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When making a decision, we draw upon multiple mnemonic resources to inform our behavior 

and to ideally produce a good outcome. Multiple memory systems guide this process, including a 

medial temporal lobe (MTL) system and a striatal system. The MTL provides episodic details 

about specific instances of prior experience, whereas the striatum provides a prediction about 

possible outcomes based upon a fusion of many prior experiences. While both of these systems 

are assumed to support decision behavior, extricating their discrete contributions has been 

challenging. Using neuroimaging and computational reinforcement learning, this study 

investigated the extent to which the MTL and striatal systems are co-active during single-

exposure learning and how these systems each support subsequent behavior. This was done in 

the context of a single-exposure deterministic decision-making task that separated encoding 

processes from subsequent decision-making processes. Human subjects learned to associate 

words with monetary feedback in a single decision experience. They then used that information 

to make better choices in a subsequent round without feedback. Activity in MTL regions 

predicted episodic memory accuracy and correlated with subsequent decision accuracy and 

response times. Additionally, the MTL supported a model-based reinforcement learning process 

wherein initial decision experiences were used to build a model of the environment that was then 

used to prospectively formulate future decision outcome predictions. Activity in striatal regions 

also correlated with subsequent decision accuracy and response times, but did not relate to 

memory accuracy. The striatum supported a model-free reinforcement learning process wherein 
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predictions about decision outcomes were generated from a retrospective accumulation of prior 

decision experiences. Together, these results implicate both the MTL and striatum as essential 

substrates to single-exposure learning, but underscore that these systems operate in 

fundamentally different ways. The MTL is associated with prospective learning, wherein single 

instances of prior experience can be leveraged to inform subsequent choice. The striatum, in 

contrast, is associated with retrospective learning, wherein a history of experience is required to 

build reliable predictions about subsequent choices. In combination, the MTL system seems to 

support decision behavior until the striatal system has had enough experience to refine 

predictions about outcomes. 
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1.0  INTRODUCTION 

Our world is filled with stimulus-response-outcome relationships that we learn about and use to 

guide our behavior. While some of these relationships are probabilistic, many are fully or 

effectively deterministic. This dissertation is a part of a program of research investigating the 

neural basis of deterministic decision-making. In prior work, I have found that deterministic 

decisions can be guided by different types of information deriving from separate neural systems. 

On one hand, a striatal reinforcement learning system can generate and update predictions about 

choice outcomes based on a history of relevant experiences (Daw & Doya, 2006; Dayan & Daw, 

2008; Ito & Doya, 2018; Jocham et al, 2011; Niv, 2009; O’Doherty et al., 2017; Packard & 

Knowlton, 2002). Learning via this system is thought to be retrospective, wherein prior 

experience is represented as an accrued history of prior outcomes in a composite score of the 

value of a choice. While this composite value is based on instances of experience, only the value, 

and not the individual instance, is retrievable. On the other hand, a medial temporal lobe (MTL) 

system can encode details about individual decision experiences and associate those details with 

particular outcomes. In contrast to the striatal system, learning via the MTL system is thought to 

be prospective, wherein individual instances of prior experience can be retrieved to predict future 

outcomes and guide decision-making accordingly (Davachi & Wagner, 2002; O’Doherty et al., 

2017; Squire, 1992; Squire & Zola, 1996; Squire & Zola-Morgan, 1991). While it is assumed 

that deterministic decision-making involves contributions from both of these systems (Delgado 
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& Dickerson, 2012; Dickerson & Delgado, 2011), how and whether these systems work together 

to optimize deterministic choices in practice is unknown. 

In the first study of this research program (Tremel et al., 2016), I examined the overlap of 

neural substrates underlying learning and decision-making in deterministic settings. The goal 

was to better understand the mechanism by which choice experiences translate into improved 

decision-making. Using a combination of computational modeling and functional neuroimaging 

(fMRI), this study was able to link sub-regions of the striatum to different learning, memory, and 

decision processes. Specifically, the dorsolateral striatum (putamen) acted as a mnemonic 

storage site representing predictions about choice outcomes formed from repeated decision 

experiences. In contrast, the dorsomedial striatum (head of the caudate nucleus) acted as a 

performance monitor, responding to outcome prediction errors and signaling for adjustments to 

decision control processes. However, the MTL system was conspicuously absent from these 

contrasts, suggesting perhaps that the computational approach was incapable of modeling MTL 

contributions, that MTL contributions were overshadowed by striatal contributions in this 

particular task, or that the MTL was less involved in deterministic decision-making than initially 

thought. 

Nevertheless, neuropsychological evidence specifically implicates the MTL in 

deterministic decision-making. Damage to the MTL routinely impairs performance on 

deterministic decision-making tasks, such as concurrent discrimination learning (Buffalo et al., 

1999; Corkin, 2002; Hood et al., 1999; Squire et al., 1988; Squire and Zola, 1996; Zola-Morgan 

et al., 1989; Zola-Morgan et al., 1994). Though learning can be preserved in some cases of MTL 

damage, successful performance normally requires a long trajectory of repeated experiences 

(Bayley et al., 2005; Buffalo et al., 1998; Chudasama et al., 2008; Gaffan & Murray, 1992; Hood 
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et al., 1999; Malamut et al., 1984; Phillips et al., 1988; Suzuki et al., 1993). Given this, it is 

possible that the role of the MTL in deterministic decision-making is to leverage individual 

instances of experience early in the learning trajectory to build an initial memory foundation to 

support later learning. Without this foundation, like in cases of MTL damage, learning may take 

longer by having to rely on retrospective habit learning via the striatum (Bayley et al., 2005) or 

other types of gradual learning processes associated with the acquisition of semantic information 

(Duff et al., 2006; Kan et al., 2009; O’Kane et al., 2004; Sharon et al., 2011). 

Thus, given this evidence, it seemed that the best method to investigate MTL 

contributions was to specifically manipulate the efficacy of MTL-based (i.e., declarative) 

memory. The second study in this program explored the question of how declarative memory, 

via an MTL system, helped to improve subsequent deterministic decisions. In this study, I 

examined the same deterministic learning task as in the first study (concurrent discrimination), 

but included a list-length manipulation, wherein one group of subjects learned a set of 50 items 

over eight repetitions and another learned a set of 100 items. The hypothesis was that subjects 

learning a smaller set of items would have superior declarative memory compared to those 

learning the larger set of items (Jacoby, 1991; Mahut et al., 1982; Mishkin, 1982; Wais et al., 

2006; Yonelinas, 2001), and therefore would place a greater emphasis on utilizing an MTL-

based approach to guide decision-making on this task. Both groups of subjects exhibited 

behavioral profiles of memory consistent with the hypothesis, and the group learning the larger 

item list exhibited greater striatal activity than the shorter list group. This shorter list group 

exhibited learning-related activation in an MTL region in the hippocampus proper, even though 

this MTL activity was unassociated with computationally derived measures of the decision-

making process. Thus, this study provided evidence that declarative memory and the neural 
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systems underlying it may contribute to deterministic learning, but questions remained with 

respect to how these mnemonic processes, specifically those mediated by the MTL, 

fundamentally relate to subsequent choice making episodes. Moreover, there was still a lack of 

clarity regarding the apparent discrepancies between these imaging studies and 

neuropsychological findings that point to the MTL as a necessary substrate for deterministic 

decision-making. 

 Importantly, concurrent discrimination is an extended repetitive learning task, wherein 

feedback is delivered after every decision experience. This encourages the re-encoding and 

updating of memory during each decision event. Thus, processes related to learning via repetitive 

feedback (i.e., habit learning) may underlie successful concurrent discrimination learning. This 

may be why these two prior studies found a strong relationship between striatal activity and 

behavioral and computational measures of decision-making. As such, it is possible that the role 

of the MTL might be masked by the long, repetitive learning trajectory of concurrent 

discrimination. It may be the case that the MTL is necessary early in this trajectory to set up an 

initial memory scaffold that can be used to produce early decision successes. As learning 

continues, the slower striatal procedural memory system can take over after enough experience 

(e.g., a few repetitions of correct outcomes). Once the striatal system takes over, the MTL 

scaffold may no longer be necessary. 

 The overarching goal of this dissertation is to bridge this apparent disconnect between the 

neuropsychological literature and previous computational neuroimaging findings (Tricomi & 

Fiez, 2008, 2012; Tremel et al., 2016, 2018). This dissertation investigates the possibility that the 

MTL and striatum operate in parallel and are co-active early in the learning trajectory of 

deterministic decision-making (i.e., after a single exposure to a decision outcome). To 
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accomplish this, I present an empirical study of single-exposure deterministic decision-making 

that simultaneously manipulates the engagement of the MTL and striatal systems in a within-

subjects design. Subjects performed a task in an fMRI scanner, in which they learned to associate 

words with positive or negative feedback in a set of 80 word pairs. In the first exposure to these 

decision experiences (Round 1), subjects guessed at which word was correct and received 

feedback about their decision. In a subsequent round (Round 2), they then used this prior 

experience to guide their decision-making and make better choices. Decision-making in the 

second round is presented in the same context as in the exposure round, but without feedback, 

preventing subjects from learning and updating via new information. Thus, this design separates 

encoding and learning processes in Round 1 from decision-making processes in Round 2. This 

task also featured a 2 x 2 factorial manipulation of monetary reward magnitude and associative 

context to differentially target memory systems in the striatum and MTL, respectively. 

 The first chapter (Chapter 2) dissociates MTL and striatal contributions and investigates 

the system-level interactions during deterministic decision-making. In this chapter, I analyze the 

effects to two experimental factors – associative context (via images) and reinforcement 

magnitude – that have the intended purpose of modulating the relative engagement of the MTL 

and striatal systems. Activity in the MTL was expected to predict the accuracy of subsequent 

decisions and to be associated with episodic memories of specific decision experiences, 

reflecting that the MTL supports the encoding and retrieval of event-specific details that can 

inform later choices. Activity in the striatum was expected to predict the accuracy and speed of 

subsequent decisions and to be associated with familiarity-based memories of specific items, 

reflecting that the striatum supports the accumulation of an item-specific reinforcement history 

that can contribute to decision response automaticity. The goal of this chapter was to establish 
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that the MTL contributes to deterministic learning alongside the striatum and that these MTL 

contributions are especially important in single-exposure deterministic decisions. 

 The subsequent chapter (Chapter 3) tests the computational mechanisms associated with 

the MTL and striatal systems and whether the MTL might build an initial memory scaffold to 

support initial learning and decision-making. To do this, I simulated different types of 

reinforcement learning agents using data from Chapter 2. One type of reinforcement learning 

agent, model-free, implements a retrospective process wherein instances of decision outcomes 

are accrued through repetition into a metric representing the overall predicted value of a choice. 

In this type of learning, individual experiences are not directly used to guide decision-making, 

but rather used to build a history of observed reinforcement associated with a particular choice. 

In contrast, model-based reinforcement learning implements a prospective learning process 

wherein initial experience is used to build a model of the decision environment which is 

subsequently used to predict outcomes of future choices. If the above distinction between 

striatum- and MTL-mediated contributions to decision-making is correct, activity in these 

regions should map onto the computational distinction between model-free and model-based 

reinforcement learning, respectively. Furthermore, if the MTL is the primary source of 

knowledge early in the learning trajectory and therefore essential to initial decision-making, 

subjects who perform well in the decision task and subsequent memory tasks should exhibit a 

greater preference for model-based learning relative to poor performers. Taken together, the third 

chapter examines the possibility that the MTL is vital to successful decision-making after just a 

single prior choice experience and that the striatum is associated with making decision responses 

more habitual with repeated experience. 
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2.0  MEDIAL TEMPORAL LOBE AND STRIATAL MEMORY SYSTEMS 

UNDERLIE DETERMINISTIC DECISION-MAKING 

Our environment is composed of pervasive decision-outcome relationships that we learn about 

through experience. Making a decision and experiencing its associated outcome provides 

essential information that can be used to optimize future choices. Several neural systems seem to 

underlie the encoding of these experiences, wherein different types of mnemonic representations 

are constructed to characterize different aspects of a particular decision event. Two systems in 

particular, the medial temporal lobe (MTL) associative memory system and the striatal 

procedural memory system, seem to play a role in translating prior experience into decision-

making behavior, but extricating their discrete contributions has been challenging. This study 

manipulates two factors associated with each system in order to dissociate the contributions of 

the MTL and the striatum. This is done using a single-exposure deterministic decision-making 

task, wherein memory encoding and learning processes are separated from decision-making 

processes. 

 Prior work in this area has highlighted striatal involvement in deterministic decision-

making, but the contributions of the MTL have remained elusive. Using a concurrent 

discrimination learning task, in which subjects learned through repetition to choose particular 

words associated with positive feedback, it was found that different sub-regions of the striatum 

implemented computational measures of learning (reward prediction errors and choice-value 
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predictions via reinforcement learning) and decision-making (decision thresholds and drift-rates 

via drift-diffusion modeling) (Tremel et al., 2016). Specifically, regions in the head of the 

caudate nucleus responded to errors in outcome value expectations (reward prediction errors) and 

were associated with performance monitoring (decision thresholds). In contrast, a region in the 

putamen was associated with bottom-up mnemonic evidence accumulation and storage (choice-

value predictions and drift-rates). Taken together, it was hypothesized that these regions worked 

in concert to store and update underlying mnemonic representations that were then used to 

inform subsequent decisions (Seger & Cincotta, 2005; Seger et al., 2010). In contrast to the 

apparent involvement of striatal regions, MTL regions were unassociated with the measures of 

learning and decision-making considered in this study, leaving open the question of how the 

MTL contributes to choice performance. 

 A follow-up to this study used a list-length manipulation to modulate the efficacy of 

declarative memory and thereby impact contributions of the MTL (Tremel et al., 2018). List-

length manipulations such as this have been traditionally used to reduce the efficacy of 

declarative memory encoding and retrieval (Jacoby, 1991; Mahut et al., 1982; Mishkin, 1982; 

Wais et al., 2006; Yonelinas, 2001). As such, two groups of subjects participated in a concurrent 

discrimination task with either 50 items or 100 items. It was expected that the 50-item group 

would outperform the 100-item group since they could theoretically rely on more robust MTL-

based declarative memory retrieval to draw upon memories of individual instances of prior 

experience. However, while recognition and episodic memory performance indicated that the 

list-length manipulation succeeded in modulating the efficacy of declarative memory, activity in 

MTL regions was again unassociated with computational measures of decision-making (i.e,. 

decision thresholds from a drift-diffusion model), despite exhibiting a list-length effect. 



 9 

Consistent with the prior study, activity in the caudate nucleus of the striatum seemed to play a 

key role in supporting decision-making for the longer list group, who exhibited poorer 

declarative memory performance overall. Thus, taken together, these two studies seem to suggest 

that the MTL may play a more limited role in deterministic decision-making compared to that of 

the striatum. 

However, neuropsychological evidence indicates that the MTL not only contributes to 

these decisions, but in fact may be essential. Damage to the MTL routinely impairs performance 

on deterministic decision tasks, such as concurrent discrimination, in both monkeys and humans 

(Zola-Morgan et al., 1989; Zola-Morgan et al., 1994; Buffalo et al., 1999; Squire et al., 1988; 

Squire and Zola, 1996; Corkin, 2002; Hood et al., 1999). Though learning can be preserved in 

some cases of MTL damage, it often requires a longer trajectory of learning with more repetition 

to reach criterion levels of performance (Bayley et al., 2005; Buffalo et al., 1998; Chudasama et 

al., 2008; Gaffan & Murray, 1992; Hood et al., 1999; Malamut et al., 1984; Phillips et al., 1988; 

Suzuki et al., 1993). Thus, it is possible that the role of the MTL is to build an initial memory 

foundation that supports early decision-making after only a few exposures. Without this 

foundation, like in cases of MTL damage, learning may take longer by having to rely on gradual 

learning processes, such as a striatum-based procedural memory system (Bayley et al., 2005) or 

semantic memory systems (Duff et al., 2006; Kan et al., 2009; O’Kane et al., 2004; Sharon et al., 

2011). When examining a longer trajectory of learning in healthy individuals, as in previous 

neuroimaging studies (Tremel et al., 2016, 2018), these putative early MTL contributions may be 

masked by consistent striatal engagement across the task. 

 To bridge the apparent disconnect between the neuropsychological literature and previous 

computational and neuroimaging findings (Tricomi & Fiez, 2008, 2012; Tremel et al., 2016, 
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2018), this study examines the possibility that the MTL and the striatum operate in parallel and 

are co-active early in the learning trajectory of deterministic decision-making. To do this, I 

simultaneously manipulate two factors that are expected to modulate the relative engagement of 

both systems. This is done in the context of a single-exposure deterministic decision-making 

task, designed to delineate mnemonic encoding processes from decision-making processes. This 

study, thus, can investigate the contributions of multiple memory systems after a single exposure 

without the drawbacks of examining repetitive learning across a longer learning trajectory. By 

targeting both systems with a factorial manipulation, different contexts of decision-making can 

be examined, wherein one system may be more effective than the other. 

 More specifically, to better understand the contributions of the MTL and striatum, 

subjects in this study performed this decision-making task during an fMRI session, in which they 

learned to associate words with positive or negative reinforcement in a set of 80 word pairs. 

Subjects learned these associations in a single exposure via feedback (Round 1) and used that 

experience to make better decisions in a second exposure (Round 2). This task also featured a 2 x 

2 factorial manipulation of monetary reinforcement magnitude and associative context to 

differentially target memory systems in the striatum and MTL, respectively. Words in the task 

were associated with monetary reinforcement (reward or punishment) and with a detailed image 

to provide additional associative context. Detailed background images, such as an image of a 

natural landscape, have been used in other memory and decision-making tasks to enhance the 

engagement of associative memory mediated by the MTL (Bornstein et al., 2012; Bornstein et 

al., 2013; Doll et al., 2015b; Hannula et al., 2013; Hayes et al., 2010; Howard et al., 2011; Park 

et al., 2014). Likewise, monetary reinforcement has been preferentially linked to the engagement 

of striatum-based learning and memory systems (Jocham et al., 2011; Packard & Knowlton, 
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2002; Schönberg et al., 2007; Wimmer et al., 2012). These two factors were examined in the 

context of encoding, operationalized as the first round of the task (i.e., choosing an item the first 

time with no prior knowledge, but learning about its associated outcome), and subsequent 

decision-making, operationalized as the second round of the task (i.e., choosing an item a second 

time after just one episode of prior experience without additional feedback). As such, encoding 

and decision-making in this task represent different cognitive processes, with the former 

capturing the encoding of a current experience with the purpose of informing later behavior and 

the latter capturing the retrieval of prior experience to inform behavior. 

The present study has two primary goals with respect to understanding the role of the 

MTL and the striatum in decision-making. First, this study seeks to establish links from activity 

in the MTL and striatum directly to decision-making behavior in the second round of the task 

using a regression approach with single-trial fMRI activity. It is expected that activity in both 

systems during subsequent decision-making (Round 2) will individually correlate to measures of 

decision behavior such as accuracy and response time. Statistically significant relationships 

between regional activity and decision behavior would implicate these regions as important 

contributors in supporting the retrieval and use of information to drive decision-making after a 

single experience. By directly correlating activity with decision behavior in Round 2 (i.e., after a 

single exposure), this approach avoids pitfalls associated with using computationally derived 

metrics of decision-making that can encapsulate additional non-decision processes such as 

additional encoding or executive roles. 

As such, previous approaches have failed to distinguish between the instance-based 

retrieval of the MTL and the composite value history computed by the striatum. The second goal 

of this study is to make this distinction. This is done by examining encoding-related activity in 
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these regions during the initial decision experience in the first round of the task. The MTL is 

expected to contribute instance-specific information to decision-making and therefore should 

exhibit correlations between encoding-related activity and subsequent measures of episodic 

memory about individual items. In contrast, activity in the striatum is expected to not exhibit 

such a relationship since this system should rely on a composite history of prior outcomes and 

not instance-specific information. Thus, while both systems are expected to support decision 

behavior in the second round, each system should exhibit a unique memory profile of encoding 

in the first round, reflecting that different types of mnemonic representations are implemented by 

the MTL and striatum. 

As a secondary aim, this study also seeks to characterize interactions between these 

systems and the factors that may modulate these interactions. I employ a psychophysiological 

interaction analysis testing the extent to which functional connectivity between MTL and striatal 

regions changes based on contextual factors in the task (i.e., associative context or monetary 

reinforcement magnitude). This analysis assesses whether activity in two given regions correlates 

in a manner that depends on these factors. A significant psychophysiological interaction would 

suggest that two regions exhibit shared processing that modulates based on a given factor (e.g., 

associative context). I expect the MTL to respond strongly to rich associative contexts, whereas 

the striatum should respond strongly to larger reinforcement magnitudes. If activity in MTL and 

striatal regions is correlated but depends on these factors, these systems may play parallel but 

distinct roles in supporting decision behavior. Altogether, this study provides evidence that the 

MTL and striatum have unique but fundamental roles in supporting deterministic decision-

making behavior. 
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2.1 MATERIALS AND METHODS 

2.1.1 Subjects 

Twenty right-handed, native English speakers participated in a 2-hour behavioral and 

neuroimaging (fMRI) session. All subjects had normal or corrected-to-normal vision. Two 

subjects were excluded due to excessive movement in the fMRI scanner, leaving a sample of 18 

subjects (10 female), who ranged in age from 20-25 years (M = 21.56, SD = 1.79). Subjects were 

compensated $60 for their time and could earn up to $15 in additional bonus money based on 

task performance. Informed consent was obtained from all subjects according to procedures 

approved by the University of Pittsburgh Institutional Review Board. 

2.1.2 Deterministic decision-making task 

2.1.2.1 Design 

During the 2-hour experimental sessions, subjects first participated in a slow event-related, 

deterministic decision-making task in an fMRI scanner (Figure 1). In this task, subjects made 

decisions about 80 pairs of words and learned to associate particular words with positive or 

negative feedback (Round 1). They experienced these words a second time and used their prior 

experience to inform their decisions (Round 2). In Round 1, subjects selected one word in a 

presented pair and received feedback indicating whether choosing that item resulted in a 

monetary gain or loss. Round 1 outcomes for each pair were pre-determined to ensure an even 

split of gains and losses going into Round 2. In Round 2, subjects performed the same task as in 

Round 1, but used their knowledge about the items to choose the best word (i.e., the item 
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associated with a monetary gain). Pairs, however, were different in Round 2 such that whichever 

word was selected in Round 1 was presented in Round 2, but paired with a new word that had 

not yet been seen. In the case of a Round 1 gain, subjects would have to choose that item again to 

receive a gain in Round 2. In the case of a Round 1 loss, subjects would have to infer that the 

new word is the correct word and choose that instead, thereby avoiding a monetary loss. Round 2 

items were re-paired in this way so that subsequent analysis could reduce the number of factors 

by focusing on selected items only, since selection can influence how decision experiences are 

encoded (Tremel et al., 2018). The deterministic nature of this task and the re-pairing in Round 2 

were made clear to subjects during instructions and a short practice session. 

 

 

Figure 1. Deterministic decision-making task structure. 

In Round 1 (top panel) of the deterministic decision-making task, subjects were presented with a pair of words with 
an image in the background. After selecting one of the words with a key press, subjects received feedback indicated 
a monetary gain or loss associated with their choice. Images were either a clear natural landscape (displayed above) 
or a noise-degraded landscape image (associative context manipulation). Monetary reinforcement varied between 
low magnitudes ($0.10-$0.29) and high magnitudes ($0.81-$1.00). There was a fixed, equal ratio of gains and losses 
in Round 1. Round 2 (lower panel) began after subjects made decisions to each of the 80 pairs of words in Round 1. 
Only the word pairs were presented in Round 2, with no background image or feedback. Word pairs in Round 2 
consisted of a word that was selected by the subject in Round 1 paired with a new word.  
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This task also featured a 2 x 2 factorial manipulation of monetary reinforcement 

magnitude and associative context to differentially target memory systems in the striatum and 

MTL, respectively. For the reinforcement manipulation, decisions were associated with a low or 

high magnitude reward or punishment, depending on accuracy of selection. Low magnitudes 

ranged from $0.10 to $0.29, while high magnitudes ranged from $0.81 to $1.00. Reinforcement 

magnitude was explicitly reported to subjects in the feedback they received in Round 1. For 

correct decisions, feedback displayed a plus sign and the magnitude in green text (e.g., 

“+$0.85”). For errors, feedback displayed a minus sign and the magnitude in red text (e.g., “-

$0.85”). Subjects earned a monetary bonus on top of the base participation payment based on the 

cumulative value accrued in Round 2 performance. Round 1 was excluded from the bonus 

calculation since the outcomes are fixed and since subjects had no experience to draw upon at 

that point. 

For the associative context manipulation, decisions were presented with a clear, detailed 

image or a noise-degraded image of a natural landscape. This image appeared in the background 

of Round 1 choice experiences and remained on the screen as feedback was delivered. Feedback 

and the context image were presented in Round 1, but not in Round 2. In Round 2, subjects only 

saw the words and made a selection, receiving no new feedback about their performance. Thus, 

Round 2 constituted decision experiences without new encoding of outcome information. 

Of the 80 word pairs in Round 1, half were associated with the clear context and half with 

the noisy context. In each of these categories, half were then associated with high magnitude and 

half with low magnitude. Likewise, of those, half were predetermined to yield gains, while the 

other half were predetermined to yield losses. Words associated with gains or losses in Round 1 
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were associated with the same value and magnitude in Round 2 (though feedback was not 

delivered). 

2.1.2.2 Word stimulus materials 

Word stimuli (N = 640) were drawn from the MRC Psycholinguistic Database (Coltheart, 1981). 

All words were one-syllable, between three to six letters, and between two to five phonemes. 

Words were further constrained by four psycholinguistic characteristics: frequency (log HAL > 

5.00, M = 9.10, SD 1.45), concreteness (range 350-700, M = 547, SD = 69.05), familiarity (range 

350-700, M = 524, SD = 55.66), and imageability (range 350-700, M = 552, SD = 56.00). 

Additional word frequency data were acquired via the English Lexicon Project (Balota et al., 

2007). 

Words were divided into eight separate word lists of 80 words each. Each list was 

balanced for the above psycholinguistic criteria. To create the lists used in the deterministic 

decision-making task, two lists were randomly selected, randomized, and paired to create the 

word pairs. A third list was randomly selected, randomized, and used as the new word pairings 

of Round 2. The remaining five lists were set aside for use as distractor items in subsequent 

behavioral tasks. This routine ensured that each subject had a unique set of word pairs for the 

task, while remaining balanced for psycholinguistic characteristics. 

2.1.2.3 Image stimulus materials 

Images for the associative context manipulation (N = 80) were compiled from web searches (via 

Google Images) for public domain stock photos of natural landscape scenes. Images were 

processed to balance visual image properties across the set, such as contrast, luminance, and 

brightness. In the same processing routine, each image was also noise-degraded to produce a 
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duplicate set of noisy images for each clear image in the set. To balance visual image properties, 

the forward 2D discrete Fourier transform (DFT) of each image was computed using a fast 

Fourier transform algorithm (FFT). Each image’s DFT was decomposed into a phase angle 

matrix and an amplitude matrix. The amplitude matrix was averaged across the entire set to 

normalize visual properties across images. For the clear image set, this average amplitude matrix 

was recombined with each image’s individual phase angle matrix and inverted via inverse FFT to 

generate the final image.  

For the noise-degraded image set, each original image was randomized to generate a 

random noise image with the same color (RGB) spectrum as the original image. Next, the phase 

angle matrix of this randomized noise image was recombined with the set’s average amplitude 

matrix and inverted via inverse FFT to generate a fully noise-degraded image. This noise image 

was then combined with the corresponding processed clear image via linear interpolation at 75% 

percent noise (i.e., 75% noise image, 25% clear image). Figure 1 illustrates an example of a clear 

image and its noise-degraded counterpart. This procedure has been used for a similar purpose in 

studies of perceptual decision-making (Heekeren et al., 2004; Tremel & Wheeler, 2015). 
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Figure 2. Associative context example. 

(a) Example image of a clear associative context, consisting of a detailed image of a natural landscape. (b) Noise-
degraded version of the same image. In the task, all presented clear and noise-degraded images were unique, such 
that a subject would never see the noise-degraded counterpart of a clear image used in the task. 
 

2.1.2.4 Scan procedure 

Before entering the fMRI scanner, subjects practiced a short, 8-pair version of the deterministic 

decision-making task and were instructed on the structure of the scan version of the task. Once 

entering the scanner, two sequences of anatomical images were acquired (T1- and T2-weighted), 

followed by functional imaging of the deterministic decision-making task. In the scan version of 

the task, Rounds 1 and 2 were broken up into four separate runs each of 20 trials (8 runs total). 

Each run lasted about 8.5 minutes.  

For each trial, a pair of words was presented in a semi-transparent box in the center of the 

screen with a clear or noise-degraded natural landscape image in the background (Figure 1). 

Subjects chose one of the presented words with a button press during this 4 s decision response 

period. Button presses were assigned to the index finger of both hands, counterbalanced across 
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subjects. For half of the subjects, selecting the top word was assigned to a left-hand button press, 

while selecting the bottom word was assigned to a right-hand button press. This was reversed for 

the other half of subjects. After pressing the button, the chosen word was highlighted on the 

screen for the remainder of the 4 s decision epoch. This was followed immediately by a 2 s 

feedback period, in which feedback displayed choice accuracy (gain or loss) and associated 

monetary value in the box in the center of the screen. After feedback, subjects fixated on a cross 

at screen center for 2 s.  

Because this task was a slow event-related design, a 14 s baseline period separated each 

trial. During this baseline period, it was possible that subjects could engage in a verbal rehearsal 

strategy instead of resting, thereby engaging the MTL and associated verbal working memory 

processes. This engagement could be detrimental to later analysis. Therefore, subjects performed 

a distractor 1-back task during this baseline period to prevent verbal rehearsal between trials. In 

this task, a series of six words, drawn from one of the unused word lists, were presented in 

sequence on the screen. A random word in a random place in the sequence appeared twice in 

succession. When this occurred, subjects were instructed to respond with a button press. Words 

were displayed on the screen for 1 s, separated by a 1 s fixation period.  

In addition to the baseline period, trials were further separated by a variable inter-

stimulus interval to facilitate group-level event-related analyses. This interval was sampled 

randomly from a positively skewed distribution ranging from 2-6 seconds, drawn in increments 

of 2 s (M = 3.2 s). Each run ended with a 12 s fixation period to allow the signal to fully decay to 

baseline after the final 1-back distractor sequence.  

For the scan session, the task was projected onto a screen at the head of the magnet bore 

using a BrainLogics MRI Digital Projection System. Subjects viewed the screen via a mirror 
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attached to the radio frequency coil and indicated their response using fiber optic response gloves 

on either hand, connected to the presentation computer via a serial response box (BrainLogics, 

Psychology Software Tools, Pittsburgh, PA). Earplugs were provided to minimize discomfort 

from scanner noise. This and all other tasks were presented using the PsychoPy software package 

(Peirce, 2007; Peirce, 2009). 

2.1.3 Functional localizer 

At the end of the scan session, subjects participated in a functional localizer scan. This localizer 

was used to identify visual regions associated with stimulus-specific processing of scenes 

(parahippocampal gyrus), words (fusiform gyrus), and faces (fusiform gyrus). The goal of 

localizing these regions was to assess whether visual representations of items experienced in the 

task were related to processing in the MTL and striatum. Functional connectivity was computed 

to assess this by examining how functional coupling from regions of the MTL and striatum to 

stimulus-specific regions in the ventral stream changed as a function of factors in the task, such 

as associative context or reinforcement magnitude. Factor-dependent changes in functional 

connectivity between the target memory systems and visual regions would suggest that 

mnemonic processing in the MTL and striatum draw upon particular visual representations. For 

example, words associated with high value may be remembered better later, which might be 

associated with increased functional connectivity between the striatum and a word-selective 

visual region. Likewise, a clear landscape image may enhance associative memory, which might 

arise from increased functional coupling between the MTL and scene-selective visual regions. 

The face category was intended to localize a control region, since no face images were presented 
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in the task and were thus unassociated with task performance. Thus, face-selective regions 

should not be functionally related to processing in the MTL and striatum.  

The localizer implemented a mixed-block design, wherein subjects viewed several 

stimuli of a single category in 16 s blocks followed by 12 s of passive fixation. There were four 

blocks for each category of faces, scenes, and words. Within each block, subjects performed a 1-

back task similar to the one during the baseline period of the deterministic decision-making task. 

Seven images or words were displayed in each block, one of which repeated in sequence for the 

1-back task. Each image or word was displayed for 1.5 s, separated by 0.5 seconds of fixation. 

Additional variable fixation separated the trials, ranging from 0-6 s (M = 2.5 s).  

Word stimuli were selected from unused lists described above. Scene stimuli were a 

separate set from those described above, but acquired in the same manner. They were not 

processed for visual uniformity to ensure a clear and robust activation of place-selective regions. 

Face stimuli were a part of the MacBrain Face Stimulus set (courtesy of the MacArthur 

Foundation Research Network on Early Experience and Brain Development, Boston, MA). 

2.1.4 Surprise memory test 

After the scan session, subjects participated in a behavioral surprise memory test. In this test, 

subjects were presented with a single word at the center of the screen and responded to two 

memory probes. Words in this task were either words that were selected during Round 1 of the 

decision task (N = 80) or new words drawn from a list of unused words (N = 80). In the first 

memory probe (Recognition probe), subjects were asked whether they recognized the word from 

Round 1 of the decision task or not. Decision task words that were correctly recognized were 

considered “hits” (versus “misses”), while new words that were mistakenly reported as 
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recognized were considered “false alarms” (versus “correct rejections”). In the second memory 

probe (Episodic probe), subjects were asked to recall their experience from Round 1 and report 

whether they received positive or negative feedback when they encountered the presented word. 

This task was used to assess subsequent memory and the nature of the underlying memory 

representations that were used to inform decision-making. 

 Memory test results were analyzed behaviorally by categorizing recognition and episodic 

probe responses into three categories. The “no memory” category comprised items that subjects 

failed to correctly recognize. “Familiarity” reflected items that were correctly recognized (hits), 

but without episodic details. Last, the “episodic” category captured items that were correctly 

recognized (hits) with correctly recalled episodic details. Memory behavior was analyzed 

alongside imaging data described in Section 2.1.5.6. 

2.1.5 Imaging analysis 

2.1.5.1 Image acquisition 

MR images were obtained using a Siemens Allegra 3-T system. Anatomical images were 

acquired using a T1-weighted MP-RAGE sequence (repetition time, TR = 1540 ms; echo time, 

TE = 3.04 ms, flip angle, FA = 8°; inversion time, TI = 800 ms; 1 mm3 isotropic voxels, 192 

sagittal slices) and using a T2-weighted spin-echo sequence (TR = 6000 ms, TE = 73 ms, FA = 

150°, 0.78 mm2 in-plane resolution, 38 axial slices spaced 3.2 mm apart). Functional images 

sensitive to the BOLD contrast were acquired using a whole-brain echo-planar T2*-weighted 

sequence (TR = 2000 ms, TE = 25 ms, FA = 70°, 3.125 x 3.125 x 3.2 mm resolution, 38 slices 

spaced 3.2 mm apart). For each run, the first five images were discarded to allow system 

magnetization (three images) and radio frequency signal (two images) to reach a steady state. 
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2.1.5.2 Image preprocessing 

Preprocessing and analysis of MR data was executed using FIDL (Washington University in St. 

Louis). The preprocessing routine adjusted functional images to account for noise and image 

artifacts. This included adjustment of within-TR slice-time acquisition to the temporal midpoint 

of the first slice via sinc interpolation, adjustment for motion using a rigid-body translation and 

rotation algorithm, intensity normalization within each run to a mode of 1000 to facilitate group-

level comparisons, and transformation into Talairach atlas space with resampling into 2 mm3 

isotropic voxels (Fox et al., 2005; Lancaster et al., 1995; Ojemann et al., 1997; Snyder, 1996). 

The motion adjustment, normalization, and atlas transformation were computed and applied at 

the same time to avoid resampling the data more than once. All analyses were carried out in 

Talairach atlas space (Talairach and Tournoux, 1988). 

2.1.5.3 Region identification 

To identify regions in the MTL and striatum related to deterministic decision-making, a 

secondary imaging dataset was examined that used a concurrent discrimination learning task 

(Tremel et al., 2016; Tremel et al., 2018). This task featured a similar deterministic 

reinforcement schedule, but involved learning relationships between word pairs and feedback 

across eight repetitions of the task instead of just one experience with feedback. This dataset was 

acquired from 33 subjects who learned non-monetary feedback associations to either 50- or 100-

pairs of words. By using this dataset instead of the current one to define regions of interest, I 

sought to avoid circularity in the analysis stream (i.e., statistically defining regions and 

statistically testing those regions using the same data) and thereby define relatively unbiased 

regions to examine the current task. Because there were a priori hypotheses about the MTL and 

the striatum, region identification was limited anatomically to tissue encompassing these regions. 
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Using the first two rounds of the concurrent discrimination task from the Tremel et al. 

(2016, 2018) dataset, a repeated-measures ANOVA was computed to test for a main effect of 

time across all trials. This analysis examined modulations across an event-related average of 11 

time points of a trial. A significant main effect of time indicated that BOLD activity, on average, 

changed over the course of a trial. In other words, this analysis revealed voxels that were active 

during the task, indiscriminate of function (i.e., it does not exclusively localize activity due to 

memory, learning, perception, etc.). A whole-brain image representing the main effect of time 

was then smoothed with a 2 mm full-width at half-maximum Gaussian kernel and corrected for 

multiple comparisons (minimum Z-transformed F-statistic of 4.0, p < 0.05, minimum of 12 

contiguous voxels). Voxels whose activity exceeded a Z-transformed F-statistic of 7.5 were 

considered region peak coordinates, around which 8 mm spheres were grown. Voxels within 

these spheres that failed to pass the multiple comparisons correction (i.e., they did not appear in 

the corrected image) were dropped from the region spheres. The Talairach-space atlas 

coordinates of the center of mass for these corrected regions were then computed. Bilateral 

anatomical homologues were consolidated into single regions (e.g., two regions in the left and 

right head of the caudate nucleus were combined into one bilateral head of the caudate nucleus 

region).  

2.1.5.4 Time series extraction 

One advantage of the slow event-related design is that single-trial BOLD activity time series data 

can be extracted without having to deconvolve overlapping event signals. To extract activity time 

series data, a GLM was computed for each subject, in which signal drift was modeled by a linear 

term and baseline signal was captured by a constant term. No effects of interest were directly 

modeled in this GLM. Instead, trial effects plus noise were retained in the residual error of the 
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model. This residual time series was expressed as percent signal change from the baseline term 

for each run and extracted. The full experimental time series was then segmented into trial-level 

time series by joining 11 time points in sequence from the onset of each trial. 

2.1.5.5 Functional role of the MTL and striatum in decision-making  

The first goal of this study was to dissociate and establish the nature of the contributions of the 

MTL and the striatum to deterministic decision-making processes. In particular, activity in the 

MTL and striatum was used to predict decision behavior, measured as accuracy and response 

times (RT). To do this, two mixed-effects regression analyses were implemented for each 

identified region of interest. These statistical analyses and others throughout this study were 

conducted using the R environment for statistical computing (R Development Core Team, 2016), 

including the Companion to Applied Regression (CAR) (Fox & Weisberg, 2011), linear mixed 

effects modeling (lme4) (Bates et al., 2015), MuMin (Barton, 2009), and sjPlot (Lüdecke, 2017) 

packages. 

In the first analysis, logistic regression was used to predict trial-level decision accuracy in 

Round 2 using regional BOLD activity from Round 2. The second analysis was similar, but used 

linear regression to predict trial-level decision response times (RT) in Round 2 using regional 

BOLD activity from Round 2. Subject was included as a random effect in each model (random 

intercept for each subject), while regional BOLD activity was modeled as a continuous fixed 

effect. The overall goal of these analyses was to examine how each region contributed to 

different behavioral metrics of decision-making, such as accuracy and RT, as predicted by trial-

level fluctuations in the BOLD response. Thus, these analyses sought to establish particular 

decision-related roles for each of the regions of interest. 
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Importantly, these regression models were computed using Round 2 imaging data, 

wherein subjects exploited their prior experience to drive decision-making and were no longer 

encoding contextual details about the task (i.e., there were no background images or feedback in 

Round 2). Thus, activity in Round 2 reflected a relatively pure decision-making signal derived 

from prior experience, with minimal burden on further encoding. For each analysis, the 

dependent variable was computed as the mean activity at time points 4 and 5 of the time series. 

This mean value corresponded to the average time of peak activity during the decision and 

response epoch (i.e., trial), allowing for lag in the hemodynamic response. Therefore, this metric 

should adequately represent a given region’s primary engagement during the decision period of 

this task (Ploran et al., 2007, 2011; Tremel & Wheeler, 2015). This predictor was mean-centered 

for these analyses. 

 Prior work has indicated that the mnemonic encoding of choice experiences is heavily 

influenced by feedback about the selected choice. A decision experienced in the context of 

positive feedback is encoded differently than one experienced in the context of negative 

feedback (Tremel et al., 2016; Tremel et al., 2018). Thus, Round 1 Outcome was included as a 

predictor in these regression analyses as a categorical fixed-effect (i.e., whether the decision in 

Round 1 resulted in a gain or loss). To account for individual variability in sensitivity to gains 

and losses, slopes for this factor were allowed to vary by subject. The inclusion of random slopes 

for the Outcome effect was statistically justified by comparing the model to an alternative 

regression model excluding random slopes. 

It is worth noting that while the Round 1 Outcome factor was included in this analysis, 

other factors such as associative context and reinforcement magnitude were excluded. These 

additional factors were excluded for several reasons. First, these factors were hypothesized to 



 27 

influence the engagement of the MTL and striatum primarily during encoding (i.e., Round 1), 

since the literature has largely examined these factors in that context (Bornstein et al., 2012; 

Bornstein et al., 2013; Doll et al., 2015b; Hannula et al., 2013; Hayes et al., 2010; Howard et al., 

2011; Jocham et al., 2011; Packard & Knowlton, 2002; Park et al., 2014; Schönberg et al., 2007; 

Wimmer et al., 2012). It is thus unclear whether these expected differences during encoding 

would translate into behavioral differences during Round 2, especially given prior findings that 

modulating the efficacy of one system (e.g., the MTL) may not produce behavioral differences in 

decision-making (Tremel et al., 2018). Second, including too many factors would hinder the 

ability to detect a real relationship between physiology (i.e., BOLD signal) and behavior. 

Because there was clear evidence that prior outcome (i.e., gain or loss) could influence the 

direction of effects, the outcome factor was chosen. Last, all factors were individually examined 

in separate exploratory regression analyses, but including either or both of the associative context 

or reinforcement magnitude factors failed to improve the fit of the models and in several cases, 

reduced the quality of fit. In contrast including the factor of Round 1 outcome increased the fit 

quality, supporting the decision to include this factor in this analysis. 

Outlier trials were identified based on the first time point of each full trial time series. If 

this baseline value was beyond the first or third quartiles by more than 1.5 times the interquartile 

range, that trial was considered an outlier and removed from analysis. Qualities of model fits 

were assessed for logistic models by computing concordance and for regression models by 

computing the conditional and marginal coefficients of determination (r2). Concordance reflects 

when the predicted probability for the expected event or outcome is higher than that for the event 

or outcome not occurring, according to the model (Austin & Steyerberg, 2012; Harrell, 2015). 

The conditional r2 for a mixed-effects regression reflects the proportion of variance attributable 
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to the fixed plus random effects in the model, while the marginal r2 value reflects the proportion 

of variance attributable to the fixed effects alone. P-values were corrected for multiple 

comparisons across all models using false discovery rate (FDR) controlling procedures 

(Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001). Regions that failed to exhibit 

decision-related effects in this regression analysis were excluded from subsequent analyses. 

2.1.5.6 Functional role of the MTL and striatum in memory encoding 

By establishing a relationship between decision-making behavior and the activity of particular 

MTL and striatal regions, these regions can be linked to theoretical functional roles in a decision. 

However, understanding these roles in the context of a decision does not test how and what types 

of information these regions contribute to a decision. To understand how these regions encode 

different representations of prior experience, regional activity during Round 1 was examined and 

related to behavior on the post-scan surprise memory test. The goal of this analysis was to 

connect activity related to the encoding of Round 1 decision experiences to the subsequent 

quality of item-level memories. This connection would further characterize regions of the MTL 

and striatum in terms of the kinds of mnemonic representations supported and utilized by these 

regions. 

 To examine regional roles in memory encoding processes, an item-level analysis (item as 

a random factor) was implemented to test for a relationship between task factors (e.g., 

reinforcement magnitude and context) and Round 1 activity in each region. Item-level analysis 

was used to examine whether activity related broadly to particular memory profiles. For instance, 

if regional activity tended to be greater for hit items than for miss items, that region was likely to 

encode some representation of recognition memory. A subject-level analysis, however, may not 

detect that relationship due to individual differences in recognition memory ability. Because 
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memory encoding is a late, post-decision process, a different time window was selected for this 

analysis, corresponding to feedback delivery (mean of time points 7 + 8). This later epoch should 

capture post-decision processes including the encoding of episodic experiences and the binding 

of outcome information to stimulus information. Critically, these encoding processes occur after 

a selection had been made and after feedback has been delivered.  

Two analyses were computed for each region: one to assess recognition memory and one 

to assess episodic memory. The dependent variable in each analysis was regional activity (mean 

of time points 7 + 8), while the independent variables were task-related factors such as 

associative context or reinforcement magnitude. Memory behavior, determined by behavioral 

responses on the surprise memory test, was also included as an independent variable in order to 

tie regional activity to particular memory categories. For recognition memory, memory accuracy 

was used as a factor, separating items into hits and misses, indicating items that were 

successfully recognized and those that were not, respectively. For episodic memory, memory 

response was used as a factor, separating items into whether subjects reported that they believed 

they had received a gain or loss during their Round 1 experiences. 

For the analysis of the recognition memory probe, encoding activity in each region was 

tested with a 4-way ANOVA, including factors of memory accuracy (hit, miss), Round 1 

outcome (gain, loss), reinforcement magnitude (high, low), and associative context (clear, noisy). 

The memory accuracy factor describes whether a subject correctly recognized an item from the 

deterministic decision-making task (hit) or failed to recognize it (miss). Separate ANOVAs were 

computed for each region of interest. 

A similar ANOVA was computed for the episodic memory probe, testing encoding 

activity in each region against four factors, including memory response (subject responded 
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“gain,” “loss” to the probe), Round 1 outcome (gain, loss), reinforcement magnitude (high, low), 

and associative context (clear, noisy). The memory response factor here described the behavioral 

response of a subject to the episodic memory probe and does not capture memory accuracy. 

Instead, this factor (i.e., whether subjects report that they experienced a “gain” or “loss”) 

combined with the Round 1 outcome (i.e., whether subjects actually experienced a gain or loss in 

Round 1) factor describes memory accuracy. A region that encodes subsequent episodic memory 

accuracy, therefore, should exhibit a crossover interaction between these two factors.  

 Since the critical purpose of this analysis was to tie memory behavior to regional activity 

(i.e., memory activity), effects that failed to interact with memory accuracy/response factors 

were dropped from further interpretation. Thus, a main effect of reinforcement magnitude, for 

instance, would not inform whether activity relates to item-level memory behavior, but an 

interaction between reinforcement magnitude and memory accuracy would. As with the 

regression models, p-values were corrected for multiple comparisons across all models using 

FDR-controlling procedures. 

2.1.5.7 Functional connectivity between regions 

Having characterized ways in which regions in the MTL and striatum contribute to deterministic 

decision-making and what memory representations underlie those contributions, the third goal of 

this study was to probe the dynamic relationships among these regions. It is unclear whether 

these regions act in parallel to (i.e., independently), in support of, or in opposition to each other 

and how that interaction may change as factors in the task change. To assess this, a 

psychophysiological interaction (PPI) analysis was conducted using each of the MTL and 

striatum regions as seed regions. This analysis probed how the functional connectivity among 
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these regions changed as a function of the factorial manipulation of reinforcement magnitude and 

associative context.  

One PPI analysis was completed using each MTL and striatal region as a seed region. 

Additionally, PPI analyses were computed separately to examine the effects of the reinforcement 

magnitude factor (high, low) and the associative context factor (clear, noisy). For each PPI 

analysis, three regressors were created. First, the seed regressor was defined as the full, mean-

centered residual time series of a given region. Second, a task regressor was created by coding 6 

s trial blocks at the onset of each trial. Each of these trial blocks reflected contrast coding for the 

task factor of interest. For the reinforcement magnitude factor, high magnitude trials were coded 

as +1 and low magnitude trials as -1. For the associative context factor, clear background trials 

were coded as +1 and noisy background trials as -1. This regressor was centered at zero. This 

task time series was then convolved with a hemodynamic response function to account for 

BOLD signal lag to temporally align it to the seed regressor time series. Last, a target region 

time series was defined as the residual time series of another region of interest (i.e., other MTL 

and striatal regions). 

The PPI was modeled as the interaction between the task (psychological) and seed 

(physiological) regressors as they predict activity in the target region. Subject was treated as a 

random effect (random intercept for each subject). A statistically significant interaction between 

the task and seed regressors in this model would indicate that functional connectivity between 

the seed and target is modulated by reinforcement magnitude (or context, whichever is modeled 

in the task regressor). P-values were corrected for multiple comparisons across all models using 

FDR-controlling procedures. 
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Secondarily, functional connectivity was assessed for these target MTL and striatum 

regions to higher-order visual perception regions selective for particular stimuli (scenes and 

words, with faces as a control). The purpose of this secondary analysis was to gain additional 

leverage in describing the kinds of mnemonic representations encoded by the MTL and striatum 

and how those encoding processes change with factors in the task. To define stimulus-selective 

regions, the functional localizer data was analyzed at a group level using contrasts between the 

“scene” blocks and “face” blocks and between the “word” and “face” blocks. Bilateral regions in 

the parahippocampal gyrus were selective for scenes and a right lateralized region in the fusiform 

gyrus was selective for faces. These coordinates of these regions were in the vicinity of those 

defined in prior work (Tremel & Wheeler, 2015). These regions were used as additional target 

regions in the PPI analyses described above. 

This localizer task analysis, however, failed to localize a candidate word-selective region 

in the fusiform gyrus. Reported coordinates from several studies from the visual word form area 

(VWFA) literature were averaged to create a candidate VWFA region of interest, centered at -43, 

-56, -10 (Cohen et al., 2000; Cohen et al., 2002; McCandliss et al., 2003). Using the main effect 

of time image from the concurrent discrimination learning dataset, a 10 mm sphere was drawn 

with these coordinates as the center. Voxels that failed to pass a multiple comparisons correction 

were dropped from the region. This resulted in a 155-voxel region in the left fusiform gyrus with 

a center of mass at -45, -57, -11 and peak activation at -43, -55, -10, consistent with the VWFA 

literature. This candidate VWFA region was used as an additional target region in the PPI 

analyses described above. It is worth noting that while the localizer analysis was unable to 

identify a statistically significant cluster using the “words” versus “faces” contrast, the regional 
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average activity in this putative VWFA region exhibited a significant preference for words over 

faces, zt = 2.09, p = 0.02. 

2.2 RESULTS 

2.2.1 Behavioral description 

2.2.1.1 Deterministic decision-making task 

Subjects performed a two-round deterministic decision-making task in which they learned from 

experienced decisions in the first round to inform later choices in a second round. On average, 

subjects were able to learn to correctly select items in Round 2 at a rate of 64.2% (SD = 0.17). 

This was a statistically significant increase from the chance average of 49.89% (SD = 0.01) of 

Round 1, t(17) = 3.65, p < 0.01. Chance accuracy in Round 1 was not exactly 50% due to trials 

with missed responses. Response times (RT) also increased from Round 1 to Round 2 from 1.42 

s (SD = 0.25) to 2.00 s (SD = 0.29), t(17) = 8.14, p < 0.001. This increase is consistent with prior 

findings indicating that retrieval of newly encoded information requires additional time relative 

to the encoding episode itself (Eichenbaum, 2001; Jacoby, 1991; Mandler 1980; Tremel et al., 

2016, 2018). Figure 3 illustrates the factorial breakdown of Round 2 accuracy and RT based on 

Round 1 outcome (gain, loss), associative context (clear, noisy), and reinforcement magnitude 

(high, low). While these factors (e.g., outcome and magnitude feedback and context images) 

were not present in Round 2, Round 1 encoding experiences were expected to influence the 

relative contributions of MTL and striatal systems, which may translate into behavioral 

differences. 
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Figure 3. Round 2 decision behavior. 

Average accuracy (top graphs) and response time (bottom graphs) during Round 2 are plotted by factors from Round 
1 of the deterministic decision-making task. These factors include Round 1 outcome (gain or loss, in columns), 
reinforcement magnitude (low or high, x-axis), and associative context (clear or noisy images, grey and white bars, 
respectively). Error bars reflect standard error of the mean. 
 

2.2.1.2 Surprise memory test 

Following the scan session, subjects participated in a surprise memory test that interrogated how 

well they could recognize and recall event-specific details about individual items from the 

deterministic decision-making task. Subsequent memory behavior was categorized to describe 

whether subjects were able to correctly recognize and recall details about an item (“Episodic”), 

just recognize an item (“Familiarity”), or failed to remember an item entirely (“No Memory”). 

On average, 50.76% (SE = 5.18, N = 731) of the items were both correctly recognized and 

correctly associated with episodic details from Round 1. This indicates that subjects generally 

retained episodic memories for about half of the experienced items. For 28.68% (SE = 3.53, N = 

413) of the items, subjects failed to correctly identify episodic details, but were able to correctly 

recognize the item, indicating familiarity with these items. The remaining 20.56% (SE = 3.51, N 
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= 296) of items were unrecognized, indicating that subjects had no memory for these items. 

Additionally, subjects false alarmed on 14.10% (SE = 3.50, N = 189) of the new items, 

indicating a minimal response bias to respond “old” to the recognition memory probe. Table 1 

enumerates the factorial breakdown of subsequent memory behavior. 

 

Table 1. Behavioral memory performance 

 Round 1 Gain Round 1 Loss 
Context Clear Noisy Clear Noisy 

Magnitude High Low High Low High Low High Low 
No Memory 0.14 0.22 0.20 0.24 0.17 0.21 0.24 0.24 
Familiarity 0.24 0.25 0.20 0.22 0.31 0.35 0.38 0.36 
Episodic 0.62 0.53 0.60 0.54 0.52 0.44 0.38 0.40 
 
Mean proportion of responses to the subsequent recognition and episodic memory probes in a post-scan surprise 
memory test. “No Memory” reflects items that were unrecognized by subjects. “Familiarity” reflects items that were 
correctly recognized by subjects, but with errors in episodic memory. “Episodic” reflects items that subjects 
correctly recognized and correctly recalled details about. These categories of memory accuracy are separated by 
three factors from Round 1 of the deterministic decision-making task including outcome (gain or loss), associative 
context (clear or noisy image), and reinforcement magnitude (high or low monetary reward). 
 

2.2.2 Imaging Results 

2.2.2.1 Functional region identification 

This study sought to test predictions about how the MTL and the striatum each contribute to 

deterministic decision-making. In order to identify regions of interest in the MTL and striatum, 

regions were defined using data from prior work with a concurrent discrimination learning task 

(Tremel et al., 2016; Tremel et al., 2018). Regions were identified based on this dataset to 

mitigate circularity in the analysis. The search space for these regions of interest was constrained 

to an anatomical area encompassing the MTL and the striatum, since the a priori hypotheses 

focused on those key systems alone. Using the first two rounds of the concurrent discrimination 
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task, seven regions were identified between the MTL (n = 4) and striatum (n = 3), including the 

hippocampus, caudate nucleus, putamen, and parahippocampal gyrus (Figure 4). Bilateral 

homologues (e.g., head of the caudate nucleus) were collapsed and considered single regions of 

interest if their coordinates in each dimension (x, y, z) were within 3 millimeters (using the 

absolute value of the x coordinate since sign indicates hemisphere). All of these regions were 

functionally active during the concurrent discrimination task and during the present deterministic 

decision-making task (i.e., exhibited a main effect of time). Single-trial time series were 

extracted from each region. 

 

 
Figure 4. Functional regions of interest in the MTL and striatum. 

Magnitude of activation (as z-transformed F-statistic) in the MTL and striatum is plotted on axial slices of the group 
average, Talairach-transformed brain. These statistics were derived from the main effect of time using data from 
prior work with a concurrent discrimination learning task (Tremel et al., 2016, 2018). Contiguous voxels in these 
statistical clusters were considered regions of interest. All regions of interest also exhibited a main effect of time for 
the present deterministic decision-making task. Red voxels indicate a minimum z-statistic of 4.0, while yellow 
voxels indicate a maximum z-statistic of 12. Numbers above the axial slices indicate the corresponding z-plane 
coordinate (millimeters from center plane) in Talairach space.  
 
 

 Activity in four of these regions (Table 2) correlated with accuracy and response time 

measures, reported in sub-section 2.2.2.2. These regions included the right hippocampus, 

bilateral parahippocampal gyrus, left putamen, and bilateral head of the caudate nucleus. 

However, activity in three regions (Table 3) was unassociated with Round 2 decision accuracy 

and response time. These three regions were excluded from further analysis.  
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Table 2. Functional regions of interest in the MTL and striatum. 

Region Anatomical locus x y z Voxels 
1 Right hippocampus 9 -45 0 129 
2 Bilateral parahippocampal gyrus -17/18 -47/-46 -7/-10 72/87 
3 Left putamen -24 0 -5 49 
4 Bilateral head of caudate nucleus -14/11 7/8 -14/-11 254/227 

 
These are the primary regions of interest of this study. Anatomical locus, the approximate anatomical location of the 
center of mass of each region; x, y, z, Talairach atlas space coordinates of the center of mass for each region. Two 
sets of coordinates are reported for bilateral regions indicating the center of mass for the left and right homologues 
(collapsed when coordinates are within 3 mm). Voxels, size of each region in number of voxels (2 mm isotropic 
voxels). 
 

 

Table 3. Other regions of interest unassociated with decision-making measures. 

Region Anatomical locus x y z Voxels 
5 Left hippocampus -16 -34 -5 80 
6 Left body of caudate nucleus -15 -12 24 34 
7 Left parahippocampal gyrus -10 -51 -2 61 

 
These regions of interest were unassociated with decision-making measures (reported in sub-section 2.2.2.2) and 
excluded from further analysis. Anatomical locus, the approximate anatomical location of the center of mass of each 
region; x, y, z, Talairach atlas space coordinates of the center of mass for each region. Two sets of coordinates are 
reported for bilateral regions indicating the center of mass for the left and right homologues (collapsed when 
coordinates are within 3 mm). Voxels, size of each region in number of voxels (2 mm isotropic voxels). 
 

2.2.2.2 Dissociating the differential roles of the MTL and striatum in decision-making 

The first goal of this study was to identify how the MTL and striatum differentially contribute to 

deterministic decision-making. It was predicted that both systems would be engaged during 

decision-making and that activity from both systems would predict behavioral metrics such as 

accuracy and RT. To establish roles for each of the identified regions of interest, a mixed-effects 

regression analysis of the Round 2 imaging data was performed to connect to specific trial-level 

decision behavior. One regression analysis leveraged BOLD activity to predict decision accuracy 

as a function of Round 1 Outcome (i.e., whether the item was associated with a gain or loss in 

Round 1) using logistic regression. A second analysis leveraged activity to predict decision speed 
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(RT) as a function of Round 1 Outcome using linear regression. While these models have four 

possible effects (intercept, activity, Round 1 Outcome, and activity × Round 1 Outcome), this 

study will focus on effects related to regional BOLD activity since the goal is to link activity to 

decision behavior. Full results of each regression analysis are listed in Appendices A and B.  

 Activity in two regions predicted Round 2 decision accuracy during the deterministic 

decision-making task. First, activity in the right hippocampus had a negative relationship to trial-

level decision accuracy, β = -0.29, SEβ = 0.13, z = -2.23, p < 0.05. A unit increase in 

hippocampal activity above the mean was associated with a 25% decrease in the odds of making 

a correct decision in Round 2 versus making an error (Figure 5). In other words, positive 

hippocampal activity was associated with an increased propensity to make an error in Round 2, 

while negative activity was associated with an increased propensity to make a correct decision. 

Regardless, the magnitude of activity (i.e., strong negative-going activation) corresponded to 

increases in the odds of making a correct response. To quantify the quality of fit for these logistic 

models, concordance and discordance metrics were computed (Table 4). 
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Figure 5. MTL activity predicts decision accuracy and response time 

Mixed-effects regression analyses revealed that activity of regions in the MTL predicted measures of decision-
making in Round 2 of the deterministic decision-making task. (a) Activity in the right hippocampus predicted 
decision accuracy in a mixed-effects logistic regression. The predicted probability of making a correct decision in 
Round 2 (derived from the regression) is plotted against hippocampal activity (as % signal change from baseline). 
(b) Activity in the bilateral parahippocampal gyrus predicted decision-making speed in a mixed-effects linear 
regression. The predicted response time (in seconds) of a decision in Round 2 is plotted against activity in the 
parahippocampal gyrus region (as % signal change from baseline). The shaded area reflects standard error of the 
mean. 
 

 

Table 4. Quality of regression model fits 

 Accuracy models RT models 
Region Concordance Discordance Conditional r2 Marginal r2 
R Hippocampus 0.78 0.22 0.23 0.004 
Bilat. parahippocampal  G. 0.79 0.21 0.23 0.01 
L Putamen 0.78 0.22 0.22 0.003 
Bilat. head of caudate 0.78 0.22 0.24 0.02 
 
For the mixed-effects logistic regression models (Accuracy models), concordance and discordance measures were 
computed to quantify the quality of model fits. Concordance reflects when the predicted probability of the expected 
outcome (based on the model) is higher than that for the outcome not occurring. Discordance reflects the opposite. 
For the mixed-effects linear regression models (RT models), conditional and marginal r2 values were computed to 
quantify model fit quality. Conditional r2 reflects the proportion of variance attributable to the fixed and random 
effects of the model, while marginal r2 reflects the proportion of variance due to the fixed effects alone. R, right; 
Bilat, bilateral; G, gyrus; L, left. 
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In a second regression analysis, a different MTL region in the bilateral parahippocampal 

gyrus was associated with decision speed (RT) during Round 2 of the deterministic decision-

making task. Activity in this region predicted decision speed, β = 0.14, SEβ = 0.06, t = 2.47, p < 

0.05, such that an increase in RT such that a one-unit increase in activity added 0.14 s to the 

overall response time (Figure 5). Fit qualities of these linear regression models are enumerated in 

Table 4. 

Parallel to these findings, two regions in the striatum were associated with decision 

accuracy and with decision speed. First, activity in the left putamen predicted decision accuracy 

in Round 2, but did so in a manner that depended on Round 1 outcome (gain or loss during initial 

experience), interaction: β = -0.49, SEβ = 0.21, z = -2.37, p < 0.05. This interaction with Round 1 

outcome indicated that activity in the putamen coded for the learned valence of the item (i.e., 

whether it was a positive gain or negative loss). For gain items, higher activity was associated 

with an increase in the odds of making a correct decision, while for loss items, lower activity 

(i.e., more negative) was associated with an increase in the odds of making a correct decision 

(Figure 6).  
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Figure 6. Striatal activity predicts decision accuracy and response time 

Mixed-effects regression analyses revealed that activity of regions in the striatum predicted measures of decision-
making in Round 2 of the deterministic decision-making task. (a) Activity in the left putamen predicted decision 
accuracy in a manner dependent on Round 1 outcome (gain, loss) in a logistic regression. The predicted probability 
of making a correct decision in Round 2 (based on the model) is plotted against putamen activity (as % signal 
change from baseline). Blue line indicates effect for trials associated with monetary gain in Round 1, while the red 
line indicates the effect for trials associated with monetary loss in Round 1. (b) Activity in the bilateral head of the 
caudate predicted decision-making speed in a linear regression. The predicted response time (in seconds) of a 
decision in Round 2 is plotted against activity in the caudate nucleus. The shaded areas reflect standard error of the 
mean. 
 

 

In the second regression analysis, activity in the bilateral head of the caudate nucleus 

(region 3) predicted trial-level decision RT, β = 0.21, SEβ = 0.07, t = 3.02, p < 0.01 (Figure 6). 

Activity was positively related to RT such that for every unit-increase in activity, RT increased 

by an average of 0.21 s.  

Altogether, activity during Round 2 in the MTL and striatum correlated with measures of 

Round 2 decision behavior. Specifically, activity in the right hippocampus was anti-correlated 

with decision accuracy, while activity in the left putamen predicted decision accuracy in a 

manner dependent on initial decision outcome (i.e., gain or loss in Round 1). Activity in the 

bilateral parahippocampal gyrus and the bilateral head of the caudate nucleus seemed to 
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contribute to decision speed, wherein engagement of these regions was associated with increases 

in the length of a decision episode. Thus, for the MTL system and the striatal system, one region 

in each predicted decision accuracy (right hippocampus, left putamen) and another region 

predicted decision speed (bilateral parahippocampal gyrus, bilateral caudate head). 

2.2.2.3 Characterizing the role of the MTL and striatum in memory encoding 

While tying MTL and striatal activity to Round 2 decision-making behavior establishes that both 

systems functionally contribute to decisions, it is unclear whether these systems contribute in 

fundamentally different ways. The second goal of this chapter was to further characterize the 

functional roles of these systems by examining how regional activity during the initial decision 

experience (i.e., Round 1) related to post-task measures of subsequent memory. It was expected 

that the MTL would contribute instance-specific mnemonic information. Therefore, Round 1 

activity in MTL regions should be predictive of later episodic memory performance wherein 

subjects were asked to recall experience-related information about particular items. This 

relationship was expected to be absent for striatal regions. 

To test this hypothesis, regional activity during Round 1 was assessed based on 

subsequent recognition and episodic memory performance. Items were sorted according to 

behavioral responses to the subsequent memory probes and entered as random factors into 

ANOVAs. Two ANOVAs were computed per region for the recognition and episodic memory 

probes, respectively. Given that the goal of this analysis was to examine how decision-related 

MTL and striatal regions behaved during initial (Round 1) memory encoding, regions that failed 

to exhibit connections to subsequent decision-making behavior were dropped from further 

analysis. These included regions in the left hippocampus, left body of the caudate nucleus, and 

left parahippocampal gyrus (Table 3). 
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The first analysis assessed item-level encoding activity based on the behavioral 

performance of subjects to the surprise recognition memory test that followed the deterministic 

decision-making task. This ANOVA tested Round 1 activity by four factors, including one 

derived from subsequent memory accuracy (hit, miss), and three from the initial encoding 

experience of the deterministic decision-making task. These factors included Round 1 outcome 

(gain, loss), reinforcement magnitude (high, low), and associative context (clear, noisy). The full 

ANOVA results are enumerated in Appendix C. One MTL region and one striatal region 

exhibited statistically significant effects associated with recognition memory accuracy (i.e., hits 

or misses).  

Specifically, in the right hippocampus, there was a significant interaction between 

memory accuracy (hit, miss) and reinforcement magnitude (high, low), F[1, 1370] = 8.93, p < 

0.05 (Figure 7). Activity for hit items was equal regardless of reinforcement magnitude, 

t[1141.8] = 0.11, p = 0.91, but for miss items, activity was greater for low magnitude misses than 

for high magnitude misses, t[231.8] = -2.70, p < 0.01. Within each level of magnitude, activity 

during encoding for high magnitude hits was greater than that for high magnitude misses, 

t[135.84] = -3.20, p < 0.01, but there was no such difference for low magnitude hits and misses, 

t[114.36] = 0.03, p = 0.97. It is worth noting that activity in the hippocampus was positive here 

during encoding, whereas it was negative during Round 2 decision-making. This is consistent 

with findings illustrating positive activity in the MTL during encoding and negative activity 

during memory retrieval (Davachi & Wagner, 2002; Suzuki et al., 2011; Yu et al., 2012).  
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Figure 7. MTL and striatal activity predict recognition memory performance 

(a) Mean activity in the right hippocampus is plotted for items that were later correctly recognized (hits) or 
unrecognized (misses) in a post-scan surprise memory test. Items associated with high value monetary gain or loss 
in Round 1 (high value) is plotted separately from those items associated with low value monetary gain or loss to 
illustrate the interaction. (b) Mean activity in the bilateral caudate head is plotted for hit and miss items based on the 
post-scan recognition memory test. 
 

  

A second analysis assessed item-level encoding activity based on the behavioral 

performance of subjects to the surprise episodic memory test that followed the deterministic 

decision-making task. This ANOVA tested whether Round 1 activity was sensitive to 

experimental factors and episodic memory behavior. One factor, memory response, was derived 

from subsequent memory performance. Items were categorized based on the behavioral 

responses of subjects describing whether they thought they received positive or negative 

feedback during Round 1 of the decision task (i.e., “gain” responses versus “loss” responses). 

Three other factors were included, derived from the initial encoding experience of the decision 

task, including Round 1 Outcome (gain, loss), reinforcement magnitude (high, low), and 

associative context (clear, noisy). The full ANOVA results are listed in Appendix D. Two 

regions in the MTL exhibited statistically significant effects associated with behavioral responses 

to the episodic memory probe, but neither striatal region exhibited an effect. 
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In the right hippocampus, there was a significant interaction predicting episodic memory 

accuracy, F[1, 1292] = 13.84, p < 0.01 (Figure 8). For items associated with monetary gain in 

Round 1, activity was higher when items were successfully remembered than for those 

incorrectly remembered, t[466.58] = 2.67, p < 0.01. This pattern was also present for items 

associated with losses in Round 1, t[506.42] = 3.05, p < 0.01, suggesting that activity in the 

hippocampus during encoding reflected subsequent episodic memory accuracy.  

 

 
Figure 8. MTL activity predicts episodic memory ability. 

(a) Mean activity in the hippocampus is plotted based on the behavioral response of subjects to the post-scan 
surprise episodic memory test. Items that subjects believed were associated with monetary gains or losses are 
labeled on the x-axis. Whether or not the item was actually associated with a monetary gain or loss are plotted as 
separate light or dark grey bars, respectively. Accurate episodic memory judgments correspond to the “Gain” + Gain 
and “Loss” + Loss categories. (b) Mean activity in the parahippocampal gyrus is plotted based on behavioral 
response of subjects to the post-scan surprise episodic memory test as in panel (a). Data are plotted separately for 
items associated with a clear context (i.e., clear image in Round 1) versus a noisy context (i.e., noisy image in 
Round 1) to illustrate the interaction. 
 

 

In the bilateral parahippocampal gyrus, there were two statistically significant 

interactions. There was an interaction of memory response (“gain,” “loss” responses) and 

associative context, F[1, 1292] = 8.38, p < 0.05. This interaction was also modulated by a third 

factor of Round 1 outcome, F[1,1292] = 8.97, p < 0.05 (Figure 8). For the clear context 

condition, parahippocampal activity during encoding was associated with episodic memory 
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accuracy, wherein activity was greater for items that were successfully remembered for both 

Round 1 gains, t[259.29] = 2.70, p < 0.01, and Round 1 losses, t[229.82] = -2.02, p = 0.04. This 

pattern held based on behavioral response to the memory probe, including “gain” responses, 

t[244.97] = 2.11, p = 0.04, and “loss” responses, t[243.92] = -2.39, p = 0.02. This indicates that 

the parahippocampal gyrus acts similarly to the hippocampus with respect to episodic encoding 

for clear context items. However, for the noisy context condition, encoding-related activity was 

related only to subjects’ behavioral responses to the memory probe, wherein “loss” responses 

were associated with higher activity than “gain” responses for items associated with monetary 

gains in Round 1, t[222.47] = -2.45, p = 0.01, and for items associated with monetary losses in 

Round 1, t[250.03] = -2.04, p = 0.04. Within each of these behavioral response categories, 

activity did not differ by Round 1 outcome (i.e., whether the item was actually associated with a 

gain or loss in Round 1) for “gain” responses, t[259.14] = -0.49, p = 0.63, nor for “loss” 

responses, t[214.72] = 0.82, p = 0.41. This pattern indicates that activity in this region encoded 

subsequent behavior to the episodic memory probe for noisy context items, but this encoding 

does not reflect the veracity of what was actually experienced in Round 1 (i.e., Round 1 

outcomes).  

To summarize, activity during the initial decision experience in the right hippocampus 

and bilateral caudate both predicted recognition memory performance. Additionally, activity in 

the right hippocampus and bilateral parahippocampal gyrus both predicted episodic memory 

performance. This suggests that both MTL and striatal systems may encode information that 

supports the ability to identify that a particular stimulus had been encountered before. However, 

the MTL alone seems to support the recall of instance-specific information about previous 

decision episodes. 



 47 

2.2.2.4 Functional connectivity between MTL, striatum, and ventral stream regions 

The final goal of these analyses was to examine the functional relationships between the MTL 

and the striatum and to further characterize their relationship with stimulus-selective visual 

regions involved in the processing of stimuli from a Round 1 decision experience. Given that 

both systems were found to contribute to decision behavior but associated with distinct memory 

profiles, it was expected that the MTL and striatum would operate in parallel. In other words, 

each system supplies key information to the decision process with minimal interaction between 

them. It was also expected that each system would differentially respond to the 2 x 2 factorial 

manipulation of associative context and reinforcement magnitude in Round 1, with the MTL 

exhibiting more sensitivity to the context manipulation and the striatum exhibiting more 

sensitivity to the manipulation of reinforcement magnitude. 

To examine these putative relationships, two functional connectivity analyses were 

performed, testing first how the relationship between MTL, striatal, and stimulus-selective visual 

regions modulated by associative context, and second how connectivity modulated by 

reinforcement magnitude. Functional connectivity was computed using each of the four regions 

as seeds in separate analyses. This was operationalized as a psychophysiological interaction 

(PPI) from a seed region to each of the target regions. A PPI tests whether psychological factors 

(e.g., associative context or reinforcement magnitude) influence the coupling of underlying 

physiological signals between two regions. A positive PPI effect indicates that functional 

connectivity between two regions is modulated by a particular factor from the task.  

Stimulus-selective visual regions defined from the localized task were included in this 

analysis to test the extent to which MTL and striatal regions may draw upon representations of 

instance-specific information from the initial decision experience. For example, the MTL may 
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encode visual information about specific images that appeared in Round 1. If this is the case, 

MTL regions should exhibit increased functional connectivity to scene-selective 

parahippocampal gyrus regions for the clear context condition versus the noisy context 

condition.  

For each seed region, I first assessed the extent to which associative context manipulation 

(clear versus noisy images) altered functional connectivity. Second, I assessed the impact of 

reinforcement magnitude (low or high) on connectivity. These factors were computed as a 

psychological (i.e., task) regressor within the PPI, convolved with a hemodynamic response 

function to account for offset due to BOLD signal lag. For the stimulus-selective visual region 

targets, three regions were localized, including two high-order visual processing regions 

selective for faces or scenes and one word-selective region based prior studies (Cohen et al., 

2000; Cohen et al., 2002; McCandliss et al., 2003) (Table 5). 

 

Table 5. Stimulus-selective regions of interest in the ventral stream 

Region Anatomical locus x y z Voxels Selectivity 
1 Bilateral parahippocampal gyrus 26/-27 -52/-62 -8/-9 482/-368 Scenes 
2 Right fusiform gyrus 38 -54 -15 209 Faces 
3 Left fusiform gyrus (VWFA)* -45 -57 -11 155 Words 

 
These additional regions of interest were identified using a localizer task. The asterisk for the VWFA region 
indicates that this region was defined using coordinates from the literature. Notably, this region exhibited selectivity 
for word versus face stimuli in the present localizer. Anatomical locus, approximate anatomical location of the 
center of mass of the region; x, y, z, Talairach atlas space coordinates of the center of mass of the region (bilateral 
region has two sets of coordinates corresponding to the left and right homologues); Voxels, size of the region in 
voxels (2 mm isotropic); Selectivity, statistical effect exhibited by the region (e.g., “Scenes” indicates that this region 
responds preferentially to images of scenery). 

 

 

The first PPI analysis examined changes in functional connectivity as a function of the 

associative context manipulation (Figure 9). Regions in the MTL were predicted to be especially 
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sensitive to this factor, since subjects could use the clear background images to encode a unique 

and vivid episodic decision experience versus a noisy background image. Functional 

connectivity was expected to be greater for MTL regions to other regions, especially to the 

scene-selective region in the parahippocampal gyrus. Indeed, functional connectivity was greater 

for clear contexts versus noisy contexts between the right hippocampus and bilateral 

parahippocampal gyrus (β = 0.02, r = 0.26, p < 0.001). This was also true from the right 

hippocampus to the scene-selective parahippocampal region (β = 0.02, r = 0.11 p < 0.001) and 

from the bilateral parahippocampal gyrus to the scene-selective region (β = 0.04, r = 0.23, p < 

0.001). Connectivity from the right hippocampus to the approximate VWFA also increased for 

clear images versus noisy images (β = 0.01, r = 0.02, p < 0.05), suggesting that hippocampal 

processing may rely on visual representations of word stimuli.  
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Figure 9. Functional connectivity of the MTL and striatum modulates with context. 

Statistically significant functional connectivity effects dependent on the associative context manipulation (defined 
by a psychophysiological interaction) are plotted as arrows between regions of interest. Black arrows represent 
greater functional connectivity between two regions for clear contexts (i.e., clear images) than for noisy contexts. 
Red arrows represent greater negative functional connectivity (i.e., anti-correlation of activity) between two regions 
for clear versus noisy contexts. White arrows represent greater functional connectivity for noisy versus clear 
contexts. VWFA, visual word form area; PHCG, parahippocampal gyrus. 
 

 

Additionally, functional connectivity from the bilateral head of the caudate nucleus to the 

right hippocampus also modulated with associative context. The right hippocampus and bilateral 

caudate exhibited negative functional connectivity (β = -0.03, r = 0.08, p < 0.01), wherein there 

was greater anti-correlation between regions for the clear context versus the noisy context. This 

suggests that engagement of the hippocampus may be emphasized during clear-image trials 

relative to that of the caudate. Further supporting this, the bilateral caudate head also exhibited a 

PPI with the approximate VWFA (β = -0.06, r = 0.06, p < 0.01), such that connectivity increased 

for noisy contexts relative to clear contexts.  
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In a second PPI analysis, modulations in functional connectivity as a function of 

reinforcement magnitude were examined (Figure 10). The striatum was expected to be especially 

sensitive to this factor, since this system conventionally responds to value manipulations 

(Delgado et al., 2000; Elliott et al., 2000; Liu et al., 2007; Valentin et al., 2007). Functional 

connectivity from the bilateral head of the caudate nucleus to the left putamen increased for low 

magnitude trials relative to high magnitude trials (β = 0.15, r = 0.12, p < 0.05). The caudate again 

exhibited a negative relationship to the right hippocampus (β = 0.96, r = 0.04, p < 0.01), wherein 

there was greater anti-correlation between regions for low magnitude trials versus high 

magnitude trials. This suggests that engagement of the striatum may be emphasized on high 

magnitude trials relative to the hippocampus (which exhibited preference for low magnitude 

trials). For the right hippocampus, functional connectivity increased for low versus high 

magnitude trials to both the bilateral parahippocampal gyrus region (β = 0.01, r = 0.26, p < 0.05) 

and the scene-selective region (β = 0.01, r = 0.09, p < 0.01).  
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Figure 10. Functional connectivity of the MTL and striatum modulates with magnitude. 

Statistically significant functional connectivity effects dependent on the reinforcement magnitude manipulation are 
plotted as arrows between regions. Black arrows represent greater functional connectivity between two regions for 
low value reinforcement trials versus high value reinforcement trials. Red arrows represent greater negative 
functional connectivity (i.e., anti-correlation of activity) for low value versus high value trials. PHCG, 
parahippocampal gyrus. 
 

2.2.2.5 Summary of findings 

The general pattern of results indicates that both the MTL and striatum contribute to 

deterministic decision-making, but that they do so in fundamentally different ways (Table 6). 

Activity in the right hippocampus predicted decision accuracy during Round 2 and subsequent 

memory performance. Additionally, functionally connectivity from the hippocampus was 

sensitive to both associative context and reinforcement magnitude. The hippocampus was 

functionally connected to both the VWFA and scene-selective regions, suggesting that it may 

draw upon or encode visual representations from the initial decision episode. 
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Table 6. Summary of results 

Region Decision Effects Encoding Effects Connectivity Effects 
Hippocampus • Accuracy • Recognition memory 

accuracy (high value items) 
• Episodic memory accuracy 

• (+) PHCG (clear context > noisy) 
• (-) Caudate (clear context > noisy) 
• (+) Scene (clear context > noisy) 
• (+) VWFA (clear context > noisy) 
• (+) PHCG (low reward > high) 
• (-) Caudate (low reward > high) 
• (+) Scene (low reward > high) 

PHCG • Speed • Episodic memory accuracy 
(clear context items) 

• (+) HC (clear context > noisy) 
• (+) Scene (clear context > noisy) 
• (+) HC (low reward > high) 

Putamen • Accuracy (by gain, loss) • N/A • (+) Caudate (low reward > high) 
Caudate head • Speed • Recognition memory 

accuracy 
• (-) HC (clear context > noisy) 
• (+) VWFA (noisy context > clear) 
• (-) HC (low reward > high) 
• (+) Putamen (low reward > high) 

 
Major effects for each region are enumerated in three categories. Decision Effects, association between regional 
activity in Round 2 and decision measures (accuracy and response time) during Round 2 of the deterministic 
decision-making task. Encoding Effects, association between regional activity during Round 1 of the decision-
making task and memory measures from the post-scan surprise memory test. Connectivity Effects, functional 
connectivity effects, including direction and psychological factor, between region at the left of the table to target 
region listed in this column. (+) indicates a direct correlation in activity of the two regions, while (-) indicates an 
anti-correlation in activity of the two regions. Psychological factor underlying the effect (associative context or 
reinforcement magnitude) and the direction of the effect are indicated in parentheses. PHCG, parahippocampal 
gyrus; VWFA, visual word form area; HC, hippocampus. 
 

 

Another MTL region, the bilateral parahippocampal gyrus, was associated with decision 

speed and episodic memory performance. Functional connectivity from this region to the right 

hippocampus was modulated by both associative context and reinforcement magnitude. 

Additionally, the parahippocampal gyrus exhibited associative context-dependent connectivity to 

a neighboring scene-selective visual region, suggesting that this region may encode information 

about the visually salient images in Round 1.  

In the striatum, activity in the left putamen predicted decision accuracy in Round 2 in a 

manner dependent on Round 1 outcome (i.e., gain or loss), suggesting it may encode decision-

relevant value information. Consistent with this, functional connectivity from the left putamen to 

the bilateral caudate head modulated with reinforcement magnitude. Activity in the bilateral head 
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of the caudate nucleus predicted decision speed and recognition memory performance. It was 

functionally connected to the VWFA in a manner dependent on associative context, suggesting 

that it may preferentially encode stimulus-associated information in situations with indistinct 

contexts (e.g., stimulus-outcome relationships). Additionally, activity in the caudate was anti-

correlated with that in the right hippocampus dependent on both associative context and 

reinforcement magnitude, suggesting that these two systems may operate in parallel. For 

instance, when the striatal system was most active, the hippocampal system seemed to be less 

active.  

2.3 DISCUSSION 

In this study, I investigated the differential contributions of the MTL and striatum in a single-

exposure deterministic decision-making task. To manipulate the relative engagement of these 

systems, this task featured a 2 x 2 factorial manipulation of associative context (via images) and 

reinforcement magnitude (via money) related to the individual decision experiences. Activity of 

regions in the MTL and striatum predicted decision behavior and subsequent memory ability. 

Specifically, the hippocampus was linked to episodic memory and decision accuracy, while the 

parahippocampal gyrus was linked to contextual aspects of episodic memory and decreases in 

decision speed. In the striatum, the caudate was associated with recognition memory 

performance and decision speed, while the putamen was associated with decision accuracy, but 

not measures of subsequent memory. Functional connectivity in the MTL increased for high 

context trials, while that in the striatum increased for low context trials. Connectivity between 

the MTL and the caudate nucleus modulated by context and by reinforcement magnitude. 
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Collectively, these findings characterize the neural basis underlying the mnemonic 

representations that drive single-exposure deterministic decision-making. 

2.3.1 MTL regions support the recall of instance-specific information to guide decisions 

A region in the right posterior hippocampus was found to support the encoding of episodic 

information that can be used to drive subsequent decision-making after a single exposure. 

Activity in this region during the initial encoding experience (Round 1) predicted later 

recognition memory and episodic memory retrieval success. This suggests that the hippocampus 

encodes episodic information about individual instances, for example what word was chosen, 

what image was associated with that experience, or what outcome was received (Corkin, 2002; 

Davachi & Wagner, 2002; Eichenbaum, 2001; Squire & Zola, 1996; Squire & Zola-Morgan, 

1991). This information is critical for producing subsequent decision behavior, wherein an 

individual may reconstruct the initial episode from these details to reason about which stimulus 

is best to choose. Indeed, hippocampal activity in Round 2, presumably reflecting the retrieval of 

these episodic details (Davachi & Wagner, 2002; Squire & Zola-Morgan, 1991), coded for 

decision accuracy, suggesting that individuals rely on instance-specific, episodic information to 

drive decisions after a single exposure. This is consistent with other findings implicating the 

hippocampus as a key substrate in supporting subsequent decision behavior (Bornstein & Daw, 

2013). 

 While this finding may be unsurprising in that the hippocampus is thought to support 

rapid learning (Euston et al., 2012; Kumaran et al., 2009), it illustrates that the MTL may serve a 

critical role early in the learning trajectory. If the MTL is critical for supporting the first few 

decision-making opportunities in a repetitive decision-making task, then damage to this region 
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should impair learning. Neuropsychological findings support this assertion, wherein MTL 

damage typically impairs or drastically slows deterministic learning (Bayley et al., 2005; Buffalo 

et al., 1998; Buffalo et al., 1999; Chudasama et al., 2008; Corkin, 2002; Gaffan & Murray, 1992; 

Hood et al., 1999; Malamut et al., 1984; Phillips et al., 1988; Squire et al., 1988; Squire and 

Zola, 1996; Suzuki et al., 1993; Zola-Morgan et al., 1989; Zola-Morgan et al., 1994).  

Alongside the hippocampus, other MTL regions, such as the parahippocampal gyrus, may 

supplement this primary role by storing and providing additional associative details about prior 

experiences. In the present study, activity in the parahippocampal gyrus predicted episodic 

memory retrieval success specifically for items that were paired with a clear (i.e., not noise-

degraded) natural landscape image. This suggests that the parahippocampal gyrus may be 

important for encoding contextual information about an experience, such as visual imagery. This 

may be why functional connectivity between the parahippocampal gyrus, scene-selective 

regions, and the hippocampus modulated with this associative context manipulation as well, such 

that connectivity among the three regions was greater for trials associated with clear images.  

The parahippocampal gyrus was also associated with subsequent decision-making 

behavior in Round 2 of the task, wherein increases in activity predicted increases in decision 

response times (i.e., slower decisions). These increases in decision times might result from the 

recollection of additional details, such as reconstructing associated visual imagery, related to 

parahippocampal engagement. This context-dependent recruitment of the parahippocampal gyrus 

has been linked to the processing of associative information that is bound to information about 

items (e.g., words in the present task) in the hippocampus (Howard et al., 2011). Thus, together 

with the hippocampus, these regions constitute a memory system that can support rapid learning 
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of detail-driven information, which can improve subsequent decision-making in a short time 

frame (Euston et al., 2012; Kumaran et al., 2009). 

 However, the extent of the engagement of these MTL regions may depend on contextual 

factors surrounding a decision experience. While the parahippocampal gyrus specifically 

supported context-dependent memory, both hippocampal and parahippocampal regions were 

preferentially more coupled during rich associative contexts (i.e., clear images) to each other, to 

scene-selective regions in the ventral stream, and to a putative word-representation region in the 

fusiform gyrus. This is consistent with findings that adding imagery to decision experiences can 

modulate the engagement of the MTL as a whole (Bornstein et al., 2012; Bornstein et al., 2013; 

Doll et al., 2015b; Hannula et al., 2013; Hayes et al., 2010; Howard et al., 2011; Park et al., 

2014). Indeed, factors that affect the visual context of an experience have been linked to 

reactivations of visual representations during MTL-based memory recall (Mack & Preston, 

2016). As such, the MTL seems to rely upon the reactivation of these memory traces of the 

initial experience as a means to inform future decisions. 

2.3.2 Sub-regions of the striatum are engaged in single-exposure decision-making 

Two sub-regions of the striatum, the putamen and head of the caudate nucleus, were also found 

to support different aspects of single-exposure deterministic decision-making. The putamen 

coded for decision accuracy in Round 2 after a single experience with the items, but did so in a 

manner dependent on item valence. Positive-going activity in this region reflected improved 

Round 2 decision accuracy for positively valued items (i.e., items associated with monetary gains 

in Round 1) while negative-going activity reflected improved accuracy for negatively valued 

items (i.e., items associated with monetary losses in Round 1). This suggests that the putamen 



 58 

codes for the value associated with a decision outcome, such that experiencing a gain or loss can 

produce an update to predictions of expected outcomes for future choices (Seger et al., 2010; 

Tremel et al., 2016). However, this region was unrelated to metrics of subsequent memory, 

suggesting that while this region may encode information that can be used to inform subsequent 

decision-making, this region may not support the retrieval of individual instances of experience. 

Indeed, the mnemonic representations supported by the putamen typically require tuning across 

several repetitions or experiences and are unlikely to be reliable after just a single exposure 

(Packard & Knowlton, 2002; Yin et al., 2004). Thus, the putamen may be involved in laying a 

mnemonic foundation to set up this tuning early on. This foundation, while it can actively 

contribute to early decision-making, represents a relatively unstable initial prediction about the 

value of having made a particular choice once. With repetition, this decision value can be refined 

by compiling a history of experience with a given choice into a single prediction (Seger et al., 

2010; Tremel et al., 2016). In some ways, the putamen may serve a parallel role as the 

hippocampus in this type of learning, wherein both regions predicted accuracy. However, it 

seems that each region processes fundamentally different types of information, such that the 

hippocampus can support instance-based retrieval, but the putamen cannot.  

The head of the caudate nucleus supported subsequent decision-making behavior in a 

different way. Greater engagement of this region was correlated with increases in decision times, 

suggesting that this region may be involved in control-related functions such as cognitive 

performance evaluation, feedback processing, or the monitoring of goal achievement (Tremel et 

al., 2016; Tricomi & Fiez, 2008, 2012). In prior work, similar regions in the caudate head were 

found to correlate with increases in decision thresholds, estimated by drift-diffusion modeling, 

and with the magnitude of reward prediction errors, estimated by model-free reinforcement 
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learning agents (Tremel et al., 2016, 2018). This suggests that the caudate may respond primarily 

to unexpected situations (e.g., an error in outcome prediction) and signal for the need to expend 

greater effort in making a decision, observed as increases in response times (in the present study) 

and increases in decision thresholds (in prior work). In this context, increases in decision 

thresholds can capture increases in decision effort, associated with longer response times (Usher 

& McClelland, 2001). This increase in effort may reflect several processes, including feedback 

processing to enable additional encoding of relevant details about an experience (Tricomi & 

Fiez, 2008) or the updating of underlying value predictions to ensure better future performance 

(Bornstein & Daw, 2011; Gläscher et al., 2010; Haruno et al., 2004; Kim & Hikosaka, 2013).  

This putative association between the caudate and decision effort is underscored by the 

relationship here between Round 1 caudate activity and subsequent recognition memory 

accuracy. Increases in effortful processing due to an unexpected outcome can increase the 

salience of individual items and in turn, increase the ability to subsequently recognize them (Kim 

& Hikosaka, 2013). In this way, the caudate may serve as some kind of link between multiple 

memory systems, wherein item-level influences can impact other memory representations. For 

instance, activity in the caudate modulates with the strength of declarative memory 

representations (i.e., via the MTL) that are drawn upon during subsequent choices (Tricomi & 

Fiez, 2012). Moreover, the present study found that the caudate was functionally connected to 

both the putamen and the hippocampus depending on modulations in two experimental factors. 

Thus, it seems that the caudate nucleus functions at least partly in the capacity of cognitive 

control and may coordinate simultaneously with other striatal regions (e.g., the putamen) and the 

MTL (though perhaps indirectly) to optimize future decisions. 
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Importantly, both of these striatal regions contributed to subsequent decision behavior 

after just a single exposure, highlighting the importance of the striatum in short-term learning. 

These striatal regions constitute a procedural memory system that is traditionally thought to 

require several repetitions and a longer learning trajectory to optimize the underlying mnemonic 

information (Daw & Doya, 2006; Dayan & Daw, 2008; O’Doherty et al., 2017). Here, however, 

the caudate and putamen seem to act similarly as they would for a longer learning trajectory, 

wherein the caudate supports effortful engagement and the putamen supports mnemonic storage 

(Tremel et al., 2016, 2018). This striatal system is thought to function by encoding, updating, and 

storing prediction signals about outcome values that are optimized across multiple repetitions of 

an experience (Cohen & Ranganath, 2007; Gläscher et al., 2010; Hare et al., 2008). In the present 

study, subjects begin with no prior knowledge about the outcome relationships, so prediction 

errors would be large and frequent during the exposure round of the task. If this principle holds 

true for single-exposure learning, the caudate could be responsible here for signaling prediction 

errors that could update value representations in the putamen (Camille et al., 2011; FitzGerald et 

al., 2009; Hare et al., 2008; Padoa-Schioppa & Assad, 2006; Schultz et al., 1997; Schultz, 2013). 

While this initial foundation of striatal predictions may be too inaccurate or unreliable to 

individually drive decision-making after just one exposure, it is significant that it seems to be in 

place after a single experience and seems to support subsequent decision-making to some degree 

(Miyachi et al., 2002; Seger & Cincotta, 2005).  

2.3.3 Multiple memory systems contribute in parallel to deterministic decision-making 

Different systems in both the MTL and the striatum contribute to improved decision-making 

performance after a single exposure. Interestingly, one region in each system predicted decision 
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accuracy, while another region in each system predicted decision speed. This suggests some 

degree of functional overlap or redundancy between systems, consistent with assertions that the 

MTL and striatum may act in parallel to support decision-making (Delgado & Dickerson, 2012; 

Dickerson et al., 2010; Doll et al., 2015b; Poldrack & Rodriguez, 2004; Shadlen & Shohamy, 

2016). Regions in the hippocampus and putamen both predicted subsequent decision accuracy, 

suggesting that both the MTL and striatum may be capable of individually supporting decision 

behavior. However, given that both systems were simultaneously active, it seems plausible that 

information from these systems is weighted and integrated downstream to produce a singular 

decision output (Delgado & Dickerson, 2012; Shadlen & Shohamy, 2016). The hippocampus 

may build declarative associations between stimuli, outcomes, and experiences, while at the 

same time the putamen builds predictions about the expected value of a particular choice option. 

One critical distinction, however, is that the MTL system seems to support the recollection of 

individual prior instances, whereas the putamen does not. This suggests that in the case of single-

exposure learning, the MTL rather than the striatum may provide more accurate and useful 

information with respect to decision-making. 

This functional overlap may explain why learning can be occasionally preserved in cases 

of MTL damage. By altering the context of a decision in such a way as to emphasize the use of 

one system over the other, these deficits due to MTL loss may be reduced via striatal 

compensation (Bayley et al., 2005; Malamut et al., 1984; Rehbein et al., 2005; Ridley et al., 

1989). In the present study, functional connectivity between the caudate and hippocampus was 

anti-correlated, suggesting that the context of a decision (i.e., situations depending on the 

experimental factors in this study: reinforcement magnitude or associative context) can influence 

the relative balance of these systems. For instance, on trials associated with clear imagery (i.e., 



 62 

associative context manipulation), activity in the hippocampus and the caudate were strongly 

anti-correlated, suggesting that the MTL may be more efficacious for these trials due to the extra 

associative details upon which individuals can anchor their experiences. As such, information 

from the MTL may be more reliable for these trials than that from the striatum due to its ability 

to support instance retrieval. Taken together, however, both systems seem to be useful for 

decision-making, even though their relative contributions to a given choice may be weighted. 

Indeed, the worst decision performance deficits arise when both MTL and striatal regions are 

damaged simultaneously (Teng et al., 2000; Turchi et al., 2010).  

2.3.4 Conclusions 

In this study, I investigated how MTL and striatal substrates individually contribute to 

deterministic decision-making behavior. This was examined in a single-exposure decision task 

which separated encoding processes from decision-related processes. The MTL system appeared 

to be necessary for early success in deterministic decision-making and for retaining subsequent 

memory for individual decision experiences. A striatal memory system was co-active alongside 

the MTL system, supporting decision accuracy and speed. Furthermore, the relative engagement 

of these systems depends on contextual factors of an initial decision experience, wherein 

additional associative context seems to more greatly engage the MTL system, while 

reinforcement seems to more greatly engage the striatum. Collectively, this study demonstrates 

that multiple memory systems underlie deterministic decision-making and that contextual factors 

surrounding a decision event can influence their relative recruitment and efficacy.  
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3.0  COMPUTATIONAL MECHANISMS UNDERLYING MTL AND STRIATAL 

CONTRIBUTIONS TO DETERMINISTIC DECISION-MAKING 

When making a decision, multiple mnemonic resources are drawn upon to inform our choices 

(Delgado & Dickerson, 2012; Doll et al., 2015b; Shadlen & Shohamy, 2016; Tremel et al., 

2016). In chapter 2, I illustrated that the MTL and striatum support decision-making behavior in 

different ways after a single exposure to particular choices. These systems seem to underlie 

different types of information that can each influence decision-making. The MTL provides 

episodic details about specific decision events, wherein individual instances can be retrieved to 

inform subsequent behavior. In contrast, the striatum provides predictions about the value of 

particular decision outcomes, reflecting an accrued history of experience. While both systems 

may operate in parallel during single-exposure learning and decision-making, it is less clear 

whether one system may play a dominant role in this type of behavior. This chapter implements 

a computational reinforcement learning approach to test the possibility that the MTL is essential 

to successful decision behavior in single-exposure deterministic decision-making.  

Neuropsychological evidence points to the MTL as a key substrate of deterministic 

learning and decision-making. Damage to the MTL routinely impairs ability on tasks such as 

discrimination learning (Buffalo et al., 1999; Corkin, 2002; Hood et al., 1999; Squire et al., 1988; 

Squire and Zola, 1996; Zola-Morgan et al., 1989; Zola-Morgan et al., 1994). However, in some 

cases, learning behavior can be spared at the cost of slower initial learning (Bayley et al., 2005; 
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Buffalo et al., 1998; Chudasama et al., 2008; Gaffan & Murray, 1992; Hood et al., 1999; 

Malamut et al., 1984; Phillips et al., 1988; Suzuki et al., 1993). Additionally, when examining 

extended learning trajectories, contributions of the MTL system tends to be overshadowed by the 

contributions of other systems, especially those of the striatum (Tremel et al., 2016, 2018). Thus, 

on the surface, it appears that the MTL might support critical processes early in a learning 

trajectory that use these initial experiences to build a mnemonic scaffold in preparation for 

extended learning. As learning improves through repeated experience, this initial scaffold may be 

supplanted by contributions from other slower systems, such as that mediated by the striatum, 

leading to the development of automatized, habitual behavior (Bayley et al., 2005; Packard & 

Knowlton, 2002; Seger & Cincotta, 2005; Tremel et al., 2016, 2018; Wimmer et al., 2012). This 

putative shift in systems may explain why any preserved learning in the absence of the MTL is 

generally slow and why striatal contributions tend to dominant in studies of extended learning 

(Bayley et al., 2005; Tremel et al., 2016, 2018). 

The computational distinction between model-based and model-free reinforcement 

learning resembles this functional dichotomy between MTL and striatal contributions to 

decision-making (Gabrieli, 1998; Knowlton et al., 1996; Squire, 1992). In model-based 

reinforcement learning, decision-making is a prospective process wherein a model of the task 

environment is assembled and used to simulate potential outcomes of subsequent choices. 

Decision-making in this approach is driven by a policy derived from this model of the 

environment (Bornstein & Daw, 2013; Daw et al., 2011; Doll et al., 2012; Gillan et al., 2015; 

Gläscher et al., 2010). Activity in the MTL has been linked to prospective learning similar to that 

of this approach, reflecting the encoding of sequential relationships between transitions in a task 

(Doll et al., 2012; Doll et al., 2015a; Miller et al., 2017; Pennartz et al., 2011). Thus, model-
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based reinforcement learning may be a viable mechanism underlying MTL contributions to 

decision-making.  

In contrast to model-based learning, model-free reinforcement learning describes a 

retrospective process, wherein decision behavior is driven by a history of outcome value 

predictions that are refined through repetitive experience. In this process, the task environment is 

essentially ignored and instead, individual choice options accrue value through repeated 

experience. The striatum has been implicated as the foundation of a model-free reinforcement 

learning system, requiring many repetitions to build up accurate predictions of decision values 

that can inform behavior (Doll et al., 2015b; Tremel et al., 2016). Thus, in opposition to a model-

based system that may support rapid learning, model-free systems are typically associated with 

longer, procedural learning trajectories (Gläscher et al., 2010; Niv, 2009; O’Doherty et al., 

2015). Together, engagement of both model-based and model-free systems may underlie the 

ability to learn quickly from single experiences and subsequently develop that learning into 

automatized responses.  

In the present study, I tested the possibility that the MTL is responsible for supporting a 

model-based learning system and that this computational mechanism facilitates initial decision-

making after just one episode of experience. Subjects participated in a single-exposure 

deterministic learning task while in an fMRI scanner. Subjects learned to associate words with 

positive or negative reinforcement in a set of 80 word pairs in an initial exposure and then used 

that experience in a second exposure to make better decisions. Model-based and model-free 

reinforcement learning agents were constructed to learn this task based on the experiences of the 

subjects. Simulated decision outcome values derived from each of these models was then fit to 

regions in the MTL and the striatum to determine whether regional activity better reflected one 
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computational mechanism versus the other. I also characterized the extent to which individual 

subjects engaged in one learning approach versus the other to determine the behavioral 

consequences of preferring model-based versus model-free learning. 

If the MTL is responsible for assembling an initial model or scaffold of the decision 

environment, its activity should predict model-based measures better than model-free measures. 

It was also expected that activity in striatal regions would better reflect model-free measures. 

This distinction would support the hypothesis that the MTL and striatal systems play different 

functional and computational roles in decision-making. If this distinction is responsible for initial 

decision successes after a single exposure, it was expected that individual differences in 

preference for model-based approaches would predict more accurate decision-making behavior 

and better memory for individual items. Thus, if model-based computation in the MTL can 

explain initial decision success, there should be performance benefits for relying more on that 

approach and system. Altogether, this study examines the hypothesis that model-based 

reinforcement learning is implemented by the MTL and that this MTL system facilitates 

decision-making after just one experience with a particular stimulus. This putative role could 

reconcile findings that MTL damage impairs learning with those implicating striatal systems as 

essential for deterministic learning.  
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3.1 MATERIALS AND METHODS 

3.1.1 Subjects and task 

The same data described in Chapter 2 were used here to investigate the computational 

mechanisms underlying deterministic decision-making. Briefly, 18 subjects (10 female, 20-25 

years old, M = 21.56, SD = 1.79) participated in a deterministic decision-making task during a 2-

hour behavioral and fMRI session. Subjects made decisions about 80 pairs of words and learned 

to associate their choices with positive or negative feedback. This first exposure to the word pairs 

and outcomes was trial-and-error (Round 1). They then experienced these word pairs a second 

time and used what they learned from Round 1 to make better decisions (Round 2). In Round 2, 

words selected in Round 1 were paired with a new word that had not yet been seen to account for 

memory differences due to selection (Tremel et al., 2018). Two factors were manipulated during 

this task. First, word pairs in Round 1 were presented on top of a background image consisting of 

either a clear, detailed natural landscape or a noise-degraded landscape. Second, word pairs were 

associated with either low ($0.10 to $0.29) or high ($0.81 to $1.00) monetary values. Feedback 

following each choice in Round 1 indicated specific magnitudes of the monetary gains or losses. 

These factors were manipulated to specifically target the engagement of the MTL and the 

striatum, respectively. 

Following the deterministic decision-making task and scan session, subjects participated 

in a surprise memory test. Words from the deterministic decision-making task and words drawn 

from a new list were presented individually as subjects responded to two memory probes. First, 

subjects reported whether they recognized the word from the scan session or not (recognition 

memory). Decision task words that were correctly recognized were considered “hits” (versus 
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“misses”), while new words that were mistakenly reported as recognized were considered “false 

alarms” (versus “correct rejections”). Second, subjects reported whether they remembering 

experiencing that word with positive (gain) or negative (loss) feedback in Round 1 (episodic 

memory). Overall, this task assessed the state of subjects’ memories after engaging in 

deterministic decision-making. 

3.1.2 Reinforcement learning agents 

Given the presence of both model-free and model-based computation in the brain, it is possible 

that one approach dominates in deterministic decision-making. The MTL in particular may 

engage in model-based learning that is sufficient to drive behavior without the influence of 

model-free signals from regions such as the striatum. As a consequence, it is unclear how model-

based and model-free signals each contribute to deterministic decision-making and where the 

MTL and striatum fit within that scope. To assess these competing accounts about how the MTL 

and striatum learn from deterministic experiences, three types of reinforcement learning agents 

were implemented. Two models captured different aspects of learning based on either an accrued 

history of experience or predictions from a model of the task environment. A third approach 

combined these two styles in a hybrid model to assess subject-level preference for engaging in 

one computation versus the other. 

3.1.2.1 Model-free agent  

To capture the dynamics of model-free, retrospective learning, an off-policy temporal difference 

control algorithm (Q-learning) was implemented. In Q-learning, an agent updates predictions 

about quality values, Q, for particular decisions by making a choice and assessing the observed 
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reward. In the present task, each word pair is represented by a state, s, and each possible choice 

is represented by an action, a. Thus, each word in a pair is associated with a state-action quality 

value, Q (s, a). Because subjects have no prior experience with the word pairs but may have a 

non-zero and non-systematic propensity to choose one item over another, Q values were 

instantiated as a small random value between -0.1 and 0.1, where 0 indicates a choice with no 

value, +1 indicates a rewarding choice, and -1 indicates a punishing choice. As the agent engages 

in Round 1 of the task, it updates each Q (s, a) in accordance with a subject’s behavior based on 

a reward prediction error, δRPE. δRPE captures the difference between an observed outcome and 

predicted outcome, computed as:  

 

Equation 1. Model-free reward prediction error. 

𝛿𝛿𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑟𝑟(𝑠𝑠′)−  𝑄𝑄(𝑠𝑠, 𝑎𝑎) 

 

where r(s’) is the observed reward for the selected action and Q(s,a) is the previous quality value 

associated with that state-action pair. This prediction error is used to update state-action values 

between Round 1 and Round 2 as: 

 

Equation 2. Q-learning state-action value update 

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑄𝑄(𝑠𝑠, 𝑎𝑎) +  𝛼𝛼 × 𝛿𝛿𝑅𝑅𝑅𝑅𝑅𝑅  

 

where α is a free parameter that controls the learning rate of the agent, or the extent to which 

observed information impacts the updating of prior beliefs. Q(s,a) was not updated for Round 2 

choices since subjects received no explicit feedback about the outcomes. Likewise, Q(s,a) was 

not updated for unselected items since selected items in Round 1 are re-paired with new items in 
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Round 2. Optimal agents should prefer actions associated with higher state-action values than 

actions with lower values.  

3.1.2.2 Model-based agent 

Model-based agents represented the deterministic decision-making task as a matrix of transition 

probabilities between two given states. These agents updated this matrix of transition 

probabilities, T (s, a, s’), based on subjects’ experience with Round 1. Because this task is 

deterministic and all observed probabilities are either 0 or 1, the state space for s’ was reduced to 

two states. Thus, Round 1 pairs (s) and actions (a) were each represented as a state-action pair 

similar to that of model-free reinforcement learning, but Round 2 states (s’) represented which 

action would lead to a correct decision. In other words, s’ reflected whether a subject should 

reselect the same word in Round 2 that was selected in Round 1, or whether the Round 1 word 

should be avoided and the other word selected. Thus, correct selections in Round 1 should lead 

to a Round 2 state in which the same selection should be made. Errors in Round 1 should lead to 

Round 2 states in which subjects should select the new word. The matrix of transition 

probabilities therefore holds an estimate of the probability that a given action in Round 1 will 

transition to a particular state in Round 2. Transition probabilities were instantiated at 0.5, 

assuming that subjects were unbiased with respect to which action they choose during Round 1. 

Agents update this transition probability matrix via a state prediction error, δSPE, 

computed as: 

 

Equation 3. Model-based state prediction error for Round 1 gains. 

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) =  1− 𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) 

 



 71 

for correct trials (i.e., gains) in Round 1 and as: 

 

Equation 4. Model-based state prediction error for Round 1 losses. 

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =  0−𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) 

 

for error trials (i.e., losses) in Round 1. A transition probability is updated based on the observed 

transition from s to s’ via: 

 

Equation 5. Model-based transition probability update. 

𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) =  𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) +  𝜂𝜂 ×  𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 

 

where η is a free parameter controlling the model-based learning rate, or the extent to which new 

information about state transitions impacts the update of the current probability matrix. To 

ensure that the distribution of probabilities remains normalized, probabilities for states that are 

never visited are reduced via: 

 

Equation 6. Probability update for unvisited “gain” states in model-based learning. 

𝑇𝑇(𝑠𝑠,𝑎𝑎 , 𝑠𝑠′) =  𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) × (1−  𝜂𝜂) 

 

for positive reinforcement (reward) trials, and via: 

 

Equation 7. Probability update for unvisited “loss” states in model-based learning. 

𝑇𝑇(𝑠𝑠,𝑎𝑎 , 𝑠𝑠′) =  𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) × (1 +  𝜂𝜂) 
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for loss trials. State transition probabilities associated with the untaken action remained 

unchanged since the subject received no information about that action. Effectively, the agent 

does not make use of these unchanged values since the computation of state-action values, Q, 

depends on having taken a particular action in Round 1. Appendix E illustrates this process using 

two example trials. These estimated transition probabilities were then used to compute a state-

action value for each Round 2 state-action pair, Q (s, a), by: 

 

Equation 8. Computation of state-action values in model-based learning. 

𝑄𝑄(𝑠𝑠, 𝑎𝑎) =  𝑇𝑇(𝑠𝑠,𝑎𝑎 , 𝑠𝑠′) ×  𝑟𝑟(𝑠𝑠) 

 

where r is the observed reward received by subjects for that state-action pair. Thus, model-based 

agents first assemble a model of the task environment based on experience and subsequently use 

this model to compute state-action values to drive their decision-making.  

3.1.2.3 Hybrid agent 

It is likely that individuals engage in multiple styles of reinforcement learning simultaneously. 

Gläscher and colleagues (2010) demonstrated that model-based learning is feasible in humans 

and seems to be implemented in various brain regions. Similarly, Daw et al. (2011) showed 

evidence that different sub-sections of the striatum in particular may engage preferentially in 

either model-free or model-based reinforcement learning. Thus, in line with these prior studies, 

this third possibility was considered, wherein some brain regions may engage in both styles of 

learning but may prefer one approach to the other. To assess this, a hybrid reinforcement 

learning agent was implemented utilizing the learning rate parameters from each of the model-

free and model based agents. State-action values were computed using the model-free and 
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model-based state-action values obtained from simulations with optimal learning rate 

parameters. Hybrid state-action values, QHY (s, a), were computed as a weighted sum: 

 

Equation 9. Computation of state-action values for the hybrid agent. 

𝑄𝑄(𝑠𝑠,𝑎𝑎)𝐻𝐻𝐻𝐻 =  𝑤𝑤 × 𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝑀𝑀𝑀𝑀 + (1− 𝑤𝑤)  × 𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝑀𝑀𝑀𝑀 

 

where QMB and QMF are state-action values from the model-based and model-free agents, 

respectively, and w is a free parameter representing the relative weight of engagement with 

model-based learning versus model-free learning. Values of w closer to 1.0 indicate a preference 

for model-based reinforcement learning, while values approaching 0.0 indicate a preference for 

model-free learning. 

3.1.2.4 Optimization of agents 

Agents were optimized assuming that subjects behave stochastically based on probabilities 

derived from the distribution of state-action values. Choice probability estimates were computed 

using a softmax action selection rule: 

 

Equation 10. Choice probability estimation from softmax function. 

𝑃𝑃 (𝑠𝑠, 𝑎𝑎) =  
𝑒𝑒𝜏𝜏 × 𝑄𝑄  (𝑠𝑠,𝑎𝑎)

∑ 𝑒𝑒𝜏𝜏 × 𝑄𝑄  (𝑠𝑠,𝑏𝑏)𝑛𝑛
𝑏𝑏=1

  

 

where Q is the state-action value derived from an agent, and τ is the inverse temperature, 

controlling the extent to which an agent prefers the option with the highest value. Each type of 

agent had two free parameters, including learning rate for model-free (α) and model-based (η) 
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agents, the weighting parameter (w) of the hybrid agent, and the inverse temperature of the 

softmax selection rule (τ). Optimal free parameters for each subject’s agents were recovered by 

minimizing the negative log likelihood based on the probabilities derived from the softmax 

function: 

 

Equation 11. Likelihood function. 

−𝐿𝐿𝐿𝐿 =  −� log ( 𝑃𝑃 (𝑠𝑠, 𝑎𝑎)  ) 

 

For each subject, multiple Nelder-Mead minimizations (n = 100) were run to recover 

optimal free parameter values. Parameters from the top 10% of these minimizations (based on 

negative log-likelihood) were averaged to ensure that the recovered parameters were adequately 

representative of each subject’s behavior. These average parameters were considered optimal. 

Simulations (n = 1000) were then run for each agent using the optimal free parameter values to 

obtain trial-level estimates of state-action value and prediction error metrics. The simulation 

associated with the lowest negative log likelihood was used for analysis. Goodness-of-fit was 

compared within each subject using likelihood ratio tests and AIC differences compared to a null 

model. Null models were chance-performance agents wherein the response probabilities were 0.5 

for all trials.  

Model performance was assessed by computing the trial-level accuracy score for each 

agent (i.e., whether the agent’s selection on each trial correct or incorrect in terms of the task) 

and compared to the corresponding subject’s behavior. If the agent performed identically to a 

subject on a trial, that trial was considered a match. The total percentage of matches between 

agent behavior and subject behavior was used to quantify the extent of fit.  
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3.1.3 Image processing, region identification, and time series extraction 

Imaging data were identical to that analyzed in chapter 2. Briefly, key regions in the MTL and 

the striatum were identified to test the extent to which each region engages in different types of 

reinforcement learning. Briefly, these regions were identified using a secondary dataset that used 

a concurrent discrimination learning task which featured a similar deterministic reinforcement 

schedule (Tremel et al., 2016; Tremel et al., 2018). A repeated-measures ANOVA was computed 

on the first two rounds of concurrent discrimination learning to localize voxels that were active 

during deterministic learning (i.e., exhibited a main effect of time), restricted to MTL and striatal 

territory. The resulting statistical map was corrected for multiple comparisons and sphericity. 

Clusters of voxels surviving this correction were considered regions of interest. These regions 

are reported in Table 2. Activity time series were extracted by computing a null-effect GLM and 

computing the model residuals. The residual time series was expressed as a percent change from 

the model baseline term. Trial-level time series were assembled by segmenting the full residual 

time series into 11 time point sequences starting from the onset of each trial.  

3.1.4 Functional region preference for model-based or model-free reinforcement learning 

The first goal of this study was to link activity in the MTL and the striatum to model-based and 

model-free reinforcement learning computation. Mixed-effects linear regression was used to 

assess the extent to which each region of interest in the MTL and striatum engaged in model-free 

versus model-based learning. To test this, two regression models were computed per region 

using the agent-derived state-action choice values as a predictor of regional activity (i.e., fMRI 

activity). One regression was computed for the model-free measures and one for the model-based 
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measures. The weight parameter, w, derived from the hybrid reinforcement agent was also 

entered as a subject-level predictor of regional activity and was allowed to interact with the 

agent-derived predictor. Interactions between state-action values and the w parameter would 

indicate that a region’s activity is sensitive to the relative engagement of model-free and model-

based approaches at a subject level. For example, subjects who are more inclined to engage in a 

model-free approach (i.e., lower w value) may exhibit greater activity in some regions versus 

others, signifying that those regions are more engaged in model-free learning versus model-

based learning. In contrast, if a region does not exhibit an interaction between state-action values 

and the w parameter, that region would be engaged in either model-free or model-based learning 

regardless of preference. Because the weight parameter was included as a predictor in both 

models to account for the relative engagement in model-free or model-based learning, state-

action values from the hybrid agents were not analyzed. To remain consistent with and facilitate 

comparisons to prior work using reinforcement learning agents, average activity from time points 

4-7 was used as the dependent variable (Tremel et al., 2016). Best-fitting regression models were 

selected based on AIC and likelihood ratio tests. Typically, differences in AIC greater than 2.0 

are considered sufficient evidence to favor one model over another (Burnham & Anderson, 

2003). 

 It was predicted that, if the MTL is critical for scaffolding early learning, activity in the 

MTL should relate to model-based computation and subjects should generally show preference 

to model-based learning (i.e., high w parameter). On the other hand, if the striatum is the primary 

driver of this type of learning, subjects should generally show preference to model-free learning 

(i.e., low w parameter). Realistically, it was expected that subjects would engage in both model-



 77 

free and model-based learning, but the relative preference would favor model-based computation 

in support of the idea that the MTL builds a scaffold from initial encoding experiences. 

 In a secondary analysis, the preferential engagement of particular regions in model-free 

or model-based learning was characterized at a between-subjects level. To do this, the average 

regional activation of each region during Round 2 decision-making of three sub-groups of 

subjects was examined. Since very few subjects exhibited a preference for model-free learning 

(w < 0.5, N = 4), subjects were split into three groups using arbitrary cut-off points. The first 

group of subjects exhibited a slight preference for model-free learning based on the w parameter 

(w < 0.50). An equally sized group (N = 4) of subjects was created using a range from w = 0.50 

to 0.60. This group exhibited a slight preference for model-based learning. All other subjects 

exhibited a relatively strong preference for model-based learning, with a w value greater than 

0.60. Average regional activity was compared across groups for each region using between-

subjects ANOVAs. While this analysis may be underpowered due to small groups relative to the 

regression reported above, it offers a glimpse of the general trends of which regions are 

important for individuals engaging in different learning approaches. 

3.1.5 Behavioral profile of model-free and model-based learning 

The second goal of this study was to establish a behavioral profile associated with engaging in 

model-free or model-based learning. It was expected that, if the MTL were important for 

building a scaffold from early decision experiences, subjects exhibiting preference for model-

based learning would also exhibit superior decision-making accuracy in Round 2 and higher 

quality memory for the learned items. To assess the behavioral consequences of engaging in a 

model-free or model-based approach, logistic regression was used to test the relationship 
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between the w parameter and accuracy measures for decision-making and subsequent memory. 

The w parameter was entered as a subject-level predictor in three regression models of Round 2 

decision-making accuracy, recognition memory accuracy, and episodic memory accuracy. Round 

1 outcome (gain or loss) was also included as a predictor since initial outcome valence can 

impact decision and memory abilities (Tremel et al., 2016). These two predictors were allowed 

to interact in the models, since initial outcome valence could differentially affect accuracy for 

individuals preferring one reinforcement learning approach to another. Subject was included as a 

random effect.  

3.2 RESULTS 

3.2.1 Reinforcement learning agent parameters and fits 

In this study, model-based and model-free reinforcement learning agents were fit to a single-

exposure deterministic learning task to assess the relative impact of each on decision-making 

processes. In particular, it was hypothesized that the MTL and model-based approaches would be 

critical in supporting initial decision-making, while model-free learning via the striatum may be 

supplementary. After fitting the agents to the data, optimal parameters were used to simulate 

decision outcome values that were in turn used to predict fMRI activity in the MTL and striatum 

and behavioral measures of decision-making and memory. 

Each agent had a learning rate free parameter, which controls the extent to which new 

experiences impacts the updating of previous memory (Table 7). For the model-free agent, the 

mean learning rate, α, was 0.41 (SD = 0.35). The mean model-based learning rate, η, was 0.89 
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(SD = 0.06), suggesting that on average, model-based agents produced better fits at higher 

learning rates than the model-free agents. While the hybrid agent utilizes learning rates from 

both model-free and model-based agents, it had an additional free parameter, w, which controlled 

the relative balance of model-based versus model-free computation. Weight values above 0.5 

signified a preference for model-based learning, while values below 0.5 signified preference for 

model-free learning. On average, subjects preferred model-based approaches (M = 0.64, SD = 

0.13), which suggests that model-based learning is capable of producing single-exposure 

deterministic decision-making behavior. 

 

Table 7. Reinforcement agent free parameters 

Subject α η w 
1 0.76 0.85 0.63 
2 0.92 0.83 0.93 
3 0.57 0.94 0.59 
4 0.15 0.94 0.56 
5 0.35 0.85 0.67 
6 0.13 0.94 0.57 
7 0.53 0.81 0.78 
8 0.93 0.87 0.69 
9 0.06 0.90 0.50 
10 0.08 0.94 0.44 
11 0.92 0.73 0.69 
12 0.66 0.87 0.71 
13 0.19 0.94 0.46 
14 0.04 0.94 0.72 
15 0.14 0.94 0.55 
16 0.09 0.93 0.48 
17 0.79 0.82 0.85 
18 0.06 0.95 0.61 

 
Three separate reinforcement learning agents were fit using each subject’s behavioral data. α, model-free agent 
learning rate; η, model-based agent learning rate; w, weight parameter of the hybrid agent. 
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In general, all three agents performed well in terms of goodness-of-fit compared to the 

null model of random choice probabilities (Table 8). Each agent was also able to match trial-

level subject behavior at rates above 80% on average, with model-free learning at 83% (SE = 

4%), model-based learning at 82% (SE = 3%), and the hybrid agent at 89% (SE = 2%). The 

hybrid learner exhibited the highest percentage, indicating that behavior is best represented by a 

weighted combination of model-free and model-based approaches. 

 

Table 8. Reinforcement agent fit statistics 

 Model-free Model-based Hybrid 
Subject LL AIC ΔAIC Match LL AIC ΔAIC Match LL AIC ΔAIC Match 

1 916.0 1834.1 54.53 0.99 913.0 1830.1 70.67 0.92 915.6 1833.3 56.64 0.97 
2 911.6 1825.1 63.45 1.00 910.8 1825.5 75.23 0.95 913.7 1829.3 60.60 0.97 
3 920.8 1843.5 45.03 0.95 914.4 1832.7 68.00 0.80 915.5 1832.9 56.99 0.95 
4 921.7 1845.4 43.17 0.74 915.1 1834.2 66.56 0.74 915.9 1833.9 56.05 0.90 
5 920.4 1842.7 45.83 0.78 914.8 1833.7 67.06 0.82 916.3 1834.7 55.22 0.91 
6 921.7 1845.3 43.21 0.76 915.0 1834.0 66.75 0.75 915.8 1833.6 56.29 0.86 
7 919.3 1840.6 47.85 0.95 914.1 1832.3 68.47 0.94 916.0 1833.9 55.99 0.99 
8 912.7 1827.3 61.26 0.99 911.4 1826.9 73.86 0.95 914.4 1830.9 59.04 0.97 
9 921.8 1845.6 42.95 0.61 917.0 1837.9 62.84 0.66 917.2 1836.3 53.59 0.69 
10 921.9 1845.8 42.79 0.70 917.1 1838.2 62.49 0.75 917.8 1837.7 52.21 0.79 
11 913.7 1829.3 59.23 0.99 912.0 1828.0 72.76 0.92 914.8 1831.7 58.22 0.97 
12 917.9 1837.8 50.76 0.99 913.2 1830.4 70.31 0.94 915.1 1832.3 57.63 0.96 
13 921.6 1845.3 43.28 0.80 915.3 1834.6 66.19 0.76 916.1 1834.3 55.65 0.87 
14 921.8 1845.6 43.00 0.60 916.9 1837.6 63.09 0.77 916.8 1835.6 54.36 0.77 
15 921.1 1844.2 44.34 0.86 915.5 1835.0 65.75 0.81 916.3 1834.6 55.33 0.94 
16 922.1 1846.1 42.46 0.75 917.1 1838.3 62.47 0.61 917.8 1837.7 52.26 0.79 
17 916.0 1834.0 54.54 0.98 912.8 1829.6 71.11 0.92 915.7 1833.4 56.51 0.99 
18 922.0 1846.0 42.58 0.51 917.9 1839.9 60.85 0.64 918.1 1838.2 51.72 0.67 

 
Fit statistics were computed separately for each subject and for each of the three types of reinforcement learning 
agents. LL, negative log-likelihood of the model; AIC, Akaike’s Information Criterion; ΔAIC, difference in AIC 
between the model and a null model fit to a random chance-performance trial sequence; Match, proportion of total 
trials for which the agent’s choice matched the choice of the subject (1.0 indicates a perfect match between agent 
behavior and human behavior). 
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3.2.2 Preference of the MTL and striatum for model-free versus model-based 

computation 

The primary goal of this study was to establish a connection from decision-related activity in the 

MTL and striatum to underlying reinforcement learning computational mechanisms. It was 

expected that the MTL would be more associated with model-based computation, whereas the 

striatum would be more associated with model-free computation. Moreover, to test the 

hypothesis that the MTL may be involved in building a memory scaffold from early decision 

experiences, the extent to which these regional computation differences modulated in accordance 

with a weight parameter from a hybrid reinforcement learning model was assessed. In this 

primary analysis, mixed-effects regression models were computed to test the extent to which 

model-free or model-based state-action values, Q (s, a), could predict activity of each region. 

The w parameter was included as a predictor to account for subject-level preference for one 

approach to the other and was allowed to interact with the state-action value predictor. Two 

regions in the caudate nucleus (body and head) exhibited preference for model-free computation. 

Three regions, including the hippocampus, the bilateral parahippocampal gyrus, and the left 

parahippocampal gyrus exhibited preference for model-based computation. The remaining two 

regions, including the left hippocampus and left putamen exhibited no correlation with either 

measure and were excluded from further analysis. Model comparison and fit statistics of these 

regions are enumerated in Table 9. 
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Table 9. Regression fits 

 Model-free Model-based    
Region LL AIC LL AIC ΔAIC p Best agent 
R Hippocampus 2742.5 5497.1 2730.2 5472.3 24.8 <0.001 Model-based 
L Hippocampus 1571.3 3154.6 1570.4 3152.8 1.8 1.00 -- 
Bilat. Parahippocampal G 453.1 918.1 397.8 807.6 110.5 <0.001 Model-based 
L Parahippocampal G 2835.8 5683.7 2827.3 5666.5 17.2 <0.001 Model-based 
L Body of Caudate  1420.8 2853.7 1427.8 2867.6 -13.9 <0.001 Model-free 
Bilat. Head of Caudate 156.3 300.6 160.9 309.7 -9.1 <0.001 Model-free 
L Putamen 1111.5 2235.0 1111.6 2235.1 0.1 1.00 -- 
 
Regression models were computed to test whether activity in each region of interest better related to choice quality 
values derived from model-based or model-free agents. LL, log-likelihood of the regression model; AIC, Akaike’s 
Information Criterion of the regression model; ΔAIC, difference in AIC between the model-free regression and the 
model-based regression (negative values indicate better model-free fit); p, p-value of the likelihood ratio test 
comparing the two models; Best agent, the type of agent that best fit activity in the region; Bilat, bilateral; R, right; 
L, left; G, gyrus. 
 

 Activity in three regions modulated with model-based state-action values, including the 

right hippocampus, the bilateral parahippocampal gyrus, and the left dorsal parahippocampal 

gyrus. Activity in all three regions negatively correlated with state-action values such that 

positive activity coded for negative value predictions and negative activity coded for positive 

value predictions (Figure 11). Additionally, there was an interaction between value predictions 

and the w parameter in the bilateral parahippocampal gyrus wherein activity better predicted 

state-action values at higher weights than lower weights. At higher weights, there was a negative 

relationship between value predictions and activity, however at lower weights, this relationship 

was absent (Figure 11).  
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Table 10. Regression statistics 

Region Effect Coef. β SE β t p  Best agent 
R Hippocampus w 0.90 0.53 1.69 0.11  Model-based 
 Q (s, a) -0.21 0.04 -5.30 <0.001 *  
 w × Q (s, a) 0.55 0.30 1.82 0.07   
Bilat. Parahippocampal G. w -0.06 0.17 -0.38 0.70  Model-based 
 Q (s, a) -0.20 0.02 -11.73 <0.001 *  
 w × Q (s, a) -0.49 0.13 -3.81 <0.001 *  
L Parahippocampal G. w 0.75 0.87 1.30 0.21  Model-based 
 Q (s, a) -0.18 0.04 -4.41 <0.001 *  
 w × Q (s, a) -0.01 0.31 -0.04 0.97   
L Body of caudate w -0.17 0.27 -0.64 0.53  Model-free 
 Q (s, a) 0.13 0.05 2.34 0.02 *  
 w × Q (s, a) -0.76 0.35 -2.17 0.03 *  
Bilat. Head of caudate w -0.01 0.18 -0.08 0.94  Model-free 
 Q (s, a) 0.07 0.03 2.12 0.02 *  
 w × Q (s, a) -0.19 0.20 -0.97 0.33   
 
Regression models were computed for each region to test the extent to which regional activity could be predicted by 
choice-values from a model-based or model-free reinforcement learning agent (indicated by Best agent) and by the 
w weighting parameter from the hybrid model. Coef. β, regression coefficient; SE, standard error of coefficient; t, t-
statistic of effect; p, p-value of effect; asterisk indicates statistically significant effect. 
 
 
 

 
Figure 11. Model-based computation in the MTL. 

Model-based quality value estimates were predictive of activity in three regions of the MTL. (a) Predicted activity in 
the right hippocampus plotted against choice quality values from the model-based agent. (b) Predicted activity in the 
left parahippocampal gyrus versus model-based choice quality values. (c) Interaction effect in the bilateral 
parahippocampal gyrus wherein activity was better predicted by model-based choice quality values for individuals 
with a greater preference for model-based versus model-free computation (higher w parameter). Data for the higher 
w group is from six subjects with the highest w parameter values, whereas data for the lower w group is from six 
subjects with the lowest w parameter values. Shaded areas reflect standard error of the mean. 
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Activity in the two model-free regions, the left body of the caudate nucleus and the 

bilateral head of the caudate nucleus, was positively correlated with the magnitude of model-free 

state-action choice values (Table 10). Additionally, there was an interaction between state-action 

values and the weight parameter, w, in the caudate body, indicating that the extent to which 

model-free value predictions correlated with activity depended on individual preference for 

model-free learning (Figure 12). Activity positively correlated with state-action values at lower 

weights (i.e., greater model-free preference), but was anti-correlated for higher weights.  

 

 

Figure 12. Model-free computations in the striatum. 

Model-free quality value estimates were predictive of activity in two regions of the striatum. (a) Predicted activity in 
the bilateral head of the caudate nucleus plotted against choice quality values from the model-free agent. (b) 
Interaction effect in the left body of the caudate nucleus wherein activity was better predicted by model-free choice 
quality values for individual with a greater preference for model-free versus model-based computation (lower w 
parameter). Data for the higher w group is from six subjects with the highest w parameter values, whereas data for 
the lower w group is from six subjects with the lowest w parameter values. Shaded areas reflect standard error of the 
mean. 
 
 

 In a secondary analysis, mean regional activity was computed for three sub-groups 

corresponding to the extent of preference for model-based learning. Ten subjects had a w value 



 85 

greater than 0.6, suggesting a strong preference for model-based learning. Four subjects fell in a 

range between 0.5 and 0.6, indicating a slight preference for model-based learning. The four 

remaining subjects had a w value under 0.5, indicating a slight preference for model-free 

learning. A between-subjects ANOVA was computed for each region, testing the magnitude of 

activation between the groups. One region in the right hippocampus exhibited differences across 

groups such that activity was greatest for the strong model-based preference group, 

approximately zero for the slight model-based preference group, and negative for the slight 

model-free preference group, F[2, 15] = 4.25, p = 0.03 (Figure 13). Other regions, however, 

exhibited no statistically significant effects, including the left caudate body, F[2, 15] = 0.25, p = 

0.78, the bilateral caudate head, F[2, 15] = 0.23, p = 0.80, the bilateral parahippocampal gyrus, 

F[2, 15] = 0.10, p = 0.91, and the left parahippocampal gyrus, F[2, 15] = 1.36, p = 0.29.  

 

 
Figure 13. Preferential recruitment of the hippocampus for model-based learners 

Mean activity in the right hippocampus (as % signal change from baseline) is plotted for three sub-groups of 
subjects based on their preference for model-free or model-based learning (w parameter value). Slight model-free 
preference (N = 4) is defined as w < 0.5; slight model-based preference is defined as 0.5 < w < 0.6; strong model-
based preference is defined as w > 0.6. 
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3.2.3 Behavioral profile of model-free and model-based learning 

The second goal of this study was to characterize the consequences of preferentially engaging in 

model-free or model-based learning. Given the association between the MTL and model-based 

computation and that subjects tend to prefer model-based learning in this task, it was expected 

that subjects preferring a model-based approach would make better decisions in Round 2 and 

would retain stronger memories of individual items. This would provide additional evidence that 

the MTL is essential to supporting an early memory foundation that can then be used to drive 

initial decision-making while model-free learning systems can work in parallel to develop 

automaticity through repetition. To probe the behavioral profiles associated with model-free and 

model-based learning, logistic regressions were computed testing the relationship between the w 

parameter, Round 1 outcome (i.e., initially receiving a gain a loss), and accuracy measures of 

decision-making and subsequent memory.  

Successful decision-making in Round 2 was found to be dependent on the extent to which 

subjects prefer model-based learning (w predictor), β = 6.92, SEβ = 1.28, z = 5.41, p < 0.001. 

Subjects engaging in model-free learning generally exhibited poorer decision-making in Round 

2. As preference for model-based learning increased, so did decision-making accuracy (Figure 

14). There was also an effect of Round 1 outcome, wherein decision accuracy in Round 2 was 

overall higher for items experienced with positive (gain) feedback in Round 1 relative to items 

experienced with negative (loss) feedback in Round 1, β = 0.90, SEβ = 0.66, z = 3.31, p < 0.001, 

but no interaction between the two predictors, β = -2.84, SEβ = 1.08, z = 0.89, p < 0.37).  
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Figure 14. Behavioral consequences of the model-based versus model-free tradeoff 

Individual preference for model-based learning was predictive of behavioral decision and memory outcomes. (a) 
Probability of making a correct response during Round 2 of the deterministic decision-making task increased in 
proportion to individual preference for model-based learning. (b) Probability of correctly recognizing an item after 
the task in a surprise memory test increased in proportion to individual preference for model-based learning. (c) 
Probability of correctly recalling details about individual items in a surprise memory test increased in proportion to 
individual preference for model-based learning, but in a manner that depended on the whether that item was 
associated with a gain or loss in the decision task. Shaded areas reflect standard error of the mean. 
 
 

 Recognition memory ability also depended on preference for model-based learning (w 

predictor), β = 5.24, SEβ = 1.87, z = 2.81, p < 0.01 (Figure 14). However, there was no effect of 

Round 1 outcome, β = -0.38, SEβ = 0.79, z = -0.48, p = 0.63, and no interaction between the 

predictors, β = 0.38, SEβ = 1.31, z = 0.29, p = 0.77. This indicates that the ability to recognize 

items after the decision-making task was generally improved by relying more on a model-based 

approach versus a model-free approach. 

 Episodic memory accuracy was additionally related to model-based preference, β = 5.05, 

SEβ = 1.62, z = 3.12, p < 0.01, wherein accuracy increased as preference for model-based 

learning increased (Figure 14). While there as no effect of Round 1 outcome, β = 2.69, SEβ = 

0.58, z = 0.19, p = 0.85, there was an interaction between outcome and w, β = -4.37, SEβ = 0.92, 

z = -4.78, p < 0.001. For items experienced as gains in Round 1, the w parameter was predictive 

of episodic memory accuracy, but this was not the case for items experienced as losses in Round 

1.  
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3.3 DISCUSSION 

3.3.1 Model-based reinforcement learning via the MTL supports single-exposure 

decision-making  

In the single-exposure decision experiences of the present task, individuals who preferred model-

based approaches were behaviorally more successful than those who favored more model-free 

involvement. This indicates that model-based approaches may be necessary to support rapid 

learning from an initial exposure. Single-exposure decision-making may rely on the ability to 

successful construct a model of the environment rapidly and use that model to predict future 

outcomes. 

Individuals with the strongest preference for model-based approaches also exhibited the 

strongest declarative memory for individual items later. Successful declarative memory 

recollection may then require the ability to plan for future outcomes based on a model developed 

from initial experiences (Hassabis & Maguire, 2009; Schacter et al., 2012). This may partly 

explain why impairments to declarative memory can drastically reduce decision-making ability 

after an initial learning experience (Buffalo et al., 1999; Corkin, 2002; Hood et al., 1999; Squire 

et al., 1988; Squire and Zola, 1996; Zola-Morgan et al., 1989; Zola-Morgan et al., 1994). 

Consistent with this, individuals who least preferred model-based approaches performed the 

worst on measures of decision-making and subsequent memory. Thus, model-based 

reinforcement learning may capture the process by which an initial experience is translated into 

successful decision-making without additional repetition. 

Given the association between declarative memory and model-based learning, it makes 

sense then that a neural substrate associated with declarative memory, the MTL system, was 
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associated with model-based learning. The MTL has been implicated in implementing model-

based processes to support decision-making after an initial experience (Chalmers et al., 2016; 

Kaplan et al., 2017; Miller et al., 2017). In the present study activity in the MTL was better fit by 

model-based measures than by model-free ones, suggesting that the MTL may build 

representations of the environment from an initial exposure and use this model to make better 

decisions at a second exposure. Additionally, individuals who most preferred model based 

approaches exhibited greater engagement of the MTL than individuals who tended toward 

model-free approaches. This adds further evidence to the idea that an MTL declarative memory 

system may be critical for supporting decision-making behavior after just a single experience. 

These findings suggest that the MTL may facilitate the building of a mnemonic scaffold 

of declarative memory that is used to support initial decision-making. This scaffold is crucial to 

initial learning success since the alternative model-free processes tend to require several 

repetitions to refine the veracity of their outcome value predictions (Daw & Doya, 2006; Dayan 

& Daw, 2008; O’Doherty et al., 2015; Yin et al., 2004, 2005). It is possible that after several 

repetitions when model-free predictions are more reliable, this scaffold becomes unnecessary and 

that effortful declarative recall gives way to habit-based recall supported by model-free learning 

(Seger & Spiering, 2011; Seger et al., 2010; Tremel et al., 2016; Tricomi et al., 2009). This may 

explain why prior work has failed to link MTL activity to decision-making behavior during 

extended learning (Tremel et al., 2016, 2018), wherein the striatum was found to dominate. If the 

MTL is critical for supporting the first few decision experiences, examining a long learning 

trajectory may be a poor method for detecting those contributions. Indeed, prior work that 

specifically manipulated the efficacy of declarative memory during extended learning was more 
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successful in detecting a shift toward model-free striatal engagement instead of detecting an 

enhanced model-based hippocampal engagement (Tremel et al., 2018).  

 It is worth noting that while model-based reinforcement learning has been implemented 

for probabilistic task structures, it is not usually implemented for a deterministic structure. This 

perspective is traditionally neglected because it is difficult to fit models when state transitions are 

associated with 0% or 100% probabilities (i.e., one decision will always lead to one state, instead 

of one decision favoring the transition to a particular state over another). Thus, while the 

approach of the present study may have weaknesses (e.g., the 80 pairs of Round 2 are reduced 

into two possible states), the findings are generally consistent prior findings, namely those that 

have implicated the hippocampus in model-based learning (Doll et al., 2015a; Duncan et al., 

2018; Gershman & Daw, 2017; Miller et al., 2017). However, other findings have suggested that 

different sub-regions of the striatum may differentially implement model-based versus model-

free learning (Daw et al., 2005, 2011). This distinction was not examined in the present study, 

but it is likely that this is also true for deterministic task structures and warrants further 

investigation. 

3.3.2 Both model-based and model-free systems are engaged in parallel 

While individuals in the present study generally exhibited a preference for model-based 

reinforcement learning, most individuals implemented a mix of model-based and model-free 

processes. Indeed, the hybrid reinforcement learning models were generally the best-fitting to 

behavior, wherein choices from the agent frequently matched choices from the human subjects. 

This suggests that both approaches are implemented in the brain and that decision behavior 

results from the integration of multiple types of information (Bornstein & Daw, 2013; Daw et al., 
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2011; Doll et al., 2012; Doll et al., 2015b; Gläscher et al., 2010). Regions in the prefrontal cortex 

have been implicated in arbitrating between model-based versus model-free approaches and may 

also serve to integrate these multiple types of information (Doll et al., 2015b; Lee et al., 2014, 

2014; Poldrack & Rodriguez, 2004). 

Though both approaches seem to be implemented in the brain, model-based and model-

free computations seem to be mediated by distinct neural systems. Model-based computation 

seems to be mediated preferentially by the MTL system, whereas model-free computation is 

better fit by activity in the striatum. Activity in the caudate coded for value prediction signals 

derived from an accrued history of choice selection. Additionally, individuals who tended to 

prefer more model-free approaches seemed to engage the caudate moreso than individuals who 

preferred model-based approaches. However, it is notable that model-free learning seems to be 

an unreliable approach in cases of single-exposure learning such as this since individuals 

preferring this approach performed worst on measures of subsequent decision-making and 

memory. 

The present study found a dissociation between regions that were better fit by model-

based processes (i.e., MTL regions) versus those better fit by model-free ones (i.e., striatal 

regions). Each of these neural systems is associated with different roles in learning and decision-

making, wherein prospective events (e.g., expectancy) localize to the MTL and retrospective 

events (e.g., surprise) localize to the striatum (Bornstein & Daw, 2012; Gläscher et al., 2010). 

This neural and computational dichotomy can map onto an additional cognitive distinction 

between declarative and procedural processes (Gabrieli, 1998; Knowlton et al., 1996; Squire, 

1992). As such, this study provides additional evidence that parallel processes in separate neural 

systems may underlie decision behavior. These systems may be engaged differentially depending 
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on contextual and structural factors of a task (Tremel et al., 2016, 2018), but also depending on 

individual differences and the amount of experience gained. 

The parallel engagement of MTL and striatal systems via model-based and model-free 

reinforcement learning, respectively, may explain apparent discrepancies in neuropsychological 

and neuroimaging findings. MTL damage in humans and monkey produces profound learning 

deficits in deterministic learning tasks like concurrent discrimination (Buffalo et al., 1999; 

Corkin, 2002; Hood et al., 1999; Squire et al., 1988; Squire and Zola, 1996; Zola-Morgan et al., 

1989; Zola-Morgan et al., 1994). However, in examining a longer trajectory, some individuals 

with MTL damage can exhibit preserved, albeit much slower, learning (Bayley et al., 2005; 

Buffalo et al., 1998; Chudasama et al., 2008; Gaffan & Murray, 1992; Hood et al., 1999; 

Malamut et al., 1984; Phillips et al., 1988; Suzuki et al., 1993). However, neuroimaging studies 

of longer learning trajectories in healthy individuals have fallen short of establishing a clear role 

for the MTL in decision-making (Tremel et al., 2016, 2018). The present study suggests that 

these findings can be reconciled with the view that MTL is essential for rapidly learning about an 

initial experience and supporting initial decision-making. This is why model-based learners were 

most successful on measures of decision-making and learning relative to model-free learners.  

If learning were to continue, predictions from a model-free system would become more 

reliable, supplanting model-based predictions from declarative memory, which require more 

effort to retrieve (Eichenbaum, 2001; Jacoby, 1991; Mandler, 1980). In other words, while the 

mnemonic scaffold built by the MTL helps to produce initial decision successes, it becomes less 

essential as model-free predictions are made more veridical. The goal for repeated decisions is 

less about recalling specific details about individual prior instances and more about producing a 

particular response. Thus, model-free reinforcement learning via the striatum can use the initial 
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decision successes supported by the MTL scaffold to reinforce and automatize correct responses 

through repetition, eventually producing a habitual action to a rewarding stimulus.  

This transition between systems may happen relatively quickly, wherein humans only 

require about four repetitions to reach 80% accuracy with a large set of items (Tremel et al., 

2016, 2018). As such, studies of extended learning may miss these early MTL contributions 

because they are relatively transient compared to longer model-free learning. Importantly, 

contextual and structural factors of a task and its goals may influence this transition. This may 

explain why learning is preserved in some cases of MTL damage, wherein patients may be able 

to rely on model-free processes and slowly learn about decision-relevant information.  

3.3.3 Model-free and model-based systems may interact and integrate to support 

decision-making 

Some evidence suggests that while these systems may normally operate in parallel, they may 

also interact in particular situations. Neural signatures of model-based learning can overlap with 

those of model-free learning (Doll et al., 2012), suggesting that these processes are not only 

difficult to separate but also may influence one another. In fact, hybrid models combining the 

two approaches have been found to correlate with activity in sub-regions of the striatum and the 

prefrontal cortex (Gläscher et al., 2010). This suggests that both techniques may be 

approximations of the actual underlying mechanisms in particular regions, reflecting the 

possibility that these computations are integrated at some level. Thus, future work to determine 

the extent to which the brain actually implements reinforcement learning mechanisms is 

warranted. 



 94 

In some instances, interactions between MTL and striatal systems may be cooperative, 

wherein hippocampal model-based replay can enhance model-free learning (Johnson & Redish, 

2005) or striatal dopamine can enhance model-based learning ability (Sharp et al., 2016). 

Connectivity between the hippocampus and striatum can facilitate the utilization of state and 

reward experience during a decision, suggesting that decisions may be best optimized by a dual-

system approach (Wimmer & Shohamy, 2012). However, interactions may also be competitive, 

as continuous engagement in model-based learning may protect against the formation of habits, 

via a model-free approach (Gillan et al., 2015). This again suggests that both model-based and 

model-free processes are subject to influence from contextual and structural factors of a task or 

goal. This is consistent with the findings in the present study indicating that the MTL and 

striatum are modulated by the experimental factors that were introduced (reinforcement 

magnitude and associative context). 

As such, interactions between model-based and model-free processes seem to be indirect. 

Model-based processes via the MTL may be critical to ensure successful outcomes after just one 

or a few decision experiences. These model-based approaches may allow an individual to 

continue to experience positive decision outcomes that can help refine model-free predictions 

about which choice options are best. This would allow a model-free system to build reliable 

predictions about decision outcomes based on a history of experience. Across extended learning, 

these predictions would become more veridical and more capable of producing rapid and 

accurate habitual responses (Seger & Spiering, 2011; Tremel et al., 2016). As this continues, 

effortful model-based approaches may give way to less effortful model-free approaches as long 

as successful outcomes can be ensured. 
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3.3.4 Conclusions 

In this study, I hypothesized that a model-based learning system in the MTL is essential to 

making decisions after one learning experience. I found that individuals who preferred model-

based approaches over model-free ones were most successful on measures of decision-making 

and subsequent episodic memory. Additionally, model-based reinforcement learning was 

associated with neural substrates in the MTL, while model-free reinforcement learning was 

supported by the striatum. Model-based learners exhibited generally more activation of MTL 

regions versus striatal ones and vice versa for model-free learners. These findings indicated that 

the MTL may establish an initial mnemonic scaffold that supports decision-making after a single 

experience. Altogether, this study provides additional support for the notion that multiple 

memory systems underlie successful decision-making and that the MTL in particular may be 

critical in supporting rapid learning from single exposures. 
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4.0  GENERAL DISCUSSION 

When making a decision, multiple learning and memory systems are drawn upon to help guide 

behavior based on prior experience. The goal of this dissertation was to investigate the extent to 

which learning and memory systems supported by the MTL and striatum are co-active early in 

the learning trajectory of single-exposure deterministic decision-making. Findings indicted that 

the MTL and striatum contribute to decision-making in parallel and that the MTL is especially 

important to supporting successful decision-making with a single exposure of experience. The 

empirical work presented here is a part of larger research program which has highlighted the role 

of the striatum in supporting extended deterministic learning after many repetitions. Altogether, 

this research program has highlighted that systems centered in the MTL and the striatum are co-

active across a trajectory of learning and together support successful decision-making behavior. 

4.1 MTL AND STRIATAL SYSTEMS ARE DIFFERENTIALLY ENGAGED 

ACROSS THE TRAJECTORY OF LEARNING 

The MTL and striatum seem to be co-active in deterministic learning, but each system seems to 

support different cognitive functions that operate at different stages of learning. On one hand, the 

MTL system supports the retrieval of instances of prior experience. This system implements a 

model-based approach to learning wherein memory of prior experience can be used to predict the 
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outcome of subsequent choices. The MTL seems to be especially effective and preferentially 

engaged during the initial stages of learning, when an individual has had few opportunities to 

learn about a decision. On the other hand, a striatal system builds generalized predictions about 

decision outcomes representing a past history of accumulated experience. This system engages in 

a model-free learning approach that excels at automatizing and generalizing responses across 

many repetitions of a decision. Together, these systems work in parallel to optimize decision-

making behavior across learning. 

 

 

Figure 15. Optimization of decision-making via multiple memory systems. 

This schematic illustrates different stages of an extended learning process. The learning curve represents a typically 
trajectory of improvement across several repetitions of a deterministic decision-making task. During the first 
exposure to this task (green, Round 1), MTL and striatal regions lay a foundation for further improvement. During 
the subsequent round (blue), individuals rely on detailed information from the prior encoding experience retrieved 
via an MTL system. As learning continues (red), predictions from the striatum become more accurate, and decision-
making shifts from the initial MTL focus to a striatal focus. 

 

  



 98 

During initial learning stages (e.g., after a single experience), the MTL encodes 

information about a decision episode and its associated outcome to lay a mnemonic foundation 

that can be drawn upon to make a successful subsequent decision. In the present study, this 

functional role was observed in that the MTL supported the encoding of episodic information 

about individual items and predicted subsequent decision accuracy. While activity in the striatum 

was also found to support subsequent decision behavior, individuals who were most successful in 

this initial learning stage relied mostly on MTL-based processes (i.e., model-based reinforcement 

learning). These findings align with the idea that striatal reinforcement learning processes (i.e., 

model-free) require repeated sampling of decision outcomes before this system is capable of 

providing accurate predictions to drive behavior (Daw & Doya, 2006; Dayan & Daw, 2008; 

O’Doherty et al., 2015; Seger & Spiering, 2011; Seger et al., 2010; Tremel et al., 2016; Tricomi 

et al., 2009; Yin et al., 2004, 2005). In this sense, the MTL is necessary to scaffold this early 

behavior and ensure initial decision successes.  

 This notion of an MTL-based scaffold is important for the striatal system. The striatum is 

especially sensitive to positive reward prediction errors and is most effective at supporting 

learning associated with positive outcomes (e.g., monetary reward). Therefore, in order for the 

striatum to best support learning, an individual would need to make as many correct responses as 

possible. The MTL can ensure these initial successes via instance-based retrieval so that the 

striatal system can build accurate value predictions and automatize rewarding decision responses. 

As such, the striatal system can prepare for a longer learning trajectory by updating initial value 

predictions with relevant early experiences. Thus, while the MTL and striatal systems may not 

interact directly, the behavior supported by this MTL scaffold can impact the later success of the 

striatal system. 
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 As learning continues and decisions are repeated, predictions from the striatum become 

more reliable. Prior work in this research program has illustrated that regions in the dorsal 

striatum support successful learning during repetitive decision-making (Tremel et al., 2016, 

2018). These studies have also failed to associate MTL regions with this longer learning 

trajectory, suggesting that while it is essential to initial success, the burden of processing may 

shift from the MTL to a striatal system. As such, instance-based retrieval via the MTL at this 

later stage may involve the retrieval of more information than is needed to correctly respond to a 

particular stimulus. For repeated decisions, the goal is to enact the correct behavior rather than 

reconstruct the details about each particular prior experience of that decision. As such, this shift 

from MTL- to striatal-based processing helps to proceduralize these responses so that they can 

become habitual and less effortful (Seger & Spiering, 2011; Seger et al., 2010; Tremel et al., 

2016; Tricomi et al., 2009).  

 However, while the striatal system seems to eventually overtake the initial contributions 

of the MTL in a longer learning trajectory, the consequences of learning may still depend on the 

extent to which each system was engaged across learning. When the efficacy of MTL-based 

learning is reduced, the resulting memory after a period of repeated learning seems to resemble 

stimulus-outcome associations produced by the striatum (Tremel et al., 2018). This suggests that 

if there is a greater reliance on the striatal system during learning, decisions may become more 

automatic or habitual, but this may come at the cost of a decreased ability to recall instance-

specific information about details of prior experiences. Likewise, continual engagement of the 

MTL system may protect against the formation of habitual responses, but this typically requires 

more time and effort to retrieve enough detail to guide behavior (Gillan et al., 2015). Taken 

together, this suggests that the relative engagement of the MTL and striatum across a trajectory 
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of learning can impact the kinds of representations that are retained later. As such, there is likely 

an optimal balance between automaticity and ability to retrieve details, but that may depend on 

the goals of a particular task, process, or individual. 

4.2 CONTEXTUAL FACTORS CAN INFLUENCE HOW INDIVIDUALS LEARN 

AND WHICH SYSTEMS ARE ENGAGED 

A common theme that has emerged from this research program is that the relative engagement of 

the MTL and striatum is highly context dependent. Some factors can increase the relative 

recruitment of the MTL system, such as visual imagery (Hannula et al., 2013; Hayes et al., 2010; 

Howard et al., 2011; Park et al., 2014). Other factors can increase the relative recruitment of the 

striatum, such as list-length, positive reinforcement, or subjective reward magnitude (Jocham et 

al., 2011; Packard & Knowlton, 2002; Schönberg et al., 2007; Wimmer et al., 2012). Different 

types of factors can influence how these systems are recruited during decision-making and 

learning. 

 In the present study, there was a functional anti-correlation between the MTL (i.e., a 

region in the hippocampus) and the striatum (i.e., a region in the caudate head), suggesting that 

these system are engaged differentially. This anti-correlation depended on two factors. First, the 

MTL was more engaged than the striatum for trials with clear landscape images, but there was 

no distinction for trials with noise-degraded images. Second, the MTL was more engaged than 

the striatum for trials with low reinforcement magnitude, but there was no distinction for trials 

with high reinforcement magnitude. These findings are in line with the predictions that these 

contextual factors should influence the relative engagement of these systems. In particular, the 
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clear imagery was intended to boost hippocampal engagement, while high reward magnitudes 

were intended to boost striatal engagement (though, instead the hippocampus was more active 

for the low reward magnitude trials). Thus, while these systems may be differentially engaged on 

some trials depending on contextual factors, they seem to be co-active on others. This aligns with 

the idea that the MTL builds a mnemonic scaffold to support initial learning in that for trials 

wherein the striatum is less engaged, the MTL seems to exhibit greater engagement. On other 

trials, they are co-active, suggesting that the MTL is always engaged at this stage of learning to 

some extent, and that the striatum may provide supplementary information when contextual 

factors either dampen MTL influence (i.e., noise-degraded images) or enhance striatal influence 

(i.e., high reward magnitude). 

 This view that system-level engagement can be modulated by contextual or structural 

factors may help reconcile apparent discrepancies in the memory and decision-making 

literatures. Typically, MTL damage will abolish the ability to perform deterministic learning 

tasks, such as concurrent discrimination learning (Buffalo et al., 1999; Corkin, 2002; Hood et al., 

1999; Squire et al., 1988; Squire and Zola, 1996; Zola-Morgan et al., 1989; Zola-Morgan et al., 

1994). However, some learning can still be observed in some cases of MTL damage (Bayley et 

al., 2005; Buffalo et al., 1998; Chudasama et al., 2008; Gaffan & Murray, 1992; Hood et al., 

1999; Malamut et al., 1984; Phillips et al., 1988; Suzuki et al., 1993). It may be the case that in 

the absence of the MTL, the striatum can support learning, but must acquire many repetitions of 

experience before outcome predictions are accurate enough to guide behavior. Without the 

retrieval of information from individual instances, individuals must rely on building a history of 

experience via model-free reinforcement learning. This may be accomplished by systems like the 

striatum (Bayley et al., 2005; Poldrack et al., 1999; Seger & Spiering, 2011; Seger et al., 2010;) 
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or other systems involved in the acquisition of semantic information (Duff et al., 2006; Kan et 

al., 2009; O’Kane et al., 2004; Sharon et al., 2011), which each may utilize a model-free learning 

process and may involve overlapping neural systems (Ashby & Maddox, 2005; Davies et al., 

2009; Poldrack et al., 1999; Scimeca & Badre, 2012). When structural or contextual elements of 

a task are altered to discourage the use of MTL-based approaches or boost striatal influence (e.g., 

long retention intervals or large stimulus sets), individuals with MTL damage seem to reach 

criterion levels of performance relative to controls at a similar rate, though initial learning is 

much worse (Bayley et al., 2005; Buffalo et al., 1998; Chudasama et al., 2008; Malamut et al., 

1984; Phillips et al., 1988; Suzuki et al., 1993; Gaffan & Murray, 1992; Teng et al., 2000; Turchi 

et al., 2010). Thus, by using factors that discourage instance retrieval or encourage habit 

learning, one may shift the burden of processing from an MTL-focused approach to a striatal 

one.  

The idea that different factors can influence how these systems respond during a task 

highlights a possibility that choice experiences could be engineered to maximize the 

contributions of one system or another. This seems to be the case in cases of MTL damage 

wherein altering context or structure can putatively boost the recruitment of alternative systems. 

However, there may be practical implications, wherein this could be used to benefit individuals 

with disorders or diseases that affect either the MTL system (e.g., mild cognitive impairment or 

Alzheimer’s disease) or striatal system (e.g., Parkinson’s or Huntington’s diseases). In these 

situations, it may be possible to alter the factors surrounding patients’ everyday experiences to 

leverage the use of the unaffected system in circumstance in which the afflicted system would 

typically excel. For example, emphasizing awareness during procedural learning may help 

Parkinson’s patients acquire habit-like responses that would typically be acquired via striatal 
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reinforcement learning (Moody et al., 2010). While there has been progress in identifying and 

understanding the factors that influence these different learning systems, it is yet unclear how 

these factors can be leveraged and applied to these more practical situations. 

4.3 CONCLUSIONS 

Altogether, this research program has provided evidence that multiple learning and memory 

systems, centered in the MTL and striatum, are engaged in parallel across a trajectory of 

learning. The MTL system excels at encoding and retrieving individual episodes of experience to 

guide decision behavior. This is especially important to support initial decision success, wherein 

an individual has little experience or history with a particular stimulus and outcome. In contrast, 

the striatal system excels at refining decision behavior with repetition to increase response 

automaticity and form habits. This is important in decreasing the effort and time associated with 

responding to a particular decision and to regularize repeated experiences. Both of these systems 

together underlie successful deterministic decision-making and dynamically operate across 

different stages of learning. 
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APPENDIX A 

FULL STATISTICS FOR MIXED LOGIT ACCURACY MODELS 

Table 11. Statistics for mixed logit accuracy models. 

ROI Effect Coef. β SE β z P pFDR  
R Hippocampus Intercept 1.19 0.28 4.27 <0.001 <0.001 * 
 Activity -0.29 0.13 -2.23 0.03 <0.05 * 
 R1 Outcome -0.89 0.34 -2.67 <0.01 0.02 * 
 Activity*Outcome 0.12 0.15 -0.78 0.43 0.61  
Bilat. Parahippocampal G. Intercept 1.20 0.28 4.36 <0.001 <0.001 * 
 Activity 0.02 0.25 0.06 0.95 0.97  
 R1 Outcome -0.88 0.32 -2.74 <0.01 0.02 * 
 Activity*Outcome -0.41 0.37 -1.13 0.26 0.38  
L Putamen Intercept 1.18 0.26 4.49 <0.001 <0.001 * 
 Activity 0.25 0.15 1.71 0.09 0.14  
 R1 Outcome -0.87 0.33 -2.66 <0.01 0.02 * 
 Activity*Outcome -0.49 0.21 -2.38 0.02 0.03 * 
Bilat. Head of caudate Intercept 1.18 0.26 4.60 <0.001 <0.001 * 
 Activity 0.05 0.32 0.16 0.87 0.97  
 R1 Outcome -0.85 0.32 -2.67 <0.01 0.02 * 
 Activity*Outcome -0.20 0.42 -0.49 0.62 0.80  
L Hippocampus Intercept 1.16 0.26 4.45 <0.001 <0.001 * 
 Activity -0.04 0.15 -0.23 0.82 0.96  
 R1 Outcome -0.83 0.31 -2.67 <0.01 0.02 * 
 Activity*Outcome 0.09 0.21 0.42 0.67 0.82  
L Body of caudate Intercept 1.19 0.26 4.59 <0.001 <0.001 * 
 Activity -0.01 0.16 -0.03 0.97 0.97  
 R1 Outcome -0.85 0.31 -2.71 <0.01 0.02 * 
 Activity*Outcome -0.01 0.21 -0.06 0.95 0.97  
L Parahippocampal G. Intercept 1.16 0.26 4.52 <0.001 <0.001 * 
 Activity -0.05 0.10 -0.48 0.63 0.80  
 R1 Outcome -0.88 0.32 -2.72 <0.01 0.02 * 
 Activity*Outcome 0.15 0.14 1.12 0.26 0.38  
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APPENDIX B 

FULL STATISTICS FOR MIXED LINEAR RT MODELS 

Table 12. Statistics for mixed linear response time models. 

ROI Effect Coef. β SE β z p pFDR  
R Hippocampus Intercept 1.98 0.07 27.89 <0.001 <0.001 * 
 Activity -0.02 0.02 -1.04 0.30 0.46  
 R1 Outcome 0.07 0.03 2.22 0.03 0.07  
 Activity*Outcome 0.01 0.03 0.35 0.73 0.76  
Bilat. Parahippocampal G. Intercept 1.98 0.07 28.00 <0.001 <0.001 * 
 Activity 0.14 0.06 2.47 0.01 0.04 * 
 R1 Outcome 0.06 0.03 2.12 0.03 0.07  
 Activity*Outcome 0.06 0.08 0.75 0.45 0.58  
L Putamen Intercept 1.99 0.07 27.82 <0.001 <0.001 * 
 Activity -0.03 0.03 -0.83 0.41 0.54  
 R1 Outcome 0.06 0.03 2.09 0.04 0.07  
 Activity*Outcome 0.03 0.05 0.68 0.50 0.61  
Bilat. Head of caudate Intercept 1.98 0.07 28.25 <0.001 <0.001 * 
 Activity 0.21 0.07 3.02 <0.01 <0.01 * 
 R1 Outcome 0.06 0.03 2.06 0.04 0.07 * 
 Activity*Outcome 0.05 0.09 0.57 0.57 0.65  
L Hippocampus Intercept 1.98 0.07 27.83 <0.001 <0.001 * 
 Activity 0.03 0.03 0.94 0.35 0.51  
 R1 Outcome 0.06 0.03 2.15 0.03 0.07  
 Activity*Outcome -0.02 0.05 -0.51 0.61 0.66  
L Body of caudate Intercept 1.98 0.07 28.73 <0.001 <0.001 * 
 Activity -0.03 0.04 -0.91 0.36 0.51  
 R1 Outcome 0.06 0.03 1.91 0.06 0.10  
 Activity*Outcome 0.09 0.05 1.85 0.06 0.11  
L Parahippocampal G. Intercept 1.99 0.07 27.68 <0.001 <0.001 * 
 Activity 0.00 0.02 0.18 0.86 0.86  
 R1 Outcome 0.07 0.03 2.22 0.03 0.07  
 Activity*Outcome -0.02 0.03 -0.56 0.58 0.65  
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APPENDIX C 

FULL ANOVA TABLE FOR RECOGNITION ITEM ANALYSIS 

Table 13. Statistics for recognition memory item analysis ANOVAs. 

ROI Effect F p pFDR   
R Hippocampus Memory Accuracy 2.46 0.12 0.55   
 Memory Accuracy*R1 Outcome 0.33 0.57 0.65   
 Memory Accuracy*Reward 8.93 0.003 <0.05 *  
 Memory Accuracy*Context 0.71 0.40 0.59   
 Memory Accuracy*R1 Outcome*Reward 1.08 0.30 0.56   
 Memory Accuracy*R1 Outcome*Context 1.61 0.20 0.55   
 Memory Accuracy*Reward*Context 0.86 0.35 0.59   
 Memory Accuracy*R1 Outcome*Reward*Context 1.78 0.18 0.55   
Bilat. Parahippocampal G. Memory Accuracy 3.54 0.06 0.49   
 Memory Accuracy*R1 Outcome 1.92 0.17 0.55   
 Memory Accuracy*Reward 0.74 0.39 0.59   
 Memory Accuracy*Context 3.50 0.06 0.49   
 Memory Accuracy*R1 Outcome*Reward 2.31 0.13 0.55   
 Memory Accuracy*R1 Outcome*Context 0.80 0.37 0.59   
 Memory Accuracy*Reward*Context 0.69 0.41 0.59   
 Memory Accuracy*R1 Outcome*Reward*Context 0.54 0.46 0.59   
L Putamen Memory Accuracy 0.30 0.59 0.65   
 Memory Accuracy*R1 Outcome 0.57 0.45 0.59   
 Memory Accuracy*Reward 1.47 0.23 0.55   
 Memory Accuracy*Context 1.37 0.24 0.55   
 Memory Accuracy*R1 Outcome*Reward 0.37 0.55 0.65   
 Memory Accuracy*R1 Outcome*Context 1.47 0.23 0.55   
 Memory Accuracy*Reward*Context 1.12 0.29 0.56   
 Memory Accuracy*R1 Outcome*Reward*Context 0.54 0.46 0.59   
Bilat. Head of caudate Memory Accuracy 9.27 0.002 <0.05 *  
 Memory Accuracy*R1 Outcome 1.13 0.29 0.56   
 Memory Accuracy*Reward 1.79 0.18 0.55   
 Memory Accuracy*Context 0.18 0.67 0.69   
 Memory Accuracy*R1 Outcome*Reward 0.40 0.52 0.65   
 Memory Accuracy*R1 Outcome*Context 0.03 0.85 0.85   
 Memory Accuracy*Reward*Context 2.78 0.10 0.55   
 Memory Accuracy*R1 Outcome*Reward*Context 0.19 0.66 0.69   
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APPENDIX D 

FULL ANOVA TABLE FOR EPISODIC ITEM ANALYSIS 

Table 14. Statistics for episodic memory item analysis ANOVAs. 

ROI Effect F p pFDR   
R Hippocampus Memory Response 0.00 1.00 0.99   
 Memory Response*R1 Outcome 13.84 <0.001 0.007 **  
 Memory Response*Reward 0.21 0.65 0.87   
 Memory Response*Context 0.07 0.80 0.99   
 Memory Response*R1 Outcome*Reward 0.43 0.51 0.87   
 Memory Response*R1 Outcome*Context 2.31 0.13 0.57   
 Memory Response*Reward*Context 0.20 0.65 0.87   
 Memory Response*R1 Outcome*Reward*Context 0.84 0.36 0.87   
Bilat. Parahippocampal G. Memory Response 0.26 0.61 0.87   
 Memory Response*R1 Outcome 0.21 0.64 0.87   
 Memory Response*Reward 1.42 0.23 0.68   
 Memory Response*Context 8.38 <0.01 <0.05 *  
 Memory Response*R1 Outcome*Reward 0.50 0.48 0.87   
 Memory Response*R1 Outcome*Context 8.97 <0.01 <0.05 *  
 Memory Response*Reward*Context 2.24 0.13 0.57   
 Memory Response*R1 Outcome*Reward*Context 0.49 0.48 0.87   
L Putamen Memory Response 3.84 0.05 0.40   
 Memory Response*R1 Outcome 0.78 0.38 0.87   
 Memory Response*Reward 0.50 0.48 0.87   
 Memory Response*Context 2.16 0.14 0.57   
 Memory Response*R1 Outcome*Reward 1.06 0.30 0.81   
 Memory Response*R1 Outcome*Context 0.02 0.89 0.99   
 Memory Response*Reward*Context 0.01 0.90 0.99   
 Memory Response*R1 Outcome*Reward*Context 0.00 0.99 0.99   
Bilat. Head of caudate Memory Response 3.45 0.06 0.41   
 Memory Response*R1 Outcome 1.68 0.20 0.68   
 Memory Response*Reward 0.05 0.83 0.99   
 Memory Response*Context 0.01 0.95 0.99   
 Memory Response*R1 Outcome*Reward 0.01 0.94 0.99   
 Memory Response*R1 Outcome*Context 1.54 0.21 0.68   
 Memory Response*Reward*Context 0.41 0.52 0.87   
 Memory Response*R1 Outcome*Reward*Context 0.24 0.62 0.87   
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APPENDIX E 

EXAMPLE OF UPDATING FOR THE MODEL-BASED TRANSITION MATRIX 

To illustrate how the transition probability matrix of the model-based reinforcement learning 

agent is learned, this example will walk through two trials from a single subject. One trial 

received a monetary gain during Round 1, while the other received a monetary loss. For this 

example, the learning rate, η, is set to 0.80. In Round 1, transition probabilities for all trials are 

instantiated at 0.5, since subjects have no information about the real probabilities. Each possible 

Round 1 action, A, has a transition matrix: 

 

Table 15. Initial transition probability matrix. 

SR1 SR2 S’R2 

1 0.5 0.5 

2 0.5 0.5 

 

where SR1 is the Round 1 state (i.e., trial number), and SR2 and S’R2 are the two possible states 

that can be experienced in Round 2. For the first trial, SR1 = 1, a monetary gain is received, and a 

state prediction error is computed using Equation 3: 

 



 109 

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) =  1− 𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) 

 

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) =  1− 0.5 = 0.5 

 

This state prediction error is then used to update the transition probability using Equation 5: 

 

𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) =  𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) +  𝜂𝜂 ×  𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 

 

𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) = 0.5 +  0.8 ×  0.5 =  0.9 

 

The unvisited state is also updated via Equation 6: 

 

𝑇𝑇(𝑠𝑠,𝑎𝑎 , 𝑠𝑠′) =  𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) × (1−  𝜂𝜂) 

 

𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) =  0.5 × (1−  0.8) =  0.1 

 

Thus, the updated transition matrix after this first trial looks like the following: 

 

Table 16. First trial update to the transition matrix. 

SR1 SR2 S’R2 

1 0.9 0.1 

2 0.5 0.5 
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This process is repeated for the second trial, though since this trial is associated with monetary 

loss, different equations are used. First, the state prediction error is computed using Equation 4: 

 

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =  0−𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) 

 

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =  0− 0.5 =  −0.5 

 

which is then used to update the initial transition probability via Equation 5: 

 

𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) =  𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) +  𝜂𝜂 ×  𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 

 

𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) =  0.5 +  0.8 ×  (−0.5) =  0.1 

 

The transition probability of the unvisited state is also updated, using Equation 7: 

 

𝑇𝑇(𝑠𝑠,𝑎𝑎 , 𝑠𝑠′) =  𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) × (1 +  𝜂𝜂) 

 

𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) =  0.5 × (1 +  0.8) =  0.9 

 

This process produces the following transition matrix after this first series of updates: 
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Table 17. Second trial update to the transition matrix. 

SR1 SR2 S’R2 

1 0.9 0.1 

2 0.1 0.9 

 

After learning this transition matrix for each of the trials, the agent then computes state-action 

values, Q, based on the actual reward received and the associated transition of the state-action 

pair. These state-action values are used to guide the behavior of the agent. 
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