Synthesis and Evaluation of Novel 20-HETE formation inhibitors

by

Ameya Uday Deshpande

B.Pharm, Manipal College of Pharmaceutical Sciences, 2015

Submitted to the Graduate Faculty of
School of Pharmacy in partial fulfillment
of the requirements for the degree of

Master of Science

University of Pittsburgh

2018
UNIVERSITY OF PITTSBURGH

School of Pharmacy

This thesis was presented

by

Ameya Uday Deshpande

It was defended on

July 23, 2018

and approved by

Dr Lee McDermott, Assistant Professor, School of Pharmacy

Dr Prema Iyer, Assistant Professor, School of Pharmacy

Dr Maggie Folan, Director Graduate Program, Pharmaceutical Sciences, School of Pharmacy

Thesis Advisor: Dr Lee McDermott, Assistant Professor, School of Pharmacy
20-hydroxyecosatetraenoic acid (20-HETE) is a metabolite of arachidonic acid (AA) formed via CYP4 enzymes and has been shown to have strong vasoconstriction activity in the microvasculature. Epoxyecosatetraenoic acids (EETs) products of the epoxygenation pathway and possess vasodilatory function. Both of these fatty acid metabolites have demonstrated opposite effects in the microvasculature. 20-HETE has been studied in-vitro and in-vivo with results suggesting a role in secondary brain injury after subarachnoid hemorrhage (SAH) or cardiac arrest (CA). Several molecules, which target the formation of 20-HETE, have been studied and reported in literature such as 1-ABT, 17-ODYA and others. There has been no clinical translation for any of them due to their physicochemical properties, potency and selectivity. Over 15 years ago Taisho disclosed two molecules, both showing excellent potency and selectivity towards 20-HETE-formation inhibition over EET formation. However, these compounds were marred by chemical instability at low pH, poor solubility and a shockingly low t1/2. Currently, there are no CYP4 inhibitors in the clinic for the purpose of neuroprotection. Through scaffold hopping of compound 8, a 20-HETE formation inhibitor with poor metabolic stability, novel leads UPMP00010/19 were designed in McDermott lab. These leads have improved stability when compared to compound 8. Our aim is to further optimize these leads by the synthesis of derivatives with physicochemical properties appropriate for compounds that must act in the brain. As a part of greater optimization effort, we synthesized 24 UPMP00010/19 derivatives and these compounds are the focus of this work. Compounds generated were tested
against a panel of enzymes, which include human liver microsomes (HLM), recombinant CYP4F2 (rCYP4F2), rat liver microsomes (RLM) and rat kidney microsomes (RKM) in the lab of Dr. Samuel Poloyac at the University of Pittsburgh. Compounds with promising potency were taken for further evaluation, which included determination of intrinsic clearance, kinetic solubility and CNS permeability potential. Compounds 21a showed promising potency (IC$_{50}$=73nM), good HLM stability (92% parent molecule remaining at 30 mins) and high CNS permeability potential (efflux ratio=0.803). Compound 21c is equipotent (IC$_{50}$=79nM) to 21a and has good HLM stability (92% parent molecule remaining at 30 mins). 21a showed very little inhibition of EET formation at the highest concentration tested (3.1% @ 50,000nM). Compounds 21f and 21h are particularly attractive molecules as these molecules have excellent results in single point titrations in both human and rat enzyme systems.

Keywords: 20-HETE, Cardiac arrest, subarachnoid hemorrhage, Vasoconstriction, Scaffold-hopping, human liver microsomes, rat liver microsomes, rat kidney microsomes CNS permeability, Kinetic solubility, HLM stability.
TABLE OF CONTENTS

PREFACE .. X

1.0 INTRODUCTION ... 1

1.1 EICOSANOIDs AND CYP-450S ... 1

1.2 20-HETE AND EETS: BIOLOGICAL FUNCTION .. 2

1.3 20-HETE AND EETS FORMATION IN THE BRAIN ... 3

1.4 SUBARACHNOID HEMORRHAGE AND 20-HETE ... 4

1.5 CARDIAC ARREST AND 20-HETE ... 5

1.6 20-HETE FORMATION INHIBITORS AND ANTAGONISTS 7

1.7 PROPERTIES OF CNS DRUGS .. 10

1.8 20-HETE FORMATION INHIBITORS UPMP00010 AND UPMP00019... 11

2.0 CHEMISTRY .. 16

3.0 RESULTS AND DISCUSSION .. 22

3.1 20-HETE FORMATION INHIBITION IN HLM, RCYP4F2, RLM AND RKM.................. 23

3.1.1 DERIVATIVES WITH SIMPLE SUBSTITUENT ON PHENYL MOIETY 23

3.1.2 EFFECT OF METHYL SUBSTITUTION ON PYRAZOLE AND EFFECT OF S AS HETEROATOM LINKER .. 26
3.2 KINETIC SOLUBILITY OF POTENT COMPOUNDS ... 27
3.3 HLM STABILITY OF POTENT ANALOGS ... 28
3.4 ASSESSMENT OF CNS PERMEABILITY OF SELECTED COMPOUNDS .. 29
3.5 INHIBITION OF EPOXYGENASE PATHWAY .. 30
4.0 CONCLUSION AND FUTURE DIRECTIONS .. 32
5.0 EXPERIMENTAL SECTION ... 34
 5.1 INSTRUMENTATION AND REAGENTS ... 34
 5.2 GENERAL PROCEDURE-SYNTHESIS OF N-BOC-4-ARYL DIHYDROPYRIDINE .. 35
 5.3 GENERAL PROCEDURE-SYNTHESIS OF N-BOC-4-ARYL PIPERIDINES .. 36
 5.4 GENERAL PROCEDURE-SYNTHESIS OF 4-ARYL PIPERIDINES 36
 5.5 GENERAL PROCEDURE-SYNTHESIS OF 4-ARYL-1-(1H-PYRAZOLE-5-YL, 4YL) PIPERIDINE, 1-(3-METHYL-1H-PYRAZOLE-4-YL)-4-PHENYL PIPERIDINE, 1-(5-METHYL-1H-PYRAZOLE-3-YL)-4-PHENYL PIPERIDINE, 4-(PHENYLTHIO)-1-(1H-PYRAZOL-5-YL, 4-YL) PIPERIDINE AND 4-(PHENYLSULFONYL)-1-(1H-PYRAZOL-5-YL, 4-YL) PIPERIDINE 37
 5.6 DATA FOR EACH ANALOG ... 38
APPENDIX A .. 66
APPENDIX B .. 69
BIBLIOGRAPHY ... 118
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physicochemical properties seen in CNS drugs</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Properties of compounds 8, UPMP00010 and UPMP00019</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Key physicochemical properties and assay results for novel inhibitors</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Potencies of compounds 21e, 20f, 21f and 21h in RLM and RKM</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>Kinetic solubility of potent compounds</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>MDR1-MDCK assay results</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Inhibition of epoxygenase pathway by 20a and 21a</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1: AA metabolism pathway .. 2
Figure 2: 20-HETE formation inhibitors/ antagonists ... 9
Figure 3: Rationale for design of Compound 8 and lead UPMP00010 .. 13
Figure 4: Rationale for design of lead UPMP00019 (a) Tautomers of HET0016 (b) Tautomers of UPMP00010 (c) Tautomers of UPMP00019 .. 14
Figure 5: Points of variation on UPMP00010 and potential modifications... 16
Figure 6: Synthesis of 20a-i, 21a-i, 25a and 26a .. 18
Figure 7: Synthesis of 32a-b and 33a-b .. 20
Figure 8: Inhibitors previously generated in McDermott lab and their IC₅₀ in HLM 23
Figure 9: HLM stability of potent compounds at 30 mins ... 29
I would like to thank the University of Pittsburgh, School of Pharmacy for granting me the opportunity to pursue my studies. I would like to sincerely thank my advisor Dr. Lee McDermott for giving me an opportunity to be a part of this project. His powerful questioning got me a better hold of the concepts in chemistry as it made me think and dive deeper into the subject. He showed me a streamlined way of dealing with concepts. I must confess, his striving for perfection pushed me hard and I am sure this would help me in the future! I thank Dr. Prema Iyer for patiently teaching me all the pertinent laboratory skills including setting up reactions, work-ups, column chromatography, NMR, IR and LC-MS. She also kept encouraging me in my endeavor in synthesizing molecules for the project. She has been a great sounding board for me all through the work. I would like to thank Dr. Samuel Poloyac for taking the time to help understand the bigger picture, elucidate for me the importance and relevance of this project. I would like to thank Chenxaio Tang and Andrew Haddad for meticulously testing the molecules synthesized by me. I would also like to thank Dr. Larry Vernetti for diligently carrying out solubility studies for the molecules synthesized by me.

I would like to thank Dr. Maggie Folan, Lori Altenbough and all graduate students for their kind support during the course of my study. Lastly, I can’t thank my parents so very much for believing in me and encouraging me in my quest towards my masters here in the US.
1.0 INTRODUCTION

1.1 EICOSANOIDS AND CYP-450S

Arachidonic acid (AA), a 20-carbon polyunsaturated fatty acid, is synthesized from linoleic acid in humans\(^1\) and released from the cell membrane by a cytosolic enzyme phospholipase A\(_2\)\(^2\). It is metabolized by three enzymatic routes: cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P-450s (CYPs). In the COX pathway AA is converted to prostaglandins (PGs) and thromboxanes (TXAs). In the LOX pathway AA is converted to leukotrienes (LTs)\(^3\). CYP families of enzymes are known as hemoproteins as they contain heme as a co-factor in their catalytic domain\(^4\). These enzymes are commonly associated with the cell membranes of the endoplasmic reticulum or mitochondria. CYPs like CYP3A4, CYP2D6, and others are critical metabolizing enzymes, which have been characterized in different parts of the body like liver, kidney, and lungs among others and play a role in the metabolic fate of endogenous and exogenous molecules\(^5\). They catalyze the oxidation of their substrates in the presence of oxygen and NADPH\(^6\). CYP4s metabolize AA by oxidation of carbon close to the terminal carbon and CYP2s metabolize AA by epoxidation of allylic carbons. The first metabolic route yields 16-, 17-, 18-, 19- and 20-hydroxyecosatetraenoic acid (HETE)\(^7\) whereas epoxidation of AA acid across allylic carbons produces 5,6-, 8,9-, 11,12- and 14,15-epoxyecosatetraenoic acid (EETs)\(^8\). Recombinant human forms of the enzymes CYP4F3B, CYP4F2, and CYP4A11 have been
shown to have a high catalytic activity of metabolism of AA to 20-HETE\(^9\). Figure 1 illustrates the metabolic pathways of AA.

![Figure 1: AA metabolism pathway](image)

1.2 20-HETE AND EETS: BIOLOGICAL FUNCTION

The hydroxylation pathway of AA has been well studied. 20-HETE is a major metabolite of AA in liver, kidney, brain and other organs\(^{10}\). The majority of 20-HETE formation has been attributed to the CYP4A and CYP4F families\(^{10}\). Powell et al. demonstrated in human liver and kidney microsomes that CYP4A11 and CYP4F2 are key enzymes for 20-HETE formation\(^{11}\).
Similarly, human recombinant CYP4F3B exhibited a high catalytic activity towards the formation of 20-HETE, when incubated with AA12. 20-HETE has been shown to have powerful vasoconstriction activity in renal arteries10 via inhibition of large conductance calcium-activated potassium channels, resulting in vascular smooth muscle contraction13. 20-HETE mediated vasoconstriction is associated with decrease in cerebral blood flow (CBF) and contributes to acute and delayed cerebral vasospasm14. EETs, on the other hand, are vasodilator-signaling molecules that have been shown to produce opposite effects to that of 20-HETE. Their formation is linked to AA metabolism by the CYP2J and CYP2C families15,16,17. EETs activate large conductance calcium-activated potassium channel and cause vasodilation by hyperpolarization of vascular smooth muscles in renal and cerebral arteries10,18,19. EETs can be further metabolized to dihydroxyecosatetraenoic acid (DiHETs) by soluble epoxide hydroxylase (sEH), which has lower vasodilating activity as compared to EETs2.

1.3 20-HETE AND EETS FORMATION IN THE BRAIN

Previous studies have reported CYP2C, CYP2J, CYP4F, and CYP4A to be highly expressed in the brain20,21. Rat brain arteriolar CYPs incubated with AA catalyzed its conversion to 20-HETE and EETs22. 20-HETE has been shown to affect the cerebral blood flow (CBF), and there is a correlation between the levels of 20-HETE and the corresponding increase in transmural pressure22. Transformation of radiolabeled AA to 5,6-EETs and 15,16-EETs was observed in rat brain slices23. 5,6-EETs when applied to cerebral arteries topically cause approximately 28% vasodilation23. 20-HETE and EETs have been detected in human CSF24 and they have opposite roles in microvascular blood flow regulation. In a review by Huang et al, 20-HETE formation
inhibition and inhibition of EET conversion to DiHET were identified as viable targets to manage ischemic and hemorrhagic stroke mediated brain damage25.

1.4 SUBARACHNOID HEMORRHAGE AND 20-HETE

According to the American Association of Stroke, approximately 795,000 strokes occur in the US every year, with 60\% occurring outside of hospital settings26. There are two major types of stroke: ischemic (which comprises 87\% of total stroke events) and hemorrhagic (which comprises the remaining 13\%). Ischemic stroke occurs when there is a decrease in blood flow due to clot formation in the cerebral arteries or when a clot travels through the arteries and reaches the brain. Hemorrhagic stroke refers to an event where bleeding into the brain occurs due to rupturing of a diseased blood vessel or an aneurysm.

Aneurysmal subarachnoid hemorrhage (aSAH) is a type of hemorrhagic stroke and accounts for 30,000 cases associated with aneurysms every year resulting in a significant number of fatalities and morbidity27. Early brain injury (EBI) occurs within 72 hours of initial ictus28. After SAH, several events occur: increased intracranial pressure (ICP), edema, and increased blood-brain barrier permeability28. Uncontrolled increase in ICP can lead to an increased risk of patient mortality29.

Vasospasm, a narrowing of cerebral blood vessels has been observed in a majority of SAH patients via angiography27 and commonly occurs between the 3rd and 14th-day, post SAH event is a common cause of morbidity27. A study in patients with SAH elucidated that increase in ICP was associated with vasospasm detected via transcranial doppler sonography30. Association
of vasospasm with a decrease in CBF and cerebral perfusion was also established in a study involving patients suffering from SAH31.

Delayed cerebral ischemia (DCI) refers to neurological deficits following the EBI phase32. DCI was earlier thought to have a causal relationship with vasospasm. Vasospasm, even though it shows an association with DCI, does not appear to be the only cause of it. This was observed in a clinical trial where an endothelin-1 receptor antagonist did not result in a significant decrease in DCI even though it reduced moderate to severe vasospasm33.

In a study conducted in SAH patients, an elevated level of 20-HETE was found in cerebrospinal fluid (CSF)34. A study conducted in aSAH patients, suggests that increased levels of 20-HETE are a determinant of severity of injury and DCI35. In a study in rats, it was shown that levels of 20-HETE increase following SAH and pretreatment with HET0016, a 20-HETE-formation inhibitor, attenuated the decrease in CBF following SAH36. In another rat study, pretreatment with TS-011, a 20-HETE-formation inhibitor had similar outcomes37. These studies in humans and animals suggest that inhibition of 20-HETE formation in the clinical setting may improve outcomes.

1.5 CARDIAC ARREST AND 20-HETE

Cardiac arrest (CA) refers to an event when the heart loses its ability to pump sufficient supply to the body. Several comorbid conditions associated with cardiac arrest include atherosclerosis, obesity, coronary heart disease, diabetes, and others. CA leads to a drastic decrease in blood flow to multiple organ systems with the brain being susceptible, as it requires a constant supply of oxygen and glucose to maintain function. A significant time lapse between
cardiac arrest and resuscitation will essentially translate into a neuronal insult. Following resuscitation, there is an alteration in cerebral blood flow38. There is a short phase of global hyperemia followed by a phase of reduced blood flow that may last for hours or even days post-resuscitation38. This extended periods of reduced blood flow, termed delayed hypoperfusion, is associated with poor neurocognitive outcomes after resuscitation39.

A multitude of events occur after the restoration of CBF and reperfusion after resuscitation from CA. There is excitotoxicity due to the release of glutamate that causes neuronal depolarization leading to loss of calcium homeostasis40. Increased reactive oxygen species (ROS), mitochondrial dysfunction and activation of apoptosis also occur41. These events have been shown to be contributing factors to secondary brain injury after reperfusion after CA42,43.

Rat models of CA suggest that after resuscitation levels of 20-HETE increase in the cortical and subcortical region of the brain44. As mentioned, 20-HETE is a vasoconstrictor, and an increase in 20-HETE levels decrease CBF leading to hypoperfusion, and secondary brain injury. Administration of HET0016, a 20-HETE-formation inhibitor, has been shown to improve cerebral perfusion and reduce neurological deficits in rats after CA44. Treatment with HET0016 also showed neuroprotection in a neonatal piglet CA model45.

The available data suggest that, as in SAH, targeting 20-HETE formation may be an effective strategy for mitigating secondary brain injury after CA.
1.6 20-HETE FORMATION INHIBITORS AND ANTAGONISTS

Much research has been carried out to identify molecules that can inhibit the 20-HETE formation or antagonize its action. Structures of selected inhibitors are represented in Figure 2. 1-aminobenzotriazole (1-ABT), a suicide inhibitor, which alkylates heme residue via a benzyne metabolite, was shown to inhibit renal arachidonic acid metabolism to 20-HETE in spontaneously hypertensive rats. Octadec-17-ynoic acid (17-ODYA) inhibited the formation of 20-HETE, EETs and DiHETs in rat renal microsomes with an IC\textsubscript{50} 100nM. Undec-10-yn-1-yl sulfate (10-SUYS) also inhibited the formation of 20-HETE in rat renal microsomes. 12,12-dibromododec-11-enoic acid (DBDD), a competitive inhibitor of arachidonic acid, showed inhibition of 20-HETE formation in rat renal microsome with an IC\textsubscript{50} of 2μM. Lastly, (6Z, 15Z)-20-hydroxyicosa-6, 15-dienoic acid (20-HEDE), a competitive inhibitor of 20-HETE, attenuated its activity when tested in-vitro on isolated cerebral arteries. These compounds have several drawbacks. 1-ABT inhibits the formation of both 20-HETE, EETs and also inhibits important xenobiotic metabolizing enzyme, hence lacks selectivity. Compounds 17-ODYA, 10-SUYS, and DBDD based on their structure, have physicochemical liabilities such as high lipophilicity, increased number of rotatable bonds and low CNS penetration. Additionally, these compounds have low potency and some of them lack selectivity towards the inhibition of hydroxylation pathway over the epoxidation pathway.

Taisho Pharmaceuticals was first to disclose two molecules with formamidine moieties HET0016 and TS-011, with promising activities. These compounds have demonstrated good potency and selectivity towards inhibition of formation of 20-HETE over EETs. For example, HET0016 has been reported to have an IC\textsubscript{50} value of 8.9nM against 20-HETE formation in human renal microsomal enzymes while its IC\textsubscript{50} against recombinant xenobiotic metabolizing
enzymes CYP2C9, CYP2D6 and CYP3A4 is reported to be 3.3, 83.9 and 71.0μM respectively52. Its inhibition of EET formation, in rat renal microsomes, was reported to have an IC\textsubscript{50} of 2800nM53. As discussed earlier, HET0016 was shown to afford neuroprotection in animal models of SAH and CA36,44,45. HET0016, although it displays great potency and selectivity towards 20-HETE formation inhibition, was shown to have a short T\textsubscript{1/2} (< 60 minutes) in rats, poor solubility, and poor stability at a relatively low pH required for increasing its solubility54,55.

The second compound, TS-011, containing a morpholine group instead of an n-butyl group seen in HET0016 also showed excellent activity and selectivity towards inhibition of 20-HETE formation. It was shown to have an IC\textsubscript{50} of 9.19nM against 20-HETE formation in rat renal microsomes, no effects on EET formation or the activities of CYP2C9, CYP2C19, CYP2D6 and CYP3A4 up to a concentration of 100μM37. TS-011 has better solubility than HET0016, but unfortunately an even shorter T\textsubscript{1/2} (< 10 mins)37.

DDMS and DPMS are two compounds, which bear structural similarity to DBDD and can be viewed as its derivatives. However, they have low potencies IC\textsubscript{50} of 2μM and 31μM against 20-HETE formation in rat renal microsomes and have similar physicochemical liabilities as DBDD50.
Figure 2: 20-HETE formation inhibitors/antagonists (1) 1-ABT: 1-aminobenzotriazole; (2) 17-ODYA: octadec-17-ynoic acid; (3) 10-SUYS: undec-10-yn-1-yl sulfate; (4) DBDD: 12,12-dibromododec-11-enoic acid; (5) HET0016: \(N^\prime-(4\text{-butyl-2-methylphenyl})-N^\prime\text{-hydroxyformimidamide}\); (6) TS-011: \(N^\prime\text{-hydroxy-}\text{N}-(4\text{-morpholinophenyl})\text{formimidamide}\); (7) 20-HEDE: (6Z,15Z)-20-hydroxyicosa-6,15-dienoic acid

None of the available inhibitors have reached the clinical trials. This is not surprising as available agents have physicochemical and pharmacological limitations that make them unsuitable for clinical advancement as neuroprotectants. In that regard, for success in the clinic, the design of novel 20-HETE formation inhibitors must overcome the liabilities of current inhibitors, and take into account the physicochemical properties often seen in well absorbed and CNS active drugs.
1.7 PROPERTIES OF CNS DRUGS

Drug-like properties refer to the physicochemical characteristics of molecules, which would allow for their proper absorption, distribution, metabolism, and elimination (ADME). Lipinski described the ‘rule of 5’ after carefully assessing physicochemical properties and activities of a dataset of select compounds from the World Drug Index (WDI) which contains over 50,000 drugs either in the market or clinical trials. According to the rule of 5, for oral absorption, a compound’s molecular weight should be less than 500 Daltons, its number of hydrogen bond donor (HBD) atoms (OH and NH) should no more than 5, its number of hydrogen bond acceptor (HBA) atoms should be no more than 10 (O and N) and its partition coefficient (log P) should be not greater than 556. Aside from the properties mentioned above, some additional properties and factors influence oral absorption. According to the Veber rule, compounds with 10 or fewer rotatable bonds and polar surface area no greater than 140 Å2 have a better prediction of oral absorption. To be effective as neuroprotectants, 20-HETE formation inhibitors must be able to cross the blood-brain barrier (BBB), the interface between the brain and its periphery. The BBB is a physical, transport, metabolic and immunologic barrier, which allows passage of select molecules by passive diffusion or active transport57. An article by Pajouhesh et al. compiled various literature studies that aimed to understand physicochemical properties of drugs and their co-relation with good CNS permeability58. The studies compiled suggest that good CNS permeability is often associated with the common physicochemical properties and value ranges shown in Table 1.
Table 1: Physicochemical properties seen in CNS drugs

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition co-efficient (Log P)</td>
<td>< 5</td>
</tr>
<tr>
<td>Molecular weight (M.W)</td>
<td>< 450</td>
</tr>
<tr>
<td>Polar Surface Area (PSA)</td>
<td>< 70 Å²</td>
</tr>
<tr>
<td>Number of rotatable bonds (NRB)</td>
<td>< 8</td>
</tr>
<tr>
<td>Hydrogen bond donors (HBD)</td>
<td>< 3</td>
</tr>
<tr>
<td>Hydrogen bond acceptors (HBA)</td>
<td>< 7</td>
</tr>
</tbody>
</table>

The key objective in our lab is the design and optimization of novel 20-HETE formation inhibitors, which show selective and effective inhibition of 20-HETE formation and which, by design, have physicochemical properties that will allow them to cross the BBB.

1.8 20-HETE FORMATION INHIBITORS UPMP00010 AND UPMP00019

As discussed in section 1.6, HET0016 is a potent 20-HETE-formation inhibitor disclosed by Taisho Pharmaceuticals. Although it has good potency and selectivity, it had a short half-life ($T_{1/2} < 60$ minutes), which has been attributed to its formamidine moiety. According to X-rays of formamidine containing molecules, formamidines can be internally hydrogen bonded and hence, can exist in cis-configuration that resembles 1,3-azoles\(^5^9\). As mentioned earlier, HET0016 also has poor solubility in neutral pH. Under acidic pH, its solubility can be improved but to the detriment of its stability\(^5^5\). At a pH of 4, 56% of the compound is degraded within 24 hours\(^5^5\). In an attempt to mitigate these limitations, scientists at Taisho Pharmaceuticals initiated a search for an isosteric replacement for the formamidine group\(^5^5\). They replaced the formamidine group with
imidazole, pyridine, and pyrazole, among other heterocycles. Some of the analogs generated in this effort showed good activity towards inhibition of 20-HETE formation in human renal microsomes but they also inhibited xenobiotic CYPs. Compound 8, shown in Figure 3, was one of the compounds generated in this effort. This compound contained pyrazole as a replacement for the formamidine moiety, and was shown to have very good selectivity and potency toward inhibition of formation of 20-HETE formation with an IC$_{50}$ of 23nM in human renal microsomes. This compound was stable in acidic pH and more soluble than HET0016 as a freebase or a mesylate salt. Despite this improvement, compound 8 suffers from high intrinsic clearance. Stability testing in Dr. Samuel Poloyac’s lab at the University of Pittsburgh showed that upon incubation with human liver microsomes for 30 mins, only 35% of the parent compound remained. Despite its shortcomings, compound 8 was viewed as an attractive starting point for a new scaffold design in Dr. McDermott’s lab, where lead compound UPMP00010 was designed via scaffold hopping.

Scaffold hopping is an approach used in medicinal chemistry to design new scaffolds by using molecules with proven biological potential as a template. Through scaffold hopping, entirely new compound structures are generated that are dissimilar from the parent compound, but with the ability to maintain similar interactions as the parent in 3D space. This technique has been historically used to improve physicochemical properties of compounds along with their potencies. Scaffold hopping of compound 8 to lead compound UPMP00010 involved replacement of the aliphatic tail in 8 with an aromatic phenyl and the replacement of the benzene ring in 8 with a piperidine moiety (Figure 3). This latter replacement was thought to be beneficial for solubility since it could alter pKa of the pyrazole group and yield non-planar compounds that
may not pack well in a crystal lattice. UPMP00010 has good potency ($IC_{50}=443\mu M$), excellent solubility and better intrinsic clearance, in comparison to compound 8 (Table 2).

![Figure 3: Rationale for design of Compound 8 and lead UPMP00010](image)

In an attempt to improve potency by better mimicking the tautomeric forms of HET0016 (Figure 4), the point of connection of the phenylpiperidine and pyrazole moieties of UPMP00010 was shifted from the 3rd to 4th position to produce lead compound UPMP00019. UPMP00019 has much-improved potency towards inhibition of 20-HETE formation in human liver microsomes ($IC_{50}=187\mu M$) than UPMP00010 ($443\mu M$). Also, like UPMP00010, it has excellent metabolic stability. UPMP00010 and UPMP00019 both have physicochemical property values well within the range desirable (Table 2) for CNS acting compounds.
Figure 4: Rationale for design of lead UPMP00019 (a) Tautomers of HET0016 (b) Tautomers of UPMP00010 (c) Tautomers of UPMP00019
Table 2: Properties of compounds 8, UPMP00010 and UPMP00019

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Log P</th>
<th>PSA</th>
<th>M.W</th>
<th>Kinetic solubility (μM)</th>
<th>HLM stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>3.0</td>
<td>37.9</td>
<td>216.28</td>
<td>333</td>
<td>35%</td>
</tr>
<tr>
<td>UPMP00010</td>
<td></td>
<td>2.7</td>
<td>31.9</td>
<td>227.31</td>
<td>>600</td>
<td>91%</td>
</tr>
<tr>
<td>UPMP00019</td>
<td></td>
<td>2.7</td>
<td>31.9</td>
<td>227.31</td>
<td>121</td>
<td>100%</td>
</tr>
</tbody>
</table>

This thesis describes our efforts to expand and understand structural activity relationships (SAR) around the lead compounds UPMP00010/19.
2.0 CHEMISTRY

UPMP00010/19 points of variation and synthesis of derivatives

UPMP00010/19 have 4 points of variation that are structural elements that can be changed in the pursuit of novel derivatives (Figure 5).

Figure 5: Points of variation on UPMP00010 and potential modifications
It is evident from the Figure 5 that available points of variation allow for the synthesis of a high number of putative derivatives. This work is focused on the synthesis of a subset of the available possibilities. The modifications on a UPMP00010/19 structure that were made in this work are:

1) Introduction of electron donating groups [EDG: -OCH₃, -CH₃, NHCOCH₃, N(Me)COCH₃] and the introduction of a methoxy methyl (-CH₂OCH₃) group on the phenyl ring;

2) Replacement of the phenyl ring with an N-atom containing heterocyclic ring (pyridine);

3) Introduction of a small substituent on the pyrazole ring (-CH₃);

4) Introduction of heteroatom linker (S);

Table 3 and Figures 6 and 7 show derivatives synthesized in this work and the synthetic routes followed to obtain them.
Figure 6: Synthesis of 20a-i, 21a-i, 25a and 26a - Reagents and conditions (a) PdCl$_2$(dpdf), K$_2$CO$_3$, DMF, 80°C (b) 10% Pd/C, H$_2$, 1 atm (c) 4N HCl in dioxane (d) PTSA.H$_2$O, 3,4-dihydro-2H-pyran (e) CuI, K$_2$CO$_3$, L-proline, DMSO, 90°C, then 4N HCl in dioxane
Compounds 20a-i, 21a-i, 25a and 26a were synthesized via the CuI/proline coupling of aryl piperidines 15a-i and 22 with THP protected iodopyrazoles 17, 19, 23 and 24 followed by THP deprotection of the corresponding coupling products with 4N HCl in dioxane\(^61,62\) (Figure 6).

The 4-arylpiperidines 15a-i used in these couplings were synthesized in a 3 step sequence that involved Suzuki coupling of commercially available boronate 12 with aryl bromides 11a-i to afford intermediates 13a-i, a H\(_2\) Pd/C double bond reduction and then BOC deprotection with 4N HCl in dioxane\(^63\). THP protected 3-iodo and 4-iodopyrazoles 17 and 19 were synthesized via THP protection of commercially available iodopyrazoles 16 and 18 using 0.1 equivalents of PTSA.H\(_2\)O and 1.2 equivalents of 3,4-dihydro-2H-pyran. THP protected 4-iodo-3-methyl and 3-iodo-5-methyl pyrazoles 23 and 24 were prepared in the same manner as 17 and 19.
Synthesis of 32a-b and 33a-b was started with 4-hydroxy-N-BOC piperidine (28), which was prepared according to literature from 4-hydroxy piperidine and di-tert-butyl carbonate. Treatment of 28 with mesyl chloride to obtain the corresponding mesylate intermediate, followed by treatment with thiobenzene that led to the 4-thiobenzene-N-BOC protected piperidine intermediate 29. This N-BOC protected intermediate was then subjected to BOC-deprotection to obtain 31a. Compound 31a was coupled with THP protected 3-iodo and 4-iodopyrazoles 17.
and 19 via CuI/proline coupling to obtain the corresponding coupling intermediates, which were then subjected to THP deprotection by 4N HCl in dioxane to afford 32a and 33a.

Oxidation of intermediate 29 with meta-chloroperbenzoic acid in methylene chloride for 2 hours, afforded sulfone 30. Intermediate 30 was subjected to BOC deprotection to obtain piperidine derivative 31b. 31b was then converted to compounds 32b and 33b in the same manner as the sulfides 32a and 33a.
3.0 RESULTS AND DISCUSSION

The potential of our molecules towards inhibition of 20-HETE formation was tested *in-vitro* in the lab of Dr. Samuel Poloyac at the University of Pittsburgh. As the first screen, compounds were tested for 20-HETE formation inhibition at 500nM concentration in human liver microsomes (HLM), human recombinant CYP4F2 (rCYP4F2), rat liver microsomes (RLM) and rat kidney microsomes (RKM). The objective of testing against rCYP4F2 as well as human and rat microsomal preparations was to have a better assessment of the activity of our compounds and to understand possible interspecies potency variabilities and their drivers.

Compounds which could inhibit 20-HETE formation by 50% or greater at 500nM concentration in HLM or rCYP4F2 assay were considered further for IC$_{50}$ determination and/or kinetic solubility measurement. Promising compounds were then considered for epoxygenase pathway inhibition (EET formation inhibition) assessment, and/or assessment for BBB penetration potential in an MDR-1-MDCK assay.
3.1 20-HETE FORMATION INHIBITION IN HLM, RCYP4F2, RLM AND RKM

3.1.1 DERIVATIVES WITH SIMPLE SUBSTITUENT ON PHENYL MOIETY

Previous work in our lab showed that compounds UPMP00028/29, which have a simple meta-methoxy substitution (OMe) had good potency against 20-HETE formation (Figure 8). To expand the SAR around these compounds we prepared compounds 20a, 21a, 20b, and 21b, which had methoxy substituent in the para and ortho positions. As seen in table 3, 20a and 21a showed greater than 50% inhibition of 20-HETE formation in HLM at 500nM and their IC50 were better than the IC50 of the leads UPMP00010/19 and the IC50 of UPMP00028/29 (Table 3, Figure 8). Compounds 20b and 21b had little to no activity in HLM and rCYP4F2 assay.

![Figure 8: Inhibitors previously generated in McDermott lab and their IC50 in HLM](image)
<table>
<thead>
<tr>
<th>No</th>
<th>Structure</th>
<th>M W</th>
<th>Log P</th>
<th>PSA</th>
<th>HLM</th>
<th>rCYP4F2</th>
<th>ICS0 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>227.31</td>
<td>2.7</td>
<td>31.9</td>
<td>47.4</td>
<td>ND</td>
<td>0.44</td>
</tr>
<tr>
<td>20a</td>
<td></td>
<td>257.33</td>
<td>2.59</td>
<td>41.15</td>
<td>72.3</td>
<td>41.4</td>
<td>0.142</td>
</tr>
<tr>
<td>20b</td>
<td></td>
<td>257.33</td>
<td>3.09</td>
<td>41.15</td>
<td>8.8</td>
<td>ND</td>
<td>0.11</td>
</tr>
<tr>
<td>20c</td>
<td></td>
<td>241.33</td>
<td>3.26</td>
<td>31.92</td>
<td>67.4</td>
<td>70.8</td>
<td>0.11</td>
</tr>
<tr>
<td>20d</td>
<td></td>
<td>271.36</td>
<td>3.13</td>
<td>41.15</td>
<td>56.4</td>
<td>67.8</td>
<td>0.28</td>
</tr>
<tr>
<td>20e</td>
<td></td>
<td>298.38</td>
<td>1.85</td>
<td>53.23</td>
<td>20</td>
<td>14</td>
<td>ND</td>
</tr>
<tr>
<td>20f</td>
<td></td>
<td>284.36</td>
<td>1.98</td>
<td>61.02</td>
<td>60</td>
<td>55</td>
<td>0.173</td>
</tr>
<tr>
<td>20g</td>
<td></td>
<td>258.32</td>
<td>1.97</td>
<td>54.04</td>
<td>35</td>
<td>44</td>
<td>TBD</td>
</tr>
<tr>
<td>20h</td>
<td></td>
<td>241.33</td>
<td>3.26</td>
<td>31.92</td>
<td>72</td>
<td>69</td>
<td>TBD</td>
</tr>
<tr>
<td>20i</td>
<td></td>
<td>241.33</td>
<td>3.26</td>
<td>31.92</td>
<td>20</td>
<td>20</td>
<td>TBD</td>
</tr>
<tr>
<td>25a</td>
<td></td>
<td>241.33</td>
<td>2.79</td>
<td>31.92</td>
<td>0</td>
<td>31.9</td>
<td>ND</td>
</tr>
<tr>
<td>32a</td>
<td></td>
<td>259.37</td>
<td>2.71</td>
<td>31.91</td>
<td>6</td>
<td>22.7</td>
<td>ND</td>
</tr>
<tr>
<td>32b</td>
<td></td>
<td>291.37</td>
<td>1.43</td>
<td>66.06</td>
<td>32</td>
<td>0</td>
<td>ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Structure</th>
<th>M W</th>
<th>Log P</th>
<th>PSA</th>
<th>HLM</th>
<th>rCYP4F2</th>
<th>ICS0 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td></td>
<td>227.31</td>
<td>2.7</td>
<td>31.9</td>
<td>78.8</td>
<td>ND</td>
<td>0.19</td>
</tr>
<tr>
<td>21a</td>
<td></td>
<td>257.33</td>
<td>2.5</td>
<td>41.15</td>
<td>73.1</td>
<td>57.7</td>
<td>0.073</td>
</tr>
<tr>
<td>21b</td>
<td></td>
<td>257.33</td>
<td>2.5</td>
<td>41.15</td>
<td>0</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>21c</td>
<td></td>
<td>241.33</td>
<td>3.17</td>
<td>31.92</td>
<td>73.8</td>
<td>79.9</td>
<td>0.079</td>
</tr>
<tr>
<td>21d</td>
<td></td>
<td>271.36</td>
<td>2.53</td>
<td>41.15</td>
<td>71.7</td>
<td>81.7</td>
<td>0.195</td>
</tr>
<tr>
<td>21e</td>
<td></td>
<td>298.38</td>
<td>1.76</td>
<td>52.23</td>
<td>75</td>
<td>58</td>
<td>0.101</td>
</tr>
<tr>
<td>21f</td>
<td></td>
<td>284.36</td>
<td>1.89</td>
<td>61.02</td>
<td>86</td>
<td>95</td>
<td>TBD</td>
</tr>
<tr>
<td>21g</td>
<td></td>
<td>258.32</td>
<td>1.88</td>
<td>54.04</td>
<td>59</td>
<td>67</td>
<td>TBD</td>
</tr>
<tr>
<td>21h</td>
<td></td>
<td>241.33</td>
<td>3.17</td>
<td>31.92</td>
<td>80</td>
<td>86</td>
<td>TBD</td>
</tr>
<tr>
<td>21i</td>
<td></td>
<td>241.33</td>
<td>3.17</td>
<td>31.92</td>
<td>46</td>
<td>61</td>
<td>TBD</td>
</tr>
<tr>
<td>26a</td>
<td></td>
<td>241.33</td>
<td>3.45</td>
<td>31.92</td>
<td>0</td>
<td>22.3</td>
<td>ND</td>
</tr>
<tr>
<td>33a</td>
<td></td>
<td>259.37</td>
<td>2.62</td>
<td>31.92</td>
<td>65.8</td>
<td>75.9</td>
<td>0.098</td>
</tr>
<tr>
<td>33b</td>
<td></td>
<td>291.37</td>
<td>1.37</td>
<td>66.06</td>
<td>5</td>
<td>28</td>
<td>ND</td>
</tr>
</tbody>
</table>

Table 3: Key physicochemical properties and assay results for novel inhibitors

M.W- Molecular weight, Log P- Partition co-efficient, PSA- Polar surface area, HLM- % inhibition in Human liver microsomes @ 500 nM, rCYP4F2- % inhibition in recombinant CYP4F2 @ 500 nM; ICS0 (nM)- in HLM; ND- Not done; TBD- To be determined; 10-lead UPMP00010; 19-lead UPMP00010
To ascertain the effects of a simple methyl substituent, compounds 20c, 21c, 20h-i, and 21h-i were prepared. Compounds 20c and 21c are practically equipotent with their methoxy counterparts (Table 3, HLM IC\textsubscript{50} 110nM and 79nM respectively). The currently available data (20-HETE formation inhibition at 500nM) for 20h-i and 21h-i suggests that methyl group in the meta position does not seem to affect potency, while methyl group in ortho position appears to reduce potency.

Extending the methoxy group of 20a and 21a away from the phenyl ring moiety by one carbon (Table 3, compounds 20d and 21d) lowers potency, as compared to their parent compounds.

Compounds 20g and 21g were prepared in order to assess the effect of substituting a carbon next to OMe group in 20a and 21a with a N-atom. However, the result available at this time (% inhibition of 20-HETE formation, Table 3) suggests that this substitution does not offer overall improvement in potency.

As a means to expand and understand the SAR further, we pursued the synthesis of compounds 20e-f and 21e-f that contain an acetamide group at the para position of phenyl moiety. The available data seems to suggest that acetamide substitution is tolerated with the exception of compound 20e. Compounds 21e and 21f show good potency (Table 3). The available data (Table 3) shows that compounds 20f and 21f are far better in the single point titration (HLM and rCYP4F2) in comparison to 21e.

The data in Table 3 suggests that there is a potency trend associated with the connection location of aryl piperidine moiety with the pyrazole ring. A pairwise comparison between derivatives with the same arylpiperidine moieties overall, suggests that 4-pyrazole derivatives are generally more potent than the 3-pyrazole derivatives.
Aside from testing in HLM and rCYP4F2 derivatives, 20a-i and 21a-i were assessed for their activity in RLM and RKM at the concentration of 500nM. This testing showed that most derivatives in the set had little to no activity for inhibition of 20-HETE formation in these preparations. Exceptions were compounds 21e, 20f, 21f and 21h, which had activity in both human and rat microsomal preparations (Tables 3 and 4).

Table 4: Potencies of compounds 21e, 20f, 21f and 21h in RLM and RKM

<table>
<thead>
<tr>
<th>No</th>
<th>% Inhibition in RLM at 500nM</th>
<th>% Inhibition in RKM at 500nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>21e</td>
<td>52</td>
<td>43</td>
</tr>
<tr>
<td>20f</td>
<td>38</td>
<td>7</td>
</tr>
<tr>
<td>21f</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>21h</td>
<td>44</td>
<td>36</td>
</tr>
</tbody>
</table>

3.1.2 EFFECT OF METHYL SUBSTITUTION ON PYRAZOLE AND EFFECT OF S AS HETEROATOM LINKER

Compounds 25a and 26a were made in order to assess the effects of small methyl substitution on pyrazole ring on activity. Testing of these compounds in HLM and rCYP4F2 showed that such substitution is quite unfavorable for activity (Table 3).

Data from our lab suggest that UPMP00010/19 derivatives with a methylene linker between the phenyl and the piperidine moiety have improved potency than their parent compounds for 20-HETE formation inhibition in HLM (Figure 8). Data from our lab also
suggests that replacement of methylene with oxygen leads to a reduction in potency (Figure 8).

To assess the effect of a sulfur atom on the activity, compounds 32a and 33a that have a sulfide linker were made (Table 3). Among these compounds, 33a showed good 20-HETE formation inhibition in rCYP4F2 and HLM and had an IC$_{50}$ of 98nM (Table 3). Replacement of a sulfide linker with a sulfone in molecules 32b and 33b on the other hand was detrimental to activity (Table 3). Compounds 25a and 26a were also tested in rat microsomal incubates where they showed little to no potency towards inhibition of 20-HETE formation.

3.2 KINETIC SOLUBILITY OF POTENT COMPOUNDS

Kinetic solubility measurements of potent compounds were determined by Dr. Larry Vernetti at the University of Pittsburgh Drug Discovery Institute. Kinetic solubility involves the addition of DMSO solution of the compound in small increments to an aqueous buffer until the limit of solubility is reached and a precipitate is formed. It determines the concentration preceding the concentration at which precipitation occurs. Kinetic solubility for our potent molecules is shown in Table 5. Solubility data in the table points to the fact that a number of our potent compounds have superior solubility than compound 8 (Table 5). For example, Compounds 20e, 20f, 21e, 21h and 21i have a high solubility as their maximum solubility is above 600μM, which is significantly higher than compound 8 (Table 5). Compounds 21g and 21f have a solubility of 391μM and 481.8μM, which are also greater than the maximum solubility of compound 8.
Table 5: Kinetic solubility of potent compounds

<table>
<thead>
<tr>
<th>No</th>
<th>Maximum solubility (µM)</th>
<th>No</th>
<th>Maximum solubility (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20a</td>
<td>106</td>
<td>21f</td>
<td>481.8</td>
</tr>
<tr>
<td>20c</td>
<td>166</td>
<td>21g</td>
<td>391</td>
</tr>
<tr>
<td>20e</td>
<td>> 600</td>
<td>21h</td>
<td>> 600</td>
</tr>
<tr>
<td>20f</td>
<td>> 600</td>
<td>21i</td>
<td>> 600</td>
</tr>
<tr>
<td>21a</td>
<td>35</td>
<td>33a</td>
<td>96</td>
</tr>
<tr>
<td>21c</td>
<td>85</td>
<td>8</td>
<td>333</td>
</tr>
<tr>
<td>21e</td>
<td>> 600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 HLM STABILITY OF POTENT ANALOGS

HLM stability provides information about a compound’s intrinsic clearance. HLM stability data and assays are extensively used by medicinal chemists during the optimization of leads and provide them with insights on how structural changes on the lead impact their elimination.

A set of derivatives prepared, selected on the basis of IC$_{50}$ potency, were tested for metabolic stability in HLM at the lab of Dr. Samuel Poloyac. The result of this testing is shown in Figure 9 and indicate that these compounds have a high metabolic stability than their comparator compound 8 and maintain excellent stability profile of leads UPMP00010/19.
As discussed in section 1.7, we aim to identify compounds that can cross BBB and are able to inhibit 20-HETE formation in the brain for use as neuroprotectants. The MDR1-MDCK assay is a validated *in-vitro* assay used to evaluate the potential of molecules to penetrate across the BBB68. It involves a trans-well system made of a monolayer of Madine Canine Darby kidney cells, which overexpress P-gp68, an efflux transporter expressed extensively in the brain69. This assay measures effective permeability, which is the movement of molecules from the apical to basolateral side (P\textsubscript{A-B}) of the cells and vice versa (P\textsubscript{B-A}). Effective permeability values are used to calculate efflux ratio (P\textsubscript{B-A}/ P\textsubscript{A-B}). An efflux ratio below 3 implies that the molecule possesses good CNS permeability potential. This assay was done in a contract research organization AMRI. Number and choice of compounds was influenced by the assay cost and the ability of
compounds to potently inhibit 20-HETE formation in humans and/or rat microsomal preparations. High solubility was also a factor of choice. These considerations led us to select compounds 21a, 21e and 21h for MDR1-MDCK assay.

Assay results are documented in Table 6; they show that compounds 21a, 21e and 21h have high effective permeability (P_{A-B}) and low efflux indicating excellent CNS permeability potential (Table 6).

Table 6: MDR1-MDCK assay results

<table>
<thead>
<tr>
<th>No</th>
<th>P_{A-B} (10^{-6} \text{ cm/sec})</th>
<th>P_{B-A} (10^{-6} \text{ cm/sec})</th>
<th>Efflux ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>21a</td>
<td>32</td>
<td>25.70</td>
<td>0.803</td>
</tr>
<tr>
<td>21e</td>
<td>18.4</td>
<td>40.2</td>
<td>2.2</td>
</tr>
<tr>
<td>21h</td>
<td>60.1</td>
<td>48.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>

3.5 INHIBITION OF EPOXYGENASE PATHWAY

We have discussed in the background that EETs and 20-HETE have opposite effect on microvasculature10. 20-HETE formation inhibitors should not attenuate EET mediated vasodilation and must have selectivity for 20-HETE formation inhibition vs. inhibition of EET formation by epoxygenase. Selectivity (EET formation inhibition) assessment of all the potent inhibitors we synthesized during this work is currently underway in the lab of Dr. Samuel Poloyac. At this time, EET formation inhibition is only available for compounds 20a and 21a and is shown in Table 7. Comparison of 20-HETE formation inhibition data for these compounds
(Table 3) with the data for EET formation inhibition, points to the fact that 20a and 21a are highly selective compounds towards 20-HETE formation inhibitions (Table 7).

<table>
<thead>
<tr>
<th>Compound</th>
<th>EET formation inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>20a</td>
<td>No inhibition upto 25,000nM</td>
</tr>
<tr>
<td>21a</td>
<td>3.1% @ 50,000nM</td>
</tr>
</tbody>
</table>
4.0 CONCLUSION AND FUTURE DIRECTIONS

The objective of this work was to expand the SAR around the lead molecules UPMP00010/19. We described analogs of UPMP00010/19 that have a simple substitution on aryl ring and pyrazole and contain a heteroatom linker between the phenyl ring and aliphatic piperidine. Our efforts led to the synthesis of 24 analogs that by design, had physicochemical properties appropriate for CNS acting compounds. Several of the compounds synthesized showed good activity against the 20-HETE formation. For example, compounds 20a, 21a, 20c, 21c, 21e, 21f, 21h, and 33a showed good potency in human microsomal preparations and rCYP4F2. Compounds 21e, 20f, 21f and 21h also showed potency against 20-HETE formation in rat microsomal systems. This is particularly important. The broader goal in our lab of this project is to identify a preclinical candidate with clinical translation potential. A number of compounds synthesized in this series had better kinetic solubility than comparator molecule 8. HLM stability available for potent molecules also indicates better intrinsic clearance as compared to compound 8. All compounds selected for CNS permeability assessment showed excellent CNS permeability potential.

Completion of IC_{50} determination as well as determination of HLM stability data for potent compounds would further increase our understanding of the SAR around UPMP00010/19 scaffold and the set of compounds synthesized in this work. Some of the molecules show inhibition of 20-HETE formation in HLM and rat microsomal systems whereas others are able to
inhibit 20-HETE formation only in human systems. A future direction would be to understand
the reason for this by synthesis of more analogs and computational experiments. Further
exploration of SAR around leads UPMP00010/19 by the introduction of electron withdrawing
substituents and di-substitution on the phenyl ring is required. Furthermore, the generation of
derivatives based on UPMP00022 is another important avenue to further the overall goal of this
project.
5.0 EXPERIMENTAL SECTION

5.1 INSTRUMENTATION AND REAGENTS

\(^1\)H nuclear magnetic resonance spectra (NMR) was recorded using Bruker avance III 400 MHz spectrometer. Mass spectra (MS) under electron spray ionization condition (ESI) were obtained using Shimadzu UFLC/Applied Biosystems 2000 MS mass spectrometer. Infrared spectra were obtained using Bruker alpha Attenuated total reflectance (ATR) spectrometer. Purifications of compounds with column chromatography were carried out using Teledyne ISCO combiflash Rx instrument. The following chemicals were obtained from commercial sources and used for synthesizing molecules: tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2\(H\))-carboxylate, potassium carbonate, [1,1’-Bis(Diphenylphosphino)ferrocene]dichloropalladium [PdCl\(_2\)(dppf)], 4-methoxybromobenzene, 2-methoxybromobenzene, 4-methylbromobenzene, 3-methylbromobenzene, 2-methylbromobenzene, 4-bromobenzylbromide, 4-aminobromobenzene, 5-bromo-2-methoxypyridine, Palladium over charcoal (Pd/C, 10%), 4N hydrochloric acid in dioxane, 4-phenylpiperidine, 3-iodopyrazole, 4-iodopyrazole, 4-ido-3-methyl-1\(H\)-pyrazole, 3-ido-5-methyl-1\(H\)-pyrazole, P-toluene sulfonic acid monohydrate (PTSA.H\(_2\)O), 3,4-dihydro-2H-pyran, acetic anhydride, methyl iodide, sodium hydride, sodium metal, 4-hydroxypiperidine, di-tert-butyl carbonate, mesyl chloride, thiobenzene, m-chloroperbenzoic acid, copper-I-iodide and L-
proline. Following solvents were used for dichloromethane (DCM), Ethyl acetate (EtOAc), methanol (MeOH), tetrahydrofuran (THF), Dimethylformamide (DMF), Dimethylsulfoxide (DMSO), ethyl ether and dioxane.

5.2 GENERAL PROCEDURE-SYNTHESIS OF N-BOC-4-ARYL DIHYDROPYRIDINE

A mixture of desired bromobenzene 11a-i (1eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate 12 (1eq) and potassium carbonate 3eq was taken in DMF. Argon gas was bubbled through DMF for 10 mins. Followed addition of PdCl$_2$(dppf) 0.01 eq and the reaction mixture was sealed and heated at 80 °C until the consumption of limiting reagents deemed complete by TLC. DMF evaporated under a slow stream of air at 80 °C and the resultant residue partitioned between water and EtOAc. The aqueous layer was efficiently extracted with EtOAc, dried using sodium sulfate and concentrated to obtain crude residue. The obtained residue was then purified by silica gel column chromatography to get N-Boc-4-aryl dihydropyridines (13a-i).
5.3 GENERAL PROCEDURE-SYNTHESIS OF N-BOC-4-ARYL PIPERIDINES

A slurry of N-BOC-4-aryl-dehydropiperidine 13a-i and Pd/C (0.1 eq, based on Pd content) was hydrogenated under 1 atm of H₂. Reaction mixture filtered through a pad of celite and the resultant filtrate concentrated to obtain 4-aryl-N-BOC-piperidines (14a-i).

5.4 GENERAL PROCEDURE-SYNTHESIS OF 4-ARYL PIPERIDINES

A mixture of desired N-BOC-4-aryl piperidines (14a-i) was dissolved in 4N HCl in dioxane at room temperature. After stirring overnight, the volatiles were evaporated, and the resultant salt was partitioned between saturated sodium bicarbonate and EtOAc. The aqueous layer was extracted with EtOAc until TLC detected no product in the organic extract. The combined organic layer was dried using sodium sulfate and concentrated to get corresponding piperidine derivatives (15a-i).
5.5 GENERAL PROCEDURE-SYNTHESIS OF 4-ARYL-1-(1H-PYRAZOLE-5-YL, 4YL) PIPERIDINE, 1-(3-METHYL-1H-PYRAZOLE-4-YL)-4-PHENYL PIPERIDINE, 1-(5-METHYL-1H-PYRAZOLE-3-YL)-4-PHENYL PIPERIDINE, 4-(PHENYLTHIO)-1-(1H-PYRAZOL-5-YL, 4-YL) PIPERIDINE AND 4-(PHENYL SULFONYL)-1-(1H-PYRAZOL-5-YL, 4-YL) PIPERIDINE

A mixture of desired THP protected pyrazole (17, 19, 23 and 24) (1 eq), piperidine derivatives (15a-i, 31a, 31b and 22), copper-I-iodide (0.2 eq), L-proline (0.4 eq) and potassium carbonate (5 eq) in DMSO was stirred at 90 °C until TLC indicated consumption of starting material. DMSO was then evaporated and the residue was partitioned between ammonium chloride and EtOAc. The aqueous layer was extracted well with small portions of EtOAc until indicated no product in the organic extract. The combined organic layer was dried using sodium sulfate and concentrated to a residue that was chromatographed with a silica gel column chromatography. THP protected intermediate obtained from this purification, without further characterization was dissolved in 4N HCl in dioxane at room temperature and stirred until TLC indicated the consumption of starting material. The volatiles were then evaporated, and the residue was partitioned between saturated sodium bicarbonate and EtOAc. The aqueous layer was extracted with small portions of EtOAc until TLC indicated no product in the organic extract. The combined organic layer was dried using sodium sulfate and concentrated to get a residue which was purified by silica gel column chromatography, and/or precipitation out of DCM with an excess of hexanes to obtain final products (20a-i, 21a-i, 25a, 26a, 32a-b and 33a-b).
5.6 DATA FOR EACH ANALOG

Synthesis of tert-butyl 4-(4-methoxyphenyl)-3,6-dihydropyridine-1(2H)-carboxylate (13a)

Synthesized by following general procedure 5.2. Crude residue was chromatographed by a silica gel using EtOAc in hexane gradient to obtain 787 mg of colorless liquid (53% Yield). [0-50% Hex:EtOAc]

^{1}HNM R- (400 MHz, CDCl$_3$) δ 1.49 (s, 9H); 2.50 (bs, 2H); 3.62 (t, J=6.0 Hz, 2H); 3.81 (s, 3H); 4.03-4.08 (m, 2H); 5.93 (s, 1H); 6.88 (d, J=8.8 Hz, 2H); 7.31 (d, J=8.8 Hz, 2H).

Synthesis of tert-butyl 4-(2-methoxyphenyl)-3,6-dihydropyridine-1(2H)-carboxylate (13b)

Synthesized by following general procedure 5.2. Crude residue was chromatographed by silica gel using EtOAc in hex gradient to obtain 1.68 g of colorless liquid (72% Yield). [0-100% Hex:EtOAc]

^{1}HNM R - (400 MHz, CDCl$_3$) δ 1.49 (s, 9H); 2.5 (apparent bs, 2H); 3.59 (apparent t, 2H); 3.81 (s, 3H); 4.04 (s, 2H); 5.75 (s, 1H); 6.85-6.96 (m, 2H); 7.14 (dd, J_1=1.6 Hz, J_2=7.6 1H); 7.22-7.26 (m, 1H).

ATIR (cm$^{-1}$)-2973, 2931, 2834, 1689, 1596, 1489, 1453, 1413, 1363, 1335, 1291, 1270, 1235, 1161, 1108, 1051, 1025, 972, 937, 863, 826, 793, 750, 691, 629.
LC-MS– (ESI) m/z ratio for C_{17}H_{23}NO_{3} Calculated (289.38); Observed (M+1=290.7).

Synthesis of tert-butyl 4-(p-tolyl)-3,6-dihydropyridine-1(2H)-carboxylate (13c)

Synthesized by following general procedure 5.2. Crude residue obtained was chromatographed by silic gel using EtOAc in hexane gradient to obtain mg of colorless liquid. [0-50% Hex: EtOAc]

1^1HNMR - (400 MHz, CDCl₃) δ 1.49 (s, 9H); 2.34 (s, 3H); 2.51 (apparent bs, 2H); 3.63 (apparent t, 2H); 4.06 (apparent s, 2H); 5.99 (s, 1H); 7.14 (d, J=7.6 Hz, 2H); 7.27 (d, J=8 Hz, 2H).

Synthesis of tert-butyl 4-(4-(methoxymethyl)phenyl)-3,6-dihydropyridine-1(2H)-carboxylate (13d)

Prep of 11d was done using procedure known in literature.⁷⁰

1^1HNMR - (400 MHz, CDCl₃) δ 3.38 (s, 3H); 4.41 (s, 2H); 7.21 (d, J=8.8 Hz, 2H); 7.47 (d, J=8 Hz, 2H).

Synthesized by following general procedure 5.2. Crude residue was chromatographed by silica gel using EtOAc in hexane gradient to obtain 2.06 g of pale liquid (88% Yield).

1^1HNMR - (400 MHz, CDCl₃) δ 1.49 (s, 9H); 2.52 (s, 2H); 3.39 (s, 3H); 3.63 (apparent t, J=6 Hz, 2H); 4.07 (apparent q, J=6 Hz, 2H); 4.45 (s, 2H); 6.04 (s, 1H); 7.30 (d, J=8.4 Hz, 2H); 7.36 (d, J=8.4 Hz, 2H).

ATIR (cm⁻¹) - 2975, 2926, 2893, 2821, 1689, 1513, 1476, 1451, 1415, 1363, 1337, 1309, 1288, 1235, 1163, 1106, 1059, 1018, 986, 968, 936, 920, 863, 801, 768, 679, 625.
LC-MS– (ESI) m/z ratio for C_{18}H_{25}NO_{3} Calculated (303.40); Observed.

Synthesis of tert-butyl 4-(4-(N-methylacetamido)phenyl)-3,6-dihydropyridine-1(2H)-carboxylate (13e)

Synthesis of 11e was done according to the procedure known in literature.71

\[^{1}\text{HNMR} - (400 \text{ MHz}, \text{CDCl}_3) \delta 1.87 (s, 3\text{H}); 3.24 (s, 3\text{H}); 7.07 (d, J=8.0 \text{ Hz}, 2\text{H}); 7.54 (d, J=8.4 \text{ Hz}, 2\text{H}).\]

Synthesized by following general procedure 5.2. Crude residue obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 981 mg of pale yellow solid (82\% Yield).

[0-100\% Hex:EtOAc]

\[^{1}\text{HNMR} - (400 \text{ MHz}, \text{CDCl}_3) \delta 1.49 (s, 9\text{H}); 1.88 (s, 3\text{H}); 2.53 (bs, 2\text{H}); 3.26 (s, 3\text{H}); 3.66 (apparent distorted t, J=4.8 \text{ Hz, 2H}); 4.09 (bs, 2\text{H}); 6.08 (bs, 1\text{H}); 7.15 (d, J=7.6 \text{ Hz, 2H}); 7.41 (d, J=8.4 \text{ Hz, 2H}).\]

\text{ATIR (cm}^{-1}) – 3036, 2974, 2929, 2867, 2839, 1690, 1655, 1603, 1510, 1416, 1376, 1364, 1288, 1236, 1162, 1111, 1085, 1060, 1036, 1016, 971, 920, 861, 813, 769, 728.67, 644, 631.

LC-MS– (ESI) m/z ratio for C_{19}H_{26}N_{2}O_{3} Calculated (330.43); Observed (M+1=331.4)

Synthesis of tert-butyl 4-(4-acetamidophenyl)-3,6-dihydropyridine-1(2H)-carboxylate (13f)

11f was prepared according to the procedure known in the literature.

\[^{1}\text{HNMR} - (400 \text{ MHz}, \text{CDCl}_3) \delta 2.17 (s, 3\text{H}), 7.38-7.43 (m, 4\text{H}).\]
Synthesized by following general procedure 5.2. Crude residue obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 1.12 g of pale yellow solid (77% Yield). [0-100% Hex:EtOAc]

1HNMR - (400 MHz, CDCl$_3$) δ 1.49 (s, 9H); 2.18 (s, 3H); 2.49 (bs, 2H); 3.62 (t, J=5.6 Hz, 2H); 4.05 (bs, 2H); 5.99 (bs, 1H); 7.23 (s, 1H); 7.32 (d, J=8.8 Hz, 2H); 7.46 (d, J=8.8 Hz, 2H); 7.60 (s, 1H).

LC-MS – (ESI) m/z ratio for C$_{18}$H$_{24}$N$_2$O$_3$ Calculated (316.40); Observed (M+1=317.4).

Synthesis of tert-butyl 4-(m-tolyl)-3,6-dihydropyridine-1(2H)-carboxylate (13h)

Synthesized by following general procedure 5.2. Crude residue obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 1.09 g of colorless liquid (68% Yield). [0-35% Hex:EtOAc]

1HNMR - (400 MHz, CDCl$_3$) δ 1.49 (s, 9H); 2.36 (s, 3H); 2.52 (m, 2H); 3.63 (apparent t, J=5.6 Hz, 2H); 4.07 (apparent s, 2H); 6.01 (s, 1H); 7.07 (d, J=7.2 Hz, 1H); 7.15-7.25 (m, 3H).

ATIR (cm$^{-1}$) – 3004, 2974, 2927, 2862, 2836, 1690, 1604, 1583, 1478, 1451, 1414, 1363, 1337, 1290, 1236, 1161, 1110, 1060, 1039, 984, 949, 901, 865, 822, 783, 764, 695, 634.

LC-MS – (ESI) m/z ratio for C$_{17}$H$_{23}$NO$_2$ Calculated (273.38); Observed [M-H$^+$=272.4].
Synthesis of tert-butyl 4-(o-tolyl)-3,6-dihydropyridine-1(2H)-carboxylate (13i)

Synthesized by following general procedure 5.2. Crude residue was chromatographed by silica gel using EtOAc in hexane gradient to obtain 1.043 g of clear liquid (70% Yield). [0-20% Hex:EtOAc]

¹H NMR - (400 MHz, CDCl₃) δ 1.50 (s, 9H); 2.79 (s, 3H); 2.31-2.38 (m, 2H); 3.62 (t, <i>J</i>=5.6 Hz, 2H); 4.03 (apparent q, <i>J</i>=2.4 Hz, 2H); 5.55 (bs, 1H); 7.04-7.10 (m, 1H); 7.11-7.20 (m, 3H).

ATIR (cm⁻¹) – 3057, 3008, 2974, 2928, 2860, 2837, 1962, 1478, 1452, 1411, 1364, 1335, 1282, 1234, 1163, 1108, 1055, 1022, 971, 936, 863, 827, 797, 752, 725, 688, 632.

LC-MS – (ESI) <i>m/z</i> ratio for C₁₇H₂₅NO₂ Calculated (273.38); Observed (M-<i>tert</i> butyl+1=218.2).

Synthesis of tert-butyl 4-(4-methoxyphenyl)piperidine-1-carboxylate (14a)

Synthesized by following the general procedure 5.3 to obtain a 433 mg of colorless liquid (86% yield).

¹H NMR - (400 MHz, CDCl₃) δ 1.48 (s, 9H); 1.51-1.63 (m, 2H); 1.79 (apparent d, <i>J</i>=12.8 Hz, 2H); 2.59 (tt, <i>J</i>=12 Hz, 3.6 Hz, 1H); 2.78 (apparent t, <i>J</i>=12.4 Hz, 2H); 3.79 (s, 3H); 4.22 (apparent bs, 2H); 6.85 (d, <i>J</i>=8.8 Hz, 2H); 7.12 (d, <i>J</i>=8.4 Hz, 2H).

ATIR (cm⁻¹)- 2974, 2932, 2848, 1686, 1610, 1582, 1512, 1443, 1420, 1364, 1323, 1283, 1245, 1228, 1160, 1122, 1035, 1016, 986, 941, 885, 861, 827, 804, 764, 638.
Synthesis of tert-butyl 4-(2-methoxyphenyl)piperidine-1-carboxylate (14b)

Synthesized by following the general procedure 5.3 to obtain 1.63 g of colorless liquid (96% Yield).

1H NMR - (400 MHz, CDCl$_3$) δ 1.48 (s, 9H); 1.60 (ddd, J_1=16 Hz, J_2=12 Hz, J_3=3.6 Hz, 2H); 1.79 (apparent d, 2H); 2.82 (apparent t, 2H); 3.08 (tt, J_1=15.6 Hz, J_2=3.6 Hz, 1H); 3.83 (s, 3H); 4.21-4.25 (apparent bs, 2H); 6.86 (d, J=8 Hz, 1H); 6.93 (t, J=7.6 Hz, 1H); 7.12-7.23 (m, 2H).

ATIR (cm$^{-1}$) - 3065, 2973, 2933, 2849, 1686, 1600, 1585, 1492, 1462, 1418, 1364, 1327, 1286, 1231, 1159, 1127, 1108, 1053, 1012, 985, 941, 926, 862, 826, 801, 750, 649, 623.

Synthesis of tert-butyl 4-(p-tolyl)piperidine-1-carboxylate (14c)

Synthesized by following general procedure 5.3 to obtain 748 mg colorless liquid (94% Yield).

1H NMR - (400 MHz, CDCl$_3$) δ 1.48 (s, 9H); 1.56-1.64 (m, 2H); 1.80 (apparent d, J=13.2 Hz, 2H); 2.32 (s, 3H); 2.60 (tt, J=12 Hz, 3.6 Hz, 1H); 2.79 (td, J=13.2 Hz, 2.4 Hz, 2H); 4.21-4.25 (m, 2H); 7.06-7.15 (m, 4H).

Synthesis of tert-butyl 4-(4-(methoxymethyl)phenyl)piperidine-1-carboxylate (14d)

Synthesized by following general procedure 5.3 to obtain 1.40 g of colorless liquid (97% Yield).

1H NMR - (400 MHz, CDCl$_3$) δ 1.48 (s, 9H); 1.56-1.1.67 (m, 2H); 1.76-1.84 (apparent bd, J=12.8 Hz, 2H); 2.64 (tt, J=3.2 Hz, 12.4 Hz, 1H); 2.76-2.82 (m, 2H), 3.39 (s, 3H); 4.24 (apparent d, J=13.6 Hz, 2H); 4.24 (s, 2H); 7.18 (d, J=8 Hz, 2H); 7.27 (d, J=8 Hz, 2H).
Synthesis of tert-butyl 4-(4-(N-methylacetamido)phenyl)piperidine-1-carboxylate (14e)

Synthesized by following the general procedure 5.3 to obtain 961 mg of white solid (97% Yield).

1HNMR - (400 MHz, CDCl$_3$) δ 1.48 (s, 9H); 1.55-1.68 (m, 2H); 1.79-1.89 (s merged with apparent d, 5H); 2.69 (tt, J=12.4 Hz, 3.6 Hz, 1H); 2.81 (apparent t, J=11.6 Hz, 2H); 3.25 (s, 3H); 4.25 (bs, 2H); 7.12 (d, J=8 Hz, 2H); 7.23 (d, J=8.4 Hz, 2H).

ATIR (cm$^{-1}$) – 2974, 2932, 2852, 1686, 1657, 1606, 1509, 1418, 1364, 1350, 1293, 1275, 1230, 1161, 1123, 1084, 1013, 976, 921, 884, 797, 768, 730, 644, 627.

LC-MS– (ESI) m/z ratio for Calculated (332.44); Observed (M+1=333.4).

Synthesis of tert-butyl 4-(4-acetamidophenyl)piperidine-1-carboxylate (14f)

Synthesized by following general procedure 5.3 to obtain 1.08 g of white solid (98% Yield).

1HNMR - (400 MHz, CDCl$_3$) δ 1.48 (s, 9H); 1.50-1.65 (m, 2H); 1.8 (apparent d, J=12.4 Hz, 2H); 2.17 (s, 3H); 2.57-2.66 (m, 1H); 2.80 (apparent t, J=, 2H); 4.22-4.24 (m, 2H); 7.19 (d overlapping with s, J=8.4 Hz, 3H); 7.42 (d, J=8 Hz, 2H).

ATIR (cm$^{-1}$)-3311, 3280, 3223, 3193, 3120, 3068, 2994, 2977, 2915, 2882, 2866, 1699, 1659, 1600, 1535, 1515, 1479, 1463, 1446, 1425, 1410, 1362, 1335, 1312, 1292, 1270, 1256, 1230, 1167, 1122, 1083, 1016, 991, 969, 941, 890, 861, 850, 831, 789, 768, 738, 676, 651, 634.

LC-MS– (ESI) m/z ratio for C$_{18}$H$_{26}$N$_2$O$_3$ calculated (318.42); observed (M+1=319.7).
Synthesis of tert-butyl 4-(6-methoxypyridin-3-yl)piperidine-1-carboxylate (14g)

Synthesized by following general procedure 5.3 and reduction by general procedure 3.2 to obtain 786 mg of clear liquid (89% Yield).

1HNMR - (400 MHz, CDCl$_3$) δ 1.48 (s, 9H); 1.53-1.66 (m, 2H); 1.78 (apparent d, $J=12.8$ Hz, 2H); 2.61 (tt, $J=12.0$ Hz, 3.6 Hz, 1H); 2.65-2.84 (bm, 2H); 3.91 (s, 3H); 4.24 (apparent bs, 2H); 6.70 (d, $J=8.8$ Hz, 1H); 7.41 (dd, $J=8.4$ Hz, 2.4 Hz, 1H); 8.0 (d, $J=2.4$ Hz, 1H).

ATIR (cm$^{-1}$)- 2974, 2933, 2849, 1686, 1605, 1572, 1493, 1463, 1445, 1420, 1396, 1363, 1282, 1255, 1229, 1160, 1115, 1018, 986, 940, 918, 885, 861, 828, 768, 640, 620.

LC-MS– (ESI) m/z ratio for C$_{16}$H$_{24}$N$_2$O$_3$ Calculated (292.38); Observed (M+1=293.6).

Synthesis of tert-butyl 4-(m-tolyl)piperidine-1-carboxylate (14h)

Synthesized by following the general procedure 5.3 to obtain 1.04 g of clear liquid (95% Yield).

1HNMR - (400 MHz, CDCl$_3$) δ 1.48 (s, 9H); 1.55-1.68 (m, 2H); 1.79 (d, $J=12.0$ Hz, 2H); 2.34 (s, 3H); 2.60 (tt, $J=12.4$ Hz, 3.2 Hz, 1H); 2.78 (td, $J=13.2$ Hz, 3.2 Hz, 2H); 4.23 (apparent d, $J=13.2$ Hz, 2H); 6.97-7.04 (m, 3H); 7.18-7.22 (distorted t, $J=8.0$ Hz, 1H).

ATIR (cm$^{-1}$)- 3005, 2974, 2930, 2851, 1687, 1607, 1589, 1477, 1446, 1419, 1364, 1315, 1279, 1242, 1158, 1118, 1091, 1072, 1023, 985, 927, 897, 866, 813, 783, 766, 701, 655, 629.

LC-MS– (ESI) m/z ratio for C$_{17}$H$_{25}$NO$_2$ Calculated (275.39); Observed (M-tert butyl+1=220.3).
Synthesis of tert-butyl 4-(o-tolyl)piperidine-1-carboxylate (14i)

Synthesized by following the general procedure 5.3 to obtain 960 mg of clear liquid (91% Yield).

\[^{1}HNMR\ (400\ MHz, CDCl_{3})\ \delta\ 1.49\ (s, 9H);\ 1.6\ (ddd, J=20.4\ Hz, 11.6\ Hz, 7.2\ Hz, 2H);\ 1.79\ (apparent\ d, J=2.8\ Hz, 2H);\ 2.35\ (s, 3H);\ 2.76-2.90\ (m, 3H);\ 4.26\ (apparent\ bs, 2H);\ 7.07-7.28\ (m, 4H). \]

ATIR (cm\(^{-1}\)) – 3062, 3005, 2973, 2932, 2851, 1687, 1489, 1478, 1460, 1417, 1364, 1320, 1278, 1229, 1160, 1126, 1105, 1071, 1052, 1012, 985, 932, 885, 861, 827, 806, 750, 724, 645, 626.

LC-MS– (ESI) \(m/z\) ratio for C\(_{17}\)H\(_{25}\)NO\(_{2}\) Calculated (275.39); Observed (M-tert butyl+1=220.2).

Synthesis of 4-(4-methoxyphenyl)piperidine (15a)

Synthesized by following general procedure 5.4 to obtain 321 mg of yellow viscous liquid (100% Yield).

\[^{1}HNMR\ (400\ MHz, CDCl_{3})\ \delta\ 1.61\ (ddd, J=16\ Hz, 12.4\ Hz, 3.6\ Hz, 2H);\ 1.81\ (apparent\ d, J=13.6\ Hz, 2H);\ 2.56\ (tt, J=3.6\ Hz, 12\ Hz, 1H);\ 2.73\ (td, J=2.4\ Hz,12.4\ Hz, 2H);\ 3.18\ (apparent\ d, J=12\ Hz, 2H);\ 3.79\ (s, 3H);\ 6.85\ (d, J=8.4\ Hz, 2H);\ 7.14\ (d, J=8.8\ Hz, 2H). \]

Synthesis of 4-(2-methoxyphenyl)piperidine (15b)

Synthesized by following general procedure 5.4 to obtain mg of light brown solid (100% Yield).
1HNMR - (400 MHz, DMSO-\textit{d6}) \(\delta \) 1.44-1.57 (m, 2H), 1.60-1.66 (m, 2H); 2.58-2.68 (m, 2H); 2.93-3.01 (m, 1H); 3.03-3.08 (m, 2H); 3.77 (s, 3H); 6.86-6.96 (m, 2H); 7.12-7.20 (m, 2H).

ATIR (cm-1)- 3283, 3066, 3002, 2931, 2844, 2729, 1599, 1584, 1491, 1461, 1433, 1363, 1339, 1303, 1290, 1257, 1257, 1235, 1191, 1160, 1141, 1106.97, 1094, 1055, 1026, 1007, 957, 928, 898, 865, 809, 793, 753, 630.

LC-MS- (ESI) \(m/z \) ratio for C\textsubscript{12}H\textsubscript{17}NO Calculated (191.13); Observed (M+1=192; M+2H+=193.3).

Synthesis of 4-(p-tolyl)piperidine (15c)

Synthesized by following the general procedure 5.4 to obtain 269 mg of yellow liquid (100% Yield).

1HNMR - (400 MHz, CDCl\textsubscript{3}) \(\delta \) 1.75 (ddd, \(J=25.2 \) Hz, 13.2 Hz, 3.6 Hz, 2H); 1.85-1.90 (apparent d, 2H); 2.32 (s, 3H); 2.61 (tt, \(J=12 \) Hz, 4 Hz, 1H); 2.79 (td, 12 Hz, 2.8 Hz, 2H); 3.25-3.31 (m, 2H); 7.12 (bs, 4H).

Synthesis of 4-(4-(methoxymethyl)phenyl)piperidine (15d)

Synthesized by following the general procedure 5.4 to obtain 872 mg of pale yellow solid (95% Yield).

1HNMR - (400 MHz, CDCl\textsubscript{3}) \(\delta \) 1.66-1.80 (m, 2H); 1.86 (apparent distorted d, \(J=12.4 \) Hz); 1.59-2.69 (m, 1H); 2.73-2.84 (m, 2H); 3.26 (apparent d, \(J=12 \) Hz, 2H); 3.39 (s, 3H); 4.24 (s, 2H); 7.21 (distorted d, \(J=8 \) Hz, 2H); 7.28 (distorted d, \(J=8 \) Hz, 2H).
Synthesis of \(N\)-methyl-\(N\)-(4-(piperidin-4-yl)phenyl)acetamide (15e)

Synthesized by following the general procedure 5.4 to obtain mg of 199 mg yellow solid (100% Yield).

\(^1\)HNMR - (400 MHz, CDCl\(_3\)) \(\delta\) 1.59-1.73 (m merged with water, 2H); 1.83-1.91 (s merged with apparent d, 5H); 2.67 (tt, \(J\)=13.6 Hz, 4 Hz, 1H); 2.78 (td, \(J\)=12.4 Hz, 2.4 Hz, 2H); 3.23 (apparent d, \(J\)=11.6 Hz, 2H); 3.27 (s, 3H); 7.13 (d, \(J\)=8.4 Hz, 2H); 7.28 (d, \(J\)=8.4 Hz, 2H)

Synthesis of \(N\)-(4-(piperidin-4-yl)phenyl)acetamide (15f)

Synthesized by following general procedure 5.4 to obtain 87 mg of pale yellow solid (51% Yield).

\(^1\)HNMR - (400 MHz, CDCl\(_3\)) \(\delta\) 1.54-1.66 (m, 2H); 1.80 (distorted apparent d, \(J\)=12.8 Hz, 2H); 2.16 (s, 3H); 2.54-2.63 (m, 1H); 2.73 (apparent t, 2H); 3.188 (apparent d, \(J\)=10 Hz, 2H); 7.13 (s, 1H); 7.17 (d, \(J\)=8 Hz, 2H); 7.41 (d, \(J\)=8.4 Hz, 2H).

Synthesis of 2-methoxy-5-(piperidin-4-yl)pyridine (15g)

Synthesized by following the general procedure 5.4 to obtain 160 mg yellow solid (58% Yield).

\(^1\)HNMR - (400 MHz, CDCl\(_3\)) \(\delta\) 1.54-1.68 (m, 2H); 1.79 (apparent d, \(J\)=13.6 Hz, 2H); 2.57 (tt, \(J\)=12.4 Hz, 3.6 Hz, 1H); 2.74 (td, \(J\)=12.0 Hz, 3.6 Hz, 2H); 3.18-3.21 (m, 2H); 3.91 (s, 3H); 6.69 (d, \(J\)=8.4 Hz, 1H); 7.43 (dd, \(J\)=8.4 Hz, 2.4 Hz, 1H); 8.05 (d, \(J\)=2.4 Hz, 1H).
Synthesis of 4-\((m\text{-}\text{tolyl})\text{piperidine} \ (15h)\)

Synthesized by following the general procedure 5.4 to obtain 292 mg of yellow liquid (89% Yield).

\[^1\text{HNMR} \text{ - (400 MHz, CDCl}_3\text{)} \delta \ 1.60\text{-}1.74 \ (m, 2H); 1.83 \ (\text{apparent bd, } J=12.8 \text{ Hz, 2H}); 2.33 \ (s, 3H); 2.60 \ (tt, J=12 \text{ Hz, 3.6 Hz, 1H}); 2.78 \ (td, J=12.0 \text{ Hz, 2.0 Hz, 2H}); 3.22 \ (\text{apparent bd, } J=12.0 \text{ Hz, 2H}); 6.90\text{-}7.64 \ (m, 3H); 7.18\text{-}7.22 \ (t, J=7.2 \text{ Hz, 1H}).\]

Synthesis of 4-\((o\text{-}\text{tolyl})\text{piperidine} \ (15i)\)

Synthesized by following the general procedure 5.4 to obtain 299 mg of yellow liquid (98% Yield).

\[^1\text{HNMR} \text{ - (400 MHz, CDCl}_3\text{)} \delta \ 1.57\text{-}1.80 \ (m, 4H); 2.35 \ (s, 3H); 2.72\text{-}2.90 \ (m, 3H); 3.21 \ (\text{apparent d, } J=12 \text{ Hz, 2H}); 7.06\text{-}7.25 \ (m, 4H).\]

Synthesis of 4-\((4\text{-}\text{methoxyphenyl})\text{-}1\text{-}(1\text{H\text{-}pyrazol\text{-}5\text{-}yl})\text{piperidine} \ (20a)\)

Synthesized by following general procedure 5.5 to obtain 18 mg of white solid (22% Yield).

\[^1\text{HNMR} \text{ - (400 MHz, CDCl}_3\text{)} \delta \ 1.78\text{-}1.95 \ (m, 4H); 2.56\text{-}2.66 \ (m, 1H); 2.85 \ (\text{apparent t, } J=12 \text{ Hz, 2H}); 3.80 \ (s, 3H); 3.85 \ (\text{apparent d, } J=11.6 \text{ Hz, 2H}); 5.80 \ (s, 1H); 6.86 \ (d, J=7.6 \text{ Hz, 2H}); 7.17 \ (d, J=7.2 \text{ Hz, 2H}); 7.42 \ (s, 1H).\]
ATIR (cm$^{-1}$)- 3247, 3138, 3124, 2999, 2972, 2932, 2914, 2820, 1608, 1579, 1547, 1509, 1482, 1459, 1439, 1380, 1323, 1285, 1237, 1197, 1176, 1152, 1107, 1088, 1064.65, 1016, 983, 940, 923, 864, 825, 805, 763, 709, 676, 636.

LC-MS– (ESI) m/z ratio for C$_{15}$H$_{19}$N$_3$O Calculated (257.34); Observed (M+1=258.4, M+2H=259.7).

Synthesis of 4-(2-methoxyphenyl)-1-(1H-pyrazol-5-yl)piperidine (20b)

Synthesized by following general procedure 5.5. Crude residue was chromatographed by silica gel using EtOAc in hexane gradient to obtain 75 mg of yellow solid (43.35% Yield). [0-100% Hex:EtOAc]

1HNMR - (400 MHz, DMSO-d6) δ 1.67-1.82 (m, 4H); 2.60-2.71 (apparent t, J=9.6 Hz, 2H); 2.90-3.05 (m, 1H); 3.70-3.85 (m, 5H); 5.70 (s, 1H); 6.85-6.99 (m, 2H); 7.15-7.20 (m, 2H); 7.44 (s, 1H); 11.76 (s, 1H).

ATIR (cm$^{-1}$)- 3172, 3074, 2933, 2808, 2751, 1598, 1582, 1539, 1489, 1461, 1383.51, 1317, 1288, 1232, 1191, 1170, 1154, 1122, 1086, 1052, 1019, 982, 926, 904.59, 866, 777, 734, 620.

LC-MS– (ESI) m/z ratio for C$_{15}$H$_{19}$N$_3$O Calculated (257.34); Observed (M+1=258.3).

Synthesis of 1-(1H-pyrazol-5-yl)-4-(p-tolyl)piperidine (20c)

Synthesized by following the general procedure 5.5. Crude obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 28 mg of white solid (55% Yield). [0-100% Hex: EtOAc]
1HNMR - (400 MHz, CDCl$_3$) δ 1.62-1.81 (m, 4H); 2.26 (s, 3H); 2.57 (tt, J=12 Hz, 3.6 Hz, 1H); 2.62-2.72 (apparent td, 2H); 3.70-3.77 (apparent bd, J=11.6 Hz, 2H); 5.71 (s, 1H); 7.06-7.16 (apparent q, J=8 Hz, 4H); 7.44 (s, 1H); 11.76 (bs, 1H).

ATIR (cm$^{-1}$)- 3142, 3045, 3000, 2963, 2921, 2870, 2856, 2839, 2698, 1536, 1513, 1481, 1454, 1441, 1359, 1344, 1318, 1304, 1280, 1258, 1235, 1183, 1154, 1124, 1102, 1080, 1047, 1005, 978, 927, 904, 857, 813, 801, 764, 724, 699.

LC-MS– (ESI) m/z ratio for C$_{15}$H$_{19}$N$_3$ Calculated (241.34); Observed (M+1=242.1).

Synthesis of 4-(4-(methoxymethyl)phenyl)-1-(1H-pyrazol-5-yl)piperidine (20d)

Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 78 mg of colorless fluffy solid (57% Yield).

1HNMR - (400 MHz, CDCl$_3$) δ 1.69-1.85 (m, 4H); 2.60-2.73 (m, 3H); 3.27 (s, 3H); 3.75 (apparent d, J=10.8 Hz, 2H); 4.36 (s, 2H); 5.71 (s, 1H); 7.24 (s, 4H); 7.44 (s, 1H).

ATIR (cm$^{-1}$)- 3273, 3116, 3039, 2992, 2933, 2867, 2812.82, 1537, 1512, 1477, 1456, 1437, 1383, 1365, 1324, 1311.89, 1282, 1270, 1258, 1233.18, 1208, 1182, 1152, 1086.81, 1067, 1033, 1014, 982, 907, 866, 838, 820, 750, 718, 676, 643, 617.

LC-MS– (ESI) m/z ratio for C$_{16}$H$_{21}$N$_3$O Calculated (271.17); Observed (M+1=272.5).
Synthesis of N-(4-(1-(1H-pyrazol-5-yl)piperidin-4-yl)phenyl)-N-methylacetamide (20e)

Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOH in DCM gradient to obtain 6 mg pale yellow solid of solid (14% Yield). [0-10% DCM:EtOH]

1HNMR - (400 MHz, CDCl$_3$) δ 1.80-1.98 (m, 7H); 2.64-2.75 (m, 1H); 2.82-2.91 (m, 2H); 3.25 (s, 3H); 3.87 (apparent d, J=12.8 Hz, 2H); 5.81 (s, 1H); 7.12 (d, J=8 Hz, 2H); 7.28 (d, J=8.4 Hz, 2H); 7.43 (s, 1H).

ATIR (cm$^{-1}$) 3301, 3241, 3225, 2962, 2941, 2919, 2846, 2810, 2746.38, 2697, 1636, 1605, 1534, 1508, 1457, 1447, 1427, 1378, 1357, 1293.64, 1271, 1252, 1230, 1199, 1166, 1150, 1136, 1089, 1060, 1037, 10167, 977, 919, 903, 866, 843, 743, 681, 626, 603.

LC-MS– (ESI) m/z ratio for C$_{17}$H$_{22}$N$_4$O Calculated (298.39); Observed (M+1= 299.7; M+Na=321.7).

Synthesis of N-(4-(1-(1H-pyrazol-5-yl)piperidin-4-yl)phenyl)acetamide (20f)

Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOH in DCM gradient to obtain 39 mg of pale yellow solid (43% Yield). [0-10% DCM:EtOH]

1HNMR - (400 MHz, MeOD) δ 1.78-1.91 (m, 4H); 2.11 (s, 3H); 2.60-2.79 (m, 1H); 2.82 (td, J=12.4 Hz, 3.2 Hz, 2H); 3.79 (apparent d, J=12.4 Hz, 2H); 5.81 (d, J=2.4 Hz, 1H); 7.20 (d, J=8.4 Hz, 2H); 7.43-7.49 (m, 3H).
Synthesis of 5-(1-(1H-pyrazol-5-yl)piperidin-4-yl)-2-methoxypyridine (20g)

Synthesized by following the general procedure 5.5. Crude obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 9 mg of white solid (43% Yield).

[0-100% Hex: EtOAc]

1HNMR - (400 MHz, CDCl$_3$) δ 1.76-1.92 (m, 4H); 2.56-2.66 (m, 1H); 2.81-2.88 (m, 2H); 3.89 (apparent bd, J=12.0 Hz, 2H); 3.92 (s, 3H); 5.80 (s, 1H); 6.70 (d, J=8.4 Hz, 1H); 7.42 (s, 1H); 7.46 (dd, J=8.8 Hz, 2.4 Hz, 2H); 8.04 (bs, 1H).

ATIR (cm$^{-1}$)- 3234, 3143, 3128, 3047, 3013, 2975, 2938, 2918, 2847, 2819, 2751, 1736, 1671, 1603, 1569, 1551, 1492, 1460, 1443, 1396, 1383, 1360, 1322, 1297, 1280, 1254, 1239, 1201, 1174, 1155, 1133, 1113, 1093, 1066, 1027, 1012, 984, 925, 905, 869, 835, 810, 758, 707, 677, 638, 605.

LC-MS– (ESI) m/z ratio for C$_{16}$H$_{20}$N$_{4}$O calculated (284.36); observed (M+1=285.4).

LC-MS– (ESI) m/z ratio for C$_{14}$H$_{18}$N$_{4}$O Calculated (258.33); Observed (M+1=259.3).
Synthesis of 1-(1H-pyrazol-5-yl)-4-(m-tolyl)piperidine (20h)

Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOH in hexane gradient to obtain mg of white solid (% Yield). [0-10% Hex:EtOH]

1HNMR - (400 MHz, CDCl$_3$) δ 1.84-1.93 (m, 4H); 2.34 (s, 3H); 2.57-2.67 (m, 1H); 2.87 (apparent t, J=11.6 Hz, 2H); 3.86 (apparent d, J=12.4 Hz, 2H); 5.79 (s, 1H); 7.00-7.08 (m, 3H); 7.17-7.25 (m, 1H); 7.42 (s, 1H).

ATIR (cm$^{-1}$) – 3175, 3020, 2920, 2810, 2751, 2701, 1606, 1577, 1538, 1484, 1462, 1444, 1383, 1338, 1314, 1282, 1258, 1227, 1153, 1101, 1040, 1026, 982, 926, 908, 854, 783, 730, 700, 646.

LC-MS– (ESI) m/z ratio for C$_{15}$H$_{19}$N$_3$ Calculated (241.16); Observed (M+1=242.3).

Synthesis of 1-(1H-pyrazol-5-yl)-4-(o-tolyl)piperidine (20i)

Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOAc in DCM gradient to obtain 16 mg of slightly pale colorless liquid (10% Yield). [0-50% DCM:EtOAc]

1HNMR - (400 MHz, CDCl$_3$) δ 1.82-1.93 (m, 4H); 2.38 (s, 3H); 2.82-2.93 (m, 3H); 3.88 (apparent d, J=12.4 Hz, 2H); 5.82 (s, 1H); 7.07-7.28 (m, 4H); 7.43 (s, 1H).

ATIR (cm$^{-1}$) – 3410, 3173, 3066, 3017, 2934, 2849, 2808, 2751, 2705, 1577, 1539, 1483, 1461, 1445, 1383, 1314, 1280, 1253, 1237, 1180, 1153, 1122, 1100, 1066, 1040, 1018, 983, 925, 905, 866, 779, 724, 645, 624.
Synthesis of 4-(4-methoxyphenyl)-1-(1H-pyrazol-4-yl)piperidine (21a)

Synthesized by following general procedure 5.5 to obtain 33 mg of pale white solid (35% Yield).

1HNMR - (400 MHz, CDCl$_3$) δ 1.86-1.96 (m, 4H); 2.50-2.62 (m, 1H); 2.63-2.73 (m, 2H); 3.48 (apparent d, J=11.6 Hz, 2H); 3.80 (s, 3H); 6.87 (d, J=8.8 Hz, 2H); 7.17 (d, J=8.4 Hz, 2H); 7.29 (s, 2H).

ATIR (cm$^{-1}$)- 3256, 3119, 3104, 3076, 2945, 2910, 2874, 2835, 2801, 1610, 1578, 1510, 1461, 1443, 1387, 1359, 1336, 1312, 1286, 1249, 1226, 1181, 1129, 1104, 1027, 990, 951, 932, 903, 861, 836, 804, 766, 744, 696, 653, 637, 618.

LC-MS– (ESI) m/z ratio for C$_{15}$H$_{19}$N$_3$0 Calculated (257.34); Observed (M+1=258.5).

Synthesis of 4-(2-methoxyphenyl)-1-(1H-pyrazol-4-yl)piperidine (21b)

Synthesized by following the general procedure 5.5. Crude residue chromatographed using silica gel by EtOAc in Hexane gradient to obtain 101 mg of Light Pink solid (62% Yield).

1HNMR - (400 MHz, CDCl$_3$) δ 1.85-1.95 (m, 4H); 2.65-2.77 (m, 2H); 2.99-3.11 (m, 1H); 3.44-3.51 (m, 2H); 3.84 (s, 3H); 6.88 (d, J=8.4 Hz, 1H); 6.95 (t, J=7.6 Hz, 1H); 7.16-7.25 (m, 2H); 7.28 (s, 2H).

ATIR (cm$^{-1}$)- 3142, 3117, 3094, 3067, 22936, 2920, 2839, 2784, 2750, 2667, 1598, 1572, 1532, 1490, 1461, 1381, 1363, 1323, 1288, 1235, 1191, 1171, 1102.06, 1088, 1053, 1024, 992.38, 950, 906, 859, 780, 751, 735, 707, 664, 623.
Synthesis of 1-(1H-pyrazol-4-yl)-4-(p-tolyl)piperidine (21c)

Synthesized by following the general procedure 5.5. Crude residue was chromatographed by silica gel using EtOAc in hexane gradient to obtain white solid (10% Yield). [0-100% Hex:EtOAc]

1H NMR - (400 MHz, CDCl$_3$) δ 1.88-1.97 (m, 2H); 2.33 (s, 3H); 2.51-2.63 (m, 1H); 2.63-2.73 (m, 2H); 3.45-3.52 (m, 2H); 7.10-7.19 (m, 4H); 7.28 (s, 2H).

LC-MS– (ESI) m/z ratio for C$_{15}$H$_{19}$N$_{3}$O Calculated (257.34); Observed (M+1=258.3).

Synthesis of 4-(4-(methoxymethyl)phenyl)-1-(1H-pyrazol-4-yl)piperidine (21d)

Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 9 mg of white solid (21% Yield). [0-100% Hex: EtOAc]

1H NMR - (400 MHz, DMSO d_6) δ 1.71-1.81 (m, 4H); 2.56-2.61 (m, 3H); 3.27 (s, 3H); 3.42 (apparent d, J=11.6 Hz, 2H); 7.25-7.27 (m, 6H); 12.20 (bs, 1H).
ATIR (cm$^{-1}$) - 3140, 3119, 2917, 2816.14, 2672, 1734, 1664, 1610, 1573, 1513, 1462, 1444, 1419, 1384, 1359, 1323, 1359, 1323, 1262, 1230, 1191, 1138, 1092, 1041, 1026, 989, 949, 903, 819, 772, 698, 657, 619.

LC-MS– (ESI) m/z ratio for C$_{16}$H$_{21}$N$_{3}$O Calculated (271.17); Observed (M+1=272.5).

Synthesis of N-(4-(1-(1H-pyrazol-4-yl)piperidin-4-yl)phenyl)-N-methylacetamide (21e)

Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOH in DCM gradient to obtain 13 mg of pale yellow solid (26% Yield). [0-20% DCM:EtOH]

1HNMR - (400 MHz, DMSO-d_6) δ 1.70-1.90 (m, 7H); 2.53-2.56 (m, 2H); 2.56-2.67 (m, 1H); 3.12 (s, 3H); 3.43 (apparent d, J=11.8 Hz, 2H); 7.22-7.27 (s overlapping with d, 4H); 7.33-7.35 (d, J=7.2 Hz, 2H); 12.21 (bs, 1H).

1HNMR - (400 MHz, CDCl$_3$) δ - 1.90 (s, 3H), 1.93-2.11 (m, 4H); 2.63-2.75 (m, 1H); 2.82 (apparent t, 2H); 3.28 (s, 3H); 3.56 (apparent d, J=11.6 Hz, 2H); 7.14 (d, J=6.8 Hz, 2H); 7.32 (d, J=8 Hz, 2H); 7.39 (s, 2H).

ATIR (cm$^{-1}$) - 3215, 3065, 2940, 2851, 2810, 2755, 2669, 1629, 1602, 1574, 1510, 1464, 1443, 1386, 1353, 1295, 1274, 1259, 1245, 1229, 1199, 1139, 1118, 1083, 1036, 1026, 991, 978, 930, 904, 846, 783, 748, 720, 689, 656, 602.

LC-MS– (ESI) m/z ratio for C$_{17}$H$_{22}$N$_{4}$O Calculated (298.39); Observed (M+1=299.7, M+Na=321.7).

Synthesis of N-(4-(1-(1H-pyrazol-4-yl)piperidin-4-yl)phenyl)acetamide (21f)
Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using MeOH in DCM gradient to obtain 33 mg of yellow solid (35% Yield). [0-20% DCM:MeOH]

1HNMR - (400 MHz, CDCl$_3$) δ 1.86-1.96 (m, 2H); 2.18 (s, 3H); 2.54-2.64 (m, 1H); 2.64-2.73 (m, 2H); 3.47-3.49 (m, 2H); 7.09 (bs, 1H); 7.21 (d, J=8.0 Hz, 2H); 7.27 (s, 2H); 7.43 (d, J=8.0 Hz, 2H).

ATIR (cm$^{-1}$)- 3329, 3142, 3123, 3073, 2943, 2919, 2871, 2845, 2810, 2662, 1660, 1612, 1593, 1578, 1514, 1464, 1447, 1407, 1385, 1360, 1315, 1285, 1256, 1222, 1191, 1131, 1102, 1092, 1040, 1027, 990, 967, 950, 903, 863, 838, 822, 773, 701, 652, 619.

LC-MS– (ESI) m/z ratio for C$_{16}$H$_{20}$N$_{4}$O Calculated (284.36); Observed (M+1=285.4).

Synthesis of 5-(1-(1H-pyrazol-4-yl)piperidin-4-yl)-2-methoxypyridine (21g)

Synthesized by following the general procedure 5.5. Crude obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 13 mg of white solid (42% Yield). [0-100% Hex:EtOAc]

1HNMR - (400 MHz, CDCl$_3$) δ 1.86-1.94 (m, 4H); 2.52-2.62 (m, 1H); 2.63-2.73 (m, 2H); 3.46-3.52 (m, 2H), 3.92 (s, 3H); 6.71 (d, J=8.8 Hz, 1H); 7.28 (bs, 2H); 7.47 (dd, J=8.4 Hz, 2.4 Hz, 8.05 (d, J=2.0 Hz, 1H).

ATIR (cm$^{-1}$)- 2936, 2852, 2807, 2753, 1621, 1578, 1512, 1464, 1443, 1430, 1398, 1387, 1372, 1324, 1296, 1267, 1247, 1215, 1199, 1177, 1149, 1128, 1101, 1079, 1058, 1039, 1024, 1000, 976, 952, 938, 911, 895, 874, 845, 822, 791, 752, 718, 665, 630.

LC-MS– (ESI) m/z ratio for C$_{14}$H$_{18}$N$_{4}$O Calculated (258.33); Observed (M+1=259.4).
Synthesis of 1-(1H-pyrazol-4-yl)-4-(m-tolyl)piperidine (21h)

Synthesized by following the general procedure 5.5. Crude obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 14 mg of yellow solid (39% Yield). [0-100% Hex:EtOAc]

1HNMR - (400 MHz, CDCl$_3$) δ 1.88-2.00 (m, 4H); 2.35 (s, 3H); 2.51-2.63 (m, 1H); 2.64-2.73 (m, 2H); 3.45-3.52 (m, 2H); 7.01-7.08 (m, 3H); 7.22 (t, J=7.2 Hz, 1H); 7.28 (s, 2H).

ATIR (cm$^{-1}$) - 3142, 3119, 3075, 3019, 2933, 2873, 2844, 2811, 2758, 2673, 1605, 1573, 1523, 1487, 1462, 1443, 1387, 1360, 1316, 1279, 1247, 1219, 1180, 1163, 1143, 1108, 1038, 989, 948, 930, 888, 876, 839, 771, 700, 663, 651, 617.

LC-MS – (ESI) m/z ratio for C$_{15}$H$_{19}$N$_3$ Calculated (241.16); Observed (M+1=242.3).

Synthesis of Compound 1-(1H-pyrazol-4-yl)-4-(o-tolyl)piperidine (21i)

Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 15 mg of white solid (52% Yield). [0-100% Hex:EtOAc]

1HNMR - (400 MHz, CDCl$_3$) δ 1.82-2.01 (m, 4H); 2.36 (s, 3H); 2.71 (td, J=11.6 Hz, 2.4 Hz); 2.76-2.87 (m, 1H); 3.51 (apparent d, J=11.2 Hz, 2H); 7.08-7.24 (m, 4H); 7.28 (s, 2H).

ATIR (cm$^{-1}$) – 3165, 3144, 3121, 3103, 3077, 2977, 2954, 2918, 2877, 2838, 1662, 1578, 1533, 1488, 1462, 1445, 1430, 1387, 1360, 1334, 1322, 1293, 1284, 1263, 1235, 1182, 1143, 1120, 1099, 1054, 1037, 990, 937, 902, 862, 823, 782, 749, 725, 702, 660, 623.
LC-MS– (ESI) m/z ratio for C_{15}H_{19}N_{3} Calculated (241.16); Observed (M+1=242.3).

Synthesis of 4-iodo-3-methyl-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole (23)

Synthesis was done by procedure known in literature. Crude residue obtained was chromatographed by silica gel using ethyl ether in hexane gradient to obtain 305 mg of colorless liquid (72% Yield). [0-20% Hex:Ethyl ether]

1HNMR - (400 MHz, CDCl$_3$) δ 1.58-1.72 (m, 3H); 1.97-2.07 (m, 3H); 2.25 (s, 3H); 3.67 (td, J=11.2 Hz, 2.8 Hz, 1H); 4.01-4.09 (m, 1H); 5.27 (distorted dd, J=9.2 Hz, 1H); 7.57 (s, 1H).

ATIR (cm$^{-1}$) – 3121, 2940, 2851, 2735, 1515, 1439, 1377, 1344, 1318, 1277, 1259, 1245, 1202, 1179, 1148, 1081, 1058, 1039, 980, 936, 909, 875, 844, 791, 764, 681, 658, 624.

LC-MS– (ESI) m/z ratio for C$_9$H$_{13}$IN$_2$O Calculated (292.12); Observed (M+1=293.3).

Synthesis of 3-iodo-5-methyl-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole (24)

Synthesis was done by procedure known in literature. Crude residue obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain mg of yellow pale liquid (99% Yield). [0-30% Hex:EtOAc]

1HNMR - (400 MHz, CDCl$_3$) δ 1.53-1.75 (m, 3H); 1.89-1.98 (m, 1H); 2.06-2.13 (m, 1H); 2.32 (s, 3H); 2.36-2.50 (m, 1H); 3.62 (distorted td, J=11.2 Hz, 2.8 Hz, 1H); 3.98-4.04 (m, 1H); 5.21 (dd, J=10 Hz, 2.8 Hz, 1H); 6.19 (s, 1H).
ATIR (cm\(^{-1}\)) – 3119, 3059, 2992, 2951, 2849, 2731, 1534, 1465, 1455, 1418, 1385, 1324, 1313, 1282, 1247, 1202, 1177, 1147, 1111, 1079, 1056, 1039, 1001, 989, 942, 912, 876, 845, 824, 798, 670, 646.

LC-MS– (ESI) \(m/z\) ratio for \(\text{C}_{9}\text{H}_{13}\text{IN}_{2}\text{O}\) Calculated (292.12); Observed (M+1=293.3).

Synthesis of 1-(3-methyl-1\(H\)-pyrazol-4-yl)-4-phenylpiperidine (25a)

Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 38 mg of white solid (42% Yield). [0-100% Hex:EtOAc]

\(^1\text{HNMR} - (400 \text{ MHz, DMSO-}d6) \delta 1.76-1.83 (m, 4H); 2.12 (s, 3H); 2.54-2.62 (m, 3H); 3.17 (apparent d, \(J=11.2 \text{ Hz, 2H})); 7.15-7.22 (m, 1H); 7.27-7.35 (m, 5H); 12.01 (bs, 1H).

ATIR (cm\(^{-1}\))- 3224, 3078, 3019, 2936, 2915, 2797, 2738, 2662, 1596, 1563, 1507, 1490, 1460, 1449, 1438, 1426, 1383, 1300, 1271, 1248, 1208, 1173, 1158, 1136, 1102, 1063, 1031, 1013, 983, 942, 909, 852, 793, 758, 700, 664, 616.

LC-MS– (ESI) \(m/z\) ratio for \(\text{C}_{15}\text{H}_{19}\text{N}_{3}\) Calculated (241.34), Observed (M+1=242.5).

Synthesis of 1-(5-methyl-1\(H\)-pyrazol-3-yl)-4-phenylpiperidine (26a)
Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 62 mg of white solid (79\% Yield). [0-100\% Hex:EtOAc]

1HNMR - (600 MHz, CDCl$_3$) δ 1.64-1.982 (m, 4H); 2.12 (s, 3H); 2.55-2.68 (m, 2H); 3.7 (apparent d, J=11.2 Hz, 2H); 5.47 (s, 1H); 7.17-7.20 (m, 1H); 7.24-7.31 (m, 4H); 11.43 (bs, 1H).

ATIR (cm$^{-1}$) 3188, 3133, 3107, 3060, 3021, 2947, 2917, 2878, 2820, 2752, 2711, 1570, 1492, 1462, 1439, 1385, 1350, 1289, 1247, 1194, 1173, 1118, 1103, 1056, 1033, 1018, 988, 945, 910, 871, 809, 761, 740, 720, 699, 660, 611.

LC-MS– (ESI) m/z ratio for C$_{15}$H$_{19}$N$_3$ Calculated (241.34), Observed (M+1=242.5).

Synthesis of tert-butyl 4-(phenylsulfonyl)piperidine-1-carboxylate (30)

Synthesized by procedure known in literature. It was then subjected to oxidation by mCPBA to obtain 306 mg of white solid (97\% Yield).

1HNMR - (400 MHz, CDCl$_3$) δ 1.43 (s, 9H); 1.56-1.67 (m, 2H); 1.97 (apparent d, J=13.2 Hz, 2H); 2.65-2.68 (m, 2H); 3.03 (tt, J=12 Hz, 3.6 Hz, 1H); 4.19-4.27 (m, 2H); 7.58 (apparent distorted t, J=7.6 Hz, 2H); 7.68 (apparent distorted t, J=7.2 Hz, 1H); 7.87 (d, J=7.2 Hz, 2H).

Synthesis of 4-(phenylsulfonyl)piperidine (31b)
Synthesized by following the general procedure 5.4 to obtain 158 mg of pale yellow solid (75% Yield).

1HNMR - (400 MHz, CDCl$_3$) δ 1.51-1.63 (m, 2H); 2.00 (apparent d, J=12.8 Hz, 2H); 2.56 (td, J=12.4 Hz, 2.4 Hz, 2H); 3.02 (tt, J=12.4 Hz, 3.2 Hz, 1H); 3.12-3.22 (m, 2H); 7.57- (apparent distorted t, J=7.6 Hz, 2H); 7.66 (apparent distorted t, J=7.6 Hz, 1H); 7.87 (d, J=7.2 Hz, 2H).

Synthesis of 4-(phenylthio)-1-(1H-pyrazol-5-yl)piperidine (32a)

Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 24 mg of pale yellow liquid (34% Yield). [0-100% Hex:EtOAc]

1HNMR - (400 MHz, DMSO-d_6) δ 1.50-1.59 (m, 2H); 1.94 (apparent d, J=13.2 Hz, 2H); 2.76 (apparent t, J=12.4 Hz, 2H); 3.34-3.42 (m, 1H); 3.53-3.58 (m, 2H); 5.68 (s, 1H); 7.22-7.30 (m, 1H); 7.35 (t, J=8 Hz, 2H); 7.39-7.46 (m, 3H); 11.76 (bs, 1H).

ATIR (cm$^{-1}$) - 3174, 3072, 3055, 2942, 2813, 1952, 1871, 1581, 1538, 1478, 1462, 1437, 1382, 1346, 1317, 1267, 1247, 1209, 1150, 1089, 1066, 1039, 1017, 986, 925, 898, 855, 735, 689.

LC-MS– (ESI) m/z ratio for C$_{14}$H$_{17}$N$_3$S Calculated (259.37), Observed (M+1=260.5).

Synthesis of 4-(phenylsulfonyl)-1-(1H-pyrazol-5-yl)piperidine (32b)
Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOAc in Hexane gradient to obtain 40 mg of pale yellow solid (63% Yield). [0-100% Hex:EtOAc]

\[^1\]HNMR - (400 MHz, CDCl\textsubscript{3}) \(\delta\) 1.83 (ddd, \(J=16.8\) Hz, 12.4 Hz, 4.4 Hz, 2H); 2.09 (apparent d, \(J=13.2\) Hz, 2H); 2.72 (td, \(J=12.4\) Hz, 2.4 Hz, 2H); 3.05 (tt, \(J=12\) Hz, 3.6 Hz, 1H); 3.86 (apparent d, \(J=12.4\) Hz, 2H); 5.72 (d, \(J=2.4\) Hz, 1H); 7.39 (d, \(J=2.8\) Hz, 1H); 7.58 (distorted t, \(J=7.2\) Hz, 2H); 7.64-7.68 (m, 1H); 7.90 (apparent d, \(J=7.2\) Hz, 2H).

ATIR (cm-1) 3161, 3128, 3066, 3029, 2960, 2943, 2839, 2765, 2719, 2662, 1989, 1902, 1819, 1776, 1709, 1605, 1588, 1537, 1497, 1479, 1466, 1447, 1388, 1314, 1283, 1254, 1229, 1198, 1182, 1136, 1101, 1085, 1071, 1036, 1019, 981, 927, 903, 863, 809, 753, 723, 688.

LC-MS – (ESI) \(m/z\) ratio for C\textsubscript{14}H\textsubscript{17}N\textsubscript{3}O\textsubscript{2}S Calculated (291.37); Observed (M+1=292.6).

Synthesis 4-(phenylthio)-1-(1H-pyrazol-4-yl)piperidine (33a)

Synthesized by following the general procedure 5.5. Crude residue was chromatographed by silica gel using EtOAc in hexane gradient to obtain 31 mg of pale yellowish white solid (61% Yield). [0-100% Hex:EtOAc]

\[^1\]HNMR - (400 MHz, DMSO-\textit{d}6) 1.60 (ddd, \(J=23.6\) Hz, 10.8 Hz, 3.6 Hz, 2H); 1.92-1.98 (m, 2H); 2.59 (apparent t, \(J=9.6\) Hz, 2H); 3.20-3.38 (m, 3H); 7.22-7.28 (s overlapping with m, 3H); 7.30-7.37 (m, 2H); 7.40-7.42 (m, 2H), 12.29 (bs, 1H).

ATIR (cm-1)- 3290, 3116, 3056, 3015, 2945, 2743, 2691, 2660, 1578, 1566, 1490, 1472, 1436, 1377, 1360, 1340, 1264, 1250, 1230, 1200, 1174, 1141, 1127, 1090, 1069, 1027, 987, 932, 894, 848, 793, 748,740, 690, 665, 618.
LC-MS– (ESI) m/z ratio for C_{14}H_{17}N_{3}S Calculated (259.37), Observed (M+1=260.5)

Synthesis of Compound 4-(phenylsulfonyl)-1-(1H-pyrazol-4-yl)piperidine (33b)

Synthesized by following the general procedure 5.5. Crude residue obtained was chromatographed by silica gel using EtOAc in hexane gradient to obtain 7 mg of pale yellow solid (39% Yield). [0-100% Hex:EtOAc]

^{1}\text{HNMR} - (400 MHz, CDCl_{3}) \delta 1.80-1.93 (m, 2H); 2.09 (apparent d, J=18.8 Hz, 2H); 2.49-2.58 (m, 2H); 2.99 (tt, J=12.4 Hz, 2.8 Hz, 1H); 3.43 (apparent d, J=11.6 Hz, 2H); 7.20 (s, 2H); 7.55-7.62 (m, 2H); 7.59-7.71 (m, 1H); 7.89 (d, J=8 Hz, 2H).

ATIR (cm\(^{-1}\)) - 3134, 3114, 3064, 2948, 2841, 1573, 1455, 1446, 1393, 1381, 1366, 1341, 1306, 1274, 1242, 1219, 1173, 1142, 1086, 1033, 992, 924, 893, 859, 779, 756, 725, 706, 689, 665, 620.

LC-MS– (ESI) m/z ratio for C_{14}H_{17}N_{3}O_{2}S Calculated (291.37); Observed (M+1=292.6).
APPENDIX A

ABBREVIATIONS

AA - Arachidonic acid
ADME – Absorption, Distribution, Metabolism, Elimination
ATR- Attenuated total reflectance
BBB – the Blood-brain barrier
Boc₂O- Di-tert-butyl carbonate
COX – Cyclooxygenase
CA – Cardiac arrest
CYPs – Cytochrome P-450s
CBF – Cerebral blood flow
DiHETs – Dihydroxy ecosatetraenoic acid
DCI – Diffused cerebral ischemia
DBDD – 12,12-dibromododec-11-enoic acid
DDMS - N-methylsulfonyl-12,12-dibromododec-11-enamide
DPMS - N-methylsulfonyl-15,15-dibromopentadec-14-enamide
DMSO- Dimethyl sulfoxide
DMF-Dimethylformamide
DCM- Dichloromethane
EET – Epoxyecosatetraenoic acid
EBI – Early brain injury
ESI-Electron spray ionisation
EtOAc- Ethyl acetate
Et₃N- triethylamine
HEDE - (6Z,15Z)-20-hydroxyicosa-6,15-dienoic acid
HBD – Hydrogen bond donors
HBA – Hydrogen bond acceptors
HCl- hydrochloric acid
HLM- Human liver microsomes
ICP – Intercranial pressure
IR- Infrared spectroscopy
LT – Leukotrienes
LOX – Lipoxygenases
MsCl- Mesyl chloride
MS- Mass spectroscopy
NRB - Number of rotatable bonds
NMR- Nuclear magnetic resonance spectroscopy
PdCl₂(dppe)- [1,1’-Bis(Diphenylphosphino)ferrocene]dichloropalladium(II)
PSA – Polar surface area
PTSA.H₂O-Para-toluene sulfonic acid monohydrate
PG – Prostaglandins
PKC – Protein kinase
PhSH- thiophenol
mCPBA- meta-chloroperbenzoic acid
RLM- Rat liver microsomes
RKM- Rat kidney microsomes
rCYP4F2- Recombinant CYP4F2
SAR- Structural activity relationship
SAH – Subarachnoid hemorrhage
sEH – Soluble epoxide hydrolase
TXA – Thromboxane
THF- Tetrahydrofuran
THP- Tetrahydropyran
WDI – World drug index
20-HETE – 20-hydroxyecosatetraenoic acid
1-ABT – 1-aminobenzoatraizole
17-ODYA - octadec-17-ynoic acid
10-SUYS - undec-10-yn-1-yl sulfate
APPENDIX B

EXPERIMENTAL SPECTRA
AUD-II-69 DMSO

Current Data Parameters
NAME: AUD-II-69 DMSO
EXPNO: 1
PROCNO: 1

P1 - Acquisition Parameters
Data: 200.0809
Time: 15.29
DETECTOR: spec
SPINDEC: 5 mm RABBO 88-
SOLVENT: DMSO
TD: 65536
T1: 1000
NS: 16
DS: 2
DM: 8223.485 Hz
EWM1: 0.127483 Hz
AQ: 3.984639 sec
AC: 350
DE: 60.800 usec
TE: 29.00
D1: 1.00000000 sec

--- CHANNELS 1I ---

P2 - Proxaxing parameters
S1: 65536
ZF: 400.130048 MHz
WIN: nn
LB: 0 Hz
CB: 0
PC: 1.00
BIBLIOGRAPHY

12. Fer, M.; Corcos, L.; Dreano, Y.; Plee-Gautier, E.; Salaun, J. P.; Berthou, F.; Amet, Y., Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism. Journal of lipid research 2008, 49 (11), 2379-89.

