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ABSTRACT

Open Learner Models are used in modern e-learning to show system users the con-
tent of their learner models. This approach is known to prompt reflection, facilitate
planning and navigation. Open Learner Models may show different levels of de-
tail of the underlying learner model, and may structure the information differently.
However, a trade-off exists between useful information and the complexity of the
information. This paper investigates whether offering richer information is assessed
positively by learners and results in more effective support for learning tasks. An
interview pre-study revealed which information within the complex learner model is
of interest. A controlled user study examined six alternative visualization prototypes
of varying complexity and resulted in the implementation of one of the designs. A
second controlled study involved students interacting with variations of the visual-
ization while searching for suitable learning material, and revealed the value of the
design alternative and its variations. The work contributes to developing complex
open learner models by stressing the need to balance complexity and support. It also
suggests that the expressiveness of open learner models can be improved with visual
elements that strategically summarize the complex information being displayed in
detail.
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1. Introduction

A learner model (LM) representing student knowledge or skills is an important part
of adaptive educational systems, which is typically kept hidden from the learner and
used for various personalization needs. A stream of research on open learner models
(OLM) argues that opening these models to the students through a special interface
could increase the value of learner models. It has been demonstrated that OLM could
improve system’s transparency, open a channel for student feedback about the model,
as well as to enable the student to better understand the state of their knowledge,
reason about their knowledge, and use this understanding to better plan his or her
learning (Bull & Kay, 2010). A question that has not yet been well-explored is how
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much information about one’s own knowledge the student should be exposed to, to
achieve these benefits. Student knowledge has been modelled using knowledge compo-
nents of different granularity levels from coarse grain course topics to fine-grain skills
and concepts (e.g. Brusilovsky & Milldn, 2007). Finer-grain models can clearly offer
students more information to support their understanding, reasoning, and planning,
but finer-grain visualizations are prone to produce information overload and might
overwhelm students. In cases where information overload is a concern, it is important
to consider how this might be usefully addressed. For example, how much information
is enough?

This paper presents our exploration of a finer-grain OLM for the domain of in-
troductory programming. This area provides natural support for multi-level domain
and learner modeling. On the one hand, programming knowledge for a language like
Java could be considered at the level of broad topics such as variables, conditions,
loops, etc. This is the way in which topics are presented in textbooks and courses
(with a chapter or a lecture usually devoted to one such topic). On the other hand,
knowledge analysis reveals many dozens of small domain concepts such as a specific
operators, data types, etc., for which students can have different levels of knowledge.
In our past work, we extensively explored personalization and OLM at the larger topic
level (Sosnovsky & Brusilovsky, 2015). We demonstrated that topic-level OLMs could
guide students to the most appropriate topics, improve learning outcomes, and in-
crease their engagement. However, we also observed several limitations of topic-level
modeling. For example, averaging knowledge over relatively large topics, topic-level
OLMs might hide treacherous knowledge “holes” — missing concepts within otherwise
reasonably learned topics. It also offers little support for guiding students to the most
appropriate learning content within a topic. Indeed, in a topic-level learner model, it
is not clear how the problems associated with a topic specifically contribute to the
estimated topic knowledge. In contrast, finer-level modeling permits the distinction
of problems that can help fill the knowledge “holes” (or gaps) from those that would
push the student to practice already well-learned concepts.

In this work, we augment a topic-level OLM with a more fine-grained concept-
level extension and evaluate whether the finer-grained model offers better support
for activities that rely on OLM, such as next problem selection. While traditional
Intelligent Tutoring Systems are designed to effect such personalization for learners
(see e.g. Woolf, 2009), an advantage of OLMs for this purpose is that they can
facilitate reflection and planning alongside navigation (Bull & Kay, 2016). We started
the design of this OLM representation by interviewing students (pre-study) who were
familiar with a topic-level OLM to corroborate our ideas of the potential value of the
fine-grained information. Then, we conducted a user study (Study 1) that engaged
students in comparing several designs of concept-level OLM in three contexts. The
visualization that was considered most favorably by students was then implemented
and evaluated in the second study (Study 2). This study focused on a context for which
an OLM could be especially useful: selecting appropriate problems to practice. To
understand whether our fine-grained model visualization offers too much or too little
information in this context, we contrasted three versions of the new design. The basic
version incorporates the topic-level and the concept-level representations of the LM.
Another version offered additional information by displaying aggregated information
of the class group at both (topic and concept) levels. The third version complements
the basic version, offering additional visual elements to support the interpretation of
the information already available. In this paper we present both studies and discuss
the results obtained. We believe that these results offer guidance for the future work



on fine-grained OLM.

2. Related Work

OLMs have been argued to support a variety of aspects of learning, including: promot-
ing metacognitive activities such as reflection, planning and monitoring; facilitating
interaction including navigation support and interaction with peers; and promoting
positive affective states (e.g. Bull & Kay, 2016, for an overview). Furthermore, stud-
ies of specific OLMs have revealed significant benefits to learning (e.g. Brusilovsky,
Somytirek, Guerra, Hosseini, & Zadorozhny, 2015; Kerly & Bull, 2008; Long & Aleven,
2013; Mitrovic & Martin, 2007; Shahrour & Bull, 2009). This has led to OLMs becom-
ing a focus of attention not only in the traditional intelligent tutoring context, but
also more broadly, such as with MOOCs (e.g. Cook, Kay, & Kummerfeld, 2015; Kay,
Reimann, Diebold, & Kummerfeld, 2013); E-portfolios (e.g. Gilliot, El Mawas, & Gar-
latti, 2016; Raybourn & Regan, 2011); and social media (e.g. Alotaibi & Bull, 2012;
Shi & Cristea, 2016). Thus, once identified, visualizations that are especially helpful
in supporting learning can be applied across a range of online learning settings.

As well as having been implemented for a variety of contexts as indicated above,
OLMs have been designed with different levels of interactivity and complexity (Bull
& Kay, 2010). In the context of this paper, the most relevant work is that on the pre-
sentation and understandability of OLM visualisations. It has been recognized that,
as a representation of a learner model (which is a complex system running in the
background), an OLM has to be designed to be understandable and interpretable in
order to provide pedagogical support (Bull, 2012; Law, Grundy, Cain, & Vasa, 2015).
The most common form of open learner model is a simple set of skillometers, where
(part-)filled bars indicate the extent of knowledge or understanding of each topic or
concept, etc. (e.g. Corbett & Bhatnagar, 1997; Long & Aleven, 2013; Mitrovic &
Martin, 2007; Weber & Brusilovsky, 2001). Such simple visualizations are easy to in-
terpret at a glance, allowing students to quickly compare their knowledge across a
curriculum, or to focus in on specific areas. However, where there are many topics or
concepts modelled, it can become necessary to scroll through the topics, making such
comparisons more difficult. More complex, structured visualizations often allow more
topics or concepts to be displayed in the same space, which can be helpful in large
domains with fine-grained learner models, and where there are many links between
different elements of the domain. However, the trade-off can be that the complexity
of the visualization makes it harder to identify specific strengths and weaknesses. Ex-
amples of more detailed, structured visualizations which use color or size of nodes
to represent concepts include concept maps (e.g. Pérez-Marin, Alfonseca, Rodriguez,
& Pascual-Neito, 2007), proficiency maps (e.g. Zapata-Rivera, Hansen, Shute, Under-
wood, & Bauer, 2007) and hierarchical trees (e.g. Kay, 1997). Zoomable treemaps (e.g.
Brusilovsky, Baishya, Hosseini, Guerra, & Liang, 2013; Kump, Seifert, Beham, Lind-
staedt, & Ley, 2012) can be considered intermediate to the above-mentioned simple
and structured visualisations, as they conserve space by allowing users to zoom in to
cells to view sub-topics, but comparing knowledge across the curriculum is more diffi-
cult. To illustrate, Figure 1 gives excerpts from: a simple skillometer-type visualization
(from Bull & Mabbott, 2006); similar simple bullets visualization (from Brusilovsky
& Yudelson, 2008); treemap (from Brusilovsky et al., 2013); and two structured views
showing concept nodes and links in a concept map (from Mabbott & Bull, 2006); and
a hierarchical network visualization (from Bull, Johnson, Masci, & Biel, 2016).
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Figure 1. Simple and structured OLM visualization examples

While some studies have found that simple indicators like skillometers are preferred
by students (Duan, Mitrovic, & Churcher, 2010), other studies support more complex
representations such as concept maps (Maries & Kumar, 2008), for example, as tools
to represent and refine assessment claims on learners knowledge (Zapata-Rivera et
al., 2007). Given the differences between relative benefits and limitations of the var-
ious visualizations, consideration needs to be given as to whether simple or complex
visualizations are more suitable for a specific case. For example, several factors may
contribute to the likely suitability of any given visualization: the target user group;
the specific learning context; the learning tasks; and the purpose of viewing the model
(Bull & Kay, 2016). Moreover, some researchers have offered multiple OLM views,
from simple to detailed to structured, giving options that satisfy different students’
preferences (Bull et al., 2010; Conejo, Trella, Cruces, & Garcia, 2011; Duan et al.,
2010; Mabbott & Bull, 2004).

Recent work has taken the issue of complexity and interpretability further by ex-
tending the OLM with more elaborate features such as indicators of effort, progress, or
working style (Papanikolaou, 2015). This type of work bridges the gap between OLM
and Learning Analytics dashboards (Verbert et al., 2013), in which the data shown to
learners include not only estimations of knowledge-related attributes, but also broader
learning traces and other information provided by teachers. Other research in OLM
has combined automated knowledge estimations and teacher input. For example in the
work of Bull and Mabbott (2006), teachers are allowed to define the level of knowledge
that is expected for various stages of a course, providing additional information about
progress beyond a comparison to the domain (or course content). Further research
has investigated allowing students to compare not to a teacher’s predefined level, but
to the knowledge or progress of other students by giving them access to the learner
models of each other (e.g. Brusilovsky et al., 2016; Bull & Britland, 2007; Bull, Mab-
bott, & Abu Issa, 2007; Hsiao, Bakalov, Brusilovsky, & Knig-Ries, 2013; Shi & Cristea,
2016; Upton & Kay, 2009), which offers a social dimension that can also encourage
collaboration and competition among students.

Our previous work on a questionnaire study of a wide variety of visualisations
from different systems found that students expected structured visualisations such as
visualizations of Prerequisites and of a Hierarchical Tree (from Mabbott & Bull, 2006)



to best support the task of identifying what to work on next, but claimed to prefer
simpler skill meters for comparing to peers (Bull, Brusilovsky, Araujo, & Guerra, 2016).
However, it was unclear why students might prefer these structured representations
over other structured views such as concept maps. Furthermore, experienced OLM
users have indicated a preference for having both simple and more complex OLM
visualisations available (Bull, 2012).

Given the potential for significant benefits to learning, explorations into providing
additional information around OLMs, and the potential wide applicability of OLMs in
newer educational technologies, it is an ideal time to further investigate the tradeoffs
between simplicity and complexity in OLM views. It is also useful in this context to
consider how to combine the benefits of each to build on the success of systems that
offer multiple views. In the next sections we use Mastery Grids to investigate these
issues.

3. Mastery Grids Framework

The starting point of our exploration of fine-grained OLMs is the Mastery Grids (MG)
interface, which combines OLM visualization, social comparison, and a personalized
interface for accessing learning content (Brusilovsky et al., 2016; Guerra, Hosseini,
Somyiirek, & Brusilovsky, 2016; Loboda, Guerra, Hosseini, & Brusilovsky, 2014). The
original MG interface uses a coarse-grained OLM that aggregates and visualizes the
learner’s knowledge about course topics (relatively coarse grained units of domain
knowledge). Figure 2 shows Mastery Grids with the social comparison feature acti-
vated. The first row of cells represents the learner’s knowledge for each course topic
using different intensities of green (darker green corresponding to more knowledge).
The third row represents the average topic-by-topic knowledge of the peer group (in
this case, the rest of the class) using different intensities of blue. The second row offers
an easy comparison using a differential color: it becomes green when the learner is
ahead, or blue if the class is ahead. By clicking in a topic cell, the content activities
within the topic are displayed forming several additional rows of cells. Each cell on
this second level is linked to a specific learning activity and the intensity of cell color
represents student progress for this activity. This design turns a OLM into an interac-
tive navigational tool with adaptive navigation support that guides students to most
appropriate learning content. MG is a domain-independent framework and so far, we
have developed MG-based courses for Java, Python, and SQL programming. These
courses were used as research platforms to evaluate the effects of the MG-based OLM
with and without social comparison on learning and engagement (Brusilovsky et al.,
2016; Guerra et al., 2016).

In the context of this paper, it is important that the MG interface is built on top
of a learner modeling and personalization framework that includes a two-level do-
main model and a content model. These models comprise an informational structure
relating coarse-grained knowledge elements (topics), fine-grained knowledge elements
(concepts), and items of learning content (learning activities). The domain model de-
fines the structure of domain knowledge connecting concepts and topics in a hierarchy.
The content model defines how activities are connected to the domain knowledge (i.e.,
which topic the item belongs to and which concepts it allows the students to prac-
tice). Since this framework is used to implement the finer-grained OLM on top of the
topic-level MG, we introduce the most essential components of this framework below.
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Figure 2. Mastery Grids interface for Java programming

The Fine-Grained Domain Model is composed of a set of Knowledge Components
(KCs) that represent elementary units of knowledge such as skills or concepts.
For the Java domain, we use 114 KCs from an ontology developed by our group.
Examples of KCs are int data type, addition, variable initialization, String con-
catenation, for loop, constructor, and inherited method.

The Coarse-Grained Domain Model is composed of a list of topics that represent
relatively large fragments of domain knowledge. While the KC-level model is
defined by the structure of the domain, the list of topics reflects a pedagogical
approach to teaching the domain. Our infrastructure allows different instructors
to introduce their preferred sequence of topics for the domain. Structurally, each
topic could be mapped into a subset of KCs. Taken together, topic and KCs
define a two-level hierarchical domain model.

Activities-KC mapping is used to connect learning activities (examples, prob-
lems, animations) to a set of KCs to allow them to be practiced in the activities.
This mapping can be established manually or automatically. For the Java do-
main, this mapping is done automatically by the content parser presented in
(Hosseini & Brusilovsky, 2013), with optional expert refinement (see Huang,
Guerra-Hollstein, & Brusilovsky, 2016). In this domain, content activities have
between 2 and 70 associated KCs.

Activity-Topic mapping associates each course activity with one of the course
topics. This mapping, which essentially defines the structure of a course, is usu-
ally done manually by course instructors who adopt a specific sequence of topics.
In the Java domain, the structure of activities was assembled with the help of
instructors of programming courses. The organization of the course influences
the decomposition of topics into KCs: an activity only contains KCs of the topic
in which it belongs or from topics covered previously.

The Learner Model represents an estimation of learner knowledge for each com-
ponent of the domain model. The sources for this knowledge estimation are
activity traces produced by the learner’s work with different learning activities.
The Learner Model uses these activity traces and the mapping between activ-
ities and domain model components (topics or KCs) to update the learner’s
knowledge level for each topic or concept related to the activity performed. For
example, when the learner solves a problem that contains the KC for-loop, the
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LM will consider this as evidence of knowing the KC and will update its esti-
mation. Details of the current Learner Model implementation can be found in
(Huang, Guerra, & Brusilovsky, 2016; Huang, Guerra-Hollstein, & Brusilovsky,
2016).

Figure 3 shows a fragment of the Domain and Content models with some relations
between topics, activities and concepts. Each topic is associated to a set of concepts.
Activities (content) in the bottom of the figure have many concepts associated which
could belong to different topics. The current state of the individual Learner Model is
represented by the color of the concept nodes using a gray scale (the darker, the higher
the knowledge estimated in the KC).

4. Study 1: Informing the Fine-Grained OLM Design Process

4.1. Design Considerations

We stated that a coarse-grained topic-level OLM provides limited support for impor-
tant tasks such as the ability to recognize knowledge gaps and next problem selection.
To address this problem, we designed and implemented a fine-grained OLM visualiza-
tion that fully reflects the information maintained by the Learner Model in our infras-
tructure described in the previous section. The additional support that fine-grained
features could offer to the learner has roots in the information science foundations
and information visualization field. Detailed information can allow students to make
decisions on what content to target by providing traces allowing information foraging
(Pirolli & Card, 1999). Also, detailed representation could help to make sense of the
learner model being shown by means of the external anchoring that a detailed LM
represents if visualized (Liu & Stasko, 2010).

We started with the idea of adding a fine-grained representation complementing the
current coarse-grained visualization, instead of modifying the latter representation.
This decision was motivated by two reasons. First, we are looking to provide extra
support for students and at the same time, not lose the benefits we have observed



regarding the coarse-grained visualization. Second, having both representations is an
approach to deal with the information overload based in Shneiderman’s well-known
information seeking mantra: overview first, zoom and filter, then details-on-demand
(Shneiderman, 1996). In the contents of Mastery Grids OLM, the coarse-grained topic
based visualization accounts for the overview, and the detailed or fine-grained LM
accounts for the details on demand.

We name the resulting visualization of our work as “Rich” OLM, or simply R-OLM,
to stress the idea of enriching the original topic-based OLM (Mastery Grids) with the
linked fine-grain OLM features.

4.2. A Pre-Study Interview: Collecting Critical Issues for the Design

Before designing a visualization of the fine-grained OLM, we considered the ways in
which more detailed information could be helpful to students, and, in particular, how
detailed information could support the different ways in which students use the system.
We expected that students use the system with different goals, but we did not have a
precise understanding of these goals.

To better understand these issues, we performed semi-structured interviews with 9
undergraduate and graduate students of the University of Pittsburgh who were familiar
with the topic-level Mastery Grids. Subjects received a compensation of US$20. The
interview was structured in two parts. The first part focused on prior experiences with
Mastery Grids: amount of use, understanding of what it shows, and goals when using
it. The second part focused on the potential value of the more detailed information.

The questions asked in the first part included: What do you think is or are the goals
of this system?, How do you think this system helps students?, What do you think is
the ideal way to use it? There were also some interview questions about the social
features in the system: What did you make of the progress of others in the system?,
Did you considered the progress of others while using MG?, Did you feel you were
lagging behind or getting ahead? The first part of the interview finished by considering
a scenario in which the subject had to prepare for a quiz, and questions targeted the
perception of helpfulness of Mastery Grids for this goal.

From this first part of the interview, several important insights emerged:

e The general perception of the system was positive, some subjects even reported
that it had a clearer content structure than did the book.

e Students used the system differently. Some liked to go sequentially and do all
content activities, whereas others just wanted to verify if they know all that is
relevant in the topic and were not interested in completing everything. Some
subjects mentioned they would have liked a “super” quiz that covered all the
contents of the topic.

e Student opinion about social comparison features was generally positive (“en-
courages the competitive spirit”, “useful to quantify / want to catch up”), or
indifferent (“I don’t care”), and only one subject reported that it could be dis-
couraging if you are lagging behind. One subject gave a different interpretation
of the progress of others: “I think [darker cells on the others’ row| means that
people are struggling with it”.

In the second part of the interview, the subjects were introduced to the concept
space. The relations topic-KC and activity-KC were explained and illustrated with
examples. Then questions were asked about the perceived helpfulness and use of these



details, such as Do you think the information of others will be helpful for you? How?,
Do you think this information will be helpful for others? How? Attention was directed
to each of the associated pieces of information: the concepts in each topic, the relations
of concepts and activities, the level of knowledge and progress the learner will see in
each concept, and the possibility of seeing this fine grained information for the rest
of the class. Subjects were told that the Learner Model could estimate the level of
learner knowledge in each concept (KC), but also the amount of work (i.e., number of
completed activities) associated with each concept.

From this second part of the interview, several additional important insights
emerged:

e Fine-grained information about students and peers’ progress was perceived to
be valuable, although with some ambiguity regarding which particular infor-
mation was of interest. For example, students did not make clear distinctions
between progress as completion of the content, effort, or progress as the amount
of knowledge gained.

e Some students expressed no interest in fine-grain social comparison.

e Although perceived as useful, a clear concern about complexity was expressed. As
more information was added, the OLM became more complicated to understand
and interpret.

e The students suggested that topic visualization should be maintained because
it provides context. It was easier for students to navigate the content via or-
dered topics. They recommended that the fine-grained view be linked to and
complement the coarse-grained view.

o It was suggested that link between topics and concepts should be shown because
it is useful to know “what is inside” the topic.

e The interview pointed to the need to limit the information provided for each
concept (e.g., either knowledge progress or content completion but not both).

These insights from the interviews guided the development of the fine-grained visu-
alization. They provided a first level of understanding of the potential value of showing
this information and some directions of what information to show. However, the in-
terviews did not say much about how to visualize the information. We follow up on
this issue in the next section.

4.3. The Study Organization: Comparing Design Options for a
Fine-Grained OLM

Study 1 was a controlled user study to learn how to effectively visualize the knowledge-
component (KC) space and how much information to include. We designed five differ-
ent visualizations with different levels of information about the concept space and its
relationships. All visualizations include the topic level visualization (Mastery Grids).
We excluded the social comparison features in this first study in order to focus on
complexity issues within the fine-grained level. These designs, together with a control
version (Mastery Grids alone), are presented in Figure 4. Visualization options varied
in terms of the amount of information displayed (show KCs only within the topic vs.
all KCs at the same time; show connections between KCs), and the visual element used
for representing each KC (bars or circles). Knowledge in each KC is represented with
shades of green as in Mastery Grids, and in the case of using bars to represent KCs, we
represent such information with both color and size. Uniformly including color avoided
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Figure 4. The 6 visualizations prototyped for Study 1.

possible biases caused by the use or non-use of color. The particular visualisations were
inspired by a wide range of common visual representations previously used in OLM
such as skillometers (e.g. Bull & Mabbott, 2006; Corbett & Bhatnagar, 1997; Long
& Aleven, 2013; Mitrovic & Martin, 2007; Weber & Brusilovsky, 2001), bar charts or
histograms (e.g. Mazzola & Mazza, 2010; Shi & Cristea, 2016), and concept maps (e.g.
Duan et al., 2010; Mabbott & Bull, 2006; Pérez-Marin et al., 2007). Prototypes were
created based on initial thoughts about manageable complexity (e.g., limiting amount
of depth shown in the concept maps). The prototypes were presented to subjects as
paper mock-ups along with verbal descriptions of their interactivity features (e.g. how
a visualization would react when a concept was mouseovered).

Skillometer-Bars: Shows the list of KCs in the currently pointed-to topic. Each
KC is represented with its name and a bar indicating the estimated knowledge.
Skillometer-Circles: Similar to Skillometer-Bars, but with KCs represented by
colored circles.

Whole-Bars: Shows all KCs in the course (114) with a bar chart that parallels
the coarse-grained visualization. When topics are pointed to, related KCs are
highlighted.

Whole-Circles: KCs are positioned under the topic to which they belong and
represented with colored circles. When a concept is pointed to, the name is
shown and the connections to other concepts are also shown with the names of
the related concepts. These connections are Skill-Combinations (Huang, Guerra-
Hollstein, & Brusilovsky, 2016) and represent pairs of concepts that should be
practised together.

Concept-Clircle: Another view of the whole space with KC names and connections
shown all at the same time. KCs are represented with small colored circles.
Pointing to a KC will highlight its connected KCs. Pointing to a topic will
highlight the group of related concepts in the circle.

Expanding a visualization in this way allows the additional information to be seen
as with a zoomable treemap (e.g. Brusilovsky et al., 2013; Bull, Johnson, et al., 2016;
Kump et al., 2012), but without losing the overall context while drilling down; and
maintains the benefits of allowing students to expand and collapse nodes as with some
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structured OLM visualisations such as hierarchical trees (e.g. Kay, 1997) or network
visualisations (e.g. Bull, Johnson, et al., 2016).

Forty two subjects completed the study. The subjects were graduate (MS) Informa-
tion Science students and undergraduate Computer Science students at the University
of Pittsburgh. All subjects had taken a course in which Mastery Grids was used as a
practice support system, and thus all of them were generally familiar with the Mastery
Grids functionalities. Each subject received US $20 for participation.

Subjects were given a presentation describing the Learner Model, including all the
information described above, and a description of the visualizations shown in Figure
4. We provided several mock-ups for each visualization to illustrate interactivity. Clar-
ifications were given as requested to ensure that the features of the more complex
representations were understood.

Then subjects received a survey with three parts, each focusing on a different sce-
nario in order to provide a broad subjective evaluation. Part 1 involved a general
scenario with no specific directions about the context of using the system. In this sce-
nario, the instructions stated were “For each of the visualizations indicate to which
extent you agree with the following statements”. Part 2 involved the scenario of prepar-
ing for a quiz on a specific topic. In this scenario, the instructions were complemented
with “SCENARIO: You are preparing for a quiz next class about the last lecture topic:
‘Strings’”. Part 3 presented the scenario of a midterm exam covering a number of
topics and included the instruction “SCENARIO: You are preparing for the Midterm
which covers all topics until ‘Loops For’”. In each part, questions were phrased to
match the specific scenario. For example, in the case of part 2, questions explicitly ask
the subject to consider the support provided by each visualization to prepare for the
specific topic of the quiz.

The survey questions covered different functions (the examples in parenthesis are
the questions as phrased for Part 1): performance evaluation (“The visualization helps
me to check whether I am doing well enough in the course”), knowledge evaluation
(“The visualization makes me think about my knowledge in the course”), strengths and
weaknesses identification (two questions: “The visualization helps me to identify the
strengths (weaknesses) in my knowledge of the course contents” ), motivation to explore
(“The visualization motivates me to look for further material to learn more about the
course contents” ), ease of understanding (“The visualization is easy to understand”),
and topic awareness (“The visualization helps me to have a better idea of the content
involved in each of the topics of the course’). Each part of the survey was presented as
a matrix, with the rows containing the questions and the columns containing the six
visualizations to facilitate comparative answers. In Parts 2 and 3, where the overall
stated goal is to prepare for a quiz or midterm exam, we included two additional items:
plan next (“The visualization helps me to plan what to do next in order to prepare
for the quiz”), and quantify work (“The visualization helps me to quantify how much
work I should do to prepare for the quiz”).

At the end of the session, subjects were asked to indicate which visualization was
best and which was worst, and to provide an explanation for each choice.

4.4. Study 1 Results

The results of the questionnaire applied are displayed in Table 1, which shows
that Whole-Bars were generally the most preferred across dimensions. We applied
a Repeated-measures Anova on the average of the answers per visualization across
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Table 1. Results of Study 1 showing mean score of the questionnaire answers and standard error of the mean
(in parenthesis). First row averages across questions in all scenarios. Rows 2-4 average across questions in each
scenario. Higher values in each row are highlighted.

MG Skillome-  Skillome- Whole Whole Concept

ter Bars ter Circles Bars Circles Circle
Overall 3.06 (.12) 3.99 (.09) 3.58 (0.1) 4.27 (.07) 3.95 (.08) 3.93 (.11)
Part 1 3.34 (.12) 4.03 (.07) 3.58 (0.1) 4.26 (.08) 3.84 (.08) 3.78 (.11)
Part 2 2.71 (.13) 3.98 (.10) 3.56 (.10) 4.25 (.08) 3.93 (.09) 3.92 (.13)
Part 3 3.09 (.14) 3.96 (.10) 3.60 (.11) 4.31 (.08) 4.11 (.10) 4.13 (.11)
Performance  3.49 (.14) 4.26 (.10) 3.73 (.13) 4.39 (.08) 3.95 (.11) 3.85 (.14)
Knowledge 3.41 (.14) 4.27 (.09) 3.88 (.11) 4.40 (.09) 4.03 (.12) 4.01 (.13)
Motivation 2.97 (.15) 3.81 (.13) 3.38 (.11) 4.07 (.10) 3.91 (.10) 3.90 (.15)
Strenghts 3.41 (.15) 4.32 (.09) 3.85 (.11) 4.46 (.07) 3.99 (.09) 3.91 (.13)
Weaknesses 3.37 (.13) 4.31 (.08) 3.88 (.11) 4.44 (.08) 4.03 (.09) 3.96 (.12)
Topic aware.  2.48 (.16) 3.99 (.12) 3.76 (.13) 4.37 (.09) 4.08 (.11) 4.26 (.11)
Concept rels.  1.87 (.13) 2.44 (.13) 2.42 (.13) 3.74 (.14) 4.08 (.13) 4.43 (.12)
Easy to use 4.03 (.17) 4.40 (.08) 3.85 (.13) 4.24 (.10) 3.58 (.10) 3.46 (.13)
Plan next 2.85 (.15) 4.07 (.12) 3.56 (.13) 4.28 (.09) 4.00 (.12) 3.83 (.14)
Quantify work 2.60 (.20) 3.80 (.10) 3.30 (.10) 4.20 (.10) 3.80 (.10) 3.80 (.10)
L T == T T

O Rr N W B~

MG Skillometer Skillometer Whole Whole  Concept
Bars Circles Bars Circles Circle

Figure 5. Overall perception of usefulness of the different visualization prototypes to “plan what to do next”.
Error bars represent 2 Standard Errors of the mean.

scenarios. Results of this analysis indicate that participants significantly preferred all
options over the simple coarse-grained option (MG), F'(5,190) = 27.220, p < .001,
partial n? = .417. Simple comparisons between pairs of the 5 options including fine-
grained visualization showed that Skillometer Bars are preferred over Skillometer Cir-
cles t = 5.951, p < .001, but not over the other options; that Whole-Bars is preferred
over Skillometer Bars t = 3.207, p = .003, over Whole Circles t = 3.633, p = .001, and
over Concept Circle t = 3.825, p < .001. No significant difference was found between
Concept Circle and Whole Circles. These results confirm Whole-Bars as the overall
most preferred.

Analyses on specific questions of the survey showed the overall same trend headed
by Whole-Bars. As an example of this, Figure 5 shows the mean evaluation of helping
to plan what to do next (plan next) across the two detailed scenarios (part 2 and part
3). The only different pattern of responses was observed for the question about ease of
use, where the control version has a high preference over Concept Circle, Whole Clircles
and Skillometer Circles, but it was lower (although not significantly) than Skillometer
Bars and Whole-Bars.

A follow-up analysis performed separately for each scenarios showed lower scores in
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Table 2. From Study 1, the number of times each visualization was chosen as best or worst. Note that some
subjects selected more than one visualization as best or worst.

Skillometer Skillometer Whole Whole Concept

MG Bars Circles Bars  Circles Circle
Best 0 8 0 14 9 14
Worst 16 1 10 1 10 13

the quiz scenario, especially for the aspects of identifying strengths and weaknesses,
knowledge reflection, motivation to explore, and topic awareness, which suggest that
there was room to improve the designs to better support quiz preparation.

As shown in Table 2, the overall preferences for the best visualization identified
two complex representations Whole-Bars and Concept-Circle as best. However, one
of the two leaders, the Concept-Circle was also frequently rated as the worst because
of “overwhelming” complexity. This aligns with previous research on structured visu-
alisations, where the same visualization could be rated as the most or least liked by
different students (Mabbott & Bull, 2004).

From Study 1, we learned that students prefer bars to circles for representing their
knowledge of concepts, perhaps because bars are easier to understand. These findings
are consistent with preferences for skillometers over other options found in previous
research (Duan et al., 2010; Mabbott & Bull, 2006), but also suggest that the preference
might be due to the visual element used (the bar) and not necessarily the level of
complexity offered (e.g., there was no difference between Whole-Bars and Skillometer-
Bars).

Visualizations with connections, which were evaluated as more complex, were not
judged as more helpful in any of the aspects. However, preferences for Concept-Clircle
were extremely divided (best and worst). Multiple preferences in respect to visualiza-
tion have been recognized in the literature and were usually addressed by presenting
alternative visualizations (Bull, Johnson, et al., 2016; Conejo et al., 2011; Duan et al.,
2010; Mabbott & Bull, 2004).

As suggested with reference to different learning goals (e.g. Bull et al., 2016), we
also learned from this study that visualizations might bring different levels of support
depending on the scenario. These scenarios involved different goals students have while
using the system. Interestingly, the current alternatives did not seem to support the
quiz scenario well, and other features might be needed to improve this (in the next
section we introduce a new visualization element Learning Gauge designed to pro-
vide that additional support. The observed differences between scenarios also suggest
that it is important to specify well-defined tasks to evaluate design alternatives when
considering specific contexts. Although evaluation for Whole-Bars and Skillometer-
Bars are similar in the questionnaire, subjects stated that for tasks like preparing for
a midterm, they would prefer to use a visualization that showed the whole concept
space. This was a strong reason to select a visualization that includes both global and
local context. Therefore, we concluded that the sweet spot in providing useful informa-
tion across scenarios with manageable complexity was the Whole-Bars visualization.
However, we acknowledge that there could be value in further exploring Concept-Clircle
as an alternative visualization.
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Figure 6. R-OLM interface. The top part of the figure shows the topic-based (coarse-grained) OLM, and the
bottom part shows a long bar-chart representing the concept space (fine-grained) OLM.
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Figure 7. R-OLM interface. When a topic is mouseovered, the concepts related are highlighted and connected
to pointed topic.

5. The R-OLM

Following the results of Study 1, we implemented R-OLM based on the Whole-Bars
prototype for further evaluation. Figure 6 shows the final implementation of R-OLM
filled with data from a course of Java programming. R-OLM shows a student’s cur-
rent knowledge on two levels — topics and concepts. The connections between topic,
concepts, and learning activities could be explored by interacting with the visualiza-
tion. When a topic is moused over, related concepts are highlighted and the rest are
shaded, as shown in Figure 7. Figure 8 shows the view inside a topic (the learner clicks
a topic): the activities associated with the topic are shown and the concepts related
to this topic are highlighted, with their names at the bottom of each bar. Also shown
in Figure 8, when the learner mouse overs a cell corresponding to an activity inside
a topic, its related concepts are highlighted in the bar-chart allowing the student to
easily identify which conceptual elements are associated with each content item.

In addition to this form of R-OLM, which is based on the results of the study 1
and indicated in our further studies as KC, we implemented two design alternatives.
One design alternative extended the social comparison to the level of concepts. This
design, indicated in our further studies as KCS, was based on the results of the pre-
study interview, where students assessed social comparison as valuable. In the KCS
version, social comparison features have been added to both topics and concepts, the
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Figure 8. Activity selection support in R-OLM interface. When the learner points to (mouseovers) an activity
cell the concepts related to the pointed activity are highlighted. This interface appears after entering a topic
(in this case, the topic Strings.)

latter are represented in the form of blue bars opposite the green bars of the learner’s
knowledge progress (Figure 9).

The second design alternative attempted to address the complexity concerns ex-
pressed by subjects in Study 1 and previous interviews. Instead of adding new infor-
mation to our already complex base design KC, we added a visual support tool to
help learners in interpreting the fine-grained information displayed in the KC design.
Our main main goal was to support learners in selecting the most appropriate activ-
ity to practice. The relationship between concepts and activities visualized when a
potential activity is moused over (Figure 8) does provide all necessary information —
seeing which concepts this activity allows the student to practice along with the cur-
rent knowledge level of these concepts aims to help the student to estimate how hard
this activity might be and how much could be learned from it. However, this infor-
mation might be hard to digest. To shortcut this digestion process, we calculated and
visualized a learning opportunity for each learning activity given the current state of
student knowledge by counting the number of related concepts (KCs) that are already
known, familiar (or partially known) and not known (or new) to the learner based on
predefined thresholds (Equation 1).

0.5 kcsfamil'iar + kcspew
kcsknown + kcsfamiliar + kcspew

learning — opportunity =

(1)

To visualize this learning opportunity score, we designed an interface feature in the
form of a gauge (we called this the learning gauge). We chose this type of represen-
tation because of its ability to represent single values and at the same time to set
meaningful boundaries that can be easy to understand and interpret. Gauges have
been repeatedly used in critical interfaces such as cars and cockpit panels because of
their ability to deliver a straightforward message (Hutchins, 1995), and have also been
used successfully in learning analytics visualizations (de la Fuente Valentin & Solans,
2014; Falakmasir, Hsiao, Mazzola, Grant, & Brusilovsky, 2012; Fulantelli, Taibi, &
Arrigo, 2013; Khan & Pardo, 2016).
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Figure 9. Activity selection support in R-OLM interface with the social comparison features enabled. Note
that social comparison is enabled for both the topic-based and the concept-based visualizations.
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Figure 10. Activity selection support in R-OLM interface with the learning gauge. The gauge shows the
potential learning to be achieved if the pointed content activity is attempted.
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Figure 11. Details of the Gauge visual aid.

As said before, the learning gauge does not add extra information, as the social
comparison feature does, but instead presents an interpretive view of the information
already shown in the visualization. Figure 10 shows the design alternative KCG with
the learning gauge added to the base design KC. As mentioned before, this gauge aims
to guide students to choose learning content to maximize learning, either by alerting
the student about content that does not provide new knowledge, or alerting the student
of content that might be too difficult (too many new concepts). The learning gauge is
only shown when the learner has entered a topic, and the needle is positioned when
the learner mouses over an activity cell.

The three design alternatives of R-OLM were built using the javascript library d3
(www.d3js.org) on top of the original Mastery Grids interface. The presence of these
three design alternatives allows us to run a controlled study that attempted not just to
“prove” the value of R-OLM, but to determine the proper balance between complexity
and support. This will allow us to later consider appropriate additional visualizations
in line with recommendations about benefits of providing multiple visualizations (e.g.
Bull, Johnson, et al., 2016; Mabbott & Bull, 2004). For our evaluation we selected one
of the key tasks for which R-OLM was designed - helping students in selecting the best
activity to practice within the selected topic. This study is described in the following
section.

6. Study 2: Evaluating R-OLM

6.1. Study Design

To evaluate R-OLM, we designed a controlled user study contrasting three design al-
ternatives presented above (KC, KCS, and KCG). Because learners use the system
with different purposes, and these different purposes would likely influence the eval-
uation of the visual features, we set a specific goal for subjects to achieve through a
defined task oriented to learning: find content that is most likely to increase mastery
in a specific topic. However, other reasonable goals, such as free exploration of the
content, self-assessment, or comparison, might have changed the evaluation results; a
point we take up in the general discussion.

All three alternatives of the interface include both the coarse grained (topic-based)
and the fine-grained (concept-based) visualization. The KC alternative (Figure 8) in-
cluded these mentioned features and removes the social comparison and the gauge
features. The KCG alternative (KC + Gauge) shown in Figure 10 added only the
learning gauge. The gauge appeared alongside the activity list within a topic. The
KCS alternative (KC + Social Comparison) shown in Figure 9, extended the KC de-
sign with oth topic-level a and concept-level social comparison features, but did not
include the learning gauge. As noted earlier, the logic behind contrasting these three
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interface variations was to examine the extent to which each interface feature (social
comparison or learning gauge) impacted use of system that included fine- and coarse-
grained representations. The literature and our previous studies (pre-study, and study
1) confirmed the value of the fine-grained representation. Study 2 aimed to further
advance understanding of complex OLM interfaces.

We used a version of the Java course with 12 topics (Variables and Types, Arith-
metic Operations, Strings, Decisions, etc). Each topic had between 13 and 29 content
activities of different types (see Section 3). The presence of multiple topics enabled
a within-subject design with subjects performing the same overall task for different
topics but using different visualizations across topics. A simple interface was created
to allow subjects to complete the steps of the study at their own pace.

The study was conducted with 29 subjects. All of them were master students of
the Information Science School and had some background knowledge in programming.
All subjects were familiar with the Mastery Grids interface because they had used
this system before in a course taken in previous terms. The subjects represented stu-
dents with some background in programming that are mostly refreshing programming
knowledge now partially forgotten. Subjects were compensated with US$ 20 for their
participation in the study.

The study was conducted in six sessions (there were six sessions, with each sub-
ject attending only one session), but with subjects individually following computer-
provided instructions. Before starting the tasks, subjects completed a pretest consisting
of 24 problems covering 12 topics (2 problems per topic). The pretest goals were to:
(a) score the prior knowledge of the subjects, and (b) initialize the Learner Model.
After the pretest, subjects viewed a short video explaining the core KC visualization
and its features.

The overall process consisted in three blocks of 4 tasks each, and each block fo-
cused in one of the three interface options. The order of visualizations (the blocks)
was counter-balanced across subjects using a Latin-Square design. Then, each subject
completed tasks in each of the visualization options, and different subjects faced the
visualizations in different orders. In each block of tasks, we first introduce the visual-
ization with a short tutorial explaining its features, a training step in which subjects
could try the visualization, and a short test to corroborate that subjects understood
the visualization features. If a subject failed this test, they were asked to call the study
coordinator for clarifications.

Each task involved one specific topic which was marked in the interface as a target
topic. The instructions were: “Focus on the topic marked with the orange dot. Select
the best activity (to mazimize your mastery of the target topic) by right-clicking in
its cell. Just pick the activity, avoid solving quizzes or going through examples.” Each
topic was seen only once (12 topics = 1 topic per task x 4 tasks per visualization x
3 visualizations) and topics were assigned randomly to avoid confounding effects of
topic.

After every second task, the subjects were asked to fill out a task survey. This
survey targeted the perceived usefulness of the visualization, broken down into different
aspects such as the ability of the interface to lead the learner to useful content, or
avoid content that was too advanced or too simple. Table 3 presents the survey items.
Answer options were on a 7-point Likert scale (1:Strongly disagree - 7:Strongly agree),
and some items were reversed (R) coded. Additionally, because interface complexity
is a particular concern within R-OLM, we included four workload-related questions
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from the NASA-TLX! survey (see the last 4 items in Table 3). These questions were
presented with sliders running from 0 to 1. To facilitate presentation of results per
survey item, the Table presents question identifiers in the first column.

Finally, after the series of 12 tasks were completed, subjects were asked to fill out
a final survey in which they were asked to (1) rank the three interfaces according to
their own preference and explain their ranking, and (2) rate the ease of understanding
and ease of use of each visualization using a 7-point Likert scale (1:Extremely easy -
7: Extremely difficult).

Subjects spent roughly between half an hour and an hour and a half completing
Study 2 (median = 40 minutes, mean = 50 minutes). Subjects occasionally did not
explicitly select an activity at the end of a task: one subject missed the activity se-
lection in all 12 tasks, two missed this in 10 tasks, four missed it in two tasks, and
one subject missed it in 1 task. Analyses focusing on selected activities do not include
these missing cases.

As expected,given their previous participation in programming courses, subjects
had a relatively high pre-test scores (Median = .79). We further classified subjects
into lower or higher pretest groups using a median split for maximal statistical power.

6.2. Survey Results: Perceived Differences among Visualizations

As shown in Table 3, the KCG was generally perceived as better: more useful, and
lower mental demand, higher performance, lower effort, and lower frustration. How-
ever, statistical significance should not be assessed at the individual item level for lack
of conceptual and statistical precision. Instead, we performed a Factor Analysis using
Varimax rotation to create coherent clusters of survey items that also provided greater
measurement precision. Three factors were discovered, but sometimes had items that
were not a close conceptual match. The misfitting items were removed (confidence,
thinkKnowledge), and mean scores were calculated for each factor. The first factor,
called USEFUL, included usefulChoose, findLearn, and avoidFEasier. The second fac-
tor, CRITICAL, included criticalEfficacy and criticalEfficiency. We note that from a
conceptual perceptive, the efficiency (as task completed by unit of time) is not nec-
essarily always a positive outcome, because spending more time in choosing activities
may be the result of positive metacognitive processes, such as self-reflection. The third
factor, UNHELPFUL, included the two negative items, ledLessUseful and notHelpful.

Means and standard deviations for each factor are reported in Table 4. Repeated
measures ANOVA by condition was performed on these scores, with Pretest-group
(high, low) as a between-subjects factor. Sphericity was violated for the USEFUL
factor, and so the Greenhouse-Geiser correction was applied.

A significant effect of treatment was found for the score USEFUL, F(1.4,37.7) =
3.961, p = .041, partial n? = .128. Simple contrasts (comparing K CG against KC and
KCS) showed a marginally significant difference between KCG and KCS, F(1,27) =
4.134, p = .052, partial n?> = .133, indicating Gauge was viewed as more useful.
The lack of significance prevents us from making strong claims. Nevertheless, we note
that the positive perception of the KCG condition is consistent across the dependent
variables.

No significant difference was found for the other two variables CRITICAL and
UNHELPFUL. Also, no significant effect of pretest group, nor interaction between
pretest group and treatment were found.

INASA Task Load Index: https://humansystems.arc.nasa.gov/groups/tlx/
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Table 3. Questions on the surveys (usefulness and self-reflection task survey, and TLX survey) and mean of
answers in each condition. Values for TLX survey contains 2 decimals because the scale is from 0 to 1.

Means
Item Statement /Question KC KCG KCS
confidence I am confident that I selected a good 6.0 6.1 5.9
activity for the tasks
usefulChoose The visualization was useful to decide 5.9 6.0 5.6
which activity to choose
ledLessUseful (R) The visualization at times led me to 3.7 33 3.6
less useful activities
findLearn The visualization helped me to find 6.3 6.3 5.8
activities where I think I can learn
something new
thinkKnowledge  The visualization made me think about 6.1 6.2 6.1
my own knowledge in programming
concepts
notHelpful (R) The visualization did not help me much 3.1 2.7 2.9

while searching a good activity for the
target topic

avoidEasier The visualization helped me to avoid 5.7 5.7 5.5
choosing activities which I think are too
easy for me

avoidHarder The visualization helped me to avoid 4.9 4.9 4.7
choosing activities which I think are too
hard for me

criticalEfficacy Without the visualization I will probably 5.0 5.3 5.2
fail to select a good activity for the target
topic

criticalEfficiency =~ Without the visualization I will probably 5.6 5.9 5.7

spend more time selecting an activity for
the target topic

TLX1 Mental Demand: How mentally 0.30 0.26 0.29
demanding was the task?
(very low - very high)

TLX4 Performance: How successful were you in 0.22 0.17 0.20
accomplishing what you were asked to do?
(scale is reversed: perfect - failure)

TLX5 Effort: How hard did you have to work to 0.27 0.24 0.30
accomplish your level of performance?
(very low - very high)

TLX6 Frustration: How insecure, discouraged, 0.16 0.13 0.16
irritated, stressed, and annoyed were you?
(very low - very high)

Table 4. Mean (and SD) for each condition on the three factors derived from the task survey.

KC KCG KCS
Mean SD Mean SD Mean SD
USEFUL 595 0.74 6.01 0.75 560 1.01
CRITICAL 530 1.16 557 1.08 544 1.02

HELPLESS (R) 338 143 3.03 141 328 1.23
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Table 5. Mean (and SD) workload across TLX survey survey responses within each condition; lower values
are desired.

KC KCG KCS

Mean SD Mean SD Mean SD
workload 0.24 0.21 0.20 0.16 0.24 0.18

0.40 pretest

' group
M ower
M higher

workload

KCG KCS
Error Bars: +/- 2 SE

Figure 12. Interaction between condition and pretest group for workload (combined TLX items).

Similar analyses were run for TLX items regarding mental demand, performance,
effort and frustration. A factor analysis suggested there was only one factor, and thus
we averaged across the four items to produce the variable workload (see Table 5).

Then we performed a repeated measures ANOVA on workload as a function of con-
dition with pretest group added as a between subjects factor. Neither the main effect of
condition nor main effect of pretest groups were significant. However, a significant in-
teraction between condition and pretest groups was found F(2,54) = 3.412, p = .040,
partial n? = .112, showing a lower level of workload in the KCG condition for subjects
with lower pretest (see Figure 12). Pairwise comparisons using a Bonferroni correction
showed a significant difference between treatments KCG and KC (p = .033), and a
marginally significant difference between KCG and KCS (p = .063).

6.3. Behavior Results: Differences among Treatments

The click data collected while subjects completed the tasks provides an objective
measure of how the different features affect the way learners use the system. The
following measures were analyzed:

o countSelectActs: number of activities selected per task (subjects might have
thought twice before going to the next task).

e lastSelectedActDifficulty: difficulty value of the final activity selected in each
task; this value corresponds to the computed estimated learning (see Equation
1 in Section 5) .

o lastSelectedActRelativeRanking: the relative difficulty rank of the final selected
activity among all the activities that the user has mouseovered. The rank is
normalized by dividing by the number of activities mouseovered to produce a
value that ranges between 0 and 1, with 0 being the highest possible ranking.
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Table 6. Mean and SD within each condition for each of the behavioral variables.
study conditions

KC KCG KCS
Activity Measure Mean SD Mean SD Mean SD
countSelectActs 0.97 0.64 1.00 0.71 097 0.49
lastSelected ActDifficulty 0.74 013 077 0.13 0.73 0.12
lastSelected ActRelativeRanking 0.39 0.30 0.31 0.30 0.41 0.30
countMouseoverActivities 3.02 431 474 581 353 5.64
countMouseoverConcepts 0.50 1.06 0.84 221 0.66 141
countActivityOpened 2.03 358 1.63 292 1.59 233

e countMouseoverActivities: number of mouseovers on activities, including only
mouseover actions lasting at least 1 second to reduce noise of inadver-
tent /accidental actions.

o countMouseoverConcepts: number of mouseovers on concepts (KCs), again in-
cluding only mouseover actions lasting at least 1 second.

e countActivityOpened: count of activities open, even though we advised subjects
not to open activities.

Table 6 reports mean and standard deviation (SD) by condition for each behavioral
variable. To analyze differences of behavior among treatments, we aggregated the log
data variables grouping tasks within each treatment (4 tasks in each treatment) and
performed a repeated-measures ANOVA on log activity variables by treatment, with
pretest group included as a between subject factor. Two subjects who missed the se-
lection of activities in tasks (one subject missed selection for all 12 tasks, one subject
missed the selection in 10 tasks) were removed from these analyses. The normality
(Shapiro-Wilk) assumption holds only for the variable lastSelectedActRelativeRank-
ing. Sphericity (Mauchly’s test) holds for variables lastSelected ActRelative Ranking and
countMouseoverActivities.

While Table 6 shows a consistent pattern of more activity with the gauge (KCG),
results of the ANOVA analyses only found a significant effect of condition for last-
SelectedActRelativeRanking, F(2,46) = 4.700, p = .014, partial % = .170. Pairwise
comparisons with a Bonferroni correction showed a marginally significant difference be-
tween treatments K CG and KC (p = .083), and between KCG and KC'S (p = .053).
Subjects selected more difficult activities (relative to the difficulty of the activities
inspected) when using KCG (Mean = 299, SE = .038), compared to when using
KC (Mean = 414, SE = .046) or when using the KCS (Mean = .410,SE = .033).
Figure 13 shows the pattern of this effect.

No significant interaction between treatment and pretest group was found for any
of the log variables. However, a significant effect of pretest group was found for count-
MouseoverActivities, F(1,23) = 8.709, p = .007, partial n> = .275, and countActivi-
tyOpened, F(1,23) = 6.477, p = .018, partial n? = .220. High pretest subjects did less
mouse-over activities, but they opened activities more, regardless of the visualization.

6.4. Results: Overall perception of the visualizations

At the end of the study session, subjects provided an overall evaluation of their expe-
rience. Table 7 summarizes the ranking that subjects gave each of the three visualiza-
tions along with the mean and standard deviation of for the survey questions about
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Figure 13. Relative difficulty rank of the selected activity. Lower value means more difficult activities were
selected.

Table 7. Survey 2 summary. Count of rank preferences (rank 1 is top preference), and means and standard
deviations for ratings of overall ease of understanding and ease of use.

Difficult to  Difficult to
Ranking of Visualizations Understand Use

Rankl Rank2 Rank3 Mean SD | Mean SD | Mean SD

KC 0 13 15 2.5 0.5 2.5 1.4 24 14
KCG 20 6 2 1.4 0.6 2.2 1.5 1.9 1.2
KCS 8 9 11 2.1 0.8 2.5 1.5 2.5 14
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ease of understanding and ease of use. With reference to ranking, the KCG was con-
sidered the best by 20 subjects and the worst only for 2 subjects, significantly higher
than the other conditions by a Friedman test, x?(2) = 19.9, p < .001. Although there
was a similar tendency for KCG to be reported as easier to understand and use, the
differences were not statistically significant.

In the free text explanations of the rankings, ten subjects explicitly referred to the
advantages of using the gauge. For example, one subject said “the Gauge provides
a summary /overview of the knowledge both the student have mastered and haven’t
learned, which saves a great bunch of time for comparing between different concepts
and keeping a clear track of all processes”. However, three subjects expressed con-
cern about the gauge and how it works. For example, one subject said “the gauge is
somewhat distracting because some exercise covers concepts under other topics, and
the number in the gauge always seduce me choose the one that can cover more new
topics”.

Five subjects discussed the value of social comparison features. For example, one
subject noted, “in the social comparison I have a direct and obvious guide as to where
others skills are and therefore where my skills should probably be”. Four subjects
valued comparison as motivating: e.g. “comparison motivates us to perform better and
improve our knowledge in the programming concepts”. However, 7 subjects expressed
null interest of these features: e.g. “I am not concerned about the progress of the class
and how much I have completed when compared to them”.

7. Summary and Conclusions

In this work, we presented a design and evaluation process used to develop R-OLM,
specifically an OLM system combining coarse-grained and fine-grained pieces of the
underlying learner model. The main goal of adding detailed information into the vi-
sualization was to improve navigation support, helping students to focus on the most
useful learning content. Since more detailed information generally adds complexity
to the visualization making it harder to understand, our challenge was to balance the
total amount of information displayed against the potential support offered. This chal-
lenge is of special importance in this context because our target users (learners) are
not domain experts (who are the usual consumers of advanced visualization, Sedlmair,
Meyer, & Munzner, 2012), but relative novices whose main concern is related to the
learning subject and the learning task. We expected that the learners would be willing
to expend some effort in understanding the visualization of the learner model, but it
was not clear whether it would be sufficient for the case of complex visualization.

Through interviewing students, we verified that students expected to find the de-
tailed information of value. At the same time, we confirmed that they recognized
complexity as a potential issue. The results reinforced the idea of complementing the
coarse-grained visualization with a linked fine-grained representation instead of replac-
ing the whole interface with an extended version. This approach, which complies with
the foundational Information Seeking Mantra —overview first, zoom and filter, then
details-on-demand (Shneiderman, 1996), allows the system to integrate new features
without losing its current benefits (Brusilovsky et al., 2016; Loboda et al., 2014). The
pre-study was also helpful for deciding which information in the complex learner model
to prioritize, and further enabled us to test several prototypes.

The next step was a user study (Study 1) in which we contrasted R-OLM prototypes
of differing complexity. Our aim at this point was to identify a single visualization
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that was considered useful, to allow us to more extensively investigate possibilities
for combining an overview with more detailed information in a visualization before
considering the potential for multiple such options in future investigations. Results
showed a preference for the Whole-Bars interface, which combined a holistic view of the
fine-grained model with a progress-bar approach to representing knowledge. Students
claimed to find this visualization easier to understand, even though it presented a
detailed and complete view of the whole concept space. This suggests that the Whole-
Bars representation provides a useful compromise between complexity and learner
support.

Having chosen the detailed information to be shown and the visual representation
combining the coarse- and fine-grained details, we implemented R-OLM. However,
we were still cautious about the potential effect of interface complexity, even within
the selected optimized representation. This concern was magnified by our intention to
further add social comparison features, which in the past have demonstrated benefits in
engaging students within the system (Brusilovsky et al., 2016). To assess the impact
of this increase in complexity, we created an alternative extension of R-OLM with
a learning gauge, which summarized the information already presented in R-OLM
rather than complementing it with the new social information. This gauge provided
an interpretable view of the information shown when the learner is pointing to content
items, allowing her to quickly judge the potential benefit of each content item.

In a second user study, we evaluated the developed R-OLM in the context of problem
selection. To determine whether our R-OLM offered the right amount of information
to support this task, we compared three versions of the interface: i) a basic R-OLM,
ii) a version with a support tool to help the user in comprehending the OLM data (the
gauge), and iii) a version that offers additional information on top of the basic version
data by adding social comparison at both topic and concept levels. The evaluation
focused on a clearly defined task: to find activities that could increase students’ mas-
tery of specific topics. Results revealed a positive effect of the gauge and null effect of
the social comparison features. The gauge was especially beneficial in reducing work-
load that less-prepared learners needed to complete the task, resulting in a very clear
preference over the other visualizations. These results provide evidence of the ben-
efits of summarizing information in complex open learner model visualizations. We
acknowledge that these results are limited by the specific task used in the evaluation
and may be relevant only in contexts similar to ours. In other situations, the effects of
a summary feature (in this case the gauge) may not be as beneficial. For example, in
some cases these less-prepared learners might benefit from spending time on prepara-
tion as opposed to being led efficiently towards an activity by the gauge (e.g. to allow
them to develop stronger self-evaluation skills). Of course, such considerations can be
taken into account to develop different indicators that lead learners towards different
pedagogical goals.

The version enabling social comparison features, although preferred by subjects
more than the simpler version (KC'), showed no improvement and did not influence
any of the other aspects, i.e. levels of workload, usefulness and difficulty of use and
understanding, than the simpler version. A possible explanation for this null effect is
that the task examined in the study was not aligned to the comparison features; thus,
while subjects still recognized the benefits of social information, they did not need it for
the task at hand. Therefore, we cannot make strong claims about the effect of the added
complexity, and the evaluation of such features needs more exploration to identify
whether this approach will be positive as has been found in practice using the basic
Mastery Grids interface (Brusilovsky et al., 2015), and also with other OLMs using a
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skillometer approach (Bull et al., 2007) and multiple unstructured visualisations (Bull
& Britland, 2007).

Our work offers several useful insights into design processes and design features of
OLMs. The central message is a cautionary note regarding complexity when adding
new features to OLMs. Pre-studies and usability studies of prototypes could be espe-
cially useful to determine the right balance for a given context. More specifically in
terms of design features, our work points to the value of providing “expressiveness” to
the learner model visualization with summary features (such as the learning gauge)
that could facilitate the interpretation of the information presented (Papanikolaou,
2015) and can assist the learners in various tasks supported by the OLM (such as
finding the right content). This line of research bridges OLM and an emerging area of
learning analytics shown to learners (Bodily & Verbert, 2017).

We think these results are encouraging and open several lines of future research. One
clear extension of the work is to broaden the evaluation to a more environmentally valid
set up. This will allow us to discover issues and confirm benefits when students use the
features with diverse goals (regular study and practice, preparing for exam, exploring
content, etc). We would also like to design and examine more efficient approaches
to present social information in R-OLM, for example, using a gauge-like feature to
summarize the social comparison information. Another aspect to explore is to provide
several representations of R-OLM that learners can choose, and/or allow them to
activate or deactivate visual features. Researchers have shown in the past the benefit
of this approach while it does not suppose an increase of confusion (Mabbott & Bull,
2004).

Although the main role of most OLMs is to present the learner model to the learner
(and potentially other users) to show their understanding, some OLMs also allow
learners to help in the maintenance of their learner model. This includes allowing
the user to: provide data directly to their model (Bull & Mabbott, 2006; Cook &
Kay, 1994); choose from dialogue options to challenge the model (Dimitrova, 2003;
Van Labeke, Brna, & Morales, 2007); use a chatbot to negotiate the model contents
(Kerly & Bull, 2008; Suleman, Mizoguchi, & Ikeda, 2016). Future work can be directed
towards improving ways to highlight differences between the student’s and the system’s
viewpoints on the learner’s knowledge for a range of visualizations, to further facilitate
interactions around maintaining the learner model.

Over the last several years, we observed an increased interest to open learned models
based on the demonstrated benefits to learning using OLMs (e.g. Brusilovsky et al.,
2016; Kerly & Bull, 2008; Long & Aleven, 2013; Mitrovic & Martin, 2007; Shahrour
& Bull, 2009), and the popularity of self-regulated learning ideas. This resulted in a
broader use of OLMs in newer technologies such as MOOCs (e.g. Cook et al., 2015;
Kay et al., 2013), e-portfolios (e.g. Gilliot et al., 2016; Raybourn & Regan, 2011)
and social media (e.g. Alotaibi & Bull, 2012; Shi & Cristea, 2016). There is also a
rapidly increasing interest in learner dashboards and other kinds of learning analytics
for learners (Bodily & Verbert, 2017) where the user-centered design gains importance.
In this context, we believe that our results could be of interest to a reasonably large
community of researcher and practitioners.
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