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MIXTURES OF DISCRETE AND CONTINUOUS VARIABLES:

CONSIDERATIONS FOR DIMENSION REDUCTION

John R. Pleis, PhD

University of Pittsburgh, 2018

ABSTRACT

For this dissertation, we will examine mixtures of different types of data, the ana-

lytic challenges that such data can present, and some approaches for addressing this issue.

Specifically, we will consider mixtures of continuous and discrete data. For the theoreti-

cal developments that follow, we will focus on the general location model (GLOM)-based

methodology for deriving the joint probability distribution of continuous and discrete ran-

dom variables as the product of conditional and marginal probability distributions. As we

will show, the general specification of this joint distribution is a finite mixture of Gaus-

sian distributions. We will consider both the univariate and multivariate cases. For the

univariate case we will first determine the distribution of the sample variance, and for the

multivariate case we will first determine the distribution of the sample covariance matrix.

When the component distributions of the mixture have different variances (univariate) or

covariance matrices (multivariate), any analysis can become more challenging. In such cases,

we propose approximating the mixture density with a non-mixture density from the same

parametric family (e.g., multivariate Gaussian). Finally, we will present some extensions of

this work to the field of dimension reduction.

Public Health Significance: Mixtures of continuous and discrete variables are somewhat

common in public health settings (e.g., genetics, health services research), but statistical
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methods for the analysis of such data are not nearly as developed and robust, compared

to the analysis of only one type of data (e.g., continuous). The methods developed in this

dissertation could be used to expand inferential approaches to non-normal data which are

commonly seen in public health settings. For example, hypothesis testing of the propor-

tionate contribution of eigenvalues could be adapted to mixtures of different types of data,

and these methods could possibly be extended to high-dimensional data (e.g., genetics) by

examining mixtures of singular Wishart distributions.
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1.0 AN OVERVIEW OF MIXTURE DISTRIBUTIONS

In the most general sense, the term “mixture data” refers to situations where the

variable data structure is comprised of multiple data types (e.g., continuous, discrete). The

paradigm can be further expanded outward if we consider the various types of discrete data

(e.g., binary, nominal, ordinal, count) as separate data constructs. While mixtures of contin-

uous and discrete variables are somewhat common in research settings, statistical methods

for the analysis of such data are not nearly as developed and robust, compared to the analy-

sis of only one type of data (e.g., continuous). Because of the slower pace of methodological

development for the analysis of mixture data, there may be a tendency to coarsen the data

so that methods developed for a single type of data could be applied. For example, some of

these available options include: categorizing all of the continuous data and then analyzing

the combined data using categorical data analysis methods; applying a scoring method to

the categorical variables and subsequently analyzing the data using approaches developed for

continuous data; or analyzing each variable type separately and then combining the results

together based on some weighting mechanism. However, as illustrated by Krzanowski [1],

these approaches are not necessarily ideal. The categorization of all continuous variables

leads to a loss of information, and the scaling of all categorical variables introduces an un-

known degree of subjectivity. Further, analyzing each variable type separately (and later

combining) ignores any association between the continuous and discrete variables. Because of

these consequences, the preferred approach for the analysis of multiple types of data usually

starts with the specification of the joint distribution of the continuous and discrete random
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variables. If the different types of random variables are statistically independent, then the

derivation of this joint distribution is relatively straightforward (product of the marginal

distributions). However, if this assumption is not tenable, then an alternative way of calcu-

lating the joint distribution must be used. Thus, herein lies one of the primary difficulties

in the analysis of multiple types of data: the lack of flexible methods for the specification of

the joint distribution of the continuous and discrete random variables without the assump-

tion of statistical independence. For this purpose, there are generally three approaches that

have been demonstrated in the literature: specifying the joint distribution as a product of

conditional and marginal distributions; using copula models to derive the joint distribution;

or incorporating latent variables into the analysis. Typically, the latent variable approach

assumes that the discrete variables are the realization of an unobserved continuous random

variable. For example, let Y be an observed binary random variable taking on the values of 0

and 1. Further, let Y ∗ be an unobserved random variable following an, as of yet, unspecified

continuous distribution. Assuming that Y has an underlying continuity represented by Y ∗,

then Pr(Y = 1) = Pr(Y ∗ > τ), where τ is an unknown thresholding parameter. Similarly,

Pr(Y = 0) = Pr(Y ∗ ≤ τ). In the following sections, these approaches will be described in

more detail, including any underlying assumptions as well as examples from the literature

for each approach.

1.1 FINDING THE JOINT PROBABILITY DISTRIBUTION OF

CONTINUOUS AND DISCRETE DATA

1.1.1 Product of Conditional and Marginal Distributions

First, let us assume that we have two random variables X and Y . In addition, let

fX,Y (x, y) be defined as their joint probability distribution. From introductory coursework
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in probability theory, we know that the joint distribution of any two random variables can

be written as:

fX,Y (x, y) = fX|Y (x|y)fY (y) = fY |X(y|x)fX(x) (1.1)

For the mixture data setting, if we let the probability distribution for X be continuous and

the probability distribution for Y be discrete, then (1.1) becomes:

fX,Y (x, y) = Pr(x|Y = y)Pr(Y = y) = Pr(Y = y|x)fX(x) (1.2)

As can be seen from (1.1) and (1.2), these equations require knowledge of the form

of the respective conditional probability distribution. If the form of the conditional prob-

ability distribution is known, the joint distribution between the two random variables can

be expressed in a straightforward manner. Depending on the nature of the problem, one

particular form of the conditional distributions specified in (1.2) may be easier to deal with

than the other.

1.1.1.1 Using Pr(x|Y = y)Pr(Y = y) .

Some of the earliest statistical methodology for the analysis of multiple types of

data was done by Tate [2]–[3] for the correlation coefficient between one continuous random

variable and one binary random variable. Tate, who utilized (1.2) to express the joint

distribution between X and Y , assumed that the conditional probability distribution of X

given Y was Gaussian:

Pr(x|Y = y) =
1

σ
√

2π
e−[(x−µy)2/2σ2], x, µy ∈ <; y = 0, 1; σ > 0, (1.3)

while the marginal probability distribution of Y was assumed to follow a Bernoulli distribu-

tion:

Pr(Y = y) = pyq1−y, y = 0, 1; 0 ≤ p ≤ 1; q = 1− p; p+ q = 1. (1.4)

As can be seen from (1.3), X follows a Gaussian distribution for each value of Y , with

different means but a common variance. That is, the shape of the conditional distributions
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are assumed to be the same, but with a location shift. Based on (1.3) and (1.4), the joint

probability distribution of X and Y , fX,Y (x, y), can be expressed as:

fX,Y (x, y) =
p

σ
√

2π
e−[(x−µ1)2/2σ2] +

q

σ
√

2π
e−[(x−µ0)2/2σ2], (1.5)

which can be recognized as a two-component mixture of Gaussian distributions.

Olkin and Tate [4] later extended Tate’s previous work to the multivariate setting.

Let there be C continuous variables defined by X = (X1, X2, . . . , XC)T , and D discrete

variables defined by Y = (Y1, Y2, . . . , YD)T . In addition, suppose the dth discrete variable

YD has sd categories. Thus, there will be a total of S =
∏D

d=1 sd possible patterns of the

discrete responses for Y (states). Utilizing the conditional Gaussian distribution and (1.5),

the joint probability density of X and Y can be written as:

fX,Y(x,y) =
S∑
s=1

ps(2π)−C/2|Σs|−1/2exp

(
−1

2
(x− µµµs)TΣ−1

s (x− µµµs)
)
, (1.6)

where given that Y falls in the sth state, then X is distributed according to the multivariate

normal distribution, NC (µµµs,Σs), and the marginal probability that Y falls into state s is ps

with
∑S

s=1 ps = 1. One simplifying assumption for this model would be to have a common

covariance matrix for each discrete state. This would lead to the following expression for the

joint probability distribution of X and Y:

fX,Y(x,y) =
S∑
s=1

ps(2π)−C/2|Σ|−1/2exp

(
−1

2
(x− µµµs)TΣ−1(x− µµµs)

)
, (1.7)

which is the model utilized by Olkin and Tate [4] when examining multivariate correlation

models for continuous and discrete random variables. This particular model is often referred

to as the general location model (GLOM) [4]–[7]. GLOM methodology assumes a homoge-

neous covariance matrix across all discrete states while allowing the means to vary. After its

introduction by Olkin and Tate [4], GLOM-based methods have been used in several types of

analysis of continuous and discrete data. For example, Afifi and Elashoff [8] used this model

for hypothesis testing in the two-sample case, and Krzanowski [1],[9]–[13] authored several
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articles using the GLOM approach for discrimination and classification analysis applied to

mixtures of continuous and discrete data. Additional articles using the GLOM methodology

for classification of mixed data have been written by Chang and Afifi [14], and de Leon et

al. [15] where the latter generalized classification for the GLOM model to a general data

model (e.g., continuous, binary, ordinal). Bar-Hen and Daudin [16] generalized Mahalanobis

distance to the mixture data case using GLOM-based approaches, while Morales et al. [17]

generalized informational distance to the multiple data types using the GLOM approach.

Lauritzen and Wermuth [18] used GLOM methodology for developing graphical models for

the association between quantitative and qualitative variables. GLOM-based methods have

also been applied to the development of additional likelihood ratio tests for multiple types

of data [19]–[20].

1.1.1.2 Using Pr(Y = y|x)fX(x) .

While the majority of the work in using conditional distributions to generate the joint

probability density function has focused on GLOM-based methods (i.e., conditional Gaus-

sian), some research has utilized the less commonly used representation, Pr(Y = y|x)fX(x).

This method was first mentioned by Cox [21] for the multivariate case for both X and Y.

In this framework, the conditional distribution of Y|X was assumed to follow a multivariate

logistic distribution while the marginal distribution of X was assumed to be multivariate

normal. This idea was developed further by Cox and Wermuth [22] by noting the connection

between the conditional logistic method by Cox [21] and probit as well as latent variable

models. However, these methods have not been pursued nearly as frequently as the GLOM-

based methods. This may be due to the difficulty in working with multivariate binary data,

or that probit or latent-type methods may not be as useful for nominal data if the nomi-

nal variables are not assumed to be the representation of underlying unobserved continuous

random variables.
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1.1.2 Copulas

Another way to derive the joint probability density function for random variables is

by the use of copulas. Before proceeding further, it is important to properly define what a

copula is. As stated by Nelsen [23], copulas are functions which “join or “couple” multivariate

distribution functions to their one-dimensional marginal distribution functions”. Stated

another way, a copula itself is a multivariate distribution function whose inputs are the

respective marginal cumulative probability distribution functions for the random variables

of interest. Based on that description, one can see why copulas would be appealing for

the derivation of the joint probability distribution for a set of random variables. A copula

function, which includes a dependency parameter, only requires the specification of the

respective marginal cumulative probability distribution functions. However, when not all

of the random variables are continuous, there are special considerations that need to be

addressed.

For a given random variable V ∈ < , its cumulative probability distribution function

(CDF), FV (v), is defined as Pr(V ≤ v). The CDF of V has the following properties: 1.

FV (v) is a non-decreasing fuction of v, 2. limv→−∞FV (v) = 0, 3. limv→∞FV (v) = 1, and 4.

FV (v) is right-continuous: for every number v0, limv↓v0FV (v) = FV (v0) [23]–[24]. In addition,

from introductory probability theory, we know that if V is a continuous random variable,

according to the probability integral transform, FV (v) ∼ Uniform(0, 1) [24]. However, the

same is not true if V is a discrete random variable. This is due to the fact that the CDF of a

discrete random variable is a step function. The essential theorem that allows the recovery of

the joint probability distribution function via the copula is Sklar’s Theorem which is stated

below:

Sklar’s Theorem. Let H be a joint distribution function with margins F and G. Then there

exists a copula C such that for all x ∈ <,

H(x, y) = C(F (x), G(y)) (1.8)
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If F and G are continuous, then C is unique; otherwise, C is uniquely determined on Range

F × Range G. Conversely, if C is a copula and F and G are distribution functions, then the

function H defined by (1.8) is a joint distribution function with margins F and G [25].

As can be seen by Sklar’s Theorem, when F and G are both continuous CDFs, then a given

copula will uniquely determine the joint probability distribution of X and Y . However, when

F and G are not both continuous CDFs, the copula, C, will only uniquely determine the

joint probability distribution function of X and Y over Range F × Range G. Genest and

Nes̆lehovà [26] provide a comprehensive treatment of the use of copulas for joint probability

distribution function generation when both marginal CDFs are based on discrete count

random variables. The authors state that while Sklar’s Theorem can still be used when

both variables are discrete, the joint distribution is not guaranteed to be unique. Song et

al. [27] utilized a copula framework when determining the joint probability distribution for

continuous, ordinal, and binary data by using a continuous latent variable for the ordinal

variables and having a separate copula for each level of the single binary random variable.

However, we are not aware of any previous research which has examined the properties

of copulas and their use for generating joint probability distribution functions when the

marginal CDFs are of different data types.

In spite of these issues, some authors have utilized copula methodology to determine

the joint distribution of multiple types of data by utilizing a latent variable approach [27]–

[30]. Specifically, discrete variables are assumed to be discretized versions of unobserved

underlying continuous variables [31]. In this construct, as introduced earlier, unknown

thresholding parameter(s) are used to define the observed discrete random variable(s) in

terms of unobserved continuous measure(s). Let W ∗ be an unobserved continuous ran-

dom variable. Assuming that W has an underlying continuity represented by W ∗, then

Pr(W = 1) = Pr(W ∗ > τ), where τ is an unknown thresholding parameter. Similarly,

Pr(W = 0) = Pr(W ∗ ≤ τ). While this may seem like a reasonable approach when the

discrete variable is ordinal, it is less clear if this approach is reasonable when the discrete
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variable is not subject to an underlying continuous latent random variable (i.e.,nominal).

This aspect has been noted by Wu et al. [30] who observed that “...while suitable for ordinal

outcomes, the notion of continuous latent variables underlying nominal outcomes may not

be appropriate”.

1.1.3 Latent Variables

While the previous section demonstrated how latent variables have been used to

generate the joint probability distribution function for random variables of different data

types, a similar latent variable construct has been used in other ways to generate the joint

distribution of different data types not via the copula method. Some of the first demon-

strated work for this methodology is attributed to Cox [32]. A latent variable construct

was utilized to estimate the correlation coefficient between a continuous random variable

and a discrete random variable by assuming the discrete variable was the realization of an

unobserved continuous random variable. By applying this mechanism, the joint distribution

for the observed continuous variable and the continuous latent variable was assumed to be

bivariate normal. Cox and Wermuth [22] also adopted this approach when examining re-

sponse models for binary and continuous random variables. Bedrick et al. [33] and de Leon

et al. [34] extended this approach to multiple latent variables for the estimation of the Ma-

halanobis distance for mixed continuous and discrete data. However, it is worth noting that,

similar to copula models for different types of data, the latent variable approach may not be

appropriate for nominal variables where the underlying continuous variable assumption may

not be reasonable.
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2.0 PROPOSAL

For this dissertation, we will examine mixtures of different types of data; specifically

we will consider mixtures of continuous and discrete data. For the developments that follow,

we will focus on the GLOM-based methodology for deriving the joint probability distribu-

tion of continuous and discrete random variables as the product of conditional and marginal

probability distributions (as shown in section 1.1.1). As we noticed from (1.6), the general

specification of the joint distribution is a finite mixture of multivariate Gaussian distribu-

tions with potentially different covariance matrices. One item to note from this specification

of the PDF is that some confusion arises when this specification is erroneously interpreted

as the sum of separate multivariate Gaussian distributions. Rather, using the notation of

(1.6), the correct interpretation is that the random variable x is assumed to have been gen-

erated from one of the component “s′′ multivariate Gaussian distributions but it is unknown

which one. That is, it is important to differentiate between a random variable with a PDF

that is the sum of a group of component distributions (mixture distribution), and a random

variable that is the sum of “s′′ random variables where the distribution can be found using

established approaches for sums of independent random variables (e.g., convolution).

In a general sense, we can think of a random variable with a mixture distribution as one hav-

ing been generated from at least two subpopulations. For example, in a genetic association

study, we may think of a genetic variant (e.g., single-nucleotide polymorphism (SNP)) as

having been derived from two or more subpopulations each having different allele frequencies.

As we notice from (1.6), this form of the mixture distribution allows for different covariance
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matrices for each component distribution. However, under such situations, analysis if gener-

ally more complicated. Therefore, for this dissertation, we propose approximating a mixture

distribution with a distribution from the same parametric family. For this work, we are

also assuming that the mixture distribution has component distributions all from the same

parametric family as well. For example, if we have a random variable with a distribution

that is a mixture of multivariate Gaussians, the approximating distribution would be a single

multivariate Gaussian distribution.

Several authors have undertaken a similar problem: the weighted sum of central chi-

squared distributions (special case of the weighted sum of gamma distributions). Arguably,

the most well-known approach for dealing with such a problem was introduced by Satterth-

waite [35] - [36] and Welch [37]; equations are constructed by matching the corresponding

mean(s) and variance(s) for the original distribution (weighted sum of central chi-squared

random variables) and an approximate chi-squared distribution (with a degrees of freedom

adjustment). While the method attributed to Satterthwaite as well as Welch have been been

widely utilized, other authors have since suggested other approaches, with varying degrees of

complexity. For example, Davis [38] evaluated the distribution of weighted sums of central

chi-squared random variables using a differential equation approach. Solomon and Stephens

[39] approximated the distribution of the weighted sum of central chi-squared random vari-

ables by first fitting a Pearson curve with the same first four moments as the weighted sum

and also by fitting Qk = Awr where w ∼ χp and where A, r, and p are determined by the first

three moments of Qk. Oman and Zacks [40] utilized negative binomial mixture distributions.

Mathai [41] evaluated the distribution of the weighted sum of gamma random variables using

incomplete gamma functions. In addition, Moschopoulos and Canada [42] inverted the MGF

of the weighted sum of central chi-squared random variables to obtain the distribution of the

weighted sum as an infinite series of incomplete gamma integrals. Lindsay et al. [43] utilized

gamma mixture distributions to approximate the distribution of the weighted sum of central

chi-squared random variables by matching moments. More recently, Di Salvo [44] expressed

10



the exact distribution of the weighted sum of gamma random variables as the product be-

tween a gamma density and a confluent hypergeometric function. These examples illustrate

that the distributional form of the weighted sum of gamma random variables is somewhat

complex and can be subject to computational challenges.

While the preceding methods were primarily proposed for deriving (or approximat-

ing) the distribution of the sum of central chi-squared random variables, approaches for ap-

proximating the mixture distribution for a set of component distributions have received less

attention. Taking a mixture of gamma distributions as an example, we know that complica-

tions can arise when the scale parameters for each component distribution are not identical.

In these situations, an approximation method originally developed for estimating the distri-

bution of a sum of central chi-squared random variables may have some utility in estimating

a corresponding mixture distribution. Therefore, we propose using a method similar to that

developed by Satterthwaite and Welch for approximating a mixture of gamma distributions.

Simulations will be utilized to assess the adequacy of the applicable approximation.

The remainder of this dissertation is organized as follows. Chapter 3 is devoted to

determining the distribution of the sample variance for a Gaussian finite mixture distribu-

tion. Section 3.1 focuses on the univariate case, and section 3.2 focuses on the multivariate

case. Theoretical developments supporting these efforts are shown in Appendices A-C. In

Appendix A we utilize contour integration from the field of complex analysis to obtain the

PDF from the MGF in the univariate case. In Appendices B-C we perform similar devel-

opments for the multivariate case. In Appendix D we determine the marginal distribution

when the joint distribution is that of a mixture of multivariate Gaussian distributions. In

sections 3.2 and 3.2 we also present simulations for the univariate and multivariate cases,

respectivley. Section 3.2 also contains a discussion of considerations for simulating from a

Wishart distribution. In Section 4 we suggest some future directions for this work. Finally,

it is worth noting that for this dissertation we will be focusing on situations where the pa-

rameters for the various component distributions from the mixture are reasonably close to

each other.
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3.0 DISTRIBUTION OF THE SAMPLE VARIANCE - GAUSSIAN FINITE

MIXTURE DISTRIBUTION

3.1 UNIVARIATE CASE

A k-component finite mixture distribution has the following PDF:

fk(x`) =
k∑
j=1

wjfj(x`|θj), (3.1)

where x` is a random variable, fj(x`|θj) may be a continuous or discrete distribution, θj

represents the parameters of the jth component distribution, wj represents the weight for the

jth component distribution, and k is finite. We also note that a random variable distributed

as in (3.1) is assumed to have been generated in a heterogeneous manner. That is, some

data points were generated from each of the k component distributions, but we do not know

which point was generated from which distribution. Further, the wjs satisfy:

k∑
j=1

wj = 1, wj ≥ 0 (3.2)

Letting fj(x`|θj) in (3.1) be represented by a Gaussian PDF with θj = {µj, σ2
j} we have:

fk(x`) =
k∑
j=1

wjφ(x`|µj, σ2
j ), (3.3)

where φ(x`|µj, σ2
j ) represents the jth Gaussian distribution with its mean = µj and variance

= σ2
j . We note that the same constraint in (3.2) applies, and k remains finite.

12



Given the mixture parameters in (3.3), {wj, µj, σ2
j}, j = 1, . . . , k, the expected value

of x` can be written as:

E
(
x`|wj, µj, σ2

j

)
=

k∑
j=1

wjE
(
x`|µj, σ2

j

)
(3.4)

=
k∑
j=1

wjµj (3.5)

= µmix (3.6)

Similarly, we can compute the variance of x` by first calculating its second moment, given

{wj, µj, σ2
j}, j = 1, . . . , k:

E
(
x2
` |wj, µj, σ2

j

)
=

k∑
j=1

wjE
(
x2
` |µj, σ2

j

)
(3.7)

=
k∑
j=1

wj
(
σ2
j + µ2

j

)
, (3.8)

which leads to the variance of x` as:

V ar (x`) = E
(
x2
` |wj, µj, σ2

j

)
− [E

(
x`|wj, µj, σ2

j

)
]2 (3.9)

=
k∑
j=1

wj
(
σ2
j + µ2

j

)
− µ2

mix (3.10)

= σ2
mix (3.11)

If we consider the class of 0-mean k-component finite Gaussian mixture distributions, (3.6)

and (3.11) become:

µmix = 0, σ2
mix =

k∑
j=1

wjσ
2
j (3.12)

Given a random sample {e1, . . . , en} from such a distribution, an unbiased sample variance

estimator would be:

σ̂2
mix =

(
1

n− 1

) n∑
`=1

e2
` (3.13)
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Next, let us define a random variable

εn =
n∑
`=1

y2
` , (3.14)

where yi is a random variable from a 0-mean k-component finite Gaussian mixture distribu-

tion as defined in (3.12). Define the scaled random variable

ε =

(
1

n− 1

)
εn, (3.15)

which produces the unbiased variance estimator in (3.13). To determine the density for

(3.15), we can use the property that a PDF is uniquely determined by its moment generating

function (MGF), when it exists. The MGF of the random variable εn is defined as

Mεn (t) = E
(
etεn
)

= E
(
et

∑n
`=1 y

2
`

)
(3.16)

=
n∏
`=1

E
(
ety

2
`

)
(3.17)

=
(
E
(
ety

2
`

))n
(3.18)

=
(
My2`

(t)
)n
, (3.19)

where:

My2`
(t) =

∫ ∞
−∞

ety
2
`

k∑
j=1

wjφ
(
y`|0, σ2

j

)
dy` (3.20)

Because k is finite, the order of the summation and integration can be reversed:

My2`
(t) =

k∑
j=1

wj

∫ ∞
−∞

ety
2
`

(
1√

2πσj
e
− y2`

2σ2
j

)
dy` (3.21)

=
k∑
j=1

wj

∫ ∞
−∞

(
1√

2πσj

)
exp

(
ty2
` −

y2
`

2σ2
j

)
dy` (3.22)

=
k∑
j=1

wj

∫ ∞
−∞

(
1√

2πσj

)
exp

(
2σ2

j ty
2
` − y2

`

2σ2
j

)
dy` (3.23)

=
k∑
j=1

wj

∫ ∞
−∞

(
1√

2πσj

)
exp

(
− y2

`

2σ2
j

(
1− 2σ2

j t
))

dyi` (3.24)
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Using the substitution method:

v = y`

√
1− 2σ2

j t (3.25)

dv =
√

1− 2σ2
j t dy` (3.26)

dy` =

 1√
1− 2σ2

j t

 dv (3.27)

Substituting into (3.24):

My2`
(t) =

k∑
j=1

wj

∫ ∞
−∞

(
1√

2πσj

)
exp

(
− w2

2σ2
j

) 1√
1− 2σ2

j t

 dv (3.28)

=
k∑
j=1

wj
(
1− 2σ2

j t
)− 1

2

∫ ∞
−∞

(
1√

2πσj

)
exp

(
− w2

2σ2
j

)
dv︸ ︷︷ ︸

Integrates to 1

(3.29)

=
k∑
j=1

wj
(
1− 2σ2

j t
)− 1

2 , t <
1

2σ2
j

, (3.30)

which is a weighted sum of MGFs for a Gamma
(

1
2
, 2σ2

j

)
distribution. Combining (3.30)

with (3.16):

Mεn (t) =

(
k∑
j=1

wj
(
1− 2σ2

j t
)− 1

2

)n

(3.31)

=

(
k∑
j=1

wjMj (t)

)n

(3.32)

As is shown in Appendix A,
∑k

j=1 wjMj (t) corresponds to a PDF which is a k-

component mixture of Gamma
(

1
2
, 2σ2

j

)
PDFs. We note that from (3.30) the scale pa-

rameters, 2σ2
j , are not necessarily identical. If all the scale parameters were the same,
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σ2
1 = σ2

2 = · · · = σ2
k = σ2, (3.32) becomes:

Mεn (t) =

(
k∑
j=1

wj
(
1− 2σ2

j t
)− 1

2

)n

(3.33)

=

(
k∑
j=1

wj
(
1− 2σ2t

)− 1
2

)n

(3.34)

=

((
1− 2σ2t

)− 1
2

k∑
j=1

wj

)n

(3.35)

=
((

1− 2σ2t
)− 1

2

)n
(3.36)

=
(
1− 2σ2t

)−n
2 , (3.37)

which is the MGF corresponding to a Gamma
(
n
2
, 2σ2

)
PDF. Thus, under this scenario,

εn ∼ Gamma
(
n
2
, 2σ2

)
. However, when the σ2

j s from (3.30) are not all equal, the PDF

corresponding to the MGF is decidedly more complicated. From Appendix A, My2`
(t) =∑k

j=1 wj
(
1− 2σ2

j t
)− 1

2 corresponds to the k-component mixture of Gamma distributions:

f
(
y2
i

)
=

k∑
j=1

wj Gamma

(
1

2
, 2σ2

j

)
(3.38)

First, we will calculate the first and second moments for y2
` by utilizing the MGF

shown in (3.30).

∂My2`
(t)

∂t
=

k∑
j=1

wj

(
−1

2

)(
1− 2σ2

j t
)− 3

2
(
−2σ2

j

)
(3.39)

E
(
y2
`

)
=
∂My2`

(t)

∂t

∣∣∣∣
t=0

=
k∑
j=1

wjσ
2
j

(
1− 2σ2

j t
)− 3

2

∣∣∣∣
t=0

(3.40)

=
k∑
j=1

wjσ
2
j (3.41)

Similarly, we have for the second moment of y2
` we have:

∂2My2`
(t)

∂t2
=

k∑
j=1

wjσ
2
j

(
−3

2

)(
1− 2σ2

j t
)− 5

2
(
−2σ2

j

)
(3.42)

= 3
k∑
j=1

wjσ
4
j

(
1− 2σ2

j t
)− 5

2 (3.43)
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E
(
y2
`

)2
=
∂2My2`

(t)

∂t2

∣∣∣∣
t=0

=

(
3

k∑
j=1

wjσ
4
j

(
1− 2σ2

j t
)− 5

2

)∣∣∣∣
t=0

(3.44)

= 3
k∑
j=1

wjσ
4
j (3.45)

Finally, using the results from (3.41) and (3.45), we have:

Var
(
y2
`

)
= E

(
y2
`

)2 − [E
(
y2
`

)
]
2

(3.46)

= 3
k∑
j=1

wjσ
4
j −

[ k∑
j=1

wjσ
2
j

]2

(3.47)

Let us assume we are going to approximate the distribution of y2
` using a single

gamma distribution (instead of a mixture of gamma densities). We shall approximate the

random variable y2
` by the random variable ỹ where ỹ ∼ Gamma(α, β). By (3.37), we can

see that ỹ has the following MGF:

Mỹ (t) = (1− βt)−α (3.48)

Similarly, we will calculate the first and second moments for ỹ using the MGF:

E (ỹ) =
∂Mỹ (t)

∂t

∣∣∣∣
t=0

(3.49)

= {(−α) (1− βt)−α−1 (−β)}
∣∣∣∣
t=0

(3.50)

= αβ (3.51)

E
(
ỹ2
)

=
∂2Mỹ (t)

∂t2

∣∣∣∣
t=0

(3.52)

=
∂
[
αβ (1− βt)−α−1]

∂t

∣∣∣∣
t=0

(3.53)

= {(αβ) (−α− 1) (1− βt)−α−2 (−β)}
∣∣∣∣
t=0

(3.54)

= (αβ) (−α− 1) (−β) (3.55)

= αβ2 (α + 1) (3.56)
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Finally, using the results from (3.51) and (3.56) we have:

Var (ỹ) = E
(
ỹ2
)
− [E (ỹ)]2 (3.57)

= αβ2 (α + 1)− [αβ]2 (3.58)

= αβ2 (α + 1)− α2β2 (3.59)

= αβ2[(α + 1)− α] (3.60)

= αβ2 (3.61)

Now, similar to the approach used by Satterthwaite as well as Welch, let us equate the

corresponding means and variances of y2
i and ỹ:

αβ =
k∑
j=1

wjσ
2
j (3.62)

αβ2 = 3
k∑
j=1

wjσ
4
j −

[ k∑
j=1

wjσ
2
j

]2

(3.63)

Based on equation (3.62), we note that

α =

∑k
j=1wjσ

2
j

β
(3.64)

Substituting this into (3.63), we have:(∑k
j=1wjσ

2
j

β

)
β2 = 3

k∑
j=1

wjσ
4
j −

[ k∑
j=1

wjσ
2
j

]2

(3.65)

β =
3
∑k

j=1wjσ
4
j − [

∑k
j=1wjσ

2
j ]

2∑k
j=1wjσ

2
j

(3.66)

Finally, substituting (3.66) into (3.64), we have:

α =

(∑k
j=1wjσ

2
j

)2

3
∑k

j=1wjσ
4
j − [

∑k
j=1wjσ

2
j ]

2
(3.67)

Because Var (y2
i ) = 3

∑k
j=1wjσ

4
j − [

∑k
j=1 wjσ

2
j ]

2, and is greater than zero by definition,

we also know that the expressions for α and β in (3.67) and (3.66), respectively, are both

greater than zero (properties of the gamma distribution). Next, simulations were performed

to evaluate the adequacy of the approximation method.
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3.1.1 Data Simulations - Univariate Case

As previously mentioned, data simulations were performed to assess the adequacy of

the approximation method shown in (3.62) - (3.67). Initial simulations were performed with

a 2-component mixture of gamma distributions. For the 2-component mixture distribution

parametrized as in (3.38), 3 different scenarios were evaluated:

• w1 = 0.2, w2 = 0.8, α = 0.5, β1 = 2σ2
1 = 1, β2 = 2σ2

2 = 1.1

• w1 = 0.5, w2 = 0.5, α = 0.5, β1 = 2σ2
1 = 1, β2 = 2σ2

2 = 1.1

• w1 = 0.8, w2 = 0.2, α = 0.5, β1 = 2σ2
1 = 1, β2 = 2σ2

2 = 1.1

where w1 and w2 represent the mixture weights from the first and second component gamma

distributions, respectively. Further, α represents the common location parameter from the

component gamma distributions, and β1 and β2 represent the scale parameters from the first

and second component gamma distributions, respectively. The generation of data from a 2-

component gamma mixture distribution was a 2-step process. First, a random variate (u) was

generated from a Uniform(0, 1) distribution. If u < w1, then a random variate was generated

from a Gamma(α = 0.5, β1 = 1) distribution. Otherwise, a random variate was generated

from a Gamma(α = 0.5, β2 = 1.1) distribution. Similarly for the approximation method,

a random variate was generated from a Gamma(α, β) distribution using the expressions in

(3.66) and (3.67). For each simulation scenario, 1,000 replicates were generated each with a

sample size of 100. In addition to density plots comparing the mixture distribution with the
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approximation method, the following statistics were utilized

ξkf =
100∑
g=1

(
hfg − h̃fg

)
(3.68)

ξk =
1000∑
f=1

ξkf (3.69)

s2
ξk

=

1000∑
f=1

(
ξkf − ξk

)2

f − 1
(3.70)

ξk =

1000∑
f=1

ξkf

f
(3.71)

where k = the number of mixture components, f = the number of replicates, and g = the

sample size per replicate. In addition, in (3.68), hfg = a random deviate from a mixture of

gamma distributions, and h̃fg = a random deviate from the approximating gamma distribu-

tion. The density plots assessing the adequacy of the approximation method are shown in

Figure 1. Based on a review of Figure 1 and Table 1 we note that the best fitting approxi-

mating distributions are those applied to the situation when w1 = 0.5, 0.8. In addition, the

average rates of error are summarized in Table 1.

3.2 MULTIVARIATE CASE

We shall now extend the work of section 3.1 to the multivariate case. However,

before proceeding to the multivariate developments, we will define some notation as well as

some concepts for multivariate data.
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Figure 1: Simulation - 2-component Mixture of Gamma Distributions

Table 1: Comparison of Average Squared Error Between Mixture Distribution and Approx-

imating Distribution

Scenario Average Squared Error

w1 = 0.2, w2 = 0.8 119.45

w1 = 0.5, w2 = 0.5 107.86

w1 = 0.8, w2 = 0.2 101.83
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First, let us define the random vector x` and the random matrix Xn×p as follows:

x` =


x`1

x`2
...

x`p


p×1

, ` = 1, . . . , n (3.72)

X =


xT1

xT2
...

xTn


n×p

(3.73)

It is worth noting from (3.73) that the rows of X constitute a random sample (independent

and identically distributed), but the columns of X do not have this property. For the

random matrix X, the rows represent observations, while the columns represent features

(e.g., variables). Stated another way, each element of matrix X, (x)`r, represents the value

for the rth variable on the `th observation. Similar to the random vector x`, we can also

define the vector of sample means as follows:

x =


x1

x2

...

xp


p×1

, (3.74)

where xr is the sample mean for the rth variable and is defined as xr =
1

n

n∑̀
=1

x`r.

The sample covariance between the rth and vth variables, srv, can be expressed as:

srv =
1

n

n∑
`=1

(x`r − xr)(x`v − xv) (3.75)

Using (3.75), we can express the sample variance of the rth variable, srr as:

srr =
1

n

n∑
`=1

(x`r − xr)2 (3.76)
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We can also denote the sample covariance matrix, S, by its matrix elements using (3.75) -

(3.76).

Sp×p = (s)rv, (3.77)

where (s)rv is the matrix element in the rth row and the vth column of the matrix S. Another

useful random quantity for multivariate analysis is the matrix of the sum of squares and cross-

products. The random matrix, A`, can be defined in terms of the random vector x` from

(3.72) as:

A` = x`x
T
` =


x`1

x`2
...

x`p


p×1

(
x`1 x`2 . . . x`p

)
1×p

=


x2
`1 x`1x`2 . . . x`1x`p

x`2x`1 x2
`2 . . . x`2x`p

...
...

. . .
...

x`px`1 x`px`2 . . . x2
`p


p×p

(3.78)

Summing A` across all values of ` gives us the matrix of the sum of squares and cross-

products, A, as follows:

Ap×p =
n∑
`=1

A`

=



n∑̀
=1

x2
`1

n∑̀
=1

x`1x`2 . . .
n∑̀
=1

x`1x`p
n∑̀
=1

x`2x`1
n∑̀
=1

x2
`2 . . .

n∑̀
=1

x`2x`p

...
...

. . .
...

n∑̀
=1

x`px`1
n∑̀
=1

x`px`2 . . .
n∑̀
=1

x2
`p


(3.79)

We also note that when x as defined in (3.74) is equal to 0, then nS = A. If we assume that

x` from (3.72) is distributed as Np(0,ΣΣΣ), then it can be shown that A as shown in (3.79)
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is known to follow a Wishart(f,ΣΣΣ) distribution [45]. For the Wishart distribution, f is the

degrees of freedom parameter and ΣΣΣ refers to the scale parameter.

Reviewing the developments for the univariate case in section 3.1, we note that the MGF for

the sum of squares of a random variable generated from a k-component mixture of Gaussian

distributions is as shown in (3.30). As demonstrated in Appendix A, this MGF corresponds

to a mixture of Gamma

(
1

2
, 2σ2

j

)
distributions.

Now we will extend the calculation of the MGF to the multivariate case by adapting

the work of Anderson (2003) for a single multivariate Gaussian distribution to that of a

k-component mixture of Gaussian distributions. The detailed calculations are shown in

Appendix B. We note that the MGF in (B.16) appears to be the k-component mixture of

Wishart MGFs (each with a different scale matrix). Similar to the result demonstrated in

Appendix A, we might surmise that the MGF in (B.16) corresponds to a mixture of Wisharts

PDF. To verify this conjecture, we will first assume that the matrix A∗ has a mixture of

Wisharts distribution. Due to the one-to-one correspondence between a distribution and its

MGF (if it exists), we can then determine this distribution’s MGF, and see if it is equivalent

to that shown in (B.16). Based on the mixture of Wisharts distributional assumption, we

will also assume as true that A∗ has the following probability distribution:

f (A∗) =
k∑
j=1

wj

{
2(njp/2)Γp

(nj
2

)
det (ΣΣΣj)

nj/2
}−1

det (A∗)(nj−p−1)/2 etr

(
−1

2
ΣΣΣj
−1A∗

)
,

(3.80)

where A∗ is a random symmetric matrix that is positive definite (A∗ > 0), nj ≥ p− 1, and

etr (·) = exp (tr (·)). Also in (3.80), Γp (·) is the multivariate gamma function and is defined

as follows by Gupta and Nagar [46]:

Definition 1. Multivariate gamma function. The multivariate gamma function denoted by

Γp (b) is defined as

Γp (b) =

∫
B>0

etr (−B) det (B)b−
1
2

(p+1) dB, (3.81)

where Re (b) > 1
2

(p− 1) , and the integral is over the space of p × p symmetric positive

definite matrices.
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Based on the developments shown in Appendix C, we note that (B.16) and (C.47)

are identical. Because the relationship between a MGF and PDF is 1:1, we can conclude

that the MGF shown in (B.16) corresponds to the mixture of Wisharts PDF. We can also

summarize the main points of this PDF as follows:

f (A∗) =
k∑
j=1

wjWishart (fj,ΣΣΣj) , (3.82)

where:

A∗ = the matrix of the sum of squares and the sum of cross-products

ΣΣΣj = covariance matrix from the jth component Wishart distribution

fj = the degrees of freedom for the jth component Wishart distribution

Similar to the development in section 3.1 for the univariate case, we wish to ap-

proximate the mixture of Wishart distributions in (3.80) with a single Wishart distribution.

Let us assume that the random matrix A ∼ Wishart (f,ΣΣΣ). As in the univariate case,

the multivariate extension will utilization the matching of first and second central moments.

Therefore, we will first develop expressions for the first and second moments of the random

matrix A. Further, let us refer to random matrix A by its individual matrix elements:

A = (a)rc, which indicates the matrix element in the rth row and cth column of A. Using

the individual matrix elements, we can define the expected value of the random matrix A

as:

E(A) = E (a)rc ∀ r, c (3.83)

Let us first calculate the expected values of the elements on the main diagonal of the matrix

A starting with (a)11. For these developments, we will assume that xi ∼ Np (0,ΣΣΣ).

E [(a)11] = E

(
n∑
`=1

x2
`1

)
=

n∑
`=1

E
(
x2
`1

)
=

n∑
`=1

[
Var (x`1) + [E (x`1)]2

]
=

n∑
`=1

Var (x`1) (3.84)
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The last equality in (3.84) is based on the fact that x` follows a multivariate normal distri-

bution as specified above, and, therefore, x`1 ∼ N (0, σ2
11) where σ2

11 = (σ)11 (matrix element

in the 1st row and 1st column of ΣΣΣ). Therefore, based on (3.84) and the fact that the x`s are

independent and identically distributed, we have the following:

E [(a)11] = nσ2
11

E [(a)22] = nσ2
22

... =
...

E
[
(a)pp

]
= nσ2

pp (3.85)

Now, let us calculate the expectations of the off-diagonal elements of the random matrix A.

We will first start with the expectation of (a)12.

E [(a)12] = E

(
n∑
`=1

x`1x`2

)
=

n∑
`=1

E (x`1x`2)

=
n∑
`=1

[Cov (x`1, x`2) + E (x`1) E (x`2)]

=
n∑
`=1

Cov (x`1, x`2) (3.86)

The last equality in (3.86) follows once again from the fact that x` follows a multivariate

normal distribution as specified above, and, as a result, E (x`1) = E (x`2) = 0. Therefore,

using (3.86) and the fact that Cov (x`r, x`c) = (σ)rc, we have the following set of identities:

E [(a)12] = nσ12

E [(a)13] = nσ13

... =
...

E
[
(a)1p

]
= nσ1p

... =
...

E
[
(a)p−1,p

]
= nσp−1,p (3.87)
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Using (3.85) and (3.87) we can now write the expectation of the random matrix A as:

E (A) = n


σ2

11 σ12 . . . σ1p

σ21 σ2
22 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ2
pp


p×p

(3.88)

= nΣΣΣ, (3.89)

where σrc = σcr, r 6= c. In this document, we will also use the following notation: ΣΣΣ = (σ)rc.

Under this nomenclature, when r = c, (σ)rc = (σ)rr = σ2
rr. Also, when r 6= c, (σ)rc = σrc.

Next, we will employ a similar tactic utilized in (3.84) - (3.89) to calculate Cov (A). Once

again, we will first concentrate on the main diagonal elements for the random matrix A.

Using (3.84), we have:

Cov [(a)11 , (a)11] = Cov

[
n∑
`=1

x2
`1,

n∑
`=1

x2
`1

]

= E

[
n∑
`=1

x2
`1,

n∑
`=1

x2
`1

]
− E

[
n∑
i`1

x2
`1

]
E

[
n∑
`=1

x2
`1

]

= E

[
n∑
`=1

x2
`1

]2

−
[
E

(
n∑
`=1

x2
`1

)]2

= E

[
n∑
`=1

x2
`1

]2

−
[

n∑
`=1

E
(
x2
`1

)]2

= E

[
n∑
`=1

x2
`1

]2

− [nVar (x11)]2 (3.90)
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The last equality follows from the fact that the x`s are independent and identically dis-

tributed. Completing the development in (3.90), we can use the following expansions:

n∑
`=1

x2
`1 =

(
x2

11 + x2
21 + · · ·+ x2

n1

)
(3.91)(

n∑
`=1

x2
`1

)2

=
(
x2

11 + x2
21 + · · ·+ x2

n1

)
×
(
x2

11 + x2
21 + · · ·+ x2

n1

)
= x2

11

(
x2

11 + x2
21 + · · ·+ x2

n1

)
+

x2
21

(
x2

11 + x2
21 + · · ·+ x2

n1

)
+

...

+ x2
n1

(
x2

11 + x2
21 + · · ·+ x2

n1

)
(3.92)

Taking the expectation of (3.92), we now have:

E

( n∑
`=1

x2
`1

)2
 = E

[
x2

11

(
x2

11 + x2
21 + · · ·+ x2

n1

)]
+

E
[
x2

21

(
x2

11 + x2
21 + · · ·+ x2

n1

)]
+

...

+ E
[
x2
n1

(
x2

11 + x2
21 + · · ·+ x2

n1

)]
(3.93)

Now, working with the first expectation on the right-hand side of (3.93), we have the follow-

ing:

E
[
x2

11x
2
11 + x2

11x
2
21 + · · ·+ x2

11x
2
n1

]
= E

[(
x2

11

)2
]

+ E
[
x2

11

]
E
[
x2

21

]
+ · · ·+ E

[
x2

11

]
E
[
x2
n1

]
(3.94)

= E
[(
x2

11

)2
]

+ E
[
x2

11

]
E
[
x2

11

]
+ · · ·+ E

[
x2

11

]
E
[
x2

11

]
(3.95)

= E
[(
x2

11

)2
]

+ (n− 1)
[
E
(
x2

11

)]2
= E

[
x4

11

]
+ (n− 1) [Var (x11)]2

= E
[
x4

11

]
+ (n− 1)σ4

11 (3.96)
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We note that (3.94) follows from the fact that the rows of the X matrix are statistically

independent, and (3.95) follows from the fact that the x`s are identically distributed. Thus,

if we continue with all the expectations from (3.93), we will have:

E

( n∑
`=1

x2
`1

)2
 = n

[
E
(
x4

11

)
+ (n− 1)σ4

11

]
(3.97)

Now, combining the results of (3.97) with (3.90) we have the following:

Cov [(a)11 , (a)11] = n
[
E
(
x4

11

)
+ (n− 1)σ4

11

]
−
[
nσ2

11

]2
= nE

[
x4

11

]
+ n (n− 1)σ4

11 − n2σ4
11

= nE
[
x4

11

]
− nσ4

11

= n
[
E
(
x4

11

)
− σ4

11

]
(3.98)

Now, let us calculate the covariance for the off-diagonal elements of the random matrix A.

For this next step, we will first calculate the covariance between matrix elements (a)11 and

(a)12.

Cov [(a)11 , (a)12] = Cov

[
n∑
`=1

x2
`1,

n∑
`=1

x`1x`2

]

= E

[
n∑
`=1

x2
`1

n∑
`=1

x`1x`2

]
− E

[
n∑
`=1

x2
`1

]
E

[
n∑
`=1

x`1x`2

]

= E

[
n∑
`=1

x2
`1

n∑
`=1

x`1x`2

]
−
[

n∑
`=1

E
(
x2
`1

)] [ n∑
`=1

E (x`1x`2)

]

= E

[
n∑
`=1

x2
`1

n∑
`=1

x`1x`2

]
− [nVar (x11)] [nCov (x11, x12)]

= E

[
n∑
`=1

x2
`1

n∑
`=1

x`1x`2

]
−
[
nσ2

11

]
[nσ12] (3.99)
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Working with the expectation on the right-hand side of (3.99), we have:

E

[
n∑
`=1

x2
`1

n∑
`=1

x`1x`2

]
= E

[(
x2

11 + x2
21 + · · ·+ x2

n1

)
(x11x12 + x21x22 + · · ·+ xn1xn2)

]
(3.100)

= E
[
x2

11 (x11x12 + x21x22 + · · ·+ xn1xn2)
]

+

E
[
x2

21 (x11x12 + x21x22 + · · ·+ xn1xn2)
]

+

...

+ E
[
x2
n1 (x11x12 + x21x22 + · · ·+ xn1xn2)

]
(3.101)

Working with the first expectation on the right-hand side of (3.101), we have the following:

E
[
x2

11 (x11x12 + x21x22 + · · ·+ xn1xn2)
]

= E
[
x3

11x12 + x2
11 (x21x22 + x31x32 + · · ·+ xn1xn2)

]
= E

[
x3

11x12

]
+

E
[
x2

11

]
(E [x21x22] + E [x31x32] + · · ·+ E [xn1xn2])

= E
[
x3

11x12

]
+

E
[
x2

11

]
(Cov [x21x22] + Cov [x31x32] + · · ·+

Cov [xn1xn2]) (3.102)

= E
[
x3

11x12

]
+ E

[
x2

11

]
([n− 1] Cov [x21, x22])

(3.103)

= E
[
x3

11x12

]
+ Var [x11] ([n− 1] Cov [x21, x22])

(3.104)

= E
[
x3

11x12

]
+ σ2

11 ([n− 1]σ21) (3.105)

The development on the right-hand side of (3.103) follows from the fact that there are (n−1)

covariance terms on the right-hand side of (3.102), and that, once again, the rows of the X

matrix are identically distributed. Substituting the corresponding values from (3.88) into the

right-hand side of (3.104) returns (3.105). We note that the remaining expectation on the

right-hand side of (3.105) is a higher-ordered term. One way to calculate this expectation
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is through the use of moment generating functions. Because we are assuming that x` ∼

N (0,ΣΣΣ) and using well-established properties of the multivariate Gaussian distribution, we

know that the joint probability distribution of x11 and x12 is as follows:

f (x11, x12) = N2

0

0

 ,

σ2
11 σ12

σ21 σ2
22

 ,where σ12 = σ21 (3.106)

The probability distribution in (3.106) is well-recognized as the bivariate Gaussian distribu-

tion. For this distribution it is also well-established that its MGF is:

M(t) = exp

(
1

2
tTΣΣΣt

)
,where t =

t11

t21

 , ΣΣΣ =

σ2
11 σ12

σ21 σ2
22


= exp

1

2

(
t11 t21

)σ2
11 σ12

σ21 σ2
22

t11

t21


= exp

1

2

(
t11σ

2
11 + t21σ21 t11σ12 + t21σ

2
22

)t11

t21


= exp

(
1

2

[
t11(t11σ

2
11 + t21σ21) + t21(t11σ12 + t21σ

2
22)
])

= exp

(
1

2

[
t211σ

2
11 + t11t21σ21 + t21t11σ12 + t221σ

2
22

])
= exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])
(3.107)

The last equality in (3.107) follows from the symmetry of ΣΣΣ. The MGF in (3.107) can be

used to calculate the moments of the random variables x11 and x12.
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Specifically, we are first interested in calculating E [x3
11x12] from (3.105). To begin,

we shall first calculate various partial derivatives for the MGF in (3.107).

∂M(t)

∂t11

= exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])(1

2

[
2t11σ

2
11 + 2t21σ12

])
(3.108)

∂M(t)

∂t211

= exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])(1

2

[
2σ2

11

])
+

exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])(1

2

[
2t11σ

2
11 + 2t21σ12

])2

= exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])
σ2

11 +

exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

]) [
t11σ

2
11 + t21σ12

]2
= exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])(
σ2

11 +
[
t11σ

2
11 + t21σ12

]2)
(3.109)

∂M(t)

∂t311

= exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

]) (
2σ2

11

[
t11σ

2
11 + t21σ12

])
+(

σ2
11 +

[
t11σ

2
11 + t21σ12

]2)
exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])
×(

1

2

[
2t11σ

2
11 + 2t21σ12

])
= exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])
×(

2σ2
11

[
t11σ

2
11 + t21σ12

]
+
(
σ2

11 +
[
t11σ

2
11 + t21σ12

]2) [
t11σ

2
11 + t21σ12

])
= exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])
×(

2σ2
11

[
t11σ

2
11 + t21σ12

]
+ σ2

11

[
t11σ

2
11 + t21σ12

]
+
[
t11σ

2
11 + t21σ12

]3)
(3.110)

∂M(t)

∂t311∂t21

= exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])(
3σ2

11σ12 + 3σ12

[
t11σ

2
11 + t21σ12

]2)
+(

3σ2
11

[
t11σ

2
11 + t21σ12

]
+
[
t11σ

2
11 + t21σ12

]3)×
exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])(1

2

[
2t11σ12 + 2t21σ

2
22

])
(3.111)
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Using (3.111), we can calculate E(x3
11x12) as follows:

E(x3
11x12) =

∂M(t)

∂t311∂t21

∣∣∣∣∣
t11=0
t21=0

= 3σ2
11σ21 (3.112)

Therefore, we can now substitute (3.111) into (3.105) to obtain:

E
[
x2

11 (x11x12 + x21x22 + · · ·+ xn1xn2)
]

= E
[
x3

11x12

]
+ σ2

11 ([n− 1]σ21)

= 3σ2
11σ21 + σ2

11 ([n− 1]σ21)

= 3σ2
11σ21 + (n− 1)σ2

11σ21 (3.113)

Now, taking (3.113) and using the property that the rows of the X matrix are identically

distributed, we have the following:

E

[
n∑
`=1

x2
`1

n∑
`=1

x`1x`2

]
= n

[
3σ2

11σ21 + (n− 1)σ2
11σ21

]
(3.114)

Finally, substituting (3.114) into (3.99), we have the following expression:

Cov [(a)11 , (a)12] = Cov

[
n∑
`=1

x2
`1,

n∑
`=1

x`1x`2

]
= n

[
3σ2

11σ21 + (n− 1)σ2
11σ21

]
−
[
nσ2

11

]
[nσ21]

= 3nσ2
11σ21 + n(n− 1)σ2

11σ21 − n2σ2
11σ21

= 3nσ2
11σ21 − nσ2

11σ21

= 2nσ2
11σ21 (3.115)

Now, returning to (3.98) we note that we still need to obtain the expression for E [x4
11]

so we can finalize the expression for Cov [(a)11 , (a)11]. To assist in the calculation of the
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remaining expectation, let us return to (3.110) to next calculate the fourth partial derivative

of the MGF in (3.107) with respect to t11.

∂M(t)

∂t411

= exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])(
2σ4

11 + σ4
11 + 3σ2

11

[
t11σ

2
11 + t21σ12

]2)
+(

2σ2
11

[
t11σ

2
11 + t21σ12

]
+ σ2

11

[
t11σ

2
11 + t21σ12

]
+
[
t11σ

2
11 + t21σ12

]3)×
exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])(1

2

[
2t11σ

2
11 + 2t21σ12

])
= exp

(
1

2

[
t211σ

2
11 + 2t11t21σ12 + t221σ

2
22

])
×(

3σ4
11 + 3σ2

11

[
t11σ

2
11 + t21σ12

]2
+
[
3σ2

11

(
t11σ

2
11 + t21σ12

)
+
(
t11σ

2
11 + t21σ12

)3
])
×[

t11σ
2
11 + t21σ12

]
(3.116)

Therefore, similar to what was done in (3.112), we now have:

E(x4
11) =

∂M(t)

∂t411

∣∣∣∣∣
t11=0
t21=0

= 3σ4
11 (3.117)

Finally, substituting (3.117) into (3.98) we have:

Cov [(a)11 , (a)11] = n
(
E
[
x4

11

]
− σ4

11

)
= n

(
3σ4

11 − σ4
11

)
= 2nσ4

11 (3.118)

Applying the developments in (3.84) - (3.118) to the entire A matrix, we now have the

following general expression:

Cov [A] = Cov [(a)uv , (a)st] = n [(σ)us (σ)vt + (σ)ut (σ)vs] , (3.119)

where ΣΣΣ = (σ)uv , 1 ≤ u ≤ v ≤ p, 1 ≤ s ≤ t ≤ p. In (3.119), n is referred to as the degrees of

freedom. Now, based on the results in (3.89) and (3.119), we can also show the expectations

and variances for the finite mixture of Wisharts distribution shown in (3.80). Using notation

from earlier,

f(A∗) =
k∑
j=1

wjWp (fj,ΣΣΣj) ,where (3.120)
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A∗ = the matrix of sum of squares and the sum of cross-products

wj = the mixture weight for the jth component Wishart distribution

ΣΣΣj = the covariance matrix for the jth component Wishart distribution

fj = the degrees of freedom for the jth component Wishart distribution

Based on (3.5), Theorem 15 in Appendix D, and developments similar to those demonstrated

in (3.84) - (3.89), we can express the expectation of A∗ as

E (A∗) =
k∑
j=1

wjfjΣΣΣj, (3.121)

or on an element-by-element basis for ΣΣΣj,

E [(A∗)uv] =
k∑
j=1

wjfj (σ)juv , 1 ≤ u ≤ v ≤ p where (3.122)

(σ)juv = the element in the uth row and vth column of ΣΣΣj

It is also important to note that in (3.122), p refers to the dimension of the covariance

matrices. If all the fj in (3.122) are all equal, then the expectation in (3.122) becomes:

E [(A∗)uv] = f
k∑
j=1

wj (σ)juv , 1 ≤ u ≤ v ≤ p (3.123)

For calculating the variances and covariances for the finite mixture of Wisharts distribution,

we can apply a similar approach as demonstrated in (3.12), (3.90) - (3.118) as well as Theorem

15 in Appendix D. Similar to A, let us define A∗ as:

A∗ =



n∑̀
=1

x∗2`1
n∑̀
=1

x∗`1x
∗
`2 . . .

n∑̀
=1

x∗`1x
∗
`p

n∑̀
=1

x∗`2x
∗
`1

n∑̀
=1

x∗2`2 . . .
n∑̀
=1

x∗`2x
∗
`p

...
...

. . .
...

n∑̀
=1

x∗`px
∗
`1

n∑̀
=1

x∗`px
∗
`2 . . .

n∑̀
=1

x∗2`p


, (3.124)
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where x∗` ∼
k∑
j=1

wjNp (0,ΣΣΣj). Similar to the univariate case in section 5.1, we note that

the random matrix A∗ is assumed to have been generated heterogeneously. That is, each

matrix element of A∗ is assumed to have some of its values generated from each component

distribution (Wishart). Stated another way, the x` vectors from (3.72) are assumed to have

been generated from each of the k-component multivariate Gaussian distrbutions. As a

result, A∗ can also be expressed as a weighted sum of Wishart-distributed random matrices.

That is:

A∗ =
k∑
j=1

wjWj, (3.125)

where Wj ∼ Wp(fj,ΣΣΣj). We can also state (3.125) on an element-by-element basis as:

(a∗)uv =
k∑
j=1

wj (a)juv , (3.126)

where, as before, 1 ≤ u ≤ v ≤ p.

Cov (A∗) = Cov [(a∗)uv , (a
∗)st] (3.127)

= E [(a∗)uv (a∗)st]− E [(a∗)uv] E [(a∗)st] (3.128)

= E [(a∗)uv (a∗)st]−
[

k∑
j=1

wjfj (σ)juv

][
k∑
j=1

wjfj (σ)jst

]
(3.129)

= E

[{
k∑
j=1

wj (a)juv

}{
k∑
j=1

wj (a)jst

}]
−
[

k∑
j=1

wjfj (σ)juv

][
k∑
j=1

wjfj (σ)jst

]
(3.130)

= E

[
k∑
j=1

w2
j (a)juv (a)jst +

k∑
j=1

k∑
m 6=j

wjwm (a)juv (a)mst

]
−[

k∑
j=1

wjfj (σ)juv

][
k∑
j=1

wjfj (σ)jst

]
(3.131)
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Let u = v = s = t and working from the right-hand side of (3.131):

Cov [(a∗)uu , (a
∗)uu] = E

[
k∑
j=1

w2
j

{
(a)juu

}2
]

+

E

[
k∑
j=1

k∑
m 6=j

wjwm (a)juu (a)muu

]
−

[
k∑
j=1

wjfj (σ)juu

]2

(3.132)

=
k∑
j=1

w2
jE
{

(a)juu

}2

+

k∑
j=1

k∑
m 6=j

wjwmE (a)juu E (a)muu−[
k∑
j=1

wjfj (σ)juu

]2

(3.133)

=
k∑
j=1

w2
jE


fj∑
`=1

(
x2
`u

)j
2

+

k∑
j=1

k∑
m 6=j

wjwmE


fj∑
`=1

(
x2
`u

)jE

{
fm∑
`=1

(
x2
`u

)m}−
[

k∑
j=1

wjfj (σ)juu

]2

(3.134)

=
k∑
j=1

w2
jE


fj∑
`=1

(
x2
`u

)j
2

+

k∑
j=1

k∑
m 6=j

wjwm

fj∑
`=1

E
(
x2
`u

)j fm∑
`=1

E
(
x2
`u

)m−
[

k∑
j=1

wjfj (σ)juu

]2

(3.135)

37



Using (3.97) and applying to the right-hand side of (3.135), we have:

=
k∑
j=1

w2
j

{
fj

[
E
(
x4
uu

)j
+ (fj − 1)

(
σ4
uu

)j]}
+

k∑
j=1

k∑
m 6=j

wjwmfj (σ)juu fm (σ)muu−[
k∑
j=1

wjfj (σ)juu

]2

(3.136)

=
k∑
j=1

w2
j

{
fj

[
3
(
σ4
uu

)j
+ (fj − 1)

(
σ4
uu

)j]}
+

k∑
j=1

k∑
m 6=j

wjwmfjfm (σ)juu (σ)muu−[
k∑
j=1

wjfj (σ)juu

]2

(3.137)

=
k∑
j=1

w2
j

{
2fj
(
σ4
uu

)j
+ f 2

j

(
σ4
uu

)j}
+

k∑
j=1

k∑
m 6=j

wjwmfjfm (σ)juu (σ)muu−[
k∑
j=1

wjfj (σ)juu

]2

(3.138)

=
k∑
j=1

w2
jfj
(
σ4
uu

)j
[2 + fj] +

k∑
j=1

k∑
m 6=j

wjwmfjfm (σ)juu (σ)muu−[
k∑
j=1

w2
jf

2
j

(
σ4
uu

)j
+

k∑
j=1

k∑
m 6=j

wjwmfjfm (σ)juu (σ)muu

]
(3.139)

=
k∑
j=1

w2
jfj

[
2
(
σ4
uu

)j]
(3.140)

=
k∑
j=1

w2
jfj

[
(σ)jus (σ)jvt + (σ)jut (σ)jvs

]
(3.141)
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Now let u = s, v < t and working with the right-hand side of (3.131) we have:

Cov [(a∗)us , (a
∗)vt] = E

[
k∑
j=1

w2
j (a)jus (a)jvt

]
+

E

[
k∑
j=1

k∑
m6=j

wjwm (a)jus (a)mvt

]
−[

k∑
j=1

wjfj (σ)jus

]
×[

k∑
j=1

wjfj (σ)jvt

]
(3.142)

=
k∑
j=1

w2
jE
{

(a)jus (a)jvt

}
+

k∑
j=1

k∑
m 6=j

wjwmE (a)jus E (a)mvt−[
k∑
j=1

wjfj (σ)jus

]
×[

k∑
j=1

wjfj (σ)jvt

]
(3.143)

=
k∑
j=1

w2
jE


fj∑
`=1

(
x2
`s

)j fj∑
`=1

(x`sx`t)
j

+

k∑
j=1

k∑
m 6=j

wjwmE


fj∑
`=1

(
x2
`s

)jE

{
fm∑
`=1

(x`sx`t)
m

}
−

[
k∑
j=1

wjfj (σ)jus

]
×[

k∑
j=1

wjfj (σ)jvt

]
(3.144)
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Now using (3.99) - (3.105) and substituting into the right-hand-side of (3.144), we

have the following:

Cov (A∗) =
k∑
j=1

w2
j

[
fj

{
E
(
x3
usxvt

)j
+ (fj − 1) Var (xus)

j Cov
[
(xus)

j , (xvt)
j
]}]

+

k∑
j=1

k∑
m 6=j

wjwmfj (σ)jus fm (σ)mvt −
[

k∑
j=1

wjfj (σ)jus

][
k∑
j=1

wjfj (σ)jvt

]
(3.145)

=
k∑
j=1

w2
j

[
fj

{
3 (σ)jus (σ)jvt + (fj − 1) (σ)jus (σ)jvt

}]
+

k∑
j=1

k∑
m 6=j

wjwmfjfm (σ)jus (σ)mvt−[
k∑
j=1

w2
jf

2
j (σ)jus (σ)jvt +

k∑
j=1

k∑
m6=j

wjwmfjfm (σ)jus (σ)mvt

]
(3.146)

=
k∑
j=1

w2
j

[
2fj (σ)jus (σ)jvt + f 2

j (σ)jus (σ)jvt

]
−

k∑
j=1

w2
jf

2
j (σ)jus (σ)jvt (3.147)

=
k∑
j=1

w2
jfj (σ)jus (σ)jvt [2 + fj]−

k∑
j=1

w2
jf

2
j (σ)jus (σ)jvt (3.148)

=
k∑
j=1

w2
jfj

[
2 (σ)jus (σ)jvt

]
(3.149)

=
k∑
j=1

w2
jfj

[
(σ)jus (σ)jvt + (σ)jut (σ)jvs

]
(3.150)

We note that (3.150) holds either when u = s = v < t or u = s = t < v. Therefore,

combining the results in (3.141) and (3.150) we have:

Cov [A∗] = Cov [(a∗)uv , (a
∗)st] =

k∑
j=1

wj
2fj

[
(σ)jus (σ)jvt + (σ)jut (σ)jvs

]
, (3.151)

where 1 ≤ u ≤ v ≤ p, 1 ≤ s ≤ t ≤ 1. Now, based on the moments in (3.122) and (3.151) we

can apply the approximation method demonstrated in section 3.1 to the multivariate case.
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Let us assume that we are going to approximate f(A∗) as shown in (3.80) with f(A) as

follows:

f (A) = {2(gp/2)Γp

(g
2

)
det (Ω)g/2}−1 det (A)(g−p−1)/2 etr

(
−1

2
Ω−1A

)
(3.152)

= Wp (g,Ω) , (3.153)

where A > 0, g > (p− 1), and A is a random symmetric matrix that is positive definite. By

using (3.89) and (3.121) to equate the expectations of A and A∗ we have:

E (A) = E (A∗)

gΩ =
k∑
j=1

wjfjΣΣΣj

Ω =

(
1

g

) k∑
j=1

wjfjΣΣΣj (3.154)

The equation in (3.154) can also be written in a matrix element-by-element basis as:

(ω)uv =

(
1

g

) k∑
j=1

wjfj (σ)juv (3.155)

Similarly, we can turn our attention to equating covariances for A and A∗:

Cov (A) = Cov (A∗)

g [(ω)us (ω)st + (ω)ut (ω)vs] =
k∑
j=1

wj
2fj

[
(σ)jus (σ)jvt + (σ)jut (σ)jvs

]

g =

k∑
j=1

wj
2fj

[
(σ)jus (σ)jvt + (σ)jut (σ)jvs

]
[(ω)us (ω)st + (ω)ut (ω)vs]

(3.156)

But as we can see from equations (3.155) - (3.156), there are more variances, covariances, and

expectations than the number of unknowns. Each of the
1

2
p(p+1) equations for the covariance

parameters all involve g. Thus, the degrees of freedom parameter for the approximating

distribution cannot be uniquely estimated.
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One alternative approach to this problem was suggested by Tan and Gupta [49]

who utilized a scalar representation of the covariance matrix (e.g., determinant). From

multivariate statistical theory we know that the determinant of a covariance matrix is also

known as the generalized variance [45]. Another well-known scalar representation of the

covariance matrix is the trace (sum of diagonal elements). The trace of a covariance matrix

is also known as the total variance [45]. In addition, a less well-known scalar summary of

a covariance matrix is the p-th root of the determinant. We also note that these scalar

summaries of a matrix can also be expressed in terms of the eigenvalues of the matrix [45].

Let λi, i = 1, . . . , p, represent the eigenvalues of a given covariance matrix V of dimension p.

Then, we have:

det (V) =

p∏
i=1

λi (3.157)

tr (V) =

p∑
i=1

λi (3.158)

[det (V)](1/p) =

(
p∏
i=1

λi

)(1/p)

(3.159)

We may note that (3.159) is the geometric mean of the eigenvalues of the covariance matrix.

Based on the potential summary measures in (3.157) - (3.159), we are proposing distribu-

tional approximation methods based on the matrix determinant, the matrix trace, the p-th

root of the matrix determinant, and a multivariate adaptation of the univariate results in

secton 3.1. Each specific method is described below:

Matrix Determinant

We wish to restate (3.156) by equating generalized variances instead of covariances.

For this development, it is helpful to express the covariance matrices in matrix form instead

of on an element-by-element basis. Let ΣΣΣ∗ = indicate the covariance matrix having the same
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form as in (3.151). Therefore, equating generalized variances:

det [Cov (A)] = det [Cov (A∗)] (3.160)

det
[
gΣΣΣΩ

]
= det

[
k∑
j=1

w2
jfjΣΣΣ

∗
j

]
(3.161)

(
1

gp

)
det
(

ΣΣΣΩ
)

= det

(
k∑
j=1

w2
jfjΣΣΣ

∗
j

)
(3.162)

g =


det
(

ΣΣΣΩ
)

det

(
2∑
j=1

w2
jfjΣΣΣ

∗

)


1/p

(3.163)

We note that the left-hand side of (3.161) follows from the following relationships:

Cov (A) = Cov ((a)uv , (a)st)

= g [(σ)us (σ)vt + (σ)ut (σ)vs] (3.164)

= g




k∑
j=1

wjfj (σ)jus

g




k∑
j=1

wjfj (σ)jus

g

+


∑
j=1

wjfj (σ)jut

g




k∑
j=1

wjfj (σ)jvs

g




(3.165)

= gΣΣΣΩ (3.166)

Also, (3.162) follows from the properties of determinants, where p is the dimension of the

covariance matrices. By examining (3.163) we note that the numerator on the right-hand

side is a function of the mean for the mixture distribution. We also note that the right-hand

side of (3.163) is a ratio of geometric means of the eigenvalues of the particular covariance

matrices shown in the numerator and denominator. Finally, we note that (3.165) follows

from the substitution of (3.155) into (3.164).

Matrix Trace

As introduced earlier, another scalar representation of the covariance matrix is the

matrix trace. The trace ignores the covariance terms and is simply the sum of the covariance
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matrix elements on the main diagonal (variances). For this criteria, we will be matching on

total variances as opposed to generalized varaiances in the determinant-based criteria. For

this approach, we equate total variances as follows:

tr [Cov (A)] = tr [Cov (A∗)] (3.167)

tr
[
gΣΣΣΩ

]
= tr

[
k∑
j=1

w2
jfjΣΣΣ

∗
j

]
(3.168)

(
1

g

)
tr
(

ΣΣΣΩ
)

= tr

(
k∑
j=1

w2
jfjΣΣΣ

∗
j

)
(3.169)

g =
tr
(

ΣΣΣΩ
)

tr

(
k∑
j=1

w2
jfjΣΣΣ

∗
j

) (3.170)

We first note that the covariance matrices in (3.170) are the same form as shown in (3.163)

and (3.164) - (3.166). We also note that (3.169) follows from the properties of the trace of

a matrix.

Multivariate Extension of Univariate Method

By reviewing the univariate approximation method in section (3.1), we note that

the scale parameter for the approximating univariate distribution (β) in (3.66) is a ratio of

the variance and mean from the mixture of distributions case. Similarly, we note that the

location parameter for the approximating univariate distribution (α) in (3.64) is the mean

from the mixture of distributions case divided by β. Further, we note in (3.67) α from the

approximating distribution can be expressed as the square of the mean of the mixture of

distributions case divided by the variance from the mixture of distributions case. Thus,

based on these relationships, another possible approximation method would be to extend

the univariate results in section 3.1 to the multivariate case by performing calculations on a

matrix element-by-element basis. Based on previously developed calculations such reflected

in (3.119) and (3.151), we have the shown the expressions for Cov (A) and Cov (A∗).

1. Let us approximate f (A∗) =
k∑
j=1

wjWp (fj,ΣΣΣj) by using f (A) = Wp (g,Ω).
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2. Based on a matrix element-by-element basis:

(g̃)uv =

(
k∑
j=1

wjfj (σ)juv

)2

k∑
j=1

w2
jfj

[
(σ)jus (σ)jvt + (σ)jut (σ)jvs

] , (3.171)

where 1 ≤ u = s ≤ v ≤ p.

3.

g̃ =

2
∑
u≤v

(g)uv

p(p+ 1)
(3.172)

4. Based on a matrix element-by-element basis:

(ω)uv =

k∑
j=1

wjfj (σ)juv

g̃
, (3.173)

where 1 ≤ u ≤ v ≤ p. If g̃ < (p− 1), then g̃ =
k∑
j=1

wjfj.

3.2.1 Data simulations - multivariate case

One way to quantify the difference or distance between matrices is to use matrix

norms. Because matrix norms are defined in terms of vector norms, it is often stated that

the matrix norm is subordinate to or induced by the vector norm. First, some common

vector and matrix norms are presented. For a given vector x` as shown in (3.72), the vector

1-norm is defined as:

||x`||1 =

p∑
r=1

|x`r| (3.174)

For a given matrix X as shown in (3.73), the matrix 1-norm is defined as:

||X||1 = max
`

(
p∑
r=1

|x`r|
)

(3.175)
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Another way to state the matrix 1-norm in (3.175) is that it is the maximum of the column

sums of the matrix X. Next, we will proceed to the vector∞-norm and the matrix∞-norm.

The vector ∞-norm is defined as follows:

||x`||∞ = max
p
|x`r| (3.176)

Induced by the vector ∞-norm is the matrix ∞-norm:

||X||∞ = max
r

(
n∑
`=1

|x`r|
)

(3.177)

Another way to state the matrix ∞-norm is that it is the maximum of the row sums of X.

For a given symmetric matrix, the matrix 1-norm and the matrix ∞-norm will be identical.

n An additional norm that is useful for statistical applications is the vector 2-norm as well

as the matrix 2-norm. The vector 2-norm is defined as:

||x`||2 =

√√√√ n∑
`=1

|x`|2 (3.178)

Subordinate to the vector 2-norm is the matrix 2-norm:

||X||2 =
√
λmax (BTB), (3.179)

where λ indicates an eigenvalue and BTB is positive semi-definite. Another way to state the

matrix 2-norm is that it is the square root of the largest eigenvalue of the matrix B. The

matrix 2-norm is also known as the spectral norm. Finally, another matrix norm that may

be useful s the Frobenius norm. This matrix norm is defined as:

||X||F =

√√√√ n∑
`=1

p∑
r=1

|x`r|2 =
√
tr (XTX) =

√√√√ p∑
r=1

λr (3.180)

Another way to state the Frobenius norm is that it is the sum of the squared singular

values for the matrix X. The matrix norms will be used to evaluate the adequacy of the

approximation method by comparing matrix norms for the mixture of Wishart distributions

and the approximated Wishart distribution.
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3.2.2 Wishart simulation considerations

Based on the Wishart approximation methods shown in the previous section, it can be 

noted that the estimate for the degrees of freedom parameter, g, for the approximating 

distribution may be fractional. In determining whether or not this is justified, we can utilize 

the following definition which indicates for a Wishart distribution the degrees of freedom 

parameter belongs to a Gindikin set.

Definition 2. Gindikin set . Suppose we have the random matrix A as defined in (5.79). 

Further, let us assume that this random matrix has the following Laplace transform:

E [exp (tr [ΘA])] = det (Ip − ΣΣΣΘ)−q ,

where ΣΣΣ is a p × p positive-definite matrix and Θ is a symmetric p × p matrix. A Gindikin 

set is the set of values for q such that q = {1, 2, . . . , p − 1} ∪ (p − 1, . . . , ∞) [50] - [51].

Therefore, by focusing on the non-singular case, q ∈ (p − 1, . . . , ∞), we note that the 

Wishart distribution degrees of freedom parameter can take any value witin this interval,

including fractional values. Thus, based on the definition, we can generate Wishart random 

deviates for any q belonging to the Gindikin set. So based on definition 4, it would appear 

we should be able to generate Wishart random deviates with fractional degrees of freedom. 

However, as noted by Xiao et al. [52], there may be some special considerations when 

simulating a Wishart random deviate with fractional degrees of freedom. First, some software 

packages do not take such a scenario into account. Second, if fractional degrees of freedom are 

treated as integer-valued, Xiao et al. demonstrated that the impact on results can be quite 

noticeable. However, it should be noted that this was determined just for a single matrix 

and a more thorough treatment is also of interest. To have a better understanding of this 

result, it may be helpful to first illustrate the relationship between the Wishart distribution 

and the matrix-variate gamma distribution. First, we will define the matrix-variate gamma 

distribution.
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Definition 3. Matrix-variate gamma distribution (Gupta and Nagar, 2000). Let B represent

a p× p symmetric positive-definite random matrix. If B has the following pdf:

f (B) =
{

Γp (α) det (Ψ)−α
}−1

det (B)α−(1/2)(p+1) etr (−ΨB) , Re(α) >
1

2
(p− 1)

then B is said to have a matrix-variate gamma distribution with parameters α and Ψ.

We note that Γp (α) is the multivariate gamma function as definted in (3.81). We

may notice some similarities between Definition 3 and the Wishart pdf shown in (3.152).

Let us assume that in Definition 3, α = f/2 and Ψ =

(
1

2

)
ΣΣΣ−1. Substituting, we have:

f (B) =

{
Γp

(
f

2

)
det

([
1

2

]
ΣΣΣ−1

)−f/2}−1

det (B)f/2−(1/2)(p+1) etr

(
−
[

1

2

]
ΣΣΣ−1B

)

=

{
Γp

(
f

2

)
det

([
1

2

]
ΣΣΣ−1

)−f/2}−1

det (B)(1/2)(f−p−1) etr

(
−
[

1

2

]
ΣΣΣ−1B

)

=

{
Γp

(
f

2

)[(
1

2

)p]−f/2
det
(
ΣΣΣ−1

)−f/2}−1

det (B)(1/2)(f−p−1) etr

(
−
[

1

2

]
ΣΣΣ−1B

)
=

{
Γp

(
f

2

)
2(pf)/2 det (ΣΣΣ)f/2

}−1

det (B)(1/2)(f−p−1) etr

(
−
[

1

2

]
ΣΣΣ−1B

)
, (3.181)

which is equivalent to the Wishart (f,ΣΣΣ) distribution as shown in (3.152). Stating another

way, if B ∼ Wp (f,ΣΣΣ), then B ∼ Gp

(
f

2
,

(
1

2

)
ΣΣΣ−1

)
, where Gp(.) is the matrix-variate

gamma distribution where the symmetric random matrix is of dimension p. Therefore, for

simulating a Wishart random matrix, it would appear we can utilize the gamma distribution.

While the Wishart and matrix-variate gamma distributions may be considered analytically

equivalent, we do notice some differences when simulations are performed using existing

software packages. For example, in the R language, the “rWishart” function can be used

to simulate Wishart random matrices for a given degrees of freedom and covariance matrix

[53]. One way to examaine the R source code for this function is to utilize a resource such

as https://svn.r-project.org/R/trunk which lists R source code for a variety of functions and

libraries. The R source code for the “rWishart” function is shown in Appendix E. As can

be seen in the attached syntax, the R simulation is based on the chi-squared distribution
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with integer degrees of freedom. Further review of Appendix E indicates that the Wishart

matrices are simulated based on the Bartlett decomposition [54] - [55]. Briefly, this procedure

can be described as follows:

Definition 4. Bartlett decomposition: Let W represent a p × p random Wishart matrix

to be simulated from a Wp(f,ΣΣΣ) distribution. Further let W = LBBTLT , where L is the

Cholesky factor of ΣΣΣ and B is a triangular (lower) matrix defined as:

• (B)uu = buu, where buu ∼ χf−u+1, for 1 ≤ u ≤ p

• (B)uv = buv, where buv ∼ N (0, 1), for 1 ≤ v < u ≤ p

The Cholesky factor, L, is a lower triangular matrix such that ΣΣΣ = LLT . Therefore, W =

LBBTLT is defined as the Bartlett decomposition.

For the Bartlett decomposition (Definition 4), we note that buu follows the chi dis-

tribution. This distribution is defined as follows:

Definition 5. Chi distribution: Let us assume that the random variable x has the following

pdf:

f(x; v) =
xv−1 exp−x

2/2

2(v/2)−1Γ
(v

2

) , x ≥ 0

= 0, otherwise

Then the random variable x is assumed to follow the chi distribution.

In definition 5, we note that v refers to the degrees of freedom. Further, it can be

shown, that if x ∼ χv, then x2 ∼ χ2
v. This result can be derived as follows: y = x2 → √y =

x→ ∂x

∂y
=

1

2
√
y

. Substituting into the pdf in Definition 5, we now have:

f(y; v) =

(
y1/2

)v−1
exp−(y1/2)

2
/2

2(v/2)−1Γ
(v

2

) (
1

2y1/2

)

=
(
y1/2

)v−2 exp−y/2

2v/2Γ
(v

2

)
=
y(v/2)−1 exp−y/2

2v/2Γ
(v

2

) ,

49



which is the pdf for a chi-squared distribution with v degrees of freedom. Therefore, for

performing simulations using the Bartlett decomposition as shown in Definition 4, we can

utilize the square root of chi-squared random deviates.

We know from introductory statistical coursework that the chi-squared distribution

is a special case of the gamma distribution. Because the Wishart distribution can be written

as a matrix-variate gamma distribution, we may be interested in exploring situations where

the gamma and chi-squared distributions are similar. This can give us evidence for when

existing Wishart simulation approaches are relevant, and when alternative methods may be

needed. For illustration, let us assume that A ∼ Wp (f,ΣΣΣ), where A is a symmetric random

matrix. Therefore, we know that f ≥ p (non-singular case). The elements of A are sums

of squares or sums of cross products. The degrees of freedom parameter, f , refers to the

number of elements for each sum reflected in A. We note that f also refers to the number

of replicates sampled from the multivariate normal distribution. Therefore, for a symmetric

random matrix of dimension p, simulation approaches based on the chi-squared distribution

would assume that the matrix diagonal elements are chi-squared random variables with at

least p degrees of freedom. For a simulation approach based on the gamma distribution, the

matrix diagonal elements are gamma random variables with the location parameter, α, at

least equal to p/2, and the scale parameter equal to 2. The comparisons between chi-squared

and gamma distributions for increasing dimensions of the covariance matrix are shown in

the Figure 2.

As the dimension of the covariance matrix increases, the difference between the

chi-squared distribution using integer degrees of freedom and the gamma distribution with

fractional degrees of freedom becomes less noticeable. However, when the dimension of

the covariance matrix is not large (e.g., < 50), simulation differences do not appear to be

negligible. To further evaluate this scenario, we will simulate 3× 3 random matrices using 2
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Figure 2: Comparison of Chi-Squared and Gamma Distributions for Increasing Dimensions

of the Covariance Matrix

approaches. Let us assume that the matrices are distributed as W3 (4.3,ΣΣΣ), where

ΣΣΣ =


2 0.1 0.1

0.1 3 0.1

0.1 0.1 2

 (3.182)

To examine the impact of fractional degrees of freedom as well as the use of gamma dis-

tributions versus chi-squared distributions, we are interested in contrasting the following

approaches:
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1. Chi-squared distributions with integer degrees of freedom

2. Gamma distributions which allow for fractional degrees of freedom

Because of the similarity between integer and fractional degrees of freedom for the chi-

squared distributions in the previous example, we are limiting the multivariate evaluation to

the itemized list immediately above. To utilize an approach using integer degrees of freedom

for chi-squared random variables, such as the R function “rWishart” shown in Appendix E,

we will apply the integer floor function to the fractional degrees of freedom parameter. We

will also utilize an approach using gamma distributions with fractional degrees of freedom

(2.). For simulating Wishart random matrices using Gamma distributions with fractional

degrees of freedom, we have identified two potential existing computer-based options using

R and MATLAB. For R, the source is the “rWishart” library released in late 2017. This

should not be confused with the “rWishart” R function from the “stats” library mentioned

previously. The “rWishart” library includes the “rFractionalWishart” function which is used

to generate Wishart random matrices with fractional (potentially) degrees of freedom. We

also discovered user-provided source code for MATLAB utilizing gamma distributions to

simulate Wishart random matrices with (potentially) fractional degrees of freedom [56]. Be-

cause MATLAB is not open-source, this source code is attempting to replicate the MATLAB

function “wishrnd.m” which is used to simulate Wishart random matrices. Because of these

different implementation methods, we are interested in evaluating if the random matrices

generated are, in actuality, Wishart random matrices. The following theorem from Gupta

and Nagar (1999) may be useful.

Theorem 1. If the random matrix WΨ ∼ Wp (f,ΣΣΣ) ,then
cTWΨc

cTΣΣΣc
∼ χ2

(f),∀cp×1 6= 0.

For this illustration, we will apply the theorem to the Wishart random matri-

ces from the “rFractionalWishart” function in R. We will utilize the following vectors:

c1 = (1, 1, 1)T , c2 = (1, 0, 0)T , c3 = (0, 1, 0)T , and c4 = (0, 0, 1)T . Finally, we will define

vi =
cTi WΨci
cTi ΣΣΣci

, i = 1, . . . , 4. For each i, we will generate 10,000 samples from the Wishart
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distribution. For each vi, we will calculate the sample mean and variance, as well as Q-

Q plots to compare with the chi-squared assumptions from the theorem. The results are

shown in the Figure 3: If the “rFractionalWishart” procedure is truly generating random
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Figure 3: Q-Q plots with Sample Mean and Sample Variance: rFractionalWishart

matrices having a Wishart distribution, we would expect the sample mean to be equal to

the degrees of freedom and the sample variance to be equal to twice the degrees of freedom.

Thus, for this example we would expect the sample mean to be approximately 4.3 and the

sample variance to be approximately 8.6. This is clearly not the case and the Q-Q plots

clearly indicate that the calculated values of the test statistic to not appear to follow the

chi-squared distribution. Therefore, the “rFractionalWishart”procedure in R should not be

used to generate Wishart random matrices.
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For the purposes of this dissertation, we will generate Wishart random matrices

using a modification of the Bartlett decomposition which utilizes gamma distributions with

fractional degrees of freedom. This method is defined as follows:

Definition 6. Bartlett decomposition - II : Let W∗ represent a p×p random Wishart matrix

to be simulated from a Wp(f
∗,ΣΣΣ) distribution, where f ∗ may be fractional. Further let

W∗ = LGGTLT , where L is the Cholesky factor of ΣΣΣ and G is a triangular (lower) matrix

defined as:

• (G)uu = guu, where guu ∼ Generalized Gamma(f ∗ − u+ 1,
√

2, 2) and

g2
uu ∼ Gamma([f ∗ − u+ 1] /2, 2), for 1 ≤ u ≤ p

• (G)uv = guv, where guv ∼ N (0, 1), for 1 ≤ v < u ≤ p

The Cholesky factor, L, is a lower triangular matrix such that ΣΣΣ = LLT . Therefore, W∗ =

LGGTLT is defined as the Bartlett decomposition - II.

For the Bartlett decomposition - II (Definition 6), we note that guu follows the

generalized gamma distribution. This distribution is defined as follows:

Definition 7. Generalized Gamma distribution: Let us assume that the random variable x

has the following pdf:

f(x;α, β, γ) =
(γ/βα)xα−1 exp−(x/β)γ

Γ

(
α

γ

) , x ≥ 0

= 0, otherwise

Then the random variable x is assumed to follow the generalized gamma distribution.

It can be shown that if x ∼ Generalized Gamma(α, β, γ), then x2 ∼ Gamma(α, β)

under certain conditions when γ = 2. This result can be derived as follows: y = x2 → √y =
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x→ ∂x

∂y
=

1

2
√
y

. Substituting into the pdf in Definition 7, we now have:

f(y;α, β, γ) =
(γ/βα)

(
y1/2

)α−1
exp−(y1/2/β)

γ

Γ

(
α

γ

) (
1

2y1/2

)

=
γ
(
y1/2

)α−2
exp

(
−y1/2/β

)γ
2βαΓ

(
α

γ

)
=
γy(α/2)−1 exp

(
−y1/2/β

)γ
2βαΓ

(
α

γ

)

We note that if we let γ = 2 and β =
√

2, then y ∼ Γ(α/2, 2). Therefore, for performing

simulations using the Bartlett decomposition - II as shown in Definition 7, we can utilize the

square root of gamma random deviates. As we did previously for the “’rFractionalWishart”

function in R, we also can test the Wishart assumption; does the method actually generate

Wishart random matrices? Q-Q plots with annotated sample mean and sample variance

values are shown in Figure 4: Based on the values for the sample mean and sample variance

shown in the figure, we would conclude that the assumption that the random matrices follow

a Wishart distribution appears to be reasonable. In addition, the Q-Q plots would seem to

indicate that the Wishart distribution appears to be reasonable; the test statistics do appear

to follow a chi-squared distribution. So, using the Bartlett decomposition with gamma

random deviates appears to be reasonable and will be utilized going forward.

As a side note, examination of the source code for the “rFractionalWishart” func-

tion in R identified the reason for the generated random matrices not following the Wishart

distribution. The syntax does utilize the Bartlett decomposition - II, but the specification

of the location parameter from the gamma distribution was incorrect. That is, the “rFrac-

tionalWishart” function uses degrees of freedom− i+ 1/2 as the location parameter, and

the correct specification is (degrees of freedom− i+ 1)/2. In addition, for the generation

of random matrices, we would like to compare differences between chi-squared distributions
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Figure 4: Q-Q plots with Sample Mean and Sample Variance - Bartlett Decomposition - II

with integer degrees of freedom and gamma distributions with fractional degrees of free-

dom for varying degrees of freedom. Figures 5-7 illustrate these comparisons for increasing

fractional degrees of freedom: Similarly to what was seen in the univariate setting, as the

degrees of freedom increase, the difference between using integer versus fractional degrees

of freedom becomes negligible using the Frobenius norm criteria, differences remain using

either the spectral norm or 1-norm criteria. Interestingly, the results for the spectral norm

appear to be inconsistent; this criteria did better with the smallest value of degrees of free-

dom considered (4.3) than it did for larger values of the degrees of freedom parameter (20.3,

50.3). Overall, these results would indicate that depending on the evaluation criteria used,
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Figure 5: Comparison of Matrix Norms for Random Matrix Generation for Chi-Squared

(Integer Degrees of Freedom) and Gamma (Fractional Degrees of Freedom) Assumptions:

Degrees of freedom = 4.3
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Figure 6: Comparison of Matrix Norms for Random Matrix Generation for Chi-Squared

(Integer Degrees of Freedom) and Gamma (Fractional Degrees of Freedom) Assumptions:

Degrees of freedom = 20.3
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Figure 7: Comparison of Matrix Norms for Random Matrix Generation for Chi-Squared

(Integer Degrees of Freedom) and Gamma (Fractional Degrees of Freedom) Assumptions:

Degrees of freedom = 50.3
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there may be an impact on simulations using that utilize fractional degrees of freedom versus

those that assume all degrees of freedom are integer valued.

3.2.3 Simulation Results

For the multivariate simulation, we generated data from a 2-component mixture of

Wisharts distribution. The covariance matrices for each component Wishart distribution

were of dimension 5 with 7 degrees of freedom. Three separate covariance structures were

considered for each estimation method: unstructured, Toeplitz, and banded. The matrices

were generated as follows:

• Unstructured

ΣΣΣ1 =



1.0 0.1 0.1 0.1 0.1

0.1 6.26 0.26 0.26 0.26

0.1 0.26 9.02 0.32 0.32

0.1 0.26 0.32 12.28 0.38

0.1 0.26 0.32 0.38 16.04



ΣΣΣ2 =



1.05 0.1 0.1 0.1 0.1

0.1 6.35 0.26 0.26 0.26

0.1 0.26 8.9 0.32 0.32

0.1 0.26 0.32 12.35 0.38

0.1 0.26 0.32 0.38 16.2


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• Toeplitz

ΣΣΣ1 =



1.0 0.1 0.26 0.32 0.40

0.1 1.0 0.1 0.26 0.32

0.26 0.1 1.0 0.1 0.26

0.32 0.26 0.1 1.0 0.1

0.40 0.32 0.26 0.1 1.0



ΣΣΣ2 =



1.15 0.1 0.26 0.32 0.40

0.1 1.15 0.1 0.26 0.32

0.26 0.1 1.15 0.1 0.26

0.32 0.26 0.1 1.15 0.1

0.40 0.32 0.26 0.1 1.15


• Banded

ΣΣΣ1 =



1.0 0.1 0.0 0.0 0.0

0.1 6.26 0.26 0.0 0.0

0.0 0.26 9.02 0.32 0.0

0.0 0.0 0.32 12.28 0.38

0.0 0.0 0.0 0.38 16.04



ΣΣΣ2 =



1.05 0.1 0.0 0.0 0.0

0.1 6.35 0.26 0.0 0.0

0.0 0.26 8.9 0.32 0.0

0.0 0.0 0.32 12.35 0.38

0.0 0.0 0.0 0.38 16.2


The mixing proportions were 0.60 and 0.40, respectively. Comparisons between the mixture

distribution and the approximating distribution were made using the following matrix norms:

1-norm, Froebenius norm, and spectral norm. The number of replicates for the various matrix
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norms were 10,000. For all methods, the approximate Wishart distribution’s scale matrix

was calculated as in (3.155); the methods differ only in their estimation of the degrees of

freedom parameter.

In Figures 8-16, matrix norms are compared between the mixture distribution and the

applicable approximation method for each type of covariance structure. In addition to the

visual comparison, we would like to quantitatively compare the matrix norms by calculating

the average squared difference between the matrix norm from the mixture distribution and

the matrix norm from the approximating distribution. The results of these calculations are

shown in Tables 2-4. Based on a review of the plots in Figures 8-16 and Tables 2-4, we note

that the trace-based criteria appears to perform the best in terms of lowest average squared

error. Further, for the trace-based criteria, the banded covariance structure appeared to

perform the best in terms of average squared error, followed by the Toeplitz covariance

structure, and finally the unstructured covariance. It is worth noting that the same pattern

was not seen for the element-by-element approach; in terms of average squared error the

banded covariance structure performed the best followed by the unstructured covariance,

and then the Toeplitz covariance structure. In terms of the matrix norms utilized for this

simulation, the 1-norm appeared to perform the worst and the Frobenius norm appears to

perform the best. Because the 1-norm criteria is based on maximum column (row) sums, this

approach may perform better when the dimension of the covariance matrix is much larger

than was evaluated in this dissertation.
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Figure 8: Comparison of Matrix Norms for the Determinant-based Estimation Method:

Unstructured Covariance Matrix
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Figure 9: Comparison of Matrix Norms for the Determinant-based Estimation Method:

Toeplitz Covariance Matrix
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Figure 10: Comparison of Matrix Norms for the Determinant-based Estimation Method:

Banded Covariance Matrix
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Figure 11: Comparison of Matrix Norms for the Trace-based Estimation Method: Unstruc-

tured Covariance Matrix
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Figure 12: Comparison of Matrix Norms for the Trace-based Estimation Method: Toeplitz

Covariance Matrix
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Figure 13: Comparison of Matrix Norms for the Trace-based Estimation Method: Banded

Covariance Matrix
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Figure 14: Comparison of Matrix Norms for the Matrix Element-based Estimation Method:

Unstructured Covariance Matrix

69



0 100 200 300 400

0
.0

0
0

.0
4

0
.0

8

1−Norm

D
e

n
s
it
y

Mixture distribution
Approximating distribution

0 100 200 300 400
0
.0

0
0

.0
4

0
.0

8

Froebenius Norm

D
e

n
s
it
y

Mixture distribution
Approximating distribution

0 100 200 300 400

0
.0

0
0
.0

4
0
.0

8

Spectral Norm

D
e
n
s
it
y

Mixture distribution
Approximating distribution

Figure 15: Comparison of Matrix Norms for the Matrix Element-based Estimation Method:

Toeplitz Covariance Matrix
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Figure 16: Comparison of Matrix Norms for the Matrix Element-based Estimation Method:

Banded Covariance Matrix
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Table 2: Unstructured Covariance - Comparison of Average Squared Error Between Mixture

Distribution Matrix Norms and Approximating Distribution Matrix Norms

Estimator Average Squared Error

Determinant:

1-norm 226,086.60

Frobenius norm 5,828.00

Spectral norm 8,038.02

Trace:

1-norm 15,605.46

Frobenius norm 214.64

Spectral norm 333.43

Matrix Element-by-Element:

1-norm 13,481.11

Frobenius 269.15

Spectral norm 300.71
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Table 3: Toeplitz Covariance - Comparison of Average Squared Error Between Mixture

Distribution Matrix Norms and Approximating Distribution Matrix Norms

Estimator Average Squared Error

Determinant:

1-norm 14,999.06

Frobenius norm 234.87

Spectral norm 337.82

Trace:

1-norm 14,530.12

Frobenius norm 205.95

Spectral norm 311.53

Matrix Element-by-Element:

1-norm 15,108.50

Frobenius 281.31

Spectral norm 318.13
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Table 4: Banded Covariance - Comparison of Average Squared Error Between Mixture

Distribution Matrix Norms and Approximating Distribution Matrix Norms

Estimator Average Squared Error

Determinant:

1-norm 225,741.60

Frobenius norm 5,607.88

Spectral norm 7,768.13

Trace:

1-norm 14,169.01

Frobenius norm 178.23

Spectral norm 305.13

Matrix Element-by-Element:

1-norm 11,953.74

Frobenius norm 225.26

Spectral norm 256.91
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4.0 FUTURE DIRECTIONS

4.1 PROPORTIONATE CONTRIBUTION OF EIGENVALUES

When the dimension of a problem is somewhat large, we often seek a way to reduce

the dimensionality of the analysis by eliminating variables that do not contribute significantly

in a statistical sense. One way this can be accomplished is by examining the eigenvalues

of the sample covariance matrix, and determining which eigenvalues are greater than some

pre-determined threshold. However, this determination is normally made on an ad hoc basis

(e.g., scree plot). A more formal determination could be accomplished using a hypothesis

test for the proportionate contribution of a set of eigenvalues:

H0 : Ψ =
λ1 + · · ·+ λs
λ1 + · · ·+ λp

, (4.1)

where λ1, . . . , λp denote the population eigenvalues, Ψ is less than some pre-determined

threshold, and s ≤ p. Under the assumption that the sample covariance matrix is distributed

as ∼ Wp (g,ΣΣΣ), Mardia (1979) demonstrated that Ψ̂ is asymptotically normal. However, this

is based on the assumption of the joint distribution of the random variables following a

multivariate Gaussian distribution. The work in this dissertation could possibly be used to

extend the proportionate contribution of eigenvalues hypothesis test to scenarios where the

joint distribution of the random variables is a mixture of multivariate Gaussian distributions,

through the use of an approximating ∼ Wp (g,ΣΣΣ) distribution. It should be noted that his

approach is most applicable when the data is not considered to be high-dimensional (p < n).
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When the data is considered to be high-dimensional (p > n), we could appeal to the use

of a singular Wishart distribution as proposed by others [58]-[59]. Through the use of an

approximating singular Wishart distribution, it may be possible to extend the proportionate

contribution of eigenvalues hypothesis test to the high-dimensional setting when ad hoc

methods may be more challenging due to the increased dimensionality of the problem.
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APPENDIX A

DERIVING THE DISTRIBUTION OF THE SAMPLE VARIANCE BASED

ON A K-COMPONENT FINITE MIXTURE OF N (0, σ2
J) DISTRIBUTIONS

From (3.30), we have the following MGF:

My2`
(t) =

k∑
j=1

wj
(
1− 2σ2

j t
)−1/2

, t <
1

2σ2
j

Because y2
` > 0, we know that the PDF corresponding to the MGF will be equal to

0 when y2
` < 0. Therefore,

My2`
(−t) =

∫ ∞
0

e−ty
2
` g
(
y2
`

)
dy2

` (A.1)

= L[g
(
y2
`

)
], (A.2)

where L[·] is the Laplace transform. For simplicity, let y2
` = s. Therefore, g (y2

` ) = g (s) can

be calculated as:

g (s) = L−1[Ms (−t)] (A.3)

=
1

2πi

∫ a+i∞

a−i∞
etsMs (−t) dt, (A.4)

where i =
√
−1 and L−1[·] is the inverse Laplace transform [60]. Thus, g (s) can be written

as:

g (s) =
1

2πi

∫ a+i∞

a−i∞
ets

k∑
j=1

wj
(
1 + 2σ2

j t
)−1/2

dt (A.5)
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Because k is finite, we can re-write (A.5) as:

g (s) =
1

2π

k∑
j=1

wj

∫ a+i∞

a−i∞
ets
(
1 + 2σ2

j t
)−1/2

dt (A.6)

For evaluation of the integral in (A.6), we can appeal to the field of complex analysis. Before

proceeding further, some definitions and theorems from complex analysis will be presented

[61]. For what follows, z will represent a complex variable, z = c+ id, where c and d are real

and i =
√
−1.

Definition 8. Multiple-valued functions. Let f (z) be a function of the complex variable

z. If only one value of f (z) corresponds to each value of z, then f (z) is a single-valued

function of z. If more than one value of f (z) corresponds to each value of z, then f (z) is a

multiple-valued function of z. A multiple-valued function may also be thought of as a set of

single-valued functions, each known as a branch of the function.

Definition 9. Derivative. If f (z) is single-valued in some region R of the z plane, the

derivative of f (z) is defined as

f
′
(z) = lim

4z→0

f (z +4z)− f (z)

4z (A.7)

provided that the limit exists independent of the way in which 4z → 0.

Definition 10. Analytic Function. If f
′
(z) exists at all points z of a region, R, then f (z)

is said to be analytic in R and is consequently known as an analytic function in R.

Definition 11. Singular points. A point at which f (z) fails to be analytic is known as a

singular point or singularity of f (z). Types of singularities are as follows:

1. Isolated singularities. The point z = z0 is called an isolated singularity of f (z) if a δ > 0

can be found such that the circle |z − z0| = δ encloses no other singular point other than z0.

2. Poles. If z0 is an isolated singularity and a positive integer ñ can be found such that

lim
z→z0

(z − z0)ñ f (z) = B 6= 0 then z = z0 is called a pole of order ñ. A simple pole has order

1.

3. Branch points. For multiple-valued functions, a branch point is a non-isolated singularity
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because a multiple-valued function is not continuous, and thus, not analytic in a deleted

neighborhood of a branch point.

4. Removable singularity. An isolated singular point, z0, is a removable singularity of f (z)

if lim
z→z0

f (z) exists.

5. Essential singularity. An isolated singularity that is not a pole or a removable singularity

is referred to as an essential singularity.

Definition 12. Curve. Let ϕ (v) and ψ (v) be real functions of the real variable v assumed

continuous in v1 ≤ v ≤ v2. The equations z = c + id⇒ ϕ (v) + iψ (v) = z (v) then define a

continuous curve or arc in the z plane joining points a1 = z (v1) and a2 = z (v2). If v1 6= v2

while z (v1) = z (v2), the endpoints coincide and the curve is said to be closed. If ϕ (v) and

ψ (v) have continuous derivatives in v1 ≤ v ≤ v2 the curve is also referred to as a smooth

curve or arc. A curve that is composed of a finite number of smooth arcs is called a piecewise

smooth curve or contour.

Definition 13. Simply/Multiply-connected regions. A region R is called simply-connected

if any simple closed curve which lies in R can be shrunk to a point without leaving R. If

this is not true, then the region R is multiply-connected.

Theorem 2. Jordan curve theorem. A Jordan curve is a closed curve that divides the plane

into 2 regions having the curve as a common boundary. The region that is bounded (such

that all points of it satisfy |z| < M where M is some positive constant) is the interior of the

curve while the other region is known as the exterior of the curve.

Definition 14. Transversal of a closed path. The boundary C of a region is said to be

transversed in the positive direction if an object traveling in this direction (and perpendicular

to the plane) has the region to the left. Thus,
∮
C
f (z) dz is used to indicate integration of

f (z) around the boundary C in the positive direction. In the case of a circular region, the

positive direction is the counter-clockwise direction. The integral around C is often called a

contour integral.
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Theorem 3. Cauchy-Goursat theorem. Let f (z) be an analytic function of z in the region

R and on its boundary C. Then ∮
C

f (z) dz = 0 (A.8)

Definition 15. Contour integration. When a real integral is challenging to evaluate directly,

one approach is to appeal to the methods of contour integration. For this method, the real

integral is evaluated in the complex plane by integrating around a suitably chosen contour in

the complex plane. The contour is chosen so that it encloses the real valued integral and so

that the contour does not include any non-isolated singularity (e.g., branch point). Further,

the contour is chosen to be an analytic function.

Based on that brief background, let us evaluate the integral in (A.6) via the tech-

niques of contour integration. To review, we wish to evaluate∫ a+i∞

a−i∞
ets
(
1 + 2σ2

j t
)−1/2

dt (A.9)

via contour integration. Based on the complex variable z, the contour integral becomes∮
C

ezs√
1 + 2σ2

j z
dz, (A.10)

where C is the particular contour chosen in the complex plane. Because of the square root

in the denominator of the integrand in (A.10), we note that the integrand is a multiple-

valued function. We also note that a branch point (non-isolated singularity) exists at z =

−1/2σ2
j , σ

2
j > 0. Therefore, the contour chosen must not include this branch point. No

other singularities are identified for this particular function. Let the contour denoted by

C in (A.10) be shown in Figure 17. The contour reflected in Figure 17 is also known as a

Bromwich contour [62].

Therefore, the previously referenced contour C is represented by the region ABD−

EHJ −KLN − A in Figure 1. In this figure, EH and KL actually lie on the real axis but

have been separated for visual purposes. Also, HJK is a circle of radius ε and BDE and

LNA are arcs from a circle of radius R.
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By the Cauchy-Goursat theorem, we have:

∮
C

ezs√
1 + 2σ2

j z
dz = 0 (A.11)

By use of the Cauchy-Goursat theorem and by showing that certain sub-integrals of the

particular contour will go to zero under certain limiting conditions, the integral in (A.11)

can be evaluated directly.

On BD and NA, z = Reiθ, where θ goes from θ0 to π/2 and 3π/2 to 2π− θ0, respec-

tively. Similarly on DE and LN , z = Reiθ, where θ goes from π/2 to π and π to 3π/2, respec-

tively. On EH,
(
1 + 2σ2

j z
)

= ueπi ⇒
√

1 + 2σ2
j z =

√
ueπi/2 =

√
u[cos(π/2) + i sin(π/2)] =

i
√
u. OnKL,

(
1 + 2σ2

j z
)

= ue−πi ⇒
√

1 + 2σ2
j z =

√
ue−πi/2 =

√
u[cos(−π/2) + i sin(−π/2)] =

−i√u.

In both of these cases:

z =
−u− 1

2σ2
j

dz =
−1

2σ2
j

du (A.12)

Along EH, z goes from −R to

(−1

2σ2
j

− ε
)

. Therefore for z = −R:

z =
−u− 1

2σ2
j

−R =
−u− 1

2σ2
j

−2σ2
jR = −u− 1

u = 2σ2
jR− 1 (A.13)
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Similarly, for z =

(−1

2σ2
j

− ε
)

:

z =
−u− 1

2σ2
j

−1

2σ2
j

− ε =
−u− 1

2σ2
j

−1− 2σ2
j ε = −u− 1

u = 2σ2
j ε (A.14)

Thus, along EH, u goes from 2σ2
jR − 1 to 2σ2

j ε and along KL, u goes from 2σ2
j ε

to 2σ2
jR − 1. On HJK, z + (1/2σ2

j ) = εeiφ where φ goes from −π to π. For this arc,

z = εeiφ − 1

2σ2
j

⇒ dz = εeiφi dφ. Thus, the contour integral in (A.11) can be written as:

∫ a+iT

a−iT

exp (zs)√
1 + 2σ2

j z
dz +

∫ π

θ0

exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(Reiθi) dθ +

∫ 2σ2
j ε

2σ2
jR−1

exp

(
−s
(
u+ 1

2σ2
j

))
i
√
u

(−1

2σ2
j

)
du+

∫ π

−π

exp

(
s

(
εeiφ − 1

2σ2
j

))
√

1 + 2σ2
j

(
εeiφ − 1

2σ2
j

)εeiφi dφ+

∫ 2σ2
jR−1

2σ2
j ε

exp

(
−s
(
u+ 1

2σ2
j

))
−i√u

(−1

2σ2
j

)
du+∫ 2π−θ0

π

exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(Reiθi) dθ

(A.15)

Show that:

lim
R→∞

∫ π

θ0

exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(
Reiθi

)
dθ = 0 (A.16)
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Proof. Let us assume that: ∣∣∣∣∣ 1√
1 + 2σ2

jRe
iθ

∣∣∣∣∣ ≤ M

Rm
, (A.17)

where M,m > 0 and M is an upper bound. Working with the integral in (A.16), we have:

ieiθ exp
(
sReiθ

)
= ieiθ exp (Rs[cos θ + i sin θ]) (Euler’s formula)

= ieiθ exp (Rs cos θ + iRs sin θ)

= i exp (i[θ +Rs sin θ]) exp (Rs cos θ)

= i exp (i[θ + k∗]) exp (Rs cos θ) , where k∗ = Rs sin θ

= i[cos (θ + k∗) + i sin (θ + k∗)]exp (Rs cos θ)

= [i cos (θ + k∗)− sin (θ + k∗)]exp (Rs cos θ) (A.18)

Now returning to the original integral in (A.16), and using properties of absolute value, we

have: ∣∣∣∣∣
∫ π

θ0

exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(
Reiθi

)
dθ

∣∣∣∣∣ ≤
∫ π

θ0

∣∣∣∣∣ exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(Reiθi)

∣∣∣∣∣dθ (A.19)

Working with the r.h.s of (A.19) and substituting based on (A.18), we have:∫ π

θ0

∣∣∣∣∣ exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(Reiθi)

∣∣∣∣∣dθ =

∫ π

θ0

|i cos (θ + k∗)− sin (θ + k∗)|
∣∣∣∣∣ 1√

1 + 2σ2
jRe

iθ

∣∣∣∣∣×
|exp (Rs cos θ)| |R|dθ

=

∫ π

θ0

√
cos2 (θ + k∗) + sin2 (θ + k∗)

∣∣∣∣∣ 1√
1 + 2σ2

jRe
iθ

∣∣∣∣∣×
|exp (Rs cos θ)||R|dθ

=

∫ π

θ0

∣∣∣∣∣ 1√
2σ2

jRe
iθ + 1

∣∣∣∣∣|exp (Rs cos θ)||R|dθ (A.20)

Working with the r.h.s. of (A.20) and using (A.17), we now have:∫ π

θ0

∣∣∣∣∣ 1√
2σ2

jRe
iθ + 1

∣∣∣∣∣|exp (Rs cos θ)||R|dθ ≤ M

Rm

∫ π

θ0

|exp (Rs cos θ)||R|dθ (A.21)
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If we split up the integral on the r.h.s. of (A.21), we have:

M

Rm

∫ π

θ0

|exp (Rs cos θ)||R|dθ =
M

Rm

∫ π/2

θ0

|exp (Rs cos θ)||R|dθ +
M

Rm

∫ π

π/2

|exp (Rs cos θ)||R|dθ

=
M

Rm−1

∫ π/2

θ0

exp (Rs cos θ)dθ +
M

Rm−1

∫ π

π/2

exp (Rs cos θ)dθ

(A.22)

Now, using the results from (A.19) - (A.22), we have the following inequality:∣∣∣∣∣
∫ π

θ0

exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(
Reiθi

)
dθ

∣∣∣∣∣ ≤ M

Rm−1

∫ π/2

θ0

exp (Rs cos θ)dθ +
M

Rm−1

∫ π

π/2

exp (Rs cos θ)dθ

(A.23)

Working with the r.h.s of (A.23), we can evaluate the left integral by the substitution method.

Let θ = π/2− φ⇒ dθ = −dφ⇒ −dθ = dφ. Substituting:

M

Rm−1

∫ π/2

θ0

exp (Rs cos θ)dθ =
−M
Rm−1

∫ 0

π/2−θ0
exp (Rs cos (π/2− φ)) dφ

=
M

Rm−1

∫ π/2−θ0=φ0

0

exp (Rs sinφ) dφ (A.24)

From Figure 1, we can establish the following:

cos θ0 = a/R

sinφ0 = a/R

φ0 = sin−1 (a/R)

This leads to the following inequality:

sinφ ≤ sinφ0 ≤ cos θ0 = a/R (A.25)

Using (A.25) we can now establish bounds on the integral on the r.h.s. of (A.24) as follows:

M

Rm−1

∫ φ0

0

exp (Rs sinφ) dφ ≤ M

Rm−1

∫ φ0

0

exp (sa) dφ =
M

Rm−1
φ0 exp (sa)

=
M

Rm−1
exp (sa) sin−1 (a/R) (A.26)
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Therefore, as R→∞, we note that
M

Rm−1
exp (sa) sin−1 (a/R)→ 0 because, under R→∞,

sin−1 (a/R) ≈ a/R. Thus, combining (A.24) - (A.26) we can state:

M

Rm−1
lim
R→∞

∫ π/2

θ0

exp (Rs cos θ) dθ = 0 (A.27)

Next, to complete the proof, we must show that the right integral on the r.h.s. of (A.23) also

goes to 0 as R → ∞. For this part of the proof, we will utilize the following substitution:

Let θ = π/2 + φ⇒ dθ = dφ. Substituting, we have:

M

Rm−1

∫ π

π/2

exp (Rs cos θ) dθ =
M

Rm−1

∫ π/2

0

exp (Rs cos (π/2 + φ)) dφ

=
M

Rm−1

∫ π/2

0

exp (−Rs sinφ) dφ (A.28)

Let H (φ) = sinφ/φ = φ−1 sinφ. Taking the first derivative of H (φ) w.r.t. φ, we have:

∂H (φ)

∂φ
= φ−1 cosφ+ sinφ (−1)

(
φ−2
)

=
cosφ

φ
− sinφ

φ2

=
φ cosφ− sinφ

φ2
(A.29)

If G (φ) = φ cosφ− sinφ, we have the following:

∂G (φ)

∂φ
= φ (− sinφ) + cosφ (1)− cosφ

= −φ sinφ+ cosφ− cosφ

= −φ sinφ (A.30)

For 0 ≤ φ ≤ π/2, G′ (φ) ≤ 0 and is a decreasing function. Because G (0) = 0, G (φ) ≤ 0.

Thus, H ′ (φ) ≤ 0 or H (φ) is a decreasing function. Further:

lim
φ→0

H (φ) = lim
φ→0

sinφ

φ
=

cosφ|φ=0

1
= 1 (A.31)
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Thus, H (φ) decreases from 1 to 2/π as φ goes from 0 to π/2. Then: 1 ≥ sinφ/φ ≥ 2/π ⇒

φ ≥ sinφ ≥ 2φ/π. Thus, sinφ ≥ 2φ/π. Substituting into the integral on the r.h.s. of (A.28),

we have:

M

Rm−1

∫ π/2

0

exp (−Rs sinφ) dφ ≤ M

Rm−1

∫ π/2

0

exp (−Rs (2φ/π)) dφ =
πM

2sRm
(1− exp (−Rs))

(A.32)

Applying the limit as R→∞ to the upper bound in (A.33), we have:

lim
R→∞

πM

2sRm
(1− exp (−Rs)) = 0 (A.33)

Therefore, combining (A.19), (A.23), (A.27), and (A.33), we now have:

lim
R→∞

∣∣∣∣∣
∫ π

θ0

exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(
Reiθi

)
dθ

∣∣∣∣∣ ≤ lim
R→∞

∫ π

θ0

∣∣∣∣∣ exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(Reiθi)

∣∣∣∣∣dθ = 0 (A.34)

Finally, this then leads to the following:

lim
R→∞

∫ π

θ0

exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(
Reiθi

)
dθ = 0 (A.35)

This completes the proof.

Next, show that:

lim
ε→0

∫ π

−π

exp

(
s

(
εeiφ − 1

2σ2
j

))
√

1 + 2σ2
j

(
εeiφ − 1

2σ2
j

)εeiφi dφ = 0 (A.36)
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Proof. We can rewrite (A.36) as:

lim
ε→0

∫ π

−π

exp

(
s

(
εeiφ − 1

2σ2
j

))
√

2σ2
j εe

iφ
εeiφi dφ = lim

ε→0

∫ π

−π

exp

(
s

(
εeiφ − 1

2σ2
j

))
√

2σ2
j

√
εeiφi dφ (A.37)

If we assume that the limit can be moved inside the integral on the r.h.s. of (A.37), we have:

∫ π

−π
lim
ε→0

exp

(
s

(
εeiφ − 1

2σ2
j

))
√

2σ2
j

√
εeiφi dφ (A.38)

We note that as ε→ 0, the interior limit approaches 0. Because this limit uniformly converges

to zero, moving the limit inside the integral is justified via the uniform convergence theorem.

Therefore, the desired result has been demonstrated and the proof is complete.

Finally, we wish to show that

lim
R→∞

∫ 2π−θ0

π

exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(Reiθi)dθ (A.39)

Proof. Using a similar development employed in (A.19) - (A.21), we have:

∣∣∣∣∣
∫ 2π−θ0

π

exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(Reiθi)dθ

∣∣∣∣∣ ≤ M

Rm

∫ 2π−θ0

π

|exp (Rs cos θ)||R|dθ (A.40)

Splitting up the integral on the r.h.s. of (A.40), we have:

M

Rm

∫ 2π−θ0

π

|exp (Rs cos θ)||R|dθ =
M

Rm

∫ 3π/2

π

|exp (Rs cos θ)||R|dθ +

M

Rm

∫ 2π−θ0

3π/2

|exp (Rs cos θ)||R|dθ

=
M

Rm−1

∫ 3π/2

π

exp (Rs cos θ)dθ +

M

Rm−1

∫ 2π−θ0

3π/2

exp (Rs cos θ)dθ (A.41)
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Working with the left integral on the r.h.s. of (A.41), let us make the following substitution:

θ = π + φ̃⇒ dθ = dφ̃. Substituting, we have:

M

Rm−1

∫ π/2

0

exp
(
Rs cos

(
π + φ̃

))
dφ̃ =

M

Rm−1

∫ π/2

0

exp
(
−Rs cos φ̃

)
dφ̃ (A.42)

For 0 ≤ φ ≤ π/2, we know that cos φ̃ ≥ 0. Therefore, using the r.h.s. of (A.42), we now

have:

M

Rm−1

∫ π/2

0

exp
(
−Rs cos φ̃

)
dφ̃ ≤ M

Rm−1

∫ π/2

0

exp (−Rs(0)) dφ̃ =
Mπ

2Rk−1
(A.43)

Because the limit of the upper bound in (A.43) as R → ∞ is equal to 0, we have shown

that:

lim
R→∞

M

Rm−1

∫ 3π/2

π

exp (Rs cos θ) dθ = 0 (A.44)

Now let us work with the right integral on the r.h.s. of (A.41). Making the same substitution

utilized in (A.42), we now have:

M

Rm−1

∫ 2π−θ0

3π/2

exp (Rs cos θ) dθ =
M

Rm−1

∫ π−θ0

π/2

exp
(
Rs cos

(
π + φ̃

))
dφ̃

=
M

Rm−1

∫ π−θ0

π/2

exp
(
−Rs cos φ̃

)
dφ̃ (A.45)

Now, working with the r.h.s. of (A.45), let us consider the additional substitution: φ̃ =

π/2 + ψ ⇒ dφ̃ = dψ. Therefore, we now have:

M

Rm−1

∫ π−θ0

π/2

exp
(
−Rs cos φ̃

)
dφ̃ =

M

Rm−1

∫ π/2−θ0

0

exp (−Rs cos (π/2 + ψ)) dψ

=
M

Rm−1

∫ π/2−θ0

0

exp (Rs sinψ) dψ (A.46)

It should be noted that, in (A.24) - (A.27), an integral of the same form as that on the r.h.s.

of (A.46) was shown to approach 0 as R→∞. Therefore, combining (A.40) with the results

from (A.41) - (A.46), we now have:

lim
R→∞

∣∣∣∣∣
∫ 2π−θ0

π

exp
(
sRebθ

)√
1 + 2σ2

jRe
bθ

(Rebθb)dθ

∣∣∣∣∣ = 0 (A.47)
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It follows from (A.47) that:

lim
R→∞

∫ 2π−θ0

π

exp
(
sReiθ

)√
1 + 2σ2

jRe
iθ

(Reiθi)dθ = 0 (A.48)

Therefore, the overall result has been demonstrated and the proof is complete.

Because of the integrals which have been shown to approach zero based on certain

limiting properties (R→∞, ε→ 0) in (A.33), (A.38), and (A.48), the contour integral in

(A.15) can be written as: ∫ a+iT

a−iT

exp (zs)√
1 + 2σ2

j z
dz −

∫ 2σ2
j ε

2σ2
jR−1

exp

(
−s
(
u+ 1

2σ2
j

))
2σ2

j i
√
u

du −

∫ 2σ2
jR−1

2σ2
j ε

exp

(
−s
(
u+ 1

2σ2
j

))
−2σ2

j i
√
u

du = 0 (A.49)

By reversing the limits of integration on the second integral in (A.49), we now have:∫ a+iT

a−iT

exp (zs)√
1 + 2σ2

j z
dz +

∫ 2σ2
jR−1

2σ2
j ε

exp

(
−s
(
u+ 1

2σ2
j

))
2σ2

j i
√
u

du −

∫ 2σ2
jR−1

2σ2
j ε

exp

(
−s
(
u+ 1

2σ2
j

))
−2σ2

j i
√
u

du = 0 (A.50)

Rearranging terms in (A.50), we have:

∫ a+iT

a−iT

exp (zs)√
1 + 2σ2

j z
dz = −

∫ 2σ2
jR−1

2σ2
j ε

exp

(
−s
(
u+ 1

2σ2
j

))
2σ2

j i
√
u

du −

∫ 2σ2
jR−1

2σ2
j ε

exp

(
−s
(
u+ 1

2σ2
j

))
2σ2

j i
√
u

du (A.51)
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Combining terms on the r.h.s. of (A.51), we have:

∫ a+iT

a−iT

exp (zs)√
1 + 2σ2

j z
dz = −2

i

∫ 2σ2
jR−1

2σ2
j ε

exp

(
−s
(
u+ 1

2σ2
j

))
2σ2

j

√
u

du (A.52)

Multiplying the numerator and denominator of the r.h.s. of (A.52) by i =
√
−1, we have:

∫ a+bT

a−bT

exp (zs)√
1 + 2σ2

j z
dz = −2i

i2

∫ 2σ2
jR−1

2σ2
j ε

exp

(
−s
(
u+ 1

2σ2
j

))
2σ2

j

√
u

du (A.53)

Simplifying the r.h.s. of (A.53), we have:

∫ a+iT

a−iT

exp (zs)√
1 + 2σ2

j z
dz = 2i

∫ 2σ2
jR−1

2σ2
j ε

exp

(
−s
(
u+ 1

2σ2
j

))
2σ2

j

√
u

du (A.54)

Because the original integral from (A.6) is scaled by the factor 1/2πi, multiplying both sides

of (A.54) by this factor leads to:

1

2πi

∫ a+iT

a−iT

exp (zs)√
1 + 2σ2

j z
dz =

1

π

∫ 2σ2
jR−1

2σ2
j ε

exp

(
−s
(
u+ 1

2σ2
j

))
2σ2

j

√
u

du (A.55)

We note from Figure 1 that T =
√
R2 − a2 and taking limits as R→∞, ε→ 0, we have:

1

2πi

∫ a+i∞

a−i∞

exp (zs)√
1 + 2σ2

j z
dz

︸ ︷︷ ︸
original integral

=
1

π

∫ ∞
0

exp

(
−s
(
u+ 1

2σ2
j

))
2σ2

j

√
u

du

=
1

π

∫ ∞
0

exp

(−su
2σ2j

)
exp

(−s
2σ2

j

)
2σ2

j

√
u

du

=

exp

(−s
2σ2

j

)
π

∫ ∞
0

exp

(−su
2σ2

j

)
2σ2

j

√
u

du (A.56)
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Performing a change of variables, we have:

Let
u

2σ2
j

= v2(
1

2σ2
j

)
du = 2v dv

du =
(
2σ2

j

)
2v dv (A.57)

Substituting (A.57) into the integral on the r.h.s of (A.56), we have:

exp

(−s
2σ2

j

)
π

∫ ∞
0

exp

(−su
2σ2

j

)
2σ2

j

√
u

du =

exp

(−s
2σ2

j

)
π

∫ ∞
0

e−v
2s

v
√

2σ2
j

2v dv

=

 2√
2σ2

j

 exp

(−s
2σ2

j

)
π

∫ ∞
0

e−v
2sdv (A.58)

Performing another change of variables, we have:

Let w = v2s

dw = 2vs dv(
1

2vs

)
dw = dv (A.59)

Substituting (A.59) into the integral on the r.h.s. of (A.58), we have:

 2√
2σ2

j

 exp

(−s
2σ2

j

)
π

∫ ∞
0

e−w

 1

2s

√
w

s

 dw =

exp

(−s
2σ2

j

)
π
√

2sσ2
j

∫ ∞
0

e−ww−1/2dw︸ ︷︷ ︸
Γ(1/2)=

√
π

=

exp

(−s
2σ2

j

)
√
π
√

2σ2
j

√
s

= Gamma

(
1

2
, 2σ2

j

)
(A.60)

Thus, using (A.6) and (A.60) we can state:

g (s) = g
(
y2
`

)
=

k∑
j=1

wjGamma

(
1

2
, 2σ2

j

)
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APPENDIX B

DERIVING THE MOMENT GENERATING FUNCTION FOR A SUM OF

SQUARES AND CROSS-PRODUCTS MATRIX FROM A K-COMPONENT

FINITE MIXTURE OF MULTIVARIATE GAUSSIANS DISTRIBUTION

Let us suppose that the random vectors z1, z2, . . . , znj are independent and identically

distributed, each with the following PDF:

fk (z`) =
k∑
j=1

wjfj (z` | τττ j) , (B.1)

where z` is a vector of dimension (p × 1), ∞ < z` < ∞, τττ j =
(
µµµj,ΣΣΣj

)
, |ΣΣΣj| > 0, and

` = 1, . . . , nj. Each fj in (B.1) is a p-dimensional multivariate Gaussian distribution given

by:

fj (z` | τττ j) =
1

(2π)p/2 |ΣΣΣj|1/2
exp

(
−1

2

(
z`
T (ΣΣΣj)

−1 z`
))

(B.2)

Let the random matrix A∗ be defined as:

A∗ =

nj∑
`=1

z`z`
T , (B.3)

which is a matrix similar in form to that defined in (5.79). Further, each z` is distributed

as shown in (B.1). Next, let us introduce the p × p matrix Θj = (θ)jst, with (θ)jst = (θ)jts.
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In this parametrization, (θ)jst represents the matrix element in the sth row and tth column of

Θj. Next, let us derive the moment-generating function of A∗:

MA∗(Θ) = E (exp [tr (A∗Θ)])

=

∫ ∞
∞

exp [tr (A∗Θj)]
k∑
j=1

wjfj (z` | τττ j) dz` (B.4)

=
k∑
j=1

wj

∫ ∞
∞

exp [tr (A∗Θj)] fj (z` | τττ j) dz` (B.5)

=
k∑
j=1

wjE (exp [tr (A∗Θj)]) (B.6)

We can note that (B.5) follows from (B.4) due to the finite mixture model framework;

therefore, the order of summation and integration can be interchanged. Also, (B.6) follows

from (B.4) because the integrand in (B.5) is simply the expected value of exp [tr (A∗Θj)].

Now, substituting (B.3) into (B.6), we now have:

k∑
j=1

wjE (exp [tr (A∗Θj)]) =
k∑
j=1

wjE

(
exp

[
tr

(
nj∑
`=1

z`z`
TΘj

)])

=
k∑
j=1

wjE

(
exp

[
tr

(
nj∑
`=1

z`
TΘjz`

)])
(B.7)

=
k∑
j=1

wjE

(
exp

(
nj∑
`=1

z`
TΘjz`

))
(B.8)

Both (B.7) and (B.8) follow from the properties of the trace of a square matrix [45]. Because

each z` is independent and identically distributed, we can write (B.8) as:

k∑
j=1

wjE

(
exp

(
nj∑
`=1

z`
TΘjz`

))
=

k∑
j=1

wj

nj∏
`=1

E
(
exp

(
z`
TΘjz`

))
=

k∑
j=1

wj
[
E exp

(
ζTΘjζ

)]nj
, (B.9)

For the right-hand side of (B.7), ζ ∼ Np(0,ΣΣΣj). Before proceeding further, we will utilize

the following theorems from Anderson [45].
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Theorem 4. (Anderson A.2.1 (2003)) Given any symmetric matrix B, there exists an or-

thogonal matrix C such that

CTBC = D =


d1 0 . . . 0

0 d2 . . . 0
...

...
. . .

...

0 0 . . . dp


If B is positive semi-definite, then dh ≥ 0, h = 1, . . . , p; if B is positive definite, then dh > 0.

Theorem 5. (Anderson A.2.2 (2003)) Given a positive semi-definite matrix B and a positive

definite matrix A, there exists a non-singular matrix F such that

FTBF =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λp


FTAF = Ip,

where λ1 ≥ · · · ≥ λp (≥ 0) are the eigenvalues of B. If B is positive definite, λh ≥ 0,

h = 1, . . . , p.

Now, returning to (B.9), and utilizing Theorems 4 and 5, we have the following. For

a real given Θj matrix, there exists a non-singular p× p matrix Bj such that:

BT
j (ΣΣΣj)

−1 Bj = Ip (B.10)

BT
j ΘjBj = Dj, (B.11)

where Dj is a real diagonal matrix. Returning to (B.9), we previously indicated that ζ ∼

Np(0,ΣΣΣj). Another way to state this is that ζ = (ΣΣΣj)
1/2y, where y ∼ Np(0, Ip). Therefore,
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using this alternative formulation, and noting that from (B.10) that Bj = (ΣΣΣj)
1/2, we can

restate (B.9) as:

k∑
j=1

wj
[
E exp

(
ζTΘjζ

)]nj
=

k∑
j=1

wj

[
E exp

(
(Bjy)T

(
BT
j

)−1
Dj (Bj)

−1 Bjy
)]nj

=
k∑
j=1

wj
[
E exp

(
yTDjy

)]nj
=

k∑
j=1

wj

[
E

p∏
h=1

exp
(

(dhh)j y2
h

)]nj

=
k∑
j=1

wj

[
p∏

h=1

E
[
exp

(
(dhh)j y2

h

)]]nj
, (B.12)

where (dhh)j is the hth diagonal element of Dj. Further, the hth factor in the product on

the right-hand side of (5.91) is E
[
exp

(
(dhh)j y

2
h

)]
,where yh ∼ N (0, 1). This expectation

is the MGF of a chi-squared random variable with 1 degree of freedom:
(

1− 2 (dhh)j

)−1/2

.

Substituting into the right-hand side of (B.12) we now have:

k∑
j=1

wj

[
p∏

h=1

E
[
exp

(
(dhh)j y2

h

)]]nj
=

k∑
j=1

wj

[
p∏

h=1

(
1− 2 (dhh)j

)−1/2
]nj

=
k∑
j=1

wj

[
(det (I− 2Dj))

−1/2
]nj

(B.13)

Recognizing that I− 2Dj is a diagonal matrix and by using (B.10) - (B.11) we now have:

det (I− 2Dj) = det
(
BT
j (ΣΣΣj)

−1 Bj − 2BT
j ΘjBj

)
= det

(
BT
j

(
(ΣΣΣj)

−1 − 2Θj

)
Bj

)
= det

(
BT
j

)
det
(
(ΣΣΣj)

−1 − 2Θj

)
det (Bj) (B.14)

= (det (Bj))
2 det

(
(ΣΣΣj)

−1 − 2Θj

)
(B.15)

Equations (B.14) - (B.15) follow from the properties of determinants. Specifically, (B.14)

follows from noting that the determinant of a product of matrices of the same dimension is

the product of the determinants for each individual matrix. In this case, Bj and (ΣΣΣj)
−1−2Θj

are each of dimension p× p. In addition, (B.15) follows from the property that a matrix and
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its transpose have the same determinant (and recognizing that the determinant is a scalar).

From (B.10) we know that Bj = (ΣΣΣj)
1/2 ⇒ (det (Bj))

2 = 1/ det
(
(ΣΣΣj)

−1). Combining this

with (B.13) and (B.15), we now have:

k∑
j=1

wj

[
(det (I− 2Dj))

−1/2
]nj

=
k∑
j=1

wj (det (I− 2Dj))
−nj/2

=
k∑
j=1

wj

[ (
det
(
(ΣΣΣj)

−1))nj/2(
det
(
(ΣΣΣj)

−1 − 2Θj

))nj/2
]

=
k∑
j=1

wj (det (I− 2ΘjΣΣΣj))
−nj/2 (B.16)
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APPENDIX C

DERIVING THE MOMENT GENERATING FUNCTION FROM A

K-COMPONENT FINITE MIXTURE OF WISHART DISTRIBUTIONS

Based on (3.80), let us define the MGF of A∗.

MA∗(Θ) = E [etr (A∗Θ)]

=

∫
A∗>0

k∑
j=1

wj

{
2(njp)/2Γp

(nj
2

)
det (ΣΣΣj)

nj/2
}−1

det (A∗)(nj−p−1)/2×

etr

(
−1

2
(ΣΣΣj)

−1A∗
)

etr (ΘjA
∗) dA∗ (C.1)

=
k∑
j=1

wj

∫
A∗>0

{
2(njp)/2Γp

(nj
2

)
det (ΣΣΣj)

nj/2
}−1

det (A∗)(nj−p−1)/2×

etr

(
−1

2
(ΣΣΣj)

−1A∗
)

etr (ΘjA
∗) dA∗ (C.2)

=
k∑
j=1

wj

{
2(njp)/2Γp

(nj
2

)
det (ΣΣΣj)

nj/2
}−1

∫
A∗>0

det (A∗)(nj−p−1)/2×

etr

(
−1

2
(ΣΣΣj)

−1A∗
)

etr (ΘjA
∗) dA∗, (C.3)

where Θ is a p × p symmetric real matrix, Θj is a p × p symmetric real matrix from the

jth component distribution, and A∗ is a positive definite matrix. We note that (C.2) follows
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from (C.1) because m is considered to be finite. Now continuing to work with the r.h.s of

(C.3), we have

=
k∑
j=1

wj

{
2(njp)/2Γp

(nj
2

)
det (ΣΣΣj)

nj/2
}−1

∫
A∗>0

det (A∗)(nj−p−1)/2×

etr

(
−1

2

[
(ΣΣΣj)

−1A∗ − 2ΘjA
∗]) dA∗ (C.4)

=
k∑
j=1

wj

{
2(njp)/2Γp

(nj
2

)
det (ΣΣΣj)

nj/2
}−1

∫
A∗>0

det (A∗)(nj−p−1)/2×

etr

(
−1

2

[
(ΣΣΣj)

−1A∗ − 2ΘjΣΣΣj (ΣΣΣj)
−1 A∗

])
dA∗ (C.5)

=
k∑
j=1

wj

{
2(njp)/2Γp

(nj
2

)
det (ΣΣΣj)

nj/2
}−1

∫
A∗>0

det (A∗)(nj−p−1)/2×

etr

(
−1

2
[Ip − 2ΘjΣΣΣj] ΣΣΣj

−1A∗
)
dA∗ (C.6)

Before continuing with evaluating the integral in (C.6), some results from matrix variate

distributions may be helpful.

Definition 16. Matrix-variate Laplace Transform (Gupta and Nagar, 1999). Let f(J) be a

function of Jp×p > 0 (positive definite) and let L be a p × p complex symmetric matrix. A

complex matrix is one whose elements may be complex numbers. Then the matrix-variate

Laplace transform g(`) of f(J) is defined as

g(`) =

∫
J>0

etr (−LJ) f (J) dJ, (C.7)

where the integral is assumed to be absolutely convergent in the right half-plane, Re (`) > 0.

Using Definition 2, a matrix-variate Laplace transform which will be useful to our

continued developments is

g(`) =

∫
Λ>0

etr (−ΛL) det (Λ)b−
1
2

(p+1) dΛ, (C.8)

where Λ,L are p × p symmetric complex matrices. Herz (1955) demonstrated that the

matrix-variate Laplace transform in (C.8) is absolutely convergent for Re(L) > 0. Because
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we are interested in the case where L is real, we shall restrict further developments to the

Re(L) > 0 case. Before we can proceed to evaluate the integral in (C.6), we must first review

and establish some results for Jacobians of matrix-variate transformations.

Definition 17. Matrix-variate Jacobian (Gupta and Nagar, 1999). Let X and Y be two ma-

trices having the same number of independent elements x1, . . . , xp and y1, . . . , yp, respectively.

Consider the matrix transformation Y = F (X). Then the Jacobian of the transformation

from X to Y is defined as:

J(X→ Y) = mod det


∂x1
∂y1

. . . ∂x1
∂yp

...
. . .

...

∂xp
∂y1

. . . ∂xp
∂yp

 , (C.9)

where mod indicates the modulus.

Now, we will present several theorems with accompanying proofs regarding Jacobians

of linear matrix-variate transformations that will be useful for evaluating the integral in

equation (C.6).

Theorem 6. Linear transformation of a vector (Deemer and Olkin, 1951). For

y and x, each p × 1 vectors and K a p × p matrix, define y = Kx. Then J(x → y) =

mod det(K).

Proof. Let y` =
p∑

h=1

a`hxh and ∂y`
∂xj

= k`j. Then, J(x→ y) = mod det(K).

Theorem 7. Linear transformation of a matrix - I (Deemer and Olkin, 1951). For

Y and X, each p× q matrices, and K, a p× p matrix, define Y = KX. Then J(X→ Y) =

mod det(K)q.

Proof. This follows from Theorem 6, because the transformation of each column of Y is

independent of the others, and there are q such columns of Y. Further, the Jacobian of each

column transformation is mod det(K).
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Theorem 8. Linear transformation of a matrix - II (Deemer and Olkin, 1951). For

Y and X, each p× q matrices, K, a p×p matrix, and M, a q× q matrix, define Y = KXM.

Then J(X→ Y) = mod det(K)q(M)p.

Proof. Let U = KX and then Y = UM. Using Theorem 7, it follows that J(X → U) =

mod det(K)q and J(U → Y) = mod det(M)p. Because Jacobians are essentially partial

derivatives (or functions thereof), the desired result follows from the application of the chain

rule for calculating derivatives.

Lemma 1. Linear transformation of a matrix - III (Deemer and Olkin, 1951).

Let Y = KnKn−1 · · ·K1XKT
1 · · ·KT

n−1K
T
n . Then J(X → Y) = J(X → Y1)J(Y1 →

Y2)· · ·J(Yn−1 → Y), where Y` = K`Y`−1K
T
` ,Y0 = X,Yn = Y, ` = 1, . . . , n.

Proof. This follows from the application of the chain rule of differentiation as demonstrated

in the proof of Theorem 8.

Theorem 9. Linear transformation of a matrix - IV (Deemer and Olkin, 1951).

Let Y be a p × p matrix, X be a symmetric p × p matrix, and K be a p × p matrix. If

Y = KXKT , then J(X→ Y) = mod det(K)p+1

Proof. As a first step in this proof, we shall define an elementary transformation matrix for

any Ip matrix. An elementary matrix is a matrix obtained by applying a single elementary

row transformation to Ip. These transformations include:

1. Interchanging any 2 rows of a given matrix (e.g., R1←→R2)

2. Multiplying a single row of a given matrix by a constant (e.g., cR1→R1)

3. Adding a multiple of one row of a given matrix to another row (e.g., R3→R3 + cR1)

These elementary row transformations also define the different types of elementary matrices.

We are interested in finding mod det(K)p+1, where K is a square matrix of dimension p.

Based on the well-known properties of determinants (Searle, 1982), when two rows (columns)

of a matrix are interchanged, a determinant changes its sign. Because the determinant of the
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Ip matrix equals 1, interchanging any two rows of the Ip matrix will result in a determinant

equal to -1. The modulus of this determinant is equal to 1. Therefore, further developments

of the proof will focus on the elementary row transformations delineated in 2. and 3. above.

Now, let us state some properties of the elementary row transformation matrices specified

by 2. and 3. above. Let us denote Raa(c
∗) as the Ip identity matrix with the ath diagonal

element replaced by c∗; this is the matrix specified in 2. above (multiplication of a single row

of a given matrix by a constant). Because Raa(c
∗) is a diagonal matrix, det(Raa(c

∗)) = c∗.

Because the determinant is non-zero, Raa(c
∗) is non-singular, and its inverse is the identity

matrix with (c∗)−1 as the ath diagonal element.

Similarly, let us denote Pab(c
∗) as an upper (lower) triangular matrix with the diagonal

elements and the appropriate off-diagonal elements equal to c∗. Therefore, det(Pab(c
∗)) =

1 and P−1
ab (c∗) = Pab(−c∗). These elementary matrices play an important role in equivalent

canonical forms as the following theorem demonstrates.

Theorem 10. Full-rank factorization (Searle, 1982). Any non-null matrix S of rank r is

equivalent to PSQ =

Ir 0

0 0

, where Ir is the identity matrix of dimension r, S is a matrix

of dimension m×n, and P and Q are non-singular matrices of dimension m×m and n×n,

respectively. Therefore, we note that S = P−1

Ir 0

0 0

Q−1,and S can be seen as a product

of elementary matrices, and, as was stated previously, the inverse of an elementary matrix

is also an elementary matrix.

Returning to Theorem 9, which we wish to prove, we note that matrix K is a p× p

matrix. Using Theorem 10, we can rewrite K as follows:

K = (E1E2 · · ·En)−1 (En+1En+2 · · ·Em)−1

= E−1
n · · ·E−1

2 E−1
1 E−1

m · · ·E−1
n+2E

−1
n+1 (C.10)

= FmFm−1 · · ·F1, (C.11)
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where the F matrices in (C.11) are of the type Raa(c
∗) or Pab(c

∗). Because K is a square

matrix, we can rewrite the linear transformation Y = KXKT as:

Y = (FmFm−1 · · ·F1) X (FmFm−1 · · ·F1)T

= (FmFm−1 · · ·F1) X
(
FT

1 · · ·FT
m−1F

T
m

)
(C.12)

By using Lemma 1, we can write the Jacobian, J(X→ Y) as:

J(X→ Y) = J(X→ Y1)J(Y1 → Y2) · · · J(Ym−1 → Y), (C.13)

where Yd = FdYd−1F
T
d ,Y0 = X,Ym = Y, (d = 1, . . . ,m).

Let G represent any of the F matrices of the form Raa(c
∗). Therefore, the transformation

Yd = GYd−1G
T implies that yaa = (c∗)2xaa, yab = c∗xab (a 6= b), and ybc = xbc (b, c 6= a).

The matrix of the partial derivatives is thus diagonal with (p−1) elements c∗ and one element

(c∗)2. Thus:

J(Yd−1 → Yd) = mod (c∗)2c(p−1)(1)

= mod c(p+1)

= mod det(G)(p+1) (C.14)

Thus, it follows that:

J(X→ Y) = mod
[
det (Fm)p+1 det (Fm−1)p+1 · · · det (F1)p+1]

= mod
[
det (FmFm−1 · · ·F1)p+1]

= mod det (K)p+1 (C.15)

Similarly, let H represent any of the F matrices of the form Pab(c
∗). Therefore, the transfor-

mation Yd = HYd−1H
T implies that yaa = xaa+2c∗xab+(c∗)2xbb, yac = yca = xac+c

∗xbc, (c 6=

a), and ybc = xbc (b, c 6= a). The matrix of partial derivatives will be an upper-triangular

matrix with 1s on the main diagonal. Therefore, its determinant is equal to 1. Thus, for this

type of elementary transformation, J(Yd−1 → Yd) = mod det(H)p+1. Similarly, it follows

that J(X→ Y) = mod det(K)p+1, and the proof is now complete.
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Now, we will state a corollary of Theorem 9 in terms of a linear transformation

involving K−1.

Corollary 1. Linear transformation of a matrix - V (Deemer and Olkin, 1951).

For Y,X(symmetric), and K all p× p matrices, define Y = K−1X (K−1)
T

. Then J(X →

Y) = mod det(K)−(p+1).

Proof. Using a development similar to that used in the proof of the preceding theorem, K

is a non-singular matrix. Using elementary matrices we can write K−1 as

K−1 = (FmFm−1 · · ·F1)−1

= F−1
1 · · ·F−1

m−1F
−1
m

= F∗1 · · ·F∗m−1F
∗
m, (C.16)

where the F∗ matrices in (C.16) are of the type Raa(c
∗)−1 or Pab(−c∗). Therefore, the linear

transformation Y = K−1X (K−1)
T

can be written as

Y =
(
F∗1 · · ·F∗m−1F

∗
m

)
X
(
F∗1 · · ·F∗m−1F

∗
m

)T
=
(
F∗1 · · ·F∗m−1F

∗
m

)
X
[
(F∗m)T

(
F∗m−1

)T · · · (F∗1)T
]

(C.17)

By using Lemma 1, we can write the Jacobian J(X→ Y) as:

J(X→ Y) = J(X→ Y1)J(Y1 → Y2) · · · J(Ym−1 → Y),

where Yd = F∗dYd−1 (F∗d)
T (d = 1, . . . ,m),Y0 = X,Ym = Y. Let G∗ represent any of the F∗

matrices of the form Raa(c
∗)−1. Therefore, the transformation Yd = G∗Yd−1 (G∗)T implies
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that yaa = (c∗)−2xaa, yab = (c∗)−1xab(a 6= b), and, ybc = xbc(b, c 6= a). The matrix of the

partial derivatives is diagonal with (p− 1) elements (c∗)−1 and one element (c∗)−2. Thus:

J(Yd−1 → Yd) = mod (c∗)−2(c∗)−(p−1)(1)

= mod (c∗)−2−p+1

= mod (c∗)−p−1

= mod (c∗)−(p+1)

= mod det(G∗)−(p+1) (C.18)

thus it follows that:

J(X→ Y) = mod
[
det (F∗1)p+1 · · · det

(
F∗m−1

)p+1
det (F∗m)p+1

]
= mod

[
det
(
F∗1 · · ·F∗m−1F

∗
m

)p+1
]

= mod
[
det(K−1)(p+1)

]
= mod det(K)−(p+1) (C.19)

Similarly, let H∗ represent any of the F∗ matrices of the form Pab(−c∗). Therefore, the

transformation Yd = H∗Yd−1 (H∗)T implies that yaa = xaa − 2c∗xab + (c∗)2xbb, yac = yca =

xac−c∗xbc(c 6= a), and ybc = xbc(b, c 6= a). The matrix of partial derivatives will be an upper-

triangular matrix with 1s on the main diagonal. Therefore, its determinant is equal to 1.

Thus, for this type of elementary transformation, J(Yd−1 → Yd) = mod det(H∗)−(p+1).

This uses the fact that det(H−1) = det(H)−1. Similarly, it follows that J(X → Y) =

mod det(K)−(p+1) and the proof is now complete.

Corollary 2. Linear transformation of a matrix - VI. For Y,X(symmetric), and K

all (p × p) matrices, define Y = K1/2X
(
K1/2

)T
, where K1/2 is the positive square root of

K. Then J(X→ Y) = mod det(K)−
1
2

(p+1).
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Proof. From Theorem 9, we demonstrated that for Y = KXKT , we have J(X → Y) =

mod det(K)p+1. Pre- and post-multiplying each side of Y = KXKT by K−1/2 and(K−1/2)T ,

respectively, we have:

K−1/2Y
(
K−1/2

)T
= K−1/2KXKT

(
K−1/2

)T
= K1/2X

(
K1/2

)T
(C.20)

Therefore, we can prove the result of interest by finding the Jacobian of the transformation

Y∗ = K−1/2Y
(
K−1/2

)T
, where Y∗ is also a (p × p) matrix. Using a development similar

to that used for the proof of Corollary 1 using elementary matrices, we will apply a similar

approach to the proof of Corollary 2. From the proof:

K−1 = (FmFm−1 · · ·F1)−1 (C.21)(
K−1

)1/2
=
[
(FmFm−1 · · ·F1)−1]1/2 (C.22)

= (FmFm−1 · · ·F1)−1/2 (C.23)

In (C.21), all of the F matrices are elementary matrices. By applying the positive square

root to both sides of (C.21) we obtain (C.22). As referenced earlier, the F matrices are

assumed to be of the form Raa(c) or Pab(c). Because Raa(c) is a diagonal (and symmetric)

matrix, we know that R
1/2
aa (c) = Raa(

√
c). Thus:

Raa(c) = R1/2
aa (c)

(
R1/2
aa (c)

)T
= Raa(

√
c)
(
Raa(

√
c)
)T

= R2
aa(
√
c) (C.24)

We note that (C.24) is due to the symmetry of Raa(c). Similarly, we can state

Raa(c
−1) = Raa

(
c−1/2

) (
Raa

(
c−1/2

))T
= R2

aa

(
c−1/2

)
(C.25)

106



Now, let us first assume that all of the F matrices in (C.23) are of the form Raa(c). Then

we have:

K−1/2 = (FmFm−1 · · ·F1)−1/2

=
[
(FmFm−1 · · ·F1)−1]1/2

=

[(
{Fψ

m}
2{Fψ

m−1}
2 · · · {Fψ

1 }
2
)−1
]1/2

=
[
{Fψ

1 }
−2 · · · {Fψ

m−1}
−2{Fψ

m}
−2
]1/2

=
[
{Fψ

1 }
−1 · · · {Fψ

m−1}
−1{Fψ

m}
−1
]
, (C.26)

where each Fψ matrix is of the form Raa(
√
c). Therefore, using a similar development from

the proof of Corollary 1, we note the {Fψ}−1
matrices are all of the form Raa

(
c−1/2

)
. Thus,

the linear transformation Y∗ = K−1/2Y
(
K−1/2

)T
can be written as:

Y∗ =
[
{Fψ

1 }
−1 · · · {Fψ

m−1}
−1{Fψ

m}
−1
]

Y
[
{Fψ

1 }
−1 · · · {Fψ

m−1}
−1{Fψ

m}
−1
]T

=
[
{Fψ

1 }
−1 · · · {Fψ

m−1}
−1{Fψ

m}
−1
]

Y
[
{Fψ

m}
−1
]T [
{Fψ

m−1}
−1
]T
· · ·
[
{Fψ

1 }
−1
]T

(C.27)

By once again using Lemma 1, we can write the Jacobian J(Y → Y∗) as:

J(Y → Y∗) = J(Y → Y∗1)J(Y∗1 → Y∗2)· · ·J(Y∗m−1 → Y∗), (C.28)

where Y∗d = {Fψ
d }
−1

Y∗d−1

[
{Fψ

d }
−1
]T

(d = 1, . . . ,m), Y∗0 = Y, and Y∗m = Y∗. Let Gψ

represent any of the {Fψ}−1 matrices of the form Raa(c
−1/2). Therefore, the transformation

Y∗d = GψY∗d−1

(
Gψ
)T

implies that y∗aa = (c−1)yaa, y
∗
ab = (c−1/2)yab(a 6= b), and y∗cb =

ybc(b, c 6= a). The matrix of the partial derivatives is diagonal with (p− 1) elements (c−1/2)

and one element (c−1). Thus:

J(Y∗d−1 → Y∗d) = mod (c−1)(c−1/2)(p−1)(1)

= mod (c)−1− 1
2

(p−1)

= mod (c)−1− 1
2
p+ 1

2

= mod (c)−
1
2

(p+1)

= mod det(Gψ)−
1
2

(p+1) (C.29)
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Finally, it follows that:

J(Y → Y∗) = mod

[
det
(
{Fψ

1 }−1
)(p+1)

· · · det
(
{Fψ

m−1}−1
)(p+1)

det
(
{Fψ

m}−1
)(p+1)

]
= mod det

(
{Fψ

1 }−1 · · · {Fψ
m−1}−1{Fψ

m}−1
)

= mod det
[
K−1/2

](p+1)

= mod det(K)−
1
2

(p+1) (C.30)

Now, let us look at the other type of elementary matrix: Pab(c). Based on earlier statements

in this section, we know the Pab(c) matrix is an upper-triangular matrix with all entries on

the main diagonal equal to 1, the entry in the ath row and bth column equal to c, and all

other entries equal to 0. Therefore, we wish to find a positive square root matrix, say B∗,

such that B∗2 = Pab(c). Let B∗ be a (p× p) matrix with a general form as follows:

B∗ =


b∗11 b∗12 · · · b∗1p
... b∗22

...
...

...
...

. . .
...

b∗p1 · · · · · · b∗pp

 (C.31)

We wish to find the elements of B∗ such that B∗2 = T or
b∗11 b∗12 · · · b∗1p
... b∗22

...
...

...
...

. . .
...

b∗p1 · · · · · · b∗pp




b∗11 b∗12 · · · b∗1p
... b∗22

...
...

...
...

. . .
...

b∗p1 · · · · · · b∗pp

 =


t11 t12 · · · t1p

0 t22
...

...
... 0

. . .
...

0
... 0 tpp

 (C.32)

Let us first examine the main diagonal elements of the matrix T. On an element-by-element

basis:

(t)aa = b∗aa
2 +

∑
a6=b

b∗abb
∗
ba (C.33)

Now, let us look at the off-diagonal elements of T. We have:

(t)ab =

p∑
k=1

bakbkb (C.34)
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Noting the entries from matrix T, we see that (t)ab = 0 when a < b. Looking at the

main elements on the main diagonal of T, we note that for our matrix Pab(c), we have

the restriction (t)11 = (t)22 = · · · = (t)pp = 1. By setting all the equations for the (t)aa

equal to each other, and noting all the cross-product terms will be eliminated, it follows that

(b∗)2
aa = (t)aa = 1. Therefore, (b∗)ii = 1. Before proceeding further, we note that our matrix

Pab(c) is of the general form of T with all the (t)ab = 0 except one; the remaining one is

equal to c. By substituting (b∗)aa = 1 into the original equations in (C.33) - (C.34), and then

performing a series of other substitutions, it follows that the B∗ matrices are of the form

Pab(c). Further, this leads to the expression P2
ab(c/2) = Pab(c). Thus, the positive square

root matrix Pab(c/2) is also an elementary matrix of the same type as Pab(c). Therefore,

using an approach similar to that in (C.20) - (C.26), we can write:

K−1/2 =
[
{Fγ

1}−1 · · · {Fγ
m−1}−1{Fγ

m}−1
]
, (C.35)

where each Fγ matrix is of the form Pab(c/2). Similar to the developments in (C.27), we

can also write the linear transformation Y∗ = K−1/2Y
(
K−1/2

)T
as:

Y∗ =
[
{Fγ

1}−1 · · · {Fγ
m−1}−1{Fγ

m}−1
]

Y
[
{Fγ

1}−1 · · · {Fγ
m−1}−1{Fγ

m}−1
]T

=
[
{Fγ

1}−1 · · · {Fγ
m−1}−1{Fγ

m}−1
]

Y
[
{Fγ

m}−1]T [{Fγ
m−1}−1

]T
· · ·
[
{Fγ

1}−1
]T

(C.36)

Once again, using Lemma 1, we can write the Jacobian J(Y → Y∗) as:

J(Y → Y∗) = J(Y → Y∗1)J(Y∗1 → Y∗2)· · ·J(Y∗m−1 → Y∗), (C.37)

where Y∗d = {Fγ
d}
−1Y∗d−1

[
{Fγ

d}
−1
]T

(d = 1, . . . ,m), Y∗0 = Y, and Y∗m = Y∗. Let Gγ

represent any of the {Fγ}−1 matrices of the form Pab(−c/2). Therefore, the transformation

Y∗ = GγY∗d−1 (Gγ)T implies that y∗aa = yaa−2
(
c
2

)
yab+

(
− c

2

)2
ybb = yaa− cyab+ c2

4
ybb, y

∗
ac =

y∗ca = yac−
(
c
2

)
ybc(c 6= a), and y∗bc = ybc(b, c 6= a). Similar to the developments demonstrated

in the proof of Corollary 1, the matrix of partial derivatives will be an upper-triangular

matrix with 1s on the main diagonal. Therefore, its determinant is equal to 1. Thus for this
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type of elementary transformation, J(Y∗d−1 → Y∗d) = mod det(Gγ)(p+1). Similarly, it follows

that

J(Y → Y∗) = mod
[
det
(
{Fγ

1}−1
)p+1 · · · det

(
{Fγ

m−1}−1
)p+1

det
(
{Fγ

m}−1
)p+1

]
= mod

[
det
(
Fγ

1 · · ·Fγ
m−1F

γ
m

)−(p+1)
]

= mod det (K)−
1
2

(p+1) (C.38)

Now, we can use these results in completing the derivation of the MGF for a mixture

of Wishart distributions. Let us first return to the integral in (C.8):

g(`) =

∫
Λ>0

etr (−ΛL) det Λb− 1
2

(p+1)dΛ, (C.39)

Let J∗ = L1/2ΛL1/2. From Corollary 2 we know that

J(Λ→ J∗) = mod det(L)−
1
2

(p+1)

= det(L)−
1
2

(p+1) (C.40)

Also, working with J∗ we have:

J∗ = L1/2ΛL1/2

L1/2J∗L1/2 = L1/2
(
L1/2ΛL1/2

)
L1/2

= LΛL

L−1
(
L1/2J∗L1/2

)
L−1 = L−1 (LΛL) L−1

L−1/2J∗L−1/2 = Λ (C.41)(
L−1/2J∗L−1/2

)
L = ΛL

L−1/2J∗L1/2 = ΛL (C.42)
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Substituting (C.40) - (C.42) into (C.38) we have:

g(`) =

∫
J∗>0

etr
(
−L−1/2J∗L1/2

)
det
(
L−1/2J∗L−1/2

)b− 1
2

(p+1)
det(L)−

1
2

(p+1)dJ∗

= det(L)−
1
2

(p+1)

∫
J∗>0

etr
(
−L−1/2J∗L1/2

)
det
(
L−1/2J∗L−1/2

)b− 1
2

(p+1)
dJ∗ (C.43)

Because L−1/2 and J∗ are square matrices of equal size, we have:

g(`) = det(L)−
1
2

(p+1)

∫
J∗>0

etr
(
−L−1/2J∗L1/2

)
det
(
L−1

)b− 1
2

(p+1)
det(J∗)b−

1
2

(p+1)dJ∗

= det(L)−
1
2

(p+1) det
(
L−1

)b− 1
2

(p+1)
∫

J∗>0

etr
(
−L−1/2J∗L1/2

)
det(J∗)b−

1
2

(p+1)dJ∗

= det(L)−
1
2

(p+1)−b+ 1
2

(p+1)

∫
J∗>0

etr
(
−L−1/2J∗L1/2

)
det(J∗)b−

1
2

(p+1)dJ∗

= det(L)−b
∫

J∗>0

etr
(
−L−1/2J∗L1/2

)
det(J∗)b−

1
2

(p+1)dJ∗

= det(L)−b
∫

J∗>0

etr (−J∗) det(J∗)b−
1
2

(p+1)dJ∗

= det(L)−b Γp(b), (C.44)

where the last equality follows from Definition 1. Based on this result, let us return to the

integral in (C.6):

I(A∗) =

∫
A∗>0

det (A∗)(nj−p−1)/2 etr

(
−1

2
[Ip − 2ΘjΣΣΣj] ΣΣΣj

−1A∗
)
dA∗

=

∫
A∗>0

det (A∗)
nj
2
− 1

2
(p+1) etr

(
−1

2
[Ip − 2ΘjΣΣΣj] ΣΣΣj

−1A∗
)
dA∗ (C.45)

This integral is the same form as the one in (C.38). Therefore, it follows that the integral in

(C.45) can be written as

I(A∗) = det

(
1

2
[Ip − 2ΘjΣΣΣj] ΣΣΣ−1

j

)−nj
2

Γp

(nj
2

)
(C.46)
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Substituting (C.46) into (C.6) we now have:

MA∗(Θ) =
k∑
j=1

wj

{
2(njp)/2Γp

(nj
2

)
det (ΣΣΣj)

nj
2

}−1

det

(
1

2
[Ip − 2ΘjΣΣΣj] ΣΣΣ−1

j

)−nj
2

Γp

(nj
2

)

=
k∑
j=1

wj

{
2(njp)/2 det (ΣΣΣj)

nj
2

}−1

det

(
1

2
[Ip − 2ΘjΣΣΣj] ΣΣΣ−1

j

)−nj
2

=
k∑
j=1

wj

{
det (ΣΣΣj)

nj
2

}−1

det
(
[Ip − 2ΘjΣΣΣj] ΣΣΣ−1

j

)−nj
2

=
k∑
j=1

wj

{
det (ΣΣΣj)

nj
2

}−1

det ([Ip − 2ΘjΣΣΣj])
−
nj
2 det (ΣΣΣj)

nj
2

=
k∑
j=1

wj det (Ip − 2ΘjΣΣΣj)
−
nj
2 (C.47)
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APPENDIX D

DERIVING THE MARGINAL DISTRIBUTION FROM A MIXTURE OF

MULTIVARIATE GAUSSIAN DISTRIBUTIONS

Let the random variable V have the following distribution:

V ∼
k∑
j=1

wjNp
(
µµµj,ΣΣΣj

)
(D.1)

Let us also assume that V, µµµj, and ΣΣΣj can be partitioned as follows:

V =

v1

v2

 ,

µµµj =

µµµ1j

µµµ2j

 ,

ΣΣΣj =

(ΣΣΣj)11 (ΣΣΣj)12

(ΣΣΣj)21 (ΣΣΣj)22

 , (D.2)

where v1 and v2 are two subvectors of dimension q1 and q2, respectively, with q1 + q2 = p.

Similarly, µµµ1j and µµµ2j are also two subvectors of dimension q1 and q2, respectively. In (D.2),

ΣΣΣj is written as a partitioned matrix. For example, (ΣΣΣj)11 represents block 11 of ΣΣΣj. We
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also note that, due to symmetry, ΣΣΣj = (ΣΣΣj)
T , and (ΣΣΣj)12 =

(
(ΣΣΣj)12

)T
. The joint density of

V is:

f(V) = f(v1,v2)

=
k∑
j=1

wj
1

(2π)p/2 |ΣΣΣj|1/2
exp

(
−1

2

(
V − µµµj

)T
(ΣΣΣj)

−1 (V − µµµj))

=
k∑
j=1

wj
1

(2π)p/2 |ΣΣΣj|1/2
exp

(
−1

2
Qj(v1,v2)

)
, (D.3)

where Qj (v1,v2) is defined as:

Qj(v1,v2) =
(
V − µµµj

)T
(ΣΣΣj)

−1 (V − µµµj)
=
((

v1 − µµµ1j

)T (
v2 − µµµ2j

)T)(ΣΣΣj)
11 (ΣΣΣj)

12

(ΣΣΣj)
21 (ΣΣΣj)

22

v1 − µµµ1j

v2 − µµµ2j

 , (D.4)

where (ΣΣΣj)
−1 can be written as the following partitioned matrix:

(ΣΣΣj)
−1 =

(ΣΣΣj)
11 (ΣΣΣj)

12

(ΣΣΣj)
21 (ΣΣΣj)

22

 (D.5)

Expanding the matrix multiplication in (D.4):

Qj (v1,v2) =
(
v1 − µµµ1j

)T
(ΣΣΣj)

11 (v1 − µµµ1j

)
+

2
(
v1 − µµµ1j

)T
(ΣΣΣj)

12 (v2 − µµµ2j

)
+(

v2 − µµµ2j

)T
(ΣΣΣj)

22 (v2 − µµµ2j

)
(D.6)

We note that (D.6) follows from the symmetry of (ΣΣΣj)
−1. Before proceeding further, we will

utilize the expression for the inverse of a partitioned symmetric matrix. Let us define the

partitioned matrix, M as:

M(n+m)×(n+m) =

M11 M12

M21 M22

 (D.7)

The following theorem is from Anderson (2003), although the proof presented here is differ-

ent:
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Theorem 11. (Anderson A.3.4 (2003)) Let the symmetric matrix, M, be defined as in (D.7).

Then,
(
M11 −M12M−1

22M21

)−1
= M−1

11 + M−1
11M12

(
M22 −M21M−1

11M12

)−1
M21M−1

11 .

Proof. Assume the equality in Theorem 10 is true. Therefore, after pre-multiplying each side

of the equation by
(
M11 −M12M−1

22M21

)
:

I =
(
M11 −M12M−1

22M21

) (
M−1

11 + M−1
11M12

(
M22 −M21M−1

11M12

)−1
M21M−1

11

)
I =

(
M11 −M12M−1

22M21

)
M−1

11 +(
M11 −M12M−1

22M21

)
M−1

11M12

(
M22 −M21M−1

11M12

)−1
M21M−1

11

I = I−M12M−1
22M21M−1

11 + M12

(
M22 −M21M−1

11M12

)−1
M21M−1

11 −

M12M−1
22M21M−1

11M12M12

(
M22 −M21M−1

11M12

)−1
M21M−1

11

I = I−M12M−1
22M21M−1

11 +(
M12 −M12M−1

22M21M−1
11M12

) (
M22 −M21M−1

11M12

)−1
M21M−1

11

I = I−M12M−1
22M21M−1

11 +

M12M−1
22

(
M22 −M21M−1

11M12

)−1 (
M22 −M21M−1

11M12

)
M21M−1

11

I = I−M12M−1
22M21M−1

11 + M12M−1
22M21M−1

11

I = I

Therefore, the result has been proven assuming that M11, M22, and M22 −M21M−1
11M12

are invertible matrices.

Now, let the symmetric matrix En×n be defined as:

E =

E11 E12

E21 E22

 =

 E11 E12

(E12)T E22

 (D.8)

Similarly, let Fn×n = E−1 be defined as:

F = E−1 =

F11 F12

F21 F22

 =

 F11 F12

(F12)T F22

 (D.9)

Further, let us assume the dimensions of the respective blocks of the matrices in (D.8) and

(D.9) are:
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• E11 and F11 are r × r

• E22 and F22 are s× s

• E12 = (E21)T and F12 = (F21)T are both r × s, with r + s = n. Then we have the

following theorem:

Theorem 12. Let the symmetric matrices E and F be defined as in (D.8) and (D.9). Then,

we have the following expressions:

F11 =
(
E11 − E12 (E22)−1 (E12)T

)−1

= (E11)−1 + (E11)−1 E12

(
E22 − (E12)T (E11)−1 E12

)−1

(E12)T (E11)−1 (D.10)

F22 =
(
E22 − (E12)T (E11)−1 E12

)−1

= (E22)−1 + (E22)−1 (E12)T
(
E11 − E12 (E22)−1 (E12)T

)−1

E12 (E22)−1 (D.11)

(F12)T = − (E22)−1 (E12)T
(
E11 − E12 (E22)−1 (E12)T

)−1

(D.12)

F12 = − (E11)−1 E12

(
E22 − (E12)T (E11)−1 E12

)−1

(D.13)

Proof. Based on the above definitions, we have:

In = EE−1 = EF =

 E11 E12

(E12)T E22

 F11 F12

(F12)T F22


=

 E11F11 + E12 (F12)T E11F12 + E12F22

(E12)T F11 + E22 (F12)T (E12)T F12 + E22F22

 (D.14)

=

Ir 0r

0s Is

 (D.15)

Thus, using (D.14) - (D.15), we now have the following for F11:

E11F11 + E12 (F12)T = Ir

E11F11 = Ir − E12 (F12)T

F11 = (E11)−1 − (E11)−1 E12 (F12)T (D.16)
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For F12:

E11F12 + E12F22 = 0r

E11F12 = −E12F22

F12 = − (E11)−1 E12F22 (D.17)

For (F12)T :

(E12)T F11 + E22 (F12)T = 0s

E22 (F12)T = − (E12)T F11

(F12)T = − (E22)−1 (E12)T F11 (D.18)

for F22:

(E12)T F12 + E22F22 = Is

E22F22 = Is − (E12)T F12

F22 = (E22)−1 − (E22)−1 (E12)T F12 (D.19)

Now, substitute (D.18) into (D.16):

F11 = (E11)−1 − (E11)−1 E12 (F12)T

F11 = (E11)−1 − (E11)−1 E12

(
− (E22)−1 (E12)T F11

)
F11 = (E11)−1 + (E11)−1 E12 (E22)−1 (E12)T F11(

Ir − (E11)−1 E12 (E22)−1 (E12)T
)

F11 = (E11)−1(
E11 − E12 (E22)−1 (E12)T

)
F11 = Ir

F11 =
(
E11 − E12 (E22)−1 (E12)T

)−1

(D.20)

Applying Theorem 10 to (D.20), we obtain:

F11 =
(
E11 − E12 (E22)−1 (E12)T

)−1

= (E11)−1 + (E11)−1 E12

(
E22 − (E12)T (E11)−1 E12

)−1

(E12)T (E11)−1 (D.21)
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Now, substitute (D.20) into (D.18):

(F12)T = − (E22)−1 (E12)T F11

= − (E22)−1 (E12)T
(
E11 − E12 (E22)−1 (E12)T

)−1

(D.22)

Similarly, substitute (D.17) into (D.19) to obtain:

F22 = (E22)−1 − (E22)−1 (E12)T F12

F22 = (E22)−1 − (E22)−1 (E12)T
(
− (E11)−1 E12F22

)
F22 = (E22)−1 + (E22)−1 (E12)T (E11)−1 E12F22(

Is − (E22)−1 (E12)T (E11)−1 E12

)
F22 = (E22)−1(

E22 − (E12)T (E11)−1 E12

)
F22 = Is

F22 =
(
E22 − (E12)T (E11)−1 E12

)−1

(D.23)

Applying Theorem 10 to (D.23), we now have:

F22 = (E22)−1 + (E22)−1 (E12)T
(
E11 − E12 (E22)−1 (E12)T

)−1

E12 (E22)−1 (D.24)

Finally, substitute (D.23) into (D.17):

F12 = − (E11)−1 E12F22

= − (E11)−1 E12

(
E22 − (E12)T (E11)−1 E12

)−1

(D.25)

Thus, based on (D.20) - (D.25), the expressions in (D.10) - (D.13) have been verified and

the proof is complete.
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Returning to (D.6) and using Theorem 4, we now have the following expressions:

(ΣΣΣj)
11 =

(
(ΣΣΣj)11 − (ΣΣΣj)12

(
(ΣΣΣj)22

)−1 (
(ΣΣΣj)12

)T)−1

=
(
(ΣΣΣj)11

)−1
+
(
(ΣΣΣj)11

)−1
(ΣΣΣj)12×(

(ΣΣΣj)22 −
(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(ΣΣΣj)12

)−1 (
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(D.26)

(ΣΣΣj)
22 =

(
(ΣΣΣj)22 −

(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(ΣΣΣj)12

)−1

=
(
(ΣΣΣj)22

)−1
+
(
(ΣΣΣj)22

)−1 (
(ΣΣΣj)12

)T ×(
(ΣΣΣj)11 − (ΣΣΣj)12

(
(ΣΣΣj)22

)−1 (
(ΣΣΣj)12

)T)−1

(ΣΣΣj)12

(
(ΣΣΣj)22

)−1
(D.27)

(ΣΣΣj)
12 =

(
(ΣΣΣj)

21)T = −
(
(ΣΣΣj)11

)−1
(ΣΣΣj)12

(
(ΣΣΣj)22 −

(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(ΣΣΣj)12

)−1

(D.28)

Substituting (D.26) - (D.28) into (D.6), we have:

Qj (v1,v2) =
(
v1 − µµµ1j

)T (
(ΣΣΣj)11

)−1 (
v1 − µµµ1j

)
+
(
v1 − µµµ1j

)T ×[(
(ΣΣΣj)11

)−1
(ΣΣΣj)12

(
(ΣΣΣj)22 −

(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(ΣΣΣj)12

)−1 (
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
]
×(

v1 − µµµ1j

)
− 2

(
v1 − µµµ1j

)T ×[(
(ΣΣΣj)11

)−1
(ΣΣΣj)12

(
(ΣΣΣj)22 −

(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(ΣΣΣj)12

)−1
] (

v2 − µµµ2j

)
+
(
v2 − µµµ2j

)T [
(ΣΣΣj)22 −

(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(ΣΣΣj)12

]−1 (
v2 − µµµ2j

)
(D.29)

Before proceeding further, the following theorem will be useful for a given symmetric matrix

A and any two vectors c and d:

Theorem 13. Let A be a symmetric matrix of dimension m ×m and let c and d be two

vectors, each of dimension m× 1. Assuming conformability, we have the following:

(c− d)T A (c− d) = (d− c)T A (d− c) (D.30)
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Proof.

cTAc− 2cTAd + dTAd = cTAc− cTAd− cTAd + dTAd

cTAc− 2cTAd + dTAd = cTAc− cTAd− dTAc + dTAd (D.31)

The r.h.s. of (D.31) follows from the following:

〈c,Ad〉 = cTAd = cTATd =

(
dTAc︸ ︷︷ ︸
scalar

)T

= dTAc (D.32)

We note that from (D.32) that < . > is defined as the inner product. Further, (D.32) utilizes

the fact that A is a symmetric matrix. Continuing the development of (D.31), we now have:

cTA (c− d)− (c− d)T Ad = cTA (c− d)− dTA (c− d) (D.33)

Applying the method in (D.32) to (D.33), we now have:

(c− d)T Ac− (c− d)T Ad = −cTA (d− c) + dTA (d− c)

(c− d)T A (c− d) = (d− c)T A (d− c) (D.34)

Applying Theorem 12 to (D.29), we now have:

Qj (v1,v2) =
(
v1 − µµµ1j

)T (
(ΣΣΣj)11

)−1 (
v1 − µµµ1j

)
+((

v2 − µµµ2j

)
−
(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1 (
v1 − µµµ1j

))T
×(

(ΣΣΣj)22 −
(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(ΣΣΣj)12

)−1

×((
v2 − µµµ2j

)
−
(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1 (
v1 − µµµ1j

))
(D.35)

= Q1j (v1) + Q2j (v1,v2) (D.36)
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where

Q1j (v1) =
(
v1 − µµµ1j

)T (
(ΣΣΣj)11

)−1 (
v1 − µµµ1j

)
Q2j (v1,v2) =

((
v2 − µµµ2j

)
−
(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1 (
v1 − µµµ1j

))T
×(

(ΣΣΣj)22 −
(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(ΣΣΣj)12

)−1

×((
v2 − µµµ2j

)
−
(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1 (
v1 − µµµ1j

))
Now, returning to (D.3) and using (D.35) - (D.36), we can write the distribution of V as:

f(V) = f(v1,v2)

=
k∑
j=1

wj
1

(2π)p/2 |ΣΣΣj|1/2
exp

(
−1

2

(
V − µµµj

)T
(ΣΣΣj)

−1 (V − µµµj))

=
k∑
j=1

wj
1

(2π)p/2 |ΣΣΣj|1/2
exp

(
−1

2
Qj(v1,v2)

)

=
k∑
j=1

wj
1

(2π)p/2 |ΣΣΣj|1/2
exp

(
−1

2
[Q1j(v1) + Q2j(v1j,v2j)]

)
(D.37)

For the next step in the development, the following theorem adapted from Anderson (2003)

will be useful. This theorem from Anderson (2003) is stated slightly differently and presents

a slightly different proof than what follows.

Theorem 14. (Anderson A.3.2 (2003)). Let the symmetric matrix E be defined as in (D.8).

Then:

det (E) = det (E11) det
(
E22 − (E12)T (E11)−1 E12

)
.

Proof. As in (D.8):

E =

E11 E12

E21 E22


=

 E11 0r

(E12)T Is

Ir (E11)−1 E12

0r E22 − (E12)T (E11)−1 E12

 (D.38)
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Applying determinants to (D.38), we have:

det (E) = det (E11) det
(
E22 − (E12)T (E11)−1 E12

)

Using Theorem 14 and (D.2), we can now express the determinant of the symmetric

matrix ΣΣΣj as:

det (ΣΣΣj) = det
(
(ΣΣΣj)11

)
det
(

(ΣΣΣj)22 −
(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(ΣΣΣj)12

)
(D.39)

Using (D.39), we can now write (D.37) as:

f(V) =
k∑
j=1

wj
1

(2π)q1/2 (det(ΣΣΣj)11)1/2
exp

(
−1

2
(Q1j(v1))

)
×

1

(2π)q2/2
(

det
(

(ΣΣΣj)22 −
(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(ΣΣΣj)12

))1/2
exp

(
−1

2
(Q2j(v1,v2))

)

=
k∑
j=1

wjNq1
(
v1;µµµ1j, (ΣΣΣj)11

)
Nq2

(
v2; b∗2j,ΣΣΣ

∗
j

)
, (D.40)

where

b∗2j = µµµ2j +
(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1 (
v1 − µµµ1j

)
ΣΣΣ∗j = (ΣΣΣj)22 −

(
(ΣΣΣj)12

)T (
(ΣΣΣj)11

)−1
(ΣΣΣj)12

Therefore, using (D.40) the marginal distribution of v1 can be derived as:

f1(v1) =

∫ ∞
−∞

k∑
j=1

wjNq1
(
v1;µµµ1j, (ΣΣΣj)11

)
Nq2

(
v2; b∗2j,ΣΣΣ

∗
j

)
dv2 (D.41)

Because k in (D.41) is finite, we can write the marginal distribution of v1 as:

f1(v1) =
k∑
j=1

wjNq1
(
v1;µµµ1j, (ΣΣΣj)11

) ∫ ∞
−∞
Nq2

(
v2; b∗2j,ΣΣΣ

∗
j

)
dv2︸ ︷︷ ︸

Integrates to 1

=
k∑
j=1

wjNq1
(
v1;µµµ1j, (ΣΣΣj)11

)
(D.42)
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Based on (D.42), it would appear that the marginal distribution of v1 is a k-component

mixture of multivariate Gaussian distributions. However, if at least 2 of the component

distributions have identical values for both µµµ1j and (ΣΣΣj)11, the marginal distribution of v1

will have less components than k. These results are summarized in the following theorem:

Theorem 15. Let the random variable V =
(
v1 v2

)T

follow a k-component mixture of

multivariate Gaussian distributions as defined in (D.1) and (D.2). The marginal distribution

of v1 can be categorized into one of the following scenarios:

• v1 ∼
k∑
j=1

wjNq1
(
v1;µµµ1j, (ΣΣΣj)11

)
as long as all the k-component distributions have distinct

values for both µµµ1j and (ΣΣΣj)11

• Let us assume that the number of component distributions with distinct values for both

µµµ1j and (ΣΣΣj)11 , k
∗, is such that 1 < k∗ < k. Further, let us also assume that the order of

the distributions in (D.42) is such that j = 1, 2, . . . , k∗, k∗ + 1, . . . , k. That is, the first

k∗ distributions all have distinct parameter values. Thus, we now have:

v1 ∼
k∗+1∑
j=1

w∗jNq1
(
v1;µµµ1j, (ΣΣΣj)11

)
,

where w∗j = wj if j ≤ k∗ and w(k∗+1) =
k∑

j=k∗+1

wj

• v1 ∼ Nq1
(
v1;µµµ1j, (ΣΣΣj)11

)
if none of the k-component distributions have distinct values

for both µµµ1j and (ΣΣΣj)11
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APPENDIX E

SOURCE CODE FOR THE R FUNCTION ”RWISHART” (BASE R)
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/* 
 *  R : A Computer Language for Statistical Data Analysis 
 *  Copyright (C) 2012-2016  The R Core Team 
 * 
 *  This program is free software; you can redistribute it and/or modify 
 *  it under the terms of the GNU General Public License as published by 
 *  the Free Software Foundation; either version 2 of the License, or 
 *  (at your option) any later version. 
 * 
 *  This program is distributed in the hope that it will be useful, 
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of 
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 *  GNU General Public License for more details. 
 * 
 *  You should have received a copy of the GNU General Public License 
 *  along with this program; if not, a copy is available at 
 *  https://www.R-project.org/Licenses/ 
 */ 
 
#ifdef HAVE_CONFIG_H 
# include <config.h> 
#endif 
 
#include <math.h> 
#include <string.h>  // memset, memcpy 
#include <R.h> 
#include <Rinternals.h> 
#include <Rmath.h> 
#include <R_ext/Lapack.h>        /* for Lapack (dpotrf, etc.) and BLAS */ 
 
#include "stats.h" // for _() 
#include "statsR.h" 
 

Figure 18: Syntax for R(base) Function ”rWishart”
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/** 
 * Simulate the Cholesky factor of a standardized Wishart variate with 
 * dimension p and nu degrees of freedom. 
 * 
 * @param nu degrees of freedom 
 * @param p dimension of the Wishart distribution 
 * @param upper if 0 the result is lower triangular, otherwise upper 
                triangular 
 * @param ans array of size p * p to hold the result 
 * 
 * @return ans 
 */ 
static double 
*std_rWishart_factor(double nu, int p, int upper, double ans[]) 
{ 
    int pp1 = p + 1; 
 
    if (nu < (double) p || p <= 0) 
 error(_("inconsistent degrees of freedom and dimension")); 
 
    memset(ans, 0, p * p * sizeof(double)); 
    for (int j = 0; j < p; j++) { /* jth column */ 
 ans[j * pp1] = sqrt(rchisq(nu - (double) j)); 
 for (int i = 0; i < j; i++) { 
     int uind = i + j * p, /* upper triangle index */ 
  lind = j + i * p; /* lower triangle index */ 
     ans[(upper ? uind : lind)] = norm_rand(); 
     ans[(upper ? lind : uind)] = 0; 
 } 
    } 
    return ans; 
} 
 

Figure 19: Syntax for R(base) Function ”rWishart” (cont.)
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/** 
 * Simulate a sample of random matrices from a Wishart distribution 
 * 
 * @param ns Number of samples to generate 
 * @param nuP Degrees of freedom 
 * @param scal Positive-definite scale matrix 
 * 
 * @return 
 */ 
SEXP 
rWishart(SEXP ns, SEXP nuP, SEXP scal) 
{ 
    SEXP ans; 
    int *dims = INTEGER(getAttrib(scal, R_DimSymbol)), info, 
 n = asInteger(ns), psqr; 
    double *scCp, *ansp, *tmp, nu = asReal(nuP), one = 1, zero = 0; 
 
    if (!isMatrix(scal) || !isReal(scal) || dims[0] != dims[1]) 
 error(_("'scal' must be a square, real matrix")); 
    if (n <= 0) n = 1; 
    // allocate early to avoid memory leaks in Callocs below. 
    PROTECT(ans = alloc3DArray(REALSXP, dims[0], dims[0], n)); 
    psqr = dims[0] * dims[0]; 
    tmp = Calloc(psqr, double); 
    scCp = Calloc(psqr, double); 
 

Figure 20: Syntax for R(base) Function ”rWishart” (cont.)
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Memcpy(scCp, REAL(scal), psqr); 
    memset(tmp, 0, psqr * sizeof(double)); 
    F77_CALL(dpotrf)("U", &(dims[0]), scCp, &(dims[0]), &info); 
    if (info) 
 error(_("'scal' matrix is not positive-definite")); 
    ansp = REAL(ans); 
    GetRNGstate(); 
    for (int j = 0; j < n; j++) { 
 double *ansj = ansp + j * psqr; 
 std_rWishart_factor(nu, dims[0], 1, tmp); 
 F77_CALL(dtrmm)("R", "U", "N", "N", dims, dims, 
   &one, scCp, dims, tmp, dims); 
 F77_CALL(dsyrk)("U", "T", &(dims[1]), &(dims[1]), 
   &one, tmp, &(dims[1]), 
   &zero, ansj, &(dims[1])); 
 
 for (int i = 1; i < dims[0]; i++) 
     for (int k = 0; k < i; k++) 
  ansj[i + k * dims[0]] = ansj[k + i * dims[0]]; 
    } 
 
    PutRNGstate(); 
    Free(scCp); Free(tmp); 
    UNPROTECT(1); 
    return ans; 
} 
 

Figure 21: Syntax for R(base) Function ”rWishart” (cont.)
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[19] de Leon, A.R. and Carriére, K.C. (2000). On the one-sample location hypothesis for
mixed bivariate data. Communications in Statistics-Theory and Methods 29(11): 2573-
2581.

[20] de Leon, A.R. (2007). One-sample likelihood ratio tests for mixed data. Communications
in Statistics-Theory and Methods 36(1): 129-141.

[21] Cox, D.R. (1972). The analysis of multivariate binary data. Journal of the Royal Sta-
tistical Society. Series C (Applied Statistics) 21(2): 113-120.

[22] Cox, D.R. and Wermuth N. (1992). Response models for mixed binary and quantitative
variables. Biometrika 79(3): 441-461.

[23] Nelsen, R.B. (2006). An Introduction to Copulas. 2nd Edition. New York, Springer.

[24] Casella, G. and Berger, R.L. (2002). Statistical Inference. 2nd Edition. Pacific Grove,
Duxbury.
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