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ABSTRACT

SMALL SPHERE DISTRIBUTIONS AND RELATED TOPICS IN

DIRECTIONAL STATISTICS

ByungWon Kim, PhD

University of Pittsburgh, 2018

This dissertation consists of two related topics in the statistical analysis of directional data.

The research conducted for the dissertation is motivated by advancing the statistical shape

analysis to understand the variation of shape changes in 3D objects.

The first part of the dissertation studies a parametric approach for multivariate direc-

tional data lying on a product of spheres. Two kinds of concentric unimodal-small subsphere

distributions are introduced. The first kind coincides with a special case of the Fisher-

Bingham distribution; the second is a novel adaption that independently models horizontal

and vertical variations. In its multi-subsphere version, the second kind allows for correlation

of horizontal variations over different subspheres. For both kinds, we provide new computa-

tionally feasible algorithms for simulation and estimation, and propose a large-sample test

procedure for several sets of hypotheses. Working as models to fit the major modes of vari-

ation, the proposed distributions properly describe shape changes of skeletally-represented

3D objects due to rotation, twisting and bending. In particular, the multi-subsphere version

of the second kind accounts for the underlying horizontal dependence appropriately.

The second part is a proposal of hypothesis test that is applicable to the analysis of

principal nested spheres (PNS). In PNS, determining which subsphere to fit, among the

geodesic (great) subsphere and non-geodesic (small) subsphere, is an important issue and

it is preferred to fit a great subsphere when there is no major direction of variation in the

directional data. The proposed test utilizes the measure of multivariate kurtosis. The change
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of the multivariate kurtosis for rotationally symmetric distributions is investigated based on

modality. The test statistic is developed by modifying the sample kurtosis. The asymptotic

sampling distribution of the test statistic is also investigated. The proposed test is seen to

work well in numerical studies with various data situations.
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1.0 INTRODUCTION

Directional statistics is to analyze angular or directional observations which are represented

by unit vectors in 2D or 3D space. Since the natural sample space of directional vectors is

not Euclidean space, the standard statistical methods developed using Euclidean geometry

for analyzing vector-valued observations can not be directly applied to directional data. To

take into account the structure of the (non-Euclidean) sample space, a substantial amount

of literature is available for directional data. See Mardia and Jupp (2000) for a good intro-

duction.

This thesis aims to contribute to the field of directional statistics by introducing and

investigating statistical models for directional observations which are distributed on the unit

sphere. This work contains two separate parts. The first one is about parametric models

and related estimation algorithms which are newly introduced in our work. The second is on

the hypothesis testing procedure which is applied to the analysis of principal nested spheres

(PNS) introduced in Jung et al. (2012).

In both parts, the fundamental ideas came from a data-analytic situation in provid-

ing statistical understanding of ‘shape changes’ of 3D objects, but the proposed methods

are widely applicable to problems in shape analysis, image analysis, and directional data

analysis. Figure 1 shows a data example motivating this work. The figure shows the skele-

tal representations (s-reps; Siddiqi and Pizer, 2008), modeling the hippocampus in human

brain, obtained from 274 subjects. The subjects in this study are suffered from the first

episode schizophrenia. As the figure illustrates, shape and size of the object are represented

by spoke vectors (red, blue, purple lines) connecting the skeletal positions (yellow dots) to

the boundary of the object. It is common in the analysis of s-reps that the spoke vectors

are decomposed into direction vectors and their lengths, to distinguish the shape from the
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size. More detailed description and available methods for modeling 3D objects are given in

Section 2.1 and 2.6.

Figure 2 shows the directional vectors on the unit sphere from the hippocampi data.

Some of these directional vectors are distributed along a non-straight curve. Capturing the

major mode of variation of these directional vectors has been of interest for some time.

In Chaper 2, we propose two new probability distributions for modeling directional data

that are concentrated on a small circle, representing the non-geodesic curve. The proposed

probability distributions are not in general rotationally symmetric, but have a unique mode

on the non-geodesic curve. Since several directional vectors, that are associated with each

other, are typically observed in s-reps data and in other applications (cf. Figure 2), we

develop proper multivariate extensions to model dependencies among directions. Moreover,

we propose efficient estimation algorithms for maximum likelihood estimations and introduce

related large-sample tests with several important hypotheses.

In Chapter 3, a new hypothesis testing procedure is proposed, which is used to determine

modality for rotationally symmetric distributions. The proposed test is specifically designed

to improve the standard methods in the analysis of s-reps such as the composite principal

nested spheres (CPNS; Pizer et al., 2013) and the polyspheres principal component analysis

(PPCA; Eltzner et al., 2015). These methods are used to facilitate predictive analysis of

s-reps by reducing the dimension of the abstract space of s-reps data, and also to represent

the data in a lower-dimensional vector space. The abstract space of s-reps with K spokes

is RK+1 × S3K−4 × (S2)K , i.e., the Cartesian product of a vector space, a high-dimensional

unit-sphere and K unit-spheres. For the hippocampi data given in Figure 1, the number

of spokes is K = 66. To reduce the dimensions of a hypersphere S3K−4 and a polysphere

(a product of spheres) (S2)K by capturing essential modes of variation, the PNS analysis is

used in both CPNS and PPCA. The proposed testing procedure is used as an ad-hoc test

in the procedure of the PNS to determine the radius of subspheres (great/small subspheres)

to be fitted. Preliminary simulation study shows the proposed test has the highest power

among all comparisons while keeping its size at the given level of significance.

2



(a) Control group (b) Treatment group

Figure 1: S-reps of hippocampi in the human brain

(a) Control group (b) Treatment group

Figure 2: Spoke directions on the unit sphere. Different colors indicate different spoke

vectors.
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2.0 SMALL SPHERE DISTRIBUTIONS FOR DIRECTIONAL DATA

2.1 INTRODUCTION

In medical imaging, accurately assessing and correctly diagnosing shape changes of internal

organs is a major objective of a substantial challenge. Shape deformations can occur through

long-term growth or necrosis as well as by short-term natural deformations. In view of surgery

and radiation therapy, it is important to model all possible variations of object deformations

by both long- and short-term changes, in order to control the object’s exact status and shape

at treatment time. Rotational deformations such as rotation, bending, and twisting form a

key sub-category of possible shape changes. For instance, shape changes of hippocampi in

the human brain have been shown to mainly occur in the way of bending and twisting (Joshi

et al., 2002; Pizer et al., 2013).

For the task of modeling 3D objects an abundance of approaches have been introduced.

Closely related to our work are landmark-based shape models (Cootes et al., 1992; Dryden

and Mardia, 1998; Kurtek et al., 2011) where a solid object is modeled by the positions

of surface points, chosen either anatomically, mathematically or randomly. A richer family

of models is obtained by attaching directions normal to the sampled surface points. More

generally, in skeletal representations (Siddiqi and Pizer, 2008), an object is modeled by the

combination of skeletal positions (lying on a medial sheet inside of the object) and spoke

vectors (connecting the skeletal positions with the boundary of the object). In these models,

describing the variation of rotational deformations can be transformed into a problem of

exploring the motion of directional vectors on the unit two-sphere. As argued in Schulz et al.

(2015), directional vectors representing rotational deformations tend to be concentrated on
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small circles on the unit sphere; a toy data example in Fig. 3 shows a typical pattern of such

observations.

For such s-rep data, spread out non-uniformly over several concentric small circles, to the

best knowledge of the authors, there are neither parametric models nor inferential methods

available. In order to fill this gap, in particular, to model horizontal (detailed below) depen-

dence across different small subspheres, which are typical for s-rep data, we propose two new

families and provide methods for estimation, simulation and statistical tests. To date, only

for estimation of small circles, not involving horizontal dependence, though, there is only

the nonparametric least squares (LS) method by Schulz et al. (2015) available. For the more

simple task of estimating a single small circle, along which data is spread uniformly, there

is the parametric family of Bingham-Mardia (BM) distributions by Bingham and Mardia

(1978) available. We remove the uniformity constraint by adding a von Mises-Fisher term,

giving either a special case of a Fisher Bingham distribution (Kent, 1982) or more subtly, a

new family of distributions. For the former, while simulation and MLE methods are avail-

able (cf., Hoff, 2009), for computational feasibility we adapt a saddlepoint approximation

(a) Data near a small circle (b) Bingham-Mardia (c) Proposed density

Figure 3: (a) Toy example showing observations (solid green) distributed near a small circle

C(µ, ν). The heat maps of fitted Bingham-Mardia density (b) and the proposed small-sphere

density of the first kind (c) are overlaid. Red: high density, blue: low density.
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of Kume and Wood (2005). For the latter new one, in the case of small circles, we develop

even faster numerical methods for simulation and estimation. For application to s-rep data

we propose several multivariate extensions, in particular, in order to model horizontal de-

pendence across different small subspheres. We show the usefulness of our new methods by

analyzing s-rep data and comparing to the limited capabilities of LS and BM using meth-

ods derived ad-hoc. As mentioned, while LS and BM cannot model horizontal dependence,

for comparison, we also derive a crude ad-hoc method to implement in composite principal

nested spheres (CPNS) from Pizer et al. (2013) a test for horizontal dependence.

Let us now provide more detail. Throughout this paper, Sp−1 = {x ∈ Rp | ‖x‖ = 1} is

the unit sphere in arbitrary dimension p ≥ 3 and ‖x‖ = (x>x)1/2 is the usual L2-norm of the

vector x. To precisely describe the targeted data situation, we define a (p− 2)-dimensional

subsphere of Sp−1 as the set of all points equidistant from µ ∈ Sp−1, denoted by

C(µ, ν) = {x ∈ Sp−1 | δ(µ, x) = arccos(ν)}, ν ∈ (−1, 1).

Here, δ(u, v) = arccos(u>v) is the geodesic distance between u, v ∈ Sp−1. The subsphere

is called a great subsphere if ν = 0 and a proper small subsphere if ν 6= 0. Note that

C(µ, ν) ⊂ Sp−1 is well-defined for all p > 1. For the special case of p = 3, C(µ, ν) is a circle,

a great circle if ν = 0, and a proper small circle if ν 6= 0. To model the data in Fig. 3, one

may naively use the BM distribution, which is a family of densities on S2 with a modal ridge

along a small circle. However, typical observations we encountered in applications do not

uniformly spread over the full circle, and the BM distribution does not fit well, as shown in

Fig. 3(b). Moreover, when by a single observation multiple directional vectors are provided,

that is, data are on a polysphere (S2)K , to the knowledge of the authors, there is no tool

available to date, to model dependencies between directions.

In this chapter, we propose two types of new distributional families for random directional

vectors on Sp−1, which we call small-sphere distributions of the first (S1) and second (S2)

kind. If p = 3, the proposed distributions may be called small-circle distributions. These

two distributional families are designed to have higher densities on C(µ, ν) and to have a

unique mode on C(µ, ν). An example of a small-sphere density, fitted to the toy data is

shown in Fig. 3(c). The new densities are natural extensions of the BM distribution with an
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additional term explaining a decay from a mode. If the additional term is a von Mises-Fisher

(vMF) density on Sp−1, we obtain the S1, which is a subfamily of the general Fisher-Bingham

distribution (Mardia, 1975; Mardia and Jupp, 2000). On the other hand, if the additional

term is a vMF density on the subsphere (∼= Sp−2), we obtain the S2 distribution, in which case

the horizontal (inside the small subsphere) and vertical (orthogonal to the small subsphere)

components of the directional vectors are independent of each other.

Several multivariate extensions of the new distributions to (Sp−1)K , K ≥ 2, are discussed

as well. In particular, we show that a special case, called MS2, of our multivariate extensions

is capable of modeling dependent random vectors. It has a straightforward interpretation,

and we provide fast estimation of its parameters. This MS2 distribution is specifically de-

signed with s-rep applications in mind. In particular, s-rep data from rotationally-deformed

objects have directional vectors that are “rotated together,” share a common axis of rotation,

and are “horizontally dependent” (when the axis is considered to be vertically positioned).

The component-wise independence of the S2 distributions plays a key role in this simple and

interpretable extension. We discuss here likelihood-based parameter estimation and testing

procedures of the multivariate distributions.

While the new distributions summarized in Table 1 contribute to the literature of direc-

tional distributions (Mardia and Jupp, 2000), the proposed estimation procedures for the S1,

S2 and MS2 parameters can be thought of as a method of fitting small-subspheres to data,

which has been of separate interest. Nonparametric least-squares type solutions for such

problem dates back to Mardia and Gadsden (1977), Gray et al. (1980), and Rivest (1999).

Jung et al. (2012) proposed recursively fitting small-subspheres in dimension reduction of

directional and shape data. Pizer et al. (2013) proposed to combine separate small-circle

fitting results in the analysis of s-rep data. In a similar spirit, Jung et al. (2011) and Schulz

et al. (2015) also considered fitting small-circles in applications to s-rep analysis. In a simu-

lation study, we show that our estimators provide smaller mean angular errors in small-circle

fits than recent developments listed above.

The rest of this chapter is organized as follows. In Section 2.2, we introduce the proposed

densities of the S1 and S2 distributions and discuss their multivariate extensions including the

MS2 distribution. Procedures of obtaining random variates from the proposed distributions

7



Relation among horizontal and vertical components

Dependent Independent

Univariate S1 S2

Multivariate (indep.) iMS1 iMS2

Multivariate (dep.) × GMS2 MS2 (p− 1 = 2)

Simulation Gibbs sampling × Exact sampling

Estimation Approximate MLE × Approximate MLE

Hypothesis testing Likelihood ratio × Likelihood ratio

Table 1: Key features of the newly proposed small-sphere distributions (top three rows) and

methods (bottom three rows) developed in this paper. Items marked “×” are beyond the

scope of this paper.

are also discussed. In Section 2.3, algorithms to obtain maximum likelihood estimators of

the parameters are proposed and discussed. In Section 2.4, we introduce several hypotheses

of interest and procedures of likelihood-ratio tests. Simulation studies demonstrating the

performance of small-circle fitting, estimating dependency, and the power of the proposed

test are contained in Section 2.5. In Sections 2.6 and 2.7 we demonstrate applications

of the new multivariate distributions to analyze models that represent human organs and

knee motions. In Section 2.8, we provide supporting details including proofs and additional

numerical results.

2.2 PARAMETRIC SMALL-SPHERE MODELS

First we introduce two classical spherical densities, then we suitably combine them for our

purposes.
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2.2.1 Two classical distributions on Sp−1

The von Mises-Fisher (vMF) distribution (Mardia and Jupp, 2000, p.168) is a fundamental

unimodal and isotropic distribution for directions with density

fvMF(x;µ, κ) =
(κ

2

)p/2−1 1

Γ(p/2)Ip/2−1(κ)
exp{κµ>x}, x ∈ Sp−1 . (2.1)

Here, Γ is the gamma function and Iv is the modified Bessel function of the first kind and

order v. The parameter µ ∈ Sp−1 locates the unique mode with κ ≥ 0 representing the

degree of concentration.

The Bingham-Mardia (BM) distribution was introduced by Bingham and Mardia (1978)

to fit data in S2 that cluster near a small circle C(µ, ν). For an arbitrary dimension p ≥ 3,

the BM density is given by

fBM(x;µ, κ, ν) =
1

α(κ, ν)
exp{−κ(µ>x− ν)2}, x ∈ Sp−1, (2.2)

where α(κ, ν) > 0 is the normalizing constant.

For our purpose of generalizing these distributions, we represent the variable x ∈ Sp−1,

p ≥ 3, by spherical angles φ1, . . . , φp−1 satisfying cosφ1 = µ>x. Setting s := cosφ1 ∈ [−1, 1]

and φ := (φ2, . . . , φp−1) ∈ [0, π]p−3 × [0, 2π), the random vector (s, φ) following the von

Mises-Fisher (2.1) or Bingham-Mardia (2.2) distribution has the respective density:

gvMF(s, φ;κ) =
(κ

2

)p/2−1 1

Γ(p/2)Ip/2−1(κ)
exp{κs} , (2.3)

gBM(s, φ;κ, ν) =
1

α(κ, ν)
exp{−κ(s− ν)2} . (2.4)

In consequence, for both distributions, s and φ are independent, and the marginal distribu-

tion of φ, which parametrizes a co-dimension 1 unit sphere Sp−2, is uniform. In (2.3), the

marginal distribution of s is a shifted exponential distribution truncated to s ∈ [−1, 1], while

in (2.4) the marginal distribution of s is a normal distribution truncated to s ∈ [−1, 1]. Both

densities are isotropic, i.e. rotationally symmetric with respect to µ. The vMF density is

maximal at the mode µ and decreases as the latitude φ1 increases, while the BM density is

uniformly maximal on the small-sphere C(µ, ν) and decreases as φ1 deviates from arccos(ν).
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2.2.2 Small-sphere distributions of the first and second kind

The proposed small-sphere densities of the first and second kind on Sp−1, for x = (x1, . . . , xp)

∈ Sp−1 with parameters µ0, µ1 ∈ Sp−1, ν = µ>0 µ1 ∈ (−1, 1), κ0 > 0, κ1 > 0, are given by

fS1(x;µ0, µ1, κ0, κ1) =
1

a(κ0, κ1, ν)
exp{−κ0(µ>0 x− ν)2 + κ1µ

>
1 x} , (2.5)

fS2(x;µ0, µ1, κ0, κ1) =
1

b(κ0, κ1, ν)
exp

{
−κ0(µ>0 x− ν)2 + κ1

µ>1 Pµ0x√
µ>1 Pµ0µ1x>Pµ0x

}
,(2.6)

respectively, where a(κ0, κ1, ν) and b(κ0, κ1, ν) are normalizing constants. Here, Pµ0 denotes

the matrix of orthogonal projection to the orthogonal complement of µ0; Pµ0 = Ip − µ0µ
>
0 ,

where Ip is the identity matrix. (In (2.6), we use the convention 0/0 = 0.)

These distributions are well-suited to model observations that are concentrated near the

small sphere C(µ0, ν) but are not rotationally symmetric. The first kind (2.5) is a natural

combination of the vMF (2.1) and BM (2.2) distributions. The parameter µ0 represents the

axis of the small sphere C(µ0, ν), while µ1 gives the mode of the distribution, which, by the

definition of ν, is on the small sphere C(µ0, ν). These parameters, µ0, µ1, ν, are illustrated

in Fig. 3(a) for the p = 3 case. The parameter κ0 controls the vertical concentration towards

the small sphere (with an understanding that µ0 is arranged vertically). In (2.5), κ1 controls

the isotropic part of the concentration around the mode, forcing the density to decay from

µ1.

The rationale for the second kind (2.6) is better understood with a change of variables.

Let us assume for now that µ0 = (1, 0, . . . , 0)>. For any x = (x1, . . . , xp)
> ∈ Sp−1, write

s := x1 = µ>0 x. If the spherical coordinate system (φ1, . . . , φp−1) as defined for (2.4) is used,

then s = cosφ1. The “orthogonal complement” of s is denoted by

y := (x2, . . . , xp)/
√

1− s2 ∈ Sp−2, (2.7)

where the vector y is obtained from the relation Pµ0x/‖Pµ0x‖ = (0, y) ∈ Sp−1. Similarly,

define µ̃1 ∈ Sp−2 as the last p − 1 coordinates of Pµ0µ1/‖Pµ0µ1‖. Then the random vector
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(s, y) ∈ [−1, 1]× Sp−2 from the S1 or S2 has densities

gS1(s, y;µ1, κ0, κ1) =
1

a(κ0, κ1, ν)
exp

{
−κ0(s− ν)2 + κ1µ

>
1

(
s,
√

1− s2y
)}

, (2.8)

gS2(s, y;µ1, κ0, κ1) =
1

b(κ0, κ1, ν)
exp

{
−κ0(s− ν)2 + κ1µ̃1

>y
}
, (2.9)

respectively, for s ∈ [−1, 1], y ∈ Sp−2. The subtle difference is that for the first kind (2.8),

the “vMF part” (the second term in the exponent) is not statistically independent from the

“BM part”, while it is true for the second kind (2.9). That is, s and y are independent only

in the second kind. Accordingly, in (2.9), κ1 controls the horizontal concentration towards

the mode µ1. The parameters µ0, µ1 and κ0 of the second kind have the same interpretations

as those of the first kind.

We use the notation X ∼ S1(µ0, µ1, κ0, κ1) and Y ∼ S2(µ0, µ1, κ0, κ1) for random di-

rections X, Y ∈ Sp−1 following small-sphere distributions of the first and second kind with

parameters (µ0, µ1, κ0, κ1), respectively. The proposed distributions are quite flexible and

can fit a wide range of data. In Figure 4, we illustrate the S1 densities (2.5) with various

values of the concentration parameters κ0, κ1. In all cases, the density is relatively high near

the small circle C(µ0, ν) and has the mode at µ1 ∈ C(µ0, ν). Despite the difference in their

formulations, the S2 densities (2.6) look similar to S1 densities for each fixed parameter-set.

Both distributions are invariant to rotation in the nullspace of (µ0, µ1):

Proposition 1. Let X, Y ∈ Sp−1 be random directions with X ∼ S1(µ0, µ1, κ0, κ1) and

Y ∼ S2(µ0, µ1, κ0, κ1) and let B be a p× p orthogonal matrix.

(i) X and BX (or Y and BY ) have the same distribution if and only if Bµ0 = µ0 and

Bµ1 = µ1.

(ii) X ∼ S1(−µ0, µ1, κ0, κ1) and Y ∼ S2(−µ0, µ1, κ0, κ1).

An example for the matrix B in Proposition 1(i) is the reflection matrix B = Ip−2UU>,

where U = [u3, . . . , up] is such that [u1, . . . , up] is a p × p orthogonal matrix whose column

vectors u1 and u2 generate µ0 and µ1.

Remark 1. The S1 distribution is a special case of the Fisher-Bingham distribution (Mardia,

1975). Following the notation of Kent (1982), the S1 distribution may be labeled as a FB6

distribution, in the special case of p = 3, emphasizing the 6-dimensional parameter space. In
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(a) κ0 = 10, κ1 = 4 (b) κ0 = 10, κ1 = 1 (c) κ0 = 10, κ1 = .5

(d) κ0 = 20, κ1 = 4 (e) κ0 = 20, κ1 = 1 (f) κ0 = 20, κ1 = .5

(g) κ0 = 40, κ1 = 4 (h) κ0 = 40, κ1 = 1 (i) κ0 = 40, κ1 = .5

Figure 4: The S1 densities on S2 modeling non-isotropic small-circle distributions. High

density (red), low density (blue). In all figures, µ0 points to the north pole and µ1 satisfies

µ>0 µ1 = 1/2. Rows and columns correspond to different choices of concentration parameters

(κ0, κ1).

terms of the general parameterization of the Fisher-Bingham density (cf. Mardia and Jupp,

2000, p.174), we write γ = 2κ0νµ0 + κ1µ1 and A = κ0µ0µ
>
0 , so that the S1 density (2.5) is

expressed as

fS1(x; γ,A) =
1

α(γ,A)
exp{γ>x− x>Ax}, (2.10)
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where α(γ,A) = a(κ0, κ1, ν) exp {κ0ν
2}. This relation to the general Fisher-Bingham distri-

bution facilitates random data generation and maximum likelihood estimation, shown later

in Sections 2.2.4 and 2.3.1.

2.2.3 Multivariate extensions

The univariate small-sphere distributions (2.5–2.6) are now extended to model a tuple of

associated random directions, X = (X1, . . . , XK) ∈ (Sp−1)K . We confine ourselves to a

special case where the marginal distributions of Xk have a common “axis” parameter µ0,

but relaxing this condition is straightforward. We begin by introducing multivariate small-

sphere distributions for independent random directions, denoted by iMS1 and iMS2.

Independent extensions. Suppose that, in the K-tuple of random directions X, each

Xk ∈ Sp−1 is marginally distributed as S1(µ0, µk, κ0k, κk). Throughout, we assume that νk =

µ>0 µk ∈ (−1, 1) so that the underlying small spheres do not degenerate. If the components

of X are mutually independent, then the joint density evaluated at x ∈ (Sp−1)K is

fiMS1(x) ∝ exp
{
Γ>x− x>Ax

}
. (2.11)

Here, Γ = [γ1, . . . , γK ]>, where γk = 2κ0kνkµ0 + κkµk, and A = K0 ⊗ (µ0µ
>
0 ), where K0 =

diag(κ01, . . . , κ0K). Each marginal density is of the form (2.10).

If each component is marginally distributed as S2(µ0, µk, κ0k, κk), then writing the density

in terms of (s, y) as done for (2.9) facilitates our discussion. First, we decompose each xk

into sk = µ>0 xk ∈ [−1, 1] and yk ∈ Sp−2 as defined in (2.7). Further, we denote by µ̃k the

scaled projection of µk as done for the univariate case. Then an independent multivariate

extension for the S2 model can be expressed as the joint density of s = (s1, . . . , sK) and

y = (y1, . . . , yK),

giMS2(s,y) ∝ exp
{
H>s− s>K0s + M>vec(y)

}
, (2.12)

where H = (2κ01ν1, . . . , 2κ0KνK) and M = vec(κ1µ̃1, . . . , κK µ̃K) while vec(·) denotes the

column-wise vectorization of a matrix.
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Vertical and horizontal dependence. Based on (2.11) and (2.12), we now contemplate

dependent models. Obviously, if we allow in (2.11) nonzero offdiagonal entries of A, then we

obtain a dependent modification of the S1 model. With our applications in mind, however,

we aim at modeling a specific structure of dependence that is natural to the variables (s,y)

in (2.12).

If s1, . . . , sK are dependent, we speak of vertical dependence; if y1, . . . , yK are dependent,

we speak of horizontal dependence. In practice, when we deal with small-circle concentrated

directional data, association among these vectors usually occurs along small-circles with

independent vertical errors. For example, when a 3D object is modeled by skeletal repre-

sentations, as described in more detail in Section 2.6 and visualized in Fig. 8, a deformation

of the object is measured by the movements of directional vectors on S2. When a single ro-

tational deformation (such as bending, twisting or rotation) occurs, all the directions move

along small-circles with a common axis µ0. In this situation, the longitudinal variations

along the circles are dependent on each other because nearby spoke vectors are under the

effect of similar deformations. (Examples of such longitudinal dependencies can be found in

Section 2.6 as well as in Schulz et al. (2015).) Adding such a horizontal (or longitudinal)

dependence to a multivariate S1 model requires a careful introduction and parametrization

of the offdiagonal entries of A in (2.11). This is not straightforward, and we leave it for

future work. On the other hand, it is feasible to extend the S2 model by generalizing the

“vMF part” of y, the last term in the exponent of (2.12), to a Fisher-Bingham type.

To this end, we introduce a parameter matrix B to model general quadratics in vec(y).

This allows to write the densities for a general multivariate small-sphere distribution of the

second kind (GMS2) as follows:

gGMS2(s,y;H,K0,M,B)

=
1

T1(H,K0)T2(M,B)
exp

{
H>s− s>K0s + M>vec(y) + vec(y)>B vec(y)

}
(2.13)

where H,K0 and M as defined in (2.12), and T1(H,K0) and T2(M,B) are normalizing

constants. We set B = (Bkl)
K
k,l=1, Bkl = (b

(k,l)
i,j )p−1

i,j=1, as a block matrix with vanishing blocks

Bkk = 0 on the diagonal. The submatrix Bkl models the horizontal association between yk

14



and yl. The fact that z>Bz = z>B>z = 1
2
z>(B + B>)z for any vector z ∈ R(p−1)K allows us

to assume without loss of generality that B is symmetric.

An MS2 distribution on (S2)K. As a viable submodel for the practically important case

p = 3, we propose to use a special form for the offdiagonal blocks Bkl of B. In particular,

with λkl representing the degrees of association between yk and yl, we set

Bkl = 2
(
µ̃k µ̃k

⊥
)0 0

0 λkl

(µ̃l µ̃l
⊥
)>

(2.14)

= 2λkl µ̃k
⊥(µ̃l

⊥)>,

where
(
µ̃k µ̃k

⊥
)

is the rotation matrix given by setting

µ̃k
⊥ =

0 −1

1 0

 µ̃k.

The density (2.13) with the above parametrization of B will be referred to as a multivariate

S2 distribution (MS2) for data on (S2)K ; its angular representation will be derived in (2.15)

below.

Our choice of the simple parametrization (2.14) does not restrict the modeling capability

of the general model (2.13), and has some advantages in parameter interpretations and

also in estimation. To see this, we resort to use an angular representation for y (available

to this p = 3 case). For each k, define φk and ζk such that yk = (cosφk, sinφk)
> and

µ̃k = (cos ζk, sin ζk)
>. Accordingly, the inner products appearing in (2.13) can be expressed

as

µ̃k
>yk = cos(φk − ζk), (µ̃k

⊥)>yk = sin(φk − ζk).

Let φ = (φ1, . . . , φK)>, ζ = (ζ1, . . . , ζK)>, κ = (κ1, . . . , κK)>,

c(φ, ζ) = (cos(φ1 − ζ1), . . . , cos(φK − ζK))> ,

s(φ, ζ) = (sin(φ1 − ζ1), . . . , sin(φK − ζK))> ,
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and Λ = (λkl)
K
k,l=1 where λkl(= λlk) for k 6= l is the association parameter used in (2.14),

and λkk is set to zero. The density of the MS2 distribution, in terms of (s,φ), is then

gMS2(s,φ;H,K0,κ, ζ,Λ)

=
1

T1(H,K0)T3(κ,Λ)
exp

{
H>s− s>K0s + κ>c(φ, ζ) +

1

2
s(φ, ζ)>Λs(φ, ζ)

)
.(2.15)

From (2.15), it can be easily seen that the “horizontal angles” φ follow the multivariate

von Mises distribution (Mardia et al., 2008) and are independent of the vertical component

s. As we will see later in Section 2.3.2, this facilitates estimation for the MS2 distributions.

Moreover, since

κ>c(φ, ζ) +
1

2
s(φ, ζ)>Λs(φ, ζ)

=
K∑
k=1

κk

(
1− (φk − ζk)2

2

)
+

1

2

K∑
k=1

K∑
k 6=l=1

(
λkl(φk − ζk)(φl − ζl)

)
+ o(‖φ− ζ‖2),(2.16)

for large enough concentrations, φ is approximately multivariate normal with mean ζ and

precision matrix Σ−1, where (Σ−1)kk = κk and (Σ−1)kl = −λkl for 1 ≤ k 6= l ≤ K. These pa-

rameters are naturally interpreted as partial variances and correlations. This interpretation

of the parameters as entries of a precision matrix is most immediate under the MS2, but is

not under the general case.

2.2.4 Random data generation

Generating pseudo-random samples from the S1 and S2 distributions are important in sim-

ulations and in developments of computer-intensive inference procedures.

For simulation of the S1 (2.5) and iMS1 (2.11) distribution, the fact that each marginal

distribution of the iMS1 is a special case of the Fisher-Bingham is handy. Thereby, one can

use the Gibbs sampling procedure developed for generating Fisher-Bingham-variate samples

(Hoff, 2009).

For simulation of the S2 (2.6), iMS2 (2.12), and MS2 (2.15) distribution, we take advan-

tage of the independence of s and y. As we assume vertical independence (i.e., s1, . . . , sK

are independent), each sk can be sampled separately. Therefore, sampling from the MS2

16



distribution amounts to independently drawing samples from a truncated normal distribu-

tion (for sk) and from a multivariate von Mises distribution (for y). Specifically, to sample

x = (x1, . . . , xK) from MS2(µ0,µ,κ0,κ,Λ), the following procedure can be used.

Step 1. For each k, sample sk from the truncated normal distribution with mean νk and

variance 1/(2κ0k), truncated to the interval (-1,1).

Step 2. For the S2 or iMS2 model, sample each yk ∈ Sp−2 in y = (y1, . . . , yK) indepen-

dently from the von Mises distribution with mean (1, 0, . . . , 0) and concentration κk; for the

MS2 distribution (when p = 3), sample the K-tuple y ∈ (S1)K directly from the multivariate

von-Mises distribution with mean (1, 0) and precision parameters κ and Λ.

Step 3. For each k, let Ek be a p× p orthogonal matrix with (µ0, Pµ0µk/‖Pµ0µk‖) being

the first two column vectors. Set xk = E>k
(
sk, (1− s2

k)
−1/2yk

)
.

In our experiments, sampling from the S2 and MS2 distributions is much faster than from

the S1. In particular, when the dimension p or the concentration level is high, the Markov

chain simulations for the S1 appear to be sluggish. Some examples of random samples from

the S2, iMS2 and MS2 distributions are shown in Fig. 5. The small-circles C(µ0, νk) are

also overlaid in the figure. Notably, the MS2 sample in the rightmost panel clearly shows a

horizontal dependence.

2.3 MAXIMUM LIKELIHOOD ESTIMATION

The algorithms developed below converge quickly to a local maximum of the likelihood

function in all of the data situations of this paper. In Section 2.8.2, we give an example of

our new quick algorithm for the maximum likelihood estimation of S1.

2.3.1 Estimation for S1 and iMS1 models

The standard way to estimate parameters of the S1 is to use the maximum likelihood esti-

mates (MLE). However, it does not seem possible to obtain explicit expressions of the MLE,

partly due to having no closed-form expression of the normalizing constant (2.5). We propose
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(a) S2 on S2 (b) iMS2 on (S2)3 (c) MS2 on (S2)2

Figure 5: Random samples from the S2, iMS2 and MS2 distributions. Same colors represent

same simulations. (a) low concentrations (κ0 = 10, κ = 1). (b) independent directions with

high concentrations (κ0k = 100, κk = 10, k = 1, 2, 3). (c) horizontally dependent directions

with high concentrations (κ0k = 50, κk = 30) and high dependence (λ12 = 24).

to approximate the normalizing constant, and numerically obtain the MLE. Our procedure

naturally extends to estimation for the iMS1 distribution, which will also be discussed.

As a preparation, we first describe an approximation of the normalizing constant, follow-

ing Kume and Wood (2005). The exact calculation of the normalizing constant of Fisher-

Bingham distribution, including the S1, is possible (Kume and Sei, 2018), but we chose to

use the approximation as the method of Kume and Sei (2018) is computationally too heavy

for our application in mind.

The normalizing constant of the S1 has an alternative expression, as shown in the fol-

lowing.

Proposition 2. For any h > 0, let ξ = (ν(2κ0+κ1)
2(κ0+h)

, κ1
√

1−ν2
2h

, 0, . . . , 0)> ∈ Rp and let Ψ be the

p×p diagonal matrix with diagonal elements (κ0 +h, h, . . . , h). Moreover, let g(r) (r > 0) be

the probability density function of R = Z>Z, where Z ∼ Np(ξ,
1
2
Ψ−1). Then the normalizing

constant a(κ0, κ, ν) of (2.5) is

a(κ0, κ1, ν) = 2πp/2|Ψ|−1/2g(1) exp
(
ξTΨξ + h− κ0ν

2
)
. (2.17)
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In Proposition 2, the function g is the density of a linear combination of independent

noncentral χ2
1 random variables. Following Kume and Wood (2005), we use saddle-point

density approximations in the numerical computation of g(1). First, note that the derivatives

of the cumulant generating function, Kg(t) = log
∫∞

0
etrg(r)dr, associated with the density

g have closed-form expressions. Denoting by K
(j)
g (t) the jth derivative of Kg(t), for j =

1, . . . , 4, we get

K(j)
g (t) =

(j − 1)!

2

(
1

(κ0 + h− t)j
+

p− 1

(h− t)j

)
+
j!

4

(
ν2(2κ0 + κ1)2

(κ0 + h− t)j+1
+
κ2

1(1− ν2)

(h− t)j+1

)
.

Let t̂ be the unique solution in (−∞, h) of the saddle-point equation K
(1)
g (t) = 1, which

can be easily evaluated by using, e.g., a bisection method. Then a saddle-point density

approximation of g(1) is

ĝ(1) = (2πK(2)
g (t̂))−1/2 exp(Kg(t̂)− t̂+ T ), (2.18)

where T = K
(4)
g (t̂)/{8(K

(2)
g (t̂))2} − 5(K

(3)
g (t̂))2/{24(K

(2)
g (t̂))3}. In the following, we approx-

imate the value of a(κ0, κ1, ν) by â(κ0, κ1, ν) obtained by plugging (2.18) in place of g(1) in

(2.17).

We are now ready to describe our estimation procedure. Suppose x1, . . . , xn is a sample

from S1(µ0, µ1, κ0, κ1) and let `n(µ0, µ1, κ0, κ1, ν) be the log-likelihood.

Suppose for now that ν ∈ [0, 1) is fixed. Then the MLE of µ0 and µ1 can be efficiently

estimated. In particular, maximizing the likelihood function with respect to µ0 is equivalent

to minimizing 1
n

∑n
i=1(µ>0 xi − ν)2 subject to the constraint µ>0 µ0 = 1. With a Lagrangian

multiplier λ using matrix notation, we solve

min
µ0∈Sp−1

[
1

n
‖X>µ0 − ν1n‖2 − λ(µ>0 µ0 − 1)

]
, (2.19)

where X is the p× n matrix whose ith column is xi, yielding the necessary condition Sµ0 −

νx̄ − λµ0 = 0, where S = XX>/n, x̄ = 1
n

∑n
i=1 xi. For a fixed Lagrangian multiplier λ, the

solution is µ̂0 = ν(S − λIp)−1x̄, provided that S is of full rank. The constraint µ>0 µ0 = 1

makes us find a root λ of ν2x̄>(S−λIp)−2x̄− 1. The root λ̂ is found by a bisection search in
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the range [−ν2x̄>x̄, λS], where λS > 0 is the smallest eigenvalue of S (Browne, 1967). The

solution to (2.19) is then

µ̂0 = ν(S − λ̂Ip)−1x̄. (2.20)

If ν = 0, then µ̂0 is the eigenvector of S corresponding to the smallest eigenvalue.

Now, with ν and µ̂0 (2.20) given, maximizing the likelihood with respect to µ1 is equiv-

alent to maximizing 1
n

∑n
i=1 µ

>
1 xi subject to the constraints µ>0 µ1 = ν and µ>1 µ1 = 1. It can

be shown that the MLE of µ1 is a linear combination of µ0 and x̄/‖x̄‖ where x̄ = 1
n

∑n
i=1 xi.

Let x̄∗ = Pµ0x̄/ ‖Pµ0x̄‖, then the MLE of µ1 given ν and µ̂0 is

µ̂1 = νµ̂0 +
√

1− ν2x̄∗. (2.21)

Thus, the MLE of (κ0, κ1, ν) is

(κ̂0, κ̂1, ν̂) = arg max
κ0,κ1,ν

`n(µ̂0, µ̂1, κ0, κ1, ν),

which is solved by a standard optimization package, and the MLE of (µ0, µ1) is given by

(2.20) and (2.21) with ν replaced by ν̂. This procedure, beginning with an initial value for

ν̂, is iterated until convergence.

Let us now describe an extension of the above algorithm to the iMS1 model. Suppose

(xi1, . . . , xiK) ∈ (Sp−1)K for i = 1, . . . , n is a sample from an iMS1 model, where each

marginal distribution is S1(µ0, µk, κ0k, κk). While the last step above can be applied to

estimate κ0k, κk, νk, for k = 1, . . . , K, given µ0 and µk’s, we replace (2.19) with

min
µ0∈Sp−1

[
1

n

K∑
k=1

(κ0k‖X>k µ0 − νk1n‖2)− λ(µ>0 µ0 − 1)

]
,

where the marginal p× n observation matrix Xk has the columns xik (i = 1, . . . , n). This is

solved with the obvious analog to (2.20). For µk’s, the above solution (2.21) can be applied

for each k separately.
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2.3.2 Estimation for S2, iMS2 and MS2

The S2 model and its extensions have the convenient property that the horizontal components

are independent of the vertical ones. To take advantage of this, suppose for now that µ0 is

known. This allows us to decompose an observation x into two independent random variables

(s, y), which in turn leads to an easy estimation of the remaining parameters η := (µ, κ0, κ1).

Thus, the estimation strategy proceeds in two nested steps. Let `n(µ0, η) be the log-likelihood

function given a sample x1, . . . , xn from S2(µ, η). In the outer step, we update µ0 to maximize

the likelihood, i.e.,

µ̂0 = argmin
µ0

`n(µ0, η̂µ0), (2.22)

where evaluating

η̂µ0 = argmin
η

`n(µ0, η) (2.23)

for a fixed µ0 is the inner step. It is straightforward to see that the MLE of (µ0, η) is given

by (µ̂0, η̂µ̂0).

In the following, we discuss in detail the inner step (2.23) of maximizing `µ0(η) :=

`n(µ0, η) for the iMS2 model (2.12) and for the MS2 model (2.15), while we resort to a

standard optimization package for solving (2.22).

Independent multivariate S2 (iMS2). Suppose (xi1, . . . , xiK) ∈ (Sp−1)K for i = 1, . . . , n

is a sample from an iMS2, where each marginal distribution is S2(µ0, µk, κ0k, κk). For a given

µ0, the joint density can be written in terms of (si,φi) as done in (2.15), but with Λ = 0.

Furthermore, by the definition of H and K0 we used in (2.15), we can write

H>si − s>i K0si = −
K∑
k=1

κ0k(sik − νk)2 +
K∑
k=1

κ0kν
2
k ,

and hence

log [T1(H,K0)T3(κ, 0)] =
K∑
k=1

[
log b(κ0k, κk, νk) + κ0kν

2
k

]
.

Note that the normalizing constant b(κ0, κ1, ν) satisfies

b(κ0, κ1, ν) =

∫ 2π

0

eκ1 cosφdφ

∫ 1

−1

e−κ0(s−ν)2ds

= (2π)3/2(2κ0)−1/2I0(κ1)
[
Φ((1− ν)

√
2κ0)− Φ(−(1 + ν)

√
2κ0)

]
,
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where Φ(·) is the standard normal distribution function. Finally, the log-likelihood function

(given µ0) is, for κ0 = (κ01, . . . , κ0K)>, ν = (ν1, . . . , νK)>,

`µ0(ν, ζ,κ0,κ; {si,φi}ni=1) = `(1)
µ0

(ν,κ0) + `(2)
µ0

(ζ,κ), (2.24)

where

`(1)
µ0

(ν,κ0) = −
K∑
k=1

[
κ0k

n∑
i=1

(sik − νk)2 − n

2
log(2κ0k) +

n

2
log(2π) (2.25)

+n log
(
Φ
(
(1− νk)

√
2κ0k

)
− Φ

(
−(1 + νk)

√
2κ0k

))]
,

`(2)
µ0

(ζ,κ) =
K∑
k=1

[
κk

n∑
i=1

cos(φik − ζk)− n log I0(κk)− n log(2π)

]
. (2.26)

Therefore, the optimization for the inner step (2.23) is equivalent to simultaneously solving

2K subproblems.

Each of the K subproblems of (2.25) is equivalent to obtaining the MLE of a truncated

normal distribution trN(νk, (2κ0k)
−1/2; (−1, 1)) based on the observations sik (i = 1, . . . , n).

Similarly, each of the K subproblems of (2.26) amounts to obtaining the MLE of a von

Mises distribution with mean ζk and concentration κk from the sample φik (i = 1, . . . , n).

The MLEs of the truncated normal are numerically computed, and we use the method of

Banerjee et al. (2005) to obtain approximations of the MLEs of the von Mises.

MS2. Under the MS2 model (2.15) with a dependence structure on φi, a decomposition

`µ0(ν, ζ,κ0,κ,Λ) = `
(1)
µ0 (ν,κ0) + `

(2)
µ0 (ζ,κ,Λ), similar to (2.24), is valid, where (2.26) is

replaced by

`(2)
µ0

(ζ,κ,Λ) = −
n∑
i=1

[
κ>c(φi, ζ) +

1

2
s(φi, ζ)>Λs(φi, ζ)− log T3(κ,Λ)

]
. (2.27)

Maximizing (2.27) is equivalent to computing the MLE of the multivariate von Mises distri-

bution (Mardia et al., 2008). We either use maximum pseudo-likelihood estimate as discussed

in Mardia et al. (2008) or moment estimates, yielding

ζ̂k =
1

n

n∑
i=1

φik/‖
1

n

n∑
i=1

φik‖, κ̂k = S̄−1
kk , λ̂(kl) = S̄−1

kl (k 6= l),
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where S̄ = (S̄kl) and S̄kl = 1
n

∑n
i=1 sin(φik − ζ̂k) sin(φil − ζ̂l) for k, l = 1, . . . , K. These esti-

mates coincide with the MLEs when K = 2. For larger K > 3, the accuracy of the moment

estimates deteriorates, but evaluating MLEs or a maximum pseudo-likelihood estimator be-

comes computationally highly expensive.

2.4 TESTING HYPOTHESES

It is of interest to infer on the parameters of our models. While we adopt the well-known

likelihood ratio test, we emphasize that the proposed model enables us to test several impor-

tant hypotheses, which have been of interest to some researchers, and that our estimation

procedure can be easily adapted to compute maximized likelihood under the null parame-

ter space Θ0. Recall that the parameter space for the iMS1 and iMS2 models is given by

Θind = Sp−1×(Sp−1)K×(R+)K×(R+)K for θind = (µ0,µ,κ0,κ). For conciseness, we describe

our testing procedure using the MS2 distribution in dimension p = 3, whose parameter space

is Θ = (Θind × (R)K(K−1)/2) for θ = (θind,Λ). For some Θ0 that dictates a null hypothesis

H0 and satisfies Θ0 ⊂ Θ, we denote the maximized log-likelihood under Θ0 by `0, and the

maximized log-likelihood under Θ by `1. Our test statistic is Wn := −2(`0 − `1) and H0 is

rejected for large enough Wn.

We list a few null hypotheses of practical interest, with the alternative being the full

MS2 distribution. In all three cases below, the alternative hypothesis is H1 : θ ∈ Θ \Θ0.

1. Test of association. H0: Λ = 0, i.e., there is no horizontal dependence.

2. Test of axis. H0: µ0 = µ∗0, i.e., the common axis of rotation is µ∗0.

3. Test of great-sphere. H0: ν = 0, i.e., the underlying subsphere is indeed a great

subsphere.

While the test of association is only available under the MS2 model (p = 3), Hypotheses

2 and 3 can also be tested using S1, S2, iMS1 or iMS2 models in any dimension p ≥ 3.

To validate the use of small-sphere distributions, in any dimension p ≥ 3, the following

hypotheses can be tested.

4. Test for von Mises-Fisher distribution. H0: κ0 = 0, i.e., there is no “small-circle
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feature.”

5. Test for Bingham-Mardia distribution. H0: κ = 0, i.e., there is no unique mode.

For each hypothesis, computing the test statistic Wn requires maximizing the likelihood

on Θ0 (or to compute `0). This is easily achieved by modifying the iterative algorithms

in Section 2.3. For example, for the test of association, computing `0 and `1 amounts to

obtaining the MLEs under the iMS2 and MS2 models, respectively; for Hypothesis 2 (test of

axis), where µ0 is given, one only needs to solve (2.23) once. Other cases of restricted MLEs

can be easily obtained. In Section 2.8.3, we confirm that the test statistic Wn using our

algorithms under the null hypotheses above is empirically nearly chi-square distributed for

sample size n = 30. In Section 2.5.3 and in Section 2.8.3, empirical powers of the proposed

test procedures are reported for several important alternatives.

2.5 NUMERICAL STUDIES

We demonstrate the performances of small-circle fitting in Section 2.5.1, the ability of the

MS2 of modeling the horizontal dependence in Section 2.5.2 and a testing procedure to

prevent overfitting in Section 2.5.3.

2.5.1 Estimation of small-circles

The performance of our estimators in fitting the underlying small-spheres C(µ0, ν) is numer-

ically compared with those of competing estimators obtained from assuming the Bingham-

Mardia (BM) distribution and the least-square methods of Schulz et al. (2015). The BM

distribution has originally been defined only for data on S2, but we use a natural extension

given by a special case of the iMS1. Thus, “BM estimates” refer to the estimates of the iMS1

model with the restriction κ = 0. The estimates of Schulz et al. are obtained by minimizing

the sum of squared angular distances from observations to C(µ̂0, ν̂), which will be referred

to as a “least-squares (LS)” method.

We first consider four univariate S2 models to simulate data concentrated on a single
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small circle in order to benchmark against existing BM and LS. The directional parameters

(µ0, µ1) are set to satisfy ν = 0.5. We use (κ0, κ1) = (10, 1), (100, 1), (100, 10) to represent

various data situations. Random samples from these three settings are shown in Fig. 6(a)–

(c). We also consider the BM model as a special case of the S2 distributions (by setting

κ1 = 0); a sample from the BM distribution is shown in Fig. 6(d).

The small-circle estimation performances of the S1, S2, BM, and LS estimates are mea-

sured by an angular product error (in degrees), defined as

L ((µ0, ν), (µ̂0, ν̂)) =

(
Angle(µ̂0, µ0)2 +

(
180

π
(arccos ν̂ − arccos ν)

)2
)1/2

. (2.28)

Table 2 displays the means and standard deviations of L ((µ0, ν), (µ̂0, ν̂)) from 100 repetitions

for each of the four methods, fitted to random samples of size 50 from each of the settings,

labeled (a)–(d). Since horizontal/vertical dependence is not of concern, we expect that S1,

S2 and LS perform similarly and that they strongly outperform BM when the small circle

features a distinct mode (c). This is indeed the case. Remarkably, in the high vertical noise

case (a), the standard deviations of S1 and S2 are considerably lower than that of BM and

still notably smaller than that of LS.

(a) κ0 = 10, κ1 = 1 (b) κ0 = 100, κ1 = 1 (c) κ0 = 100, κ1 = 10 (d) κ0 = 100, κ1 = 0

Figure 6: Random samples of size n = 50 from the S2 model on S2 used in our simulations.

Small-circle estimation performances are reported in Table 2.
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Method (a) (b) (c) (d)

S1 5.81(3.17) 1.46(0.72) 15.56(11.68) 1.35(0.72)

S2 5.24(3.14) 1.44(0.70) 14.36(11.91) 1.36(0.72)

BM 8.37(6.43) 1.47(0.70) 17.00(15.68) 1.35(0.72)

LS 5.83(3.74) 1.45(0.69) 15.27(14.16) 1.36(0.73)

Table 2: Small-circle estimation performances for univariate data on S2 from Fig. 6. Means

(standard deviations) of the angular product errors in degrees (2.28) are shown.

Next, to show the performance of our multivariate models, we consider six bivariate

MS2 models. The directional parameters (µ0,µ) were set to satisfy ν = (0.5,−.3), and the

concentration parameters were chosen to mimic the concentrations of the univariate models,

described above. For Cases (a)–(c), we set (κ0j, κj, λ12) = (10, 1, 0), (100, 1, 0), (100, 10, 0),

for j = 1, 2, so that the models are indeed the iMS2. For the latter three cases (d)–(f),

we set (κ0j, κj, λ12) = (10, 2, 1.5), (100, 2, 1.5), (100, 20, 15), j = 1, 2, to make their vertical

and horizontal dispersions be similar to the iMS2 counterparts. By setting λ12 > 0, the

random bivariate directions are positively associated. (Examples of random samples from

these settings can be found in Fig. 15.) The small-circle estimation performance of the iMS1,

iMS2, MS2, BM and LS estimates is measured by the canonical multivariate extension of

the angular product error (2.28). Table 3 collects the means and standard deviations of the

angular product errors from 100 repetitions with the sample size n = 50. Now BM clearly

performs worst, also in low horizontal concentration scenarios (a), (b), (d) and (e). Since

BM is able to model vertical but not horizontal concentration, somewhat unexpected, BM

performs considerably worse under additional high vertical noise (a) and (d), as compared

to (b) and (e). The same phenomenon, but more subtly is also visible for LS. In case of high

vertical concentration (all but (a) and (d)), LS performs comparable to the new parametric

models. In particular in case of additional horizontal dependence with high concentration

(f), it outperforms the independent parametric models and it is as good as MS2. In case of
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Independent Dependent

Method (a) (b) (c) (d) (e) (f)

iMS1 4.84(1.75) 1.51(0.56) 3.90(3.61) 6.21(2.73) 1.58(0.76) 4.91(5.82)

iMS2 4.49(1.80) 1.52(0.53) 4.30(2.46) 5.90(2.60) 1.58(0.75) 4.55(2.56)

MS2 4.47(1.78) 1.52(0.53) 4.26(2.45) 5.81(2.67) 1.57(0.75) 4.50(2.48)

BM 5.30(2.21) 1.54(0.54) 8.63(4.66) 13.87(15.42) 1.69(0.83) 9.26(5.25)

LS 4.76(1.85) 1.52(0.55) 4.30(2.35) 6.68(2.77) 1.59(0.71) 4.53(2.44)

Table 3: Small-circles estimation performances for bivariate data on S2 × S2 from Fig. 15.

Means (standard deviations) of the angular product errors in degrees (2.28) are shown.

low vertical concentration (a), however, MS2 is superior, MS2 is considerably superior under

additional horizontal dependence (d).

We check robustness against model misspecification of the estimators by simulating data

from a more general signal-plus-noise model (neither S1 nor S2). The performances of small-

circle fitting of the proposed methods are comparable to that of the least-square estimator.

Relevant simulation results and a detailed discussion can be found in Section 2.8.4.

2.5.2 Estimation of horizontal dependence

The ability of the MS2 to model the horizontal dependence is an important feature of the

proposed distributions. We emphasize that the MS2 is the only method modeling such

dependence, hence in this section we can only validate it against iMS2. Here, we empirically

confirm that the MS2 estimates provide accurate measures of horizontal dependence, using

Cases (c) and (f) in Section 2.5.1. For sample sizes n = 50 and 200, the concentration

and association parameters were estimated under the assumption of MS2 (or iMS2), and

Table 4 summarizes the estimation accuracy. In all cases, the MS2 model provides precise
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(c) (f)
n Method κ1 = 10 κ2 = 10 λ12 = 0 κ1 = 20 κ2 = 20 λ12 = 15

50
iMS2 10.23(2.48) 10.54(2.16) 11.73(2.19) 11.19(2.14)
MS2 10.48(2.54) 10.80(2.27) −0.17(1.85) 22.63(5.06) 21.40(4.32) 16.82(4.22)

200
iMS2 10.31(1.08) 10.10(1.04) 11.00(1.05) 11.09(1.04)
MS2 10.35(1.10) 10.14(1.05) −0.12(0.73) 20.38(2.17) 20.54(2.25) 15.41(2.06)

Table 4: Concentration and association parameter estimates for bivariate data on S2 × S2

from Fig. 15. Means (standard deviations) of the estimates (from 100 repetitions). The

column headings show the true parameters.

estimations of the horizontal dispersion and dependence; as the sample size increases, the

mean squared error decreases. For Case (c), the underlying model is exactly iMS2, so the

iMS2 estimates have smaller mean squared errors than the MS2 estimates. However, for

Case (f), we notice that the iMS2 estimates of κ = (κ1, κ2) become inferior. In fact, in

case of existing horizontal dependence, i.e., when λ12 6= 0, the concentration parameters κ

in the misspecified iMS2 model do not correctly represent the concentrations as correctly

represented by the MS2 model. This is so because the marginal distribution of φj, j = 1, 2,

in (2.15) is not a von Mises distribution (Shing et al., 2002; Mardia et al., 2008).

2.5.3 Detecting overfitting in an isotropic case

When the data do not exhibit a strong tendency of a small-circle feature, the S1 and S2

distributions may overfit the data. For example, to a random sample from an isotropic

vMF distribution as shown in Fig. 7(a), the S1 or S2 model fits an unnecessary small-circle

C(µ̂0, ν̂). Indeed, a small-circle fit was observed in 83% of simulations of fitting the S1 model.

Using the BM or LS results in a similar overfitting, where very small circles are erroneously

fitted for 100% and 68% of the simulations, for the BM and LS, respectively.

This problem of overfitting has been known for a while and discussed in the context

of dimension reduction of directional data. In particular, Jung et al. (2011, 2012) and
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(a) vMF (κ1 = 10) (b) (κ0, κ1) = (20, 10) (c) (κ0, κ1) = (100, 10) (d) (κ0, κ1) = (100, 1)

Figure 7: Degrees of the “small-circle feature.” Shown are random samples from an isotropic

distribution (case (a)), and the S2 distributions with increasing “small-circle concentrations”

(cases (b)–(d)).

Eltzner et al. (2017) investigated the overfitting phenomenon for the least-square estimates

and proposed some ad-hoc methods for adjustment. To prevent the overfitting, we point

out that the testing procedure in Section 2.4 for the detection of isotropic distributions

(Hypothesis 4) works well. To confirm this, we evaluated the empirical power of the test

at the significance level α = 0.05 for several alternatives. The power increases sharply as

the distributions become more anisotropic; under the alternative distributions depicted in

Fig. 7(b)–(d), the empirical powers are respectively β̂ = 0.435, 1 and 1, evaluated from 200

repetitions.

2.6 ANALYSIS OF S-REP DATA

In this section, an application of the proposed distributions and test procedures to s-rep data

is discussed.
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2.6.1 Modeling rotationally-deformed ellipsoids via s-reps

Skeletal representations (s-reps) have been useful in mathematical modeling of anatomical

objects (Siddiqi and Pizer, 2008). Roughly, an s-rep model for a 3-dimensional object con-

sists of locations of a skeletal mesh (inside of the object) and spoke vectors (directions and

lengths), connecting the skeletal mesh with the boundary of the object; examples are shown

in the top left panel of Fig. 8. When the object is “rotationally deformed”, Schulz et al.

(2015) have shown that the directional vectors of an s-rep model approximately trace a set

of concentric small-circles on S2, as shown in the top panels of the figure. Such rotational

deformations (e.g., rotation, bending and twisting) of human anatomical objects have been

observed in between and within shape variations of hippocampi and prostates (Joshi et al.,

2002; Jung et al., 2011; Pizer et al., 2013). We demonstrate the use of the MS2 distribution

in modeling (and fitting) a population of such objects via s-reps. Note that the sample space

of an s-rep with K spokes is (S2)K × RK
+ × (R3)K (for direction, length, and location). In

this work, we choose to analyze the spoke directions in (S2)K only, leaving a full-on analysis,

accommodating the lengths and locations, to future work.

2.6.2 Data preparation

For our purpose of validating the use of the proposed distributions, we use an s-rep data

set, fitted from n = 30 deformed ellipsoids; two samples from this data set are shown in

Fig. 8(a). This data set was previously used in Schulz et al. (2015) as a simple experimental

representation of real human organs. The data set was generated by “physically bending”

a template ellipsoid about an axis µ∗0 = (0, 1, 0) by random angles drawn from a normal

distribution with standard deviation 0.4 (radians). Each deformed ellipsoid is then recorded

as a 3-dimensional binary image. To mimic the procedure of fitting s-reps from, for example,

medical resonance imaging of a real patient, s-reps with 74 spokes were fitted to these binary

images. (See Pizer et al. (2013) for details of the s-rep fitting.) As a preprocessing, we chose

K = 58 spoke vectors, excluding the vectors with very small total variation.
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(a)

(b)

(c) (d)

Figure 8: (a) Two s-rep models of randomly-bent ellipsoids. Skeletal mesh points (blue)

due to grid lines (purple) with spokes (green, red and cyan). (b) Directions-circles plot:

Graphical display of MS2 parameter estimates (small-circles (yellow), µ̂0 (blue dashed axis)

compared with µ∗0 (black dashed)) laid over the data where same colors correspond to same

simulations. (c) Histogram of estimated “horizontal” correlation coefficients. (d) Empirical

distributions of p-values from horizontal-dependence tests. See text for details.
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2.6.3 Inference on the bending axis

Fitting the iMS1 distribution, we obtained the axis estimate µ̂
(iMS1)
0 = (0.007, 1.000,−0.008).

Similarly, from the MS2 fitting, µ̂
(MS2)
0 = (0.006, 1.000, 0.006). The least-squares (LS) fit of

Schulz et al. (2015) also provides a similar estimate. These estimates are virtually the same,

only 0.6 degrees away from the ground truth µ∗0. Estimates of the concentric small-circles

C(µ̂(MS2)
0 , ν̂j) for four choices of j (the spoke index) are also shown in the top right panel of

Fig. 8 in which µ̂
(MS2)
0 and µ∗0 are also shown. Although all methods provide virtually the

same estimate, only by assuming one of the iMS1, iMS2 or MS2 models, we are able to infer

on the axis of rotation. For example, under the iMS1 model, we tested H0 : µ0 = µ∗0, and

with the p-value 0.26, we accept that the true axis of rotation is the hypothesized axis µ∗0.

2.6.4 Inference on horizontal dependence

An advantage of modeling the s-rep spoke directions by the MS2 distribution is the ability

of perceiving and modeling the horizontal dependence among directions. As an exploratory

step, we have collected the estimated correlation coefficients, computed from the approximate

precision matrix Σ̂−1, whose elements are κ̂ and Λ̂; see (2.16). A histogram of K(K − 1)/2

estimated correlation coefficients is plotted in the bottom left panel of Fig. 8. Notably, pairs

of spoke vectors from the same side (e.g. two spoke vectors in the “left side” of the ellipsoids

in Fig. 8) exhibit strong positive correlations, while those from the opposite sides exhibit

strong negative correlations. The horizontal dependence is in fact apparent by the way data

were generated (simultaneously bending all the spoke directions).

We point out that, due to obvious dependence among multivariate directions, to date, the

MS2 is the only meaningful model for this data. The iMS1 and the multivariate extension

of the BM are not capable of modeling such association. We check that when goodness-of-fit

tests based on Jupp (2005) and Székely and Rizzo (2013) are applied to the s-rep data, the

tests reject all other distributions except the MS2. See Section 2.8.6 for details.

For large enough sample sizes, we could use the test of association discussed in Section 2.4

for testing H0 : Λ = 0. Unfortunately, due to our small sample size, n = 30, and the large

number of parameters tested, 1653 (= K(K−1)/2), this is infeasible. Coping with this high-
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dimension, low-sample-size situation is beyond the scope of current paper, and we resort to

choosing only two spoke directions to test the dependence, but to repeating the testing for

many different pairs of total K = 58 spokes. For each pair of spokes, the likelihood-ratio test

produces a p-value for the pair. Investigating the empirical distribution of these p-values can

provide a rough estimate of the power. In Fig. 8(d), it can be seen that, at the significance

level 0.05, the MS2 test of dependence is indeed powerful, with a rejection rate of 98.5%.

To provide some context to this rate, the MS2 test was compared with other natural

choices of tests. We applied two methods that were previously used for s-rep data analysis:

the composite principal nested spheres (CPNS), discussed in Pizer et al. (2013), and the

least-square (concentric) small-circle fitting method of Schulz et al. (2015).

The CPNS-test is built as follows. First, the least-square small-circle is fitted to each

marginal direction on S2. With an understanding that the axis of the fitted small-circle points

to the north pole, the observations (say, xik from the ith sample, kth spoke) are represented in

spherical coordinates (θik, φik). For the purpose of testing “horizontal associations”, we only

keep the longitudinal coordinates θik. For any given pair (k, k′), Fisher’s z-transformation is

used to obtain the p-value in testing whether the correlation coefficient between θik and θik′

is zero. We refer to this test procedure by a CPNS test.

An LS test procedure is defined similarly to the CPNS test, except that the first step of

fitting individual small-circles is replaced by fitting concentric small-circles.

These two tests were also conducted for the same combinations of spoke directions, and

the empirical distributions of respective p-values are also plotted in Fig. 8. These alternative

tests appear to be too conservative, with rejection rates 11% for the LS test, and 11% for

the CPNS test (at level 0.05). Heuristically, the higher power of the MS2 test is due to

the superior fitting of the MS2 distribution. In particular, the “horizontal angles” predicted

from the MS2 tend to be linearly associated, while those from the least-squares fit tend to

be arbitrary. We refer to Section 2.8.5 for more numerical results. All in all, using the MS2

distribution shows a clear advantage in modeling and testing the horizontal dependence of

multivariate directions.
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2.7 HUMAN KNEE GAIT ANALYSIS

In biomechanical gait analysis, accurately modeling human knee motion during normal walk-

ing has a potential to differentiate diseased subjects from normal subjects. In particular,

the axis of bending (of the lower leg toward the upper leg) is believed to be a key feature in

the discrimination among the diseased and normal subjects (Pierrynowski et al., 2010). As

a step towards the development of statistical tests for a “two-group axes difference,” in this

section we employ the proposed distributional families in modeling the bending motion of

the knee.

The raw data set we use is obtained from a healthy volunteer and it is a time series of

coordinates of markers planted at the volunteer’s leg, recorded for 16 gait cycles. For each

time point, the directional vectors on (S2)5 were computed to be the unit vectors between

reference markers, as done in Schulz et al. (2015). As evident from Fig. 9, these directional

vectors are horizontally dependent of each other, which suggests that we can only fit the

MS2 distribution.

The first panel of Fig. 9 illustrates the result of MS2 fit to the all data points (n =

1000). There, we superimpose the fitted concentric circles to the observed directional vectors,

including their estimated axis, together with a hypothesized dominant bending axis µ∗0 =

(0, 1, 0)>, the left-right axis of the subject. The axis estimates from the iMS1 or the LS

method also provided similar estimates. The MS2 model seems to fit well with high estimated

horizontal correlation coefficients. We, however, identify a seemingly strong evidence against

using a single MS2. Specifically, as shown in Fig. 9 some directional vectors exhibit higher

variations for a subset of time points.

In fact, the data consist of many inhomogeneous periods of the gait cycle. We focus

on the “swing” and “stance” periods, and separately analyze subsampled data from each

period (nsw = 66 and nst = 118). The MS2 model fits well for the swing period data;

see Section 2.8.6 for a goodness-of-fit analysis. The axis of swing is estimated at µ̂
(sw)
0 =

(0.013, 1.000, 0.005)>, virtually the same as the hypothesized axis µ∗0. With the p-value 0.16,

we accept that the axis of swing is the left-right axis of this healthy person. For the stance

period, excluding the highly-irregular directions shown as dark blue points in Fig. 9(c), the
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MS2 model also fits well. We confirm that while in stance, the axis of major rotation differs

from µ∗0 with the p-value less than 10−5 in testing H0 : µ0 = µ∗0. The estimated axis for the

stance period is µ̂
(st)
0 = (0.11, 0.994, 0.006)>, about 6 degrees away from µ∗0.

While the MS2 distribution was useful in making inference on the bending axis of partial

knee motions, future work for this type of data lies in the development of a two-sample axis

difference test.

(a) All data points

(b) Swing period (c) Stance period

Figure 9: Knee gait data: Observed directional vectors overlaid with the hypothesized (black

dashed) and estimated (blue dashed) axes as well as the MS2-fitted small circles. The

directions along the north-most circle in the stance period exhibit a higher and irregular

pattern of variation. In (a), colors code time indices. In (b) and (c), different colors represent

different S2. The data are horizontally associated, with correlation coefficients ranging from

0.17 to 0.97 (in absolute values), which are significantly different from zero.

35



2.8 TECHNICAL DETAILS AND SUPPORTING MATERIALS

2.8.1 Proofs of lemmas and propositions

We provide a technical lemma, referenced in Section 2.3.1, and proofs of Propositions 1 and

2.

Lemma 3. If X ∼S1(µ0, µ1, κ0, κ1), then E(X) is a linear combination of µ0 and µ1.

Proof of Lemma 3. Suppose that for some a, b, c ∈ R, v ∈ Sp−1 which does not lie in the

span of µ0 and µ1, E(X) = aµ0 + bµ1 + cv. Then choose a B ∈ O(p) such that Bµ0 = µ0,

Bµ1 = µ1 but Bv 6= v. By Proposition 1(i), BX ∼ S1(µ0, µ1, κ0, κ1). Thus E(X) = E(BX),

which in turn leads to aµ0 + bµ1 + cv = aµ0 + bµ1 + cBv, which is true only if c = 0. This

gives the result.

Proof of Proposition 1. Note that if X ∼ S1(µ0, µ1, κ0, κ1), then BX ∼ S1(Bµ0, Bµ1, κ0, κ1).

The argument is true when S1 is replaced by S2. Claim (ii) is verified by comparing respective

density functions. In (i), verifying the sufficient condition is trivial, thus omitted.

Now suppose that X and BX both have the S1(µ0, µ1, κ0, κ1) distribution. Using the

parametrization of (2.10), in particular γ = 2κ0νµ0 + κ1µ1, we have for any x ∈ Sp−1,

(Bγ)>x = γ>x and
(
(Bµ0)>x

)2
= (µ>0 x)2, which in turn leads to Bγ = γ and Bµ0 = ±µ0.

Plugging in Bµ0 = −µ0 into the equation Bγ = γ, we get

‖Bµ1‖2 = ‖4ν κ0

κ1

µ0 + µ1‖2 = 1 + 8ν2κ0/κ1(1 + 2κ0/κ1) > 1,

which contradicts to the assumption that B is orthogonal. Thus Bµ0 = µ0, in which case,

Bµ1 = µ1 as well.

Next suppose that Y and BY both have the S2(µ0, µ1, κ0, κ1) distribution. Without loss

of generality, suppose κ0 = κ1 = 1. From (2.6), we have for any x ∈ Sp−1,

−(µ>0 x−ν)2 +
µ>1 x− νµ>0 x√

(1− ν2)(1− (µ>0 x)2)
= −(µ>0 Bx−ν)2 +

µ>1 Bx− νµ>0 Bx√
(1− ν2)(1− (µ>0 Bx)2)

. (2.29)
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Plugging in x = ±µ0 in (2.29) yields

−(1− ν)2 = −(a− ν)2 + (b− νa)/
√

(1− ν2)(1− a2),

−(1 + ν)2 = −(a+ ν)2 − (b− νa)/
√

(1− ν2)(1− a2),

where a = µ>0 Bµ0, b = µ>1 Bµ0. Solving the above system of equations, we get a = µ>0 Bµ0 =

±1, thus Bµ0 = ±µ0. Suppose Bµ0 = −µ0, so that (2.29) becomes

(
(Bµ1)> − µ>1 )x = cµ>0 x, c = ν−1(

√
(1− ν2)(1− (µ>0 x)2)− 1),

which implies that Bµ1 − µ1 is parallel to µ0. However, the coefficient c is not a constant

function of x, and there exists an x such that ‖µ0‖ = c−1 ‖Bµ1 − µ1‖ 6= 1, which contradicts

the fact that µ0 ∈ Sp−1. Thus Bµ0 must be µ0, in which case we have Bµ1 = µ1 as well.

Proof of Proposition 2. For a given h > 0, let γ = 2κ0νµ0 + κ1µ1 and Ah = κ0µ0µ
>
0 + hIp.

Then the S1 density (2.5) can be expressed as the Fisher-Bingham form (2.10):

fS1(x;µ0, µ1, κ0, κ1) = α(γ,Ah) exp{γ>x− x>Ahx}

where α(γ,Ah) satisfies

a(κ0, κ1, ν) = α(γ,Ah) exp{−κ0ν
2 + h}. (2.30)

For the purpose of evaluating the value of a(κ0, κ1, ν), or equivalently α(γ,Ah) for the

given value of h, one can assume without losing generality that µ0 = (1, 0, . . . , 0)> and

µ1 = (ν,
√

1− ν2, 0, . . . , 0), so that γ = (ν(2κ0 +κ1), κ1

√
1− ν2, 0, . . . , 0)>, and the vector of

diagonal values of Ah is λ := (2(κ0 + h), h, . . . , h). The jth element of ξ, in the statement of

the proposition, is then given by ξj := γj/2λj. With these notations, Proposition 1 of Kume

and Wood (2005) gives

α(γ,Ah) = 2πp/2|Ah|−1/2g(1) exp{ξ>Ahξ}.

Hence, by (2.30), we have (2.17).
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2.8.2 Convergence of algorithm for S1 estimation

We confirmed that both of our algorithms in fitting MS1 and MS2 models converge quickly

to local minima of the negative log-likelihood function, in all of the data situations we tested.

As an example, the quick convergence of the proposed algorithm in fitting the S1 density

for a toy data set is illustrated in Fig. 10. The left panel of the figure shows the data we

used, overlaid with the true and estimated parameters (shown as small circles). The right

panel shows the fast decay of the negative log-likelihood, evaluated at each iteration.

Figure 10: (left) Example data on S2 following the S1, true parameters (shown as black)

and fitted parameters (red). (right) The algorithm of fitting the S1 model requires only 17

iterations to reach the minimum of the negative log-likelihood function.

2.8.3 Null distributions and empirical powers of tests

Null distribution of Wn. As referenced in Section 2.4, we demonstrate that the empirical

null distributions of the test statistics Wn are indeed approximately chi-square distributed

where we use a moderate sample size n = 30. To check this, we use Q-Q envelope plots

(Lee, 2007) of test statistics under the null hypotheses. Recall that the parameter space
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for the iMS1 and iMS2 models is given by Θind = Sp−1 × (Sp−1)K × (R+)K × (R+)K for

θind = (µ0,µ1,κ0,κ). For the more general GMS2 model including associations, we have

ΘGMS2 = Θind × (R(p−1)2)K(K−1)/2 for θGMS2 = (θind,B). Note that in Hypothesis 1, using

MS2 model, we consider only p = 3, whose parameter space is Θ = (θind × (R)K(K−1)/2) for

θ = (θind,Λ).

1. Test of association. H0: Λ = 0, or θ ∈ Θ0 = Sp−1×(Sp−1)K×(R+)K×(R+)K×{0}.

Under H0, the model degenerates to the iMS2 and there is no horizontal dependence.

2. Test of axis. H0: µ0 = µ∗0, or θ ∈ Θ0 = {µ∗0}×(Sp−1)K×(R+)K×(R+)K×(R)K(K−1)/2.

This is to test whether a predetermined axis µ∗0 of the small sphere is acceptable.

3. Test of great-sphere. H0: ν = 0, or θ ∈ Θ0 ' Sp−1 × (Sp−2)K × (R+)K × (R+)K ×

(R)K(K−1)/2. (A ' B means that A and B are diffeomorphic.) This is to test whether the

underlying spheres are great spheres with radius 1.

4. Test for von Mises-Fisher distribution. H0: κ0 = 0, or θ ∈ Θ0 ' Sp−1 × R+.

Under H0, there is no “small-circle feature.”

5. Test for Bingham-Mardia distribution. H0: κ1 = 0, or θ ∈ Θ0 ' Sp−1 × R+.

Under H0, there is no unique mode.

We provide empirical null distributions for Hypotheses 2–5 (labeled as (a)–(d)) while

the full model is the S1 distribution. The size of the test of association (Hypothesis 1) can

be checked in Fig. 12. The Q-Q envelope plots for each of the test statistics are shown in

Fig. 11.

In each panel of Fig. 11, the Quantile-Quantile plot of Wn (with respect to the asymptotic

null distribution), simulated under each corresponding null hypothesis, is shown as the red

curve. This is overlaid with 100 Q-Q plots (shown in blue curves), obtained from the random

samples of the same size, following the theoretical chi-squared distribution. The blue curves

provide an envelope, representing the natural variation of χ2 samples. Based on Fig. 11,

arguing as in Lee (2007), we conclude that the test statistic Wn approximately follows the

chi-square distribution.

Empirical powers of the tests. We provide empirical powers of the proposed likelihood

ratio tests for the test of associations in MS2 (Hypothesis 1) and Hypotheses 3 and 5 under
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(a) H0: µ0 = µ∗0 (b) H0: ν = 0

(c) H0: κ0 = 0 (d) H0: κ1 = 0

Figure 11: Q-Q envelope plots for testing the asymptotic distribution of Wn against χ2
df ,

where df = q1− q2 denotes the corresponding degrees of freedom. The sample size is n = 30.

For each case, the Q-Q plot of the test statistics (the red curve) is inside the acceptable

variation (given by the envelope within the blue lines). See text and Lee (2007) for the use

of the Q-Q envelope plot.
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S1. The powers of the test for von Mises-Fisher distribution (Hypothesis 4) are also reported

in Section 2.5.3. In all simulations, we used 200 repetitions to compute the empirical rejection

rates, at significance level 0.05.

• Test of association (MS2). Hypothesis 1. See Fig. 12. This is to test H0: iMS2 vs.

H1: MS2. In other words, H0: λjk = 0 for all j 6= k, j, k = 1, . . . , K. Empirical powers

for K = 2 and 3 are shown in Fig. 12, for various alternative settings. We reparametrize

Λ using the correlation coefficient ρ, as follows. For K = 2, the parameters (κ0,κ, λ12)

are parameterized by σv, σh, ρ, representing the vertical standard deviation, horizontal

standard deviation, and horizontal correlation coefficient;

κ0 = (2σ2
v)
−1,

 κ1 −λ12

−λ12 κ2

 =

 σ2
h ρσ2

h

ρσ2
h σ2

h

−1

. (2.31)

Figure 12 shows that for the cases K = 2 and 3 the power sharply grows from zero to

1, with a notably hike at ρ = 0.3. The empirical type I error rates are controlled below

the significance level 0.05. The figure is generated for sample size n = 100 from the MS2

distribution with the fixed vertical (σ2
v = 0.005) and horizontal (σ2

h = 1) dispersions but

with several values of the association parameter (ρ = 0, 0.1, . . . , 0.9).

• Test of great-sphere (S1). Hypothesis 3. See Fig. 13. The true parameters are set so

that the angles in the small circle are either 90◦ (i.e., H0 is true), 80◦, 70◦ and 60◦ (the

latter three fall under the alternative hypothesis H1). These situations are denoted as

cases (a)-(d) in Fig. 13, where we visualized a sample of size 100 for each of the cases,

in order to give a visual impression of the “effect size”.

• Test for Bingham-Mardia distribution (S1). Hypothesis 5. See Fig. 14. In the

figure, the null distribution (the BM distribution) is shown in (a). Three different alter-

native distributions are shown in (b)–(d).

2.8.4 Additional simulation results

As referenced in Section 2.5.1, we provide a supplementary figure and additional simulation

results.
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(a) K = 2 (MS2)

(b) K = 3 (MS2)

Figure 12: Empirical powers of the test of association at significance level 0.05. The rates

of rejecting H0 : λjk = 0 for all j 6= k, j, k = 1, . . . , K computed from 200 repetitions are

shown.
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(a) S2 (arccos(ν) = 90◦) (b) S2 (arccos(ν) = 80◦)

(c) S2 (arccos(ν) = 70◦) (d) S2 (arccos(ν) = 60◦)

Figure 13: Empirical power β̂ of testing for a great-sphere (S1): β̂ = 0.045, 1, 1, 1 for cases

(a), (b), (c) and (d), respectively. Examples of random samples of size n = 100 are shown.
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(a) BM (κ = 100)
S2 (κ0 = 100, κ1 = 0)

(b) S2 (κ0 = 100, κ1 = 0.5)

(c) S2 (κ0 = 100, κ1 = 5) (d) S2 (κ0 = 100, κ1 = 10)

Figure 14: Empirical power β̂ of testing for the Bingham-Mardia distribution (S1): β̂ =

0.065, 0.925, 1, 1 for cases (a), (b), (c) and (d), respectively. Examples of random samples

of size n = 100 are shown.
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Bivariate data on (S2)2. Figure 15 illustrates random samples from settings (a)–(f) used

in Tables 3 and 4.

Robustness against model misspecification. To check robustness against model mis-

specification, we use a signal-plus-noise model that is neither S1 nor S2. This model generates

observations on (S2)K , that are rotated from a reference point, and perturbed by a spherical

noise. Given µ0, µj ∈ S2, the perturbation model for an observation xj ∈ S2 is

xj = R(µ0, θj)µj ⊕ εj ∈ S2, j = 1, . . . , K, (2.32)

where R(µ0, θj) is the rotation matrix so that R(µ0, θj)µj gives the rotation of the vector

µj by an angle θj about the axis µ0. The action ⊕ is defined as v ⊕ ε = (v + ε)/‖v + ε‖.

The spherical error εj is independent of θ and is sampled from N(0, σ2
vI3) for σ2

v > 0. In the

univariate case, θ1 is sampled from a normal distribution with standard deviation σh, and

for the bivariate case, (θ1, θ2) is sampled from a bivariate normal with the precision matrix

specified in (2.31).

Just like Tables 2 and 3, we report means and standard deviations of the angular product

errors in Table 5 (univariate cases) and Table 6 (multivariate cases). In Tables 5 and 6, the

dispersion parameters (σ2
v , σ

2
h, ρ) are carefully chosen so that Case (a) (or b, c, d) of Table 5

corresponds to Case (a) (or b, c, d, respectively) of Table 2. Likewise Case (a) (or b, c, d)

of Table 6 corresponds to Case (a) (or b, c, d, respectively) of Table 3.

Our estimates perform rather well against model misspecification. The performance of

our estimates is comparable to that of the least-squares estimates, which is designed to

estimate the parameters of the signal-plus-noise model. The angular product errors from

our estimates (S1, S2, iMS1, iMS2 and MS2) in Tables 5 and 6 are comparable to the

least-squares estimates, and are often smaller than the BM estimates.

2.8.5 Associations among s-rep spokes

As referenced in Section 2.6.4, we provide more simulation results regarding the test of

association, showing the advantage of using the MS2 model in analyzing s-rep data.

Test of association applied to bi- and tri-variate directions. Previously, we repeat-

edly applied the test of association, and its competitors, for a pair of spoke directions (i.e.
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(a) (κ0j , κj , λ12) = (10, 1, 0) (b) (κ0j , κj , λ12) = (100, 1, 0)

(c) (κ0j , κj , λ12) = (100, 10, 0) (d) (κ0j , κj , λ12) = (10, 2, 1.5)

(e) (κ0j , κj , λ12) = (100, 2, 1.5) (f) (κ0j , κj , λ12) = (100, 20, 15)

Figure 15: Random samples of size n = 50 from the MS2 model on S2 × S2 used in our

simulations. Different colors represent different observations. Models (a)–(c) are from iMS2,

while models (d)–(f) are from the MS2, with λ12 > 0 (positive association parameters).
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Method (a) (b) (c)

S1 7.06(3.74) 1.67(1.16) 10.70(10.77)

S2 7.05(3.89) 1.67(1.08) 10.32(9.31)

BM 10.09(7.01) 1.80(1.25) 11.91(10.78)

LS 6.46(3.50) 1.66(1.10) 10.93(8.96)

Table 5: Small-circle estimation performances for univariate data on S2. Means (standard

deviations) of the angular product errors (in degrees). Data are generated from the signal-

plus-noise model (2.32) with K = 1.

Independent(ρ = 0) Dependent(ρ = 0.7)

Method (a) (b) (c) (a) (b) (c)

iMS1 5.22(1.93) 1.51(0.67) 3.16(3.08) 5.24(2.16) 1.37(0.59) 3.49(4.45)

iMS2 5.15(2.43) 1.50(0.67) 3.78(2.24) 5.03(2.26) 1.36(0.58) 3.62(2.44)

MS2 5.14(2.41) 1.50(0.67) 3.77(2.22) 5.13(2.33) 1.36(0.58) 3.62(2.42)

BM 5.54(2.03) 1.52(0.67) 6.84(3.70) 6.03(3.07) 1.37(0.60) 6.63(3.76)

LS 4.71(2.05) 1.45(0.68) 3.79(2.26) 4.73(2.23) 1.32(0.58) 3.65(2.43)

Table 6: Small-circle estimation performances for bivariate data on S2×S2. Means (standard

deviations) of the angular product errors (in degrees). Data are generated from the signal-

plus-noise model (2.32) with K = 2.
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bivariate directions, K = 2). We report an additional figure (extending Fig. 8 (d)) for the

bivariate case, and results of power comparison for a tri-variate case. For the tri-variate case

(K = 3), three spokes are randomly chosen among the 58 spokes of the s-rep, and the test of

association is applied to compute the p-value for testing H0 : Λ = 0. The two competitors,

LS and CPNS tests, discussed in Section 2.6.4, are also applied to obtain corresponding

p-values. This is repeated 200 times to obtain an empirical distribution of p-values from the

MS2, LS, and CPNS tests of association. Figure 16 summarizes the results. The top row

corresponds to the bivariate case (subfigure (b) is also shown in Fig. 8); the bottom row

corresponds to the tri-variate case. The left column shows histograms from 200 observed

p-values, from the MS2, LS, and CPNS tests of association, respectively. The right column

shows the empirical distribution functions (e.d.f.) of the p-values. If the significance level

is set at α ∈ (0, 1), the value of the e.d.f. at α gives the empirical rate of rejection at the

significance level α. For example, if α = 0.05 in the bivariate case, shown in subfigure (b),

the power of the MS2 test of association is estimated at 97%. Notably, the proposed test

are much more powerful than the LS test and CPNS test (11 % and 13.5%, respectively).

For K = 3 case, the power of the MS2 test, 100%, is higher than those of the LS test and

CPNS test (10.5 % and 10%, respectively).

Data examples for which MS2 test of association is superior. What makes the

MS2 test of association much more powerful than the other two? In Section 2.6.4, we write

“the higher power of the MS2 test is due to the superior fitting of the MS2 distribution.”

To support this claim, we show data examples where the null hypothesis of no association

is rejected by the MS2 test, but is not rejected by other tests in Fig. 17 (for the bivariate

case) and Fig. 18 (for the tri-variate case). In each of these figures, we show the original

data in the left column with different rows corresponding to different small-circle fittings by

the MS2 model (top row), the CPNS model (middle row) and the LS model (bottom row).

Note that the MS2 and LS models fit concentric circles, while the CPNS model fits circles

with generally different axis. In the middle column, the (orthogonal) projections of the data

to the corresponding small-circles are shown. In essence, the MS2 test of association and

the LS and CPNS tests of correlation are applied to the bi- or tri-variate horizontal angles

along the small circles. To give a visual impression of the “linear” association between the
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horizontal angles, the scatterplots of the horizontal angles are shown in the right column.

In both figures, we check that the small-circle fitting by the MS2 model (top row) provides

linearly associated angles. Thus the test of association rejects the null hypothesis of no

association. On the other hand, the small-circle fitting by either CPNS (middle row) and LS

(bottom row) provides non-linearly associated angles (which is expected, as the both fitting

(a) K = 2 (b) K = 2

(c) K = 3 (d) K = 3

Figure 16: Histograms ((a) and (c)) and the empirical distribution functions ((b) and (d))

of p-values. The MS2 test exhibits higher powers than LS and CPNS tests.
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procedures do not make use of the dependence structure). The test of correlation applied

to these data rarely rejects the null hypothesis, resulting in the low powers of the LS and

CPNS tests of association.

2.8.6 Goodness of fit

In this section, we briefly report the results of goodness-of-fit analysis for fitting the s-rep

data, discussed in Section 2.6, by the MS2 distribution. A bivariate directional data set

is used in fitting the parameters of the MS2, iMS2, the BM (our multivatiate extension of

the Bingham-Mardia distribution) and the product measure given by two independent von

Mises-Fisher distributions.

The goodness-of-fit from these distribution families are validated in two ways. First, we

visually compared the raw data (on S2 × S2) with a Monte Carlo sample of the same size

(n = 30) from each fitted distribution. As the directions are horizontally dependent, only

the random sample from the MS2 is visually similar to the raw data; see Fig. 19.

Next, we test the null hypothesis that the raw data are from the given family of dis-

tribution. We chose to use the Sobolev test of goodness-of-fit (Jupp, 2005, 2008) that is

designed to test the goodness-of-fit for any distribution family on a compact manifold, and

a test based on the energy statistic (Székely and Rizzo, 2013).

In testing the null hypothesis that the data are from the MS2 distribution, the Sobolev

test statistic is computed as follows. Let θ̂ be the MLE of the parameters of the MS2

computed from the data {xi : i = 1, . . . , n} where for each i, xi = (xi1, xi2). The weighted

Sobolev statistic is

T =
1

n

∥∥∥∥∥
n∑
i=1

t(xi)

f(xi; θ̂)

∥∥∥∥∥
2

,

where 〈t(xi), t(xj)〉 = P1(xTi1yi1)+P1(xTi2yi2), and P1(a) is the Legendre polynomial of degree

1. For the null distribution of the Sobolev test statistic, we used bootstrapped samples from

the fitted distribution, following the suggestion of Jupp (2005). For the data shown in

Fig. 19, the test accepts the hypothesis of MS2 distribution with p-value 0.91. While the

the hypothesis of BM distribution is rejected with p-value 0, we found that the Sobolev test

has no power against the iMS2 distribution, with p-value 0.82. Although we did not test
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(a) MS2 - Original data
and estimates

(b) MS2 - Projected data (c) MS2 - Scatter plot of
horizontal angles

(d) CPNS - Original
data and estimates

(e) CPNS - Projected
data (f) CPNS - Scatter plot of

horizontal angles

(g) LS - Original data
and estimates

(h) LS - Projected data
(i) LS - Scatter plot of hor-
izontal angles

Figure 17: Data example of MS2, CPNS, and LS fittings for a bivariate data set, for which

the MS2 test rejects the null hypothesis of no association, while the LS and CPNS tests do

not reject. Bright yellow arcs are on the front side of the sphere, and darker yellow arcs are

on the back side of the sphere. The horizontal angles predicted from the MS2 tend to be

linearly associated, while those from the LS and CPNS fit tend to be arbitrary.
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(a) MS2 - Original data
and estimates

(b) MS2 - Projected data (c) MS2 - Scatter plot of
horizontal angles

(d) CPNS - Original
data and estimates

(e) CPNS - Projected
data (f) CPNS - Scatter plot of

horizontal angles

(g) LS - Original data
and estimates

(h) LS - Projected data (i) LS - Scatter plot of hor-
izontal angles

Figure 18: Data example of MS2, CPNS, and LS fittings for a trivariate data set, for which

the MS2 test rejects the null hypothesis of no association, while the LS and CPNS tests do

not reject. Bright yellow arcs are on the front side of the sphere, and darker yellow arcs are

on the back side of the sphere. The horizontal angles predicted from the MS2 tend to be

linearly associated, while those from the LS and CPNS fit tend to be arbitrary.
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the iMS1 distribution, due to much longer computation time needed in random sampling,

we believe the result will be similar to that of the iMS2 distribution.

To further investigate the goodness-of-fit for the iMS2 distribution, we utilized the energy

statistic (Székely and Rizzo, 2013), defined for a two-sample comparison. Specifically, in

testing the goodness-of-fit for the MS2 distribution, a random sample {yi} of size n∗ = 60

is obtained from the MS2 distribution fitted from the data {xi}. The energy statistic is

e =
nn∗
n+ n∗

( 2

nn∗

n∑
i=1

n∗∑
j=1

‖xi − yj‖

− 1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖ −
1

n2
∗

n∗∑
i=1

n∗∑
j=1

‖yi − yj‖
)
.

The null distribution of e given {yi} is obtained by permuting the membership to {xi} or

{yi} of n+n∗ observations. Since the corresponding p-value depends on the random sample

{yi}, the above procedure is repeated for R = 100 independent random samples {yi}, and

we use the average of R p-values as the p-value of the test in testing H0: data follow the

MS2 distribution. For the data shown in Fig. 19, the test accepts the hypothesis of MS2

distribution with p-value 0.23. The p-value for the hypothesis of iMS2 distribution turns out

to be 0.10, which is at the border between acceptance and rejection with significance level

0.1. The hypotheses of BM and von Mises-Fisher distribtions are rejected with p-value 0.

The analysis is repeated for a number of other pairs of directions. For all pairs we tested,

the visual comparison between the raw data and a random sample from the fitted density

leads to a similar conclusion that was made by inspecting Fig. 19. The goodness-of-fit tests

provided a mixed result. While the hypotheses of BM and von Mises-Fisher distribtions are

rejected for all pairs, there are cases where the MS2 distribution is also rejected. However,

in each case, the p-value from testing the MS2 is larger than the p-values from testing the

BM. The analysis is also repeated for the knee data, discussed in Section 2.7. The results are

similar; the p-value for the MS2 is 0.19, accepting the MS2 distribution, and the p-values for

the iMS2, BM are respectively 0.06, 0, and 0, showing that the MS2 is the only distribution

that fits well to the data.

53



(a) S-rep directions (b) MS2

(c) iMS2 (d) BM

Figure 19: (a) A pair of raw s-rep directions on S2× S2). Different colors represent different

observations. Two directions from each observation are joined by a line segment to empha-

size the apparent association among directions. (b) a random sample from the fitted MS2

distribution. (c) a random sample from the fitted iMS2 distribution. (d) a random sample

from the fitted BM distribution. Here, we superimposed the BM-fitted small circles. Since

it is clear that the data do not follow the von Mises-Fisher (vMF) distribution, we omit the

visualization of the vMF sample.
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3.0 TEST OF MODALITY FOR ROTATIONALLY SYMMETRIC

DISTRIBUTIONS BY MULTIVARIATE KURTOSIS

3.1 INTRODUCTION

Analysis of principal nested spheres (PNS) proposed by Jung et al. (2012) is a flexible di-

mension reduction method for directional data, which is an extension of principal component

analysis to spheres. In the PNS, the dimension reduction is an iterative procedure of dis-

carding unimportant dimensions. It is specifically designed to capture a certain type of

non-geodesic variation by fitting a small sphere.

Figure 20 shows typical data situations on the unit 2-sphere, to which the PNS procedure

is applied. These examples are random samples from several spherical distributions; a von

Mises-Fisher (vMF; Mardia and Jupp, 2000, p.168) for (a), a small sphere distribution of the

second kind (S2) introduced in Chapter 2 for (b) and (d), a Bingham-Mardia (BM; Bingham

and Mardia, 1978) for (c) and (e). To visualize the situations, we assumed the dimension as 2,

but it can be straightforwardly generalized to higher dimension. The first case indicates that

directional vectors are concentrated around a point (center) without any major direction

of variation. The second and third cases represent the situation that directional vectors

show a non-geodesic major variation while the fourth and fifth cases show a geodesic major

variation. The difference between the second and third cases (also, between the fourth and

fifth cases) is that directional vectors in the second (and the fourth) case have a single mode

while there is no mode in the third (and the fifth) case in which case the distribution is

rotationally symmetric.

Since the PNS procedure captures a non-geodesic variation by fitting a small sphere,
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the data situations in Figure 20 (b) and (c) are the cases where the PNS is most beneficial

compared with other geodesic based dimension reduction methods (Fletcher et al., 2004;

Huckemann and Ziezold, 2006; Huckemann et al., 2010; Kenobi et al., 2010). For other

cases, a small sphere fit is undesirable because there is no major variation or a geodesic

major variation. To treat these cases appropriately, there have been several approaches

suggested. First, Jung et al. (2012) adapted a sequence of tests to detect both no major

variation and a geodesic major variation cases. As an alternative approach, Jung et al.

(2012) also utilized the Bayesian information criterion under Gaussian assumption. Eltzner

et al. (2017) proposed another parametric test approach to prevent a small-sphere-fit when

a cluster of directional vectors are concentrated around a single center (corresponds to the

case in Figure 20 (a)). Because our proposed method in this chapter aims to alternate the

existing approaches, we briefly review these and indicate limitations in Section 3.2.

The rest of this chapter is organized as follows. While reviewing existing methods in

Section 3.2, cases of which a small sphere fit is treated as an ‘overfitting’ and corresponding

hypotheses for testing approaches will be described. In Section 3.3, an intuitive approach

will be discussed, which uses the tangent space mapping to test rotational symmetry of

underlying distribution, whose hypothesis corresponds to a part of the second case of over-

fitting described in Section 3.2. In Section 3.4, we propose a new test, the test of modality,

(a) vMF (b) S2 (small) (c) BM (small) (d) S2 (great) (e) BM (great)

Figure 20: Random data examples representing possible situations of interest: There is (a)

no major variation, (b and c) a non-geodesic variation, (d and e) a geodesic variation.
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which uses the measure of multivariate kurtosis introduced by Mardia (1970). The test is

specifically designed for rotationally symmetric distributions. By investigating changes of

multivariate kurtosis for rotationally symmetric distributions based on modality, the idea of

the proposed test is described. We suggest to use a modified version of the sample kurtosis

as a test statistic, which is a consistent estimator of population kurtosis when the underlying

distribution is rotationally symmetric. The asymptotic distribution of the modified sample

kurtosis will also be investigated. The advantage of the proposed test, when applied to the

PNS procedure together with the test of rotational symmetry, is highlighted by numerical

examples in Section 3.5. In Section 3.6, as supporting information, an investigation of a

uniform distribution defined in a geodesic ball on the unit sphere is given. Last but not

least, detailed proofs and calculations are given in Section 3.7.

3.2 BACKGROUNDS

In this section, we briefly review several existing methods aiming at preventing overfitting

in PNS.

3.2.1 Sequential tests for preventing overfitting in PNS

Jung et al. (2012) considered two cases where a great sphere provides more appropriate fit

to the data.

Case I: Goodness-of-fit test

The first case is when the true major variation is along a great sphere as shown in Figure 20

(d) and (e). Note that when the sample is drawn from a continuous distribution, the PNS

procedure fits a small sphere whose geodesic radius is not exactly π/2 with probability 1. In

particular, even when the true geodesic radius is π/2, the fitted radius is close to but not

exactly π/2.

The likelihood ratio test for geodesic radius. To prevent this type of overfitting, the

PNS procedure adapted a likelihood ratio test for the geodesic radius r whose hypotheses
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are defined by

H0a : r = π/2 vs H1a : r < π/2. (3.1)

By assuming that the deviations of the samples from the subsphere are independently dis-

tributed as N(0, σ2), the likelihoods for the null and alternative hypotheses are calculated

and then the test is conducted by using Wilk’s theorem.

Case II: Isotropy test

The second case, which is of interest in this work, is where the data points are concentrated

around a point, not on a small sphere, so that there is no major variation along any direction.

An example of such a case is illustrated in Figure 20 (a). In this case, the best fit frequently

provides a small subsphere with unnecessarily small geodesic radius, which does not give a

meaningful decomposition.

The bootstrap von Mises-Fisher test for isotropy. To distinguish such a situation and

to choose a great/small subsphere appropriately, the PNS procedure provided the second

test, for a distribution function FX of X ∈ Sd, whose hypotheses are given by

H0b : FX is an isotropic distribution with a single mode, vs H1b : not H0b. (3.2)

A parametric bootstrap test is proposed by Jung et al. (2012) with an assumption of the von

Mises-Fisher distribution (Mardia and Jupp, 2000, p.168). By using the MLE of parameters,

the test statistic is designed to be large when FX is neither isotropic nor having a single mode,

then p-value is calculated by simulating bootstrap quantiles.

In the PNS procedure, these two tests are applied to each layer of subsphere fitting as

follows:

Step 1 : First, the likelihood ratio test for geodesic radius with hypotheses H0a vs H1a is

conducted. If H0a is accepted, then the procedure fits a great sphere with r = π/2 for

the current layer and proceed to the next.

Step 2 : If H0a is rejected, then the procedure runs the bootstrap vMF test with hypotheses,

H0b vs H1b. If H0b is accepted, then the procedure uses great spheres for all further

subsphere fittings.
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Step 3 : If H0b is rejected, then the fitted small sphere is used for the current layer and

proceed to the next layer.

We now give an example of how the above steps are applied to each of the data situations in

Figure 20. For the case (a), in Step 1, the null hypothesis H0a in (3.1) is frequently rejected

because the best fit is given by a small sphere with unnecessarily small radius. In Step 2, we

accept the null hypothesis H0b in (3.2), thus fit a great circle. A notable point here is that

the procedure uses great spheres for all remaining subsphere fittings without further test if

H0b is accepted, in other words, if the distribution is determined to be no major variation.

For data in (b) and (c), both H0a and H0b are rejected, so a small circle is fitted. For (d)

and (e), the null hypothesis H0a in Step 1 is accepted, so a great circle is fitted.

As described above, by adapting these two tests, the PNS procedure seems to cover all

data situations of interest successfully. However, there have been some limitations of this

procedure. First of all, because the test in Step 2 uses a bootstrap approach, it requires a

large number of repetitions to obtain a stable p-value and in practice it takes a long time.

In addition, the vMF distribution assumption made for the second test has been considered

to be misspecified. Specifically, in the real data set introduced in Chapter 1 (cf. Figure 2),

the directional vectors are often distributed without any major direction of variation similar

to the case (a) in Figure 20. However, these directions are distributed close to a uniform

distribution rather than the von Mises-Fisher distribution. In such a case, the bootstrap

vMF test is found to usually reject the null hypothesis H0b in Step 2. This results in fitting

a small circle, that is not desirable.

3.2.2 Bayesian information criterion in PNS

Another approach to detect whether a small sphere is overfitted, provided by Jung et al.

(2012), utilized the Bayesian information criterion (BIC) under the Gaussian assumption.

Like the likelihood ratio test in the sequential tests above, the deviations of the samples

from the subsphere are assumed to be independently distributed as N(0, σ2). Then, by

using the MLEs of σ2 under the small sphere model and the great sphere model, the BICs

are calculated and compared.
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Through various numerical examples, the BIC approach is found to be effective only for

Case I described in Section 3.2.1, i.e., for the case when the true major variation appears

along a great sphere as shown in Figure 20 (d) and (e). However, the method is found to be

poor in detecting Case II with no major variation.

3.2.3 Folded normal test

As an alternative test approach to prevent overfitting in PNS, Eltzner et al. (2017) proposed a

test that used the folded normal distribution to define the distribution of the angular distance

s of a data point X ∈ Sd from the center of the fitted small sphere p ∈ Sd: s = d(p,X). The

marginal distribution of s ∈ [0, π] is given by

f(s; p, ρ, σ) =

√
2πσ

C(ρ, σ)
sind−1(s)F(s; ρ, σ),

which is obtained by truncating the folded normal density F(s; ρ, σ), defined for s ∈ [0,∞),

F(s; ρ, σ) =
1√
2πσ

(
exp

(
−(s− ρσ)2

2σ2

)
+ exp

(
−(s+ ρσ)2

2σ2

))
.

The shape of the folded normal distribution is characterized by the value of a parameter ρ.

For ρ→∞ the density tends to a usual normal distribution centered at ρσ. For ρ→ 0 the

density becomes a halved normal of doubled height. For ρ ≤ 1 the mode of distribution stays

fixed at the origin, then it moves to the right for ρ > 1. Hence, for dimension d = 2, the

distribution of X ∈ S2 forms a modal-ridge along a ring when ρ > 1 which is the case where

a small sphere fit is desired, while ρ ≤ 1 yields a uni-modal distribution centered at p which

has no proper small spherical structure (no major variation). Therefore, the hypotheses H0b

and H1b in (3.2) are reformulated by

H0b : ρ = 1 vs H1b : ρ > 1.

If ρ̂MLE < 1, the distribution has its maximum at s = 0, i.e., at the center of small sphere

fit p, which allows us to accept the null hypothesis (so a great subsphere is fitted) without

test. If ρ̂MLE > 1, the choice of great or small sphere is determined by the likelihood ratio

test by using Wilk’s theorem.
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Eltzner et al. (2017) have shown by a simulation study that the folded normal test is

robust even under the null model , the von Mises-Fisher, of Jung et al. (2012). Furthermore,

because the test is based on a likelihood ratio test with an asymptotic chi-square distribution

of a test statistic, it is clearly faster than the bootstrap von Mises-Fisher test. However,

our simulation study in Section 3.5 shows that this test also does not always work well.

Specifically, when a set of concentrated data points around a center forms nearly a uniform

distribution, the result of test was unsatisfactory.

3.3 TEST OF ROTATIONAL SYMMETRY BY TANGENT SPACE

LIKELIHOOD RATIO TEST

In this section, we discuss a different approach to test whether the underlying distribution

of directional vectors on Sd is rotationally symmetric to alternate the bootstrap vMF test

and the folded normal test. Suppose a random direction X ∈ Sd has a distribution function

FX and a unique (geodesic) mean direction µ. Then, a rotational symmetry, a part of the

hypotheses H0b and H1b in (3.2) is tested by follows.

Assume that we now want to perform a test with hypotheses,

H0b′ : FX is rotationally symmetric, vs H1b′ : not H0b′ . (3.3)

To test these hypotheses, an efficient way is to consider the inverse exponential map of X

onto the tangent space at the mean direction, Tµ ∈ Rd. To facilitate understanding of the

approach, we temporarily assume d = 2. Now, let µ be the north pole (0, 0, 1)> without loss

of generality and ϕ be the exponential map Expµ : R2 → S2. Then the inverse exponential

map ϕ−1 is defined for x = (x1, x2, x3)> ∈ S2 by

ϕ−1(x) = Logµ(x) =

(
x1

θ

sin θ
, x2

θ

sin θ

)
,

where θ = arccos(x3) is the geodesic distance from the north pole to the point x. When FX

is rotationally symmetric with respect to the (geodesic) mean direction µ, then the image of

the inverse exponential map of X, ϕ−1(X), has the same marginal variance for any arbitrary

61



choice of coordinates for the tangent space. This allows us to re-write the hypotheses (3.3)

as

H0b′ : Σ = σ2Id , vs H1b′ : not H0b′ ,

where Σ is the variance-covariance matrix of Y = ϕ−1(X) and Id is the d-dimensional identity

matrix.

Now, if we assume a normal distribution for Y , then we can use the likelihood ratio

test. Let Y1, . . . , Yn (∈ Rd) be the images of inverse exponential map of random directions

X1, . . . , Xn (∈ Sd), and assume Y is normally distributed. Then, the log-likelihoods for the

null and alternative hypotheses, L0 and L1 respectively, are given by

L0 = −n
2

(log(|s2Id|) +
n∑
i=1

(yi − ȳ)>(yi − ȳ)/s2 + dn log(2π)

L1 = −n
2

(log(|S|) +
n∑
i=1

(yi − ȳ)>S−1(yi − ȳ) + dn log(2π),

where s2 = 1
d(n−1)

∑n
i=1(Yi− Ȳ )>(Yi− Ȳ ), and S is the sample variance-covariance matrix of

Yi’s. The likelihood ratio test statistic is Wn = −2(L0−L1), and, by Wilk’s theorem, Wn is

asymptotically chi-square distributed with degrees of freedom d2− 1, which is the difference

of the numbers of parameters to be estimated. Hence, when Wn > χ2
α,d2−1, we reject the

rotational symmetry.

Because this approach simply tests that the variance-covariance matrix is a scaled iden-

tity, it is geometrically intuitive and efficient in computing. In addition, it is not required to

assume a specific spherical distribution for the test. However, this test cannot stand alone

to distinguish all the cases concerned in Figure 20. Note that it only tests a rotational sym-

metry, which means that the test effectively distinguishes the case (a) of no major variation

from the cases (b) and (d) which have non-geodesic or geodesic major variation with a single

mode. But the cases (a), (c) and (e) cannot be separated by this test of rotational symmetry.
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3.4 TEST OF MODALITY FOR ROTATIONALLY SYMMETRIC

DISTRIBUTIONS

Recall that among the cases in Figure 20, the likelihood ratio test for geodesic radius given

in Case I in Section 3.2.1 is used to effectively separate (b, c) and (d, e). In addition, the

cases (b) and (d) are successfully separated from others by the test of rotational symmetry

given in Section 3.3. So, in this section, we propose a test to discriminate (a) from (c) and

(e).

3.4.1 The measure of multivariate kurtosis

Mardia (1970) proposed a measure of multivariate kurtosis and investigated its properties.

Let X1, . . . , Xn be a random sample from a d-variate population with random vector X

having its density f , mean vector µ and covariance matrix Σ. Then the population measure

of multivariate kurtosis and the corresponding sample kurtosis are defined by

κ(f) = E{(X − µ)>Σ−1(X − µ)}2 (3.4)

k(X1, . . . , Xn) =
1

n

n∑
i=1

{(Xi − X̄)>S−1(Xi − X̄)}2, (3.5)

where X̄ and S are the sample mean vector and covariance matrix, respectively.

The measure of multivariate kurtosis is known to be invariant under the nonsingular

transformation of X: X 7→ AX+b for A ∈ GL(d) and b ∈ Rd. By letting Z = Σ−1/2(X−µ),

the population measure of multivariate kurtosis (3.4) is re-written by

κ(fZ) = E{Z>Z}2 = E{‖Z‖4},

where ‖ · ‖ is the usual L2-norm. Hence, the measure of multivariate kurtosis can be under-

stood as the fourth moment of the distance of the standardized data points from the origin.

This indicates that κ(f) is the straightforward extension of kurtosis in the univariate case to

a general dimension d > 2. Note that, for a univariate random variable Y with its mean µY

and variance σ2
Y , the kurtosis is defined by the fourth standardized moment E[(Y −µY )/σY ]4.

The sample measure of multivariate kurtosis (3.5) is also re-written by the same way with

replacing µ and Σ by X̄ and S, provided that S is of full rank.
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3.4.2 The multivariate kurtosis for rotationally symmetric distributions

From now on, we discuss the multivariate kurtosis of several distributions of interest. When

we consider rotationally symmetric distributions, they can be separated into three cases

based on modality as follows:

Modality 1 : A single mode at the center of the distribution, i.e., the distribution is peaked

at the center, for example, a normal distribution with Σ = σ2Id.

Modality 2 : No mode (or infinitely many modes), for example, a ball uniform distribution

(3.6).

Modality 3 : Modal-ridge along a circle (or sphere), i.e., the distribution is evenly peaked

along a circle (or sphere), for example, a Bingham-Mardia distribution (Bingham and

Mardia, 1978).

It is intuitively clear, by the definition, that there is no rotationally symmetric distributions

having two or more (countable) number of modes. In this section, we investigate the multi-

variate kurtosis of these distributions representing the three different cases of modality. For

simplicity, we will consider the distributions on Rd, rather than on Sd−1. These distributions

can be considered as the images in a tangent space of rotationally symmetric distributions on

the unit sphere Sd, or as good approximations of them. Hence, by investigating the multivari-

ate kurtosis of these distributions, we reach to the idea of testing modality for rotationally

symmetric distributions.

The multivariate normal distribution. Let X be a d-dimensional multivariate nor-

mal random variable with mean µ = 0 and covariance matrix Σ = σ2Id. By the invariance

property of multivariate kurtosis under the nonsingular transformation, the kurtosis does

not depend on the mean and covariance matrix. However, since we are considering rota-

tionally symmetric distributions in this section, we assume the form of covariance matrix

to be a scaled identity matrix. This multivariate normal distribution represents Modality 1

with a single mode. Mardia (1970) showed that the population multivariate kurtosis of a

multivariate normal distribution is given by

κ(φ) = d(d+ 2),
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where φ denotes the pdf of multivariate normal. Note that the kurtosis only depends on the

dimension, but not on the parameters µ and Σ of the normal distribution.

The ball and ring uniform distributions. Now, we consider two other distributions

which represent Modalities 2 and 3, respectively. First, let Y = (Y1, . . . , Yd)
> be a d-variate

random variable which is uniformly distributed in a d-dimensional ball centered at the origin

with a radius θ > 0 whose density is defined by

fθ(y1, . . . , yd) =
1

Vθ
I[
∑d

i=1 y
2
i≤θ2]. (3.6)

Here, I is the indicator function and Vθ is the volume of d-dimensional ball, Vθ = πd/2θd

Γ(d/2+1)
.

Clearly, the distribution is rotationally symmetric and has no mode (or infinitely many modes

because all points in the range of the distribution are modes). From now on, we simply call

the distribution with its density (3.6) by a ball uniform distribution. When d = 2, it is

the uniform distribution on the disk with radius θ, which is a good approximation for a

(geodesic) ball uniform distribution on S2. This approximation will be discussed in detail in

Section 3.6.

Next, let U = (U1, . . . , Ud)
> be a d-variate random variable which is uniformly distributed

in a ‘hollowed’ d-dimensional ball whose density is defined with two radii (θ1, θ2) by

fθ1,θ2(u1, . . . , ud) =
1

Vθ1 − Vθ2
I[θ21≤

∑d
i=1 u

2
i≤θ22 ]. (3.7)

Here, Vθi is the volume of ball with the radius θi, i = 1, 2. When the dimension is 2, as

depicted in Figure 21, the distribution is defined in a ring. So, we simply call the distribution

with its density (3.7) by a ring uniform distribution. We notice that the distribution is

rotationally symmetric but has no mode.

The examples in Figure 20 (c) and (e), which represent Modality 3 with a modal-ridge

along a circle, are generated from the Bingham-Mardia distribution. We use the ring uniform

distribution as a simple approximation of rotationally symmetric distributions with a modal-

ridge to investigate how the modality affects the multivariate kurtosis of the distributions.

In particular, because the ball uniform distribution is a special case of the ring uniform

distribution when θ1 = 0, it is now possible to explain the change of kurtosis by a few

parameters.
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Figure 21: The ring uniform distribution is defined in a hollowed d-dimensional ball, which

is a ring when the dimension is 2. As θ1 getting smaller to 0, the ring uniform distribution

is getting closer to the ball uniform distribution.

Proposition 4. The population measure of multivariate kurtosis for

1. the ball uniform distribution is

κ(fθ) =
d(d+ 2)2

d+ 4
; (3.8)

2. the ring uniform distribution is

κ(fθ1,θ2) =
d(d+ 2)2

(d+ 4)
· (1− ηd)(1− ηd+4)

(1− ηd+2)2
, (3.9)

where η = θ1/θ2 (∈ [0, 1]).

Proof. The population multivariate kurtosis (3.4) for the ball and ring uniform distributions

can be calculated using the following lemma, a proof of which is given in Section 3.7.1.

Lemma 5. Let U = (U1, . . . , Ud)
> be a d-variate ring uniform random variable with radii

parameters (θ1, θ2). Then,
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1. for any j = 1, . . . , d and a given positive integer s, the expected value of U s
j is given by

E(U s
j ) =

 0 , s is odd,

d
(θd+s

2 −θd+s
1 )

(θd2−θd1)

(s−1)!!
(d+s)(d+s−2)···(d)

, s is even.

Here, c!! is the double factorial defined by c(c− 2) · · · 1.

2. For any j = 1, . . . , d and nonnegative integers sj’s, the expected value of Uj
∏

j′ 6=j U
sj′

j′ is

E(Uj
∏
j′ 6=j

U
sj′

j′ ) = 0.

3. For any j 6= j′, j, j′ = 1, . . . , d, the expected value of U2
j U

2
j′ is

E(U2
j U

2
j′) =

(θd+4
2 − θd+4

1 )

(θd2 − θd1)

1

(d+ 4)(d+ 2)
.

Lemma 5 also applies for the ball uniform distribution. All required expectations for the

ball uniform distribution can be obtained by setting θ1 = 0.

Now, the population multivariate kurtosis (3.4) for U is calculated by

κ(fθ1,θ2) = E{(U − E(U))>Σ−1
U (U − E(U))}2

= E{U>Σ−1
U U}2

= E{U>U}2

(
(d+ 2)(θd2 − θd1)

(θd+2
2 − θd+2

1 )

)2

= E{
d∑
j=1

U4
j +

∑
j 6=j′

U2
j U

2
j′}
(

(d+ 2)(θd2 − θd1)

(θd+2
2 − θd+2

1 )

)2

=
(
dE(U4

j ) + d(d− 1)E(U2
j U

2
j′)
)((d+ 2)(θd2 − θd1)

(θd+2
2 − θd+2

1 )

)2

=

(
3d(θd+4

2 − θd+4
1 )

(d+ 4)(d+ 2)(θd2 − θd1)
+

d(d− 1)(θd+4
2 − θd+4

1 )

(d+ 4)(d+ 2)(θd2 − θd1)

)(
(d+ 2)(θd2 − θd1)

(θd+2
2 − θd+2

1 )

)2

=

(
d(θd+4

2 − θd+4
1 )

(d+ 4)(θd2 − θd1)

)(
(d+ 2)(θd2 − θd1)

(θd+2
2 − θd+2

1 )

)2

.

Then, by letting η = θ1/θ2, (3.9) follows. Again, we obtain (3.8) for the ball uniform

distribution by setting θ1 = 0 in above calculations.
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Figure 22: The population multivariate kurtosis for the ball and ring uniform distributions

when d = 2. The kurtosis for the ring uniform distribution depends on the ratio of the two

parameters η = θ1/θ2 and increases monotonically as η getting smaller, which eventually

converges to the kurtosis for the ball uniform distribution.

We can see that the kurtosis for the ball uniform distribution only depends on the

dimension of the distribution, which is intuitively reasonable by the invariance property of

the kurtosis. On the other hand, the kurtosis for the ring uniform distribution depends on

the ratio of two radii parameters as well as the dimension, which is also intuitive because

the covariance matrix Σ depends on these two parameters.

Figure 22 shows how the changes of multivariate kurtosis when the parameter η varies

for a fixed dimension d = 2. We see that the kurtosis for the ring uniform (3.9) is always

smaller than but converges to the kurtosis for the ball uniform (3.8) as η → 0.

The convolution and mixture of ball uniform and multivariate normal dis-

tributions. To investigate the variation of kurtosis from Modality 1 (a single mode) to

Modality 2 (no mode), here we consider two approaches: a convolution of two representative
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distributions, a normal and a ball uniform, and a mixture of those. Let Z = (1− c)X + cY

for independent X and Y , where X is a d-variate normal random vector with mean 0 and

covariance matrix Σ = σ2Id and Y is a ball uniform random vector with radius θ. For a

convolution form, we assume c is a fixed parameter in [0, 1]. For a mixture, we assume c is

a binary random variable with probability P (c = 1) = p, where p ∈ [0, 1] is given.

Proposition 6. 1. The measure of multivariate kurtosis for a convolution form Z with a

fixed parameter c ∈ [0, 1] is given by

κ(fd,θ,σ,c) =
d
d+4

c4τ 4 + d(d+ 2)(1− c)4 + 2dc2(1− c)2τ 2(
1
d+2

c2τ 2 + (1− c)2
)2 , (3.10)

where fd,θ,σ,c denotes the density function of Z and τ = θ/σ is the ratio of the radius θ

of the ball uniform and the standard deviation σ of the normal distribution;

2. The multivariate kurtosis for a normal-ball uniform mixture Z with P (c = 1) = p is

given by

κ(gd,θ,σ,p) =
pdτ4

d+4
+ (1− p)d(d+ 2)(
pτ2

d+2
+ (1− p)

)2 , (3.11)

where gd,θ,σ,p denotes the density function of Z.

The proof of Proposition 6 is given in Section 3.7.2. Figure 23 (a) and (b) show changes of

kurtosis (3.10) and (3.11), respectively, for d = 2 by changing the the given constant c or the

given probability p. As a result, we confirm that the measure of multivariate kurtosis for the

ball uniform population is always smaller than any other rotational symmetric and uni-modal

distributions. The change of population multivariate kurtosis for the cases of rotationally

symmetric distributions based on modality, in particular, from Modality 1 to Modality 3,

is summarized in Figure 24. This relationship allows us to consider the kurtosis as a test

statistic to test whether the underlying rotational symmetric distribution is uni-modal or

not.
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(a) Convolution

(b) Mixture

Figure 23: The population measure of multivariate kurtosis for a convolution and mixture

of normal and ball uniform distributions when d = 2. The distribution of Z is a normal

when c = 0 in (a) and p = 0 in (b), and a ball uniform when c = 1 in (a) and p = 1 in (b).

The kurtosis for the ball uniform distribution is always less than any other convolution or

mixture with different τ , c and p.
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Figure 24: The change of population multivariate kurtosis from the first case (a single mode

at center; normal) to the third case (modal-ridge along a circle; ring uniform) when d = 2.

3.4.3 Test statistic and its asymptotic sampling distribution

So far, we investigated the variation of population multivariate kurtosis for rotationally sym-

metric distributions representing the cases of interest. In this section, we propose a modified

version of sample kurtosis, which is specifically considered for rotationally symmetric dis-

tributions, as a statistic for the test of modality, and investigate its asymptotic sampling

distribution.

3.4.3.1 Modified sample kurtosis for rotationally symmetric distributions

Recall that, in the test of rotational symmetry in Section 3.3, we tested whether the covari-

ance matrix of the underlying distribution is a scaled identity or not. In particular, we used

a multivariate normal distribution with its covariance matrix Σ = σ2Id to represent rotation-

ally symmetric distributions with a single mode at the center (Modality 1). Furthermore, by

Lemma 5, we can show that the ball and ring uniform distribution also have their covariance
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matrices with scaled identities, θ2

d+2
Id and

θ21+θ22
d+2

Id, respectively.

This allows us to modify the sample kurtosis by using S̃ = s2Id with the pooled sample

variance s2 = 1
d(n−1)

∑n
i=1(Xi − X̄)>(Xi − X̄). We now define the modified sample kurtosis

by

k̃(X1, . . . , Xn) =
1

n

n∑
i=1

{(Xi − X̄)>S̃−1(Xi − X̄)}2,

which is re-written as

k̃(X1, . . . , Xn) =

∑n
i=1 ‖Xi − X̄‖4/n(∑n

i=1 ‖Xi − X̄‖2/d(n− 1)
)2 . (3.12)

Under the rotational symmetry assumption, k̃(X1, . . . , Xn) is a consistent estimator of the

population multivariate kurtosis (3.4) as stated in the following:

Theorem 7. Suppose X1, . . . , Xn be a random sample from a d-dimensional multivariate

distribution with the density f . If Cov(X1) = σ2Id for some σ2 > 0, then the modified

sample kurtosis k̃(X1, . . . , Xn) satisfies that

k̃(X1, . . . , Xn)→ κ(f) in probability as n→∞.

Proof. It is straightforward that s2 is a consistent estimator of σ2, thus the theorem follows

by Mardia (1970).

3.4.3.2 Proposed test procedure

In Section 3.4.2, we have investigated the population multivariate kurtosis for rotational

symmetric distributions representing the cases of modality. Figure 24 shows that the pop-

ulation multivariate kurtosis is monotonically decreasing from Modality 1 (a single mode)

to Modality 3 (modal-ridge). In addition, because we treat Modalities 1 and 2 (a single

mode and no mode) as the cases of no major variation, these cases need to be separated

from Modality 3 to appropriately fit a great sphere in the PNS procedure. Hence, the test of

modality for rotationally symmetric distributions can be performed by using the multivariate

kurtosis with hypotheses given by

H0b′′ : κ(f) = κ(fθ) vs H1b′′ : κ(f) < κ(fθ), (3.13)

72



where κ(fθ) is the population multivariate kurtosis for the ball uniform distribution given

in (3.8). From Theorem 7, we know that the modified sample kurtosis is a consistent es-

timator of population kurtosis for the ball uniform distribution. Therefore, we reject the

null hypothesis if the modified sample kurtosis is significantly smaller than a critical value,

which is determined by the asymptotic sampling distribution of the modified sample kurtosis

investigated in next section.

3.4.3.3 Asymptotic sampling distribution of the modified sample kurtosis

Now, we consider the sampling distribution of the modified sample kurtosis (3.12) when the

underlying distribution is assumed to be the ball uniform.

Proposition 8. Let Y1, . . . , Yn be a random sample from the ball uniform distribution with

the radius parameter θ. Then, as n→∞,

√
n

(
k̃(Y1, . . . , Yn)− d(d+ 2)2

d+ 4

)
→ N

(
0,

128d(d+ 2)4

(d+ 4)3(d+ 6)(d+ 8)

)
in distribution.

Proof. Without loss of generality, we assume θ = 1. By the Taylor series expansion, we have

k̃(Y1, . . . , Yn) =
R̄ +Op(n

−1)(
T̄ +Op(n−1)

)2 =
R̄ +Op(n

−1)

T̄ 2 +Op(n−1)
=

R̄

T̄ 2
+Op(n

−1), (3.14)

where R̄ = 1
n

∑n
i=1Ri with Ri = (Y >i Yi)

2 and T̄ = 1
n

∑n
i=1 Ti with Ti = (Y >i Yi)/d for

i = 1, . . . , n. The detailed calculations for this approximation (3.14)is given in Section 3.7.3.1.

Because Ri’s and Ti’s are functions of Yi’s, R1, . . . , Rn are i.i.d. with the mean µR :=

E(R1) = d
d+4

and the variance σ2
R := V ar(R1) = 16d

(d+4)2(d+8)
, and T1, . . . , Tn are also i.i.d.

with the mean µT := E(T1) = 1
d+2

and the variance σ2
T := V ar(T1) = 4

d(d+2)2(d+4)
. Further,

if we let σR,T denote the covariance of Ri and Ti, then it is given by σR,T = 8
(d+2)(d+4)(d+6)

.

See Section 3.7.3.2 for detailed calculations. By the central limit theorem, as n→∞,

√
n

 R̄

T̄

−
 d

d+4

1
d+2

→ N

 0

0

 ,
 16d

(d+4)2(d+8)
8

(d+2)(d+4)(d+6)

8
(d+2)(d+4)(d+6)

4
d(d+2)2(d+4)


in distribution. Finally, for the given function g(R̄, T̄ ) = R̄

T̄ 2 , the multivariate delta method

gives us that, as n→∞,

√
n
[
g(R̄, T̄ )− g(µR, µT )

]
→ N

(
0, τ 2

)
in distribution,
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where

τ 2 =

[
∂g(µR, µT )

∂µR

∂g(µR, µT )

∂µT

] σ2
R σR,T

σR,T σ2
T

 ∂g(µR,µT )
∂µR

∂g(µR,µT )
∂µT


=

128d(d+ 2)4

(d+ 4)3(d+ 6)(d+ 8)
.

Proposition 8 says that the modified sample kurtosis (3.12) is asymptotically unbiased

and normally distributed. Hence, for the test of modality defined in Section 3.4.3.2, the

p-value is obtained accordingly.

3.5 NUMERICAL STUDIES

In this section, we demonstrate the performances of our proposed test of modality for rota-

tionally symmetric distributions by applying the test to the PNS procedure. Our proposed

test is applied to the sequential test algorithm of PNS as follows:

Step 1 : The likelihood ratio test for geodesic radius with hypotheses H0a vs H1a in (3.1)

is conducted. If H0a is accepted, then the procedure fits a great sphere with r = π/2 for

the current layer and proceed to the next.

Step 2 : If H0a is rejected, then the procedure runs the test of rotational symmetry with

hypotheses H0b′ vs H1b′ in (3.3). If H0b′ is rejected, then the procedure uses the fitted

small sphere for the current layer and proceed to the next layer.

Step 3 : If H0b′ is accepted, then the procedure runs the test of modality with hypotheses

H0b′′ vs H1b′′ given in (3.13). This test is conducted by using the images of inverse

exponential map at the geodesic mean of directional vectors, and by assuming their

underlying distribution is the ball uniform. If H0b′′ is rejected, again the procedure uses

the fitted small sphere for the current layer and proceed to the next layer.

Step 4 : If H0b′′ is accepted, then the procedure fits a great sphere with r = π/2 for all

further subsphere fittings.
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Note that the bootstrap von Mises-Fisher test for Case II in Section 3.2.1 is substituted by the

test of rotational symmetry (Section 3.3) and our proposed test of modality (Section 3.4.3.2).

We consider several data situations listed below in the simulation study and compare the

performances of the proposed approach with other existing methods discussed in Section 3.2.

To clearly show the data situations, we assume d = 2 so that the data points are distributed

on the unit sphere S2. Figure 25 shows random data examples from below models.

Model 1 : The von Mises-Fisher distribution (vMF; Mardia and Jupp, 2000, p.168)

Model 2 : The tangent space normal distribution with Σ = σ2I2

Model 3 : The tangent space (2-dimensional) ball uniform distribution with the density in

(3.6)

Model 4 : The geodesic ball uniform distribution with the density in (3.15)

Model 5 : The small sphere distribution of the second kind (S2; (2.6) in Chapter 2)

Model 6 : The Bingham-Mardia distribution (BM; Bingham and Mardia, 1978))

The first four models represent the situations that we need to fit a great circle in the PNS

procedure because there is no major direction of variation. For the S2 and BM distributions

in Models 5 and 6, we consider both small and great circle situations.

The performances of competing methods in the PNS procedure are summarized in the

following tables. In these tables, ‘PNS’ indicates the sequential tests (Section 3.2.1), ‘PNS

BIC’ for the Bayesian information criterion approach (Section 3.2.2), ‘Folded Normal’ for

the folded normal test (Section 3.2.3), ‘Tangent Normal’ for the test of rotational symmetry

by tangent space likelihood ratio test only (Section 3.3). Our proposal is ‘TN + Kurtosis’,

representing Steps 1–4 above, utilizing both the test of rotational symmetry and the test of

modality. ‘Oracle’ indicates the truth for each data situation.

Table 7 shows the result for the sample size n = 50 and Table 8 is for larger sample size

n = 200. We note all methods perform similarly for both n = 50 and n = 200 cases.

As a measure of performance, the proportion of small sphere fittings among 1000 repeti-

tions is calculated. Because the cases (a) – (d) represent distributions which have no major

non-geodesic variation, we prefer a great sphere fit, so lower proportion indicates better per-

formance. For the cases (e) and (f), a random sample is generated from a distribution with a
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(a) vMF (b) Normal (c) Ball Uniform (d) Geod Ball Uniform

(e) S2 - great (f) BM - great (g) S2 - small (h) BM - small

Figure 25: Random data examples (n = 50) from representing distributions.

geodesic major variation (great sphere). So, in these cases again, lower proportion is better.

For the remaining cases (g) and (h), because there is a non-geodesic major variation (small

sphere), higher proportion indicates better performance.

Table 7 and 8 confirm that the combination of the test of rotational symmetry and the

test of modality shows the best overall performance. As argued by Eltzner et al. (2017), the

folded normal test shows better performance than the bootstrap von Mises-Fisher test even

when the null distribution is von Mises-Fisher given in the case (a). However, we notice

that both tests become poor when their distributional assumptions are not satisfied as in

the cases (c) and (d). As expected, the BIC is only effective in distinguishing a geodesic

major variation corresponding to cases (e) and (f) from a non-geodesic variation, cases (g)

and (h). The weakness of the test of rotational symmetry only is given in the case (h).
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As we mentioned before, only with the test of rotational symmetry, a distribution with

modal-ridge cannot be separated from other isotropic distributions. Overall, the proposed

approach, given in Steps 1–4 above, treats all Models most appropriately, so it seems to

alternate existing ones.

3.6 APPENDIX: THE GEODESIC BALL UNIFORM ON S2

We considered the ball uniform distribution in the tangent space in the development of the

testing procedure. However, when the ball uniform distribution is mapped to the sphere, it

is no longer a uniform distribution, even though its support is the geodesic ball of radius θ

(provided that θ < π). For applications to the directional data, it is ideal to consider the

geodesic ball uniform distribution, rather than the log-mapped ball uniform distribution.

In this section, we discuss the geodesic ball distribution and its multivariate kurtosis when

mapped to the tangent space, and argue that the difference between these two distributions

are small.

A simple situation that directions on the unit sphere (S2) show a rotationally symmetric

distribution is that those directions are uniformly distributed on a geodesic ball on the

sphere, as illustrated in Figure 25 (d). The geodesic ball at µ with the geodesic radius τ

is Bτ (µ) = {x ∈ S2 : arccos(x>µ) ≤ τ}. To define the density of such a local uniform

distribution on S2, we assume the center µ to be the north pole without loss of generality.

Then, a random direction X on S2 can be written by two angles (θ, φ), for latitude and

longitude, and the density is given by

f(θ, φ) =
1

2π(1− cos τ)
sin θ , θ ∈ [0, τ ] , φ ∈ [0, 2π) , (3.15)

where τ ∈ (0, π/2) is the radius of the geodesic ball. Because a simple uniform distribution

which is defined on a specifically small region on the unit sphere is of interest, we assumed

the radius τ to be less than π/2, i.e., the region is smaller than a hemisphere.
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Data types

Isotropic Great Small

Method (a) (b) (c) (d) (e) (f) (g) (h)

PNS 0.050 0.059 0.818 0.822 0.059 0.066 0.963 1.000

PNS BIC 0.999 0.998 1.000 1.000 0.057 0.064 0.963 1.000

Folded Normal 0.002 0.003 0.225 0.166 1.000 1.000 1.000 1.000

Tangent Normal 0.026 0.016 0.003 0.002 0.059 0.002 0.952 0.004

TN + Kurtosis 0.026 0.016 0.107 0.063 0.059 0.056 0.952 0.977

Oracle 0 0 0 0 0 0 1 1

Table 7: Proportions of small sphere fittings with 1000 repetitions; Random samples of size

n = 50 from (a) vMF (b) Tangent normal (c) Ball uniform (d) Geodesic ball uniform (e) S2

- great (g) BM - great (h) S2 - small (j) BM - small

Data types

Isotropic Great Small

Method (a) (b) (c) (d) (e) (f) (g) (h)

PNS 0.056 0.121 1.000 1.000 0.056 0.062 1.000 1.000

PNS BIC 1.000 1.000 1.000 1.000 0.022 0.031 1.000 1.000

Folded Normal 0 0 0.338 0.219 100 100 1.000 1.000

Tangent Normal 0.017 0.019 0 0.002 0.056 0 1.000 0

TN + Kurtosis 0.017 0.019 0.052 0.026 0.056 0.062 1.000 1.000

Oracle 0 0 0 0 0 0 1 1

Table 8: Proportions of small sphere fittings with 1000 repetitions; Random samples of size

n = 200 from (a) vMF (b) Tangent normal (c) Ball uniform (d) Geodesic ball uniform (e)

S2 - great (g) BM - great (h) S2 - small (j) BM - small
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Let Y ∈ R2 be the image of inverse exponential map of the direction X onto the tangent

space at the center µ. Then, the density of Y is obtained by

fτ (y) =
1

2π(1− cos τ)

sin ‖y‖
‖y‖

, (3.16)

where ‖y‖ =
√
y2

1 + y2
2 ∈ [0, τ ] for y = (y1, y2)>.

The measure of multivariate kurtosis for the ‘tangent space-mapped’ X, or Y , is

κ(fτ ) = 4(1− cos τ)
c1(τ)

c2(τ)
, (3.17)

where

c1(τ) = −τ 4 cos τ + 4τ 3 sin τ + 12τ 2 cos τ − 24 cos τ − 24τ sin τ + 24,

c2(τ) = (−τ 2 cos τ + 2τ sin τ + 2 cos τ − 2)2.

It is challenging to obtain the generalized function of kurtosis for a higher dimension, Sd,

d ≥ 3.

The measure of multivariate kurtosis for the geodesic ball uniform distribution on S2

depends on the radius τ . In contrast, the kurtosis for the ball uniform distribution does not

depend on the radius of its support. However, when τ is small enough, both the kurtosis

and the density of geodesic ball uniform are similar to those of ball uniform. As τ becomes

smaller (τ → 0), sin ‖y‖ ≈ ‖y‖, which leads the density (3.16) to the ball uniform density

(3.6). Hence, we consider an approximation by using the ball uniform distribution.

79



3.7 APPENDIX: TECHNICAL DETAILS

3.7.1 Proof of Lemma 5

All the expectations stated in Lemma 5 can be calculated by considering the spherical coor-

dinate transformation, U = (U1, . . . , Ud)
> = (r cosφ1, . . . , r

∏d−1
i=1 sinφi)

> and du1 · · · dud =

rd−1 sind−2 φ1 · · · sinφd−2drdφ1 · · · dφd−1 with r ∈ [θ1, θ2], φi ∈ [0, π) for i = 1, . . . , d− 2, and

φd−1 ∈ [0, 2π). With this transformation, we first obtain the following equation,

∫ 2π

0

∫ π

0

· · ·
∫ π

0

sind−2 φ1 · · · sinφd−2dφ1 · · · dφd−1 =
(Vθ2 − Vθ1)d
θd2 − θd1

, (3.18)

which is obtained by the fact that
∫
fθ1,θ2du = 1.

From any integration table, we can easily find a trigonometric integration formula

∫
sinn u cosm udu =

sinn+1 u cosm−1 u

n+m
+
m− 1

n+m

∫
sinn u cosm−2 udu,

for nonnegative integer n and m, which is useful for the calculation of expectations. As

contained in (3.18), in our calculations, n is always greater than or equal to 1, which makes

the first term in the right hand side of the formula 0. Recall sinn(0) = sinn(π) = sinn(2π) = 0.

So, when m ≥ 1, this formula returns two different results, which are

∫
sinn u cosm udu =


(m−1)(m−3)···2

(n+m)(n+m−2)···(n+3)

∫
sinn u cosudu , m is odd

(m−1)(m−3)···1
(n+m)(n+m−2)···(n+2)

∫
sinn udu , m is even.

In fact, it finally returns 0 when m is odd because
∫ π

0
sinn u cosudu = sinn+1 u/(n+1)|π0 = 0.

Hence, we have

E(U s
j ) = 0
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when s is odd. When s is even, we can show that, for j = 1,

E(U s
1 ) =

∫ 2π

0

∫ π

0

· · ·
∫ π

0

∫ θ2

θ1

1

Vθ2 − Vθ1
(rs coss φ1)rd−1 sind−2 φ1 · · · sinφd−2drdφ1 · · · dφd−1

=
θd+s

2 − θd+s
1

Vθ2 − Vθ1

∫ 2π

0

∫ π

0

· · ·
∫ π

0

(coss φ1 sind−2 φ1) · · · sinφd−2dφ1 · · · dφd−1

=
θd+s

2 − θd+s
1

Vθ2 − Vθ1
(s− 1)(s− 3) · · · 1

(d+ s)(d+ s− 2) · · · d

∫ 2π

0

∫ π

0

· · ·
∫ π

0

sind−2 φ1 · · · sinφd−2dφ1 · · · dφd−1

=
θd+s

2 − θd+s
1

Vθ2 − Vθ1
(s− 1)(s− 3) · · · 1

(d+ s)(d+ s− 2) · · · d
(Vθ2 − Vθ1)d
θd2 − θd1

= d
(θd+s

2 − θd+s
1 )

(θd2 − θd1)

(s− 1)!!

(d+ s)(d+ s− 2) · · · d
,

where c!! is the double factorial defined by c(c−2) · · · 1. Because Uj’s have the same marginal

distributions for all j = 1, . . . , d, we can easily show that E(U s
j )’s are the same for all

j = 1, . . . , d. (We skip the details here.)

The second and third parts of Lemma 5 are also proven by similar way. For the second

part, the expectation is calculated as follows:

E(Uj
∏
j′ 6=j

U
sj′

j′ ) = E(U1

d∏
j′=2

U
sj′

j′ )

=

∫
· · ·
∫

1

Vθ2 − Vθ1
(r cosφ1)(

∏
j′ 6=j

U
sj′

j′ )rd−1 sind−2 φ1 · · · sinφd−2drdφ1 · · · dφd−1

= · · ·
(∫ π

0

cosφ1 sind−2+
∑d

j′=2 sj′ dφ1

)
· · ·

= 0.

Again, we omit the details but we can easily show that the results are the same for all

j = 1, . . . , d.

81



For the third part, it is calculated by

E(U2
1U

2
2 ) =

∫
· · ·
∫

1

Vθ2 − Vθ1
(r2 cos2 φ1)(r2 sin2 φ1 cos2 φ2)rd−1 sind−2 φ1 · · ·

=
θd+4

2 − θd+4
1

Vθ2 − Vθ1

∫
· · ·
∫

(cos2 φ1 sind φ1)(cos2 φ2 sind−3 φ2) · · ·

=
θd+4

2 − θd+4
1

Vθ2 − Vθ1

(
d− 1

(d+ 2)d

∫ π

0

sind−2 φ1dφ1

)(
1

d− 1

∫ π

0

sind−3 dφ2

)
· · ·

=
θd+4

2 − θd+4
1

Vθ2 − Vθ1
1

d(d+ 2)

(Vθ2 − Vθ1)d
θd2 − θd1

=
(θd+4

2 − θd+4
1 )

(θd2 − θd1)

1

(d+ 4)(d+ 2)
.

3.7.2 Proof of Propositoin 6

First, for a convolution form Z with a given constant c ∈ [0, 1], we know that E(Z) = 0

because, for both X and Y , we assumed rotationally symmetric distributions centered at the

origin. The population variance-covariance matrix is given by

ΣZ = E
[
(Z − E(Z))(Z − E(Z))>

]
= E

[
((1− c)X + cY )((1− c)X + cY )>

]
= E

[
(1− c)2XX> + c(1− c)XY > + c(1− c)Y X> + c2Y Y >

]
= (1− c)2E(XX>) + c2E(Y Y >)

= (1− c)2σ2Id + c2 θ2

d+ 2
Id.

The required moments for X are well-known and the ones for Y are obtained by Lemma 5.

Then, the population multivariate kurtosis for Z is calculated by

κ(fτ,c) = E
[
((Z − E(Z))>Σ−1

Z (Z − E(Z)))2
]

=

(
(1− c)2σ2Id + c2 θ2

d+ 2
Id

)−2

E
[
(Z>Z)2

]
=

(
(1− c)2σ2Id + c2 θ2

d+ 2
Id

)−2 [
dE(Z4

j ) + d(d− 1)E(Z2
jZ

2
j′)
]
.
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By the independence of X and Y , E(Z4
j ) is calculated by

E(Z4
j ) = E

[
((1− c)Xj + cYj)

4
]

= E
[
(1− c)4X4

j + c4Y 4
j + 4(1− c)3cX3

j Yj + 4(1− c)c3XjY
3
j + 6(1− c)2c2X2

j Y
2
j

]
= (1− c)4E(X4

j ) + c4E(Y 4
j ) + 6(1− c)2c2E(X2

j )E(Y 2
j )

= (1− c)4 3θ4

(d+ 2)(d+ 4)
+ c43σ4 + 6(1− c)2c2 θ

2σ2

d+ 2
,

and E(Z2
jZ

2
j′) is calculated by

E(Z2
jZ

2
j′) = E

[
((1− c)Xj + cYj)

2((1− c)Xj′ + cYj′)
2
]

= E
[
((1− c)2X2

j + 2(1− c)cXjYj + c2Yj)((1− c)2X2
j′ + 2(1− c)cXj′Yj′ + c2Yj′)

]
= (1− c)4E(X2

jX
2
j′) + c2(1− c)2E(Y 2

j )E(X2
j′) + (1− c)2c2E(X2

j )E(Y 2
j′) + c4E(Y 2

j Y
2
j′)

= (1− c)4 θ

(d+ 2)(d+ 4)
+ 2(1− c)2c2 θ

2σ2

d+ 2
+ (1− c)4σ4.

Hence, the population multivariate kurtosis for Z is obtained by

κ(fτ,c) =

(
(1− c)2σ2Id + c2 θ2

d+ 2
Id

)−2 [
(1− c)4 dθ4

d+ 4
+ c4d(d+ 2)σ4 + 2(1− c)2c2dθ2σ2

]
,

and, by letting τ = θ/σ, (3.10) follows.

Second, for a mixture Z with a given p = P (c = 1) ∈ [0, 1] for c ∈ {0, 1}, the required

moments are calculated by follows: for j = 1, . . . , d and j 6= j′,

E(Zj) = E(Zj|c = 1) + E(Zj|c = 0) = (1− p)E(Xj) + pE(Yj) = 0,

E(Z2
j ) = (1− p)E(X2

j ) + pE(Y 2
j ) = (1− p)σ2 + p

θ2

d+ 2
,

E(ZjZj′) = (1− p)E(XjXj′) + pE(YjYj′) = 0,

E(Z2
jZ

2
j′) = (1− p)E(X2

jX
2
j′) + pE(Y 2

j Y
2
j′) = (1− p)σ4 + p

θ4

(d+ 2)(d+ 4)
,

E(Z4
j ) = (1− p)E(X4

j ) + pE(Y 4
j ) = (1− p)3σ4 + p

3θ4

(d+ 2)(d+ 4)
.

From these moments, we obtain the variance-covariance matrix,

ΣZ =

(
(1− p)σ2 + p

θ2

d+ 2

)
Id,
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and then, the population multivariate kurtosis for a mixture Z is given by

κ(fτ,p) = E
[
((Z − E(Z))>Σ−1

Z (Z − E(Z)))2
]

=

(
(1− p)σ2 + p

θ2

d+ 2

)−2

E
[
(Z>Z)2

]
=

(
(1− p)σ2 + p

θ2

d+ 2

)−2 [
dE(Z4

j ) + d(d− 1)E(Z2
jZ

2
j′)
]
,

which, by letting τ = θ/σ, turns out to be (3.11).

3.7.3 Details in proof of Proposition 8

3.7.3.1 Approximation of the modified sample kurtosis in (3.14)

Recall that the modified sample kurtosis (3.12) is the ratio of two multivariate central mo-

ments, 1
n

∑n
i=1 ‖Yi − Ȳ ‖4 and

(
1

d(n−1)

∑n
i=1 ‖Yi − Ȳ ‖2

)2

. First, if the numerator is denoted

by a function of Ȳ , f(Ȳ ), then the Taylor expansion of f(Ȳ ) around Ȳ = 0 is

f(Ȳ ) = f(0) + (Ȳ − 0)>∇f(0) +
1

2
(Ȳ − 0)>∇2f(0)(Ȳ − 0) + higher order terms.

Here, for ∇f(0), we can show that

‖∇f(0)‖ = ‖(−4)
1

n

n∑
i=1

(Y >i Yi)Yi‖

≤ 4

n

n∑
i=1

‖(Y >i Yi)Yi‖

=
4

n

n∑
i=1

(Y >i Yi)‖Yi‖

=
4

n

n∑
i=1

(Y >i Yi)
3/2,

where the inequality is obtained by the triangular inequality. By letting Wi = 4(Y >i Yi)
3/2, the

last line becomes the sample mean of Wi’s. Because Wi’s are bounded, we have ‖∇f(0)‖ =

Op(n
−1/2). Hence, R̄ +Op(n

−1) is obtained in (3.14) with R̄ = f(0) = 1
n

∑n
i=1(Y >i Yi)

2.
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Second, let us denote the denominator by {g(Ȳ )}2, where g(Ȳ ) = 1
d(n−1)

∑n
i=1 ‖Yi− Ȳ ‖2,

the pooled sample variance. Then, by similar way, we can show that

g(Ȳ ) = g(0) +Op(n
−1).

Furthermore, because g(0) satisfies that

g(0) =
1

dn

n∑
i=1

Y >i Yi −
1

dn(n− 1)

n∑
i=1

Y >i Yi

=
1

dn

n∑
i=1

Y >i Yi +Op(n
−1),

T̄ +Op(n
−1) in (3.14) is obtained with T̄ = 1

dn

∑n
i=1 Y

>
i Yi.

3.7.3.2 Calculation of the expected values and variances of Ri and Ti

As stated before, we assume θ = 1, without loss of generality. First, the expected value of

Ri is calculated by

E(Ri) = E
[
(Y >i Yi)

2
]

= E
[
(Y 2

1i + · · ·+ Y 2
di)

2
]

= E

[
d∑
j=1

Y 4
ji +

∑∑
j 6=j′

Y 2
jiY

2
j′i

]
= dE(Y 4

1i) + d(d− 1)E(Y 2
1iY

2
2i)

= d
3

(d+ 2)(d+ 4)
+ d(d− 1)

1

(d+ 2)(d+ 4)

=
d

d+ 4
,

where E(Y 4
1i) and E(Y 2

1iY
2

2i) are obtained by Lemma 5. Then, the variance of Ri is obtained

by

V ar(Ri) = V ar
[
(Y >i Yi)

2
]

= E
[
(Y >i Yi)

4
]
−
{
E
[
(Y >i Yi)

2
]}2

=
d

d+ 8
− d2

(d+ 4)2

=
16d

(d+ 4)2(d+ 8)
,
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where E
[
(Y >i Yi)

4
]

is calculated by

E
[
(Y >i Yi)

4
]

= E
[
(Y 2

1i + · · ·+ Y 2
di)

4
]

= E

[
d∑
j=1

Y 8
ji +

∑
j 6=j′

Y 6
jiY

2
j′i +

∑
j 6=k 6=l

Y 4
jiY

2
kiY

2
li +

∑
j 6=k 6=l 6=m

Y 2
jiY

2
kiY

2
liY

2
mi

]
= dE(Y 8

1i) + 4d(d− 1)E(Y 6
1iY

2
2i) + 3d(d− 1)E(Y 4

1iY
4

2i)

+6d(d− 1)(d− 2)E(Y 4
1iY

2
2iY

2
3i) + d(d− 1)(d− 2)(d− 3)E(Y 2

1iY
2

2iY
2

3iY
2

4i).

These expectations on the last line can be calculated by following Lemma 5 and its proof,

which returns

E(Y 8
1i) =

105

(d+ 2)(d+ 4)(d+ 6)(d+ 8)
,

E(Y 6
1iY

2
2i) =

15

(d+ 2)(d+ 4)(d+ 6)(d+ 8)
,

E(Y 4
1iY

4
2i) =

9

(d+ 2)(d+ 4)(d+ 6)(d+ 8)
,

E(Y 4
1iY

2
2iY

2
3i) =

3

(d+ 2)(d+ 4)(d+ 6)(d+ 8)
,

E(Y 2
1iY

2
2iY

2
3iY

2
4i) =

1

(d+ 2)(d+ 4)(d+ 6)(d+ 8)
.

Hence, by plugging these in above, we get E
[
(Y >i Yi)

4
]

= d
d+8

.

The expected value and variance of Ti are obtained by using Lemma 5 and above calcu-

lations directly,

E(Ti) =
1

d
E(Y >i Yi) = E(Y 2

1i) =
1

d+ 2
,

and

V ar(Ti) =
1

d2

{
E
[
(Y >i Yi)

2
]
−
[
E(Y >i Yi)

]2}
=

1

d2

(
d

d+ 4
− d2

(d+ 2)2

)
=

4

d(d+ 2)2(d+ 4)
.
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Székely, G. J. and Rizzo, M. L. (2013), “Energy statistics: A class of statistics based on
distances,” Journal of statistical planning and inference, 143, 1249–1272.

89


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Key features of the newly proposed models
	2. Small-circle estimation performances for univariate S2 data
	3. Small-circles estimation performances for bivariate S2 data
	4. Concentration and association parameter estimation performances
	5. Small-circle estimation performances for univariate signal-plus-noise data
	6. Small-circles estimation performances for bivariate signal-plus-noise data
	7. Table of performance (n = 50)
	8. Table of performance (n = 200)

	LIST OF FIGURES
	1. S-reps of hippocampi in the human brain
	2. Spoke directions on the unit sphere
	3. Toy examples: Small-circle-concentrated data
	4. The S1 densities on S2
	5. Random samples from proposed models
	6. Simulation data examples from univariate S2
	7. Examples showing degrees of the small-circle feature
	8. Analysis of s-reps of bent ellipsoid by MS2
	9. Analysis of human knee gait data by MS2
	10. Convergence of S1 estimation algorithm
	11. Q-Q envelope plots for distributions of test statistics
	12. Empirical powers of the test of association
	13. Data examples in test of great-sphere
	14. Data examples in test for BM distribution
	15. Simulation data examples from bivariate MS2
	16. Power of test of association for bi- and tri-variate directions
	17. Data examples for which MS2 test of association is superior (K=2)
	18. Data examples for which MS2 test of association is superior (K=3)
	19. Goodness-of-fit analysis for fitting s-rep data
	20. Random data examples of interest
	21. Description of the ring uniform distribution
	22. The population multivariate kurtosis for the ball and ring uniform
	23. The population measure of multivariate kurtosis for a convolution and mixture
	24. The change of population multivariate kurtosis
	25. Random data examples for numerical studies

	1.0 INTRODUCTION
	2.0 SMALL SPHERE DISTRIBUTIONS FOR DIRECTIONAL DATA
	2.1 Introduction
	2.2 Parametric small-sphere models
	2.2.1 Two classical distributions on Sp-1
	2.2.2 Small-sphere distributions of the first and second kind
	2.2.3 Multivariate extensions
	2.2.4 Random data generation

	2.3 Maximum likelihood estimation
	2.3.1 Estimation for S1 and iMS1 models
	2.3.2 Estimation for S2, iMS2 and MS2

	2.4 Testing hypotheses
	2.5 Numerical studies
	2.5.1 Estimation of small-circles
	2.5.2 Estimation of horizontal dependence
	2.5.3 Detecting overfitting in an isotropic case

	2.6 Analysis of s-rep data
	2.6.1 Modeling rotationally-deformed ellipsoids via s-reps
	2.6.2 Data preparation
	2.6.3 Inference on the bending axis
	2.6.4 Inference on horizontal dependence

	2.7 Human knee gait analysis
	2.8 Technical Details and Supporting Materials
	2.8.1 Proofs of lemmas and propositions
	2.8.2 Convergence of algorithm for S1 estimation
	2.8.3 Null distributions and empirical powers of tests
	2.8.4 Additional simulation results
	2.8.5 Associations among s-rep spokes
	2.8.6 Goodness of fit


	3.0 TEST OF MODALITY FOR ROTATIONALLY SYMMETRIC DISTRIBUTIONS BY MULTIVARIATE KURTOSIS
	3.1 Introduction
	3.2 Backgrounds
	3.2.1 Sequential tests for preventing overfitting in PNS
	3.2.2 Bayesian information criterion in PNS
	3.2.3 Folded normal test

	3.3 Test of rotational symmetry by tangent space likelihood ratio test
	3.4 Test of modality for rotationally symmetric distributions
	3.4.1 The measure of multivariate kurtosis
	3.4.2 The multivariate kurtosis for rotationally symmetric distributions
	3.4.3 Test statistic and its asymptotic sampling distribution
	3.4.3.1 Modified sample kurtosis for rotationally symmetric distributions
	3.4.3.2 Proposed test procedure
	3.4.3.3 Asymptotic sampling distribution of the modified sample kurtosis


	3.5 Numerical studies
	3.6 Appendix: The geodesic ball uniform on S2
	3.7 Appendix: Technical details
	3.7.1 Proof of Lemma 5
	3.7.2 Proof of Propositoin 6
	3.7.3 Details in proof of Proposition 8
	3.7.3.1 Approximation of the modified sample kurtosis in (3.14)
	3.7.3.2 Calculation of the expected values and variances of Ri and Ti



	BIBLIOGRAPHY



