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ABSTRACT
Stereotypes are frequently used in real life to classify students ac-
cording to their performance in class. In literature, we can �nd
many references to weaker students, fast learners, struggling students,
etc. Given the lack of detailed data about students, these or other
kinds of stereotypes could be potentially used for user modeling
and personalization in the educational context. Recent research in
MOOC context demonstrated that data-driven learner stereotypes
could work well for detecting and preventing student dropouts. In
this paper, we are exploring the application of stereotype-based
modeling to a more challenging task – predicting student problem-
solving and learning in two programming courses and two MOOCs.
We explore traditional stereotypes based on readily available factors
like gender or education level as well as some advanced data-driven
approaches to group students based on their problem-solving be-
havior. Each of the approaches to form student stereotype cohorts
is validated by comparing models of student learning: do students
in di�erent groups learn di�erently? In the search for the stereo-
types that could be used for adaptation, the paper examines ten
approaches. We compare the performance of these approaches and
draw conclusions for future research.
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1 INTRODUCTION
In the �eld of user modeling, it is common to distinguish stereo-
type user models and feature-based user models from one another
[4]. Stereotypical user models a�empt to cluster the multitude of
users of an adaptive system into several groups (called stereotypes)
that are considered to have similar needs in the sense of adapta-
tion. �e adaptation mechanisms treat all users who belong to
the same stereotype in the same way. In contrast, feature-based
models a�empt to model speci�c features of individual users such
as knowledge, interests, and goals. During the user’s work with
the system, these features may change, so the goal of feature-based
models is to track and represent an up-to-date state for modeled
features and use it for adaptation. Stereotypical user modeling is
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one of the oldest approaches to user modeling. It was originally
developed by Elaine Rich [21] and was extensively used in many
early user-adaptive systems [14]. However, over the years, feature-
based user modeling approaches became dominant in almost all
types of adaptive systems. With their be�er ability to represent
individual users, feature-based models empowered many advanced
personalization approaches. For example, in the area of adaptive
educational systems, it has become common to represent domains
to be learned as a set of knowledge components (KCs) and to in-
dependently model a learner’s knowledge of each of these KCs.
�is leads to sophisticated knowledge modeling approaches, such
as Bayesian knowledge tracing [6] that, in turn, has enabled high-
quality prediction of student problem-solving performance and
various personalization approaches.

Surprisingly, once online learning was scaled up to thousands of
learners in modern massive open online courses (MOOCs), stereoty-
pe-based modeling was brought back to the forefront. We can cite
many recent papers that mine MOOC log data in search of stereo-
types that group users with the same behavior [1, 15, 23, 26, 27].
�is work follows the same expectations as the early work on stereo-
types in user modeling �eld: to make MOOCs adaptive, all users
that belong to the same stereotype are expected to receive the same
treatment from the system. So far, the work on stereotypes in these
MOOC contexts has demonstrated some good results in predicting
MOOC dropouts and failures. It does show that stereotypes could
be useful for detection and possible prevention of these key MOOC
problems. Could we deduce that further research on MOOCs will
herald a major comeback for stereotype-based modeling? On one
hand, the remarkable scale of MOOC data and new approaches to
mining these data might open a way to more reliable stereotype con-
struction that di�ers considerably from expert-de�ned stereotypes
employed in the early days of user modeling. �ese stereotypes
could potentially work much be�er by competing (or even winning)
against feature-based models. On the other hand, current work on
stereotypes and prediction in MOOCs has predominately focused
on predicting coarse-grained (course-level) behavior, such as failure
or dropout. It is not evident that stereotypes could be useful for
predicting �ner-grained problem-solving behavior, given that each
course can feature many dozens of problems or exercises to solve.

In this paper, we have a�empted to explore the prospects of
stereotypes in MOOCs “beyond dropouts” – for predicting student
performance at the problem level. We used data from a program-
ming MOOC that included a large share of problem-solving activ-
ities and provided �ne-grained data about user problem-solving
behavior. Our goal was to �nd stereotypes that could be useful (or
actionable) for predicting a user’s success at solving problems. In
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this context, “useful” means that problem-solving performance pre-
dictions would be di�erent enough between stereotypes to enable
personalized guidance to direct users to the most useful learning
content. If useful stereotype-level models are found, then it is
possible to use stereotypes for problem-level personalization; i.e.,
to predict problem-solving performance independently for each
stereotype and use it to o�er di�erent interventions for di�erent
stereotypes. For example, all students within a given stereotype
could be switched to a new topic once a chance to solve problems
correctly for the current topic becomes high, or remedial material
could be o�ered if the chance to solve a problem is too low.

�e paper presents our a�empts to �nd actionable stereotypes.
Section 2 presents the context of our work. Section 3 explains our
dataset, followed by Section 4, which elaborates on our assessment
methodology. Section 5 reports our a�empts to use simple demo-
graphic stereotypes, while Sections 6–7 present our search for more
reliable behavior-based stereotypes. Sections 8–9 explain our �nd-
ings on the behavior-based stereotypes. Surprisingly, despite our
intermediate success in �nding interesting behavior-based stereo-
types, none of the stereotypes explored in this paper appeared
to be truly “useful”. Section 10 summarizes our results and dis-
cusses outcomes. We believe that our data points to a need to use
�ner-grained feature-based user models to support performance
prediction and personalization for individual problems.

2 RELATEDWORK
2.1 Student Behavior Analysis in MOOCs
Due to a large volume of available data and a surprisingly low com-
pletion rate, the analysis of student behavior in MOOCs emerged as
an important topic just a few years ago. Perhaps one of the very �rst
studies on MOOCs and behavior was the work in [3] that focused
on the amount of time that students spent on various activities, as
well as on demographic information about the students. In a more
recent a�empt [1], a taxonomy of individual learner behaviors was
developed to examine the di�erent behavior pa�erns of high- and
low-achieving students. Another a�empt was the work of [26],
which adopted a content analysis approach to analyze students’
cognitively relevant behaviors in a MOOC discussion forum and
explored the relationship between the quantity and quality of that
participation with their learning gains. In a similar a�empt, [23]
presented a hierarchy to categorize MOOC students into di�erent
engagement groups, based on their styles of engagement.

Overall, past studies have generally focused on resource usages,
such as viewing course lectures, quizzes, assignments, and discus-
sion forum activities to �nd the behavior of di�erent groups of
students and a�empt to relate those behaviors with high and low
levels of learning. However, there is some evidence from past work
that demonstrates that focusing solely on resource usage might not
lead to a reliable method to separate weak and strong students [5].

Unlike the past studies, the current work analyzes student behav-
iors by �nding micro-pa�erns in student problem-solving activities,
rather than by examining resource usage. Two similarly-minded
a�empts can be found in [24], which focused on the search for
problem-solving strategies, and [27], which de�ned study habits
by mining student navigation. However, neither of them explored
behaviors by closely examining how students solved problems.

2.2 Assessment Data Analysis in Programming
Analyzing student solutions to programming assignments has re-
ceived much a�ention during the past years. Recent work has
used submission data to reveal multiple correct and incorrect ways
to solve the same problem [9, 13], build an intelligent sca�olding
system [22], model student knowledge in a program development
context [20, 29], predict student grade [16], and understand student
coding behavior through conceptual analysis [12].

�e current paper contributes to the existing body of literature
on analysis of assessment data by using compilation and submission
data collected from students’ problem-solving activities in a Java
MOOC to understand (1) individual pa�erns of problem-solving
(coding) behavior; (2) the impact of discovered behaviors on student
performance in the programming course; and (3) any implications
of the behaviors for accurately modeling student knowledge.

3 DATA
�e data for the study comes from four introductory programming
courses and MOOCs o�ered at a research-oriented University in Eu-
rope in 2014 and 2015. A single iteration of the programming course
lasted for seven weeks and used Java as the programming language.
Each week, students worked on tens of programming assignments
with varying complexity. Less complex assignments were given
when a new topic or construct (e.g., loops) was introduced, and
as students created a number of smaller programs with those con-
structs, they moved to larger assignments that required the use of
multiple constructs. �e students worked on the assignments in the
NetBeans environment. �e assignments were downloaded into the
programming environment through the Test My Code-plugin [25],
which was used to assess the students’ code automatically, as well
as to collect data from the programming process of those students
who consented to the use of their data for research purposes.

�e collected data included key-presses with time, assignment
information, and student id, and was aggregated to describe mean-
ingful events in the students’ programming process. �e events
used for this study were running the program, running the tests for
the program, and submi�ing the program for grading; also, the �rst
�ve generic events (inserting or removing text) were included for
each assignment to make it possible to analyze transitions to mean-
ingful events. For each event, information on program compilation
and correctness were extracted for the data in a posthoc analysis
using JUnit test sets, and �nally, programming concepts for each
problem-solving state were extracted using JavaParser [11].

Students were given a demographic questionnaire that solicited
their age, gender, programming background, and the highest level
of education a�ained. Out of 2739 students that started the courses,
1788 students were included in the initial sample (the cuto� was
2500 recorded events, which corresponds to roughly a 33rd per-
centile of the �rst week of the course workload). Out of those, 798
students answered the questionnaire and were included in the �nal
analysis sample. Table 1 shows key statistics for all participants.

4 THE ASSESSMENT APPROACH
In this work, we a�empted to determine whether separating stu-
dents into various cohorts for the group-based adaptation would
be useful. In particular, we are interested whether we could �nd
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Student sample Age Gender Programming background Prior education
Course Initial Final min / mean / max M / F / NA None / Some / More Pri.&Sec. / College / Grad
MOOC 2014 1286 90 16 / 32.3 / 65 90% / 9% / 1% 4% / 81% / 15% 63% / 12% / 25%
Traditional 2014 263 192 18 / 23.2 / 44 62% / 38% / 0% 59% / 38% / 3% 78% / 3% / 19%
MOOC 2015 984 372 15 / 30.8 / 66 77% / 22% / 1% 30% / 60% / 10% 58% / 13% / 29%
Traditional 2015 206 144 19 / 24.3 / 45 63% / 35% / 2% 56% / 39% / 5% 74% / 3% / 23%

Table 1: Background information on the students that took the courses.

groups of students that are so distinct that their members learn
di�erently. As a criterion to judge whether we were able to obtain
the desired split between groups when looking at multiple ways
to group students, we used di�erences between models of student
learning in each group. Our rule of thumb is that if groups are truly
di�erent in how their members learn, the group models would
demonstrate di�erent performance in a cross-prediction task.

Before turning to the innovative approaches to separate students
by their programming behavior, we demonstrate our evaluation ap-
proach by assessing simpler ways of grouping. �ese simpler group-
ings would include those known a priori (e.g., demographics, prior
achievements) and those known a posteriori (e.g., overall course
performance). By comparing innovative approaches to the simpler
ones, we also monitor whether our behavior-based approach di�ers
enough from existing approaches. Naturally, we would prefer be-
havior clustering results that do not align with simpler groupings.
A�er evaluating existing simpler approaches to student grouping,
we will examine student clustering using programming behavior
mining. All approaches will be validated using groups/clusters
models of learning and predicting across group/cluster boundaries.

4.1 Modeling Student Learning
To model student learning, we used an approach called performance
factors analysis [18] that is based on logistic regression. PFA repre-
sents student abilities as a random factor θi , concept di�culties as
�xed-factor intercepts βk , and concept learning rates from correct
and incorrect submissions as γk and ρk , respectively. Equation (1)
shows the canonical form of the PFA. Here, σ is the inverse logistic
function, while sik and fik are the counts of the prior student’s
successful and failed a�empts to apply concepts.

P (Yi = 1|θ ,β ,γ ,ρ) = σ *.
,
θi +
∑
k

(βk + γksik + ρk fik )
+/
-

(1)

Our choice of model was based on the compensatory nature of
the PFA – multiple concepts used in student’s submissions, together,
form a cumulative signal that results in the observed outcome. �e
other candidate modeling approach – Bayesian knowledge tracing
[6] – is not intended for multi-concept student transaction data.

We have made two modi�cations to the PFA, both of which
improved the overall �t. First, we have switched from concepts
de�ned across problems to within-problem concepts. Second, we
loд(x+1)-transformed the concept opportunity count. Both of these
modi�cations proved to be useful in the work by Yudelson et al. [29],
which considered data from the same source. �e modi�cations only
changed the scope of concepts and the way opportunity counting
is done, while the canonical form of PFA remained the same.

In contrast to [29], we pre-processed the data di�erently. First,
every snapshot of the student code was treated as an atomic unit
of data. It was deemed successful if all tests passed; otherwise, the
problem a�empt was unsuccessful. Second, we only considered
snapshots where students were testing, running, or submi�ing their
code – i.e., purposefully checking it for correctness. Intermediate
snapshots were not considered for student modeling. Consecutive
testing, running, or submi�ing the code without modi�cations in
between was treated as one a�empt. �ird, we considered all con-
cepts that were used in student’s code. Only considering changes
in concepts with or without special treatment for removals (as in
[29]) led to model performance degradation under our data pre-
processing setup. Finally, we considered only students for whom
we had background information (798 out of 1788 students).

Due to our modi�cations, the upper boundary for the number of
PFA concept parameters went from 143*3-1 = 428 to 143*240*3-1 =
102,959. However, because of the problem-concept matrix sparsity,
the actual number of parameters was 13542*3-1 = 40,625. Also,
given the size of the data (about 392,000 student submissions),
it was not possible to use conventional statistical packages. We
used a modi�ed LIBLINEAR tool [7]. �e modi�cation1 was in the
form of an additional solver that allowed grouped L2-penalties to
approximate random factors. �e modi�ed LIBLINEAR retained the
ability of the original version to tackle large datasets successfully.

4.2 Comparing Student Models across Groups
�e primary goal of this work was to �nd at least two groups
of students in our sample that have di�erent models of learning.
Following the approach piloted in [28], given the breakdown of a
student sample into n groups/clusters, we sub-sampled each group
20 times to extract 80 students as a training set and 20 students as a
test set. Sub-sample models were built from each of the 80-student
training set. We then used each of the n ∗ 20 models to predict n
corresponding sub-samples: one sample matched the group that
the model was built on, while the rest were from the other group(s).
Finally, we plo�ed n2 model accuracies (means and standard errors),
n of which represented model performance within the group, while
the rest were between the groups.

Our criterion for students in di�erent groups learning di�erently
was that within-group model performance would be visibly be�er
than between-group model performance. In the case where n > 2,
that should be true for at least two groups out of n. An example of
the ideal separation is shown in red in Figure 1. Here, a model built
on group A is superior to the model built on group B when predict-
ing test data from group A. At the same time, when predicting test
data of group B, model B wins on its own ground. �us, we say that

1h�ps://github.com/IEDMS/liblinear-mixed-models
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models A and B are su�ciently di�erent since they prevail on the
student strata they were built on and forfeit on other student strata.
An expected case is marked in blue. We previously discovered this
phenomenon in [28]. In this case, there is a domination of one
model over the others, irrespective of the origin of the sub-sample.
Such cases are marked in blue (model B vs. model C). Finally, a
sub-optimal case of model A vs. model C (marked in green) occurs
when one model wins on its own ground (here, A) but does not have
an edge over or loses to the other model (here, C).
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Figure 1: Between-group student model prediction accuracy
di�erences (means and standard errors). Red arrows mark
an ideal case, blue – expected case, green – sub-optimal case.

5 SIMPLE STUDENT GROUPING
As an example of our assessment approach, we �rst examined sim-
pler demographic- and course performance-based approaches to
student grouping. For the demographic data, we used gender and
education level reported in the background information. Perfor-
mance data were extracted from the course statistics available at
the end. �ese groupings are summarized in the top �ve rows of
Table 2.
Gender . Students were split by gender. �e majority of students
were males (about 71%).
Education level. Students were split into three groups. �ere
were 524 students that had primary and secondary education, 154
students who a�ended college, and 120 students in graduate school.
Number of transactions. Students were split into three equal
percentile groups – low, medium, and high – by the total number
of problem a�empts. When we employed a similar approach to
investigate student groupings in [28], a subset of students that
yielded more data produced a globally superior model as well. �is
grouping serves as our check for that phenomenon.
Problems Solved. �is grouping was produced by an agglomerative
clustering of four course-level counts: problems solved (at least one
submission 100% correct), problems partially solved (at least one
submission > 0% correct), problems a�empted but not solved (at
least one submission of 0% correct), and problems not a�empted.
�e clustering yielded three groups: low (mostly not a�empting
problems), high (mostly solving problems), and medium (everyone
else). �is grouping is an overall student performance measure.
Percent Correct. �is grouping was a split with three percentile
groups with low, medium, and high values of overall percentage
correct of the times students purposefully tested, ran, or submi�ed
their code. �is grouping separates students by their diligence.

Prediction di�.
Approach (no. features) Cluster sizes Score Cluster to note
Gender† (1) 570, 228 0.33 Female
Edu.‡ (1) 524, 154, 120 0.00
#Trans.‡ (1) 266, 266, 266 0.67 High
P.Solv.‡ (4) 218, 316, 264 0.00
%Corr.‡ (1) 266, 266, 266 0.00
C1 (45) 383, 415 0.67 1
C2 (245) 416, 382 0.67 1
C3 (245) 258, 158, 382 0.67 2
C4 (245) 295, 503 0.67 1
C5 (245) 389, 272, 137 0.67 2
†Male and Female; ‡�ese groupings have 3 levels: Low, Medium, and High

Table 2: Approaches to clustering students. Top rows indi-
cate simpler groupings while bottom rows (C1-C5) indicate
advanced behavior-based clustering approaches.

Our preference for the cross-prediction group separation is in
the order mentioned in Section 4.2: ideal, expected, and suboptimal.
For simplicity’s sake, we scored both group and cluster separations.
A score of 1.0 would mean that the separation is ideal, a score of
0.67 would mean that the separation is expected, a score of 0.33
would mean that the separation is suboptimal, and otherwise score
is 0.00. Cross-prediction di�erences between simpler groupings
are addressed in the top �ve rows of the “Prediction di�.” columns
of Table 2. Out of the �ve simpler grouping approaches, only two
had a non-zero score. In the case of gender contrasts, a model of
female students had the edge over the model of male students when
predicting the test data of female students. When predicting test
data of male students, both models performed the same. Concerning
the total number of student transactions grouping, the model of
students contributing the most data had an edge. In fact, it was
be�er than others, no ma�er what the test data predicted.

6 BEHAVIOR MINING
�e key idea behind our behavior mining approach is to character-
ize student problem-solving behavior on the level of micro-pa�erns
that de�ne how the student progresses to the correct solution
through several incorrect solutions, and how his or her knowledge
grows from assignment to assignment. To build the micro-pa�erns,
we started by processing student intermediate programming steps
that classi�ed the programming behavior at each step (section 6.1).
�en, we applied sequential pa�ern mining to extract sequential
micro-pa�erns (section 6.2). Next, the most frequent micro-pa�erns
were used to build a pro�le vector (we call it a genome) that rep-
resented student problem-solving behavior. �e stability of the
behavior vector built from micro-pa�erns was checked to ensure
the validity of our approach to mining problem-solving behaviors
(section 6.3). Each of these parts is explained in more detail below.

6.1 Processing Intermediate Steps
To determine student problem-solving behavior, we started by look-
ing into how students progressed in coding their problem solutions.
We used snapshots, intermediate programming steps that were cap-
tured from student coding activities. Each snapshot recorded the
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submi�ed code and its correctness on a suite of tests designed for
each problem. As in [12], to mine programming behavior, we �rst
examined conceptual di�erences between consecutive snapshots –
i.e., we observed which concepts were added or removed on each
step, and inspected how these changes were associated with improv-
ing or decreasing the correctness of the program. For simplicity,
the conceptual di�erence was approximated as the numerical dif-
ference between the number of concepts in two snapshots. �e
procedure for mining the behaviors included two main steps: (a)
labeling sequence of students’ snapshots in each problem, and (b)
mining micro-pa�erns of frequent behaviors (we call them genes),
by conducting sequence mining on all of the labeled snapshots.

To label the sequence of student snapshots in a particular prob-
lem, the snapshots that were captured for the student in that prob-
lem (including generic, test, run, and submit snapshots) were col-
lected and ordered by time. Each snapshot in the sequence was
labeled based on the change in the programming concepts and cor-
rectness from the previous snapshot. �e previous snapshot for the
�rst snapshot in the sequence was de�ned as snapshot ∅, where the
code has no concepts and passes no tests. Table 3 lists the labels
that we used during labeling snapshots. �e zero correctness value
is to distinguish the snapshots where no tests were passed.

Concepts
Correctness Increase Decrease Same
Increase a b c
Same d e f

Decrease g h i
Zero j k l

Table 3: Labels for encoding behavior in a snapshot.

As an illustration, assume that we have two snapshots for a
student. �e �rst snapshot has 10 concepts and passes half of the
tests, while the second has 20 concepts and passes all of the tests.
To label the �rst snapshot, we compare its number of concepts and
correctness to the snapshot ∅ that has zero concepts and correctness.
Since both the number of concepts and the ratio of passed tests
increased in the �rst snapshot, it would be labeled as “a”. �e label
for the second snapshot would be “a” too because the student added
more concepts and increased the ratio of passed tests to one. As a
result, the sequence of student snapshots would be labeled as “ aa ”
– obtained by concatenating the labels of each individual snapshot.
�e“ ” symbol marks the start and the end of the sequence.

Additionally, to distinguish between short and long steps (which
is an important aspect of problem-solving behavior), another di-
mension could be added to each label to convey the extent of time
that was spent on a snapshot. Since di�erent students might have
di�erent speeds at programming, it is reasonable to use individu-
alized thresholds for classifying the time spent on a step as short
or long. �is way, a snapshot would be labeled as short or long,
depending on the time being shorter or greater than the median of
time distribution for each student. In our coding, lowercase le�ers
(a–l) represent short steps, and uppercase le�ers (A–L) represent
long steps. For example, assuming that the median of time distribu-
tion for the student in the aforementioned example is 10 minutes,
and that the student spent 15 minutes to develop the code in the

�rst snapshot and another 2 minutes to make the minor change in
the second snapshot, then the sequence of her snapshots would be
labeled as “ Aa ”.

We labeled 137,504 sequences of snapshots that were contributed
by 1788 students solving 241 problems. �e length of sequences
ranged from 1 to 475, with an average of 5.3; 92,549 sequences had
more than one step, 64,328 had more than two steps, 48,195 had
more than three steps, and 38,768 had more than four steps.

6.2 Mining Problem-Solving Micro-Patterns
We mined frequent sequential pa�erns in students problem-solving
sequences using an implementation of the SPAM algorithm [2]
o�ered by the SPMF Library [8]. �e input data to the SPAM
consisted of 9254 sequences with at least two steps in them. SPAM
discovers all frequent sequential pa�erns that occur in more than
minsup of students’ sequences. In this work, we chose a small
minsup (e.g., 1% and 5%) to capture the pa�erns that are less frequent
and may occur only in small groups of students. Also, no gap
was allowed in SPAM to force the discovered pa�erns to have
steps that appear consecutively in students’ sequences. Finally,
the length of the pa�erns was limited to two or more, as we were
interested in observing how students progressed in their code in
consecutive steps. SPAM discovered 245 frequent programming
pa�erns occurring in more than 1% of students’ sequences that
were labeled with respect to change of concept, correctness, and
time spent on a snapshot2. �e top 20 common pa�erns and their
frequency of occurrence are provided in Table 4.

Pa�erns 1–5 Pa�erns 6–10 Pa�erns 11–15 Pa�ern 16–20
AA (19.78%) DD (8.53%) Ac (6.24%) Jc (6.04%)
AD (13.75%) aA (8.31%) DA (6.22%) Af (6.01%)
AA (12.17%) Ad (8.26%) AD (6.18%) dD (5.61%)
Aa (9.75%) Af (8.15%) Dd (6.15%) DE (5.57%)

AA (8.69%) JJ (7.22%) JA (6.13%) Jj (5.45%)
Table 4: Top 20 frequent programming patterns occurring in
more than 1% of students’ problem-solving sequences. �e
numbers in parenthesis are the occurrence frequencies.

6.3 Using Micro-Patterns to Model Behavior
We used the micro-pa�erns discovered by sequential pa�ern min-
ing to build individual behavior pro�les as frequency vectors that
showed how frequently each micro-pa�ern from a discovered set
of 245 appeared in a given student’s problem-solving behavior. �e
frequency vectors were normalized to add up to 1 in each vector.
�is approach was �rst introduced in [10], where it was used to �nd
problem-solving behaviors in parameterized exercises. Following
this paper, we also call the micro-pa�ern-based student pro�le the
problem-solving genome.

To ensure that the vector of micro-pa�erns frequencies can cap-
ture stable characteristics of the student (i.e., it is as stable as a real
2Assuming that all sequences have an average length of 5, the maximum number of
pa�erns that could be found has an order of magnitude of 8: �ere are 245 possible
sequences that could be obtained from 24 labels (a–l, A–L), and the number of possible
substrings in a 5-character sequence is 5 × (5 + 1)/2 = 15. �us, the total number
of pa�erns that could be found from sequences with a length of 5 is 245 × 15 =
119,439,360.
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genome), [10] suggested to check the stability of the vector by split-
ting student sequences into two “halves” and to build the student’s
behavior vector from each of the two halves. If the two half-vectors
(i.e., pro�les built separately from each half of split data) of the
same student were closer to each other than to half-vectors of other
students, then we have strong evidence to claim that the behav-
ior pro�le vector (genome) is stable. Following this suggestion,
we split student sequences in two ways: once by randomizing se-
quences and dividing them into halves (random-split), and once by
ordering sequences by time and dividing them into early and late
halves (temporal-split). �en, we built behavior vectors for each
half and calculated pairwise distances between the �rst and second
half-vector of the same student (self-distance), and �rst/second
half-vector of the student with �rst/second half-vectors of other
students (others-distance). �e distance between half-vectors was
calculated using Jensen-Shannon (JS), as it is a common measure
used for computing distance between frequency distributions.

We performed a paired Wilcoxon signed rank test to compare
values of “self-distance” calculated from the �rst and second half-
vectors of the same student to values of “others-distance” calculated
from the �rst/second half-vector of the student with �rst/second
half-vectors of other students. We found the random-split self-
distance (Mean = 0.349,SE = 0.003) to be signi�cantly lower than
others-distance (Mean = 0.659,SE = 0.001), p < 0.001. Similar re-
sults were obtained with the temporal-split, while the self-distance
in the temporally split half-vectors (Mean = 0.425,SE = 0.002)
was larger than randomly split half-vectors, it was still signi�-
cantly smaller than the others-distance (Mean = 0.653,SE = 0.001),
p < 0.001. �ese observations supported the stability of using
micro-pa�ern frequencies to represent student’s problem-solving
behavior. Also, the behavior pro�les obtained with the proposed ap-
proach uniquely characterized student’s problem-solving behavior
and set them apart from the others.

Once we established stable vector-based pro�les of student be-
havior, our next step was to use the micro-pa�ern representation of
problem-solving behavior to group students based on their problem-
solving styles. �e next two sections explain the behavior groups
that we found and their impact on student performance.

7 BEHAVIOR-BASED GROUPS
7.1 Clustering Students into Behavior Groups
To identify similar problem-solving behavior groups, we built be-
havior vectors of micro-pa�erns frequencies for each student and
clustered students by using these vectors. To build the behavior
vector, we used the problem-solving sequences of each student, ob-
tained from all of the problems that they a�empted to solve during
the course. Each sequence represented consecutive snapshots that
were captured while students were developing the program as a
solution for a problem. We tried �ve di�erent se�ings for clustering
students behavior (see Table 5), changing the clustering method
(hierarchical, spectral), and the number of clusters (2,3). We made
sure that cluster labels in the advanced student groupings (C1-C5)
did not have a signi�cant overlap with the simpler groupings of
students (discussed in Section 5) or between each other. C2-C5
labeled the snapshots based on concepts, correctness, and amount

of time that a student spent on the snapshot, while C1 did not con-
sider time. Also, the number of micro-pa�erns used in the labeling
process di�ered: 45 pa�erns that were used in building behavior
vectors in the �rst se�ing were obtained by se�ing SPAM minsup
to 5%. �e number of pa�erns in the rest of the se�ings was 245,
which were obtained by se�ing SPAM minsup to 1%.

Approach #Pa�erns (Minsup) Clustering Method (#Clusters) Time
C1 45 (5%) Hierarchical (2)
C2 245 (1%) Hierarchical (2) !

C3 245 (1%) Hierarchical (3) !

C4 245 (1%) Spectral (2) !

C5 245 (1%) Spectral (3) !

Table 5: Settings of the advanced clustering approaches.

7.2 Interpreting Discovered Clusters
In this section, we examine the nature of behavior-based grouping
in greater detail. To make the di�erences clearer, we use se�ings
with two clusters. As the clustering demonstrated, all three two-
cluster se�ings separated students into two similar groups: one
group with more constructive building steps, and one group who
o�en massaged the code (i.e., added/reduced concepts without
increasing the code correctness), and/or struggled in consecutive
steps with no success. �e se�ings with three clusters yielded a
similar grouping for students as well, except that it separated a third
group who had mixed behaviors as being closer to other two clusters
in a subset of micro-pa�erns. As an example, Figure 2 illustrates the
behavior groups that we obtained by spectral clustering with two
clusters (Table 5, row 4). �e Y-axis shows the ratio of occurrence
of the top 20 micro-pa�erns for the two clusters. �ese pa�erns
are re-ordered by the absolute di�erence between the two clusters.

Figure 2: Top 20 programming patterns and their ratio of oc-
currence in each cluster from clustering approach C4. Pat-
terns are ordered by the absolute di�erence of ratios be-
tween Cluster 1 (tinkerers) and Cluster 2 (movers). Error
bars show standard error of the mean. �e lines are added
to distinguish the points that belong to di�erent clusters.

As the �gure shows, the groups di�er by the frequency of micro-
pa�erns on the extreme sides of the plot. As the le� side shows,
students in Cluster 1 have a higher frequency of “tinkering” pa�erns
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(Dd, dD, JJ, DE, Jj), while the right side shows that the students in
Cluster 2 demonstrate a much higher frequency of careful build-
ing pa�erns (Aa, AD, AA , AA, AA). More speci�cally, students
in Cluster 1 frequently increased the conceptual content of their
programs in consecutive steps with a long amount of time spent on
at least one of those steps (Dd, dD), spent a long time for increasing
concepts in one steps and then took another long step decreasing
concepts of their program (DE), or spent a long time at least on
one step to increase conceptual content of their programs and not
only failed in increasing the level of correctness, but also jumped
back to the point where no test was passed (JJ, Jj). On the other
hand, students in Cluster 2 did considerably less “tinkering” while
focusing on large incremental building steps, in which they o�en
spent a long time building their program. �ey o�en had long steps
in which they added more concepts to the code and successfully
increased its correctness (or at least did not degrade code correct-
ness) (AD). �ey had these building steps more frequently when
they started developing their program ( AA), while they were on
mid-stages of code development (AA, Aa, AD), and also at the time
they ended development (AA ).

We think that the behavior-based split separated the students
into the groups that Perkins et al. (1986) called tinkerers and movers
[19]. Movers gradually add concepts to the solution while increas-
ing the correctness of the solution in each step. On the other hand,
tinkerers try to solve a programming problem by writing some code
and then making changes in the hopes of ge�ing it to work.

8 BEHAVIOR-BASED CLUSTERS VALIDATION
�e bo�om �ve rows under the header “Prediction di�.” in Table 2
describe between-cluster model prediction di�erences, in terms of
both the scores and the noteworthy clusters. None of the behavioral
clustering approaches were scored as ideal, as we have not found
at least two clusters that were voted as su�ciently di�erent by the
cluster models of student learning. However, all of the clustering
approaches received an expected score: there was one cluster in
each approach that dominated at least one other cluster.

Figure 3 graphically illustrates some of these results. �e accu-
racy of each cluster’s model cross-prediction for behavior-based
clustering C4 is shown in Figure 3(a). �ere, we see that the Cluster
1 model wins when predicting test data from both clusters. Fig-
ure 3(b) is an illustration of cross-prediction accuracy di�erences
in the case of Behavior-based clustering C5. Cluster 2, here, has
superior prediction accuracy over Cluster 1 in both cases. In both of
these �gures, we see an expected case of one cluster model domina-
tion (as de�ned in Figure 1). We chose to visualize these particular
clustering results since they represent two typical cases: C4 with
two clusters only; and C4 with three clusters, where we only check
two out of three prediction tasks to contrast Clusters 1 and 2.

9 ANALYSIS OF CLUSTER DIFFERENCES
�e results of cross-prediction using behavior-based cluster models
demonstrated that the discovered clusters (tinkerers, movers) were
not performance-based stereotypes. In other words, the two clus-
ters that we found did not di�er su�ciently to form stereotypes that
could be�er predict student performance and serve as a basis for
personalization. While the clusters failed to separate students into

(a) (b)

Figure 3: Between-cluster student group model predic-
tion accuracy di�erences for Behavior-based clustering ap-
proaches (a) C4 and (b) C5.

classic performance-based stereotypes (such as weak or strong), we
observed that they separated students into distinctive groups with
stable but di�erent behaviors. Given the belief of some program-
ming instructors that tinkering is not an ideal problem-solving
behavior, we wanted to perform a deeper performance-focused
analysis of our discovered behavior-based clusters. In this section,
we inspect cluster performance in more detail.

Tinkerers Are Less E�cient and Have Lower Grades. To gain an
insight into how the two behavior groups di�ered in terms of their
performance, we looked into a set of performance measures that
included: 1) the number of a�empted problems; 2) the number
of solved problems; 3) the average steps taken to solve the prob-
lem, where steps were only test, run, and submit snapshots; 4)
the average time (in seconds) spent on solving the problem; 5) the
e�ectiveness score; and 6) the �nal course grade. E�ectiveness
score is a measure of instructional e�ciency and represents student
performance on the problems that a student solved, as well as the
mental e�ort that a student spent on solving those problems. Here,
we chose the time on problem-solving as an approximate measure
of student mental e�ort and compute an e�ectiveness score, as
introduced in [17].

Table 6 presents performance statistics for each of the afore-
mentioned measures among students in Cluster 1 (tinkerers) and
students in Cluster 2 (movers) (note that these clusters were plo�ed
in Figure 2). A Wilcoxon ranked sum test was performed to measure
the di�erence on each performance measure in Cluster 1 and Clus-
ter 2. As the table shows, there is a signi�cant di�erence between
the two clusters in several cases. On average, students in Clus-
ter 2 took fewer steps to solve the problem (M2 = 3.4,M1 = 5.9),
were faster at solving the problems (M2 = 630.0,M1 = 998.1),
and as a result, were also more e�cient in solving the problems
(M2 = 0.4,M1 = −0.3). Furthermore, the average student grade
was also higher in Cluster 2 than in Cluster 1 (M2 = 3.4,M1 = 2.9).
While all parameters commonly used as signs of good performance
point to Cluster 2, we should be careful when interpreting this
result as a clear sign of the superior problem-solving abilities of
students in Cluster 2. Making fewer larger steps is the very essence
of problem-solving approach of Cluster 2, and it is no surprise that
students from this cluster looked more e�cient. On the other hand,
there was no signi�cant di�erence between clusters in respect of
the number of solved problems, although students in Cluster 2
a�empted more problems and solved more problems, on average,
as compared to those in Cluster 1.
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Performance Measure Cluster 1 Cluster 2 Wilcoxon Test
#A�mpted Probs. 81.3 ( 1.7) 82.8 ( 1.3) 73,456
#Solved Probs. 68.1 ( 1.4) 70.9 ( 1.0) 68,860
Avg. A�empts to Solve 5.9 ( 0.2) 3.4 ( 0.1) 123,790∗∗∗
Avg. Time to Solve 998.1 (27.5) 630.0 (16.7) 111,950∗∗∗
E�ectiveness Score -0.3 ( 0.1) 0.4 ( 0.0) 7253∗
Course Grade 2.9 ( 0.2) 3.4 ( 0.1) 43,068∗∗∗
∗ : p < .05; ∗∗∗ : p < .001

Table 6: Performance statistics (Mean,SE) for Cluster 1 (N =
295), and Cluster 2 (N = 503). Wilcoxon rank sum was per-
formed to compare performance of Clusters 1 and 2.

Pa�erns Tend to Distinguish Low vs. High Performers. From what
we observed, we know that one group was thinking in a construc-
tive manner; that is, students in Cluster 2 o�en thought for a long
time, added concepts, and increased code correctness ( pa�erns
AA, AA, AA in Figure 2). On the other hand, students in Cluster

1 seem to be weaker because they had more unsuccessful steps,
they added concepts with no test being passed, or they changed
(added/removed) concepts that did not in�uence the code’s correct-
ness (see pa�erns Dd, dD, DE in Figure 2). Apparently, Cluster 1
represents students who are less e�cient in their problem-solving
– evaluated by performance measures like e�ectiveness score, and
average a�empts for solving the problem. As a result, it seems
likely that weaker students would be in this group.

When we investigated the relationship between the micro-pa�er-
ns in each group and the performance measures further, we found
that certain pa�erns are positively or negatively associated with
performance3. In particular, some pa�erns that represent mostly
tinkering behavior were negatively related to both the number
of problems that student solved and their e�ectiveness score ( jj,
JjJ, ic , JJJ, jJJ, JJk, JK, FF ). On the other hand, we found an
instance of a constructive building pa�ern ( AAD) to be positively
associated with both of these measures. Additionally, we observed
that a pa�ern could have a di�erent impact on di�erent measures.
In our case, pa�ern bA was positively related to the number of
solved problems and was negatively related to e�ectiveness score.

Both Groups Include a Mixture of Strong and Weak Students. Why
the tendency toward low- and high- performance among tinkerers
and movers did not result in a grouping that accurately re�ects
performance-based stereotypes? �is can be explained by elabo-
rating on how weak and strong students were distributed across
the two groups. �ere were both strong and weak students who
exhibited similar problem-solving behavior. To check this hypothe-
sis, we compared the overlap between the clustering that resulted
in two groups of tinkerers and movers (i.e., clustering C4) and the
two performance-based clustering (i.e., Problem Solved, and Percent
Correct). We found li�le overlap between group labels that were
found by these clustering approaches. �is is su�cient evidence
to let us conclude that there were both weak and strong students
among movers and tinkerers.

It appeared that strong and weak students were dispersed within
each behavior group. We observed that a large number of students
3Generalized linear model was used to model the performance measure of interest.
Dependent variables were micro-pa�erns that had li�le correlation, if any.

in Cluster 1 (tinkerers) were strong students. �ese students per-
formed well, but they exhibited the same problem-solving behavior
as poor students. �is clari�es that behavior-based clusters rep-
resented di�erent behaviors in solving problems, rather than the
classic weak/strong performance groups.

10 DISCUSSION AND FUTUREWORK
We have set out to �nd at least two groups of students that could
be considered to learn di�erently, as captured by the models of
their learning. Just like in [28], where the domain is K-12 math, we
found that, across all of the grouping/clustering approaches that
we have considered, there is always a sub-sample of students who
can e�ectively be used to build a model of learning for the whole
population. While this is not the result we hoped for, it conveys
an important message. �is means that �nding a useful learning-
focused stereotype, like good students or slow students, is not trivial.
�ere might be students who approach learning di�erently, but
the distinction between these approaches are orthogonal to the
conventional dimensions that we apply to quantify learning.

A set of simpler, as well as more advanced, behavior-based stu-
dent grouping approaches that we tried did not result in discernible
di�erences in cross-prediction accuracies. �ere is always one sub-
population of students that contributes to a model that could be
universally used for all. Our hypothesis is that adapting student
models by swapping alternative parameterizations based on student
stereotypes is not the correct approach. Although classic stereo-
type models have demonstrated their new value in the educational
context as a basis for behavior prediction and personalized inter-
vention, they seem to be failing as alternative models of student
learning.

To date, the basis for our conclusion is limited: We looked at data
from traditional courses and MOOCs in one �eld that originated
from one University in Finland. �e education system there might
be di�erent from the rest of the world and the sample of students
could have in�uenced the behavior grouping and the performance
of our models. In future work, we would like to obtain a larger,
more representative sample of student data and re-run our analysis
to validate and recon�rm our �ndings. Furthermore, we performed
clustering separately on student demographic and performance
data, and also on the genome data. In future work, it would be
interesting to explore the clustering and student modeling using a
combination of these sources. Finally, although the discovered clus-
ters of tinkerers and movers were not useful for modeling student
learning, they could be bene�cial to researchers for other kinds
of personalization. In particular, future work should investigate
whether we can recognize a student as a tinkerer or mover su�-
ciently early and whether this early classi�cation can be used to
reduce less productive tinkering behavior using proper sca�olding.
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