders the [18F]ML-10 signal 

component in the tumor essentially undetectable for these cases. The wide range in blood volume 

fraction estimates, suggests that VB cannot be ignored as a model parameter. 

 

Spectral Analysis Results 

SA is particularly appropriate for analyzing the dynamics of [18F]ML-10 because, to date 

the kinetics of [18F]ML-10 have not been investigated in either pre-clinical or clinical models nor 

has any compartmental model structure been hypothesized.  

 

In order to provide independent estimates of [18F]ML-10 uptake measures as well as 

provide additional guidance on IRF model selection, SA was performed on each measured tumor 
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tissue TAC. Because SA requires a priori knowledge of the input [18F]ML-10 concentration into 

the tumor, the corresponding IBIF model selected during the joint IRF/IBIF modeling was used as 

input for each scan.  

 

The number of detected reversible spectral components ranged from 0-4 components 

across subjects. The number of detected components generally supported model selection 

decisions made during joint IBIF/IRF model selection analysis. Moreover, as in the case of 

IBIF/IRF modeling both reversible and irreversible IRF models were detected. Table 5-17 and 

table 5-18 contain SA estimates for K1, VT, and Ki for each scan using the NNLS and L1 norm 

methods, respectively. Overall macroparameter estimates obtained using both the NNLS and L1 

norm methods were consistent in value with those obtained using the joint IBIF/IRF nonlinear 

modeling approach. 

 

Tracer Compartmental Modeling 

IRF modeling has the advantage of requiring few assumptions regarding radiotracer PK in 

GBM (aside from those required by a linear and time invariant system). This generality has 

advantages from the standpoint of initial study and quantification of the [18F]ML-10 uptake profile 

in GBM but is limited with regard to interpretation of the macroparameters. 

 

Tracer compartmental modeling provides a framework within which the macroparameters 

VT and Ki, derived from IRF modeling, can be interpreted. Figure 5-27 shows an example 2α-2β 

IRF model fit, for which the corresponding compartmental rate constants have been calculated. In 
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the context of compartmental modeling, figure 5-27 illustrates a 2-tissue 4 rate constant (2T-4K) 

fit to the subject’s GBM time activity curve. 

 

A challenge to obtaining reliable estimates of compartmental rate constants in tissue 

compartmental modeling is the high degree of co-linearity between the transfer rates. Figure 5-

28A (left) shows an example scan for which the 2T-4K model was selected as the best candidate 

model that explains the data. Visually, the sensitivity functions for k3 and k4 (figure 5-28A, right) 

are nearly scaled versions of each other and are primarily influenced by the same portion of the 

measured tumor TAC data. These results suggest that it is not possible to simultaneously separate 

the influence of k3 from k4 on the [18F]ML-10 uptake profile for this scan using the measured tumor 

TAC alone. 

 

Constraining the efflux parameter k4 to equal 0 (figure 5-28B) results in increased precision 

on the estimate for k3 compared to the 2T-4K model. Figure 5-28B (right) shows corresponding 

sensitivity functions for the 2T-3K model. The individual sensitivity function profiles for each rate 

constant are visually different, suggesting it is possible to separate the influence of each rate 

constant on the measured tumor TAC assuming the 2T-3K model. For this case, the preponderance 

of findings provides support for Ki over VT as the better measure of [18F]ML-10 uptake.   

 

For 3 of 29 scans analyzed, a 3α-2β IRF model was selected during the joint IBIF/IRF 

model selection, which corresponds to a 3T-5K tissue compartment model. Figures 5-29, 5-30, 

and 5-31 illustrate the compartmental model fits for these cases (ML-10 #2 at ETA, ML-10 #6 at 

ETA, and ML-10 #6 at FUA). For all 3 cases, the sensitivity functions for k2, k5, and k6 plateau 
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over nearly the same time range in measured tumor TAC samples, indicating strong correlation 

between these parameters and consistent with the overall lower precision on associated rate 

constant estimates compared to the corresponding 2T-4K and 2T-3K fit results.  

 

For all 3 cases, the 2T-3K tissue model yielded compartmental rates with the best precision. 

Furthermore, individual sensitivity function profiles for each 2T-3K rate constant were visually 

different within each subject, suggesting the measured tumor data allow for identification of the 

individual influence of each rate constant (in contrast to the 2T-4K and 3T-5K models). However, 

this increase in model parameter estimability comes at the expense of increased bias in the model 

fitting (especially in the case of ML-10 #6 at ETA and FUA). 

 

The two most commonly selected IRF models obtained as part of the joint IBIF-tumor IRF 

model order selection analysis (table 5-12) were the 2α-2β (selected in 9 out of 29 cases) and 2α-

1β (selected in 10 out of 29 cases) IRF models, consistent with the 2T-4K and 2T-3K tissue 

compartment models, respectively. Moreover, in the 3 cases for which the 3α-2β IRF model was 

selected (figures 5-29, 5-30, and 5-31), the corresponding compartmental transfer rates were not 

well estimated and showed evidence of strong correlation on sensitivity analysis. As a result, all 

[18F]ML-10 acquisitions were analyzed using both a 2T-4K and a 2T-3K tissue compartmental 

model separately (with the exception of ML-10 #11 at ETA and ML-10 #11 at FUA).  Additionally, 

analyzing each scan using a 2T-4K and a 2T-3K model allowed for comparison of model results 

across subjects. 
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Table 5-19 and table 5-20 contain estimates for VB and the associated compartmental rate 

constants, respectively, obtained by analyzing each measured [18F]ML-10 tumor TAC using a 2T-

4K tissue compartmental model. The coefficient of variation on each model estimate is expressed 

as a percentage given in parentheses. From table 5-20, [18F]ML-10 PET scans for which the 1α-1β 

IRF model was selected as the best tumor IRF model produced estimates for the 2T-4K rate 

constants that were generally not estimable. Ignoring these cases, estimates for the blood volume 

fraction (VB) ranged from 0.0162 to 0.2818 (mean = 0.1215 and median = 0.1096) and K1 ranged 

from 0.0113 ml/cm3/min to 0.0809 ml/cm3/min (mean = 0.0305 ml/cm3/min and median = 0.0268 

ml/cm3/min), respectively. 

 

 The large %COV (e.g. %COV ≥ 100% in some cases) on some of the estimates for the 

transfer rate constants is consistent with model overfitting and suggests the specific tissue model 

being fit is important in these cases. For example, the IRF model for ML-10 #9 at ETA was selected 

to be the 2α-1β model during joint IBIF/IRF modeling, consistent with a 2T-3K tissue 

compartmental model. The 2T-3K model can be obtained from the more complex 2T-4K tissue 

model by constraining the transfer rate from the specifically bound compartment, k4, to equal 0. 

As can be observed the estimate for k4 using the 2T-4K model for this scan is k4 = 1.09x10-14 

(%COV = 176.68).   

 

From estimates of the compartmental rate constants, the corresponding volumes of the 

specifically bound (VS) and non-displaceable (VND) tracer can be computed. Table 5-21 contains 

estimates for the total distribution volume VT, as well as VS and VND. Table 5-21 also contains the 

ratio of VS/VT for each scan, which quantifies the proportion of total tracer in the GBM that is 
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bound to cells undergoing apoptosis at equilibrium. Ignoring the scans for which a 1α-1β or 

attenuated IRF model was selected during joint IBIF/IRF modeling, the ratio of VS/VT ranged from 

0.3093 to 0.7997. This wide range in observed VS/VT ratio suggests a wide range in apoptosis rates 

is being exhibited across [18F]ML-10 scans. 

 

Table 5-22 contains estimates for VB and the associated compartmental rate constants 

obtained from analyzing each measured [18F]ML-10 tumor TAC using a 2T-3K tissue 

compartmental model. The coefficient of variation on each model estimate is expressed as a 

percentage given in parentheses. As in the 2T-4K modeling case, scans for which the 1α-1β IRF 

model was selected as the best tumor IRF showed poor estimability when analyzed as a 2T-3K 

model. Ignoring these subject, estimates for VB and K1 ranged from 0.0254 to 0.2977 (mean = 

0.1310 and median = 0.115) and from 0.0093 ml/cm3/min to 0.0347 ml/cm3/min (mean = 0.0211 

ml/cm3/min and median = 0.0196 ml/cm3/min), respectively. 

 

Table 5-23 contains the estimated value for the flux parameter Ki as well as the ratio of Ki-

to-K1 (denoted Ki/K1). Under the assumptions of the 2T-3K model, the ratio Ki/K1 (also equal to 

𝑘𝑘3
(𝑘𝑘2+𝑘𝑘3)

) quantifies the fraction of tracer entering the system that is irreversibly taken up by the 

GBM tissue, while �1 − 𝐾𝐾𝑖𝑖
𝐾𝐾1
� quantifies the proportion of [18F]ML-10 that is transported from the 

blood to the tissue but ultimately escapes back into the tumor vasculature. Ignoring the scans for 

which the 1α-1β IRF model was selected as the best tumor IRF model, the associated Ki values 

ranged from 3.675x10-4 ml/cm3/min to 5.483x10-3 ml/cm3/min, with corresponding Ki/K1 values 

ranging from 0.0142 to 0.2873 (table 5-23). Assuming a 2T-3K model to be appropriate for all 

[18F]ML-10 PET acquisitions, these findings indicate that the majority of [18F]ML-10 that is 
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transported into the tissue is ultimately not irreversibly trapped in the tissue. As with the 2T-K 

analysis, the range in observed Ki/K1 suggests a range of apoptosis rates is being observed across 

all acquired [18F]ML-10 PET scans.  

 

Early Therapy Response Assessment 

Since both reversible and irreversible IRF models were selected during the joint IBIF/IRF 

model selection analysis, and further supported by SA and compartmental modeling, the 

macroparameters VT, Ki, Ki/K1 were evaluated for their utility in predicting response to therapy in 

a subset of GBM subjects that received at least a BL and ETA [18F]ML-10 PET scan using both 

PFS and OS as clinical outcome measures. Compared to the individual compartmental rate 

constants, the macroparameters have better precision, do not rely on assuming a specific 

compartmental structure and, in some cases, can be approximated using simplified graphical 

methods (e.g. graphical analysis) [193-195]. Thus, it is natural to evaluate the macroparameters 

for their utility in predicting early response to therapy. 

 

Table 5-24 contains the percent change in VT from: BL to ETA (denoted ΔVT(ETA, BL)), 

BL to FUA (ΔVT(FUA,BL) ), and ETA to FUA (denoted ΔVT(FUA,ETA) ). Subjects are ordered 

in decreasing rank order according to their PFS. For subject imaging time-points that were best 

modeled using a 1α-1β IRF model (i.e. a 1T-2K tissue compartment model), the associated 1α-1β 

values for VT were used in the percent change calculation.  

 

The median PFS for a newly diagnosed GBM subject receiving standard of care 

concomitant radiotherapy plus temozolomide chemotherapy is 6.9 months [4]. This makes a PFS 
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of 6.9 months a natural threshold for categorizing subjects as exhibiting a poor PFS (i.e. PFS < 6.9 

months). For the limited number of subjects analyzed, no obvious association between ΔVT(ETA, 

BL) and subject PFS is apparent. For example, ML-10 #9 exhibited the longest PFS (25 months) 

but showed a 41.185% decrease in VT between the pre-therapy BL and the post-therapy 

administration ETA time-points suggesting an overall decrease in apoptosis at ETA compared to 

BL. In contrast, subject ML-10 #13 demonstrated the shortest PFS (2 months) post-therapy 

initiation, consistent with a poor response to therapy, but exhibited the largest percent increase in 

VT between BL and ETA.  

 

Table 5-25 contains percent change in Ki from: BL to ETA (ΔKi(ETA, BL)), BL to FUA 

(ΔKi(FUA, BL)), and ETA to FUA (ΔKi(FUA, ETA)) , while table 5-26 contains percent change 

in the ratio Ki/K1, henceforth referred to as Ki
*, from BL to ETA (ΔKi

*(ETA, BL)), BL to FUA 

(ΔKi
*(FUA, BL)), and ETA to FUA (ΔKi

*(FUA, ETA)). For the limited number of subjects 

analyzed, no obvious association between ΔKi(ETA, BL) and subject PFS is apparent. Overall 

percent change in Ki compared to PFS showed a similar pattern to percent change in VT compared 

to PFS. For example, ML-10 #9 exhibited the longest PFS (25 months) but showed a 24.61% 

decrease in Ki between the BL and ETA time-points suggesting an overall decrease in apoptosis 

at ETA compared to BL. In contrast, subject ML-10 #13 demonstrated the shortest PFS (2 months) 

post-therapy initiation, consistent with a poor response to therapy, but exhibited an increase in Ki 

(though the percent increase observed for Ki was not as large as the corresponding percent increase 

in VT). Furthermore, percent change in Ki between BL and FUA and between ETA and FUA 

decreased for all subjects except ML-10 #6.  
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In contrast to ΔVT(ETA, BL) and ΔKi(ETA, BL), subjects with PFS ≥ 15 months all 

showed an increase in Ki
* from the BL to ETA time-point, while 3 out of 4 subjects with PFS ≤ 11 

demonstrated an decrease in Ki
* from BL to ETA. Ki

* was observed to increase for ML-10 #14 

(who had a PFS = 2 months) from the BL to ETA; though, this result is confounded by the fact 

that ML-10 #14 does not have a true BL scan. This finding suggests that percent change in Ki/K1 

may have utility in predicting response to therapy between the BL and ETA time-points. 

 

For all tested uptake measures no clear association between percent change in VT, Ki, or 

Ki
* from BL to the FUA time-point is apparent.  

5.2.6 Evaluation of Local Heterogeneity in Apoptosis Rate via Voxelwise PK Modeling 

Quantitative methodology for response assessment of GBM using apoptosis as a biomarker 

is under active development. Some studies have suggested the use of a voxelwise change approach 

[196, 197], which has been shown to be fruitful in diffusion-weighted MRI [198-200]. For 

example, studies have demonstrated an inverse relationship between apparent diffusion coefficient 

(ADC) measurements from diffusion-weighted MRI and cell density in both low and high-grade 

glioma [200]. Additionally, small volumetric increase in brain tumor ADC have been shown to 

correlate with overall poorer response to therapy compared with large volumetric increases [198], 

suggesting that regions of tumor exhibiting little to no increase in ADC may be demonstrating 

ineffective therapy.  

 
In this study, all tumor voxels were treated as statistically independent. Moreover, the noise 

variance for each voxel was assumed constant over time and both the IBIF model and VB were 
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assumed known. Figure 5-32 shows representative fits using a 2α-2β IRF model and a 2α-1β IRF 

model for 2 different tumor voxels for ML-10 #6 at ETA estimated using IBIF Model 1b as IBIF 

model.  

 

For 2 subjects (ML10 #10 and ML-10 #14) ADC maps were available at the ETA and FUA 

time-points, which allowed to correlate GBM apoptosis at ETA with change in tumor density from 

ETA to FUA. Figure 5-37 shows representative (A) contrast enhanced (CE) MRI and (B) SUV 

PET sections for ML-10 #10 (left) and ML-10 #14 (right) at ETA with (C) corresponding 

voxelwise maps VT. (D) shows color coded histograms of VT values for ML-10 #10 (left) and ML-

10 #14 (right). Voxels are binned into 1 of 3 bins based on the total range of VT values observed: 

voxels with VT values in the lower-third of values (green), voxels with VT values in the middle-

third of values (yellow), and voxels with VT values in the upper-third of values (red). 

Representative sections of apparent diffusion coefficient (ADC) maps are shown at (E) ETA and 

(F) FUA for ML-10 #10 (left) and ML-10 #14 (right). Each set of images is co-registered to the 

corresponding subject’s ETA SUV PET image.  

 

Comparison of the scales of the individual VT maps between subjects emphasizes that the 

range in observed VT for ML-10 #10 at ETA was almost twice as large as ML-10 #14 at ETA, 

suggesting overall more apoptosis occurring in the GBM of ML-10 #10 at ETA. Visual comparison 

of the ADC maps for ML-10 #10 (figure 5-37E and F; left) and ML-10 #14 (figure 5-37E and F; 

right) reveals a marked increase in tumor ADC for ML-10 #10 compared to ML-10 #14. These 

findings are consistent with a larger decrease in tumor cellularity for ML-10 #10 then ML-10 #14 
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between ETA and FUA, as presaged by [18F]ML-10 imaging at ETA. A similar result is observed 

when voxelwie uptake of [18F]ML-10 is quantified using the flux parameter Ki (figure 5-38). 

 

Figure 5-39 shows voxelwise VT histograms for (A) ML-10 #10 and (B) ML-10 #14 at BL 

and ETA alone (left) and BL, ETA, and FUA all together (right). For ML-10 #10 the steady 

decrease in tumor size from BL to ETA to FUA time-points is apparent. In spite of patient response 

to treatment the number of voxels exhibiting a VT > 1 is larger at BL compared to ETA. For the 

case of ML-10 #14 the distributions of VT remain visually similar across time-points.  

 

Figure 5-40 shows voxelwise Ki histograms for (A) ML-10 #10 and (B) ML-10 #14 at BL 

and ETA alone (left) and BL, ETA, and FUA all together (right). In contrast to VT, the range in Ki 

shows marked increase at ETA compared to BL for ML-10 #10, consistent with an overall increase 

in the rate of apoptosis by the tumor after therapy administration. For the case of ML-10 #14 the 

histograms of Ki remain visually similar across time-points, and do not exhibit the range in Ki 

values observed for ML-10 #10 at ETA.  

 

Taken together, these findings provide further support that an [18F]ML-10 uptake measure 

proportional to Ki (either Ki/K1 or Ki itself) may have better utility than VT in predicting early 

therapy response in GBM.  

5.2.6.1 Study Limitations 

This study presented a first-pass analysis of [18F]ML-10 uptake profiles in human GBM 

subjects before and after therapy initiation. The limitations with respect to using an IBIF instead 

of arterial blood sampling to measure the [18F]ML-10 concentration in blood were discussed in 
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Section 5.1 above. However, an additional limitation not discussed previously is the fact that no 

blood samples were obtained at all, which not only prevents correction of the IBIF for partial 

volume effects, but also means it is not possible to obtain the [18F]ML-10 concentration in the 

plasma. 

 

This is an important point because it is the radiotracer concentration in the plasma that is 

available for transport into the tissue, which we have approximated by using an IBIF. Given the 

available data it is not possible to determine the accuracy of this approximation, but a poor 

approximation will bias estimates of the transport parameter K1 to some degree, and, as a result 

will bias estimates of VT and Ki. In order to minimize the effect of potential inaccuracy of K1, 

fractional change in the VT, Ki, and Ki/K1 was used for evaluating response to therapy.  

 

A second study limitation is the lack of a clear understanding of the mechanism for 

[18F]ML-10 uptake by cells undergoing apoptosis. As described in detail in Section 3.3, the 

[18F]ML-10 is hypothesized to be taken up by cells with a permanently depolarized cell membrane 

[119]. However, the exact substrate, if any, that [18F]ML-10 binds to once inside a cell undergoing 

apoptosis has not been elucidated. The current limited knowledge of the [18F]ML-10 uptake 

mechanism challenges interpretation of compartmental rate constants and limits certainty on the 

arrangement and connectivity of potential tissue compartment models consistent with the observed 

tumor tissue IRF models. For this reason, emphasis was placed on radiotracer macroparameters, 

which do not assume a particular arrangement of tissue compartments. 
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However, in the case of the macroparameter Ki some ambiguity still exists since unlabeled 

ML-10 is not an endogenous substance. Generally, the uptake flux macroparameter, Ki, of the 

tracer is multiplied by the steady-state concertation of the tracee to obtain an estimate for the 

overall uptake flux of the tracee. For example, in the case of [18F]FDG multiplication of Ki by the 

plasma concentration of glucose (technically the plasma glucose concentration divided by the 

lumped constant) gives the net glucose accumulation rate in normal tissue [19, 20, 167], under the 

assumption that the body’s glucose concentration is in steady state. Since [18F]ML-10 has no 

tracee, it is difficult to interpret the physiologic meaning of Ki as a measure of [18F]ML-10 uptake. 

 

Voxelwise maps of VT and Ki for [18F]ML-10 were evaluated in with the goal of identifying 

heterogeneity in GBM response to therapy. While tumor functional heterogeneity has important 

implications, the ability to measure heterogeneity is limited by the resolution of PET.  We note 

that there are a number of methods of resolution compensation that have been developed 

[76]. Many of these require a priori assumptions of tracer distribution in the brain or body.  For 

example, in one popular procedure, the geometric transfer matrix method, it is assumed that the 

brain can be divided into regions of uniform uptake [79]. However, such an assumption is 

unwarranted for tumor imaging and would also mask heterogeneity.  

 

Other methods do not require a priori knowledge.  The most important of these are the 

point spread function recovery reconstruction methods being developed by PET scanner 

manufacturers [80].  In this method, painstaking measurements of the scanner point spread 

function, which varies as a function of position in the scanner, are made by the manufacturer and 
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incorporated directly into the reconstruction.  However, this method has not been well evaluated 

for our purposes and was not available on the HR+ scanner used for this work.   

 

Additionally, a more general study limitation is that of interpreting a change in GBM 

apoptosis rate in the context of overall tumor status. For example, a relative increase in apoptosis 

may or may not be indicative of effective therapy depending on the relative growth rate of the 

tumor. Regardless of tumor growth rate though, an increase in tumor [18F]ML-10 uptake would 

likely be observed. In this sense apoptosis imaging as a stand-alone method may be limited to 

identifying GBM patients that are refractory to a particular anti-cancer therapy (i.e. cases where 

no increase in apoptosis is observed between BL and post therapy time-points) rather than 

identifying patients likely to exhibit a positive therapy response. 

 

Finally, the initial study design aimed to image GBM subjects receiving the same treatment 

regimen at a fixed number of days post-therapy initiation. However, due to clinical realities we 

could not always be uniform about the therapy each subject received or the number of days 

between pre-therapy (baseline) and post-therapy administration (early therapy assessment or 

follow-up assessment) [18F]ML-10 PET time-points. Though, all subjects were on continuous 

therapy which may mitigate the impact of differences in image timing between subjects on study 

response assessment results. 

5.2.7  [18F]ML-10 Pharmacokinetic Modeling Conclusions 

[18F]ML-10 demonstrates comparatively low tracer uptake in healthy brain tissue resulting 

in good contrast between tumor and heathy brain tissue signal. In tumor, [18F]ML-10 exhibits 
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overall poor transport rate from blood pool into tumor tissue. A large range in fractional 

contribution of blood component (VB) to tumor signal was observed across subjects. In some cases, 

the combination of a low K1 with high tumor vascularity (i.e. high VB) caused the tumor blood 

concentration signal to be the only detectable signal component in the tumor. 

 

The distribution of selected tumor impulse response function models across subjects and, 

in some cases, within the same subject but across imaging time-points makes it difficult to quantify 

uptake across subjects with a unique macroparameter (e.g. VT or Ki). However, the 2α-1β IRF 

model (consistent with a 2T-3K compartment model) generally provided satisfactory fits to 

measured tumor TACs (based on parameter uncertainty and model sensitivity) for which the 

selected best IRF model was not a 1α-1β or 1α-10 IRF model. A detailed investigation of both 

reversible and irreversible 2-tissue compartment rate constants revealed a wide range in values of 

the ratio of VS/VT ([0.3093, 0.7997]) and the ratio Ki/K1 ([0.0142, 0.2873]).  

 

The uptake measures VT, Ki, and Ki/K1 were evaluated for their utility in early therapy 

response assessment for a limited number of GBM subjects using PFS and OS as outcome 

measures. Of the three uptake measures evaluated, percent change in Ki/K1 between the BL and 

ETA time-points showed promise as a predictor of GBM response to therapy in the sense that 

subjects with a PFS > 11 months showed an increase in Ki/K1. In an analysis of 2 subjects, relative 

differences in Ki values between the 2 subjects were consistent with comparative increase in tumor 

density evaluated on diffusion weighted MRI. Taken together, these findings suggest that an 

[18F]ML-10 uptake measure proportional to Ki (either Ki/K1 or Ki itself) may have utility in 

predicting early therapy response of GBM. 
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6.0  FUTURE DIRECTIONS 

The ability to probe apoptosis by in vivo imaging would allow access to a key cellular 

function and, thereby, would offer a direct and potentially rapid measure of the efficacy of many 

types of cancer therapy. However, several challenges related to interpretation and quantification 

must be overcome before this technology can be utilized in the clinic. For example, the optimal 

time to image therapy induced cell death must be determined. Additional questions linger with 

regard to the establishment of appropriate quantitative methodology for response assessment as 

well as are whether a measure of the total amount of tumor apoptosis post-therapy initiation alone 

can provide enough information with respect to tumor status to support reliable therapy response 

prediction. 

6.1 OPTIMAL IMAGE TIMING 

 
Arguably, the single biggest impediment establishing robust and reliable quantitative 

response assessment methodology using apoptosis as a biomarker [201], assuming appropriate 

radio-compound biodistribution, is the difficulty of determining the optimal time to image post-

therapy initiation, and is a fundamental step for timing of larger therapy-response clinical efficacy 

trials. Initial in human therapy response assessment imaging protocols using radio-labeled 
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Annexin-V were based on the observation that the peak 2-3 days post- single dose of FasL ligand 

and or in treated rodent xenograft models [202, 203]. Though, this phenomenon of observing a 

time of maximum apoptosis radiotracer uptake has been described in other pre-clinical studies 

using [18F]ML-10 as well [122]. However, the degree to which the results from these pre-clinical 

studies translate to de novo in human neoplasms being treated with clinical doses of chemotherapy 

or concomitant chemotherapy and radiation or radiation alone, often over a period of several days 

to weeks, has yet to be demonstrated. Moreover, it's not obvious that in these cases only a single 

‘spike’ in apoptosis should be expected.  

 

From a practical standpoint the possibility of an optimal time or optimal window of time 

to assess response to therapy raises several questions [202]. For example, is the optimal imaging 

period cancer type dependent, therapy dependent or both? Given a particular cancer type and 

therapy regimen, is the optimal imaging time consistent between patients, or is this time patient 

specific? What happens if a patient is scanned at a sub-optimal time due to, for example, a 

scheduling issue in the clinic? Will their imaging results still be useful?   

 

In order to answer some of these questions, some authors have suggested attaching a radio-

label with a long physical half-life (eg. 99mTc, 111In) to apoptosis radiotracers, which, assuming 

appropriate uptake kinetics and biodistrubution properties, may allow for repeated imaging 

following a single injection of radiotracer [92]. This approach may be particularly useful if 

included as part of a stereotactic radiosurgery (SRS) treatment protocol, as patients receiving SRS 

for primary or secondary brain tumors often receive only a single large "impulse" of radiation 

specifically targeted to the tumor. As a result, an SRS therapy trial may provide an opportunity to 
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determine the profile of tumor apoptosis (for which it would be reasonable to expect a single peak 

apoptosis rate) as a function of time by serially measuring changes in apoptosis after treatment 

administration.  

6.2 STRATEGIES FOR NORMALIZATION OF MEASURES OF OVERALL 

APOPTOSIS 

The primary mode of action of many cancer therapies is the induction of apoptosis. 

Quantifying the change in tumor apoptosis rate during therapy would therefore provide a direct 

measure of therapy effect, and as such, is crucial for a complete understanding of patient status 

and therapy efficacy. However, it may prove difficult to interpret response to therapy based on an 

absolute increase or decrease in apoptosis signal without knowledge of additional biomarkers of 

tumor status such as proliferation rate and tumor density. 

 

In the context of neuroimaging, one way to form an image-based "apoptotic index" may be 

to normalize measures of overall apoptosis with other, complementary, biomarkers related to 

tumor density and onocologic status. For example, overall sodium concentration has been shown 

to be elevated in tumors compared healthy tissue due to membrane depolarization during mitosis 

and/or changes in cell morphology [204-206]. As a result, sodium MRI may be able to provide a 

measure of proliferative and/or cell volume fraction that occur in tumors and normal tissues after 

anticancer treatment complementary to that of apoptosis imaging. Additional biomarkers for 

normalization may be measured using magnetic resonance spectrospcopic imaging (MRSI). For 

example, measures of choline (Ch, increased cellularity and membrane synthesis/turnover) 
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concnetration, as well as the ratios of Ch/N-Acetyl Aspartate (NAA, synthesized only in neurons) 

and  Choline/Creatine (Cr, metabolites in bioenergetic pathways[207]) have all been used 

extensively in the detection, grading, surgical planning, and predicting outcome in patients with 

brain tumors [208-211]. While the use of these biomarkers of tumor status for normalization of 

measures of therapy induced apoptosis would need to be explored and validated, the development 

of a fully integrated hybrid PET/MR system (mMR Biograph, Siemens) may make this approach 

clinically feasible for PET radio-pharmaceuticals.  

6.3 FUTURE DIRECTIONS SPECIFIC TO [18F]ML-10 AND GBM 

The results of this dissertation suggest that the 2α-1β IRF model (consistent with a 2T-3K 

compartment model) can generally provide satisfactory fits to measured tumor TACs for which 

the selected best IRF model is not a 1α-1β or 1α-10 IRF model. Moreover, results suggest that an 

[18F]ML-10 uptake measure proportional to Ki (either Ki/K1 or Ki itself) may have utility in 

predicting early therapy response of GBM. However, both Ki and Ki/K1 would need to be further 

validated as quantitative imaging biomarkers for tumor early therapy response. A component of 

this validation process would include pre-clinical studies to evaluate [18F]ML-10 kinetic properties 

in tumor tissue sections. For example, small animal studies could be used to provide additional 

evidence to decide between modeling [18F]ML-10 uptake kinetics as either irreversible or 

reversible in tumor tissue undergoing apoptosis as well as further elucidate appropriate 

compartmental model structure. 
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If one or both Ki and Ki/K1 can be validated as a measure of treatment response, the next 

step would be to investigate simplified, clinically practical measures of [18F]ML-10 uptake that 

correlate with Ki or Ki/K1.  For example, one could investigate correlation between Ki (or Ki/K1) 

and SUV or Ki and TBR and determine an optimal time post-injection when fractional change in 

SUV or TBR is maximally correlated with fractional change in Ki (or Ki/K1). If, for example, it 

was found that SUV change was strongly correlated with change in Ki (or Ki/K1) 30 min after 

[18F]ML-10 injection, then a clinically practical GBM imaging protocol might be to acquire a 10 

min [18F]ML-10 PET scan initiating 25 min post radiotracer injection.  

 

If a static measure of tracer uptake that correlates well with either Ki (or Ki/K1) cannot be 

found, it may be possible to develop shortened imaging protocols that can be used to obtain 

estimates for Ki and K1. The feasibility of performing shortened imaging protocols has already 

been demonstrated using [18F]FDG [212, 213]. Given our current data, it would be possible to 

compare estimates of Ki and Ki/K1 obtained using only, for example, the first 0-15 min of the PET 

acquisition and compare fractional change in Ki (or Ki/K1) estimated using the shortened protocol 

to fractional change in Ki (or Ki/K1) using the entire acquired data-set. However, a practical hurdle 

to developing a shortened dynamic imaging protocol is that arterial blood sampling is not likely to 

become routine in the clinic; hence, approximating the radiotracer concentration in the plasma with 

the radiotracer concentration in the blood using an IBIF would have to be validated. 

 

Analysis of Ki on a voxelwise level also showed promise as response measure. A future 

direction would be to investigate voxelwise change in Ki (or Ki/K1) more closely. Incorporation of 

additional tumor status information from, for example, MRSI or diffusion weighted MRI would 



 274 

likely be more feasible on a voxelwise level. In order to maintain clinical practicality, it is likely 

that a voxelwise approach to estimating Ki (or Ki/K1) would have to be implemented using a direct 

reconstruction approach (i.e. an approach in which parameter maps of Ki or Ki/K1 are generated 

as part of the image reconstruction) [33, 214, 215] in combination with using a shortened imaging 

protocol.  
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APPENDIX A 

MATHEMATICAL DERIVATIONS 

A.1 INPUT FUNCTION MODELS 

In order to quantify the pharmacokinetics of a radiotracer within a tissue, knowledge of the 

input time-course is required. In this dissertation, the time-course of radioactivity concentration in 

the blood pool is sampled directly from each PET acquisition; referred to as an image-derived 

input function (IBIF). Therefore, each measured blood sample represents the average radioactivity 

concentration in the blood pool over the corresponding PET imaging time frame. 

 

Let ℸ(t) denote a candidate input function model. Then, the time-average radioactivity 

concentration over a particular time-interval [𝑡𝑡𝑖𝑖𝑠𝑠, 𝑡𝑡𝑖𝑖𝑒𝑒] is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.1), where 𝑡𝑡𝑖𝑖𝑠𝑠 and  𝑡𝑡𝑖𝑖𝑒𝑒 

denote the start and end times of the ith PET frame, respectively. 

 

〈ℸ(𝐭𝐭)〉𝒔𝒔 =  𝟏𝟏
𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄 ∫ ℸ(𝐭𝐭)𝐝𝐝𝐭𝐭𝒕𝒕𝒔𝒔
𝒘𝒘

𝒕𝒕𝒔𝒔
𝒄𝒄  (Eqn. A.1.1) 
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However, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.1) can be written in a more convenient form by re-writing 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.1) in terms of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.2) to obtain (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.3).  

 

𝐈𝐈(𝐭𝐭) ≜ ∫ ℸ(𝐭𝐭)𝐝𝐝𝐭𝐭𝐭𝐭
−∞  (Eqn. A.1.2) 

 

〈ℸ(𝐭𝐭)〉𝒔𝒔 =  𝟏𝟏
𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄 ∫ ℸ(𝐭𝐭)𝐝𝐝𝐭𝐭𝒕𝒕𝒔𝒔
𝒘𝒘

𝒕𝒕𝒔𝒔
𝒄𝒄 = �𝑰𝑰�𝒕𝒕𝒔𝒔

𝒘𝒘�−𝑰𝑰�𝒕𝒕𝒔𝒔
𝒄𝒄��

𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄  (Eqn. A.1.3) 

 
 
 
The approach used in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.3) to compute the time-average of an input function 

model will be used extensively in this appendix. Moreover, as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.3) is a general method 

for computing the time-average of a function over a time-interval, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.3) is also used 

throughout this appendix to compute the time-averages of various convolution integrals. 

 

There are two general input model forms used throughout the main body of this 

dissertation: the Feng model and the generalized Feng model, which are contained in table 5-1 of 

Section 5.1. In table 5-1, these input model forms are called IBIF Model 1 and IBIF Model 2; 

however, for the purposes of this entire Appendix, these model forms will be referred to as the 

Feng Model and generalized Feng model, respectively. The following two subsections sections, 

Section A.1.1 and Section A.1.2, derive the time-averaged versions of the Feng model (Section 

A.1.1) and the generalized Feng model (Section A.1.2), respectively.  
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A.1.1 Time-Averaged Feng Model 

The goal of this section is to derive a time-averaged form of the Feng model that is 

appropriate for modeling a time-course of blood radioactivity concentration samples obtained from 

dynamic PET scanning. Moreover, the gradient of the time-averaged Feng model will be computed 

as will the time-average of the running integral of this model.  

The Feng model presented in this dissertation is based on the input model (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.4) 

defined in Feng et al. [151], which was originally developed for the purpose of simulating 18F-

labeled fluorodeoxyglucose ([18F]FDG) plasma concentration curves [151].  

 

𝒇𝒇(𝒕𝒕) =  [(𝑨𝑨𝒕𝒕 − 𝑩𝑩 − 𝑵𝑵)𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕 + 𝑩𝑩𝒘𝒘−𝒑𝒑𝟐𝟐𝒕𝒕 + 𝑵𝑵𝒘𝒘−𝒑𝒑𝟑𝟑𝒕𝒕]𝒙𝒙(𝒕𝒕) (Eqn. A.1.4) 

 
 
 
For the purposes of the analysis presented in this dissertation, the Feng model is expanded 

to allow for a variable number of first-order decaying exponentials as shown in (𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.5). In 

this dissertation, the "Feng model" refers to model defined by (𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.5), and can be shown to 

have Laplace transform given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.6). 

 

𝒇𝒇(𝒕𝒕) =  �(𝜸𝜸𝟎𝟎𝒕𝒕 − ∑ 𝜸𝜸𝒔𝒔𝑵𝑵
𝒔𝒔=𝟐𝟐 )𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕 + ∑ 𝜸𝜸𝒔𝒔𝑵𝑵

𝒔𝒔=𝟐𝟐 𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕�𝒙𝒙(𝒕𝒕) (Eqn. A.1.5) 

 

𝒇𝒇�(𝒄𝒄) = 𝜸𝜸𝟎𝟎
(𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 + −∑ 𝜸𝜸𝒔𝒔𝑵𝑵

𝒔𝒔=𝟐𝟐
(𝒄𝒄+𝒑𝒑𝟏𝟏) + ∑ 𝜸𝜸𝒔𝒔

(𝒄𝒄+𝒑𝒑𝒔𝒔)
𝑵𝑵
𝒔𝒔=𝟐𝟐  (Eqn. A.1.6) 

 
 
 

As stated above, the blood radioactivity concentration samples used in this dissertation are 

obtained directly from the PET acquisition. Therefore, each blood concentration sample represents 
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the average radioactivity concentration in the blood pool over the corresponding imaging time 

interval. Hence, in order to account for the time averaging in the measure blood radioactivity 

concentration, the model fitted to the measure blood samples must also be time-averaged. To this 

end, following the procedure described by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.3) above, the running integral of 

(Eqn.  A. 1.6) can be written as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.7), which has Laplace representaion given by 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.8).  

 

𝑭𝑭(𝒕𝒕) =  ∫ 𝒇𝒇(𝒕𝒕)𝒕𝒕
−∞ 𝒅𝒅𝒕𝒕 = 𝒇𝒇(𝒕𝒕) ⊗𝒙𝒙(𝒕𝒕) (Eqn. A.1.7) 

 

𝑭𝑭�(𝒄𝒄) =  𝟏𝟏
𝒄𝒄
∗ 𝒇𝒇�(𝒄𝒄) (Eqn. A.1.8) 

 
 
 
Inserting (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.6) into (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.8) gives (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.9), which simplifies to 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.10). 

 

𝑭𝑭�(𝒄𝒄) = 𝟏𝟏
𝒄𝒄
� 𝜸𝜸𝟎𝟎

(𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 +  −∑ 𝜸𝜸𝒔𝒔𝑵𝑵
𝒔𝒔=𝟐𝟐

(𝒄𝒄+𝒑𝒑𝟏𝟏) + ∑ 𝜸𝜸𝒔𝒔
(𝒄𝒄+𝒑𝒑𝒔𝒔)

𝑵𝑵
𝒔𝒔=𝟐𝟐 � (Eqn. A.1.9) 

 

𝑭𝑭�(𝒄𝒄) = 𝜸𝜸𝟎𝟎
𝒄𝒄(𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 + −∑ 𝜸𝜸𝒔𝒔𝑵𝑵

𝒔𝒔=𝟐𝟐
𝒄𝒄(𝒄𝒄+𝒑𝒑𝟏𝟏) + ∑ 𝜸𝜸𝒔𝒔

𝒄𝒄(𝒄𝒄+𝒑𝒑𝒔𝒔)
𝑵𝑵
𝒔𝒔=𝟐𝟐  (Eqn. A.1.10) 

 
 
 
A form for (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.5) useful for fitting to time-averaged data can then be obtained by 

performing a partial fraction expansion of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴1.10) and implementing a transformation of 

variables defined in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.11) leading to (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.12). 
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⎩
⎪
⎨

⎪
⎧ 𝒔𝒔𝟎𝟎 ≜ − 𝜸𝜸𝟎𝟎

𝒑𝒑𝟏𝟏

𝒔𝒔𝟏𝟏 ≜ �− 𝜸𝜸𝟎𝟎
𝒑𝒑𝟏𝟏
𝟐𝟐 + ∑ 𝜸𝜸𝒔𝒔𝑵𝑵

𝒔𝒔=𝟐𝟐
𝒑𝒑𝟏𝟏

�

𝒔𝒔𝒔𝒔 ≜  −�𝜸𝜸𝒔𝒔
𝒑𝒑𝒔𝒔
� ; 𝒔𝒔 = 𝟐𝟐…𝑵𝑵

 (Eqn. A.1.11) 

 

𝑭𝑭�(𝒄𝒄) = 𝒔𝒔𝟎𝟎
 (𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 + 𝒔𝒔𝟏𝟏

(𝒄𝒄+𝒑𝒑𝟏𝟏) + ∑ 𝒔𝒔𝒔𝒔
(𝒄𝒄+𝒑𝒑𝒔𝒔)

 𝑵𝑵
𝒔𝒔=𝟐𝟐 − �𝒔𝒔𝟏𝟏+∑ 𝒔𝒔𝒔𝒔𝐍𝐍

𝐢𝐢=𝟐𝟐 �
𝒄𝒄

 (Eqn. A.1.12) 

 
 
 
However, from (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.11), 𝑏𝑏1 can be further simplified by writing it in terms of 𝑏𝑏0, 

𝑏𝑏𝑖𝑖, and 𝑝𝑝𝑖𝑖. Specifically, 

 

𝑏𝑏1 ≜ �−
𝛾𝛾0
𝑝𝑝12

+
∑ 𝛾𝛾𝑖𝑖𝑁𝑁
𝑖𝑖=2

𝑝𝑝1
�  

 

↔ 𝑏𝑏1 =
𝑏𝑏0
𝑝𝑝1
−
∑ 𝑏𝑏𝑖𝑖𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=2

𝑝𝑝1
=
𝑏𝑏0 − ∑ 𝑏𝑏𝑖𝑖𝑝𝑝𝑖𝑖𝑁𝑁

𝑖𝑖=2

𝑝𝑝1
 

 
 
 

,which leads to  

 

𝒔𝒔𝟏𝟏 = 𝒔𝒔𝟎𝟎−∑ 𝒔𝒔𝒔𝒔𝒑𝒑𝒔𝒔𝑵𝑵
𝒔𝒔=𝟐𝟐
𝒑𝒑𝟏𝟏

 (Eqn. A.1.13) 

 
 
 

Inserting the simplified expression for 𝑏𝑏1 given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.13)  into (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.12), 

and defining 𝑏𝑏𝑁𝑁+1 ≜  −[𝑏𝑏1 + ∑ 𝑏𝑏𝑖𝑖𝑁𝑁
𝑖𝑖=2 ] leads to a further re-parameterization of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.12) 
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given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.14) with coefficient definitions given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.15). Thus the 

coefficients in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.15) relate the instantaneous representation of the input function to its 

running integral. 

 

𝑭𝑭�(𝒄𝒄) = 𝒔𝒔𝟎𝟎
 (𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 + 𝒔𝒔𝟏𝟏

(𝒄𝒄+𝒑𝒑𝟏𝟏) + ∑ 𝒔𝒔𝒔𝒔
(𝒄𝒄+𝒑𝒑𝒔𝒔)

 𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏

𝒄𝒄  (Eqn. A.1.14) 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝒔𝒔𝟎𝟎 ≜ − 𝜸𝜸𝟎𝟎

𝒑𝒑𝟏𝟏

𝒔𝒔𝟏𝟏 ≜
𝒔𝒔𝟎𝟎−∑ 𝒔𝒔𝒔𝒔𝒑𝒑𝒔𝒔𝑵𝑵

𝒔𝒔=𝟐𝟐
𝒑𝒑𝟏𝟏

𝒔𝒔𝒔𝒔 ≜  −�𝜸𝜸𝒔𝒔
𝒑𝒑𝒔𝒔
� ; 𝒔𝒔 = 𝟐𝟐…𝑵𝑵

𝒔𝒔𝑵𝑵+𝟏𝟏 ≜  −�𝒔𝒔𝟏𝟏 + ∑ 𝒔𝒔𝒔𝒔𝑵𝑵
𝒔𝒔=𝟐𝟐 �

 (Eqn. A.1.15) 

 
 
 
Taking the inverse Laplace transform of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.14) gives the time-domain 

representation for the running integral if the Feng input model (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.16). 

 

𝑭𝑭(𝒕𝒕) = �𝒔𝒔𝟎𝟎𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕 + 𝒔𝒔𝟏𝟏𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕 + ∑ 𝒔𝒔𝒔𝒔𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕 𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏�𝒙𝒙(𝒕𝒕) (Eqn. A.1.16) 

 

a. Calculating the Gradient of the Time-Averaged Feng Model 

For the purposes of fitting the time-averaged Feng input model to the measured data, it is 

helpful to have an explicit expression for the gradient of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.16) with respect to the 

individual model parameters (including any time-delay parameter 𝜏𝜏). (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.17) gives the 

Laplace transform of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.16) with a time-delay, 𝜏𝜏, included, while (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.18)-thru-
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(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.23) give the partial derivatives of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.17) with respect to each model 

parameters in the Laplace domain. 

 

𝑭𝑭�(𝒄𝒄) = � 𝒔𝒔𝟎𝟎
 (𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 + 𝒔𝒔𝟏𝟏

(𝒄𝒄+𝒑𝒑𝟏𝟏) + ∑ 𝒔𝒔𝒔𝒔
(𝒄𝒄+𝒑𝒑𝒔𝒔)

 𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏

𝒄𝒄
� 𝒘𝒘−𝒄𝒄𝒔𝒔 (Eqn. A.1.17) 

 

𝝏𝝏𝑭𝑭�(𝒄𝒄)
𝝏𝝏𝒔𝒔𝟎𝟎

= � 𝟏𝟏
 (𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 +

𝝏𝝏𝒔𝒔𝟏𝟏
𝝏𝝏𝒔𝒔𝟎𝟎

(𝒄𝒄+𝒑𝒑𝟏𝟏)  +  
𝝏𝝏𝒔𝒔𝑵𝑵+𝟏𝟏 
𝝏𝝏𝒔𝒔𝟎𝟎
𝒄𝒄

� 𝒘𝒘−𝒄𝒄𝒔𝒔 (Eqn. A.1.18) 

 

𝝏𝝏𝑭𝑭�(𝒄𝒄)
𝝏𝝏𝒔𝒔𝒔𝒔

= �
𝝏𝝏𝒔𝒔𝟏𝟏
𝝏𝝏𝒔𝒔𝒔𝒔

(𝒄𝒄+𝒑𝒑𝟏𝟏) + 𝟏𝟏
(𝒄𝒄+𝒑𝒑𝒔𝒔)

+
𝝏𝝏𝒔𝒔𝑵𝑵+𝟏𝟏 
𝝏𝝏𝒔𝒔𝒔𝒔
𝒄𝒄

� 𝒘𝒘−𝒄𝒄𝒔𝒔 (Eqn. A.1.19) 

 

𝝏𝝏𝑭𝑭�(𝒄𝒄)
𝝏𝝏𝒑𝒑𝟏𝟏

= � −𝟐𝟐𝒔𝒔𝟎𝟎
 (𝒄𝒄+𝒑𝒑𝟏𝟏)𝟑𝟑 −

𝒔𝒔𝟏𝟏
(𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐  +  

𝝏𝝏𝒔𝒔𝟏𝟏
𝝏𝝏𝒑𝒑𝟏𝟏

(𝒄𝒄+𝒑𝒑𝟏𝟏) +
𝝏𝝏𝒔𝒔𝑵𝑵+𝟏𝟏 
𝝏𝝏𝒑𝒑𝟏𝟏
𝒄𝒄

� 𝒘𝒘−𝒄𝒄𝒔𝒔 (Eqn. A.1.20) 

 

𝝏𝝏𝑭𝑭�(𝒄𝒄)
𝝏𝝏𝒑𝒑𝒔𝒔

= � 
𝝏𝝏𝒔𝒔𝟏𝟏
𝝏𝝏𝒑𝒑𝒔𝒔

(𝒄𝒄+𝒑𝒑𝟏𝟏)  −  𝒔𝒔𝒔𝒔
(𝒄𝒄+𝒑𝒑𝒔𝒔)𝟐𝟐

+
𝝏𝝏𝒔𝒔𝑵𝑵+𝟏𝟏 
𝝏𝝏𝒑𝒑𝒔𝒔
𝒄𝒄

� 𝒘𝒘−𝒄𝒄𝒔𝒔 (Eqn. A.1.21) 

 

𝜹𝜹𝑭𝑭�(𝒄𝒄)
𝜹𝜹𝒔𝒔

= −� 𝒔𝒔𝟎𝟎𝒄𝒄
 (𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 + 𝒔𝒔𝟏𝟏𝒄𝒄

(𝒄𝒄+𝒑𝒑𝟏𝟏) + ∑ 𝒔𝒔𝒔𝒔𝒄𝒄
(𝒄𝒄+𝒑𝒑𝒔𝒔)

 𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏� 𝒘𝒘−𝒄𝒄𝒔𝒔 (Eqn. A.1.22) 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝝏𝝏𝒔𝒔𝟏𝟏
𝝏𝝏𝒔𝒔𝟎𝟎

= 𝟏𝟏
𝒑𝒑𝟏𝟏

;
𝝏𝝏𝒔𝒔𝟏𝟏
𝝏𝝏𝒔𝒔𝒔𝒔

= −�𝒑𝒑𝒔𝒔
𝒑𝒑𝟏𝟏
� ; 𝒔𝒔 = 𝟐𝟐, … ,𝑵𝑵

𝝏𝝏𝒔𝒔𝟏𝟏
𝝏𝝏𝒑𝒑𝟏𝟏

= −�𝒔𝒔𝟏𝟏
𝒑𝒑𝟏𝟏
� ;

𝝏𝝏𝒔𝒔𝟏𝟏
𝝏𝝏𝒑𝒑𝒔𝒔

= −�𝒔𝒔𝒔𝒔
𝒑𝒑𝟏𝟏
� ; 𝒔𝒔 = 𝟐𝟐, … ,𝑵𝑵

𝝏𝝏𝒔𝒔𝑵𝑵+𝟏𝟏 
𝝏𝝏𝒔𝒔𝟎𝟎

= −� 𝟏𝟏
𝒑𝒑𝟏𝟏
�

𝝏𝝏𝒔𝒔𝑵𝑵+𝟏𝟏 
𝝏𝝏𝒔𝒔𝒔𝒔

= �𝒑𝒑𝒔𝒔
𝒑𝒑𝟏𝟏
− 𝟏𝟏� ; 𝒔𝒔 = 𝟐𝟐, … ,𝑵𝑵

𝝏𝝏𝒔𝒔𝑵𝑵+𝟏𝟏 
𝝏𝝏𝒑𝒑𝟏𝟏

= 𝒔𝒔𝟏𝟏
𝒑𝒑𝟏𝟏

𝝏𝝏𝒔𝒔𝑵𝑵+𝟏𝟏 
𝝏𝝏𝒑𝒑𝒔𝒔

= 𝒔𝒔𝒔𝒔
𝒑𝒑𝟏𝟏

; 𝒔𝒔 = 𝟐𝟐, … ,𝑵𝑵
 

 (Eqn. A.1.23) 

 

The partial derivatives in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.18)-thru-(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.23) can be transformed to the 

time domain, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.25)-thru-(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.29), to give partial derivatives of the running 

integral of the delayed generalized Feng model (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.24). 

 

𝑭𝑭(𝒕𝒕) = �𝒔𝒔𝟎𝟎𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + 𝒔𝒔𝟏𝟏𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + ∑ 𝒔𝒔𝒔𝒔𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕) 𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝒕𝒕 − 𝒔𝒔) (Eqn. A.1.24) 

 

𝝏𝝏𝑭𝑭
𝝏𝝏𝒔𝒔𝟎𝟎

= �𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + � 𝟏𝟏
𝒑𝒑𝟏𝟏
� 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) − � 𝟏𝟏

𝒑𝒑𝟏𝟏
�𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝒕𝒕 − 𝒔𝒔)  (Eqn. A.1.25) 

 

𝝏𝝏𝑭𝑭
𝝏𝝏𝒔𝒔𝒔𝒔

= ��− 𝒑𝒑𝒔𝒔
𝒑𝒑𝟏𝟏
� 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +  𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕) +  �𝒑𝒑𝒔𝒔

𝒑𝒑𝟏𝟏
− 𝟏𝟏�𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝒕𝒕 − 𝒔𝒔); 𝒔𝒔 = 𝟐𝟐, … ,𝑵𝑵 (Eqn. A.1.26) 

 

𝝏𝝏𝑭𝑭
𝝏𝝏𝒑𝒑𝟏𝟏

= �−𝒔𝒔𝟎𝟎𝒕𝒕𝟐𝟐𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)− 𝒔𝒔𝟏𝟏𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)− �𝒔𝒔𝟏𝟏
𝒑𝒑𝟏𝟏
� 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + �𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
�𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝒕𝒕 − 𝒔𝒔) (Eqn. A.1.27) 

 

𝝏𝝏𝑭𝑭
𝝏𝝏𝒑𝒑𝒔𝒔

= �− �𝒔𝒔𝒔𝒔
𝒑𝒑𝟏𝟏
� 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) −  𝒔𝒔𝒔𝒔𝒕𝒕𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕) + �𝒔𝒔𝒔𝒔

𝒑𝒑𝟏𝟏
�𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝒕𝒕 − 𝒔𝒔); 𝒔𝒔 = 𝟐𝟐, … ,𝑵𝑵 (Eqn. A.1.28) 
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𝝏𝝏𝑭𝑭
𝝏𝝏𝒔𝒔

= �𝒔𝒔𝟎𝟎𝒑𝒑𝟏𝟏𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕 − (𝒔𝒔𝟎𝟎 − 𝒔𝒔𝟏𝟏𝒑𝒑𝟏𝟏)𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕 + ∑ 𝒔𝒔𝒔𝒔𝒑𝒑𝒔𝒔𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕 𝑵𝑵
𝒔𝒔=𝟐𝟐 �⨂𝜹𝜹(𝒕𝒕 − 𝒔𝒔) (Eqn. A.1.29) 

 
 
 
Therefore, equations (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.25)-thru-(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.29)  along with (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.23) 

specify the gradient of the running integral of the input function (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.24) with respect to 

the column vector of parameters 𝜃𝜃 = [𝑏𝑏0, 𝑏𝑏2, … , 𝑏𝑏𝑁𝑁 , 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑁𝑁, 𝜏𝜏]𝑇𝑇. That is, in 

vector form the gradient of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.24) at any time t is given by equation (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.30). 

 

𝛁𝛁𝛉𝛉𝐅𝐅(𝐭𝐭) = �𝝏𝝏𝑭𝑭(𝒕𝒕)
𝝏𝝏𝒔𝒔𝟎𝟎

, 𝝏𝝏𝑭𝑭(𝒕𝒕)
𝝏𝝏𝒔𝒔𝟐𝟐

, ⋯ , 𝝏𝝏𝑭𝑭(𝒕𝒕)
𝝏𝝏𝒔𝒔𝑵𝑵

, 𝝏𝝏𝑭𝑭(𝒕𝒕)
𝝏𝝏𝒑𝒑𝟏𝟏

, 𝝏𝝏𝑭𝑭(𝒕𝒕)
𝝏𝝏𝒑𝒑𝟐𝟐

, ⋯ , 𝝏𝝏𝑭𝑭(𝒕𝒕)
𝝏𝝏𝒑𝒑𝑵𝑵

, 𝝏𝝏𝑭𝑭(𝒕𝒕)
𝝏𝝏𝒔𝒔 �

𝑻𝑻
 (Eqn. A.1.30) 

 
 
 
Therefore, in order to fit the Feng input model to a column vector of blood concentration 

samples, 𝑌𝑌, measured directly from a set of M total PET frames, the least-squares minimization 

procedure can be written as: 

 

min:
𝜃𝜃
‖𝑌𝑌 − 𝐼𝐼‖2 

 
 
 
where 𝐼𝐼 =  [𝐼𝐼1, 𝐼𝐼2, ⋯ , 𝐼𝐼𝑀𝑀]𝑇𝑇 is a column vector of time-averaged model activities for 

each PET frame, such that 𝐼𝐼𝑖𝑖 ≜
�𝐹𝐹�𝑡𝑡𝑖𝑖

𝑒𝑒�−𝐹𝐹�𝑡𝑡𝑖𝑖
𝑐𝑐��

𝑡𝑡𝑖𝑖
𝑒𝑒−𝑡𝑡𝑖𝑖

𝑐𝑐 
∀𝑠𝑠 = 1 …𝑀𝑀. Moreover, the (M x 2N) matrix of 

partial derivatives of the time-averaged input function model as a function of time (i.e. the 

sensitivity matrix, S) can be constructed from (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.30) using the linearity of the derivative 

operation, and is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.31). 
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𝒏𝒏 =

⎝

⎜
⎜
⎜
⎛

[𝛁𝛁𝛉𝛉𝐅𝐅(𝒕𝒕𝟏𝟏
𝒘𝒘)]𝑻𝑻

�𝒕𝒕𝟏𝟏
𝒘𝒘−𝒕𝒕𝟏𝟏

𝒄𝒄�
[𝛁𝛁𝛉𝛉𝐅𝐅(𝒕𝒕𝟐𝟐

𝒘𝒘)]𝑻𝑻

�𝒕𝒕𝟐𝟐
𝒘𝒘−𝒕𝒕𝟐𝟐

𝒄𝒄�

⋮
[𝛁𝛁𝛉𝛉𝐅𝐅(𝒕𝒕𝑴𝑴

𝒘𝒘 )]𝑻𝑻

�𝒕𝒕𝑴𝑴
𝒘𝒘 −𝒕𝒕𝑴𝑴

𝒄𝒄 � ⎠

⎟
⎟
⎟
⎞
−

⎝

⎜
⎜
⎜
⎛

[𝛁𝛁𝛉𝛉𝐅𝐅(𝒕𝒕𝟏𝟏
𝒄𝒄 )]𝑻𝑻

�𝒕𝒕𝟏𝟏
𝒘𝒘−𝒕𝒕𝟏𝟏

𝒄𝒄�
[𝛁𝛁𝛉𝛉𝐅𝐅(𝒕𝒕𝟐𝟐

𝒄𝒄 )]𝑻𝑻

�𝒕𝒕𝟐𝟐
𝒘𝒘−𝒕𝒕𝟐𝟐

𝒄𝒄�

⋮
[𝛁𝛁𝛉𝛉𝐅𝐅(𝒕𝒕𝑴𝑴

𝒄𝒄 )]𝑻𝑻

�𝒕𝒕𝑴𝑴
𝒘𝒘 −𝒕𝒕𝑴𝑴

𝒄𝒄 � ⎠

⎟
⎟
⎟
⎞

 (Eqn. A.1.31) 

b. Calculating the Time-Average of the Running Integral the Feng Model 

For some spectral analysis implementations, it is required to have knowledge of the running 

integral of the input blood activity concentration. For the Feng model, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.6), this means 

being able to compute the integral ∫ 𝑓𝑓(𝜔𝜔)𝑑𝑑𝜔𝜔𝑡𝑡
−∞  at arbitrary times, where 𝑓𝑓(𝜔𝜔) denotes the Feng 

model. However, in this dissertation, all blood radioactivity samples are obtained directly from the 

PET image, and, as such, correspond to the average radioactivity concentration in the blood over 

the corresponding dynamic PET frame length. Thus, in order to produce a running-integral basis 

vector for spectral analysis, a time-averaged version of the integral ∫ 𝑓𝑓(𝜔𝜔)𝑑𝑑𝜔𝜔𝑡𝑡
−∞   is required. 

 

The process for computing a time-averaged version of ∫ 𝑓𝑓(𝜔𝜔)𝑑𝑑𝜔𝜔𝑡𝑡
−∞  will be carried out 

using the approach described by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.3) above. To this end let 𝐹𝐹(𝑡𝑡) ≜ ∫ 𝑓𝑓(𝜔𝜔)𝑑𝑑𝜔𝜔𝑡𝑡
−∞ , then 

the time-average of 𝐹𝐹(𝑡𝑡) over the ith PET frame, with respective start and stop times 𝑡𝑡𝑖𝑖𝑠𝑠 and 𝑡𝑡𝑖𝑖𝑒𝑒, can 

be obtained by calculating the normalized difference: 
1

�𝑡𝑡𝑖𝑖
𝑒𝑒−𝑡𝑡𝑖𝑖

𝑐𝑐�
�∫ 𝐹𝐹(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖

𝑒𝑒

−∞
− ∫ 𝐹𝐹(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖

𝑐𝑐

−∞
�. 
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For clarity in derivation let 𝐾𝐾(𝑡𝑡) ≜ ∫ 𝐹𝐹(𝑑𝑑)𝑑𝑑𝑑𝑑𝑡𝑡
−∞ , such that 𝐾𝐾(𝑡𝑡) = 𝐹𝐹(𝑡𝑡)⨂𝑢𝑢(𝑡𝑡), which has 

Laplace transform given by: 𝐾𝐾�(𝑐𝑐) = 𝑐𝑐−1𝐹𝐹�(𝑐𝑐). Inserting (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.17) in for 𝐹𝐹�(𝑐𝑐) gives 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.32).  

 

𝑲𝑲�(𝒄𝒄) = 𝟏𝟏
𝒄𝒄
� 𝒔𝒔𝟎𝟎

 (𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 + 𝒔𝒔𝟏𝟏
(𝒄𝒄+𝒑𝒑𝟏𝟏) + ∑ 𝒔𝒔𝒔𝒔

(𝒄𝒄+𝒑𝒑𝒔𝒔)
 𝑵𝑵

𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏
𝒄𝒄
�𝒘𝒘−𝒄𝒄𝒔𝒔  (Eqn. A.1.32) 

 
 
 
After partial fraction expansion and re-grouping of terms, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.33) is obtained from 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.32). Transformation of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.33) to the time-domain then produces 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.34). 

 

𝑲𝑲�(𝒄𝒄) = 

��−𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
� 𝟏𝟏

(𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 + �−𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
𝟐𝟐 + −𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
� 𝟏𝟏

(𝒄𝒄+𝒑𝒑𝟏𝟏) +

+∑
−�𝒔𝒔𝒔𝒔𝒑𝒑𝒔𝒔

�

(𝒄𝒄+𝒑𝒑𝒔𝒔)
 𝑵𝑵

𝒔𝒔=𝟐𝟐 + �𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
𝟐𝟐 + 𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
+ ∑ �𝒔𝒔𝒔𝒔

𝒑𝒑𝒔𝒔
�𝑵𝑵

𝒔𝒔=𝟐𝟐 � 𝟏𝟏
𝒄𝒄

+ 𝒔𝒔𝑵𝑵+𝟏𝟏
𝒄𝒄𝟐𝟐
�𝒘𝒘−𝒄𝒄𝒔𝒔 

 (Eqn. A.1.33) 

 

𝑲𝑲(𝒕𝒕) =
� �−𝒔𝒔𝟎𝟎

𝒑𝒑𝟏𝟏
� 𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + �−𝒔𝒔𝟎𝟎

𝒑𝒑𝟏𝟏
𝟐𝟐 + −𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
� 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + ∑ −�𝒔𝒔𝒔𝒔

𝒑𝒑𝒔𝒔
�  𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕) +𝑵𝑵

𝒔𝒔=𝟐𝟐

+ �𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
𝟐𝟐 + 𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
+ ∑ �𝒔𝒔𝒔𝒔

𝒑𝒑𝒔𝒔
�𝑵𝑵

𝒔𝒔=𝟐𝟐 � 𝒙𝒙(𝒕𝒕) + 𝒔𝒔𝑵𝑵+𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝒕𝒕 − 𝒔𝒔)
 (Eqn. A.1.34) 

 
 
 

Therefore, the time-averaged running integral of the Feng model over the ith PET frame 

can be computed using (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴1.34) following the equation: 
1

�𝑡𝑡𝑖𝑖
𝑒𝑒−𝑡𝑡𝑖𝑖

𝑐𝑐�
[𝐾𝐾(𝑡𝑡𝑖𝑖𝑒𝑒) − 𝐾𝐾(𝑡𝑡𝑖𝑖𝑠𝑠)]. 
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A.1.2 Time-Averaged Generalized Feng Model 

The form of the instantaneous generalized Feng model is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.35). Since 

the actual blood radioactivity concentration samples are obtained from a PET image, a time-

averaged form of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.35) is required for data fitting. 

 

𝒈𝒈(𝒕𝒕) =

�(𝜸𝜸𝟎𝟎𝒕𝒕 − ∑ 𝜸𝜸𝒔𝒔𝑵𝑵
𝒔𝒔=𝟐𝟐 )𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕 + ∑ 𝜸𝜸𝒔𝒔𝑵𝑵

𝒔𝒔=𝟐𝟐 𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕�𝒙𝒙(𝒕𝒕) +

+ 𝒘𝒘𝟎𝟎�𝒕𝒕 − 𝒔𝒔𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌�𝒘𝒘
−𝒘𝒘𝟏𝟏(𝒕𝒕−𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌)𝒙𝒙(𝒕𝒕 − 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌)

 (Eqn. A.1.35) 

 
 
 
The approach followed for deducing the time-averaged form of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.35) is 

equivalent to that followed in obtaining the time-averaged form of the Feng model in the previous 

section (Appendix A.1.1). That is, by defining 𝐺𝐺(𝑡𝑡) such that 𝐺𝐺(𝑡𝑡) ≜ ∫ 𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔𝑡𝑡
−∞ , then the time-

averaged uptake during the ith PET acquisition frame is given by: �𝐺𝐺�𝑡𝑡𝑖𝑖
𝑒𝑒�−𝐺𝐺�𝑡𝑡𝑖𝑖

𝑐𝑐��
�𝑡𝑡𝑖𝑖
𝑒𝑒−𝑡𝑡𝑖𝑖

𝑐𝑐�
. In order to simplify 

the calculation of 𝐺𝐺(𝑡𝑡), define 𝑓𝑓(𝑡𝑡) such that: 𝑓𝑓(𝑡𝑡) ≜ [(𝛾𝛾0𝑡𝑡 − ∑ 𝛾𝛾𝑖𝑖𝑁𝑁
𝑖𝑖=2 )𝑒𝑒−𝑝𝑝1𝑡𝑡 + ∑ 𝛾𝛾𝑖𝑖𝑁𝑁

𝑖𝑖=2 𝑒𝑒−𝑝𝑝𝑖𝑖𝑡𝑡]𝑢𝑢(𝑡𝑡); 

that is 𝑓𝑓(𝑡𝑡) represents the Feng model defined in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.5) of Appendix A.1.1. Therefore, for 

the generalized Feng model, 𝐺𝐺(𝑡𝑡) takes the form in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.36).  

 

𝑮𝑮(𝒕𝒕) = ∫ �𝒇𝒇(𝝎𝝎) + 𝒘𝒘𝟎𝟎(𝝎𝝎− 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌)𝒘𝒘−𝒘𝒘𝟏𝟏(𝝎𝝎−𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌)𝒙𝒙(𝝎𝝎− 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌)�𝒕𝒕
−∞ 𝒅𝒅𝝎𝝎 (Eqn. A.1.36) 
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The running integral of the Feng model (ie. 𝐹𝐹(𝑡𝑡) = ∫ 𝑓𝑓(𝜔𝜔)𝑡𝑡
−∞ 𝑑𝑑𝜔𝜔) was calculated in 

Appendix A.1.1 and is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.14). Therefore, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.36) can be re-written 

as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.37). 

 

𝑮𝑮(𝒕𝒕) = 𝑭𝑭(𝒕𝒕) + ∫ �𝒘𝒘𝟎𝟎(𝝎𝝎− 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌)𝒘𝒘−𝒘𝒘𝟏𝟏(𝝎𝝎−𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌)𝒙𝒙(𝝎𝝎− 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌)�𝒕𝒕
−∞ 𝒅𝒅𝝎𝝎 (Eqn. A.1.37) 

 
 
 
Thus, for the purposes of calculating 𝐺𝐺(𝑡𝑡), I will focus on a time-averaged parameterization 

of only the component originating from the added second-order pole [i.e. the second term on the 

right hand side of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.37)]. To this end define 𝑀𝑀(𝑡𝑡) ≜ ∫ �𝑣𝑣0(𝜔𝜔 −𝑡𝑡
−∞

𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑘𝑘)𝑒𝑒−𝐶𝐶1(𝜔𝜔−𝜏𝜏𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘)𝑢𝑢(𝜔𝜔 − 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑘𝑘)� 𝑑𝑑𝜔𝜔, which can be written in terms of convolution as in 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.38) below. The Laplace transform of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.38) is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.39). 

 

𝑴𝑴(𝒕𝒕) = [𝒘𝒘𝟎𝟎𝒕𝒕𝒘𝒘−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)]⨂𝒙𝒙(𝒕𝒕)⨂𝜹𝜹(𝒕𝒕 − 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌) (Eqn. A.1.38) 

 

𝑴𝑴� (𝒄𝒄) = �
�−𝐰𝐰𝟎𝟎𝒘𝒘𝟏𝟏

�

(𝒄𝒄+ 𝐰𝐰𝟏𝟏)𝟐𝟐 +
−𝐰𝐰𝟎𝟎
𝒘𝒘𝟏𝟏
𝟐𝟐

(𝒄𝒄+ 𝐰𝐰𝟏𝟏) +
𝐰𝐰𝟎𝟎
𝒘𝒘𝟏𝟏
𝟐𝟐

𝒄𝒄
� 𝐞𝐞−𝐨𝐨𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌  (Eqn. A.1.39) 

 
 
 
An appropriate form of  𝑀𝑀�(𝑐𝑐) to be used for curve fitting of time-averaged data can be 

obtained by defining 𝑣𝑣0 ≜ −�𝐶𝐶0
𝐶𝐶12
�, such that 𝑀𝑀�(𝑐𝑐)has the form: 

 

𝑴𝑴� (𝒄𝒄) = � 𝐰𝐰𝟏𝟏𝐦𝐦𝟎𝟎
(𝒄𝒄+ 𝐰𝐰𝟏𝟏)𝟐𝟐 + 𝐦𝐦𝟎𝟎

(𝒄𝒄+ 𝐰𝐰𝟏𝟏) −
𝐦𝐦𝟎𝟎
𝒄𝒄
� 𝐞𝐞−𝐨𝐨𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌 , (Eqn. A.1.40) 
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which has time domain representation given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.41) below. 

 

𝑴𝑴(𝒕𝒕) =  [𝐰𝐰𝟏𝟏𝐦𝐦𝟎𝟎𝐭𝐭𝐞𝐞−𝐰𝐰𝟏𝟏𝐭𝐭 +  𝐦𝐦𝟎𝟎𝐞𝐞−𝐰𝐰𝟏𝟏𝐭𝐭 −  𝐦𝐦𝟎𝟎𝐮𝐮(𝐭𝐭)]⨂𝜹𝜹(𝐭𝐭 − 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌) (Eqn. A.1.41) 

 
 
 
Therefore, for the purposes of fitting the time-averaged generalized Feng model, 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.37) can be written as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.42), where 𝐹𝐹(𝑡𝑡) is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.14) and 𝑀𝑀(𝑡𝑡) 

is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.41). 

 

𝑮𝑮(𝒕𝒕) = 𝑭𝑭(𝒕𝒕) + 𝑴𝑴(𝒕𝒕) (Eqn. A.1.42) 

 

a. Calculating the Gradient of the Time-Averaged Generalized Feng Model 

For the purposes of speeding up model fitting as well as estimating the input model 

parameter covariance matrix, it is useful to calculate the gradient of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.41) with respect 

to each of the model parameters. Moreover, as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.41) will be combined with the Feng 

model, which itself is allowed an overall time delay term, denoted 𝜏𝜏𝑑𝑑𝑑𝑑, it is also useful to calculate 

the partial derivative of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.41) with respect to this overall 'bulk delay' term. Allowing for 

the overall time delay 𝜏𝜏𝑑𝑑𝑑𝑑, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.41) becomes (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.43), which has partial derivatives 

given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.44).  

 

 𝑴𝑴(𝒕𝒕) =  [𝐰𝐰𝟏𝟏𝐦𝐦𝟎𝟎𝐭𝐭𝐞𝐞−𝐰𝐰𝟏𝟏𝐭𝐭 +  𝐦𝐦𝟎𝟎𝐞𝐞−𝐰𝐰𝟏𝟏𝐭𝐭 −  𝐦𝐦𝟎𝟎𝐮𝐮(𝐭𝐭)]⨂𝜹𝜹(𝐭𝐭 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌]) (Eqn. A.1.43) 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝜹𝜹𝑴𝑴(𝒕𝒕)
𝜹𝜹𝒅𝒅𝟎𝟎

= [𝐰𝐰𝟏𝟏𝐭𝐭𝐞𝐞−𝐰𝐰𝟏𝟏𝐭𝐭𝐮𝐮(𝐭𝐭) +  𝐞𝐞−𝐰𝐰𝟏𝟏𝐭𝐭𝐮𝐮(𝐭𝐭) −  𝐮𝐮(𝐭𝐭)]⨂𝜹𝜹(𝐭𝐭 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌]) 

𝜹𝜹𝑴𝑴(𝒕𝒕)
𝜹𝜹𝒘𝒘𝟏𝟏

= [− 𝐦𝐦𝟎𝟎𝐰𝐰𝟏𝟏𝐭𝐭𝟐𝟐𝐞𝐞−𝐰𝐰𝟏𝟏𝐭𝐭𝐮𝐮(𝐭𝐭)]⨂𝜹𝜹(𝐭𝐭 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌])
𝜹𝜹𝑴𝑴(𝒕𝒕)
𝜹𝜹𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌 

= �𝐦𝐦𝟎𝟎𝐰𝐰𝟏𝟏𝟐𝟐𝐭𝐭𝐞𝐞−𝐰𝐰𝟏𝟏𝐭𝐭𝐮𝐮(𝐭𝐭)�⨂𝜹𝜹(𝐭𝐭 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌])

𝜹𝜹𝑴𝑴(𝒕𝒕)
𝜹𝜹𝒔𝒔𝒔𝒔𝒅𝒅 

= �𝐦𝐦𝟎𝟎𝐰𝐰𝟏𝟏𝟐𝟐𝐭𝐭𝐞𝐞−𝐰𝐰𝟏𝟏𝐭𝐭𝐮𝐮(𝐭𝐭)�⨂𝜹𝜹(𝐭𝐭 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌])

 (Eqn. A.1.44) 

 

b. Calculating the Time-Average of the Running Integral of the Generalized Feng Model 

For some spectral analysis implementations, it is required to have knowledge of the running 

integral of the input blood activity concentration. For the generalized Feng model, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.35), 

this means being able to compute the integral ∫ 𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔𝑡𝑡
−∞  at arbitrary times, where 𝑔𝑔(𝜔𝜔) denotes 

the generalized Feng model. However, in this dissertation, all blood radioactivity samples are 

obtained directly from the PET image, and, as such, correspond to the average radioactivity 

concentration in the blood over the corresponding dynamic PET frame length. Thus, in order to 

produce a running-integral basis vector for spectral analysis, a time-averaged version of the 

integral ∫ 𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔𝑡𝑡
−∞   is required. 

 

The process for computing a time-averaged version of ∫ 𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔𝑡𝑡
−∞  will be carried out 

using the approach described by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.3) above. To this end let 𝐺𝐺(𝑡𝑡) ≜ ∫ 𝑔𝑔(𝜔𝜔)𝑑𝑑𝜔𝜔𝑡𝑡
−∞ , then 

the time-average of 𝐺𝐺(𝑡𝑡) over the ith PET frame, with respective start and stop times denoted by 
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𝑡𝑡𝑖𝑖𝑠𝑠 and 𝑡𝑡𝑖𝑖𝑒𝑒, can be obtained by calculating the normalized difference: 
1

�𝑡𝑡𝑖𝑖
𝑒𝑒−𝑡𝑡𝑖𝑖

𝑐𝑐�
�∫ 𝐺𝐺(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖

𝑒𝑒

−∞
−

∫ 𝐺𝐺(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖
𝑐𝑐

−∞
�. 

 

For clarity in derivation let 𝐻𝐻(𝑡𝑡) ≜ ∫ 𝐺𝐺(𝑑𝑑)𝑑𝑑𝑑𝑑𝑡𝑡
−∞ , such that 𝐻𝐻(𝑡𝑡) = 𝐺𝐺(𝑡𝑡)⨂𝑢𝑢(𝑡𝑡), which has 

Laplace transform given by: 𝐻𝐻�(𝑐𝑐) = s−1𝐺𝐺�(s). Recall from Appendix A.1.2 that 𝐺𝐺(𝑡𝑡) can be written 

as 𝐺𝐺(𝑡𝑡) = 𝐹𝐹(𝑡𝑡) +  𝑀𝑀(𝑡𝑡), where 𝐹𝐹(𝑡𝑡) denotes the running integral of the Feng model, 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.14),  and 𝑀𝑀(𝑡𝑡) denotes the running integral of a second-order pole (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.41). 

Therefore, the Laplace transform of 𝐺𝐺(𝑡𝑡) is given by 𝐺𝐺�(𝑐𝑐) =  𝐹𝐹�(𝑐𝑐) +  𝑀𝑀�(𝑐𝑐). Hence 𝐻𝐻�(𝑐𝑐) =

s−1𝐺𝐺�(s), can be written as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.45). 

 

𝑯𝑯� (𝒄𝒄) = 𝑭𝑭�(𝒄𝒄)
𝒄𝒄

+ 𝑴𝑴� (𝒄𝒄)
𝐨𝐨

 (Eqn. A.1.45) 

 
 
 
However, the first term on the right-hand side of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.45) was evaluated in Appendix 

A.1.1 and is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.33). Thus, for the purposes of the current subsection, I will focus 

only on the second-term on the right-hand side of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.45). Specifically, let 𝑊𝑊� (𝑐𝑐) ≜

s−1𝑀𝑀�(𝑐𝑐) to give (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.46). 

 

𝑾𝑾�(𝒄𝒄) = 𝟏𝟏
𝒄𝒄
� 𝐰𝐰𝟏𝟏𝐦𝐦𝟎𝟎

(𝒄𝒄+ 𝐰𝐰𝟏𝟏)𝟐𝟐 + 𝐦𝐦𝟎𝟎
(𝒄𝒄+ 𝐰𝐰𝟏𝟏) −

𝐦𝐦𝟎𝟎
𝒄𝒄
� 𝐞𝐞−𝐨𝐨[𝒔𝒔𝒔𝒔𝒅𝒅+𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌] (Eqn. A.1.46) 
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After partial fraction expansion and re-grouping of terms, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.47) is obtained from 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴1.46). Transformation of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴1.47) to the time-domain then produces 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.48). 

 

𝑾𝑾�(𝒄𝒄) =  � −𝐦𝐦𝟎𝟎
(𝒄𝒄+𝒘𝒘𝟏𝟏)𝟐𝟐 − �𝟐𝟐𝐦𝐦𝟎𝟎

𝐰𝐰𝟏𝟏
� 𝟏𝟏

(𝒄𝒄+𝒘𝒘𝟏𝟏)  + �𝟐𝟐𝐦𝐦𝟎𝟎
𝐰𝐰𝟏𝟏
� 𝟏𝟏
𝒄𝒄
− 𝐦𝐦𝟎𝟎

𝒄𝒄𝟐𝟐
� 𝐞𝐞−𝐨𝐨[𝒔𝒔𝒔𝒔𝒅𝒅+𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌] (Eqn. A.1.47) 

 

𝑾𝑾(𝒕𝒕) =
�−𝐦𝐦𝟎𝟎𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) − 𝟐𝟐𝐦𝐦𝟎𝟎

𝐰𝐰𝟏𝟏
𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

+ 𝟐𝟐𝐦𝐦𝟎𝟎
𝐰𝐰𝟏𝟏
𝒙𝒙(𝒕𝒕) − 𝐦𝐦𝟎𝟎𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝐭𝐭 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌])

 (Eqn. A.1.48) 

 
 
 
From here, the time-averaged running integral of the generalized Feng model can be 

obtained by forming 𝐻𝐻(𝑡𝑡) = 𝐾𝐾(𝑡𝑡) + 𝑊𝑊(𝑡𝑡) and computing the required differences as in 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.3). Note that 𝐾𝐾(𝑡𝑡) is as defined in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.34). 

A.2 SPECTRAL ANALYSIS USING THE FENG MODEL CUMULATIVE INPUT 

FUNCTION 

The spectral analysis (SA) method requires the user to pre-define a dictionary of potential 

spectral components that could compose a measured tissue response signal. Generally, each 

component vector is equal to the convolution of the input function model with a single-order pole 

with unit amplitude. This section shows explicitly the derivation of the general formula used to 

compute the spectral component vectors for the spectral analysis dictionary used throughout this 
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dissertation. The presented derivation takes advantage of the fact that the integral of a convolution 

is the convolution between the integral of one function and the remaining original function [152]. 

 

Specifically, consider a spectral rate 𝛽𝛽 corresponding the causal spectral component 

𝑒𝑒−𝛽𝛽𝑡𝑡𝑢𝑢(𝑡𝑡). Then the convolution of this spectral component with a general input function, ℸ(𝑡𝑡), is 

given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.1). 

 

𝒈𝒈(𝒕𝒕) =  �𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ ℸ(𝒕𝒕) (Eqn. A.2.1) 

 
 
 
However, each tissue concentration sample measured from a particular PET dynamic frame 

represents the time-average of the instantaneous activity in the tissue over the duration of that 

frame. That is for the ith PET frame with start and stop times 𝑡𝑡𝑖𝑖𝑠𝑠 and 𝑡𝑡𝑖𝑖𝑒𝑒, respectively, what is 

actually measured is (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.2). 

 

𝟏𝟏
�𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄� 
 ∫ 𝒈𝒈(𝒕𝒕)𝒅𝒅𝒕𝒕𝒕𝒕𝒔𝒔

𝒘𝒘

𝒕𝒕𝒔𝒔
𝒄𝒄 =  𝟏𝟏

�𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄� ∫ ��𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ ℸ(𝒕𝒕)�𝒕𝒕𝒔𝒔
𝒘𝒘

𝒕𝒕𝒔𝒔
𝒄𝒄 𝒅𝒅𝒕𝒕 (Eqn. A.2.2) 

 
 
 
However, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.2) can be re-written in a form that is more consistent with the data 

collected by defining (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.3): 

 

𝑮𝑮(𝒕𝒕) = �𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ �∫ ℸ(𝒔𝒔)𝒅𝒅𝒔𝒔𝒕𝒕
−∞ � (Eqn. A.2.3) 

 
 
 



 293 

such that, 

𝟏𝟏
�𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄� 
 ∫ 𝒈𝒈(𝒕𝒕)𝒅𝒅𝒕𝒕𝒕𝒕𝒔𝒔

𝒘𝒘

𝒕𝒕𝒔𝒔
𝒄𝒄 = �𝑮𝑮�𝒕𝒕𝒔𝒔

𝒘𝒘�−𝑮𝑮�𝒕𝒕𝒔𝒔
𝒄𝒄��

�𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄�
 (Eqn. A.2.4) 

 
 
 
Thus, the time-dependence for each spectral component of the SA dictionary (in the case 

of time-averaged radioactivity concentration samples) can be calculated easily via (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.4).  

 

The following two subsections sections, Section A.2.1 and Section A.2.2, derive the 

function 𝐺𝐺(𝑡𝑡) referred to in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.4) for the Feng Model (Section A.2.1) and the generalized 

Feng model (Section A.2.2), respectively.  

A.2.1 Spectral Analysis using the Time-Averaged Feng Model 

For the specific case that the input function model is the Feng input model, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.5), 

the running integral of the input function is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.16) in Appendix Section A1.1, but 

is repeated below as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.5) with an overall bulk time delay, 𝜏𝜏𝑑𝑑𝑑𝑑, included. 

 

𝐅𝐅(𝐭𝐭) = �𝐛𝐛𝟎𝟎𝐭𝐭𝐞𝐞−𝐩𝐩𝟏𝟏𝐭𝐭𝐮𝐮(𝐭𝐭) +  𝐛𝐛𝟏𝟏𝐞𝐞−𝐩𝐩𝟏𝟏𝐭𝐭𝐮𝐮(𝐭𝐭) + ∑ 𝐛𝐛𝐢𝐢𝐞𝐞−𝐩𝐩𝐢𝐢𝐭𝐭𝐮𝐮(𝐭𝐭) 𝐍𝐍
𝐢𝐢=𝟐𝟐 + 𝐛𝐛𝐍𝐍+𝟏𝟏𝐮𝐮(𝐭𝐭)�⨂𝛅𝛅(𝐭𝐭 − 𝒔𝒔𝒔𝒔𝒅𝒅) (Eqn. A.2.5) 

 
 
 
Inserting (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.5) into (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.3) gives (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.6). 

 

𝑮𝑮(𝒕𝒕) = �𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ 𝐅𝐅(𝐭𝐭) (Eqn. A.2.6) 
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The Laplace transform of (Eqn.  A. 2.5) was calculated in the previous section and was 

given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.14), but is repeated here as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.7) with a delay term 𝜏𝜏𝑑𝑑𝑑𝑑. 

 

𝑭𝑭�(𝒄𝒄) = � 𝒔𝒔𝟎𝟎
 (𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 + 𝒔𝒔𝟏𝟏

(𝒄𝒄+𝒑𝒑𝟏𝟏) + ∑ 𝒔𝒔𝒔𝒔
(𝒄𝒄+𝒑𝒑𝒔𝒔)

 𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏

𝒄𝒄
� 𝒘𝒘−𝒄𝒄𝒔𝒔𝒔𝒔𝒅𝒅  (Eqn. A.2.7) 

 
 
 
Therefore, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.6) has Laplace transform given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.8). 

 

𝑮𝑮�(𝒄𝒄) = 𝟏𝟏
(𝒄𝒄+𝜷𝜷)

�𝑭𝑭�(𝒄𝒄)� (Eqn. A.2.8) 

 
 
 
Multiplying the 1

(𝑠𝑠+𝛽𝛽)
 term through in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2. 8) gives (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2. 9), which has partial 

fraction expansion given in (𝐸𝐸𝐸𝐸𝐸𝐸.𝐴𝐴. 2. 10). 

 

𝑮𝑮�(𝒄𝒄) = � 𝒔𝒔𝟎𝟎
(𝒄𝒄+𝜷𝜷) (𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 + 𝒔𝒔𝟏𝟏

(𝒄𝒄+𝜷𝜷)(𝒄𝒄+𝒑𝒑𝟏𝟏) + ∑ 𝒔𝒔𝒔𝒔
(𝒄𝒄+𝜷𝜷)(𝒄𝒄+𝒑𝒑𝒔𝒔)

 𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏

(𝒄𝒄+𝜷𝜷)𝒄𝒄
� 𝒘𝒘−𝒄𝒄𝒔𝒔𝒔𝒔𝒅𝒅  (Eqn. A.2.9) 

 

𝑮𝑮�(𝒄𝒄) =

�𝒔𝒔𝟎𝟎 �
𝟏𝟏

�−𝒑𝒑𝟏𝟏+𝜷𝜷�

(𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 +
−𝟏𝟏

�−𝒑𝒑𝟏𝟏+𝜷𝜷�
𝟐𝟐

𝒄𝒄+𝒑𝒑𝟏𝟏
+

𝟏𝟏

�−𝒑𝒑𝟏𝟏+𝜷𝜷�
𝟐𝟐

 (𝒄𝒄+𝜷𝜷)
� +

+ 𝒔𝒔𝟏𝟏 �
𝟏𝟏

(−𝒑𝒑𝟏𝟏+𝜷𝜷)

(𝒄𝒄+𝒑𝒑𝟏𝟏) +  
−𝟏𝟏

(−𝒑𝒑𝟏𝟏+𝜷𝜷)

(𝒄𝒄+𝜷𝜷)
� +

∑ 𝒔𝒔𝒔𝒔 �
𝟏𝟏

(−𝒑𝒑𝒔𝒔+𝜷𝜷)

(𝒄𝒄+𝒑𝒑𝒔𝒔)
+  

−𝟏𝟏
(−𝒑𝒑𝒔𝒔+𝜷𝜷)

(𝒄𝒄+𝜷𝜷)
�𝑵𝑵

𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏 �
𝟏𝟏
𝜷𝜷

𝒄𝒄
+  

−𝟏𝟏
𝜷𝜷

(𝒄𝒄+𝜷𝜷)
�� 𝒘𝒘−𝒄𝒄𝒔𝒔𝒔𝒔𝒅𝒅

 (Eqn. A.2.10) 
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Collecting terms and re-organizing (𝐸𝐸𝐸𝐸𝐸𝐸.𝐴𝐴. 2. 10) yields (𝐸𝐸𝐸𝐸𝐸𝐸.𝐴𝐴. 2. 11), which can be 

transformed from the Laplace domain to the time to obtain the desired result (𝐸𝐸𝐸𝐸𝐸𝐸.𝐴𝐴. 2. 12). 

 

𝑮𝑮�(𝒄𝒄) =

�� 𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)�

𝟏𝟏
(𝒄𝒄+𝒑𝒑𝟏𝟏)𝟐𝟐 + � −𝒔𝒔𝟎𝟎

(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒔𝒔𝟏𝟏
(−𝒑𝒑𝟏𝟏+𝜷𝜷)�

𝟏𝟏
(𝒄𝒄+𝒑𝒑𝟏𝟏) +

+∑ � 𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)

� 𝟏𝟏
(𝒄𝒄+𝒑𝒑𝒔𝒔)

𝑵𝑵
𝒔𝒔=𝟐𝟐 + �𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷
� 𝟏𝟏
𝒄𝒄
− 

−  � −𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒔𝒔𝟏𝟏

(−𝒑𝒑𝟏𝟏+𝜷𝜷) + ∑ 𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)

𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷
� 𝟏𝟏

(𝒄𝒄+𝜷𝜷)
� 𝒘𝒘−𝒄𝒄𝒔𝒔𝒔𝒔𝒅𝒅

 (Eqn. A.2.11) 

 

𝑮𝑮(𝒕𝒕) =

�� 𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)� 𝒕𝒕𝒘𝒘

−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + � −𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒔𝒔𝟏𝟏

(−𝒑𝒑𝟏𝟏+𝜷𝜷)� 𝒘𝒘
−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

+∑ � 𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)

� 𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕)𝑵𝑵
𝒔𝒔=𝟐𝟐 + �𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷
� 𝒙𝒙(𝒕𝒕)− 

−  � −𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒔𝒔𝟏𝟏

(−𝒑𝒑𝟏𝟏+𝜷𝜷) + ∑ 𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)

𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷
� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝛅𝛅(𝐭𝐭 − 𝛕𝛕𝐛𝐛𝐝𝐝)

 (Eqn. A.2.12) 

 

A.2.2 Spectral Analysis using the Time-Averaged Generalized Feng Input Model 

For the case that the input function model is the generalized Feng input model, the running 

integral of the input function is given by 𝐺𝐺(𝑡𝑡) = 𝐹𝐹(𝑡𝑡) +  𝑀𝑀(𝑡𝑡) [i.e. (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.42)  in Appendix 

Section A1.1], where 𝐹𝐹(𝑡𝑡) is defined in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.5) and 𝑀𝑀(𝑡𝑡) is defined below in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.13) 

with bulk time delay term, 𝜏𝜏𝑑𝑑𝑑𝑑, included. 

 

𝑴𝑴(𝒕𝒕) =  [𝐰𝐰𝟏𝟏𝐦𝐦𝟎𝟎𝐭𝐭𝐞𝐞−𝐰𝐰𝟏𝟏𝐭𝐭𝐮𝐮(𝐭𝐭) +  𝐦𝐦𝟎𝟎𝐞𝐞−𝐰𝐰𝟏𝟏𝐭𝐭𝐮𝐮(𝐭𝐭)−  𝐦𝐦𝟎𝟎𝐮𝐮(𝐭𝐭)]⨂𝜹𝜹(𝐭𝐭 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌]) (Eqn. A.2.13) 

 
 
 
Thus, inserting (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.13) into (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.42) gives running integral of the 

generalized Feng model (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.14). 
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𝑮𝑮(𝒕𝒕) =
𝑭𝑭(𝒕𝒕) + ⋯

+∫ �𝒘𝒘𝟎𝟎(𝝎𝝎− [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌])𝒘𝒘−𝒘𝒘𝟏𝟏(𝝎𝝎−[𝒔𝒔𝒔𝒔𝒅𝒅+𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌])𝒙𝒙(𝝎𝝎− [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌])�𝒕𝒕
−∞ 𝒅𝒅𝝎𝝎 (Eqn. A.2.14) 

 
 
 
Inserting (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.14) into (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.3) gives (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.15), which simplifies to 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.16). 

 

𝑮𝑮�(𝒄𝒄) = 𝟏𝟏
(𝒄𝒄+𝜷𝜷)

�𝑭𝑭�(𝒄𝒄) + 𝑴𝑴� (𝒄𝒄)� (Eqn. A.2.15) 

 

𝑮𝑮�(𝒄𝒄) = 𝑭𝑭�(𝒄𝒄)
(𝒄𝒄+𝜷𝜷)

+  𝑴𝑴
� (𝒄𝒄)

(𝒄𝒄+𝜷𝜷)
 (Eqn. A.2.16) 

 
 
 
(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2. 11) gives the result for the first-term on the right-hand side of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.16), 

therefore, in this section I will only evaluate the (𝑐𝑐 + 𝛽𝛽)−1𝑀𝑀�(𝑐𝑐) term. Substituting the Laplace 

transform of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.13) for 𝑀𝑀�(𝑐𝑐) gives (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.17), which has partial fraction expansion 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.19) and time-domain representation (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.20). 

 

𝑴𝑴� (𝒄𝒄)
(𝒄𝒄+𝜷𝜷)

= 𝟏𝟏
(𝒄𝒄+𝜷𝜷)

� 𝐰𝐰𝟏𝟏𝐦𝐦𝟎𝟎
(𝒄𝒄+ 𝐰𝐰𝟏𝟏)𝟐𝟐 + 𝐦𝐦𝟎𝟎

(𝒄𝒄+ 𝐰𝐰𝟏𝟏) −
𝐦𝐦𝟎𝟎
𝒄𝒄
� 𝐞𝐞−𝐨𝐨[𝒔𝒔𝒔𝒔𝒅𝒅+𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌] (Eqn. A.2.17) 

 

𝑴𝑴� (𝒄𝒄)
(𝒄𝒄+𝜷𝜷)

= � 𝐰𝐰𝟏𝟏𝐦𝐦𝟎𝟎
(𝒄𝒄+ 𝐰𝐰𝟏𝟏)𝟐𝟐(𝒄𝒄+𝜷𝜷)

+ 𝐦𝐦𝟎𝟎
(𝒄𝒄+ 𝐰𝐰𝟏𝟏)(𝒄𝒄+𝜷𝜷)

− 𝐦𝐦𝟎𝟎
𝒄𝒄(𝒄𝒄+𝜷𝜷)

�𝒘𝒘−𝒄𝒄[𝒔𝒔𝒔𝒔𝒅𝒅+𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌] (Eqn. A.2.18) 

 

𝑴𝑴� (𝒄𝒄)
(𝒄𝒄+𝜷𝜷)

= 
�  � 𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷)�
𝟏𝟏

(𝒄𝒄+𝒘𝒘𝟏𝟏)𝟐𝟐 + � −𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷)�
𝟏𝟏

(𝒄𝒄+𝒘𝒘𝟏𝟏)

− �𝒅𝒅𝟎𝟎
𝜷𝜷
� 𝟏𝟏
𝒄𝒄

 −  � −𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷) −
𝒅𝒅𝟎𝟎
𝜷𝜷
� 𝟏𝟏

(𝒄𝒄+𝜷𝜷)
  � 𝒘𝒘−𝒄𝒄[𝒔𝒔𝒔𝒔𝒅𝒅+𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌]

 (Eqn. A.2.19) 
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𝑴𝑴(𝒕𝒕) ⊗𝒘𝒘−𝜷𝜷𝒕𝒕 = 

� � 𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)� 𝒕𝒕𝒘𝒘

−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

� −𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷)� 𝒘𝒘
−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) − �𝒅𝒅𝟎𝟎

𝜷𝜷
� 𝒙𝒙(𝒕𝒕) −

 −  � −𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷) −
𝒅𝒅𝟎𝟎
𝜷𝜷
� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌])

 (Eqn. 2.20) 

 
 
 
Therefore, using the generalized Feng model as the input model in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.3) gives 

�∫ ℸ(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
−∞ � = 𝐹𝐹(𝑡𝑡) +  𝑀𝑀(𝑡𝑡), resulting in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.21); where 𝐹𝐹(𝑡𝑡) ⊗ 𝑒𝑒−𝛽𝛽𝑡𝑡𝑢𝑢(𝑡𝑡) is given by 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.12) and 𝑀𝑀(𝑡𝑡) ⊗ 𝑒𝑒−𝛽𝛽𝑡𝑡𝑢𝑢(𝑡𝑡) is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.20).  

 

In other words,  for a fixed spectral rate 𝛽𝛽 and a set of dynamic PET start and stop frame 

times,  [𝑡𝑡𝑖𝑖𝑠𝑠, 𝑡𝑡𝑖𝑖𝑒𝑒] 𝑠𝑠 = 1 …  𝑁𝑁, the spectral component corresponding the that rate 𝛽𝛽 can be calculated 

using (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.4) where 𝐺𝐺(𝑡𝑡) is calculated by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.21). 

 

𝑮𝑮(𝒕𝒕) = 𝑭𝑭(𝒕𝒕) ⊗𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)  +  𝑴𝑴(𝒕𝒕) ⊗𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕) (Eqn. A.2.21) 

A.3 MODELING THE TIME-AVERAGED TISSUE IMPULSE RESPONSE 

Compartmental analysis is commonly used in PET imaging to evaluate the performance of 

a radiotracer in vivo as well as provide a foundation for the development of quantitative 

methodology with regard to response assessment. While an overview of compartmental modeling 

theory as applied to PET quantification was presented in Section 5.2 of this dissertation, all of the 

presented results assumed knowledge of both the instantaneous input concentration and the 

instantaneous tissue response concentration. However, as discussed in Appendix A.1, the 
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instantaneous input function cannot be measured directly from an image-based input function. 

Similarly, since the tissue response is also measured directly from the PET image, it is the time-

averaged tissue concentration that is measured from the PET and not the instantaneous tissue 

response. Fortunately, the time averaging does not affect the compartmental modeling theory or 

interpretations presented in Chapter 5; however, it does require some additional manipulations 

similar to those presented in Appendix A.1 and Appendix A.2. 

 

Specifically, in Appendix A.2 it was shown that for a given input function model, ℸ(𝑡𝑡), the 

time averaged value of the convolution of ℸ(𝑡𝑡) with a first order pole, 𝛼𝛼𝑒𝑒−𝛽𝛽𝑡𝑡𝑢𝑢(𝑡𝑡), could be 

calculated using (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.1) and (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.2), where 𝑔𝑔(𝑡𝑡) =  �𝛼𝛼𝑒𝑒−𝛽𝛽𝑡𝑡𝑢𝑢(𝑡𝑡)� ⊗ ℸ(𝑡𝑡). 

 

𝟏𝟏
�𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄� 
 ∫ 𝒈𝒈(𝒕𝒕)𝒅𝒅𝒕𝒕𝒕𝒕𝒔𝒔

𝒘𝒘

𝒕𝒕𝒔𝒔
𝒄𝒄 = �𝑮𝑮�𝒕𝒕𝒔𝒔

𝒘𝒘�−𝑮𝑮�𝒕𝒕𝒔𝒔
𝒄𝒄��

�𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄�
 (Eqn. A.3.1) 

 

𝑮𝑮(𝒕𝒕) = �𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ �∫ ℸ(𝒔𝒔)𝒅𝒅𝒔𝒔𝒕𝒕
−∞ � (Eqn. A.3.2) 

 
 
 
(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.1) and (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.2) give the general approach that will be followed in 

deriving the time-averaged version of the tissue response given either the Feng model (Section 

A.3.1) or the generalized Feng model (Section A.3.2) as input. For either input model I will 

calculate the tissue response assuming only a single compartmental model since the responses 

from multiple compartments can be added by linearity of the compartmental model structures 

appropriate for PET quantification (see Section 5.2). Moreover, each section will include the time-

averaged tissue response that would be produced by a trap (see Section 5.2). 
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A.3.1 Time-Averaged Tissue Response using the Feng Input Model 

For a 1-tissue compartment model with reversible kinetics, the tissue impulse response 

function is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.3). Hence, the tissue response, 𝑦𝑦(𝑡𝑡), is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.4) 

where 𝑓𝑓(𝑡𝑡) denotes the Feng model (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.5). 

 

𝒘𝒘(𝒕𝒕) =  𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕) (Eqn. A.3.3) 

 

𝒚𝒚(𝒕𝒕) = 𝒘𝒘(𝒕𝒕) ⊗𝒇𝒇(𝒕𝒕) (Eqn. A.3.4) 

 
 
 
However, as the measurements of the tissue response are taken directly from the dynamic 

PET image the time-averaged version of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.4) is required. That is for each of the  𝑠𝑠 =

1 …  𝑁𝑁 PET frames with corresponding start and end times 𝑡𝑡𝑖𝑖𝑠𝑠 and 𝑡𝑡𝑖𝑖𝑒𝑒, respectively, the 

corresponding value of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.5) is required. 

 

〈𝒚𝒚(𝒕𝒕)〉𝒔𝒔 = 𝟏𝟏
�𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄� 
 ∫ � �𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ 𝒇𝒇(𝒕𝒕)�𝒅𝒅𝒕𝒕𝒕𝒕𝒔𝒔

𝒘𝒘

𝒕𝒕𝒔𝒔
𝒄𝒄  (Eqn. A.3.5) 

 
 
 
However, as stated above, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.5) can be easily evaluated for any pair of 𝑡𝑡𝑖𝑖𝑠𝑠 and 𝑡𝑡𝑖𝑖𝑒𝑒, 

by using (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.1) and (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.2). Therefore, in order to compute the time-averaged tissue 

response for a 1-tissue compartment, all that is necessary is to evaluate (𝐸𝐸𝐸𝐸𝐸𝐸.𝐴𝐴. 3.6). 

 

𝒀𝒀(𝒕𝒕) = �𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ �∫ 𝒇𝒇(𝒔𝒔)𝒅𝒅𝒔𝒔𝒕𝒕
−∞ � (Eqn. A.3.6) 
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(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.6) was previously evaluated in Appendix Section A.2.1 [(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2. 12)], for 

the case 𝛼𝛼 = 1, but is easily modified to include arbitrary values for 𝛼𝛼 as well as a time-delay, 𝜏𝜏𝑡𝑡𝑖𝑖𝑠𝑠, 

in addition to the bulk time delay of the Feng input model (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.7). 

 

𝒀𝒀(𝒕𝒕) =

⎩
⎪⎪
⎨

⎪⎪
⎧𝜶𝜶 ��

𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)� 𝒕𝒕𝒘𝒘

−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + � −𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐

+ 𝒔𝒔𝟏𝟏
(−𝒑𝒑𝟏𝟏+𝜷𝜷)� 𝒘𝒘

−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

+∑ � 𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)

� 𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕)𝑵𝑵
𝒔𝒔=𝟐𝟐 + �𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷
� 𝒙𝒙(𝒕𝒕) − 

−  � −𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐

+ 𝒔𝒔𝟏𝟏
(−𝒑𝒑𝟏𝟏+𝜷𝜷)

+ ∑ 𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)

𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷
� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝛅𝛅(𝐭𝐭 − [𝛕𝛕𝐛𝐛𝐝𝐝 + 𝛕𝛕𝐭𝐭𝐢𝐢𝐨𝐨] )

  (Eqn. A.3.7) 

 

a. Gradient of Model Parameters for Time-Averaged Tissue Response using the Feng 
Model as Input: Reversible Kinetics 

For the purposes of speeding up model fitting as well as estimating the covariance matrix 

of the impulse response model being fitted, it is useful to calculate the gradient of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.7) 

with respect to each of the model parameters. (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.8)-thru-(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.10) give the 

gradients of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.7) with respect to the amplitude (𝛼𝛼), decay-rate (𝛽𝛽), and time-delay (𝜏𝜏𝑡𝑡𝑖𝑖𝑠𝑠), 

respectively, of the 1-tissue impulse response function convolved with the Feng input model. 

 

𝜹𝜹𝒀𝒀(𝒕𝒕)
𝜹𝜹𝜶𝜶

=

�� 𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)� 𝒕𝒕𝒘𝒘

−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + � −𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐

+ 𝒔𝒔𝟏𝟏
(−𝒑𝒑𝟏𝟏+𝜷𝜷)� 𝒘𝒘

−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

+∑ � 𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)

� 𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕)𝑵𝑵
𝒔𝒔=𝟐𝟐 + �𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷
� 𝒙𝒙(𝒕𝒕) − 

−  � −𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐

+ 𝒔𝒔𝟏𝟏
(−𝒑𝒑𝟏𝟏+𝜷𝜷)

+ ∑ 𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)

𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷
� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝛅𝛅(𝐭𝐭 − [𝛕𝛕𝐛𝐛𝐝𝐝 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.3.8) 
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𝜹𝜹𝒀𝒀(𝒕𝒕)
𝜹𝜹𝜷𝜷

=

𝜶𝜶�� −𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐� 𝒕𝒕𝒘𝒘

−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + � 𝟐𝟐𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟑𝟑

− 𝒔𝒔𝟏𝟏
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐� 𝒘𝒘

−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)−

−∑ � 𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)𝟐𝟐� 𝒘𝒘

−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕)𝑵𝑵
𝒔𝒔=𝟐𝟐 − �𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷𝟐𝟐
� 𝒙𝒙(𝒕𝒕) − 

− � 𝟐𝟐𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟑𝟑

− 𝒔𝒔𝟏𝟏
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐

− ∑ 𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)𝟐𝟐

𝑵𝑵
𝒔𝒔=𝟐𝟐 − 𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷𝟐𝟐
� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕) +

+ � −𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐

+ 𝒔𝒔𝟏𝟏
(−𝒑𝒑𝟏𝟏+𝜷𝜷)

+ ∑ 𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)

𝑵𝑵
𝒔𝒔=𝟐𝟐 + 𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷
� 𝒕𝒕𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝛅𝛅(𝐭𝐭 − [𝛕𝛕𝐛𝐛𝐝𝐝 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.3.9) 

 

𝜹𝜹𝒀𝒀(𝒕𝒕)
𝜹𝜹𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄

= �𝜷𝜷 �𝑭𝑭(𝒕𝒕) ⊗𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� − 𝜶𝜶𝑭𝑭(𝒕𝒕)�⨂𝛅𝛅(𝐭𝐭 − [𝛕𝛕𝐛𝐛𝐝𝐝 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄]) (Eqn. A.3.10) 

 

b. Time-Averaged Tissue Response using the Feng Model as Input: A Trap 

The impulse response function for a trap is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.11). Inserting 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.11) into (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.6) gives (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.12), where 𝑓𝑓(𝜏𝜏) is again the Feng model 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.5). Therefore, following the approach defined in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.1), the time-averaged 

response for a trap, assuming the Feng model as input, can be calculated via (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.13) for a 

particular pair of PET frame [𝑡𝑡𝑖𝑖𝑠𝑠, 𝑡𝑡𝑖𝑖𝑒𝑒]. 

 

𝒘𝒘𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑(𝒕𝒕) =  𝜶𝜶𝒙𝒙(𝒕𝒕) (Eqn. A.3. 11) 

 

𝒀𝒀𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑(𝒕𝒕) = [𝜶𝜶𝒙𝒙(𝒕𝒕)]⊗ �∫ 𝒇𝒇(𝒔𝒔)𝒅𝒅𝒔𝒔𝒕𝒕
−∞ � (Eqn. A.3. 12) 

 

𝟏𝟏
�𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄� 
 ∫ 𝒚𝒚𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑(𝒕𝒕)𝒅𝒅𝒕𝒕𝒕𝒕𝒔𝒔

𝒘𝒘

𝒕𝒕𝒔𝒔
𝒄𝒄 = �𝒀𝒀𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑�𝒕𝒕𝒔𝒔

𝒘𝒘�−𝒀𝒀𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑�𝒕𝒕𝒔𝒔
𝒄𝒄��

�𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄�
 (Eqn. A.3. 13) 
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However, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.12) is simply the convolution of the running integral of the Feng 

model with a step-function scaled by 𝛼𝛼. This quantity was previously calculated in Appendix A.1.1 

[(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.34)] for the case of 𝛼𝛼 = 1. Thus, allowing for arbitrary 𝛼𝛼 as well as a time-delay, 𝜏𝜏𝑡𝑡𝑖𝑖𝑠𝑠, 

in addition to the bulk time delay of the Feng input model (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.12) becomes (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.14). 

 

𝒀𝒀𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑(𝒕𝒕) =

𝜶𝜶 � �−𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
� 𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + �−𝒔𝒔𝟎𝟎

𝒑𝒑𝟏𝟏
𝟐𝟐 + −𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
� 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + ⋯

… + ∑ −�𝒔𝒔𝒔𝒔
𝒑𝒑𝒔𝒔
�  𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕) + ⋯𝑵𝑵

𝒔𝒔=𝟐𝟐

… + �𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
𝟐𝟐 + 𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
+ ∑ �𝒔𝒔𝒔𝒔

𝒑𝒑𝒔𝒔
�𝑵𝑵

𝒔𝒔=𝟐𝟐 � 𝒙𝒙(𝒕𝒕) + 𝒔𝒔𝑵𝑵+𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝐭𝐭 − [𝛕𝛕𝐛𝐛𝐝𝐝 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

(Eqn. A.3.14) 

 

c. Gradient of Model Parameters for Time-Averaged Tissue Response using the Feng 
Model as Input: A Trap 

For the purposes of speeding up model fitting as well as estimating the covariance matrix 

of the impulse response model being fitted, it is useful to calculate the gradient of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.14) 

with respect to each of the model parameters. (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.15) and (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.16) give the 

gradients of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.14) with respect to the amplitude (𝛼𝛼) and time-delay (𝜏𝜏𝑡𝑡𝑖𝑖𝑠𝑠) , respectively, 

of an impulse response function describing a trap convolved with the Feng input model. 

 

𝜹𝜹𝒀𝒀𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑(𝒕𝒕)

𝜹𝜹𝜶𝜶
=

� �−𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
� 𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + �−𝒔𝒔𝟎𝟎

𝒑𝒑𝟏𝟏
𝟐𝟐 + −𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
� 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + ∑ −�𝒔𝒔𝒔𝒔

𝒑𝒑𝒔𝒔
�  𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕) +𝑵𝑵

𝒔𝒔=𝟐𝟐

+ �𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
𝟐𝟐 + 𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
+ ∑ �𝒔𝒔𝒔𝒔

𝒑𝒑𝒔𝒔
�𝑵𝑵

𝒔𝒔=𝟐𝟐 � 𝒙𝒙(𝒕𝒕) + 𝒔𝒔𝑵𝑵+𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝐭𝐭 − [𝛕𝛕𝐛𝐛𝐝𝐝 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])
 (Eqn. A.3.15) 

 

𝛅𝛅𝐘𝐘𝐭𝐭𝐰𝐰𝐦𝐦𝐩𝐩(𝐭𝐭)

𝛅𝛅𝛕𝛕𝐭𝐭𝐢𝐢𝐨𝐨
= [−𝜶𝜶𝑭𝑭(𝒕𝒕)]⨂𝛅𝛅(𝐭𝐭 − [𝛕𝛕𝐛𝐛𝐝𝐝 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄]) (Eqn. A.3.16) 
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A.3.2 Time-Averaged Tissue Response using the Generalized Feng Input Model 

This section derives the appropriate equations for fitting the time-averaged tissue response 

for both a 1-tissue compartment model and a trap assuming the generalized Feng model 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.35) as the input model. The approach for deriving these equations parallels the 

approach used in the previous sections when the Feng model was assumed as input.  

 

Specifically, for a 1-tissue compartment model with reversible kinetics, the tissue impulse 

response function is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.3). Therefore, following the same argument that lead to 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.6), only calculation of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.17) is required, where 𝑔𝑔(𝜏𝜏) represents the 

generalized Feng model. 

 

𝒀𝒀(𝒕𝒕) = �𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ �∫ 𝒈𝒈(𝒔𝒔)𝒅𝒅𝒔𝒔𝒕𝒕
−∞ � (Eqn. A.3.17) 

 
 
 
(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.17) was previously evaluated in Appendix Section A.2.2 [(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2. 21)] for 

the case 𝛼𝛼 = 1, but is easily modified to include arbitrary values for 𝛼𝛼 as well as a time-delay, 𝜏𝜏𝑡𝑡𝑖𝑖𝑠𝑠, 

in addition to the bulk time delay of the generalized Feng input model (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.18) below, 

where 𝐹𝐹(𝑡𝑡) ⊗ 𝑒𝑒−𝛽𝛽𝑡𝑡𝑢𝑢(𝑡𝑡) is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2. 12) and 𝑀𝑀(𝑡𝑡) ⊗ 𝑒𝑒−𝛽𝛽𝑡𝑡𝑢𝑢(𝑡𝑡) is given by 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2. 20).  

 

𝑮𝑮(𝒕𝒕) = 𝜶𝜶�𝑭𝑭(𝒕𝒕) ⊗𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕) +  𝑴𝑴(𝒕𝒕) ⊗𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝐭𝐭 − 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄) (Eqn. A.3.18) 
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a. Gradient of Model Parameters for Time-Averaged Tissue Response using the 
Generalized Feng Model as Input: Reversible Kinetics 

For the purposes of speeding up model fitting as well as estimating the covariance matrix 

of the impulse response model being fitted, it is useful to calculate the gradient of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴3.18) 

with respect to each of the model parameters. To this end, note that 𝛿𝛿𝐺𝐺(𝑡𝑡)
𝛿𝛿𝛼𝛼

 is given by  

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴3. 19), which is a linear combination two partial derivatives with respect to the amplitude 

𝛼𝛼. However, the top partial derivative was evaluated previously and is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴3.8) 

above. 

 

𝜹𝜹𝑮𝑮(𝒕𝒕)
𝜹𝜹𝜶𝜶

= 
𝛅𝛅
𝛅𝛅𝛂𝛂
�𝑭𝑭(𝒕𝒕)⊗𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝐭𝐭 − 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄) +

+ 𝛅𝛅
𝛅𝛅𝛂𝛂
�𝜶𝜶𝑴𝑴(𝒕𝒕) ⊗𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝐭𝐭 − 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄)

 (Eqn. A.3.19) 

 
 
 
The superposition of partial derivatives in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴3.19) is due to the assumption of 

linearity in the response of the tissue to the injected tracer, and, as a result will also hold for the 

partial derivatives of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴3.18) with respect to 𝛽𝛽 and 𝜏𝜏𝑡𝑡𝑖𝑖𝑠𝑠. As a result, only the partial 

derivatives of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴3.20) with respect to the impulse response model parameters will be 

derived in this section.  

 

�𝑴𝑴(𝒕𝒕) ⊗𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝐭𝐭 − 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄) (Eqn. A.3.20) 

 
 
 
(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.21)-thru-(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.23) give the gradients of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.20) with respect to 

the amplitude (𝛼𝛼), decay-rate (𝛽𝛽), and time-delay (𝜏𝜏𝑡𝑡𝑖𝑖𝑠𝑠) of the 1-tissue impulse response function, 
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respectively. To obtain the complete set of partial derivatives of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.18) with respect to 

the impulse response model parameters, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.21)-thru-(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.23) must be linearly 

combined with the corresponding partial derivatives in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.8)-thru-(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.10). 

 

𝜹𝜹�𝑴𝑴(𝒕𝒕)⊗𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕 𝒙𝒙(𝒕𝒕)�
𝜹𝜹𝜶𝜶

= 

� � 𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)� 𝒕𝒕𝒘𝒘

−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

� −𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷)� 𝒘𝒘
−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) − �𝒅𝒅𝟎𝟎

𝜷𝜷
� 𝒙𝒙(𝒕𝒕)−

 −  � −𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷) −
𝒅𝒅𝟎𝟎
𝜷𝜷
� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ 𝜹𝜹(𝒕𝒕 − 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄)

 (Eqn. A.3.21) 

 

𝜹𝜹�𝑴𝑴(𝒕𝒕)⊗𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕 �
𝜹𝜹𝜷𝜷

= 

𝛂𝛂 � � −𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐� 𝒕𝒕𝒘𝒘

−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + � 𝟐𝟐𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟑𝟑 −

𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐� 𝒘𝒘

−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)

+ �𝒅𝒅𝟎𝟎
𝜷𝜷𝟐𝟐
� 𝒙𝒙(𝒕𝒕)−  � 𝟐𝟐𝐰𝐰𝟏𝟏𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟑𝟑 −
𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒅𝒅𝟎𝟎
𝜷𝜷𝟐𝟐
� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕) +

+ � −𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷) −
𝒅𝒅𝟎𝟎
𝜷𝜷
� 𝐭𝐭𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ 𝜹𝜹(𝒕𝒕 − 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄)

 (Eqn. A.3.22) 

 

𝜹𝜹�𝑴𝑴(𝒕𝒕)⊗𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕 �
𝜹𝜹𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄

= �𝜷𝜷 �𝑴𝑴(𝒕𝒕) ⊗𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕 𝒙𝒙(𝒕𝒕)� − 𝜶𝜶𝑴𝑴(𝒕𝒕)� ⊗ 𝜹𝜹(𝒕𝒕 − 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄) (Eqn. A.3.23) 

 

b. Time-Averaged Tissue Response using the Generalized Feng Model as Input: A Trap 

The impulse response function for a trap is given by (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.11) above. Inserting 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.11) into (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.6) gives (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.24), where 𝑔𝑔(𝜏𝜏) is the generalized Feng 

model [(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.35)]. Therefore, following the approach defined in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.1), the time-

averaged response for a trap assuming the generalized Feng model as input can be calculated via 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.25) for a particular pair of PET frame [𝑡𝑡𝑖𝑖𝑠𝑠, 𝑡𝑡𝑖𝑖𝑒𝑒]. 

 

𝒀𝒀𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑(𝒕𝒕) = [𝜶𝜶𝒙𝒙(𝒕𝒕)]⊗ �∫ 𝒈𝒈(𝒔𝒔)𝒅𝒅𝒔𝒔𝒕𝒕
−∞ � (Eqn. A.3.24) 
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𝟏𝟏
�𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄� 
 ∫ 𝒚𝒚𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑(𝒕𝒕)𝒅𝒅𝒕𝒕𝒕𝒕𝒔𝒔

𝒘𝒘

𝒕𝒕𝒔𝒔
𝒄𝒄 = �𝒀𝒀𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑�𝒕𝒕𝒔𝒔

𝒘𝒘�−𝒀𝒀𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑�𝒕𝒕𝒔𝒔
𝒄𝒄��

�𝒕𝒕𝒔𝒔
𝒘𝒘−𝒕𝒕𝒔𝒔

𝒄𝒄�
 (Eqn. A.3.25) 

 
 
 
However, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.24) is simply the running integral of the generalized Feng model 

convolved with a step-function and scaled by 𝛼𝛼. The convolution of the running integral of the 

generalized Feng model with a step-function has previously been calculated Appendix A.1.2 for 

the case of 𝛼𝛼 = 1. This quantity can thus be written for arbitrary 𝛼𝛼 as well as a non-zero delay, 

𝜏𝜏𝑡𝑡𝑖𝑖𝑠𝑠, in addition to the bulk delay, 𝜏𝜏𝑑𝑑𝑑𝑑, and second peak delay, 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑘𝑘, of the generalized Feng 

model as in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.26); where 𝐾𝐾(𝑡𝑡) is as defined in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.34) and 𝑊𝑊(𝑡𝑡) is defined in 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.48). 

 

𝒀𝒀𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑(𝒕𝒕) = 𝛂𝛂{𝑲𝑲(𝒕𝒕) + 𝑾𝑾(𝒕𝒕)}⨂𝜹𝜹(𝐭𝐭 − 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄) (Eqn. A.3.26) 

 

i. Gradient of Model Parameters for Time-Averaged Tissue Response using the 
Generalized Feng Model as Input: A Trap 

For the purposes of speeding up model fitting as well as estimating the covariance matrix 

of the impulse response model being fitted, it is useful to calculate the gradient of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.26) 

with respect to each of the model parameters. To this end, note that 𝛿𝛿𝑌𝑌𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡
(𝑡𝑡)

𝛿𝛿𝛼𝛼
 is given by  

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.27), which is a linear combination of two partial derivatives with respect to the 

amplitude 𝛼𝛼. However, the top partial derivative was evaluated previously and is given by 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.15) above. 
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𝜹𝜹𝒀𝒀𝒕𝒕𝒘𝒘𝒅𝒅𝒑𝒑(𝒕𝒕)

𝜹𝜹𝜶𝜶
= 

𝛅𝛅
𝛅𝛅𝛂𝛂

[𝜶𝜶𝑲𝑲(𝒕𝒕)⨂𝜹𝜹(𝐭𝐭 − 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄)] +

+ 𝛅𝛅
𝛅𝛅𝛂𝛂

[𝜶𝜶𝑾𝑾(𝒕𝒕)⨂𝜹𝜹(𝐭𝐭 − 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄)]
 (Eqn. A.3.27) 

 
 
 
The superposition of partial derivatives in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.27) is due to the assumption of 

linearity in the response of the tissue to the injected tracer, and, as a result will also hold for the 

partial derivative of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.26) with respect to 𝜏𝜏𝑡𝑡𝑖𝑖𝑠𝑠. As a result, only the partial derivatives of 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.28) with respect to the impulse response model parameters will be derived in this 

section; where 𝑊𝑊(𝑡𝑡) is determined in Appendix A.1.2 [(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.48)], but is repeated here as 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.29) for ease of calculation.  

 

𝜶𝜶𝑾𝑾(𝒕𝒕)⨂𝜹𝜹(𝐭𝐭 − 𝛕𝛕𝐭𝐭𝐢𝐢𝐨𝐨) (Eqn. A.3.28) 

 

�−𝐦𝐦𝟎𝟎𝒕𝒕𝒘𝒘−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)− 𝟐𝟐𝐦𝐦𝟎𝟎
𝒘𝒘𝟏𝟏
𝒘𝒘−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

+ 𝟐𝟐𝐦𝐦𝟎𝟎
𝒘𝒘𝟏𝟏
𝒙𝒙(𝒕𝒕) − 𝐦𝐦𝟎𝟎𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝐭𝐭 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌])

 (Eqn. A.3.29) 

 
 
 
(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.30) and (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.31) give the gradients of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.27) with respect to 

the amplitude (𝛼𝛼) and time-delay (𝜏𝜏𝑡𝑡𝑖𝑖𝑠𝑠), respectively. In (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.31), 𝑀𝑀(𝑡𝑡) is as defined in 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.38) above, except the 𝛿𝛿(𝑡𝑡 − 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑘𝑘) in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1. 38) has now been included in the 

overall 𝛿𝛿(𝑡𝑡 − [𝜏𝜏𝑑𝑑𝑑𝑑 + 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑘𝑘 + 𝜏𝜏𝑡𝑡𝑖𝑖𝑠𝑠]) term of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.31). To obtain the complete set of partial 

derivatives of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.27) with respect to the trap parameters, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.30)-thru-

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.31) must be linearly combined with the corresponding partial derivatives in 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.15) and (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.16). 
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𝜹𝜹[𝜶𝜶𝑾𝑾(𝒕𝒕)]
𝜹𝜹𝜶𝜶

= 𝑾𝑾(𝒕𝒕) ⊗𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄]) (Eqn. A.3.30) 

 

𝜹𝜹[𝜶𝜶𝑾𝑾(𝒕𝒕)]
𝜹𝜹𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄

= [−𝜶𝜶𝑴𝑴(𝒕𝒕)]⊗𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄]) (Eqn. A.3.31) 

A.4 SIMULTANEOUS ESTIMATION OF THE IMAGE-BASED INPUT FUNCTION 

AND TISSUE RESPONSE MODELS 

A primary means of evaluating [18F]ML-10 performance in this dissertation involves 

estimation of the parameters of the impulse response function (IRF) of the target tissue. To this 

end, knowledge of the input radioactivity concentration into the tissue is required. However, as 

only an image-derived input function (IBIF) is available for modeling, this means that the IBIF 

itself must also be modeled. The joint log-likelihood function for a general IBIF and tissue model 

combination was derived in Section 5.2 above, (𝐸𝐸𝐸𝐸𝐸𝐸.  5.2.61). The goal of this section is to derive 

the corresponding gradients of the joint-log likelihood function needed for efficient optimization.  

A.4.1 The Joint Log-Likelihood Function 

The general joint log-likelihood function for simultaneous estimation of the IBIF and tissue 

models was derived in Section 5.2 above and is repeated here as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.1). As in Section 5.2, 

𝑀𝑀(𝜃𝜃, 𝛿𝛿;  𝑡𝑡�̅�𝑖) ≜ [𝑓𝑓(𝜃𝜃; 𝑡𝑡�̅�𝑖) 𝑔𝑔(𝜃𝜃, 𝛿𝛿; 𝑡𝑡�̅�𝑖)]𝑇𝑇 is a 2x1 column vector, where 𝑓𝑓(𝜃𝜃; 𝑡𝑡�̅�𝑖) and 𝑔𝑔(𝜃𝜃, 𝛿𝛿; 𝑡𝑡�̅�𝑖) 

denote the time-averaged values of the IBIF and tissue response models during the ith frame, 

respectively, and N denotes the total number of PET frames acquired. 𝜃𝜃 and 𝛿𝛿 represent the 
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corresponding IBIF and tissue model parameter vectors, respectively. Furthermore, 𝑥𝑥𝑖𝑖 denotes the 

2x1 column vector containing the ith input, 𝑢𝑢𝑖𝑖, and tumor tissue, 𝑣𝑣𝑖𝑖, sample pairs (i.e. 𝑥𝑥𝑖𝑖 ≜

 [𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖]𝑇𝑇).  (𝐸𝐸𝐸𝐸𝐸𝐸.𝐴𝐴. 4.2) gives the form of the joint-covariance matrix for the ith PET frame, where 

𝜎𝜎1,𝑖𝑖
2  and 𝜎𝜎2,𝑖𝑖

2  are the input and tissue sample variances for the ith PET frame, respectively. 

 

𝓵𝓵(𝜽𝜽,𝜹𝜹) = �
−𝑵𝑵𝐥𝐥𝐥𝐥{𝟐𝟐𝟐𝟐} − 𝟏𝟏

𝟐𝟐
∑ 𝒍𝒍𝒏𝒏{|𝚺𝚺𝐢𝐢|}𝐍𝐍
𝐢𝐢=𝟏𝟏 −

−𝟏𝟏
𝟐𝟐
∑ �[𝒙𝒙𝒔𝒔 −𝑴𝑴(𝜽𝜽,𝜹𝜹;  �̅�𝒕𝒔𝒔)]𝑻𝑻 𝚺𝚺𝐢𝐢−𝟏𝟏 [𝒙𝒙𝒔𝒔 −𝑴𝑴(𝜽𝜽,𝜹𝜹;  �̅�𝒕𝒔𝒔)]�𝑵𝑵
𝒔𝒔=𝟏𝟏

 (Eqn. A.4.1) 

 

𝚺𝚺𝒔𝒔 = �
𝝈𝝈𝟏𝟏,𝒔𝒔
𝟐𝟐 𝟎𝟎
𝟎𝟎 𝝈𝝈𝟐𝟐,𝒔𝒔

𝟐𝟐 � (Eqn. A.4.2) 

 
 
 
Following the typical convention in PET quantification to assume the measurement 

variances are proportional to the measured time-activity curve data (see Chapter 2, Section 2.4.1) 

the variances on the measured IBIF and tissue data are assumed to be of the form: 𝜎𝜎1,𝑖𝑖
2 = 𝛼𝛼2𝑢𝑢𝑖𝑖 and 

𝜎𝜎2,𝑖𝑖
2 = 𝛽𝛽2𝑣𝑣𝑖𝑖, respectively. 𝛼𝛼 and 𝛽𝛽 are unknown positive constants, and 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖  are known, time-

varying, weights that depend on the measured data but not the model parameters. With this 

measurement variance assumption, (𝐸𝐸𝐸𝐸𝐸𝐸.𝐴𝐴. 4.2) takes the form of (𝐸𝐸𝐸𝐸𝐸𝐸.𝐴𝐴. 4.3) below. Moreover, 

with using  (𝐸𝐸𝐸𝐸𝐸𝐸.𝐴𝐴. 4.3), the log-likelihood function in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.1) can be re-written as in 

(𝐸𝐸𝐸𝐸𝐸𝐸.𝐴𝐴. 4.4) below. 

 

𝚺𝚺𝒔𝒔 = �𝜶𝜶
𝟐𝟐𝒙𝒙𝒔𝒔 𝟎𝟎
𝟎𝟎 𝜷𝜷𝟐𝟐𝒚𝒚𝒔𝒔

� (Eqn. A.4.3) 
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𝓵𝓵(𝜽𝜽,𝜹𝜹) = �
−𝑵𝑵𝐥𝐥𝐥𝐥{𝟐𝟐𝟐𝟐} − 𝟏𝟏

𝟐𝟐
∑ 𝒍𝒍𝒏𝒏{𝒙𝒙𝒔𝒔𝒚𝒚𝒔𝒔}𝐍𝐍
𝐢𝐢=𝟏𝟏 − 𝟏𝟏

𝟐𝟐
∑ 𝒍𝒍𝒏𝒏{𝜶𝜶𝟐𝟐}𝐍𝐍
𝐢𝐢=𝟏𝟏 − 𝟏𝟏

𝟐𝟐
∑ 𝒍𝒍𝒏𝒏{𝜷𝜷𝟐𝟐}𝐍𝐍
𝐢𝐢=𝟏𝟏 −

− 𝟏𝟏
𝟐𝟐
∑ �[𝒙𝒙𝒔𝒔 −𝑴𝑴(𝜽𝜽,𝜹𝜹;  �̅�𝒕𝒔𝒔)]𝑻𝑻 𝚺𝚺𝐢𝐢−𝟏𝟏 [𝒙𝒙𝒔𝒔 −𝑴𝑴(𝜽𝜽,𝜹𝜹;  �̅�𝒕𝒔𝒔)]�𝑵𝑵
𝒔𝒔=𝟏𝟏

 (Eqn. A.4.4) 

 
 
 
Furthermore, by defining the diagonal matrices 𝑆𝑆1 and 𝑆𝑆2 as in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.5) and 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.6), as well as eliminating all terms from (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.4) that do not depend on the model 

parameters, (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.4) can be re-written as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.7). Note that in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.7), 𝑢𝑢, 𝑣𝑣, 

𝑓𝑓(𝜃𝜃), and 𝑔𝑔(𝜃𝜃, 𝛿𝛿) are column vectors of the form: 𝑢𝑢 =  [𝑢𝑢1, … , 𝑢𝑢𝑁𝑁]𝑇𝑇, 𝑣𝑣 =  [𝑣𝑣1, … , 𝑣𝑣𝑁𝑁]𝑇𝑇, 

𝑓𝑓(𝜃𝜃) =  [𝑓𝑓(𝜃𝜃; 𝑡𝑡�̅�𝑖) , … , 𝑓𝑓(𝜃𝜃; 𝑡𝑡�̅�𝑁) ]𝑇𝑇, and 𝑔𝑔(𝜃𝜃, 𝛿𝛿) =  [𝑔𝑔(𝜃𝜃, 𝛿𝛿; 𝑡𝑡1̅), … , 𝑔𝑔(𝜃𝜃, 𝛿𝛿; 𝑡𝑡�̅�𝑁)]𝑇𝑇. 

 

𝒏𝒏𝟏𝟏 = �

𝒙𝒙𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝒙𝒙𝟐𝟐 ⋮ ⋮
⋮ 𝟎𝟎 ⋱ 𝟎𝟎
𝟎𝟎 … 𝟎𝟎 𝒙𝒙𝑵𝑵

� (Eqn. A.4.5) 

 

𝒏𝒏𝟐𝟐 = �

𝒚𝒚𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝒚𝒚𝟐𝟐 ⋮ ⋮
⋮ 𝟎𝟎 ⋱ 𝟎𝟎
𝟎𝟎 … 𝟎𝟎 𝒚𝒚𝑵𝑵

� (Eqn. A.4.6) 

 

𝓵𝓵(𝜽𝜽,𝜹𝜹) = �
−𝐍𝐍

𝟐𝟐
𝒍𝒍𝒏𝒏{𝜶𝜶𝟐𝟐} − 𝐍𝐍

𝟐𝟐
𝒍𝒍𝒏𝒏{𝜷𝜷𝟐𝟐} − 𝟏𝟏

𝟐𝟐𝜶𝜶𝟐𝟐
[𝐮𝐮 − 𝒇𝒇(𝜽𝜽)]𝑻𝑻 𝒏𝒏𝟏𝟏−𝟏𝟏 [𝐮𝐮 − 𝒇𝒇(𝜽𝜽)]−

− 𝟏𝟏
𝟐𝟐𝜷𝜷𝟐𝟐

[𝐯𝐯 − 𝒈𝒈(𝜽𝜽,𝜹𝜹)]𝑻𝑻 𝒏𝒏𝟐𝟐−𝟏𝟏 [𝐯𝐯 − 𝒈𝒈(𝜽𝜽,𝜹𝜹)]
 (Eqn. A.4.7) 

 
 
 
From the form in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.7) the corresponding gradients with respect to all model 

parameters can be computed. The forms of the gradients with respect to the various model 

parameters are given in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.8). Note, the gradients ∇θ𝑓𝑓(𝜃𝜃) were calculated in the previous 
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section for the Feng IBIF model and the generalized Feng IBIF model, as were the gradients 

corresponding to ∇δ𝑔𝑔(𝜃𝜃, 𝛿𝛿) for various tissue response models. As a result, the following sections 

focus on computing the components of ∇θ𝑔𝑔(𝜃𝜃, 𝛿𝛿) for the Feng and generalized Feng model. That 

is, computing the gradients of the tissue models with respect to the IBIF model parameters. 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝛁𝛁𝜽𝜽𝓵𝓵 = [𝐮𝐮 − 𝒇𝒇(𝜽𝜽)]𝑻𝑻 𝒏𝒏𝟏𝟏−𝟏𝟏 [𝛁𝛁𝛉𝛉𝒇𝒇(𝜽𝜽)] + [𝐯𝐯 − 𝒈𝒈(𝜽𝜽,𝜹𝜹)]𝑻𝑻 𝒏𝒏𝟐𝟐−𝟏𝟏 [𝛁𝛁𝛉𝛉𝒈𝒈(𝜽𝜽,𝜹𝜹)]

𝛁𝛁𝜹𝜹𝓵𝓵 =  [𝐯𝐯 − 𝒈𝒈(𝜽𝜽,𝜹𝜹)]𝑻𝑻 𝒏𝒏𝟐𝟐−𝟏𝟏 [𝛁𝛁𝛅𝛅𝒈𝒈(𝜽𝜽,𝜹𝜹)]

𝛁𝛁𝜶𝜶𝟐𝟐𝓵𝓵 = − 𝐍𝐍
𝟐𝟐𝜶𝜶𝟐𝟐

+ 𝟏𝟏

𝟐𝟐�𝜶𝜶𝟐𝟐�𝟐𝟐
[𝐮𝐮 − 𝒇𝒇(𝜽𝜽)]𝑻𝑻 𝒏𝒏𝟏𝟏−𝟏𝟏 [𝐮𝐮 − 𝒇𝒇(𝜽𝜽)] 

𝛁𝛁𝜷𝜷𝟐𝟐 𝓵𝓵 = − 𝐍𝐍
𝟐𝟐𝜷𝜷𝟐𝟐

+ 𝟏𝟏

𝟐𝟐�𝜷𝜷𝟐𝟐�
𝟐𝟐 [𝐯𝐯 − 𝒈𝒈(𝜽𝜽,𝜹𝜹)]𝑻𝑻 𝒏𝒏𝟐𝟐−𝟏𝟏 [𝐯𝐯 − 𝒈𝒈(𝜽𝜽,𝜹𝜹)]

 (Eqn. A.4.8) 

 

A.4.2 Calculation of Additional Gradients: Feng Model 

a. Reversible Kinetics 

The system response function assuming the Feng IBIF model and reversible tracer kinetics 

was derived above in Section A.3, though it is repeated here as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.9). The corresponding 

gradients of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.9) with respect to the Feng IBIF model parameters are given in 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.10) thru (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.14). 

 

𝒀𝒀(𝒕𝒕) =

�� 𝜶𝜶𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷) 

� 𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + � −𝜶𝜶𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐 

+  𝜶𝜶𝒔𝒔𝟏𝟏
(−𝒑𝒑𝟏𝟏+𝜷𝜷)� 𝒘𝒘

−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

+∑ � 𝜶𝜶𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)� 𝒘𝒘

−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕)𝑵𝑵
𝟐𝟐 =𝟐𝟐 + �𝜶𝜶𝒔𝒔𝑵𝑵+𝟏𝟏

𝜷𝜷
� 𝒙𝒙(𝒕𝒕) −  � −𝜶𝜶𝒔𝒔𝟎𝟎

(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐 
+

+ 𝜶𝜶𝒔𝒔𝟏𝟏
(−𝒑𝒑𝟏𝟏+𝜷𝜷)  + ∑ � 𝜶𝜶𝒔𝒔𝒔𝒔

(−𝒑𝒑𝒔𝒔+𝜷𝜷)� +  𝜶𝜶𝒔𝒔𝑵𝑵+𝟏𝟏
𝜷𝜷

𝑵𝑵
𝟐𝟐 =𝟐𝟐 � 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.4.9) 
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𝝏𝝏𝒀𝒀(𝒕𝒕)
𝝏𝝏𝒔𝒔𝟎𝟎

=

 �� 𝜶𝜶
(−𝒑𝒑𝟏𝟏+𝜷𝜷) 

� 𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)  + � −𝜶𝜶
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐 

+ � 𝜶𝜶
𝒑𝒑𝟏𝟏
� 𝟏𝟏

(−𝒑𝒑𝟏𝟏+𝜷𝜷)� 𝒘𝒘
−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + 

−  � 𝜶𝜶
𝜷𝜷𝒑𝒑𝟏𝟏

� 𝒙𝒙(𝒕𝒕) +

+ � 𝜶𝜶
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐 

− � 𝜶𝜶
𝒑𝒑𝟏𝟏
� 𝟏𝟏

(−𝒑𝒑𝟏𝟏+𝜷𝜷) +  𝜶𝜶
𝜷𝜷𝒑𝒑𝟏𝟏

� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.4.10) 

 

𝝏𝝏𝒀𝒀(𝒕𝒕)
𝝏𝝏𝒔𝒔𝒔𝒔

=

���− 𝒑𝒑𝒔𝒔
𝒑𝒑𝟏𝟏
� 𝜶𝜶

(−𝒑𝒑𝟏𝟏+𝜷𝜷)� 𝒘𝒘
−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +  � 𝜶𝜶

(−𝒑𝒑𝒔𝒔+𝜷𝜷)� 𝒘𝒘
−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕) −

−  �𝜶𝜶
𝜷𝜷
�− 𝒑𝒑𝒔𝒔

𝒑𝒑𝟏𝟏
+ 𝟏𝟏��𝒙𝒙(𝒕𝒕) +

+ ��𝒑𝒑𝒔𝒔
𝒑𝒑𝟏𝟏
� 𝜶𝜶

(−𝒑𝒑𝟏𝟏+𝜷𝜷) −  𝜶𝜶
(−𝒑𝒑𝒔𝒔+𝜷𝜷) + 𝜶𝜶

𝜷𝜷
�− 𝒑𝒑𝒔𝒔

𝒑𝒑𝟏𝟏
+ 𝟏𝟏�� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�

⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.4.11) 

 

𝝏𝝏𝒀𝒀(𝒕𝒕)
𝝏𝝏𝒑𝒑𝟏𝟏

=

�� −𝜶𝜶𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷) 

� 𝒕𝒕𝟐𝟐𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + � 𝟐𝟐𝜶𝜶𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐 

−  𝜶𝜶𝒔𝒔𝟏𝟏
(−𝒑𝒑𝟏𝟏+𝜷𝜷) 

� 𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + 

� −𝟐𝟐𝜶𝜶𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟑𝟑 

− �𝜶𝜶𝒔𝒔𝟏𝟏
𝒑𝒑𝟏𝟏
�  𝟏𝟏

(−𝒑𝒑𝟏𝟏+𝜷𝜷) 
+ 𝜶𝜶𝒔𝒔𝟏𝟏

(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐 
� 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + 

+ �𝜶𝜶𝒔𝒔𝟏𝟏
𝜷𝜷𝒑𝒑𝟏𝟏

� 𝒙𝒙(𝒕𝒕) +   � 𝟐𝟐𝜶𝜶𝒔𝒔𝟎𝟎
(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟑𝟑 

+

+ �𝜶𝜶𝒔𝒔𝟏𝟏
𝒑𝒑𝟏𝟏
� 𝟏𝟏

(−𝒑𝒑𝟏𝟏+𝜷𝜷) 
− 𝜶𝜶𝒔𝒔𝟏𝟏

(−𝒑𝒑𝟏𝟏+𝜷𝜷)𝟐𝟐 
−  𝜶𝜶𝒔𝒔𝟏𝟏

𝜷𝜷𝒑𝒑𝟏𝟏
� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.4.12) 

 

𝝏𝝏𝒀𝒀(𝒕𝒕)
𝝏𝝏𝒑𝒑𝒔𝒔

=

�� �− 𝒔𝒔𝒔𝒔
𝒑𝒑𝟏𝟏
� 𝜶𝜶

(−𝒑𝒑𝟏𝟏+𝜷𝜷) 
� 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) − � 𝜶𝜶𝒔𝒔𝒔𝒔

(−𝒑𝒑𝒔𝒔+𝜷𝜷) 
� 𝒕𝒕𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕) +

+ � 𝜶𝜶𝒔𝒔𝒔𝒔
(−𝒑𝒑𝒔𝒔+𝜷𝜷)𝟐𝟐 

� 𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕) + �𝜶𝜶𝒔𝒔𝒔𝒔
𝜷𝜷𝒑𝒑𝟏𝟏

� 𝒙𝒙(𝒕𝒕) +

+ ��𝒔𝒔𝒔𝒔
𝒑𝒑𝟏𝟏
� 𝜶𝜶

(−𝒑𝒑𝟏𝟏+𝜷𝜷) 
− 𝜶𝜶𝒔𝒔𝒔𝒔

(−𝒑𝒑𝒔𝒔+𝜷𝜷)𝟐𝟐 
− 𝜶𝜶𝒔𝒔𝒔𝒔

𝜷𝜷𝒑𝒑𝟏𝟏
� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.4.13) 

 

𝝏𝝏𝒀𝒀(𝒕𝒕)
𝝏𝝏𝒔𝒔𝒔𝒔𝒅𝒅

= {𝜷𝜷𝒀𝒀(𝒕𝒕) −  𝜶𝜶𝑭𝑭(𝒕𝒕)} ⊗𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄]) (Eqn. A.4.14) 
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b. Trapping 

The system response function assuming the Feng IBIF model and irreversible tracer 

kinetics was derived above in Section A.3, though it is repeated here as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.15). The 

corresponding gradients of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.15) with respect to the Feng IBIF model parameters are 

given in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.16) thru (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.20). 

 

𝒀𝒀(𝒕𝒕) =

��−𝜶𝜶𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏 

� 𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + �−𝜶𝜶𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
𝟐𝟐 
− 𝜶𝜶𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
� 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)−

−∑ �𝜶𝜶𝒔𝒔𝒔𝒔
𝒑𝒑𝒔𝒔
� 𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕)𝑵𝑵

𝟐𝟐 =𝟐𝟐 + [𝜶𝜶𝒔𝒔𝑵𝑵+𝟏𝟏]𝒕𝒕𝒙𝒙(𝒕𝒕) +  �𝜶𝜶𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
𝟐𝟐 

+

+ 𝜶𝜶𝒔𝒔𝟏𝟏
𝒑𝒑𝟏𝟏

 + ∑ �𝜶𝜶𝒔𝒔𝒔𝒔
𝒑𝒑𝒔𝒔
�𝑵𝑵

𝟐𝟐 =𝟐𝟐 �𝒙𝒙(𝒕𝒕)�⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.4.15) 

 

𝝏𝝏𝒀𝒀(𝒕𝒕)
𝝏𝝏𝒔𝒔𝟎𝟎

=
� −� 𝜶𝜶

𝒑𝒑𝟏𝟏
� 𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) − �𝟐𝟐𝜶𝜶

𝒑𝒑𝟏𝟏
𝟐𝟐 
� 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + 

+ �𝟐𝟐𝜶𝜶
𝒑𝒑𝟏𝟏
𝟐𝟐 
� 𝒙𝒙(𝒕𝒕) − � 𝜶𝜶

𝒑𝒑𝟏𝟏
� 𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.4.16) 

 

𝝏𝝏𝒀𝒀(𝒕𝒕)
𝝏𝝏𝒔𝒔𝒔𝒔

=
��𝜶𝜶𝒑𝒑𝒔𝒔

𝒑𝒑𝟏𝟏
𝟐𝟐 � 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕)− 𝜶𝜶

𝒑𝒑𝒔𝒔
𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕) +  𝜶𝜶 �− 𝒑𝒑𝒔𝒔

𝒑𝒑𝟏𝟏
𝟐𝟐 +  𝟏𝟏

𝒑𝒑𝒔𝒔
� 𝒙𝒙(𝒕𝒕) − 

−𝜶𝜶�− 𝒑𝒑𝒔𝒔
𝒑𝒑𝟏𝟏

+ 𝟏𝟏� 𝒕𝒕𝒙𝒙(𝒕𝒕)�⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄]); 𝒔𝒔 = 𝟐𝟐, … ,𝑵𝑵
 (Eqn. A.4.17) 

 

𝝏𝝏𝒀𝒀(𝒕𝒕)
𝝏𝝏𝒑𝒑𝟏𝟏

=

�𝜶𝜶𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
𝒕𝒕𝟐𝟐𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +  𝜶𝜶 �𝟐𝟐𝒔𝒔𝟎𝟎

𝒑𝒑𝟏𝟏
𝟐𝟐 + 𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
� 𝒕𝒕𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

𝜶𝜶 �𝟐𝟐𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
𝟑𝟑 + 𝟐𝟐𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
𝟐𝟐 � 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

+𝜶𝜶 �− 𝟐𝟐𝒔𝒔𝟎𝟎
𝒑𝒑𝟏𝟏
𝟑𝟑 −

𝟐𝟐𝒔𝒔𝟏𝟏
𝒑𝒑𝟏𝟏
𝟐𝟐 � 𝒙𝒙(𝒕𝒕) + �𝜶𝜶𝒔𝒔𝟏𝟏

𝒑𝒑𝟏𝟏
� 𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.4.18) 
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𝝏𝝏𝒀𝒀(𝒕𝒕)
𝝏𝝏𝒑𝒑𝒔𝒔

=
��𝜶𝜶𝒔𝒔𝒔𝒔

𝒑𝒑𝟏𝟏
𝟐𝟐 � 𝒘𝒘−𝒑𝒑𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + �𝜶𝜶𝒔𝒔𝒔𝒔

𝒑𝒑𝒔𝒔
� 𝒕𝒕𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕) + �𝜶𝜶𝒔𝒔𝒔𝒔

𝒑𝒑𝒔𝒔
𝟐𝟐 � 𝒘𝒘−𝒑𝒑𝒔𝒔𝒕𝒕𝒙𝒙(𝒕𝒕)−

−� 𝜶𝜶𝒔𝒔𝒔𝒔
𝒑𝒑𝟏𝟏
𝟐𝟐 + 𝜶𝜶𝒔𝒔𝒔𝒔

𝒑𝒑𝐢𝐢
𝟐𝟐 � 𝒙𝒙(𝒕𝒕) + �𝜶𝜶𝒔𝒔𝒔𝒔

𝒑𝒑𝟏𝟏
� 𝒕𝒕𝒙𝒙(𝒕𝒕)� ⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄]); 𝒔𝒔 = 𝟐𝟐, … ,𝑵𝑵

 (Eqn. A.4.19) 

 

𝝏𝝏𝒀𝒀(𝒕𝒕)
𝝏𝝏𝒔𝒔𝒔𝒔𝒅𝒅

= −𝜶𝜶𝑭𝑭(𝒕𝒕)⊗𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄]) (Eqn. A.4.20) 

A.4.3 Calculation of Additional Gradients: Generalized Feng Model 

As in Section A.3, focus in this section will be on evaluating the gradient of the convolution 

of the second peak of the generalized Feng model only. That is, on evaluating �𝑀𝑀(𝑡𝑡;𝜃𝜃) ⊗

𝛼𝛼𝑒𝑒−𝛽𝛽𝑡𝑡 𝑢𝑢(𝑡𝑡)�, where 𝑀𝑀(𝑡𝑡;𝜃𝜃) is as defined in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 1.43); though here the specific dependence 

of 𝑀𝑀(𝑡𝑡) on the model parameters 𝜃𝜃 is made explicit by writing 𝑀𝑀(𝑡𝑡;𝜃𝜃). The complete gradients 

with respect to the generalized Feng model can be obtained by summing the corresponding 

gradients of the Feng model and the gradients of the second peak as demonstrated for the IBIF 

model parameter 𝜃𝜃𝑖𝑖 in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.21), where 𝑌𝑌(𝑡𝑡) is as defined in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 3.18) above. 

 

𝝏𝝏𝒀𝒀(𝒕𝒕;𝜽𝜽,𝜹𝜹)
𝝏𝝏𝜽𝜽𝒔𝒔

=

⎩
⎨

⎧𝝏𝝏��𝑭𝑭(𝒕𝒕;𝜽𝜽)⊗𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕 𝒙𝒙(𝒕𝒕)�⊗𝛅𝛅(𝒕𝒕−[𝒔𝒔𝒔𝒔𝒅𝒅+𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])�

𝝏𝝏𝜽𝜽𝒔𝒔
+

+
𝝏𝝏��𝑴𝑴(𝒕𝒕;𝜽𝜽)⊗𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕 𝒙𝒙(𝒕𝒕)�⊗𝛅𝛅(𝒕𝒕−[𝒔𝒔𝒔𝒔𝒅𝒅+𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])�

𝝏𝝏𝜽𝜽𝒔𝒔

 (Eqn. A.4.21) 
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a. Reversible Kinetics 

For the case of reversible kinetics, the bottom equation of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.21), denoted as 

𝐽𝐽(𝜃𝜃, 𝛿𝛿) in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.22) will take the form of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.23). This equation is slightly modified 

from the version that was derived in Section A.2, where it appears as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 2.20).  

 

𝑱𝑱(𝜽𝜽,𝜹𝜹) = �𝑴𝑴(𝒕𝒕;𝜽𝜽) ⊗𝜶𝜶𝒘𝒘−𝜷𝜷𝒕𝒕 𝒙𝒙(𝒕𝒕)�⊗ 𝛅𝛅(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄]) (Eqn. A.4.22) 

 

𝑱𝑱(𝜽𝜽,𝜹𝜹) = 

𝜶𝜶 � � 𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)� 𝒕𝒕𝒘𝒘

−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

� −𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷)� 𝒘𝒘
−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) − �𝒅𝒅𝟎𝟎

𝜷𝜷
� 𝒙𝒙(𝒕𝒕)−

 −  � −𝒘𝒘𝟏𝟏𝒅𝒅𝟎𝟎
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝒅𝒅𝟎𝟎

(−𝒘𝒘𝟏𝟏+𝜷𝜷) −
𝒅𝒅𝟎𝟎
𝜷𝜷
� 𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)�

⊗ 𝜹𝜹�𝒕𝒕 − �𝒔𝒔𝒔𝒔𝒅𝒅 + 𝛕𝛕𝐝𝐝𝐩𝐩 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄��

 (Eqn. A.4.23) 

 
 
 
The resulting gradients with respect to the IBIF model parameters: 𝑣𝑣0, 𝑣𝑣1, and 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑘𝑘are 

given below as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.24), (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.25), and (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.26), respectively. Note the bulk 

time delay, 𝜏𝜏𝑑𝑑𝑑𝑑 also appears in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.23), because 𝜏𝜏𝑑𝑑𝑑𝑑 describes the overall delay on the IBIF 

model. (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.27) gives the gradient of 𝐽𝐽(𝜃𝜃, 𝛿𝛿) with respect to 𝜏𝜏𝑑𝑑𝑑𝑑. 

 

𝜹𝜹𝑱𝑱(𝜽𝜽,𝜹𝜹)
𝜹𝜹𝒅𝒅𝟎𝟎

=

�� 𝜶𝜶𝒘𝒘𝟏𝟏
(−𝒘𝒘𝟏𝟏+𝜷𝜷)� 𝒕𝒕𝒘𝒘

−𝒘𝒘𝟏𝟏𝒕𝒕 + � −𝜶𝜶𝒘𝒘𝟏𝟏
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝜶𝜶

(−𝒘𝒘𝟏𝟏+𝜷𝜷)� 𝒘𝒘
−𝒘𝒘𝟏𝟏𝒕𝒕 −

− �𝜶𝜶
𝜷𝜷
� 𝒙𝒙(𝒕𝒕) − 

−� −𝜶𝜶𝒘𝒘𝟏𝟏
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐 + 𝜶𝜶

(−𝒘𝒘𝟏𝟏+𝜷𝜷) −  𝜶𝜶
𝜷𝜷
� 𝒘𝒘−𝜷𝜷𝒕𝒕�⨂𝜹𝜹(𝒕𝒕 − �𝒔𝒔𝒔𝒔𝒅𝒅 + 𝛕𝛕𝐝𝐝𝐩𝐩 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄�)

 (Eqn. A.4.24) 
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𝜹𝜹𝑱𝑱(𝜽𝜽,𝜹𝜹)
𝜹𝜹𝒘𝒘𝟏𝟏

=
�� −𝜶𝜶𝒅𝒅𝟎𝟎𝒘𝒘𝟏𝟏(−𝒘𝒘𝟏𝟏+𝜷𝜷)� 𝒕𝒕

𝟐𝟐𝒘𝒘−𝒘𝒘𝟏𝟏𝒕𝒕 + � 𝟐𝟐𝜶𝜶𝒅𝒅𝟎𝟎𝒘𝒘𝟏𝟏
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟐𝟐� 𝒕𝒕𝒘𝒘

−𝒘𝒘𝟏𝟏𝒕𝒕 −

− � 𝟐𝟐𝜶𝜶𝒅𝒅𝟎𝟎𝒘𝒘𝟏𝟏
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟑𝟑� 𝒘𝒘

−𝒘𝒘𝟏𝟏𝒕𝒕 +  � 𝟐𝟐𝜶𝜶𝒅𝒅𝟎𝟎𝒘𝒘𝟏𝟏
(−𝒘𝒘𝟏𝟏+𝜷𝜷)𝟑𝟑� 𝒘𝒘

−𝜷𝜷𝒕𝒕�⨂𝜹𝜹(𝒕𝒕 − �𝒔𝒔𝒔𝒔𝒅𝒅 + 𝛕𝛕𝐝𝐝𝐩𝐩 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄�)
 (Eqn. A.4.25) 

 

𝜹𝜹𝑱𝑱(𝜽𝜽,𝜹𝜹)
𝜹𝜹𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌

= �𝜷𝜷 �𝑴𝑴(𝒕𝒕;𝜽𝜽) ⊗𝛂𝛂𝒘𝒘−𝜷𝜷𝒕𝒕𝒙𝒙(𝒕𝒕)� − 𝜶𝜶𝑴𝑴(𝒕𝒕;𝜽𝜽)� ⊗ 𝜹𝜹�𝒕𝒕 − �𝒔𝒔𝒔𝒔𝒅𝒅 + 𝛕𝛕𝐝𝐝𝐩𝐩 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄�� (Eqn. A.4.26) 

 

𝜹𝜹𝑱𝑱(𝜽𝜽,𝜹𝜹)
𝜹𝜹𝛕𝛕𝐛𝐛𝐝𝐝

= �𝜷𝜷𝒀𝒀(𝒕𝒕;𝜽𝜽,𝜹𝜹) − 𝜶𝜶�𝑭𝑭(𝒕𝒕;𝜽𝜽) + 𝑴𝑴(𝒕𝒕;𝜽𝜽)�� ⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄]) (Eqn. A.4.27) 

 

b. Trapping 

The system response function for the additional second order pole component of the 

generalized Feng IBIF model assuming irreversible tracer kinetics was derived above in Section 

A.3, though it is repeated here as (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.28). The corresponding gradients of (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.28) 

with respect to the additional second order pole parameters of the generalized Feng model are 

given in (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.29) thru (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.31). Note the bulk time delay, 𝜏𝜏𝑑𝑑𝑑𝑑 also appears in this 

equation (𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.28), because 𝜏𝜏𝑑𝑑𝑑𝑑 describes the overall delay on the IBIF model. 

(𝐸𝐸𝐸𝐸𝐸𝐸.  𝐴𝐴. 4.32) gives the gradient with respect to 𝜏𝜏𝑑𝑑𝑑𝑑. 

 

𝑴𝑴(𝒕𝒕;𝜽𝜽,𝜹𝜹) ⊗𝛂𝛂𝐮𝐮(𝒕𝒕) =
�−𝐦𝐦𝟎𝟎𝒕𝒕𝒘𝒘−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) − 𝟐𝟐𝐦𝐦𝟎𝟎

𝒘𝒘𝟏𝟏
𝒘𝒘−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

+ 𝟐𝟐𝐦𝐦𝟎𝟎
𝒘𝒘𝟏𝟏
𝒙𝒙(𝒕𝒕) − 𝐦𝐦𝟎𝟎𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝐭𝐭 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌])

 (Eqn. A.4.28) 

 

𝜹𝜹[𝑴𝑴(𝒕𝒕;𝜽𝜽,𝜹𝜹)⊗𝛂𝛂𝐮𝐮(𝒕𝒕)]
𝜹𝜹𝐦𝐦𝟎𝟎

= 
�−𝛂𝛂𝒕𝒕𝒘𝒘−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) − 𝟐𝟐𝛂𝛂

𝒘𝒘𝟏𝟏
𝒘𝒘−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

+ 𝟐𝟐𝛂𝛂
𝒘𝒘𝟏𝟏
𝒙𝒙(𝒕𝒕) − 𝛂𝛂𝒕𝒕𝒙𝒙(𝒕𝒕)�⨂𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.4.29) 
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𝜹𝜹[𝑴𝑴(𝒕𝒕;𝜽𝜽,𝜹𝜹)⊗𝛂𝛂𝐮𝐮(𝒕𝒕)]
𝜹𝜹𝐰𝐰𝟏𝟏

=

�𝛂𝛂𝐦𝐦𝟎𝟎𝒕𝒕𝟐𝟐𝒘𝒘−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) + 𝟐𝟐𝛂𝛂𝐦𝐦𝟎𝟎
𝒘𝒘𝟏𝟏

𝒕𝒕𝒘𝒘−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) +

+ 𝟐𝟐𝛂𝛂𝐦𝐦𝟎𝟎
𝒘𝒘𝟏𝟏
𝟐𝟐 𝒘𝒘−𝒘𝒘𝟏𝟏𝒕𝒕𝒙𝒙(𝒕𝒕) −

−𝟐𝟐𝛂𝛂𝐦𝐦𝟎𝟎
𝒘𝒘𝟏𝟏
𝟐𝟐 𝐮𝐮(𝐭𝐭)� ⊗ 𝜹𝜹(𝒕𝒕 − [𝒔𝒔𝒔𝒔𝒅𝒅 + 𝒔𝒔𝒅𝒅𝒔𝒔𝒍𝒍𝑷𝑷𝒌𝒌 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄])

 (Eqn. A.4.30) 

 

𝜹𝜹[𝑴𝑴(𝒕𝒕;𝜽𝜽,𝜹𝜹)⊗𝛂𝛂𝐮𝐮(𝒕𝒕)]
𝜹𝜹𝒔𝒔𝒅𝒅𝒑𝒑

= −𝜶𝜶𝑴𝑴(𝒕𝒕;𝜽𝜽,𝜹𝜹) ⊗𝜹𝜹�𝒕𝒕 − �𝒔𝒔𝒔𝒔𝒅𝒅 + 𝛕𝛕𝐝𝐝𝐩𝐩 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄�� (Eqn. A.4.31) 

 

𝜹𝜹��𝑭𝑭(𝒕𝒕;𝜽𝜽,𝜹𝜹)+𝑴𝑴(𝒕𝒕;𝜽𝜽,𝜹𝜹)�⊗𝛂𝛂𝐮𝐮(𝒕𝒕)�
𝜹𝜹𝛕𝛕𝐛𝐛𝐝𝐝

= −𝜶𝜶�𝑭𝑭(𝒕𝒕;𝜽𝜽,𝜹𝜹) + 𝑴𝑴(𝒕𝒕;𝜽𝜽,𝜹𝜹)� ⊗ 𝜹𝜹(𝒕𝒕 − [𝛕𝛕𝐛𝐛𝐝𝐝 + 𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄]) (Eqn. A.4.32) 
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