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DEVELOPING AND EVALUATING RESEARCH-BASED LEARNING

TOOLS FOR QUANTUM MECHANICS

Christof Kühbach Keebaugh, PhD

University of Pittsburgh, 2018

Here I present my work on developing and evaluating research-based learning tools for quan-

tum mechanics. In particular, I will discuss the development and evaluation of two Quantum

Interactive Learning Tutorials (QuILTs) focusing on Degenerate Perturbation Theory (DPT)

and a System of Identical Particles. The QuILTs are guided by several learning theories from

cognitive science and strive to help students develop a more robust understanding of the con-

cepts covered. The investigation was carried out in advanced quantum mechanics courses

by administering free-response and multiple-choice questions and conducting individual in-

terviews with students. It was found that students share many common difficulties related

to relevant physics concepts. They had difficulty with mathematical sense-making and ap-

plying linear algebra and combinatorics concepts correctly in this novel context of quantum

mechanics. I describe how the research on student difficulties was used as a guide to develop

and evaluate the QuILTs, which strives to help students develop a functional understanding

of concepts necessary for DPT and a system of identical particles. I also discuss the develop-

ment and validation of the DPT QuILT focusing on these issues and its in-class evaluation

in the undergraduate and graduate courses that focused on these issues.
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n = 2 degenerate subspace of Ĥ0 in Q2. . . . . . . . . . . . . . . . . . . . 58

3 Percentages of undergraduate (U) (N = 32) and graduate (G) students (N =

42) not selecting both options iii and iv for the unperturbed Hamiltonian Ĥ0
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to diagonalize the listed operator Ĥ ′ in the n = 2 degenerate subspace of Ĥ0
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1.0 INTRODUCTION

Quantum mechanics (QM) is a particularly challenging subject for upper-level undergraduate

and graduate students in physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. There have been

a number of research studies aimed at investigating student reasoning in QM [15, 16, 17, 18,

19, 20, 21, 22, 23, 24] and improving student understanding of QM [25, 26, 27, 28, 29, 30,

31, 32, 33]. However, there have been relatively few investigations into student difficulties

with fundamental concepts involving degenerate perturbation theory (DPT) or a system of

identical particles. Through researching students’ understanding and reasoning about DPT

or a system of identical particles, I have found many common student difficulties that may

hinder their development of a consistent and coherent knowledge structure pertaining to

this topic. These common student difficulties were then used as a guide to help develop a

research-based learning tool, i.e., a Quantum Interactive Learning Tutorial (QuILT) [34, 35,

36, 37, 38, 39]. I describe the methodology for investigating these student difficulties along

with the development and evaluation of the corresponding research-based QuILT that strives

to help students develop a functional understanding of the fundamental concepts involved

in constructing the many-particle stationary state wavefunction for a system of identical

particles.

The QuILT incorporates guided inquiry-based learning sequences which consist of a set

of questions, each building upon the previous question(s) that require the students to take

a stand and actively engage in the learning process. The QuILT also includes hypotheti-

cal student conversations in which the students must analyze each hypothetical student’s

statement to determine whether they are correct and explain why they agree or disagree

with each student. Many of the common student difficulties were used as a guide when con-

structing these hypothetical conversations and inquiry-based sequences with the goal being
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that students would identify an inconsistency in their reasoning and then use the provided

support to reconcile these inconsistencies. For example, there are a number of hypothetical

student conversations in which one or more students make statements reflecting these com-

mon difficulties and provide incorrect reasoning mirroring those given by actual students.

Other students in these hypothetical conversations disagree with their incorrect reasoning

and provide correct reasoning and often note an issue with the incorrect statement(s). As the

students work through the QuILT, they must consider each student’s argument and reflect

upon their own reasoning in order to determine which student(s) are correct. Similarly, the

guided inquiry-based sequences often include excerpts that strive to present the students

with a contradiction between the answer to the questions in the sequence and their prior

knowledge that they must then reconcile. Checkpoints are provided at the end of each sec-

tion that allow the students to go back and reconcile any remaining difference between the

correct reasoning and their own reasoning before moving on the next section.

1.1 FRAMEWORKS FOR LEARNING THAT INSPIRED MY RESEARCH

1.1.1 Cognitive Apprenticeship Model

The Cognitive Apprenticeship Model describes how the traditional apprenticeship model,

which has been a primary instructional method for centuries, can be applied in the context

of formal education [40]. Collins, Brown, and Newman state that the learning environment

is most effective when it includes the following elements: modeling, coaching, and fading

of the scaffolding support. In modeling, the instructor demonstrates approaches to critical

thinking, problem-solving, and metacognition from an expert perspective. The coaching step

is where the instructor provides scaffolding support to the students. This is a very important

step that is often missing in traditional, lecture-based instruction. The final step involves

slowly removing the scaffolding support until the students are able to complete the desired

task on their own.
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1.1.2 Zone of Proximal Development

Vygotsky’s Zone of Proximal Development (ZPD) states that the level of instruction should

be aimed just beyond the students’ current knowledge state [41]. The ZPD focuses on the

aspects of learning necessary for scaffolding support required to move individuals from an

initial knowledge state to the desired final knowledge state. As the students learn and move

towards the desire final state, the level of instruction continually changes to be just beyond

the students’ current level. It is the instructors’ responsibility to choose the appropriate level

of instruction and to create an environment in which the students receive the scaffolding

support necessary to move to the desired final knowledge state. This scaffolding support

can come from the instructor or from peers. It is often said that one goal of focusing on the

ZPD is to ensure that what an individuals are able to do today with help, they are able to

do tomorrow on their own.

1.1.3 Assimilation, Accomodation and Optimal Mismatch

Piaget stated that when one is faced with a new situation or an inconsistency in their

knowledge structure, they may be motivated to adapt [42]. According to Piaget, it is during

this adaptation that the learning process is taking place. This adaptation can be achieved

by either assimilation or accomodation or both. In assimilation, an individual is able to

use their existing knowledge structures (or schema) to make sense of the new situation and

correct the inconsistencies. Accomodation occurs when one’s current knowledge structures

are not sufficient and need to be changed in order to fully understand the concepts. Piaget’s

“optimal mismatch” is one technique used to provide guidance and promote the adaptation

in the learning process. The key idea behind Piaget’s “optimal mismatch” framework is

to allow students to discover their mistakes on their own and allow them to correct the

inconsistencies in their own knowledge structures. One method to achieve this is to scaffold

student learning using a guided inquiry-based approach which focuses on the necessary skills

and concepts students should learn and strives to help the students develop a functional

understanding of the underlying concepts.

3



1.1.4 Preparation for Future Learning

Additionally, the QuILT strives to incorporate Bransford and Schwartz’s Preparation for Fu-

ture Learning (PFL) framework with a special focus on instruction that incorporates elements

of both innovation and efficiency [43]. In the PFL framework, innovation and efficiency can

be viewed as two orthogonal components of instructional design that must be balanced for

effective learning outcomes. One interpretation of this framework in this context is that in-

novation refers to presenting students with novel tasks that are just beyond students’ current

understanding that allows them to grow and strive for more robust knowledge. Efficiency

can be viewed as a characteristic of instruction that allows the students to practice what

they are learning and become skilled at a particular type of task. The framework suggests

that instruction should attend to both these aspects. The concern is that if instruction only

focuses on one of these aspects there is danger that the students will become frustrated

when instruction is too innovative beyond their current knowledge state (the instruction is

too innovative without allowing for efficiency) or when the instruction focuses too much on

rote learning and procedural redundancy (the instruction is too efficient without the creative

aspects associated with innovation).

1.2 MEMORY AND COGNITIVE LOAD

At a coarse-grained level, the human information processing system can be classified as con-

sisting of two types of memory: long-term memory and short-term (or “working”) memory

[44]. Long-term memory encompasses all that an individual has learned and that can be

recalled at a given instance. There appears to be no limit to the amount of information

that can be stored in the long-term memory. Working memory, on the other hand, is where

information is processed while solving a problem or performing a task before it can be stored

in the long-term memory. Working memory is also responsible for synthesizing new informa-

tion with prior knowledge to form new knowledge structures in a given domain. In general,

an individual’s working memory is restricted to 7 ± 2 “slots” or “chunks” available to ded-
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icate to a given task [45]. If more slots are required in working memory than is available

to perform a task or solve a problem, one may experience cognitive overload and may no

longer have cognitive resources available to process the information appropriately or engage

in metacognition to ensure one’s reasoning is consistent and correct. As one gains expertise

in a given domain, one is able to make connections between different concepts and combine

individual concepts into larger chunks each of which occupy a single slot in the working

memory.

1.3 SEMANTIC NETWORK

A semantic network has been used as a method to visualize an individual’s knowledge struc-

tures. A semantic network consists of nodes representing individual concepts and links be-

tween these nodes that represents a connection between different concepts [46]. As one gains

expertise in a given domain, one reorganizes their knowledge structures and it becomes more

hierarchical. One is able to make connectiion between concepts important in that domain

and the more important concepts are moved to the top of the hierarchical network.

1.4 BOUNDED RATIONALITY

Since human working memory while solving a problem is restricted to a limited number

of “chunks” and the size of a chunk in the working memory depends on the expertise of

the individual who is solving the problem, Simon’s framework of “bounded rationality” and

“satisficing” posits that an individual will make decisions while solving problems based upon

their current level of expertise, which may not be optimal [47]. When faced with a decision

in problem-solving tasks, individuals can be categorized as either satisficers or maximizers.

Satisficers are interested in what is referred to as satisficing and often only look for a solution

that is satisfactory to them in which they see no inconsistencies rather than searching for

additional pathways in the problem space which may be more optimal. Satisficers often
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only make decisions that are sub-optimal and do not discuss the need to consider alternative

pathways in the problem space which may yield more optimal solutions. In other cases,

they may realize that there are additional pathways in the problem space that may be more

optimal but choose not explore these pathways for the more optimal solution. Maximizers are

those who are motivated to look for the optimal solution pathways among all of the infinitely

many possible pathways in the problem space. However, if the individual’s level of expertise

is not sufficient and they are not provided with appropriate scaffolding support, they may

experience cognitive overload and may not be able to obtain the optimal solutions [48]. Many

of the student difficulties discussed here may be attributed in part to students’ bounded

rationality and satisficing in that they may be satisfied with a sub-optimal solution that

does not cause cognitive overload and may not search for optimal solution pathways in the

problem space that may yield the correction solution. Resorting to satisficing may sometimes

amount to sense-making which is commensurate with students’ current level of expertise

and inappropriate integration of mathematical and physical concepts to solve problems may

occur due to students’ evolving expertise. Since the paradigm of QM is novel, these issues

of satisficing become critical in the work presented in this thesis.

1.5 MATHEMATICAL SENSEMAKING IN PHYSICS

Prior research suggests that students often have difficulty applying mathematical concepts in

the context of a concrete physical problem. In particular, students have difficulty connecting

and applying mathematics correctly in physics contexts (e.g., see Refs. [49, 50, 51, 52, 53]).

Mathematical sense-making in the context of solving physics problems can often be more

difficult than when solving equivalent mathematics problems without the physics context

[49, 50, 51, 52, 53]. Since working memory is constrained to a limited number of chunks

and students’ knowledge chunks pertaining to a concept are small when they are learning

and developing expertise in physics, use of mathematics in physics can increase the cognitive

load during problem solving especially if students are not proficient in mathematics [48]

and they may struggle to integrate physics and mathematics concepts. Thus, mathematical
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sense-making while focusing on solving a physics problem is often challenging and students

sometimes make mathematical mistakes that they otherwise would not make if the physics

context was absent [49, 50, 51, 52, 53].
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2.0 DEVELOPING AND EVALUATING A QUANTUM

INTERACTIVE LEARNING TUTORIAL ON DEGENERATE

PERTURBATION THEORY: BASIC FOR DEGENERATE

PERTURBATION THEORY

2.1 INTRODUCTION

Quantum mechanics (QM) is a particularly challenging subject for upper-level undergraduate

and graduate students in physics. Prior investigations suggest that many students struggle

to develop intuition with quantum mechanical phenomena due to the abstract nature of

the subject matter and pedagogical approaches such as tutorials and visualization tools can

improve student learning [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Our group has also conducted

a number of studies aimed at investigating student reasoning in QM [14, 15, 16, 17, 18, 19,

20, 21] and improving student understanding of QM [22, 23, 24, 25]. For example, some of

the studies from our group have focused on helping students learn about Dirac notation,

quantum measurements, expectation values and their time dependence [26, 27, 28, 29, 30].

Guided by research studies conducted to identify student difficulties with QM and findings of

cognitive research, we have been developing a set of research-based learning tools including

the Quantum Interactive Learning Tutorials (QuILTs) [31, 32, 33, 34, 35, 36].

There has been relatively little research conducted into student understanding of ad-

vanced topics in quantum mechanics, e.g., degenerate perturbation theory (DPT) [37, 38].

Here, we discuss an investigation of student difficulties with DPT and the development and

evaluation of a research-based Quantum Interactive Learning Tutorial (QuILT) that makes

use of student difficulties as resources to help them develop a solid grasp of DPT. We first

summarize the basics of DPT that students should learn. Then, we describe the methodology
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for investigating student difficulties and the common student difficulties found. We describe

how the difficulties were used as a guide to develop the QuILT and its in-class evaluation in

undergraduate and graduate QM courses.

2.2 BASICS FOR DPT

Perturbation theory is a powerful approximation method for finding the energies and the en-

ergy eigenstates for a system for which the Time-Independent Schrödinger Equation (TISE)

is not exactly solvable. The Hamiltonian Ĥ for the system can be expressed as the sum of

two terms, the unperturbed Hamiltonian Ĥ0 and the perturbation Ĥ ′, i.e., Ĥ = Ĥ0 + Ĥ ′.

The TISE for the unperturbed Hamiltonian, Ĥ0ψ0
n = E0

nψ
0
n, is assumed to be exactly solv-

able where ψ0
n is the nth unperturbed energy eigenstate and E0

n the unperturbed energy.

Perturbation theory builds on the solutions of the TISE for the unperturbed case. Using

perturbation theory, the energies can be approximated as En = E0
n+E1

n+E2
n+ · · · where Ei

n

for i = 1, 2, 3.. is the ith order corrections to the nth energy of the system. The energy eigen-

states can be approximated as ψn = ψ0
n + ψ1

n + ψ2
n + · · · where ψin is the ith order correction

to the nth energy eigenstate. We focus on the first order perturbative corrections to the en-

ergies and energy eigenstates, which are usually the dominant corrections. In nondegenerate

perturbation theory, the first order corrections to the energies are

E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉, (2.1)

and the first order corrections to the energy eigenstates are

|ψ1
n〉 =

∑
m 6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
(E0

n − E0
m)
|ψ0
m〉. (2.2)

In Eqs. 6.1 and 6.2, {|ψ0
n〉} is a complete set of eigenstates of Ĥ0.

When the eigenvalue spectrum of Ĥ0 has degeneracy (i.e., two or more eigenstates of Ĥ0

have the same energy and two or more diagonal elements of Ĥ0 are equal), Eqs. 6.1 and 6.2

from nondegenerate perturbation theory are still valid provided one uses a good basis. For a
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given Ĥ0 and Ĥ ′, we define a good basis as consisting of a complete set of eigenstates of Ĥ0

that diagonalizes Ĥ ′ in each degenerate subspace of Ĥ0. Therefore, the terms 〈ψ0
m|Ĥ ′|ψ0

n〉 in

Eq. 6.2 for the wavefunction are zero when m 6= n so that the expression for the corrections

to the wavefunction in Eq. 6.2 does not have terms that diverge when E0
m = E0

n. Only if

a good basis is chosen, Eq. 6.1 is valid for finding the first order corrections to the energies

(which are the diagonal elements of the Ĥ ′ matrix as given by Eq. 6.1). Since Ĥ0 is the

dominant term and Ĥ ′ provides only small corrections to the energies, we must ensure that

the basis states used to determine the perturbative corrections to the energies in Eq. 6.1 are

eigenstates of Ĥ0.

If Ĥ0 and Ĥ ′ commute, it is possible to diagonalize Ĥ0 and Ĥ ′ simultaneously to find a

complete set of simultaneous eigenstates and the exact results are obtained. However, if a

complete set of simultaneous eigenstates of Ĥ0 and Ĥ ′ cannot easily be identified, because

Ĥ0 and Ĥ ′ have degeneracy, then it is useful to recognize that diagonalizing Ĥ ′ only in each

degenerate subspace of Ĥ0 produces a good basis and both Ĥ0 and Ĥ ′ become diagonal in

that basis. In this case, the first order corrections in DPT (the diagonal elements of Ĥ ′) are

exact results. If Ĥ0 and Ĥ ′ do not commute, perturbation theory must be used and a good

basis is found by diagonalizing Ĥ ′ only in each degenerate subspace of Ĥ0.

2.3 METHODOLOGY FOR INVESTIGATING STUDENT DIFFICULTIES

As can be seen from the brief review in the previous section, there are many concepts that

students must consider when applying DPT correctly. It is not surprising that students

struggle to develop a consistent and coherent knowledge structure and a functional under-

standing of DPT. Student difficulties with finding the corrections to the energies and energy

eigenstates using DPT were first investigated using five years of data involving responses to

open-ended and multiple-choice questions administered after traditional instruction in rele-

vant concepts to 64 upper-level undergraduates in a second-semester junior/senior level QM

course and 42 first-year physics graduate students in the second-semester of the graduate

core QM course. Additional insight was gained concerning these difficulties via responses of

15



13 students (graduate and undergraduate students) during a total of 45 hours of individual

interviews. A “think aloud” protocol was used during the interviews in which students were

asked to think aloud as they answered the questions posed without being disturbed [39].

Once the students had answered each question to the best of their ability, we asked them

to clarify their reasoning and probed deeper into certain difficulties. The interviews were

generally conducted in one sitting, but there were two interviews that took place over the

course of two days.

In all the questions discussed here, students worked through examples involving DPT that

are restricted to a three-dimensional Hilbert space (with a two-fold degeneracy in Ĥ0). The

purpose for restricting the problem solving to three dimensions was to ensure that students

focus on the fundamental concepts instead of working through cumbersome calculations

that may detract from the focus on why it is important to determine if the initial basis is a

good basis to find perturbative corrections. In all the questions discussed, the Hamiltonian

operator was given in matrix form and we will refer to the basis used to generate these initial

matrix representations of the Hamiltonian operator as the initially chosen basis.

To probe student understanding of a good basis for finding perturbative corrections to

the energies and energy eigenstates, we posed questions regarding the following four systems

(given by the Hamiltonians H1-H4) in which the Hilbert space is three dimensional and ε

is a small parameter (ε � 1). For each system, the normalized basis states are |ψ0
1〉, |ψ0

2〉,

and |ψ0
3〉, respectively, in which

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 . (2.3)

H1.

Ĥ0 = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′ = V0


0 ε ε

ε 0 ε

ε ε 0

 (2.4)
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H2.

Ĥ0 = V0


5 0 0

0 1 0

0 0 1

 and Ĥ ′ = V0


0 0 −4ε

0 2ε ε

−4ε ε 2ε

 (2.5)

H3.

Ĥ0 = V0


1 0 0

0 2 0

0 0 1

 and Ĥ ′ = V0


−ε 2ε 0

2ε 0 3ε

0 3ε −2ε

 (2.6)

H4.

Ĥ0 = V0


5 0 0

0 1 0

0 0 1

 and Ĥ ′ = V0


0 0 −4ε

0 2ε 0

−4ε 0 2ε

 (2.7)

The basis given in Eq. A.11 is a not good basis for the Hamiltonians H1 and H2 as each

Ĥ ′ matrix is not diagonal in the degenerate subspace of the corresponding Ĥ0. The basis

given in Eq. A.11 is a good basis for the Hamiltonians H3 and H4 since each Ĥ ′ matrix is

diagonal in the degenerate subspace of the corresponding Ĥ0.

2.4 STUDENT DIFFICULTIES

Throughout our analysis of student responses to the multiple choice and open-ended ques-

tions, we found that many students struggled to determine a good basis and the corrections

to the energies and energy eigenstates. It was often the case that students had difficulty

even starting some of the open-ended problems after traditional lecture-based instruction in

relevant concepts. We conducted individual think-aloud interviews to gain a better under-

standing of student difficulties. Below, we discuss some of the common student difficulties

with DPT found via interviews in the context of a three-dimensional Hilbert space with a

two-fold degeneracy in Ĥ0. It was not possible to discern the underlying cognitive mechanism

and reasoning for student responses via the students’ written responses to multiple-choice or

open-ended questions. It was during the interviews that we probed further into the students’

reasoning and were able to uncover reasoning for some of the common student difficulties
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with DPT. When possible, in the discussion below, we will give the percentage of the in-

terviewed students who displayed a given difficulty. We note that certain student responses

generated further probing and so those probing questions may not have been asked to all

of the interviewed students. Therefore, we will only report the percentage of difficulties for

interviewed students for questions that were common to all the interviewed students. In

the results section, we present in-class student performance data that suggest that students

gained a better understanding of the concepts related to DPT after working through the

QuILT.

Interviews suggest that many of the following difficulties may partly be a result of the

students’ overloaded working memory [40, 41, 42, 43] and the fact that they did not have

a strong background in linear algebra or they struggled to apply linear algebra concepts

correctly in the context of DPT. In DPT, students must integrate a number of different

concepts to solve a single problem and some students struggled to incorporate these concepts

coherently to solve problems involving degeneracy. For example, one cannot simply focus on

the unperturbed Hamiltonian Ĥ0 or the perturbation Ĥ ′, but one must conisder both Ĥ0

and Ĥ ′ when determining a good basis and the first order corrections to the energies and

energy eigenstates. The unperturbed Hamiltonian dictates whether one should use DPT

and the perturbating Hamitlonian Ĥ ′ in the degenerate subspace of Ĥ0 determines whether

the initial basis is a good basis. It is often difficult for students who are still developing

expertise in the context of DPT to apply all these concepts correctly. Additionally, DPT

problems require the application of linear algebra concepts in the context of QM. It is not

enough to simply diagonalize a matrix, which is a familiar task for many students from

their mathematics courses. In DPT, one must be able to identify whether a basis is a

good basis, whether a matrix must be diagonalized, what needs to be diagonalized (Ĥ ′ in

each degenerate subspace of Ĥ0), and also understand that the degeneracy in the energy

spectrum of Ĥ0 is what allows us to diagonalized Ĥ ′ in the degenerate subspace of Ĥ0

while keeping Ĥ0 diagonal everywhere. The difficulties found are consistent with many prior

studies focusing on student difficulties in connecting the mathematics and physics concepts

and how constraints on working memory can negatively impact student performance in areas

in which their expertise is still evolving [40, 41, 42, 43].
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2.4.1 Difficulty realizing that a good basis is required for corrections to the

energies

Most of the interviewed students (85% of the interviewed students) realized that the first

order corrections to the energy eigenstates |ψ1
n〉 are not valid unless we choose a good basis.

When examining Eq. 6.2, they identified that there will be terms in which the denominator

is zero due to the degeneracy in the energy spectrum. However, many of these same students

(38%) thought that Eq. 6.1 is still valid to find the first order corrections to the energies

since no divergent terms appear in Eq. 6.1. They claimed that any basis which consists

of eigenstates of Ĥ0 is a good basis for finding the first order corrections to the energies,

but that this same basis may not be a good basis for finding the first order corrections to

the energy eigenstates. These students did not realize that if a basis is not a good basis for

finding the corrections to the energy eigenstates, then that same basis cannot be a good basis

for finding the corrections to the energies. When calculating the first order corrections to

the energies, students with this difficulty used the diagonal matrix elements of Ĥ ′ as the first

order corrections to the energies whether the initially chosen basis was a good basis or not

(whether Ĥ ′ in that basis was a diagonal matrix in the degenerate subspace of Ĥ0 or not).

For example, when given the system with Hamiltonian H1 in Eq. 2.4, students with this

difficulty incorrectly claimed that the initially chosen basis was a good basis for finding the

first order corrections to the energies. They incorrectly stated that the first order corrections

to the energies are all zero. However, when diagonalizing Ĥ ′ in the degenerate subspace of

Ĥ0 in Eq. 4, one finds that the first order corrections to the energies are εV0, −εV0, and 0,

respectively.

2.4.2 Difficulty identifying Ĥ ′ in the degenerate subspace of Ĥ0

Many students had difficulty identifying the Ĥ ′ matrix in the degenerate subspace of Ĥ0 when

the Hamiltonian Ĥ for the system was provided in a matrix form. In particular, students

had difficulty with the fact that, in order to determine Ĥ ′ in the degenerate subspace of Ĥ0,

they should start by identifying whether there is any degeneracy in the energy spectrum

of Ĥ0. In fact, we found that some students (31% of the interviewed students) incorrectly
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focused on the diagonal elements of the perturbation Ĥ ′ to determine whether there was

“degeneracy” in Ĥ ′ and whether they should use DPT. For example, students were given

the Hamiltonian in H2 in Eq. 2.5 and were asked in a multiple choice format to identify Ĥ ′

in the degenerate subspace of Ĥ0. Some interviewed students incorrectly identified Ĥ ′ in the

degenerate subspace of Ĥ0 as

 2ε ε

ε 2ε

 because 2ε appears twice as a diagonal matrix

element of Ĥ ′. However, the same diagonal matrix elements of Ĥ ′ has nothing to do with

whether one should use DPT.

Additionally, many students (38% of the interviewed students) were unable to identify

Ĥ ′ in the degenerate subspace of Ĥ0 given the Hamiltonian Ĥ in the matrix form if the

degenerate basis states were not in adjacent rows/columns. For example, in the system given

by the Hamiltonian H3 in Eq. A.19, students were asked to identify Ĥ ′ in the degenerate

subspace of Ĥ0. In this system, the degenerate states are |ψ0
1〉 and |ψ0

3〉. Thus, Ĥ ′ in the

degenerate subspace of Ĥ0 is

 −ε 0

0 −2ε

, which is diagonal. The initially chosen basis is

a good basis. Several students (38% of the interviewed students) who correctly identified the

matrix elements of Ĥ0 corresponding to the degenerate unperturbed energies were unable

to correctly identify Ĥ ′ in that degenerate subspace of Ĥ0 because the degenerate states are

not in adjacent rows/columns. Some of the interviewed students (31% of the interviewed

students) with this difficulty would then look for “degeneracy” in the diagonal elements of

Ĥ ′ and determine if the initially chosen basis was a good basis based upon whether Ĥ ′ had

same diagonal elements (in other words, they looked for the “degenerate” subspace of Ĥ ′ as

opposed to the degenerate subspace of Ĥ0).

2.4.3 Difficulty determining whether the initially chosen basis is a good basis

A good basis is one that keeps the unperturbed Hamiltonian Ĥ0 diagonal while diagonalizing

the perturbation Ĥ ′ in the degenerate subspace of Ĥ0. However, many students had difficulty

determining whether the basis in which the Hamiltonian was given in matrix form was a good

basis. For example, students were given the system with the Hamiltonian H2 in Eq. 2.5

and were asked if the initially chosen basis is a good basis. In this case, Ĥ ′ in the degenerate
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subspace of Ĥ0 is

 2ε ε

ε 2ε

, which is not diagonal. Therefore, the initially chosen basis

is not a good basis. However, some students (15% of the inteviewed students) incorrectly

stated that the initially chosen basis is a good basis because it consists of a complete set of

eigenstates of Ĥ0 (Ĥ0 is diagonal in the initial basis) without considering whether Ĥ0 had

any degeneracy and the implications of the degeneracy in Ĥ0 for finding a good basis. These

students did not consider the Ĥ ′ matrix before determining whether the initial basis was a

good basis for finding the perturbative corrections.

Other students only examined the basis in a general manner and did not focus on either

Ĥ0 or Ĥ ′. For example, one student incorrectly stated that the basis is a good basis if “it

forms a complete Hilbert space.” Another student incorrectly claimed that the only condition

to have a good basis is that “the basis vectors are orthogonal,” regardless of the fact that

the unperturbed Hamiltonian Ĥ0 had degeneracy in the situation provided.

Another common difficulty students had with identifying a good basis was considering

only Ĥ0 or Ĥ ′ when determining whether a basis was a good basis. For example, students

were asked to consider the system with the Hamiltonian H4 in Eq. 2.7 and asked if the

basis in which the Hamiltonian is written in the matrix form is a good basis. Since Ĥ ′ in

the degenerate subspace of Ĥ0 is

 2ε 0

0 2ε

, which is diagonal, the initially chosen basis

is a good basis. However, many students (46% of the interviewed students) had a tendency

to focus on either Ĥ0 or Ĥ ′, but not both, as is necessary to correctly answer the question.

For example, during the interview, one student said, “Ĥ ′ must be diagonal (everywhere)

in the good basis”. Equivalently, another student incorrectly claimed that the basis was

not a good basis “since Ĥ ′ has off-diagonal terms in this basis.” These types of incorrect

responses suggest that students have difficulty with the fact that a good basis is one in which

Ĥ ′ need only be diagonal in the degenerate subspace of Ĥ0. Students with these types of

responses often focused on diagonalizing the entire Ĥ ′ matrix (rather than diagonalizing Ĥ ′

in the degenerate subspace of Ĥ0). They did not realize that if Ĥ0 and Ĥ ′ do not commute,

Ĥ0 will become non-diagonal in a basis that diagonalizes the entire Ĥ ′ matrix, which is

inappropriate since we are finding small corrections in perturbation theory.
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Moreover, some students (31% of the interviewed students) had difficulty with the fact

that even when the initially chosen basis is not a good basis, it may include some states that

are good states that can be used to find the first order corrections to the energies using Eq.

6.1. For example, when asked to consider the system with the Hamiltonian H2 in Eq. 2.5,

many students claimed that none of the three basis states in Eq. A.11 are good basis states.

However, the state |ψ0
1〉 corresponding to the non-degenerate subspace of Ĥ0 is a good state

and |ψ0
2〉 and |ψ0

3〉 are not good basis states for the Hamiltonian H2 in Eq. 2.5. Roughly

one-third of the students were unable to correctly identify whether each state in the initially

chosen basis is a good basis state or not. For example, during the interview, one student

said, “We cannot trust nondegenerate basis states for finding corrections to the energy. We

must adjust all the basis states since we can’t guarantee any will be the same.” This student

and others with this type of response assumed that if the unperturbed Hamiltonian has

degeneracy, none of the initially chosen basis states are good states. However, any state

belonging to the nondegenerate subspace of Ĥ0 is a good state.

Other students struggled with the fact that if Ĥ ′ is already diagonal in a degenerate

subspace of Ĥ0, the initially chosen basis is a good basis and Eq. 6.1 can be used to determine

the perturbative corrections without additional work to diagonalize Ĥ ′ in the subspace. For

example, students were given the system with H4 in Eq. 2.7 and were asked to find the first

order corrections to the energies. Some students (15% of the interviewed students) with this

difficulty attempted to diagonalize the Ĥ ′ matrix in the degenerate subspace of Ĥ0. Since

the Ĥ ′ matrix in the degenerate subspace of Ĥ0 is

 2ε 0

0 2ε

, these students attempted

to diagonalize a matrix that was already diagonal. They appeared to have memorized a

procedure for finding the first order corrections and often made mistakes when diagonalizing

Ĥ ′ in the degenerate subspace of Ĥ0. Interviews corroborated the fact that students with

this type of response did not have a functional understanding of DPT partly because of

difficulties with linear algebra and also not thinking globally about the problem.
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2.4.4 Difficulty understanding why diagonalizing the entire Ĥ ′ matrix is prob-

lematic

Many students (45% of the students after traditional lecture-based instruction) did not real-

ize that when the initially chosen basis is not a good basis and the unperturbed Hamiltonian

Ĥ0 and the perturbing Hamiltonian Ĥ ′ do not commute, they must diagonalize the Ĥ ′ ma-

trix only in the degenerate subspace of Ĥ0. For example, students were given the system

with Hamiltonian H4 in Eq. 2.7 on a written test and asked to determine the first or-

der corrections to the energies. In the Hamiltonian H4, Ĥ0 and Ĥ ′ do not commute. In

this situation, 45% of the students diagonalized the entire Ĥ ′ matrix instead of diagonaliz-

ing the Ĥ ′ matrix only in the degenerate subspace of Ĥ0. When presented with a similar

system and asked to determine the first order corrections to the energies, one interviewed

student who attempted to diagonalize the entire Ĥ ′ matrix justified his reasoning by incor-

rectly stating, “We must find the simultaneous eigenstates of Ĥ0 and Ĥ ′.” This student,

and others with similar difficulties, did not realize that when Ĥ0 and Ĥ ′ do not commute,

we cannot simultaneously diagonalize Ĥ0 and Ĥ ′ since they do not share a complete set of

eigenstates. Students struggled with the fact that if Ĥ0 and Ĥ ′ do not commute, diagonal-

izing Ĥ ′ produces a basis in which Ĥ0 is not diagonal. Since Ĥ0 is the dominant term and

Ĥ ′ provides only small corrections, we must ensure that the basis states used to determine

the perturbative corrections in Eqs. 6.1 and 6.2 remain eigenstates of Ĥ0.

2.4.5 Difficulty understanding why it is always possible to diagonalize Ĥ ′ in

each degenerate subspace of Ĥ0

Some students (23% of the interviewed students) did not realize that Ĥ ′ can be diagonalized

in the degenerate subspace of Ĥ0 while keeping Ĥ0 diagonal even when Ĥ0 and Ĥ ′ do not

commute. For example, when considering the Hamiltonian H4 in Eq. 2.7 in which Ĥ0 and

Ĥ ′ do not commute, one student in the interview stated, “We cannot diagonalize a part of Ĥ ′,

we must diagonalize the whole thing.” In general, students had great difficulty with the fact

that the degeneracy in the eigenvalue spectrum of Ĥ0 provides flexibility in the choice of basis

in the degenerate subspace of Ĥ0 so that Ĥ ′ can be diagonalized in that subspace (even if Ĥ0
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and Ĥ ′ do not commute) while keeping Ĥ0 diagonal. For example, if we consider the case in

which Ĥ0 has a two-fold degeneracy, then Ĥ0ψ0
a = E0ψ0

a, Ĥ
0ψ0

b = E0ψ0
b , and 〈ψ0

a|ψ0
b 〉 = 0

where ψ0
a and ψ0

b are normalized degenerate eigenstates of Ĥ0. Any linear superposition of

these two states, e.g. ψ0 = αψ0
a + βψ0

b with |α|2 + |β|2 = 1, must remain an eigenstate of

Ĥ0 with the same energy E0. Many students (31% of the interviewed students) did not

realize that since any linear superposition of the initial basis states that correspond to the

degenerate subspace of Ĥ0 remains an eigenstate of Ĥ0, one can choose a special linear

superposition of the initial basis states which diagonalizes Ĥ ′ in the degenerate subspace of

Ĥ0.

2.5 METHODOLOGY FOR THE DEVELOPMENT OF THE QUANTUM

INTERACTIVE LEARNING TUTORIAL (QUILT)

2.5.1 Development and Validation of the QuILT

The difficulties described show that many students struggle in determining a good basis for

finding corrections to the energies in the context of degenerate perturbation theory (DPT).

Therefore, we developed a QuILT that takes into account these difficulties. The devel-

opment of the DPT QuILT started by investigating of student difficulties via open-ended

and multiple-choice questions administered after traditional instruction to advanced under-

graduate and graduate students and conducting a cognitive task analysis of the requisite

knowledge from an expert perspective [44]. The QuILT strives to help students build on

their prior knowledge and addresses common difficulties found via research, some of which

were discussed in the previous section.

The QuILT is inspired by Piaget’s “optimal mismatch” framework [45] as well as the

preparation for future learning framework of Bransford and Schwartz [46]. In Piaget’s “op-

timal mismatch” framework, students are intentionally placed in a situation in which their

current knowledge structure of relevant concepts is inadequate and they are then given the

opportunity and support to reorganize their existing knowledge structures or develop new
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structures to reconcile this conflict. Bransford and Schwartz’s preparation for future learning

framework emphasizes that learning occurs when elements of innovation and efficiency are

both present. Although there are many interpretations of the framework, in one interpreta-

tion, innovation and efficiency describe two orthogonal components of instructional design.

Innovation describes aspects that are new to students, such as new concepts or new problem-

solving skills. Efficiency is a measure of the structure and organization of the instructional

design and learning tools, as well as how proficient the student is with the instructional design

and learning tools. Instructional design that incorporates only one of these elements leads

to students becoming disengaged. If instruction is too innovative, students cannot connect

what they are learning with their prior knowledge and may become frustrated. When the

instruction is too efficient, students may become disengaged with the repetitious material

that is too easy and that does not provide intellectual stimulation.

In the QuILT, innovation is incorporated by presenting students with novel tasks.

Whether by examples, hypothetical conversations, or quantitative reasoning, the QuILT

strives to help students develop a deeper understanding by actively working through the

guided inquiry-based sequences. Student difficulties are incorporated in these questions to

create a cognitive conflict after which the students are provided scaffolding support designed

to resolve these issues and develop a robust knowledge structure. Efficiency is addressed in

the QuILT in several ways. First, the QuILT follows a guided inquiry-based learning se-

quence laid out in the cognitive task analysis. It is organized to build on the students’ prior

knowledge and each guided inquiry-based sequence in the QuILT builds upon the previous

guided inquiry-based sequences. This organization strives to help students build their own

knowledge structures in a coherent manner. Second, students are provided scaffolding sup-

port to help address common difficulties, thus resolving the cognitive conflicts. Third, the

QuILT progressively reduces the scaffolding support so that students develop self-reliance

and are able to solve the problems without any assistance. Finally, as the students work

through the different tasks, they develop proficiency in applying the concepts in diverse

contexts.

The development of the QuILT went through a cyclic, iterative process. The preliminary

version was developed based upon the task analysis and knowledge of common student
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difficulties. Next, the QuILT underwent many iterations among the three physics education

researchers and then was iterated several times with three physics faculty members to ensure

that they agreed with the content and wording. It was also administered to graduate and

advanced undergraduate students in individual think-aloud interviews to ensure that the

guided approach was effective, the questions were unambiguously interpreted, and to better

understand the rationale for student responses. The next step involved evaluating student

responses during the interviews and their corresponding posttest responses to determine

the impact of the QuILT on student learning and whether difficulties remained. Finally,

modifications and improvements were made based upon the student and faculty feedback

before it was administered to students in various courses.

2.5.2 Structure of the QuILT

The QuILT uses a guided inquiry-based approach to learning and actively engages students

in the learning process. It includes a pretest to be administered in class after traditional

instruction in DPT. Next, students engage with the tutorial in small groups in class (or

alone when using it as a self-paced learning tool in homework), and then a posttest is

administered in class. As students work through the tutorial, they are asked to predict

what should happen in a given situation. Then, the tutorial strives to provide scaffolding

and feedback as needed to bridge the gap between their initial knowledge and the level of

understanding that is desired. Students are also provided checkpoints to reflect upon what

they have learned and to make explicit the connections between what they are learning and

their prior knowledge. They are given opportunities to reconcile differences between their

predictions and the guidance provided in the checkpoints before proceeding further.

The DPT QuILT uses a blend of qualitative and quantitative reasoning to improve stu-

dents’ understanding. For example, the QuILT requires qualitative understanding while

students respond to the hypothetical conversations and quantitative reasoning to determine

the first order corrections to the energies and energy eigenstates. In addition, students are

asked to verify predictions about the validity of the statements in hypothetical conversa-

tions via quantitative reasoning by working through problems. The QuILT strives to help
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students with linear algebra difficulties relevant for DPT by incorporating a combination of

quantitative and qualitative questions in the guided inquiry-based sequences. Students are

asked to reflect upon their answers and reasoning and then provided checkpoints to reconcile

their initial reasoning with the correct reasoning.

2.5.3 Addressing Student Difficulties

In the QuILT, students actively engage with examples involving DPT that are restricted to a

three-dimensional Hilbert space (with two-fold degeneracy in Ĥ0). In this manner, students

focus on the concept of a good basis in DPT without working through complex calculations.

In particular, for a given Ĥ0 and Ĥ ′, when there is degeneracy in the eigenvalue spectrum

of Ĥ0, students learn about why some bases are not good even though they may consist of a

complete set of eigenstates of Ĥ0. The QuILT strives to help students develop a functional

understanding of whether the basis is a good basis and how to change the basis to one which

is good (if the initial basis is not good for a given Ĥ0 and Ĥ ′) so that Eqs. 6.1 and 6.2 can be

used to find the first order corrections. Below, we discuss how the QuILT addresses student

difficulties and strives to help students learn about a good basis for finding perturbative

corrections.

Helping students realize that a good basis is required even for finding first

order corrections to the energies: By engaging with the QuILT, students learn to

reason about why a basis that is not a good basis for Eq. 6.2 cannot be a good basis for

Eq. 6.1. There are several questions in which students must identify that Ĥ ′ is not diagonal

in the degenerate subspace of Ĥ0 and therefore is not a good basis. For example, students

consider the following system and are asked to determine whether the basis is a good basis:

Ĥ0 = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′ = V0


−3ε 2ε 0

2ε 0 ε

0 ε 0

 .

The terms 〈ψ0
1|Ĥ ′|ψ0

2〉 and 〈ψ0
2|Ĥ ′|ψ0

1〉 are not zero so that Eq. 6.2 contains divergent terms

since E1 = E2. Thus, it is not a good basis for finding perturbative corrections to the

energies and energy eigenstates. The following is an excerpt from a hypothetical student
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conversation in which the students must consider each hypothetical student’s statement and

explain why they agree or disagree with each statement. The conversation strives to help

students reflect upon the fact that the same basis cannot be a good basis for Eq. 6.1 while

at the same time NOT be a good basis for Eq. 6.2.

Student 2: We cannot use equation (6.2) when the unperturbed energies

are degenerate with E0
1 = E0

2 = V0 and in the degenerate subspace of Ĥ0, the

perturbing Hamiltonian Ĥ ′ is V0

 −3ε 2ε

2ε 0

. The first order corrections

to the energy eigenstates |ψ0
1〉 and |ψ0

2〉 “blow up” because the denominators

go to zero! But we can use Eq. 6.1 for corrections to the energies since

nothing “blows up” in that equation.

Student 3: If Ĥ ′ is not diagonal in the degenerate subspace of Ĥ0, we

can neither use equation (6.1) nor (6.2) in the initially chosen basis

{|ψ0
1〉, |ψ0

2〉, |ψ0
3〉}. The initially chosen basis is not a GOOD basis. We need to

find a GOOD basis in order to use equations (6.1) and (6.2).

After the students work through the question and consider the validity of each statement

in the hypothetical conversation, they are provided further scaffolding. They are then asked

to summarize when Eqs. 6.1 and 6.2 are valid if there is degeneracy in the energy spectrum

of Ĥ0 and are provided opportunities to reconcile any differences between their initial un-

derstanding and the correct understanding via the checkpoints. The QuILT strives to help

students learn that care must be taken to determine a good basis to ensure Eqs. 6.1 and 6.2

are valid.

Helping students identify that if Ĥ ′ is diagonal in the degenerate subspace of

Ĥ0, it is a good basis: In the QuILT, students work through different examples in which

the same unperturbed Hamiltonian Ĥ0 is provided with different perturbations Ĥ ′ and are

asked to identify whether the initially chosen basis is a good basis for a given Ĥ ′. In the

initial examples in the QuILT, they are given opportunities to reflect upon situations in

which Ĥ ′ is already diagonal in the degenerate subspace of Ĥ0 in the basis provided and
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therefore the initial basis is a good basis. For example, students work through the following

guided inquiry sequence aimed at helping those who have difficulty identifying Ĥ ′ in the

degenerate subspace of Ĥ0 given the Hamiltonian Ĥ = Ĥ0 + Ĥ ′ and who have difficulty

determining if the basis is a good basis.

Q1(A). Consider the following example, in which the Hilbert space is three

dimensional and ε is a small parameter (ε � 1) and answer the following

questions:

Ĥ0 = V0


1 0 0

0 2 0

0 0 2

 and Ĥ ′ = V0


ε 2ε 0

2ε ε 0

0 0 3ε



in which the normalized basis states are |ψ0
1〉 =


1

0

0

, |ψ0
2〉 =


0

1

0

, and

|ψ0
3〉 =


0

0

1

 .

All of the basis states |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉 are eigenstates of

(i) Ĥ0 only

(ii) Ĥ ′ only

(ii) Both Ĥ0 and Ĥ ′

(iv) Neither Ĥ0 nor Ĥ ′

Explain your reasoning.

In question Q1(A), students must identify that since Ĥ0 is diagonal in the initially chosen

basis, the basis consists of a complete set of eigenstates of Ĥ0. Thus, the initially chosen

basis satisfies one of the conditions for a good basis.

The next question Q1(B) asks students to identify whether there is degeneracy in the

energy spectrum of Ĥ0 so that DPT must be used. Students must identify 2V0 as the two-

fold degenerate unperturbed energy in order to correctly identify the degenerate subspace of
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Ĥ0.

The subsequent question in the guided inquiry-based sequence asks students to identify

Ĥ0 and Ĥ ′ in the degenerate subspace of Ĥ0 after identifying the degeneracy in Ĥ0 in

question Q1(B) as follows:

Q1(C). Choose one of the following options to fill in the blank. In the

degenerate subspace of Ĥ0, the matrix representation of Ĥ ′ is

and the matrix representation of Ĥ0 is , respectively.

(i) V0

 ε 2ε

2ε ε

 , V0

 1 0

0 2


(ii) V0

 ε 0

0 3ε

 , V0

 2 0

0 2


(iii) V0

 1 0

0 2

 , V0

 ε 2ε

2ε ε


(iv) V0

 2 0

0 2

 , V0

 ε 0

0 3ε


Option (ii) is the correct answer to Q1(C). Students must correctly identify the degenerate

subspace of Ĥ0 and identify Ĥ ′ in the degenerate subspace of Ĥ0 for question Q1(C). Option

(i) is given as a distractor because students often incorrectly focused on the matrix elements of

Ĥ ′ when determining the degenerate subspace of Ĥ0. In option (i), the matrix representation

of Ĥ ′ in the degenerate subspace of Ĥ0 is incorrectly given as the matrix representation of

Ĥ ′ in the “degenerate” subspace of Ĥ ′.

The final part to this inquiry-based sequence asks the following:

Q1(D). Do the basis states |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉 form a GOOD basis? Explain.

In Q1(D), the initially chosen basis is a good basis since it consists of a complete set of

eigenstates of Ĥ0 (probed in Q1(A)), and Ĥ ′ is diagonal in the degenerate subspace of Ĥ0

(probed in Q1(C)). However, students who had difficulty identifying whether the initially
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chosen basis is a good basis for finding the perturbative corrections often selected option (i)

in Q1(C) and they determined that the initially chosen basis is NOT a good basis as Ĥ ′ in

option (i) is not diagonal in the given subspace. Scaffolding is provided after this question in

the form of student conversations and checkpoints to help students reconcile the differences

between their initial responses and correct ideas.

After students work through several examples to determine whether the initially chosen

basis is a good basis when the degenerate states are in adjacent rows/columns of Ĥ0, students

are also given an example to help them identify Ĥ ′ in the degenerate subspace of Ĥ0 when

the degenerate states are not in adjacent rows/columns.

Helping students identify that if Ĥ ′ is not diagonal in the degenerate subspace

of Ĥ0, it is not a good basis for finding the perturbative corrections: In other

examples in the QuILT, students learn that if Ĥ ′ is not diagonal in the degenerate subspace

of Ĥ0, it is not a good basis for finding the perturbative corrections. For example, the

following is an excerpt from a guided inquiry-based sequence in the QuILT

Q2(A). Consider the following example, in which ε is a small parameter

(ε� 1), and answer the following questions:

Ĥ0 = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′ = V0


−3ε 2ε 0

2ε 0 ε

0 ε 0

 . (2.8)

The normalized basis states are

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 .

Choose one of the following options to fill in the blank. In the degener-

ate subspace of Ĥ0, the matrix representation of Ĥ ′ is and the

matrix representation of Ĥ0 is , respectively.

(i) V0

 0 ε

ε 0

 , V0

 1 0

0 2
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(ii) V0

 −3ε 2ε

2ε 0

 , V0

 1 0

0 1


(iii) V0

 1 0

0 1

 , V0

 −3ε 2ε

2ε 0


(iv) V0

 1 0

0 2

 , V0

 0 ε

ε 0


Q2(B). Do the basis states |ψ0

1〉, |ψ0
2〉, and |ψ0

3〉 form a GOOD basis? Explain.

This example and other guided inquiry-based sequences strive to help students with difficul-

ties identifying whether the initially chosen basis is a good basis for finding the perturbative

corrections. In particular, to help students identify that the initially chosen basis is not

a good basis, students are asked the same questions as in Q1, but in these examples they

identify that the Ĥ ′ matrix is not diagonal in the degenerate subspace of Ĥ0. Therefore, the

initially chosen basis is not a good basis. The tutorial includes several examples in which

the initially chosen basis is a good basis and several examples in which it is not a good basis.

After students engage with each example, they are asked to reflect upon and summarize in

their own words why the initial basis is a good basis or not in each situation.

Helping students understand why diagonalizing the entire Ĥ ′ matrix is

problematic when Ĥ0 and Ĥ ′ do not commute: In the QuILT, students focus on why

it is inappropriate to diagonalize the entire Ĥ ′ matrix if Ĥ0 and Ĥ ′ do not commute. For

example, the following is an excerpt taken from a hypothetical student conversation which

is designed to present the students with a cognitive conflict:

Student 1: We should not diagonalize the entire Ĥ ′ matrix, but rather

only the part of Ĥ ′ that corresponds to the degenerate subspace of Ĥ0.

Student 2: I disagree. If we diagonalize part of the Ĥ ′ matrix then we

cannot guarantee that it will give us a GOOD basis. We must diagonalize

the entire Ĥ ′ matrix.

Student 3: Actually, it is equally valid to diagonalize either the entire Ĥ ′

matrix or only the Ĥ ′ matrix in the degenerate subspace of Ĥ0. We usually

32



choose to diagonalize Ĥ ′ in the degenerate subspace of Ĥ0 simply because

it requires less work to diagonalize a matrix with a lower dimension.

After students contemplate which hypothetical student is correct (which is Student 1 and

possibly agree with the wrong student due to the common difficulty mentioned earlier), they

check their responses to Q3 via quantitative reasoning as follows.

Q3. Let’s see what happens when we diagonalize the entire Ĥ ′ matrix. Con-

sider the example

Ĥ = Ĥ0 + Ĥ ′ = V0


5 ε ε

ε 1 ε

ε ε 1

 , (ε� 1). (2.9)

Due to the degeneracy in the energy spectrum of Ĥ ′, the eigenstates of Ĥ ′

are not unique. One possible set of eigenstates of Ĥ ′ is

|φ0
1〉 =

1√
3


1

1

1

 , |φ0
2〉 =

1√
2


−1

1

0

 , |φ0
3〉 =

1√
2


−1

0

1

 (2.10)

written in terms of the basis states used to write equation (A.21). If we

use the eigenstates of Ĥ ′ as the basis states, the Ĥ0 matrix becomes

Ĥ0 =



7

3
− 4√

6
− 4√

6

− 4√
6

3
5

2

− 4√
6

5

2
3


. (2.11)

Can this basis be used for finding the corrections to the energies and

energy eigenstates in perturbation theory for the Hamiltonian in equation

(A.21)? Explain.
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This guided inquiry-based sequence strives to help students learn that when Ĥ0 and Ĥ ′ do

not commute, we cannot simultaneously diagonalize Ĥ0 and Ĥ ′. Therefore, diagonalizing Ĥ ′

results in a basis in which Ĥ0 is NOT diagonal. The objective is to have students examine

the effect that diagonalizing Ĥ ′ has on Ĥ0. Therefore, rather than having the students work

through all the steps to diagonalize the entire Ĥ ′ matrix and then express the Ĥ0 matrix

in the basis of the eigenstates of Ĥ ′ (as opposed to eigenstates of Ĥ0), they are provided

the Ĥ0 matrix when the basis is chosen to be the eigenstates of Ĥ ′. They can now focus on

making sense of the fact that Ĥ0 is not diagonal if the basis is chosen to be a complete set of

eigenstates of Ĥ ′ (and therefore, Ĥ ′ is diagonal in the basis). They are then guided to reason

about the fact that when Ĥ0 and Ĥ ′ do not commute, it is impossible to simultaneously

diagonalize them. They are also guided to make sense of the fact that, in a good basis, Ĥ0

must be diagonal since the basis states must be eigenstates of Ĥ0 (the dominant term in the

Hamiltonian) since we are finding small corrections to the energy in DPT.

Helping students understand why it is always possible to diagonalize Ĥ ′ in

each degenerate subspace of Ĥ0 (even when Ĥ0 and Ĥ ′ do not commute): In

the QuILT, students reason about why it is possible to diagonalize Ĥ ′ in the degenerate

subspace of Ĥ0 while still keeping Ĥ0 diagonal. For example, the following excerpt from an

inquiry-based sequence in the QuILT strives to help students understand why it is always

possible to diagonalize Ĥ ′ in each degenerate subspace of Ĥ0 (i.e., even when Ĥ0 and Ĥ ′ do

not commute):

Q4(A). Consider the Hamiltonian Ĥ = Ĥ0 + Ĥ ′ in which

Ĥ0 = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′ = V0


0 ε ε

ε 0 ε

ε ε 0

 (ε� 1) (2.12)

and the normalized eigenstates of Ĥ0 given by |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉, respec-

tively, are

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 . (2.13)

34



Fill in the blanks using equations (A.14) and (A.15).

(i) Ĥ0|ψ0
1〉 =

(ii) Ĥ0|ψ0
2〉 =

(iii) Ĥ0(a |ψ0
1〉+ b |ψ0

2〉) =

Q4(B). Is a |ψ0
1〉 + b |ψ0

2〉 a normalized eigenstate of Ĥ0, where a and b are

any arbitrary complex numbers that satisfy |a|2 + |b|2 = 1? Explain.

Q4(C). Can Ĥ0 still be diagonal if a |ψ0
1〉 + b |ψ0

2〉 and c |ψ0
1〉 + d |ψ0

2〉 are used

as new basis states instead of |ψ0
1〉 and |ψ0

2〉 and a, b, c and d are chosen such

that a |ψ0
1〉 + b |ψ0

2〉 and c |ψ0
1〉 + d |ψ0

2〉 are orthonormal and Ĥ ′ is diagonal in

the degenerate subspace of Ĥ0? Explain.

Students are then asked to find values of a, b, c, and d that diagonalize Ĥ ′ in the degenerate

subspace of Ĥ0.

In parts (a) and (b) of question Q4, students verify that the linear combination of eigen-

states of Ĥ0 from the same degenerate subspace of Ĥ0 is an eigenstate of Ĥ0. Q4(C) strives

to help students learn that we can find a particular linear combination that diagonalizes Ĥ ′

in the degenerate subspace of Ĥ0 while keeping Ĥ0 diagonal to find a good basis for DPT.

Students are given the opportunity to check their answer in Q4 via quantitative reasoning.

2.6 EVALUATION OF THE QUILT

Once the researchers determined that the QuILT was successful in one-on-one implementa-

tion using a think-aloud protocol, it was administered in graduate and upper-level under-

graduate QM classes. Both undergraduate and graduate students were given a pretest after

traditional instruction in relevant concepts in DPT but before working through the tutorial.

The pretests were never returned to the students. After working through and submitting

the completed tutorial, both groups were given the posttest in class. Students were given

enough time in class to work through the pretest and posttest. The posttest was similar

to the pretest with minor changes to the degenerate subspaces. The pretest, tutorial, and

posttest each counted as components of the students’ course grades. The pretest was scored
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for completeness for both groups. The posttest was scored for correctness for the under-

graduates in all three years. However, the posttest was scored differently for the graduate

students in the two different years. In Year 1, the graduate students’ posttest was scored for

completeness while in Year 2 it was scored for correctness. For the undergraduate students,

the QuILT (including pretest, tutorial, and posttest) contributed to roughly 2.5% of their

course grade in Year 1 and Year 2. In Year 3, for the undergraduate students, it contributed

to roughly 7% of their course grade. For the graduate students, roughly 1% of the course

grade was associated with the QuILT. Regardless of how the pretest and posttest counted

towards the students’ course grade, each was scored for correctness to investigate the effec-

tiveness of the QuILT for research purposes. These scores are the scores that are reported

here.

The entire pretest and posttest each consist of 10 questions related to DPT. We will

present the results from the three questions that focused on finding a good basis and first

order corrections to the energy for a system restricted to a three-dimensional Hilbert space.

To probe student understanding of DPT in the context of three dimensional Hilbert space,

the following questions QI-QIII were administered on the QuILT pretest and/or the QuILT

posttest. All the questions were asked on both the pretest and posttest in Years 1 and 3. In

Year 2, question QI(B) was posed only on the pretest and question QI(A) was posed only

on the posttest.

QI. Consider the unperturbed Hamiltonian Ĥ0 = V0


3 0 0

0 3 0

0 0 7

 .
(a) Write an example of a perturbing Hamiltonian Ĥ ′ in the same basis as

Ĥ0 such that for that Ĥ0 and Ĥ ′, this basis forms a good basis (so that one

can use the same expressions that one uses in non-DPT for perturbative

corrections). Use ε as a small parameter.

(b) Write an example of a perturbing Hamiltonian Ĥ ′ in the same basis as

Ĥ0 such that for that Ĥ0 and Ĥ ′, this basis does NOT form a good basis (so

that we cannot use the basis for perturbative corrections using Eq. 6.1).
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Use ε as a small parameter.

QII. Given Ĥ = Ĥ0 + εĤ ′ = V0


5 0 −4ε

0 1− 4ε 0

−4ε 0 1 + 6ε

 with ε � 1, determine the

first order corrections to the energies. You must show your work.

QIII. Given Ĥ = Ĥ0 + εĤ ′ = V0


2 ε ε

ε 2 ε

ε ε 3

, with

ε � 1, determine the first order corrections to the energies. You must

show your work.

In order to answer QI correctly, students must first identify the degenerate subspace of

Ĥ0. Since Ĥ0 is diagonal in the given basis, a good basis is one in which Ĥ ′ is also diagonal

in the degenerate subspace of Ĥ0. Therefore, in part QI(A), students must provide an Ĥ ′

matrix that is diagonal in the degenerate subspace of Ĥ0 and in part QI(B), students must

provide an Ĥ ′ matrix that is not diagonal in the degenerate subspace of Ĥ0.

For QII, students must first identify Ĥ ′ and Ĥ0 in the degenerate subspace of Ĥ0. Once

they identify Ĥ ′ in the degenerate subspace of Ĥ0, they must determine whether the initially

chosen basis is a good basis. In particular, they must realize that in QII, Ĥ ′ is diagonal in

the degenerate subspace of Ĥ0 and therefore the initial basis is a good basis. The diagonal

matrix elements of Ĥ ′ are the first order corrections to the energies.

In QIII, students must first identify Ĥ ′ and Ĥ0 in the degenerate subspace of Ĥ0. Once

they identify Ĥ ′ in the degenerate subspace of Ĥ0, they must determine whether the initially

chosen basis is a good basis. In QIII, Ĥ ′ is not diagonal in the degenerate subspace of Ĥ0.

Thus, the initial basis is not a good basis and students first must determine a good basis in

order to find the perturbative corrections. Since Ĥ0 and Ĥ ′ do not commute, students must

diagonalize Ĥ ′ only in the degenerate subspace of Ĥ0. In a good basis, the diagonal matrix

elements of Ĥ ′ are the first order corrections to the energies.

The open-ended questions were graded using rubrics which were developed by the re-

searchers together. A subset of questions was graded separately by them. After comparing
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the grading, they discussed any disagreements and resolved them with a final inter-rater

reliability of better than 95%. Table 1 shows the performance of undergraduate and grad-

uate students on the pretest and posttest. Table 1 also includes the average gain, G, and

normalized gain [47], g. The normalized gain is defined as the (posttest percent - pretest

percent)/(100 - pretest percent). The undergraduate students had the same instructor (In-

structor 1) in Year 1 and Year 2. The instructor (Instructor 3) for the graduate level course

was the same in Year 1 and Year 2 (it was a different instructor than the undergraduate

course). Performance on questions QII and QIII on pretest were comparable in Years 1 and 2

and were combined into a single percentage in Table 1. Similarly, the posttest scores for the

undergraduate and graduate students on QII and QIII in Years 1 and Years 2 were compa-

rable and were combined. Both the undergraduate and graduate instructors in Years 1 and

2 used a traditional lecture-based approach. Instructor 2 for the undergraduate students in

Year 3 used active-engagement teaching involving in-class clicker questions with peer discus-

sion. The performance of the undergraduates on the pretest in Year 3 is significantly better

than that of the performance of the undergraduate students on the pretest in Years 1 and

2. However, after engaging with the QuILT, there is no statistically significant difference

in the performance of the undergraduate students on the posttest based upon instructor

and all classes performed well regardless of the instructor. These results are encouraging

and suggest that the QuILT is effective at reducing the gap between courses taught with

traditional lecture-based instruction and those that incorporate active engagement activities

while also achieving a high normalized gain for the students regardless of their performance

on the pretest. The posttest scores are significantly better than the pretest scores on all of

these questions for both undergraduate and graduate students with the exception of Q1(B)

in Year 3 (in which the active learning instructor’s students performed well on both the

pretest and the posttest).

To investigate retention of learning, the undergraduates in Year 1 were given questions

QI(A) and QI(B) again as part of their final exam. The final exam was six weeks after

students engaged with the tutorial. The average score on QI(A) was 97.8% and on QI(B)

was 91.0%. In QI(A), all 11 students provided an Ĥ ′ matrix that was diagonal in the

degenerate subspace of Ĥ0. In QI(B), 10 out of 11 students provided an Ĥ ′ matrix that was
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Table 1: Average pretest and posttest scores, gains (G) and normalized gains (g) for under-

graduate students (number of students N = 11 in Year 1 , N = 12 in Year 2, N = 12 in

Year 3) and graduate students (number of students N = 19 in Year 1 and N = 19 in Year

2). Also, the average score of the undergraduates is given for two problems that were given

on the final exam six weeks later.

Undergraduate Students Graduate Students

Question Instructor N Pre (%) Post (%) G (%) g Final (%) Instructor N Pre (%) Post (%) G (%) g

QI(A)

1 11 23.1 100 +76.9 1.00 97.8 3 19 67.5 88.2 +20.7 0.64

1 12 - 97.9 - - - 3 19 - 93.4 - -

2 12 69.8 91.7 +21.9 0.73 - - - - - - -

QI(B)

1 11 15.4 100 +84.6 1.00 91.0 3 19 51.3 73.7 +22.4 0.46

1 12 43.8 - - - - 3 19 36.8 - - -

2 12 89.6 92.8 +3.2 0.31 - - - - - - -

QII

1 23 19.8 92.7 +72.9 0.91 - 3 19 25.0 90.8 +65.8 0.88

2 12 33.3 94.4 +61.1 0.92 - - - - - - -

QIII

1 23 1.2 91.3 +90.0 0.91 - 3 19 12.9 83.0 +70.1 0.80

2 12 33.3 95.0 +61.7 0.93 - - - - - - -

not diagonal in the degenerate subspace of Ĥ0.

Table 1 shows that the performance of the undergraduate students on all the questions

in the posttest was exceptional. However, as can be seen from the pretest scores in Table

1, traditional lecture-based instruction was not particularly effective at developing a func-

tional understanding of these topics. We also note that this second semester upper-level

undergraduate QM course is an elective honors physics course that majority of the students

take in preparation for graduate school to pursue a Ph.D. They are highly motivated to

learn the material if appropriate guidance and support is provided (which the QuILT, that

uses research on student difficulties as a guide, strived to do). This may help to explain

why the undergraduate students did so well on the posttest after engaging with research-

validated guided inquiry-based learning tutorial. The majority of these honors students are

high achieving undergraduate students and a large fraction go on to graduate school at top

universities. In addition, we note that while many students were able to answer Questions

QI-QIII correctly, it is encouraging that most students provided correct reasoning along with
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their work on the posttest questions. Students’ written reasoning indicated that they had

developed a good understanding of how to determine a good basis and the first order correc-

tions to the energy rather than simply memorizing an algorithm. Figure 1 shows a written

response from an undergraduate student on the posttest in Year 1 to question QIII. The stu-

dent began by expressing the Hamiltonian as the sum of the unperturbed Hamiltonian Ĥ0

and the perturbating Hamiltonian Ĥ ′. He then boxed the degenerate subspace of Ĥ0 and Ĥ ′

in the degenerate subspace of Ĥ0. Next, he noted that Ĥ ′ is not diagonal in the degenerate

subspace of Ĥ0 and proceeded to diagonalize Ĥ ′ in the degenerate subspace of Ĥ0. Then he

correctly identified the first order corrections to the energies as 0 and ±εV0. Many students

provided similar solutions that clearly justified their reasoning and demonstrated a correct

problem-solving approach to questions QI-QIII.

Figure 1: Written student response from an undergraduate student on the posttest to ques-

tion QIII

We also note that this investigation was part of a larger study of student understanding

of DPT. The QuILT focusing on DPT in a 3-dimensional Hilbert space was one of a series of

QuILTs developed to help improve student understanding of DPT. The QuILT discussed here

was developed to help students gain a functional understanding of fundamental concepts in

DPT in the context of a 3-dimensional Hilbert space which are necessary for understanding
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more complex applications of DPT. For example, we have developed a QuILT that builds on

the QuILT discussed here and strives to help students find a good basis and the first order

corrections to the energy spectrum of the hydrogen atom placed in an external magnetic field.

In this situation, students must determine a good basis and find the first order corrections

to the energies for principal quantum number n = 2 in an eight-dimensional subspace. We

note that in these more complex situations involving the hydrogen atom, the students do

not perform as well on the posttest as they do on the posttest described in this paper that

focused on DPT in a 3-dimensional Hilbert space. However, they still show a dramatic

improvement over their pretest scores after traditional lecture-based instruction only. We

plan to discuss these investigations in future work.

As can be seen in Table 7, the graduate students generally performed better than the

undergraduates on the pretest. However, the undergraduates outperformed the graduate

students on the posttest on most questions (see Table 7). One possible explanation for the

undergraduates outperforming the graduate students on the posttest could be the grade

incentive associated with the QuILT. As discussed earlier, the QuILT accounted for a larger

percent of the undergraduates overall course grade and the components of the QuILT were

accounted for differently for the course grade for the two groups of students. In particular,

the posttest for the undergraduate students was graded for correctness in all three years

while the posttest for the graduate students was graded for completeness in Year 1 and for

correctness in Year 2. Additionally, the undergraduate students knew that the material from

the QuILT could appear on their examinations while the graduate students were told but the

graduate instructor that this material was a review of the undergraduate quantum mechanics

and that no material from the QuILT would appear on their examinations, instead, more

complex problems on the DPT would appear on the exams. The fact that the graduate

students were given very small grade incentive to learn the material in the QuILT may have

decreased their motivation to engage as deeply with the QuILT as the undergraduates and

may explain why the graduate students did not perform as well as the undergraduate students

on the posttest. We also note that prior studies in the context of introductory physics suggest

that more time on task does not improve student understanding and students need to engage

with research-based approaches in a meaningful way for them to develop a good grasp of
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concepts [48].

2.7 SUMMARY

We developed and evaluated a research-based QuILT which focuses on helping students

reason about and find perturbative corrections to the energies using DPT. We found that

the advanced physics students who are still developing expertise in QM had difficulty af-

ter traditional lecture-based instruction in reasoning about the DPT concepts while solving

problems. This difficulty is in part due to the fact that students’ working memory can get

overloaded by the demands of the DPT problems (partly due to the fact that the paradigm of

quantum mechanics is novel and partly due to the difficulty with mathematical sense making

in a physics context involving degeneracy). One major cause of the difficulties is the fact

that DPT relies heavily on applying linear algebra in the context of QM and many students

struggled to apply these mathematical concepts correctly in the context of DPT. In partic-

ular, a majority of students were not able to integrate all the different concepts coherently

to solve a given problem after traditional lecture-based instruction. We used the common

difficulties of advanced students with DPT found via research as resources in order to de-

velop and validate the QuILT. The research-validated QuILT strives to provide appropriate

scaffolding and feedback using a guided inquiry-based approach to help students develop

a functional understanding of DPT. The preliminary evaluation shows that the QuILT is

effective in improving undergraduate and graduate students’ understanding of a good basis

in the context of DPT. Future investigations will focus on evaluating the effectiveness of the

QuILT at other universities where the student in this type of undergraduate QM course are

not so selective.
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3.0 DEVELOPING AND EVALUATING A QUANTUM

INTERACTIVE LEARNING TUTORIAL ON DEGENERATE

PERTURBATION THEORY: DETERMINING A BASIS IN WHICH AN

OPERATOR IS DIAGONAL

3.1 INTRODUCTION

Quantum Mechanics (QM) is a challenging subject for upper-level undergraduate and

graduate students in physics (e.g., see Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]). There

have been a number of research studies aimed at investigating student reasoning in QM

[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and improving student understanding of

QM [24, 25, 26, 27, 28, 29, 30, 31, 32]. Guided by research studies conducted to iden-

tify student difficulties with QM and findings of cognitive research, we have been de-

veloping a set of research-based learning tools including the Quantum Interactive Learn-

ing Tutorials (QuILTs) which strive to help students develop a solid grasp of QM

[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44].

Students’ ability to apply linear algebra concepts in various QM contexts and inter-

pret the physical results appropriately depends on whether they have developed a robust

knowledge structure and a functional understanding of relevant upper-level QM concepts.

Moreover, in the context of degenerate perturbation theory (DPT), the degeneracy makes

it even more important that students have a deep understanding of linear algebra concepts

and procedures in order to apply them appropriately to solve quantum physics problems

involving DPT.

Since human working memory while solving a problem is restricted to a limited number

of “chunks” and the size of a chunk in the working memory depends on the expertise of
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the individual who is solving the problem, Simon’s framework of “bounded rationality and

satisficing” posits that an individual will make decisions while solving problems based upon

their current level of expertise, which may not be optimal [45]. While solving a problem,

satisficers are often interested in what is referred to as ”satisficing” and only look for a

solution consistent with their current level of expertise that is satisfactory to them in which

they see no inconsistencies rather than searching for additional pathways in the problem

space which may yield a more optimal solution [45]. In some of these cases, satisficers are

content with their efforts in solving the problem and see no reason to consider whether there

are alternative pathways in the problem space. In other cases, they may realize that their

satisficing may not yield an optimal solution and there may be more productive pathways in

the problem space but choose not to explore those additional pathways for a more optimal

solution due to the increased mental effort required in this process [45]. Other students may

be motivated to find an optimal solution to the problem by searching for many possible

pathways in the problem space. However, if their level of expertise is not sufficient to solve

the problem on their own and they have not been provided with appropriate guidance and

scaffolding support, they may experience cognitive overload and may not be able to determine

an optimal solution to the problem posed [45, 46].

Many of the student difficulties discussed here in the context of DPT may be attributed

in part to students’ bounded rationality and satisficing while sense-making in that they may

be satisfied with a sub-optimal solution that does not cause cognitive overload and may not

search for optimal solution pathways in the problem space that may yield the correct solution

[45, 46]. Those students who resort to satisficing are, in general, satisfied to engage in sense-

making which is commensurate with their current level of expertise and their integration of

mathematical and physical concepts to solve the problem may not be appropriate for the

problem solving task since they are still developing expertise in these areas [45]. Since the

paradigm of QM is novel, these issues related to satisficing and difficulty in sense-making

become critical when students solve problems in this non-intuitive abstract context unless

they are provided appropriate guidance and scaffolding support to engage in productive

sense-making.

Here, we discuss an investigation of student difficulties with the representations in which
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an operator is diagonal in the context of DPT involving the Zeeman effect in a hydrogen

atom and how that research was used as a guide in the development, validation, and in-class

evaluation of a research-based QuILT that makes use of student difficulties as a guide and

strives to help students develop a good grasp of relevant concepts.

3.2 BACKGROUND

3.2.1 Background for DPT

Perturbation theory (PT) is a powerful approximation method for finding the energies and

the energy eigenstates of a system for which the Time-Independent Schrödinger Equation

(TISE) is not exactly solvable. The Hamiltonian Ĥ for the system can be expressed as the

sum of two terms, the unperturbed Hamiltonian Ĥ0 and the perturbation Ĥ ′, i.e., Ĥ = Ĥ0+

Ĥ ′. The TISE for the unperturbed Hamiltonian is Ĥ0ψ0
n = E0

nψ
0
n. ψ0

n, the nth unperturbed

energy eigenstate, and E0
n, the nth unperturbed energy, are exactly solvable. PT builds

on the solutions of the TISE for the unperturbed case. Using PT, the energies can be

approximated as En = E0
n + E1

n + E2
n + · · · where Ei

n for i = 1, 2, 3.. are the ith order

corrections to the nth energy of the system. The energy eigenstate can be approximated as

ψn = ψ0
n +ψ1

n +ψ2
n + · · · where ψin are the ith order corrections to the nth energy eigenstate.

We focus on the first order perturbative corrections to the energies since they are usually

the dominant corrections. In nondegenerate perturbation theory (NDPT), the first order

correction to the nth energy is E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 and the first order correction to the nth

energy eigenstate is |ψ1
n〉 =

∑
m6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
(E0

n − E0
m)
|ψ0
m〉. When the eigenvalue spectrum of Ĥ0 has

degeneracy (two or more eigenstates of Ĥ0 have the same energy, i.e., two or more diagonal

elements of Ĥ0 are equal in the basis consisting of eigenstates of Ĥ0), the equations for

the first order corrections to the energies and energy eignestates from NDPT are still valid

provided one uses a good basis. For a given Ĥ0 and Ĥ ′, we define a good basis as consisting

of a complete set of eigenstates of Ĥ0 that diagonalizes Ĥ ′ in each degenerate subspace of

Ĥ0. In a good basis, Ĥ ′ is diagonal in each degenerate subspace of Ĥ0 so that the divergent
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terms do not appear in the first order corrections to the energy eigenstates and expressions

for the corrections to the energies and energy eigenstates in NDPT are valid.

3.2.2 Background for DPT involving the Zeeman effect in the hydrogen atom

One application of DPT that students learn about in upper-level undergraduate and graduate

QM courses involves a hydrogen atom placed in an external magnetic field (known as the

Zeeman effect). Using standard notations, the Hamiltonian of a hydrogen atom placed

in an external magnetic field is Ĥ = Ĥ0 + Ĥ ′ in which the unperturbed Hamiltonian,

Ĥ0 = p̂2

2m
− e2

4πε0
1
r
, accounts only for the interaction of the electron with the nucleus via

Coulomb attraction and the perturbation is Ĥ ′ = Ĥ ′fs+Ĥ ′Z , in which Ĥ ′Z is the Zeeman term

and Ĥ ′fs is the fine structure term. The Zeeman term accounts for the potential energy of the

magnetic moments due to the orbital and spin angular momenta in the external magnetic

field. The Zeeman term is given by Ĥ ′Z = µBBext

~ (L̂z+2Ŝz) in which ~Bext = Bextẑ is a uniform,

time-independent external magnetic field along the ẑ-direction, µB is the Bohr magneton

and L̂z and Ŝz are the operators corresponding to the z component of the orbital and spin

angular momenta, respectively. The fine structure term includes a relativistic correction and

the spin-orbit coupling for the kinetic energy and is expressed as Ĥ ′fs = Ĥ ′r + Ĥ ′SO. Here,

Ĥ ′r = − p̂4

8m3c2
is the relativistic correction term and Ĥ ′SO = e2

8πε0
1

m2c2r3
~L · ~S is the spin-orbit

interaction term (all notations are standard).

For each subspace corresponding to the principal quantum number n, the energy spec-

trum of Ĥ0 is 2n2-fold degenerate. Therefore, a good basis for finding the perturbative

corrections consisting of eigenstates of Ĥ0 must also diagonalize the perturbation Ĥ ′ in the

2n2 dimensional subspace corresponding to each n. We note that the unperturbed Hamil-

tonian Ĥ0 is spherically symmetric since [Ĥ0, ~̂L] = 0. Therefore, for a fixed n, Ĥ0 for the

hydrogen atom is diagonal when any complete set of orthogonal states is chosen for the

angular part of the basis (consisting of the product states of orbital and spin angular mo-

menta). Thus, so long as the radial part of the basis is always chosen to be a stationary

state wavefunction Rnl(r) for the hydrogen atom (for a given principal quantum number n

and azimuthal quantum number l), which we will assume throughout, the choice of a good

51



basis amounts to choosing the angular part of the basis (or angular basis) appropriately, i.e.,

ensuring that the perturbation is diagonal in each degenerate subspace of Ĥ0. Therefore,

we focus on the angular basis to find a good basis and the corrections to the energies for the

perturbation Ĥ ′ corresponding to the intermediate field Zeeman effect in the hydrogen atom.

Below, we individually consider the operators Ĥ ′r, Ĥ
′
SO, and Ĥ ′Z representing perturbations

on the unperturbed Hamiltonian Ĥ0 since we probed student understanding of a basis in

which a perturbation Hamiltonian is diagonal in each degenerate subspace of Ĥ0 for each of

these cases.

We note that, similar to Ĥ0, the relativistic correction term Ĥ ′r is also spherically sym-

metric but the corresponding energies depend on n and l. Thus, Ĥ0 is diagonal and Ĥ ′r is

diagonal in the degenerate subspace of Ĥ0 if any complete set of orthogonal states consisting

of the product states of orbital and spin angular momenta with a fixed n and l is chosen for

the angular basis. Therefore, in DPT, for a given n, any complete set of orthogonal states

with the same l forms a good angular basis for finding the corrections to the energies of a

hydrogen atom due to the relativistic correction term Ĥ ′r.

In order to determine a good angular basis for the spin-orbit interaction term Ĥ ′SO, we

must determine the angular basis which makes the operator Ĥ ′SO diagonal in each degen-

erate subspace of Ĥ0. A basis in the “coupled representation” consists of a complete set

of states |n, l, s, j, mj〉 (which are eigenstates of Ĵ2 and Ĵz) in which the total angular

momentum is the sum of the orbital and spin angular momenta such that ~J = ~L+ ~S and for

each quantum number j, the quantum numbers corresponding to the z component are given

by mj = −j,−(j − 1), . . . , j − 1, j (all notations are standard). A basis in the “uncoupled

representation” consists of a complete set of states |n, l, s, ml, ms〉 which are eigenstates

of L̂z and Ŝz (all notations are standard). Students were given the following equations that

are useful when reasoning about the representation in which the matrix Ĥ ′SO is diagonal in

each degenerate subspace of Ĥ0 (all of the notations are standard):

Ĥ ′SO = e2

8πε0
1
r3
~L · ~S,

~L · ~S = 1
2
(Ĵ2 − Ŝ2 − L̂2) = 1

2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz,

Ĵ2|n, l, s, j, mj〉 = ~2j(j + 1)|n, l, s, j, mj〉,

L̂2|n, l, s, j, mj〉 = ~2l(l + 1)|n, l, s, j, mj〉,
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Ŝ2|n, l, s, j, mj〉 = ~2s(s+ 1)|n, l, s, j, mj〉,

L̂2|n, l, s,ml, ms〉 = ~2l(l + 1)|n, l, s,ml, ms〉

L̂z|n, l, s,ml, ms〉 = ~ml|n, l, s,ml, ms〉

Ŝ2|n, l, s,ml, ms〉 = ~2s(s+ 1)|n, l, s,ml, ms〉

Ŝz|n, l, s,ml, ms〉 = ~ms|n, l, s,ml, ms〉

Ŝ±|n, l, s, ml, ms〉 = ~
√
s(s+ 1)−ms(ms ± 1))|n, l, s, ml, ms ± 1〉,

L̂±|n, l, s, ml, ms〉 = ~
√
l(l + 1)−ml(ml ± 1))|n, l, s, ml ± 1, ms〉.

Focusing on the expression for Ĥ ′SO in which ~L · ~S is proportional to 1
2
(Ĵ2 − Ŝ2 − L̂2), one

can infer that the product states in the “coupled” representation |n, l, s, j, mj〉, which are

eigenstates of the operators Ĵ2, L̂2, and Ŝ2, diagonalize Ĥ ′SO in each degenerate subspace of

Ĥ0. Thus, the coupled representation is a good angular basis for finding the corrections to the

energies using DPT. However, it is NOT the case that Ĥ ′SO is diagonal in the degenerate sub-

space of Ĥ0 if any linear combination of states in the coupled representation is chosen as the

angular basis. From the expression in which Ĥ ′SO is proportional to 1
2
(L̂+Ŝ−+ L̂−Ŝ+)+ L̂zŜz,

one can infer that the product states in the “uncoupled” representation |n, l, s, ml, ms〉

(notations are standard) are eigenstates of L̂Z and ŜZ (and also L̂2 and Ŝ2), but are not

eigenstates of the operators Ŝ± and L̂±. Thus, Ĥ ′SO is not diagonal in each degenerate sub-

space of Ĥ0 if a basis consisting of states in the uncoupled representation is chosen as the

angular basis. Since Ĥ ′SO is not diagonal in each degenerate subspace of Ĥ0 if a basis con-

sisting of states in the uncoupled representation is chosen as the angular basis, Ĥ ′SO cannot

be diagonal in each degenerate subspace of Ĥ0 if a basis consisting of any linear combination

of states in the uncoupled representation is chosen as the angular basis.

Lastly, we consider the perturbation Ĥ ′Z . The following equations are useful when rea-

soning about the representation in which the perturbation Ĥ ′Z is diagonal (all notations

are standard): Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz), L̂z|n, l, s, ml, ms〉 = ~ml|n, l, s, ml, ms〉, and

Ŝz|n, l, s, ml, ms〉 = ~ms|n, l, s, ml, ms〉. Thus, the product states in the uncoupled

representation, |n, l, s, ml, ms〉, are eigenstates of both the operators L̂z and Ŝz and are,

threrefore, eigenstates of Ĥ ′Z . Thus, an angular basis consisting of states in the uncoupled

representation will make the Ĥ ′Z operator diagonal and such a basis will be a good basis

for finding the corrections to the energies using DPT with Ĥ0 and Ĥ ′Z (in that case, if Ĥ ′Z
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was the only perturbation, the perturbative corrections to first order PT give exact results,

correct to all orders).

3.3 METHODOLOGY

Student difficulties with the representation in which a perturbation Hamiltonian is diago-

nal in each degenerate subspace of Ĥ0 in the context of DPT were first investigated using

five years of data involving responses to open-ended and multiple-choice questions admin-

istered after traditional, lecture-based instruction in relevant concepts from 64 upper-level

undergraduates in a second-semester junior/senior level QM course and 42 first-year physics

graduate students in the second-semester of the graduate core QM course. Additional in-

sight was gained concerning these difficulties via responses of 13 students during a total of

45 hours of individual interviews using a “think aloud” protocol in which they answered the

questions posed without being disturbed [47]. At the end of the interview, they were asked

to clarify any additional issues they had not made clear themselves.

In all questions asked in the investigation, students were given that the radial part

of the basis for PT is always chosen to be stationary state wavefunctions Rnl(r) for the

hydrogen atom (for a given principal quantum number n and azimuthal quantum number

l). Thus, students must only focus on the angular basis in order to find a good basis for

DPT for a given Ĥ0 and Ĥ ′ for a hydrogen atom placed in an external magnetic field.

Additionally, in all questions, students were asked to consider the n = 2 subspace for which

the unperturbed energy E0
2 = −13.6eV

4
is 8-fold degenerate. Students were provided with all

of the relevant equations discussed in the background section and had learned about the

coupled and uncoupled representations via traditional, lecture-based instruction.

After analyzing responses of 32 undergraduates on questions about DPT administered in

two previous years, we posed the following questions to 45 undergraduate and 42 graduate

students in the following four years as part of an in-class quiz after traditional lecture-based

instruction. We discuss student facility with both conceptual and procedural knowledge

relevant in this case. In particular, students were asked probing questions that focused on
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concepts as well as evaluation of matrix elements of relevant operators in different represen-

tations in various situations.

To probe whether students were able to determine the matrix elements of an operator

that may be relevant for determining if an angular basis (e.g., coupled representation, un-

coupled representation, etc.) is good for the perturbations Ĥ ′Z and Ĥ ′SO, the following are

two examples of questions that were posed:

Q1(a). Evaluate the following matrix element useful for Ĥ ′Z for n = 2, in which the

states are written in the coupled representation |n, l, s, j, mj〉. In order to receive

credit, you must show your work or explain your reasoning.〈
2, 1,

1

2
,

3

2
,

3

2

∣∣∣(L̂z + 2Ŝz)
∣∣∣ 2, 1,

1

2
,

3

2
,

3

2

〉
Q1(b-d). Evaluate the following matrix elements useful for Ĥ ′SO for n = 2, in which the

states are written in the uncoupled representation |n, l, s, ml, ms〉. In order to receive

credit, you must show your work or explain your reasoning.

(b)
〈
2, 1, 1

2
, 1, 1

2

∣∣ (~L · ~S)
∣∣2, 1, 1

2
,−1, 1

2

〉
(c)

〈
2, 1, 1

2
, 1, 1

2

∣∣ (~L · ~S)
∣∣2, 1, 1

2
, 1, 1

2

〉
(d) 〈2 1 1

2
0 1

2
|(~S · ~L)|2 1 1

2
1 − 1

2
〉

Students were provided a table which contained relevant states in the coupled represen-

tation written in terms of a linear combination of states in the uncoupled representation.

One method for answering Q1(a) is to write the state |n, l, s, j, mj〉 = |2, 1, 1
2
, 3
2
, 3

2
〉 in

the uncoupled representation as |n, l, s, ml, ms〉 = |2, 1, 1
2

1, 1
2
〉. Since the states in the

uncoupled representation |n, l, s, ml ms〉 are eigenstates of L̂z and Ŝz with eigenvalues ml~

and ms~, respectively, the answer to Q1(a) is [1 + 2(1/2)]~ = 2~.

Students were provided the equations ~L · ~S = 1
2
(Ĵ2− Ŝ2− L̂2) = 1

2
(L̂+Ŝ−+ L̂−Ŝ+)+ L̂zŜz

as well as the relevant eigenvalue equations and the equations for the raising and lower-

ing operators L̂± and Ŝ± acting on states in the uncoupled representation that are help-

ful in answering Q1(b). Since Ĥ ′SO is proportional to ~L · ~S, the student must choose

which equation is appropriate to calculate the matrix elements for a basis consisting of

states in the uncoupled representation. For a basis consisting of states in the uncoupled
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representation, the equation ~L · ~S = 1
2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz is more useful as states

in the uncoupled representation are eigenstates of L̂z and Ŝz and equations for the rais-

ing and lowering operators L̂± and Ŝ± acting on states in the uncoupled representation

were provided to the students. For Q1(b), after acting with the operator ~L · ~S on the

ket state |2, 1, 1
2
,−1, 1

2
〉 in the uncoupled rerpesentation, the resulting states are orthogo-

nal to the bra state 〈2, 1, 1
2
, 1, 1

2
|. Therefore, the answer to Q1(b) is zero. For Q1(c),〈

2, 1, 1
2
, 1, 1

2

∣∣ (~L · ~S)
∣∣2, 1, 1

2
, 1, 1

2

〉
=
〈
2, 1, 1

2
, 1, 1

2

∣∣ L̂zŜz ∣∣2, 1, 1
2
, 1, 1

2

〉
= ~2

2
. For Q1(d),

〈2 1 1
2

0 1
2
|(~S · ~L)|2 1 1

2
1 − 1

2
〉 = 〈2 1 1

2
0 1

2
|L̂−Ŝ+|2 1 1

2
1 − 1

2
〉 =

√
2~2
2

.

In Q2, students were asked to identify the representations that make each of the operators

Ĥ = Ĥ0, Ĥ ′r, Ĥ
′
SO, and Ĥ ′Z (that make up the different parts of the Hamiltonian for the

Zeeman effect) diagonal in the n = 2 degenerate subspace of Ĥ0 to probe the common

difficulties.

Q2. Circle ALL of the angular bases which make the Hamiltonian operator Ĥ diagonal in

the n = 2 subspace of Ĥ0 and explain your reasoning. Assume that for all cases, the principal

quantum number n = 2.

i. Coupled representation,

ii. Uncoupled representation,

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states

in the coupled representation with the same l (i.e., states with different l values are not

mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states

in the uncoupled representation with the same l (i.e., states with different l values are not

mixed),

v. Neither coupled nor uncoupled representation.

In Q2, the operator Ĥ is a proxy for Ĥ0, Ĥ ′r, Ĥ
′
SO, and Ĥ ′Z listed individually in four

separate questions. Since Ĥ0 for a hydrogen atom is spherically symmetric with eigenvalues

En = −13.6eV
n2 and is diagonal when any complete set of orthogonal states with a fixed n is

chosen for the angular basis, options i, ii, iii, and iv are all correct for the operator Ĥ0 in Q2.

The operator Ĥ ′r is also spherically symmetric with eigenvalues depending on n and l and is

diagonal in the n = 2 degenerate subspace of Ĥ0 if the options i, ii, iii, or iv in Q2 are chosen
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as the angular basis. The operator Ĥ ′SO is diagonal in the n = 2 subspace if the angular

basis consists of states in the coupled representation (option i only) in Q2. The operator Ĥ ′Z

is diagonal if the angular basis consists of states in the uncoupled representation (option ii

only) in Q2.

3.4 STUDENT DIFFICULTIES

We find that when students were asked to determine the angular part of the basis states for a

good basis in order to find the perturbative corrections for the Zeeman effect, many struggled

with the representation in which a particular Hamiltonian matrix is diagonal. Students also

struggled to evaluate the matrix elements relevant for various Hamiltonians in different

representations. Some students admitted to memorizing the representation to choose for

the angular basis in a given situation (for a given Ĥ0 and Ĥ ′) rather than using systematic

reasoning. For example, one interviewed student noted: “I was always confused with coupled

and uncoupled representation. I just memorized when to use which.” Memorization of which

representation to use in different situations often masked the fact that students did not have

a functional understanding of the relevant linear algebra concepts in order to apply them in

this QM context.

In question Q2, students were asked to determine which bases in various options make

each individual Hamiltonian Ĥ0, Ĥ ′r, Ĥ
′
SO, and Ĥ ′Z diagonal in the n = 2 subspace of Ĥ0.

Table 2 shows the percentages of students who correctly answered Q2. Furthermore, 40% of

the graduate students and 34% of the undergraduates did not choose a basis consisting of

states in the uncoupled representation in order to diagonalize the Zeeman term Ĥ ′Z . Also,

33% of the graduate students and 34% of the undergraduates did not choose the coupled

representation as a basis to diagonalize the spin-orbit interaction term Ĥ ′SO in the n = 2

subspace of Ĥ0. Below, we discuss specific difficulties with choosing a basis that makes an

operator diagonal in the n = 2 subspace of Ĥ0.
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Table 2: Percentages of undergraduate and graduate students who selected all of the possible

correct representations in which a given operator is diagonal in the n = 2 degenerate subspace

of Ĥ0 in Q2.

Operator Correct Undergraduate Graduate

Answer N (%) N (%)

Ĥ0 i, ii, iii, iv 32 34 42 33

Ĥ ′r i, ii, iii, iv 32 22 42 21

Ĥ ′SO i 32 34 42 36

Ĥ ′fs i 12 33 - -

Ĥ ′Z ii 32 38 32 33

3.4.1 Difficulty calculating matrix elements when the basis did not consist of a

complete set of eigenstates of the given operator

Being able to calculate the matrix elements of the perturbation is crucial to determining the

first-order corrections to the energy spectrum for the intermediate field Zeeman effect. In

a good basis, the off-diagonal elements of the perturbation matrix Ĥ ′ = Ĥ ′fs + Ĥ ′Z must be

zero in each degenerate subspace of Ĥ0. Also, in a good basis, the diagonal elements of the

perturbation matrix Ĥ ′ = Ĥ ′fs + Ĥ ′Z are the first order corrections to the energy spectrum

of the hydrogen atom for the Zeeman effect. The off-diagonal elements of the perturbation

matrix Ĥ ′ = Ĥ ′fs + Ĥ ′Z in a good basis are needed to determine the higher order corrections

to the energy spectrum and energy eigenstates. Therefore, to ensure meaningful calculations

of the corrections to the energies and energy eigenstates, one must be able to calculate the

matrix elements of Ĥ ′ = Ĥ ′fs+Ĥ ′Z correctly. For example, in order to determine a good basis

for the intermediate field Zeeman effect for finding perturbative corrections, one can initially

choose a basis consisting of states in the coupled representation or a basis consisting of states

in the uncoupled representation and then diagonalize Ĥ ′ = Ĥ ′fs + Ĥ ′Z in each degenerate

subspace of Ĥ0. This requires students to be able to calculate the matrix elements of Ĥ ′fs

and Ĥ ′Z , e.g., in a basis consisting of the states in the uncoupled representation or a basis
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consisting of the states in the coupled representation. Many students struggled to determine

both the diagonal and off-diagonal matrix elements particularly when the basis did not

consist of a complete set of eigenstates of the given operator.

For example, in Q1(a), students were asked to calculate the matrix elements of Ĥ ′Z

if the coupled representation |n, l, s, j, mj〉 is chosen as the basis. One method for

calculating these matrix elements of L̂Z + 2ŜZ is to write the basis states in the cou-

pled representation in terms of a linear combination of states in the uncoupled represen-

tation |n, l, s, ml, ms〉, for which relevant tables for such transformations were pro-

vided. Many students who incorrectly answered Q1(a) did not write the given state in

terms of a linear combination of states in the uncoupled representation and instead an-

swered Q1(a) as though the given states in the coupled representation were eigenstates

of L̂Z + 2ŜZ . These students often incorrectly applied the given eigenvalue equations

Ŝz|n, l, s, ml, ms〉 = ~ms|n, l, s, ml, ms〉 and L̂z|n, l, s, ml, ms〉 = ~ml|n, l, s, ml, ms〉

for states in the uncoupled representation. For example, in Q1, some students incorrectly

evaluated the expression as (L̂z + 2Ŝz)
∣∣2, 1, 1

2
, 3

2
, 3

2

〉
= [3

2
+ 2(3

2
)]~
∣∣2, 1, 1

2
, 3

2
, 3

2

〉
=

9
2
~
∣∣2, 1, 1

2
, 3

2
, 3

2

〉
. Interviews suggest that these students often incorrectly used the ex-

pression (L̂z + 2Ŝz) |n, l, s, j, mj〉 = (j + 2mj)~ |n, l, s, j, mj〉. However, states in the

coupled representation are not eigenstates of either L̂z or Ŝz.

In Q1(b), students were asked to calculate the matrix elements of Ĥ ′SO if the basis was

chosen in the uncoupled representation. In the operator Ĥ ′SO, ~L · ~S can equivalently be

expressed as ~L · ~S = 1
2
(Ĵ2 − Ŝ2 − L̂2) = 1

2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz. For a basis consisting

of states in the uncoupled representation, the expression ~L · ~S = 1
2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz

is best suited to calculate the matrix element. Instead, some students chose the expression

~L· ~S = 1
2
(Ĵ2−Ŝ2−L̂2) even though a matrix element in the uncoupled representation is to be

calculated and incorrectly calculated the matrix elements as though states in the uncoupled

representation were eigenstates of Ĵ2.

For Q1(a) and Q1(b), some students only focused on the operator acting on the ket state

and failed to consider the inner product of the bra and ket states. Since basis states in the

coupled representation are orthonormal (and similarly in the uncoupled representation), the

inner product of two states is zero unless the bra and ket states correspond to the same
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state. For example, the following is one student’s response taken from the pretest for Q1(b):

(~L · ~S)|2, 1, 1
2
,−1, 1

2
〉 =

[
1
2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz

]
|2, 1, 1

2
,−1, 1

2
〉

= 1
2
[~2
√

2
√

1]|2, 1, 1
2
, 0, 1

2
〉+ (−1)(1

2
)~2|2, 1, 1

2
,−1, 1

2
〉

= ~2
√
2

2
|2, 1, 1

2
, 0, 1

2
〉 − ~2

2
|2, 1, 1

2
,−1, 1

2
〉.

After taking the inner product with the bra state 〈2, 1, 1
2
, 1, 1

2
|, the student’s final answer

for Q1(b) was ~2[
√
2
2
− 1

2
]. All the steps in the above calculation are correct before taking

the inner product. However, when taking the inner product with the bra state, both terms

in the above expression are zero as the inner product 〈2, 1, 1
2
, 1, 1

2
|2, 1, 1

2
, 0, −1

2
〉 = 0 and

〈2, 1, 1
2
, 1, 1

2
|2, 1, 1

2
, −1, 1

2
〉 = 0. Thus, the correct answer is that the matrix element is zero.

This student and others who made similar mistakes did not take the inner product between

the bra and ket states.

This type of difficulty is particularly problematic in that many of the interviewed stu-

dents resorted to explicitly evaluating matrix elements when asked to determine whether a

given operator is diagonal in the degenerate subspace of Ĥ0 in various representation. How-

ever, many of them were unable to evaluate these matrix elements correctly. In contrast,

when asked to determine whether a given operator is diagonal in the degenerate subspace

of Ĥ0 in various representations, an expert is more likely to use qualitative arguments in

his/her reasoning and not necessarily explicitly calculate various matrix elements to convince

themselves whether a matrix is diagonal or not in a given representation. For example, when

considering the operator ~L · ~S = 1
2
(Ĵ2 − Ŝ2 − L̂2), an expert would use the fact that a basis

consisting of states in the coupled representation forms a complete set of eigenstates for the

operators Ĵ2, Ŝ2, and L̂2 and that an operator is diagonal when the basis is chosen to be a

complete set of eigenstates of that operator to determine that ~L · ~S is diagonal in the coupled

representation. Using similar considerations, basis states in the uncoupled representation are

eigenstates of Ŝ2 and L̂2, but not Ĵ2 and therefore, are not eigenstates for the operator ~L · ~S.

Thus, ~S · ~L is not diagonal if the uncoupled representation is chosen as the basis. A student

who is developing expertise in this area will have difficulty in reasoning in this manner with-

out resorting to explicit calculations of matrix elements in different representations. Since
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solving a problem using qualitative reasoning is often more challenging for students than

solving an equivalent problem using quantitative manipulations [48], this type of difficulty

with qualitative reasoning without reliance on explicit quantitative manipulation has been

observed even for introductory physics students [48].

3.4.2 Claiming that a basis in which an operator is diagonal is dependent on

the symbols used to represent the operator

Often students incorrectly selected a basis and claimed that, for a fixed n, a Hamiltonian

operator is diagonal in that basis based upon certain symbols for various operators that were

explicitly given in the expression for the operator. For example, if an operator explicitly

involving the symbol J in any form was present (Ĵ , Ĵ2, Ĵz, or ~J), many students incorrectly

claimed that the states in the coupled representation must make that operator diagonal.

If the symbol J was not explicitly present in the expression for the operator, then they

incorrectly claimed that the states in the coupled representation cannot make the operator

diagonal (without realizing that it is possible to express an operator in terms of J even if

the operator is NOT diagonal in the coupled representation). Similarly, if terms explicitly

involving L (L̂, L̂2, L̂±, L̂z, or ~L) and/or S (Ŝ, Ŝ2, Ŝ±, Ŝz, or ~S) were present, many students

incorrectly claimed that the states in the uncoupled representation must definitely form the

basis in which that operator is diagonal. Conversely, if there were no terms in the operator

explicitly written in terms of the symbols L or S, then these students claimed that the

basis consisting of the states in the uncoupled representation would not make the operator

diagonal.

Based upon this type of reasoning, students often incorrectly claimed that the spin-orbit

interaction term, Ĥ ′SO = e2

8πε0
1

m2c2r3
~L · ~S, is diagonal in the n = 2 degenerate subspace

of Ĥ0 when the uncoupled representation is chosen as the basis due to the presence of ~L

and ~S in the expression for Ĥ ′SO. These same students often also incorrectly claimed that

the operator Ĥ ′SO is not diagonal in the n = 2 degenerate subspace of Ĥ0 if the coupled

representation is chosen as the basis since there is no term involving the symbol J in the

expression. Moreover, some students used the expression Ĥ ′SO = 1
2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz
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and, since this expression also involves the symbols L and S, they incorrectly claimed that

the spin-orbit coupling Hamiltonian Ĥ ′SO is diagonal in the n = 2 degenerate subspace of

Ĥ0 when the uncoupled representation is chosen as the basis. Some students who used the

expression Ĥ ′SO = 1
2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz when determining the basis that makes Ĥ ′SO

diagonal in the n = 2 degenerate subspace of Ĥ0 stated that the states in the uncoupled

representation are eigenstates of L̂z, Ŝz, L̂± and Ŝ±. While it is true that states in the

uncoupled representation are eigenstates of the operators L̂z and Ŝz, these states are not

eigenstates of the operators L̂± and Ŝ±. These students did not realize that when the raising

and lowering operators act on a state in the uncoupled representation, they do not return a

constant times the same state and, therefore, states in the uncoupled representation cannot

be eigenstates of L̂± or Ŝ±. Thus, they struggled with the fact that Ĥ ′SO is not diagonal in

the n = 2 degenerate subspace of Ĥ0 in the uncoupled representation.

Other students incorrectly claimed that both the coupled and uncoupled representations

will make ~L · ~S diagonal in the n = 2 degenerate subspace of Ĥ0. For example, one student

claimed that “since ~L · ~S = 1
2
(Ĵ2− Ŝ2− L̂2) = 1

2
(L̂+Ŝ−+ L̂−Ŝ+) + L̂zŜz, we could use either

coupled or uncoupled (to find the perturbative corrections to the energy spectrum).”

3.4.3 Difficulty identifying that, in general, a linear combination of eigenstates

of an operator is not an eigenstate of that operator

Many students incorrectly chose both options i and iii or ii and iv on Q2. For example, the

operator Ĥ ′Z = (µBBext/~)(L̂Z + 2ŜZ) is diagonal in the n = 2 degenerate subspace of Ĥ0 in

the uncoupled representation so that option ii is the correct answer to question Q2. However,

many students selected both options ii and iv. During an interview, one student who selected

options ii and iv for Ĥ ′Z incorrectly stated: “If the uncoupled [states] are eigenstates [of Ĥ ′Z ]

then so is their linear combination.” In general, it is not true that linear combinations of

states in the uncoupled representation will remain eigenstates of Ĥ ′Z (although certain special

linear combinations of states in the uncoupled representation remain eigenstates of Ĥ ′Z due

to the degeneracy). The percentages of students who selected options i and iii or options ii

and iv for at least one operator were 38% for graduate students and 60% for undergraduates.
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A similar difficulty has been found in prior investigations [11] when students were asked

to consider two stationary states, ψ1 and ψ2, for the TISE Ĥψ = Eψ, such that Ĥψ1 = E1ψ1

and Ĥψ2 = E2ψ2. Many students had a tendency to overgeneralize the TISE Ĥψ = Eψ and

claimed that if ψ1 and ψ2 are stationary states, then their linear combination ψ1 + ψ2 will

also be a stationary state. However, Ĥ(ψ1 + ψ2) = E1ψ1 + E2ψ2 6= E(ψ1 + ψ2) unless there

is degeneracy in the energy spectrum so that E = E1 = E2.

3.4.4 Difficulty recognizing that if an operator is spherically symmetric, then

the operator matrix will be diagonal for each n if any complete set of

orthogonal states consisting of the product states of the orbital and spin

angular momenta with a fixed n and l is chosen as the angular basis

In order for an operator to be diagonal in each degenerate subspace of Ĥ0 for all angular

bases with a fixed n and l (see options iii and iv on question Q2), the operator must be

spherically symmetric. Students did not realize that since both Ĥ0 (corresponding energy

spectrum depends on n) and Ĥ ′r (corresponding energy spectrum depends on n and l) are

spherically symmetric, they will be diagonal matrices in each degenerate subspace of Ĥ0

when any complete set of orthonormal states consisting of the product states of the orbital

and spin angular momenta with a fixed n and l form the basis. They struggled with the

fact that these spherically symmetric operators are represented by diagonal matrices in

each degenerate subspace of Ĥ0 in both the coupled and uncoupled representations because

the angular part of the matrix elements of the spherically symmetric operators for each

fixed n and l will involve 〈n, l, s, j,mj|n, l, s, j′,m′j〉 = δj,j′δmj ,m′
j

if we choose the coupled

representation or 〈n, l, s,ml,ms|n, l, s,m′l,m′s〉 = δml,m
′
l
δms,m′

s
if we choose the uncoupled

representation and the off-diagonal matrix elements will be zero due to the Kronecker deltas

in either case. Table 3 summarizes the percentages of students with this difficulty on question

Q2.
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Table 3: Percentages of undergraduate (U) (N = 32) and graduate (G) students (N = 42)

not selecting both options iii and iv for the unperturbed Hamiltonian Ĥ0 or relativistic

correction Ĥ ′r in Q2.

Operator U (%) G (%)

Ĥ0 59 62

Ĥ ′r 78 79

Table 4: Percentages of undergraduate (U) (N = 32) and graduate (G) students (N = 42)

who selected option iii but did not also select options i, ii, or iv and who selected option iv

but did not also select options i, ii, or iii in Q2 for at least one of the four operators.

Option Selected Option Not Selected U G

iii

i 31 36

ii 56 60

iv 47 57

iv

i 47 67

ii 19 36

iii 38 64

3.4.5 Difficulty recognizing that a state in the uncoupled representation is a

special linear combination of states in the coupled representation, and

vice versa

In Q2, if an operator is diagonal in the n = 2 degenerate subspace of Ĥ0 for any arbitrary

complete orthonormal basis constructed with linear combinations of states in the uncoupled

representation (option iv), then one such linear combination would be states in the coupled

representation and therefore, option i in question Q2 should also be correct. By the same

reasoning, performing the necessary change of basis, students can rationalize that the states

in the coupled representation can be expressed as linear combinations of states in the un-
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coupled representation. Therefore, if option iii is correct in question Q2, then option ii is

also correct since the uncoupled representation is special set of linear combinations of states

in the coupled representation. Table 4 shows the percentage of students not selecting option

i despite having selected option iv or not selecting option ii despite having selected option

iii for at least one of the four operators in Q2. We note that students were given a table

with states in the n = 2 subspace in the coupled representation and the corresponding linear

combinations of the same states in the uncoupled representation using the Clebsch-Gordon

table. Having this table did not help them recognize that states in the coupled represen-

tation could be expressed as linear combinations of states in the uncoupled representation

(and vice versa).

3.4.6 Difficulty recognizing that if any arbitrary complete orthonormal basis

constructed with linear combinations of states in the coupled representa-

tion is correct, then any arbitrary complete orthonormal basis constructed

with linear combinations of states in the uncoupled representation must

also be correct

In question Q2, some students did not realize that option iii is equivalent to choosing any

complete set of orthogonal states for the angular basis for a fixed n and l. They also struggled

with the fact that since option iv in question Q2 is also any complete set of orthogonal states

for the angular basis, options iii and iv are equivalent. Table 4 shows the percentages of

students not selecting option iii despite having selected option iv or not selecting option iv

despite having selected option iii.

3.4.7 Difficulty recognizing that the coupled representation is one special set

of linear combinations of states in the coupled representation

Another common difficulty displayed by students on question Q2 was selecting option iii but

not selecting option i. Students did not realize that if any arbitrary complete orthonormal

basis constructed with linear combinations of states in the coupled representation with fixed

n and l (option iii) is correct, then the coupled representation (option i) is also correct
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since the coupled representation is one particular set of linear combinations of states in the

coupled representation. Similarly, students did not realize that if option iv (any arbitrary

complete orthonormal basis constructed with linear combinations of states in the uncoupled

representation with fixed n and l) is correct, option ii (uncoupled representation) is also

correct since the uncoupled representation is one particular set of linear combinations of

states in the uncoupled representation. Table 4 summarizes the percentages of students who

displayed this type of difficulty in question Q2.

3.5 METHODOLOGY FOR THE DEVELOPMENT AND VALIDATION OF

THE QUILT

3.5.1 Development and Validation of the QuILT

The difficulties described show that many students struggle in determining a representa-

tion in which an operator is diagonal. Therefore, we developed a QuILT that takes into

account these difficulties and strives to help them build a robust knowledge structure of

these concepts. The development of the DPT QuILT started with an investigation of stu-

dent difficulties via open-ended and multiple-choice questions administered after traditional

instruction to advanced undergraduate and graduate students and conducting a cognitive

task analysis from an expert perspective of the requisite knowledge [49]. The QuILT strives

to help students build on their prior knowledge and addresses common difficulties found via

research, some of which were discussed in the preceding section.

The QuILT is inspired by Piaget’s “optimal mismatch” as well as the preparation for

future learning framework of Bransford and Schwartz. In Piaget’s “optimal mismatch”

framework, students are intentionally placed in a situation in which their current knowledge

structures are inadequate and they are then forced to reorganize existing structures or develop

new structures to reconcile this conflict [50]. Bransford and Schwartz’s preparation for future

learning emphasizes that learning occurs when elements of innovation and efficiency are both

present [51]. Innovation and efficiency describe two orthogonal components of instruction.
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Innovation describes aspects that are new to students, such as new concepts or new problem

solving skills. Efficiency is a measure of the structure and organization of the material, as

well as how proficient the student is with the material. Instruction that incorporates only one

of these elements leads to students becoming disengaged. If instruction is too innovative,

students cannot connect the material with their prior knowledge and become frustrated.

When the instruction is too efficient, students interact with repetitious material that does

not provide intellectual stimulation and may become routine experts. They will not be able

to transfer their learning to new situations.

In the QuILT, students are presented with innovative tasks. Whether it be examples,

hypothetical conversations, or calculations, the QuILT strives to help students develop a

robust understanding by actively working through the inquiry-based learning sequences.

Student difficulties are incorporated in these examples and conversations to create a cognitive

conflict in which the students are then guided through subsequent tasks designed to resolve

these issues. Efficiency is addressed in the QuILT in several ways. First, the QuILT follows

the sequence laid out in the cognitive task analysis. It is organized in a manner which

attempts to build on the students’ prior knowledge, and each section in the QuILT builds

upon the previous section. Second, students are provided scaffolding designed to help address

common difficulties, thus reducing the cognitive conflict. Third, the QuILT progressively

reduces the scaffolding such that the students are able to solve the problems without any

assistance. Finally, as the students work through the different tasks, they develop more

proficiency at identifying the concepts and answering the questions.

The development of the QuILT went through a cyclic, iterative process. The preliminary

version was developed based upon the cognitive task analysis and knowledge of common stu-

dent difficulties. Next, the QuILT underwent many iterations among the three researchers

and then was iterated several times with three physics faculty members to ensure that they

agreed with the content and wording. It was also administered to graduate and advanced

undergraduate students in individual think-aloud interviews to ensure that the guided ap-

proach was effective, the questions were unambiguously interpreted, and to better understand

the rationale for student responses. During these semi-structured interviews, students were

asked to “think aloud” while answering the questions. Students first read the questions on
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their own and answered them without interruptions except that they were prompted to think

aloud if they were quiet for a long time. After students had finished answering a particular

question to the best of their ability, they were asked to further clarify and elaborate on issues

that they had not clearly addressed earlier. The next step involved evaluating the impact of

the QuILT on student learning and determining if the difficulties remained. Finally, modi-

fications and improvements were made based upon the student and faculty feedback before

it was administered to students in various courses.

3.5.2 Structure of the QuILT

The QuILT uses a guided inquiry-based approach to learning and actively engages students

in the learning process. It includes a pretest to be administered in class after traditional

instruction in DPT. Then, students engage with the tutorial in small groups in class (or alone

when using it as a self-paced learning tool in homework), and then a posttest is administered

in class. As students work through the tutorial, they are asked to predict what should happen

in a given situation. Then, the tutorial strives to provide scaffolding and feedback as needed

to bridge the gap between their initial knowledge and the level of understanding that is

desired. Students are also provided checkpoints to reflect upon what they have learned and

make explicit connections between what they are learning and their prior knowledge. They

are given opportunities to reconcile differences between their predictions and the guidance

provided in the checkpoints before proceeding further.

The DPT QuILT uses a blend of qualitative and quantitative reasoning to improve stu-

dents’ understanding. For example, the QuILT requires qualitative reasoning while respond-

ing to the hypothetical conversations, and quantitative reasoning to determine the matrix

elements of the operators Ĥ ′SO and Ĥ ′Z in the coupled and uncoupled representations. Stu-

dents explain whether they agree or disagree with statements in hypothetical conversations

via both quantitative and qualitative reasoning.

68



3.5.3 Addressing Student Difficulties Via Guided Learning Sequences in the

QuILT

The QuILT strives to help students develop a functional understanding of bases that make a

given perturbation operator diagonal in each degenerate subspace of Ĥ0. Working through

the qualitative and quantitative examples, students learn to reason about how to determine

bases which make each of the operators Ĥ0, Ĥ ′r, Ĥ
′
SO and Ĥ ′Z diagonal in each degenerate

subspace of Ĥ0 and how to find a good basis for DPT. In particular, students engage with

guided inquiry-based sequences that begin by asking the students to explicitly calculate

matrix elements of relevant operators in different representations followed by scaffolding

support that strives to help students evaluate the matrix elements correctly as well as develop

qualitative reasoning regarding whether an operator is diagonal in each degenerate subspace

of Ĥ0 when a given representation is chosen as the basis. One goal is to have students

develop facility with different represenations by first performing the necessary calculations

involved in evaluating the matrix elements and then using the calculations as scaffolding in

developing conceptual knowledge structures. Next, we provide some examples.

Helping students learn to calculate matrix elements in the coupled and un-

coupled representations: In the guided inquiry-based learning sequences involving the

operators Ĥ ′SO and Ĥ ′Z , students first calculate several diagonal and off-diagonal matrix el-

ements when the coupled or uncoupled representation is chosen as the basis. In DPT, when

the basis chosen is a good basis, the diagonal matrix elements of the perturbation are the

first-order corrections to the energies and the off-diagonal matrix elements are zero in each

degenerate subspace of Ĥ0. Focusing on the off-diagonal matrix elements for some of the

operators, students are asked to interpret why Ĥ ′SO is diagonal in the degenerate subspace

of Ĥ0 in the coupled representation and Ĥ ′Z is diagonal in the degenerate subspace of Ĥ0 in

the uncoupled representation but not vice versa. For example, questions similar to Q1 are

part of the guided inquiry-based learning sequence in which students determine the matrix

elements of Ĥ ′SO and Ĥ ′Z in both the coupled and uncoupled representations. Since the

matrix elements in question Q1 are not zero in the situation posed, the students determine

that in the degenerate subspace of Ĥ0, the Ĥ ′SO matrix is not diagonal in the uncoupled
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representation and the Ĥ ′Z matrix is not diagonal in the coupled representation.

Helping students learn that Ĥ0 and Ĥ ′r are spherically symmetric and are

diagonal in each degenerate subspace of Ĥ0 for any complete set of orthogonal

angular basis states for fixed n and l: To help students with difficulties determining

a basis in which the operators Ĥ0 and Ĥ ′r are diagonal in each degenerate subspace of Ĥ0,

students are asked to consider the spherically symmetric nature of the operators Ĥ0 and Ĥ ′r

and guided to learn that both are diagonal in each degenerate subspace of Ĥ0 when any com-

plete set of orthonormal states with the same n and l is chosen. Through explicit examples

calculating matrix elements of the operator matrices and several hypothetical conversations,

students determine that Ĥ0 and Ĥ ′r are diagonal in each degenerate subspace of Ĥ0 for all

of the choices in Q2 (in the coupled representation, the uncoupled representation, or any

arbitrary complete orthonormal basis constructed with linear combinations of states in the

coupled or uncoupled representation for the same l). These examples and conversations also

address students’ difficulty C, i.e., identifying that if an operator is spherically symmetric,

then the operator matrix will be diagonal in each degenerate subspace of Ĥ0 if any complete

set of orthogonal states (consisting of the product states of the orbital and spin angular

momenta) with the same n and l is chosen as the basis. For example, students are given the

8-dimensional Ĥ0 matrix in the n = 2 subspace with the eight-fold degenerate unperturbed

energy E0
2 = −13.6eV

4
appearing as the diagonal matrix elements (and all off-diagonal matrix

elements being zero). They are asked to determine whether states in the coupled or uncou-

pled representation were chosen as the basis to write Ĥ0 in this n = 2 subspace. To answer

correctly, students must reason that the unperturbed energy only depends on the quantum

number n and therefore the Ĥ0 matrix will be diagonal in the degenerate subspace of Ĥ0

if any complete set of orthogonal basis states is chosen for the angular basis. Similarly, the

QuILT strives to help students learn that since eigenvalues of Ĥ ′r depend only on n and l, Ĥ ′r

will be diagonal in each degenerate subspace of Ĥ0 if any complete set of orthogonal basis

states is chosen for the angular basis with fixed l. Thus, both Ĥ0 and Ĥ ′r will be diagonal

matrices in the degenerate subspace of Ĥ0 if angular basis states are chosen as in options i,

ii, iii, and iv in question Q2.
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Helping students identify that any linear combination of eigenstates of an

operator is not, in general, an eigenstate of that operator: Many students had

difficulty identifying that, in general, a linear combination of eigenstates of an operator is

not an eigenstate (difficulty B). In a guided inquiry-based learning sequence in the QuILT,

they were asked to analyze the following hypothetical conversation regarding whether the

Ĥ ′Z matrix is a diagonal matrix if any arbitrary complete orthonormal basis constructed with

linear combinations of the coupled or uncoupled states is chosen as the basis for a fixed n.

Students then contemplate which student they agree with and explain their reasoning.

Student 1: Since states in the uncoupled representation are eigenstates of Ĥ ′Z, any lin-

ear combination of states in the uncoupled representation must also be an eigenstate of Ĥ ′Z.

Thus, Ĥ ′Z is diagonal in the uncoupled representation and also when any arbitrary complete

orthonormal basis is constructed with linear combinations of a complete set of the uncoupled

states.

Student 2: I disagree with Student 1. If we consider Ĥ ′Z, which is proportional to (L̂z+2Ŝz),

then states in the uncoupled representation |n l s ml ms〉 are eigenstates of Ĥ ′Z. How-

ever, in general, linear combinations of states in the uncoupled representation are NOT

eigenstates of Ĥ ′Z. For example, if we consider the states |ψ1〉 = |2, 1, 1
2
, 0, 1

2
〉 and

|ψ2〉 = |2, 0, 1
2
, 0, −1

2
〉: (L̂z + 2Ŝz)|ψ1〉 = (L̂z + 2Ŝz)

∣∣2, 1, 1
2
, 0, 1

2

〉
=
∣∣2, 1, 1

2
, 0, 1

2

〉
and (L̂z + 2Ŝz)|ψ2〉 = (L̂z + 2Ŝz)

∣∣2, 1, 1
2
, 0, −1

2

〉
= −

∣∣2, 1, 1
2
, 0, −1

2

〉
. But a linear

combination of |ψ1〉 and |ψ2〉 is not an eigenstate of Ĥ ′Z: (L̂z + 2Ŝz)(|ψ1〉 + |ψ2〉) =

(L̂z + 2Ŝz)
(∣∣2, 1, 1

2
, 0, 1

2

〉
+
∣∣2, 1, 1

2
, 0, −1

2

〉)
=
∣∣2, 1, 1

2
, 0, 1

2

〉
−
∣∣2, 1, 1

2
, 0, −1

2

〉
=

|ψ1〉 − |ψ2〉 6= Constant(|ψ1〉+ |ψ2〉).

In this case, students are given an explicit example and asked to reflect upon the fact

that a linear combination of two eigenstates of Ĥ ′Z is not an eigenstate of Ĥ ′Z . Student 2’s

calculation strives to provide guidance to students in their reflection upon the fact that a

linear combination of eigenstates of an operator, in general, is not an eigenstate. Later,

students work on other examples and reflect upon their findings to solidify these concepts.

Checkpoints are provided at the conclusion of each section that allow the students to go

back and reconcile any remaining difference between the correct reasoning and their own

reasoning before moving on to the next section.
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Helping students realize that if any arbitrary complete orthonormal basis

constructed with linear combinations of states in the uncoupled representation

is correct then the coupled representation, the uncoupled representation, and

any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation are also correct: The following is one

example of a conversation that strives to help students with difficulties D-G. Students are

asked to consider the following excerpt from a hypothetical student conversation regarding

whether the Ĥ ′SO matrix is a diagonal matrix in the n = 2 degenerate subspace of Ĥ0 if any

arbitrary complete orthonormal basis constructed with linear combinations of the coupled

or uncoupled states is chosen as the angular part of the basis. They are asked to choose

which student(s) they agree with and explain their reasoning for agreeing or disagreeing

with each student.

Student 1: Since Ĥ ′SO is diagonal in the degenerate subspace of Ĥ0 in the coupled

representation, Ĥ ′SO must also be diagonal in the degenerate subspace of Ĥ0 if any arbitrary

complete orthonormal basis constructed with linear combinations of the coupled states is

chosen as the basis.

Student 2: I disagree with Student 1. For example, the states in the uncoupled represen-

tation can be constructed with linear combinations of states in the coupled representation.

Therefore, if Ĥ ′SO were to be diagonal in the degenerate subspace of Ĥ0 when any arbitrary

complete orthonormal basis constructed with linear combinations of the coupled states is

chosen as the basis, then Ĥ ′SO would also be diagonal if the uncoupled representation were

chosen as the basis. However, this is not the case because Ĥ ′SO is not diagonal for the

uncoupled representation in the n = 2 degenerate subspace of Ĥ0. But Ĥ ′SO is diagonal in

the coupled representation for the n = 2 degenerate subspace of Ĥ0.

Student 3: I agree with Student 2. Also, if an operator matrix is diagonal in the n = 2

degenerate subspace of Ĥ0 when any arbitrary complete orthonormal basis constructed with

linear combinations of the coupled states is chosen as the angular part of the basis, then

that matrix must also be diagonal when any complete orthogonal angular basis is chosen.

Therefore, the operator matrix must also be diagonal in the n = 2 degenerate subspace of

Ĥ0 if any arbitrary complete orthonormal basis constructed with linear combinations of the
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uncoupled states is chosen as the basis.

Student 2’s claim that the states in the uncoupled representation can be constructed with

linear combinations of states in the coupled representation focuses on difficulty D. Students

are also provided a table of states in the n = 2 subspace of Ĥ0 in the coupled representation

and the corresponding linear combinations of states in the uncoupled representation. Student

3’s statement focuses on helping students reflect on difficulty E, in that if any arbitrary

complete orthonormal basis found with linear combinations of the coupled states with fixed

n and l (option iii) is chosen as a basis to make an operator diagonal, then any arbitrary

complete orthonormal basis found with linear combinations of a complete set of the uncoupled

states with fixed n and l (option iv) chosen as the basis also makes the operator diagonal.

Additionally, students engage with guided inquiry-based learning sequences and reflect

upon the validity of hypothetical student conversations about the spherically symmetric

nature of Ĥ0 and Ĥ ′r (so that any angular basis with fixed n and l form a good basis) and

those that are designed to elaborate on the equivalence of options iii and iv.

After developing facility with determining whether the operators Ĥ0, Ĥ ′r, Ĥ
′
SO, and Ĥ ′Z

are diagonal in the n = 2 degenerate subspace of Ĥ0 in a given basis, they are prepared to

identify a good basis for finding the perturbative corrections using DPT.

3.6 EVALUATION OF THE QUILT

Once the researchers determined that the QuILT was successful in one-on-one implemen-

tation using a think-aloud protocol, it was administered in graduate and upper-level un-

dergraduate classes. Both undergraduate and graduate students were given a pretest after

traditional instruction in relevant concepts in DPT but before working through the tutorial.

The pretests were not returned to the students after grading. The undergraduates worked

through the tutorial in class for two days and were asked to work on the remainder of the

tutorial as homework. The graduate students were given the tutorial as their only homework

assignment for the week. After working through and submitting the completed tutorial, both
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Table 5: Average pretest and posttest scores for Q1 for undergraduate students.

Question N Pre (%) N Post (%)

Q1(a) 13 3 32 80

Q1(b) 20 56 - -

Q1(c) - 13 92

Q1(d) - 13 60

groups were given the posttest in class. Students were given enough time in class to work

through the pretest and posttest. There were 46 undergraduates and 42 graduate students

enrolled in the respective QM courses over a four-year period. One undergraduate student

in the first year dropped the course in the time between the pretest and the posttest and

therefore 45 undergraduate students took the posttest.

For the undergraduate students, Q1(b) was asked on the pretest in the first two years

of the study. Q1(a) was asked on the posttest in the first three years of the study. In the

fourth year, the undergraduates were asked Q1(a) on the pretest and Q1(c) and Q1(d) on

the posttest.

Q1 was graded using a rubric which was developed by the researchers together. Each

question was worth two points. For example, when grading Q1(b), students were given

one point for correctly choosing the appropriate form of the operator ~L · ~S = 1
2
(L̂+Ŝ− +

L̂−Ŝ+)+L̂zŜz for the basis states in the uncoupled representation and one point for correctly

evaluating the matrix element. A subset of student responses (roughly 50%) were graded

separately by the researchers with a final inter-rater reliability of nearly 100%. Table 5 shows

the performance of the undergraduate students on the pretest and posttest.

The percentages of students who answered Q2 correctly on the pretest and posttest are

given in Table 6. In particular, over 75% of the graduate students identified all the options in

Q2 for which the given operators are diagonal in the n = 2 degenerate subspace of Ĥ0 on the

posttest. For the undergraduate students, over 85% correctly identified all the options in Q2

for which the operators Ĥ0 and Ĥ ′r are diagonal in the n = 2 degenerate subspace of Ĥ0 on
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the posttest. Roughly 75% of the undergraduate and graduate students correctly identified

all the options in Q2 for which the operator Ĥ ′SO is diagonal in the n = 2 degenerate subspace

of Ĥ0. For both groups of students, 81% correctly identified all the options in Q2 for which

the operator Ĥ ′Z is diagonal in the n = 2 degenerate subspace of Ĥ0.

Table 7 shows the percentages of undergraduates and graduate students who displayed

the given difficulty for at least one of the listed operators on the pretest and posttest. Af-

ter working through the QuILT, the percentage of students displaying these difficulties was

greatly reduced. While the number of students who displayed the difficulty that any lin-

ear combination of eigenstates is an eigenstate (difficulty C) decreased, Table 7 shows that

students selecting linear combinations of eigenstates of an operator as an eigenstate was a

particularly persistent difficulty. The implications of choosing any arbitrary set of orthonor-

mal linear combinations of states in either the coupled or uncoupled representation proved

to be a challenging connection for many students to make. As seen in Table 7, the number of

students who correctly chose option iii/iv and also chose options i/ii (difficulty G), ii/iii (dif-

ficulty E), and iv/iii (difficulty F) increased after working though the QuILT. However, there

is still a high percentage of students who did not realize that if any arbitrary complete set of

orthonormal linear combinations of states in either the coupled or uncoupled representation

with fixed l (option iii or iv) makes an operator diagonal in the n = 2 degenerate subspace

of Ĥ0, then the coupled representation (option i), uncoupled representation (option ii) or

any arbitrary complete set of orthonormal linear combination of states in the uncoupled or

coupled representation with fixed l (option iv or iii) must also make the operator diagonal in

the n = 2 degenerate subspace of Ĥ0. This is an area to improve upon in future refinements

and implementations of the QuILT to address these difficulties more effectively.

Since there can be more than one correct option for the four multiple-choice questions

posed in Q2, it was graded using a rubric which was developed by the researchers together.

Each question was worth four points. For example, when grading Q2 for the operator

Ĥ ′SO, students were given four points for correctly choosing only the coupled representation

(option i). If they chose the coupled representation (option i) and any arbitrary complete

set of orthonormal linear combinations of states in the coupled representation with fixed

l (iii), they we given two out of four points. We found that some interviewed students
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Table 6: The percentage of students who chose all the possible correct representations to

diagonalize the listed operator Ĥ ′ in the n = 2 degenerate subspace of Ĥ0 in Q2 on the

pretest and posttest for undergraduates and graduate students.

Ĥ ′ Operator Correct Answer Undergraduate Graduate

Students(%) Students(%)

N Pre N Post N Pre N Post

Ĥ0 i, ii, iii, iv 32 34 31 94 42 33 42 83

Ĥ ′r i, ii, iii, iv 32 22 31 87 42 21 42 83

Ĥ ′SO i 32 34 31 74 42 36 42 76

Ĥ ′fs i 12 33 100 - - - -

Ĥ ′Z ii 32 38 31 81 42 33 42 81

correctly reasoned that the degeneracy in the energy spectrum of Ĥ ′SO allowed for linear

combinations of states in the coupled representation with the same n, l, and j (but different

mj) to diagonalize Ĥ ′SO. However, it is not the case that any linear combination of states in

the coupled representation with fixed l diagonalizes Ĥ ′SO in the n = 2 degenerate subspace

of Ĥ0. While these students did not show entirely correct reasoning, they were correctly

thinking about issues caused by the degeneracy in the energy spectrum but incorrectly

overgeneralized these concepts to reason that any complete set of linear combination of states

in the coupled representation with fixed l diagonalizes Ĥ ′SO in the degenerate subspace of

Ĥ0. Students were given one out of four points if they chose both the coupled and uncoupled

representation (options i and ii) as a basis that diagonalizes Ĥ ′SO in the n = 2 subspace. As

mentioned in the student difficulties section (Section IV), some students incorrectly claimed

that the operator Ĥ ′SO is diagonal in the n = 2 subspace in both the coupled and uncoupled

representations because Ĥ ′SO = 1
2
(Ĵ2− Ŝ2− L̂2) = 1

2
(L̂+Ŝ−+ L̂−Ŝ+)+ L̂zŜz. Although states

in the coupled representation are eigenstates of the operators Ĵ2, L̂2, and Ŝ2, states in the

uncoupled representation are eignestates of L̂Z and ŜZ but they are not eigenstates of the

operators L̂± and Ŝ±. Therefore, in the n = 2 degenerate subspace of Ĥ0, Ĥ ′SO is diagonal
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Table 7: The percentage of students displaying difficulties C-G for at least one of the listed

operators on the pretest and posttest for undergraduates (number of students N = 32 for

the pretest and N = 31 for the posttest) and graduate students (N = 42).

Difficulty Operator
Undergraduate Students Graduate Students

Pre (%) Post (%) Pre (%) Post (%)

C Ĥ ′SO, Ĥ ′Z 50 19 38 19

D Ĥ0, Ĥ ′r 75 7 60 10

E Ĥ0, Ĥ ′r, Ĥ
′
SO, Ĥ ′Z 66 22 74 29

F Ĥ0, Ĥ ′r, Ĥ
′
SO, Ĥ ′Z 59 18 48 29

G Ĥ0, Ĥ ′r, Ĥ
′
SO, Ĥ ′Z 28 7 40 10

in the coupled representation but not diagonal in the uncoupled representation. This type

of response shows some correct reasoning (Ĥ ′SO is diagonal in the n = 2 subspace in the

coupled representation) and was awarded partial credit. No points were awarded for any

other combination of answers for the operator Ĥ ′SO in Q2.

A subset of student responses was graded separately by the researchers with a final

inter-rater reliability of nearly 100%. Table 8 shows the performance of undergraduate and

graduate students on the pretest and posttest. Table 8 also includes the average gain, G,

and normalized gain [52], g. The normalized gain is defined as the (posttest percent - pretest

percent)/(100 - pretest percent). Both undergraduate and graduate students struggled with

this topic as can be seen by the scores on the pretest. However, both groups showed significant

improvement after working through the QuILT.

3.7 SUMMARY

Many of the difficulties described here are consistent with the patterns of student reasoning

found in other areas of quantum mechanics [53]. In order to develop a functional understand-

ing of DPT, one must be able to synergistically apply several appropriate concepts to solve
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Table 8: Average pretest and posttest scores for Q2, gains (G) and normalized gains (g) for

undergraduate students (number of students N = 32 for the pretest and N = 31 for the

posttest) and graduate students (N = 42).

Undergraduate Students Graduate Students

Operator Pre Post G g Pre Post G g

Ĥ0 55 98 +43 0.96 50 87 +37 0.74

Ĥ ′r 42 94 +52 0.90 38 88 +50 0.81

Ĥ ′SO 50 89 +39 0.78 56 86 +30 0.68

Ĥ ′fs 29 100 +71 1.00 - - - -

Ĥ ′Z 54 92 +38 0.83 49 90 +41 0.80

a DPT problem. Moreover, using DPT to find approximate solutions to the energy spec-

trum of the hydrogen atom placed in an external magnetic field requires students to apply

advanced mathematical concepts in the context of a concrete physical QM problem. Prior

research studies have found that students have difficulty connecting and applying mathe-

matics concepts correctly in introductory physics contexts, (e.g., see Refs. [55, 56, 57, 54]).

Many of the difficulties advanced students had with DPT stem from students’ lack of deep

understanding of the linear algebra concepts and procedures and the difficulties in connecting

the mathematical and quantum mechanical concepts.

The student difficulties discussed here can be interpreted using Simon’s bounded ra-

tionality and satisficing framework (in that students are limited in their cognitive resources

when solving these types of QM problems so they may resort to satisficing [45]) and Sweller’s

cognitive load framework (in that if appropriate scaffoldng support commensurate with stu-

dents’ current level of expertise is not provided, they will experience cognitive overload [46]).

In satisficing while solving the QM problems posed in this study, students often only looked

for a solution that was satisfactory to them in which they saw no inconsistencies (even

though there were inconsistencies based upon expert cognitive task analysis of the prob-

lems) rather than searching for additional pathways in the problem space and to determine
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an optimal solution. In other words, students who satisficed while solving the problem posed

(e.g., about the calculation of various matrix elements in a particular representation relevant

for determining whether a basis was good or not for finding the corrections to the ener-

gies) were satisfied with their sub-optimal solution commensurate with their current level

of expertise and did not search for more optimal approaches to solving problems. Resort-

ing to satisficing for students who are still developing expertise in this novel QM context

often amounted to novice-like sense-making and inappropriate integration of mathematical

and physical concepts to solve problems. For example, students struggled to identify that

basis states in the coupled representation comprise one special arbitrary orthonormal basis

constructed with linear combinations of states in the coupled representation (or one special

arbitrary orthonormal basis constructed with linear combinations of states in the uncoupled

representation). This type of difficulty illustrates the difference between novice and expert

sense-making and reasoning when solving a DPT problem since it is central to being able

to find a good basis for corrections to the energy spectrum. It is also possible that some

students in this investigation recognized that their solution may not be optimal but, without

sufficient guidance and scaffolding support, cognitive overload in this novel domain in which

they are still developing expertise prevented them from contemplating optimal pathways in

the problem space to solve the problem correctly [45, 46].

Using the common difficulties of advanced students in QM courses with determining bases

in which an operator is diagonal as a guide, we developed and evaluated a research-based

QuILT which strives to provide appropriate guidance and scaffolding support and focuses on

helping students reason about and find bases that diagonalize the unperturbed Hamiltonian

Ĥ0 completely and diagonalize the perturbations Ĥ ′r, Ĥ
′
SO, Ĥ ′fs = Ĥ ′r+Ĥ

′
SO, and Ĥ ′Z+Ĥ ′fs in

each degenerate subspace of Ĥ0. In order to accomplish this goal, students should be able to

evaluate the matrix elements of different Hamiltonians in different representations (e.g., the

coupled and uncoupled representations). This is an important skill to have when determining

a good basis for finding the perturbative corrections using DPT for a hydrogen atom placed

in an external magnetic field. For example, one can determine that the angular basis in the

coupled representation diagonalizes Ĥ0 and also diagonalizes Ĥ ′r and Ĥ ′SO in each degenerate

subspace of Ĥ0 and therefore forms a good basis for finding the perturbative corrections to
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the energies for fine structure Ĥ ′fs, in which the diagonal matrix elements of Ĥ ′r and Ĥ ′SO are

the first order corrections to the energies. For the perturbation Ĥ ′Z +Ĥ ′fs, one can determine

that the angular basis in the uncoupled representation diagonalizes Ĥ0 and also diagonalizes

Ĥ ′Z in each degenerate subspace of Ĥ0. However, the uncoupled representation does not

diagonalize Ĥ ′fs in each degenerate subspace of Ĥ0. Thus, the uncoupled representation is

not a good basis for Ĥ ′Z + Ĥ ′fs. One can determine that the Zeeman term Ĥ ′Z is not diagonal

in each degenerate subspace of Ĥ0 if the coupled representation is chosen as the angular

basis. In order to find a good basis for the pertrubation Ĥ ′Z +Ĥ ′fs, one is free to choose either

the coupled or uncoupled representation and then diagonalize Ĥ ′Z + Ĥ ′fs in each degenerate

subspace of Ĥ0.

The QuILT strives to provide scaffolding support and feedback using a guided inquiry-

based learning approach to help students develop a functional understanding of the concepts

relevant for DPT. In addition to helping students develop knowledge structures, students are

also guided to develop procedural skills in evaluating the matrix elements of different Hamil-

tonians in different representations (e.g., the coupled and uncoupled representations). The

QuILT strives to have students build upon this procedural knowledge and use these explict

calculations as additional scaffolding support to solidify conceptual knowledge structures.

The evaluation shows that the QuILT is effective in improving students’ understanding

of the bases that make an operator diagonal in the context of DPT. In particular, a majority

of graduate and undergraduate students were able to correctly identify all of the possible

correct representations that diagonalize Ĥ0 and diagonalize Ĥ ′r, Ĥ
′
SO and Ĥ ′fs = Ĥ ′r + Ĥ ′SO

in the degenerate subspace of Ĥ0. These students were able to correctly identify all of the

given representations in which the operator is a diagonal matrix in the n = 2 subspace and

were able to build upon this knowledge to help identify a complete set of states in the given

representations that form a good basis in the context of the DPT for a hydrogen atom placed

in an external magnetic field.
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4.0 DEVELOPING AND EVALUATING A QUANTUM

INTERACTIVE LEARNING TUTORIAL ON DEGENERATE

PERTURBATION THEORY: FINE STRUCTURE

4.1 INTRODUCTION

The hydrogen atom has played a significant role in the development of quantum mechanics

(QM). Specifically, the discrete energy levels observed by the spectroscopists for the hydro-

gen atom led Bohr to propose his model with quantized energy levels. Later, the Schrödinger

Equation was successful in explaining many aspects of the hydrogen atom that were experi-

mentally observed.

The fine structure term in the Hamiltonian causes shifts in the unperturbed energy

spectrum of the hydrogen atom. The fine structure of the hydrogen atom is the combined

effect of the relativistic correction and the spin-orbit interaction (interaction between the

spin and orbital angular momenta) since the two components produce the same order of

magnitude corrections to the energies of the hydrogen atom. These corrections are smaller

by a factor of the fine structure constant (α ≈ 1/137) squared compared to the unperturbed

energies of the hydrogen atom.

The Time-Independent Schrödinger Equation (TISE) for the hydrogen atom with the fine

structure corrections cannot be solved exactly. Nevertheless, since energies corresponding to

the fine structure term are significantly smaller than the unperturbed energies, perturbation

theory is an excellent method for determining the approximate solutions to the TISE for

finding the corrections to the unperturbed energy spectrum of the hydrogen atom due to

fine structure. Moreover, due to the degeneracy in the energy spectrum of the hydrogen atom,

degenerate perturbation theory (DPT) must be used to find the perturbative corrections due
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to fine structure.

It is important to help students develop a functional understanding of DPT in order

to find the fine structure corrections. However, QM is a challenging subject for upper-level

undergraduate and graduate students in physics (e.g., see Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12]). There have been a number of research studies aimed at investigating student reasoning

in QM [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and improving student understanding of QM

[24, 25, 26, 27, 28, 29, 30, 31, 32]. Here, we discuss an investigation of student difficulties

with finding the first-order perturbative corrections to the energy spectrum of the hydrogen

atom due to fine structure and the development and evaluation of a research-based Quantum

Interactive Learning Tutorial (QuILT) that makes use of the student difficulties as resources

[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

4.2 BACKGROUND

Below we discuss the background of DPT and what students should be able to do after

working through the QuILT. One goal is to help students be able to identify a good basis for

finding the corrections to the energies due to the fine structure of the hydrogen atom and

then be able to find the first order corrections due to fine structure. For a given Ĥ0 and Ĥ ′,

we define a good basis as consisting of a complete set of eigenstates of Ĥ0 that diagonalizes

Ĥ ′ in each degenerate subspace of Ĥ0.

4.2.1 Background for DPT

Perturbation theory is a powerful approximation method for finding the energies and the

energy eigenstates of a system for which the Time-Independent Schrödinger Equation (TISE)

is not exactly solvable. The Hamiltonian Ĥ for the system can be expressed as the sum of

two terms, the unperturbed Hamiltonian Ĥ0 and the perturbation Ĥ ′, i.e., Ĥ = Ĥ0 + Ĥ ′.

The TISE for the unperturbed Hamiltonian, Ĥ0ψ0
n = E0

nψ
0
n, is exactly solvable, where ψ0

n is

the nth unperturbed energy eigenstate and E0
n the unperturbed energy. Perturbation theory

builds on the solutions of the TISE for the unperturbed case. Using perturbation theory,

the energies can be approximated as En = E0
n + E1

n + E2
n + · · · where Ei

n for i = 1, 2, 3..
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are the ith order corrections to the nth energy of the system. Here we focus on the first-

order perturbative corrections to the energy spectrum since they are usually the dominant

corrections. In perturbation theory, the first-order corrections to the energies are

E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉, (4.1)

and the first-order corrections to the unperturbed energy eigenstates are

|ψ1
n〉 =

∑
m 6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
(E0

n − E0
m)
|ψ0
m〉. (4.2)

In Eqs. 6.1 and 6.2, {|ψ0
n〉} is a complete set of eigenstates of Ĥ0. When the eigenvalue

spectrum of Ĥ0 has degeneracy (i.e., two or more eigenstates of Ĥ0 have the same energy and

two or more diagonal elements of Ĥ0 are equal), Eq. 6.1 from nondegenerate perturbation

theory is still valid provided one uses a good basis.

4.2.2 Background for DPT involving the hydrogen atom

Using standard notation, the Hamiltonian of a hydrogen atom with fine structure is Ĥ =

Ĥ0 + Ĥ ′fs in which the unperturbed Hamiltonian, Ĥ0 = p̂2

2m
− e2

4πε0

(
1
r

)
, accounts only for the

interaction of the electron with the nucleus via Coulomb attraction and the fine structure

perturbation is Ĥ ′fs = Ĥ ′r + Ĥ ′SO. Here, Ĥ ′r = − p̂4

8m3c2
is the relativistic correction term and

Ĥ ′SO =
(

e2

8πε0

)
1

m2c2r3
(~L · ~S) is the spin-orbit interaction term. Since the relativistic correction

term and the spin-orbit term are of the same order of magnitude, they are combined as the

fine structure term Ĥ ′fs.

The solution of the TISE for the hydrogen atom with Coulomb potential energy gives the

unpertubed energies E0
n = −13.6eV

n2 , where n is the principal quantum number. As mentioned

in the previous section, in DPT, a good basis diagonalizes Ĥ0 and also diagonalizes Ĥ ′ in each

degenerate subspace of Ĥ0. Since for the hydrogen atom, for each subspace corresponding to

a particular principal quantum number n, the energy spectrum of Ĥ0 is 2n2-fold degenerate,

a good basis for finding the perturbative corrections must diagonalize Ĥ0 completely (basis

states must be eigenstates of Ĥ0) and must also diagonalize Ĥ ′fs in the 2n2 dimensional

subspace corresponding to each n.
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The angular part of the basis or angular basis refers to the part of the basis that combines

both the spin and orbital angular momenta. Since, in order to find a good basis, the focus

is on each degenerate subspace of the unperturbed Hamiltonian Ĥ0 and whether Ĥ ′fs is

diagonal in each degenerate subspace of Ĥ0, we can restrict our discussion to one value of

the principal quantum number n. Thus, in this entire discussion below, we will focus only

on the n = 2 degenerate subspace of Ĥ0. Also, in the questions that students were asked

about the fine structure corrections to the energy spectrum of the hydrogen atom using the

DPT, they were asked to fix the value of the principal quantum number to n = 2.

We note that Ĥ0 for the hydrogen atom is spherically symmetric (since [Ĥ0, ~̂L] = 0) and

the unperturbed energies only depend on n. Thus, for a fixed n, Ĥ0 is diagonal when any

complete set of orthonormal states is chosen for the angular basis. Thus, so long as the radial

part of the wavefunctions Rnl(r) (for a given principal quantum number n and azimuthal

quantum number l) corresponding to the eigenstates of Ĥ0 are chosen as the basis (which we

will assume throughout here), the choice of a good basis for DPT amounts to choosing the

angular basis appropriately for a given perturbation (ensuring that the perturbation matrix

is a diagonal matrix in each degenerate subspace of Ĥ0). Thus, our focus here is on choosing

a good angular basis.

Below, we consider each part of the perturbation Ĥ ′fs = Ĥ ′r + Ĥ ′SO separately and then

together in order to reason about how to determine a good angular basis. The operator Ĥ ′r

is spherically symmetric (since [Ĥ ′r, ~̂L] = 0) and the eigenvalues of Ĥ ′r depend on quantum

numbers n and l. Thus, for both Ĥ0 and Ĥ ′r, for n = 2 (which is the degenerate subspace of

Ĥ0 we will focus on throughout our discussion), any complete set of orthonormal states can

be chosen for the angular basis so long as we take linear superpositions of states with the

same values of l. Therefore, with fixed n and l, any complete set of orthonormal states forms

a good angular basis for finding the corrections to the energy spectrum of a hydrogen atom

due to the relativistic correction term Ĥ ′r only. On the other hand, since Ĥ ′SO is proportional

to ~L · ~S = 1
2
(Ĵ2 − Ŝ2 − L̂2), it is useful to note that the product states in the coupled

representation |n, l, j, mj〉 are eigenstates of the operator 1
2
(Ĵ2 − Ŝ2 − L̂2) (in which all

operators, e.g., ~J = ~L+ ~S, and the quantum numbers l, j and mj are in standard notations

and s has been suppressed from the states |n, l, j, mj〉 since s=1/2 for the electron is a fixed
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value for a hydrogen atom). Thus, Ĥ ′SO is diagonal in the degenerate subspace of Ĥ0 in the

coupled representation and an angular basis consisting of states in the coupled representation

is a good angular basis for Ĥ0 and Ĥ ′SO for DPT. Therefore, combining the relativistic and

spin-orbit interaction contributions, a good angular basis for Ĥ0 and Ĥ ′fs = Ĥ ′r + Ĥ ′SO is the

coupled representation.

The uncoupled representation is another convenient angular basis. For each n, the states

in the uncoupled representation |n, l, s, ml, ms〉 are eigenstates of Ŝ2, Ŝz, L̂
2, and L̂z.

Ĥ ′SO is not diagonal in each degenerate subspace of Ĥ0 in the uncoupled representation and

therefore, an angular basis consisting of states in the uncoupled representation is not a good

angular basis for Ĥ0 and Ĥ ′SO for DPT.

4.3 INVESTIGATING STUDENT DIFFICULTIES

Student difficulties with finding the corrections to the energy spectrum of the hydrogen atom

due to fine structure using DPT were investigated using five years of data involving responses

to open-ended and multiple-choice questions administered after traditional instruction in

relevant concepts to 64 upper-level undergraduates in a second-semester junior/senior level

QM course and 42 first-year physics graduate students in the second-semester of the graduate

core QM course. Additional insight was gained concerning these difficulties via responses

of 13 students during a total of 45 hours of individual interviews using the “think aloud”

protocol in which they were asked to answer the questions aloud that were posed without

being disturbed [44]. Only at the end, they were asked to clarify any issues.

Moreover, after the development and validation of the QuILT, it was administered to 32

upper-level undergraduates in a second-semester junior/senior level QM course and 42 first-

year physics graduate students in the second-semester of the graduate core QM course. The

QuILT included the pretest, the tutorial, and the posttest. Students were given the pretest

after traditional lecture-based instruction on DPT. Students began working on the tutorial

in class and completed the tutorial as their weekly homework assignment. The posttest was

administered after the students submitted the tutorial. Student responses on the pretest,
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tutorial, and posttest were analyzed to gain insight on their understanding of corrections

to the unperturbed energies of the hydrogen atom due to fine structure in the context of

DPT. If new difficulties were discovered during the interviews or on the pretest, tutorial, or

posttest, the difficulties were addressed in later versions of the QuILT.

We will use student responses to the following two questions to discuss some common

difficulties students had with the fine structure corrections to the energy spectrum of the

hydrogen atom in the context of DPT. In both questions, students were told that the radial

part of the wavefunctions Rnl(r) corresponding to the eigenstates of Ĥ0 are chosen as the

basis (Q1 and Q2 are questions posed on both the pretest after traditional lecture-based

instruction on relevant concepts and posttest after students had worked on the QuILT. )

Q1. Circle ALL of the bases which make the Hamiltonian operator Ĥ diagonal in the n = 2

subspace of Ĥ0 and explain your reasoning. Assume that for all cases, the principal quantum

number n = 2.

i. Coupled representation,

ii. Uncoupled representation,

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states

in the coupled representation with the same l (i.e., states with different l values are not

mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states

in the uncoupled representation with the same l (i.e., states with different l values are not

mixed),

v. Neither coupled nor uncoupled representation.

In Q1, the operator Ĥ is a proxy for the operators Ĥ0, Ĥ ′r, Ĥ
′
SO, and Ĥ ′fs listed individ-

ually in four separate questions.

In Q1, for a fixed n = 2, since the Ĥ0 matrix is diagonal when any complete set of

orthogonal states is chosen for the angular basis, options i, ii, iii, and iv are all correct for

the operator Ĥ0. The operator Ĥ ′r is diagonal for a fixed n if the options i, ii, iii, or iv in Q1

are chosen as the angular basis. On the other hand, the operator Ĥ ′SO is diagonal for a fixed

n if the angular basis consists of states in the coupled representation (option i) in Q1. Since

Ĥ ′fs = Ĥ ′r + Ĥ ′SO, the operator Ĥ ′fs is diagonal for a fixed n if the angular basis consists of

92



states in the coupled representation (option i).

Q2. A perturbation Ĥ ′ acts on a hydrogen atom with the unperturbed Hamiltonian Ĥ0 =

− ~2
2m
∇2 − e2

4πε0

(
1
r

)
. For the Hamiltonian Ĥ, circle ALL of the representations that can be

chosen as the angular part of a “good” basis and explain your reasoning. Assume that for

all cases, the principal quantum number is restricted to n = 2.

i. Coupled representation,

ii. Uncoupled representation,

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states

in the coupled representation with the same l (i.e., states with different l values are not

mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states

in the uncoupled representation with the same l (i.e., states with different l values are not

mixed),

v. Neither coupled nor uncoupled representation. In Q2, the operator Ĥ ′ is a proxy for the

operators Ĥ ′r, Ĥ
′
SO, and Ĥ ′fs listed individually in three separate questions. We note that

options iii and iv were given without the condition of the same l for operators Ĥ ′SO and Ĥ ′fs

in some years of the study and that there was no difference in student performance based

upon whether the wording of the question included the same l or not for Ĥ ′SO and Ĥ ′fs.

In Q2, for a fixed n (in each degenerate subspace of Ĥ0), since Ĥ0 and Ĥ ′r are diagonal

in any angular basis consisting of a complete set of orthogonal states with fixed l, options i,

ii, iii, and iv are all correct for a good basis for finding the perturbative corrections for Ĥ ′r

as the perturbation on Ĥ0. In each degenerate subspace of Ĥ0, the spin orbit interaction

term Ĥ ′SO is diagonal if an angular basis consisting of states in the coupled representation

is chosen. Thus, a good angular basis for finding the perturbative correction for Ĥ ′SO as the

perturbation on Ĥ0 is given by option i. For the fine structure term Ĥ ′fs, a good angular

basis for finding the perturbative correction is a basis consisting of states in the coupled

representation since the coupled representation forms a good angular basis for both Ĥ ′SO and

Ĥ ′r. Therefore, option i is correct for the fine structure term Ĥ ′fs.

Below, we discuss some common difficulties with the fine structure corrections to the en-

ergy spectrum of the hydrogen atom found via research that interfere with students choosing
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Table 9: Percentages of undergraduate and graduate students who selected all of the correct

representations in which a given operator is diagonal in Q1 after traditional instruction.

Operator Correct Undergraduate Graduate

Answer N (%) N (%)

Ĥ0 i, ii, iii, iv 32 34 42 33

Ĥ ′r i, ii, iii, iv 32 22 42 21

Ĥ ′SO i 32 34 42 36

Ĥ ′fs i 12 33 - -

a good basis and using DPT correctly in this context before discussing how those difficulties

were used as a guide in developing the DPT QuILT to help students find the fine structure

corrections.

4.4 STUDENT DIFFICULTIES

We find that when students are asked to determine a “good” basis for finding the pertur-

bative fine structure corrections to the energy spectrum of the hydrogen atom using DPT,

difficulties result from not realizing that DPT should be used. Moreover, even if students

realize that DPT should be used, they may not have a functional understanding of the bases

that make a perturbation Hamiltonian operator diagonal in each degenerate subspace of Ĥ0

and how this knowledge can help determine a good basis for finding the fine structure cor-

rections to the energy spectrum of the hydrogen atom in the context of DPT. In Q1, many

students struggled to correctly identify all sets of the angular basis states for which an oper-

ator is diagonal in the n = 2 subspace. Table 9 summarizes the percentages of students who

selected all of the possible correct representations in which an operator is diagonal in Q1 for

n = 2. It is important that students identify the bases in which Ĥ0 is diagonal since a good

basis must consist of a complete set of eigenstates of Ĥ0. However, only around one-third

of undergraduate and graduate students correctly identified all the angular bases in Q1 in

which Ĥ0 is diagonal. Many students struggled with the fact that the operator p̂2 in the
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unperturbed Hamiltonain Ĥ0 is spherically symmetric (since [p̂2, ~̂L] = 0) and the term 1/r

in the Coulomb potential energy is spherically symmetric since [1/r, ~̂L] = 0 and hence, Ĥ0 is

spherically symmetric ([Ĥ0, ~̂L] = 0). Thus, the unperturbed Hamiltonian Ĥ0 is diagonal for

a fixed n if the coupled representation, uncoupled representation, or any arbitrary complete

orthonormal basis constructed with linear combinations of states in the coupled/uncoupled

representation is chosen as the basis. Many of these students attempted to explicitly de-

termine whether states in the coupled or uncoupled representation were eigenstates of Ĥ0.

They began by letting Ĥ0 act on states in the coupled or uncoupled representations (e.g,

Ĥ0|n, l, ml, ms〉) but were not able to evaluate these expressions correctly. For example, one

interviewed student who attempted to evaluate Ĥ0|n, l, ml, ms〉 proceeded to write the p̂2

operator in Ĥ0 in terms of p̂r, p̂θ, and p̂φ and acted on the generic state |n, l, ml, ms〉 in the

uncoupled representation. This is where he stopped, saying “I don’t know how to find these

(the components of the momentum squared operator acting on the state |n, l, ml, ms〉).”

Many of these same students also had difficulty realizing that [Ĥ ′r, ~̂L] = 0 implies that the

perturbation Ĥ ′r is spherically symmetric and hence Ĥ ′r is diagonal for a fixed n if the cou-

pled representation, uncoupled representation, or any arbitrary complete orthonormal set

constructed with linear combinations of states in the coupled/uncoupled representation with

a fixed l is chosen as the basis. They tried to determine the angular representations in which

the perturbation Ĥ ′r is diagonal in the degenerate subspaces of Ĥ0 and often attempted to

determine whether states in the coupled or uncoupled representation were eigenstates of p̂4.

However, these students struggled when they attempted to explictly evaluate p̂4 acting on

the states in the coupled and uncoupled representation (e.g., p̂4|n, l, ml, ms〉) and could

not determine whether states in the coupled and uncoupled representation are eigenstates of

p̂4 (they had similar difficulties in Q2 with any arbitrary complete set of linear combinations

of states in the coupled or uncoupled representation with the same n and l). During the

interviews, many students admitted to memorizing the representation to choose for a good

angular basis in a given situation (for a given Ĥ0 and Ĥ ′) rather than using systematic

reasoning. An explicit example is the following statement from an interviewed student, “I

was always confused with coupled and uncoupled representation. I just memorized when to

use which.” Memorization of which basis to use often masks the fact that students did not
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Table 10: The percentage of students who chose all of the possible correct representations

that form a good basis for the listed perturbation Ĥ ′ and the unperturbed Hamiltonian Ĥ0

in Q2 on the pretest for undergraduates (number of students N = 32) and graduate students

(N = 42).

Ĥ ′ Operator Correct Answer Undergraduate Graduate

Students(%) Students(%)

Ĥ ′r i, ii, iii, iv 16 17

Ĥ ′SO i 34 38

Ĥ ′fs i 22 29

have a functional understanding of DPT for the fine structure corrections to the energy of

the hydrogen atom. Furthermore, some of these students recognized at least one represen-

tation that makes the unperturbed Hamiltonian Ĥ0 diagonal and makes the fine structure

perturbation Ĥ ′fs diagonal in each degenerate subspace of Ĥ0, but they did not realize that

this representation was a good basis for Ĥ0 and Ĥ ′fs.

On Q2, students struggled to determine a good angular basis for each perturbation Ĥ ′r,

Ĥ ′SO, and Ĥ ′fs on Ĥ0. The results are summarized in Table 10. For Q2, it is important that

students identify that the coupled representation is a good basis for both Ĥ ′r and Ĥ ′SO and

the coupled representation is the only option given in Q2 that forms a good basis for the fine

structure perturbation Ĥ ′fs = Ĥ ′r + Ĥ ′SO. The percentage of students who chose the coupled

representation as a good basis for Ĥ0 and each of the perturbations Ĥ ′r, Ĥ
′
SO, and Ĥ ′fs is given

in Table 11. The percentages in Table 11 included student who correctly selected the coupled

representation and may have also selected at least one additional incorrect representation as

a good basis for Ĥ ′SO, and Ĥ ′fs or may not have selected all the bases that form a good basis

for Ĥ ′r.

Below, we discuss some difficulties found regarding the fine structure corrections to the

energy spectrum of the hydrogen atom in the context of DPT that hinder students’ ability

to select the representations that form a good basis in Q2. In this section, we focus on the
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Table 11: The percentage of students who chose states in the coupled representation as a

good basis for the listed perturbation Ĥ ′ and the unperturbed Hamiltonian Ĥ0 in Q2 on the

pretest for undergraduates (number of students N = 32) and graduate students (N = 42).

Ĥ ′ Operator Undergraduate Graduate

Students(%) Students(%)

Ĥ ′r 53 33

Ĥ ′SO 44 64

Ĥ ′fs 31 45

qualitative results found primarily from student responses during the think aloud interviews.

Later, in the Evaluation of the QuILT section (section VI), we will discuss more quantitative

results given by the percentage of students that displayed these difficulties on the pretest after

traditional lecture-based instruction on relevant concepts and the posttest after engaging

with the QuILT.

4.4.1 Not realizing that DPT must be used to find the perturbative corrections

to the energies and energy eigenstates of the hydrogen atom

The unperturbed energies for the hydrogen atom only depend on the principal quantum

number n. As noted, for each value of n, there are 2n2 degenerate states corresponding

to all the possible values of l, ml and ms (degeneracy due to the spin degrees of freedom).

Therefore, in order to find the perturbative fine structure corrections to the energy spectrum

of the hydrogen atom, one must use DPT. However, many students did not realize that they

had to use DPT, and instead, used non-degenerate perturbation theory to find the first-order

perturbative corrections to the energies. These students did not consider the degeneracy in

the energy spectrum of the unperturbed Hamiltonian Ĥ0 before using Eqs. 6.1 and 6.2.

Some of these students only considered whether the given basis forms a complete set of

eigenstates of Ĥ0 and gave no consideration to the perturbations Ĥ ′r, Ĥ
′
SO, and Ĥ ′fs. They

did not realize that a good basis is one that diagonalizes Ĥ0 and also diagonalizes Ĥ ′ in each
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degenerate subspace of Ĥ0.

4.4.2 Using DPT to find corrections to the wavefunction but not using DPT to

find the first-order corrections to the energies

Even in the cases in which students realized that DPT must be used to find the fine structure

corrections to the unperturbed energy eigenstates of the hydrogen atom, some students did

not first determine a good basis before calculating the first-order perturbative corrections to

the energies. In written responses and interviews, these students often identified the potential

issue that the degeneracy in the unperturbed energies of the hydrogen atom creates for Eq.

6.2 when a given basis is not a good basis. They recognized that, due to the degeneracy

in the unperturbed energy spectrum of the hydrogen atom, there are terms in Eq. 6.2 in

which the denominator is zero and corrections to the energy eigenstates are invalid. However,

they assumed that any basis could be used to determine the first-order corrections to the

energy spectrum since they did not see any potentially divergent terms in Eq. 6.1. They did

not realize that a good basis is required to find the perturbative corrections to the energy

spectrum even in first-order for the hydrogen atom involving fine structure (otherwise, their

first-order corrections would be incorrect).

Some students with this type of difficulty thought that any angular basis would form

a good basis in Q2 for finding the corrections to the energy spectrum since they did not

see any potentially divergent terms in Eq. 6.1 for the energy correction. They often chose

options i, ii, iii, and iv for all the perturbations in Q2 since they did not have a functional

understanding of DPT.

4.4.3 Not focusing on BOTH Ĥ0 and Ĥ ′ when finding a good basis

To probe students’ understanding of the angular bases that make a perturbation Hamiltonian

diagonal in a degenerate subspace of Ĥ0, Q1 was posed (both after the traditional instruction

and after students had engaged with the QUILT) for each of the operators Ĥ0, Ĥ ′r, and Ĥ ′SO

(that make up the different components of the Hamiltonian of the hydrogen atom including

the fine structure perturbation Ĥ ′fs = Ĥ ′r + Ĥ ′SO). Many strudents struggled to correctly
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identify all the representations in which the operators Ĥ0, Ĥ ′r, and Ĥ ′SO are diagonal in

Q1 in the n = 2 subspace. Sometimes students with this type of difficulty struggled with

determining a representation that forms a good basis for DPT in Q2.

Some students did not realize that a basis that makes Ĥ0 diagonal and Ĥ ′ diagonal in

each degenerate subspace of Ĥ0 is a good basis for DPT. They often answered Q1 correctly

by identifying a basis that makes each operator Ĥ0 and Ĥ ′ diagonal in the n = 2 subpsace

of Ĥ0 separately, but then they incorrectly answered Q2 and did not choose a good basis

as the one that makes Ĥ0 diagonal and Ĥ ′ diagonal in each degenerate subspace of Ĥ0.

For example, one student correctly chose options i, ii, iii, and iv as the representations that

make Ĥ0 diagonal and option i as the representation that makes Ĥ ′SO diagonal in n = 2

subpsace of Ĥ0 in Q1. This same student then incorrectly chose options i, ii, iii and iv as

the representations that form a good basis in Q2 despite not choosing options ii, iii, and iv

as the representations that make Ĥ ′SO diagonal in the degenerate subspace of Ĥ0.

Below we discuss two types of student difficulties that involved students only focusing

on Ĥ0 or Ĥ ′ (but not both) when finding a good basis.

Only focusing on Ĥ0 to determine a good basis: One difficulty that prevented

students from choosing the representation that forms a good angular basis (e.g., in response

to Q2) was focusing only on Ĥ0 and not on Ĥ ′ when finding a good angular basis. In response

to Q2, students with this type of difficulty focused on the bases that make Ĥ0 diagonal but

did not take Ĥ ′ into consideration when finding a good basis. For example, on question

Q1, some students incorrectly selected only the uncoupled representation (option ii) as the

basis that would make the operator Ĥ0 diagonal and then incorrectly chose the uncoupled

representation as a good basis for Ĥ0 and Ĥ ′SO in Q2. In their explanation on the pretest,

they noted that states in the uncoupled representation were eigenstates of Ĥ0, but they did

not consider the fact that Ĥ ′SO is not diagonal in each degenerate subspace of Ĥ0 when states

in the uncoupled representation are chosen as the basis.

Similarly, some students chose a good basis based only upon the representation that

makes Ĥ0 diagonal without considering whether the operator Ĥ ′fs was diagonal in each

degenerate subspace of Ĥ0 in that basis. For example, in interviews, some students claimed

that the uncoupled representation was a basis that would make the operator Ĥ0 diagonal,
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and they then incorrectly chose the uncoupled representation as a good angular basis for

the fine structure corrections. In their explanations, they correctly noted that states in

the uncoupled representation were eigenstates of Ĥ0, but they did not consider the fact

that Ĥ ′fs is not diagonal in each degenerate subspace of Ĥ0 when states in the uncoupled

representation are chosen as the angular basis. For example, in the n = 2 subspace, the Ĥ ′fs

matrix is given below when the basis states are chosen in the uncoupled representation as

|n, l, ml, ms〉 (the notations are standard and quantum numbers ml and ms correspond

to the z component of the orbital and spin angular momenta, respectively) in the order

|2, 0, 0, 1
2〉, |2, 0, 0, −1

2〉,|2, 1, 1, 1
2〉, |2, 1, 1, −1

2〉, |2, 1, 0, 1
2〉, |2, 1, 0, −1

2〉, |2, 1, −1, 1
2〉,

and |2, 1, −1, −1
2〉 (where α is the fine structure constant):

Ĥ ′fs =
(−13.6 eV)α2
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15 0 0 0 0 0 0 0
0 15 0 0 0 0 0 0
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0 0 0 11 4
√

2 0 0 0
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2 7 0 0 0

0 0 0 0 0 7 4
√

2 0

0 0 0 0 0 4
√

2 11 0
0 0 0 0 0 0 0 3


. (4.3)

Since many students only focused on the representation in which Ĥ0 is diagonal to determine

a good basis, in the interviews, students were explicitly asked about the role of the pertur-

bation term in the Hamiltonian in the choice of a good basis. They were asked to calculate

some of the off-diagonal matrix elements of the Ĥ ′fs matrix or at least reason conceptually

about whether some of the off-diagonal matrix elements of Ĥ ′fs would be non-zero in the

uncoupled representation in the n = 2 degenerate subpsace of Ĥ0 (see Eq. 4.3). We find

that the interviewed students often struggled to calculate or reason conceptually that the

fine structure perturbation Ĥ ′fs shown in Eq. 4.3 is not diagonal in the n = 2 degenerate sub-

space of Ĥ0 in the uncoupled representation and that the uncoupled representation cannot

be a good angular basis for finding the fine structure corrections.

Only focusing on Ĥ ′ to determine a good basis: Some students chose a good basis

based upon the representations that make Ĥ ′ diagonal in each degenerate subspace of Ĥ0
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without consideration of whether the operator Ĥ0 was diagonal in that basis. For example,

some students in Q1 incorrectly selected only the uncoupled representation (option ii) as

the basis that would make Ĥ0 diagonal but incorrectly selected the coupled representation

(option i) as the only basis that would make Ĥ ′r diagonal in the n = 2 subspace. These

students then incorrectly chose the coupled representation as the only good basis for Ĥ0 and

Ĥ ′r in Q2. While it is correct that states in the coupled representation form a good basis,

they used incorrect reasoning to formulate their answer and also did not identify that all the

options i, ii, iii, and iv are correct for Ĥ ′r in Q2.

4.5 METHODOLOGY FOR THE DEVELOPMENT AND VALIDATION OF

THE QUILT

4.5.1 Development and Validation of the QuILT

The difficulties described show that students struggle in determining a representation in

which an operator is diagonal. Therefore, we developed a QuILT that takes into account

these difficulties. The development of the DPT QuILT started with an investigation of stu-

dent difficulties via open-ended and multiple-choice questions administered after traditional

instruction to advanced undergraduate and graduate students and conducting a cognitive

task analysis from an expert perspective of the requisite knowledge [45]. The QuILT strives

to help students build on their prior knowledge and addresses common difficulties found via

research, some of which were discussed in the previous section.

In the QuILT, students are presented with novel tasks. Whether it be examples, hypo-

thetical conversation, or calculations, students develop a deeper understanding by actively

working through the inquiry-based QuILT. Student difficulties are incorporated in these ex-

amples and conversations to create a cognitive conflict and the students are then guided

through additional tasks designed to resolve these issues. The QuILT follows a guided

inquiry-based learning sequence laid out in the cognitive task analysis. It is organized to

build on the students’ prior knowledge and each section in the QuILT builds upon the pre-

vious section. This organization helps the students build their own knowledge structures in

a coherent manner. Students are provided scaffolding to help address common difficulties,

thus reducing the cognitive conflict. The QuILT progressively reduces the scaffolding to the
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point students are able to solve the problems without any assistance.

The development of the QuILT went through a cyclic iterative process. The preliminary

version was developed based upon the cognitive task analysis and knowledge of common stu-

dent difficulties. Next, the QuILT underwent many iterations among the three researchers

and then was iterated several times with three physics faculty members to ensure that they

agreed with the content and wording. It was also administered to graduate and advanced

undergraduate students in individual think-aloud interviews to ensure that the guided ap-

proach was effective, the questions were unambiguously interpreted, and to better understand

the rationale for student responses. During these semi-structured interviews, students were

asked to “think aloud” while answering the questions. Students first read the questions on

their own and answered them without interruptions except that they were prompted to think

aloud if they were quiet for a long time. After students had finished answering a particular

question to the best of their ability, they were asked to further clarify and elaborate on

issues that they had not clearly addressed earlier. The next step involved evaluating the

QuILT’s impact on student learning and determining if the difficulties remained. Finally,

modifications and improvements were made based upon the student and faculty feedback

before it was administered to students in various courses.

4.5.2 Overview of the QuILT

The QuILT uses an inquiry-based approach to learning and actively engages students in the

learning process. It includes a pretest to be administered in class after traditional instruction

in DPT. Then students engage with the tutorial in small groups in class or use it as a guide

for class discussions (or alone when using it as a self-paced learning tool in homework), and

then they are administered a posttest in class. As students work through the tutorial, they

are asked to predict what should happen in a given situation. Then, the tutorial strives to

provide scaffolding and feedback as needed to bridge the gap between their initial knowledge

and the level of understanding that is desired. Students are also provided checkpoints to

reflect upon what they have learned and to make explicit the connections between what

they are learning and their prior knowledge. They are given an opportunity to reconcile

differences between their predictions and the guidance provided in the checkpoints before

proceeding further.
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The DPT QuILT uses a blend of qualitative and quantitative reasoning to improve stu-

dents’ understanding. For example, the QuILT requires qualitative understanding while

responding to the hypothetical conversations and quantitative reasoning to determine the

matrix elements of the operators Ĥ ′r, Ĥ
′
SO, and Ĥ ′fs = Ĥ ′r+Ĥ

′
SO in the coupled and uncoupled

representations. Students verify statements in hypothetical conversations via quantitative

reasoning.

4.5.3 Addressing Student Difficulties

In the QuILT, students begin by engaging with examples applying DPT in the context of

a three-dimensional Hilbert space before considering the infinite-dimensional Hilbert space

of the hydrogen atom. These three-dimensional examples strive to help students learn why

DPT must be used when there is degeneracy in the unperturbed energy spectrum. Next, the

students engage with examples involving DPT in which they consider the terms Ĥ ′r, Ĥ
′
SO,

and Ĥ ′fs as the perturbation on Ĥ0. Students focus on concepts related to determining a good

basis for the fine structure corrections to the energy of the hydrogen atom. In particular,

for the unperturbed Hamiltonian Ĥ0 and the fine structure perturbation Ĥ ′fs, students learn

about (1) why DPT must be used, (2) why care must be taken to choose a good basis even for

the first order correction to the energy spectrum even though the expression does not ”blow

up”, and (3) how to choose a good basis that keeps Ĥ0 diagonal and diagonalizes Ĥ ′fs in the

degenerate subspace of Ĥ0. Below, we discuss how the QuILT strives to address student

difficulties and help them learn about fine structure corrections to the energy spectrum of

the hydrogen atom in the context of DPT.

Helping students realize that DPT must be used to find the perturbative

corrections to the energies and energy eigenstates of the hydrogen atom: In the

QuILT, students are given the unperturbed Hamiltonian

Ĥ0 =
p̂2

2m
+ V (r) = − ~2

2m
∇2 − e2

4πε0

1

r
. (4.4)

They work through several guided inquiry-based learning sequences, such as the following,

aimed at helping them reflect upon the fact that there is degeneracy in the unperturbed

energy spectrum of the hydrogen atom:

Q4(a). What is one complete set of quantum numbers that describe the eigenstates of Ĥ0
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given by equation (B.2) (include spin degree of freedom)?

Q4(b). What is the unperturbed energy corresponding to Ĥ0 in equation (B.2) in terms of

the principal quantum number n?

Q4(c). Based upon your answers to the two preceding questions, should there be a degeneracy

in the unperturbed spectrum of a hydrogen atom given by equation (B.2)? Explain.

Q4(d). What is the degeneracy of an energy level with energy En for a given n (including

degeneracy due to spin degrees of freedom)?

This sequence of questions strives to help students be able to identify that there is degeneracy

in the unperturbed energy spectrum of the hydrogen atom. In particular, in answering

Q4(c), students reflect upon the fact that the unperturbed energy spectrum only depends on

the principal quantum number n and that states with different angular quantum numbers

(l,ml, s,ms or l, s, j, mj) with the same principal quantum number n are all eigenstates of

Ĥ0 with the same unperturbed energy. Therefore, the answer to Q4(d) is the degeneracy

of an energy level with energy En, given by 2
n−1∑
l=0

(2l + 1) = 2n2, since for each n, there are

(2l+1) values of ml and the factor of 2 corresponds to the spin degeneracy. Having explicitly

considered the degeneracy that arises due to the symmetry of the unperturbed Hamiltonian

of the hydrogen atom in Q4, the QuILT strives to help students identify that DPT must be

used to find the fine structure corrections to the unperturbed energies of the hydrogen atom.

Helping students realize that a good basis is required even for finding the

first-order corrections to the energies: In the QuILT, students are asked to determine

a good basis for finding the first-order corrections to the energies involving Ĥ0 and each of

the individual perturbations Ĥ ′r, Ĥ
′
SO, and Ĥ ′fs. After each question that asks the students

to determine a good basis for finding the first-order corrections to the energy spectrum,

students are provided scaffolding in the form of quantitative questions as well as conversations

requiring qualitative reasoning. Additionally, students are provided checkpoints that give

them an opportunity to reconcile any differences between their reasoning and the correct

reasoning. Working through these questions and conversations allows the students to realize

that care must be taken to ensure that a good basis is chosen even for finding the first-order

corrections to the energies.
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Helping students with the fact that the basis that diagonalizes a Hamiltonian

in each degenerate subspace of Ĥ0 may not be unique: The following is part of a

hypothetical conversation that strives to help students reflect upon the fact that in each

degenerate subspace of Ĥ0, the spherical symmetry of Ĥ0 (with unperturbed energies only

dependent on n) allows for any angular basis consisting of a complete set of orthogonal basis

states to keep the Ĥ0 matrix diagonal.

Q5. Consider the following conversation regarding whether the unperturbed Hamiltonian Ĥ0

is diagonal if the coupled or the uncoupled representation is chosen as the angular basis.

Student 1: Angular basis states in both the coupled and the uncoupled representations are

the angular part of the eigenstates of Ĥ0 since Ĥ0 is spherically symmetric with unperturbed

energies only dependent on n. Furthermore, for a fixed n, any arbitrary complete orthogonal

basis constructed using linear combinations of the coupled or uncoupled states can also be

chosen as the angular part of the eigenstates of Ĥ0.

Student 2: The unperturbed Hamiltonian Ĥ0 is identical in both the coupled and uncoupled

representations. In fact, Ĥ0 is identical so long as, for a fixed n, we choose any arbitrary

complete orthonormal angular basis constructed with linear combinations of states in the

coupled or uncoupled representation.

Explain why you agree or disagree with each student.

In Q5, Student 1 correctly notes that Ĥ0 is a diagonal matrix in both the coupled and the

uncoupled representations and Student 2 adds the fact that for a fixed n, the Ĥ0 matrix

is diagonal and identical as long as the angular basis states are chosen to consist of any

orthonormal complete set of states in either the coupled or uncoupled representations. In

a later conversation, students focus on the fact that since [Ĥ0, ~̂L] = 0, the unperturbed

Hamiltonian is spherically symmetric and that the angular basis can be chosen to consisting

of any complete set of orthogonal states.

After students have considered bases that diagonalize the Ĥ0 matrix, they are asked

to consider Ĥ ′r and Ĥ ′SO separately as perturbations before considering the fine structure

term as a perturbation. In particular, students work through guided inquiry-based learning

sequences that strive to help them learn that the relativistic correction Ĥ ′r is diagonal in

each degenerate subspace of Ĥ0 when any complete set of orthogonal angular basis states
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that do not involve linear combinations of different n and l is chosen, so that type of basis

forms a good basis for finding the perturbative corrections.

In the QuILT, students actively engage with examples involving the unperturbed Hamil-

tonian Ĥ0 and each of the perturbations Ĥ ′r, Ĥ
′
SO, and Ĥ ′fs. For all of the examples, students

are scaffolded with guided inquiry-based learning sequences and conversations that strive to

help them identify angular bases that keep Ĥ0 diagonal and diagonalize each of the pertur-

bations Ĥ ′r, Ĥ
′
SO, and Ĥ ′fs in the degenerate subspace of Ĥ0.

Helping students with the fact that BOTH Ĥ0 and Ĥ ′ must be considered

when finding a good basis: To help students who had difficulty with determining angular

bases that keep the operator Ĥ0 diagonal while diagonalizing Ĥ ′r, ĤSO and Ĥ ′fs in each

degenerate subspace of Ĥ0, students work through several guided inquiry-based sequences

in the QuILT.

For the operator Ĥ ′SO, students first calculate several diagonal and off-diagonal matrix

elements when the coupled or uncoupled representation is chosen as the basis. If the basis

is chosen to consist of states in the coupled representation, the off-diagonal matrix elements

of Ĥ ′SO are zero in each degenerate subspace of Ĥ0 and therefore the coupled representation

forms a good basis for finding the perturbative corrections due to the spin-orbit interaction

Ĥ ′SO. Therefore, the diagonal matrix elements of Ĥ ′SO are the first order corrections to the

energies if basis states are chosen in the coupled representation.

Students also work through several guided inquiry-based sequences that strive to help

them learn that the unperturbed Hamiltonian Ĥ0 is spherically symmetric with the unper-

turbed energy spectrum only dependent on n and Ĥ0 is diagonal if any complete set of

orthogonal angular basis states is chosen as the basis for a fixed n. An angular basis consist-

ing of states in the coupled representation is one such complete set. The following excerpt

taken from a hypothetical student conversation in the QuILT strives to help students reflect

upon the fact that the Ĥ ′SO operator is also diagonal in each degenerate subspace of Ĥ0 if

states in the coupled representation are chosen as the angular basis states.

Q6. Consider the following conversation about finding a “good” angular basis for the hydro-

gen atom with the spin-orbit interaction term as the perturbation.

Student 1: ~L · ~S is diagonal in the coupled representation because J2 = (~L+ ~S) · (~L+ ~S) =
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L̂2 + Ŝ2 + 2~L · ~S which implies ~L · ~S = 1
2
(Ĵ2 − Ŝ2 − L̂2). The basis states in the coupled

representation are eigenstates of Ĵ2, Ŝ2, and L̂2 and hence eigenstates of ~L · ~S.

Student 2: I agree with Student 1. Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 when

the coupled representation is chosen as the basis, but not when the uncoupled representation

is chosen as the basis. The coupled representation forms a “good” basis for the given unper-

turbed Hamiltonian Ĥ0 and perturbation Ĥ ′SO.

Explain why you agree or disagree with each student.

In question Q6, both Student 1 and Student 2 are correct. Since basis states in the coupled

representation are eigenstates of Ĵ2, Ŝ2, and L̂2, states in the coupled representation form

a good basis for Ĥ0 and Ĥ ′SO. The two conversations in questions Q5 and Q6 provide scaf-

folding to help students reflect upon the fact that states in the coupled representation form

a good basis for Ĥ0 and Ĥ ′SO.

Questions Q5, Q6, and similar hypothetical conversations focusing on the perturbation

Ĥ ′fs strive to help students develop a deep understanding of the bases that make the Ĥ ′r, Ĥ
′
SO

and Ĥ ′fs operators diagonal in each degenerate subspace of Ĥ0 and why one must consider

both Ĥ0 and Ĥ ′fs when determining a good basis. Additionally, the QuILT strives to help

students learn that considering both the unperturbed Hamiltonian Ĥ0 and perturbation Ĥ ′fs

and understanding of the good bases that make the perturbation operator Ĥ ′ diagonal in

each degenerate subspace of Ĥ0 while keeping the unperturbed Hamiltonian Ĥ0 diagonal are

critical for finding the fine structure corrections to the hydrogen atom.

4.6 EVALUATION OF THE QUILT

Once the researchers determined that the QuILT was successful in one-on-one implemen-

tation using a think-aloud protocol, it was administered in graduate and upper-level un-

dergraduate classes. Both undergraduate and graduate students were given a pretest after

traditional instruction in relevant concepts in DPT but before working through the tutorial.

The pretests were not returned to the students after grading. The undergraduates worked

through the tutorial in class for two days and were asked to work on the remainder of the

tutorial as homework. The graduate students were given the tutorial as their only homework
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Table 12: The percentage of students who chose all the possible correct representations to

form a good basis for the listed perturbation Ĥ ′ and the unperturbed Hamiltonian Ĥ0 in Q2

on the pretest and posttest for undergraduates (number of students N = 32 for the pretest

and N = 31 for the posttest) and graduate students (N = 42).

Undergraduate Graduate

Ĥ ′ Operator Correct Answer Students(%) Students(%)

Pre Post Pre Post

Ĥ ′r i, ii, iii, iv 16 87 17 79

Ĥ ′SO i 34 94 38 74

Ĥ ′fs i 22 81 29 86

assignment for the week. After working through and submitting the completed tutorial, both

groups were given the posttest in class. Students were given enough time in class to work

through the pretest and posttest. The results for the pre/posttest are summarized in Tables

12 and 13, and suggest that working on the QuILT was helpful in reducing student difficulties

with these concepts. In particular, over 74% of graduate students and 81% of undergraduate

students were able to correctly identify all the possible correct representations that form a

good basis for the perturbations Ĥ ′r, Ĥ
′
SO or Ĥ ′fs = Ĥ ′r + Ĥ ′SO and the unperturbed Hamil-

tonian Ĥ0 after engaging with the QuILT. These students were able to correctly identify all

of the given representations in which an operator is a diagonal matrix in each degenerate

subspace of Ĥ0 and build upon this knowledge to select all of the representations that form

a good basis for a given Ĥ0 and Ĥ ′.

As can be seen in Table 12, the graduate students and undergraduate students generally

performed at about the same level on Q2 on the pretest. However, the undergraduates

outperformed the graduate students on the posttest in identifying all the options in Q2

that form a good basis. One possible explanation for the undergraduates outperforming the

graduate students on the posttest could be the grade incentive associated with the QuILT.

The QuILT accounted for a larger percentage of the undergraduate students’ overall course
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Table 13: The percentage of students who answered question Q2 consistently with question

Q1 and correctly for either Ĥ ′r or Ĥ ′SO on the pretest and posttest for undergraduates and

graduate students.

Undergraduate Students% Graduate Students %

Ĥ ′ N Pre N Post N Pre N Post

Ĥ ′r 32 9 31 84 42 17 42 76

Ĥ ′SO 28 15 31 71 42 31 42 74

grade and the components of the QuILT were accounted for differently for the course grade

for the two groups of students. In particular, the posttest for the undergraduate students was

graded for correctness in both years while the posttest for the graduate students was graded

for completeness in Year 1 and for correctness in Year 2. Additionally, the undergraduate

students knew that the material from the QuILT could appear on their examinations while

the graduate students were told by the graduate instructor that this material was a review of

the undergraduate quantum mechanics and that no material from the QuILT would appear

on their examinations; instead, more complex problems on the DPT would appear on the

exams. The fact that the graduate students were given very small grade incentive to learn

the material in the QuILT may have decreased their motivation to engage as deeply with the

QuILT as the undergraduates and may explain why the graduate students did not perform

as well as the undergraduate students on the posttest.

4.7 SUMMARY

Using the common difficulties of advanced students with fine structure corrections to the

energies of the hydrogen atom in the context of DPT as resources, we developed and evaluated

a research-based QuILT which focuses on helping students reason about and find bases

which form a good bases for the unperturbed Hamiltonian Ĥ0 and the perturbations Ĥ ′r

and Ĥ ′SO separately or the fine structure perturbation Ĥ ′fs = Ĥ ′r + Ĥ ′SO. Having a deep
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understanding of the angular bases for which each of these operators is diagonal in each

degenerate subspace of Ĥ0 is a prerequisite to helping students determine a good basis for

finding the perturbative corrections using DPT for a hydrogen atom when the fine structure

is treated as perturbation. In order to have a functional understanding of DPT, one must

be able to synergistically apply several appropriate concepts from physics and mathematics

to solve a DPT problem. This can lead to cognitive overload and students may resort to

memorizing procedures rather than understanding the concepts involved and learning the

process of applying those concepts appropriately [46] unless appropriate scaffolding support

and feedback is provided. Additionally, our research suggests that students often did not

realize that they were providing inconsistent responses within the same problem or across

several closely related problems on the same quiz or test. When students are developing

expertise, students’ working memory may be occupied with several different aspects of a

given problem and few resources may be available for metacognition, e.g., making sure that

the approach is coherent and checking whether an answer makes sense and is consistent with

the previous answers [46].

Solving DPT problems requires students to apply advanced mathematical concepts in

the context of a concrete physical problem. Moreover, the fact that the quantum physics

paradigm is novel exacerabates student difficulties [12]. Prior research studies have found

that students have difficulty connecting and applying mathematical concepts correctly in

introductory physics contexts (e.g., see Refs. [48, 49, 50, 47]) and they sometimes make

mathematical mistakes that they would otherwise not make if the physics concept was not

present. Many of the common difficulties students had with DPT were intimately entangled

with students’ lack of robust understanding of the underlying linear algebra concepts and

difficulties connecting these mathematical and quantum mechanical concepts. For example,

in order to be able to identify bases that make an operator diagonal in each degenerate

subspace of the unperturbed Hamiltonian, one must have a strong background in linear

algebra and be able to apply it in the context of solving a physics problem.

The QuILT strives to provide appropriate scaffolding and feedback using a guided

inquiry-based approach to help students develop a functional understanding of the concepts

relevant for DPT in the context of the fine structure corrections to the hydrogen atom.
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5.0 DEVELOPING AND EVALUATING A QUANTUM

INTERACTIVE LEARNING TUTORIAL ON DEGENERATE

PERTURBATION THEORY: INTERMEDIATE FIELD ZEEMAN EFFECT

5.1 INTRODUCTION

Quantum mechanics (QM) is challenging even for upper-level undergraduate and graduate

students, and students often struggle to make connections between mathematics and QM

concepts in this abstract, non-intuitive and novel context (e.g., see Refs. [1, 2, 3, 6, 4, 5, 7,

8, 9, 10, 11, 12, 13, 14, 15]). There have been a number of prior research studies aimed at

investigating student reasoning in QM [16, 17, 18, 19, 20, 21, 22, 23, 24, 25] and using the

findings as resources for improving student understanding [26, 27, 28, 29, 30, 31, 32, 33, 34].

Guided by research studies conducted to identify student difficulties with QM and findings of

cognitive research, we have been developing a set of research-based learning tools including

the Quantum Interactive Learning Tutorials (QuILTs), which strive to help students develop

a solid grasp of QM [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. However, there has been

relatively little research that focuses on student understanding of advanced topics in quantum

mechanics, e.g., degenerate perturbation theory (DPT) [46]. Here we discuss an investigation

of student difficulties with mathematical sense-making in a physical situation in the context

of DPT involving the intermediate field Zeeman effect for the hydrogen atom. We also

describe the development and validation of the research-based QuILT that uses student

difficulties as resources and strives to help students learn to apply mathematical concepts in

linear algebra correctly to find the corrections to the energy spectrum of the hydrogen atom

for the Zeeman effect.

Prior research suggests that students often have difficulty applying mathematical con-
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cepts in the context of a concrete physical problem. In particular, students have diffi-

culty connecting and applying mathematics correctly in physics contexts (e.g., see Refs.

[47, 48, 49, 50, 51]). Mathematical sense-making in the context of solving physics problems

can often be more difficult than when solving equivalent mathematics problems without the

physics context [47, 48, 49, 50, 51]. Since working memory is constrained to a limited number

of chunks and students’ knowledge chunks pertaining to a concept are small when they are

learning and developing expertise in physics, use of mathematics in physics can increase the

cognitive load during problem solving, especially if students are not preficient in mathemat-

ics [52], and students may struggle to integrate mathematical and physical concepts. Thus,

sense-making while focusing on solving a physics problem is often challenging and students

sometimes make mathematical mistakes that they otherwise would not make if the physics

context was absent [47, 48, 49, 50, 51].

One QM concept that involves mathematical sense-making in a physical situation is

degenerate perturbation theory (DPT) in the context of the Zeeman effect for the hydrogen

atom. We investigated student difficulties with finding the first-order corrections to the

energies of the hydrogen atom for the Zeeman effect using DPT and used the research as a

guide to develop learning tools to improve student understanding.

The hydrogen atom has played a significant role in the development of quantum mechan-

ics (QM). Specifically, the discrete energy levels observed by spectroscopists for the hydrogen

atom led Bohr to propose his model with quantized energy levels. Schrödinger proposed the

wave model of particles involving the Schrödinger equation which explains features of the

hydrogen atom well. The fine structure of the hydrogen atom is the combined effect of the

relativistic correction and the spin-orbit interaction since the two components produce the

same order of magnitude corrections to the energies compared to the unperturbed energies of

the hydrogen atom. These fine structure corrections to the energies are smaller by a factor of

α ≈ 1/137 squared, where α is the fine structure constant. The Zeeman effect represents the

shift in the energy spectrum of the hydrogen atom due to the presence of a magnetic field.

The shift in the energy spectrum due to the Zeeman effect is proportional to the strength

of the magnetic field. The intermediate field Zeeman effect, which we will call the general

case of the Zeeman effect (since it is more general than the strong or weak field Zeeman

118



effect), is the focus here. It is the case in which the corrections to the energy spectrum due

to the fine structure and Zeeman terms are comparable. While the Bohr model accurately

explained the observed unperturbed energy levels of the hydrogen atom, it cannot explain

or describe the observed energy shifts due to fine structure and Zeeman terms. Only the

quantum mechanical treatment using the Schrödinger equation explains that the observed

shifts are due to the fine structure and Zeeman terms. Spectroscopists can also identify

the energy spectrum of the hydrogen atom under different conditions, e.g., in an external

magnetic or electric field. Generally speaking, the interactions of the hydrogen atom with

the external magnetic or electric field create shifts and splitting in the energy spectrum.

Here, we focus on the approximate solutions to the Time-Independent Schrödinger Equa-

tion (TISE) for the intermediate field Zeeman effect using perturbation theory. While the

solution for the TISE for the hydrogen atom with Coulomb potential energy can be solved

exactly, the TISE for the hydrogen atom involving the Zeeman effect must include the fine

structure correction term and cannot be solved exactly. The solution for the TISE for the

hydrogen atom with Coulomb potential energy gives the unperturbed energies E0
n = −13.6eV

n2 ,

where n is the principal quantum number. Since the fine-structure term and, in general, the

Zeeman term are significantly smaller than the unperturbed term in the Hamiltonian, per-

turbation theory is an excellent method for computing the corrections to the energies and

comparing the theoretical results with experiments. The high degree of symmetry of the

potential energy of the unperturbed Hamiltonian for the hydrogen atom leads to degeneracy

in the energy spectrum of the hydrogen atom and DPT must be used to find the perturbative

corrections for the Zeeman effect.

5.2 BACKGROUND

Below, we discuss the basics of DPT with which many students struggled and the develop-

ment and validation of the QuILT, which strives to help students learn about DPT in the

context of the Zeeman effect. Via the QuILT, students are provided guidance and support

to determine a good basis for finding the perturbative corrections to the energies for the
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Zeeman effect, which includes corrections due to both the fine structure and Zeeman terms,

and to calculate the perturbative corrections using that basis.

5.2.1 Basics for DPT

Perturbation theory is a useful approximation method for finding the energies and the energy

eigenstates for a system for which the TISE is not exactly solvable. The Hamiltonian Ĥ for

the system can be expressed as the sum of two terms, the unperturbed Hamiltonian Ĥ0 and

the perturbation Ĥ ′, i.e., Ĥ = Ĥ0+Ĥ ′. The TISE for the unperturbed Hamiltonian, Ĥ0ψ0
n =

E0
nψ

0
n, (where ψ0

n is the nth unperturbed energy eigenstate and E0
n is the nth unperturbed

energy), is exactly solvable. The energies can be approximated as En = E0
n +E1

n +E2
n + . . .

where Ei
n for i = 1, 2, 3.. are the ith order corrections to the nth energy of the system. In

PT, the first-order correction to the nth energy is

‘E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 (5.1)

and the first-order correction to the nth unperturbed energy eigenstate is

|ψ1
n〉 =

∑
m6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
(E0

n − E0
m)
|ψ0
m〉 (5.2)

in which {|ψ0
n〉} is a complete set of eigenstates of the unperturbed Hamiltonian Ĥ0. If

the eigenvalue spectrum of Ĥ0 has degeneracy, the corrections to the energies and energy

eigenstates are only valid provided one uses a good basis. For a given Ĥ0 and Ĥ ′, a good

basis consists of a complete set of eigenstates of Ĥ0 that diagonalizes Ĥ ′ in each degenerate

subspace of Ĥ0.
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5.2.2 Background for DPT involving the Zeeman effect

For a hydrogen atom in an external magnetic field, one can use the DPT to find the correc-

tions to the energy spectrum. Using standard notations, the unperturbed Hamiltonian Ĥ0 of

a hydrogen atom is Ĥ0 = p̂2

2m
− e2

4πε0
1
r
, which accounts only for the interaction of the electron

with the nucleus via Coulomb attraction. The solution for the TISE for the hydrogen atom

with Coulomb potential energy gives the unperturbed energies E0
n = −13.6eV

n2 , where n is the

principal quantum number. The perturbation is Ĥ ′ = Ĥ ′fs+ Ĥ ′Z , in which Ĥ ′Z is the Zeeman

term and Ĥ ′fs is the fine structure term. The Zeeman term accounts for the potential energy

of the magnetic moments due to the orbital and spin angular momenta in the external mag-

netic field. The Zeeman term is given by Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz) in which ~Bext = Bextẑ is a

uniform, time independent external magnetic field along the ẑ-direction, µB is the Bohr mag-

neton and L̂z and Ŝz are the operators corresponding to the z-component of the orbital and

spin angular momenta, respectively. The fine structure term includes a relativistic correction

for the kinetic energy and the spin-orbit coupling, and is expressed as Ĥ ′fs = Ĥ ′r+Ĥ
′
SO. Here,

Ĥ ′r = − p̂4

8m3c2
is the relativistic correction term and Ĥ ′SO = e2

8πε0
1

m2c2r3
~L · ~S is the spin-orbit

interaction term (all notations are standard).

We note that the unperturbed Hamiltonian is spherically symmetric since [Ĥ0, ~̂L] = 0.

Therefore, for a fixed n, Ĥ0 for the hydrogen atom is diagonal when any complete set of

orthogonal states is chosen for the angular part of the basis (consisting of the product states

of orbital and spin angular momenta). Thus, so long as the radial part of the basis is

always chosen to be a stationary state wavefunction Rnl(r) for the unperturbed hydrogen

atom (for a given principal quantum number n and azimuthal quantum number l), which

we will assume throughout, the choice of a good basis amounts to choosing the angular part

of the basis appropriately, i.e., ensuring that the perturbation is diagonal in each degenerate

subspace of Ĥ0. Therefore, we focus on the angular part of the basis (or angular basis) to

find a good basis and the corrections to the energies for the perturbation Ĥ ′ corresponding

to the intermediate field Zeeman effect in the hydrogen atom. For the angular basis for

each n, states in the “coupled” representation |n, l, j, mj〉 are labeled by the quantum

numbers l, s, j, and mj (in additional to n) and the total angular momentum is defined as
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~J = ~L+ ~S (all notations are standard and s has been suppressed from the states |n, l, j, mj〉

since s = 1/2 for the electron is a fixed value for a hydrogen atom). States in the coupled

representation are eigenstates of L̂2, Ŝ2, Ĵ2, and ĴZ . On the other hand, for each n, states

in the “uncoupled” representation |n, l, ml, ms〉 are labeled by the quantum numbers l, ml,

and ms (in addition to n), in which all notations are standard. States in the uncoupled

representation are eigenstates of L̂2, Ŝ2, L̂Z , and ŜZ .

An angular basis consisting of states in the coupled representation forms a good basis for

the fine structure term Ĥ ′fs since with this choice of the angular basis, Ĥ ′fs is diagonal in each

degenerate subspace of Ĥ0. On the other hand, a basis consisting of states in the uncoupled

representation forms a good angular basis for the Zeeman perturbation Ĥ ′Z (in this case, first

order PT yields the exact result since [Ĥ0, Ĥ ′Z ] = 0). Therefore, for the intermediate field

Zeeman effect, in which Ĥ ′ = Ĥ ′fs + Ĥ ′Z and Ĥ ′fs and Ĥ ′Z are treated on equal footing (

we will use the notation Ĥ ′fs ≈ Ĥ ′Z to denote that the energy corrections corresponding to

Ĥ ′fs are comparable to Ĥ ′Z), neither a basis consisting of states in the coupled representation

nor a basis consisting of states in the uncoupled representation forms a good angular basis

to find perturbative corrections for the hydrogen atom placed in an external magnetic field.

The following procedure describes how to determine a good angular basis and find the first

order corrections to the energy spectrum for the Zeeman effect: (1) choose an intial basis

consisting of a complete set of eigenstates of Ĥ0 (e.g., one is free to choose an angular

basis consisting of states in the coupled representation or a basis consisting of states in the

uncoupled representation or any other basis), (2) write the Ĥ0 and Ĥ ′ matrices in the chosen

basis, (3) identify Ĥ ′ in each degenerate subspace of Ĥ0, (4) diagonalize the Ĥ ′ matrix in

each degenerate subspace of Ĥ0 to determine a good basis, and (5) identify that the first-

order corrections to the energy spectrum are the diagonal matrix elements of the Ĥ ′ matrix

as given by Eq. 6.1 in the good basis.
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5.3 METHODOLOGY FOR INVESTIGATING STUDENT DIFFICULTIES

Student difficulties with the corrections to the energies of the hydrogen atom for the Zee-

man effect using DPT were investigated using five years of data involving responses from

64 upper-level undergraduate students and 42 first-year graduate students to open-ended

and multiple-choice questions administered after traditional instruction in relevant concepts.

The undergraduates were in an upper-level undergraduate QM course, and graduate stu-

dents were in a graduate-level QM course. Additional insight was gained concerning these

difficulties via responses of 13 students during a total of 45 hours of individual interviews

using the “think aloud” protocol in which they were asked to answer the questions aloud

that were posed without being disturbed [53]. Only at the end, they were asked to clarify

any issues. Students were provided with all relevant information discussed in the introduc-

tion and background section and had lecture-based instruction in relevant concepts. Similar

percentages of undergraduate and graduate students displayed difficulties with DPT.

We first analyzed responses of 32 undergraduates on questions related to DPT in the con-

text of the Zeeman effect for hydrogen atom administered in two previous years. Then, we

examined the difficulties that 32 undergraduate and 42 graduate students had with identify-

ing a good basis for the Zeeman effect in the following three years as part of an in-class quiz

after traditional lecture-based instruction. In all questions, students were told that the ra-

dial part of the basis is chosen to be the stationary state wavefunction Rnl(r). The following

question is representative of a series of questions that were posed after traditional lecture-

based instruction on relevant concepts and after students had engaged with the QuILT (the

operator Ĥ ′, in Q1, is a proxy for the operators Ĥ ′r, Ĥ
′
SO, Ĥ ′fs, Ĥ

′
Z , and Ĥ ′fs + Ĥ ′Z that were

listed individually in three separate questions on the pretest after traditional, lecture-based

instruction and posttest after engaging with the QuILT):

Q1. A perturbation Ĥ ′ acts on a hydrogen atom with the unperturbed Hamiltonian Ĥ0 =

− ~2
2m
∇2 − e2

4πε0

(
1
r

)
. For the Hamiltonian Ĥ, circle ALL of the representations that can be

chosen as the angular part of a “good” basis and explain your reasoning. Assume that for

all cases, the principal quantum number is restricted to n = 2.

i. Coupled representation,
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ii. Uncoupled representation,

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states

in the coupled representation with the same l (i.e., states with different l values are not

mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states

in the uncoupled representation with the same l (i.e., states with different l values are not

mixed),

v. Neither coupled nor uncoupled representation.

We note that options iii and iv were given without the condition of the same l in one year

of the study and that there was no difference in student performance based upon whether

the wording of the question included the same l or not for Ĥ ′SO and Ĥ ′fs.

In order to find the first-order corrections to the energies, one must first choose a good

basis. Q1 focuses on the bases that form a good basis for the perturbation Hamiltonian for

the intermediate field Zeeman effect with Ĥ ′ = Ĥ ′fs + Ĥ ′Z , as well as the operators Ĥ ′fs and

Ĥ ′Z individually. Knowledge of the bases that form a good angular basis for the individual

perturbation operators Ĥ ′fs and Ĥ ′Z can be helpful when determining a good basis for the

intermediate field Zeeman effect with the perturbation Ĥ ′ = Ĥ ′fs + Ĥ ′Z .

The unperturbed Hamiltonian Ĥ0 is spherically symmetric with unperturbed energies

only dependent on n and therefore options i, ii, iii, and iv in Q1 all form a complete set of

angular part of the eigenstates of Ĥ0. Therefore, one must consider which set of angular

basis states in Q1 also diagonalizes the given Ĥ ′ in the degenerate subspace of Ĥ0. Since the

given degenerate subspace of Ĥ0 corresponds to n = 2, a good angular basis is one in which

the perturbation matrix is also diagonal in that subspace.

In each degenerate subspace of Ĥ0, the fine structure term Ĥ ′fs is diagonal if the basis

is chosen to consist of states in the coupled representation (option i in Q1) and the Zeeman

term is diagonal if the basis is chosen to consist of states in the uncoupled representation

(option ii in Q1), but not vice versa. Therefore, for the intermediate field Zeeman effect, in

which the perturbation is Ĥ ′ = Ĥ ′fs + Ĥ ′Z , neither a basis consisting of states in the coupled

representation nor a basis consisting of states in the uncoupled representation forms a good

basis and option v in Q1 is the correct answer. In order to determine a good basis for the
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intermediate field Zeeman effect, one may first choose an initial basis consisting of states

in either the coupled or uncoupled representation and then diagonalize the perturbation

Ĥ ′ = Ĥ ′fs + Ĥ ′Z in the n = 2 degenerate subspace of Ĥ0. Thus, students must first express

either the Ĥ ′fs or Ĥ ′Z matrix in an initial basis in which it is not diagonal in the degenerate

subspace of Ĥ0. Then, they must be able to diagonalize the perturbation Ĥ ′ = Ĥ ′fs + Ĥ ′Z

in the degenerate n = 2 subspace of Ĥ0 and be able to find the corrections to the energy

spectrum.

Below, we discuss some common difficulties with corrections to the energy spectrum of

the hydrogen atom for the Zeeman effect found via research that interfere with students

choosing a good basis and using DPT correctly in this context. We then discuss how the

difficulties were used as a guide in the DPT QuILT to help students find the corrections to

the energy spectrum due to the intermediate field Zeeman effect.

5.4 STUDENT DIFFICULTIES

Students had some difficulties with DPT in general (not restricted to the context of the

Zeeman effect only). For example, when students were asked to determine a good basis for

finding the corrections to the energies of the hydrogen atom, many students did not even

realize that DPT should be used. Other students knew that they had to use DPT to find the

corrections to the wavefunction, but they did not use DPT to find the first-order corrections

to the energies. These students often incorrectly claimed that they did not need to use DPT

since no terms in E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉) “blow up”.

In the context of the intermediate field Zeeman effect, some students only focused on

the Zeeman term Ĥ ′Z when asked to determine a good basis for finding the corrections to the

energies of the hydrogen atom. In particular, they did not take into account the fine structure

term Ĥ ′fs (omitted it altogether) and focused only on the Zeeman term as the perturbation.

If the fine structure term Ĥ ′fs is neglected, then one can determine the exact energies for

Ĥ0 + Ĥ ′Z and there is no need for perturbation theory since [Ĥ0, Ĥ ′Z ] = 0. However, the fine

structure term should be considered when determining the corrections to the unperturbed
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Table 14: The percentage of students who chose the listed angular representations as those

that form a good angular basis for the unperturbed Hamiltonian Ĥ0 and the perturbation

Ĥ ′ = Ĥ ′fs + Ĥ ′Z and the percentage of students who did not select any option in Q1 after

traditional lecture-based instruction for undergraduates (number of students N = 32) and

graduate students (N = 42).

Option Undergraduate Graduate

Students(%) Students(%)

i 28 29

ii 22 17

iii 16 12

iv 13 12

v 44 33

Blank 16 17

energy spectrum.

As noted, to probe students’ understanding of a good basis for the corrections to the

energy spectrum due to the intermediate field Zeeman effect, students were asked question

Q1. In the context of the intermediate field Zeeman effect, in which the perturbation is

Ĥ ′ = Ĥ ′fs + Ĥ ′Z , students struggled to realize that neither a basis consisting of states in the

coupled representation nor a basis consisting of states in the uncoupled representation forms

a good basis for the perturbative corrections to the hydrogen atom placed in an external

magnetic field. The results are summarized in Table 14. Table 14 shows that only 44% of

undergraduate students and 33% of graduate students correctly identified that option v in

Q1 is the correct answer for the Zeeman effect. Additionally, 16% of undergraduate and 17%

of graduate students did not provide any answer to the multiple-choice question Q1 after

traditional lecture-based instruction in relevant concepts.

Below, we discuss student difficulties that hinder their ability to select the representation

that forms a good angular basis in Q1 and find the corrections to the energy spectrum. In this
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section, we focus on the qualitative results found primarily from student responses during

the think aloud interviews.

5.4.1 Difficulty understanding why diagonalizing the entire Ĥ ′ matrix is prob-

lematic

Many students did not realize that when the initially chosen basis is not a good basis and

the unperturbed Hamiltonian Ĥ0 and the perturbing Hamiltonian Ĥ ′ = Ĥ ′fs + Ĥ ′Z do not

commute, they must diagonalize the Ĥ ′ = Ĥ ′fs+Ĥ
′
Z matrix only in the degenerate subspace of

Ĥ0. When presented with a similar system and asked to determine the first order corrections

to the energies, one interviewed student who attempted to diagonalize the entire Ĥ ′ matrix

justified his reasoning by incorrectly stating, “We must find the simultaneous eigenstates of

Ĥ0 and Ĥ ′.” This student, and many others, did not realize that when Ĥ0 and Ĥ ′ = Ĥ ′fs+Ĥ
′
Z

do not commute, we cannot simultaneously diagonalize Ĥ0 and Ĥ ′ = Ĥ ′fs + Ĥ ′Z since they

do not share a complete set of eigenstates. Students struggled with the fact that if Ĥ0 and

Ĥ ′ = Ĥ ′fs + Ĥ ′Z do not commute, diagonalizing Ĥ ′ = Ĥ ′fs + Ĥ ′Z produces a basis in which

Ĥ0 is not diagonal. Also, since Ĥ0 is the dominant term and Ĥ ′ = Ĥ ′fs + Ĥ ′Z provides only

small corrections, we must ensure that the basis states used to determine the perturbative

corrections in Eqs. 6.1 and 6.2 remain eigenstates of Ĥ0.

5.4.2 Incorrectly claiming that BOTH a basis consisting of states in the coupled

representation and a basis consisting of states in the uncoupled represen-

tation are good bases for the intermediate field Zeeman effect

Many students had difficulty identifying a good basis for perturbative corrections for the

intermediate field Zeeman effect. For example, in Q1, many students correctly identified

that the good angular basis for the fine structure term Ĥ ′fs is a basis consisting of states

in the coupled representation (option i) and also correctly identified that the good angular

basis for the Zeeman term Ĥ ′Z is a basis consisting of states in the uncoupled representation

(option ii in Q1). However, after correctly identifying the good angular basis for the two

perturbations individually, some students did not realize that neither the coupled nor the
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uncoupled representation (option v in Q1) forms a good angular basis for the Zeeman effect

in which the perturbation is Ĥ ′ = Ĥ ′fs + Ĥ ′Z . One interviewed student incorrectly claimed

that “the coupled are a good basis for Ĥ ′fs and uncoupled are a good basis for Ĥ ′Z , so both

coupled and uncoupled form a good basis for Ĥ ′fs + Ĥ ′Z .” This student and others with this

type of response incorrectly thought that since a basis consisting of states in the coupled

representation (option i in Q1) forms a good basis for the fine structure term Ĥ ′fs and a basis

consisting of states in the uncoupled representation (option ii in Q1) forms a good angular

basis for the Zeeman term Ĥ ′Z , a good basis for the perturbation consisting of the sum of

these two perturbations is either a basis consisting of states in the coupled or uncoupled

representation.

5.4.3 Incorrectly claiming that a good basis does not exist for the Zeeman effect

In Q1, some students who correctly identified that the good angular basis for the fine structure

term Ĥ ′fs is a basis consisting of states in the coupled representation and also correctly

identified that a good angular basis for the Zeeman term Ĥ ′Z is a basis consisting of states

in the uncoupled representation correctly chose that neither the coupled nor the uncoupled

representation forms a good basis for the perturbation Ĥ ′ = Ĥ ′fs + Ĥ ′Z (option v in Q1) but

then used incorrect reasoning to do so. Two common examples are as follows:

Some students incorrectly argued that since neither an angular basis consisting of states

in the coupled representation nor a basis consisting of states in the uncoupled representation

forms a good basis, a good basis does not exist for this case. They struggled to realize that the

coupled representation or the uncoupled representation were not the only two possibilities

for the angular part of the basis. One interviewed student with this type of reasoning had

difficulty understanding the meaning of options iii and iv in Q1, stating: “I don’t know

what a linear combination of coupled or uncoupled states is. I thought there were just

coupled states or uncoupled states.” This student and others with this type of reasoning did

not realize that a good basis could be constructed from a linear combination of states in

the coupled representation (or equivalently a linear combination of states in the uncoupled

representation).
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Some students had difficulty realizing that any linear combination of states from the

same degenerate subspace of Ĥ0 are also eigenstates of Ĥ0. For example, one student who

correctly identified that neither the coupled nor the uncoupled representation forms a good

basis for the Zeeman effect argued that “no good basis exists since we cannot diagonalize

a part of the Ĥ ′ matrix (Ĥ ′ matrix in the degenerate subspace of Ĥ0) without affecting

the Ĥ0 matrix.” This student and others who provided similar incorrect reasoning claimed

that by diagonalizing Ĥ ′ in the degenerate subspace of Ĥ0, the Ĥ0 matrix would no longer

be diagonal. However, due to the degeneracy, ANY linear combination of states from the

same degenerate subspace of Ĥ0 are eigenstates of Ĥ0. Therefore, diagonalizing Ĥ ′ in the

degenerate subspace of Ĥ0 determines the special linear combination that forms a good basis.

5.4.4 Incorrectly claiming that the choice of the initial basis affects corrections

to the energy spectrum

Of the students who correctly identified that a good basis for the Zeeman effect will consist

of a special linear combination of states in the coupled representation (or, equivalently, a

special linear combination of states in the uncoupled representation), many did not realize

that the first order corrections to the energy spectrum would be the same regardless of

the initial choice of the basis. Since neither a basis consisting of states in the coupled

representation nor a basis consisting of states in the uncoupled representation forms a good

basis, a good basis cannot easily be identified at the onset. In order to determine a good basis

and the first order corrections to the energy spectrum due to the Zeeman effect, one can

initially choose a basis consisting of states in the coupled representation and then diagonalize

Ĥ ′ = Ĥ ′fs+Ĥ ′Z in each degenerate subspace of Ĥ0. However, one could also initially choose a

basis consisting of states in the uncoupled representation and then diagonalize Ĥ ′ = Ĥ ′fs+Ĥ
′
Z

in each degenerate subspace of Ĥ0 to determine a good basis and the first order corrections

to the energy spectrum due to the Zeeman effect. Regardless of the choice of the initial

basis, after diagonalizing Ĥ ′ = Ĥ ′fs + Ĥ ′Z in each degenerate subspace of Ĥ0, the first order

corrections to the energy spectrum due to the Zeeman effect will be the same in any good

basis. Many students thought that the first order corrections to the energies depended on
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the initial choice of basis. Therefore, if one chooses a basis consisting of states in the coupled

representation then the first order corrections in this case would be different than those

obtained had a basis consisting of states in the uncoupled representation been chosen as the

initial basis. However, it does not make sense experimentally that the observed perturbative

corrections would depend upon the choice of basis. Lack of appropriate connection between

physics and mathematics in the context of DPT for the Zeeman effect sheds light on the

difficulty students have in mathematical sense-making in QM. It also sheds light on the

physics epistemology pertaining to whether one should get the same perturbative corrections

in experiments regardless of the choice of initial basis or whether the initial choice of basis

should impact what is experimentally measured values of energies.

5.4.5 Making computational mistakes while attempting to diagonalize the en-

tire 8-dimensional Ĥ ′ matrix instead of diagonalizing the two separate

2× 2 submatrices of the block diagonal matrix Ĥ ′ = Ĥ ′fs + Ĥ ′Z

When asked to determine the first order corrections to the energies for the intermediate field

Zeeman effect for the n = 2 degenerate subspace of Ĥ0, some students correctly identified

that one can initially choose either a basis consisting of states in the coupled representa-

tion or a basis consisting of states in the uncoupled representation and then diagonalize

Ĥ ′ = Ĥ ′fs + Ĥ ′Z in each degenerate subspace of Ĥ0. For example, in a basis consisting of

states in the coupled representation (|n, l, j mj〉), the perturbation matrix Ĥ ′ = Ĥ ′Z + Ĥ ′fs

corresponding to the n = 2 subspace is given below (in which γ =
(
α
8

)2
13.6 eV, α = e2

4πε0~c ,

β = µBBext and the basis states are chosen in the order |2, 0, 1
2
, 1

2
〉, |2, 0, 1

2
, −1

2
〉,

|2, 1, 3
2
, 3

2
〉, |2, 1, 3

2
, −3

2
〉, |2, 1, 3

2
, 1

2
〉, |2, 1, 1

2
, 1

2
〉, |2, 1, 3

2
, −1

2
〉, and |2, 1, 1

2
, −1

2
〉):
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Ĥ ′ =



5γ − β 0 0 0 0 0 0 0

0 5γ + β 0 0 0 0 0 0

0 0 γ − 2β 0 0 0 0 0

0 0 0 γ + 2β 0 0 0 0

0 0 0 0 γ − 2
3
β

√
2
3
β 0 0

0 0 0 0
√
2
3
β 5γ − 1

3
β 0 0

0 0 0 0 0 0 γ + 2
3
β

√
2
3
β

0 0 0 0 0 0
√
2
3
β 5γ + 1

3
β



.

However, when finding the corrections to the energy spectrum, some students attempted to

diagonalize the entire 8 × 8 Ĥ ′ matrix in the n = 2 degenerate subspace of Ĥ0. While this

approach is correct, it is easier to diagonalize the 8× 8 Ĥ ′ matrix by diagonalizing Ĥ ′ only

in the block diagonal subspaces with smaller dimensions than the initial 8 × 8 Ĥ ′ matrix,

i.e., the two separate 2 × 2 matrices

 γ − 2
3
β

√
2
3
β

√
2
3
β 5γ − 1

3
β

 and

 γ + 2
3
β

√
2
3
β

√
2
3
β 5γ + 1

3
β

.

In general, an expert-like approach to diagonalizing the Ĥ ′ matrix involves diagonalizing

Ĥ ′ in the block diagonal subspaces with smaller dimensions and mathematical mistakes

are less likely using this approach. However, many students did not realize that in order

to determine a good basis, one can diagonalize these block diagonal subspaces in order to

diagonalize the entire Ĥ ′ matrix in the degenerate subspace of Ĥ0. In other words, they

struggled with the fact that to diagonalize Ĥ ′ in the n = 2 degenerate subspace of Ĥ0,

one can diagonalize the two separate 2 × 2 matrices instead of diagonalizng the entire

Ĥ ′ matrix in the n = 2 subpsace and obtain the linear combination of the states in the

coupled representation that forms a good basis for finding the perturbative corrections for

the Zeeman effect.
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5.5 METHODOLOGY FOR THE DEVELOPMENT AND VALIDATION OF

THE QUILT

5.5.1 Development and Validation of the QuILT

The difficulties described show that many students struggle in determining a good basis for

finding the corrections to the energy spectrum for the Zeeman effect. Therefore, we devel-

oped a QuILT that takes into account these difficulties and strives to help students build a

robust knowledge structure of these concepts. The development of the DPT QuILT started

with an investigation of student difficulties via open-ended and multiple-choice questions

administered after traditional instruction to advanced undergraduate and graduate students

and conducting a cognitive task analysis from an expert perspective of the requisite knowl-

edge [54]. The QuILT strives to help students build on their prior knowledge and addresses

common difficulties found via research, some of which were discussed in the previous section.

The QuILT is inspired by Piaget’s “optimal mismatch” framework as well as the prepa-

ration for future learning framework of Bransford and Schwartz. In Piaget’s “optimal mis-

match” framework, students are intentionally placed in a situation in which their current

knowledge structures are inadequate and the students are required to reorganize existing

structures or develop new structures to reconcile this conflict [55]. Bransford and Schwartz’s

preparation for future learning framework emphasizes that learning occurs when elements of

innovation and efficiency are both present [56]. Innovation and efficiency describe two or-

thogonal components of instruction. Innovation describes aspects that are new to students,

such as new concepts or new problem-solving skills. Efficiency is a measure of the structure

and organization of the material, as well as how proficient the student is with the material.

Instruction that incorporates only one of these elements leads to students becoming disen-

gaged. If instruction is too innovative, students cannot connect the material with their prior

knowledge and become frustrated. When the instruction is too efficient, students interact

with repetitious material that does not provide intellectual stimulation and may become

routine experts. However, they will not be able to transfer their learning to new situations.

In the QuILT, students are presented with innovative tasks. Whether it be examples,
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hypothetical conversations, or calculations, the QuILT strives to help students develop a

deeper understanding by actively working through the inquiry-based learning sequences.

Student difficulties are incorporated in these examples and conversations to create a cognitive

conflict in which the students are then guided through additional tasks designed to resolve

these issues. Efficiency is addressed in the QuILT in several ways. First, the QuILT follows

the sequence laid out in the cognitive task analysis. It is organized in a manner which

attempts to build on the students’ prior knowledge, and each section in the QuILT builds

upon the previous section. Second, students are provided scaffolding designed to help address

common difficulties, thus reducing the cognitive conflict. Third, the QuILT progressively

reduces the scaffolding to help students solve problems without any assistance. Finally, as

the students work through the different tasks, they develop more proficiency at identifying

the concepts and answering the questions.

The development of the QuILT went through a cyclic, iterative process. The preliminary

version was developed based upon the cognitive task analysis and knowledge of common stu-

dent difficulties. Next, the QuILT underwent many iterations among the three researchers

and then was iterated several times with three physics faculty members to ensure that they

agreed with the content and wording. It was also administered to graduate and advanced

undergraduate students in individual think-aloud interviews to ensure that the guided ap-

proach was effective, the questions were unambiguously interpreted, and to better understand

the rationale for student responses. During these semi-structured interviews, students were

asked to “think aloud” while answering the questions. Students first read the questions on

their own and answered them without interruptions except that they were prompted to think

aloud if they were quiet for a long time. After students had finished answering a particular

question to the best of their ability, they were asked to further clarify and elaborate on issues

that they had not clearly addressed earlier. The next step involved evaluating the impact of

the QuILT on student learning and determining if the difficulties remained. Finally, modi-

fications and improvements were made based upon the student and faculty feedback before

it was administered to students in various QM courses.
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5.5.2 Structure of the QuILT

The QuILT uses a guided inquiry-based approach to learning and actively engages students

in the learning process. It includes a pretest to be administered in class after traditional

instruction in DPT. Then, students engage with the tutorial in small groups in class (or

alone when using it as a self-paced learning tool in homework), and finally a posttest is

administered in class. As students work through the tutorial, they are asked to predict

what should happen in a given situation. Then, the tutorial strives to provide scaffolding

and feedback as needed to bridge the gap between their initial knowledge and the level of

understanding that is desired. Students are also provided checkpoints to reflect upon what

they have learned and make explicit connections between what they are learning and their

prior knowledge. They are given an opportunity in the checkpoints to reconcile differences

between their predictions and the guidance provided before proceeding further.

The DPT QuILT uses a blend of guided inquiry-based learning sequences involving both

qualitative and quantitative reasoning to improve students’ understanding. For example, the

QuILT requires qualitative reasoning while students reason about hypothetical student con-

versations and quantitative reasoning to determine the matrix elements of the perturbations

Ĥ ′SO and Ĥ ′Z in the coupled and uncoupled representations.

5.5.3 Addressing Student Difficulties via Guided Learning Sequences in the

QuILT

In the guided inquiry-based learning sequences in the QuILT, students actively engage with

examples involving DPT in which they consider the perturbations Ĥ ′fs, Ĥ
′
Z , and Ĥ ′fs + Ĥ ′Z

as the perturbation on Ĥ0. In this manner, students focus on the concepts involved in

determining a good basis for the fine structure and Zeeman corrections to the energy spectrum

of the hydrogen atom separately before considering Ĥ ′ = Ĥ ′fs + Ĥ ′Z . For the unperturbed

Hamiltonian Ĥ0 and the perturbation Ĥ ′ = Ĥ ′fs + Ĥ ′Z , students learn about (1) why DPT

must be used (2) why care must be taken to choose a good basis for the Zeeman effect and

(3) how to find perturbative corrections to the energy spectrum. Below, we discuss how the

QuILT strives to address student difficulties and help them learn about the perturbative
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corrections to the energy spectrum of the hydrogen atom due to the Zeeman effect using

DPT.

Students first work through a warm-up for the tutorial that strives to help them identify

the bases that consist of a complete set of eigenstates of operator Ĥ0 and the bases in which

the operators Ĥ ′fs and Ĥ ′Z are diagonal in each degenerate subspace of Ĥ0. In addition,

students also work through examples in which they must determine the matrix elements

of the operators Ĥ ′SO or Ĥ ′Z . For example, they calculate several diagonal and off-diagonal

matrix elements of Ĥ ′SO and Ĥ ′Z in both a basis consisting of states in the coupled repre-

sentation and a basis consisting of states in the uncoupled representation. Students were

asked to focus on calculating the matrix elements of the operator Ĥ ′SO in order to help them

determine whether a basis consisting of states in the coupled or uncoupled representation

forms a good basis for the fine structure perturbation Ĥ ′fs. Since the fine structure term

is Ĥ ′fs = Ĥ ′r + Ĥ ′SO, one must consider both Ĥ ′r and Ĥ ′SO when determining a good basis.

However, the relativistic term Ĥ ′r is spherically symmetric with energy depending on n and

l and so Ĥ ′r is diagonal in each degenerate subspace of Ĥ0 for a basis consisting of states

in the coupled or uncoupled representation for each fixed n and l. Students were asked to

focus on the angular part of the basis that makes Ĥ ′SO diagonal in each degenerate subspace

of Ĥ0. The warmup strives to help students learn the prerequisites for finding a good basis

for the hydrogen atom for the Zeeman effect in the context of DPT.

Helping students identify a good basis for the fine structure term Ĥ ′fs, the

Zeeman term Ĥ ′Z, and Ĥ ′ = Ĥ ′fs + Ĥ ′Z: The QuILT strives to help students learn that

neither a basis consisting of states in the coupled representation nor a basis consisting of

states in the uncoupled representation forms a good basis for the intermediate field Zeeman

effect. As part of a guided inquiry-based sequence, students are asked to evaluate the validity

of the following two statements in a hypothetical student conversation in the QuILT designed

to scaffold students’ learning:

Student 1: Since the coupled representation is a good basis for the fine structure term

and the uncoupled representation is a good basis for the Zeeman term, both the coupled and

uncoupled representation form good bases and are equally appropriate to find the first order
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corrections to the energies for Ĥ ′ = Ĥ ′fs + Ĥ ′Z.

Student 2: I disagree with Student 1. You cannot consider different bases for different

parts of Ĥ ′. If we choose the coupled representation, Ĥ ′ = Ĥ ′fs + Ĥ ′Z is not diagonal in each

degenerate subspace of Ĥ0 since Ĥ ′Z is not diagonal in the coupled representation. Similarly,

if we choose the uncoupled representation, Ĥ ′ = Ĥ ′fs+Ĥ ′Z, is not diagonal in each degenerate

subspace of Ĥ0 since Ĥ ′fs is not diagonal in the uncoupled representation. Neither of these

representations form a good basis.

Explain why you agree or disagree with Student 1 or Student 2.

Following this conversation, further scaffolding is provided through inquiry-based learning

sequences which strive to help students reconcile that Student 2 is correct.

Students are also given scaffolding support to help them determine a good basis and

first-order corrections to the energy spectrum of the hydrogen atom for the Zeeman effect.

The guided inquiry-based sequences in the QuILT strive to help students learn that neither

a basis consisting of states in the coupled or uncoupled representation form a good basis.

After diagonalizing Ĥ ′ = Ĥ ′fs + Ĥ ′Z in the n = 2 degenerate subspace of Ĥ0, a good basis is

obtained which consists of a linear combination of states in the coupled (or, equivalently, the

uncoupled) representation. Students are provided checkpoints that allow them to reconcile

any differences between their initial reasoning and the correct reasoning.

Helping students realize that the initial choice of basis cannot affect the

corrections to the energy spectrum: The QuILT strives to help students learn that

one is free to choose either an initial basis consisting of states in the coupled representation

or a basis consisting of states in the uncoupled representation and then diagonalize the

perturbation Ĥ ′ = Ĥ ′fs + Ĥ ′Z in each degenerate subspace of Ĥ0 in order to determine a

good basis (and the first order corrections to the energies due to the Zeeman effect). The

following statements from a hypothetical student conversation from a guided inquiry-based

sequence in the QuILT strive to help students learn that the initial choice of basis cannot

change the first order corrections to the energy spectrum due to the Zeeman effect once a

good basis has been found.

Student 1: Since the diagonal matrix elements of Ĥ ′ will depend on the choice of initial

basis, a different choice of the initial basis in which we diagonalize Ĥ ′ in the degenerate
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subspace of Ĥ0 will change the first order corrections to the energies.

Student 2: I disagree with Student 1. After diagonalizing Ĥ ′ in each degenerate subspace

of Ĥ0, a good basis is obtained and the first order correction to the energy will be the same

regardless of which basis, e.g., the coupled or uncoupled representation, you had initially

chosen. In a good basis, you will end up with the same diagonal matrix elements of Ĥ ′ which

are the first order corrections to the energies.

Explain why you agree or disagree with each student.

Students are provided additional scaffolding support to help them reconcile that Student 2

is correct in the preceding conversation. In a good basis, the diagonal matrix elements of the

perturbation Ĥ ′ are the first order corrections to the energies regardless of the choice of the

initial basis.

Helping students reflect upon the fact that diagonalizing the two separate

2 × 2 submatrices of the block diagonal matrix Ĥ ′ = Ĥ ′fs + Ĥ ′Z diagonalizes Ĥ ′

in the n = 2 subspace: In the QuILT, when basis states are chosen to be states in the

coupled representation in an appropriate order, the Ĥ ′ = Ĥ ′fs+ Ĥ ′Z matrix is block diagonal.

Students are provided scaffolding support to help them realize that one is free to choose the

initial angular basis states in any order to construct the matrices without affecting the first

order corrections to the energy spectrum and that choosing basis states in a certain order

may make determining the first order corrections to the energy spectrum easier to calculate.

In particular, the QuILT strives to help students learn that in order to determine a good basis

for the Zeeman effect in the n = 2 subspace, one can diagonalize the block diagonal matrix

Ĥ ′ = Ĥ ′fs + Ĥ ′Z by diagonalizing the two separate 2 × 2 submatrices of the block diagonal

Ĥ ′ = Ĥ ′fs + Ĥ ′Z matrix rather than diagonalizing the entire 8 × 8 Ĥ ′ = Ĥ ′fs + Ĥ ′Z matrix

if the basis states are chosen in the order given earlier. The following student conversation

regarding diagonalizing the Ĥ ′ = Ĥ ′fs + Ĥ ′Z matrix in the n = 2 degenerate subspace of

Ĥ0 for the Zeeman effect is part of a guided inquiry-based sequence in which students must

reason about and explain whether each hypothetical student’s statement is correct:

Student 1: In the case of n = 2, Ĥ0 possesses an eight-fold degeneracy, which means that

in order to find a good basis for the correction to the n = 2 energy spectrum, we must diag-

onalize the entire 8 x 8 Ĥ ′ matrix in the n = 2 degenerate subspace of Ĥ0.
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Student 2: We must make an effort to diagonalize Ĥ ′ only in those block diagonal subspaces

with smaller dimensions in order to diagonalize the entire Ĥ ′ matrix in the degenerate sub-

space of Ĥ0 to obtain the good basis set. When I calculate the Ĥ ′ matrix for n = 2 in the cou-

pled representation and the angular basis states are chosen in the order |ψ1〉 = |2, 0, 1
2
, 1

2
〉,

|ψ2〉 = |2, 0, 1
2
, −1

2
〉, |ψ3〉 = |2, 1, 3

2
, 3

2
〉, |ψ4〉 = |2, 1, 3

2
, −3

2
〉, |ψ5〉 = |2, 1, 3

2
, 1

2
〉,

|ψ6〉 = |2, 1, 1
2
, 1

2
〉, |ψ7〉 = |2, 1, 3

2
, −1

2
〉, and |ψ8〉 = |2, 1, 1

2
, −1

2
〉, I get the block diagonal

matrix Ĥ ′ below

Ĥ ′ =



5γ − β 0 0 0 0 0 0 0

0 5γ + β 0 0 0 0 0 0

0 0 γ − 2β 0 0 0 0 0

0 0 0 γ + 2β 0 0 0 0

0 0 0 0 γ − 2
3
β

√
2
3
β 0 0

0 0 0 0
√
2
3
β 5γ − 1

3
β 0 0

0 0 0 0 0 0 γ + 2
3
β

√
2
3
β

0 0 0 0 0 0
√
2
3
β 5γ + 1

3
β


We will only need to diagonalize the 2× 2 matrices

 γ − 2
3
β

√
2
3
β

√
2
3
β 5γ − 1

3
β

 and γ + 2
3
β

√
2
3
β

√
2
3
β 5γ + 1

3
β

 to obtain the good basis.

Explain why you agree or disagree with each student.

The QuILT strives to help students learn that Student 1’s approach is valid, but Student 2

uses a more efficient approach that is less prone to errors in obtaining a good basis. Students

are asked to summarize in words how to determine a good basis and the first-order correc-

tions to the energy spectrum of the hydrogen atom for the Zeeman effect. Students are then

asked to calculate a good basis and the first-order corrections to the energy spectrum for the

n = 2 subspace. They are provided checkpoints that allow them to reconcile any differences

between their initial reasoning and the correct reasoning provided in the checkpoints.
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5.6 EVALUATION OF THE QUILT

Once the researchers determined that the QuILT was successful in one-on-one implemen-

tation using a think-aloud protocol, it was administered in graduate and upper-level un-

dergraduate classes. Both undergraduate and graduate students were given a pretest after

traditional instruction in relevant concepts in DPT but before working through the tutorial.

The pretests were not returned to the students after grading. The undergraduates worked

through the tutorial in class for two days and were asked to work on the remainder of the

tutorial as homework. The graduate students were given the tutorial as their only homework

assignment for the week. After working through and submitting the completed tutorial, both

groups were given the posttest in class. Students were given enough time in class to work

through the pretest and posttest.

The pre/posttest results for Q1 are summarized in Table 15 and suggest that the QuILT

was helpful in reducing student difficulties with these concepts. In particular, 83% of the

graduate students and 97% of the undergraduate students correctly identified that a good

basis for the intermediate field Zeeman effect is option v in Q1. All of these students chose

option v in Q1 as the only correct answer. In addition, many students correctly explained

their reasoning for why they chose option v in Q1. For example, the following was a written

response in the posttest, “Neither (coupled representation or uncoupled representation) work.

We must diagonalize Ĥ ′ in the degenerate subspace to find a (basis consisting of a) linear

combination of states (in the coupled/uncoupled representation).” After engaging with the

QuILT, the majority of the students correctly chose that neither a basis consisting of states

in the coupled representation nor a basis consisting of states in the uncoupled representation

form a good basis and displayed correct reasoning for their answer on the posttest.

As can be seen in Table 18, the graduate students and undergraduate students generally

performed at about the same level on Q1 on the pretest. However, the undergraduates

outperformed the graduate students on the posttest in identifying the options in Q1 that

form a good basis. One possible explanation for the undergraduates outperforming the

graduate students on the posttest could be the grade incentive associated with the QuILT.

The QuILT accounted for a larger percent of the undergraduates’ overall course grade and
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Table 15: The percentage of students who chose the listed options as representations to form

a good basis for the perturbation Ĥ ′ = Ĥ ′fs + Ĥ ′Z and the unperturbed Hamiltonian Ĥ0 and

the percentage of students who did not select any option in Q1 on the pretest and posttest

for graduate students (N = 42) and undergraduate students (N = 32).

Graduate Students Undergraduate Students

Option Pretest (%) Posttest (%) Pretest (%) Posttest (%)

i 29 17 28 3

ii 17 17 22 0

iii 12 10 16 3

iv 12 10 13 0

v 33 83 44 97

Blank 17 0 16 0

the components of the QuILT were accounted for differently for the course grade for the

two groups of students. In particular, the posttest for the undergraduate students was

graded for correctness in both years while the posttest for the graduate students was graded

for completeness in Year 1 and for correctness in Year 2. Additionally, the undergraduate

students knew that the material from the QuILT could appear on their examinations while

the graduate students were told by the graduate instructor that this material was a review of

the undergraduate quantum mechanics and that no material from the QuILT would appear

on their examinations. But rather, more complex problems on the DPT would appear on

the exams. The fact that the graduate students were given very small grade incentive to

learn the material in the QuILT may have decreased their motivation to engage as deeply

with the QuILT as the undergraduates and may explain why the graduate students did not

perform as well as the undergraduate students on the posttest.
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5.7 SUMMARY

Both upper-level undergraduate and graduate students struggled with finding perturbative

corrections to the hydrogen atom energy spectrum for the intermediate field Zeeman effect

using DPT. Interviewed students’ responses suggested that some of them held epistemo-

logical beliefs inconsistent with the framework of QM and struggled with mathematical

sense-making in the context of QM in which the paradigm is novel [15]. After traditional in-

struction, some students claimed that different initial choice of the basis before a good basis

has been found will yield different corrections to the energy spectrum of the hydrogen atom

for the Zeeman effect. These students had difficulty in connecting experimental observations

with quantum theory and in correctly reasoning that since the corrections to the energy

spectrum can be measured experimentally, different choices of the initial basis cannot yield

different physically observable corrections to the energy spectrum. Since students are still

developing expertise in QM and the DPT requires appropriate integration of mathematical

and physical concepts, cognitive overload can be high while reasoning about these problems

[52]. Advanced students found it challenging to do metacognition [52] in this context of QM

and provided responses that were not consistent with each other.

Using the common difficulties of advanced students with the corrections to the energy

spectrum of the hydrogen atom for the intermediate field Zeeman effect, we developed and

evaluated a research-based QuILT which focuses on helping students reason about and find

a good basis for the Zeeman effect. Since the DPT requires students to apply advanced

mathematical concepts in the context of a concrete physical problem, students often struggled

to connect and apply mathematics correctly in the physics context. For example, in order

to be able to determine a good basis and corrections to the energies for the Zeeman effect,

one must have a strong background in linear algebra and be able to apply it in the context

of solving quantum physics problem involving DPT for the intermediate field Zeeman effect.

Since students’ working memory while solving these problems involving the Zeeman effect is

constrained to a limited number of “chunks”, cognitive load may become high and it may

become challenging for many students to be able to do sufficient metacognition without

appropriate guidance and scaffolding support.
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The QuILT strives to provide appropriate scaffolding and feedback using a guided

inquiry-based approach to help students develop a functional understanding of relevant con-

cepts. The evaluation shows that the QuILT is effective in improving students’ understanding

of the perturbative corrections to the energy spectrum of the hydrogen atom for the Zeeman

effect. In particular, both on the written posttest and during interviews, student responses

afforded opportunity to probe their reasoning. We find that the QuILT helped students rea-

son about DPT more consistently and be able to reason about why neither a basis consisting

of states in the coupled nor the uncoupled representation forms a good basis for the Zeeman

effect.
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6.0 DEVELOPING AND EVALUATING A QUANTUM

INTERACTIVE LEARNING TUTORIAL ON DEGENERATE

PERTURBATION THEORY: LIMITING CASES OF THE STRONG

AND WEAK FIELD ZEEMAN EFFECT

6.1 INTRODUCTION

A major goal of physics courses, especially those for the physics majors, is to help students

learn to think like a physicist [1]. In many physics courses, in addition to helping students

learn physics content, there is emphasis on helping them develop problem-solving, reasoning,

and metacognitive skills [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26]. In physics, problem-solving, reasoning, and metacognitive skills can involve,

for example, planning a solution to a problem, monitoring one’s problem solving, considering

limiting cases appropriately and evaluating the final answer. In particular, physicists often

utilize limiting cases when appropriate to simplify the problem-solving process and to check

whether the results in those limits make sense. Students often learn about limiting cases

throughout the physics curriculum, from introductory physics to advanced undergraduate

and graduate level courses. We have been developing several Quantum Interactive Learning

Tutorials (QuILTs) that strive to help students develop problem-solving, reasoning, and

metacognitive skills including learning to use limiting cases and understanding their utility

and applicability [27].

Here we discuss student understanding of limiting cases in the context of degenerate per-

turbation theory for finding the corrections to the energy spectrum of the hydrogen atom for

the Zeeman effect and the development and validation of a research-based QuILT to improve

student understanding. The origin of the Zeeman term in the hydrogen atom involves the
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potential energy of the magnetic moments due to the orbital and spin angular momentum

in an external magnetic field. The Zeeman effect is the shift in the energy spectrum of the

hydrogen atom due to the presence of an external magnetic field, and it is proportional to

the strength of the external magnetic field. In addition, the fine structure term in the hy-

drogen atom includes corrections due to the spin-orbit coupling and a relativistic correction

for the kinetic energy. We focus on two limiting cases: the strong and weak field Zeeman

effects. The strong field Zeeman effect occurs when the corrections to the energies due to the

Zeeman term are much greater than the corrections to the energies due to the fine structure

term. The weak field Zeeman effect occurs when the corrections to the energies due to the

fine structure term are much greater than the corrections to the energies due to the Zeeman

term.

The Time-Independent Schrödinger Equation (TISE) for the Hamiltonian with the fine

structure and Zeeman corrections cannot be solved exactly. Nevertheless, since the fine-

structure term and, in general, the Zeeman term are significantly smaller than the unper-

turbed Hamiltonian, perturbation theory (PT) is an excellent method for determining the

approximate solutions to the TISE and the corrections to the energy spectrum of the hy-

drogen atom. Due to the degeneracy in the hydrogen atom energy spectrum, degenerate

perturbation theory (DPT) must be used to find the corrections for the strong and weak

field Zeeman effect.

It is important to help students develop a functional understanding of DPT in order to

find the corrections to the energies for the strong and weak field Zeeman effects. However,

quantum mechanics (QM) is challenging for upper-level undergraduate and Ph. D. level

students (e.g., see Refs. [28, 29, 30, 33, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48]). Since advanced students often struggle with the DPT for the limiting cases of

the strong and weak field Zeeman effect, we investigated student difficulties with finding the

first-order corrections to the energies of the hydrogen atom for the strong and weak field

Zeeman effects using DPT.

There have been a number of prior research studies aimed at investigating student rea-

soning in QM [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59] and using the findings as resources

for improving student understanding [60, 61, 62, 63, 64, 65, 66, 67]. However, there have
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been relaitively few studies investigating student understanding of DPT [68]. We have been

developing a set of research-based learning tools that are inspired by research studies con-

ducted to identify student difficulties with QM and findings of cognitive research. One such

research-based tool is the Quantum Interactive Learning Tutorial (QuILT) which strives to

help students develop a solid grasp of QM [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. In this

paper we describe the development and validation of the research-based QuILT focusing on

DPT that uses student difficulties as resources. The QuILT strives to help students learn to

find the corrections to the energy spectrum of the hydrogen atom for the limiting cases of

the strong and weak field Zeeman effect.

6.2 BACKGROUND

We first discuss the requisite knowledge students must have to use DPT in general and in

the limiting contexts of the strong and weak field Zeeman effects in particular.

6.2.1 Basics for DPT

PT is a useful approximation method for finding the energies and the energy eigenstates for a

system for which the TISE is not exactly solvable. The Hamiltonian Ĥ for the system can be

expressed as the sum of two terms, the unperturbed Hamiltonian Ĥ0 and the perturbation

Ĥ ′, i.e., Ĥ = Ĥ0+Ĥ ′. The TISE for the unperturbed Hamiltonian, Ĥ0ψ0
n = E0

nψ
0
n, (where ψ0

n

is the nth unperturbed energy eigenstate and E0
n is the nth unperturbed energy), is exactly

solvable. The energies can be approximated as En = E0
n + E1

n + E2
n + . . . where Ei

n for

i = 1, 2, 3.. are the ith order corrections to the nth energy of the system.

In non-degenerate PT, the first-order correction to the nth energy is

E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 (6.1)
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and the first-order correction to the nth unperturbed energy eigenstate is

|ψ1
n〉 =

∑
m 6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
(E0

n − E0
m)
|ψ0
m〉, (6.2)

in which {|ψ0
n〉} is a complete set of eigenstates of the unperturbed Hamiltonian Ĥ0. When

the eigenvalue spectrum of Ĥ0 has degeneracy (i.e., two or more eigenstates of Ĥ0 have the

same energy so that two or more diagonal elements of Ĥ0 are equal), Eqs. 6.1 and 6.2 from

nondegenerate perturbation theory are still valid provided one uses a good basis. For a given

Ĥ0 and Ĥ ′, we define a good basis as consisting of a complete set of eigenstates of Ĥ0 that

diagonalizes Ĥ ′ in each degenerate subspace of Ĥ0. In a good basis, Ĥ ′ is diagonal in each

degenerate subspace of Ĥ0. Therefore, the terms 〈ψ0
m|Ĥ ′|ψ0

n〉 in Eq. 6.2 for the wavefunction

are zero when m 6= n so that the expression for the corrections to the wavefunction in Eq.

6.2 does not have terms that diverge. In a good basis, Eq. 6.1 is also valid for finding the

first order corrections to the energies (which are the diagonal elements of the Ĥ ′ matrix as

given by Eq. 6.1).

6.2.2 Background for DPT involving the limiting cases of the Zeeman effect

For a hydrogen atom in an external magnetic field, one can use DPT to find the corrections

to the energy spectrum. Using standard notations, the unperturbed Hamiltonian Ĥ0 of a

hydrogen atom is Ĥ0 = p̂2

2m
− e2

4πε0

(
1
r

)
, where m is the reduced mass and r is the radial distance

between the proton and electron which accounts only for the interaction of the electron

with the nucleus via Coulomb attraction (other symbols also have their usual meaning).

The solution for the TISE for the hydrogen atom with Coulomb potential energy gives

the unperturbed energies E0
n = −13.6eV

n2 , where n is the principal quantum number. The

perturbation is Ĥ ′ = Ĥ ′Z+Ĥ ′fs, in which Ĥ ′Z is the Zeeman term and Ĥ ′fs is the fine structure

term. The Zeeman term accounts for the potential energy of the magnetic moments due to

the orbital and spin angular momenta in the external magnetic field. The Zeeman term

is given by Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz) in which ~Bext = Bextẑ is a uniform, time independent

external magnetic field along the ẑ-direction, µB is the Bohr magneton and L̂z and Ŝz are

the operators corresponding to the z component of the orbital and spin angular momenta,
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respectively. The fine structure term includes the spin-orbit coupling and a relativistic

correction for the kinetic energy and is expressed as Ĥ ′fs = Ĥ ′r + Ĥ ′SO. Here, Ĥ ′r = − p̂4

8m3c2
is

the relativistic correction term and Ĥ ′SO =
(

e2

8πε0

)
1

m2c2r3
(~L · ~S) is the spin-orbit interaction

term (all notations are standard).

We note that Ĥ0 for the hydrogen atom is diagonal when ANY complete set of orthogonal

states with the same n is chosen for the angular part of the basis (consisting of the product

states of orbital and spin angular momenta). Thus, so long as the radial part of the basis is

always chosen to be stationary state wavefunctions Rnl for the hydrogen atom (for a given

principle quantum number n and azimuthal quantum number l), the choice of a good basis

amounts to choosing the angular part of the basis (the part of the basis that involves the

product states of the orbital and spin angular momenta) appropriately. Therefore, we focus

on the angular part of the basis for the n = 2 degenerate subspace of Ĥ0 to find a good basis

and the corrections to the energies for the perturbation Ĥ ′ corresponding to the limiting

cases of the Zeeman corrections to the hydrogen atom. The total angular momentum is

defined as ~J = ~L+ ~S. For the angular part of the basis, states in the coupled representation

|l, j, mj〉 are labeled by the quantum numbers l, s, j, and mj where l is the azimuthal

quantum number, s is the spin quantum number, j is the total angular momentum number,

and mj is the z component of the total angular momentum quantum number (all notations

are standard and s = 1/2 has been suppressed from the states |l, j, mj〉 since s = 1/2 is

a fixed value for a neutral hydrogen atom). On the other hand, states in the uncoupled

representation |l, ml, ms〉 are labeled by the quantum numbers l, ml, and ms (the quantum

numbers ml and ms correspond to the z component of the orbital and spin angular momenta,

respectively).

In the limiting cases of the strong and weak field Zeeman effect, the perturbation Ĥ ′ can

be separated into two terms Ĥ ′ = Ĥ ′strong + Ĥ ′weak, in which Ĥ ′strong is the stronger perturba-

tion and Ĥ ′weak is the weaker perturbation. The corrections to the energies due to the stronger

perturbation Ĥ ′strong are larger than the corrections due to the weaker perturbation Ĥ ′weak.

In these limiting cases, in order to find the corrections to the energies, one useful approach

is to use DPT via a two-step approximation. In the first step, the stronger perturbation

Ĥ ′strong is treated as the only perturbation. A good basis for step 1 is one that diagonalizes
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the unperturbed Hamiltonian Ĥ0 and also diagonalizes the stronger perturbation Ĥ ′strong

in each degenerate subspace of the unperturbed Hamiltonian Ĥ0. After a good basis has

been identified for step 1, the first order corrections for the stronger perturbation Ĥ ′strong

are determined. In the second step of the two-step approximation, Ĥ0
strong = Ĥ0 + Ĥ ′strong

is the new unperturbed Hamiltonian and the weaker perturbation Ĥ ′weak is treated as the

perturbation. For step 2, a good basis is one that diagonalizes the unperturbed Hamiltonian

Ĥ0
strong and also diagonalizes Ĥ ′weak in each degenerate subspace of Ĥ0

strong. Once a good basis

for step 2 has been identified, the first order corrections to the energies due to the weaker

perturbation can be determined. The total first-order corrections to the energies are the sum

of the corrections from steps 1 and 2.

As an example of one limiting case, the following steps describe how to determine a good

basis and the first order corrections to the energies for the strong field Zeeman effect. (1)

Treat the stronger perturbation Ĥ ′Z as the only perturbation on the unperturbed Hamiltonian

Ĥ0. Identify that a basis consisting of states in the uncoupled representation forms a good

basis for the unperturbed Hamiltonian Ĥ0 and the stronger perturbation Ĥ ′Z (since both

Ĥ0 and Ĥ ′Z are diagonal in uncoupled representation, Ĥ ′Z is diagonal in each degenerate

subspace of Ĥ0 in the uncoupled representation). Determine the first-order corrections to

the energies due to the stronger perturbation Ĥ ′Z . After step 1, the first-order corrections

to the energies break some of the degeneracy that is present from only considering Ĥ0.

(2) Treat the weaker perturbation Ĥ ′fs as the perturbation on Ĥ0
Z = Ĥ0 + Ĥ ′Z . Identify

that a basis consisting of states in the uncoupled representation forms a good basis for the

unperturbed Hamiltonian Ĥ0
Z and the weaker perturbation Ĥ ′fs (since Ĥ0

Z is diagonal in

the uncoupled representation and Ĥ ′fs is diagonal in the degenerate subspaces of Ĥ0
Z in the

uncoupled representation). Determine the first-order corrections to the energies due to the

weaker perturbation Ĥ ′fs. (3) The sum of the first-order corrections obtained in steps 1 and

2 is the first-order corrections to the energy spectrum of the hydrogen atom.

In step 1, when the stronger perturbation Ĥ ′Z is treated as the only perturbation on

the unperturbed Hamiltonian Ĥ0, basis states in the uncoupled representation (|l, ml, ms〉)

diagonalize both Ĥ0 and Ĥ ′Z . For the n = 2 subspace, if l = 1 then ml = −1, 0, 1 or if l = 0

then ml = 0 and for s = 1
2
, we have ms = −1

2
or 1

2
. By taking all the combinations of l, ml,
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s, and ms one finds that the n = 2 subspace is eight-dimensional with basis states in the

uncoupled representation (|l, ml, ms〉) given by |0, 0, 1
2
〉, |0, 0, −1

2
〉, |1, 1, 1

2
〉, |1, 1, −1

2
〉,

|1, 0, 1
2
〉, |1, 0, −1

2
〉, |1, −1, 1

2
〉, and |1, −1, −1

2
〉. The matrices for the operators Ĥ0 and

Ĥ ′Z are given below which correspond to the n = 2 subspace in which the basis states are

chosen in the uncoupled representation in the order |0, 0, 1
2
〉, |1, 0, 1

2
〉, |0, 0, −1

2
〉, |1, 0, −1

2
〉,

|1, 1, −1
2
〉, |1, −1, 1

2
〉, |1, 1, 1

2
〉, and |1, −1, −1

2
〉 :

Ĥ0 = −13.6eV

4



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



(6.3)

Ĥ ′Z = µBBext



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 −2



. (6.4)

Since Ĥ ′Z is diagonal in the uncoupled representation, it is diagonal in each degenerate

subspace of Ĥ0 and basis states chosen in the uncoupled representation form a good basis

for step 1. In fact, since the basis consisting of states in the uncoupled representation

simultaneously diagonalizes Ĥ0 and Ĥ ′Z , the energies including the first-order corrections to

the energies obtained after step 1 are the exact result for the energies. In step 2, the new

unperturbed Hamiltonian is Ĥ0
Z = Ĥ0+Ĥ ′Z and the weaker perturbation is Ĥ ′fs. Basis states

chosen in the uncoupled representation also form a good basis for step 2 for the strong field
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Zeeman effect because Ĥ0
Z = Ĥ0 + Ĥ ′Z has lower degeneracy than Ĥ0 and Ĥ ′weak = Ĥ ′fs is

diagonal in each degenerate subspace of Ĥ0
Z . Below are the matrices for the n = 2 subspace

in which basis states are chosen in the same order as the earlier matrix above (β = µBBext

and α is the fine structure constant):

All of the unperturbed energy eigenvalues in the n = 2 subpsace have energy E2 = −13.6eV
4

,

as given by the diagonal matrix elements in Eq. B.2. States in the uncoupled repesentation

are eigenstates of Ĥ ′Z with energy µBBext(ml + 2ms). For example, the state with l = 1,

ml = −1, and ms = 1
2

has energy µBBext(−1 + 2(1
2
)) = 0 (see Eq. 4). Thus, in step

1, the corrections to the unperturbed energies due to the Zeeman term in the strong field

Zeeman limit are the diagonal matrix elements of Ĥ ′Z in Eq. C.16 in this case, it is the exact

result since Ĥ0 and Ĥ ′Z commute and both are diagonal in the uncoupled representation).

Moreover, even though the weaker perturbation Ĥ ′fs is not diagonal if basis states are chosen

in the uncoupled representation, Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0
Z =

Ĥ0 + Ĥ ′Z as noted by the boxed matrix elements for n = 2 (see Eq. 6). Therefore, a

basis consisting of states in the uncoupled representation is a good basis for both step 1 and
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step 2 for the strong field Zeeman effect. In step 2, the diagonal matrix elements of Ĥ ′fs

in the uncoupled representation, which are the fine-structure corrections in the strong field

Zeeman limit, are given by (13.6 eV)α2

n3

{
3
4n
− 1
}

for l = 0 and (13.6 eV)α2

n3

{
3
4n
−
[
l(l+1)−mlms

l(l+1/2)(l+1)

]}
for l = 1[80].

On the other hand, for the weak field Zeeman effect, the dominant fine structure term is

the only perturbation on Ĥ0 in step 1 and the weaker perturbation Ĥ ′Z is the perturbation

on the Hamiltonian Ĥ0
fs = Ĥ0 + Ĥ ′fs in step 2. In the weak field Zeeman effect, the coupled

representation forms a good basis for both steps 1 and 2.

6.3 METHODOLOGY

Student difficulties with the corrections to the energies of the hydrogen atom for the strong

and weak field Zeeman effects using DPT were investigated using five years of data in-

volving responses from 64 upper-level undergraduate students and 42 first-year Ph. D. level

students to open-ended and multiple-choice questions administered after traditional, lecture-

based instruction in relevant concepts. The undergraduates were enrolled in an upper-level,

undergraduate QM course. Most Ph. D. students enrolled in the Ph.D. level course had

already learned this material in an undergraduate quantum mechanics course but this was

the first exposure beyond the undergraduate level. The Ph.D. level course was a required

core course for the enrolled Ph.D. student who were in their first year of physics Ph.D.

program (the completion of six core courses including two courses in quantum mechanics is

mandatory for Ph.D. students to obtain a masters’ degree while pursuing Ph.D. and advance

to candidacy for the Ph.D. research-note that most research universities in the US do not

admit students only for a masters in physics so students enroll in Ph.D. program and take

Ph.D. core courses such as the quantum mechanics course discussed here in their first year

after finishing their undergraduate degree). Traditional instruction was used in both the

undergraduate and Ph.D. level courses and consisted of lecture style instruction along with

traditional textbook homework problems. The textbook used in the undergraduate course

was authored by Townsend [81], and the textbook used in the Ph.D. course was authored
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by Sakurai [82]. For the majority of the classes, students listened to lectures and took notes

(except in the undergraduate course when students engaged with the QuILT). The instructor

for the undergraduate course was the same in both years, and the instructor for the Ph.D.

level course was the same in both years. Additional insight about the difficulties was gained

from 13 individual think-aloud interviews (a total of 45 hours). Interviewed students were

provided with all relevant information discussed in the introduction and background sections

and had traditional, lecture-based instruction in relevant concepts. Similar percentages of

undergraduate and Ph.D. level students displayed difficulties with DPT.

After analyzing responses of 32 undergraduates on similar questions administered in

two previous years, we posed the following question to 20 undergraduate and 42 Ph.D. level

students in the following two years as part of an in-class quiz after traditional lecture-based

instruction to examine student difficulties. Question Q1 was posed to identify whether

students were able to determine a good basis for the limiting case of the strong field Zeeman

effect (in which the limiting cases of the strong field and weak field Zeeman effects were

listed individually in two separate questions). Students selected all the representations that

form a good basis for strong field Zeeman effect in the multiple-choice question and were

then asked to provide explanation for the options they chose in Q1:

Q1. A perturbation Ĥ ′ = Ĥ ′fs + Ĥ ′Z acts on a hydrogen atom with the unperturbed Hamil-

tonian Ĥ0 = − ~2
2m
∇2 − e2

4πε0

(
1
r

)
. For the perturbation Ĥ ′ = Ĥ ′fs + Ĥ ′Z, circle ALL of the

representations that form a good basis for the strong field Zeeman effect and explain your

reasoning. Assume that for all cases the principal quantum number n = 2.

i. Coupled representation,

ii. Uncoupled representation,

iii. ANY arbitrary orthonormal basis constructed with linear combinations of states in the

coupled representation,

iv. ANY arbitrary orthonormal basis constructed with a linear combination of states in the

uncoupled representation,

v. Neither coupled nor uncoupled representation.

Students were also asked to determine a good basis for the limiting case of the weak field
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Zeeman effect (in a question identical to Q1 except that the phrase “strong field Zeeman

effect” was replaced by “weak field Zeeman effect”). The correct answer for the strong field

Zeeman effect is the uncoupled representation (option ii) and the correct answer for the weak

field Zeeman effect is the coupled representation (option i). Below, we discuss difficulties

with corrections to the energies due to the strong and weak field Zeeman effects.

6.4 STUDENT DIFFICULTIES

Students had several difficulties with DPT in general (i.e., not restricted to the limiting

context of the strong and weak field Zeeman effects only). For example, when students were

asked to determine a good basis for finding the corrections to the energies of the hydrogen

atom due to fine structure, many students did not even realize that DPT should be used.

Other students knew that they had to use DPT to find corrections to the wavefunction, but

they did not use DPT to find the first-order corrections to the energies. These students

incorrectly claimed that they did not need to use DPT since no terms in E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉)

“blow up”. Some students only focused on the Zeeman term Ĥ ′Z when asked to determine

a good basis for finding the corrections to the energies of the hydrogen atom in the limiting

cases of the strong and weak field Zeeman effect. In particular, they ignored the fine structure

term Ĥ ′fs altogether and focused on the Zeeman term as the only term in the perturbation.

Moreover, even if students realized that DPT should be used for the limiting cases of the

strong and weak field Zeeman effects, many of them admitted that they had memorized

which representation was a good basis in a given situation. Memorization of which basis to

use often masked the fact that students did not have a deep understanding of DPT. Table

16 shows that many students struggled to identify a good basis for finding the corrections to

the energy spectrum due to the limiting cases of the strong and weak field Zeeman effects.

Below, we discuss some specific student difficulties:

A. Not focusing on both Ĥ0 and Ĥ ′ when determining a good basis: Students

with this type of difficulty typically focused on the bases that make Ĥ0 diagonal but did

not give consideration to Ĥ ′ when finding a good basis. For example, in the first step of the
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Table 16: Percentages of undergraduate (U) (N = 32) and Ph. D. level students (P)

(N = 42) who answered Q1 correctly.

Limiting Case U P

Strong Field 41% 29%

Weak Field 31% 31%

two-step approximation for the weak field Zeeman effect, some students incorrectly claimed

that the uncoupled representation forms a good basis because it diagonalizes the operator

Ĥ0. Interviews suggest that these students often did not realize that Ĥ ′fs is not diagonal in

the degenerate subspace of Ĥ0 if the uncoupled representation is chosen as the basis and the

corrections to the energies using this representation will yield incorrect values inconsistent

with experiments.

B. Focusing on the degeneracy in the perturbation Ĥ ′ instead of the degen-

eracy in the unperturbed Hamiltonian when determining a good basis in step

1 or step 2: When determining whether DPT should be used and whether a basis is a

good basis, some students incorrectly focused on the degenerate subspaces of Ĥ ′ instead of

Ĥ0. For example, when students were asked to find the energy corrections in the first step

of the two-step approximation, some students incorrectly focused on the degeneracy in the

stronger perturbation, Ĥ ′strong, to determine whether DPT should be used and whether the

basis provided was good. In particular, they focused on whether the degenerate subspaces

in Ĥ ′strong were diagonal to determine if the basis was good (instead of whether Ĥ ′strong was

diagonal in the degenerate subspaces of Ĥ0). An analogous student difficulty was also preva-

lent in step 2 of the two-step approximation. In particular, in order to determine whether

a basis is a good basis for the strong or weak field Zeeman effect in step 2, students must

identify the degenerate subspaces of Ĥ0
strong = Ĥ0 + Ĥ ′strong and determine whether or not

the weaker perturbation Ĥ ′weak is diagonal in each degenerate subspace of Ĥ0
strong. However,

many students incorrectly focused on the degeneracy and degenerate subspaces of Ĥ ′weak

instead of the degenerate subspaces of Ĥ0
strong to determine whether DPT should be used
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and if the basis provided was good.

For example, during the portion of the interview regarding the strong field Zeeman effect,

in step 2, students were given the strong field Zeeman Hamiltonian Ĥ0
Z = Ĥ0 +Ĥ ′Z from step

1 and the weaker perturbation Ĥ ′fs in matrix form in the uncoupled representation for n = 2

(since the uncoupled representation is a good basis for step 1 of the two-step approximation

method). The students were then asked to identify the Ĥ ′fs matrix in each degenerate

subspace of Ĥ0
Z = Ĥ0+Ĥ ′Z and explain whether or not the uncoupled representation forms a

good basis in step 2 of the 2-step approximation method. In the n = 2 subspace with s = 1
2
,

the Ĥ0
Z = Ĥ0+Ĥ ′Z matrix provided to students to probe their understanding is the following

in which the basis states are chosen in the uncoupled representation (|l, ml, ms〉) in the order

|0, 0, 1
2
〉, |0, 0, −1

2
〉,|1, 1, 1

2
〉, |1, 1, −1

2
〉, |1, 0, 1

2
〉, |1, 0, −1

2
〉, |1, −1, 1

2
〉 , and |1, −1, −1

2
〉:

The basis states were chosen in a different order to probe whether students were able to

identify the degenerate subspace of Ĥ0
Z when basis states with the same energies are not in

the adjacent rows/columns.

The Ĥ0
Z matrix has three separate two-fold degeneracies for the energies E2 + β,E2 − β,

and E2 as indicated by the boxed, underlined, and circled matrix elements of Ĥ0
Z above. In

order to determine whether a basis consisting of states in the uncoupled representation forms

a good basis, Ĥ ′fs must be diagonal in each of these three degenerate subspaces of Ĥ0
Z . The

Ĥ ′fs matrix in the n = 2 subspace in which the basis states are chosen in the same order as

they were for the Ĥ0
Z matrix above is as follows:

From the boxed matrix elements, Ĥ ′fs in the degenerate subspace of Ĥ0
Z for the de-

generate energy E2 + β is (−13.6 eV)α2

192

[
15 0
0 7

]
. Similarly, as given by the underlined

matrix elements, Ĥ ′fs in the degenerate subspace of Ĥ0
Z for the degenerate energy E2 − β is
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(−13.6 eV)α2

192

[
15 0
0 7

]
and from the circled matrix elements, Ĥ ′fs in the degenerate subspace

of Ĥ0
Z for the degenerate energy E2 is (−13.6 eV)α2

192

[
11 0
0 11

]
.

However, students often did not realize that they should focus on the degeneracy of

the Hamiltonian Ĥ0
Z = Ĥ0 + Ĥ ′Z and instead they focused on the degeneracy of the weak

perturbation Ĥ ′fs by examining the diagonal matrix elements of Ĥ ′fs that were equal. In

particular, they incorrectly focused on whether the degenerate subspaces of Ĥ ′fs were diagonal

in order to determine whether a given basis is a good basis. For example, they focused on the

degenerate subspace (−13.6 eV)α2

192

[
15 0
0 15

]
in Ĥ ′fs. However, the degeneracy of the weaker

perturbation Ĥ ′fs is not relevant to determining a good basis. Instead, one should identify

the degenerate subspaces of Ĥ0
Z = Ĥ0 + Ĥ ′Z and determine if the weaker perturbation Ĥ ′fs

is diagonal in the degenerate subspaces of Ĥ0
Z = Ĥ0 + Ĥ ′Z to decide whether a given basis is

a good basis in step 2 of the two-step process.

C. Incorrectly claiming that Ĥ ′weak must be diagonal in each degenerate sub-

space of Ĥ0 (instead of Ĥ0
strong) in a good basis when using the two-step approxi-

mation: Many students incorrectly claimed that, in a good basis for step 2 of the two-step

approximation, Ĥ ′weak must be diagonal in the degenerate subspace of Ĥ0 as opposed to

the degenerate subspaces of Ĥ0
strong. They did not realize that when using the two-step

approximation in the limiting cases in step 2, the weaker perturbation Ĥ ′weak need only be

diagonal in each degenerate subspace of the stronger Hamiltonian Ĥ0
strong obtained after step

1 (as opposed to each degenerate subspace of Ĥ0). In the strong field Zeeman effect, a basis

consisting of states in the uncoupled representation forms a good basis. The matrices to be

considered in step 2 for the new unperturbed Hamiltonian Ĥ0
strong = Ĥ0

Z and the weaker

perturbation Ĥ ′fs are given below for the n = 2 subspace, in which basis states are chosen
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in the uncoupled representation (|l, ml, ms〉) in the order |0, 0, 1
2
〉, |1, 0, 1

2
〉, |0, 0, −1

2
〉,

|1, 0, −1
2
〉, |1, 1, −1

2
〉, |1, −1, 1

2
〉, |1, 1, 1

2
〉, and |1, −1, −1

2
〉:

In step 2, despite the fact that the weaker perturbation Ĥ ′weak = Ĥ ′fs is not diagonal in

the degenerate subspace of Ĥ0 (as seen by the matrix elements 4
√

2 above for the n = 2

subspace) when the uncoupled representation is chosen as the basis, the weaker perturbation

Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0
strong = Ĥ0

Z = Ĥ0 + Ĥ ′Z after accounting

for the splitting of the energy levels due to the stronger perturbation Ĥ ′Z (as seen by the

boxed subspaces in the weaker perturbation Ĥ ′fs). Many students struggled with the fact

that the weaker perturbation Ĥ ′fs must only be diagonal in each degenerate subspace of Ĥ0
Z

in step 2. For example, one interviewed student claimed “the uncoupled is not a good basis

(for strong field Zeeman effect) since Ĥ ′fs is not diagonal in the uncoupled representation. So

we will have off-diagonal (matrix) elements (in Ĥ ′fs).” Thus, many students had difficulty

with the two-step approximation involving the limiting cases (strong or weak field Zeeman

effect). They struggled to identify when it was valid to use the two-step approximation and in

connecting these limiting cases with the intermediate field Zeeman effect in the appropriate

limit.
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D. Not realizing that some of the degeneracy is broken after taking into

account the stronger perturbation, allowing Ĥ ′weak to be diagonal in each degen-

erate subspace of Ĥ0
strong: Many students struggled with the fact that the utility of the

two-step approximation for the limiting cases of the strong and weak field Zeeman effects

lies in the fact that some of the degeneracy is broken in step 1 of the two-step approximation

when the stronger perturbation Ĥ ′strong is treated as the only perturbation on the unper-

turbed Hamiltonian Ĥ0. They did not realize that, in general, after taking into account the

stronger perturbation in step 1, the dimension of some of the degenerate subspaces is re-

duced. Therefore, in step 2, when Ĥ0
strong = Ĥ0 + Ĥ ′strong is treated as the new unperturbed

Hamiltonian, the degeneracy of energy spectrum Ĥ0
strong = Ĥ0 + Ĥ ′strong is less than the

degeneracy of Ĥ0, making it possible for the weaker perturbation Ĥ ′weak to be diagonal in

the degenerate subspaces of Ĥ0
strong = Ĥ0 + Ĥ ′strong. For example, in the strong field Zeeman

effect, a basis consisting of states in the uncoupled representation forms a good basis for Ĥ0

and Ĥ ′Z in step 1 and also in step 2 for Ĥ0
strong and Ĥ ′weak. However, students often did not

realize that for n = 2, the degeneracy in the new unperturbed Hamiltonian Ĥ0
Z = Ĥ0 + Ĥ ′Z

is reduced to three separate two-fold degeneracies and two energies with degeneracy of one

(instead of an 8-fold degeneracy in the unperturbed Hamiltonian Ĥ0). In particular, they

did not realize that in step 2, in the uncoupled representation, the weaker perturbation Ĥ ′fs

is diagonal in each of these 2× 2 subspaces of the Hamiltonian Ĥ0
Z = Ĥ0 + Ĥ ′Z so that the

uncoupled representation is a good basis for finding the corrections.

In interviews, students often argued that neither a basis consisting of states in the coupled

representation nor a basis consisting of states in the uncoupled representation is a good basis

even in the limiting cases since neither is a good basis for both the Zeeman term Ĥ ′Z and the

fine structure term Ĥ ′fs. They claimed that even in the limiting cases, one must find a basis

that diagonalizes both the Zeeman term Ĥ ′Z and the fine structure term Ĥ ′fs. Further probing

suggests that they often did not realize that in the limiting cases, some of the degeneracy is

lifted after step 1 in the two-step process so that the basis chosen in step 1 remains a good

basis in step 2.

E. Difficulty connecting the first order corrections to the energy spectrum

in the intermediate field Zeeman effect with the two-step approximation in the
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appropriate limit: Prior to considering the limiting cases of the strong and weak field

Zeeman effect during the interview, students worked through examples involving the inter-

mediate field Zeeman effect (in which Ĥ ′Z ≈ Ĥ ′fs). For the intermediate field Zeeman effect,

the Zeeman term and the fine structure term are on equal footing and must be treated

simultaneously as the perturbation on the unperturbed Hamiltonian Ĥ0. Since neither a

basis consisting of states in the coupled representation nor a basis consisting of states in the

uncoupled representation form a good basis for the intermediate field Zeeman effect, students

must choose an initial basis (either the coupled or uncoupled representation) and then di-

agonalize Ĥ ′ = Ĥ ′Z + Ĥ ′fs in each degenerate subspace of Ĥ0 in order to determine a good

basis and find the first-order corrections to the energy spectrum.

After working through examples involving the intermediate field Zeeman effect in the

interview, students considered the two limiting cases of the strong and weak field Zeeman

effects. For the intermediate field Zeeman effect, one obtains first order corrections to the

energies in which both the Zeeman term, Ĥ ′Z , and the fine structure term, Ĥ ′fs, are treated

as perturbations simultaneously on the unperturbed Hamiltonian, Ĥ0. However, in the limit

that the energy corrections due to one of these two perturbations are much larger than

the other, one can use the expressions for the energy corrections for the intermediate field

Zeeman effect and perform a Taylor series expansion about the small parameter that accounts

for the smaller correction. The results obtained by the two-step approximation method in

the limiting cases (strong and weak field Zeeman effects) yield the same corrections to the

energy spectrum as those obtained by the Taylor series expansion of the corrections to

the energy spectrum in the intermediate field Zeeman effect when retaining terms of the

same order. Many students struggled to connect these limiting cases to the intermediate

field Zeeman effect. They did not realize that under the appropriate limits, the first-order

corrections to the intermediate field Zeeman effect for the hydrogen atom are consistent with

the first order corrections in the strong and weak field Zeeman effects when using the two-step

approximation method. In fact, interviews suggest that some students viewed the limiting

cases of the strong and weak field Zeeman effect as entirely separate problems and did not

think of these limiting cases as related at all to their previous work on the intermediate field

Zeeman effect.
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Other students had difficulty correctly expressing a Taylor-series expansion of the general

case (intermediate field Zeeman effect) in order to determine the first-order corrections to

the energy spectrum for the limiting cases in the strong and weak field Zeeman effects. For

example, one interviewed student claimed that in order to obtain the results for the weak

field Zeeman effect, “for the Taylor expansion (of the intermediate field Zeeman corrections

to the first order energies), we can set Bext = 0 and all the terms for the magnetic field drop

out.” Another interviewed student claimed that in order to obtain the results for the strong

field Zeeman effect from the general case, we should simply “let Bext go to infinity” in the

expression for the energy corrections for the intermediate field Zeeman effect. When asked

what the first-order corrections to the energies would be if we let Bext go to infinity, the

student responded, “Well, they would go to infinity. Wait that’s not right, is it? I think I

need to go back and review how to do a Taylor series expansion.”

It is important that students realize that the first-order corrections to the energy spec-

trum in the limiting cases of the strong and weak field Zeeman effects match those obtained

in the intermediate field Zeeman effect when taking the appropriate limits. This realization

would help students make sense of the use of the two-step approximation method for the

limiting cases and recognize that the errors in the two-step approximation are comparable

to those obtained by retaining terms of a certain order in a Taylor series expansion.

6.5 METHODOLOGY FOR THE DEVELOPMENT OF THE QUILT

6.5.1 Development and Validation of the QuILT

The difficulties described show that many students struggle in determining a good basis for

finding the corrections to the energies in the limiting cases of the strong and weak field

Zeeman effects. Therefore, we developed a QuILT that takes into account these difficulties

and strives to help students build a robust knowledge structure of these concepts. The

development of the DPT QuILT started with an investigation of student difficulties via open-

ended and multiple-choice questions administered after traditional instruction to advanced
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undergraduate and Ph. D. level students and conducting a cognitive task analysis from an

expert perspective [83]. The cognitive task analysis was conducted by three physics education

researchers together and discussed with members of the physics faculty who teach (or had

taught) QM. It described not only the requisite knowledge and skills one would need in order

to have a functional understanding of DPT, but also the order in which the material should

be presented to help ensure that the material in each section built upon that in previous

sections. The investigation of student difficulties also informed the cognitive task analysis

in that we were able to fill in any “gaps” (due to expert blind spots) in the expert cognitive

task analysis based upon students’ perspectives. The QuILT strives to help students build

on their prior knowledge and addresses common difficulties found via research, some of which

were discussed in the previous section.

The QuILT is inspired by Piaget’s “optimal mismatch” framework as well as the prepa-

ration for future learning framework of Bransford and Schwartz. In Piaget’s “optimal mis-

match” framework, students are intentionally placed in a situation in which their current

knowledge structures are inadequate and the students are required to reorganize existing

structures or develop new structures to reconcile this conflict [84]. Bransford and Schwartz’s

preparation for future learning framework emphasizes that learning occurs when elements of

innovation and efficiency are both present [85]. Innovation and efficiency describe two or-

thogonal components of instruction. Innovation describes aspects that are new to students,

such as new concepts or new problem-solving skills. Efficiency is a measure of the structure

and organization of the material, as well as how proficient the student is with the material.

Instruction that incorporates only one of these elements leads to students becoming disen-

gaged. If instruction is too innovative, students cannot connect the material with their prior

knowledge and become frustrated. When the instruction is too efficient, students interact

with repetitious material that does not provide intellectual stimulation and may become

routine experts. However, they will not be able to transfer their learning to new situations.

In the QuILT, students are presented with innovative tasks that strive to create a cogni-

tive conflict. The QuILT then provides scaffolding aimed at resolving their cognitive conflict.

For example, students are asked to consider conversations between hypothetical students in

which one student makes an incorrect statement involving a common difficulty while other
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students make statements that illuminate inconsistencies in the incorrect statement. They

must decide which hypothetical students are correct and explain their reasoning. The goal

is to create a cognitive conflict and have students realize that there is some inconsistency

between their thoughts and the correct reasoning. After this when students want to resolve

the conflict, further scaffolding is provided in order to resolve the inconsistencies and to help

students reconcile their initial reasoning with the correct reasoning. Whether it be exam-

ples, hypothetical conversations, or calculations, the QuILT strives to help students develop

a deeper understanding by actively working through the inquiry-based learning sequences.

Student difficulties are incorporated in these examples and conversations to create a cogni-

tive conflict in which they are then guided through future tasks designed to resolve these

issues. Efficiency is addressed in the QuILT in several ways. First, the QuILT follows the

sequence laid out in the cognitive task analysis. It is organized in a manner which attempts

to build on the students’ prior knowledge, and each section in the QuILT builds upon the

previous section. Second, students are provided scaffolding designed to help address common

difficulties, thus reducing the cognitive conflict. Third, the QuILT progressively reduces the

scaffolding to help students solve problems without any assistance. Finally, as the students

work through the different tasks, they develop more proficiency at identifying the concepts

and answering the questions.

The development of the QuILT went through a cyclic, iterative process. The preliminary

version was developed based upon the cognitive task analysis and knowledge of common stu-

dent difficulties. Next, the QuILT underwent many iterations among the three researchers

and then was iterated several times with three physics faculty members to ensure that they

agreed with the content and wording. It was also administered to graduate and advanced un-

dergraduate students in individual think-aloud interviews to ensure that the guided approach

was effective, the questions were unambiguously interpreted, and to better understand the

rationale for student responses. During these semi-structured interviews, students were asked

to “think aloud” while answering the questions [86]. Students first read the questions on

their own and answered them without interruptions except that they were prompted to think

aloud if they were quiet for a long time (in order to not disrupt their thought processes).

After students had finished answering a particular question to the best of their ability, they
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were asked to further clarify and elaborate on issues that they had not clearly addressed

earlier. The next step involved evaluating the impact of the QuILT on student learning

and determining if the difficulties remained. Finally, modifications and improvements were

made based upon the student and faculty feedback before it was administered to students

in various QM courses.

6.5.2 Structure of the QuILT

The QuILT uses a guided inquiry-based approach to learning and actively engages students in

the learning process. In an inquiry-based approach, students take an active role by answering

questions throughout the task which requires that they work through problems and reflect

upon the underlying concepts. A guided inquiry-based approach has these same features,

but it also incorporates scaffolding based upon the expert and novice cognitive task analyses

that provides students with support to help ensure they develop robust understanding while

working on the task. It includes a pretest to be administered in class after traditional

instruction in DPT. Then, students engage with the tutorial in small groups in class (or alone

when using it as a self-paced learning tool in homework), and then a posttest is administered

in class. As students work through the tutorial, they are asked to predict what should happen

in a given situation. Then, the tutorial strives to provide scaffolding and feedback as needed

to bridge the gap between their initial knowledge and the level of understanding that is

desired. Students are also provided checkpoints to reflect upon what they have learned and

make explicit connections between what they are learning and their prior knowledge. They

are given an opportunity to reconcile differences between their predictions and the guidance

provided in the checkpoints of the QuILT before proceeding further.

The DPT QuILT uses a blend of guided inquiry-based learning sequences involving both

qualitative and quantitative reasoning to improve students’ understanding. For example,

the QuILT requires qualitative reasoning while students reason about hypothetical student

conversations and quantitative reasoning to determine the matrix elements of the operators

Ĥ ′SO and Ĥ ′Z in the coupled and uncoupled representations. The QuILT can be accessed via

the link in ref. [27].
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6.5.3 Addressing Student Difficulties Via Guided Learning Sequences in the

QuILT

In the guided inquiry-based learning sequences in the QuILT, students actively engage with

examples involving DPT in which they consider the terms Ĥ ′r, Ĥ
′
SO, Ĥ ′fs, Ĥ

′
Z , and Ĥ ′fs + Ĥ ′Z

as perturbations on Ĥ0 (Ĥ ′r is the relativistic correction term and Ĥ ′SO is the spin-orbit inter-

action term). In this manner, students focus on the fundamental concepts for determining

a good basis for the fine structure and Zeeman corrections to the energy spectrum of the

hydrogen atom. In particular, for the unperturbed Hamiltonian Ĥ0 and the perturbation

Ĥ ′ = Ĥ ′fs + Ĥ ′Z , students learn about (1) why DPT must be used, (2) why care must be

taken to choose a good basis, and (3) how to determine a good basis using the two-step

approximation method for the limiting cases of the strong and weak field Zeeman effects.

Below, we discuss how the QuILT strives to address student difficulties and help them learn

about the perturbative corrections to the energy spectrum of the hydrogen atom due to the

strong and weak field Zeeman effects using the DPT.

Students first work through a warm-up for the tutorial that strives to help them identify

the angular bases that diagonalize each of the operators Ĥ0, Ĥ ′r, Ĥ
′
SO, Ĥ ′fs, and Ĥ ′Z for a

given n. In addition, students also work through examples in which they must determine

the matrix elements of each of the operators Ĥ ′SO or Ĥ ′Z . For example, they calculate several

diagonal and off-diagonal matrix elements of Ĥ ′SO and ĤZ in both a basis consisting of states

in the coupled representation and a basis consisting of states in the uncoupled representation

for a fixed n. The warmup strives to help students learn the prerequisites for finding a good

basis for the hydrogen atom in the limiting cases of the strong and weak field Zeeman effect

in the context of DPT.

Helping students identify Ĥ ′weak in the degenerate subspace of Ĥ0
strong: In the

QuILT, students are provided scaffolding that strives to help them develop systematic rea-

soning and build upon their prior knowledge for each step in the two-step approximation

method of the DPT for the limiting cases of the strong and weak field Zeeman effects. In

particular, students work through several guided inquiry-based sequences in which they must

determine a good basis for step 1 and the corresponding first-order corrections to the energies.
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Next, they are provided guidance and asked to identify a good basis for step 2. Students

are then provided the matrices for the operators Ĥ0
strong and Ĥ ′weak which allow them to

identify degeneracy in the new unperturbed Hamiltonian Ĥ0
strong and also identify Ĥ ′weak in

each degenerate subspace of Ĥ0
strong. They can reconcile whether their initial choice of a good

basis is correct and also determine the first-order corrections to the energy spectrum for step

2 if the given basis is a good basis.

For example, students work through a guided inquiry-based sequence for the strong field

Zeeman effect in which they start by determining a good basis for the first step when the

stronger perturbation Ĥ ′Z is treated as the only perturbation on the unperturbed Hamiltonian

Ĥ0 (in this case the answer is exact for the first order correction since Ĥ0 and Ĥ ′Z commute

and if the uncoupled representation is chosen as the basis, they are simultaneous eigenstates

of both). Once the students identify a good basis for step 1, they engage with an inquiry-

based sequence to identify Ĥ ′weak = Ĥ ′fs in the degenerate subspace of Ĥ0
strong = Ĥ0 + Ĥ ′Z .

The following is an example of a guided inquiry-based sequence students work through for

the two-step approximation method in the context of the strong field Zeeman effect.

Q4. STEP 1:

For the case E ′Z � E ′fs, we treat only Ĥ ′Z as the perturbation on Ĥ0.

Q4(a) For the case E ′Z � E ′fs, what is a good basis for step 1 when we ignore Ĥ ′fs?

Explain.

Q4(b) Write an expression for the first order corrections to the energies due to only the

stronger perturbation Ĥ ′Z acting on the unperturbed Hamiltonian Ĥ0 (once you have found

a good basis). Here the first order corrections are the exact results for the energies after

STEP 1.

Q5. STEP 2:

In the strong field Zeeman effect when E ′Z � E ′fs, in step 2, the unperturbed Hamiltonian

includes the Zeeman term and becomes

Ĥ0
Z = Ĥ0 + Ĥ ′Z = − ~2

2m
∇2 − e2

4πε0r
+

e

2m
Bext(L̂z + 2Ŝz). (6.5)
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Is the Ĥ0
Z matrix a diagonal matrix if the coupled representation or the uncoupled represen-

tation is chosen as the basis? Explain your reasoning.

Q6. Now for the n = 2 subspace, take a look at the Ĥ0
Z = Ĥ0 + Ĥ ′Z and Ĥ ′fs matrices given

below in which E2 = −13.6eV
4

and the basis vectors are chosen in the uncoupled represen-

tation (|l,ml, ms〉) in the order |ψ1〉 = |0, 0, 1
2
〉, |ψ2〉 = |0, 0, −1

2
〉, |ψ3〉 = |1, 1, 1

2
〉,

|ψ4〉 = |1, 1, −1
2
〉, |ψ5〉 = |1, 0, 1

2
〉, |ψ6〉 = |1, 0, −1

2
〉, |ψ7〉 = |1, −1, 1

2
〉, and

|ψ8〉 = |1, −1, −1
2
〉. Then answer questions Q6(a)-Q6(c) for the Strong field Zeeman effect.

Ĥ0
Z =



E2 + β 0 0 0 0 0 0 0

0 E2 − β 0 0 0 0 0 0

0 0 E2 + 2β 0 0 0 0 0

0 0 0 E2 0 0 0 0

0 0 0 0 E2 + β 0 0 0

0 0 0 0 0 E2 − β 0 0

0 0 0 0 0 0 E2 0

0 0 0 0 0 0 0 E2 − 2β



(6.6)

Ĥ ′fs =
(−13.6 eV)α2

192



15 0 0 0 0 0 0 0

0 15 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 11 4
√

2 0 0 0

0 0 0 4
√

2 7 0 0 0

0 0 0 0 0 7 4
√

2 0

0 0 0 0 0 4
√

2 11 0

0 0 0 0 0 0 0 3



(6.7)

Q6(a) Determine the degeneracy of the energy eigenvalues of the new unperturbed Hamil-

tonian Ĥ0
Z = Ĥ0 + Ĥ ′Z after accounting for the stronger perturbation and circle the

corresponding degenerate subspaces of Ĥ0
Z = Ĥ0 + Ĥ ′Z (for n = 2 subspace) in the preceding
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matrix representation.

Q6(b) Circle Ĥ ′fs in each degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z and determine if Ĥ ′fs in

any of these subspaces of Ĥ0
Z is diagonal.

Q6(c) Determine whether the uncoupled representation chosen as the basis in question Q5

is a good basis for the unperturbed Hamiltonian Ĥ0
Z = Ĥ0 + Ĥ ′Z and the perturbation Ĥ ′fs.

Explain how you made the determination.

This guided inquiry-based sequence is designed to help students focus on the necessary

requirements for a good basis in step 1 and step 2. For example, Q6(a) strives to help

students realize that some of the degeneracy has been lifted after step 1 and that one needs

to focus on the degeneracy of Ĥ0
Z . To determine whether a basis consisting of states in the

uncoupled representation is a good basis for step 2, the students work to identify whether Ĥ ′fs

is diagonal in each degenerate subspace of Ĥ0
Z in Q6(b). In Q6(c), the students are asked to

describe whether a basis consisting of states in the uncoupled representation forms a good

basis. Based upon their answers to Q6(a) and Q6(b), the QuILT strives to help students

identify Ĥ ′fs in the degenerate subspace of Ĥ0
Z and find that a basis consisting of states in

the uncoupled representation is a good basis for the strong field Zeeman effect. Students

work through a similar guided inquiry-based sequence for the weak field Zeeman effect.

Helping students realize that some of the degeneracy is broken after step 1

and that Ĥ ′weak need only be diagonal in each degenerate subspace of Ĥ0
strong: It

is also important that students realize that the utility of the two-step approximation lies in

the fact that some of the degeneracy is broken in the first step, which allows for the weaker

perturbation to be diagonal in the degenerate subspace of Ĥ0
strong = Ĥ0 + Ĥ ′strong in step

2. In the QuILT, students consider the following hypothetical students’ statements in the

context of the strong field Zeeman effect that are intended to help students realize that some

of the degeneracy is broken after the first step and that in step 2, the weaker perturbation

is diagonal in each degenerate subspace of Ĥ0
Z :

Student 1: In step 1, when we only consider Ĥ ′Z as the perturbation on Ĥ0, we choose the

uncoupled representation as the good basis. Once the uncoupled representation is chosen as

the good basis, we are guaranteed to have off-diagonal matrix elements in the weaker fine
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structure perturbation matrix Ĥ ′fs. Thus the uncoupled representation is not a good basis in

step 2.

Student 2: Actually, once we treat the stronger Zeeman perturbation Ĥ ′Z in the first step,

we lift some of the degeneracy in the energy spectrum of Ĥ0. There is still degeneracy in the

energy spectrum E0
n = En + µBBext(ml + 2ms) after the first step, but now the degeneracy

is present in smaller subspaces of Ĥ0. For example, for the n = 2 subspace in step 2,

Ĥ0
Z = Ĥ0 + Ĥ ′Z is

In the uncoupled representation, Ĥ ′fs is not diagonal in the entire n = 2 subspace, but

it is diagonal in each degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z. In the Ĥ ′fs matrix below, the

elements in the degenerate subspace of Ĥ0
Z corresponding to the degenerate energy E2 +β are

boxed. We see Ĥ ′fs is diagonal in the 2× 2 subspace corresponding to the degenerate energy

E2 + β.

Ĥ ′fs =
(−13.6 eV)α2

192



15 0 0 0 0 0 0 0

0 15 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 11 4
√

2 0 0 0

0 0 0 4
√

2 7 0 0 0

0 0 0 0 0 7 4
√

2 0

0 0 0 0 0 4
√

2 11 0

0 0 0 0 0 0 0 3



(6.8)

Similarly, Ĥ ′fs is diagonal in the degenerate subspace of Ĥ0
Z for the degenerate energies E2

and E2 − β. Therefore, the uncoupled representation does form a good basis in this two-step

process.
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In the preceding hypothetical conversation, Student 1 is correct in that the weaker per-

turbation Ĥ ′fs will have off-diagonal matrix elements if a basis consisting of states in the

uncoupled representation is chosen. However, Student 1 does not realize that when using

the two-step approximation method for the strong field Zeeman effect, Ĥ ′fs need only be

diagonal in each degenerate subspace of Ĥ0
Z . Student 2’s statement is designed to have stu-

dents reflect upon the fact that some of the degeneracy is lifted after step 1 and as a result,

the off-diagonal matrix elements of Ĥ ′fs are not in any of the degenerate subspaces of Ĥ0
Z .

Thus, a basis consisting of states in the uncoupled representation is a good basis for the

strong field Zeeman effect.

Helping to connect the first order corrections to the energies in the interme-

diate field Zeeman effect to those found in the limiting cases using the two-step

approximation method: The QuILT strives to help students identify a good basis and de-

termine the first-order corrections to the energy spectrum in the limiting cases of the strong

and weak field Zeeman effects. Additionally, the QuILT strives to help students learn that

the resulting first-order corrections to the energies in the two limiting cases are consistent

with the first-order corrections to the energies in the intermediate field Zeeman effect when

one takes the appropriate limit. In an effort to help students make these connections, the

QuILT asks the following question:

Q7. The splitting of the energy levels for the n = 2 states of the hydrogen atom in the

intermediate field Zeeman effect are given in Table 48 below. Use the appropriate Taylor

series expansion to check that the corrections to the energies in the intermediate field Zeeman

effect are consistent with the corrections found in the limiting cases of the strong and weak

field Zeeman effects earlier. (E2 = −13.6eV
4

, γ =
(
α
8

)2
13.6 eV, α = e2

4πε0~c , β = µBBext were

defined previously in the QuILT.)

For example, in the strong field limit (γ � β), we have
√

4γ2 ± 2
3
γβ + 1

4
β2 ≈ 1

2
β ± 2

3
γ.

Using the Taylor series expansion of the energy levels in the intermediate field Zeeman effect

(see Table II) and taking the appropriate limit for the strong field Zeeman effect, one can

show that the energy levels match those found using the two-step approximation method.

Students are also given an opportunity to make sense of a graph depicting the relationship
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Table 17: Energy Levels in the Intermediate Field Zeeman Effect (n = 2)

ε1 = E2 − 5γ + β

ε2 = E2 − 5γ − β

ε3 = E2 − γ + 2β

ε4 = E2 − γ − 2β

ε5 = E2 − 3γ + β/2 +
√

4γ2 + (2/3)γβ + β2/4

ε6 = E2 − 3γ + β/2−
√

4γ2 + (2/3)γβ + β2/4

ε7 = E2 − 3γ − β/2 +
√

4γ2 − (2/3)γβ + β2/4

ε8 = E2 − 3γ − β/2−
√

4γ2 − (2/3)γβ + β2/4

between the splitting of the energy levels and strength of the external magnetic field. They

are asked to compare the results they obtained for the intermediate field Zeeman effect and

the limiting cases of the strong and weak field Zeeman effect and discuss whether their

results are consistent with the graph and whether the intermediate field expression yields

the limiting values in the appropriate limits.

6.6 EVALUATION OF THE QUILT

Once the researchers determined that the QuILT was successful in one-on-one implemen-

tation using a think-aloud protocol, it was administered in Ph.D. level and upper-level un-

dergraduate quantum mechanics courses. Students in both Ph. D. level and upper-level

undergraduate courses were given a pretest after traditional instruction in relevant concepts

in DPT but before working through the tutorial. The pretests were not returned to the

students after grading. The undergraduates worked through the tutorial in class for two

days and were asked to work on the remainder of the tutorial as homework. The Ph. D.

level students were given the tutorial as their only homework assignment for the week. After
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Table 18: The percentage of students who answered the multiple-choice portion of Q1 cor-

rectly for the strong and weak field Zeeman effects on the pretest and posttest for under-

graduates (number of students N = 32 for the pretest and N = 31 for the posttest) and Ph.

D. level students (N = 42).

Undergraduate Ph. D. level

Students (%) Students (%)

Limiting Case Pretest Posttest Pretest Posttest

Strong Field 41 84 39 83

Weak Field 31 87 33 81

working through and submitting the completed tutorial, both groups were given the posttest

in class. Students were given enough time in class to work through the pretest and posttest.

The pre/posttest results for Q1 (as shown in Section III) are summarized in Table 18

and suggest that the QuILT was helpful in reducing student difficulties with these concepts.

In particular, over 80% of Ph. D. level students and undergraduate students were able

to correctly identify that a basis consisting of states in the uncoupled representation is a

good basis for the strong field Zeeman effect and a basis consisting of states in the coupled

representation is a good basis for the weak field Zeeman effect.

Table 19 shows the performance of undergraduate and Ph. D. level students on the

pretest and posttest. The average score includes both the answer for the multiple-choice

question and the students’ explanation for Q1. Table 19 also includes the average gain, G,

and normalized gain [87], g. The normalized gain is defined as the (posttest percent - pretest

percent)/(100 - pretest percent). Both undergraduate and Ph. D. level students struggled

with this topic as can be seen by the scores on the pretest. However, both groups showed

significant improvement after working through the QuILT.

Q1 was graded using a rubric which was developed by the researchers together. Each

question was worth six points. A maximum of four points were awarded for the multiple-

choice portion of Q1 and two points were awarded for their explanation. For example, when
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grading the multiple-choice portion of Q1 for the weak field Zeeman effect, students were

given four points for correctly choosing only the coupled representation (option i). If they

chose the coupled representation (option i) and any arbitrary complete orthonormal linear

combination of states in the coupled representation (option iii), they were given two out of

four points for the multiple-choice portion of Q1. We found that some interviewed students

correctly reasoned that the degeneracy in the energy spectrum of Ĥ ′fs allowed for linear

combinations of states in the coupled representation with the same n, l, and j to diagonalize

Ĥ ′fs. However, it is not the case that ANY linear combination of states in the coupled

representation diagonalizes Ĥ ′fs. in the degenerate subspace of Ĥ0 While these students did

not show entirely correct reasoning, they were correctly thinking about issues caused by the

degeneracy in the energy spectrum but incorrectly overgeneralized these concepts to reason

that ANY linear combination of states in the coupled representation diagonalizes Ĥ ′fs in

the degenerate subspace of Ĥ0. Students were given one out of four points if they chose

both the coupled and uncoupled representation (options i and ii) as a basis that diagonalizes

Ĥ ′fs. Some students incorrectly claimed that the operator Ĥ ′fs = Ĥ ′r + Ĥ ′SO is diagonal

in both the coupled and uncoupled representations because Ĥ ′SO = 1
2
(Ĵ2 − Ŝ2 − L̂2) =

1
2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz. Although states in the coupled representation are eigenstates of

the operators Ĵ2, L̂2, and Ŝ2, states in the uncoupled representation are eignestates of L̂Z

and ŜZ but they are not eigenstates of the operators L̂± and Ŝ±. Therefore, Ĥ ′SO is diagonal

in the coupled representation but not diagonal in the uncoupled representation. Thus, Ĥ ′SO

is diagonal in the coupled representation in the degenerate subspace of Ĥ0 but not diagonal

in the uncoupled representation. This type of response shows some correct reasoning (Ĥ ′fs is

diagonal in the degenerate subspace of Ĥ0 in the coupled representation) and was awarded

partial credit. No points were awarded for any other combination of answers for the weak

field Zeeman effect in Q1. The explanations that provided correct reasoning were awarded

two points, responses with mostly correct reasoning were awarded one point, and responses

with little or no correct reasoning were given zero points.

A subset of questions was graded separately by the researchers with a final inter-rater

reliability of nearly 100%.

The following are written responses to Q1 for the weak field Zeeman effect (Ĥ ′Z � Ĥ ′fs)
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Table 19: Average pretest and posttest scores for Q1 (including reasoning), gains (G) and

normalized gains (g) for undergraduate students (number of students N = 32 for the pretest

and N = 31 for the posttest) and Ph. D. level students (N = 42).

Undergraduate Students Ph. D. level Students

Limit Pre Post G g Pre Post G g

(%) (%) (%) (%) (%) (%)

Strong Field 31 82 +51 0.74 27 75 +48 0.66

Weak Field 26 85 +59 0.80 25 76 +51 0.68

taken from two students’ posttests who correctly chose a basis consisting of states in the

coupled representation as a good basis: “Neither really form a good basis, but we can use a 2-

step process. 1st considering only the Ĥ ′fs perturbation then some of the degeneracy is lifted.

Then solve a simplified problem with Ĥ ′Z as a perturbation on Ĥ0 + Ĥ ′fs.” “2 step process:

Ĥ ′ = Ĥ ′fs is diagonal (in the n = 2 degenerate subspace of Ĥ0) in coupled representation.

Ĥ ′Z diagonal in the degenerate subspace of Ĥ0
fs (lifted degeneracy).” Student responses on

the posttests were analogous in the context of the strong field Zeeman effect. These types

of responses by students on the posttest demonstrate that they had learned to reason about

how to find a good basis in the limiting cases of the strong and weak field Zeeman effect.

6.7 SUMMARY

Using the common difficulties of advanced students with finding the corrections to the ener-

gies of the hydrogen atom in the limiting cases of the strong and weak field Zeeman effects,

we developed and evaluated a research-based QuILT which strives to help students learn to

reason about and find a good basis for these limiting cases. In particular, the QuILT strives

to help students learn that when the corrections to the energies due to either the Zeeman

term Ĥ ′Z or the fine structure term Ĥ ′fs are much larger than the other, one can perform
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DPT using a two-step approximation. The QuILT strives to help students learn about these

limiting cases to determine when it is appropriate to use this two-step approximation and

be able to reason that these results in the limiting cases are consistent with the corrections

to the energies in the intermediate field Zeeman effect in the appropriate regimes. Students

learn to reason that not only are the results in various limits consistent with the general

case, but there is a benefit to using the two-step approximation method in that a good basis

can be determined without explicitly diagonalizing the perturbation Ĥ ′ in each degenerate

subspace of Ĥ0 by “brute force”. The QuILT uses these limiting case examples to help

students develop expert-like reasoning skills and help them learn to think like a physicist. In

particular, learning to use limiting cases and understanding why the limits can be obtained

from the general case (i.e., intermediate field Zeeman effect) can be useful for developing

the problem-solving and meta-cognitive skills of an expert physicist. The QuILT strives to

provide appropriate scaffolding and feedback using a guided inquiry-based approach to help

students develop a functional understanding of relevant concepts. The evaluation shows that

the QuILT is effective in improving students’ understanding of the perturbative corrections

to the energy spectrum of the hydrogen atom placed in an external magnetic field in the

limiting cases of the strong and weak field Zeeman effect in the context of DPT.
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[4] M. Marušić, N. Erceg and J. Slǐsko, Partially specified physics problems: university
students’ attitudes and performance, Eur. J. Phys. 32 711 (2011).

[5] J. Bolton and S. Ross. Developing students’ physics problem-solving skills, Phys. Edu-
cation 32, 176 (1997).

[6] S. Singh, P. Pathak and V. A. Singh, Approximate approaches to the one-dimensional
finite potential well, Eur. J. Phys. 32, (6) (2011).

[7] V. Barsan, Understanding quantum phenomena without solving the Schrödinger equa-
tion: the case of the finite square well, Eur. J. Phys. 36, 065009 (2015).

[8] C. Singh, When physical intuition fails, Am. J. Phys. 70, 1103 (2002).

[9] C. Singh, Assessing student expertise in introductory physics with isomorphic problems.
I. Performance on a non-intuitive problem pair from introductory physics, Phys. Rev. ST
Phys. Educ. Res. 4, 010104 (2008).

[10] C. Singh, Assessing student expertise in introductory physics with isomorphic problems.
II. Effect of some potential factors on problem solving and transfer, Phys. Rev. ST Phys.
Educ. Res. 4, 010105 (2008).

[11] A. Mason and C. Singh, Assessing expertise in introductory physics using categorization
task, Phys. Rev. ST Phys. Educ. Res. 7, 020110 (2011).

[12] A. Mason and C. Singh, Helping students learn effective problem solving strategies by
reflecting with peers, Am. J. Phys. 78, 748 (2010).

180



[13] S. Y. Lin and C. Singh, Challenges in using analogies, Phys. Teach. 49, 512 (2011).

[14] S. Y. Lin and C. Singh, Using isomorphic problems to learn introductory physics, Phys.
Rev. ST Phys. Educ. Res. 7, 020104 (2011).

[15] S. Y. Lin and C. Singh, Using an isomorphic problem pair to learn introductory physics:
Transferring from a two-step problem to a three-step problem, Phys. Rev. ST Phys. Educ.
Res. 9, 020114 (2013).

[16] A. Maries and C. Singh, To use or not to use diagrams: The effect of drawing a
diagram in solving introductory physics problems, AIP Conf. Proc. 1513, 282 (2013)
http://dx.doi.org/10.1063/1.4789707.

[17] A. Maries and C. Singh, A good diagram is valuable despite the choice of a mathematical
approach to problem solving, Proceedings of the Physics Education Research Conference
2013, Portland, OR, edited by P. Engelhardt, A. Churukian, and D. Jones (2014), pp.
31–34 http://dx.doi.org/10.1119/perc.2013.inv.006.

[18] A. Maries, S. Y. Lin and C. Singh, Challenges in designing appropriate scaffolding to
improve students’ representational consistency: The case of a Gauss’s law problem, Phys.
Rev. Phys. Educ. Res. 13, 020103 (2017).

[19] A. Maries and C. Singh, Do students benefit from drawing productive diagrams them-
selves while solving introductory physics problems? The case of two electrostatics prob-
lems, Euro. J. Phys 39, 015703 (2018).

[20] A. Maries and C. Singh, Case of two electrostatics problems: Can providing a diagram
adversely impact introductory physics students’ problem solving performance? Phys Rev
PER 14, 010114 (2018).

[21] A. Mason and C. Singh, Reflection and self-monitoring in quantum mechanics, Pro-
ceedings of the 2009 Phys. Ed. Res. Conference, Ann Arbor, MI, (M. Sabella, C. Hen-
derson and C. Singh Eds.), AIP Conf. Proc., Melville, New York 1179, 197-200 (2009)
http://dx.doi.org/10.1063/1.3266713

[22] E. Yerushalmi, E. Cohen, A. Mason and C. Singh, What do students do when asked to
diagnose their mistakes? Does it help them? I. An atypical quiz context , Phys. Rev. ST
Phys. Educ. Res. 8 (2), 020109 (2012).

[23] E. Yerushalmi, E. Cohen, A. Mason and C. Singh, What do students do when asked to
diagnose their mistakes? Does it help them? II. A more typical quiz context, Phys. Rev.
Special Topics Phys. Educ. Res. 8 (2), 020110 (2012).

[24] C. Singh, Coupling conceptual and quantitative problems to develop expertise in in-
troductory physics , Proceedings of the 2008 Phys. Ed. Res. Conference, Edmonton,
Canada, (C. Henderson, M. Sabella, L. Hsu Eds.), AIP Conf. Proc., Melville New York
1064, 199-202, (2008) http://dx.doi.org/10.1063/1.3021253

181

http://dx.doi.org/10.1063/1.4789707
http://dx.doi.org/10.1119/perc.2013.inv.006
http://dx.doi.org/10.1063/1.3266713
http://dx.doi.org/10.1063/1.3021253


[25] A. Maries and C. Singh, Case of two electrostatics problems: Can providing a diagram
adversely impact introductory physics students’ problem solving performance? Phys Rev
PER 14, 010114 (2018).

[26] G. Schraw, K. Crippen and K. Hartley, Promoting Self-Regulation in Science Educa-
tion: Metacognition as Part of a Broader Perspective on Learning in Research in Science
Eduction (Springer, 2006).

[27] The DPT QuILT is available on https://sites.google.com/site/quiltbeta/

[28] C. Singh, Student understanding of quantum mechanics, Am. J. Phys. 69, 885 (2001).

[29] A. Kohnle et al., A new introductory quantum mechanics curriculum, Eur. J. Phys. 35,
015001 (2014).

[30] A. Kohnle et al., Developing and evaluating animations for teaching quantum mechanics
concepts, Eur. J. Phys. 31, 1441 (2010).

[31] D. Domert, C. Linder, and A. Ingerman, Probability as a conceptual hurdle to un-
derstanding one-dimensional quantum scattering and tunnelling, Eur. J. Phys. 26, 47
(2004).

[32] C. Singh, Student understanding of quantum mechanics at the beginning of graduate
instruction, Am. J. Phys. 76, 277 (2008).

[33] R. Müller and H. Wiesner, Teaching quantum mechanics on an introductory level, Am.
J. Phys. 70, 200 (2002).

[34] Zollman D, Rebello S and Hogg K 2002 Quantum mechanics for everyone: hands-on
activities integrated with technology. Am. J. Phys. 70 252.

[35] G. Ireson, A multivariate analysis of undergraduate physics students’ conceptions of
quantum phenomena, Eur. J. Phys. 20, 193 (1999).

[36] P. C. Garcia Quijas and L. M. Arevala Aguilar, Overcoming misconceptions in quantum
mechanics with the time evolution operator, Eur. J. Phys. 28, 147 (2007).

[37] A. Maries, R. Sayer and C. Singh, Investigating transfer of learning in advanced quan-
tum mechanics, in Proceedings of the 2015 Physics Education Research Conference
http://dx.doi.org/10.1119/perc.2015.pr.047.

[38] S. Sharma and P. K. Ahluwalia, Diagnosing alternative conceptions of Fermi energy
among undergraduate students Eur. J. Phys. 33, 883 (2012).

[39] M. Wittmann, R. Steinberg, and E. Redish, Investigating student understanding of
quantum physics: Spontaneous models of conductivity, Am.J. Phys. 70, 218 (2002).

182

https://sites.google.com/site/quiltbeta/
https://www.compadre.org/per/items/detail.cfm?ID=13872


[40] M. Chhabra and R. Das, Quantum mechanical wavefunction: visualization at under-
graduate level, Eur. J. Phys. 38 015404 (2017).

[41] P. Jolly, D. Zollman, S. Rebello and A. Dimitrova, Visualizing potential energy diagrams,
Am. J. Phys. 66, 57 (1998).

[42] C. Singh and E. Marshman, Analogous patterns of student reasoning difficulties in
introductory physics and upper- level quantum mechanics, in Proceeding of the 2013
Physics Education Research Conference http://dx.doi.org/10.1119/perc.2013.inv.010.

[43] S. Siddiqui and C. Singh, Surveying instructors’ attitudes and approaches to teaching
quantum mechanics, in Proceedings of the 2010 Physics Education Research Conference
http://dx.doi.org/10.1063/1.3515227.

[44] G. Zhu and C. Singh, Surveying students’ understanding of quantum mechanics in one
spatial dimension, Am. J. Phys. 80, 252 (2012).

[45] C. Singh and G. Zhu Surveying students’ understanding of quantum mechanics, AIP
Conf. Proc. 1289, 301-304S (2010) http://dx.doi.org/10.1063/1.3515229.

[46] C. Singh and G. Zhu, Cognitive issues in learning advanced physics:
an example from quantum mechanics, AIP Conf. Proc. 1179 63 (2009)
http://dx.doi.org/10.1063/1.3266755.

[47] S. Y. Lin and C. Singh, Categorization of quantum mechanics problems by professors
and students, Euro. J. Phys. 31, 57 (2010).

[48] E. Marshman and C. Singh, Framework for understanding student difficulties in quan-
tum mechanics, Phys. Rev ST PER 11, 020119 (2015).

[49] M. Wittmann, R. Steinberg, and E. Redish, Investigating student understanding of
quantum physics: Spontaneous models of conductivity, Am.J. Phys. 70, 218 (2002).

[50] E. Marshman and C. Singh, Student difficulties with quantum states while trans-
lating state vectors in Dirac notation to wave functions in position and momentum
representations, in Proceedings of the 2015 Physics Education Research Conference
http://dx.doi.org/10.1119/perc.2015.pr.048).

[51] E. Marshman and C. Singh, Investigating student difficulties with time dependence of
expectation values in quantum mechanics, in Proceedings of the 2013 Physics Education
Research Conference http://dx.doi.org/10.1119/perc.2013.pr.049.

[52] C. Singh and E. Marshman, Student difficulties with the probability distribution for
measuring energy and position in quantum mechanics, in Proceedings of the 2015 Physics
Education Research Conference arXiv:1509.04081.

183

https://www.compadre.org/per/items/detail.cfm?ID=13093
https://aip.scitation.org/doi/abs/10.1063/1.3515227
http://aip.scitation.org/doi/abs/10.1063/1.3515229
http://aip.scitation.org/doi/abs/10.1063/1.3266755
https://www.compadre.org/per/items/detail.cfm?ID=13873
https://www.compadre.org/per/items/detail.cfm?ID=13167
https://arxiv.org/abs/1509.04081


[53] G. Zhu and C. Singh, Students’ understanding of Stern Gerlach exper-
iment, in Proceedings of the 2009 Physics Education Research Conference
http://dx.doi.org/10.1063/1.3266744.

[54] C. Singh and E. Marshman. Review of student difficulties in quantum mechanics, Phys.
Rev. ST PER 11, 020117 (2015).

[55] C. Singh, Transfer of learning in quantum mechanics, AIP Conference Proceedings 790,
23 (2005) http://dx.doi.org/10.1063/1.2084692.

[56] C. Singh, Student difficulties with quantum mechanics formalism, AIP Conference Pro-
ceedings 883, 185 (2007).

[57] B. Brown, A. Mason, and C. Singh, Improving performance in quantum mechanics with
explicit incentives to correct mistakes, Phys. Rev. PER 12, 010121 (2016).

[58] C. Singh and E. Marshman, Investigating student difficulties with Dirac nota-
tion, in Proceedings of the 2013 Physics Education Research Conference, Port-
land, OR edited by P. Engelhardt, A. Churukian, D. Jones (2014) pp. 345-348
http://dx.doi.org/10.1119/perc.2013.pr.074.

[59] A. J. Mason and C. Singh, Do advanced students learn from their mistakes without
explicit intervention?, Am. J. Phys. 78, 760 (2010).

[60] C. Singh, M. Belloni, and W. Christian, Improving students’ understanding of quantum
mechanics, Physics Today 59, 43 (2006).

[61] G. Zhu and C. Singh, Improving students’ understanding of quantum mechanics via the
Stern-Gerlach experiment, Am. J. Phys. 79, 499 (2011).

[62] G. Zhu and C. Singh, Improving students’ understanding of quantum measurement: I.
Investigation of difficulties Phys. Rev. ST PER 8 010117 (2012).

[63] G. Zhu and C. Singh, Improving students’ understanding of quantum measurement: II.
Development of research-based learning tools, Phys. Rev. ST PER 8, 010118 (2012).

[64] G. Zhu and C. Singh, Improving student understanding of addition of angular momen-
tum in quantum mechanics, Phys. Rev. ST PER 9, 010101 (2013).

[65] G. Zhu and C. Singh, Improving students’ understanding of quantum mechanics by using
peer instruction tools, in Proceedings of the 2012 Physics Education Research Conference
http://dx.doi.org/10.1063/1.3679998.

[66] C. Singh, Assessing and improving student understanding of quantum mechanics, AIP
Conf. Proc. 818, 69 (2006) http://dx.doi.org/10.1063/1.22177025.

[67] C. Singh, Helping students learn quantum mechanics for quantum computing, AIP.
Conf. Proc. 883, 42 (2007) http://dx.doi.org/10.1063/1.2508687.

184

http://aip.scitation.org/doi/abs/10.1063/1.3266744
http://aip.scitation.org/doi/abs/10.1063/1.2084692
https://www.compadre.org/per/items/detail.cfm?ID=13149
http://dx.doi.org/10.1063/1.3679998
http://aip.scitation.org/doi/abs/10.1063/1.2177025
http://aip.scitation.org/doi/abs/10.1063/1.2508687


[68] C. Keebaugh, E. Marshman and C. Singh, Developing and evaluating an interactive
tutorial on degenerate perturbation theory, in Proceedings of the 2016 Physics Education
Research Conference, Sacramento, CA, edited by D. Jones, L. Ding, and A. Traxler (2016)
http://dx.doi.org/10.1119/perc.2016.pr.041

[69] C. Singh, Interactive learning tutorials on quantum mechanics, Am. J. Phys. 76, 400
(2008).

[70] S. DeVore and C. Singh, Development of an interactive tutorial on quantum
key distribution in Proceedings of the 2015 Physics Education Research Conference
http://dx.doi.org/10.1119/perc.2014.pr.011.

[71] C. Singh and E. Marshman, Developing an interactive tutorial on a Mach-Zehnder
interferometer with single photons, in Proceedings of the 2014 Physics Education Research
Conference http://dx.doi.org/10.1119/perc.2014.pr.056.

[72] E. Marshman and C. Singh, Interactive tutorial to improve student understanding of
single photon experiments involving a Mach-Zehnder Interferometer, Eur. J. Phys. 37,
024001 (2016).

[73] C. Singh and E. Marshman, Developing an interactive tutorial on a quan-
tum eraser, in Proceedings of the 2014 Physics Education Research Conference
http://dx.doi.org/10.1119/perc.2014.pr.040.

[74] G. Zhu and C. Singh, Improving students’ understanding of quantum mea-
surement, in Proceedings of the 2010 Physics Education Research Conference
http://dx.doi.org/10.1063/1.3515241.

[75] B. Brown and C. Singh, Development and evaluation of a quantum interactive learning
tutorial on Larmor precession of spin, in Proceedings of the 2015 Physics Education
Research Conference http://dx.doi.org/10.1119/perc.2014.pr.008.

[76] E. Marshman and C. Singh, Investigating and improving student understanding of the
probability distributions for measuring physical observables in quantum mechanics, Eur.
J. Phys. 38, 025705 (2017).

[77] E. Marshman and C. Singh, Investigating and improving student understanding of quan-
tum mechanics in the context of single photon interference, Phys. Rev. PER 13, 010117
(2017).

[78] E. Marshman and C. Singh, Investigating and improving student understanding of the
expectation values of observables in quantum mechanics, Eur. J. Phys. 38, 045701 (2017).

[79] R. Sayer, A. Maries, and C. Singh, Quantum interactive learning tutorial on the double-
slit experiment to improve student understanding of quantum mechanics, Phys. Rev. PER
13, 010123 (2017).

185

http://dx.doi.org/10.1119/perc.2016.pr.041
https://www.compadre.org/per/items/detail.cfm?ID=13448
https://www.compadre.org/per/items/detail.cfm?ID=13496
https://www.compadre.org/per/items/detail.cfm?ID=13476
http://aip.scitation.org/doi/abs/10.1063/1.3515241
http://dx.doi.org/10.1119/perc.2014.pr.008


[80] D. Griffiths, Introduction to quantum mechanics (Englewood Cliffs, NJ: Prentice Hall,
2005).

[81] J. Townsend, A modern approach to quantum mechanics (Mill Valley, CA: University
Science Books, 2000).

[82] J. Sakurai and J. Napolitano, Modern quantum mechanics (Boston, MA: Addison-
Wesley, 2011).

[83] C. Wieman, Comparative cognitive task analyses of experimental science and instruc-
tional laboratory courses, The Physics Teacher 53, 349 (2015).

[84] J. Piaget, Success and Understanding. (Harvard University Press, Cambridge, 1978).

[85] D. Schwartz, J. Bransford, and D. Sears, Efficiency and innovation in transfer, in Trans-
fer of learning from a modern multidisciplinary perspective, edited by J. Mestre (Infor-
mation Age, Greenwich, 2005), pp.1-51.

[86] M. Chi, Thinking aloud, in the think aloud method: a practical guide to modeling cogni-
tive processes (New York: Academic Press, 1994).

[87] R. Hake, Interactive engagement versus traditional methods: A six-thousand student
survey of mechanics test data for introductory physics courses, Am. J. Phys. 66, 64
(1998).

186



7.0 DEVELOPING AND EVALUATING A QUANTUM

INTERACTIVE LEARNING TUTORIAL ON A SYSTEM OF

IDENTICAL PARTICLES: BASICS FOR A SYSTEM OF IDENTICAL

PARTICLES

7.1 INTRODUCTION

Quantum mechanics (QM) is a particularly challenging subject for upper-level undergraduate

and graduate students in physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. There have been

a number of research studies aimed at investigating student reasoning in QM [14, 15, 16,

17, 18, 19, 20, 21] and improving student understanding of QM [22, 23, 24, 25, 26, 27].

For example, our group has focused on using the common student difficulties as a guide to

develop research-based learning tools which include Quantum Interactive Learning Tutorials

(QuILTs) [28, 29, 30, 31, 32, 33, 34, 35] which strive to improve student understanding of

different QM concepts. However, there have been few investigations into student difficulties

with fundamental concepts involving a system of identical particles.

Here, we discuss an investigation of student difficulties with fundamentals of a system

of non-interacting identical particles and how that research was used as a guide in the

development, validation, and in-class evaluation of a QuILT that strives to help students

develop a good grasp of relevant concepts. Through researching students’ understanding of

and reasoning about a system of identical particles, we found common student difficulties that

can hinder their development of a consistent and coherent knowledge structure pertaining

to these concepts.

Below, we start with a brief background of relevant concepts and then describe the

methodology for the investigation of student difficulties followed by the common difficulties
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found. Then, we describe the methodology for the development, validation and in-class eval-

uation of the corresponding research-based QuILT that strives to help students develop a

functional understanding of the fundamental concepts involving a system of identical parti-

cles.

7.2 BACKGROUND

In nature, there are two general types of fundamental or composite particles: fermions

with a half-integer spin quantum number (e.g., electrons and protons) and bosons with an

integer spin quantum number (e.g., photons and mesons). A system of N identical particles

consists of N particles of the same type (e.g., electrons). For a system of identical particles

in classical mechanics (e.g., five identical tennis balls), each particle can be distinguished

from all the other particles. In contrast, in QM, identical particles are indistinguishable

and there is no measurement that can be performed to distinguish these particles from

one another. For example, if the coordinates of two identical particles are interchanged,

there is no physical observable that would reflect this interchange. To account for the

indistinguishability of these identical particles and make the properties of fermions and

bosons consistent with observations, the wavefunction for a system of identical fermions

must be completely antisymmetric and the wavefunction for a system of identical bosons

must be completely symmetric with respect to exchange of two particles. Furthermore,

one property that distinguishes these two types of particles is that two or more bosons can

occupy the same single-particle state, but two or more fermions can never occupy the same

single-particle state. The restriction for fermions is known as the Pauli exclusion principle

and is consistent with a system of identical fermions having a completely antisymmetric

wavefunction [80].

Here we focus on the many-particle Hamiltonian and stationary state wavefunctions that

are solutions to the Time-Independent Schrödinger Equation (TISE) for a system of non-

interacting identical particles. Unless otherwise stated, here we will refer to the stationary

state wavefunction as the wavefunction. For a system of N non-interacting identical particles,
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the Hilbert space (H ) for the N -particle system in MN dimensions is

H = H1 ⊗H2 ⊗ · · · ⊗HN (7.1)

which is the direct product of the M -dimensional Hilbert space for each particle Hi. The

many-particle Hamiltonian for the system of N non-interacting identical particles in the

product space is

Ĥ = Ĥ1 ⊗ Î2 ⊗ Î3 ⊗ · · · ⊗ ÎN + Î1 ⊗ Ĥ2 ⊗ Î3 ⊗ · · · ⊗ ÎN
+ · · ·+ Î1 ⊗ Î2 ⊗ · · · ÎN−2 ⊗ ĤN−1 ⊗ ÎN + Î1 ⊗ Î2 ⊗ · · · ⊗ ÎN−1 ⊗ ĤN ,

(7.2)

where the single-particle Hamiltonian, Ĥi, and the identity operator, Îi, for the ith particle

are in the M -dimensional Hilbert space Hi.

We will use the following shorthand notation for the many-particle Hamiltonian

Ĥ =
∑
i

Ĥi = Ĥ1 + Ĥ2 + Ĥ3 + · · ·+ ĤN . (7.3)

in which Ĥi = Î1 ⊗ Î2 ⊗ · · · ⊗ Îi−1 ⊗ Ĥi ⊗ Îi+1 · · · ⊗ ÎN is the Hamiltonian of the ith particle

in the MN dimensional product space. Thus, in the rest of this paper, all the boldface

Hamiltonians are in the product space.

In order to determine the many-particle stationary state wavefunction for a system

of non-interacting identical particles, one must first solve the single-particle TISE. The

single-particle stationary state wavefunctions are solutions to the single-particle TISE, i.e.,

Ĥiψnj
(xi) = Enj

ψnj
(xi) for the ith particle in the state ψnj

(xi). Next, one should construct

the many-particle stationary state wavefunction for a system of non-interacting identical par-

ticles that can be treated as distinguishable as the product of the single-particle stationary

state wavefunctions (these product states can be used as basis states to construct the many-

particle stationary state wavefunction for identical fermions or bosons). The basis states can

be determined from all the permutations of the labels for the states or the coordinates in the

products of the single-particle states. Here, for convenience, we will refer to all direct prod-

ucts of single-particle states as “basis states”, regardless of their symmetry under exchange.

Please note that for identical fermions, only completely antisymmetric linear combinations
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of these basis states are allowed, while for bosons only completely symmetric linear combi-

nations are allowed. For distinguishable particles, all basis states are allowed. The final step

is to appropriately symmetrize the many-particle stationary state wavefunction for a system

of non-interacting identical fermions or bosons using the basis states in the product space.

If we have a system of two non-interacting electrons in which one electron is in the single-

particle state denoted by ψn1 and the other electron is in the single-particle state denoted by

ψn2 , then the wavefunction for the system of two electrons must be completely antisymmetric.

Assuming n1 6= n2 and ignoring spin, this normalized two-particle wavefunction in position

representation is

Ψ(x1, x2) =
1√
2

[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)] . (7.4)

in which x1 denotes the coordinate of the first electron and x2 denotes the coordinate of

the second electron. This completely antisymmetric wavefunction reflects the fact that one

electron is in the single-particle state ψn1 and the other electron is in the single-particle state

ψn2 , but we cannot say which electron is in which single-particle state. It is consistent with

Pauli’s exclusion principle. For example, for a system of two fermions both in the same

single-particle state ψn1 , the antisymmetric wavefunction (ignoring the spin) would be

Ψ(x1, x2) =
1√
2

[ψn1(x1)ψn1(x2)− ψn1(x1)ψn1(x2)] = 0. (7.5)

Thus, there is no wavefunction for a system of two fermions in the same single-particle state

and such a state is not possible.

The completely symmetric wavefunction (ignoring the spin) for two bosons in which one

boson is in the single-particle state ψn1 and the other boson is in the single-particle state

ψn2 is

Ψ(x1, x2) =
1√
2

[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)] . (7.6)

The two bosons can be in the same single-particle state. For example, the completely

symmetric wavefunction for two bosons in the single-particle state ψn1 is

Ψ(x1, x2) = ψn1(x1)ψn1(x2). (7.7)
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When considering the spin part of the wavefunction for a single-particle, we will use the

notation |si, msi〉 (in which si and msi are the quantum numbers corresponding to the total

spin and z-component of the spin for the ith particle, respectively). The states |s1, ms1〉 are

eigenstates of Ŝ2
1 and Ŝ1z and the states |s2, ms2〉 are eigenstates of Ŝ2

2 and Ŝ2z. We will use

the following abbreviated notation for a spin-1/2 particle: | ↑〉1 = |s1, ms1〉 = |1/2, 1/2〉1
and | ↓〉1 = |s1, ms1〉 = |1/2, −1/2〉1 for electron 1 in the “spin up” and “spin down” state,

respectively, and | ↑〉2 = |s2, ms2〉 = |1/2, 1/2〉2, and | ↓〉2 = |s2, ms2〉 = |1/2, −1/2〉2 for

electron 2 in the “spin up” and “spin down” state, respectively.

When considering the spin part of the wavefunction for the two spin-1/2 particles in

the “uncoupled” representation in the product space, we will use the notation | ↑〉1| ↑〉2,

| ↑〉1| ↓〉2, | ↓〉1| ↑〉2, and | ↓〉1| ↓〉2 for the basis states. We will also use the notation

|s, ms〉 for states in the “coupled” representation (in which the quantum numbers s and

ms correspond to the total spin angular momentum and the z component of the total spin

angular momentum including both spins, respectively). The states |s, ms〉 in the coupled

representation are eigenstates of Ŝ2 and Ŝz where ~S = ~S1 + ~S2. For a system of two spin-

1/2 particles (s1 = 1/2, s2 = 1/2), the quantum number s = s1 + s2 = 1/2 + 1/2 = 1

or s = |s1 − s2| = |1/2 − 1/2| = 0. If the total spin quantum number is s = 1 then the

corresonding ms = −1, 0, 1. If s = 0 then the corresponding ms = 0. A complete set of states

in the coupled representation for 1/2⊗1/2 is given by |s,ms〉 = {|1, 1〉, |1, 0〉, |1, −1〉, |0, 0〉}.

We will use the following abbreviated notation for a complete set of normalized states for a

system of two spin-1/2 particles in the coupled representation |s, ms〉 written in terms of

states in the uncoupled representation (|s1, ms1〉|s2, ms2〉):

|1, 1〉 = | ↑〉1| ↑〉2 = | ↑↑〉

|1, −1〉 = | ↓〉1| ↓〉2 = | ↓↓〉

|1, 0〉 = 1√
2

(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2) = 1√
2

(| ↑↓〉+ | ↓↑〉)

|0, 0〉 = 1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2) = 1√
2

(| ↑↓〉 − | ↓↑〉) .

(7.8)

One feature of the coupled basis states for two identical spin angular momenta, e.g.,

|1, 1〉, |1, 0〉, |1, −1〉, |0, 0〉, for two spin-1/2 particles in the coupled representation, is that

they are either completely symmetric or completely antisymmetric with respect to exchange
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of particles. For example, | ↑↑〉, | ↓↓〉, 1√
2

(| ↑↓〉+ | ↓↑〉) are completely symmetric spin states

for the two fermions and often refered to as the “triplet” states. It is important to note that

any linear combination of these three symmetric spin states is also a completely symmetric

spin state (i.e., C1| ↑↑〉 + C2| ↓↓〉 + C3 (| ↑↓〉+ | ↓↑〉) is a completely symmetric normalized

spin state in which C1, C2, and C3 are constants such that |C1|2 + |C2|2 + |C3|2 = 1). The

state 1√
2

(| ↑↓〉 − | ↓↑〉) is the completely antisymmetric normalized spin state for the two

fermions and often refered to as the “singlet” state.

7.3 INVESTIGATING STUDENT DIFFICULTIES

Student difficulties with fundamental concepts involving a system of N identical particles

were first investigated using three years of data involving responses to open-ended and

multiple-choice questions administered after traditional instruction in relevant concepts from

57 upper-level undergraduate students in a junior/senior level QM course and 30 graduate

students in the second semester of the graduate core QM course. Additional insight was

gained concerning these difficulties from responses of 14 students during a total of 81 hours

of individual interviews. A “think aloud” protocol was used during the interviews in which

students were asked to think aloud as they answered the questions posed without being

disturbed [86]. Once the students had answered each question to the best of their ability,

we asked them to clarify their reasoning and probed deeper into certain difficulties to gain a

better understanding of the cognitive mechanisms behind these difficulties. Moreover, after

the development and validation of the QuILT, it was administered to 25 upper-level under-

graduates and 30 first-year physics graduate students in their respective QM courses. The

QuILT included a pretest, the tutorial, and a posttest. Students were given the pretest after

traditional, lecture-based instruction on identical particles. The pretests were not returned

to the students. Students began working on the tutorial in class and completed the tutorial

as their weekly homework assignment. The posttest was administered after the students

submitted the tutorial. Student responses on the pretest, tutorial, and posttest were ana-

lyzed for understanding of fundamental concepts involving a system of identical particles. If

192



new difficulties were discovered during the interviews or on the pretest, tutorial, or posttest,

the difficulties were addressed in later versions of the QuILT.

In all the questions in our investigation, the identical particles were restricted to one

spatial dimension for convenience. Initially, students were asked to consider the wavefunction

of the many-particle system ignoring the spin part of the wavefunction. Later, students

considered the completely symmetrized many-particle wavefunction consisting of both the

spatial and spin parts of the wavefunction. In order to familiarize the students with the

notation, in the QuILT, they were given that ψn1(x1) and ψn2(x2) are the single-particle

wavefunctions for particles in states n1 and n2 and with coordinates x1 and x2, respectively.

Below, we discuss student difficulties in response to questions that were posed either

during individual interviews or as in-class clicker questions, open-ended questions on quizzes

or exams, or as questions on the pretest of the QuILT. Additional insight into these difficul-

ties was gleaned during the individual think-aloud interviews in which students were asked

questions pertaining to these issues.

7.3.1 Difficulty realizing that the Hamiltonian for a system of N non-interacting

identical particles in the product-space should be written in terms of the

sum of the single-particle Hamiltonians

To investigate students’ understanding of the Hamiltonian for a system of N non-interacting

identical particles, question Q1 below was asked on both the pretest after traditional

lecture-based instruction on relevant concepts and posttest after engaging with the QuILT.

In particular, Q1 is intended to determine whether students could identify that the Hamil-

tonian for a system of non-interacting identical particles is expressed as the sum of the

individual Hamiltonians in the product space as in Eq. (7.3):

Q1. Write the Hamiltonian for a system of N non-interacting identical particles in terms

of the Hamiltonians for the ith particle (i = 1, 2, . . . , N).

Below, we discuss two types of common difficulties students had writing the many-particle
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Hamiltonian for a system of N non-interacting identical particles.

Incorrectly writing the many-particle Hamiltonian as the sum of the single-

particle Hamiltonians Ĥi in which Ĥi is in the Hilbert space of individual par-

ticles: The Hamiltonian for a system of N non-interacting identical particles is the sum of

the MN -dimensional individual Hamiltonians Ĥi for each particle i as in Eq. 7.3. Interviews

suggest that many students struggled to correctly reason about the dimension of the many-

particle Hamiltonian. In response to Q1, some interviewed students incorrectly claimed that

the Hamiltonian for the system of N non-interacting identical particles was
∑
Ĥi (as op-

posed to
∑

Ĥi). They did not realize that each term in the sum must be an element in

the MN dimensional product space (instead of an M -dimensional Hilbert space). They had

difficulty identifying that the single-particle Hamiltonian Ĥi only acts on the subspace of the

ith particle and that the many-particle Hamiltonian Ĥi must have the dimensionality of the

product space and contain identity operators in the subspaces of the N−1 other particles as

in Eq 7.2. For example, the Hamiltonian for a spin-1/2 particle can be represented as a 2×2

matrix in a given basis; and the Hamiltonian for a system of two identical spin-1/2 particles

can be represented as a 4 × 4 matrix in the product space. However, students with this

type of difficulty often claimed that the Hamiltonian for the two non-interacting spin-1/2

particles is a 2 × 2 matrix resulting from adding the two 2 × 2 matrices for each spin-1/2

particle since the particles are non-interacting. This type of difficulty in determining the

dimensionality of an operator in the product space has been documented in other contexts

[64, 54].

Incorrectly writing the many-particle Hamiltonian as the direct product of

the single-particle Hamiltonians: Other students incorrectly claimed that the answer

to Q1 is that the Hamiltonian for non-interacting particles is the direct product of the

MN -dimensional single-particle Hamiltonians. Some students incorrectly claimed that the

many-particle Hamiltonian was Ĥ = Ĥ1

⊗
Ĥ2

⊗
Ĥ3

⊗
. . .
⊗

ĤN . Students with this type

of difficulty did not realize that each single-particle Hamiltonian Ĥi is MN -dimensional, and

that the direct product produces a (MN)N -dimensional many-particle Hamiltonian. Other

students incorrectly claimed that the many-particle Hamiltonian for the non-interacting par-

ticles is Ĥ = Ĥ1

⊗
Ĥ2

⊗
Ĥ3

⊗
. . .
⊗

ĤN . One interviewed student stated that “since the
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wavefunction of the many-particle system is the product of the single-particle wavefunctions,

then the Hamiltonian for the system of N non-interacting identical particles is also a prod-

uct of the individual Hamiltonians.” This student correctly claimed that the many-particle

wavefunction for non-interacting particles is written in terms of the direct product of the

single-particle wavefunctions, but incorrectly inferred that the Hamiltonian for the system of

non-interacting particles is also written as the direct product (as opposed to the sum) of the

individual single-particle Hamiltonians in the product space. This student and others with

this type of response did not realize that for a system of non-interacting identical particles

there is no entanglement between the single particle Hamiltonians Ĥi.

7.3.2 Difficulty realizing that each indistinguishable particle should have its

own unique coordinate

Many students had difficulty with the fact that each quantum particle in a system of

identical particles is indistinguishable but each particle is still expressed with a unique

coordinate. For example, for the many-particle wavefunction for a system of N indistin-

guishable particles, the coordinates x1, x2, x3, . . . , xN can be used to label the particles. The

symmetrization requirement of the many-particle wavefunction ensures indistinguishability

and accounts for the fact that there is no way to determine which particle is in which

single-particle state. To probe whether students are able to identify that each identical

particle has a unique coordinate in the product making up one of the terms, question Q2

was posed on both the pretest and posttest for the QuILT:

Q2. For a system of three non-interacting identical particles, write a three-particle

wavefunction in position representation for which all three particles are in different sin-

gle-particle states for the following three cases: indistinguishable fermions, indistinguishable

bosons, and identical particles treated as distinguishable. If there is no possible three-particle

wavefunction for the given system of three particles, state the reason. Ignore the spin of

the particles and only consider the spatial part of the wavefunction.
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Table 20: The percentage of undergraduate (N=25) and graduate students (N=30) who

displayed the given difficulty in Q2 after traditional instruction.

Difficulty Undergraduate Graduate

Students (%) Students (%)

Did not use unique coordinates for each particle 32 43

Wrote the wavefunction as the sum of the single-particle wavefunctions 16 10

Regardless of the type of particle, there should be a unique coordinate for each identical

particle in the three-particle wavefunction. However, many students with this type of diffi-

culty claimed that since there is no way to determine which particle is in which single-particle

state, there is no way to assign a distinct coordinate to each indistinguishable particle. For

example, one interviewed student incorrectly claimed that “we must use the coordinate x for

all the indistinguishable particles since we don’t know where each particle is.” This student

went on to claim that the many-particle wavefunction for a system of three indistinguishable

particles in which one of the particles is in each of the single-particle stationary states la-

beled ψn1(x), ψn2(x), and ψn3(x) is ψn1(x)ψn2(x)ψn3(x). This type of reasoning was common

among students. Table 20 summarizes the number of students who displayed this type of

difficulty in question Q2 after traditional lecture-based instruction.

7.3.3 Difficulty realizing that the many-particle wavefunction must be written

in terms of the product (NOT the SUM) of the single-particle wavefunc-

tions

Many students struggled to write the basis states for the many-particle wavefunction for a

system of non-interacting identical particles in terms of the product of the single-particle

wavefunctions. Question Q2 was intended to probe whether students were able to identify

that the wavefunction for a system of identical particles must be expressed in terms of the

direct product (as opposed to the sum) of the single-particle wavefunctions since these form

possible basis states for a many-particle system.

196



Regardless of the type of particle, the three-particle wavefunction for a system of iden-

tical particles in Q2 must be expressed in terms of the direct product of the single-particle

wavefunction. For example, the three-particle wavefunction for a system of three fermions

(assuming n1 6= n2 6= n3) is

1√
6
[ψn1(x1)ψn2(x2)ψn3(x3)− ψn1(x1)ψn3(x2)ψn2(x3)− ψn2(x1)ψn1(x2)ψn3(x3)

+ψn2(x1)ψn3(x2)ψn1(x3) + ψn3(x1)ψn1(x2)ψn2(x3)− ψn3(x1)ψn2(x2)ψn1(x3)].

In order to satisfy the symmetrization requirements, the three-particle wavefunction for a

system of three fermions consists of six terms. However, each term is expressed as the direct

product of the single-particle wavefunctions.

Some students with this type of difficulty incorrectly expressed the many-particle wave-

function in question Q2 in terms of the sum (as opposed to the direct product) of the

single-particle wavefunctions, such as ψn1(x1) + ψn2(x2) + ψn3(x3). For example, one inter-

viewed student considered this issue before deciding that the many-particle wavefunction

must be written in terms of the sum. This student incorrectly stated that “since the parti-

cles do not interact, the wavefunction will just be the sum of the (single-particle stationary

state) wavefunctions.” This student was later asked whether the wavefunction for a system

of identical particles is always expressed as the sum he had written down or whether there

are any situations in which the many-particle wavefunction must be written in terms of the

direct product of the single-particle wavefunctions. After a moment of hesitation, the stu-

dent stated that only “if the particles were interacting, then the many-particle wavefunction

could be expressed as the product (of the single-particle) wavefunctions.” However, regardless

of whether the particles are interacting or non-interacting, the many-particle wavefunction

can always be expressed in terms of the direct product of the single-particle wavefunction

since the many-particle wavefunctions obtained from the product of the single-particle wave-

functions form a basis for the Hilbert space for a many-particle system. Table 20 shows

the percentages of students who expressed the many-particle wavefunction as a sum of the

single-particle wavefunctions (as opposed to terms involving the product of the single-particle

wavefunctions) for question Q2.
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The next question, Q3, involves both the spatial and spin parts of the wavefunction. The

question considers the ground state of the Helium atom which has two “non-interacting”

electrons (i.e., two identical spin-1/2 particles with s1 = 1/2 and s2 = 1/2 in which si is the

spin quantum number for the ith electron). Q3 probed students’ proficiency at identifying

the spatial part of the wavefunction that corresponds to the ground state of Helium and

whether it is symmetric or anti-symmetric (students were asked to assume that the two

electrons in the Helium atom are non-interacting) and also probed their understanding

that the spin state of the two electrons must be such that the overall wavefunction is

antisymmetric.

Q3. If the electrons in a Helium atom are in the ground state, write down the spin state of

the two electrons, |s, ms〉.

In Q3, the spatial part of the wavefunction for a system of two electrons in a Helium

atom in the ground state is symmetric, and therefore, the spin part of the wavefunction must

be antisymmetric. The spin part of the wavefunction is

|s, ms〉 =
1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2).

When asked to write the spin part of the wavefunction for a system of two electrons

in the ground state of a Helium atom in Q3, some students expressed the spin part of the

wavefunction as the sum of spin states of the two electrons. For example, one student with

this type of difficulty wrote the spin part of the wavefunction as

|s, ms〉 =
1√
2

(↑ + ↑).

This student and others with similar difficulties often incorrectly claimed that each electron

was in the “spin up” state and also incorrectly claimed that the spin part of the two-

particle wavefunction is the sum of the two spin states for each electron. Using the notation

described earlier to identify the first electron as | ↑〉1 and the second electron as | ↑〉2,

students with this type of difficulty wrote that the spin part of the wavefunction takes the

form |s, ms〉 = 1√
2
(| ↑〉1 + | ↑2), which is not a valid spin state in the product space.
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In summary, we find that many students had difficulty realizing that the many-particle

wavefunction should be expressed in terms of a direct product of the single-particle wave-

functions. This type of difficulty was found for both the spatial part and spin part of the

wavefunction.

7.3.4 Difficulty realizing how each term in a many-particle Hamiltonians would

act on a many-particle state consisting of a product of single-particle

states

The Hamiltonian for a system of non-interacting identical particles is expressed as the sum

of the Hamiltonian for the individual particles. For example, for a system of three non-

interacting, identical particles, the many-particle Hamiltonian is Ĥ = Ĥ1 + Ĥ2 + Ĥ3 =

Ĥ1 ⊗ Î2 ⊗ Î3 + Î1 ⊗ Ĥ2 ⊗ Î2 ⊗ Î3 + Î1 ⊗ Î2 ⊗ Ĥ3, in which Îi is the identity operator in the

Hilbert space for the wavefunction of the ith particle. Some students struggled to identify how

each term in the Hamiltonian would act on a state consisting of a product of single-particle

states. In particular, they had difficulty recognizing in the many-particle product state in

the uncoupled representation that the operators in the Hilbert space of a given particle

act only on the single-particle states of that particle. For example, students were asked to

evaluate the following expression: Ĥ1[ψn1(x1)ψn2(x2)] in which Ĥ1 is the Hamiltonian for

particle 1 in the two-particle system and the single-particle states ψn1 and ψn2 are stationary

states for particles 1 and 2, respectively (i.e., Ĥiψnj
(xi) = Enj

ψnj
(xi)) with energy En1 and

En2 , respectively. One interviewed student incorrectly claimed that “Ĥ1[ψn1(x1)ψn2(x2)] = 0,

because Ĥ1 only acts on ψn1(x1) and Ĥ1ψn2(x2) = 0”. This student and others who provided

similar responses struggled to realize that the operator Ĥ1 is equivalent to Ĥ1⊗ Î2, in which

Ĥ1 acts on the subset of the Hilbert space corresponding to particle 1 and the identity

operator Î2 acts on the subset of the Hilbert space corresponding to particle 2. Thus, the

correct answer to the above question is Ĥ1[ψn1(x1)ψn2(x2)] = En1ψn1(x1)ψn2(x2).
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7.3.5 Incorrectly determining the symmetry based on the appearance of a +/-

sign in the many-particle wavefunction

Nature demands that the many-particle wavefunction for a system of indistinguishable

bosons be completely symmetric and the many-particle wavefunction for a system of in-

distinguishable fermions be completely antisymmetric. Therefore, in order to recognize and

generate a many-particle wavefunction for a system of indistinguishable particles, students

must be able to determine a completely symmetric/antisymmetric wavefunction involving

both spatial and spin degrees of freedom.

Question Q4 was posed during the think aloud interviews to investigate students’ profi-

ciency at identifying whether the spin part of a wavefunction is a symmetric or antisymmetric

wavefunction. Students were given Eq. (9.1) before this question and were familar with the

shorthand notation used in Q4.

Q4. For the spin part of the wavefunction of a two-particle system given below, identify

whether the spin state is symmetric, antisymmetric, or neither symmetric nor antisymmetric

with respect to exchange of the two particles. Explain your reasoning.

(a) | ↑↑〉

(b) | ↓↓〉

(c) | ↑↓〉

(d) 1√
2

(| ↑↓〉+ | ↓↑〉)

(e) 1√
2

(| ↑↓〉 − | ↓↑〉)

In Q4, options (a), (b), and (d) are symmetric spin states (triplet states) since exchanging

the two particles results in the same wavefunction. Option (e) in Q4 is an antisymmetric spin

state (singlet state) since exchanging the two particles results in the original wavefunction

multiplied by -1. Option (c) in Q4 is neither a symmetric nor an antisymmetric spin state.

Some students incorrectly applied a heuristic by which they claimed that a wavefunction

is symmetric if it is written in terms of a sum. These students simply looked for all “+”

signs to determine that a wavefunction is symmetric. They claimed that any wavefunction

written as terms added together is a symmetric wavefunction. By a similar logic, these same

students looked for a “-” sign to determine whether a given wavefunction is antisymmetric.
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Some claimed that any wavefunction that has at least one negative sign is antisymmetric. In

particular, their determination of whether the wavefunction is antisymmetric did not depend

on a complete antisymmetrization requirement and the number of terms that had a negative

sign in the wavefunction (which is a necessary but not sufficient condition). They merely

looked for the presence of at least one minus sign in the wavefunction to determine that the

wavefunction is antisymmetric. For example, in response to question Q4(a) and (b), one

interviewed student incorrectly claimed that the spin part of the wavefunction given by | ↑↑〉

or | ↓↓〉 is neither symmetric nor antisymmetric as “the wavefunction is not a sum so it can’t

be symmetric and there is not a minus sign, so it can’t be antisymmetric.” However, the spin

part of the wavefunction given by | ↑↑〉 or | ↓↓〉 is completely symmetric as the exchange

of the two particles results in the same wavefunction, thus there need not be a plus sign in

order for a wavefunction to be symmetric. Other students with this type of response used

similar reasoning when determining the symmetry of a wavefunction.

7.3.6 Difficulty realizing that a linear combination of the product of single-

particle wavefunctions can be a many-particle stationary state wavefunc-

tion

The many-particle wavefunction for a system of indistinguishable fermions must be com-

pletely antisymmetric and the many-particle wavefunction for a system of indistinguishable

bosons must be completely symmetric. In general, when expressing the many-particle wave-

function in terms of the single-particle wavefunctions, one must satisfy the symmetrization

requirement through a linear combination of the direct products of the single-particle wave-

functions for each particle. However, many students struggled with the fact that the com-

pletely symmetric/antisymmetric wavefunction consisting of an appropriately chosen linear

combination of the products of single-particle wavefunctions (with the coordinates permuted)

is a many-particle stationary state wavefunction.

Question Q5 was posed during the think aloud interviews to probe students’ proficiency

in determining whether the following completely symmetric and antisymmetric wave-

functions are stationary state wavefunctions for a system of two non-interacting identical
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particles (bosons and fermions, respectively, for Q5(a) and Q5(b)). Students were asked to

rewrite the following expressions on the right-hand side without any operators, i.e., perform

the operations:

Q5. Answer the following questions for a system of two non-interacting identical parti-
cles, whose single-particle wavefunctions satisfy the Time Independent Schrödinger Equation
(TISE), Ĥiψnj

(xi) = Enj
ψnj

(xi) for the ith particle with coordinate xi. Assume n1 6= n2

(a) (Ĥ1 + Ĥ2)[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)] =
(b) (Ĥ1 + Ĥ2)[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)] =

The correct answer to Q5(a) is

(Ĥ1 + Ĥ2)[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)]

= En1ψn1(x1)ψn2(x2) + En2ψn2(x1)ψn1(x2) + En2ψn1(x1)ψn2(x2) + En1ψn2(x1)ψn1(x2)

= (En1 + En2)[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)]

= E[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)],

in which E = En1 +En2 is the total energy of the two particle system. Thus, ignoring spin,

the completely symmetric wavefunction given in Q5(a) is a stationary state wavefunction for

the two-particle system (e.g., two spinless bosons). Similarly, the completely antisymmetric

wavefunction in Q5(b) is a stationary state wavefunction with total energy E = En1 +En2 for

the system of two non-interacting particles (e.g., two spinless fermions). Below, we discuss

some student difficulties with Q5 related to the linear combination of the products of the

single-particle states.

Overgeneralizing a system with no degeneracy to incorrectly claim that a lin-

ear combination of many particle stationary states can not be an energy eigen-

state for the many-particle system: Many students struggled with the fact that each

of the two terms in the wavefunction (products of single particle states) that are added or

subtracted in parts (a) and (b) of Q5 have the same total energy for the two-particle Hamil-

tonian Ĥ1 + Ĥ2 and hence the wavefunctions in parts (a) and (b) of Q5 satisfy the TISE for

the two-particle system. One interviewed student correctly stated that “a linear combination

of the ground state and first excited state for a one-dimensional infinite square well is not

a stationary state”. Then he incorrectly stated that “any linear combination (of stationary

states) cannot be a stationary state” and hence the wavefunctions in parts (a) and (b) in Q5
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do not satisfy the TISE when answering Q5 for the system of two non-interacting particles.

However, this student was incorrectly overgeneralizing the behavior of a one-particle system

in which there is no degeneracy in the single-particle energy spectrum to a case in which it

is not applicable. For systems that possess degeneracy in their energy spectrum, any linear

combination of energy eigenstates (stationary states) with the same energy is also an energy

eigenstate.

This student and others with this difficulty struggled to recognize that an appropriately

chosen linear combination of the products of the single-particle wavefunctions, e.g., those

in Q5, are valid two-particle stationary state wavefunctions. For example, each term in the

symmetric or antisymmetric many-particle stationary state wavefunction in Q5 (consisting

of products of the single particle wavefunctions) has the same energy En1 +En2 and therefore,

their linear combination is an appropriately symmetrized two-particle stationary state with

the same energy. However, each term in the two-particle state in Q5 (which is a basis

state in the product space) is not itself a two-particle stationary state wavefunction for

fermions or bosons since the two-particle stationary state wavefunction in these cases must

also satisfy the symmetrization requirement for the given system of identical particles. In

general, a many-particle stationary state wavefunction for bosons or fermions consists of a

linear combination of the products of single-particle stationary state wavefunctions which

are appropriately symmetrized for the given case.

Making computational mistakes and not identifying the inconsistency: Many

students struggled to show that an appropriately chosen linear combination as in Q5 is the

stationary state wavefunction for the many-particle system and satisfies the many-particle

TISE. For example, for question Q5, some students had difficulty realizing that the two-

particle wavefunction ψn1(x1)ψn2(x2) − ψn2(x1)ψn1(x2) is a unnormalized two-particle sta-

tionary state wavefunction for the system of two non-interacting fermions with Hamiltonian

Ĥ = Ĥ1 + Ĥ2 due to computational mistakes and how they interpreted their mistakes. For
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example, the following is a student’s written response to part (b) of question Q5:

(Ĥ1 + Ĥ2)[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)]

= Ĥ1[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)] + Ĥ2[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)]

= (En1 − En2)[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)]

+(En2 − En1)[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)]

= 0.

(7.9)

This was a very common mistake and led to incorrect inferences by students. Below, we

discuss incorrect reasoning related to interpretation of the computational mistake in Eq.

7.9.

Total energy of the system is zero even if the single-particle energies are not zero: Some

students struggled to reconcile that the total energy for a system of non-interacting identical

particles is the sum of the energies of all the individual particles. For example, if two

identical particles are in the symmetrized state given in Q5 (b), then the total energy must

be En1 +En2 , which cannot be zero unless En1 +En2 = 0. Students with this type of difficulty

claimed that the total energy is zero according to Eq. 7.9. Other students making this type

of computational mistake (as in Eq. 7.9) who stated that the total energy in the state in

Q5(b) is zero, initially questioned whether they had made a mistake as they had doubts that

the expression in Q5(b) yields zero. However, they often chose to trust their mathematical

manipulation rather than their intuition and claimed that obtaining zero in Q5 (b) implies

that the energy of the two-particle system is zero. This type of over-reliance on the results

of mathematical manipulation when a student’s answer does not match his/her intuition has

also been observed among introductory physics students [38]. The students with this type

of difficulty often did not reflect on whether they had made a mathematical mistake. In

other words, they did not engage in sufficient metacognition to evaluate the reasonability

and consistency of their answer after arriving at the result in Eq. 7.9.

Incorrectly claiming that if the energy of the many-particle system is zero then the wave-

function is not a many-particle stationary state wavefunction: Some interviewed students

who made the computational mistake described in Eq. 7.9 for Q5(b) by incorrectly stating

that (Ĥ1 + Ĥ2)[ψn1(x1)ψn2(x2) − ψn2(x1)ψn1(x2)] = 0 then incorrectly claimed that since
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Ĥ1 + Ĥ2 acting on the state yields zero then the state ψn1(x1)ψn2(x2) − ψn2(x1)ψn1(x2)

cannot be a many-particle stationary state wavefunction because the energy of the system

cannot be zero. However, the value of the energy of the many-particle system as determined

by the many-particle TISE in Eq. 7.9 does not dictate whether the given wavefunction is

or is not a stationary state wavefunction. In particular, a total energy of zero for the many-

particle system simply means the sum of single-particle energies is zero and does not mean

that the wavefunction is not a many-particle stationary state wavefunction.

Incorrectly claiming that an antisymmetric many-particle wavefunction cannot be a

many-particle stationary state wavefunction: Some students who obtained zero as in Eq.

7.9 incorrectly concluded that a symmetric linear combination of products of single particle

states is a valid many-particle stationary state wavefunction but that an antisymmetric linear

combination is not a valid many-particle stationary state wavefunction. For example, some

students who made the computational mistake in Eq. 7.9 in the context of solving Q5(b)

and obtained a zero on the right hand side correctly calculated the right hand side in Q5(a).

These students determined the energy of the two-particle system to be 2(En1 +En2) for the

symmetric linear combination ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2). They correctly stated that

the symmetric linear combination in Q5(a) is a many-particle stationary state wavefunction.

However, when they incorrectly determined that the right-hand side of the expression in

Q5(b) is zero, they then incorrectly claimed that this meant that the antisymmetric linear

combination ψn1(x1)ψn2(x2)−ψn2(x1)ψn1(x2) is not a possible stationary state wavefunction.

Some of these students then went on to incorrectly generalize their result in Eq. 7.9 and

claim that a linear combination of the products of single-particle wavefunction is a stationary

state wavefunction if the linear combination produces a completely symmetric wavefunction,

but is not a stationary state wavefunction if it produces a completely antisymmetric wave-

function for a system of identical particles. Some of the confusion after obtaining zero on the

right-hand-side was due to the fact that students had learned that two fermions cannot be

in the same single particle state, consistent with Pauli’s exclusion principle (due to the fact

that the overall fermionic wavefunction is completely antisymmetric). In particular, if one

tries to put two identical fermions in the same single particle state, one obtains zero for the

wavefunction, which is not possible consistent with Pauli’s exclusion principle. Some stu-
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dents overgeneralized this fact to conclude that two fermions cannot have an antisymmetric

wavefunction such as that in Q5(b) (even if they are in different single particles states) when

they obtained zero on the right hand side in Q5(b) due to algebraic mistakes.

7.4 METHODOLOGY FOR THE DEVELOPMENT AND VALIDATION OF

THE QUILT

7.4.1 Development and Validation of the QuILT

Based upon our research of student difficulties with fundamental concepts involving systems

of identical particles, we developed a QuILT that strives to build a consistent and coherent

knowledge structure while at the same time addressing the common student difficulties. The

development of the QuILT was guided by a cognitive task analysis [?] from both a physics

expert perspective and a novice (or student) perspective which consisted of the requisite

knowledge and skills necessary for a functional understanding of a system of identical par-

ticles. The initial analysis was conducted from an expert perspective in which the authors

outlined the required knowledge and skills and the order in which they are useful in solv-

ing problems. This was iterated with members of the physics faculty at the University of

Pittsburgh. However, in an effort of determine if there are additional areas student may

struggle with that are not predicted by the experts (due to expert blindspot), we conducted

individual student interviews.

The QuILT was iterated many times among the three researchers and at several points

during the development it was iterated with three physics faculty members at the University

of Pittsburgh to ensure that the content was appropriate and they agreed with the wording.

During this cyclical iterative process, faculty members provided feedback regarding the cur-

rent version of the QuILT that was incorporated in the next version of the QuILT. Once it

was agreed upon by the faculty that the content was clear and correct, the QuILT was admin-

istered to 14 graduate students in “think aloud” interviews to ensure that the wording was

unambiguous, the scaffolding was effective, and to further investigate any student difficulties.

During these semi-structured interviews, the students worked through the QuILT and pro-
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vided their rationale for each question in the pretest, the guided inquiry-based tutorial, and

the posttest. The students were not interrupted as they answered the questions and worked

through the tutorial. They were asked follow up questions or asked to clarify any unclear

statements only upon completion of the pretest, the entire section of the tutorial focusing

on these issues discussed here, or the posttest. After each interview, the student’s responses

were analyzed to measure the effectiveness of the tutorial and to determine whether there

were any changes that needed to be made to the QuILT. These changes were incorporated

in subsequent versions of the QuILT and in subsequent interviews. During each step in the

cyclically iterative process, the QuILT was adjusted to incorporate the faculty suggestions

as well as the students’ feedback to help with the common difficulties. After it was deemed

successful by faculty and students (who performed well in the posttest after engaging with

the QuILT in one-on-one administration), the QuILT was then administered to students in

various advanced quantum mechanics courses.

7.4.2 Structure of the QuILT

The QuILT strives to help students engage with active learning tasks by employing an

inquiry-based approach which requires students to build their own knowledge structure by

answering questions, analyzing the validity of given statements, and reflecting upon what

they have learned. It consists of three parts: the pretest, a guided inquiry-based tutorial,

and the posttest. The pretest is administered to the students after traditional, lecture-

based instruction covering systems of identical particles. The pretest is administered in class

during which the students completed it individually with no additional resources other than

what is provided in the pretest itself. After completing the pretest, the students are given

the tutorial and encouraged to work together in small groups in class. The tutorial can

be used to guide in-class discussion. The tutorial can also be administered as a self-paced

learning tool that the students work on as part of their weekly homework assignment. Upon

completion, students submit the tutorial for grading and are then given the posttest (similar

to the pretest). The posttest is administered in class as an individual assessment in which

the students are not permitted any additional resources beyond what is provided in the

posttest.

The QuILT incorporates guided inquiry-based learning sequences which consist of sev-
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eral questions, each building upon the previous question(s), that require students to take a

stand and actively engage with the them in the learning process. The QuILT also includes

hypothetical student conversations in which they must analyze each hypothetical student’s

statement to determine whether they are correct and explain why they agree or disagree

with each student. Many of the common student difficulties were used as a guide when con-

structing these hypothetical conversations and inquiry-based sequences with the goal being

that students would identify any inconsistencies in their reasoning and then use the provided

support to reconcile these inconsistencies. For example, there are a number of hypothetical

student conversations in which one or more students make statements reflecting these com-

mon difficulties and provide incorrect reasoning mirroring those given by actual students.

Other students in these hypothetical conversations disagree with their incorrect reasoning

and provide correct reasoning and often note an issue with the incorrect statement(s). As

the students work through the guided learning sequences in the QuILT, they must consider

each student’s argument and reflect upon their own reasoning in order to determine which

student(s) are correct. Similarly, the guided inquiry-based sequences often include portions

that strive to present the students with a contradiction between the answers to the ques-

tions in the sequence and their prior knowledge that they must then reconcile. Checkpoints

are provided at the end of each section that allow the students to go back to reconcile any

remaining difference between the correct reasoning and their own reasoning before moving

on to the next section.

7.4.3 Addressing Student Difficulties

In the guided inquiry-based learning sequences in the QuILT, students actively engage with

examples focusing on fundamental concepts for a system of identical particles regarding the

form of the Hamiltonian and many-particle wavefunction and identifying and generating ap-

propriate symmetric/antisymmetric wavefunctions in a given situation. Below are examples

from the QuILT of scaffolding support intended to help students with these concepts and

address some of the common difficulties.

Helping students realize that the Hamiltonian for a system of non-interacting
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identical particles should be expressed as a sum of operators that act on states

in the product space: In a guided inquiry-based learning sequence in the QuILT, the

students are asked to consider the following hypothetical student conversation regarding the

form of the Hamiltonian. After considering each hypothetical students’ statement, they are

asked whether they agree or disagree with each statement and to provide their reasoning for

doing so.

Student 1: In an infinite square well, we are only permitted to have one-particle in the well.

If the system has two non-interacting identical particles, we MUST have two infinite square

wells in order to place each particle.

Student 2: I disagree. We can have two non-interacting identical particles in the same

infinite square well. If the particles are non-interacting and confined to a well of width a,

the Hamiltonian for each particle in the product space will be Ĥi =
p̂2i
2m

+ V (xi), in which

V (xi) =

0 if 0 ≤ xi ≤ a

∞ otherwise

(i = 1, 2).

The Hamiltonian for the system of two non-interacting identical particles in the same well in

the product space is Ĥ = Ĥ1+Ĥ2 = Ĥ1⊗ Î2+ Î1⊗Ĥ2, where Ĥ1 and Ĥ2 are the Hamiltonians

in the subspaces for the individual particles.

Student 1 is incorrect and Student 2 is correct in the preceding conversation. By using an

explicit example that is familiar to the students and via additional scaffolding, the QuILT

strives to help students learn that the Hamiltonian for a system of non-interacting identical

particles should be expressed as a sum in the product space as in Eq. 7.2.

Helping students realize that each identical particle should have its own

unique coordinate: The QuILT strives to help students realize that each identical particle

should have its own unique coordinate even though each particle is indistinguishable from

all the other particles in the system. The following is an excerpt from a hypothetical student

conversation in the QuILT regarding whether the single-particle wavefunctions in a product

should have the same or different coordinates to properly specify a three-particle wavefunc-

tion for a system of three non-interacting identical particles. The students must state which

hypothetical student they agree with and why.
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Student 1: We must assign a different coordinate to each identical particle. The wavefunc-

tion will have terms such as ψn1(x1)ψn2(x2)ψn3(x3).

Student 2: No. I disagree with Student 1. When the particles are indistinguishable, we

can’t possibly distinguish their individual coordinates. So the wavefunction will have terms

such as ψn1(x)ψn2(x)ψn3(x)

Student 1 is correct and Student 2 is incorrect in the preceding conversation. A unique coor-

dinate should be assigned to each identical particle. Follow-up guided inquiry-based learning

sequences in the QuILT strive to help students focus on the fact that the symmetry require-

ment for the many-particle wavefunction is due to the indistinguishability of the particles

and that the indistinguishability is not represented by all particles having the same coordi-

nate (but by how the many-particle wavefunction is written). The students are later asked

to construct symmetric and antisymmetric many-particle wavefunctions for various systems

of identical particles with different coordinates for each particle and are asked to reflect upon

how those wavefunctions take into account the indistinguishability of the particles.

Helping students realize that each term in the many-particle stationary state

wavefunction should be expressed in terms of a direct product of single-particle

wavefunctions: In the QuILT, students are asked to construct many-particle stationary

state wavefunctions for different systems and provided scaffolding support to help them

realize that the many-particle stationary state wavefunction should be expressed in terms of

the direct product of the single-particle stationary state wavefunctions. For example, they

are asked to construct the many-particle stationary state wavefunction for a system of three

indistinguishable particles (identical fermions, identical bosons, and identical particles that

can be treated as distinguishable) in which the particles are in three different single particle

stationary states (as in Q2). They are also asked to construct the many-particle stationary

state wavefunction for a system in which two of the three indistinguishable particles are in

the same single particle stationary state.

Additionally, students are asked to explicitly show that the wavefunction Ψ(x1, x2) =

ψn1(x1) + ψn2(x2) cannot be a two-particle stationary state wavefunction for the Hamil-

tonian Ĥ = Ĥ1 + Ĥ2 for a system of two non-interacting identical particles. Students

reflect on whether the wavefunction given as the sum of the two single-particle wave-
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functions satisfies the time-independent Schrödinger equation for a many-particle system

ĤΨ(x1, x2) = EΨ(x1, x2). Q6 is an excerpt from a guided inquiry-based learning sequence

in the QuILT in which the students consider whether a wavefunction expressed as the sum or

the product of the single-particle states satisfies the TISE for a two-particle system. In par-

ticular, Q6 below asks students to write the right hand side without any operator, if possible,

in each case Q6(a)-Q6(f) and reason whether the wavefunction given in each case can be a

possible basis state for the many-particle stationary state wavefunction (i.e., symmetrization

of the wavefunction for fermions and bosons has not been accounted for in Q6):

Q6. Write the right-hand side without operators, if possible, in the following questions for a

system of two non-interacting identical particles, whose single-particle wavefunctions satisfy

the Time Independent Schrödinger Equation (TISE), Ĥiψnj
(xi) = Enj

ψnj
(xi) for the ith

particle with coordinate xi in the single-particle state given by nj. Assume n1 6= n2. If

it is not possible to write the right-hand side without operators and without encountering

difficulties or inconsistencies, explain why.

(a) Ĥ1[ψn1(x1) + ψn2(x2)] =

(b) Ĥ2[ψn1(x1) + ψn2(x2)] =

(c) (Ĥ1 + Ĥ2)[ψn1(x1) + ψn2(x2)] =

(d) Ĥ1[ψn1(x1)ψn2(x2)] =

(e) Ĥ2[ψn1(x1)ψn2(x2)] =

(f) (Ĥ1 + Ĥ2)ψn1(x1)ψn2(x2) =

Based upon your response, explain which of the wavefunctions in Q6 (a)-(f) can be used as

a basis state for the product space of a two-particle system.

If the wavefunction is expressed as the sum of the single-particle wavefunctions as in

Q6(a)-Q6(c), then it is not a possible basis state for writing a two-particle wavefunction

since the sum of the single-particle states is not a two-particle state in the product space.

For example, in Q6(a), in the term Ĥ1ψn2(x2), the single-particle Hamiltonian Ĥ1 can only

act on the wavefunction in the part of the Hilbert space corresponding to particle one,

but the wavefunction corresponding to particle one is “1.” However, “1” is not a possible

wavefunction since it is not normalizable. There are similar inconsistencies in Q6(b) and

Q6(c) when the sum of the two single-particle stationary states is considered.
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However, each of the wavefunctions expressed as the product of the single-particle wave-

functions in Q6 (d)-(f), satisfy the TISE for the two-particle system and these states can be

used as basis states for a two-particle system. For example, in Q6(f), the correct answer is

Ĥψn1(x1)ψn2(x2) = (Ĥ1 + Ĥ2)ψn1(x1)ψn2(x2)

= Ĥ1ψn1(x1)ψn2(x2) + Ĥ2ψn1(x1)ψn2(x2)

= (Ĥ1 ⊗ Î2)ψn1(x1)ψn2(x2) + (Î1 ⊗ Ĥ2)ψn1(x1)ψn2(x2)

= (Ĥ1ψn1(x1))(Î2ψn2(x2)) + (Î1ψn1(x1))(Ĥ2ψn2(x2))

= En1ψn1(x1)ψn2(x2) + ψn1(x1)En2ψn2(x2)

= En1ψn1(x1)ψn2(x2) + En2ψn1(x1)ψn2(x2)

= (En1 + En2)ψn1(x1)ψn2(x2)

= Eψn1(x1)ψn2(x2).

In the next guided inquiry-based learning sequence, students are asked to reflect upon

two hypothetical student conversations regarding which of the wavefunctions in Q6 are

possible basis states for two-particle wavefunctions. For example, below are excerpts from

a hypothetical student conversation regarding whether the basis states for the two-particle

stationary state wavefunction can be written in terms of the sum of the single-particle

wavefunctions. The students must agree or disagree with each hypothetical student and

explain their reasoning for doing so:

Student 1: The basis state that can be used to construct the two-particle stationary state

wavefunction for a system of two non-interacting identical particles can be written in terms

of the sum of the single-particle wavefunctions, Ψ(x1, x2) = ψn1(x1) + ψn2(x2).

Student 2: I disagree. The sum of the single-particle states ψn1(x1) + ψn2(x2) is not in

the Hilbert space of the two-particle system. When the two-particle Hamiltonian Ĥ1 + Ĥ2

acts on the state ψn1(x1) + ψn2(x2), there are inconsistencies. Consider terms of the type

Ĥ1ψn2(x2) when Ĥ1 + Ĥ2 acts on ψn1(x1) + ψn2(x2).

Student 1: Isn’t Ĥ1ψn2(x2) = 0?

Student 2: No. The single-particle Hamiltonian Ĥ1 only acts on the wavefunction corre-

sponding to particle one but for this wavefunction ψn2(x2) = 1 · ψn2(x2), the wavefunction
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corresponding to particle one is “1”, which is not normalizable.

Student 3: I agree with Student 2. The sum of the single-particle states ψn1(x1) + ψn2(x2)

cannot be a basis state for a two-particle system.

Students 2 and 3 are correct while Student 1 is incorrect in the preceding conversation.

Below is the subsequent hypothetical student conversation in which students are asked to

reflect upon whether the basis states for the two-particle stationary state wavefunction can

be written in terms of the product of the single-particle wavefunctions.

Student 1: The basis states used to construct the two-particle stationary state wavefunc-

tions for a system of two non-interacting identical particles can be written in terms of the

product of the single-particle wavefunctions, such as ψn1(x1)ψn2(x2).

Student 2: I agree with Student 1. Also, if we consider terms of the type ψn1(x1)ψn2(x2)

in the wavefunction for a system of two non-interacting identical particles, then it satisfies

the TISE, as follows:

Ĥψn1(x1)ψn2(x2) = (Ĥ1 + Ĥ2)ψn1(x1)ψn2(x2)

= (Ĥ1 ⊗ Î2)ψn1(x1)ψn2(x2) + (Î1 ⊗ Ĥ2)ψn1(x1)ψn2(x2)

= [Ĥ1ψn1(x1)][Î2ψn2(x2)] + [Î1ψn1(x1)][Ĥ2ψn2(x2)]

= [Ĥ1ψn1(x1)]ψn2(x2) + ψn2(x2)[Ĥ2ψn1(x1)]

= En1ψn1(x1)ψn2(x2) + ψn1(x1)En2ψn2(x2)

= En1ψn1(x1)ψn2(x2) + En2ψn1(x1)ψn2(x2)

= (En1 + En2)ψn1(x1)ψn2(x2)

= Eψn1(x1)ψn2(x2),

in which E = En1 + En2 .

Both Student 1 and Student 2 are correct in the preceding conversation. After working

through the inquiry-based learning sequences and hypothetical conversations, students are

provided checkpoints to help them reconcile their initial ideas with the correct reasoning.

One goal is to have students reflect upon their own responses to Q6 to determine that basis

states for a many-particle stationary state wavefunction cannot be expressed as the sum

of the single-particle wavefunctions as in Q6 (a)-(c). On the other hand, a many-particle
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Table 21: The percentage of students who expressed the Hamiltonian for a system of non-

interacting identical particles as the sum of the Hamiltonians for the individual particles for

the undergraduate (number of students N = 25) and graduate students (N = 30).

Hamiltonian as Undergraduate Graduate

Sum/ Students(%) Students(%)

Direct Product Pre Post Pre Post

Sum 88 100 83 90

Direct Product 0 0 10 3

wavefunction expressed as a product of the single-particle wavefunctions (e.g., with the basis

states in Q6(d) and Q6(f)) satisfy the TISE and are possible basis states for writing a many-

particle wavefunction. Students are provided further scaffolding support that strives to help

them identify the form of the possible basis states for writing the many-particle wavefunction,

e.g., that the basis states for the many-particle wavefunction must be expressed in terms of

the product and not the sum of the single-particle wavefunctions.

Helping students identify and generate symmetric/antisymmetric wavefunc-

tions for systems of identical bosons or fermions: The students work through several

guided inquiry-based sequences in which they are asked to generate symmetric wavefunctions

for a system of identical bosons and antisymmetric wavefunctions for a system of identical

fermions. They initially reflect upon cases in which they must only consider the spatial part

of the wavefunction (ignore spin part of the wavefunction completely) in order to help them

focus on the appropriate symmetrization requirements for fermions and bosons. Then, they

are asked to identify and construct both the spatial and spin parts of the many-particle

wavefunction for a system of non-interacting identical bosons or fermions. Students are pro-

vided checkpoints at the end of each section to allow them to reconcile any discrepancies

between their initial reasoning and the correct reasoning.

Helping students realize that certain linear combinations of the products of

the single-particle stationary state wavefunctions can be possible many-particle
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Table 22: The percentage of students who gave unique coordinates to each particle in Q2

for the undergraduate (number of students N = 25) and graduate students (N = 30).

Pre Post

Undergraduate 68 100

Graduate 57 90

stationary state wavefunctions: In the QuILT, students are asked to explicitly show that

an appropriately chosen linear combination of the products of single-particle stationary state

wavefunctions is a many-particle stationary state wavefunction. For example, as a follow up

question to Q6 in the inquiry-based sequence, students are asked to determine whether an

appropriately chosen linear combination of products of single-particle stationary states is a

possible many-particle stationary state wavefunction as in Q5. They are asked to explicitly

show that in a properly symmetrized wavefunction, a linear combination of the products of

the single-particle stationary state wavefunctions satisfies the TISE with the many-particle

Hamiltonian. The goal is to have students use their responses to questions Q6(d) and Q6(e)

to help them evaluate and reflect upon linear combinations of the products of the single-

particle states in this context (i.e., reflect upon an appropriately symmetrized wavefunction

for identical fermions or bosons). Students are asked to summarize in their own words what

they learned from these examples and are then provided with checkpoints which allow them

to compare their initial reasoning to the correct reasoning and reconcile any differences.

7.5 EVALUATION OF THE QUILT

Once the researchers determined that the QuILT was successful in one-on-one implementa-

tion using a think-aloud protocol, it was administered in graduate and upper-level under-

graduate classes. Both undergraduate and graduate students were given a pretest after tradi-

tional, lecture-based instruction in relevant concepts in DPT but before working through the
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Table 23: The percentage of students who expressed the many-particle stationary state

wavefunction as a sum or direct product in Q2 on the pretest and posttest for undergraduates

(number of students N = 25) and graduate students (N = 30).

Wavefunction as Undergraduate Graduate

Sum/ Students(%) Students(%)

Direct Product Pre Post Pre Post

Sum 16 0 10 0

Direct Product 76 100 73 100

tutorial. The pretests were not returned to the students after grading. The undergraduates

worked through the tutorial in class for two days and were asked to work on the remainder

of the tutorial as homework. The graduate students were given the tutorial as their only

homework assignment for the week. After working through and submitting the completed

tutorial, both groups were given the posttest in class. Students were given enough time in

class to work through the pretest and posttest.

Table 21 shows the precentage of students in response to Q1 who expressed the Hamil-

tonian for a system of non-interacting identical particles as the sum of the Hamiltonians

Ĥi of the ith particle (i = 1, 2, . . . , N). All of the undergraduate students and nearly all

of the graduate students answered Q1 correctly. These results are encouraging and suggest

that the QuILT is effective in addressing the difficulty students had with the form of the

Hamiltonian for the system of identical particles.

Table 22 shows the precentage of students in response to Q2 who labeled each parti-

cle with its own unique coordinate. These results are encouraging and suggest that the

QuILT is effective at addressing the difficulty students had with incorrectly associating the

indistinguishability of the particles with the same coordinate for all the particles.

Table 23 summarizes the pre/posttest results for Q2 and suggests that the QuILT was

helpful in determining that the many-particle wavefunction should be expressed as a sum

of the direct products (as opposed to a sum) of the single particle wavefunctions. Specifi-
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Table 24: The percentage of students who expressed the many-particle stationary state

wavefunctions in Q2 for a system of indistinguishable fermions as an antisymmetric linear

combination of the products of the single-particle state wavefunctions and a system of indis-

tinguishable bosons as a symmetric linear combination of the products of the single-particle

stationary state wavefunctions on the pretest and posttest for undergraduates (number of

students N = 25) and graduate students (N = 30).

System Undergraduate Graduate

Students(%) Students(%)

Pre Post Pre Post

Fermions 60 100 60 87

Bosons 56 96 57 97

cally, every student stated that the many-particle stationary state wavefunction is expressed

as the sum over permutation of the direct products of the single-particle stationary state

wavefunctions.

Table e shows the percentage of students who expressed the many-particle stationary

state wavefunction for a system of identical fermions as an antisymmetric linear combination

of the products of the single-particle stationary state wavefunctions in response to Q2 on the

pretest and posttest. Table e also shows the percentage of students who expressed the many-

particle stationary state wavefunction for a system of identical bosons as a symmetric linear

combination of the products of the single-particle stationary state wavefunctions in response

to Q2 on the pretest and posttest. These results suggests that the QuILT helped students

in constructing the many-particle stationary state wavefunctions for fermions and bosons as

linear combinations of the products of the single-particle stationary state wavefunctions that

satisfy appropriate symmetrization requirements. Specifically, over 87% of the graduate

students and 96% of the undergraduate students expressed the many-particle stationary

state wavefunctions in Q2 as terms in an appropriately symmetrized linear combination of

products of the single-particle wavefunctions.
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7.6 SUMMARY

Investigation of students’ understanding of the basics of a system of identical particles helped

to uncover many common student difficulties that were used a guide to develop and validate

a QuILT. The QuILT strives to help students develop a coherent understanding of funda-

mental concepts for a system of non-interacting identical particles, e.g., the form of the

Hamiltonian and the many-particle stationary state wavefunction for a system of identical

particles and how to generate many-particle stationary state wavefunctions that satisfy a

given symmetrization requirement. It strives to help students learn that the Hamiltonian

for a system of non-interacting identical particles can be expressed as a sum in the prod-

uct space and the many-particle stationary state wavefunction is expressed in terms of the

sum of direct products of the single particle stationary state wavefunctions in which each

indistinguishable particle should have its own unique coordinate. The QuILT strives to help

students determine the completely symmetric/antisymmetric many-particle stationary state

wavefunction by using all the permutations of the labels for the states or the coordinates in

the products of the single-particle states with the appropriate symmetrization requirement.

The QuILT strives to place the students in the role of active learners while providing an

appropriate level of scaffolding through a guided inquiry-based approach. The findings sug-

gest that the QuILT is effective in improving students’ understanding of the fundamental

concepts necessary for a functional understanding of the basics for a system of identical

particles.

7.7 ACKNOWLEDGMENTS

We thank the NSF for award PHY-1505460. We are also thankful to members of the De-

partment of Physics and Astronomy at the University of Pittsburgh, especially R. P. Devaty.

Additionally, we thank the students who helped with the investigation, including those who

were interviewed.

218



Chapter References

[1] G. Ireson, A multivariate analysis of undergraduate physics students’ conceptions of
quantum phenomena, Eur. J. Phys., 20, 193 (1999).

[2] R. Muller and H. Wiesner Teaching quantum mechanics on an introductory level, Am.
J. Phys. 70, 200 (2002).

[3] M. Wittmann, R. Steinberg, and E. Redish, Investigating student understanding of quan-
tum physics: Spontaneous models of conductivity,” Am. J. Phys., 70, 218 (2002).

[4] D. Zollman, S. Rebello, and K. Hogg, Quantum mechanics for everyone: hands-on activ-
ities integrated with technology, Am. J. Phys., 70, 252 (2002).

[5] D. Domert, C. Linder, and A. Ingerman, Probability as a conceptual hurdle to un-
derstanding one-dimensional quantum scattering and tunnelling, Eur. J. Phys., 26, 47
(2004).

[6] A. Kohnle et al. New introductory quantum mechanics curriculum, Eur. J. Phys., 35,
015001 (2014).

[7] A. Kohnle et al. Developing and evaluating animations for teaching quantum mechanics
concepts, Eur. J. Phys., 31, 1441 (2010).

[8] V. Dini and D. Hammer, Case study of a successful learner’s epistemological framings of
quantum mechanics, Phys. Rev. Phys. Educ. Res., 13, 010124 (2017).

[9] A. Johansson, Undergraduate quantum mechanics: lost opportunities for engaging moti-
vated students?, Eur. J. Phys., 39, 3 025705 (2018).

[10] F. M. Toyana and Y. Nogami, Comment on overcoming misconceptions in quantum
mechanics with the time evolution operator, Eur. J. Phys., 34, L73-5 (2013).

[11] L. M. Arevalo Aguilar, F. Velasco Luna, C. Robledo-Sanchez, and M. L. Arroyo-
Carrasco, The infinite square well potential and the evolution operator method for the
purpose of overcoming misconceptions in quantum mechanics, Eur. J. Phys., 35, 025001
(2014).

219



[12] S. Sharma and P. K. Ahluwalia, Diagnosing alternative conceptions of Fermi energy
among undergraduate students, Eur. J. Phys., 33, 883 (2012).

[13] E. Gire and C. Manogue, Making sense of operators, eigenstates, and quantum measure-
ments, Proc. Phys. Educ. Research Conf. http://dx.doi.org/10.1063/1.3680028, (2011).

[14] C.Singh, Student understanding of quantum mechanics, Am. J. Phys., 69, 885 (2001).

[15] C. Singh, Student understanding of quantum mechanics at the beginning of graduate
instruction, Am. J. Phys., 76, 277 (2008).

[16] G. Zhu and C. Singh, Surveying students’ understanding of quantum mechanics by using
peer instruction tools, Am. J. Phys., 80, 252 (2012).

[17] S. Lin and C. Singh, Categorization of quantum mechanics problems by professors and
students, Euro. J. Phys., 31, 57 (2010).

[18] E. Marshman and C. Singh, Framework for understanding student difficulties in quan-
tum mechanics, Phys. Rev. ST PER, 11, 020119 (2015).

[19] C. Singh and E. Marshman, Review of student difficulties in quantum mechanics, Phys.
Rev. ST PER, 11, 020117 (2015).

[20] A. Mason and C. Singh, Do advanced students learn from their mistakes without explicit
intervention?, Am. J. Phys., 78(7), 760 (2010).

[21] B. Brown, A. Mason, and C. Singh, Improving performance in quantum mechanics with
explicit incentives to correct mistakes, Phys Rev ST PER, 12, 010121 (2016).

[22] C. Singh, M. Belloni, and W. Christian, Improving students’ understanding of quantum
mechanics, Physics Today, 59 (8), 43 (2006).

[23] G. Zhu and C. Singh, Improving students’ understanding of quantum mechanics via the
Stern-Gerlach experiment, Am. J. Phys., 79, 499 (2011).

[24] G. Zhu and C. Singh, Improving students’ understanding of quantum measurement: II.
Development of research-based learning tools, Phys. Rev. ST PER, 8, 010118 (2012).

[25] G. Zhu and C. Singh, Improving student understanding of addition of angular momen-
tum in quantum mechanics, Phys. Rev. ST PER, 9, 010101 (2013).

[26] G. Zhu and C. Singh, Improving students’ understanding of quantum measurement: I.
Investigation of difficulties, Phys. Rev. ST PER, 8, 010117 (2012).

[27] E. Benitez Rodriguez, L. M. Arevalo Aguilar, and E. Piceno Martinez. A full quantum
analysis of the Stern–Gerlach experiment using the evolution operator method: analyzing
current issues in teaching quantum mechanics. Eur. J. Phys. 38 (2017).

220

http://aip.scitation.org/doi/abs/10.1063/1.3680028


[28] C. Singh, Interactive learning tutorials on quantum mechanics, Am. J. Phys., 76, 400
(2008).

[29] E. Marshman and C. Singh, Interactive tutorial to improve student understanding of
single photon experiments involving a Mach-Zehnder Interferometer, Eur. J. Phys., 37,
024001 (2016).

[30] Marshman and Singh, Interactive tutorial to improve student understanding of single
photon experiments involving a Mach-Zehnder Interferometer, Eur. J. Phys. 37, 024001
(2016).

[31] E. Marshman and C. Singh, Investigating and improving student understanding of the
probability distributions for measuring physical observables in quantum mechanics, Euro.
J. Phys. 38, 025705 (2017).

[32] E. Marshman and C. Singh, Investigating and improving student understanding of quan-
tum mechanics in the context of single photon interference, Phys. Rev. PER 13 010117
(2017).

[33] E. Marshman and C. Singh, Investigating and improving student understanding of the
expectation values of observables in quantum mechanics, Euro. J. Phys. 38, 045701
(2017).

[34] R. Sayer, A. Maries and C. Singh, A quantum interactive learning tutorial on the double-
slit experiment to improve student understanding of quantum mechanics, Phys Rev PER
13, 010123 (2017).

[35] C. Keebaugh, E. Marshman and C. Singh, Investigating and addressing student diffi-
culties with the corrections to the energies of the hydrogen atom for the strong and weak
field Zeeman effect Eur. J. Phys. 39, 045701 (2018); C. Keebaugh, E. Marshman and
C. Singh, Investigating and addressing student difficulties with a good basis for finding
perturbative corrections in the context of degenerate perturbation theory, Eur. J. Phys.
39, 055701 (2018).

[36] D. Griffiths, Introduction to quantum mechanics (Englewood Cliffs, NJ: Prentice Hall,
2005).

[37] M. T. H. Chi, in The Think Aloud Method: A Practical Guide to Modeling Cognitive
Processes, edited by Maarten W. van Someren, Yvonne F. Barnard, and Jacobijn A. C.
Sandberg (Academic Press, London, 1994), pp. 1-12.

[38] A. Maries, S. Lin, and C. Singh, Challenges in designing appropriate scaffolding to
improve students’ representational consistency: The case of a Gauss’ law problem, Phys.
Rev. PER, 13, 020103 (2017).

[39] L. S. Vygotsky Mind in society: The development of higher psychological processes.
(Cambridge, Mass.: Harvard University Press, 1978).

221



[40] D. Schwartz, J. Bransford, and D. Sears Efficiency and innovation in transfer, in Trans-
fer of learning from a modern multidisciplinary perspective (Portland, OR: Information
Age, 2005).

[41] J. Piaget Success and understanding (Cambridge, MA: Harvard University Press, 1978)

[42] C. Wieman, Comparative cognitive task analyses of experimental science and instruc-
tional laboratory courses, The Physics Teacher, 53, 349 (2015).

[43] R. Hake, Interactive engagement versus traditional methods: A six-thousand student
survey of mechanics test data for introductory physics courses, Am. J. Phys., 66, 64
(1998).

222



8.0 DEVELOPING AND EVALUATING A QUANTUM

INTERACTIVE LEARNING TUTORIAL ON A SYSTEM OF

IDENTICAL PARTICLES: WRITING THE MANY-PARTICLE

STATIONARY STATE WAVEFUNCTION (IGNORING SPIN)

8.1 INTRODUCTION

Quantum mechanics (QM) is a particularly challenging subject for upper-level undergraduate

and graduate students in physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. There have been a

number of research studies aimed at investigating student reasoning in QM [14, 15, 16, 17,

18, 19, 20, 21] and improving student understanding of QM [22, 23, 24, 25, 26]. In prior

investigations, our group has used the common student difficulties as a guide to help develop

research-based learning tools which include the Quantum Interactive Learning Tutorials

(QuILTs) [27, 28, 29, 30, 31, 32, 33].

However, there have been relatively few investigations into student difficulties with fun-

damental concepts involving a system of identical particles. Through researching students’

understanding and reasoning about a system of identical particles, we have found many

common student difficulties that can hinder the development of a consistent and coherent

knowledge structure pertaining to these concepts. Since human working memory while solv-

ing a problem is restricted to a limited number of “chunks” and the size of a chunk in the

working memory depends on the expertise of the individual who is solving the problem, Si-

mon’s framework of “bounded rationality and satisficing” posits that an individual will make

decisions while solving problems based upon their current level of expertise, which may not

be optimal [34]. Some students may be motivated to find an optimal solution to the QM

problems posed by searching for many possible pathways in the problem space. However, if
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students’ level of expertise is not sufficient to solve the problem on their own and they have

not been provided with appropriate guidance and scaffolding support, they may experience

cognitive overload and may not be able to determine an optimal solution to the problems

posed [34, 35].

Here, we discuss an investigation of student difficulties with concepts related to the many-

particle stationary state wavefunction for a system of non-interacting identical fermions or

bosons when the spin part of the wavefunction is ignored and how that research was used

as a guide in the development, validation, and in-class evaluation of a research-based QuILT

that makes use of student difficulties as a guide and strives to provide appropriate scaffolding

support to help students develop a good grasp of relevant concepts.

8.2 BACKGROUND

In nature, there are two general types of particles: fermions with a half-integer spin quantum

number (e.g., electrons and protons) and bosons with an integer spin quantum number (e.g.,

photons and mesons). A system of N identical particles consists of N particles of the

same type (e.g., electrons). For a system of identical particles in classical mechanics (e.g.,

five identical tennis balls), each particle can be distinguished from all the other particles.

In contrast, in quantum mechanics, identical particles are indistinguishable and there is no

measurement that can be performed to distinguish these identical particles from one another.

For example, if the coordinates of two identical particles are interchanged, there is no physical

observable that would reflect this interchange. To reflect the indistinguishability of these

identical particles and make the statistical properties of fermions and bosons consistent

with observations, the wavefunction for a system of identical fermions must be completely

antisymmetric and the wavefunction for a system of identical bosons must be completely

symmetric. Furthermore, one property that distinguishes these two types of particles is

that two or more bosons can occupy the same single-particle quantum state, but two or

more fermions can never occupy the same single-particle quantum state. The restriction for

fermions is known as the Pauli exclusion principle and is consistent with a system of fermions
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having a completely antisymmetric wavefunction [36].

Here we focus on the many-particle stationary state wavefunction that is a solution to

the Time-Independent Schrödinger Equation (TISE) for a system of non-interacting identical

particles. Unless otherwise stated, we will refer to the stationary state wavefunction as the

wavefunction. In order to determine the many-particle stationary state wavefunction for a

system of non-interacting identical particles, one must first solve the single-particle TISE.

The single-particle stationary state wavefunctions are solutions to the single-particle TISE,

i.e., Ĥiψnj
(xi) = Enj

ψnj
(xi) for the ith particle in the state ψnj

(xi). Next, one should con-

struct the many-particle stationary state wavefunction for a system of non-interacting iden-

tical particles that can be treated as distinguishable as the product of the single-particle sta-

tionary state wavefunctions (these product states can be used to construct the many-particle

stationary state wavefunction for identical fermions or bosons). Here, for convenience, we

will refer to all direct products of single-particle states as “basis states”, regardless of their

symmetry under exchange. Please note that for identical fermions, only antisymmetric lin-

ear combinations of these basis states are allowed, while for bosons only symmetric linear

combinations are allowed. For distinguishable particles, all basis states are allowed. The

final step is to appropriately symmetrize the many-particle stationary state wavefunction for

a system of non-interacting identical fermions or bosons using the product states.

If we have a system of two non-interacting electrons in which one electron is in the single-

particle state denoted by ψn1 and the other electron is in the single-particle state denoted

by ψn2 (assuming n1 6= n2), then the wavefunction for the system of two electrons must

be completely antisymmetric. Ignoring spin, the normalized two-particle wavefunction in

position representation is

Ψ(x1, x2) =
1√
2

[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)] (8.1)

in which x1 denotes the coordinates of the first electron and x2 denotes the coordinates of

the second electron. This completely antisymmetric wavefunction reflects the fact that one

electron is in the single-particle state ψn1 and the other electron is in the single-particle state

ψn2 , but we cannot say which electron is in which single-particle state. This wavefunction is

also consistent with Pauli’s exclusion principle. For example, for a system of two fermions

225



both in the same single-particle state ψn1 , the antisymmetric wavefunction (ignoring the

spin) would be

Ψ(x1, x2) =
1√
2

[ψn1(x1)ψn1(x2)− ψn1(x1)ψn1(x2)] = 0. (8.2)

Thus, there is no wavefunction for a system of two fermions in the same single-particle state

and such a state is not possible.

The completely symmetric wavefunction (ignoring the spin) for two bosons in which one

boson is in the single-particle state ψn1 and the other boson is in the single-particle state

ψn2 is

Ψ(x1, x2) =
1√
2

[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)] . (8.3)

Two bosons can also be in the same single-particle state. For example, the completely

symmetric wavefunction for two bosons in the single-particle state ψn1 is

Ψ(x1, x2) = ψn1(x1)ψn1(x2). (8.4)

8.3 METHODOLOGY FOR INVESTIGATING STUDENT DIFFICULTIES

Student difficulties with determining the many-particle stationary state wavefunction for a

system of identical fermions or bosons were first investigated using three years of data in-

volving responses to open-ended and multiple-choice questions administered after traditional

instruction in relevant concepts from 57 upper-level undergraduate students in a junior/senior

level QM course and 30 graduate students in the second semester of the graduate core QM

course. Additional insight concerning these difficulties was gained from responses of 14 stu-

dents during a total of 81 hours of individual “think-aloud” interviews [37]. Moreover, after

the development and validation of the QuILT, it was administered to 25 upper-level under-

graduates and 30 first-year physics graduate students in their respective QM courses. The

QuILT includes a pretest, the tutorial, and a posttest. Students were given the pretest after

traditional, lecture-based instruction on identical particles. The pretest was not returned to

the students. Students began working on the tutorial in class and completed the tutorial
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as their weekly homework assignment. The posttest was administered after the students

submitted the tutorial. Student responses on the pretest, tutorial, and posttest were ana-

lyzed to determine their understanding of concepts related to many-particle stationary state

wavefunctions for a system of identical fermions or bosons. If new difficulties were discovered

during the interviews or on the pretest, tutorial, or posttest, the difficulties were addressed

in later versions of the QuILT.

In all the questions in our investigation discussed here, the non-interacting identical

particles were restricted to one spatial dimension for convenience. Students were asked to

consider the wavefunction of the many-particle system ignoring the spin part of the wave-

function (we refer to these particles as “spinless”). Thus, we only consider the spatial part

of the wavefunction to simplify the problem and to help students focus on fundamental

concepts such as the symmetrization requirement, the number of terms in the many-particle

wavefunction, the correct normalization constant, and the fact that each particle should have

its own unique coordinate. In order to familiarize the students with the notation, they were

given that the wavefunction of a system of two non-interacting identical particles has terms

such as ψn1(x1)ψn2(x2), where ψn1(x1) and ψn2(x2) are the single-particle wavefunctions for

particles in states n1 and n2 and coordinates x1 and x2, respectively.

We will discuss student responses to some questions that were posed either as in-class

clicker questions or open-ended questions after traditional lecture-based instruction in rel-

evant concepts. Additional insight into these difficulties was gleaned during the individual

think-aloud interviews in which students were asked questions pertaining to these issues. To

probe whether students are able to identify and generate a many-particle stationary state

wavefunction, four questions Q1-Q4 were posed to the students. Questions Q1 and Q2 were

posed on the pretest following traditional lecture-based instruction and the posttest following

engagement with the QuILT on identical particles to 30 graduate students and 25 under-

graduate students. Questions Q3 and Q4 were given as clicker questions in an undergraduate

quantum mechanics course following instruction on identical particles to 17 undergraduate

students.

Question Q1 was intended to probe whether the students were able to generate a many-

particle wavefunction. Students were told that the particles are confined in one spatial

227



dimension and that ψn1 , ψn2 , etc. are the single-particle stationary state wavefunctions.

Q1. For a system of three non-interacting identical particles, write a properly normalized

three-particle stationary state wavefunction in position representation where all three

particles are in different single-particle states for the following three cases: indistinguishable

fermions, indistinguishable bosons, and identical particles treated as distinguishable. If there

is no such possible three-particle stationary state wavefunction for the given system of three

particles, state the reason. Ignore the spin of the particles and only consider the

spatial part of the wavefunction.

In Q1, for a system of three fermions, the completely antisymmetric three-particle

stationary state wavefunction in position representation (with n1 6= n2 6= n3) is

Ψ(x1, x2, x3) = 1√
6
[ψn1(x1)ψn2(x2)ψn3(x3)− ψn1(x1)ψn3(x2)ψn2(x3)

+ψn2(x1)ψn3(x2)ψn1(x3)− ψn2(x1)ψn1(x2)ψn3(x3)

+ψn3(x1)ψn1(x2)ψn2(x3)− ψn3(x1)ψn2(x2)ψn1(x3)].

(8.5)

In Q1, for a system of three bosons, the completely symmetric three-particle stationary

state wavefunction in position representation ( with n1 6= n2 6= n3) is

Ψ(x1, x2, x3) = 1√
6
[ψn1(x1)ψn2(x2)ψn3(x3) + ψn1(x1)ψn3(x2)ψn2(x3)

+ψn2(x1)ψn3(x2)ψn1(x3) + ψn2(x1)ψn1(x2)ψn3(x3)

+ψn3(x1)ψn1(x2)ψn2(x3) + ψn3(x1)ψn2(x2)ψn1(x3)].

(8.6)

One possible answer to Q1 for a system of identical particles that could be treated as dis-

tinguishable is

Ψ(x1, x2, x3) = ψn1(x1)ψn2(x2)ψn3(x3). (8.7)

Question Q2 was posed to determine whether students were able to identify that

two identical fermions cannot occupy the same single-particle state. Question Q2 is also

intended to probe whether students can generate a many-particle wavefunction for a system
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of identical bosons and identify the differences between a wavefunction for a system of

identical bosons and a system of particles that can be treated as distinguishable. Students

were told that the particles are confined in one spatial dimension and that ψn1 , ψn2 , etc. are

the single-particle stationary state wavefunctions.

Q2. For a system of three non-interacting identical particles, write a properly normalized

three-particle stationary state wavefunction in position representation when two of the

particles are in same single-particle state ψn1 for the following three cases: indistinguishable

fermions, indistinguishable bosons, and identical particles treated as distinguishable. If there

is no such possible three-particle stationary state wavefunction for the given system of three

particles, state the reason. Ignore the spin of the particles and only consider the

spatial part of the wavefunction.

In Q2, it is not possible for two fermions to occupy the same single-particle state ψn1

and therefore it is not possible to write a three-particle stationary state wavefunction. On

the other hand, it is possible to have a system of three bosons in which two of the bosons

are in the same single-particle state ψn1 . For Q2, the completely symmetric three-particle

stationary state wavefunction for identical bosons in position representation (with n1 6= n2) is

Ψ(x1, x2, x3) =
1√
3

[ψn1(x1)ψn1(x2)ψn2(x3)+ψn1(x1)ψn2(x2)ψn1(x3)+ψn2(x1)ψn1(x2)ψn1(x3)].

(8.8)

One possible many-particle wavefunction for a system of identical particles that could be

treated as distinguishable in Q2 is

Ψ(x1, x2, x3) = ψn1(x1)ψn1(x2)ψn2(x3) (8.9)

Question Q3 probes whether students can identify that the wavefunction for a system

of identical bosons must be symmetric and that more than one boson can occupy the same

single-particle state (in addition to whether the spin of a boson is an integer):
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Q3. Choose all of the following statements that are correct about bosons.

(1) The spin of a boson is an integer.

(2) The overall wavefunction of identical bosons can be anti-symmetric.

(3) Two bosons cannot occupy the same quantum state.

Only option (1) is correct for question Q3. Option (2) is incorrect because the overall

wavefunction for a system of identical bosons MUST be symmetric and option (3) is

incorrect because two or more bosons can occupy the same quantum state.

Question Q4 focuses on the wavefunction for a system of non-interacting identical

bosons in the ground state and first excited state of a one-dimensional infinite square well.

We were interested in investigating whether students could identify that the many-particle

wavefunction must be completely symmetric, regardless of whether it corresponds to the

ground state or the first excited state and that the given wavefunction is not completely

symmetric in the first excited state:

Q4. There are three identical spinless bosons in a one-dimensional infinite square well.

The single particle stationary states are ψn (n = 1, 2, 3, . . .). Choose all of the following

statements that are correct for the three-particle system. Ignore spin.

(1) The ground state of the three particle system is ψ1(x1)ψ1(x2)ψ1(x3).

(2) ψ1(x1)ψ1(x2)ψ2(x3) is a first excited state of the three particle system.

(3) The degeneracy of the first excited state is 3.

Only option (1) is correct for question Q4. Since the first excited state of the three-

boson system must be completely symmetric, option (2) is incorrect. In particular, the

three-boson first-excited state wavefunction consists of three terms. However, option (2)

only includes one term in the wavefunction corresponding to the system in the first-excited

state. Option (3) is incorrect in Q4 because the degeneracy of the first-excited state is one

since Ψ(x1, x2, x3) = 1√
3
[ψ1(x1)ψ1(x2)ψ2(x3) + ψ1(x1)ψ2(x2)ψ1(x3) + ψ2(x1)ψ1(x2)ψ1(x3)] is

the only state with the first-excited energy.
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Table 25: The percentages of graduate (N=30) and undergraduate (N=25) students who

correctly answered question Q1 for the given system of indistinguishable particles after tra-

ditional lecture-based instruction in relevant concepts.

Type of Particle Graduate (%) Undergraduate (%)

Fermions 33 24

Bosons 37 28

Distinguishable 40 40

8.4 STUDENT DIFFICULTIES

Many students struggled with concepts related to many-particle stationary state wavefunc-

tions for a system of indistinguishable bosons and fermions. For example, Tables 25 and

26 show that less than 55% of the students were able to generate the correct many-particle

wavefunctions in questions Q1 and Q2 correctly on the pretest for the QuILT after traditional

lecture-based instruction.

Written responses and interviews suggest that there are a number of underlying dif-

ficulties students had that interfere with their ability to write the completely symmet-

ric/antisymmetric many-particle stationary state wavefunction for a system of

Table 26: The percentages of graduate (N=30) and undergraduate (N=25) students who

correctly answered question Q2 for the given system of indistinguishable particles after tra-

ditional lecture-based instruction in relevant concepts.

Type of Particle Graduate (%) Undergraduate (%)

Fermions 40 44

Bosons 30 16

Distinguishable 53 36
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non-interacting indistinguishable particles. Below, we discuss some of these difficulties.

8.4.1 Difficulty accounting for the indistinguishability of the particles when

constructing a many-particle stationary state wavefunction for a system

of identical fermions or bosons

There is no measurement that can distinguish one fermion from another fermion in a system

consisting of all fermions of the same type (e.g., electrons). The same is true for a system

of identical bosons. Below we discuss difficulties students have with writing a wavefunction

or correctly identifying a wavefunction that accounts for the indistinguishability of identical

particles.

Using the same coordinate for each particle in the many-particle wavefunc-

tion: Some students did not realize that each identical particle must have a unique coordi-

nate and incorrectly generated a many-particle wavefunction in which the particles shared

the same coordinate. For example, in Q1, for both systems of indistinguishable fermions

or bosons, one student wrote ψ1(x)ψ2(x)ψ3(x). Many students with this type of difficulty

claimed that since there is no way to determine which particle is in which single-particle

state, there is no way to assign a distinct coordinate to each indistinguishable particle. For

example, one interviewed student incorrectly claimed that “we must use the coordinate x for

all the indistinguishable particles since we don’t know where each particle is.” In addition to

writing a many-particle wavefunction that did not satisfy the symmetrization requirements,

students with this type of response did not realize that each particle should have its own

unique coordinate.

Claiming that the wavefunction for a system of indistinguishable particles

is the same as that for a system of distinguishable particles since the particles

are non-interacting: Many students provided the same answer to Q1 and Q2 for a sys-

tem of indistinguishable particles and a system of identical particles that can be treated

as distinguishable. Table 27 summarizes the percentages of students who wrote the same

many-particle wavefunction for a system of identical fermions or bosons as they wrote for a

system of distinguishable particles.
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Table 27: The percentages of graduate (N=30) and undergraduate (N=25) students who

wrote the same many-particle wavefunction for the given system of identical particles as for

a system of distinguishable particles for Q1 and Q2 on the pretest after traditional lecture-

based instruction in relevant concepts.

Question Type of Particle Graduate (%) Undergraduate (%)

Q1
Fermions 20 24

Bosons 20 20

Q2
Fermions 3 16

Bosons 20 20

One interviewed student jotted down the same many-particle wavefunction for a system

of indistinguishable fermions, indistinguishable bosons, and a system of identical particles

that can be treated as distinguishable. When answering Q1 for a system of identical bosons,

this student stated “I don’t ... understand how distinguishability would change the wave-

function if the particles are non-interacting.” This student focused on the fact that the

system of identical particles was non-interacting and incorrectly assumed that all systems of

non-interacting particles have the same wavefunction. Individual discussions with students

suggest that students with this type of difficulty sometimes had difficulty differentiating be-

tween “non-interacting particles” vs. “non-overlapping wavefunctions”. In particular, the

fact that when the wavefunctions of different particles do not overlap, the particles can be

considered distinguishable was mistaken or overgeneralized to “non-interacting” particles

being distinguishable.

Not realizing that in some situations a system of indistinguishable bosons

could have the same many-particle wavefunction as a system of particles that

can be treated as distinguishable: It is possible for all bosons in a system of in-

distinguishable bosons to occupy the same single-particle state. For such a system of

indistinguishable bosons, the many-particle wavefunction would be the same as that of

a system of identical particles that can be treated as distinguishable. For example, if
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there are three indistinguishable bosons in the state ψn1 , the many-particle wavefunction

is Ψ(x1, x2, x3) = ψn1(x1)ψn1(x2)ψn1(x3). However, some students claimed that this could

not be the many-particle wavefunction for a system of indistinguishable bosons since it was

the same wavefunction as that for the system of particles that can be treated as distinguish-

able.

Overgeneralizing the case when a system of indistinguishable bosons has the

same many-particle wavefunction as a system of particles that can be treated as

distinguishable: Many students correctly identified that if all the bosons are in the same

single-particle state, the many-particle wavefunction is the same as that of a system of identi-

cal particles that can be treated as distinguishable. However, some students overgeneralized

this case to incorrectly claim that the wavefunction for a system of indistinguishable bosons

is always the same as a system of identical particles that can be treated as distinguishable

and there is no need to symmetrize the many-particle wavefunction. Many of these same

students claimed that one must only treat a system of identical particles as indistinguishable

and worry about appropriate symmetrization of the wavefunction if it is a system of identical

fermions. Students with this difficulty did not realize that a system of identical bosons must

always have a completely symmetric many-particle wavefunction and that it is only true for

the case when all the bosons are in the same single-particle state that the many-particle

wavefunction is the same as that for a system of identical particles that can be treated as

distinguishable.

8.4.2 Difficulty realizing that no wavefunction exists for a system in which two

or more fermions occupy the same single-particle state

In Q2(a), students were asked to construct the many-particle wavefunction for a system of

three fermions in which two of the fermions occupy the same single-particle state or state the

reason for why such a wavefunction does not exist. Below, we discuss difficulties students had

with identifying what type of particles obey Pauli’s exclusion principle, applying the Pauli’s

exclusion principle correctly, or not making connections between Pauli’s exclusion principle

and the completely antisymmetric many-particle state for a system of identical fermions.
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Not realizing Pauli’s exclusion principle applies to all fermions: Some students

knew that the Pauli exclusion principle applied to certain types of particle (e.g., electrons)

and forbids two particles from occupying the same single-particle state, but did not know it

applies to all fermions. For example, when answering Q2 for a system of indistinguishable

fermions, one interviewed student initially hesitated briefly then stated, “I know Pauli’s

exclusion principle applies to two electrons in the same state, but does it apply to all (of the

different types of) fermions? I will say it is not possible (for two fermions to be in the same

single-particle state), but I don’t know if that’s true for all fermions.” While this student

correctly answered that it is not possible to write a many-particle wavefunction for a system

in which two electrons are in the same single-particle state, he was unsure about the fact that

the Pauli exclusion principle applies to all fermions (electrons being one type of fermion).

Not applying Pauli’s exclusion principle correctly: In Q2(a), students are asked to

write the many-particle stationary state wavefunction for a system of three indistinguishable

fermions in which two are in the same single-particle state. Some students struggled to apply

the Pauli exclusion principle correctly. In particular, some students had difficulty in realizing

that even two out of three fermions cannot be in the same single-particle state (ignoring the

spin degrees of freedom) and no wavefunction exists for this system. For example, one

student did not provide a stationary state wavefunction in Q2(a) but instead stated: “...

But it is not possible (to write a many-particle wavefunction) for all three (fermions) to be

in the same (single-particle) state.” Further discussion suggests that this student incorrectly

reasoned that a system in which all the fermions are in the same single-particle state is the

only case that is prohibited, but did not realize that the Pauli’s exclusion principle forbids

any many-particle system in which two or more fermions occupy the same single-particle

state as in Q2. He struggled to realize that the Pauli exclusion principle applies to the

system in Q2(a) and can be used as justification as to why it is not possible to write the

many-particle stationary state wavefunction for a system in which two fermions are in the

same single-particle state.

Difficulty connecting the Pauli exclusion principle to the completely anti-

symmetric many-particle stationary state wavefunction for a system of indistin-

guishable fermions: During the interview, students were asked questions concerning the
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possibility of two or more fermions occupying the same single-particle state. Some of the

interviewed students quickly stated that two or more fermions could not occupy the same sin-

gle particle state because of the Pauli exclusion principle. Additionally, students were asked

if a possible wavefunction for a system of indistinguishable fermions could be such that two

fermions are in the same single-particle state. Again, most of the interviewed students elimi-

nated the wavefunctions in which two or more fermions were in the same single-particle state

as possible many-particle wavefunctions. For example, if one attempts to construct a system

of two indistinguishable fermions in the same single-particle state ψi, the resulting two-

particle stationary state wavefunction is Ψ(x1, x2) = 1√
2
[ψi(x1)ψi(x2) − ψi(x2)ψi(x1)] = 0.

Thus, there is no wavefunction for the system, which is consistent with Pauli’s exclusion

principle statement that no two fermions can be in the same quantum state. However, when

explicitly asked if Pauli’s exclusion principle is consistent with a completely antisymmetric

many-particle stationary state wavefunction, some students struggled in making any con-

nections between the two. For example, one interviewed student said “the Pauli exclusion

principle says that we can’t have two fermions, or more (than two fermions) in the same

state. Fermions must have an antisymmetric wavefunction. But I don’t really see how those

two things are related to one another.” This student viewed the Pauli exclusion principle and

the symmetrization requirement for a system of identical fermions as two disjointed facts.

He did not realize that a system with a completely antisymmetric wavefunction in which

two or more fermions are in the same single-particle state producing a wavefunction equal

to zero (i.e., there is no wavefunction for such a system) and Pauli’s exclusion principle,

which states that no two fermions can be in the same single-particle state, are intimately

connected.

Other students were able to apply the Pauli exclusion principle in one context but then

failed to apply it in a different situation. In one question in the interview, some of the

interviewed students correctly stated in response to one question that no two fermions can

be in the same single-particle state due to Pauli’s exclusion principle. However, these same

students later attempted to generate a completely antisymmetric many-particle wavefunction

for fermions in question Q2 (which asks about a system in which two of the fermions are in

the same single-particle state) as opposed to stating that such a wavefunction is not possible.
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In Q2, some of these students often went through the procedure to generate terms in the

many-particle stationary state wavefunction by permuting the labels for either the states or

the coordinates, but did not reflect upon the fact that the many-particle stationary state

wavefunction that they generated was zero, and thus not a possible many-particle stationary

state wavefunction. Such context dependence of student responses has also been found in

introductory physics and suggests that students are not experts in these concepts and their

expertise is evolving [38, 39, 40, 41, 42].

8.4.3 Difficulty with the symmetrization requirement for the many-particle sta-

tionary state wavefunction for a system of identical fermions or bosons

The many-particle stationary state wavefunction for a system of bosons must be completely

symmetric and the many-particle stationary state wavefunction for a system of indistinguish-

able fermions must be completely antisymmetric. However, many students did not realize

that the many-particle wavefunction for a system of indistinguishable particles must obey

these symmetrization requirements and/or struggled to correctly identify the symmetriza-

tion requirement for the system of identical particles given. Table 28 shows the percentages

of students who provided the same response to Q1 and Q2 for a system of indistinguishable

fermions and a system of indistinguishable bosons after traditional lecture-based instruction.

Below, we discuss two types of difficulties students had with the symmetrization requirement

for the many-particle stationary state wavefunction.

Not realizing that the wavefunction for fermions or bosons must obey a sym-

metrization requirement: Many students struggled to identify that the many-particle

wavefunction for a system of identical particles must obey a symmetrization requirement

or could not recognize whether a given wavefunction was appropriately symmetrized. For

example, in Q1 and Q2 for a system of identical fermions or bosons, some students incor-

rectly claimed that the many-particle stationary state wavefunction is expressed as the sum

of the single-particle stationary states (as opposed to having terms consisting of the product

of the single-particle states). For example, in Q1, some students incorrectly stated that the
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Table 28: The percentages of graduate (N=30) and undergraduate (N=25) students who

wrote the same many-particle wavefunction for a system of indistinguishable fermions as for

a system of indistinguishable bosons for Q1 and Q2 on the pretest after traditional lecture-

based instruction in relevant concepts.

Question Graduate (%) Undergraduate (%)

Q1 20 28

Q2 7 24

Table 29: The percentages of graduate (N=30) and undergraduate (N=25) students who

wrote a many-particle wavefunction that was neither completely symmetric nor completely

antisymmetric for a system of three indistinguishable fermions or bosons for Q1 on the

pretest after traditional lecture-based instruction in relevant concepts.

Question Type of Particle Graduate (%) Undergraduate (%)

Q1
Fermions 40 56

Bosons 23 48
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many-particle stationary state wavefunction for the system of three particles is

Ψ(x1, x2, x3) = ψn1(x1) + ψn2(x2) + ψn3(x3)

for at least one of the systems of identical particles and some gave this answer for all three

systems. In Q1, after traditional instruction, 25% of the undergraduates and 10% of the

graduate students provided a many-particle wavefunction written in terms of the sum of the

single-particle states. However, the sum of the single-particle states does not form a basis

state in the Hilbert space for the many-particle system.

Other students constructed a many-particle wavefunction that was neither symmetric nor

antisymmetric. Students with this type of difficulty often wrote the following three-particle

stationary state wavefunction for both a system of indistinguishable fermions and a system

of indistinguishable bosons for question Q1:

Ψ(x1, x2, x3) = ψn1(x1)ψn2(x2)ψn3(x3).

This many-particle stationary state wavefunction is neither symmetric nor antisymmetric.

Table 29 summarizes the percentages of students who constructed a many-particle wavefunc-

tion in Q1 that was neither symmetric nor antisymmetric. Many of these same students also

struggled to make a distinction between the wavefunction for a system of indistinguishable

bosons and a system of identical particles that can be treated as distinguishable.

Additionally, in question Q4, 71% of the undergraduate students selected the wavefunc-

tion ψ1(x1)ψ1(x2)ψ2(x3) as the first excited state of the given three particle system (option

(2)) as a correct answer when answering individually. These students were then given the

opportunity to discuss Q4 with their peers and answer the question again. This peer dis-

cussion did not help students identify option (2) as incorrect as 71% of the students still

selected option (2) as correct after peer discussion. The ineffectiveness of peer discussion

further suggests that students struggled with the concept that the wavefunction for the first

excited state of a system of three identical spinless bosons must be symmetrized. Interviews

suggest that students are more likely to overlook the symmetrization requirement for the

first-excited state as compared to the ground state. This may partly be an issue with the

cognitive load of having to consider a number of concepts for the first-excited state, such
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as determining the single-particle states that yield the correct energy for the many-particle

first-excited state, considering the type of identical particle and identifying the appropriate

symmetrization requirement. Since these students are still developing expertise in quantum

mechanics, they may not have enough cognitive resources to consider each of these concepts

and coordinate them appropriately while solving problems.

Difficulty identifying the correct symmetrization requirement: Some students

were unable to correctly identify which type of symmetrization requirement corresponded to

each type of particle. In Q1, some students attempted to generate a symmetric wavefunction

for a system of identical fermions. In Q1, 25% of the undergraduates and 23% of the gradu-

ate students wrote a completely symmetric wavefunction for a system of identical fermions.

For example, one student wrote the following as the many-particle stationary state wave-

function for a system of three fermions in Q1: ψ1(x1)ψ2(x2)ψ3(x3) + ψ1(x2)ψ2(x3)ψ3(x1) +

ψ1(x3)ψ2(x1)ψ3(x2). This student had difficulty writing all of the terms of the wavefunction

and also did not antisymmetrize the wavefunction for the fermions. Students also had dif-

ficulty with the fact that the many-particle wavefunction for a system of identical bosons

must be completely symmetric. For example, in Q3, 43% of the undergraduate students

incorrectly answered that the overall wavefunction of identical bosons can be antisymmetric

(option (2)). Even after peer discussion, 31% again incorrectly selected option (2) as correct.

It is possible that these students knew that the many-particle wavefunction for a system of

identical particles (bosons or fermions) must obey a symmetrization requirement, but could

not correctly identify which symmetrization requirement corresponds to which particle. For

example, one interviewed student in response to questions Q1 and Q2 stated that “there

is a symmetrization requirement for fermions and a different symmetrization requirement

for bosons.” But the student was unable to recognize the appropriate symmetrization re-

quirement in each case and wrote the same symmetric wavefunction for both a system of

indistinguishable fermions and indistinguishable bosons. In Q1, after traditional instruction,

10% of the graduate students wrote a completely antisymmetric many-particle wavefunction

for a system of identical bosons.
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8.4.4 Difficulty generating a completely symmetric/antisymmetric

wavefunction

A number of students were able to identify that the many-particle stationary state wavefunc-

tion for a system of fermions must be completely antisymmetric and that the many-particle

stationary state wavefunction for a system of bosons must be completely symmetric. How-

ever, many of these students had difficulty generating a completely symmetric wavefunction

for a system of indistinguishable bosons and a completely antisymmetric wavefunction for a

system of indistinguishable fermions.

Claiming that the single-particle wavefunctions in their product used to con-

struct basis states for many-particle wavefunctions do not commute: Some students

struggled to realize that the order in which the single-particle wavefunctions are written in

the product of the single-particle states (used to construct the many-particle basis states)

is irrelevant. For example, the following are all equivalent ways to express one of the ba-

sis states for a system of three non-interacting identical particles: ψn1(x1)ψn2(x2)ψn3(x3),

ψn1(x1)ψn3(x3)ψn2(x2), ψn2(x2)ψn1(x1)ψn3(x3), ψn2(x2)ψn3(x3)ψn1(x1),

ψn3(x3)ψn1(x1)ψn2(x2), and ψn3(x3)ψn2(x2)ψn1(x1). Some students focused on the order in

which the labels for the single-particles states or the coordinates appeared to determine

whether the products of the single-particle wavefunction were different. For example, when

comparing the terms ψn1(x1)ψn2(x2)ψn3(x3) and ψn1(x1)ψn3(x3)ψn2(x2), students with this

type of difficulty claimed that n2 and/or x2 appear in the second term in the first product and

in the third term in the second product, so these must be different basis states for the many-

particle wavefunction. For each of the terms ψn1(x1)ψn2(x2)ψn3(x3), ψn1(x1)ψn3(x3)ψn2(x2),

particle 1 denoted by the coordinate x1 is in the state ψn1 , particle 2 denoted by the coordi-

nate x2 is in the state ψn2 , and particle 3 denoted by the coordinate x3 is in the state ψn3 .

Thus, the terms ψn1(x1)ψn2(x2)ψn3(x3) and ψn1(x1)ψn3(x3)ψn2(x2) are equivalent and do not

represent distinctly different many-particle states. Students who struggled to realize that

the single-particle wavefunctions in a basis state in the product space commute often had

difficulty generating a many-particle wavefunction with the appropriate number of terms and

difficutly determining the normalization constant. For example, students with this type of
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difficulty often claimed that the many-particle wavefunction for a system of three identical

bosons in which all bosons are in the same single-particle state is

Ψ(x1, x2, x3) = 1√
3
[ψn1(x1)ψn1(x2)ψn1(x3) + ψn1(x2)ψn1(x3)ψn1(x1)

+ψn1(x3)ψn1(x1)ψn1(x2)]
(8.10)

or

Ψ(x1, x2, x3) = 1√
6
[ψn1(x1)ψn1(x2)ψn1(x3) + ψn1(x1)ψn1(x3)ψn1(x2)

+ψn1(x2)ψn1(x1)ψn1(x3) + ψn1(x2)ψn1(x3)ψn1(x1)

+ψn1(x3)ψn1(x1)ψn1(x2) + ψn1(x3)ψn1(x2)ψn1(x1)].

(8.11)

They struggled to realize that all these terms in the sum of both these expressions are

equivalent and can be simplified to a single term ψn1(x1)ψn1(x2)ψn1(x3). Additionally, they

struggled to determine the correct normalization constant. For example, the expression

Ψ(x1, x2, x3) = 1√
3
[ψn1(x1)ψn1(x2)ψn1(x3) + ψn1(x2)ψn1(x3)ψn1(x1)

+ψn1(x3)ψn1(x1)ψn1(x2)]
(8.12)

reduces to
√

3ψn1(x1)ψn1(x2)ψn1(x3) which is not the properly normalized many-particle

wavefunction for a system of three identical bosons in the single-particle state ψn1 .

Omitting a term in the many-particle wavefunction: A common mistake when

generating many-particle stationary state wavefunctions for identical fermions or bosons was

omitting at least one term in the wavefunction and thus not producing a completely symmet-

ric/antisymmetric wavefunction. This also created an obstacle when students determined

the normalization constant for the many-particle wavefunction. For example, in Q1 for a

system of fermions, one student wrote |ψ〉 = 1√
3
[|ψ1〉|ψ2〉|ψ3〉 − |ψ3〉|ψ2〉|ψ1〉 − |ψ2〉|ψ3〉|ψ1〉 −

|ψ3〉|ψ1〉|ψ2〉]. There are several mistakes in this student’s response, but here we point out

that the student omitted two of the terms in the many-particle wavefunction and the nor-

malization constant is incorrect. This student’s normalization constant is not the correct

value of 1√
6
, but it is also not consistent with the number of terms he generated.

Making a sign error in at least one of the terms of the many-particle

wavefunction for fermions: Another common mistake was writing a many-particle

wavefunction for a system of indistinguishable fermions with the correct number of terms

but making a mistake with the sign of at least one term. For example, in question Q1,
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one student wrote the three-particle stationary state wavefunction for a system of three

fermions in which all the fermions are in different single-particle states as

Ψ(x1, x2, x3) = 1√
6
[ψn1(x1)ψn2(x2)ψn3(x3)− ψn1(x1)ψn3(x2)ψn2(x3)

⊕ψn2(x1)ψn1(x2)ψn3(x3)	 ψn2(x1)ψn3(x2)ψn1(x3)

+ψn3(x1)ψn1(x2)ψn2(x3)− ψn3(x1)ψn2(x2)ψn1(x3)].

(8.13)

In this expression, the circled signs of the third and fourth terms are incorrect resulting in

a wavefunction that is not antisymmetric. This is a common mistake that students made

when generating terms in the many-particle stationary state wavefunction by starting with

one term and then generating all the other terms by interchanging either the labels for

the states (n1, n2, or n3) or the labels for the coordinates (x1, x2, or x3). For a system

of indistinguishable fermions, each time there is an interchange of labels, the new term is

multiplied by a minus sign. Thus, starting with the term ψn1(x1)ψn2(x2)ψn3(x3), all the

odd permutations of the labels for the states (or coordinates) yield a term with a minus

sign and all the even permutations of the labels yield a term with a plus sign. Once all

the permutations are determined, they are added together to produce the many-particle

stationary state wavefunction. Some interviewed students made mistakes when generating a

new term by not multiplying every term by a -1 when exchanging two labels. They made a

mistake with the sign of at least one of the terms by not carefully keeping track of the sign

of the previous term or not multiplying the new term by a -1.

Incorrectly switching both the labels for the coordinates and the states: When

determining the many-particle wavefunction for fermions or bosons starting from one prod-

uct space basis state, one is free to interchange either the labels for the states (n1, n2, or

n3) or the labels for the coordinates (x1, x2, or x3) until all the permuations are obtained.

However, interchanging BOTH the labels for the states and the coordinates will result in an

incorrect many-particle wavefunction. Some students began to find the many-particle wave-

function by switching the labels for the coordinates. After finding several permutations, they

interchanged the labels for the single-particle states which led to determining an incorrect
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many-particle wavefunction. Students did not check their wavefunction to make sure it was

completely symmetric or antisymmetric with respect to exchange of two particles.

Incorrectly applying a sign heuristic to determine a symmetric/antisymmetric

wavefunction: Some students incorrectly applied a heuristic in which they claimed that a

wavefunction is symmetric if the wavefunction is written in terms of a sum. These students

simply looked for all “+” signs to determine that a wavefunction is symmetric. In partic-

ular, they claimed that any wavefunction written as terms added together is a symmetric

wavefunction. By a similar logic, these same students looked for a “-” sign to determine

whether a given wavefunction is antisymmetric. They often claimed that any wavefunction

that has at least one negative sign is antisymmetric. Their determination of whether the

wavefunction is antisymmetric did not depend on the number of terms that were subtracted

in the wavefunction. They merely looked for the presence of at least one minus sign in the

wavefunction to determine that the wavefunction is antisymmetric.

One interviewed student who incorrectly applied this sign heuristic claimed that every

term in the many-particle wavefunction is negative with the exception of the starting term

and every term generated by permuting the labels is negative. For example, in Q1, this

student wrote ψ1(x1)ψ2(x2)ψ3(x3)− ψ1(x2)ψ2(x3)ψ3(x1)− ψ1(x3)ψ2(x1)ψ3(x2) as the many-

particle wavefunction for a system of fermions. In addition to not generating all the terms

of the many-particle wavefunction, he incorrectly subtracted each term found by permuting

the labels of the previous term. Here the student generated all the even permutations for the

coordinates and all the terms listed should have been added while all the terms representing

the odd permutations of the coordinates are missing. This student and others with this

type of difficulty struggled to realize that each new term generated by permuting the labels

should have the opposite sign of the term used to find the new term by exchanging two of

the labels.

When answering Q1 for a system of indistinguishable fermions, one interviewed student

said, “maybe use the alternating thingy.” This student proceeded to jot down the following

wavefunction:

Ψ(x1, x2, x3) = 1√
3!

[ψn1(x1)ψn2(x2)ψn3(x3)− ψn1(x2)ψn2(x3)ψn3(x1)

+ψn1(x3)ψn2(x1)ψn3(x2)].
(8.14)
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Here the wavefunction does not contain all six terms, but this student also produced only

terms that correspond to the even permutations of the coordinates x1, x2, and x3. All

the even permutations should have a positive sign, while the terms in the many-particle

wavefunction that correspond to the odd permutations of the coordinates x1, x2, and x3

should have a negative sign. This student was simply alternating the sign for each product

of the single-particle wavefunctions rather than using a systematic reasoning to determine

whether each product corresponded to an even or odd permutation of the labels.

8.4.5 Difficulty using the Slater determinant to write the many-particle sta-

tionary state wavefunction for a system of indistinguishable fermions

One method to help students write the completely antisymmetric wavefunction for a system

of indistinguishable fermions is using the “Slater determinant.” The method of the Slater

determinant is shown below for a system of three indistinguishable fermions in the states

ψn1 , ψn2 , and ψn3 .

1√
6

∣∣∣∣∣∣∣∣∣
ψn1(x1) ψn2(x1) ψn3(x1)

ψn1(x2) ψn2(x2) ψn3(x2)

ψn1(x3) ψn2(x3) ψn3(x3)

∣∣∣∣∣∣∣∣∣ =

1√
6
[ψn1(x1)ψn2(x2)ψn3(x3)− ψn1(x1)ψn3(x2)ψn2(x3)

−ψn2(x1)ψn1(x2)ψn3(x3) + ψn2(x1)ψn3(x2)ψn1(x3)

+ψn3(x1)ψn1(x2)ψn2(x3)− ψn3(x1)ψn2(x2)ψn1(x3)].

(8.15)

Students had difficulty writing the Slater determinant and using it properly to deter-

mine the many-particle stationary state wavefunction. In order to produce the completely

antisymmetric many-particle wavefunction, one must keep the labels for the states fixed for

a given row and the labels for the coordinates fixed for a given column (or vice-versa) and

ensure that each label appears along one column/row. However, some students changed both

the labels for the states and the labels for the coordinates in the rows/columns of the matrix.

For example, one student wrote the following when determining the three-particle station-

ary state wavefunction for a system of indistinguishable fermions in Q1 after traditional

instruction in relevant concepts:
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1√
6

∣∣∣∣∣∣∣∣∣
ψn1(x1) ψn2(x2) ψn3(x3)

ψn2(x2) ψn3(x3) ψn1(x1)

ψn3(x3) ψn1(x1) ψn2(x2)

∣∣∣∣∣∣∣∣∣ .
The above determinant produces terms such as ψn1(x1)ψn1(x1)ψn1(x1),

ψn2(x2)ψn2(x2)ψn2(x2), and ψn3(x3)ψn3(x3)ψn3(x3) which have the same label x1, x2 or x3 in

all terms in the product of the single-particle states which cannot be a basis state for the

product space of the three fermions.

Other students did not change either the label for the state or the coordinate for a given

row or column. For example, one student wrote the following for a system of fermions for

Q1 after traditional instruction in relevant concepts:

1√
6

∣∣∣∣∣∣∣∣∣
ψn1(x1) ψn1(x1) ψn1(x1)

ψn2(x2) ψn2(x2) ψn2(x2)

ψn3(x3) ψn3(x3) ψn3(x3)

∣∣∣∣∣∣∣∣∣ .
This student left the expression with the determinant as his final answer and did not expand

the determinant to produce all the terms of the three-particle stationary state wavefunction.

However, since the determinant of a matrix in which any rows/columns are identical is equal

to zero, the determinant expression written above produces no wavefunction. This student

and others with similar difficulty failed to identify issues involved with setting up the Slater

determinant and wrote a determinant in which two or more rows/columns are identical

resulting in a determinant of zero and no wavefunction.

8.5 METHODOLOGY FOR THE DEVELOPMENT AND VALIDATION OF

THE QUILT

8.5.1 Development and Validation of the QuILT

Based upon our research of student difficulties with fundamental concepts for systems of

identical particles, we developed a QuILT that attempts to build a consistent and coherent

knowledge structure while at the same time addressing the common student difficulties. The
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development and structure of the QuILT was inspired by several influential learning theories.

In particular, the QuILT strives to incorporate Vygotsky’s zone of proximal development

(ZPD) [43], Bransford and Schwartz’s preparation for future learning (PFL) framework [44],

and Piaget’s “optimal mismatch” [45].

The QuILT is inspired by Vygotsky’s ZPD in that it strives to give the students the

requisite knowledge and skill sets by providing students with appropriate scaffolding. The

desired tasks, which the students were often unable to perform successfully at the onset

of the QuILT, are addressed using a guided inquiry-based approach to build the students’

knowledge to the point that they develop self-reliance and are able to successfully complete

the same task on their own after working through the QuILT.

Additionally, the QuILT strives to incorporate Bransford and Schwartz’s PFL framework

with a special focus on instruction that is both innovative and efficient. They view innovation

and efficiency as two orthogonal components of instruction that must be balanced for effective

instruction. One interpretation of this framework is that innovation refers to presenting

students with novel tasks that are just beyond their current understand, allowing them

to grow and strive for more robust content knowledge. Efficiency has been viewed as a

characteristic of instruction that allows the students to practice what they are learning to

allow them to become skilled and develop a functional understanding of the material. The

framework suggests that instruction should attend to both aspects. The concern is that if

instruction only focuses on one of these aspects there is danger that the students will become

disconnected when instruction is too advanced beyond their current state (the instruction

is too innovative without allowing for efficiency to develop) or when the instruction focuses

too much on rote memorization and procedural redundancy (the instruction is too efficient

without the creative nature associated with innovation).

Finally, the QuILT was developed with Piaget’s “optimal mismatch” as a guiding princi-

ple. The key idea behind Piaget’s “optimal mismatch” is to allow students to discover their

mistakes on their own and allow them to correct the inconsistencies in their own knowledge

structures. To achieve this, the QuILT strives to scaffold student learning using a guided

inquiry-based approach which focuses on all the necessary skills and concepts to help the

students develop a functional understanding of a system of identical particles. It also ad-
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dresses and helps students reconcile many of the common difficulties students have with

this topic. In particular, the QuILT incorporates hypothetical student conversations and

sets of inquiry-based sequences designed to help them realize inconsistencies in their prior

knowledge, and provide scaffolding to help students resolve these inconsistencies.

The development of the QuILT was guided by a cognitive task analysis [46] from both

a physics expert perspective and a novice (or student) perspective which consisted of the

requisite knowledge and skills necessary for a functional understanding of a system of iden-

tical particles. The initial analysis was conducted from an expert perspective in which the

authors outlined the required knowledge and skills and the order in which they are useful in

solving problems. The analysis was iterated with members of the physics faculty at the Uni-

versity of Pittsburgh. However, in an effort of determine whether there are additional areas

students may struggle with that are not predicted by the experts (due to expert blindspot),

we conducted individual student interviews.

The QuILT was iterated many times among the three researchers and at several points

during the development it was iterated with three physics faculty members at the University

of Pittsburgh to ensure that the content was appropriate and they agreed with the word-

ing. During this cyclical iterative process, faculty members provided feedback regarding the

current version of the QuILT that was incorporated in the next version of the QuILT. Once

it was agreed upon by the faculty that the content was clear and correct, the QuILT was

administered to 14 graduate students in “think aloud” interviews to ensure that the wording

is unambiguous, the scaffolding is effective, and to be able to further investigate any stu-

dent difficulties. During these semi-structured interviews, the students worked through the

QuILT and provided their rationale for each question in the pretest, the guided inquiry-based

tutorial, and the posttest. The students were not interrupted as they answered the questions

and worked through the tutorial. They were asked follow up questions or asked to clarify

any unclear statements only upon completion of the pretest, the entire section of the tutorial

focusing on the issues discussed here, or the posttest. After each interview, the student’s re-

sponses were analyzed to measure the effectiveness of the tutorial and to determine whether

there were any necessary changes that needed to be made to the QuILT. These changes were

incorporated in subsequent versions of the QuILT and in subsequent interviews. During each
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step in the cyclically iterative process, the QuILT was adjusted to incorporate the faculty

suggestions as well as the students’ feedback to help with the common difficulties. After

it was deemed successful by faculty and students (who performed well in the posttest after

engaging with the QuILT in one-on-one administration), the QuILT was then administered

to students in various advanced quantum mechanics courses.

8.5.2 Structure of the QuILT

The QuILT strives to transform the students into active learners by employing an inquiry-

based approach which requires the students to build their own knowledge structure by an-

swering questions, analyzing the validity of given statements, and reflecting upon what they

have learned. The QuILT consists of three parts: the pretest, a guided inquiry-based tutorial,

and the posttest. The pretest is administered to the students after traditional, lecture-based

instruction covering systems of identical particles. The pretest is given in class during which

the students completed it individually with no additional resources other than what is pro-

vided in the pretest itself. After completing the pretest, they are given the tutorial and

encouraged to work together on it in small groups in class. The tutorial can be used to

guide in-class discussion. The tutorial can also be administered as a self-paced learning tool

that the students work on as part of their weekly homework assignment. Upon completion,

the students submit the tutorial for grading and are then administered the posttest. The

posttest is given in class as an individual assessment in which the students are not permitted

any additional resources beyond what is provided in the posttest.

The QuILT incorporates guided inquiry-based learning sequences which consist of several

questions, each building upon the previous question(s), that require the students to take a

stand and actively engage in the learning process. The QuILT also includes hypothetical

student conversations in which the students must analyze each hypothetical student’s state-

ment to determine whether they are correct and explain why they agree or disagree with

each student. Many of the common student difficulties were used as a guide when construct-

ing these hypothetical conversations and inquiry-based sequences with the goal being that

students would identify any inconsistencies in their reasoning and then use the provided

support to reconcile these inconsistencies. For example, there are a number of hypothetical

student conversations in which one or more students make statements reflecting these com-
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mon difficulties and provide incorrect reasoning mirroring those given by actual students.

Other students in these hypothetical conversations disagree with their incorrect reasoning,

provide correct reasoning and often note an issue with the incorrect statement(s). As the

students work through the QuILT, they must consider each student’s argument and reflect

upon their own reasoning in order to determine which student(s) are correct. Similarly, the

guided inquiry-based sequences often include excerpts that strive to present the students

with a contradiction between the answer to the questions in the sequence and their prior

knowledge that they must then reconcile. Checkpoints are provided at the end of each sec-

tion that allow the students to go back and reconcile any remaining difference between the

correct reasoning and their own reasoning before moving on the next section.

8.5.3 Addressing Student Difficulties

In the guided inquiry-based learning sequences in the QuILT, students actively engage with

examples focusing on fundamental concepts for the many-particle wavefunction for a system

of indistinguishable fermions or indistinguishable bosons. In particular, the QuILT strives

to help students (1) understand the symmetrization requirements for a system of indistin-

guishable fermions or bosons, (2) account for the indistinguishability of the particles by

symmetrizing the many-particle wavefunction, and (3) construct the many-particle wave-

function for a system of indistinguishable fermions or bosons. Below are some examples

from the QuILT that show scaffolding support intended to help students with these concepts

and address some of the common difficulties.

Helping students realize that the many-particle stationary state wavefunction

for a system of indistinguishable particles must obey a symmetrization require-

ment and that it is possible to write a many-particle stationary state wavefunc-

tion for both a bosonic and fermionic system in which all particles are in different

single-particle states: In the QuILT, students work through several guided inquiry-based

sequences in which they are asked to construct the many-particle wavefunction for a variety

of systems of identical particles and then are provided scaffolding that strives to help students

reconcile any differences between their initial responses and the correct reasoning. For exam-
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ple, they are asked to construct the many-particle wavefunction for a system of two identical

fermions and then generalize it to a system of three identical fermions. Students are asked

to determine the many-particle wavefunction for the system, if possible, and explain their

reasoning if it is not possible. After constructing the many-particle wavefunction, they are

asked to reflect upon the following conversation in which three hypothetical students discuss

how to construct the many-particle wavefunction for a system of two non-interacting iden-

tical fermions. The students must state whether they agree or disagree with each statement

and explain their reasoning for doing so.

Student 1: For a system of two non-interacting indistinguishable fermions, the wavefunc-

tion describing the system is ψn1(x1)ψn2(x2), in which ψn1(x1) and ψn2(x2) are the single-

particle wavefunctions for the two-particles.

Student 2: I disagree. If the system consists of two fermions, there is no way to distinguish

which fermion is in the state labeled by n1 and which is in the state labeled by n2. The

wavefunction must reflect this symmetry.

Student 3: I agree with Student 2. The wavefunction describing a system of non-interacting

indistinguishable fermions must be completely antisymmetric. Therefore, the normalized

wavefunction for a system of two non-interacting fermions must be 1√
2
[ψn1(x1)ψn2(x2) −

ψn1(x2)ψn2(x1)].

Student 1 is incorrect, while both Student 2 and Student 3 are correct in the preceding

conversation. In particular, Student 2’s statement is intended to help students who had

difficulty identifying that it is possible to write a many-particle wavefunction for a system

of identical fermions despite not knowing which fermion is in which single-particle state.

Student 3 then provides reasoning as to how one takes into account the indistinguishability

of the particles and provides a completely antisymmetric wavefunction for the two fermions.

Further scaffolding support is provided to help students reconcile their initial ideas with the

correct concepts. After working on a system of two identical fermions, students engage with

several guided inquiry-based sequences for a system of three identical fermions.

Later, students consider systems of identical bosons and work through similar guided

inquiry-based learning sequences that strive to help them learn to write the many-particle

wavefunction for a system of identical bosons such that the wavefunction is completely
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symmetric.

Helping students connect the Pauli exclusion principle to the completely an-

tisymmetric many-particle stationary state wavefunction for a system of indis-

tinguishable fermions: The QuILT strives to help students relate the Pauli exclusion

principle to the fact that the many-particle stationary state wavefunction for a system of

indistinguishable fermions must be antisymmetric. The following is an excerpt from a hy-

pothetical conversation that attempts to help students make this connection. The students

must decide whether they agree or disagree with Student 2’s statement and then explain

their reasoning.

Student 1: I thought the Pauli exclusion principle states that no two fermions can be in the

same single-particle state. How is that consistent with the wavefunctions being completely

antisymmetric?

Student 2: Let’s suppose we have two fermions in the same single-particle state. Then

n1 = n2 and the wavefunction would be Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2)−ψn1(x2)ψn2(x1)] = 0.

Thus Ψ(x1, x2) = 0 is not a possible wavefunction.

Student 2 is correct and her statement strives to help students reflect upon the fact that

a completely symmetric wavefunction for two fermions in the same single-particle state does

not exist, consistent with Pauli’s exclusion principle. They then work through a guided

inquiry-based sequence focusing on a system of three identical fermions that strives to help

them generalize the case for two identical fermions and learn that the completely antisym-

metric three-particle stationary state wavefunction is also consistent with the Pauli exclusion

principle.

Helping students determine all the terms in the symmetric/antisymmetric

wavefunction: The QuILT strives to help students develop systematic reasoning about

the number of terms to expect in a symmetric or antisymmetric wavefunction. For example,

the following hypothetical conversation is part of a guided inquiry-based learning sequence

which strives to help students connect the number of permutations of the labels for the

indistinguishable fermions to the number of terms in the antisymmetric many-particle

wavefunction. In the following hypothetical conversation, the students must state whether
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they agree or disagree with Student 2 and state their reasoning.

Student 1: When constructing the completely antisymmetric wavefunction for a system

of three indistinguishable fermions, how do I know that I have found all the possible

permutations?

Student 2: In general, for a system of N indistinguishable fermions, there are N ! permuta-

tions of the labels. For example, there are N ! permutations of the coordinates x1, x2, . . . , xN

or N ! permutations of the labels for the single-particle states ψn1 , ψn2 , . . . , ψnN
. The

normalization factor is 1√
N !

.

Further scaffolding is provided to help students reflect upon the fact that Student 2 is

correct. In particular, for a system of N indistinguishable fermions, there are N ! permu-

tations of the labels for either the states or the coordinates. Therefore, the antisymmetric

many-particle wavefunction will have N ! terms.

Helping students use the Slater determinant to write the many-particle sta-

tionary state wavefunction for a system of indistinguishable fermions: In the

QuILT, students are asked to construct the many-particle wavefunction for a system of two

fermions in which the fermions are in different single-particle states. They are later asked

to use the Slater determinant for this same system of two fermions and compare the wave-

function obtained using the Slater determinant method with the one obtained witthout it.

Additionally, the students are asked to construct the Slater determinant for a system of two

fermions in which the two fermions are in the same single-particle state and reflect upon

the implication of what they find to whether two fermions can be in the same single-particle

state. The Slater determinant for such a system is zero, consistent with Pauli’s exclusion

principle and there is no such wavefunction for this system. The following is a hypothetical

student’s statement from a learning sequence in the QuILT that strives to help students

make this connection in which the students must state whether they agree or disagree with

the student and why.

Student 1: The Slater determinant yields a many-particle wavefunction which is consistent

with the Pauli exclusion principle. For example, for a system of two fermions, if we put both
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fermions in the same state, then∣∣∣∣∣∣ ψn1(x1) ψn1(x2)

ψn1(x1) ψn1(x2)

∣∣∣∣∣∣ = ψn1(x1)ψn1(x2)− ψn1(x2)ψn1(x1) = 0,

which cannot be a possible wavefunction since zero represents the absence of a wavefunction.

This type of reflection strives to help students focus on how to set up the Slater determi-

nant correctly and also strives to help students recognize that an antisymmetric wavefunction

given by the Slater determinant is consistent with the Pauli exclusion principle for a system

of two identical fermions. Later the students engage with a guided inquiry-based sequence

which begins by asking them to construct the many-particle stationary state wavefunction

for a system of three identical fermions using the Slater determinant. Students are then pro-

vided further scaffolding support to help them reconcile their initial ideas with the correct

reasoning.

8.6 EVALUATION OF THE QUILT

Once the researchers determined that the QuILT was successful in one-on-one implemen-

tation using a think-aloud protocol, it was administered in graduate and upper-level un-

dergraduate classes. Both undergraduate and graduate students were given a pretest after

traditional instruction in relevant concepts for constructing the many-particle stationary

state wavefunction. The pretests were not returned to the students after grading. The un-

dergraduates worked through the tutorial in class for two days and were asked to work on

the remainder of the tutorial as homework. The graduate students were given the tutorial

as their only homework assignment for the week. After working through and submitting

the completed tutorial, both groups were given the posttest in class. Students were given

enough time in class to work through the pretest and posttest.

Table 30 summarizes the percentages of students who answered questions Q1 and Q2

correctly on the pretest and the posttest. In particular, on the pretest less than 30% of the

undergraduate and less than half of the graduate students answered Q1 or Q2(b) correctly for
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Table 30: The percentages of students who correctly answered questions Q1 and Q2 for the

given system on the pretest and posttest for graduate students (N = 30) and undergraduates

(number of students N = 25).

Question Type of Particle Graduate Undergraduate

Pre (%) Post (%) Pre (%) Post (%)

Q1(a) Fermions 40 60 24 72

Q1(b) Bosons 37 73 28 80

Q1(c) Distinguishable 40 80 40 97

Q2(a) Fermions 40 97 44 84

Q2(b) Bosons 37 70 16 76

Q2(c) Distinguishable 53 83 36 97

a system in which it is possible to write a many-particle wavefunction After working through

the QuILT, over 70% of the undergraduates and 60% of the graduate students answered all

the parts of Q1 and Q2 correctly on the posttest. The results are encouraging and suggest

that the QuILT is effective in helping students construct the many-particle stationary state

wavefunction for a system of identical fermions or bosons.

The open-ended questions Q1 and Q2 were graded using rubrics which were developed

by the researchers together. A subset of questions was graded separately by them. After

comparing the grading, they discussed any disagreements and resolved them with a final

inter-rater reliability of better than 95%. Table 31 shows the performance of undergraduate

and graduate students on the pretest and posttest. Table 31 also includes the average gain,

G, and normalized gain [47], g. The normalized gain is defined as (posttest percent - pretest

percent)/(100 - pretest percent). In particular, the undergraduates score less than 40% and

the graduate students scored less than 50% on all parts of Q1 and Q2 on the pretest. After

working through the QuILT, both undergraduate and graduate students scored over 80% on

all the parts of Q1 and Q2 on the posttest. The posttest scores are significantly better than

the pretest scores on all of these questions for both groups.
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Table 31: Average pretest and posttest scores, gains (G) and normalized gains (g) for gradu-

ate students (number of students N = 30) and undergraduate students (number of students

N = 25).

Graduate Students Undergraduate Students

Question Pre (%) Post (%) G (%) g Pre (%) Post (%) G (%) g

Q1(a) 45 93 +48 0.87 34 88 +54 0.82

Q1(b) 41 95 +54 0.92 35 93 +58 0.89

Q1(c) 44 96 +52 0.93 61 99 +38 0.97

Q2(a) 44 84 +40 0.71 37 97 +60 0.95

Q2(b) 30 95 +65 0.93 35 87 +52 0.80

Q2(c) 48 97 +49 0.94 49 99 +50 0.98

As a measure of retention, 12 of the upper-level undergraduate students in Year 2 of the

study were asked the following question on their final exam two months after engaging with

the QuILT:

Q5. Suppose we have two non-interacting particles, both of mass m, in a one-dimensional

infinite square well of width a (well is between x = 0 and x = a). Wrtie down the first-

excited state wavefunctions and energies for two-particle system (in terms of single-particle

wavefunction and ground state energy E0) if the particles are (a) distinguishable, (b) identical

bosons, and (c) identical femrions.

Of the 12 undergraduates, 10 answered the question completely correctly. One stu-

dent answered the question correctly for the fermion and boson case but incorrectly de-

termined that the first-excited energy for the system of two distinguishable particles was

E21 = (1+32)π2~2
2ma2

= 10π2~2
2ma2

= 10E0 and the corresponding first-excited state wavefunction was

2
a

sin(πx1
a

) sin(3πx2
a

). The other student who answered Q5 incorrectly omitted the energies for

the first-excited states for all three system and incorrectly claimed that the first-excited state

for a system of identical fermions was 1√
2
[ 2
a

sin(πx1
a

) sin(2πx2
a

)− 2
a

sin(πx2
a

) sin(2πx1
a

)] (but pro-

vided the correct response for the wavefunction for a system of two bosons or distinguishable
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particles). Apart from these mistakes by two of the students, all of the students provided

wavefunctions in response to Q5 that had the correct symmetrization and each particle had

a unique coordinate in the many-particle wavefunction for each system of identical particles.

These results are encouraging and suggest that the QuILT was effective in helping students

learn and retain these concepts.

8.7 SUMMARY

We described an investigation of student difficulties and the development and evaluation

of the corresponding research-validated QuILT that strives to help students develop a func-

tional understanding of the fundamental concepts involved in constructing the many-particle

stationary state wavefunction for a system of identical particles. Investigating student un-

derstanding of a system of identical particles helped to uncover many common student

difficulties. These difficulties were used as a guide to develop a research-based QuILT fo-

cused on helping students develop a robust understanding of many-particle stationary state

wavefunctions for a system of identical particles, e.g., helping them learn that the wavefunc-

tion for a system of fermions must be antisymmetric and the wavefunction for a system of

bosons must be symmetric and construct the many-particle stationary state wavefunction

for a system of identical particles (fermions or bosons) consistent with the symmetrization

requirements. Many of the student difficulties discussed here may be attributed in part to

students’ bounded rationality in that students are limited in their cognitive resources while

solving problems since they are still developing expertise in this area of QM [34]. Since

the paradigm of QM is novel, these issues become critical. The QuILT strives to place the

students in the role of active learners while providing an appropriate level of scaffolding sup-

port through a guided inquiry-based approach. The posttest results show that the QuILT

is effective in improving students’ understanding of fundamental concepts necessary for a

functional understanding of the many-particle stationary state wavefunction for a system of

identical particles.
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9.0 DEVELOPING AND EVALUATING A QUANTUM

INTERACTIVE LEARNING TUTORIAL ON A SYSTEM OF

IDENTICAL PARTICLES: WRITING THE MANY-PARTICLE

STATIONARY STATE WAVEFUNCTION (INCLUDING SPIN)

9.1 INTRODUCTION

Quantum mechanics (QM) is a particularly challenging subject for upper-level undergraduate

and graduate students in physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. There have been

a number of research studies aimed at investigating student reasoning in QM[15, 16, 17, 18,

19, 20, 21, 22, 23, 24] and improving student understanding of QM [25, 26, 27, 28, 29, 30, 31,

32, 33, 34]. For example, our group has focused on using the common student difficulties as a

guide to develop research-based learning tools which include Quantum Interactive Learning

Tutorials (QuILTs) [35, 36, 37, 38, 39, 40] which strive to improve student understanding of

different QM concepts.

However, there have been relatively few investigations into student difficulties with fun-

damental concepts involving a system of identical particles. Through researching students’

understanding and reasoning about a system of identical particles, we have found many

common student difficulties that can hinder the development of a consistent and coherent

knowledge structure pertaining to these concepts. Since human working memory while solv-

ing a problem is restricted to a limited number of “chunks” and the size of a chunk in the

working memory depends on the expertise of the individual who is solving the problem,

Simon’s framework of “bounded rationality” posits that an individual will make decisions

while solving problems based upon their current level of expertise, which may not be optimal

[41]. Some students may be motivated to find an optimal solution to the QM problems posed
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by searching for many possible pathways in the problem space. However, if students’ level of

expertise is not sufficient to solve the problem on their own and they have not been provided

with appropriate guidance and scaffolding support, they may experience cognitive overload

and may not be able to determine an optimal solution to the problems posed [41, 42].

Other students may be motivated to find an optimal solution but if the students’ level of

expertise is not sufficient and they have not been provided with the appropriate scaffolding

support, they may experience cognitive overload and not be able to determine the correct

solution to the problem posed [42].

Below, we start with a brief background of relevant concepts and then describe the

methodology for the investigation of student difficulties followed by the common difficul-

ties found. Then we describe the methodology for the development, validation and in-class

evaluation of the corresponding research-validated QuILT that strives to help students de-

velop a functional understanding of the fundamental concepts involving a system of identical

particles.

9.2 BACKGROUND

In nature, there are two general types of particles: fermions with a half-integer spin quantum

number (e.g., electrons and protons) and bosons with an integer spin quantum number (e.g.,

photons and mesons). A system of N identical particles consists of N particles of the

same type (e.g., electrons). For a system of identical particles in classical mechanics (e.g.,

five identical tennis balls), each particle can be distinguished from all the other particles.

In contrast, in quantum mechanics, identical particles are indistinguishable and there is no

measurement that can be performed to distinguish these identical particles from one another.

For example, if the coordinates of two identical particles are interchanged, there is no physical

observable that would reflect this interchange. Furthermore, one property that distinguishes

these two types of particles is that two or more bosons can occupy the same single-particle

quantum state, but two or more fermions can never occupy the same single-particle quantum

state. The restriction for fermions is known as the Pauli exclusion principle and is consistent
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with a system of fermions having a completely antisymmetric wavefunction [43]. To reflect

the indistinguishability of these identical particles and make the statistical properties of

fermions and bosons consistent with observations, the wavefunction for a system of identical

fermions must be completely antisymmetric and the wavefunction for a system of identical

bosons must be completely symmetric. Here we focus on the many-particle stationary state

wavefunction that is a solution to the Time-Independent Schrödinger Equation (TISE) for

a system of non-interacting identical particles. Unless otherwise stated, throughout, we will

refer to the stationary state wavefunction as the wavefunction.

Even though the spatial and spin parts of the wavefunction can be entangled in many situ-

ations, we will only consider many-particle wavefunctions Ψ(x1, x2, x3, . . . ,ms1 ,ms2 ,ms3 , . . .)

in one spatial dimension that can be written as the product of the spatial part of the wave-

function ψ(x1, x2, x3, . . .) and the spin part of the wavefunction χ(ms1 ,ms2 ,ms3 , . . .),

Ψ(x1, x2, x3, . . . ,ms1 ,ms2 ,ms3 , . . .) = ψ(x1, x2, x3, . . .)χ(ms1 ,ms2 ,ms3 , . . .),

in which xi denotes the spatial coordinate of the ith particle and msi denotes the z-component

of spin quantum number of the ith particle. The spatial part of the wavefunction of a system

of two non-interacting identical particles has terms such as ψna(xi)ψnb
(xj), where ψna(xi)

and ψnb
(xj) are the single-particle wavefunction for the ith particle with coordinate xi in the

state na and the single-particle wavefunction for the jth particle with coordinate xj in the

state nb, respectively.

If we have a system of two non-interacting identical fermions, the two-particle stationary

state wavefunction must be completely antisymmetric. There are two ways to construct

a completely antisymmetric wavefunction: the spatial part of the wavefunction could be

completely symmetric and the spin part of the wavefunction could be completely antisym-

metric or the spatial part of the wavefunction could be completely antisymmetric and the

spin part of the wavefunction could be completely symmetric. If we have a system of two

non-interacting identical bosons, the two-particle stationary state wavefunction must be com-

pletely symmetric. There are two ways to construct a completely symmetric wavefunction:

the spatial and spin parts of the wavefunction could both be completely symmetric or the
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spatial and spin parts of the wavefunction could both be completely antisymmetric.

When considering the spin part of the wavefunction for a single-particle, we will use the

notation |si, msi〉 (in which si and msi are the quantum numbers corresponding to the total

spin and z-component of the spin for the ith particle, respectively). The states |s1, ms1〉 are

eigenstates of Ŝ2
1 and Ŝ1z and the states |s2, ms2〉 are eigenstates of Ŝ2

2 and Ŝ2z. We will use

the following abbreviated notation for a spin-1/2 particle: | ↑〉1 = |s1, ms1〉 = |1/2, 1/2〉1
and | ↓〉1 = |s1, ms1〉 = |1/2, −1/2〉1 for electron 1 in the “spin up” and “spin down” state,

respectively, and | ↑〉2 = |s2, ms2〉 = |1/2, 1/2〉2, and | ↓〉2 = |s2, ms2〉 = |1/2, −1/2〉2 for

electron 2 in the “spin up” and “spin down” state, respectively.

When considering the spin part of the wavefunction for the two spin-1/2 particles in the

uncoupled representation in the product space, we will use the notation | ↑〉1| ↑〉2, | ↑〉1| ↓〉2,

| ↓〉1| ↑〉2, and | ↓〉1| ↓〉2 for the basis states.

We will also use the notation in the coupled representation |s, ms〉 in which the quantum

numbers s and ms correspond to the total spin angular momentum and the z component

of the total spin angular momentum including both spins, respectively (we will use the

notation that a state in the coupled representation will not have a subscript whereas states

in the uncoupled representation will have a subscript indicating the particle associated with

each spin state). For a system of two spin-1/2 particles (s1 = 1/2 ⊗ s2 = 1/2), the states

|s, ms〉 in the coupled representation are eigenstates of Ŝ2 and Ŝz where ~S = ~S1 + ~S2. For

a system of two spin-1/2 particles, the quantum number s = s1 + s2 = 1/2 + 1/2 = 1 or

s = |s1−s2| = |1/2−1/2| = 0. If the total spin quantum number is s = 1 then ms = −1, 0, 1

and the states in the coupled representation are given by |s,ms〉 = {|1, 1〉, |1, 0〉, |1, −1〉}.

If s = 0 then ms = 0 and the state in the coupled representation is given by |s,ms〉 = |0, 0〉.

We will use the following abbreviated notation for a complete set of normalized states for

a system of two spin-1/2 particles in the coupled representation |s ms〉 written in terms of

states in the uncoupled representation (|s1, ms1〉|s2, ms2〉):

|1, 1〉 = | ↑〉1| ↑〉2 = | ↑↑〉

|1, −1〉 = | ↓〉1| ↓〉2 = | ↓↓〉

|1, 0〉 = 1√
2

(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2) = 1√
2

(| ↑↓〉+ | ↓↑〉)

|0, 0〉 = 1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2) = 1√
2

(| ↑↓〉 − | ↓↑〉) .

(9.1)
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Eq. (9.1) shows that one feature of the basis states for two identical spin angular momenta

in the coupled representation, e.g., |1, 1〉, |1, −1〉, |1, 0〉, |0, 0〉 for two spin-1/2 particles,

is that they are either completely symmetric or completely antisymmetric with respect to

exchange of particles. For example, in the case of two spin-1/2 particles, | ↑↑〉, | ↓↓〉,
1√
2

(| ↑↓〉+ | ↓↑〉) are completely symmetric spin states of the two-fermion wavefunction and

often referred to as the “triplet” states. It is important to note that a linear combination

of these three symmetric spin states is also a completely symmetric spin state (i.e., C1| ↑↑

〉 + C2| ↓↓〉 + C3 (| ↑↓〉+ | ↓↑〉) in which C1, C2, and C3 are constants such that |C1|2 +

|C2|2 + |C3|2 = 1). The state 1√
2

(| ↑↓〉 − | ↓↑〉) is the completely antisymmetric normalized

spin state of the two-fermion wavefunction and often refered to as the “singlet” state.

The following are examples of completely antisymmetric normalized many-particle sta-

tionary state wavefunctions for a system of two spin-1/2 fermions in which the spatial part

of the wavefunction is antisymmetric and the spin part of the wavefunction is symmetric:

Ψ(x1, x2,ms1 ,ms2) = 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)}|1, 1〉

= 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)}| ↑〉1| ↑〉2

Ψ(x1, x2,ms1 ,ms2) = 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)}|1, −1〉

= 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)}| ↓〉1| ↓〉2

Ψ(x1, x2,ms1 ,ms2) = 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)}|1, 0〉

= 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)} 1√

2
{| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2}

Ψ(x1, x2,ms1 ,ms2) = 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)}{C1|1, 1〉+ C2|1, −1〉

+C3|1, 0〉}

= 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)}{C1| ↑〉1| ↑〉2 + C2| ↓〉1| ↓〉2

+C3
1√
2

(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2)}

in which C1, C2, and C3 are constants such that |C1|2 + |C2|2 + |C3|2 = 1.

The following are examples of completely antisymmetric normalized many-particle sta-

tionary state wavefunctions for a system of two spin-1/2 fermions in which the spatial part
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of the wavefunction is symmetric and the spin part of the wavefunction is antisymmetric

(assume n1 6= n2):

Ψ(x1, x2,ms1 ,ms2) = ψn1(x1)ψn1(x2)][|0, 0〉

= ψn1(x1)ψn1(x2)
1√
2
{| ↑〉1| ↓〉2 − | ↓〉1| ↑2〉}

Ψ(x1, x2,ms1 ,ms2) = 1√
2
{ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)}|0, 0〉

= 1√
2
{ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)} 1√

2
{| ↑〉1| ↓〉2 − | ↓1 | ↑〉2}.

For a spin-1 boson, |si,msi〉 = {|1, −1〉, |1, 0〉, |1, 1〉} for each particle. When considering

the spin part of the wavefunction for two spin-1 particles in the uncoupled representation in

the product space (3×3 = 9 dimensional), we will use the notation |1, 1〉1|1, 1〉2, |1, 1〉1|1, 0〉2,

|1, 1〉1|1, −1〉2, |1, 0〉1|1, 1〉2, |1, 0〉1|1, 0〉2, |1, 0〉1|1, −1〉2, |1,−1〉1|1, 1〉2, |1,−1〉1|1, 0〉2, and

|1,−1〉1|1, −1〉2 for the basis states.

For a system of two spin-1 particles (s1 = 1 ⊗ s2 = 1) the state |s, ms〉 in the coupled

representation is such that the quantum numbers are s = 2, 1, 0. If the total spin quantum

number is s = 2 then the corresponding ms = −2,−1, 0, 1, 2 and the states in the coupled

representation are given by |s, ms〉 = {|2, 2〉, |2, 1〉, |2, 0〉, |2, −1〉, |2, −2〉}. If s = 1

then the corresponding ms = −1, 0, 1 and the states in the coupled representation are given

by |s, ms〉 = {|1, −1〉, |1, 0〉, |1, −1〉}. If s = 0 then the corresponding ms = 0 and the

state in the coupled representation is given by |s,ms〉 = |0, 0〉. Table 32 lists the product

states for two spin-1 bosons in the coupled representation and equivalently in the uncoupled

representation. For example, the product state |2, 2〉 in the coupled representation can be

written as |2, 2〉 = |1, 1〉1|1, 1〉2 in the uncoupled representation. Exchanging the labels

1 and 2, we find no change in the spin state so this spin state is completely symmetric.

A completely symmetric spin state can be constructed by taking a linear combination of

symmetric states in Table 32. For example, the spin states in product space in the coupled

representation |2, 2〉, |2, 1〉, |2, 0〉, |2, −1〉, |2, −2〉 and |0, 0〉 are all symmetric, and so

the spin state C1|2, 2〉 + C2|2, 1〉 + C3|2, 0〉 + C4|2, −1〉 + C5|2, −2〉 + C6|0, 0〉 in which

|C1|2 + |C2|2 + |C3|2 + |C4|2 + |C5|2 + |C6|2 = 1 is also completely symmetric. Similarly,
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the product state in the coupled representation |1, 1〉 = 1√
2
(|1, 1〉1|1, 0〉2 − |1, 0〉1|1, 1〉2)

in the uncoupled representation and exchanging the labels 1 and 2 of the two particles

leads to a change in the overall sign. Thus, this spin state is completely antisymmetric.

A completely antisymmetric spin state can be constructed by taking a linear combination

of antisymmetric states in Table 32. For example, the spin states in product space in the

coupled representation |1, 1〉, |1, 0〉, and |1, −1〉 are all antisymmetric, and so the spin

state C1|1, 1〉 + C2|1, 0〉 + C3|1, −1〉 in which |C1|2 + |C2|2 + |C3|2 = 1 is also completely

antisymmetric.

The wavefunction for a system of identical bosons must be completely symmetric. The

spatial and spin parts of the many-particle stationary state wavefunction can either be both

symmetric or both antisymmetric.

The following are examples of completely symmetric many-particle stationary state wave-

functions for a system of two spin-1 bosons in which both the spatial and spin parts of the

wavefunction are symmetric:

Ψ(x1, x2,ms1 ,ms2) = ψn1(x1)ψn1(x2)|2, 2〉

= ψn1(x1)ψn1(x2)|1, 1〉1|1, 1〉2

Ψ(x1, x2,ms1 ,ms2) = ψn1(x1)ψn1(x2)|2, 1〉

= ψn1(x1)ψn1(x2)
1√
2
{(|1, 1〉1|1, 0〉2 + |1, 0〉1|1, 1〉2)}

Ψ(x1, x2,ms1 ,ms2) = ψn1(x1)ψn1(x2){C1|2, 2〉+ C2|2, 1〉+ C3|2, 0〉}

in which |C1|2 + |C2|2 + |C3|2 = 1

The following are examples of a completely symmetric many-particle stationary state

wavefunctions for a system of two spin-1 bosons in which both the spatial and spin parts of
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the wavefunction are antisymmetric (assume n1 6= n2):

Ψ(x1, x2,ms1 ,ms2) = 1√
2
ψn1(x1)ψn2(x2)− ψn1(x1)ψn2(x2)|1, 1〉

= 1√
2
ψn1(x1)ψn2(x2)− ψn1(x1)ψn2(x2)

1√
2
{|1, 1〉1|1, 0〉2

−|1, 0〉1|1, 1〉2}

Ψ(x1, x2,ms1 ,ms2) = 1√
2
ψn1(x1)ψn2(x2)− ψn1(x1)ψn2(x2){C1|1, 1〉+ C2|1, 0〉

+C3|1, −1〉}

in which |C1|2 + |C2|2 + |C3|2 = 1.

9.3 METHODOLOGY FOR INVESTIGATING STUDENT DIFFICULTIES

Student difficulties with determining the many-particle stationary state wavefunction for

a system of identical fermions or bosons were first investigated using three years of data

involving responses to open-ended and multiple-choice questions administered after tradi-

tional instruction in relevant concepts from 57 upper-level undergraduate students in a ju-

nior/senior level QM course and 30 graduate students in the second semester of the graduate

core QM course. Additional insight concerning these difficulties was gained from responses of

14 students during a total of 81 hours of individual “think-aloud” interviews [44]. Moreover,

after the development and validation of the QuILT, it was administered to 25 upper-level

undergraduates (12 in year 1 of the study and 13 in year 2 of the study) and 30 first-year

physics graduate students in their respective QM courses. The QuILT included a pretest,

the tutorial, and a posttest. Students were given the pretest after traditional lecture-based

instruction on identical particles. The pretest was not returned to the students. Students

began working on the tutorial in class and completed the tutorial as their weekly home-

work assignment. The posttest was administered after the students submitted the tutorial.

Student responses on the pretest, tutorial, and posttest were analyzed for understanding of

how to determine the many-particle stationary state wavefunction for a system of identical
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fermions or bosons. If new difficulties were discovered during the interviews or on the pretest,

tutorial, or posttest, the difficulties were addressed in later versions of the QuILT.

In all the questions in our investigation, the non-interacting identical particles were

restricted to one spatial dimension for convenience. The word “identical” in the tutorial

and in this paper refers to one type of particle (all particles with the same properties). For

example, all electrons are identical.

We discuss student responses to several questions that were posed either as in class

clicker questions or as open-ended questions on the pretest or posttest of the QuILT.

Additional insight into these difficulties was gleaned during the individual think-aloud

interviews in which students were asked questions pertaining to these issues. To probe

whether students are able to identify and generate a many-particle stationary state

wavefunction including spin, the following four questions were posed to the students.

Questions Q1 and Q2 were posed on the pretest following traditional instruction on concepts

involving a system of identical particles. Questions Q3, Q4, and Q5 were posed on the

posttest following completion of the QuILT. Q1, Q2, and Q4 were posed to 30 graduate

students and 25 undergraduate students (12 in Year 1 and 13 in Year 2). Q3 was posed

to 30 graduate students and 12 undergraduate students in Year 1. Q5 was posed to 13

undergraduate students in Year 2. Students were told that the particles are confined

in one spatial dimension and that ψn1 , ψn2 , etc., are the single-particle stationary state

wavefunctions. The graduate students were provided Eq. 9.1 which gives the spin states of

two spin-1/2 particles in the coupled representation |s, ms〉 written in terms of states in the

uncoupled representation. After finding that the graduate students struggled to determine

the spin state for two spin-1 bosons in Q3, the undergraduate students were provided

Table 32, which gives the spin states for two spin-1 particles in the coupled representa-

tion |s, ms〉 written in terms of states in the uncoupled representation, in addition to Eq. 9.1.

Q1. Write one possible spatial part of the wavefunction for two indistinguishable spin-1

bosons if the spin part of the wavefunction (expressed in terms of the uncoupled representa-

tion) is χ(ms1 ,ms2) = 1√
2
[|1 1〉1|1 0〉2 + |1 0〉1|1 1〉2]. If it is not possible to write a spatial

part of the wavefunction with the given spin part of the wavefunction, write “not possible”
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and state the reason.

The overall wavefunction for the two indistinguishable bosons must be completely sym-

metric. Since the spin part of the wavefunction given in Q1 is symmetric, the spatial part

of the wavefunction must also be symmetric to ensure that the overall wavefunction is com-

pletely symmetric. Two possible symmetric spatial states for the two spin 1 bosons are

ψ(x1, x2) = ψn1(x1)ψn1(x2)

and (assume n1 6= n2)

ψ(x1, x2) =
1√
2

[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)].

Q2. Write one possible spin part of the wavefunction for two electrons if the spatial part of

the wavefunction is ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)]. If it is not possible to

write a spin part of the wavefunction with the given spatial part of the wavefunction, write

“not possible” and state the reason.

The overall wavefunction for the two electrons must be completely antisymmetric. Since

the spatial part of the wavefunction given in Q2 is symmetric, the spin part of the wavefunc-

tion must be antisymmetric to ensure that the overall wavefunction is completely antisym-

metric. The antisymmetric spin state for the two spin-1/2 fermions is

χ(ms1 ,ms2) =
1√
2

[| ↑↓〉 − | ↓↑〉].

Q3. Write one possible spin part of the wavefunction for two indistinguish-

able bosons with spin 1 if the spatial part of the wavefunction is ψ(x1, x2) =

1√
2
[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)]. If it is not possible to write a spin part of the

wavefunction with the given spatial part of the wavefunction, write “not possible” and state

the reason.

The overall wavefunction for the two indistinguishable bosons must be completely sym-

metric. Since the spatial part of the wavefunction given in Q3 is symmetric, the spin part
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of the wavefunction must also be symmetric to ensure that the overall wavefunction is com-

pletely symmetric. There are six possible symmetric spin states for the two spin 1 bosons

given in the table in the appendix. One such spin state is

|2, 1〉 =
1√
2

(|1, 1〉1|1, 0〉2 + |1, 0〉1|1, 1〉2).

Q4. Write the spatial part of the wavefunction for two indistinguishable spin-1
2

fermions if

the spin part of the wavefunction is χ(ms1 ,ms2) = 1√
2
[| ↑↓〉 − | ↓↑〉]. If it is not possible to

write a spatial part of the wavefunction with the given spin part of the wavefunction, write

“not possible” and state the reason.

The overall wavefunction for the two indistinguishable fermions must be completely an-

tisymmetric. Since the spin part of the wavefunction given in Q4 is antisymmetric, the

spatial part of the wavefunction must be symmetric to ensure that the overall wavefunction

is completely antisymmetric. A symmetric spatial state for the two spin-1/2 fermions is

ψ(x1, x2) =
1√
2

[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)].

Q5. Write one possible spin part of the wavefunction for two indistinguishable bosons

with spin 1 if the spatial part of the wavefunction is ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2) −

ψn2(x1)ψn1(x2)] with n1 6= n2. If it is not possible to write a spin part of the wavefunc-

tion with the given spatial part of the wavefunction, write “not possible” and state the reason.

The overall wavefunction for the two indistinguishable bosons must be completely sym-

metric. Since the spatial part of the wavefunction given in Q3 is antisymmetric, the spin

part of the wavefunction must also be antisymmetric to ensure that the overall wavefunction

is completely symmetric. There are several possible antisymmetric spin states for the two

spin 1 bosons. For example, the following are examples of a completely antisymmetric spin

state:

|s, ms〉 = |1, −1〉 =
1√
2

(|1, 0〉1|1, −1〉2 − |1, −1〉1|1, 0〉2)
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and

|s, ms〉 = 1√
3
[|1, 1〉+ |1, 0〉+ |1, −1〉]

= 1√
6
[|1, 1〉1|1, 0〉2 − |1, 0〉1|1, 1〉2 + |1, 1〉1|1, −1〉2 − |1, −1〉1|1, 1〉2

|1, 0〉1|1, −1〉2 − |1, −1〉1|1, 0〉2].

Q5 was posed as an in-class clicker question to 16 undergraduate students in a ju-

nior/senior level undergraduate quantum mechanics course following instruction on identical

particles. The students first answered the question individually and then answered the

question a second time after discussing the question with their peers in small groups.

Q6. Choose all of the following statements that are correct about bosons.

(1) The spin of a boson is an integer.

(2) The overall wavefunction of identical bosons can be anti-symmetric.

(3) Two bosons cannot occupy the same single-particle state.

Only option (1) is correct for question Q6. Option (2) is incorrect because the overall

wavefunction for a system of identical bosons MUST be symmetric and option (3) is

incorrect because two or more bosons can occupy the same single-particle state.

Question Q7 was posed during the think aloud interview to investigate the students’

proficiency at identifying whether the spin part of a wavefunction is a symmetric or antisym-

metric wavefunction. The question focuses on a system of two spin-1/2 particles (s1 = 1/2,

s2 = 1/2). The students were familiar with the shorthand notation | ↑↑〉 = | ↑〉1| ↑〉2,

| ↑↓〉 = | ↑〉1| ↓〉2, | ↓↑〉 = | ↓〉1| ↑〉2, and | ↓↓〉 = | ↓〉1| ↓〉2.
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Q7. For the spin part of the wavefunction (spin state) of a two-particle system given be-

low, identify whether the spin state is symmetric, antisymmetric, or neither symmetric nor

antisymmetric with respect to exchange of the two particles. Explain your reasoning.

(a) | ↑↑〉

(b) | ↓↓〉

(c) | ↑↓〉

(d) 1√
2

(| ↑↓〉+ | ↓↑〉)

(e) 1√
2

(| ↑↓〉 − | ↓↑〉)

In Q7, options (a), (b), and (d) are symmetric spin states (triplet states) since exchanging

the two particles results in the same state. Option (e) in Q7 is an antisymmetric spin state

(singlet state) since exchanging the two particles results in the original state multiplied by

-1. Option (c) in Q7 is a neither a symmetric nor antisymmetric spin state.

Additionally, students were asked to consider a Helium atom as a system and another

system of identical particles made up entirely of Helium atoms. They had learned that

the wavefunction for the two electrons in a Helium atom must be completely antisymmetric.

They had also learned that a system of identical Helium atoms could be a system of identical

bosons or fermions depending upon the total spin quantum number of the composite system.

In particular, in one case, they considered a system of identical Helium-3 (3He) atoms, which

is an example of a system of identical fermions. In another case, they considered a system of

identical Helium-4 (4He) atoms. Since each 4He atom consists of an even number of fermions

(two protons, two neutrons, and two electrons), it is a boson. A system of N identical 4He

atoms is an example of a system of N identical bosons.

9.4 STUDENT DIFFICULTIES

Many students struggled to recgonize and generate the completely symmetric many-particle

wavefunction for a system of indistinguishable bosons in question Q1 and the completely anti-

symmetric many-particle wavefunction for a system of indistinguishable fermions in question
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Q2. Table 33 summarizes the percentage of students who answered questions Q1 and Q2

correctly for a system of two indistinguishable fermions and bosons on the pretest to the

QuILT after traditional instruction.

There are number of underlying difficulties students had that interfered with their ability

to write the completely symmetric/antisymmetric many-particle stationary state wavefunc-

tion for a system of indistinguishable particles. Some of these struggles are due to difficulties

with concepts related to writing the many-particle wavefunction for a system of identical

particles.

9.4.1 Difficulty applying Pauli’s exclusion principle correctly for a system of

identical fermions

Some students struggled to realize that Pauli’s exclusion principle states that no two fermions

can be in the same single-particle state. Students with this type of difficulty often incorrectly

overgeneralized the Pauli exclusion principle to state that no two fermions can occupy the

same spatial state or the same spin state, as opposed to two fermions cannot be in the

same single-particle state made up of both the spatial and spin states. Often students had

difficulty realizing that two fermions can be in the same spatial state if they are in different

spin states or vice-versa, so that the overall wavefunction is antisymmetric. During the

interview, several students incorrectly applied the Pauli exclusion principle when considering

a separable many-particle stationary state wavefunction that can be expressed as the direct

product of the spatial and the spin parts of the wavefunction. For example, one interviewed

student correctly stated that no two fermions can be in the same single-particle state, but

then went on to incorrectly claim that “this means two fermions could not exist in the same

single-particle stationary state (pointing to a case in which they were in the same spatial

state).” This student and others with this type of difficulty often had difficulty realizing that

if the two spin-1/2 fermions are in different spin states then it is possible for the two fermions

to be in the same single-particle spatial state, i.e. ψn1(x1)ψn1(x2) is a possible spatial part

of the two-fermion system.

By a similar argument, several students incorrectly claimed that two fermions could not
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exist in the same spin state as this too would violate the Pauli exclusion principle. For

example, some interviewed students claimed that | ↑↑〉 and | ↓↓〉 were not possible spin

states for the system of two spin-1/2 fermions regardless of whether the two fermions were

in different single-particle spatial states. These students did not consider the fact that the

two fermions could be in different spatial states producing distinct single-particle states for

the two fermions.

9.4.2 Difficulty with the symmetrization requirements for the overall many-

particle stationary state wavefunction due to the fact that it is the product

of the spatial and spin parts of the wavefunction

Nature demands that the many-particle wavefunction for a system of indistinguishable

bosons be completely symmetric and the many-particle wavefunction for a system of in-

distinguishable fermions be completely antisymmetric. Therefore, in order to identify and

generate a many-particle wavefunction for a system of indistinguishable particles, students

must be able to determine a completely symmetric/antisymmetric wavefunction involving

both spatial and spin degrees of freedom. However, some students struggled to correctly

identify whether the spatial part of the wavefunction or the spin part of the wavefunction is

symmetric or antisymmetric when considering each part of the wavefunction separately. As

a result, students with this difficulty often were not able to correctly identify the symmetry

of the overall wavefunction that included both the spatial and spin parts of the wavefunction.

Students also had difficulty identifying that the many-particle wavefunction for a system

of identical bosons must be completely symmetric. For example, in Q6, 43% of the under-

graduate students incorrectly answered that the overall wavefunction of identical bosons can

be anti-symmetric (option (2)). Even after peer discussion, 31% again incorrectly selected

option (2) as correct. Written explanations and interviews suggest that these students knew

that the many-particle wavefunction for a system of identical particles (bosons or fermions)

must obey a symmetrization requirement, but could not correctly identify which symmetriza-

tion requirement corresponds to which particle. In Q1 and Q3, some students attempted

to generate a completely antisymmetric wavefunction for a system of identical bosons. In
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Q2 and Q4, some students generated a completely symmetric wavefunction for a system of

identical fermions. For example, one student wrote the following completely antisymmetric

spin part of the many-particle stationary state wavefunction for a system of two bosons in

Q3: |1, 1〉 = 1√
2
(|1, 1〉1|1, 0〉2− |1, 0〉1|1, 1〉2). The product of the given symmetric spatial

part of the wavefunction and the antisymmetric spin part of the wavefunction produces a

completely antisymmetric wavefunction for the system of two bosons. Table 34 summarizes

the percentage of students who provided a part of the wavefunction with the correct sym-

metry in Q1 and Q2 on the pretest (although the not necessarily a correct wavefunction as

given in Table 33). Additionally, 67% of the undergraduates and 27% of graduate students

incorrectly provided a symmetric spin part of the wavefunction in Q2 resulting in an overall

symmetric many-particle wavefunction for the two electrons.

Identifying the correct symmetrization requirement for the overall many-particle sta-

tionary state wavefunction is challenging due in part to the fact that one must consider the

symmetry of both the spatial and spin parts of the wavefunction before determining the

overall symmetry of the many-particle stationary state wavefunction. Table 35 summarizes

all the possible combinations of the spatial and spin parts of the wavefunction to produce

an overall many-particle stationary state wavefunction with the appropriate symmetrization

requirement. This can be confusing for students who simply memorized the appropriate

combinations of the spatial and spin parts of the wavefunction rather than developing an

understanding of how to determine the symmetry of a wavefunction comprised of two sep-

arate parts. Below, we discuss specific difficulties students had when attempting to write a

completely symmetric/antisymmetric many-particle stationary state wavefunction.

Difficulty identifying that the spatial and spin parts of wavefunction can both

be antisymmetric for a system of identical bosons: Some students had difficulty

realizing that both the spatial and spin parts of the wavefunction can be antisymmetric

to produce an overall symmetric wavefunction for a system of identical bosons. A number

of students correctly reasoned that the overall many-particle wavefunction for a system of

indistinguishable bosons must be completely symmetric. However, some of these students

went on to incorrectly claim that both the spatial part and spin part of the wavefunction

must be symmetric. These students did not realize that a many-particle stationary state
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wavefunction in which both the spatial part and spin part are antisymmetric would result

in an overall many-particle wavefunction that is symmetric.

For example, students were asked to construct the spin part of the two-particle stationary

state wavefunction for two spin-1 bosons whose spatial part of the wavefunction is given by

1√
2
[ψn1(x1)ψn2(x2) − ψn2(x1)ψn1(x2)]. One interviewed student incorrectly claimed that “it

is not possible to write the spin part since the spatial part is antisymmetric. There is no way

to make the whole wavefunction symmetric.” This student and many others with this type

of difficulty did not realize that by choosing an antisymmetric spin part of the wavefunction,

the overall two-particle wavefunction would be completely symmetric. For example, the two-

particle wavefunction 1√
2
[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)]

1√
2
[|1, 1〉1|1, 0〉2 − |1, 0〉1|1, 1〉2]

is a completely symmetric wavefunction in which both the spatial and spin parts of the

wavefunction are antisymmetric.

Difficulty identifying that the spatial part is antisymmetric and the spin

part is symmetric (or vice versa) for the wavefunction for a system of identi-

cal fermions: Some students correctly identified that the many-particle stationary state

wavefunction for a system of identical fermions must be completely antisymmetric, but incor-

rectly claimed that both the spatial and spin parts of the wavefunction must be completely

antisymmetric. For example, in Q4, some students incorrectly claimed that the spatial

part of the wavefunction is 1√
2
[ψn1(x1)ψn2(x2) − ψn2(x1)ψn1(x2)]. They struggled to realize

that the product of two completely antisymmetric wavefunctions is a completely symmetric

wavefunction.

Confusion due to difficulty discerning that a system of identical bosons may

consist of bosons which are made of two or more fermions: In some situations, e.g., a

system consisting of 4He atoms, some students struggled to identify whether it was a system

of identical bosons or identical fermions and therefore whether the overall wavefunction for

the system of 4He atoms should be completely symmetric or completely antisymmetric in

terms of the single-particle wavefunctions of each 4He atom. The students were confused

because each 4He atom in this system is a boson and is a composite of fermions. Students

with this type of difficulty struggled to correctly identify the symmetrization requirement

for the system. In particular, a system of identical 4He atoms which consists entirely of

279



spin-1/2 fermions (protons, neutrons, and electrons) is a system of identical bosons. Some

students focused only on the fact that the 4He atoms are made up of spin-1/2 fermions and

incorrectly claimed that a system consisting of identical 4He atoms is a system of identical

fermions so that the many-particle wavefunction is a completely antisymmetric wavefunction

made from the single-particle wavefunctions of 4He. The confusion was partly due to the

fact that the electronic wavefunction of one Helium atom is completely antisymmetric with

respect to the exchange of the two electrons (in this case the Helium atom is the system

under consideration, consisting of two non-interacting indistinguishable electrons)

9.4.3 Difficulty writing the spin part of the many-particle stationary state wave-

function taking into account the symmetrization requirement

Previous studies have shown that students struggle with concepts involving addition of an-

gular momentum [29]. In order to determine the spin state for a system of identical particles,

one must be comfortable with determining the total spin angular momentum. Additionally,

in order to generate a completely symmetric or antisymmetric overall many-particle sta-

tionary state wavefunction, one needs to know how to generate a completely symmetric or

antisymemetric spin part of the wavefunction. However, many students struggled in identi-

fying and generating the spin part of the wavefunction with the appropriate symmetrization

requirement. Below, we discuss three specific difficulties students had with identifying the

spin states and the symmetry of the spin states for a system of identical particles.

Incorrectly determining the symmetry based on the appearance of a +/-

sign in the many-particle wavefunction: Some students incorrectly applied a heuristic

by which they claimed that a wavefunction is symmetric if the wavefunction is written

in terms of a sum. These students simply looked for all “+” signs to determine that a

wavefunction is symmetric. They claimed that any wavefunction written as terms added

together is a symmetric wavefunction. By a similar logic, these same students looked for a

“-” sign to determine whether a given wavefunction is antisymmetric. Some claimed that

any wavefunction that had at least one negative sign was antisymmetric. In particular, their

determination of whether the wavefunction is antisymmetric did not depend on whether the

280



wavefunction is completely antisymmetric and the number of terms that have a negative

sign in the wavefunction. They merely looked for the presence of at least one minus sign

in the wavefunction to determine that the wavefunction is antisymmetric. For example,

in response to question Q7(a), one interviewed student incorrectly claimed that the spin

part of the wavefunction given by | ↑↑〉 iss neither symmetric nor antisymmetric as “the

wavefunction is not a sum so it can’t be symmetric and there is not a minus sign, so it can’t

be antisymmetric.” However, the spin part of the wavefunction given by | ↑↑〉 is completely

symmetric as the exchange of the two particles results in the same wavefunction, thus there

need not be a plus sign in order for a wavefunction to be symmetric. Other students used

similar reasoning when determining the symmetry of the spin part of the wavefunction.

Students with this type of difficulty often struggled to write the overall many-particle

stationary state wavefunction for a system of identical particles with the appropriate sym-

metrization requirement. For example, many students who incorrectly claimed that the spin

part of the wavefunction | ↑↑〉 is neither symmetric nor antisymmetric went on to incorrectly

claim that it is not possible to write a many-particle stationary state wavefunction for two

fermions with this spin state.

Difficulty identifying the spin state for two identical particles: For all questions,

the undergraduate students were provided separate tables corresponding to the possible

two-particle spin states for a system of two spin-1/2 fermions and two spin-1 bosons (the

tables provided to the students are given in the appendix). After traditional lecture-based

instruction, students had difficulty using the tables to correctly identify the spin part of the

wavefunction for two spin-1/2 fermions and two spin-1 bosons. For example, in question

Q3, in which students were asked to write one possible spin part of the wavefunction for

two indistinguishable bosons with spin 1 for a given spatial part of the wavefunction, many

students wrote a spin part of the wavefunction corresponding to two spin-1/2 particles. The

following were written responses from students to question Q3 after traditional instruction:

| ↑↑〉, | ↓↓〉, | ↑↓〉 + | ↓↑〉, | ↑↑〉 + | ↓↓〉 + | ↑↓〉 + | ↓↑〉, and | ↑↓〉 − | ↓↑〉. The antisymmetric

singlet state | ↑↓〉 − | ↓↑〉 is also problematic in that it is an antisymmetric spin part of the

wavefunction. In Q3, the given spatial part of the wavefunction is symmetric and therefore

the spin part of the wavefunction must also be symmetric.
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9.5 METHODOLOGY FOR THE DEVELOPMENT AND VALIDATION OF

THE QUILT

9.5.1 Development and Validation of the QuILT

Based upon our research of student difficulties with fundamental concepts with systems of

identical particles, we developed a QuILT that attempts to build a consistent and coherent

knowledge structure while at the same time addressing the common student difficulties.

As noted in [34], the development of the QuILT was also guided by a cognitive task anal-

ysis [48] from both an expert perspective and a novice perspective which consisted of all the

requisite knowledge and skills necessary for a functional understanding for a system of iden-

tical particles. The initial cognitive task analysis was conducted from an expert perspective

in which the researchers outlined the required knowledge and skills and the order in which

they are useful in solving problems. This cognitive task analysis was iterated with members

of the physics faculty members. However, in an effort of determine if there are additional

areas student may struggle with that are not predicted by the experts (expert blindspot) we

conducted the student interviews. The cognitive task analysis was then expanded to include

these areas in which students needed additional scaffolding support.

As noted in [34], the QuILT was iterated many times among the three researchers and at

several points during the development it was iterated with three physics faculty members at

the University of Pittsburgh to ensure that the content is correct and they agreed with the

wording. During this cyclical iterative process, faculty members provided feedback regarding

the current version of the QuILT that was incorporated in the next version of the QuILT.

Once it was agreed upon by the faculty that the content was clear and appropriate, the

QuILT was administered to 14 graduate students in “think aloud” interviews to ensure

that the wording was unambiguous, the scaffolding was effective, and to be able to further

investigate any student difficulties. During these semi-structured interviews, the students

worked through the QuILT and provided their rationale for each question in the pretest,

the guided inquiry-based tutorial, and the posttest. The students were not interrupted as

they answered the questions and worked through the tutorial. They were asked follow up

questions or asked to clarify any unclear statements only upon completion of the pretest, the
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entire section of the tutorial focusing on these issues discussed here, or the posttest. After

each interview, the student’s responses were analyzed to measure the effectiveness of the

tutorial and determine whether there were any necessary changes that needed to be made

to the QuILT. These changes were incorporated in subsequent versions of the QuILT and in

subsequent interviews. During each step in the cyclically iterative process, the QuILT was

adjusted to incorporate the faculty suggestions as well as the students’ feedback and responses

to help students with the common difficulties and improve the ability of the students to build

a consistent and coherent knowledge structure. After it was deemed successful, the QuILT

was next administered to students in various advanced quantum mechanics courses.

9.5.2 Overview of the QuILT

As noted in [34], the QuILT strives to transform the students into active learners by em-

ploying an inquiry-based approach which requires the students to build their own knowledge

structure by answering questions, analyzing the validity of given statements, and reflecting

upon what they have learned. The QuILT consists of three parts: the pretest, a guided

inquiry-based tutorial, and the posttest. The pretest is administered to the students after

traditional, lecture-based instruction covering systems of identical particles. The pretest is

given in class, during which the students completed it individually with no additional re-

sources other than what is provided in the pretest itself. After completing the pretest, they

are given the tutorial and encouraged to work together on it in small groups in class. The

tutorial can also abe used to guide in-class discussion. As an alternative, the tutorial can be

administered as a self-paced learning tool that the students work on as part of their weekly

homework assignment. Upon completion, the students submit the tutorial for grading and

are then administered the posttest. The posttest is given in class as an individual assessment

in which the students are not permitted any additional resources beyond what is provided

in the posttest.

As noted in [34], the QuILT incorporates guided inquiry-based learning sequences which

consist of several questions, each building upon the previous question(s), that require the

students to take a stand and actively engage with the material. The QuILT also includes

hypothetical student conversations in which the students must analyze each hypothetical

student’s statement to determine whether they are correct and explain why they agree or
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disagree with each student. Many of the common student difficulties were used as a guide

when constructing these hypothetical conversations and inquiry-based sequences with the

goal being that students would identify an inconsistency in their reasoning and then use

the provided support to reconcile these inconsistencies. For example, there are a number

of hypothetical student conversations in which one or more students make statements re-

flecting these common difficulties and provide incorrect reasoning mirroring those given by

actual students. Other students in these hypothetical conversations disagree with their in-

correct reasoning and provide correct reasoning and often note an issue with the incorrect

statement(s). As the students work through the QuILT, they must consider each student’s

argument and reflect upon their own reasoning in order to determine which student(s) are

correct. Similarly, the guided inquiry-based sequences often include excerpts that strive to

present the students with contradictions between the answers to the questions in the se-

quence and their prior knowledge that they must then reconcile. Checkpoints are provided

at the end of each section that allow the students to go back and reconcile any remaining

differences between the correct reasoning and their own reasoning before moving on the next

section.

9.5.3 Addressing Student Difficulties

In the guided inquiry-based learning sequences in the QuILT, students actively engage with

examples focusing on fundamental concepts for the many-particle wavefunction for a sys-

tem of indistinguishable fermions or indistinguishable bosons. In particular, the QuILT

strives to help students identify the symmetrization requirements for a system of indistin-

guishable fermions or bosons and construct the many-particle wavefunction for a system of

indistinguishable fermions or bosons. Below are several examples from the QuILT that show

scaffolding support intended to help students with these fundamental concepts and address

some of the common difficulties.

Helping students recognize that a given wavefunction is completely symmet-

ric/antisymmetric: The students work through several guided inquiry-based sequences

in which they are asked to focus on the fact that the wavefunction for a system of iden-
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tical bosons must be completely symmetric and the wavefunction for a system of identical

fermions must be completely symmetric. They engage with examples in which they are asked

to determine the symmetry of the wavefunction in which they only consider the spatial part

of the wavefunction (ignore spin part of the wavefunction completely) in order to help them

focus on the appropriate symmetrization requirements. Then, they are asked to identify and

construct both the spatial and spin parts of the many-particle wavefunction for a system of

identical particles.

The following is a hypothetical student conversation that is part of a guided inquiry-

based learning sequence aimed at helping students identify symmetric and antisymmetric

spin states for a system of two spin-1/2 fermions. The students must provide reasoning as

to why they agree or disagree with each student.

Student 1: In the uncoupled representation, the two-particle spin states | ↑〉1| ↑〉2, | ↓〉1| ↓

〉2, | ↑〉1| ↓〉2, and | ↓〉1| ↑〉2 are all appropriate choices for the spin part of the wavefunction

to satisfy the symmetrization requirement.

Student 2: I disagree with Student 1. In order to satisfy the symmetrization requirement of

the wavefunction, we must choose spin states which are either symmetric or antisymmetric.

In the uncoupled representation, the two-particle spin states | ↑〉1| ↓〉2 and | ↓〉1| ↑〉2 are

neither symmetric nor antisymmetric. For example, the product of the spin state | ↑〉1| ↓〉2
with the spatial part of the wavefunction will not produce a wavefunction that is completely

antisymmetric. The same is true for the spin state | ↓〉1 ↑〉2.

Student 3: I agree with Student 2. The two-particle spin states | ↑↑〉, | ↓↓〉, and

1√
2

(| ↑↓〉+ | ↓↑〉) in the coupled representation expressed in terms of states in the uncou-

pled representation, are symmetric. The two-particle spin state 1√
2

(| ↑↓〉 − | ↓↑〉) is an-

tisymmetric. Therefore, the two-particle spin states | ↑↑〉, | ↓↓〉, 1√
2

(| ↑↓〉+ | ↓↑〉), and

1√
2

(| ↑↓〉 − | ↓↑〉) are all appropriate choices for the spin part of the two-particle wavefunc-

tions to be combined with suitable spatial wavefunctions to satisfy the symmetrization re-

quirement.

Student 1 is incorrect while Students 2 and 3 are correct in the preceding conversation.

The two-particle spin states | ↑〉1| ↓〉2 and | ↓〉1| ↑〉2 are neither symmetric nor antisymmetric.

One can create a spin part of the wavefunction with the appropriate symmetry by taking a
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linear combination of these two spin states. Students are also asked to reflect upon the fact

that a completely symmetric spin state can be constructed from a linear combination of the

symmetric triplet states (i.e., that C1| ↑↑〉 + C2| ↓↓〉 + C3
1√
2

(| ↑↓〉+ | ↓↑〉) is a completely

symmetric normalized spin state in which C1, C2, and C3 are constants such that |C1|2 +

|C2|2 + |C3|2 = 1)

After working through the guided inquiry-based learning sequences, students are provided

checkpoints at the end of each section to allow them to reconcile any discrepancies between

their initial reasoning and the correct reasoning.

Helping students identify the proper symmetry of the wavefunction for a sys-

tem of identical fermions or bosons: The students engage with several guided inquiry-

based sequences that strive to help them identify that the many-particle stationary state

wavefunction for a system of identical fermions must be completely antisymmetric and the

many-particle stationary state wavefunction for a system of identical bosons must be com-

pletely symmetric. Initially, they work through examples in which they only consider the

spatial part of the many-particle stationary state wavefunction in an effort to have them

focus on identifying the symmetrization requirements for a system of identical bosons or

fermions. Next, students consider the symmetry of the possible spin states involved in a

system of identical spin-1/2 fermions and for a system of spin-1 bosons. After engaging with

examples focusing on the spatial and spin parts of the wavefunction separately, they work

through guided inquiry-based sequences that strive to help them identify all the possible

combinations of spatial and spin parts of the many-particle wavefunction for a system of

identical fermions or bosons that satisfy the appropriate symmetrization requirement.

Helping students realize that two fermions in different spin states can occupy

the same spatial state: In the QuILT, students consider various systems of identical

fermions and construct the completely antisymmetric stationary state wavefunctions for these

systems. For example, in one guided inquiry-based learning sequence students construct the

ground state and first-excited state wavefunctions for a system of two fermions placed in

a one-dimensional harmonic oscillator potential energy well in response to the following

question.

Q8. Two identical non-interacting spin-1/2 fermions are placed in a one-dimensional har-
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monic oscillator potential energy well with Hamiltonian Ĥ = p̂2

2m
+ 1

2
mω2x̂2. The single-

particle energies are given by

En =

(
n+

1

2

)
~ω n = 0, 1, 2, . . .

Construct the spatial part of the two-particle ground state and first-excited state for two

non-interacting particles in the one-dimensional harmonic oscillator potential energy well if

the particles are

(a) Indistinguishable fermions with spin-1/2 in a total spin s = 0 state.

(b) Indistinguishable fermions with spin-1/2 in a total spin s = 1 state.

For the following questions, you can denote the spatial state of the ith particle in the ni
th

single-particle state of the oscillator by ψni
(xi).

In Q8(a), the total spin s = 0 state is the antisymmetric singlet state and there-

fore, the spatial part of the wavefunction must be symmetric. The ground state wave-

function is Ψ00 = ψ0(x1)ψ0(x2) and the spatial part of the first-excited state wavefunc-

tion is Ψ01 = 1√
2
(ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2)). In Q8(b), the total spin s = 1 state

is one of the symmetric triplet states and thus, the spatial part of the ground state

wavefunction must be antisymmetric. The spatial part of ground state wavefunction is

Ψ01 = 1√
2
(ψ0(x1)ψ1(x2)− ψ1(x1)ψ0(x2)) and the spatial part of the first-excited state wave-

function is Ψ02 = 1√
2
(ψ0(x1)ψ2(x2)− ψ2(x1)ψ0(x2)).

In the guided inquiry-based learning sequence, students are provided scaffolding support

that strives to help them identify that the spatial part of the ground state wavefunction

when both fermions are in the same single-particle state is ψ0. For example, the following

excerpt is from a hypothetical student conversation designed to help students reflect upon

the fact that two fermions can both be in the same single-particle state as is the case for

the spatial part of the ground state wavefunction in Q8(a).

Student 1: The two fermions cannot both be in the same single-particle spatial state ψ0.

For the two-particle ground state, one fermion is in the lowest single-particle spatial state

ψ0 and the other fermion is in the first-excited single-particle spatial state ψ1, so n1 = 0 and
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n2 = 1 or n1 = 1 and n2 = 0. The two-particle ground state energy is E10 = 2~ω.

Student 2: I disagree with Student 1. You are forgetting about the spin degrees of

freedom. For a system of indistinguishable fermions, the overall two-particle state must be

antisymmetric. Since the fermions are in the total spin s = 0 antisymmetric singlet state

|χ〉 = 1√
2
(| ↑↓〉− ↓↑〉), the spatial part of the many-particle state must be symmetric. Two

fermions in the same single-particle spatial state ψ0 correspond to the symmetric spatial

state ψ0(x1)ψ0(x2).

Student 1 is incorrect and Student 2 is correct in the preceding conversation. The overall

two-particle ground state including both spatial and spin parts is Ψ00 = [ψ0(x1)ψ0(x2)]

[ 1√
2
(| ↑↓〉− ↓↑〉)]. In the total spin s = 0 state, the two fermions can be in the same single-

particle spatial state ψ0 since the fermions are in different spin states with the two-particle

spin-state |χ〉 = 1√
2
(| ↑↓〉− ↓↑〉) being antisymetric.

Helping students generate a completely symmetric/antisymmetric wavefunc-

tion: In the QuILT, students engage with several guided inquiry-based learning sequences

in which they must write the overall wavefunction for a system of fermions or bosons. For

example, students are asked to write all the possible two-particle stationary state wavefunc-

tions including spin for a system of two non-interacting indistinguishable spin-1/2 fermions

in different single-particle spatial states labeled by n1 and n2. After answering this ques-

tion, students are provided scaffolding support that strives to help them identify that the

overall wavefunction for the two fermions is antisymmetric so that the spatial part of the

wavefunction is symmetric and the spin part of the wavefunction is antisymmetric, or vice

versa. The following is an excerpt from a hypothetical student conversation that strives to

help them reflect upon how to construct the completely antisymmetric wavefunction for the

two fermions:

Student 1: We must only ensure that the spatial part of the two-particle stationary state

wavefunction is antisymmetric. The spatial part of the two-particle stationary state wave-

function must be 1√
2
[ψn1(x1)ψn2(x2) − ψn1(x2)ψn2(x1)]. The spin part of the two-particle

stationary state wavefunction can be either the antisymmetric singlet state 1√
2

(| ↑↓〉 − | ↓↑〉)

or one of the three symmetric triplet states {| ↑↑〉, | ↓↓〉, 1√
2

(| ↑↓〉+ | ↓↑〉)}.
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Student 2: I agree with Student 1 that the spatial part of the two-particle stationary state

wavefunction must be antisymmetric. However, we must also choose the antisymmetric sin-

glet state as the spin part of the two-particle stationary state wavefunction.

Student 3: I disagree with both Student 1 and Student 2. The overall two-particle sta-

tionary state wavefunction must be antisymmetric. If the spatial part of the two-particle

stationary state wavefunction is symmetric 1√
2
[ψn1(x1)ψn2(x2) + ψn1(x2)ψn2(x1)], the spin

part of the two-particle stationary state wavefunction must be the antisymmetric singlet state

1√
2

(| ↑↓〉 − | ↓↑〉).

Student 4: I agree with Student 3. Additionally, the spatial part of the two-particle station-

ary state wavefunction could be antisymmetric 1√
2
[ψn1(x1)ψn2(x2) − ψn1(x2)ψn2(x1)] which

would imply that the spin part of the two-particle stationary state wavefunction can be one

of the symmetric triplet states {| ↑↑〉, | ↓↓〉, 1√
2

(| ↑↓〉+ | ↓↑〉)}. In either case, the product

of one symmetric and one antisymmetric wavefunction produces an overall antisymmetric

two-particle stationary state wavefunction.

Student 3: I agree with Student 4. However, remember that a linear combination of the

triplet states such as C1| ↑↑〉 + C2| ↓↓〉 + C3 (| ↑↓〉+ | ↓↑〉) is a completely symmetric spin

state where |C1|2 + |C2|2 + |C3|2 = 1.

Students 1 and Students 2 are incorrect while Student 3 and Student 4 are correct in

the preceding conversation. Either the spatial part or the spin part must be antisymmetric

and the other is symmetric to produce an overall antisymmetric many-particle wavefunction.

Further scaffolding is provided to help students develop a good grasp of relevant concepts.

In the QuILT, students are asked to construct the many-particle stationary state

wavefunction for general system (e.g., one particle in state n1 and the other particle in state

n2) as well as for specific systems. For example, students construct the ground state and

first-excited state wavefunctions for a system of two identical particles in a one-dimensional

infinite square well potential energy and two identical particles in a one-dimensional

harmonic oscillator potential energy well. The next question, Q9, focuses on two identical

spin-1 bosons placed in a one-dimensional harmonic oscillator potential energy well and

asks students to write the many-particle ground state and many-particle first-excited state

wavefunctions for the two bosons.
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Q9. Two identical non-interacting spin 1 bosons (s1 = 1, s2 = 1) are placed in a one-

dimensional harmonic oscillator potential energy well with Hamiltonian Ĥ = p̂2

2m
+ 1

2
mω2x̂2.

The single-particle energies are given by

En =

(
n+

1

2

)
~ω n = 0, 1, 2, . . .

For the following questions, you can denote the spatial state of the ith particle in the ni
th

single-particle state of the oscillator by ψni
(xi).

Construct at least two possible overall two-particle ground state and at elast two

possible first-excited state (including both spatial and spin parts) wavefunctions for two

non-interacting particles in the one-dimensional harmonic oscillator potential energy well if

the particles are indistinguishable bosons with spin 1.

After reflecting upon this question, students are provided scaffolding support that strives

to help them identify the possible spin states for the two bosons, identify that the over-

all many-particle stationary state wavefunction must be symmetric, and generate a many-

particle stationary state wavefunction. The following is an excerpt from a hypothetical stu-

dent conversation regarding how to construct a two-particle ground state in Q9 with which

the students must state whether they agree or disagree with and explain their reasoning:

Student 1: The two-particle ground state for a system of two indistinguishable bosons with

spin 1 (s1 = 1⊗ s2 = 1) must be symmetric. There are two possibilities for the two-particle

ground state: both the spatial part and the spin part are symmetric or both the spatial part

and spin part are antisymmetric.

Student 2: While that is generally the case, the two-particle ground state must be a state with

the lowest energy. The lowest energy occurs when both bosons are in the same single-particle

spatial state ψ0. Therefore, the spatial part of the two-particle ground state is ψ0(x1)ψ0(x2).

The two-particle ground state energy is E00 = ~ω.

Student 3: I agree with Student 2. Since the spatial part of the two-particle ground state is

symmetric, the spin part of the two-particle ground state must also be symmetric. Six possible

symmetric combinations for the spin part of the many-particle state for two indistinguishable
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bosons both with spin 1 (s1 = 1, s2 = 1) in the coupled representation are |2, 2〉, |2, 1〉,

|2, 0〉, |0, 0〉, |2, −1〉, and |2, −2〉. One possible overall two-particle ground state including

both spatial and spin parts is Ψ00 = ψ0(x1)ψ0(x2)|2, 2〉.

Student 2: I agree with Student 3. We can also construct a completely symmetric spin state

by taking a linear combination of these symmetric states C1|2, 2〉 + C2|2, 1〉 + C3|2, 0〉 +

C4|0, 0〉+C5|2, −1〉+C6|2, −2〉, where |C1|2 + |C2|2 + |C3|2 + |C4|2 + |C5|2 + |C6|2 = 1 will

yeild a normalized state.

Students 2 and 3 are correct in the preceeding conversation, while Student 1’s statement

is true in general, but it is not true for the ground state in Q9 that both the spatial and

spin part are antisymmetric. The spatial part of the ground state must be ψ0(x1)ψ0(x2)

and therefore, the spin part of the ground state must also be symmetric. Next, the students

consider the following hypothetical student conversation regarding how to construct the two-

particle first-excited state in Q9 in response to which they must explain why they agree or

disagree with each student:

Student 1: If the two-particle first-excited state energy is E01 = 2~ω, one boson is in

the single-particle spatial state ψ0 and the other boson is in the single-particle spatial state

ψ1. The spatial part of the two-particle first-excited state MUST be 1√
2
[ψ0(x1)ψ1(x2) +

ψ1(x1)ψ0(x2)] since the overall wavefunction must be symmetric. Therefore, the spin part of

the two-particle first-excited state must be a symmetric spin state.

Student 2: The spatial part of the two-particle first-excited state can also be

1√
2
[ψ0(x1)ψ1(x2)− ψ1(x1)ψ0(x2)] in which case the spin part of the two-particle first-excited

state must be an antisymmetric spin state.

Student 1 is correct that both the spatial and spin part of the two-particle stationary

state wavefunction can be symmetric to produce an overall symmetric first-excited state

wavefunction for the two bosons. However, it is also possible that both the spatial and spin

parts of the two-particle stationary state wavefunction can be antisymmetric resulting in an

overall symmetric first-excited state wavefunction for the two , as stated by Student 2.

After working through these guided inquiry-based learning sequences, students are asked

to summarize what they have learned and are provided checkpoints that allow them to

reconcile their initial reasoning with the correct reasoning.
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9.6 EVALUATION OF THE QUILT

Once the researchers determined that the QuILT was successful in one-on-one implemen-

tation using a think-aloud protocol, it was administered in graduate and upper-level un-

dergraduate classes. Both undergraduate and graduate students were given a pretest after

traditional instruction in relevant concepts for constructing the many-particle stationary

state wavefunction for a system of identical particles before working through the tutorial.

The pretests were not returned to the students after grading. The undergraduates worked

through the tutorial in class for two days and were asked to work on the remainder of the

tutorial as homework. The graduate students were given the tutorial as their only homework

assignment for the week. After working through and submitting the completed tutorial, both

groups were given the posttest in class. Students were given enough time in class to work

through the pretest and posttest.

Questions Q1 and Q2 were posed on the pretest of the QuILT after traditional lecture-

based instruction on relevant concepts for a system of identical particles. Questions Q3, Q4,

and Q9 were posed on the posttest of the QuILT. Questions Q3 and Q4 were posed to all

the graduate students and to 12 of the undergraduate students in Year 1. Question Q9 was

posed to 13 undergraduate students in Year 2.

Questions Q1, Q3, and Q9 are similar in that students must identify the overall sym-

metrization requirement for a system of identical bosons and generate either the spatial or

spin part of the wavefunction so that the product of the spatial and spin parts is completely

symmetric. Questions Q2 and Q4 are similar in that students must identify the overall sym-

metrization requirement for a system of identical fermions and generate either the spatial or

spin part of the wavefunction so that the product of the spatial and spin parts is completely

antisymmetric.

We note that in Year 1, the graduate students were given the QuILT prior to the under-

graduate students. The graduate students were not given Table 32 for the two spin-1 bosons

on the pretest or the posttest. Many of the graduate students provided a symmetric spin

state in response to Q3; however many of them provided a spin state that was consistent

with a system of two spin-1/2 fermions. The goal of the QuILT was to have the students be
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able to identify and construct the many-particle stationary state wavefunction for a system

of identical particles with the correct symmetry. After observing the difficulty that the grad-

uate students had in generating the spin states for two spin-1 bosons on the posttest, Table

32 was added to the pretest and posttest in later implementations with the undergraduate

students. Despite the fact that the undergraduate students were given the tables listed in

the appendix, they still struggled to correctly write the spin part of the wavefunction for

a system of two bosons in Q3 on the posttest. Many of these undergraduate students pro-

vided similar responses to those of the graduate students in that they listed a symmetric

spin part of the wavefunction consistent with a system of two spin-1/2 particles. Table 36

gives the percentages of students who provided part of the wavefunctions in Q1-Q4 with the

correct symmetry. Although identifying the correct spin state for two bosons in Q3 proved

to be challenging for students even when they were provided with Table 36, the majority

of the students were able to correctly identifying the necessary symmetry. This is an area

to improve upon in future refinements and implementations of the QuILT to address these

difficulties more effectively.

Table 37 summarizes the percentage of students who answered correctly on the pretest

and the posttest and Table 38 provides the average student score on the pretest and posttest.

The average score was determined using a rubric which was developed by the researchers to-

gether. For each question, the students were awarded 4 points for the correct answer and two

points for incorrect answers that had the correct symmetry. A subset of student responses

was graded separately by the researchers with a final inter-rater reliability of nearly 100%.

The results are encouraging and suggest that the QuILT is effective in helping students

identify the symmetrization requirements for the spatial and spin parts of the many-particle

stationary state wavefunction for a system of identical fermions. While there is a significant

improvement in the number of students who correctly identified the correct symmetrization

requirement for the spatial and spin parts of the many-particle stationary state wavefunc-

tion, many students struggled to generate a correct spin part of the wavefunction in Q3 or

Q5 on the posttest. Focusing on identifying and generating the spin part of the wavefunc-

tion for a system of identical bosons is an area to improve upon in future refinements and

implementations of the QuILT to help students develop a better understanding of a system
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of identical particles.

As a measure of retention, the undergraduate students in the first year of the study

were asked Q2 on their midterm examination four weeks after completing the QuILT. The

percentage of students who answered Q2 correctly on the midterm examination. Here we

find students improved on this question in the exam compared to the pretest of the QuILT.

Additionally, the student performance on Q2 on the exam four weeks after completing the

QuILT is comparable to their performance on Q4 on the posttest (the group of students in

Year 1 scored 8% points lower on the midterm exam compared to the posttest). This suggests

that the QuILT helped students gain a better understanding of identifying and generating

the many-particle stationary state wavefunction for a system of identical fermions. This also

suggests that the QuILT was effective in helping students retain this understanding.

9.7 SUMMARY

Investigation of students’ understanding of a system of identical particles helped to uncover

many common student difficulties that were used as a guide to develop a research-validated

QuILT that strives to help students construct the many-particle stationary state wavefunc-

tion for a system of non-interacting identical particles. The QuILT focuses on helping stu-

dents learn that the wavefunction for a system of fermions must be antisymmetric and the

wavefunction for a system of bosons must be symmetric and construct the many-particle

stationary state wavefunction for a system of non-interacting identical particles (fermions

or bosons) consistent with the symmetrization requirements. The QuILT strives to place

the students in the role of active learners while providing an appropriate level of scaffolding

through a guided inquiry-based approach. The results show that the QuILT is effective in

improving students’ understanding of concepts necessary for a functional understanding of

the many-particle stationary state wavefunction for a system of non-interacting identical

particles.
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Table 32: The product states for spin degrees of freedom in the coupled representation

|s, ms〉 (left) are given in terms of linear combinations of product states in the uncoupled

representation |s1, ms1〉1|s2, ms2〉1 (right) using the Clebsch-Gordon table for the case s1 =

1⊗ s2 = 1.

Product states in Written in terms of product states

Coupled Representation in Uncoupled Representation

|s, ms〉
∑

ms1+ms2=ms

Cs1,s2,S
ms1 ,ms2 ,ms

|s1, ms1〉1|s2, ms2〉2

|2, 2〉 |1, 1〉1|1, 1〉2
|2, 1〉 1√

2
(|1, 1〉1|1, 0〉2 + |1, 0〉1|1, 1〉2)

|1, 1〉 1√
2
(|1, 1〉1|1, 0〉2 − |1, 0〉1|1, 1〉2)

|2, 0〉 1√
6
|1, 1〉1|1, −1〉2 +

√
2
3
|1, 0〉1|1, 0〉2

+ 1√
6
|1, −1〉1|1, 1〉2

|1, 0〉 1√
2
(|1, 1〉1|1, −1〉2 − |1, −1〉1|1, 1〉2)

|0, 0〉 1√
3
|1, 1〉1|1, −1〉2 − 1√

3
|1, 0〉1|1, 0〉2

+ 1√
3
|1, −1〉1|1, 1〉2

|2, −1〉 1√
2
(|1, 0〉1|1, −1〉2 + |1, −1〉1|1, 0〉2)

|1, −1〉 1√
2
(|1, 0〉1|1, −1〉2 − |1, −1〉1|1, 0〉2)

|2, −2〉 |1, −1〉1|1, −1〉2
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Table 33: The percentages of graduate (N = 30) and undergraduate (N = 25) students who

correctly answered questions Q1 and Q2 for the given system of indistinguishable particles

for the pretest.

Question Type of Particle Graduate (%) Undergraduate (%)

Q1 Bosons 33 48

Q2 Electrons 30 44

Table 34: The percentages of graduate (N = 30) and undergraduate (N = 25) students who

provided a symmetric spatial part of the wavefunction in Q1 and an antisymmetric spin part

of the wavefunction in Q2 for the given system of indistinguishable particles for the pretest.

Question Type of Part of the Graduate Undergraduate

Particle Wavefunction (%) (%)

Q1 Bosons Spatial 33 48

Q2 Electrons Spin 30 44

Table 35: All the possible combinations of the spatial and spin parts of the wavefunction

to yield an overall many-particle stationary state wavefunction with the appropriate sym-

metrization requirement.

Type of Particle Spatial Part of Spin part of Complete

the Wavefunction the Wavefunction Wavefunction

Indistinguishable Symmetric Antisymmetric
Antisymmetric

Fermions Antisymmetric Symmetric

Indistinguishable Symmetric Symmetric
Symmetric

Bosons Antisymmetric Antisymmetric
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Table 36: The percentages of graduate (N = 30) and undergraduate (N = 12 in Year 1

and N = 13 in Year 2) students who provided a part of the wavefunction with the correct

symmetry in Q1 and Q2 on the pretest and Q3, Q4, and Q9 on the posttest.

Question Type of Part of the Graduate Undergraduate

Particle Wavefunction N Pre Post N Pre Post

(%) (%) (%) (%)

Q1 Bosons Spatial 30 33 - 25 48 -

Q2 Electrons Spin 30 30 - 25 44 -

Q3 Bosons Spin 30 - 97 12 - 92

Q4 Fermions Spatial 30 - 87 25 - 80

Q5 Bosons Spin - - - 13 - 69

Table 37: The percentages of students who answered questions Q1 and Q2 correctly for

the given system on the pretest and Q3, Q4, and Q9 correctly for the given system on the

posttest for graduate students (N = 30) and undergraduates (N = 12 in Year 1 and N = 13

in Year 2).

Question Type of Particle Graduate Undergraduate

N Pre (%) Post (%) N Pre (%) Post (%)

Q1 Bosons 30 33 - 25 48 -

Q2 Electrons 30 20 - 25 36 -

Q3 Bosons 30 - 10 12 - 17

Q4 Fermions 30 - 87 25 - 80

Q5 Bosons - - - 13 - 53
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Table 38: The average student score on questions Q1 and Q2 for the given system on the

pretest and Q3, Q4 and Q9 for the given system on the posttest for graduate students

(N = 30) and undergraduates (N = 12 in Year 1 and N = 13 in Year 2).

Question Type of Particle Graduate Undergraduate

N Pre (%) Post (%) N Pre (%) Post (%)

Q1 Bosons 30 34 - 25 51 -

Q2 Electrons 30 29 - 25 36 -

Q3 Bosons 30 - 52 12 - 54

Q4 Fermions 30 - 88 25 - 80

Q5 Bosons - - - 13 - 53
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10.0 DEVELOPING AND EVALUATING A QUANTUM

INTERACTIVE LEARNING TUTORIAL ON A SYSTEM OF

IDENTICAL PARTICLES: COUNTING THE NUMBER OF DISTINCT

MANY-PARTICLE STATES FOR A SYSTEM WITH

A FIXED NUMBER OF AVAILABLE SINGLE-PARTICLE STATES

10.1 INTRODUCTION

Quantum mechanics (QM) is a particularly challenging subject for upper-level undergraduate

and graduate students in physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. There have

been a number of research studies aimed at investigating student reasoning in QM [15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] and improving student understanding of QM

[27, 28, 29, 30, 31, 32, 33, 34, 35]. For example, our group has focused on using the common

student difficulties as a guide to develop research-based learning tools which include Quantum

Interactive Learning Tutorials (QuILTs) [36, 37, 38, 39, 40, 41, 42] which strive to improve

student understanding of different QM concepts. However, there have been few investigations

into student difficulties with fundamental concepts involving a system of identical particles.

Here, we discuss an investigation of student difficulties with the number of distinct many-

particle stationary states for a system of non-interacting identical particles and how that

research was used as a guide in the development, validation, and in-class evaluation of a

QuILT that strives to help students develop a good grasp of relevant concepts pertaining to

the number of distinct many-particle states. Through researching students’ understanding of

and reasoning about a system of identical particles, we found common student difficulties that

can hinder their development of a consistent and coherent knowledge structure pertaining

to these concepts.
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Students must have a good understanding of quantum mechanical properties of a sys-

tem of identical particles as well as a strong background in combinatorics to be proficient

in determining the number of distinct many-particle states. However, it has been found

in a number of different contexts in introductory physics that students struggle to apply

mathematics correctly in the context of physics even if they can solve similar mathematics

problems without the physics context [43, 44, 45, 46]. Since human working memory while

solving a problem is restricted to a limited number of “chunks” and the size of a chunk in

the working memory depends on the expertise of the individual who is solving the problem,

Simon’s framework of “bounded rationality” posits that an individual will make decisions

while solving problems based upon their current level of expertise, which may not be optimal

depending on their experise [47]. In particular, students often only look for a solution that

appears satisfactory to them in which they see no inconsistencies rather than searching for

additional pathways in the problem space which may yield more productive solutions. Some

students may be motivated to find an optimal solution but if the students’ level of expertise

is not sufficient and they have not been provided with the appropriate scaffolding support,

they may experience cognitive overload and not be able to determine the correct solution to

the problem posed [48].

Below, we start with a brief background of relevant concepts and then describe the

methodology for the investigation of student difficulties followed by the common difficulties

found. Then we describe the methodology for the development, validation and in-class

evaluation of the corresponding research-based QuILT that strives to help students develop

a functional understanding of the fundamental concepts involved in determining the number

of many-particle states for a system of identical particles.

10.2 BACKGROUND

In nature, there are two general types of particles: fermions with a half-integer spin quantum

number (e.g., electrons and protons) and bosons with an integer spin quantum number (e.g.,

photons and mesons). A system of N identical particles consists of N particles of the
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same type (e.g., electrons). For a system of identical particles in classical mechanics (e.g.,

five identical tennis balls), each particle can be distinguished from all the other particles.

In contrast, in quantum mechanics, identical particles are indistinguishable and there is no

measurement that can be performed to distinguish these identical particles from one another.

For example, if the coordinates of two identical particles are interchanged, there is no physical

observable that would reflect this interchange. For a system of identical fermions, it is not

possible for two or more fermions to occupy the same single-particle state. On the other

hand, it is possible for two or more bosons to occupy the same single-particle state.

Here, we will consider a system of identical particles in which the total number of particles

is fixed. Also, for these systems considered here, the energy of the system is not constant but

there are only a fixed number of single-particle states available for the particles to occupy

and there is no degeneracy in the single-particle energies.

In order to construct a many-particle stationary state for a system of fermions (ignoring

spin degrees of freedom), there must be at least as many available spatial single-particle

states as the number of identical fermions. If this condition is satisfied, one must determine

the number of ways to arrange the identical fermions into the available single-particle states

such that each single particle state has either zero or one fermion until all the fermions have

been placed into a single-particle state. The number of ways to arrange N identical objects

among M available slots (M ≥ N) is
(
M
N

)
= M !

N !(M−N)!
. Thus, for a system of N fermions

with M available single-particles states, the number of distinct many-particle states is


(
M
N

)
M ≥ N

0 M < N.

(10.1)

One technique for determining the number of ways to arrange the identical bosons among

the available single-particle states is often referred to as the “bin and divider” method.

In particular, we can treat the single-particle states as bins to be filled with bosons and

dividers to separate the different single-particle states, or bins. The number of distinct

many-particle states can be found by determining the number of distinct arrangements of

the identical bosons and diviiders. For a system of N identical bosons and M available

single-particle states, there are M − 1 identical dividers separating the single-particle states.
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This gives N +M − 1 objects from which to arrange the N identical bosons and the M − 1

identical dividers. Thus, the number of distinct many-particle states for a system of N

indistinguishable bosons with M available single-particle states is(
N +M − 1

N

)
=

(
N +M − 1

M − 1

)
=

(N +M − 1)!

N !(M − 1)!
. (10.2)

As a contrasting case, if identical particles could be treated as distinguishable, then one

can determine which particle is in which single-particle state and there is no restriction on

the number of particles in each single-particle state. For a system of N identical particles

that can be treated as distinguishable and M available single-particle states, each particle

can be placed in any of the M single-particle states. The number of distinct N -particle

states for a system of N identical particles if they could be treated as distinguishable with

M available single-particle states is

MN . (10.3)

Determining the number of distinct many-particle states for a system in which the number

of single-particle states is fixed is an important concept for students to help prepare them,

e.g., for quantum mechanics leading to quantum statistical mechanics.

10.3 METHODOLOGY FOR INVESTIGATING STUDENT DIFFICULTIES

Student difficulties with determining the number of distinct many-particle states for a sys-

tem of identical fermions or bosons were first investigated using three years of data involving

responses to open-ended and multiple-choice questions administered after traditional instruc-

tion in relevant concepts from 57 upper-level undergraduate students in a junior/senior level

QM course and 30 graduate students in the second semester of the graduate core QM course.

Additional insight was gained concerning these difficulties from responses of 14 students dur-

ing a total of 81 hours of individual think-aloud interviews. Moreover, after the development

and validation of the QuILT, it was administered to 25 upper-level undergraduates and 30

first-year physics graduate students in their respective QM courses. The QuILT included

a pretest, the tutorial, and a posttest. Students were given the pretest after traditional
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lecture-based instruction on identical particles. The pretest was not returned to the stu-

dents. Students began working on the tutorial in class and completed the tutorial as their

weekly homework assignment. The posttest was administered after the students submitted

the tutorial. Student responses on the pretest, tutorial, and posttest were analyzed for their

understanding of how to determine the number of distinct many-particle states for a system

of identical particles in which the number of single-particles states is fixed. If new difficulties

were discovered during the interviews or on the pretest, tutorial, or posttest, the difficulties

were addressed in later versions of the QuILT.

In all the questions in our investigation, the non-interacting identical particles were

restricted to one spatial dimension for convenience. Students were asked to consider the

spatial part of the wavefunction to simplify the problem (i.e., students were asked to ignore

the spin degrees of freedom) and to help them focus on fundamental concepts involved in

determining the number of distinct many-particle states for system of identical particles.

To probe whether students are able to determine the number of distinct many-particle

states for a given system, the following two questions were posed to the students. Question

Q1 was posed during the individual interviews as well as on the pretest for the QuILT after

traditional instruction in relevant topics. Q2 was posed on the posttest following traditional

instruction on identical particles as well as after students engaged with the QuILT. Q1 and

Q2 were posed to 30 graduate students and 25 undergraduate students.

Q1. For a system of three non-interacting identical particles, there are four distinct single-

particle states ψn1(x), ψn2(x), ψn3(x), and ψn4(x) available to each particle. How many

different three-particle states can you construct if the particles are

a. Fermions? (Ignore spin).

b. Bosons? (Ignore spin).

c. Distinguishable particles? (Ignore spin).

In Q1(a), for a system of three identical fermions, there are four distinct single-particle states

in which to place the three fermions. Since no single-particle state can have more than two

fermions and there are
(
4
3

)
= 4!

3!(4−3)! = 4 distinct three-particle states in Q1(a). For the

system of three identical bosons, a single-particle state can have more than one boson. In
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Q1(b), there are
(
4−1+3

3

)
=
(
6
3

)
= 6!

3!(6−3)! = 20 distinct three-particle states for a system

of three identical bosons. In Q1(c), for the contrasting case of identical particles that can

be treated as distinguishable, each particle can be placed in any of the four single-particle

states. Since there is no symmetrization requirement and the particles are distinguishable,

each three-particle state is distinct. There are 43 = 64 distinct three-particle states for a

system of three identical particles that can be treated as distinguishable.

Q2. For a system of two non-interacting identical particles, there are five distinct single-

particle states ψn1(x), ψn2(x), ψn3(x), ψn4(x), and ψn5(x) available to each particle. How

many different two-particle states can you construct if the particles are

a. Fermions? (Ignore spin).

b. Bosons? (Ignore spin).

c. Distinguishable particles? (Ignore spin).

In Q2(a), there are
(
5
2

)
= 5!

2!(5−2)! = 10 distinct two-particle states. In Q2(b), for a system

of identical bosons, a single-particle state can have more than one boson. There are
(
6
2

)
=

6!
2!(6−2)! = 15 distinct two-particle states for a system of two identical bosons in Q2(b). In

Q2(c), for the contrasting case of identical particles that can be treated as distinguishable,

there are 52 = 25 distinct two-particle states for a system of two identical particles that can

be treated as distinguishable.

10.4 STUDENT DIFFICULTIES

Many students struggled to determine the number of distinct many-particle states for a sys-

tem of identical particles. Table 39 summarizes the percentages of students who answered

question Q1 correctly for a system of three identical particles after traditional lecture-based

instruction. We will discuss several categories of student difficulties that interfered with

their ability to determine the number of distinct many-particle states for a system of non-

interacting identical particles. These categories include (1) conceptual difficulties, (2) re-

liance on memorized formulas, (3) difficulty with procedural knowledge, and (4) difficulty
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Table 39: The percentages of graduate (N=30) and undergraduate (N=25) students who

correctly answered question Q1 for the given system of indistinguishable particles after tra-

ditional instruction.

Type of Particle Graduate (%) Undergraduate (%)

Fermions 40 48

Bosons 17 16

Distinguishable 17 20

with mathematical sense-making in the context of physics. Some of the difficulties discussed

here may be placed in several categories, but we have placed them into a particular category

in an effort to illustrate these broader categories with explicit examples. Some students pro-

vided the same incorrect answer to Q1 but reasoned about it differently based upon different

underlying difficulties, and therefore the same incorrect answer may be placed in different

categories based upon the reasoning provided by the students (note that the categories are

not mutually exclusive)

10.4.1 Conceptual difficulties with indistinguishability pertaining to a system

of identical particles

A system of identical fermions or bosons consists of indistinguishable particles and one

must be careful not to count the number of distinct many-particle states for these particles

as if they are distinguishable particles. For example, if two identical fermions are in the

single-particle states labeled by ψn1 and ψn2 , then there is no way to distinguish the system

in which the first fermion is in the single-particle state ψn1 and the second fermion is in

the single-particle state ψn2 with the system in which the first fermion is in the single-

particle state ψn2 and the second fermion is in the single-particle state ψn1 . These two

arrangements of the fermions make up the different terms of a two-particle stationary state

wavefunction and are not two distinct two-particle states. Assuming n1 6= n2, the completely
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antisymmetric two-particle wavefunction for this system (ignoring spin degrees of freedom)

is 1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)].

Many students struggled to identify how the number of distinct many-particle states for

a system of indistinguishable particles differs from that of a system of identical particles

that can be treated as distinguishable. Some students claimed that the number of distinct

many-particle states in Q1 is the same for a system of indistinguishable fermions or bosons

and a system of identical particles that can be treated as distinguishable. Table 40 shows

the percentages of students who incorrectly determined the same number of distinct many-

particles states in Q1 for a system of indistinguishable fermions or bosons as for a system of

identical particles that can be treated as distinguishable.

For a system of identical fermions, the most common incorrect answer to Q1(a) was

4·3·2 = 24 distinct many-particle states. Students with this response claimed that there were

4 single-particle states available to place the first particle, 3 available single-particle states

for the second particle, and 2 remaining available single-particle states for the last particle.

One interviewed student with this type of response claimed that “there are four states for

the first fermion, three for the second (fermion) since it cannot be in the same state as the

first (fermion), and two left for the last one.” This student and others with similar reasoning

correctly tried to apply Pauli’s exclusion principle but did not take into account the fact that

these three fermions are indistinguishable. By way of example, if the three fermions occupy

the single-particle states ψn1 , ψn2 , and ψn3 there is no way to detect which fermion is in which

single-particle state. Assuming ni 6= nj 6= nk, the many-particle stationary state wavefunc-

tion for this system is Ψ(x1, x2, x3) = 1√
6
[ψni

(x1)ψnj
(x2)ψnk

(x3) − ψni
(x1)ψnk

(x2)ψnj
(x3) +

ψnj
(x1)ψnk

(x2)ψni
(x3)− ψnj

(x1)ψni
(x2)ψnk

(x3) + ψnk
(x1)ψni

(x2)ψnj
(x3)

−ψnk
(x1)ψnj

(x2)ψni
(x3)]. There are 4 ways to choose the labels ni, nj, and nk from the avail-

able states labeled by n1, n2, n3, and n4. If the particles could be treated as distinguishable,

each of the six terms in this completely antisymmetric many-particle stationary state would

be six distinct many-particle states producing a total of 24 distinct many-particle states,

which is what the students in Q1(a) reasoned was the case for fermions.

For a system of identical bosons, many students struggled to identify how the number

of distinct many-particle states would differ from that of a system of identical particles
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Table 40: The percentages of graduate (N=30) and undergraduate (N=25) students who

incorrectly answered question Q1 the same for the given system of indistinguishable particles

as for a system of identical particles that can be treated as distinguishable.

Type of Particle Graduate (%) Undergraduate (%)

Fermions 23 8

Bosons 23 12

that can be treated as distinguishable. In Q1(b), students who claimed that there were

43 = 64 distinct many-particle states for a system of indistinguishable bosons often stated

that since bosons can occupy the same single-particle state, there are 4 available single-

particle states for each boson and thus, 4 · 4 · 4 = 64 distinct many-particle states. However,

these students were not taking into account the fact that the bosons are indistinguishable

and therefore some states that are distinct for a system of distinguishable particles are

not distinct for a system of indistinguishable bosons. Some of these distinct states for

distinguishable particles are terms in the completely symmetric many-particle stationary

state wavefunction for a system of indistinguishable bosons. For example, students with this

type of reasoning were incorrectly counting the many-particle states ψn1(x1)ψn1(x2)ψn2(x3),

ψn1(x1)ψn2(x2)ψn1(x3) and ψn2(x1)ψn1(x2)ψn1(x3) as distinct many-particle states in Q1(b).

However, these three states correspond to the three terms in a completely symmetric many-

particle stationary state wavefunction 1√
3
[ψn1(x1)ψn1(x2)ψn2(x3) + ψn1(x1)ψn2(x2)ψn1(x3) +

ψn2(x1)ψn1(x2)ψn1(x3)] and are not three distinct many-particle states for the system of

indistinguishable bosons.

In addition, some students struggled to determine the number of distinct many-particle

states in part because they had difficulty realizing that the order in which the single-

particle wavefunctions are expressed in the product of the single-particle states in the

many-particle basis states is irrelevant. Here, for convenience, we will refer to all direct

products of single-particle states as “basis states”, regardless of their symmetry under ex-

change. Please note that for identical fermions, only antisymmetric linear combinations
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of these basis states are allowed, while for bosons only symmetric linear combinations are

allowed. For distinguishable particles, all basis states are allowed. For example, the follow-

ing are all equivalent ways to express the basis state for a system of three non-interacting

identical particles: ψn1(x1)ψn2(x2)ψn3(x3), ψn1(x1)ψn3(x3)ψn2(x2), ψn2(x2)ψn1(x1)ψn3(x3),

ψn2(x2)ψn3(x3)ψn1(x1), ψn3(x3)ψn1(x1)ψn2(x2), and ψn3(x3)ψn2(x2)ψn1(x1) where the coor-

dinates x1, x2, and x3 refer to particles 1, 2, and 3, respectively. However, in Q1, students

with this type of difficulty counted each of these equivalent products of the single-particle

states as if it were a distinct many-particle state for the system or distinct basis states

for the many-particle wavefunction. Some students focused on the order in which the la-

bels for the single-particle states or the coordinates appeared to determine whether the

products of the single-particle wavefunction were different. For example, when comparing

ψn1(x1)ψn2(x2)ψn3(x3) and ψn1(x1)ψn3(x3)ψn2(x2), they claimed that n2 and/or x2 appear in

the second place in the first product and in the third place in the second product, so these

must be different terms in the many-particle wavefunction.

10.4.2 Reliance on memorized formulas

Using a memorized formula as opposed to systematic reasoning: Some interviewed

students struggled to calculate the number of distinct many-particle states in Q1 and they

used a memorized formula for the number of many-particle states rather than formulating

a systematic reasoning for the given system. In some cases, students recalled one or more

expressions which were correct for a particular type of system but applied these expressions

to the wrong system of identical particles. For example, in the interview, some students

answered Q1(a) in a manner which would have been correct for a system of identical bosons

and Q1(b) in a manner that would have been correct for a system of identical fermions.

Interviews suggest that these students often wrote the formula for the number of many-

particle states from memory and did not reflect upon whether the formula was appropriate

for the given system.

Moreover, whether a student would reason about a given situation to find the number

of distinct many-particle states conceptually or use memorized knowledge depended on the
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context. Some students could identify that two or more fermions could not occupy the same

single-particle state in one context but not in a different situation. For example, during

the interview, students were asked to write all of the possible many-particle stationary state

wavefunctions for a system of three indistinguishable fermions in two distinct single-particle

states and then later asked to determine the number of distinct many-particle states for this

same system. It is not possible to have three fermions in only two single-particle states.

However, some students incorrectly provided at least one many-particle stationary state

and/or calculated a non-zero number of distinct many-particle states for this system. In

particular, these students generally either determined that there are zero distinct many-

particle states for a system in which two or more fermions are in the same single-particle state

or that the many-particle stationary state wavefunction does not exist for such a system, but

then answered the other related question as though such a system does exist. One interviewed

student with this difficulty correctly stated that “we can’t write a many-particle stationary

state wavefunction for a system that has two fermions in the same state.” But this same

student later in the interview incorrectly calculated that there are
(
3
2

)
= 3 distinct many-

particle states for the system of three indistinguishable fermions in two single-particle states.

Interviews suggest that students with this type of difficulty often used the formula
(
M
N

)
from

memory to find the number of distinct ways to arrange the N identical objects among M total

objects, but they did not do a reasonability check for whether this formula should be used

for the given situation and correctly identify what N and M in
(
M
N

)
represent. For example,

upon questioning by the interviewer, this interviewed student incorrectly identified M as the

number of identical fermions as opposed to the number of available single-particle states and

incorrectly identified N as the number of available single-particle states as opposed to the

number of identical fermions. He did not detect the inconsistency in his two responses. The

lack of sufficient sense-making to recognize that different responses for the same physical

situation are inconsistent is common in introductory physics but has also been observed in

prior research related to student understanding of Dirac notation in QM [14]. One reason

for the difficulty in metacognition is that students’ working memory is constrained by the

demands of the problem since they are still developing expertise in these concepts and must

do mathematical sense-making in a given context. Therefore, the cognitive overload makes
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it difficult to do metacognition and ensure that different responses are consistent with each

other [48].

For a system of identical bosons in Q1(b), some of the interviewed students who answered

that there are 34 = 81 distinct many-particle states were incorrectly recalling the formula

for a system of identical particles that can be treated as distinguishable and also incorrectly

applying this formula to a system of identical bosons. For example, some students during

the interview debated whether the number of distinct many-particle states for a system of

identical particles that can be treated as distinguishable for a system of N particles and

M available single-particle states is MN or NM without explicitly reasoning about what it

should be given N particles and M available single-particle states. Students with this type

of difficulty often did not engage in sufficient sense-making to ensure that their answers were

reasonable. For example, one can check the reasonability of the formulas MN or NM for

a system with a small number of particles and available single-particle states. One could

consider a system of one particle and two available single-particle states. In this case, the

particle can be in either of the two single-particle states and there are two distinct many-

particle states and thus, MN = 21 = 2 gives the correct answer. However, using the formula

NM = 12 = 1, one incorrectly obtains only one distinct many-particle state for the system.

Incorrectly multiplying (as opposed to dividing) by the number of indistin-

guishable combinations: Many students attempted to determine the number of distinct

many-particle states for a system of indistinguishable particles by determining the number

of arrangements of identical particles in the single-particle states and then adjusting this

number based upon the number of indistinguishable permutations. However, in Q1(a) and

Q1(b), some students incorrectly multiplied the number of distinct many-particle states by

the number of permutations of the indistinguishable particles (as opposed to dividing it).

One interviewed student considered about whether to multiply or divide by the number

of permutations of the indistinguishable particles and ultimately decided to multiply. He

did not explicitly reason about whether indistinguishability should give rise to more or less

many-particle states compared to the case when particles are distinguishable.

For a system of identical fermions in Q1(a), one interviewed student incorrectly deter-

mined that there are 4! ·3! distinct many-particle states for the system of three indistinguish-
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able fermions in four single-particle states. When asked, this student stated how he obtained

4! by noting that “we can put the first fermion in any of the four states. The second fermion

can go in any of the three states that the first fermion didn’t go in. And the third fermion

can be in either of the two remaining states.” The student then went on to try to account

for the indistinguishability of the three fermions. “Then we need to multiply by the number

of arrangements that are the same for these three identical fermions. There are 3! ways to

arrange these three fermions so we need to multiply by this factor.” The student then jotted

down his answer as 4! ·3!. This student used rote memory to multiply rather than divide and

claimed that there are more distinct states when taking into account the indistinguishability

of the fermions. However, there are fewer distinct many-particle states for the system of

indistinguishable fermions than there are for a system of three distinguishable particles all

in different single-particle states. For example, there are
(
4
3

)
= 4!

3!1!
= 4 distinct ways to

arrange the three indistinguishable fermions among the four single-particle states.

Incorrectly determining the number of distinct many-particle states for a

different case in which the number of particles in the system was not fixed: Some

students focused on the number of particles that could occupy a given single-particle state

without realizing that the number of identical particles for a given system was specified

in the problem. Interviews suggest that students may have been attempting to recall an

example they had seen in class in which the number of particles in the system was not fixed

and instead they were asked to determine the number of distinct many-particle states for the

system with different conditions specified by the problem. Below, we give two such examples.

For a system of identical fermions in Q1(a), one interviewed student correctly stated that

“each single-particle state can have either zero or one fermion, so there are two possibilities

for the first single-particle state, two for the second, and two for the third and fourth. There

are 2 × 2 × 2 × 2 = 24 = 16 distinct many-particle states.” This student and others with

this type of response failed to realize that the system in Q1 had three indistinguishable

fermions and instead calculated all the possible many-particle states for fermions in these

four single-particle states ranging from zero to four fermions.

For a system of identical particles that can be treated as distinguishable in Q1(c), one

interviewed student incorrectly claimed that “there are three particles that can be put in
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the first state, three particles that can be put in the second state, three in the third, and

three in the fourth.” The student then wrote 34 = 81 as the total number of distinct three

particle states. This student failed to realize that his method for counting the total number

of distinct states was not consistent for a system of only three particles. If there are three

identical particles that can be treated as distinguishable in the first single-particle state,

then there are none remaining to be placed in the other single-particle states. For a system

in which there are three particles in each of the four single-particle states, the system would

have 12 particles not 3. However, this student and others with this type of reasoning failed

to realize that they were not determining the number of distinct many-particle states for

systems restricted to only the specified number of particles.

10.4.3 Difficulties with procedural knowledge

Interviews suggest that some students had the correct conceptual understanding but strug-

gled to connect their conceptual knowledge with the procedure for determining the number

of distinct many-particle states correctly. Many of these students struggled with systematic

reasoning for determining the number of distinct many-particle states. In particular, some

students had difficulty determining the number of distinct many-particle states for a system

with a small number of particles and available single-particle states while others had diffi-

culty generalizing to a system with a large number of particles and available single-particle

states. Below are several difficulties students had formulating a systematic approach for

determining the number of distinct many-particle states.

Attempting to explicitly list all of the possible many-particle states but omit-

ting at least one possible combination: Nearly all the interviewed students began by

attempting to list all of the possible many-particle states for a system of indistinguishable

bosons in Q1(b). Most of the students continued to list as many of the distinct many-

particle states as they could. However, some of them omitted at least one of the possible

many-particle states partly because they were not systematic. For example, in Q1(b), some

students began by listing several states in one type of arrangement (e.g., all the bosons

in the same single-particle state) and then moved on to listing states in another type of
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arrangement (e.g., all the bosons in different single-particle states) without listing all the

many-particle states in each arrangement before moving on to the next arrangement. They

would often continue to list states in various arrangements and then stop when they could

not identify any new many-particle states that they had not already listed. In general, many

students missed at least one of the three-particle states in Q1(b) in which two of the bosons

are in one single-particle state and one boson is in a different single-particle state.

Incorrectly deducing the total number of distinct many-particle states after

determining the first few many-particle states: Other students used their intuition and

deductive reasoning after determining the first few distinct many-particle states to calculate

the total number of distinct many-particle states. This was particularly true for a system of

indistinguishable bosons in Q1(b). In general, students were able to correctly calculate all

the distinct three-particle states when the three bosons were in the same single-particle state.

Then they explicitly listed the first few distinct three-particle states when all the three bosons

were in different single-particle states and attempted to identify a pattern to enable them to

calculate the total number of distinct many-particle states. Often, students applied a similar

tactic to determine the total number of three-particle states when two of the bosons are in

one single-particle state and one boson is in a different single-particle state. However, some

students incorrectly generalized their pattern and miscounted the total number of distinct

three-particle states in Q1(b). Other students who answered Q1(b) correctly had difficulty

generalizing to a system with a large number of particles and available single-particle states.

They were able to explicitly list all of the possible many-particle states for systems in which

there were few identical particles and a small number of available single-particle states but

then struggled to generalize the method to systems with a large number of identical particles

and a large number of available single-particle states. In general, they were able to explicitly

list all of the possible many-particle states for a system with relatively few particles and

available states, but struggled to recognize a pattern to generalize the results. For a system

with a large number of particles and a large number of available single-particle states, these

students could not list every possible many-particle state and were not able to calculate the

number of distinct many-particle states.
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Claiming that the single-particle wavfunctions do not commute in their prod-

uct used to construct basis states for many-particle wavefunctions: Students who

claimed that the single-particle wavefunctions of different particles in the basis states in the

product space do not “commute” had difficulty generating a many-particle wavefunction

with the appropriate number of terms and in determining the normalization constant. For

example, students with this type of difficulty often claimed that the many-particle wavefunc-

tion for a system of three identical bosons in which all the bosons are in the same single-

particle state is 1√
3
[ψn1(x1)ψn1(x2)ψn1(x3)+ψn1(x2)ψn1(x3)ψn1(x1)+ψn1(x3)ψn1(x1)ψn1(x2)]

or 1√
6
[ψn1(x1)ψn1(x2)ψn1(x3)+ψn1(x1)ψn1(x3)ψn1(x2)+ψn1(x2)ψn1(x1)ψn1(x3)

+ ψn1(x2)ψn1(x3)ψn1(x1)+ψn1(x3)ψn1(x1)ψn1(x2)+ψn1(x3)ψn1(x2)ψn1(x1)]. They struggled

to realize that all terms in both expressions are equivalent and can be simplified to a

single term ψn1(x1)ψn1(x2)ψn1(x3). Additionally, they struggled to correctly determine

the normalization constant. For example, the expression 1√
3
[ψn1(x1)ψn1(x2)ψn1(x3) +

ψn1(x2)ψn1(x3)ψn1(x1) +ψn1(x3)ψn1(x1)ψn1(x2)] reduces to
√

3ψn1(x1)ψn1(x2)ψn1(x3), which

is not the properly normalized many-particle wavefunction for a system of three identical

bosons in the single-particle state ψn1 .

Another interviewed student in Q1(b) claimed that there are 43 × 3! distinct many-

particle states for a system of three indistinguishable bosons in four single-particle states.

The student incorrectly multiplied 43 by 3! to account for number of ways to arrange the

single-particle states in each basis state.

Difficulty with the bin and divider method for determining the number of

distinct many-particle states for a system of identical bosons: One approach for

determining the number of distinct many-particle states for a system of indistinguishable

bosons is the “bin and divider” method. In this method, the indistinguishable bosons can

be placed into any of the single-particle states which can be thought of as bins to hold the

bosons. The number of distinct many-particle states is given in Eq. 12.5.

Many students who used the bin and divider method had difficulty realizing that one

should be using the number of dividers (number of available single-particle states minus 1)

as opposed to the number of bins (number of available single-particle states) to determine

the number of distinct states for a system of identical bosons. One interviewed student
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incorrectly claimed that “we can either count the number of ways to arrange the bosons or

the states” among the total number of indistinguishable objects. This student and others

with this type of difficulty incorrectly claimed that the number of distinct many-particle

states was
(N +M

N
)
=
(N +M

M
)
=

(N +M)!

N !M !
.

10.4.4 Difficulty with mathematical sense-making in the context of determining

the number of distinct many-particle states

Students must integrate physics and mathematics concepts correctly in order to determine

the number of distinct many-particle states for a system of identical particles. This requires

students to have a strong understanding of the combinatorics which deals with how to

count objects with different properties (e.g., whether the particles are distinguishable vs

indistinguishable) and restrictions on the ways in which these objects can be arranged and

be able to apply combinatorics correctly in the context of quantum mechanics. Below, we

discuss some difficulties students had in determining the number of distinct many-particle

states due to difficulty in applying an underlying mathematical concept correctly in the

quantum mechanical context.

Incorrectly adding the number of available single-particle states for each iden-

tical particle: Some students stated that each indistinguishable particle can be placed in

any of the available single-particle states and that the total number of distinct many-particle

states is the sum of the number of available single-particle states for each boson.

For a system of identical fermions in Q1(a), one interviewed student incorrectly claimed

that there are 4 + 3 + 2 = 9 distinct many-particle states for a system of three fermions and

four available single-particle states. Interviews suggest that at least some students with this

type of response correctly applied Pauli’s exclusion principle and determined the number

of distinct many-particle states such that no two fermions are in the same single-particle

state, but incorrectly added the number of ways to arrange the fermions in each single-

particle state rather than multiplying. This is an interesting way of incorrectly applying the

Pauli exclusion princple or justifying the procedure for determining the number of distinct

many-particle states.
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For a system of identical bosons in Q1(b), one interviewed student stated that “there are

four available (single-particle) states for the first boson to go in and there are four available

(single-particle) states for the second, since bosons can occupy the same (single-particle)

state. The same for the third. So there are four (available single-particle states) for the first

(boson), four (available single-particle states) for the second (boson), and four (available

single-particle states) for the third (boson).” The student then jotted down 4 + 4 + 4 = 12

and claimed there were 12 distinct three-particle states for Q1 for a system of identical

bosons.

Difficulty counting the different arrangements correctly for a system of in-

distinguishable bosons: In Q1, for a system of three identical bosons and four available

single-particle states, many students attempted to determine the number of ways: (1) all

three particles could be arranged in the same single particle state, (2) two bosons could be

in the same state and the other boson is in a different state, (3) all three bosons could be in

different single-particle states to determine the total number of distinct many particle states.

For example, one common incorrect response in Q1 was
(
4
1

)
+
(
4
2

)
+
(
4
3

)
= 4 + 6 + 4 = 14. One

interviewed student with this response stated that “when all the bosons are in the same

state, there are four states and we need to choose which one has the bosons. There are
(
4
1

)
ways to arrange all the bosons in one state. If two of the bosons are in the same state and

one is in another, then we need to choose which two states have the bosons. That makes(
4
2

)
ways to arrange the bosons. And then, if all three bosons are in different states, then

we need to choose which three states have the bosons. There are
(
4
3

)
ways to do that.” The

student then jotted down that the total number of distinct many-particle states in Q1(b)

was
(
4
1

)
+
(
4
2

)
+
(
4
3

)
= 4 + 6 + 4 = 14.
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10.5 METHODOLOGY FOR THE DEVELOPMENT AND VALIDATION

OF THE QUILT

10.5.1 Development and Validation of the QuILT

Based upon our research of student difficulties with fundamental concepts with systems of

identical particles, we developed a QuILT that attempts to build a consistent and coherent

knowledge structure while at the same time addressing the common student difficulties.

As noted in [37], the development of the QuILT was also guided by a cognitive task

analysis [49] from both an expert perspective and a novice (or student) perspective which

consisted of all the requisite skills and concepts necessary for a functional understanding of

a system of identical particles. The initial cognitive task analysis was conducted from an

expert perspective in which the researchers outlined the required knowledge and skills and the

order in which they are useful in solving problems. This cognitive task analysis was iterated

with physics faculty members. However, in an effort to determine if there are additional

areas student may struggle with that are not predicted by the experts (expert blindspot) we

conducted the student interviews. The cognitive task analysis was then expanded to include

these areas in which students needed additional scaffolding support.

As noted in [37], the QuILT was iterated many times among the three researchers and

at several points during the development it was iterated with three physics faculty mem-

bers at the University of Pittsburgh to ensure content was correct and they agreed with the

wording. During this cyclical iterative process, faculty members provided feedback regard-

ing the current version of the QuILT that were incorporated in the next version. Once it

was agreed upon by the faculty that the content was clear and appropriate, the QuILT was

administered to 14 graduate students in “think aloud” interviews to ensure that the wording

was unambiguous, the scaffolding was effective, and to be able to further investigate any

student difficulties. During these semi-structured interviews, the students worked through

the QuILT and provided their rationale for each question in the pretest, the guided inquiry-

based tutorial, and the posttest. The students were not interrupted as they answered the

questions and worked through the tutorial. They were asked follow up questions or asked

to clarify any unclear statements only upon completion of the pretest, the entire section
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of the tutorial focused on the issues discussed here, or the posttest. After each interview,

the student’s responses were analyzed to measure the effectiveness of the tutorial and de-

termine whether there were any necessary changes that needed to be made to the QuILT.

These changes were incorporated in subsequent versions of the QuILT and for subsequent

interviews. During each step in the cyclically iterative process, the QuILT was adjusted to

incorporate the faculty suggestions as well as the students’ feedback and responses to help

students address many of the common difficulties and improve the ability of the students

to build a consistent and coherent knowledge structure. After it was deemed successful, the

QuILT was next administered to students in various advanced quantum mechanics courses.

10.5.2 Structure of the QuILT

As noted in [37], the QuILT strives to transform the students into active learners by em-

ploying an inquiry-based approach which requires the students to build their own knowledge

structure by answering questions, analyzing the validity of given statements, and reflecting

upon what they have learned. The QuILT consists of three parts: the pretest, a guided

inquiry-based tutorial, and the posttest. The pretest is administered to the students after

traditional, lecture-based instruction covering systems of identical particles. The pretest

is given in class, during which the students completed it individually with no additional

resources other than what is provided in the pretest itself. After completing the pretest,

the students are given the tutorial and encouraged to work on it together in small groups

in class. The tutorial can also be used to guide in-class discussion. As an alternative, the

tutorial can be administered as a self-paced learning tool that the students work on as part

of their weekly homework assignment. Upon completion, the students submit the tutorial

for grading and are then administered the posttest. The posttest is given in class as an indi-

vidual assessment in which the students are not permitted any additional resources beyond

what is provided in the posttest.

As noted in [37], the QuILT incorporates guided inquiry-based learning sequences which

consist of several questions, each building upon the previous question(s) that require the

students to take a stand and actively engage them in the learning process. The QuILT

also includes hypothetical student conversations in which the students must analyze each

hypothetical student’s statement to determine whether they are correct and explain why
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they agree or disagree with each student. Many of the common student difficulties were used

as a guide when constructing these hypothetical conversations and inquiry-based sequences

with the goal being that students would identify an inconsistency in their reasoning and

then use the provided support to reconcile these inconsistencies. For example, there are a

number of hypothetical student conversations in which one or more students make statements

reflecting these common difficulties and provide incorrect reasoning mirroring those given by

actual students. Other students in these hypothetical conversations disagree with their

incorrect reasoning and provide correct reasoning and often note an issue with the incorrect

statement(s). As the students work through the QuILT, they must consider each student’s

argument and reflect upon their own reasoning in order to determine which student(s) are

correct. Similarly, the guided inquiry-based sequences often include excerpts that strive

to present the students with contradictions between the answers to the questions in the

sequence and their prior knowledge that they must then reconcile. Checkpoints are provided

at the end of each section that allow the students to go back and reconcile any remaining

differences between the correct reasoning and their own reasoning before moving on the next

section.

10.5.3 Addressing Student Difficulties

In the guided inquiry-based learning sequences in the QuILT, students actively engage with

examples focusing on concepts in a given situation, e.g., how to determine the number of

distinct many-particle states in a given situation. In particular, the QuILT strives to help

students develop a systematic approach for determining the number of many-particle states

for a system of identical particles and connect the number of distinct many-particle states

to the possible number of many-particle stationary state wavefunctions. In the QuILT, stu-

dents consider the systems of identical particles in the following order: (1) indistinguishable

fermions, (2) indistinguishable bosons, and (3) identical particles that can be treated as

distinguishable. For each system, students begin by determining the number of distinct

many-particle states for a system of two identical particles. They then consider a system of

three identical particles and determine the number of distinct many-particle states. Finally,
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students are presented with systems in which the number of particles becomes very large

and they are provided guidance and support in learning to determine the number of distinct

many-particle states. For the systems of indistinguishable fermions and indistinguishable

bosons, students also work with diagrammatic representations for the system that strives to

help students recognize why care must be taken to ensure that one is determining these parti-

cles as indistinguishable particles. These diagrammatic representations are intended to help

them develop a systematic reasoning for determining the number of distinct many-particle

states for a system with a large number of particles and available single-particle states. Below

are several examples from the QuILT that strives to provide scaffolding support intended to

help students with these fundamental concepts and address some of the common difficulties.

Helping students determine the number of distinct many-particle states for a

system of fermions: There were several common difficulties students had with determining

the number of distinct many-particle states for a system of fermions that the QuILT strives

to address via the guided inquiry-based learning sequences. We wanted students to be able

to identify that a system of identical fermions is made up of indistinguishable particles and

one must be careful to only count distinct many-particle stationary states. The QuILT also

strives to help students learn that the many-particle states for a system of indistinguishable

fermions are consistent with the Pauli exclusion principle. One consequence of the Pauli

exclusion principle is that a system cannot have more fermions than the number of available

single-particle states.

The following is an example of a hypothetical student conversation from the QuILT that

focuses on providing an opportunity for reflection of some common difficulties in which stu-

dents must consider each statement and explain why they agree or disagree with each. This

conversation is part of a guided inquiry-based learning sequence that strives to help students

determine the number of distinct two-particle states for a system of two indistinguishable

fermions and three distinct single-particle states while not overcounting states by treating

the particles as distinguishable.

Student 1: For a system of two fermions and three distinct single-particle states ψn1, ψn2,

and ψn3, there are three available single-particle states for the first fermion. That leaves two

single-particle states for the second fermion since the second fermion cannot occupy the same
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single-particle state as the first fermion. The number of two-particle states is 3× 2 = 6.

Student 2: I disagree with Student 1. Since the fermions are indistinguishable, we cannot

distinguish which fermion is in which single-particle state. For example, we can only tell

that one fermion is in single-particle state ψn2 and another fermion in single-particle state

ψn3. But, there is no way to tell which fermion is in which single-particle state. This

indistinguishability is reflected in the antisymmetrized wavefunction.

Student 3: I agree with Student 2. Here is the diagrammatic representation for the 3

distinct two-particle states:

uu
ψn1

ψn2

ψn3 u
u ψn1

ψn2

ψn3

uu ψn1

ψn2

ψn3

Student 1 is not correct while Students 2 and 3 are correct in the preceding conversation.

This conversation is designed to help students reflect upon the fact that the fermions are

indistinguishable. After considering this hypothetical conversation, as part of the guided

inquiry-based sequence, students are asked to write all the possible stationary state wave-

functions for a system of two fermions and three available single-particles states ψn1 , ψn2 ,

and ψn3 for the case when the two fermions are in the same single-particle state and when

the two fermions are in different single-particle states. The students are then asked to reflect

upon the number of distinct many-particle states and the number of possible many-particle

stationary state wavefunctions. Further scaffolding is provided that strives to help students

realize that the number of distinct many-particle states is the same as the number of possible

many-particle stationary state wavefunctions for a given system.

The following statement is an excerpt from a hypothetical conversation between students

that strives to help them reflect upon how to determine the number of distinct many-particle

states and connect this reasoning to a mathematical expression for counting the states.

Students are asked to explain why they agree or disagree with each student such as the

following:

Student 2: There are three distinct single-particle states available to the fermions and

we must choose any two for the fermions to occupy. The number of distinct two-particle
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states for a system of two indistinguishable fermions and three distinct single-particle states

is
(
3
2

)
= 3!

2!(3−2)! = 3.

Student 2 is correct. After students consider these types of examples of determining the

number of distinct two-particle states for a system of two fermions, they then work through

guided inquiry-based sequences for a system of three identical fermions. Then, they consider

systems for a large number of fermions and a large number of available single-particle states.

Students are provided further scaffolding support that strives to help them generalize the

results from the systems of two and three fermions and become proficient in determining the

number of distinct many-particle states for a system with a large number of fermions.

Helping students determine the number of distinct many-particle states for

a system of bosons: The QuILT strives to help students learn that a system of identical

bosons must be treated as a system of indistinguishable particles and develop a systematic

approach for determining the number of distinct many-particle states in a given situation.

The following hypothetical conversation is part of a guided inquiry-based learning se-

quence that aims to help students with the fact that a system of identical bosons cannot be

treated as a system of distinguishable particles and provides a diagrammatic representation

to help them reflect upon the distinct many-particle states. In this conversation, students

consider a system of two indistinguishable bosons and three distinct single-particle states

and are asked to explain why they agree or disagree with each:

Student 1: For a system of two bosons and three distinct single-particle states ψn1, ψn2,

and ψn3, there are three available states for the first boson and three available states for the

second boson. The number of two-particle states is 3× 3 = 9.

Student 2: I disagree with Student 1. You are overcounting since you are not taking

into account the fact that bosons are indistinguishable. If the bosons are in the same

single-particle state, there are three possibilities as follows:

u u
ψn1

ψn2

ψn3

u u ψn1

ψn2

ψn3

u u ψn1

ψn2

ψn3
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But, if the bosons are in different single-particle states, there are three possibilities since

bosons are indistinguishable and swapping the two bosons in the two single-particle states in

each of the following situations does not produce a new two-particle state:

uu
ψn1

ψn2

ψn3 u
u ψn1

ψn2

ψn3

uu ψn1

ψn2

ψn3

There are 6 distinct two-particle states for a system of two bosons and three distinct

single-particle states.

Student 1 is inccorect and Student 2 is correct in the preceding conversation. If one treats

the identical bosons as distinguishable, as Student 1 has, then one is overcounting the case in

which the two identical bosons are in different single-particle states. Student 2’s statement

regarding the particles being indistinguishable under the exchange of the particles strives to

draw students’ attention to the fact that these two bosons cannot be distinguished. After

considering this hypothetical conversation, as part of the guided inquiry-based sequence,

students are asked to write all of the possible stationary state wavefunctions for a system of

two bosons and three available single-particles states ψn1 , ψn2 , and ψn3 . The students are

then asked to reflect upon the number of distinct many-particle states and the number of

possible many-particle stationary state wavefunctions. Further scaffolding is provided that

strives to help students realize that one must obtain the same number of distinct many-

particle states from the combinatorics as the number of possible many-particle stationary

state wavefunctions for a given system.

The next hypothetical conversation in the guided inquiry-based learning sequence

strives to help students learn a method for determining the number of distinct ways two

indistinguishable bosons can be arranged in the three distinct single-particle states by

introducing the bin and divider method.

Student 1: For a system of two bosons, there can be more than one boson in a given single-

particle state. We can treat the single-particle states as bins to be filled with bosons and
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dividers to separate the different single-particle states or bins. For example, if the system

had two bosons in the first single-particle state then the first bin would have two bosons. For

a system with three single-particle states available, we would need two dividers between the

three single-particle states. In the case of three single-particle states and two bosons, we must

find the number of possible arrangements of the two bosons and two dividers.

Student 2: I agree with Student 1. Furthermore, since the two dividers cannot be distin-

guished from one another and the bosons cannot be distinguished from one another, we can

permute the indistinguishable dividers with the indistinguishable bosons to find all the possible

ways to permute two bosons in the three single-particle states as follows:

Two Bosons in the First State

u u
Two Bosons in the Second State

u u
Two Bosons in the Third State

u u
One Boson in the First State and One Boson in the Second State

u u
One Boson in the First State and One Boson in the Third State

u u
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One Boson in the Second State and One Boson in the Third State

u u
Student 3: The number of distinct many-particle states comes from the number of

ways the two bosons and two dividers can be permuted. We have a total of four objects (two

bosons and two dividers) and we can find the number of ways to permute the two bosons or

equivalently the number of ways to permute the two dividers among the four objects. The

number of distinct two-particle states is
(
4
2

)
= 4!

2!(4−2)! = 6.

All three students in the preceding conversation are correct. Student 1 is describing

the bin and divider method and Student 2 is providing a diagrammatical representation of

different arrangements of the two bosons in the bins representing the single-particle states.

Student 3 provides a mathematical expression for the total number of distinct two-particle

states.

After students consider examples that strive to help them learn how to determine the

distinct two-particle states for a system of two bosons, they then work through several

guided inquiry-based sequences for a system of three identical bosons. Then, they consider

systems for a large number of bosons and a large number of available single-particle states.

Students are provided scaffolding support that strives to help them generalize the results

from the systems of two and three bosons to be able to determine the number of distinct

many-particle states for a system with a large number of bosons. The following is a

hypothetical student conversation aimed at helping students develop a systematic approach

for determining the number of distinct ways N indistinguishable bosons can be arranged in

the M distinct single-particle states.

Student 1: Using the bin and divider method, there are N +M − 1 total objects that should

be permuted, out of which N bosons are indistinguishable from each other and the M − 1

dividers are indistinguishable from each other. We must calculate the number of distinct

arrangements.

Student 2: When we choose the number of ways to place the M − 1 indistinguishable di-

330



viders between the N bosons, we get
(N +M − 1

M − 1
)
=

(N +M − 1)!

(M − 1)![(N +M − 1)− (M − 1))]!
=

(N +M − 1)!

(M − 1)!N !
. If instead we choose the number of ways to place the N bosons between M−1

dividers, we get
(N +M − 1

N
)
=

(N +M − 1)!

N ![(N +M − 1)−N)]!
=

(N +M − 1)!

N !(M − 1)!
. Either way it is

the same!

Both students in the previous conversation are correct and are drawing attention to the

fact that one must focus on the number of bosons and the number of dividers (as opposed

to the number of available single-particle states).

The QuILT also asks students to reflect upon and compare the number of distinct many-

particle states for a system of indistinguishable fermions, indistinguishable bosons, and iden-

tical particles that could be treated as distinguishable. In particular, they are asked to rank

the number of distinct many-particle states for each system with the same number of parti-

cles and the same number of single-particle states. The goal is to have students understand

that for the same number of particles and available single-particle states a system of dis-

tinguishable particles has the largest number of distinct many-particle states and that the

indistinguishability of the identical fermions and bosons results in fewer distinct states (un-

less the system of identical bosons has only one available single-particle state, in which case

this system will have the same number of distinct many-particle states as a system of distin-

guishable particles). A system of identical fermions must satisfy the Pauli exclusion principle

which reduces the number of possible many-particle states compared to identical bosons. The

QuILT strives to help students learn that the number of distinct many-particles states for a

given number of particles and available single-particle states increase by particle type in the

order: indistinguishable fermions, indistinguishable bosons, and identical particles that can

be treated as distinguishable and be able to reason why that is the case.

10.6 EVALUATION OF THE QUILT

Once the researchers determined that the QuILT was successful in one-on-one implemen-

tation using a think-aloud protocol, it was administered in graduate and upper-level un-
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Table 41: Average pretest and posttest scores for Q1 and Q2 for the given system on the

pretest and posttest for undergraduates (number of students N = 25) and graduate students

(N = 30).

Question Type of Particle Graduate Undergraduate

Pre (%) Post (%) Pre (%) Post (%)

Q1

Fermions 48 - 56 -

Bosons 28 - 27 -

Distinguishable 28 - 39 -

Q2

Fermions - 100 - 100

Bosons - 92 - 96

Distinguishable - 93 - 86

dergraduate classes. Both undergraduate and graduate students were given a pretest after

traditional instruction in relevant concepts for constructing the many-particle stationary

state wavefunction for a system of identical particles before working through the tutorial.

The pretests were not returned to the students after grading. The undergraduates worked

through the tutorial in class for two days and were asked to work on the remainder of the

tutorial as homework. The graduate students were given the tutorial as their only homework

assignment for the week. After working through and submitting the completed tutorial, both

groups were given the posttest in class. Students were given enough time in class to work

through the pretest and posttest.

The open-ended questions Q1 and Q2 were graded using rubrics which were developed

by the researchers together. A subset of questions was graded separately by them. After

comparing the grading, they discussed any disagreements and resolved them with a final

inter-rater reliability of better than 95%. Table 41 shows the performance of undergraduate

and graduate students on the pretest and posttest. The results are encouraging and suggest

that the QuILT is effective in helping students count the number of distinct many-particle

states for systems of identical fermions or bosons, as well as the contrasting case in which
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Table 42: The percentages of undergraduate students who answered questions Q1(a) and

Q1(b) correctly for the given system on the midterm examination four weeks after completing

the Quantum Interactive Learning Tutorial (number of students N = 12).

Question Type of Particle Answered Correctly (%)

Q1(a) Fermions 75

Q1(b) Bosons 75

the identical particles could be treated as distinguishable. Q2 was given on the posttest

and was intended to be a similar question to Q1 on the pretest. There are a different

number of identical particles and available single-particle states in the two questions. Overall,

the students did very well with more than 80% of the graduate students and 75% of the

undergraduates answering all three parts of Q2 correctly for the given system of identical

particles.

As a measure of retention, the students in the first year were given questions Q1(a)

and Q1(b) on their midterm examination four weeks after completing the posttest. Table 42

summarizes the percentages of students who determined the number of distinct many-particle

states in Q1(a) and Q1(b) correctly on the midterm examination.

10.7 SUMMARY

Investigating students’ understanding of a system of identical particles helped to uncover

many common student difficulties that were used as a guide to develop a research-based

QuILT that strives to help students learn to reason and determine the number of distinct

many-particle states for a system of identical particles. The QuILT strives to help students

(1) realize that a system of identical fermions or bosons consists of indistinguishable particles

(2) develop a systematic approach for determining the number of distinct many-particle

states and (3) determine the number of distinct many-particle states from lowest to highest
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for a system of indistinguishable fermions, indistinguishable bosons, and identical particles

that could be treated as distinguishable for systems containing the same number of particles

and the same number of single-particle states. Many of the student difficulties discussed

here may be attributed in part to students’ bounded rationality in that they are limited

in their cognitive resources so they may not be able to solve problems correctly if they are

not provided appropriate guidance and scaffolding support [47]. The QuILT strives to place

the students in the role of active learners while providing an appropriate level of scaffolding

through a guided inquiry-based approach. The results suggest that the QuILT is effective in

improving students’ understanding of fundamental concepts necessary for determining the

number of distinct many-particle states for a system of identical particles.
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11.0 DEVELOPING AND EVALUATING A QUANTUM

INTERACTIVE LEARNING TUTORIAL ON A SYSTEM OF

IDENTICAL PARTICLES: COUNTING THE NUMBER OF DISTINCT

MANY-PARTICLE STATES FOR A SYSTEM WITH A

FIXED TOTAL ENERGY

11.1 INTRODUCTION

Quantum mechanics (QM) is a particularly challenging subject for upper-level undergraduate

and graduate students in physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. There have been

a number of research studies aimed at investigating student reasoning in QM [14, 15, 16,

17, 18, 19, 20, 21] and improving student understanding of QM [22, 23, 24, 25, 26, 27].

For example, our group has focused on using the common student difficulties as a guide to

develop research-based learning tools which include Quantum Interactive Learning Tutorials

(QuILTs) [28, 29, 30, 31, 32, 33, 34] which strive to improve student understanding of different

QM concepts. However, there have been few investigations into student difficulties with

fundamental concepts involving a system of identical particles with fixed total energy.

Here, we discuss an investigation of student difficulties with the number of distinct many-

particle stationary states for a system of non-interacting identical particles and how that

research was used as a guide in the development, validation, and in-class evaluation of a

QuILT that strives to help students develop a good grasp of relevant concepts pertaining to

the number of distinct many-particle states. Through researching students’ understanding of

and reasoning about a system of identical particles, we found common student difficulties that

can hinder their development of a consistent and coherent knowledge structure pertaining

to these concepts.
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Students must have a good understanding of quantum mechanical properties of a system

of identical particles as well as a background in combinatorics to be proficient in determin-

ing the number of distinct many-particle states, whether a total energy is possible for the

system under given constraints, and the possible outcomes of an energy measurement and

the probability of obtaining a particular energy if we randomly measured the energy of one

particle in a system of non-interacting identical particles. However, prior research suggests

that students struggle in mathematical sensemaking in the context of physics even if they can

answer similar mathematics questions not involving physics context in a number of different

introductory physics contexts [35, 36, 37, 38]. Since the QM paradigm is novel, student

difficulties in mathematical sense-making in the context of QM has also been observed in

prior studies.

Below, we start with a brief background of relevant concepts and then describe the

methodology for the investigation of student difficulties followed by the common difficulties

found. Then, we describe the methodology for the development, validation and in-class

evaluation of the corresponding research-based QuILT that strives to help students develop

a functional understanding of the fundamental concepts involved in determining the number

of distinct many-particle states for a system of identical particles with a fixed total energy,

the possible outcomes of an energy measurement and the probability of obtaining a particular

energy if we randomly measured the energy of one particle in a system of non-interacting

identical particles.

11.2 BACKGROUND

In nature, there are two general types of particles: fermions with a half-integer spin quantum

number (e.g., electrons and protons) and bosons with an integer spin quantum number (e.g.,

photons and mesons). A system of N identical particles consists of N particles of the

same type (e.g., electrons). For a system of identical particles in classical mechanics (e.g.,

five identical tennis balls), each particle can be distinguished from all the other particles.

In contrast, in quantum mechanics, identical particles are indistinguishable and there is
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no measurement that can be performed to distinguish these identical particles from one

another. For example, if the coordinates of two identical particles are interchanged, there

is no physical observable that would reflect this interchange. Here we focus on systems of

identical particles in which the total energy of the many-particle system is fixed. For a system

of identical fermions, it is not possible for two or more fermions to occupy the same single-

particle state. In order to construct a many-particle wavefunction for fermions satisfying the

given constraint on the total energy of the system, there must be at least one combination

of the single-particle states with the specified total energy for which all the particles are

in different single-particle states. For a system of identical bosons, it is possible for two or

more bosons to occupy the same single-particle state so satisfying the constraint on the total

energy of the many-particle system is generally easier and there are many more possibilities,

in general, than for the corresponding case for fermionic systems. As a contrasting case, if

identical particles could be treated as distinguishable, there is no restriction on the number

of particles that can be placed in a single-particle state so there are generally more many-

particle states for the distinguishable particles with the same constraint on the total energy

compared to a system of indistinguishable particles of both types.

For a system of N non-interacting identical particles each in a M -dimensional Hilbert

space, the MN -dimensional Hilbert space (H ) for the many-particle (N -particle) system is

H = H1 ⊗H2 ⊗ · · · ⊗HN , (11.1)

which is the direct product of the M -dimensional Hilbert spaces for each particle Hi. The

many-particle Hamiltonian for the system of N non-interacting identical particles in the

product space is

Ĥ = Ĥ1 ⊗ Î2 ⊗ Î3 ⊗ · · · ⊗ ÎN + Î1 ⊗ Ĥ2 ⊗ Î3 ⊗ · · · ⊗ ÎN + · · ·+

Î1 ⊗ Î2 ⊗ · · · ÎN−2 ⊗ ĤN−1 ⊗ ÎN + Î1 ⊗ Î2 ⊗ · · · ⊗ ÎN−1 ⊗ ĤN ,
(11.2)

where the single-particle Hamiltonian, Ĥi, and the identity operator, Îi, for the ith particle

are in the M -dimensional Hilbert space Hi.
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We will use the following shorthand notation for the many-particle Hamiltonian

Ĥ =
∑
i

Ĥi = Ĥ1 + Ĥ2 + Ĥ3 + · · ·+ ĤN (11.3)

in which Ĥi = Î1 ⊗ Î2 ⊗ · · · ⊗ Îi−1 ⊗ Ĥi ⊗ Îi+1 · · · ⊗ ÎN is the Hamiltonian of the ith particle

in the MN dimensional product space. All the Hamiltonians in boldface will refer to a

Hamiltonian in the MN dimensional product space.

In all the questions in this investigation discussed here, the non-interacting identical

particles are restricted to one spatial dimension for convenience. Students were asked to

consider the wavefunction of the many-particle system ignoring the spin part of the wave-

function (we refer to these particles as “spinless”). As an example of such a quantum system,

we consider non-interacting identical particles of mass m in a one-dimensional infinite square

well of width a (0 ≤ x ≤ a). For a system of N non-interacting identical particles, the total

energy of the many-particle system can be written in terms of the single-particle energies as

E = En1 + En2 + En3 + · · ·+ EnN

= (n2
1 + n2

2 + n2
3 + · · ·+ n2

N)
(
π2~2
2ma2

)
= (n2

1 + n2
2 + n2

3 + n2
N)E1.

(11.4)

Here n1, n2, n3, . . . , nN are positive integers (quantum numbers) that label the single-particle

states in which the N particles are placed and E1 = π2~2
2ma2

is the ground state energy for one

particle in the one-dimensional infinite square well.

For example, let’s suppose that the total energy of the many-particle system for three

non-interacting identical particles of mass m in the one-dimensional infinite square well of

width a is E = 243
(
π2~2
2ma2

)
= 243E1. We note that the only possible integers, quantum

numbers, n1, n2, and n3 whose squares sum to 243 are

243 = 12 + 112 + 112

243 = 32 + 32 + 152

243 = 52 + 72 + 132

243 = 92 + 92 + 92.

(11.5)
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Here we will use the notation (ni, nj, nk) to denote the combination in which the quantum

numbers ni, nj, and nk refer to the single-particle states, i.e., particle 1 is in the single-particle

state labeled by ni, particle 2 is in the single-particle state labeled by nj, and particle 3 is

in the single-particle state labeled by nk. In the example, the combination (5, 7, 13) means

that particle 1 is in the single-particle state ψ5, particle 2 is in the single-particle state ψ7

and particle 3 is in the single-particle state ψ13. For a system of indistinguishable particles,

one cannot determine which particle is in which single-particle state. The many-particle

stationary state wavefunction for a system of three non-interacting identical particles will

consist of basis states of the form ψi(x1)ψj(x2)ψk(x3) where xm is the coordinate of the mth

particle. Here, for convenience, we will refer to all direct products of single-particle states as

“basis states”, regardless of their symmetry under exchange. Please note that for identical

fermions, only antisymmetric linear combinations of these basis states are allowed, while for

bosons only symmetric linear combinations are allowed. For distinguishable particles, all

basis states are allowed. In order to satisfy the symmetrization requirements for a system of

identical fermions or bosons, a linear combination of all permutations of these basis states

with correct symmetrization is required. For example, the combinations (5, 7, 13), (5, 13, 7),

(7, 5, 13), (7, 13, 5), (13, 5, 7), (13, 7, 5) in Eq. 11.5 with constraints on the total energy do

not yield six distinctly different states for a system of identical bosons or fermions but corre-

spond to terms in a many-particle stationary state wavefunction that satisfy the appropriate

symmetrization requirement. These six combinations, for a system of identical fermions,

correspond to the completely antisymmetric three-particle stationary state wavefunction

Ψ(x1, x2, x3) = 1√
6
[ψn5(x1)ψn7(x2)ψn13(x3)− ψn5(x1)ψn13(x2)ψn7(x3)

+ψn7(x1)ψn13(x2)ψn5(x3)− ψn7(x1)ψn5(x2)ψn13(x3)

+ψn13(x1)ψn5(x2)ψn7(x3)− ψn13(x1)ψn7(x2)ψn5(x3)],

and interchanging the coordinates of any two particles in each term only introduces an

overall minus sign. For a system of identical bosons, these six combinations correspond to

the completely symmetric three-particle stationary state wavefunction

Ψ(x1, x2, x3) = 1√
6
[ψn5(x1)ψn7(x2)ψn13(x3) + ψn5(x1)ψn13(x2)ψn7(x3)

+ψn7(x1)ψn13(x2)ψn5(x3) + ψn7(x1)ψn5(x2)ψn13(x3)

+ψn13(x1)ψn5(x2)ψn7(x3) + ψn13(x1)ψn7(x2)ψn5(x3)]
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and interchanging the coordinates of any two particles in each term returns the same wave-

function.

Since no two fermions can occupy the same single-particle state, only the combinations in

which each fermion is in a different single-particle state, in this case only the set ψ5, ψ7, and

ψ13 are possible for a system of identical fermions with constraint on the total energy given

in Eq. 11.5. The combinations (5, 7, 13), (5, 13, 7), (7, 5, 13), (7, 13, 5),(13, 5, 7), (13, 7, 5)

all correspond to the terms in the completely antisymmetric stationary state wavefunction

and thus, there is only one distinct many-particle state corresponding to the six term for a

system of identical fermions.

There are four distinct many-particle states for a system of identical bosons with the

constraint given in Eq. 11.5: the combination (9, 9, 9) in which all the bosons are in the

single-particle state ψ9, the combinations (3, 3, 15), (3, 15, 3), and (15, 3, 3) in which two

bosons are in the single-particle state ψ3 and one boson is in the single-particle state ψ15,

the combinations (1, 11, 11), (11, 1, 11), and (11, 11, 1) in which two bosons are in the single-

particle state ψ11 and one boson is in the single-particle state ψ1, or the combination (5, 7, 13),

(5, 13, 7), (7, 5, 13), (7, 13, 5), (13, 5, 7), and (13, 7, 5) in which one boson is in each of the

single-particle states ψ5, ψ7, and ψ13. As in all of the questions posed to the students, we

will assume that each of these four many-particle states is equally likely.

For the constraint given in Eq. 11.5, there are 13 distinct many-particle states for

a system of identical particles that can be treated as distinguishable. The combinations

(9, 9, 9), (3, 3, 15), (3, 15, 3), (15, 3, 3), (1, 11, 11), (11, 1, 11), (11, 11, 1), (5, 7, 13), (5, 13, 7),

(7, 5, 13), (7, 13, 5), (13, 5, 7), and (13, 7, 5) all correspond to distinct many-particle states.

As in all of the questions posed to the students, we will assume that each of these thirteen

many-particle states is equally likely.

11.3 METHODOLOGY FOR INVESTIGATING STUDENT DIFFICULTIES

Student difficulties with determining the number of distinct many-particle states for a sys-

tem of identical fermions or bosons were first investigated using three years of data involving
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responses to open-ended and multiple-choice questions administered after traditional in-

struction in relevant concepts from 57 upper-level undergraduate students in a junior/senior

level QM course and 30 graduate students in the second semester of the graduate core QM

course. Additional insight was gained concerning these difficulties from responses of 14 stu-

dents during a total of 81 hours of individual “think-aloud” interviews [41]. Moreover, after

the development and validation of the QuILT, it was administered to 25 upper-level under-

graduates and 30 first-year physics graduate students in their respective QM courses. The

QuILT included a pretest, the tutorial, and a posttest. Students were given the pretest after

traditional lecture-based instruction on identical particles. The pretest was not returned to

the students. Students began working on the tutorial in class and completed the tutorial as

their weekly homework assignment. The posttest was administered after the students sub-

mitted the tutorial after working through it. Student responses on the pretest, tutorial, and

posttest were analyzed for their understanding of how to determine the number of distinct

many-particle states for a system of identical particles. If new difficulties were discovered

during the interviews or on the pretest, tutorial, or posttest, the difficulties were addressed

in later versions of the QuILT.

In all the questions in this investigation, the non-interacting identical particles were

restricted to one spatial dimension for convenience. Initially students were asked to consider

the wavefunction of the many-particle system ignoring the spin part of the wavefunction.

Later they considered the completely symmetrized many-particle wavefunction consisting of

both the spatial and spin parts of the wavefunction. We began by only considering the spatial

part of the wavefunction to simplify the problem (asking students to ignore the spin degrees

of freedom) and to help students focus on fundamental concepts involved in determining

the number of distinct many-particle states for a system of identical particles, determining

whether a specified total energy is possible for the system of identical particles under the

given constraint, finding the possible outcomes of an energy measurement, and determining

the probability of measuring a given energy when the energy of one particle is measured

randomly.

To probe whether students were able to determine the possible outcomes of an energy

measurement and the probability of measuring a particular energy when one particle is
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measured at random in a given situation, the following question was posed to 30 graduate

students and 25 undergraduate students on the pretest of the QuILT after traditional

lecture-based instruction.

Q1. For a system of two non-interacting identical particles in a one-dimensional infinite

square well, the total energy of the two particle system is En1,n2 = (n2
1 + n2

2)E1, in which E1

is the ground state energy for one particle. The total energy of the system is E = 338E1.

Assume all the possible combinations are equally probable. Note: The only pairs of integers

n1 and n2 whose squares sum to 338 are given below.

338 = 72 + 172

= 132 + 132

(a) If the particles are indistinguishable fermions and you randomly measure the energy of

one particle, what energies might you obtain and with what probabilities?

(b) If the particles are indistinguishable bosons and you randomly measure the energy of one

particle, what energies might you obtain and with what probabilities?

(c) If the particles are distinguishable and you randomly measure the energy of one particle,

what energies might you obtain and with what probabilities?

Since two fermions cannot occupy the same single-particle state (when we ignore the

spin of the fermions which students were asked to do), the combination (13,13) in Q1(a)

is not possible. Only the combinations (7,17) and (17,7) are possible for the two fermions.

The combinations (7, 17) and (17, 7) together correspond to the completely antisymmetric

two-fermion wavefunction 1√
2
[ψn7(x1)ψn17(x2)−ψn17(x1)ψn7(x2)]. Therefore, the probability

of measuring a particle with energy 72E1 is 1/2 and the probability of measuring a particle

with energy 172E1 is 1/2.

Two bosons can occupy the same single-particle state. Thus, in Q1(b), the combinations

(7, 17), (17,7) and (13,13) are possible for a system of two bosons. These three combinations

correspond to two distinct two-boson wavefunctions, 1√
2
[ψn7(x1)ψn17(x2) + ψn17(x1)ψn7(x2)]

and ψn13(x1)ψn13(x2). By the assumption that each distinct arrangement is equally probable,

there is a probability of 1/2 of both bosons being in the single-particle state with energy
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132E0 and a probability of 1/2 of one boson being the in the single-particle state with energy

72E1 and one boson being in the single-particle state with energy 172E1. Therefore, the

probability of measuring a particle with energy 72E1 is (1/2)(1/2)=1/4, the probability of

measuring a particle with energy 172E1 is (1/2)(1/2)=1/4, and the probability of measuring

a particle with energy 132E1 is (1/2)(1)=1/2.

If the identical particles can be treated as distinguishable, in Q1(c), there are three

distinct combinations (7, 17), (17,7), and (13,13). There is an equal probability of 1/3 of

measuring each of the energies 72E0, 172E0, and 132E0.

To probe whether students were able to determine the number of distinct many-particle

states, identify whether a total energy is possible for a system of identical fermions or

bosons, and determine the probability of measuring a given energy when the energy of one

particle is measured at random in a given situation, the following two questions were posed

as in-class clicker questions to 16 undergraduate students. In these two questions, students

were told to ignore the spin degrees of freedom and consider the particles as “spinless.” The

questions were posed after traditional lecture-based instruction in relevant topics.

Q2. We have three non-interacting particles in a one-dimensional infinite square well. The

total energy for the three particle system is E(n1,n2,n3) = (n2
1 + n2

2 + n2
3)E0, in which E0 is

the ground state energy for a single particle system. If the total energy is E = 27E0 and

the particles are identical, choose all of the following statements that are correct. Note:

The combinations of three positive numbers, the sum of whose squares give 27, are (1,1,5),

(1,5,1), (5,1,1) and (3,3,3).

(1) The particles can be either bosons or fermions.

(2) If the particles are spinless bosons, there are 4 distinct states in this system.

(3) If the particles are bosons, when we measure the energy of one particle at random, the

probability of obtaining 9E0 is 1/2.

The correct answer to Q2 is option (3) only. Option (1) is incorrect due to the fact that

the total energy of 27E0 requires at least two of the particles to be in the same single-particle

state (either two in the single-particle state ψ1 or all three in the single-particle state ψ3).
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If the particles are spinless bosons, there are 2 distinct many-particle states in the system

(not 4 as in option (2)). The three combinations of the numbers 1, 1, and 5 correspond to

one completely symmetric many-particle wavefunction and make up one many-particle state.

There are only two distinct combinations: all three bosons are in the single-particle state ψ3

or there are two bosons in the single-particle state ψ1 and one boson in the single-particle

state ψ5

Q3. We have three non-interacting particles in a one-dimensional infinite square well. The

energy of particle i(i = 1, 2, 3) is Ei = n2
iE0. If the total energy E = 75E0 and the particles

are identical, choose all of the following statements that are correct. Note: The combinations

of three positive numbers, the sum of whose squares give 75, are (5,5,5), (1,5,7), (5,1,7),

(7,1,5), (1,7,5), (5,7,1), (7,5,1).

(1) If the particles are spinless bosons, there are seven distinct three-particle states in this

system with this energy.

(2) If the particles are spinless bosons, when we measure the energy of one particle at random,

the probability of obtaining 25E0 is 1/2.

(3) If the particles are spinless bosons, when we measure the energy of one particle at random,

the probability of obtaining 49E0 is 1/6.

In Q3, option (3) is the only correct answer. Option (1) is incorrect. If the particles

are spinless bosons, there are two distinct three-particle states with a total energy of 75E0.

The combinations (1,5,7), (5,1,7), (7,1,5), (1,7,5), (5,7,1), (7,5,1) together correspond to a

completely symmetric many-particle wavefunction when one boson is in each of the single-

particle states ψ1, ψ5, and ψ7. Option (2) is incorrect as the probability of obtaining an

energy of 25E0 when measuring the energy of one particle at random is 2/3.

11.4 STUDENT DIFFICULTIES

Many students struggled to identify whether a given total energy is possible for a specified

system of identical particles and determine the number of distinct many-particle states for a
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Table 43: The percentage of graduate (N=30) and undergraduate (N=25) students who

correctly determined the energies and their probabilities in question Q1 for the given system

of indistinguishable particles after traditional instruction.

Type of Particle Graduate (%) Undergraduate (%)

Fermions 27 36

Bosons 30 48

Distinguishable 3 12

system of identical particles in which the total energy of the system is fixed. Some students

also struggled to determine the possible outcomes of an energy measurement and the proba-

bility of obtaining a particular energy if we randomly measured the energy of one particle in

a system with a certain fixed total energy. Table 43 summarizes the percentage of students

who answered question Q1 correctly after traditional lecture-based instruction for a system

of three identical particles on the pretest to the QuILT.

Below, we discuss some of the common student difficulties with a system of identical

particles in which the total energy of the many-particle system is fixed.

11.4.1 Difficulty determining the number of distinct many-particle

states for a system of identical particles

When asked to determine the number of distinct many-particle states for a system of iden-

tical particles for which the total energy of the system is fixed, some students struggled to

determine the distinct many-particle states correctly. In particular, many students incor-

rectly identified indistinguishable combinations as distinct many-particle states for a system

of identical fermions or bosons. For example, some interviewed students incorrectly claimed

that there are two distinct many-particle states corresponding to the combinations (7, 17)

and (17, 7) in Q1 for a system of identical fermions and bosons. One interviewed student

claimed “we just count all the combinations ((5, 5), (7, 17), and (17, 7)) for identical bosons
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Table 44: The percentage of graduate (N=30) and undergraduate (N=25) students who

incorrectly determined the possible outcomes of an energy measurement as 7E1, 17E1, or

13E1 for all three systems of identical particles in question Q1 after traditional lecture-based

instruction.

Difficulty Graduate (%) Undergraduate (%)

Incorrectly determined the possible outcomes of an energy measurement

as 7E1, 17E1, or 13E1 for all three systems 23 32

of identical particles (neglecting to square the ni)

Incorrectly claimed that two fermions can be in the single-particle state ψ13 27 20

Incorrectly claimed that the energies obtained and the corresponding

probabilities would be the same for a system of identical bosons and 23 48

a system of identical particles which can be treated as distinguishable

(to determine the number of distinct many-particle states). For fermions, we throw out

the combination (5, 5) where two fermions are in the same (single-particle) state and count

what’s left (7, 17) and (17, 7).” He incorrectly counted the combinations (7, 17) and (17, 7)

as corresponding to two distinct many-particle states for fermions. Students struggled to

determine the number of distinct many-particle states in Q2 and Q3 that were posed as in

class clicker questions. For example, in Q2, 25% of the students incorrectly claimed that

there are four distinct states for the given system (option (2)). In response to Q3, 14% of the

students incorrectly claimed that there are seven distinct many-particle states of the given

system (option (1)). Interviews suggest that students with these types of responses were

often determining all of the combinations as distinct many-particle states for a system of

identical bosons rather than considering the combinations that correspond to indistinguish-

able arrangements of the identical particles together as one many-particle state.
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11.4.2 Difficulty correctly identifying possible outcomes of energy measure-

ments

Some students had difficulty determining the possible outcomes of an energy measurement

when the energy of one particle is measured at random. For example, in Q1, some students

claimed that the randomly measured energies could be 7E1 or 17E1 (instead of 72E1 or

172E1) for a system of identical fermions. Most of these students also incorrectly claimed

that the randomly measured energies could be 7E1, 17E1, or 13E1 (instead of 72E1, 172E1,

or 132E1) for a system of identical bosons or a system of identical particles that can be

treated as distinguishable. As given in Table 44, roughly one-third of the undergraduates

and one-fourth of the graduate students provided this type of response for all three systems of

identical particles in Q1 after traditional lecture-based instruction for which the total energy

of the system was not consistent with the total energy specified in the problem. Interviews

suggest that this is at least in some cases not due to a lack of conceptual understanding,

but an issue with metacognition and the fact that students often did not reflect upon their

responses to ensure that they make sense. All the questions posed were for a system in

which the total energy of the system was fixed. In questions similar to Q1 in which students

were asked to determine the possible outcomes of an energy measurement when the energy

of one particle is measured at random, many students did not verify that the energies must

add up to the total fixed energy of the system. The interviewed students often did not

check that the energies from the different combinations add up to the total energy of the

system. For example, one interviewed student determined that the total energy of the system

is 7E1 + 17E1 = 24E1 for a system of fermions and 13E1 + 13E1 = 26E1 for a system of

bosons. When prompted to check that these energies are consistent with the total energy of

the many-particle system, he identified that there was an inconsistency with his responses

for the single-particle energies to Q1. The student was then able to trace back his mistake

and realized that the single-particle energies should be 72E1, 172E1, or 132E1. Students with

this type of difficulty incorrectly determined a total energy that was different depending

on which combination corresponded to the single-particle state the particles were in (e.g.,

the interviewed student determined the energy to be 24E1 in one combination and 26E1 in
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another). Students with this type of response also determined a total energy of the system

that was not the given total energy of 338E1. Other interviewed students who made similar

mistakes were able to identify and reconcile their mistakes only after explicit prompting.

Discussion with students suggest that they often struggled with self-monitoring and did

not check whether their responses were consistent with the given situation unless prompted

explicitly by the interviewer.

11.4.3 Difficulty realizing that two fermions cannot occupy the same single-

particle state

Some students did not apply Pauli’s exclusion principle to a system of indistinguishable

fermions and instead incorrectly answered questions consistent with two or more fermions

occupying the same single-particle state. For example, in Q2, students struggled to identify

that the given system was not possible for identical spinless fermions. In Q2, the only

combinations require placing two of the particles in the single-particle state ψ1 or all three

particles in the single-particle state ψ3. Therefore, in Q2 it is not possible for a system of

three identical fermions to have the total energy 27E0. However, in Q2, 44% of the students

individually chose option (i), thereby incorrectly identifying that the system with total energy

of 27E0 is possible for a system of identical fermions. After answering Q2 individually, the

students discussed the question in small group and answered again. After group discussion,

33% of the students still incorrectly chose option (i) as correct.

In Q1, some students incorrectly claimed that if the energy of one particle is measured

at random, it is possible to obtain an energy corresponding to a combination in which the

spinless fermions are in the same spatial single-particle state. As summarized by Table 44,

one-fifth of the undergraduate students and roughly one-quarter of the graduate students

incorrectly claimed that the combination (13, 13) in which both fermions are in the single-

particle state ψ13 was possible in Q1, after traditional lecture-based instruction.
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11.4.4 Difficulty determining the probability of obtaining a specific energy when

the energy of one particle is measured at random

Some students struggled to correctly calculate the probability of measuring a specified energy

when the energy of one particle is measured at random. This is particularly true for students

who had difficulty correctly determining the number of distinct many particle states described

earlier. Below, we discuss one general difficulty and two specific difficulties students had with

determining the probability of obtaining a particular energy when the energy of one boson

is measured at random.

Incorrectly claiming that the outcomes are the same for all three systems

of identical particles: Some students answered all the parts in Q1 the same. In Q1 on

the pretest after traditional lecture-based instruction, 16% of the undergraduate students

and 3% of the graduate students incorrectly claimed that one obtains the energies 72E1,

172E1, and 132E1 for all three systems. All of these students incorrectly claimed that one

obtains the following energies and probabilities: 72E1 with probability 1/4, 172E1 with

probability 1/4, and 132E1 with probability 1/2. Students with this type of response were

treating the combinations (7, 17) and (17, 7) as indistinguishable combinations. They were

incorrectly determining the combination (13, 13) as a possible combination for a system of

identical fermions. The stated energies and probabilities are correct for a system of identical

bosons, but not for a system of identical fermions or a system of identical particles that can

be treated as distinguishable. These students’ responses have a complete disconnect with

Pauli’s exclusion principle or other constraints on the states. In other words, determining

the number many-particle states was treated totally differently than determining the many-

particle stationary state wavefunction for a system of identical particles. However, you need

the wavefunction in order to determine the probabilities of obtaining a given energies when

the energy of one particle is measured at random.

Difficulty realizing that each energy is not equally probable for a system of

identical bosons: Some students incorrectly claimed that the probability of measuring

each single-particle energy for the two bosons in Q1(b) was the same. Students with this

type of difficulty were treating the indistinguishable bosons as if they were distinguishable
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particles. For example, in Q1 after traditional instruction, 4% of the undergraduate students

and 13% of the graduate students incorrectly claimed that measuring the energies 72E1,

172E1, and 132E1 is equally likely (each with probability 1/3). One interviewed student

with this response incorrectly claimed that for a system of identical bosons “there are three

combinations (7, 17), (17, 7) and (13, 13). Since each is equally likely, the probability of each

is 1/3. So that means there is a 1/3 probability of measuring 132E1 and 1/3 times 1/2

probability of measuring 72E1 in the first combination and the same (1/3 times 1/2) in the

second combination which gives 1/3 (probability of measuring 72E1). Then (the probability

of measuring) 172E1 is the same as (the probability of measuring) 72E1, so it’s 1/3 too.”

This student and others with this type of difficulty struggled to realize that the combinations

(7, 17) and (17, 7) are not distinct many-particle states. Students with this difficulty often

struggled to realize that it is equally probable that one has the combination in which both

bosons are in the single-particle state ψ13 or one boson is the state ψ7 and the other boson

is in the state ψ17.

Difficulty realizing that the probability for obtaining each energy for a system

of identical bosons is different than for a system of identical particles that can

be treated as distinguishable: Many students provided the same answer to questions

Q1(b) and Q1(c). In Q1 on the pretest, roughly half of the undergraduate students and

one-fourth of the graduate students incorrectly claimed that the energies obtained and the

corresponding probabilities are the same for a system of identical bosons and a system of

identical particles which can be treated as distinguishable, as listed in Table 44. All of

these students incorrectly claimed that one obtains the following energies and probabilities:

72E1 with probability 1/4, 172E1 with probability 1/4, and 132E1 with probability 1/2.

Students with this type of response were treating the distinguishable particles as if they were

indistinguishable bosons. Interviews suggest that these students incorrectly determined the

number of distinct many-particle states for a system of identical particles that can be treated

as distinguishable. For example, one interviewed student claimed “the combinations (7, 17)

and (17, 7) are the same so there are two possibilities...”. He claimed that there are two

distinct many-particle states and that one of these many-particle states corresponds to the

indistinguishable combinations (7, 17) and (17, 7). This student did not realize that if the
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particles can be treated as distinguishable, the combination (7, 17) in which particle 1 is in

the single-particle state ψ7 and particle 2 is in the single-particle state ψ17 is different than

the combination (17, 7) in which particle 1 is in the single-particle state ψ17 and particle 2

is in the single-particle state ψ7. He reasoned about the system of identical particles that

can be treated as distinguishable in exactly the same manner as he did about the system of

identical bosons.

11.5 METHODOLOGY FOR THE DEVELOPMENT AND VALIDATION

OF THE QUILT

11.5.1 Development and Validation of the QuILT

The development of the QuILT was guided by a cognitive task analysis [45] from both an

expert perspective and a novice (or student) perspective which consisted of all the requisite

knowledge and skills necessary for a functional understanding of a system of identical parti-

cles. The initial cognitive task analysis was conducted from an expert perspective in which

the researchers outlined the required knowledge and skills and the order in which they are

useful in solving problems. This cognitive task analysis was iterated with physics faculty

members at the University of Pittsburgh. However, in an effort of determine if there are

additional areas students may struggle with that are not predicted by the experts, we con-

ducted student interviews. The cognitive task analysis was then expanded to include areas

in which students needed additional scaffolding support.

The QuILT was iterated many times among the three researchers and at several points

during the development it was iterated with three physics faculty members at the University

of Pittsburgh to ensure that the content was appropriate and they agreed with the word-

ing. During this cyclical iterative process, faculty members provided feedback regarding the

current version of the QuILT that was incorporated in the next version of the QuILT. Once

it was agreed upon by the faculty that the content was clear and correct, the QuILT was

administered to 14 graduate students in “think aloud” interviews to ensure that the wording
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is unambiguous, the scaffolding is effective, and to further investigate any student difficulties.

During these semi-structured interviews, the students worked through the QuILT and pro-

vided their rationale for each question in the pretest, the guided inquiry-based tutorial, and

the posttest. The students were not interrupted as they answered the questions and worked

through the tutorial. They were asked follow up questions or asked to clarify any unclear

statements only upon completion of the pretest, the entire section of the tutorial focusing on

the issues discussed here, or the posttest. After each interview, the student’s responses were

analyzed to measure the effectiveness of the tutorial and determine whether there were any

changes that needed to be made to the QuILT. These changes were incorporated in subse-

quent versions of the QuILT and in subsequent interviews. During each step in the cyclically

iterative process, the QuILT was adjusted to incorporate the faculty suggestions as well as

the students’ feedback and responses to help students with the common difficulties and to

build a consistent and coherent knowledge structure. After it was deemed successful, the

QuILT was next administered to students in various advanced quantum mechanics courses.

11.5.2 Overview of the QuILT

The QuILT strives to transform the students into active learners by employing an inquiry-

based approach which requires the students to build their own knowledge structure by an-

swering questions, analyzing the validity of given statements, and reflecting upon what they

have learned. The QuILT consists of three parts: the pretest, a guided inquiry-based tutorial,

and the posttest. The pretest is administered to the students after traditional, lecture-based

instruction covering systems of identical particles. The pretest is given in class during which

the students completed it individually with no additional resources other than what is pro-

vided in the pretest itself. After completing the pretest, the students are given the tutorial

and encouraged to work together in small groups in class. The tutorial can be used to

guide in-class discussion. The tutorial can also be administered as a self-paced learning tool

that the students work on as part of their weekly homework assignment. Upon completion,

the students submit the tutorial for grading and are then administered the posttest. The

posttest is given in class as an individual assessment in which the students are not permitted
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any additional resources beyond what is provided in the posttest.

The QuILT incorporates guided inquiry-based learning sequences which consist of sev-

eral questions, each building upon the previous question(s), that require the students to

take a stand and actively engage them in the learning process. The QuILT also includes

hypothetical student conversations in which the students must analyze each hypothetical

student’s statement to determine whether it is correct and explain why they agree or dis-

agree with each student. Many of the common student difficulties were used as a guide

when constructing these hypothetical conversations and inquiry-based sequences with the

goal being that students would identify any inconsistencies in their reasoning and then use

the provided support to reconcile these inconsistencies. For example, there are a number of

hypothetical student conversations in which one or more students make statements reflecting

these common difficulties and provide incorrect reasoning mirroring those given by actual

students. Other students in these hypothetical conversations disagree with their incorrect

reasoning and provide correct reasoning and often note an inconsistency with the incorrect

statement(s). As the students work through the QuILT, they must consider each student’s

argument and reflect upon their own reasoning in order to determine which student(s) are

correct. Similarly, the guided inquiry-based sequences often include portions that strive to

present the students with a contradiction between the answer to the questions in the se-

quence and their prior knowledge that they must then reconcile. Checkpoints are provided

at the end of each section that allow the students to go back and reconcile any remaining

difference between the correct reasoning and their own reasoning before moving on to the

next section.

11.5.3 Addressing Student Difficulties

In the guided inquiry-based learning sequences in the QuILT, students actively engage with

examples of a system of identical particles in a one-dimensional infinite square well (with

boundaries between x = 0 and x = a) with a fixed total energy for the many-particle sys-

tem. They initially focus on systems with only two or three particles in order to reflect

upon the major concepts rather than working through problems with many particles with
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algebraic complexities. In all problems, students are provided all the possible sets of integers

whose squares sum to obtain the total energy of the system. They are asked to determine

the number of distinct many-particle states, write all the possible many-particle stationary

state wavefunctions, and determine the energies and probabilities of obtaining these energies

when the energy of one particle is measured at random. In the QuILT, students consider

the systems of identical particles in the following order: indistinguishable fermions, indistin-

guishable bosons, and identical particles that can be treated as distinguishable. After each

section, students are provided further scaffolding and checkpoints to help them reconcile any

differences between their initial responses and the correct reasoning.

Helping students determine the number of distinct many-particle states for

a system of identical particles: In the QuILT, as part of a guided inquiry-based learning

sequence, students are asked to list the possible combinations resulting from the provided

sets of integers whose squares sum to obtain the total energy of the system. They are then

asked to determine the number of distinct many-particle states that can be constructed

with the specified fixed energy (they must determine the combinations of quantum numbers

denoting the single-particle states that are possible and those that are distinctly different

for the given system of identical particles for a system of identical fermions or bosons).

Students engage with the following example in the QuILT for a system of three identical

fermions, identical bosons, or identical particles that can be treated as distinguishable:

Let’s consider three non-interacting spinless identical particles of mass m in a one-

infinite square well of width “a”. Recall that the total energy of the many-particle system

can be written in terms of the single-particle energies as

E = En1 + En2 + En3 = (n2
1 + n2

2 + n2
3)
(
π2~2
2ma2

)
= (n2

1 + n2
2 + n2

3)E1.

Here n1, n2, n3 are positive integers that label the different single-particle states in which the

three particles can be placed. Suppose the total energy is E = 243
(
π2~2
2ma2

)
= 243E1.
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Note: The only possible integers n1, n2, and n3 whose squares sum to 243 are given below:

243 = 12 + 112 + 112

243 = 32 + 32 + 152

243 = 52 + 72 + 132

243 = 92 + 92 + 92.

(11.6)

Students begin by working through a guided inquiry-based learning sequence focusing on

the number of distinct many-particle states for a system of identical fermions. The QuILT

strives to help them recognize that any combination in which two or more fermions occupy

the same single-particle state is not possible for a system of identical fermions. It also

strives to help students do sense making pertaining to the combinations that make up a

completely antisymmetric wavefunction and that these combinations should only be counted

as one distinct many-particle state (not each permutation of the quantum numbers denoting

the single-particle states in the combination counting as a distinct many-particle state as

would be the case for distinguishable particles). The following is a hypothetical student

conversation in which students must explain why they agree or disagree with each student:

Student 1: There are four disinct three-particle states for the three spinless fermions:

ψ1(x1)ψ11(x2)ψ11(x3), ψ3(x1)ψ3(x2)ψ15(x3), ψ5(x1)ψ7(x2)ψ13(x3), and ψ9(x1)ψ9(x2)ψ9(x3).

Student 2: There cannot be more than one fermion in each single-particle state. The

combination (9, 9, 9) corresponds to a system with three spinless fermions in the state ψ9.

The combinations (3, 3, 15), (3, 15, 3), and (15, 3, 3) have two spinless fermions in the state

ψ3 and the combinations (1, 11, 11), (11, 1, 11), and (11, 11, 1) have two spinless fermions in

the state ψ11. None of these are possible for spinless fermions.

Student 1 is incorrect and Student 2 is correct in the preceding conversation. The

combinations in which two or more fermions are in the same single-particle state are not

possible for a system of identical fermions. There is only one distinct three-particle state that

corresponds to the case in which one fermion is in each of the single particle states ψ5, ψ7, and

ψ13. After reflecting upon each student’s statement in the preceding conversation, students

are asked to construct the three-particle stationary state wavefunction for the system of
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identical fermions with the constraint given in Eq 11.6.

Next, the students work through several guided inquiry-based learning sequences focusing

on determining the number of distinct many-particle states for a system of identical bosons

and a contrasting case of a system of identical particles that can be treated as distinguish-

able. They focus on the system discussed earlier in which there are three non-interacting

identical particles in a one-dimensional infinite square well with a total energy of the many-

particle system of 243E1. The QuILT strives to help students reflect upon and learn that all

of the combinations in Eq. 11.6 are distinct many-particle states for a system of identical

particles that can be treated as distinguishable. However, not all these combinations corre-

spond to distinct many-particle states for a system of identical bosons since the bosons are

indistinguishable and the many-particle stationary state wavefunction must be completely

symmetric.

Helping students determine the energies and corresponding probabilities of

measuring the energies if the energy of one particle is measured at random: In

the QuILT, students engage with the following example as part of a guided inquiry-based

learning sequence that strives to help them determine the energies and corresponding

probabilities of measuring the energies if the energy of one particle is measured at random:

Q5. Suppose that for a system of two non-interacting identical particles in a one-dimensional

infinite square well, the total energy of the two-particle system is En1,n2 = (n2
1 + n2

2)E1, in

which E1 is the ground state energy for the single-particle system. The total energy of the two-

particle system is E = 50E1. Assume all of the possible combinations are equally probable.

Note: The only possible integers n1 and n2 whose squares sum to 50 are given below:

50 = 12 +72

= 52 +52.

The students are asked to determine the single-particle energies one might obtain and their

probabilities if you randomly measure the energy of one particle for a system of identical

fermions, identical bosons, and a system of identical particles that can be treated as distin-

guishable. They are then provided scaffolding support that strives to help them identify the

possible energies and the corresponding probabilities for a system of identical particles.
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The following is an excerpt from a hypothetical student conversation that strives to help

students reflect upon the fact that any combination in which two fermions are in the same

single-particle state is not possible and determine the possible energies and the corresponding

probabilities for measuring the energy of one particle at random. The students must explain

whether they agree or disagree with each statement.

Student 1: The fermions could have the combination (5, 5) in which both fermions are in

the single-particle state ψ5. Therefore, if you randomly measure the energy you could obtain

the energies E1, 49E1, or 25E1 with equal probability 1/3.

Student 2: I disagree with Student 1. The fermions cannot be in the same single-particle

state ψ5. One fermion must be in the single-particle state ψ1 and one fermion must be in the

single-particle state ψ7. If you randomly measure the energy, you could obtain the energy E1

or 49E1 with equal probability of 1/2.

Student 1 is incorrect and Student 2 is correct in the preceding conversation. The two

fermions cannot be in the same single-particle state ψ5 and therefore, one cannot obtain

the energy 25E1 when the energy of a particle is measured at random. Thus, it is equally

probable that the energy of one particle measured randomly is E1 or 49E1.

The following conversation strives to help students determine the possible outcomes if

one measures the energy of a single particle at random and the corresponding probability

if the particles are indistinguishable bosons. This conversation also aims to help students

differentiate between a system of identical bosons and a system of identical particles that

can be treated as distinguishable. After reflecting upon the hypothetical conversation, the

students must state whether they agree or disagree with each statement and explain their

reasoning.

Student 1: The combinations (1, 7) and (7, 1) correspond to the completely symmetric state

1√
2
[ψ1(x1)ψ7(x2) + ψ7(x1)ψ1(x2)]. The probability of the bosonic system having the combi-

nation (5, 5) is 1/2 and the probability of having the combinations (1, 7) and (7, 1), which

correspond to one two-particle state 1√
2
[ψ1(x1)ψ7(x2) +ψ7(x1)ψ1(x2)] is 1/2. The probability

of obtaining E1 is (1/2)×(1/2) = 1/4, the probability of obtaining 49E1 is (1/2)×(1/2) = 1/4,

and the probability of obtaining 25E1 is (1/2)× 1 = 1/2.

Student 2: I disagree with Student 1. Since the three combinations are equally likely,
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the probability that the system has the combination (1, 7), (7, 1), or (5, 5) is 1/3. For the

combination (1, 7), the probability of obtaining 12E1 is 1/2. Similarly, the probability of ob-

taining E1 for the combination (7, 1) is 1/2. Therefore, the probability of obtaining E1 is

(1/3)×(1/2)+(1/3)×(1/2) = 1/3. By the same reasoning, the probability of obtaining 49E1

is 2 × (1/3) × (1/2) = 1/3. The probability of the system being in the combination (5, 5) is

1/3. For bosons with the combination (5, 5), the probability of being in state ψ5 is 1. Thus,

the probability of obtaining 25E1 is (1/3)× 1 = 1/3.

Student 1 is correct in the preceding conversation since we are assuming the combi-

nations (5, 5), (1, 7), and (7, 1) corresponding to the two distinct two-boson wavefunctions

ψn5(x1)ψn5(x2) and 1√
2
[ψn7(x1)ψn1(x2) + ψn1(x1)ψn7(x2) are equally likely with probability

1/2.

After reflecting upon this conversation, students are provided further scaffolding support

in the guided inquiry-based learning sequence that strives to help them understand the

differences between these issues for a system of identical bosons and identical particles that

can be treated as distinguishable.

11.6 EVALUATION OF THE QUILT

Once the researchers determined that the QuILT was successful in one-on-one implemen-

tation using a think-aloud protocol, it was administered in graduate and upper-level un-

dergraduate classes. Both undergraduate and graduate students were given a pretest after

traditional lecture-based instruction in relevant concepts for constructing the many-particle

stationary state wavefunction for a system of identical particles before working through the

tutorial. The pretests were not returned to the students after grading. The undergraduates

worked through the tutorial in class for two days and were asked to work on the remainder

of the tutorial as homework. The graduate students were given the tutorial as their only

homework assignment for the week. After working through and submitting the completed

tutorial, both groups were given the posttest in class. Students were given enough time in

class to work through the pretest and posttest.
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The following two questions were posed on the posttest of the QuILT,. Students

were told to ignore the spin degrees of freedom and consider the particles as “spinless”

in both questions. Q6 was given to all 30 graduate students and 12 undergraduate stu-

dents in year 1 of the study. Q7 was given to 13 undergraduate students in year 2 of the study.

Q6. For a system of two non-interacting identical particles in a one-dimensional infinite

square well, the total energy of the two particle system is En1,n2 = (n2
1 + n2

2)E1, in which E1

is the ground state energy for one particle. The total energy of the system is E = 450E1.

Assume all the possible combinations are equally probable. Note: The only possible integers

n1 and n2 whose squares sum to 450 are given below:

450 = 32 + 212

= 152 + 152.

(a) If the particles are indistinguishable fermions and you randomly measure the energy of

one particle, what energies might you obtain and with what probabilities?

(b) If the particles are indistinguishable bosons and you randomly measure the energy of one

particle, what energies might you obtain and with what probabilities?

(c) If the particles are distinguishable and you randomly measure the energy of one particle,

what energies might you obtain and with what probabilities?

Q7. For a system of three non-interacting identical particles in a one-dimensional infinite

square well, the total energy of the three particle system is En1,n2,n3 = (n2
1 + n2

2 + n2
3)E1,

in which E1 is the single-particle ground state energy. The total energy of the system is

E = 75E1. Assume all the possible three-particle states with this total energy 75E1 are

equally probable.

Note: The only possible integers n1, n2 and n3 whose squares sum to 75 are given below.

75 = 12 + 52 + 72

75 = 52 + 52 + 52

(a) If the particles are indistinguishable fermions and you randomly measure the energy of

one particle, what energies might you obtain and with what probabilities?
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(b) If the particles are indistinguishable bosons and you randomly measure the energy of one

particle, what energies might you obtain and with what probabilities?

(c) If the particles are distinguishable and you randomly measure the energy of one particle,

what energies might you obtain and with what probabilities?

In Q6(a), there is an equal probability of 1/2 of measuring the energies 32E1 and 212E1.

In Q6(b), by the assumption that each combination is equally probable, there is a probability

of 1/2 of both bosons being in the single-particle state with energy 152E1 and a probability

of 1/4 of one boson being in the single-particle state with energy 32E1 or 212E1. If the

particles are identical particles that can be treated as distinguishable as in Q6(c), there is

an equal probability of 1/3 of measuring each of the energies 32E1, 212E1, and 152E1.

In Q7(a), there is an equal probability of 1/3 of measuring the energies E1, 52E1, and

72E1. In Q7(b), by the assumption that each combination is equally probable, there is an

equal probability of 1/6 of measuring the energy E1 or 72E1 and a probability of 2/3 of

measuring the energy 52E1. If the particles are identical particles that can be treated as

distinguishable as in Q7(c), there is an equal probability of 2/7 of measuring the energy E1

or 72E1 and a probability of 3/7 of measuring the energy 52E1

The open-ended questions Q1, Q6, and Q7 were graded using rubrics which were de-

veloped by the researchers together. A subset of questions was graded separately by them.

After comparing the grading, they discussed any disagreements and resolved them with a

final inter-rater reliability of better than 95%. Tables 45 and 46 show the performance of

undergraduate and graduate students on the pretest and posttest.

The results are encouraging and suggest that the QuILT is effective in helping students

determine the number of distinct many-particle states for systems of identical fermions or

bosons, as well as the contrasting case in which the identical particles could be treated as dis-

tinguishable. Question Q6 was intended to be a similar problem to Q1 in that both particles

can be in the same single-particle state or in different single-particle states. Interviews sug-

gest that after traditional instruction, some students had simply memorized the probabilities

of obtaining a particular energy when the energy of one particle is measured at random for a

system of two particles such as in Q1 and Q6. Therefore, in year 2, students were asked Q7

on the posttest in which they cannot obtain the correct answer simply from memorization
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Table 45: Average pretest and posttest scores for Q1 and Q6 for the given system for graduate

students (N = 30).

Question Type of Particle Graduate

Pre (%) Post (%)

Q1

Fermions 54

Bosons 49

Distinguishable 26

Q6

Fermions 99

Bosons 98

Distinguishable 89

of examples of two particles in which both particles can be in the same single-particle state

or in different single-particle states as in Q1 and Q6.

One area in which the students struggled on the posttest was related to determining

the energies consistent with the fixed total energy of the system (difficulty B). Here all

the students correctly identified the combinations that were possible in Q6, however some

students provided energies whose sum was not 450E1. In particular, most of the students

who did not answer Q6 correctly claimed that the energies of the single particles would be

3E1, 15E1, and 21E1. Interviews suggest this was often an issue with students not reflecting

upon whether their answers made sense more than due to conceptual difficulties identifying

the correct energies. Roughly one-third of the undergraduates and one-tenth of the graduate

students provided an answer to Q6 or Q7 on the posttest for which the miscalculated energies

of the particles did not add up to the total energy given in the question. Addressing this

difficulty more effectively is an area to improve upon in future refinements of the QuILT.

In general, students did well identifying the energies and corresponding probabilities for

a system of fermions in Q6(a) and Q7(a) on the posttest. Nearly all of the students on

the posttest correctly identified that the two fermions cannot be in the same single-particle

state.
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Table 46: Average pretest and posttest scores for Q1, Q6, Q7 for the given system for

undergraduates (number of students N = 25, in Year 1 N = 12 and in Year 2 N = 13).

Question Year Type of Particle Undergraduate

Pre (%) Post (%)

Q1 1 & 2

Fermions 60

Bosons 73

Distinguishable 30

Q6 1

Fermions 93

Bosons 75

Distinguishable 47

Q7 2

Fermions 96

Bosons 91

Distinguishable 73

11.7 SUMMARY

Investigation of students’ understanding of a system of identical particles helped to uncover

many common student difficulties that were used as a guide to develop a QuILT that strives

to help students learn how to determine whether a system with a specified total energy for a

system containing a specified number of identical particles, determine the number of distinct

many-particle states for a system of identical particles, and determine all of the possible

energies and their corresponding probabilities if the energy of one particle is measured at

random. The QuILT strives to place the students in the role of active learners while providing

an appropriate level of scaffolding through a guided inquiry-based approach. We find that

the QuILT is effective in improving students’ understanding of these fundamental concepts.
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12.0 DEVELOPING AND EVALUATING A QUANTUM

INTERACTIVE LEARNING TUTORIAL ON A SYSTEM OF

IDENTICAL PARTICLES: COUNTING THE NUMBER OF DISTINCT

MANY-PARTICLE STATES FOR A SYSTEM WITH DEGENERACY IN

THE SINGLE-PARTICLE ENERGY SPECTRUM AND CONSTRAINTS ON

THE NUMBER OF PARTICLES IN THE DIFFERENT SINGLE-PARTICLE

STATES

12.1 INTRODUCTION

Quantum mechanics (QM) is a particularly challenging subject for upper-level undergrad-

uate and graduate students in physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

There have been a number of research studies aimed at investigating student reasoning

in QM [17, 18, 19, 20, 21, 22, 23, 24, 25] and improving student understanding of QM

[26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. For example, our group has focused on using the

common student difficulties as a guide to develop research-based learning tools which include

Quantum Interactive Learning Tutorials (QuILTs) [38, 39, 41, 37, 40, 42] which strive to im-

prove student understanding of different QM concepts. However, there have been relatively

few investigations into student difficulties with fundamental concepts involving a system of

identical particles.

Here, we discuss an investigation of student difficulties with concepts related to deter-

mining the number of distinct many-particle states for a system when there is degeneracy in

the single-particle energy spectrum and there are constraints on the number of particles in

different single-particle states with a certain energy. We also discuss how that research was

used as a guide in the development, validation, and in-class evaluation of a research-based
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QuILT that makes use of student difficulties as a guide and strives to help students develop

a good grasp of relevant concepts.

Students must have a good understanding of quantum mechanical properties of a sys-

tem of identical particles as well as a strong background in combinatorics to be proficient

in determining the number of distinct many-particle states. However, it has been found

in a number of different contexts in introductory physics that students struggle to apply

mathematics correctly in the context of physics even if they can solve similar mathematics

problems without the physics context [43, 44, 45, 46]. Since human working memory while

solving a problem is restricted to a limited number of “chunks” and the size of a chunk in

the working memory depends on the expertise of the individual who is solving the problem,

Simon’s framework of “bounded rationality posits that individuals will make decisions while

solving problems based upon their current level of expertise, which may not be optimal de-

pending on their experise [47]. Some students may be motivated to find an optimal solution

but if the students’ level of expertise is not sufficient and they have not been provided with

the appropriate scaffolding support, they may experience cognitive overload and may not be

able to determine the correct solution to the problem posed [48].

Below, we start with a brief background of relevant concepts and then describe the

methodology for the investigation of student difficulties followed by the common difficulties

found. Then we describe the methodology for the development, validation and in-class

evaluation of the corresponding research-based QuILT that strives to help students develop

a functional understanding of the fundamental concepts involved in determining the number

of distinct many-particle states for a system of identical particles when there is degeneracy in

the single-particle energy spectrum and a fixed number of particles in different single-particle

states with a certain energy.

12.2 BACKGROUND

In nature, there are two general types of particles: fermions with a half-integer spin quantum

number (e.g., electrons and protons) and bosons with an integer spin quantum number (e.g.,
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photons and mesons). A system of N identical particles consists of N particles of the

same type (e.g., electrons). For a system of identical particles in classical mechanics (e.g.,

five identical tennis balls), each particle can be distinguished from all the other particles.

In contrast, in quantum mechanics, identical particles are indistinguishable and there is no

measurement that can be performed to distinguish these identical particles from one another.

For example, if the coordinate of two identical particles is interchanged, there is no physical

observable that would reflect this interchange. For a system of identical fermions for which

the many-particle wavefunction is completely antisymmetric, it is not possible for two or

more fermions to occupy the same single-particle state. For a system of identical bosons for

which the many-particle wavefunction is completely symmetric, it is possible for two or more

bosons to occupy the same single-particle state.

Here, we consider a system of identical particles in which there is degeneracy in the

single-particle energy spectrum and there are constraints on the number of particles in dif-

ferent single-particle states with a certain energy. We will focus on the spatial part of

the wavefunction and ignore the spin degrees of freedom (assume particles are spinless for

simplicity). We will consider a group of degenerate states together and the arrangement

(N1, N2, N3, . . . , Nn, . . .) is such that for all of the single-particle states with energy Ei, the

total number of particles is Ni in which the energies Ei are indexed in order of increasing

energy. We will use the notation Q(N1, N2, N3, . . . , Nn, . . .) to represent the number of dis-

tinct many-particle states for a given arrangement (N1, N2, N3, . . . , Nn, . . .). If there are no

particles with energy greater than Em, then for the arrangement (N1, N2, N3, . . . , Ni, . . .), we

only list the number of particles (Nm) up to and including the highest occupied energy Em.

For example, (3, 4) denotes that there are three particles in the single-particle states with

the lowest energy E1, four particles in the single-particle states with the first-excited state

energy E2, and zero particles in the single-particle states with higher energy. We will use the

symbol di to represent the degeneracy corresponding to the energy level Ei. For example, if

di = 5 then there are five degenerate single-particle states with energy Ei.

In order to construct a many-particle state for a system of fermions, there must be at

least as many available spatial single-particle states as the number of identical fermions. If

this condition is satisfied, one must determine the number of ways to arrange the identical
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fermions into the available spatial single-particle states such that each single particle state

has either zero or one fermion until all the fermions have been placed into an available

single-particle state. The arrangement of the identical fermions must be consistent with the

constraint on the number of particles in different single-particle states with a certain energy.

The number of ways to arrange N identical objects among M available slots (M ≥ N) is(
M
N

)
= M !

N !(M−N)!
. Thus, for a system of N fermions with M available single-particles states,

the number of distinct many-particle states is


(
M
N

)
M ≥ N

0 M < N.

(12.1)

For a system of identical fermions with degeneracy in the single-particle energy spectrum

and constraints on the number of particles in different single-particle states with a certain

energy, one can determine the number of ways to arrange the Ni fermions among the di

degenerate single-particle states with energy Ei. Applying Eq. 12.1 to all the single-particle

states with energy Ei and degeneracy di gives
(
di
Ni

)
. Taking the product of all these possi-

bilities, we find that the number of distinct many-particle states for a system of identical

fermions is

(
d1
N1

)(
d2
N2

)(
d3
N3

)
· · · =

∏
n

dn!

Nn!(dn −Nn)!
. (12.2)

One technique for determining the number of ways to arrange the identical bosons among

the available single-particle states is often referred to as the “bin and divider” method. In

particular, we can treat the single-particle states as bins to be filled with bosons and dividers

to separate the different single-particle states, or bins. The number of distinct many-particle

states can be found by determining the number of distinct arrangements of the identical

bosons among the different single-particle states. For a system of N identical bosons and

M available single-particle states, there are M − 1 identical dividers separating the single-

particle states. We must determine the number of distinct arrangements of the N identical

bosons among the M available single-particle states. Thus, the number of distinct many-

particle states for a system of N indistinguishable bosons with M available single-particle
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states is (
N +M − 1

N

)
=

(
N +M − 1

M − 1

)
=

(N +M − 1)!

N !(M − 1)!
. (12.3)

For a system of identical bosons with degeneracy in the single-particle energy spectrum and

constraints on the number of particles in different single-particle states with certain energies,

one can determine the number of ways to arrange the Ni bosons among the di degenerate

single-particle states with energy Ei. Applying the “bin and divider” method (Eq. 12.3) to

all of the single-particle states in which there are Ni bosons with energy Ei and degeneracy

di gives
(
Ni+di−1
di−1

)
. Taking the product of all these degenerate states, we find that the number

of distinct many-particle states for a system of identical bosons is(
N1 + d1 − 1

d1 − 1

)(
N2 + d2 − 1

d2 − 1

)(
N3 + d3 − 1

d3 − 1

)
· · · (12.4)

=
∏
n

(Nn + dn − 1)!

Nn!(dn − 1)!
. (12.5)

As a contrasting case, if identical particles could be treated as distinguishable, then one

can determine which particle is in which single-particle state and there is no restriction on

the number of particles in each single-particle state. For a system of N identical particles

that can be treated as distinguishable and M available single-particle states, each particle

can be placed in any of the M single-particle states. The number of distinct N -particle

states for a system of N identical particles if they could be treated as distinguishable with

M available single-particle states is

MN . (12.6)

For a system of identical particles that can be treated as distinguishable with degeneracy

in the single-particle energy spectrum and constraints on the number of particles in different

single-particle states with a certain energy, one must choose which of the distinguishable

particles are in each of the available single-particle states with the same energy and the

number of ways to arrange the particles among the di degenerate single-particle states. The
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number of distinct many-particle states for a system of identical particles that can be treated

as distinguishable is

[(
N

N1

)
dN1
1

]
·
[(
N −N1

N2

)
dN2
2

]
·
[(
N −N1 −N2

N3

)
dN3
3

]
· · · (12.7)

= N !
∏
n

dNn
n

Nn!
. (12.8)

We note that Eq. 12.8 does not divide by N ! to take into account the Gibb’s Paradox.

For a system with degeneracy in the single-particle energy spectrum and constraints on

the number of particles with each single-particle energy, the degeneracy of the many-particle

states is the number of distinct many-particle states that have the same total energy of the

system specified in the problem. Thus, Eqs. 12.2, 12.5, and 12.8 yield the degeneracy in the

energy spectrum of the many-particle system.

12.3 METHODOLOGY FOR INVESTIGATING STUDENT DIFFICULTIES

Student difficulties with determining the number of distinct many-particle states for a system

of identical particles in which the total energy of the system is fixed and there is degeneracy in

the single-particle energy spectrum were first investigated using three years of data involving

responses to open-ended and multiple-choice questions administered after traditional instruc-

tion in relevant concepts from 57 upper-level undergraduate students in a junior/senior level

QM course and 30 graduate students in the second semester of the graduate core QM course.

Additional insight was gained concerning these difficulties from responses of 14 students dur-

ing a total of 81 hours of individual think-aloud interviews. Moreover, after the development

and validation of the QuILT, it was administered to 25 upper-level undergraduates (12 in

year 1 of the study and 13 in year 2 of the study) and 30 first-year physics graduate students

in their respective QM courses. The QuILT included a pretest, the tutorial, and a posttest.

Students were given the pretest after traditional lecture-based instruction on identical parti-

cles. The pretest was not returned to the students. Students began working on the tutorial
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in class and completed the tutorial as their weekly homework assignment. The posttest was

administered after the students submitted the tutorial. Student responses on the pretest,

tutorial, and posttest were analyzed for their understanding of how to determine the number

of distinct many-particle states for a system of identical particles in which the total energy

of the system is fixed and there is degeneracy in the single-particle energy spectrum. If new

difficulties were discovered during the interviews or on the pretest, tutorial, or posttest, the

difficulties were addressed in later versions of the QuILT.

In all the questions in our investigation, the non-interacting identical particles were

restricted to one spatial dimension for convenience. We begin by only considering the spatial

part of the wavefunction to simplify the problem (asking students to ignore the spin degrees

of freedom) and to help students focus on fundamental concepts involved in determining

the number of distinct many-particle states for a system of identical particles. The word

“identical” in the tutorial and in this paper refers to one type of particle (all particles with

the same properties) and does not necessarily imply that the particles are indistinguishable.

To investigate student understanding and reasoning related to the degeneracy in the

single-particle energy spectrum for a system of identical particles, question Q1 was given

as clicker question in an undergraduate quantum mechanics course following traditional,

lecture-based instruction on identical particles to 17 undergraduate students (we ignore the

spin degrees of freedom and call these particles “spinless” which students were asked to do).

Q1. There are three identical spinless bosons in a one-dimensional infinite square well.

The single particle stationary states are ψn (n = 1, 2, 3, . . .). Choose all of the following

statements that are correct for the three particle system.

(a) The ground state of the three particle system is ψ1(x1)ψ1(x2)ψ1(x3).

(b) ψ1(x1)ψ1(x2)ψ2(x3) is a first excited state of the three particle system.

(c) The degeneracy of the first excited state is 3.

Option (a) is the only correct answer for question Q1. Option (b) is incorrect since

the first-excited state is 1√
3
[ψ1(x1)ψ1(x2)ψ2(x3) +ψ1(x1)ψ2(x2)ψ1(x3) +ψ2(x1)ψ1(x2)ψ1(x3)].

Option (c) is incorrect as there is only one many-particle first-excited state for a system of
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three identical spinless bosons in a one-dimensional infinite square well.

To probe whether students are able to determine the number of distinct many-particle

states for a system of identical particles when there is degeneracy in the single-particle

energy spectrum and a fixed number of particles in different single-particle states with a

certain energy, the following two questions were posed to the students. Questions Q2 and

Q3 were posed during the individual interviews as well as on the pretest and/or posttest for

the QuILT. The pretest for the QuILT was given after traditional lecture-based instruction

on relevant topics for a system of identical particles. The posttest was given after students

had engaged with the QuILT and submitted it as a homework assignment. Q2 and Q3 were

posed to 30 graduate students and 25 undergraduate students.

Q2. Suppose a system with nine single-particle states contains 8 particles. The degeneracy

of the lowest energy states with energy E1 is d1 = 5 and the degeneracy of the first-excited

states with energy E2 is d2 = 4. If the total energy of the system is such that 3 particles are

in the lowest energy states and 5 particles are in the first-excited states, what is the number

of distinct eight-particle states Q(3, 5) corresponding to this particular arrangement (3, 5):

(a) if the particles are indistinguishable fermions?

(b) if the particles are indistinguishable bosons?

(c) if the particles are distinguishable?

In Q2(a), the specified arrangement of the particles with the two single-particle energies

is not possible for a system of identical fermions when the degeneracy of E1 is d1 = 5 and

the degeneracy of E2 is d2 = 4. In particular, it is not possible to have 5 fermions in the

4 first-excited states. In Q2(b), for a system of identical bosons, there are
(
7
3

)(
8
5

)
= 1960

distinct eight-particle states. In Q2(c), for a system of identical particles that can be treated

as distinguishable, there are
(
8
3

)
53 · 45 = 7, 168, 000 distinct nine-particle states.

Q3. Suppose a system with eleven single-particle states contains 7 particles. The degeneracy

of the lowest energy states with energy E1 is d1 = 4 and the degeneracy of the first-excited

states with energy E2 is d2 = 7. If the total energy of the system is such that 3 particles are

in the lowest energy states and 4 particles are in the first-excited states, what is the number

of distinct seven-particle states Q(3, 4) corresponding to this particular arrangement (3, 4):
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(a) if the particles are indistinguishable fermions?

(b) if the particles are indistinguishable bosons?

(c) if the particles are distinguishable?

In Q3(a), for a system of identical fermions, there are
(
4
3

)(
7
4

)
= 140 distinct seven-

particle states. In Q3(b), for a system of identical bosons, there are
(
6
3

)(
10
4

)
= 4200 distinct

seven-particle states. In Q3(c), for a system of identical particles that can be treated as

distinguishable, there are
(
7
3

)
43 · 74 = 5, 378, 240 distinct seven-particle states.

12.4 STUDENT DIFFICULTIES

As discribed in the preceding chapters, determining the number of distinct many-particle

states for a system of identical particles is a challenging task for many students when there

is no degeneracy in the single-particle energy spectrum. In particular, many students relied

on memorized formulas and struggled to reason systematically to determine the number

of distinct many-particle states for a system of identical particles. Here we found several

common student difficulties that are consistent with the previous studies in which the total

energy of the system was fixed and there was no degeneracy in the single-particle energies.

Here we focus on difficulties in determining the number of distinct many-particle states when

there is degeneracy in the single-particle energy spectrum and constraints on the number of

particles with each single-particle energy. Less than 10% of students answered questions Q2

and Q3 completely correctly for a system of three identical particles on the pretest to the

QuILT after traditional instruction. Below, we discuss some of the student difficulties found.

12.4.1 Difficulty recognizing that it is not possible for a system to have more

fermions than available single-particle states

The Pauli exclusion principle states that no two fermions can occupy the same single-particle

state. Thus, the number of available single-particle states must be greater than or equal to the

number of identical fermions. Some students had difficulty recognizing that the degeneracy

di of the single-particle energy states with energy Ei must be greater than or equal to the

number of particles in the single-particle states with energy Ei. For example, some students
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struggled to recognize that the given arrangement of fermions in Q2(a) is not possible. In

Q2(a), the total energy of the eight-particle system is such that three fermions are in the

lowest energy single-particle states and five fermions are in the first-excited single-particle

states. However, since the degeneracy of the first-excited states with energy E2 is four, it is

not possible to have five fermions occupy the four single-particle states with the first-excited

state energy E2.

Interviews suggest that determining the number of distinct many-particle states for a

system of identical particles in which there is degeneracy in the single-particle energy spec-

trum and constraints on the number of particles in the degenerate single-particle states with

a given energy is a more challenging task for students than determining the number of dis-

tinct many-particle states when each single-particle state has a different energy and there are

no constraints on the total energy of the system. In particular, determining the number of

distinct many-particle states when there is degeneracy in the single-particle energy spectrum

and constraints on the number of particles in the different single-particle states is difficult

because this requires students to determine the number of ways to arrange the particles

among each of the degenerate single-particle states and then combine each of these arrange-

ments for all of the different single-particle energies. Additionally, some students struggled

to determine the number of distinct many-particle states when there is a constraint on the

numbers of particles in the degenerate single-particle particle states with a given energy due

to the fact that they must ensure they are only determining the number of many-particle

states consistent with the given constraints. In this context, applying the Pauli exclusion

principle correctly became more difficult for some students than the case in which there is

no degeneracy in the single-particle energies and no constraint on the total energy of the

system. Here students must consider the constraints on the number of particles in degener-

ate single-particle states with a given energy and ensure that there are more single-particle

states than the number of particles to be placed in each single-particle state consistent with

the constraints on the system, i.e., di ≥ Ni. During the interviews, students were asked

to determine the number of distinct many-particle states for systems in which there is no

degeneracy in the single-particle energy spectrum and for systems in which there is degen-

eracy in the single-particle energy spectrum. For example, in some problems that students
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were posed, there were more fermions than available single-particle states for these two cases.

Some of the interviewed students correctly recognized that it is not possible to have a system

of identical fermions in which there are more fermions than available single-particle states

when there is no degeneracy in the single-particle energy spectrum, but then struggled to

identify that such a system is not possible when there is degeneracy in the single-particle

energy spectrum. One possibility is that the additional consideration of the degeneracy in

the single-particle energies creates cognitive overload for many students so that they do not

have resources available to engage in metacognition and reflect upon their answers or rec-

oncile any inconsistencies in different parts of their reasoning [48]. Below, we discuss two

types of student responses in which students struggled to identify that a system of identical

fermions is not possible for a system when there is degeneracy in the single-particle energies

and a fixed number of particles in different single-particle states with a fixed energy.

In Q2(a), one interviewed student identified that it is not possible to have five fermions

in the first-excited states, but he still determined a non-zero number of distinct eight-particle

states. He stated that “we have three fermions with the lowest energy and five with the first-

excited energy. The degeneracy of the lowest energy states is five, so we have five choose

three from the lowest energy. The first-excited states have degeneracy of four, so that gives

us five choose four.” After writing out the expressions
(
5
3

)
= 5!

3!(5−3)! and
(
4
5

)
= 4!

5!(4−5)! , he

identified tthat there was a problem. He said “wait, there are more fermions than states”

as he pointed to the expression 4!
5!(4−5)! . “This is impossible.” However, he then went on to

claim that the number of distinct eight-particles states in Q2(a) is
(
5
3

)
= 5!

3!(5−3)! = 10 and

said “we only get something from the lowest energy states.” He did not realize that if it is

not possible to have five fermions in the first-excited energy states then it is not possible for

a system of identical fermions to be in the given state and therefore, there are zero distinct

many-particle states in Q2(a). He went back and forth between memorized formulas and

systematic reasoning about the problem, but in the end provided reasoning that relied on

memorized formulas and attempted to make his expression consistent and meaningful for the

given formula. This type of approach to problem solving has been observed in prior research

in introductory physics in which students went back and forth between different problem

solving strategies and often relied on memorized formulas over their own physical intuition
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[45].

Some students provided a written response to Q2(a) after traditional instruction in which

they wrote
(
5
3

)
·
(
4
5

)
and circled this expression to indicate that it was their final answer.

Interviews suggest that often times students used Eq. 12.2 to find an expression for the

number of distinct many-particle states, but they did not always check that these expressions

are sensible. For example, one interviewed student claimed that the total number of distinct

many-particle states in Q2(a) is
(
5
3

)
·
(
4
5

)
. After he had finished the problem, he was asked

to reflect upon his answer and work out the numerical value for the expression
(
5
3

)
·
(
4
5

)
. He

correctly evaluated the expression
(
5
3

)
= 5!

3!2!
= 10. Next, he evaluated the expression

(
4
5

)
.

He initially wrote down
(
4
5

)
= 4!

5!(4−5)! = 4!
5!(−1)! , but after seeing the (-1)! in the denominator

stated, “Oh, I must have made a mistake with the labels.” He then changed his expression

to
(
5
4

)
= 5!

4!(5−4)! = 5. Instead of reflecting upon the physical situation and the fact that his

initial response produced a contradiction, this student instead chose to alter his calculation

to resolve this contradiction. This student and others with this type of difficulty often relied

on the mathematics and equations rather than reflecting upon the physical situation in an

attempt to resolve their incorrect reasoning. This type of reliance on mathematics over

physical intuition has been observed in introductory physics. For example, when solving a

conservation of energy problem, some students make an error with the sign of at least one of

the terms and calcuate the speed v to be the square root of a negative number. To resolve

this issue, some students simply remove the minus sign from the number under the square

root and claim the answer is the square root of the positive value [53]. For example, in

one problem, students who determined that v2 = 2gh and then obtained v =
√

2(−9.8)23,

when solving for the numerical value of the speed, dropped the minus sign and claimed that

v = 21.2 m/s. Another example from introductory physics is from a study in which students

were asked to write a mathematical expression for the electric field and plot the electric

field as a function of the distance from the center of a sphere [45]. Students often relied

upon a mathematical expression rather than their correct physical intuition. For example,

one student correctly stated that the electric field inside a solid conducting spherical shell

of inner radius b and outer radius c is zero, but then later when asked for a mathematical

expression for the electric field wrote the expression E = −4πc2+4πb2 which is nonzero since
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b 6= c. Students in this study often used quantitative reasoning in writing the mathematical

expression for the electric field and used qualitative reasoning when plotting the electric field.

As a result, students often provided contradictory solutions to the same problem via the two

approaches without realizing that there was inconsistency between different responses.

12.4.2 Difficulty determining the degeneracy of the many-particle states

Some students struggled to identify the degeneracy in the many-particle energy spectrum

for a system of identical particles. For a system in which there is degeneracy in the energy

spectrum of both the single-particle states and the many-particle states, some students had

difficulty realizing how these are different and how to consider the single-particle degeneracy

when determining the number of many-particle states with the same energy (i.e., the degen-

eracy in the many-particle energy). Below, we discuss three types of difficulties students had

with determining the degeneracy of the many-particle states.

Incorrectly claiming that the degeneracy of the many-particle states is the sum or product

of the degeneracies of the single-particle states: During the interviews, students were asked

to determine the degeneracy in the energy spectrum of the many-particle system under the

given constraints on the number of particles in different single-particle states after working

through questions Q2 and Q3. Some students simply added or multiplied the degeneracy of

the lowest and first-excited single-particle states to determine the degeneracy in the energy

of the many-particle system. For example, in Q3, the two most common incorrect answers

were 4 + 7 = 11 and 4 · 7 = 28 for all three systems of identical particles. Students with this

type of reasoning often incorrectly claimed that the degeneracy of both the many-particle

state and the single-particle states is 4 + 7 = 11.

Difficulty differentiating between the degeneracy of the single-particle states and degen-

eracy of the many-particle states: Some students struggled to determine the degeneracy in

the many-particle energy spectrum and had difficulty differentiating between degeneracy in

the single-particle energy spectrum and degeneracy in the many-particle energy spectrum.

The degeneracy in the energy spectrum of the many-particle system is the number of distinct

many-particle states that have the fixed total energy specified in the problem. Thus, the
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answers to Q2 and Q3 for the three different systems yield the degeneracy in the energy

spectrum of the many-particle system. In Q2 and Q3, the degeneracy in the single-particle

energy spectrum is specified in the problem.

Some students claimed that the degeneracy of the many-particle states must be due to

the degeneracy of the single-particle states. However, it is possible that there is degeneracy in

the many-particle energy spectrum when there is no degeneracy in the single-particle energy

spectrum. For example, for a system of two identical particles in a one-dimensional infinite

square well with a total energy of E = 65E1 in which E1 is the single-particle ground state

energy. The single-particle energies could be 12E1 and 82E1 such that 65E1 = 12E1 + 82E1

or the single-particle energies could be 42E1 and 72E1 such that 65E1 = 42E1 + 72E1. Thus,

the many-particle energy spectrum is two-fold degenerate while there is no degeneracy in

the single-particle energy spectrum.

Difficulty differentiating between degeneracy of the many-particle states for indistin-

guishable and distinguishable particles: Some students incorrectly claimed that the number

of terms in the many-particle stationary state wavefunction determines the degeneracy of

the many-particle system with a fixed total energy (as opposed to the number of distinct

many-particle stationary state wavefunctions with the same total energy). For example,

in Q1, some students incorrectly chose option (c) as a correct answer. The question was

given as an in-class clicker question to 17 students in a junior/senior level quantum me-

chanics course. The students first answered the question individually and then discussed

the question in small groups and answered the question again. In Q1, when answering

individually, 35% of the students selected option (3) as a correct answer. After group dis-

cussion, 24% of the students chose option (c) as a correct answer, which implies that the

group discussion led to fewer students selecting the correct answer. In Q1, the first excited

state for a system of three identical spinless bosons in a one-dimensional infinite square

well is 1√
3
[ψ1(x1)ψ1(x2)ψ2(x3) + ψ1(x1)ψ2(x2)ψ1(x3) + ψ2(x1)ψ1(x2)ψ1(x3)]. This is the only

first-excited state of the three-particle bosonic system and therefore, has a degeneracy of 1.

During the interviews, some students incorrectly claimed that the number of terms in the

many-particle first-excited state wavefunction determine the degeneracy of the many-particle

state. However, in Q1, the three terms in the first-excited state of the three-particle bosonic
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system are the terms in the completely symmetric many-particle first-excited state wavefunc-

tion and not three distinct many-particle states with the same energy. For a system of three

identical particles that can be treated as distinguishable particles, the many-particle states

ψ1(x1)ψ1(x2)ψ2(x3), ψ1(x1)ψ2(x2)ψ1(x3), and ψ2(x1)ψ1(x2)ψ1(x3) are distinct many-particle

states with the same energy. Thus, the degeneracy of the many-particle energy spectrum for

a system of three identical particles that can be treated as distinguishable is three when two

of the particles are in the state ψ1 and one particle is in the state ψ2. Some students strug-

gled to differentiate distinctly different many-particle states for a system of indistinguishable

particles from a system of identical particles that can be treated as distinguishable and could

not determine the degeneracy of the many-particle system with a given total energy.

12.4.3 Incorrectly adding (as opposed to multiplying) the number of ways to

arrange the particles in the states with a given energy to the number

of ways to arrange the particles in various single-particle energy states

with a different energy

Some students argued that the number of distinct many-particle states is the sum of the

number of ways to arrange each particle. For example, in Q3(b), one interviewed student

claimed that the number of distinct seven-particle states for a system of identical bosons is

4 ·3+7 ·4. He incorrectly reasoned that “in the lowest energy states, there are four states for

the three bosons. And in the first-excited (energy) states, there are seven states for the four

bosons. For the bosons in the lowest energy states, there are four states for each boson, so

there are 4 ·3 ways to arrange them. For the bosons in the first-excited (energy) states, there

are seven states for each boson. That makes 7 · 4 ways to arrange those bosons. So, in total,

we get 4 · 3 + 7 · 4 = 40 (distinct seven-particle states).” This student made several mistakes

including treating the bosons as distinguishable particles, but also incorrectly added the

number of ways to arrange each particle.

Some students correctly found the number of arrangements among the degenerate single-

particle states with the same energy, but then incorrectly added the total number of arrange-

ments of the particles in the lowest and first-excited energy states. For example, in Q3(a),
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one interviewed student correctly determined that the number of ways to arrange the identi-

cal fermions in the lowest energy state is
(
4
3

)
and also correctly determined that the number

of ways to arrange the identical fermions in the first-excited energy states is
(
7
4

)
. However,

this student then incorrectly stated that “the total number of (distinct seven-particle) states

is the sum of ones from the lowest energy and the first-excited state (energy). So the answer

is 4 choose 3 plus 7 choose 4.” After evaluating the expression, he determined the number

of distinct seven-particle states in Q3(a) to be 4 + 35 = 39.

These interviewed students and others with this type of reasoning struggled to realize that

one should multiply the number of ways to arrange each identical particle when determining

the number of distinct many-particle states.

12.4.4 Not taking into account the constraints on the many-particle system

In Q2 and Q3, many students struggled to realize that the total number of particles in each

single-particle state is given and that one must determine the number of distinct many-

particle states consistent with the given constraints. For example, in Q3, many students

determined the number of ways to arrange the seven identical particles among the eleven

total single-particle states. The two most common incorrect responses for students with this

type of difficulty were
(
11
7

)
distinct seven-particle states for a system of identical fermions or

bosons and 117 distinct seven-particle states for a system of identical particles that can be

treated as distinguishable.

In Q1 (a), the answer
(
11
7

)
would be the correct number of distinct seven-particle states

for a system of identical fermions if there were no energy constraints on the system. However,

since the energy of the system is such that three particles are in the lowest energy states

and four particles are in the first-excited states, one must only count states that satisfy this

constraint.

In Q1(c), the students who incorrectly claimed that there are 117 distinct seven-particle

states for a system of identical particles that can be treated as distinguishable were deter-

mining the number of distinct many-particle states correctly for a system with no constraint

on the number of particles in different single-particle states with the same energy. They
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incorrectly claimed that there are 11 single-particle states available to each particle.

12.4.5 Memorization of formulas rather than using systematic reasoning

Many interviewed students attempted to recall the formula (Eq. 12.2, 12.5, or 12.8) for

determining the number of distinct many-particle states for a given system of identical par-

ticles rather than using systematic reasoning to generate it. Often times students would

omit at least one of the terms in the formulas or did not have the appropriate symbols in

the appropriate place in the formula. For example, common mistakes in Q3(c) were to use

the expression
∏

n d
Nn
n or N !

∏
n d

Nn
n instead of the correct expression given in Eq. 12.8.

Other students switched the number of degenerate single-particle states and the number of

particles with the specified degenerate energy in Eq. 12.8. For example, in Q3(c), some

students incorrectly wrote the formula for determining the number of distinct many-particle

states in terms of Ndn
n as opposed to dNn

n in Eq. 12.8.

In some cases, students recalled a correct formula but used it for the incorrect system of

identical particles. For example, some students correctly recalled Eq. 12.2, but used it to

calculate the number of distinct many-particle states for a system of identical bosons.

Moreover, some students who recalled a formula correctly did not use it correctly. During

the interview and on written responses after traditional lecture-based instruction, students

with this type of difficulty often struggled to correctly recognize the meaning of each symbol

in the equation. For example, in Q3, some students used the total number of particles N in

the formulas for Nn instead of the occupation number for the particles in the single-particle

states with a given energy En.

12.4.6 Difficulty accounting for the indistinguishability of the identical particles

Some students struggled to account for the fact that for a system of identical fermions or

bosons, the identical particles are indistinguishable. Below, we discuss student difficulties

in determining the number of distinct many-particle states for a system of indistinguishable

particles in which students incorrectly determined the number of ways to arrange the identical

particles among the degenerate single-particle states consistent with the constraints on the
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number of particles with each single-particle energy.

In Q3, some students determined the number of distinct seven-particle states by calcu-

lating the number of ways to choose the particles to occupy the lowest energy states and the

first-excited energy states. For example, in Q3, for both a system of identical fermions and

bosons, one interviewed student claimed that “we have seven identical particles. Three must

go in the lowest energy states and four must go in the first-excited energy states. So there

are 7 choose 3 different combinations for the lowest energy (states) and 7 choose 4 combina-

tions for the first-excited (energy) states.” He then jotted down that there are
(
7
3

)(
7
4

)
distinct

seven-particle states in Q3 for both a system of identical fermions and bosons. In Q3, after

traditional lecture-based instruction, some students wrote that there are
(
7
3

)(
4
4

)
=
(
7
3

)
· 1

distinct seven-particle states. Students with this type of reasoning were making two mis-

takes. First, they were treating the indistinguishable fermions and bosons as distinguishable

particles by first choosing three of the seven indistinguishable particles to place in the lowest

energy single-particle state and then determining which of the four particles to place into the

first-excited energy single-particle states. Second, they determined the number of ways to

choose the particles to be placed in the lowest and first-excited energy single-particle states,

but they did not determine the number of ways these particles can be distinctly arranged

among the four-fold degenerate lowest energy states or the seven-fold degenerate first-excited

energy states.

Many students struggled with the fact that there are constraints on the number of par-

ticles with each single-particle energy is fixed and that one must only determine distinct

many-particle states that satisfy the specified arrangement given in the problem. In particu-

lar, since there is degeneracy in the single-particle energy spectrum, one must make sure that

the single-particle states with the same energy have the appropriate number of particles in

addition to determining the number of ways these identical particles can be arranged among

these degenerate single-particle states. When determining the number of distinct many-

particle states for a system of identical particles that can be treated as distinguishable, one

must determine the number of arrangements of the specified number of identical particles

among the degenerate single-particle states. However, for a system of indistinguishable par-

ticles, choosing different particles to be placed in the different single-particle states does not
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make up a distinctly different many-particle state.

12.5 METHODOLOGY FOR THE DEVELOPMENT AND VALIDATION

OF THE QUILT

12.5.1 Development and Validation of the QuILT

Based upon our research of student difficulties with fundamental concepts with systems of

identical particles, we developed a QuILT that attempts to build a consistent and coherent

knowledge structure while at the same time addressing the common student difficulties. The

development and structure of the QuILT was inspired by several influential learning theories.

In particular, the QuILT strives to incorporate Vygotsky’s zone of proximal development

(ZPD) [49], Bransford and Schwartz’s preparation for future learning (PFL) framework [50],

and Piaget’s “optimal mismatch” [51].

The QuILT is inspired by Vygotsky’s ZPD in that it strives to give the students the

requisite knowledge and skill sets by providing students with appropriate scaffolding. The

desired tasks, which the students were often unable to perform successfully at the onset

of the QuILT, are addressed using a guided inquiry-based approach to build the students’

knowledge to the point that they develop self-reliance and are able to successfully complete

the same task on their own after working through the QuILT.

Additionally, the QuILT strives to incorporate Bransford and Schwartz’s PFL framework

with a special focus on instruction that is both innovative and efficient. They view innovation

and efficiency as two orthogonal components of instruction that must be balanced for effective

instruction. One interpretation of this framework is that innovation refers to presenting

students with novel tasks that are just beyond their current understanding that allow them

to grow and strive for more robust content knowledge. Efficiency has been viewed as a

characteristic of instruction that allows the students to practice what they are learning to

enable them to become skilled and develop a functional understanding of the material. The

framework suggests that instruction should attend to both aspects. The concern is that if

instruction only focuses on one of these aspects there is danger that the students will become
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disconnected when instruction is too advanced beyond their current state (the instruction

is too innovative without allowing for efficiency to develop) or when the instruction focuses

too much on rote memorization and procedural redundancy (the instruction is too efficient

without the creative nature associated with innovation).

Finally, the QuILT was developed with Piaget’s “optimal mismatch” as a guiding princi-

ple. The key idea behind Piaget’s “optimal mismatch” is to allow students to discover their

mistakes on their own and correct the inconsistencies in their own knowledge structures.

To achieve this, the QuILT strives to scaffold student learning using a guided inquiry-based

approach which focuses on all the necessary skills and concepts to help the students develop

a functional understanding of a system of identical particles. It also addresses and helps

students reconcile many of the common difficulties students have with this topic. In partic-

ular, the QuILT incorporates hypothetical student conversations and sets of inquiry-based

sequences designed to help them realize inconsistencies in their prior knowledge, and provides

scaffolding to help students resolve these inconsistencies.

The development of the QuILT was also guided by a cognitive task analysis [52] from

both an expert perspective and a novice perspective which consisted of all the requisite

knowledge and skills necessary for a functional understanding of a system of identical parti-

cles. The initial cognitive task analysis was conducted from an expert perspective in which

the researchers outlined the required knowledge and skills and the order in which they are

useful in solving problems. This cognitive task analysis was iterated with members of the

physics faculty. However, in an effort of determine if there are additional areas students may

struggle with that are not predicted by the experts (expert blindspot), we conducted the

student interviews. The cognitive task analysis was then expanded to include these concepts

or tasks in which students needed additional scaffolding support.

The QuILT was iterated many times among the three researchers and at several points

during the development it was iterated with three physics faculty members at the University

of Pittsburgh to ensure that the content was appropriate and they agreed with the word-

ing. During this cyclical iterative process, faculty members provided feedback regarding the

current version of the QuILT that was incorporated or addressed in the next version of the

QuILT. Once it was agreed upon by the faculty that the content was clear and correct, the
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QuILT was administered to 14 graduate students in “think aloud” interviews to ensure that

the wording was unambiguous, the scaffolding was effective, and to further investigate any

student difficulties. During these semi-structured interviews, the students worked through

the QuILT and provided their rationale for each question in the pretest, the guided inquiry-

based tutorial, and the posttest. The students were not interrupted as they answered the

questions and worked through the tutorial. They were asked follow up questions or asked

to clarify any unclear statements only upon completion of the pretest, the entire section of

the tutorial focusing on the issues discussed here, or the posttest. After each interview, the

student’s responses were analyzed to measure the effectiveness of the tutorial and determined

whether there were any necessary changes to be made to the QuILT. These changes were

incorporated in subsequent versions of the QuILT and in subsequent interviews. During each

step in the cyclically iterative process, the QuILT was adjusted to incorporate the faculty

suggestions as well as the students’ feedback and responses to help students with the com-

mon difficulties and improve the ability of the students to build a consistent and coherent

knowledge structure. After it was deemed successful, the QuILT was next administered to

students in various advanced quantum mechanics courses.

12.5.2 Structure of the QuILT

The QuILT strives to transform the students into active learners by employing an inquiry-

based approach which requires the students to build their own knowledge structure by an-

swering questions, analyzing the validity of given statements, and reflecting upon what they

have learned. The QuILT consists of three parts: the pretest, a guided inquiry-based tutorial,

and the posttest. The pretest is administered to the students after traditional, lecture-based

instruction covering systems of identical particles. The pretest is administered in class dur-

ing which the students completed it individually with no additional resources other than

what is provided in the pretest itself. After completing the pretest, they are given the tuto-

rial and encouraged to work together in small groups in class. The tutorial can be used to

guide in-class discussion. The tutorial can also be administered as a self-paced learning tool

that the students work on as part of their weekly homework assignment. Upon completion,

the students submit the tutorial for grading and are then administered the posttest. The

posttest is given in class as an individual assessment in which the students are not permitted
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any additional resources beyond what is provided in the posttest.

The QuILT incorporates guided inquiry-based learning sequences which consist of sev-

eral related questions, each building upon the previous question(s), that require the students

to take a stand and actively engage with the learning process. The QuILT also includes

hypothetical student conversations in which the students must analyze each hypothetical

student’s statement to determine whether they are correct and explain why they agree or

disagree with each student. Many of the common student difficulties were used as a guide

when constructing these hypothetical conversations and inquiry-based sequences with the

goal being that students would identify any inconsistency in their reasoning and then use

the provided support to reconcile these inconsistencies. For example, there are a number

of hypothetical student conversations in which one or more students make statements re-

flecting these common difficulties and provide incorrect reasoning mirroring those given by

actual students. Other students in these hypothetical conversations disagree with their in-

correct reasoning and provide correct reasoning and often note an issue with the incorrect

statement(s). As the students work through the QuILT, they must consider each student’s

argument and reflect upon their own reasoning in order to determine which student(s) are

correct. Similarly, the guided inquiry-based sequences often include portions that strive to

present the students with a contradiction between the answer to the questions in the se-

quence and their prior knowledge that they must then reconcile. Checkpoints are provided

at the end of each section that allow the students to go back and reconcile any remaining

difference between the correct reasoning and their own reasoning before moving on the next

section.

12.5.3 Addressing Student Difficulties

In the guided inquiry-based learning sequences in the QuILT, students actively engage with

examples focusing on concepts in a given situation, e.g., how to determine the number of

distinct many-particle states for a system with degeneracy in the single-particle energy spec-

trum and a fixed number of particles in each group of degenerate single-particle states with

a certain energy. In particular, the QuILT strives to help students develop a systematic ap-
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proach for determining the number of many-particle states for a system of identical particles.

In the QuILT, students consider the systems of identical particles in the following cases: (1)

indistinguishable fermions, (2) indistinguishable bosons, and (3) identical particles that can

be treated as distinguishable. We begin with the following example that is part of a guided

inquiry-based sequence students engage with in the QuILT.

Q4. Suppose that a system with ten single-particle states has 4 particles. The degeneracy

of the lowest single-particle stationary state with energy E1 is d1 = 4 and the degeneracy

of the first-excited single-particle states with energy E2 is d2 = 6. If the total energy of

the system is such that 2 particles are in the lowest energy states and 2 particles are in the

first-excited states, what is the number of distinct four-particle states Q(2, 2) corresponding

to this particular arrangement (2,2):

(a) if the particles are indistinguishable fermions?

(b) if the particles are indistinguishable bosons?

(c) if the identical particles can be treated as distinguishable?

In Q4(a), for a system of indistinguishable fermions, there are

(
4

2

)
·
(

6

2

)
= 6× 15 = 90

distinct four-particle states. In Q4(b), for a system of indistinguishable bosons, there are(
4 + 2− 1

2

)
·
(

6 + 2− 1

2

)
=

(
5

2

)
·
(

7

2

)
= 10 × 21 = 210 distinct four-particle states. In

Q4(c), for a system of identical particles that can be treated as distinguishable, there are[(
4

2

)
· 42

] [(
4− 2

2

)
· 62

]
= 96× 36 = 3456 distinct four-particle states.

Below, we discuss how this guided inquiry-based sequence strives to provided scaffolding

support intended to help students with these concepts involved in determining the number

of distinct many-particle states and address some of the common difficulties.

Helping students recognize that two fermions cannot occupy the same single-

particle state: Students begin by working through several guided inquiry-based learning

sequences focusing on the number of distinct many-particle states for a system of identical

fermions. One of these guided inquiry-based sequences in the QuILT strives to help them

identify that any arrangement in which two or more fermions occupy the same single-particle

state is not possible for a system of identical fermions.

Helping students realize that one should multiply (not add) the number of
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ways to arrange the identical particles in different single-particle states: Another

guided inquiry-based learning sequence aims to help students do sensemaking of the combi-

natorics in this quantum physics context and realize that one should multiply the number

of ways to arrange the identical particles in different groups of states with the same single-

particle energies (e.g., the ground and first-excited energies). In order to help students reflect

upon relevant issues, the following is a hypothetical student conversation regarding whether

one should add or multiply the number of arrangements of the identical fermions in the low-

est energy states and the first-excited energy states in Q4(a). After considering the validity

of each statement, the students must explain why they agree or disagree with each student:

Student 1: Since there are 6 ways to arrange two indistinguishable fermions among the four

degenerate single-particle states with energy E1 and 15 ways to arrange two indistinguishable

fermions among the six degenerate single-particle states with energy E2, there are a total of

6 + 15 = 21 distinct four-particle states corresponding to the arrangment of two fermions in

the lowest energy states and two fermions in the first-excited energy states.

Student 2: I disagree with Student 1. The total number of distinct four-particle states

Q(2, 2) corresponding to the arrangement of two fermions in the lowest energy states and two

fermions in the first-excited energy states is the product of the number of ways to arrange the

indistinguishable fermions in the four degenerate states with energy E1 and the six degenerate

states with energy E2, not the sum. The number of distinct four-particle states corresponding

to the arrangement of two fermions in the lowest energy states and two fermions in the first-

excited energy states for the system is 6× 15 = 90.

Student 1 is incorrect and Student 2 is correct in the preceding conversation. Students

are provided further scaffolding that strives to help them learn that the number of distinct

many-particle states for a system of identical particles is expressed as the product (as opposed

to the sum) of the number of ways to arrange the particles in the lowest energy states and

the first-excited energy states.

Helping students realize that one must be careful to determine the many-

particle states consistent with the constraints on the number of particles in

single-particle states with a given energy: For a system with constraints on the number

of particles in single-particle states with a given energy, one must ensure that this energy
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constraint is satisfied when determining the number of distinct many-particle states. The

following is a hypothetical student conversation regarding Q4 that focuses on arranging the

particles such that the number of particles in single-particle states with a given energy is

consistent with the given constraint. After reflecting upon each statement in the hypothetical

conversation, the students must explain why they agree or disagree with each student:

Student 1: In the given example, since the lowest energy single-particle states with energy

E1 have degeneracy d1 = 4 and the degeneracy of the first-excited single-particle states

with energy E2 is d2 = 6, there are a total of 10 available single-particle states. We must

determine all the permutations of the four particles among the 10 single-particle states.

Student 2: I agree with Student 1 only in the case in which there is no constraint on the

total energy of the system. However, in this example, the permutations of the four particles

must be consistent with the fixed total energy of the system. Therefore, only two particles

with energy E1 and two particles with energy E2 are permitted.

Student 1 is incorrect and Student 2 is correct, since the only many-particle states that

should be counted are those with the specified total energy and the arrangement stated in

Q4. The students are provided further scaffolding aimed at helping them determine the

number of ways to arrange the particles in different single-particle states consistent with the

given arrangement and total energy of the many-particle system.

12.6 EVALUATION OF THE QUILT

Once the researchers determined that the QuILT was successful in one-on-one implemen-

tation using a think-aloud protocol, it was administered in graduate and upper-level un-

dergraduate classes. Both undergraduate and graduate students were given a pretest after

traditional instruction in relevant concepts for constructing the many-particle stationary

state wavefunction for a system of identical particles before working through the tutorial.

The pretests were not returned to the students after grading. The undergraduates worked

through the tutorial in class for two days and were asked to work on the remainder of the
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Table 47: Average pretest and posttest scores for Q2 and Q3 for the given system on the

pretest and posttest for undergraduates (number of students N = 25) and graduate students

(N = 30).

Question Type of Particle Graduate Undergraduate

Pre (%) Post (%) Pre (%) Post (%)

(number of students) (number of students) (number of students) (number of students)

Q2
Fermions - 93 (30) 46 (13) 83 (12)

Bosons - 64 (30) 34 (13) 74 (12)

Distinguishable - 61 (30) 20 (13) 64 (12)

Q3
Fermions 8 (30) - 15 (12) 85 (13)

Bosons 4 (30) - 2 (12) 92 (13)

Distinguishable 10 (30) - 8 (12) 80 (13)

tutorial as homework. The graduate students were given the tutorial as their only homework

assignment for the week. After working through and submitting the completed tutorial, both

groups were given the posttest in class. Students were given enough time in class to work

through the pretest and posttest.

The QuILT was administered to 30 graduate students in one year of a second semester

graduate level QM course and to 25 undergraduate students over two years in a second

semester upper-level undergraduate QM course. There were 12 undergraduate students in

the first year of the study and 13 undergraduate students in the second year of the study.

In Year 1, both the undergraduates and graduate students were given question Q3 on the

pretest and Q2 on the posttest. In Year 2, the undergraduate students were given question

Q2 on the pretest and Q3 on the posttest. Q2 and Q3 were intended to be similar questions

with minor changes in the number of identical particles and degenerate single-particle states

in the two energy levels.

Overall, there was a significant improvement in the student performance on the posttest

questions compared to the pretest questions. Table 47 summarizes the student performance

on questions Q2 and Q3. In particular, over 80% of the undergraduates and over 90% of

the graduate students correctly identified that no system of identical fermions is possible if
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there are more fermions than available single-particle states in Q2 on the posttest in Year

1. The graduate students scored 64% on the posttest for a system of identical bosons in

questions Q2. The undergraduate students scored over 74% on the posttest for a system of

identical bosons in questions Q2 and Q3. The results are encouraging and suggest that the

QuILT is effective in helping students determine the number of distinct many-particle states

for systems of identical fermions or bosons when the total energy of the system is fixed and

there is degeneracy in the single-particle energy spectrum.

12.7 SUMMARY

Investigation of students’ understanding of a system of identical particles helped to uncover

many common student difficulties that were used as a guide to develop a research-validated

QuILT that strives to help students learn how to determine the number of distinct many-

particle states for a system of identical particles when there is degeneracy in the single-

particle energy spectrum and constraints on the number of particles in different single-

particle states with a certain energy. Many of the student difficulties discussed here may be

attributed in part to students’ bounded rationality in that they are limited in their cognitive

resources since they are still developing expertise in these concepts [47]. Since the paradigm

of QM is novel, these issues become critical. The QuILT strives to place the students in

the role of active learners while providing an appropriate level of scaffolding through a

guided inquiry-based approach. The results show that the QuILT is effective in improving

students’ understanding of concepts necessary for determining the number of distinct many-

particle states for a system of identical particles with degeneracy in the single-particle energy

spectrum and constraints on the number of particles in different single-particle states with

a certain energy.

398



12.8 ACKNOWLEDGMENTS

We thank the NSF for award PHY-1505460. We are also thankful to members of the De-

partment of Physics and Astronomy at the University of Pittsburgh, especially R. P. Devaty.

Additionally, we thank the students who helped with the investigation, including those who

were interviewed.

399



Chapter References

[1] C. Singh, Student understanding of quantum mechanics, Am. J. Phys. 69, 885 (2001).

[2] C. Singh, Student understanding of quantum mechanics at the beginning of graduate
instruction, Am. J. Phys. 76, 277 (2008).

[3] D. Zollman, N. S. Rebello, and K. Hogg, Quantum mechanics for everyone: hands-on
activities integrated with technology, Am. J. Phys. 70, 252 (2002).

[4] M. Wittmann, R. Steinberg, and E. Redish, Investigating student understanding of quan-
tum physics: Spontaneous models of conductivity, Am.J. Phys. 70, 218 (2002).

[5] A. Kohnle et al., A new introductory quantum mechanics curriculum, Eur. J. Phys. 35,
015001 (2014).

[6] A. Kohnle et al., Developing and evaluating animations for teaching quantum mechanics
concepts, Eur. J. Phys. 31, 1441 (2010).

[7] P. Jolly, D. Zollman, S. Rebello and A. Dimitrova, Visualizing potential energy diagrams,
Am. J. Phys. 66, 57 (1998).

[8] E. Benitez Rodriguez, L. M. Arevalo Aguilar, and E. Piceno Martinez, A full quantum
analysis of the Stern–Gerlach experiment using the evolution operator method: analyzing
current issues in teaching quantum mechanics, Eur. J. Phys. 38, (2017).

[9] A. Maries, R. Sayer, and C. Singh, Investigating transfer of learning in advanced quan-
tum mechanics, in Proceedings of the 2015 Physics Education Research Conference, Col-
lege Park, MD, edited by A. Churukian, D. Jones, and L. Ding (2015), pp. 207-210,
http://dx.doi.org/10.1119/perc.2015.pr.047.

[10] C. Singh, E. Marshman, Analogous patterns of student reasoning difficulties in intro-
ductory physics and upper-level quantum mechanics, in Proceedings of the 2013 Physics
Education Research Conference, Portland, OR, edited by P. Engelhardt, A. Churukian,
and D. Jones (2014), pp. 46-49 http://dx.doi.org/10.1119/perc.2013.inv.010.

[11] S. Siddiqui and C. Singh, Surveying instructors’ attitudes and approaches to teaching
quantum mechanics, AIP Conference Proceedings 1289, 297 (2010).

400

https://www.compadre.org/per/items/detail.cfm?ID=13872
https://www.compadre.org/per/items/detail.cfm?ID=13093


[12] G. Zhu and C. Singh, Surveying students’ understanding of quantum mechanics in one
spatial dimension, Am. J. Phys. 80, 252 (2012).

[13] C. Singh and G. Zhu, Surveying students’ understanding of quantum mechanics, AIP
Conference Proceedings 1289, 301 (2010).

[14] C. Singh and G. Zhu, Cognitive issues in learning advanced physics: An example from
quantum mechanics, AIP Conference Proceedings 1179, 63 (2009).

[15] S. Y. Lin and C. Singh, Categorization of quantum mechanics problems by professors
and students, Euro. J. Phys. 31, 57 (2010).

[16] E. Marshman and C. Singh, Framework for understanding the patterns of student dif-
ficulties in quantum mechanics, Phys. Rev. ST PER 11, 020119 (2015).

[17] E. Marshman and C. Singh, Student difficulties with quantum states while translat-
ing state vectors in Dirac notation to wave functions in position and momentum rep-
resentations, in Proceedings of the 2015 Physics Education Research Conference, Col-
lege Park, MD edited by A. Churukian, D. Jones, and L. Ding (2015) pp. 211-214
http://dx.doi.org/10.1119/perc.2015.pr.048.

[18] E. Marshman and C. Singh, Investigating student difficulties with time dependence of
expectation values in quantum mechanics, in Proceedings of the 2013 Physics Education
Research Conference, Portland, OR edited by P. Engelhardt, A. Churukian, D. Jones
(2014) pp. 245 http://dx.doi.org/10.1119/perc.2013.pr.049.

[19] G. Zhu and C. Singh, Students’ Understanding of Stern Gerlach Experiment, AIP Con-
ference Proceedings 1179, 309 (2009), http://dx.doi.org/10.1063/1.3266744.

[20] C. Singh and E. Marshman, Review of student difficulties in upper-level quantum me-
chanics, Phys. Rev. ST PER 11, 020117 (2015).

[21] C. Singh, Transfer of learning in quantum mechanics, AIP Conference Proceedings 790,
23 (2005), http://dx.doi.org/10.1063/1.2084692.

[22] C. Singh, Student difficulties with quantum mechanics formalism, AIP Conference Pro-
ceedings 883, 185 (2007).

[23] B. Brown, A. Mason, and C. Singh, The effect of giving explicit incentives to correct
mistakes on subsequent problem solving in quantum mechanics, in Proceedings of the 2015
Physics Education Research Conference, College Park, MD edited by A. Churukian, D.
Jones, and L. Ding (2015) pp. 67-70. http://dx.doi.org/10.1119/perc.2015.pr.012.

[24] C. Singh and E. Marshman, Investigating student difficulties with Dirac nota-
tion, in Proceedings of the 2013 Physics Education Research Conference, Port-
land, OR edited by P. Engelhardt, A. Churukian, D. Jones (2014) pp. 345-348,
http://dx.doi.org/10.1119/perc.2013.pr.074.

401

https://www.compadre.org/per/items/detail.cfm?ID=13873
https://www.compadre.org/per/items/detail.cfm?ID=13167
http://aip.scitation.org/doi/abs/10.1063/1.3266744
http://aip.scitation.org/doi/abs/10.1063/1.2084692
http://dx.doi.org/10.1119/perc.2015.pr.012
https://www.compadre.org/per/items/detail.cfm?ID=13149


[25] A. J. Mason and C. Singh, Do advanced students learn from their mistakes without
explicit intervention?, Am. J. Phys. 78, 760 (2010).

[26] C. Singh, M. Belloni, and W. Christian, Improving students’ understanding of quantum
mechanics, Physics Today 59, 43 (2006).

[27] G. Zhu and C. Singh, Improving students’ understanding of quantum mechanics via the
Stern-Gerlach experiment, Am. J. Phys. 79, 499 (2011).

[28] G. Zhu and C. Singh, Improving students’ understanding of quantum measurement: I.
Investigation of difficulties, Phys. Rev. ST PER 8, 010117 (2012).

[29] G. Zhu and C. Singh, Improving students’ understanding of quantum measurement: II.
Development of research-based learning tools, Phys. Rev. ST PER 8, 010118 (2012).

[30] G. Zhu and C. Singh, Improving student understanding of addition of angular momen-
tum in quantum mechanics, Phys. Rev. ST PER 9, 010101 (2013).

[31] C. Singh and G. Zhu, Improving students’ understanding of quantum mechan-
ics by using peer instruction tools, AIP Conference Proceedings 1413, 77 (2012),
http://dx.doi.org/10.1063/1.3679998.

[32] C. Singh, Assessing and improving student understanding of quantum mechanics, AIP
Conference Proceedings 818, 69 (2006), http://dx.doi.org/10.1063/1.22177025.

[33] C. Singh, Helping students learn quantum mechanics for quantum computing, AIP
Conference Proceedings 883, 42 (2007), http://dx.doi.org/10.1063/1.2508687.

[34] B. Brown, A. Mason, and C. Singh, Improving performance in quantum mechanics with
explicit incentives to correct mistakes, Phys. Rev. PER 12, 010121 (2016).

[35] C. Keebaugh, E. Marshman and C. Singh, Investigating and addressing student diffi-
culties with the corrections to the energies of the hydrogen atom for the strong and weak
field Zeeman effect Eur. J. Phys. 39, 045701 (2018).

[36] C. Keebaugh, E. Marshman and C. Singh, Investigating and addressing student diffi-
culties with a good basis for finding perturbative corrections in the context of degenerate
perturbation theory, Eur. J. Phys. 39, 055701 (2018).

[37] C. Singh, Interactive learning tutorials on quantum mechanics, Am. J. Phys. 76, 400
(2008).

[38] S. DeVore and C. Singh, Development of an interactive tutorial on quantum key
distribution, in Proceedings of the 2014 Physics Education Research Conference, Min-
neapolis, MN edited by P. Engelhardt, A. Churukian, D. Jones (2015) pp. 59-62,
http://dx.doi.org/10.1119/perc.2014.pr.011.

402

http://doi.org/10.1063/1.3679998
http://aip.scitation.org/doi/abs/10.1063/1.2177025
http://aip.scitation.org/doi/abs/10.1063/1.2508687
https://www.compadre.org/per/items/detail.cfm?ID=13448


[39] C. Singh, E. Marshman, Developing an interactive tutorial on a Mach-Zehnder inter-
ferometer with single photons, in Proceedings of the 2014 Physics Education Research
Conference, Minneapolis, MN edited by P. Engelhardt, A. Churukian, D. Jones (2015)
p. 59-62, http://dx.doi.org/10.1119/perc.2014.pr.056.

[40] E. Marshman and C. Singh, Interactive tutorial to improve student understanding of
single photon experiments involving a Mach-Zehnder interferometer, Eur. J. Phys. 37,
024001 (2016).

[41] C. Singh and E. Marshman, Developing an interactive tutorial on a quantum
eraser, in Proceedings of the 2014 Physics Education Research Conference, Min-
neapolis, MN edited by P. Engelhardt, A. Churukian, D. Jones (2015) pp. 345-348,
http://dx.doi.org/10.1119/perc.2014.pr.040.

[42] R. Sayer, A. Maries and C. Singh, A quantum interactive learning tutorial on the double-
slit experiment to improve student understanding of quantum mechanics, Phys Rev PER
13, 010123 (2017).

[43] D. Hammer, A. Elby, R.E. Scherr, and E. F. Redish, Resources, framing, and transfer,
in Transfer of learning from a modern multidisciplinary perspective, edited by J. Mestre
(Information Age Publishing, Greenwich, 2005), pp. 89–120.

[44] A. Maries, S. Y. Lin, and C. Singh, The impact of students’ epistemological framing on a
task requiring representational consistency, in Proceedings of the 2016 Physics Education
Research Conference, Sacramento, CA, edited by D. Jones, L. Ding, and A. Traxler (2016)
pp. 212-215, http://dx.doi.org/10.1119/perc.2016.pr.048.

[45] A. Maries, S. Y. Lin and C. Singh, Challenges in designing appropriate scaffolding to
improve students’ representational consistency: The case of a Gauss’s law problem, Phys.
Rev. PER 13, 020103 (2017).

[46] J. Li and C. Singh, Students’ difficulties with equations involving circuit elements, AIP
Conference Proceedings 1413, 243 (2012).

[47] H. Simon, Bounded rationality and organizational learning, Organization Science 2 (1),
125–134 (1991).

[48] J. Sweller, Cognitive load theory, learning difficulty, and instructional design, Learning
and Instruction Vol. 4, pp. 295-312 (1994).

[49] L.S. Vygotsky, Mind in society: The development of higher psychological processes.
(Cambridge, Mass.: Harvard University Press, 1978)

[50] D. Schwartz, J. Bransford, and D. Sears, “Efficiency and innovation in transfer,” in
Transfer of learning from a modern multidisciplinary perspective, edited by J. Mestre
(Information Age, Greenwich, 2005), pp.1-51.

[51] J. Piaget, Success and Understanding. (Harvard University Press, Cambridge, 1978).

403

https://www.compadre.org/per/items/detail.cfm?ID=13496
https://www.compadre.org/per/items/detail.cfm?ID=13476
https://www.compadre.org/per/items/detail.cfm?ID=14231


[52] C. Wieman, Comparative cognitive task analyses of experimental science and instruc-
tional laboratory courses, The Physics Teacher 53, 349 (2015).

[53] E. Marshman, R. Sayer, C. Henderson and C. Singh, Contrasting grading approaches in
introductory physics and quantum mechanics: The case of graduate teaching assistants,
Phys. Rev. PER 13 010120 (2017).

404



13.0 FUTURE OUTLOOK

The study on investigating and improving student difficulties with Degenerate Perturbation

Theory was only carried out in the context of time-independent perturbation theory. The

study can be extended to include Time-Dependent Perturbation Theory (TDPT). In this

case, a time-dependent potential energy allows for transitions to occur between different

unperturbed energy levels if the time-dependent perturbation acts for a certain time. One

application of TDPT is in the emission or absorption of electromagnetic radiation by an

atom.

The study on investigating and improving student difficulties with a System of Identical

Particles focused on writing the many-particle stationary state wavefunction and counting

the number of distinct many-particle states for a system of identical particles. This study

can be extended to focus on additional concepts in quantum statistical mechanics. In par-

ticular, at finite temperatures, one can investigate student difficulties in determining the

most probable configuration, the density of states, the Maxwell-Boltzmann distribution, the

Fermi-Dirac distribution, and the Bose-Einstein distribution.
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APPENDIX A

DEGENERATE PERTURBATION THEORY

QUANTUM INTERACTIVE LEARNING TUTORIAL

A.1 DEGENERATE PERTURBATION THEORY PRETEST/POSTTEST

Degenerate Perturbation Theory
Pretest/Posttest

NOTE : For the matrix representation of a Hermitian operator Q̂ in a given basis, we will use

“=” or “is equal to” instead of “
.
=” or “is represented by” as in the notation below

Q̂ =


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 is equivalent to Q̂
.
=


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


with Qij = (Qji)

∗. Here ∗ denotes the complex conjugate.

The Hamiltonian of the hydrogen atom placed in an external magnetic field is

Ĥ = Ĥ0 + Ĥ ′r + Ĥ ′SO + Ĥ ′Z = Ĥ0 + Ĥ ′fs + Ĥ ′Z (A.1)

in which (all notations are standard)

• Ĥ0 = p̂2

2m
− e2

4πε0

(
1
r

)
only accounts for the interaction of the electron with the nucleus via

Coulomb attraction
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• Ĥ ′r = − p̂4

8m3c2
is the relativistic correction term

• Ĥ ′SO = e2

8πε0
1
r3
~̂S · ~̂L is the spin-orbit interaction term

• Ĥ ′fs = Ĥ ′SO + Ĥ ′r is the fine structure term

• Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz) is the Zeeman term.

The unperturbed energy for the hydrogen atom with Ĥ0 only is −13.6 eV
n2 for a given value of

n.

* We will use the following notations interchangeably to write states in the uncoupled

representation (in which basis states are eigenstates of L̂2, Ŝ2, L̂Z , and ŜZ) with a given

set of quantum numbers (notation for quantum numbers is standard):

• |n l s ml ms〉

• |l, ml〉|s, ms〉 (if n is fixed)

• |l, ml, ms〉 (if n and s are fixed)

* ~J = ~L+ ~S

* We will use the following notations interchangeably to write states in the coupled repre-

sentation (in which basis vectors are eigenstates of L̂2, Ŝ2, Ĵ2, and ĴZ) with a given set

of quantum numbers (notation for quantum numbers is standard):

• |n l s j mj〉

• |l, s, j, mj〉 (if n is fixed)

• |l, j, mj〉 (if n and s are fixed)

* Assume that for all questions that follow, the radial part of the basis corresponds to

Rnl(r), found by solving the radial part of the time-independent Schrödinger equation

for the unperturbed Hamiltonian Ĥ0.

* Assume that for all cases, the principal quantum number is fixed to n = 2 and the spin

quantum number is fixed to s = 1/2.
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The following equations may be helpful (all notations are standard).

Ŝ2|s ms〉 = ~2s(s+ 1)|s ms〉 Ŝz|s ms〉 = ~ms|s ms〉

Ŝ±|s ms〉 = ~
√
s(s+ 1)−ms(ms ± 1))|s ms ± 1〉

L̂2|l ml〉 = ~2l(l + 1)|l ml〉 L̂z|l ml〉 = ~ml|l ml〉

L̂±|l ml〉 = ~
√
l(l + 1)−ml(ml ± 1))|l ml ± 1〉

~J = ~L+ ~S

Ĵ2|l, s, j, mj〉 = ~2j(j + 1)|l, s, j, mj〉 Ĵz|l, s, j mj〉 = ~mj|l, s, j, mj〉

Ŝ2|l, s, j, mj〉 = ~2s(s+ 1)|l, s, j, mj〉 L̂2|l, s, j mj〉 = ~2l(l + 1)|l, s, j, mj〉

~L · ~S =
1

2
(Ĵ2 − Ŝ2 − L̂2) =

1

2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz

E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉

|ψ1
n〉 =

∑
m6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
(E0

n − E0
m)
|ψ0
m〉
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In the following table, the states for n = 2 are listed in the coupled representation (left),

and each state in the coupled representation is given in terms of a linear combination of

states in the uncoupled representation (right) using the Clebsch-Gordon table.

Coupled Representation Uncoupled Representation

|l, j, mj〉 |l, ml〉|s, ms〉

|ψ1〉
∣∣∣∣0, 1

2
,

1

2

〉
|0, 0〉

∣∣∣∣12 , 1

2

〉
|ψ2〉

∣∣∣∣0, 1

2
, −1

2

〉
|0, 0〉

∣∣∣∣12 , −1

2

〉
|ψ3〉

∣∣∣∣1, 3

2
,

3

2

〉
|1, 1〉

∣∣∣∣12 , 1

2

〉
|ψ4〉

∣∣∣∣1, 3

2
, −3

2

〉
|1, −1〉

∣∣∣∣12 , −1

2

〉
|ψ5〉

∣∣∣∣1, 3

2
,

1

2

〉 √
2

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
+

√
1

3
|1, 1〉

∣∣∣∣12 , −1

2

〉
|ψ6〉

∣∣∣∣1, 1

2
,

1

2

〉
−
√

1

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
+

√
2

3
|1, 1〉

∣∣∣∣12 , −1

2

〉
|ψ7〉

∣∣∣∣1, 3

2
, −1

2

〉 √
1

3
|1, −1〉

∣∣∣∣12 , 1

2

〉
+

√
2

3
|1, 0〉

∣∣∣∣12 , −1

2

〉
|ψ8〉

∣∣∣∣1, 1

2
, −1

2

〉
−
√

2

3
|1, −1〉

∣∣∣∣12 , 1

2

〉
+

√
1

3
|1, 0〉

∣∣∣∣12 , −1

2

〉
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1. Evaluate the following matrix elements useful for the matrix elements of Ĥ ′SO, in which

the states are written in the coupled representation |n l s j mj〉 (C is a constant to make

the dimensions of Ĥ ′SO that of energy). In order to receive credit you must show

your work or explain your reasoning.

a. C〈2 1 1
2

3
2
1
2
|(~S · ~L)|2 1 1

2
3
2
1
2
〉

b. C〈2 1 1
2

3
2
3
2
|(~S · ~L)|2 1 1

2
3
2
− 1

2
〉

2. Evaluate the following matrix elements useful for the matrix elements of Ĥ ′SO, in which

the states are written in the uncoupled representation |n l s ml ms〉 (C is a constant to

make the dimensions of Ĥ ′SO that of energy). In order to receive credit you must

show your work or explain your reasoning.

a. C〈2 1 1
2

1 1
2
|(~S · ~L)|2 1 1

2
1 1

2
〉

b. C〈2 1 1
2

0 1
2
|(~S · ~L)|2 1 1

2
1 − 1

2
〉

3. Evaluate the following matrix elements useful for the matrix elements of Ĥ ′Z , in which

the states are written in the coupled representation |n l s j mj〉 (C is a constant to make

the dimensions of Ĥ ′Z that of energy). In order to receive credit you must show

your work or explain your reasoning.

a. C〈ψ3|(L̂z + 2Ŝz)|ψ3〉 = C〈2 1 1
2

3
2

3
2
|(L̂z + 2Ŝz)|2 1 1

2
3
2

3
2
〉
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b. C〈ψ5|(L̂z + 2Ŝz)|ψ6〉 = C〈2 1 1
2

3
2

1
2
|(L̂z + 2Ŝz)|2 1 1

2
1
2

1
2
〉

4. Evaluate the following matrix elements useful for the matrix elements of Ĥ ′Z , in which

the states are written in the uncoupled representation |n l s ml ms〉, (C is a constant

to make the dimensions of Ĥ ′Z that of energy). In order to receive credit you must

show your work or explain your reasoning.

a. C〈2 1 1
2

0 1
2
|(L̂z + 2Ŝz)|2 1 1

2
0 1

2
〉

b. C〈2 1 1
2

1 1
2
|(L̂z + 2Ŝz)|2 1 1

2
− 1 − 1

2
〉
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5. For each of the following operators in parts (a)-(j), circle ALL of the bases which make

the operator diagonal in the n = 2 subspace of Ĥ0 and explain your reasoning. Assume

that for all cases the principal quantum number n = 2.

a. The unperturbed Hamiltonian Ĥ0

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

b. Explain your reasoning.

c. The spin-orbit interaction term Ĥ ′SO

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

d. Explain your reasoning.
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e. The relativistic correction term Ĥ ′r

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

f. Explain your reasoning.

g. The fine structure term Ĥ ′fs = Ĥ ′r + Ĥ ′SO

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

h. Explain your reasoning.
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i. The Zeeman term Ĥ ′Z

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

j. Explain your reasoning.
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6. In parts (1)-(a) of the following questions, a perturbation Ĥ ′ acts on a hydrogen atom

with the unperturbed Hamiltonian Ĥ0 = − ~2
2m
∇2 − e2

4πε0

(
1
r

)
. For each of the following

perturbations, circle ALL of the representations that form a “good” basis and explain

your reasoning. Assume that for all cases the principal quantum number is fixed to a

particular value, e.g., n = 2. (C is a constant which makes the dimensions of Ĥ ′ that of

energy in each case.)

a. Ĥ ′ = Cδ(r)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

b. Explain your reasoning.

c. Ĥ ′ = Ĥ ′r = − p̂4

8m3c2

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

d. Explain your reasoning.

415



e. Ĥ ′ = Ĥ ′SO =
(

e2

8πε0

)
1

m2c2r3
~L · ~S

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

f. Explain your reasoning.

g. Ĥ ′ = Ĥ ′fs = Ĥ ′r + Ĥ ′SO

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

h. Explain your reasoning.
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i. Ĥ ′ = Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

j. Explain your reasoning.

k. Ĥ ′ = Ĥ ′fs + Ĥ ′Z , in which E ′Z � E ′fs

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

l. Explain your reasoning.

417



m. Ĥ ′ = Ĥ ′fs + Ĥ ′Z , in which E ′fs � E ′Z

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

n. Explain your reasoning.

o. Ĥ ′ = Ĥ ′fs + Ĥ ′Z , in which E ′Z ≈ E ′fs

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

p. Explain your reasoning.
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7. In a Hydrogen atom, for n = 2, what is the degeneracy due only to the Coulomb inter-

action between the electron and nucleus (without considering the effect of any perturba-

tion)? Explain your answer.

8. Consider the strong field Zeeman effect (E ′Z � E ′fs) in a hydrogen atom, for n = 2,

(after accounting for the Zeeman term in the first step but not yet accounting for the

fine structure term).

a. What are the first order corrections to the unperturbed energy E0 (after accounting

for the Zeeman term in the first step but not yet accounting for the fine structure

term)? You must show your reasoning to receive credit.

b. For n = 2, write down each of the states that correspond to each first order correction

to the unperturbed energy E0 (after accounting for the Zeeman term in the first step

but not yet accounting for the fine structure term). You must explain your answer

to receive credit.

9. For n = 2, in the strong field Zeeman effect (E ′Z � E ′fs) in a hydrogen atom, after

accounting for the Zeeman perturbation (but not accounting for the fine structure term),

the unperturbed energies including the Zeeman term are E0
Z = E2 + µBBext(ml + 2ms).

Explain why you agree or disagree with the following student. (The basis is chosen to

be |n l ml ms〉.)

Student: The off-diagonal matrix element 〈2 1 1 − 1
2
|1
2
(L̂+Ŝ−+L̂−Ŝ+)+L̂zŜz|2 1 −1 1

2
〉

is NON-ZERO.
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10. Consider the unperturbed Hamiltonian

Ĥ0 = V0


3 0 0

0 3 0

0 0 7

 .
Write an example of a perturbing Hamiltonian Ĥ ′ in the same basis as Ĥ0 such that

for that Ĥ0 and Ĥ ′, this basis does NOT form a “good” basis (so that one can use the

same expressions that one uses in non-degenerate perturbation theory for perturbative

corrections). Use ε as a small parameter. In addition to writing the Ĥ ′ matrix, you

must explain your reasoning to receive full credit.

11. Consider the unperturbed Hamiltonian

Ĥ0 = V0


3 0 0

0 3 0

0 0 7

 .
Write an example of a perturbing Hamiltonian Ĥ ′ in the same basis as Ĥ0 such that for

that Ĥ0 and Ĥ ′, this basis forms a “good” basis (so that one can use the same expressions

that one uses in non-degenerate perturbation theory for perturbative corrections). Use

ε as a small parameter. In addition to writing the Ĥ ′ matrix, you must explain

your reasoning to receive full credit.
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12. Given

Ĥ = Ĥ0 + εĤ ′ = V0


2 0 −2ε

0 2− 2ε 0

−2ε 0 3 + 3ε

 (ε� 1),

determine the first order corrections to the energies. In order to receive credit you

must show your work or explain your reasoning.
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13. Given

Ĥ = Ĥ0 + εĤ ′ = V0


3 ε ε

ε 2 ε

ε ε 2

 (ε� 1),

determine the first order corrections to the energies. In order to receive credit you

must show your work or explain your reasoning.
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A.2 BASICS OF DEGENERATE PERTURBATION THEORY - FINITE

DIMENSIONAL SPACES TUTORIAL

Basics of Degenerate Perturbation Theory - Finite Dimensional Spaces

A.3 DEFINITION

For a given Ĥ0 and Ĥ ′, a “good” basis consists of a set of eigenstates of Ĥ0 that diagonalizes

Ĥ ′ in the degenerate subspace of Ĥ0 (keeping Ĥ0 diagonal everywhere).

• Once you have a “good” basis for a given Ĥ0 and Ĥ ′, you can use the same expressions

that you use in non-degenerate perturbation theory for the perturbative corrections to

the energies and energy eigenstates.

A.4 NOTES FOR THIS TUTORIAL ON DEGENERATE

PERTURBATION THEORY:

* A Hermitian operator Q̂ must satisfy the property Qij = (Qji)
∗. Here ∗ denotes the

complex conjugate.

* For the matrix representation of a Hermitian operator Q̂ in a given basis, we will use

“=” or “is equal to” instead of “
.
=” or “is represented by” as in the notation below

Q̂ =


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 is equivalent to Q̂
.
=


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 .

* Since both Ĥ0 and Ĥ ′ correspond to physical observables, Ĥ0 and Ĥ ′ must be Hermi-

tian. For the matrix representations of the unperturbed Hamiltonian Ĥ0 and perturbing

423



Hamiltonian Ĥ ′ in a given basis, we have

Ĥ0 = V0


a b c

b∗ e f

c∗ f ∗ i

 and Ĥ ′ = V0


a′ b′ c′

b
′∗ e′ f ′

c
′∗ f

′∗ i′

 .

* In this tutorial, “degeneracy” denotes degeneracy in the energy eigenvalue spectrum,

i.e., the fact that more than one distinct energy eigenstate can have the same energy

eigenvalue. For example, if

Ĥ0|ψa〉 = E1|ψa〉 and Ĥ0|ψb〉 = E1|ψb〉,

|ψa〉 and |ψb〉 are degenerate eigenstates for the Hamiltonian Ĥ0 since they correspond

to the same energy E1.

* Assume that the initially chosen basis states {|ψ0
1〉, |ψ0

2〉, |ψ0
3〉} are always eigenstates of

the unperturbed Hamiltonian Ĥ0 whether or not they are “good” basis states for a given

pair Ĥ0 and Ĥ ′.

* Assume that all basis states are orthonormal (normalized and orthogonal).
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A.5 OBJECTIVES

Upon completion of this tutorial, you should be able to do the following:

1. For a given Ĥ0 and Ĥ ′, describe why the expressions may fail for finding corrections to

the energies and energy eigenstates from non-degenerate perturbation theory when there

is degeneracy in the unperturbed energy if the basis states are not chosen correctly.

a. For a given Ĥ0 and Ĥ ′, describe the problem that may occur when the expressions

from non-degenerate perturbation theory are used if the basis states are not chosen

carefully and how the problem can be addressed by choosing a “good” basis.

b. Identify the degenerate subspace of the unperturbed Hamiltonian Ĥ0.

c. Show that the off-diagonal matrix elements of Ĥ ′ must be zero in the degenerate

subspace of Ĥ0 when “good” basis states are chosen.

2. For a given Ĥ0 and Ĥ ′, determine “good” states for finding corrections to the unperturbed

energy.

a. Show that in the subspace in which Ĥ0 does not have a degeneracy, the originally

chosen basis states are “good” basis states since the eigenstates of Ĥ0 are unique in

the subspace in which there is no degeneracy.

b. Show that the basis states in the subspace in which Ĥ0 has degeneracy may or may

not be “good” basis states for a given Ĥ ′.

i. Show that if Ĥ ′ is already diagonal in the degenerate subspace of Ĥ0, the initially

chosen energy eigenstates of the unperturbed Hamiltonian Ĥ0 already are “good”

states.

ii. Show that if Ĥ ′ is NOT diagonal in the degenerate subspace of Ĥ0, the initially

chosen energy eigenstates of the unperturbed Hamiltonian Ĥ0 are NOT “good”

states.

A. Demonstrate that linear combinations of the eigenstates of Ĥ0 are still eigen-

states of Ĥ0 in the degenerate subspace of Ĥ0 and we can make use of this fact

to diagonalize both Ĥ0 and Ĥ ′ in the degenerate subspace of Ĥ0.

B. Find “good” basis states by diagonalizing Ĥ ′ in the degenerate subspace of Ĥ0.
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C. Show that in a “good” basis (in which Ĥ ′ is diagonal in the degenerate subspace

of Ĥ0), Ĥ0 remains diagonal.

D. Explain why it is necessary to choose a basis that keeps the unperturbed Hamil-

tonian Ĥ0 diagonal (basis states are eigenstates of Ĥ0, i.e. we need to find

perturbative corrections to the energies using a basis in which Ĥ0 is diagonal).

c. Calculate corrections to the unperturbed energies and energy eigenstates when Ĥ0

has degeneracy.

d. Describe why we must diagonalize Ĥ ′ only in the degenerate subspace of Ĥ0 (instead

of diagonalizing the entire Ĥ ′ matrix).

i. Demonstrate that diagonalizing the entire Ĥ ′ matrix makes the Ĥ0 matrix non-

diagonal if Ĥ0 and Ĥ ′ don’t commute (we cannot find a complete set of simul-

taneous eigenstates of Ĥ0 and Ĥ ′ when they don’t commute).

• Note that if two operators commute, in the basis consisting of a complete

set of simultaneous eigenstates of both, each operator is diagonal (however,

if there is degeneracy in the eigenvalue spectrum of one or both operators

then all eigenstates of one operator may not be eigenstates of another and

both operators may not be diagonal in that basis, but it is possible to find a

complete set of simultaneous eigenstates of both).
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A.6 REVIEW OF NON-DEGENERATE PERTURBATION THEORY

In perturbation theory, for the case in which the unperturbed Hamiltonian Ĥ0 has NO

degeneracy:

• the first order corrections to the energies are

E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 (A.2)

• the first order corrections to the energy eigenstates are

|ψ1
n〉 =

∑
m 6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
(E0

n − E0
m)
|ψ0
m〉 (A.3)

in which {|ψ0
n〉} is the set of energy eigenstates of the unperturbed Hamiltonian Ĥ0.

A.7 DEGENERATE PERTURBATION THEORY

A.7.1 Degeneracy in the Eigenvalue Spectrum of Ĥ0 Requires Finding a

“GOOD” Basis to Determine Corrections to the Energies and Energy

Eigenstates

If there is degeneracy in the eigenvalue spectrum of Ĥ0, are equations (A.2) and (A.3) still

valid for a given perturbation Ĥ ′? If so, in which situations are they valid? Explain any

constraints on the basis states.

Use the following two examples to help answer these questions.
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A.7.1.1 CASE 1: First Order Corrections to the Energy when Ĥ ′ IS DIAGO-

NAL IN THE DEGENERATE SUBSPACE of Ĥ0

EXAMPLE 1: Consider the following example, in which the Hilbert space is three

dimensional and ε is a small parameter (ε� 1). Answer questions 1-6.

Ĥ0 = V0


1 0 0

0 2 0

0 0 2

 and Ĥ ′ = V0


ε 2ε 0

2ε ε 0

0 0 3ε

 (A.4)

The normalized basis states are |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉, respectively, in which

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 . (A.5)

1. The basis states |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉 are eigenstates of

(A) Ĥ0 only

(B) Ĥ ′ only

(C) Both Ĥ0 and Ĥ ′

(C) Neither Ĥ0 nor Ĥ ′

Explain your reasoning.

2. Does Ĥ0 have degeneracy? Why or why not?
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3. Choose one of the following options to fill in the blank. In the degenerate subspace of

Ĥ0, the matrix representation of Ĥ0 is and the matrix representation of Ĥ ′

is , respectively.

(A)

V0

 1 0

0 2

 , V0

 ε 2ε

2ε ε


(B)

V0

 2 0

0 2

 , V0

 ε 0

0 3ε


(C)

V0

 ε 2ε

2ε ε

 , V0

 1 0

0 2


(D)

V0

 ε 0

0 3ε

 , V0

 2 0

0 2



4. Do the basis states |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉 form a “good” basis? Explain.
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Consider the following conversation regarding whether the initially chosen basis is a

“good” basis in EXAMPLE 1.

Student 1: In EXAMPLE 1, in the degenerate subspace of Ĥ0, the perturbing Hamilto-

nian Ĥ ′ is V0

 ε 0

0 3ε

. So we can use equations (A.2) and (A.3) from non-degenerate

perturbation theory to find the corrections to the energies and energy eigenstates.

Student 2: How can we use equation (A.3) when the unperturbed energies are

degenerate with E0
2 = E0

3 = 2V0? In equation (A.3), the first order corrections to the

energy eigenstates |ψ0
2〉 and |ψ0

3〉 is undefined as the denominator is zero!

Student 3: Since Ĥ ′ is diagonal in the degenerate subspace of Ĥ0 in equation (A.4),

we can use equations (A.2) and (A.3). Since 〈ψ0
2|Ĥ ′|ψ0

3〉 = 0 and 〈ψ0
3|Ĥ ′|ψ0

2〉 = 0, the

undefined terms that “blow up” do not appear in equation (A.3).1

Explain why you agree or disagree with each student.

5. The first order corrections to the energies are

(A) E1
1 = εV0, E

1
2 = εV0, and E1

3 = 3εV0.

(B) E1
1 = εV0, E

1
2 = 2εV0, and E1

3 = 0.

(C) E1
1 = 2εV0, E

1
2 = εV0, and E1

3 = 3ε.

(D) E1
1 = 0, E1

2 = 0, and E1
3 = 0.

(E) None of the above

6. The first order corrections to the energy eigenstates are

(A) |ψ1
1〉 = 2εV0|ψ0

2〉+ 0|ψ0
3〉, |ψ1

2〉 = 2εV0|ψ0
1〉+ εV0|ψ0

3〉, and |ψ1
3〉 = 0|ψ0

1〉+ εV0|ψ0
2〉.

(B) |ψ1
1〉 = −2ε|ψ0

2〉+ 0|ψ0
3〉, |ψ1

2〉 = 2ε|ψ0
1〉+ 0|ψ0

3〉 and |ψ1
3〉 = 0.

(C) |ψ1
1〉 = 0, |ψ1

2〉 = 0, and |ψ1
3〉 = εV0|ψ0

1〉.

(D) None of the above.

1Please note that once we have a good basis, we do not have 0/0 terms present in Eq. A.3.
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* Check your answers to questions 1-6 in EXAMPLE 1. *

1. A (|ψ0
3〉 is an eigenstate of both Ĥ0 and Ĥ ′, however |ψ0

1〉 and |ψ0
2〉 are only eigenstates

of Ĥ0.)

2. Yes. Ĥ0|ψ0
2〉 = 2V0|ψ0

2〉 and Ĥ0|ψ0
3〉 = 2V0|ψ0

3〉.

3. B

4. Yes.

5. A

6. B

If your answers to questions 1-6 do not match with the checkpoint for EXAMPLE 1, go back

and reconcile any differences.

A.7.2 Checkpoint

◦ In order to find the first order corrections to the energies and energy eigenstates using

equations (A.2) and (A.3), the basis set |{ψ0
n〉} in equations (A.2) and (A.3) must

be “good” states (Ĥ0 is diagonal everywhere since the basis states are eigenstaes of

Ĥ0 and Ĥ ′ must be diagonal in the degenerate subspace of Ĥ0 in that basis).

◦ If Ĥ ′ is already diagonal in the degenerate subspace of Ĥ0:

• The initially chosen basis states make up a “good” basis.

• The expression E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 CAN be used to find corrections to the energies

since {|ψ0
n〉} are “good” states.

• The expression |ψ1
n〉 =

∑
m 6=n

〈ψ0
m|Ĥ′|ψ0

n〉
E0

n−E0
m
|ψ0
m〉 CAN be used to find the first order

corrections |ψ1
n〉 to the energy eigenstates |ψ0

n〉 since {|ψ0
n〉} are “good” states and

the divergent terms (that “blow up”) do not appear in equation (A.3).
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A.7.2.1 CASE 2: Corrections to the Energies and Energy Eigenstates when

Ĥ ′ is not Diagonal in the Degenerate Subspace of Ĥ0 EXAMPLE 2: Consider a

second example, in which ε is a small parameter (ε� 1), and answer questions 7-10:

Ĥ0 = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′ = V0


0 ε −4ε

ε 2ε 0

−4ε 0 2ε

 (A.6)

The normalized basis states are |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉, respectively, in which

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 . (A.7)

7. The basis states |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉 are eigenstates of

(A) Ĥ0 only

(B) Ĥ ′ only

(C) Both Ĥ0 and Ĥ ′

(C) Neither Ĥ0 nor Ĥ ′

Explain your reasoning.

8. Does Ĥ0 have degeneracy? Why or why not?
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9. Choose one of the following options to fill in the blank. In the degenerate subspace of

Ĥ0, the matrix representation of Ĥ0 is and the matrix representation of Ĥ ′

is , respectively.

(A)

V0

 1 0

0 2

 . V0

 2ε 0

0 2ε


(B)

V0

 1 0

0 1

 , V0

 0 ε

ε 2ε


(C)

V0

 0 ε

ε 2ε

 , V0

 1 0

0 1


(D)

V0

 2ε 0

0 2ε

 , V0

 1 0

0 2


10. Do the basis states |ψ0

1〉, |ψ0
2〉, and |ψ0

3〉 form a “good’ basis? Explain.
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Consider the following conversation regarding whether the initially chosen basis is or is not

a “good” basis in EXAMPLE 2.

Student 1: In EXAMPLE 2, we can use equations (A.2) and (A.3) obtained from

non-degenerate perturbation theory.

Student 2: We cannot use equation (A.3) when the unperturbed states are degenerate

with E0
1 = E0

2 = V0. In the degenerate subspace of Ĥ0, the perturbing Hamiltonian Ĥ ′ is

V0

 0 ε

ε 2ε

. The first order corrections to the energy eigenstates |ψ0
1〉 and |ψ0

2〉 “blow

up” because the denominators are zero! However, we can use equation (A.2) to calculate

the corrections to the energies since nothing in that equations “blows up.”

Student 3: If Ĥ ′ is not diagonal in the degenerate subspace of Ĥ0, we can neither use

equation (A.2) nor (A.3) in the chosen basis {|ψ0
1〉, |ψ0

2〉, |ψ0
3〉}. The initially chosen basis is

not a “good” basis. We need to find a “good” basis in order to use equations (A.2) and

(A.3).

Student 4: Student 3 is right. The first order corrections to the energy eigenstates |ψ0
1〉

and |ψ0
2〉 “blow up”, we cannot use these basis states to find even the first order corrections

to the energies using equation (A.2).

Explain why you agree or disagree with each student.
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* Check your answers to questions 7-10 in EXAMPLE 2. *

7. A

8. Yes. Ĥ0|ψ0
1〉 = V0|ψ0

1〉 and Ĥ0|ψ0
2〉 = V0|ψ0

2〉.

9. B

10. No.

If your answers to questions 7-10 do not match with the checkpoint for EXAMPLE 2, go

back and reconcile any differences.

EXAMPLE 2 Revisited

For the following four conversations, consider Example 2 again in which equations (A.2)

and (A.3) could not be used with the initial basis states |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉. Recall that in

EXAMPLE 2, the Hamiltonian Ĥ = Ĥ0 + Ĥ ′ was given by:

Ĥ0 = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′ = V0


0 ε −4ε

ε 2ε 0

−4ε 0 2ε

 (A.8)

and the basis states are |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉, respectively, for which

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 . (A.9)
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Consider the following conversation regarding whether the basis states are “good” in

EXAMPLE 2.

Student 1: In this case, we can calculate the first order corrections to the energies as

E1
1 = 〈ψ0

1|Ĥ ′|ψ0
1〉 = 0 and E1

2 = 〈ψ0
2|Ĥ ′|ψ0

2〉 = 2εV0.

Student 2: I disagree. Ĥ0 has a two-fold degeneracy, since Ĥ0|ψ0
1〉 = V0|ψ0

1〉 and

Ĥ0|ψ0
2〉 = V0|ψ0

2〉. We cannot use the basis states |ψ0
1〉 and |ψ0

2〉 to calculate even the first

order corrections to the energies because Ĥ ′ is not diagonal in the degenerate subspace of

Ĥ0. |ψ0
1〉 and |ψ0

2〉 are not “good” basis states.

Student 1: I see. If Ĥ0 has a degenerate eigenvalue spectrum, the expression

E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 requires that the chosen basis states are “good” basis states, which

is not the case for the initially chosen eigenstates {|ψ0
1〉, |ψ0

2〉, and |ψ0
3〉} of Ĥ0.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding finding the corrections to energy eigenstates

using “good” basis states in EXAMPLE 2.

Student 1: In EXAMPLE 2, Ĥ0 has a two-fold degeneracy since Ĥ0|ψ0
1〉 = V0|ψ0

1〉 and

Ĥ0|ψ0
2〉 = V0|ψ0

2〉. We cannot calculate the first order corrections to the energy eigenstates

using |ψ0
1〉, |ψ0

2〉 or |ψ0
3〉 in equation (A.3).

Student 2: I agree that we cannot calculate first order corrections to the energy eigenstates

|ψ0
1〉 and |ψ0

2〉. The first order corrections to the energy eigenstates in equation (A.3) “blow

up”, i.e.,

|ψ1
1〉 =

〈ψ0
2|Ĥ ′|ψ0

1〉
(E0

1 − E0
2)
|ψ0

2〉+
〈ψ0

3|Ĥ ′|ψ0
1〉

(E0
1 − E0

3)
|ψ0

3〉 =
εV0
0
|ψ0

2〉+
−4εV0
−V0

|ψ0
3〉

and

|ψ1
2〉 =

〈ψ0
1|Ĥ ′|ψ0

2〉
(E0

2 − E0
1)
|ψ0

1〉+
〈ψ0

3|Ĥ ′|ψ0
2〉

(E0
2 − E0

3)
|ψ0

3〉 =
εV0
0
|ψ0

1〉+
0

−V0
|ψ0

3〉.

Student 3: I agree with both Student 1 and Student 2. But we can calculate the first order

corrections to the energy eigenstates if we first select “good” basis states. |ψ0
1〉 and |ψ0

2〉 are

not “good” states since the Ĥ ′ matrix is not diagonal in the degenerate subspace of Ĥ0. So

|ψ0
1〉 and |ψ0

2〉 cannot be used to find the first order corrections to the energy eigenstates

using equation (A.3). We need to first choose a different basis that is “good” so terms that

“blow up” in the corrections |ψ1
1〉 and |ψ1

2〉 are not present.

Explain why you agree or disagree with each student.

Summarize in one to three sentences what you learned from the previous two conversations.
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Consider the following conversation regarding whether one can trust the corrections to the

non-degenerate eigenvalues of Ĥ0 if some of the basis states are not “good” basis states in

EXAMPLE 2.

Student 1: What about the first order correction to E3 in EXAMPLE 2? Can we trust

E1
3 = 〈ψ0

3|Ĥ ′|ψ0
3〉 even if Ĥ ′ is not diagonal in the degenerate subspace of Ĥ0?

Student 2: No, we cannot trust it because Ĥ0 has degeneracy in EXAMPLE 2. We must

find a “good” basis first before finding any corrections to any of the energies.

Student 3: Actually, in EXAMPLE 2 we can trust E1
3 = 〈ψ0

3|Ĥ ′|ψ0
3〉 = 2εV0 to yield the

first order correction to energy E3 = 2V0. Since |ψ0
3〉 corresponds to the non-degenerate

subspace of Ĥ0, it is unique. |ψ0
3〉 must already be a “good” state.

Do you agree with Student 2 or Student 3? Explain.
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Consider the following conversation regarding first order corrections to the energy eigenstates

in the non-degenerate subspace.

Student 1: For EXAMPLE 2, can we use the expression |ψ1
3〉 =

〈ψ0
1|Ĥ ′|ψ0

3〉
(E0

3 − E0
1)
|ψ0

1〉

+
〈ψ0

2 |Ĥ′|ψ0
3〉

(E0
3−E0

2)
|ψ0

2〉 = −4εV0
V0
|ψ0

1〉 + 0
V0
|ψ0

2〉 from non-degenerate perturbation theory to find the

correction |ψ1
3〉?

Student 2: Yes, that is correct. However, we can also determine the first order correction

|ψ1
3〉 by determining a “good” basis and using the “good” basis states in Eq. A.3 to find the

first order correction to the energy eigenstate.Student 3: I agree with Student 2. In EX-

AMPLE 2, “good” basis states in the degenerate subspace of Ĥ0 will be the non-degenerate

state |ψ0
3〉 and two linear combinations of |ψ0

1〉 and |ψ0
2〉. So a “good” basis will be

|φ0
1〉 = α1|ψ0

1〉+ α2|ψ0
2〉, |φ0

2〉 = β1|ψ0
1〉+ β2|ψ0

2〉, and |φ0
3〉 = |ψ0

3〉

in which α1, α2, β1, and β2 are the coefficients for obtaining a “good” orthonormal basis

states which diagonalize Ĥ ′ in the degenerate subspace of Ĥ0. {|φ0
n〉} are still eigenstates of

Ĥ0.

Student 4: I agree with Student 2 and Student 3. To find first order corrections to |φ0
3〉 =

|ψ0
3〉, we must use a “good” basis. |ψ0

3〉 is a “good” basis state. However, |ψ0
1〉 and |ψ0

2〉 are

not “good” basis states. We must find “good” basis states |φ0
1〉 and |φ0

2〉 by diagonalizing the

Ĥ ′ matrix in the degenerate subspace of Ĥ0 to calculate the first order correction to |ψ0
3〉.

Once we have the “good” basis, we use equation (A.3) to find the first order correction to

|ψ0
3〉:

|ψ1
3〉 =

〈φ0
1|Ĥ ′|φ0

3〉
(E0

3 − E0
2)
|φ0

1〉+
〈φ0

2|Ĥ ′|φ0
3〉

(E0
3 − E0

1)
|φ0

2〉.

Explain why you agree or disagree with Student 2, Student 3, and Student 4.
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Summarize in one to three sentences what you learned from the previous two conversations.

Summarize why care should be exercised in using perturbation theory if the unperturbed

Hamiltonian Ĥ0 possesses degeneracy in the eigenvalue spectrum.

Describe the procedure to deal with the difficulty that arises when we can’t use the initially

chosen basis states to find perturbative corrections. What must we ensure about Ĥ0 and

Ĥ ′ to find the corrections to the energies (including first order corrections to the energies

for the cases in which the given basis is not good even though the first order correction to

the energies do not “blow up”)?
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A.7.3 Checkpoint

◦ If the first-order corrections to the energy eigenstates “blow up,” we cannot even trust

the first order corrections to the energies because the basis states are not “good.”

◦ If Ĥ ′ is NOT diagonal in a degenerate subspace of Ĥ0:

• The initially chosen basis states do not make up a “good” basis (even though they

are eigenstates of Ĥ0).

• The expression E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 CANNOT be used to find the corrections to

energies if |ψ0
n〉 is NOT a “good” basis state.

• The expression |ψ1
n〉 =

∑
m6=n

〈ψ0
m|Ĥ′|ψ0

n〉
E0

n−E0
m
|ψ0
m〉 CANNOT be used in the degenerate

subspace to find corrections to energy eigenstates if {|ψ0
n〉} are NOT “good” basis

states.
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A.7.3.1 A “good” basis depends on both Ĥ0 and Ĥ ′. Consider the following

conversation regarding whether choosing a “good” basis requires consideration of both Ĥ0

and Ĥ ′.

Student 1: In degenerate perturbation theory, for a given Ĥ ′, “good” basis states must be

the eigenstates of the unperturbed Hamiltonian, Ĥ0.

Student 2: I disagree. A “good” basis should diagonalize the Ĥ ′ matrix but Ĥ0 need not

be diagonal in that basis. The diagonal elements of the Ĥ ′ matrix in a “good” basis give us

the first order corrections to the energies.

Student 3: Actually, we need to consider both Ĥ0 and Ĥ ′ when determining a “good” basis.

A “good” basis will diagonalize Ĥ ′ in the degenerate subspace of Ĥ0 while simultaneously

keeping Ĥ0 diagonal. The entire Ĥ0 matrix must be diagonal in a “good” basis since the

basis states must be eigenstates of Ĥ0.

Explain why you agree or disagree with each student.

In the following example, note that the unperturbed Hamiltonian Ĥ0 is the same as the Ĥ0

given in EXAMPLE 2. However, the perturbing Hamiltonian Ĥ ′ is not the same as the Ĥ ′

given in EXAMPLE 2.
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EXAMPLE 3: Consider the following example in a three dimensional Hilbert space,

in which ε is a small parameter (ε� 1):

Ĥ0 = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′ = V0


ε 0 2ε

0 −3ε ε

2ε ε −3ε

 (A.10)

The normalized basis states are |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉, respectively, in which

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 . (A.11)

Now consider the following conversation about EXAMPLE 3 focusing on the Degenerate

Subspace of Ĥ0.

Student 1: In EXAMPLE 3, the Ĥ0 matrix is the same as in EXAMPLE 2, so we will not

be able to use equation (A.2) with the initial basis states {|ψ0
n〉} that are given to find the

first order corrections to the energies. We also cannot use equation (A.3) to find the first

order corrections to the energy eigenstates.

Student 2: I disagree. Actually, you must consider both Ĥ0 and Ĥ ′ before deciding whether

the basis is good and whether we can use equations (A.2) and (A.3) with that basis. Since

Ĥ ′ is diagonal in the degenerate subspace of Ĥ0 in EXAMPLE 3, equations (A.2) and (A.3)

can be used with the given basis to find the first order corrections to the energies and energy

eigenstates, respectively. This is just like EXAMPLE 1!

Do you agree with Student 1 or Student 2? Why?
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11. What are the first order corrections to the unperturbed energies in EXAMPLE 3?

(HINT: Refer to EXAMPLE 1.)
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* Check your results to question 11 in EXAMPLE 3: *

11. E1
1 = εV0, E

1
2 = −3εV0, and E1

3 = −3εV0

If your first order corrections to the energies do not match the checkpoint for EXAMPLE

3, go back and reconcile any differences you may have.

A.7.4 Checkpoint

◦ When determining a “good” basis, we need information about both Ĥ0 and Ĥ ′.

• A “good” basis is one that diagonalizes Ĥ ′ in the degenerate subspace of Ĥ0 while

keeping Ĥ0 diagonal.
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SUMMARY: To Find Corrections to the Energies and Energy Eigenstates You Must

Choose a “Good” Basis

◦ If the first-order corrections to the eigenstates “blow up,” we cannot even trust the first

order corrections to the energies because the basis states may not be “good.”

◦ Choosing a “good” basis requires information about both Ĥ0 and Ĥ ′.

◦ In order to find the first order corrections to the energies and energy eigenstates using

equations (A.2) and (A.3), the basis set |{ψ0
n〉} used in equations (A.2) and (A.3)

must be “good” states (in such a basis, Ĥ ′ must be diagonal in a degenerate subspace

of Ĥ0 and Ĥ0 must be entirely diagonal).

CASE 1: Ĥ ′ IS DIAGONAL IN THE DEGENERATE SUBSPACE OF Ĥ0 IN THE

INITIAL BASIS.

◦ If Ĥ ′ is already diagonal in the degenerate subspace of Ĥ0:

• The initial basis states make up a “good” basis (note that since we choose basis

states to be eigenstates of Ĥ0, Ĥ0 is diagonal in the basis everywhere).

• The expression E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 CAN be used to find corrections to energies since

all {|ψ0
n〉} are “good” states.

• The expression |ψ1
n〉 =

∑
m 6=n

〈ψ0
m|Ĥ′|ψ0

n〉
E0

n−E0
m
|ψ0
m〉 CAN be used to find the first order

corrections to the energy eigenstates |ψ0
n〉 as all {|ψ0

n〉} are “good” states.
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CASE 2: Ĥ ′ IS NOT DIAGONAL IN THE DEGENERATE SUBSPACE OF Ĥ0 IN THE

INITIAL BASIS.

◦ If Ĥ ′ is NOT diagonal in the degenerate subspace of Ĥ0:

• The initially chosen basis states do not make up a “good” basis (even though they

are eigenstates of Ĥ0).

• The expression E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 CANNOT be used to find corrections to energies

associated with the degenerate states since {|ψ0
n〉} does NOT form a complete set

of “good” basis states.

• The expression |ψ1
n〉 =

∑
m 6=n

〈ψ0
m|Ĥ′|ψ0

n〉
E0

n−E0
m
|ψ0
m〉 CANNOT be used to find corrections

to energy eigenstates associated with the degenerate states since {|ψ0
n〉} is NOT a

“good” set of basis states.

• We must first choose a “good” basis!

◦ As you will demonstrate shortly, in the degenerate subspace of Ĥ0, “good” basis states

will be made up of linear combinations of the initially chosen eigenstates of Ĥ0 that

diagonalize Ĥ ′ in the degenerate subspace of Ĥ0.
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A.7.5 Ensuring a “good” basis and determining corrections to the energies

and energy eigenstates.

A.7.5.1 CASE 1: First Order Corrections to the Energies when Ĥ ′ IS DIAG-

ONAL IN THE DEGENERATE SUBSPACE of Ĥ0 EXAMPLE 4: Answer the

following questions for this example:

Ĥ0 = V0


4 0 0

0 4 0

0 0 1

 and Ĥ ′ = V0


−ε 0 2ε

0 −ε 3ε

2ε 3ε 0

 (ε� 1) (A.12)

and the basis states are |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉, respectively, in which

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 . (A.13)

12. Does Ĥ0 have degeneracy? If so, circle the part of Ĥ0 and Ĥ ′ in the degenerate subspace

of Ĥ0.

13. Use your answer to the previous part to explain whether the basis states chosen in

equation (A.13), which are used to write Ĥ0 and Ĥ ′ in equation (A.12), are “good”

basis states or not.

14. If the given basis is not a “good” basis, find a “good” basis.
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15. Determine the first order corrections to the unperturbed energies.

16. Find the first order corrections to the unperturbed energy eigenstates.

449



Consider the following conversation regarding Ĥ ′ already being diagonal in the degenerate

subspace of Ĥ0 in EXAMPLE 4.

Student 1: If we are given an Ĥ ′ matrix that is already diagonal in the degenerate subspace

of Ĥ0 as in equation (A.12), the basis is already “good.” We can simply read off the matrix

elements of Ĥ ′ along the diagonal in the degenerate subspace of Ĥ0 to obtain the first order

corrections to the degenerate energies.

Student 2: I disagree. You must still diagonalize Ĥ ′ in equation (A.12) in the degenerate

subspace of Ĥ0 to find the first order corrections to the energies.

Student 3: It does not make sense to diagonalize Ĥ ′ in the degenerate subspace of Ĥ0 if

Ĥ ′ is already diagonal in that subspace. You would be doing unnecessary work. Since Ĥ ′ is

already diagonal in that subspace, if you choose to diagonalize Ĥ ′, you would simply obtain

the same matrix back with the same eigenvalues as long as you didn’t make any mistakes

along the way.

Student 1: I agree with Student 3. And when Ĥ ′ is also diagonal in the degenerate

subspace of Ĥ0 as in equation (A.12), “good” basis states are the initially chosen energy

eigenstates of Ĥ0, i.e., the basis states used to write Ĥ0 and Ĥ ′ in equation (A.12)).

Explain why you agree or disagree with each student.
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* Check your answers to questions 12-16 pertaining to EX-

AMPLE 4.*

12. Ĥ0 has a two-fold degeneracy. In the degenerate subspace of Ĥ0, Ĥ0 is V0

 4 0

0 4


and the perturbation Ĥ ′ is V0

 −ε 0

0 −ε


13. Since Ĥ ′ is already diagonal in the degenerate subspace of Ĥ0, the set of initially

chosen energy eigenstates of Ĥ0 in equation (A.12) form a “good” basis.

14 “Good” basis states are the initially chosen eigenstates of Ĥ0,


1

0

0

 ,


0

1

0

 ,


0

0

1


 .

15. The first order corrections to the energies are E1
1 = −εV0, E1

2 = −εV0, and E1
3 = 0.

16 The first order corrections to the energy eigenstates are |ψ1
1〉 = 2

3
ε|ψ0

3〉, |ψ1
2〉 = ε|ψ0

3〉,

and |ψ1
3〉 = −2

3
ε|ψ0

1〉 − ε|ψ0
2〉.

If your “good” basis states and first order corrections to the energies and energy

eigenstates for EXAMPLE 4 do not match with the checkpoint answers, go back and

reconcile any difference you may have.
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For the case in which Ĥ ′ is diagonal in the degenerate subspace of Ĥ0 and basis states

are eigenstates of Ĥ0, summarize in one to two sentences why we can simply use equa-

tions (A.2) and (A.3) to find the first order corrections to the energies and energy eigenstates.

Consider the following conversation regarding whether the first order corrections to the en-

ergies will remove all the degeneracy in the eigenvalue spectrum of Ĥ0.

Student 1: If Ĥ0 has a degenerate energy spectrum, the perturbation Ĥ ′ will always remove

the degeneracy when we find the first order corrections to the energies. The energy levels

will split into distinct energy levels.

Student 2: This may be true for some Ĥ0 and Ĥ ′ but not necessarily true for all cases.

The symmetry of the unperturbed Hamiltonian Ĥ0 and the perturbing Hamiltonian Ĥ ′ will

dictate whether all the degeneracies will be removed in first order.

Student 3: I agree with Student 2. Consider EXAMPLE 4 in which the perturbing Hamilto-

nian was already diagonal in the degenerate subspace of Ĥ0. We found the energies including

the first order corrections to be E1 = 4V0 − εV0 and E2 = 4V0 − εV0. Sometimes, even a

higher order correction to the energy may not lift a degeneracy.

Explain why you agree or disagree with each student.
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A.7.6 Checkpoint - Finding a “good” basis for Case 1

◦ If Ĥ ′ is already diagonal in a degenerate subspace of Ĥ0 (and basis states are

eigenstates of Ĥ0):

• The initially chosen basis states make up a “good” basis.

• The expression E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 CAN be used to find corrections to the energies

since {|ψ0
n〉} are “good” basis states.

� These first order corrections to the energies correspond to the diagonal matrix

elements of Ĥ ′ in a “good” basis.

• The expression |ψ1
n〉 =

∑
m 6=n

〈ψ0
m|Ĥ′|ψ0

n〉
E0

n−E0
m
|ψ0
m〉 CAN be used to find the first order

corrections to the energy eigenstates {|ψ0
n〉} as {|ψ0

n〉} are “good” basis states.

� For a given Ĥ0 and Ĥ ′, these first order corrections to the energy eigenstates

can be determined making use of equation (A.3) using the off-diagonal matrix

elements of Ĥ ′ in a “good” basis.

◦ Calculating the first order corrections to the energies may not be enough to lift all the

degeneracy in many cases.
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Review the flowchart for the steps to determine the corrections to the energies and energy

eigenstates ˘when Ĥ ′ is diagonal in the degenerate subspace of Ĥ0.

Finding First Order Corrections to the Energies and

Energy Eigenstates
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A.7.6.1 CASE 2: Corrections to the Energies and Energy

Eigenstates when Ĥ ′ is not Diagonal in the Degenerate

Subspace of Ĥ0

◦ If Ĥ ′ is not diagonal in the degenerate subspace of Ĥ0 then the initially chosen set of

eigenstates of Ĥ0 does NOT form a complete set of “good” basis states.

◦ In this case, we must find a “good” basis first. To find “good” basis states, we must

choose a basis that diagonalizes Ĥ ′ in the degenerate subspace of Ĥ0 and simultaneously

keeps Ĥ0 diagonal everywhere.

◦ Since the “good” basis states are still eigenstates of Ĥ0, Ĥ0 will remain diagonal in a

“good” basis.

Consider the following conversation regarding diagonalizing Ĥ ′ in the degenerate subspace

of Ĥ0 when Ĥ0 and Ĥ ′ don’t commute.

Student 1: I thought we cannot simultaneously diagonalize Ĥ0 and Ĥ ′ unless they

commute.

Student 2: Yes that’s true! The entire Ĥ0 and Ĥ ′ matrices cannot be diagonalized

simultaneously unless they commute. But in the degenerate subspace of Ĥ0, we can always

diagonalize both Ĥ0 and Ĥ ′ simultaneously.

Do you agree with Student 2? Explain your reasoning.

17. Can we find a linear combination of the eigenstates of Ĥ0 in the degenerate subspace of

Ĥ0 that diagonalizes Ĥ ′ in that subspace? If so, will a linear combination of eigenstates

of Ĥ0 in the degenerate subspace remain an eigenstate of Ĥ0? Explain your reasoning.

Use the following example to help check your answers to question 17.
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EXAMPLE 5: Consider the Hamiltonian Ĥ = Ĥ0 + Ĥ ′ in which

Ĥ0 = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′ = V0


0 ε ε

ε 0 ε

ε ε 0

 (ε� 1) (A.14)

and the normalized eigenstates of Ĥ0 given by |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉, respectively, are

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 . (A.15)

18. Fill in the blanks using equations (A.14) and (A.15).

Ĥ0|ψ0
1〉 =

Ĥ0|ψ0
2〉 =

Ĥ0|ψ0
3〉 =

Ĥ0(a |ψ0
1〉+ b |ψ0

2〉) =

Ĥ0(e |ψ0
1〉+ f |ψ0

3〉) =

19. Is a |ψ0
1〉 + b |ψ0

2〉 a normalized eigenstate of Ĥ0, where a and b are arbitrary complex

numbers that satisfy |a|2 + |b|2 = 1? Explain.

20. Can Ĥ0 still be diagonal if a |ψ0
1〉+ b |ψ0

2〉 and c |ψ0
1〉+d |ψ0

2〉 are used as new basis states

instead of |ψ0
1〉 and |ψ0

2〉? Suppose that a, b, c and d are chosen such that a |ψ0
1〉+ b |ψ0

2〉

and c |ψ0
1〉 + d |ψ0

2〉 are orthonormal and Ĥ ′ is diagonal in the degenerate subspace of

Ĥ0, is Ĥ0 diagonal if these new basis states are chosen? Explain.

456



21. Is e |ψ0
1〉+ f |ψ0

3〉 a normalized eigenstate of Ĥ0, where e and f are arbitrary complex

numbers that satisfy |e|2 + |f |2 = 1?

a. Will the Ĥ0 matrix remain diagonal if e |ψ0
1〉+ f |ψ0

3〉 is chosen as one of the basis

states to write the Ĥ0 matrix? Explain your answer.

b. Based upon whether your answer to the preceding question is yes or no, can e |ψ0
1〉+

f |ψ0
3〉 be used as a basis state to calculate corrections to the energies and energy

eigenstates in perturbation theory? Explain.
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Consider the following conversation regarding whether a linear combination of energy eigen-

states of Ĥ0 that includes non-degenerate eigenstates of Ĥ0 (in EXAMPLE 5 in equation

(A.14) is an energy eigenstate of Ĥ0.

Student 1: I don’t see why we cannot have e |ψ0
1〉 + f |ψ0

3〉 as a basis state for using

perturbation theory.

Student 2: I disagree. Ĥ0 is not diagonal if e |ψ0
1〉 + f |ψ0

3〉 is one of the basis states

because the Ĥ0 matrix can only be diagonal if all basis states are eigenstates of Ĥ0. As we

showed in questions 18 and 21, since Ĥ0 acting on e |ψ0
1〉+ f |ψ0

3〉 does not return a number

times the same state e |ψ0
1〉+ f |ψ0

3〉, this state is not an eigenstate of Ĥ0.

Explain why you agree with Student 1 or Student 2.

Consider the following conversation regarding choosing orthonormal linear combinations of

eigenstates of Ĥ0 that diagonalize the Ĥ ′ matrix in the degenerate subspace of Ĥ0 as basis

states for EXAMPLE 5.

Student 1: We showed in question e that any linear combination of eigenstates of Ĥ0 in the

degenerate subspace of Ĥ0, such as a |ψ0
1〉+ b |ψ0

2〉 and c |ψ0
1〉+d |ψ0

2〉, remains an eigenstate

of Ĥ0. Can we choose any two linear combinations of the eigenstates of Ĥ0, |ψ0
1〉 and |ψ0

2〉,

to form two of the “good” basis states?

Student 2: As long as the basis states are orthonormal, they form a “good” basis. Any

two linear combinations of |ψ0
1〉 and |ψ0

2〉 whose inner product is zero forms a pair of “good”

orthogonal basis states.

Student 3: I disagree with Student 2. There are many possible linear combinations of |ψ0
1〉

and |ψ0
2〉 that are orthogonal that will not form “good” basis states. The linear combination

of the initial eigenstates must diagonalize Ĥ ′ in the degenerate subspace of Ĥ0. Diagonalizing

Ĥ ′ in the degenerate subspace of Ĥ0 provides the only pair, neglecting overall phase factors,

of orthonormal linear combinations that form a “good” basis set.

Explain why you agree with Student 2 or Student 3.
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* Check your answers to questions 18-21 in EXAMPLE 5. *

18.

Ĥ0|ψ0
1〉 = V0|ψ0

1〉

Ĥ0|ψ0
2〉 = V0|ψ0

2〉

Ĥ0|ψ0
3〉 = 2V0|ψ0

3〉

Ĥ0(a|ψ0
1〉+ b|ψ0

2〉) = V0(a|ψ0
1〉+ b|ψ0

2〉)

Ĥ0(e|ψ0
1〉+ f |ψ0

3〉) = V0(e|ψ0
1〉+ 2f |ψ0

3〉)

19. Yes. a|ψ0
1〉+ b|ψ0

2〉 is an eigenstate of Ĥ0.

e. Yes. Ĥ0 will still be diagonal if a|ψ0
1〉+ b|ψ0

2〉 and c|ψ0
1〉+ d|ψ0

2〉 are used as new basis

states instead of |ψ0
1〉 and |ψ0

2〉.

21. No. e|ψ0
1〉+ f |ψ0

3〉 is not an eigenstate of Ĥ0.

a. No. Ĥ0 will no longer be diagonal if e|ψ0
1〉+ f |ψ0

3〉 is chosen as one of the basis states.

b. No. e|ψ0
1〉 + f |ψ0

3〉 cannot be used as a basis state to calculate corrections to the

energies and energy eigenstates in perturbation theory.

If your answers do not match the checkpoint for questions 18 - 21 in EXAMPLE 5, go back

and reconcile any differences you may have.
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Now let us determine values of a, b, c, and d that correspond to a “good” basis for EXAMPLE

5, for which Ĥ0 and Ĥ ′ given below are represented in the initially chosen basis.

Ĥ0 = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′ = V0


0 ε ε

ε 0 ε

ε ε 0

 (ε� 1)

We will only focus on Ĥ ′ in the two-dimensional degenerate subspace of Ĥ0 for now.

22. Diagonalize Ĥ ′ in equation (A.14) in the degenerate subspace of Ĥ0 and find the eigen-

states and eigenvalues of Ĥ ′ in that two-dimensional subspace.

460



Consider the following conversation regarding extending the eigenstates of Ĥ ′ in the

degenerate subspace of Ĥ0 from a two-dimensional to the three-dimensional Hilbert space.

Student 1: When we diagonalize Ĥ ′ in the degenerate subspace of Ĥ0 in equation (A.14),

we find two eigenstates of both Ĥ ′ and Ĥ0 in the two-dimensional subspace. How can we

use these states to find “good” basis states in the three dimensional Hilbert space?

Student 2: In EXAMPLE 5, the eigenstates found by diagonalizing Ĥ ′ in the degen-

erate subspace of Ĥ0 are 1√
2

 1

1

 and 1√
2

 1

−1

. “Good” basis states must be

|φ0
1〉 = 1√

2


1

1

c1

 and |φ0
2〉 = 1√

2


1

−1

c2

 when we extend them to the three-dimensional

Hilbert space. To determine the values c1 and c2, we must satisfy the orthogonality

conditions 〈φ0
1|φ0

3〉 = 0 and 〈φ0
2|φ0

3〉 = 0.

Student 3: From equation (A.14), |φ0
3〉 = |ψ0

3〉 =


0

0

1

 is already a “good” basis state

and any vector orthogonal to |φ0
3〉 must have zero as its third component. Since 〈φ0

1|φ0
3〉 = c1

and 〈φ0
2|φ0

3〉 = c2, extending the states found from diagonalizing Ĥ ′ in the two-dimensional

degenerate subspace of Ĥ0 to find basis states in three dimensions requires adding a zero as

the third component to ensure 〈φ0
1|φ0

3〉 = 0 and 〈φ0
2|φ0

3〉 = 0. Also, the condition 〈φ0
1|φ0

2〉 = 0

is satisfied when we extend to three dimensions the states in two dimensions obtained by

diagonalizing Ĥ ′ in the degenerate subspace of Ĥ0.

Explain why you agree with Student 2, Student 3, or both.
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23. Extend the states you found in the preceding problem (question 22) to the three

dimensional space, making use of the preceding conversation, to obtain the two “good”

basis states |φ0
1〉 and |φ0

2〉.

24. Express the “good” basis states or eigenstates of Ĥ0 (obtained by diagonalizing Ĥ ′ in

the degenerate subspace of Ĥ0) as a linear combination of the initially chosen eigenstates

of Ĥ0, |ψ0
1〉 and |ψ0

2〉, used in equation (A.14).

25. In the preceding question (question 24), a|ψ0
1〉 + b|ψ0

2〉 and c|ψ0
1〉 + d|ψ0

2〉 are “good”

orthonormal basis states written in terms of the initially chosen basis states |ψ0
1〉 and

|ψ0
2〉. The constants that diagonalize Ĥ ′ in the degenerate subspace of Ĥ0 must be:

a =

b =

c =

d =
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26. Using your values of a, b, c, and d in the preceding question, find the matrix elements of

Ĥ0 in the “good” basis.

Ĥ0 =

a∗〈ψ0
1|+ b∗〈ψ0

2|

c∗〈ψ0
1|+ d∗〈ψ0

2|

〈ψ0
3|

a |ψ0
1〉+ b |ψ0

2〉 c|ψ0
1〉+ d |ψ0

2〉 |ψ0
3〉



Summarize your results in one to two sentences.
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* Check your answers to questions 22-26 in EXAMPLE 5. *

22. Diagonalizing Ĥ ′ in the degenerate subspace of Ĥ0, the eigenvalues of Ĥ ′ are

εV0 with corresponding eigenstate 1√
2

 1

1

 and −εV0 with corresponding eigenstate

1√
2

 1

−1

.

NOTE: The eigenstates are unique up to a constant multiple (e.g., the eigenstate

corresponding to the eigenvalue −εV0 can be equivalently expressed as 1√
2

 −1

1

).

23. Using orthogonality with |ψ0
3〉 =


0

0

1

, we can extend

 1√
2

 1

1

 , 1√
2

 1

−1


to the three dimensional space, so that the other “good” basis states are

1√
2


1

1

0

 , 1√
2


1

−1

0


.

24. Therefore, the “good” basis states (in terms of the initially cho-

sen basis states in equation (A.14)) for the entire three-dimensional

state space will be


1√
2


1

1

0

 , 1√
2


1

−1

0

 ,


0

0

1


, or equivalently

{
1√
2
|ψ0

1〉+ 1√
2
|ψ0

2〉, 1√
2
|ψ0

1〉 − 1√
2
|ψ0

2〉, |ψ0
3〉
}

. These basis states are eigenstates

of Ĥ0 (Ĥ0 is still diagonal in this basis) as it should be in perturbation theory, but Ĥ ′

is also diagonal in the degenerate subspace of Ĥ0.

25. For the given perturbing Hamiltonian Ĥ ′ in equation (A.14), a “good” orthonormal

basis that diagonalizes Ĥ ′ in the degenerate subspace of Ĥ0 is obtained with the

constants a = b = c = 1√
2

and d = − 1√
2
.

NOTE: The values of a, b, c, and d are unique up to overall phase factors.

26. The entire Ĥ0 matrix remains diagonal as it must be for an appropriately chosen
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“good” basis.

Ĥ0 = V0


1 0 0

0 1 0

0 0 2



If your answers do not match the checkpoint for questions 22-26 in EXAMPLE 5, go back

and reconcile any differences you may have.
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Consider the following conversation regarding whether in the degenerate subspace of Ĥ0,

linear combinations of eigenstates of Ĥ0 remain eigenstates of Ĥ0 due to degeneracy.

Student 1: Consider EXAMPLE 5. Since any linear combination of the basis states |ψ0
1〉

and |ψ0
2〉 in the degenerate subspace of Ĥ0 keeps Ĥ0 diagonal, any linear combination of

eigenstates of Ĥ0 in the degenerate subspace of Ĥ0 will be an eigenstate of Ĥ0.

Student 2: But how can that be? In the context of a one-dimensional infinite square well,

a linear combination of the ground state and the first excited state is no longer an energy

eigenstate.

Student 1: You are correct, a linear combination of the ground state and the first excited

state is not an energy eigenstate of the one-dimensional infinite square well. There is no

degeneracy in the energy eigenvalue spectrum for the one-dimensional infinite square well.

It is the degeneracy that guarantees that any linear combination of eigenstates of Ĥ0 in the

degenerate subspace of Ĥ0 will be an eigenstate of Ĥ0.

Explain why you agree or disagree with each student.

466



EXAMPLE 6: Interpreting the Matrix Elements of the Ĥ ′ Matrix in a Given

Representation

Answer the following questions for this example:

Ĥ0 = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′ = V0


−3ε 2ε 0

2ε 0 ε

0 ε 0

 (ε� 1) (A.16)

and the normalized basis states are |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉, respectively, in which

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 .

If we express Ĥ0 and Ĥ ′ in a “good” basis, we have

Ĥ0
G = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′G = V0


ε 0

2ε√
5

0 −4ε
ε√
5

2ε√
5

ε√
5

0

 (ε� 1) (A.17)

and the “good” basis states, respectively, are

|φ0
1〉 =

1√
5


1

2

0

 , |φ0
2〉 =

1√
5


−2

1

0

 , and |φ0
3〉 = |ψ0

3〉 =


0

0

1

 (A.18)

in which Ĥ0
G is the matrix representation of Ĥ0 expressed in the “good” basis, Ĥ ′G is the

matrix representation of Ĥ ′ expressed in a “good” basis, and {|φ0
n〉} are the “good” basis

states.
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27. Using only the matrix elements in equation (A.17), find the first order corrections to the

energies. No matrix manipulation required!

28. Using only the matrix elements in equation (A.17), find the first order corrections to the

energy eigenstates. No matrix manipulation required!
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* Check your answers to questions 27-28 pertaining to EX-

AMPLE 6. *

27. E1
1 = εV0, E

1
2 = −4εV0, and E1

3 = 0

28. |ψ1
1〉 = − 2ε√

5
|φ0

3〉, |ψ1
2〉 = − ε√

5
|φ0

3〉, |ψ1
3〉 = 2ε√

5
|φ0

1〉 + ε√
5
|φ0

2〉 (Please note the values of

the first order corrections to the energy eigenstates are not unique.)

If your answers to the first order corrections to the energies or energy eigenstates do not

match EXAMPLE 6, go back and reconcile any differences.

Consider the following conversation regarding the matrix elements of Ĥ ′.

Student 1: For the corrections to the energies, we need the diagonal matrix elements of

Ĥ ′. The matrix elements of Ĥ ′ along the diagonal correspond to the first order corrections

to the energy.

Student 2: But the diagonal elements of Ĥ ′ correspond to the first order corrections to the

energies only if the Ĥ ′ matrix is written in a “good” basis.

Student 3: I agree with Student 2. The off-diagonal elements of Ĥ ′ must be zero in the

degenerate subspace of Ĥ0 for the basis states to be “good”.

Student 4: I agree with Student 2 and Student 3. Once we find a “good” basis, the diagonal

matrix elements of Ĥ ′ can be used to find the first order corrections to the energies. Also,

the off-diagonal matrix elements of Ĥ ′ are needed when calculating the second or higher

order corrections to the energies and any corrections to the energy eigenstates.

Explain why you agree or disagree with each student.
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EXAMPLE 7: Consider the Hamiltonian Ĥ = Ĥ0 + Ĥ ′, in which

Ĥ0 = V0


1 0 0

0 2 0

0 0 1

 and Ĥ ′ = V0


−ε 2ε 0

2ε −ε 3ε

0 3ε ε

 (ε� 1) (A.19)

and the normalized basis states are |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉, respectively, in which

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 .

29. Choose one of the following options to fill in the blank. In the degenerate subspace of

Ĥ0, the matrix representation of Ĥ0 is and the matrix representation of Ĥ ′

is , respectively.

(A)

V0

 −ε 2ε

2ε −ε

 , V0

 1 0

0 2


(B)

V0

 2 0

0 1

 , V0

 −ε 3ε

3ε ε


(C)

V0

 1 0

0 1

 , V0

 −ε 0

0 ε


(D)

V0

 1 0

0 2

 , V0

 −ε 2ε

2ε ε
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30. Do the basis states |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉 form a “good” basis? Explain.

31. The first order corrections to the energies are

(A) E1
1 = −εV0, E1

2 = −εV0, and E1
3 = εV0.

(B) E1
1 = εV0, E

1
2 = εV0, and E1

3 = εV0.

(C) E1
1 = −εV0, E1

2 = −εV0, and E1
3 = 0.

(D) E1
1 = −εV0, E1

2 = 2ε, and E1
3 = 3ε.

(E) None of the above
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*Check your answers to questions 27-28 pertaining to EX-

AMPLE 7. *

29. C

30. Yes.

31. A

If your answers to the first order corrections to the energies or energy eigenstates do not

match the checkpoint answers for EXAMPLE 7, go back and reconcile any differences.

Consider the following conversation regarding writing the basis states in a different order so

that the degenerate eigenvalues of Ĥ0 along the diagonal are adjacent. With that order, the

degenerate subpsace of Ĥ0 can be identified more easily.

Student 1: In equation (A.19), in the degenerate subspace of Ĥ0, I don’t see how the matrix

representation of Ĥ ′ is V0

 −ε 0

0 ε

.

Student 2: It is a little difficult to recognize the Ĥ ′ matrix in the degenerate subspace

of Ĥ0 because of the order in which the basis states are chosen. However, we are always

free to choose the basis states in any order. In this case it may be helpful if we choose

to express Ĥ0 and Ĥ ′ with the basis states chosen in a different order than in the order

|ψ0
1〉, |ψ0

2〉, and |ψ0
3〉 selected in equation (A.19). If we choose the basis states in the order

|ψ0
1〉 =


1

0

0

 , |ψ0
3〉 =


0

0

1

, and |ψ0
2〉 =


0

1

0

 then

Ĥ0 = V0


1 0 0

0 1 0

0 0 2

 and Ĥ ′ = V0


−ε 0 2ε

0 ε 3ε

2ε 3ε −ε

 (ε� 1) (A.20)
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Now we can easily identify the matrix representation of Ĥ0 and Ĥ ′ in the degenerate

subspace of Ĥ0.

Student 3: I disagree with Student 2. Since the first order corrections to the energies

depend on the matrix elements of Ĥ ′, we cannot choose the basis states in a different order

without affecting the first order corrections to each unperturbed energy.

Explain why you agree or disagree with each student.

Consider the following conversation regarding small corrections to the unperturbed energies

and eigenstates of the unperturbed Hamiltonian Ĥ0 due to the perturbation Ĥ ′.

Student 1: When we use perturbation theory, we are assuming that the perturbation Ĥ ′ is

small compared to Ĥ0. Therefore, we use the unperturbed eigenstates of Ĥ0 as basis states

for our calculations of the corrections to the energies and the energy eigenstates.

Student 2: Yes, but a “good” basis is still needed to find corrections to the energies and

energy eigenstates. We must choose as basis states a set of eigenstates of Ĥ0 that diagonalizes

Ĥ ′ in the degenerate subspace of Ĥ0.

Do you agree with Student 1, Student 2, or both? Explain.
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A.7.7 Checkpoint - Finding a “good” basis for Case 2

For the case in which the unperturbed Hamiltonian Ĥ0 has degeneracy, we must first en-

sure that we have a “good” basis before finding the corrections to the energies and energy

eigenstates.

◦ If Ĥ ′ is not diagonal in the degenerate subspace of Ĥ0:

• The initially chosen basis is not “good.”

• We must DIAGONALIZE Ĥ ′ in the degenerate subspace of Ĥ0 to find a

“good” basis.

� Diagonalizing Ĥ ′ in the degenerate subspace of Ĥ0 gives a linear combination

of eigenstates of Ĥ0 that form a “good” basis.

� Any linear combination of energy eigenstates in the degenerate subspace of Ĥ0

remains an eigenstate of Ĥ0.

� In a “good” basis, Ĥ0 remains diagonal (i.e., “good” basis states are still

eigenstates of Ĥ0).

• The diagonal elements of Ĥ ′ in a “good” basis are the first order corrections to the

energies.

• The off-diagonal matrix elements of Ĥ ′ in a “good” basis are used to determine the

first order corrections to the energy eigenstates.
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Review the flowchart for the steps in determining corrections to the energies and energy

eigenstates when Ĥ ′ is NOT diagonal in the degenerate subspace of Ĥ0.

Finding First Order Corrections to the Energies and

Energy Eigenstates
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A.7.7.1 If Ĥ0 and Ĥ ′ do not commute, diagonalizing the entire Ĥ ′ matrix

makes Ĥ0 non-diagonal Consider the following conversation regarding a “good” basis

and diagonalizing Ĥ ′ in the degenerate subspace of Ĥ0.

Student 1: In degenerate perturbation theory, to find a “good” basis for a given Ĥ0 and

Ĥ ′, we must diagonalize the Ĥ ′ matrix.

Student 2: We should not diagonalize the entire Ĥ ′ matrix, but rather only the part of Ĥ ′

that corresponds to the degenerate subspace of Ĥ0.

Student 3: I disagree. If we diagonlize part of the Ĥ ′ matrix then we cannot guarantee

that it will give us a “good” basis. We must diagonalize the entire Ĥ ′ matrix.

Student 4: Actually, it is equally valid to diagonalize either the entire Ĥ ′ matrix or only

the Ĥ ′ matrix in the degenerate subspace of Ĥ0. We usually choose to diagonalize Ĥ ′ in

the degenerate subspace of Ĥ0 simply because it requires less work to diagonalize a matrix

with a lower dimension.

Explain why you agree or disagree with each student.
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EXAMPLE 8: Let’s see what happens when we diagonalize the entire Ĥ ′ matrix.

Consider the example

Ĥ = Ĥ0 + Ĥ ′ = V0


5 ε ε

ε 1 ε

ε ε 1

 , (ε� 1). (A.21)

Due to the degeneracy in the energy spectrum of Ĥ ′, the eigenstates of Ĥ ′ are not unique.

One possible set of eigenstates of Ĥ ′ is

|φ0
1〉 =

1√
3


1

1

1

 , |φ0
2〉 =

1√
2


−1

1

0

 , and |φ0
3〉 =

1√
2


−1

0

1

 (A.22)

in terms of the initially chosen basis states used to write equation (A.21).

If we use the eigenstates of Ĥ ′ as the basis states, the Ĥ0 matrix becomes

Ĥ0 =



7

3
− 4√

6
− 4√

6

− 4√
6

3
5

2

− 4√
6

5

2
3


. (A.23)
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32. Is Ĥ0 in equation (A.23) diagonal in the basis consisting of the eigenstates of Ĥ ′?

33. Based upon your answer for whether Ĥ0 is diagonal in this basis or not, are these basis

states, which are eigenstates of Ĥ ′, eigenstates of Ĥ0? Explain.

34. Can this basis be used for finding the corrections to the energies and energy eigenstates

in perturbation theory for the Hamiltonian in equation (A.21)? Explain.

With this example in mind, summarize the student conversation on the previous page in one

to two sentences and how would you help these students with the issues they are discussing.
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* Check your answers to questions 32-34 in EXAMPLE 8. *

32. No. Ĥ0 is not diagonal in the basis consisting of the eigenstates of Ĥ ′.

33. No. Ĥ0 must be diagonal in a basis consisting of the eigenstates of Ĥ0.

34. No. This is not a “good” basis as Ĥ0 is not diagonal in a basis consisting of the

eigenstates of Ĥ ′.

If any of your answers do not match the checkpoint answers for EXAMPLE 8, go back and

reconcile any differences you may have with the answers provided.

A.7.8 Checkpoint

If Ĥ0 and Ĥ ′ do not commute:

◦ Ĥ ′ must be diagonalized only in the degenerate subspace of Ĥ0 in order to

ensure that basis states remain eigenstates of Ĥ0 (i.e., Ĥ0 is diagonal in that basis).

◦ Diagonalizing the entire Ĥ ′ matrix yields a basis that produces off-diagonal matrix

elements in Ĥ0 when Ĥ0 and Ĥ ′ do not commute, which is not valid for determining

the perturbative corrections using perturbation theory (basis states must always be

eigenstates of Ĥ0 since we are finding small corrections to the unperturbed energies).
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A.7.8.1 Ĥ0 and Ĥ ′ do commute In all the examples up to this point, we have

considered systems such that Ĥ0 and Ĥ ′ did not commute. Let’s consider whether the same

approach is valid for a system in which Ĥ0 and Ĥ ′ do commute.

Consider the following conversation regarding diagonalizing Ĥ ′ in each degenerate subspace

of Ĥ0 for a system for which Ĥ0 and Ĥ ′ commute.

Student 1: Even when Ĥ = Ĥ0+εĤ ′ (ε� 1) for a system is such that Ĥ0 and Ĥ ′ commute,

we can use the same approach to find a “good” basis as when Ĥ0 and Ĥ ′ do not commute. In

particular, we can find a “good” basis by only diagonalizing Ĥ ′ in each degenerate subspace

of Ĥ0.

Student 2: I disagree. Since Ĥ0 and Ĥ ′ commute, we must diagonalize the entire Ĥ ′ matrix.

The “good” basis must consist of a complete set of simultaneous eigenstates of Ĥ0 and Ĥ ′.

Student 3: Actually, if Ĥ0 and Ĥ ′ commute, then diagonalizing Ĥ ′ in each degenerate

subspace of Ĥ0 will diagonalize the entire Ĥ ′ matrix. The first order corrections give the

exact result.

Explain why you agree or disagree with each student.

A.7.9 Checkpoint

If Ĥ0 and Ĥ ′ commute, i.e., [Ĥ0, Ĥ ′] = 0:

◦ Ĥ0 and Ĥ ′ can be simultaneously diagonalized.

◦ Diagonalize Ĥ ′ in the degenerate subspace of Ĥ0 in order to find corrections to the

energies and energy eigenstates.

◦ Diagonalizing Ĥ ′ in each degenerate subspace of Ĥ0 will diagonalize the entire Ĥ ′ matrix.

The first order corrections (the diagonal matrix elements of Ĥ ′) give the exact result.
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SUMMARY: Finding First Order Corrections to the Energies and Energy Eigenstates

Requires that You Choose a “Good” Basis

The perturbative Hamiltonian Ĥ ′ in the degenerate subspace of Ĥ0 will dictate how we

proceed to determine the first order corrections to the energies and the energy eigenstates.

CASE 1: Ĥ ′ IS DIAGONAL IN THE DEGENERATE SUBSPACE OF Ĥ0 IN THE INITIAL

BASIS.

◦ If Ĥ ′ is diagonal in the degenerate subspace of Ĥ0:

• The initially chosen eigenstates of Ĥ0 already form a “good” basis so

the corrections to the energies and energy eigenstates can be found simply by us-

ing the matrix elements of Ĥ ′ exactly as in non-degenerate perturbation theory.

� One can use equations (A.2) and (A.3) with the initial basis states.

� The expression E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 gives the first order correction to the energies.

� The expression |ψ1
n〉 =

∑
m6=n

〈ψ0
m|Ĥ′|ψ0

n〉
(E0

n−E0
m)
|ψ0
m〉 gives the first order corrections to

the energy eigenstates since the numerator will be zero when E0
n = E0

m (if Ĥ ′ is

diagonal in the degenerate subspace of Ĥ0).

* The terms with E0
n = E0

m in the denominator will not appear in the first order

correction to the energy eigenstates |ψ1
n〉 =

∑
m 6=n

〈ψ0
m|Ĥ′|ψ0

n〉
(E0

n−E0
m)
|ψ0
m〉.
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CASE 2: Ĥ ′ IS NOT DIAGONAL IN THE DEGENERATE SUBSPACE OF Ĥ0 IN THE

INITIAL BASIS.

◦ In the initially chosen basis, if Ĥ ′ has non-zero off-diagonal matrix elements in

the degenerate subspace of Ĥ0:

• The initially chosen eigenstates of Ĥ0 do not form a “good” basis.

• One CANNOT use equations (A.2) and (A.3) with the initially chosen basis states

(since they do not form a “good” basis).

• In this case, a “good” basis must be found such that Ĥ ′ is diagonal in the degenerate

subspace of Ĥ0 while Ĥ0 remains diagonal.

• To find a “good” basis {|φ0
n〉}, diagonalize Ĥ ′ in the degenerate subspace of

Ĥ0.

• Once a “good” basis is found, the corrections to the energies and energy eigenstates

can be found by inspecting the matrix elements of Ĥ ′ as in non-degenerate

perturbation theory.

� The expression E1
n = 〈φ0

n|Ĥ ′|φ0
n〉 gives the first order corrections to the energies

after finding a “good” basis {|φ0
n〉}.

� The expression |ψ1
n〉 =

∑
m6=n

〈φ0m|Ĥ′|φ0n〉
(E0

n−E0
m)
|φ0
m〉 gives the first order correction to

the energy eigenstates after finding a “good” basis {|φ0
n〉}, since the numerator

will be zero when E0
n = E0

m (if Ĥ ′ is diagonal in the degenerate subspace of Ĥ0).

* So the terms with E0
n = E0

m will not appear in the first order corrections to

the energy eigenstates |ψ1
n〉 =

∑
m6=n

〈ψ0
m|Ĥ′|ψ0

n〉
(E0

n−E0
m)
|ψ0
m〉.
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For a given Ĥ0 and Ĥ ′, the following flowchart summarizes the steps required to find the

corrections to the energies and energy eigenstates when Ĥ0 possesses a degeneracy.

Finding First Order Corrections to the Energies and

Energy Eigenstates
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A.7.10 Practice

EXAMPLE 9: Now let’s apply these ideas to an example (question 35-39): Given

Ĥ = Ĥ0 + Ĥ ′ = V0


1 + 11ε −8ε 4ε

−8ε 2− ε −2ε

4ε −2ε 2− 4ε

 , (ε� 1) (A.24)

and the normalized basis states are |ψ0
1〉, |ψ0

2〉, and |ψ0
3〉, respectively, in which

|ψ0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , and |ψ0
3〉 =


0

0

1

 .

Answer the following questions.

35. Choose the unperturbed Hamiltonian, Ĥ0, and the perturbing Hamiltonian, Ĥ ′ from

the choices below.

(A) Ĥ0 = V0


1 + 11ε 0 0

0 2− ε 0

0 0 2− 4ε

 and Ĥ ′ = V0


0 −8ε 4ε

−8ε 0 −2ε

4ε −2ε 0



(B) Ĥ0 = V0


1 0 0

0 2 0

0 0 2

 and Ĥ ′ = V0


11ε −8ε 4ε

−8ε −ε −2ε

4ε −2ε −4ε



(C) Ĥ0 = V0


11ε −8ε 4ε

−8ε −ε −2ε

4ε −2ε −4ε

 and Ĥ ′ = V0


1 0 0

0 2 0

0 0 2



(D) Ĥ0 = V0


11ε 0 0

0 ε 0

0 0 4ε

 and Ĥ ′ = V0


1 −8ε 4ε

−8ε 2 −2ε

4ε −2ε 2
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36. Choose the unperturbed energies and the normalized eigenstates of Ĥ0 from the choices

below.

(A) The unperturbed energies are V0, 4V0, and 11V0.

The eigenstates are

|ψ
0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , |ψ0
3〉 =


0

0

1


.

(B) The unperturbed energies are εV0, 4εV0, and 11εV0.

The eigenstates are

|ψ
0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , |ψ0
3〉 =


0

0

1


.

(C) The unperturbed energies are εV0, and 4εV0.

The eigenstates are

|ψ
0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , |ψ0
3〉 =


0

0

1


.

(D) The unperturbed energies are V0 and 2V0 (twice).

The eigenstates are

|ψ
0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 , |ψ0
3〉 =


0

0

1


.

37. Which one of the following is true about the degeneracy of Ĥ0?

(A) Ĥ0 has a two-fold degeneracy with energy eigenvalue of 2V0.

(B) Ĥ0 has a two-fold degeneracy with energy eigenvalues of −εV0 and −4εV0.

(C) Ĥ0 has a two-fold degeneracy with energy eigenvalue of V0.

(D) Ĥ0 has a two-fold degeneracy with energy eigenvalues of V0 and 2V0.
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38. Now you will diagonalize part of the Ĥ ′ matrix in the degenerate subspace of Ĥ0.

(i) What is the Ĥ ′ matrix in the degenerate subspace of Ĥ0?

(A) V0

 11ε −8ε

−8ε −ε


(B) V0

 −8ε −ε

4ε −2ε


(C) V0

 2 0

0 2


(D) V0

 −ε −2ε

−2ε −4ε


(ii) Choose the correct statement below.

(A) In the degenerate subspace of Ĥ0, the eigenvalues of Ĥ ′ are -5 εV0 and 15εV0,

and the normalized eigenstates of Ĥ ′ are


 −2

1

 ,

 1

2

, respectively.

(B) In the degenerate subspace of Ĥ0, the eigenvalues of Ĥ ′ are −5 −
√

5εV0 and
√

5− 5εV0,

and the normalized eigenstates of Ĥ ′ are

1

4

 −3−
√

5

1

 ,
1

4

 −3 +
√

5

1

,

respectively.

(C) In the degenerate subspace of Ĥ0, the eigenvalues of Ĥ ′ are 0 and -5εV0, and

the normalized eigenstates of Ĥ ′ are

 1√
5

 −2

1

 ,
1√
5

 1

2

, respectively.

(D) In the degenerate subspace of Ĥ0, the eigenvalues of Ĥ ′ are both 2 V0 and the

eigenstates of Ĥ ′ are


 1

0

 ,

 0

1

.
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(iii) Choose the true statement (among the following) about extending the eigenstates in

the preceding problem to the three-dimensional Hilbert space using the orthogonality

of the “good” basis states.

(A) Extending the normalized eigenstates of Ĥ ′ in the degenerate subspace of Ĥ0

to the three-dimensional Hilbert space, the “good” states are
1√
5


−2

1

0

 ,
1√
5


1

2

0


, respectively.

(B) Extending the normalized eigenstates of Ĥ ′ in the degenerate subspace of Ĥ0

to the three-dimensional Hilbert space, the “good” states are
1√
5


−3−

√
5

1

0

 ,
1√
5


−3 +

√
5

1

0


, respectively.

(C) Extending the normalized eigenstates of Ĥ ′ in the degenerate subspace of Ĥ0

to the three-dimensional Hilbert space, the “good” states are
1√
5


1

−2

1

 ,
1√
5


−1

1

2


, respectively.

(D) Extending the normalized eigenstates of Ĥ ′ in the degenerate subspace of Ĥ0

to the three-dimensional Hilbert space, the “good” states are
1√
5


0

−2

1

 ,
1√
5


0

1

2


, respectively.
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39. Now you will determine a “good” basis.

(i) Express the “good” basis states as linear combinations of the initially chosen eigen-

states of H0 in equation (A.24).

(A) The “good” states are
{
− 2√

5
|ψ0

1〉+ 1√
5
|ψ0

2〉, 1√
5
|ψ0

1〉+ 2√
5
|ψ0

2〉, |ψ0
3〉
}

.

(B) The “good” states are
{
|ψ0

1〉, − 2√
5
|ψ0

2〉+ 1√
5
|ψ0

3〉, 1√
5
|ψ0

2〉+ 2√
5
|ψ0

3〉
}

.

(C) The “good” states are
{
|ψ0

1〉, 14(−3−
√

5)|ψ0
2〉+ 1

4
|ψ0

3〉,
1
4
(−3 +

√
5)|ψ0

2〉+ 1
4
|ψ0

3〉.

(D) The “good” states are {|ψ0
1〉, |ψ0

2〉, |ψ0
3〉}.

(ii) The Ĥ ′ matrix in the good basis is:

(A) Ĥ ′G = V0


15ε 0 0

0 −5ε 0

0 0 −4ε



(B) Ĥ ′G = V0


11ε 20√

5
ε 0

20√
5
ε 0 0

0 0 −5ε



(C) Ĥ ′G = V0


0 −8ε 4ε

−8ε 0 −2ε

4ε −2ε 0



(D) Ĥ ′G = V0


1 −8ε 4ε

−8ε 2 0

4ε 0 2
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(iii) Choose the first order corrections to the energies from the choices below.

(A) The first order corrections to the energies are E1
1 = 15εV0, E

1
2 = −5εV0, and

E1
3 = −4εV0.

(B) The first order corrections to the energies are E1
1 = V0, E

1
2 = 2V0 and E1

3 = 2V0.

(C) The first order corrections to the energies are E1
1 = 0, E1

2 = −εV0 and

E1
3 = −4εV0.

(D) The first order corrections to the energies are E1
1 = 11εV0, E1

2 = 0 and

E1
3 = −5εV0.

For a given Ĥ0 and Ĥ ′, when Ĥ0 has degeneracy, summarize in your own words, the steps

necessary to find a “good” basis and the first order corrections to the energies and energy

eigenstates.
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* Check your answers to questions 35-39 in EXAMPLE 9. *

35. B

36. D

37. A

38. i. D

ii. C

iii. D

39. i. B

ii. B

iii. D

If any of your answers do not match the checkpoint for EXAMPLE 9, go back and reconcile

any differences between your predictions and the answers in the checkpoint.
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EXAMPLE 10: Another example:

Ĥ = Ĥ0 + Ĥ ′ = V0


5 ε ε

ε 1 ε

ε ε 1

 , (ε� 1) (A.25)

40. Identify the unperturbed Hamiltonian, Ĥ0, and the perturbation Hamiltonian, Ĥ ′.

41. Find the unperturbed energies and the corresponding normalized eigenstates of Ĥ0 from

equation (A.25).

42. How many fold degeneracy is there in the eigenvalue spectrum of Ĥ0?

43. Diagonalizing Ĥ ′ in the degenerate subspace of Ĥ0:

(i) Write down Ĥ ′ in the degenerate subspace of Ĥ0 in equation (A.25)?
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(ii) Calculate the eigenvalues and normalized eigenstates of Ĥ ′ in the degenerate

subspace of Ĥ0 in the preceding question.

(iii) Extend the states in the preceding question to the three-dimensional Hilbert space

by making sure that the basis states found by diagonalizing Ĥ ′ in the degenerate

subspace of Ĥ0 are orthonormal to |ψ0
1〉 (the basis states in equation (A.25)

corresponding to the non-degenerate eigenvalue of Ĥ0).

44. Determine “good” basis states

(i) Express the “good” states as a linear combination of the initially chosen eigenstates

of Ĥ0 in equation (A.25).

(ii) Find first order corrections to the energies.

=
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* Check your answers to questions 40-44 in EXAMPLE 10: *

40.

Ĥ0 = V0


5 0 0

0 1 0

0 0 1

 and Ĥ ′ = V0


0 ε ε

ε 0 ε

ε ε 0


41. The unperturbed energies (eigenvalues of Ĥ0) are V0 (which is two-fold degenerate)

and 5V0.The unperturbed energy eigenstates are

|ψ
0
1〉 =


1

0

0

 , |ψ0
2〉 =


0

1

0

 ,

|ψ0
3〉 =


0

0

1

.

42. Ĥ0 has a two-fold degeneracy with energy eigenvalue V0.

43. i. V0

 0 ε

ε 0


ii. The eigenvalues of this matrix are −εV0 and εV0, and the eigenvectors are 1√
2

 1

−1

 ,
1√
2

 1

1

 respectively.

iii. Extending to the three-dimensional Hilbert space the “good” states are


1

0

0

 ,
1√
2


0

1

−1

 ,
1√
2


0

1

1


.

44. i. The “good” basis states in terms of the initially chosen basis states in equation

(A.25) are
{
|ψ0

1〉, 1√
2
(|ψ0

2〉 − |ψ0
3〉), 1√

2
(|ψ0

2〉+ |ψ0
3〉)
}

ii. The first order corrections to the energies are E1
1 = 0, E1

2 = εV0, and E1
3 = −εV0.

If any of your answers to EXAMPLE 10 do not match the checkpoint, go back and reconcile

any difference you may have.
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EXAMPLE 11: Consider the example:

Ĥ = Ĥ0 + Ĥ ′ = V0


4 + 2ε 0 ε

0 1− ε −2ε

ε −2ε 1− 4ε

 , (ε� 1). (A.26)

45. Determine the first order corrections to the energies for Ĥ given in equation (A.26).
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* Check your answers to questions 45 in EXAMPLE 11. *

45. E ′′1 = 2εV0, E
′
2 = 0, E ′3 = −5εV0

If any of your answers for EXAMPLE 11 do not match the checkpoint, go back and reconcile

any difference you may have with the answers provided.

EXAMPLE 12: Consider the unperturbed Hamiltonian

Ĥ0 = V0


2 0 0

0 1 0

0 0 2

 . (A.27)

46. Write an example of a perturbing Hamiltonian Ĥ ′ in the same basis as Ĥ0 such that for

that Ĥ0 and Ĥ ′, this basis forms a “good” basis (so that one can use the same expressions

that one uses in non-degenerate perturbation theory for perturbative corrections). Use

ε as a small parameter.

47. Write an example of a perturbing Hamiltonian Ĥ ′ in the same basis as Ĥ0 such that

for that Ĥ0 and Ĥ ′, this basis does NOT form a “good” basis (so that one can use the

same expressions that one uses in non-degenerate perturbation theory for perturbative

corrections). Use ε as a small parameter.
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* Check your answers to questions 46-47 in EXAMPLE 12. *

46. Any Ĥ ′ of the form Ĥ ′ = εV0


a b 0

b∗ c d

0 d∗ e

 in which a, b, c, d and e can be any value

such that a, c, and e are real and the product with ε remains small.

47. Any Ĥ ′ of the form Ĥ ′ = εV0


a b f

b∗ c d

f ∗ d∗ e

 in which a, b, c, d, e and f can be any

value such that that a, c, and e are real and the product with ε remains small and f 6= 0.

If any of your answers do not match the checkpoint for EXAMPLE 12, go back and reconcile

any difference you may have with the answers provided.
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APPENDIX B

FINDING THE SPLITTING IN THE HYDROGEN

ATOM ENERGY SPECTRUM DUE TO AN EXTERNAL MAGNETIC

FIELD (ZEEMAN EFFECT) TUTORIAL - PART I

Finding the Splitting in the Hydrogen Atom Energy Spectrum Due to an External

Magnetic Field (Zeeman Effect)- PART I

B.1 DEFINITION

For a given unperturbed Hamiltonian Ĥ0 and perturbation Ĥ ′, a “good” basis consists of

a complete set of eigenstates of Ĥ0 that diagonalizes Ĥ ′ in each degenerate subspace of Ĥ0

(Ĥ0 remains diagonal everywhere since the basis states are eigenstates of Ĥ0).

• Once you have a “good” basis for a given Ĥ0 and Ĥ ′, you can use the same expressions

that you use in non-degenerate perturbation theory for the perturbative corrections to

the energies and energy eigenstates.
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B.2 NOTES FOR THIS TUTORIAL:

* If you are not familiar with the steps to determine a “good” basis for finding corrections to

the unperturbed energies when the energy spectrum has degeneracy, please work through

the pretest, tutorial and posttest for Basics of Degenerate Perturbation Theory before

working on this tutorial.

* A Hermitian operator Q̂ must satisfy the property Qij = (Qji)
∗. Here ∗ denotes the

complex conjugate.

* For the matrix representation of a Hermitian operator Q̂ in a given basis, we will use

“=” or “is equal to” instead of “
.
=” or “is represented by” as in the notation below

Q̂ =


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 is equivalent to Q̂
.
=


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 .

* In this tutorial, “degeneracy” indicates degeneracy in the unperturbed energy eigenvalue

spectrum, i.e., the fact that more than one distinct energy eigenstate can have the same

energy eigenvalue. For example, if

Ĥ0|ψa〉 = Ea|ψa〉 and Ĥ0|ψb〉 = Ea|ψb〉,

|ψa〉 and |ψb〉 are degenerate eigenstates of the Hamiltonian Ĥ0 since they correspond to

the same energy Ea.

* We will only consider the bound states of the hydrogen atom.

* The unperturbed bound state energy is En are given by En = −13.6eV
n2 , n = 1, 2, 3, . . ..

* For any basis we choose, the radial part of the wavefunctions Rnl (for given

quantum numbers n and l) will always be chosen to be the radial parts of a

complete set of eigenstates of Ĥ0. In other words, our focus will be on the

choice of the angular part of the wavefunction in order to find a “good” basis

for degenerate perturbation theory for the given Ĥ0 and Ĥ ′ for the hydrogen

atom.

* We will restrict our focus to a finite subspace of the infinite dimensional Hilbert space.
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– As an example of a degenerate subspace of the unperturbed Hamiltonian Ĥ0, only

the subspace with the principal quantum number n = 2 will be considered.

– The results can be generalized to any quantum number n.

* The external magnetic field will be chosen to be a uniform, time independent field along

the ẑ direction given by ~B = Bextẑ.

* We will account for the coupling of the external magnetic field with both the orbital and

spin angular momentum.

* We will use the following notations interchangeably to write states in the uncoupled

representation (in which basis states are eigenstates of L̂2, Ŝ2, L̂Z , and ŜZ) with a given

set of quantum numbers (notation for quantum numbers is standard):

– |n l s ml ms〉

– |l, ml〉|s, ms〉 (if n is fixed)

– |l, ml, ms〉 (if n and s are fixed)

* ~J = ~L+ ~S

* We will use the following notations interchangeably to write states in the coupled repre-

sentation (in which basis vectors are eigenstates of L̂2, Ŝ2, Ĵ2, and ĴZ) with a given set

of quantum numbers (notation for quantum numbers is standard):

– |n l s j mj〉

– |l, s, j, mj〉 (if n is fixed)

– |l, j, mj〉 (if n and s are fixed)

* In both Part I and Part II of this tutorial, we will consider the case in which s = 1
2

so

this quantum number may be suppressed in writing a state (e.g., |l ml ms〉 or |l j mj〉).
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B.3 PHYSICAL CONSTANTS

Below is a list of physical constants used in this tutorial.

Planck’s constant: ~ = 1.05× 10−34 J s

Mass of the electron: m = 9.11× 10−31 kg

Magnitude of charge of an electron: e = 1.60× 10−19 C

Speed of light: c = 2.99× 108 m/s

Permittivity of space: ε0 = 8.85× 10−12 C2/J m

Bohr radius: a = 4πε0~2
me2

= 0.529× 10−10 m

Bohr magneton: µB = e~
2m

= 5.79× 10−5 eV/T

Fine structure constant: α = e2

4πε0~c ≈
1

137
= 7.30× 10−3

NOTE : The following equations may be helpful.

E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉

|ψ1
n〉 =

∑
m 6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
(E0

n − E0
m)
|ψ0
m〉

Ŝ2|s ms〉 = ~2s(s+ 1)|s ms〉 Ŝz|s ms〉 = ~ms|s ms〉

Ŝ±|s ms〉 = ~
√
s(s+ 1)−ms(ms ± 1))|s ms ± 1〉

L̂2|l ml〉 = ~2l(l + 1)|l ml〉 L̂z|l ml〉 = ~ml|l ml〉

L̂±|l ml〉 = ~
√
l(l + 1)−ml(ml ± 1))|l ml ± 1〉

~J = ~L+ ~S

Ĵ2|l, s, j, mj〉 = ~2j(j + 1)|l, s, j, mj〉 Ĵz|l, s, j mj〉 = ~mj|l, s, j, mj〉

Ŝ2|l, s, j, mj〉 = ~2s(s+ 1)|l, s, j, mj〉 L̂2|l, s, j mj〉 = ~2l(l + 1)|l, s, j, mj〉

~L · ~S =
1

2
(Ĵ2 − Ŝ2 − L̂2) =

1

2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz
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B.4 OBJECTIVES:

Upon completion of this tutorial, you should be able to do the following:

1. Identify the degeneracy in the unperturbed Hamiltonian Ĥ0 in each degenerate subspace

corresponding to a principal quantum number n.

2. In order to find the first order corrections to the unperturbed energies of the hydrogen

atom in the presence of an external magnetic field, you should be able to determine:

• the unperturbed Hamiltonian Ĥ0 in both the coupled and uncoupled representation

(for a given principal quantum number n).

• whether the relativistic correction term Ĥ ′r is diagonal if the coupled or uncoupled

representation is chosen as the basis (for a given principal quantum number n).

• whether the spin-orbit interaction term Ĥ ′SO is diagonal if the coupled or uncoupled

representation is chosen as the basis (for a given principal quantum number n).

• whether the Zeeman term Ĥ ′Z is diagonal if the coupled or uncoupled representation

is chosen as the basis.

• whether a “good” angular part of the basis (angular basis) for a given Ĥ0 and

perturbation Ĥ ′ is the uncoupled representation, the coupled representation, or any

arbitrary complete orthonormal basis found with linear combinations of the coupled

or the uncoupled states.
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The following questions focus on finding the various quantum numbers for a given prin-

cipal quantum number n.

1. Answer the following questions in the context of the hydrogen atom with Coulomb in-

teraction between the electron and the nucleus (spin quantum number s = 1
2

for the

electron).

a. For n = 1, list the possible values of l and the corresponding possible values of ml.

b. For n = 1, list the possible values of ms for s = 1
2
.

c. For n = 1, list the possible values of j and the corresponding possible values of mj.

d. For n = 2, list the possible values of l and the corresponding possible values of ml.

e. For n = 2, list the possible values of ms for s = 1
2
.

f. For n = 2, list the possible values of j and the corresponding possible values of mj.

2. How many distinct states |n l s ml ms〉 are there in the uncoupled representation for

n = 2?

3. How many distinct states |n l s j mj〉 are there in the coupled representation for n = 2?
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** Check your answers to questions 1-3: **

1a. l = 0;ml = 0

1b. ms = 1
2
,−1

2

1c. j = 1
2
;mj = 1

2
,−1

2

1d. l = 0;ml = 0 and l = 1;ml = −1, 0, 1

1e. ms = 1
2
,−1

2

1f. j = 1
2
;mj = 1

2
,−1

2
(appears twice, once for l = 0 and once for l = 1) and

j = 3
2
;mj = 3

2
, 1
2
,−1

2
,−3

2

2. There are eight distinct states in the uncoupled representation.

|n l s ml ms〉 = {|201
2
01
2
〉, |201

2
0− 1

2
〉, |211

2
11
2
〉, |211

2
1− 1

2
〉, |211

2
01
2
〉, |211

2
0− 1

2
〉,

|211
2
− 11

2
〉, |211

2
− 1− 1

2
〉}

3. There are eight distinct states in the coupled representation. |n l s j mj〉 =

{|211
2
3
2
3
2
〉, |211

2
3
2
1
2
〉, |211

2
3
2
− 1

2
〉, |211

2
3
2
− 3

2
〉, |211

2
1
2
1
2
〉, |211

2
1
2
− 1

2
〉, |201

2
1
2
1
2
〉, |201

2
1
2
− 1

2
〉}

If any of your answers do not match the checkpoint answers for questions 1-3, go back

and reconcile any difference you may have.
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B.5 THE HYDROGEN ATOM PLACED IN AN EXTERNAL

MAGNETIC FIELD

The Hamiltonian of the hydrogen atom placed in an external magnetic field is

Ĥ = Ĥ0 + Ĥ ′r + Ĥ ′SO + Ĥ ′Z = Ĥ0 + Ĥ ′fs + Ĥ ′Z (B.1)

in which

• Ĥ0 = p̂2

2m
− e2

4πε0

(
1
r

)
accounts only for the interaction of the electron with the nucleus

via Coulomb attraction

• Ĥ ′r = − p̂4

8m3c2
is the relativistic correction term

• Ĥ ′SO =
(

e2

8πε0

)
1

m2c2r3
(~L · ~S) is the spin-orbit interaction term

and combining the relativistic and spin-orbit terms

◦ Ĥ ′fs = Ĥ ′SO + Ĥ ′r is the fine structure term

• Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz) is the Zeeman term in which ~Bext = Bextẑ.

B.6 UNPERTURBED HAMILTONIAN FOR HYDROGEN ATOM

(ONLY ACCOUNTS FOR THE INTERACTION OF THE ELECTRON

WITH THE NUCLEUS VIA COULOMB ATTRACTION)

Ĥ0 =
p̂2

2m
+ V (r) = − ~2

2m
∇2 − e2

4πε0

(
1

r

)
(B.2)

B.6.1 Degeneracy of the Unperturbed Hamiltonian Ĥ0

4. What is one complete set of quantum numbers that describe the eigenstates of Ĥ0 given

by equation (B.2) (include spin degree of freedom)?

5. What is the unperturbed energy corresponding to Ĥ0 in equation (B.2) in terms of the

principal quantum number n?
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6. Based upon your answers to the two preceding questions, should there be degeneracy in

the unperturbed spectrum of hydrogen atom given by equation (B.2)? Explain.

7. What is the degeneracy of an energy level with energy En for a given n (including

degeneracy due to spin degrees of freedom)?

8. Circle ALL the representations below in which Ĥ0 is a diagonal matrix (fixed n).

a. the coupled representation

b. the uncoupled representation

c. any arbitrary complete orthonormal basis constructed with linear combinations of

states in the coupled representation with the same n.

d. any arbitrary complete orthonormal basis constructed with linear combinations of

states in the uncoupled representation with the same n.

e. Neither the coupled nor the uncoupled representation
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The entire infinite dimensional unperturbed Hamiltonian Ĥ0 is diagonal if eigenstates

of Ĥ0 are chosen as basis states. In each degenerate subspace of Ĥ0 (fixed n), the Ĥ0

matrix is a constant (−13.6 eV
n2 ) multiplied by the identity matrix of dimension 2n2. For

example, the Ĥ0 matrix in the degenerate subspace for n = 2 is shown below when the

basis states are eigenstates of Ĥ0.

Ĥ0 =



−13.6eV
4

0 0 0 0 0 0 0

0 −13.6eV
4

0 0 0 0 0 0

0 0 −13.6eV
4

0 0 0 0 0

0 0 0 −13.6eV
4

0 0 0 0

0 0 0 0 −13.6eV
4

0 0 0

0 0 0 0 0 −13.6eV
4

0 0

0 0 0 0 0 0 −13.6eV
4

0

0 0 0 0 0 0 0 −13.6eV
4


(B.3)

= −13.6eV

4



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



(B.4)

9. a. For the Ĥ0 matrix given above for n = 2, can you tell whether the coupled repre-

sentation or the uncoupled representation is chosen as the basis? Explain why you

can or cannot tell.

b. Can you tell whether the coupled or uncoupled representation was chosen as the

basis if you are given the complete infinite dimensional, diagonal matrix for Ĥ0?

Explain your answer.
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• In this tutorial, the radial part of the basis states will always chosen to be Rnl(r) for

the hydrogen atom so the choice of a “good” basis focuses on choosing the angular

basis appropriately.

Consider the following conversation regarding whether the unperturbed Hamiltonian Ĥ0

is diagonal if the coupled or the uncoupled representation is chosen as the angular basis

for a given n.

Student 1: The unperturbed Hamiltonian Ĥ0 in equation (B.2) is only diagonal when

the uncoupled representation is chosen as the basis.

Student 2: I disagree that the uncoupled representation is the only basis in which Ĥ0

is diagonal. Ĥ0 will also be diagonal when the coupled representation is chosen as the

basis.

Student 3: I agree with Student 2. Angular basis states in both the coupled and the

uncoupled representations are eigenstates of Ĥ0 since Ĥ0 is spherically symmetric with

unperturbed energy only dependent on n. Furthermore, for a fixed n, any complete

arbitrary orthogonal basis constructed using linear combinations of the coupled or

uncoupled states can also be chosen as the angular part of the eigenstates of Ĥ0 since

the unperturbed energy only depends on n as En = −13.6 eV
n2 .

Student 2: Yes. And since Ĥ0 is a diagonal matrix in both the coupled and the

uncoupled representations, there is no way to determine whether the basis states were

chosen in the coupled or the uncoupled representation in equation (B.3).

Student 3: The unperturbed Hamiltonian Ĥ0 is identical in both the coupled and

uncoupled representations. In fact, Ĥ0 is identical so long as, for a fixed n, we choose

any complete arbitrary orthonormal basis constructed with linear combinations of states

in the coupled or uncoupled representation.

Explain why you agree or disagree with each student.
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In one to two sentences, summarize what you have learned about the unperturbed

Hamiltonian Ĥ0 for the hydrogen atom in equation (B.2) (pertaining to whether Ĥ0 is

diagonal if the coupled representation, the uncoupled representation, or any arbitrary

complete orthonormal basis found with linear combinations of the coupled or uncoupled

states with the same principal quantum number n is chosen as the angular basis).
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** Check your answers to questions 4-9: **

4. n, l,ml, s,ms or n, l, s, j,mj (If you omitted s, that is OK because s is fixed to

s = 1
2

for the electron in the hydrogen atom.)

5. En = −13.6eV
n2

6. Yes, there is degeneracy in the energy spectrum of the hydrogen atom.

7. 2
n−1∑
l=0

(2l + 1) = 2n2. (Since for each n, there are (2l + 1) values of ml and the

factor of 2 corresponds to the spin degeneracy.)

8. Ĥ0 will be diagonal if the coupled represenation, the uncoupled representation, or

any arbitrary complete orthonormal basis constructed with linear combinations of

states in the coupled representation or the uncoupled representation with the same

principal quantum number n is chosen as the angular basis.

9. (a) and (b). The Ĥ0 matrix will be a diagonal matrix with the unperturbed energy

En along the diagonal if the coupled representation, the uncoupled representation,

or any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation or the uncoupled representation with the

same principal quantum number n is chosen as the angular basis. There is no way

to distinguish between these bases if we are only given the Ĥ0 matrix since the

basis states are eigenstates of Ĥ0 in all these cases (so long as we do not take linear

superpositions of states with different n).

If any of your answers do not match the checkpoint answers for questions 4-9, go back

and reconcile any difference you may have.
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Summary: The Unperturbed Hamiltonian of the Hydrogen Atom

• For a given unperturbed energy En = −13.6eV
n2 , there is a 2n2-fold degeneracy, i.e.,

there are 2n2 different states with the same energy En.

– For n = 2, there is an 8-fold degeneracy, so 8 distinctly different states have the

same energy −13.6 eV
4

.

• For a fixed n, the unperturbed Hamiltonian Ĥ0 is diagonal if the coupled represen-

tation, the uncoupled representation, or any arbitrary complete orthonormal basis

found with linear combinations of the coupled or uncoupled states with the same

principal quantum number n is chosen as the angular basis.

Are States in the Are States in the Is Any Complete Set of

Unperturbed Uncoupled Uncoupled Coupled Coupled Arbitrary Linear Combinations Unperturbed

Hamiltonian Representation Representation Representation Representation of Orthonormal States (with the same n) Energy

(for a fixed n) the Angular Part of (for a fixed n) the Angular Part of in the Coupled or Uncoupled

an Eigenstate of Ĥ0? an Eigenstate of Ĥ0? Representation the Angular Part

of an Eigenstate of Ĥ0

Ĥ0 Diagonal Yes Diagonal Yes Yes En = −13.6eV
n2
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B.7 PERTURBATION THEORY FOR THE HYDROGEN ATOM IN

AN EXTERNAL MAGNETIC FIELD

• For the hydrogen atom placed in an external magnetic field, we will treat the rel-

ativistic correction term Ĥ ′r, the spin-orbit coupling term Ĥ ′SO, and the Zeeman

term Ĥ ′Z in the Hamiltonian as perturbations on Ĥ0 to find the corrections to the

unperturbed energies (the Bohr energies En = −13.6eV
n2 ).

• In order to find the corrections to the energies using perturbation theory when the

unperturbed Hamiltonian Ĥ0 possesses degeneracy, we must ensure that the basis

states are “good” states.

– Definition: For a given Ĥ0 and Ĥ ′, a “good” basis consists of a complete set

of eigenstates of Ĥ0 that diagonalizes Ĥ ′ in each degenerate subspace of Ĥ0 (Ĥ0

is diagonal everywhere).

• In order to determine if we have a “good” basis in each case, we can start by de-

termining the matrix elements of the relativistic perturbation Ĥ ′r, the spin-orbit

perturbation Ĥ ′SO, and the Zeeman perturbation Ĥ ′Z in the coupled and uncoupled

representations and check whether the off-diagonal matrix elements of Ĥ ′ are zero

in each degenerate subspace of Ĥ0.

• Given a perturbation Ĥ ′, if there are non-zero off-diagonal matrix elements of

Ĥ ′ in a degenerate subspace of Ĥ0 in the coupled and the uncoupled represen-

tations, neither is a “good” basis for the given Ĥ0 and Ĥ ′. In that case, we must

diagonalize the Ĥ ′ matrix (in the initial basis) in each degenerate subspace of the

Ĥ0 matrix explicitly to find a “good” basis.
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B.7.1 Relativistic Correction

Before discussing the relativistic correction perturbation term, let’s begin by considering

a perturbation Ĥ ′ = ζδ(r) that is spherically symmetric (in which ζ is a constant such

that Ĥ ′ has the dimensions of energy). Recall that the unperturbed Hamiltonian Ĥ0

for the hydrogen atom is also spherically symmetric (with energy only depending on n)

and keep this in mind as you consider the following conversation. Also, note that, in

general, energies for spherically symmetric potential energies depend on both quantum

numbers n and l.

Consider the following conversation regarding whether for the perturbation Ĥ ′ = ζδ(r),

the coupled representation, the uncoupled representation, or both form a “good” angular

basis to find the first order corrections to the unperturbed energies of the hydrogen

atom for a fixed n.

Student 1: When a perturbation Ĥ ′ = ζδ(r) acts on a hydrogen atom with the

unperturbed Hamiltonian Ĥ0 = − ~2
2m
∇2 − e2

4πε0

(
1
r

)
, to find the corrections to the

energies, neither the coupled nor the uncoupled representations form a “good” angular

basis.

Student 2: I agree. Since Ĥ ′ only depends on r, it means that n and l are the

only “good” quantum numbers. Thus neither {j,mj} nor {ml,ms} is a set of “good”

quantum numbers. Neither the coupled nor the uncoupled representation forms a

“good” angular basis.

Student 3: No, I disagree with both Student 1 and Student 2. Because Ĥ ′ is spherically

symmetric, its off-diagonal matrix elements will be zero in each degenerate subspace

of Ĥ0 in both the coupled and the uncoupled representations, whichever is chosen as

the angular basis for a fixed n. Ĥ ′ will be diagonal whether we use the uncoupled

representation |ml,ms〉 or the coupled representation |j,mj〉 as the basis. This implies

that the coupled or uncoupled representation each forms a “good” angular basis to find

the corrections to the energies.

Student 4: I agree with Student 3. The reason the off-diagonal matrix ele-
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ments of Ĥ ′ are zero in the degenerate subspace of Ĥ0 is that for each n, the

matrix elements 〈ψ′|Ĥ ′|ψ〉 can be written as the product of the radial part and

the angular part. If we choose the coupled representation, the angular part is

〈l, j, mj|l′, j′, m′j〉 = δl,l′δj,j′δmj ,m′
j
. If we choose the uncoupled representation, the

angular part is 〈l, ml, ms|l′, m′l, m′s〉 = δl,l′δml,m
′
l
δms,m′

s
. Either way, the Kronecker

delta implies that all off-diagonal matrix elements are zero for a fixed n. Thus, both the

coupled and the uncoupled representation, or any arbitrary complete orthonormal basis

found with linear combinations of the coupled or uncoupled states for the same n and l

form a “good” angular basis because Ĥ0 is diagonal and Ĥ ′ = ζδ(r) is diagonal in the

degenerate subspace of Ĥ0.

Explain why you agree or disagree with each student.

10. Is the relativistic correction term Ĥ ′r = − p̂4

8m3c2
diagonal if the coupled representation,

the uncoupled representation, or any complete arbitrary orthonormal basis constructed

with linear combinations of the coupled or uncoupled states with the same n and l is

chosen as the angular basis? Explain. [Hint: Ĥ ′r = − p̂4

8m3c2
, Ĥ0, and Ĥ ′ = ζδ(r) are

all spherically symmetric and energies for spherically symmetric potential energies only

depend on the quantum numbers n and l.]
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B.7.2 Spin-Orbit Interaction

• The spin orbit coupling term in the Hamiltonian, Ĥ ′SO, is proportional to ~L · ~S. We

can write ~L · ~S as ~L · ~S = 1
2
(Ĵ2 − Ŝ2 − L̂2) or ~L · ~S = 1

2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz. The

expression that will be most beneficial in determining the matrix elements of Ĥ ′SO

will depend on whether the coupled representation or the uncoupled representation

is chosen as the basis.

11. If the coupled representation is chosen as the basis, which expression for ~L · ~S is more

useful when evaluating the matrix elements of ~L · ~S? Explain.

12. If the uncoupled representation is chosen as the basis, which expression for ~L · ~S is more

useful when evaluating the matrix elements of ~L · ~S? Explain.

• Let’s evaluate the matrix elements of ~L · ~S in the coupled and the uncoupled repre-

sentations in order to determine whether ~L · ~S is diagonal in each basis. This will

help us later in determining a “good” angular basis when the perturbation is Ĥ ′SO

(which is proportional to ~S · ~L).

B.7.2.1 Coupled Representation The spin-orbit coupling term in the Hamilto-

nian, Ĥ ′SO, is proportional to ~L · ~S. The expression ~L · ~S = 1
2
(Ĵ2− Ŝ2− L̂2) is most useful

when expressing the matrix elements of Ĥ ′SO in the coupled representation.
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13. Evaluate the following matrix elements useful for the perturbation Ĥ ′SO, in which the

states are written in the coupled representation |n l s j mj〉.

a. 〈2 1 1
2

3
2
1
2
|1
2
(Ĵ2 − Ŝ2 − L̂2)|2 1 1

2
3
2
1
2
〉

b. 〈2 1 1
2

3
2
1
2
|1
2
(Ĵ2 − Ŝ2 − L̂2)|2 1 1

2
3
2
− 1

2
〉

c. 〈2 1 1
2

3
2
3
2
|1
2
(Ĵ2 − Ŝ2 − L̂2)|2 1 1

2
3
2
− 1

2
〉

14. Is Ĥ ′SO diagonal in each degenerate subspace of Ĥ0 (for a fixed n) if the coupled

representation is chosen as the basis? [Hint: The answers to the preceding question may

be helpful.]
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B.7.2.2 Uncoupled Representation The spin-orbit coupling term in the Hamil-

tonian, Ĥ ′SO, is proportional to ~L · ~S. The expression ~L · ~S = 1
2
(L̂+Ŝ−+ L̂−Ŝ+) + ŜzL̂z is

most useful when expressing the matrix elements of Ĥ ′SO in the uncoupled representation.

15. Evaluate the following expressions. (The states are written in the uncoupled representa-

tion |n l s ml ms〉).

a. L̂−|2 1 1
2
− 1 1

2
〉

b. L̂+|2 1 1
2
− 1 − 1

2
〉

c. Ŝ−|2 1 1
2
− 1 1

2
〉

d. Ŝ+|2 1 1
2
− 1 1

2
〉

16. Evaluate the following matrix elements, in which the states are written in the uncoupled

representation |n l s ml ms〉.

a. 〈2 1 1
2
− 1 1

2
|(L̂+Ŝ− + L̂−Ŝ+)|2 1 1

2
− 1 1

2
〉

b. 〈2 1 1
2

0 − 1
2
|(L̂+Ŝ− + L̂−Ŝ+)|2 1 1

2
− 1 1

2
〉
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17. Now let’s evaluate the following matrix elements useful for the perturbation Ĥ ′SO. We

use the fact that ~L · ~S is proportional to 1
2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz in the uncoupled

representation |n l s ml ms〉.

a. 〈2 1 1
2
− 1 1

2
|1
2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz|2 1 1

2
− 1 1

2
〉

b. 〈2 1 1
2

0 − 1
2
|1
2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz|2 1 1

2
− 1 1

2
〉

18. Is Ĥ ′SO diagonal in each degenerate subspace of Ĥ0 (for a fixed n) if the uncoupled

representation is chosen as the basis? [Hint: The answers to the preceding questions

may be helpful.]
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Consider the following conversation regarding whether the Ĥ ′SO matrix is a diagonal

matrix if, for a fixed n, any arbitrary complete orthonormal basis found with linear

combinations of the coupled or uncoupled states is chosen as the basis.

Student 1: Since Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 in the coupled

representation, any linear combination of states in the coupled representation must also

be eigenstates of Ĥ ′SO. Thus, Ĥ ′SO is diagonal in the coupled representation in each

degenerate subspace of Ĥ0 and also when any arbitrary complete orthonormal basis is

constructed with linear combinations of the coupled states.

Student 2: I disagree with Student 1. For example, in general, a linear combination

of energy eigenstates is NOT an energy eigenstate. For example, if |ψ1〉 and |ψ2〉 are

eigenstates of the operator Ĥ ′SO with eigenvalues E1 and E2, respectively, then

Ĥ|ψ1〉 = E1|ψ1〉

Ĥ|ψ2〉 = E2|ψ2〉.

The linear combination of |ψ1〉 and |ψ2〉 gives

Ĥ(|ψ1〉+ ψ2〉) = E1|ψ1〉+ E2|ψ2〉 6= E(|ψ1〉+ |ψ2〉).

Thus Ĥ(|ψ1〉+ ψ2〉) 6= E(|ψ1〉+ ψ2〉) unless E1 = E2 = E.

Student 3: I agree with Student 2. If we consider Ĥ ′SO, which is proportional to

1
2
(Ĵ2− Ŝ2− L̂2), then Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 in the coupled

representation |n l s j mj〉. However, in general, Ĥ ′SO is not diagonal in each degenerate

subspace of Ĥ0 if linear combinations of states in the coupled representation, even with

a fixed n, is chosen as the basis. For example, if we consider the states |ψ1〉 = |2 1 1
2

3
2

3
2
〉

and |ψ2〉 = |2 0 1
2

1
2

1
2
〉

1
2
(Ĵ2 − Ŝ2 − L̂2)|ψ1〉 = 1

2
(Ĵ2 − Ŝ2 − L̂2)

∣∣2 1 1
2

3
2

3
2

〉
= ~2

2

∣∣2 1 1
2

3
2

3
2

〉
1
2
(Ĵ2 − Ŝ2 − L̂2)|ψ2〉 = 1

2
(Ĵ2 − Ŝ2 − L̂2)

∣∣2 0 1
2

1
2

1
2

〉
= 0

∣∣2 1 1
2

3
2

3
2

〉
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But the linear combination of |ψ1〉 and |ψ2〉, both in the n = 2 subspace, is not an

eigenstate.

1
2
(Ĵ2 − Ŝ2 − L̂2)(|ψ1〉+ |ψ2〉) = 1

2
(Ĵ2 − Ŝ2 − L̂2)(

∣∣2 1 1
2

3
2

3
2

〉
+
∣∣2 0 1

2
1
2

1
2

〉
)

= 1
2

∣∣2 1 1
2

3
2

3
2

〉
= 1

2
|ψ1〉

6= Constant(|ψ1〉+ |ψ2〉)

Explain why you agree or disagree with each student.
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Consider the following conversation regarding whether the Ĥ ′SO is diagonal in each

degenerate subspace of Ĥ0, for a fixed n, when any arbitrary complete orthonormal

basis found with linear combinations of the coupled or uncoupled states is chosen as the

angular basis.

Student 1: For a fixed n, the spin-orbit interaction term Ĥ ′SO is diagonal if the coupled

representation is chosen as the basis. However, Ĥ ′SO is not diagonal in each degenerate

subspace of Ĥ0 if the uncoupled representation or any arbitrary complete orthonormal

basis found with linear combinations of the coupled or uncoupled states is chosen as the

basis.

Student 2: I disagree. Since Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 in the

coupled representation, then Ĥ ′SO must also be diagonal in each degenerate subspace of

Ĥ0 if any arbitrary complete orthonormal basis constructed with linear combinations of

the coupled states is chosen as the basis.

Student 3: I disagree with Student 2. For example, the states in the uncoupled

representation can be constructed with linear combinations of states in the coupled

representation. Therefore, if Ĥ ′SO were to be diagonal in each degenerate subspace of Ĥ0

when any arbitrary complete orthonormal basis constructed with linear combinations

of the coupled states is chosen as the basis, then Ĥ ′SO would also be diagonal if the

uncoupled representation were chosen as the basis. However, this is not the case because

Ĥ ′SO is not diagonal in each degenerate subspace of Ĥ0 in the uncoupled representation.

But, for a fixed n, Ĥ ′SO is diagonal in the coupled representation.
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Student 1: I agree with Student 3. Also, if a matrix were diagonal if any arbitrary

complete orthonormal basis constructed with linear combinations of the coupled

states is chosen as the angular basis, then that matrix must also be diagonal when any

complete orthogonal angular basis is chosen. Therefore, the matrix must also be diagonal

if any arbitrary complete orthonormal basis constructed with linear combinations of the

uncoupled states is chosen as the basis.

Explain why you agree or disagree with each student.

Student 1 and Student 3 are correct in the preceding conversation.

In one to two sentences, summarize what you have learned about the spin-orbit inter-

action term Ĥ ′SO, which is proportional to ~L · ~S for the hydrogen atom (pertaining to

whether Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0, for a fixed n, is the coupled

representation, the uncoupled representation, or any arbitrary complete orthonormal

basis found with linear combinations of the coupled or uncoupled states with the same

principal quantum number n is chosen as the basis).
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SUMMARY: Spin-orbit Interaction (Ĥ ′SO proportional to ~L · ~S)

• For a given n (in each degenerate subspace of Ĥ0), the spin-orbit interaction term

in the Hamiltonian, Ĥ ′SO, is diagonal if the coupled representation is chosen as

the angular basis.

• For a given n (in each degenerate subspace of Ĥ0), the spin-orbit interaction term

in the Hamiltonian, Ĥ ′SO, is NOT diagonal if the uncoupled representation is

chosen as the basis. (You must have found a non-zero off-diagonal matrix element

in question 17.)

Are States in the Are States in the Is Any Arbitrary Linear

Hamiltonian Uncoupled Uncoupled Coupled Coupled Combination of Orthonormal

Ĥ Representation Representation Representation Representation States (with the same n and l)

(for a fixed n) the Angular Part of (for a fixed n) the Angular Part of in the Coupled or Uncoupled

Eigenstates of Ĥ? Eigenstates of Ĥ? Representation the Angular Part

of an Eigenstate of Ĥ

Ĥ0 Diagonal Yes Diagonal Yes Yes

Ĥ ′r Diagonal Yes Diagonal Yes Yes

Ĥ ′SO Not Diagonal No Diagonal Yes No
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** Check your answers to questions 10-18: **

10. For a given n, Ĥ ′r in each degenerate subspace of Ĥ0 will be diagonal if the coupled
representation, the uncoupled representation, or any arbitrary complete orthonormal
basis found with linear combinations of the coupled or uncoupled states with the
same n and l is chosen as the angular basis.
11. If the coupled representation is chosen as the angular basis, ~L·~S = 1

2
(Ĵ2−Ŝ2−L̂2)

should be used since |j, mj〉 is an eigenstate of Ĵ2, Ŝ2, and L̂2

12. If the uncoupled representation is chosen as the basis, ~L · ~S = 1
2
(L̂+Ŝ−+ L̂−Ŝ+)+

L̂zŜz should be used since |ml, ms〉 is an eigenstate of L̂z and Ŝz and the raising and

lowering operators L̂± and Ŝ± act on the uncoupled states |ml, ms〉.
13a. 1

2
~2

13b. 0
13c. 0
14. For a fixed n, Ĥ ′SO is diagonal if the coupled representation is chosen as the
basis. If the basis states are chosen in the coupled representation (|l, j, mj〉) in the

order |ψ1〉 = |1, 3
2
, 3

2
〉, |ψ2〉 = |1, 3

2
, 1

2
〉, |ψ3〉 = |1, 3

2
, −1

2
〉, |ψ4〉 = |1, 3

2
, −3

2
〉,

|ψ5〉 = |1, 1
2
, 1

2
〉, |ψ6〉 = |1, 1

2
, −1

2
〉, |ψ7〉 = |0, 1

2
, 1

2
〉 and |ψ8〉 = |0, 1

2
, −1

2
〉, the Ĥ ′SO

matrix for n = 2 is

Ĥ ′SO = A
1

r3
(~S · ~L) =

2E2
2

3mc2



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −2 0 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


15a. 0

15b.
√

2~|2 1 1
2

0 − 1
2
〉

15c. ~|2 1 1
2
− 1 − 1

2
〉

15d. 0

16a. 0

16b.
√

2~2

17a. −1
2
~2

17b.
√
2
2
~2
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18. For a fixed n, Ĥ ′SO is not diagonal if the uncoupled representation is chosen as the
basis. If the basis states are chosen in the uncoupled representation (|l, ml, ms〉)
in the order |ψ1〉 = |0, 0, 1

2
〉, |ψ2〉 = |0, 0, −1

2
〉, |ψ3〉 = |1, 1, 1

2
〉, |ψ4〉 = |1, 1, −1

2
〉,

|ψ5〉 = |1, 0, 1
2
〉, |ψ6〉 = |1, 0, −1

2
〉, |ψ7〉 = |1, −1, 1

2
〉, and |ψ8〉 = |1, −1, −1

2
〉, the

Ĥ ′SO matrix is

Ĥ ′SO = A
1

r3
(~S · ~L) =

α4mc2
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 0 0 −1
√

2 0 0 0

0 0 0
√

2 0 0 0 0

0 0 0 0 0 0
√

2 0

0 0 0 0 0
√

2 −1 0
0 0 0 0 0 0 0 1



If any of your answers do not match the checkpoint answers to questions 10-18, go back

and reconcile any difference you may have.1

1For a fixed n, Ĥ ′
SO is also diagonal if an orthonormal basis includes certain special linear combinations

of states in the coupled representation corresponding to each degenerate subspace of Ĥ ′
SO. However, Ĥ ′

SO is
NOT diagonal if any arbitrary complete orthonormal basis constructed with linear combinations of states
in the coupled representation with the same n is chosen as the angular basis. We will not focus on these
issues in this tutorial since our goal is to find one “good” basis for perturbation theory.
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B.7.3 Zeeman Effect

If the external magnetic field is chosen to be a uniform, time independent field along the

ẑ direction given by ~B = Bextẑ, the Zeeman term in the Hamiltonian is

Ĥ ′Z =
µBBext

~
(L̂z + 2Ŝz). (B.5)

Consider the following conversation regarding simplifying the hydrogen atom basis

states in the coupled or uncoupled representation.

Student 1: When we write states in the coupled or uncoupled representation, we must

write all the quantum numbers that represent the state |n l s j mj〉 or |n l s ml ms〉.

Student 2: If we are dealing with an operator acting on the states that only depends

on a subset of all the quantum numbers, we can express the states with only the relevant

quantum numbers and suppress the other quantum numbers for convenience. Consider

Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz), where the relevant quantum numbers are ml and ms if n and s

are fixed. We can abbreviate the state in the uncoupled representation |n l s ml ms〉 as

|l, ml, ms〉.

Student 3: I agree with Student 2. Additionally, if we know we are restricted to

a particular set of quantum numbers or can determine the quantum numbers from

the context, we can suppress those quantum numbers without loss of generality. For

example, if we are considering an electron in the n = 2 degenerate subspace of Ĥ0,

the state in the coupled representation |n l s j mj〉 = |2 1 1
2

3
2

3
2
〉 can be written as

|l, j, mj〉 = |1, 3
2
, 3

2
〉 since s = 1

2
.

Explain why you agree or disagree with each student.

525



19. Evaluate the following matrix elements of Ĥ ′Z in which the states are written in the

uncoupled representation |l, ml, ms〉.

a. 〈0, 0, 1
2
|µBBext

~ (L̂z + 2Ŝz)|0, 0, 1
2
〉

b. 〈0, 0, 1
2
|µBBext

~ (L̂z + 2Ŝz)|0, 0, −1
2
〉

c. 〈1, 1, 1
2
|µBBext

~ (L̂z + 2Ŝz)|1, 1, 1
2
〉

d. 〈1, 1, 1
2
|µBBext

~ (L̂z + 2Ŝz)|1, −1, −1
2
〉

20. Is the Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz) matrix a diagonal matrix if the uncoupled representation

is chosen as the basis? [Hint: The answers to the preceding question may be helpful.]
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B.7.3.2 Coupled Representation In the following table, the angular states for

n = 2 are listed in the coupled representation (left), and each state in the coupled

representation is given in terms of a linear combination of states in the uncoupled repre-

sentation (right) using the Clebsch-Gordon table.

Coupled Representation Uncoupled Representation

|l, j, mj〉 |l, ml〉|s, ms〉

|ψ1〉
∣∣∣∣0, 1

2
,

1

2

〉
|0, 0〉

∣∣∣∣12 , 1

2

〉
|ψ2〉

∣∣∣∣0, 1

2
, −1

2

〉
|0, 0〉

∣∣∣∣12 , −1

2

〉
|ψ3〉

∣∣∣∣1, 3

2
,

3

2

〉
|1, 1〉

∣∣∣∣12 , 1

2

〉
|ψ4〉

∣∣∣∣1, 3

2
, −3

2

〉
|1, −1〉

∣∣∣∣12 , −1

2

〉
|ψ5〉

∣∣∣∣1, 3

2
,

1

2

〉 √
2

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
+

√
1

3
|1, 1〉

∣∣∣∣12 , −1

2

〉
|ψ6〉

∣∣∣∣1, 1

2
,

1

2

〉
−
√

1

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
+

√
2

3
|1, 1〉

∣∣∣∣12 , −1

2

〉
|ψ7〉

∣∣∣∣1, 3

2
, −1

2

〉 √
1

3
|1, −1〉

∣∣∣∣12 , 1

2

〉
+

√
2

3
|1, 0〉

∣∣∣∣12 , −1

2

〉
|ψ8〉

∣∣∣∣1, 1

2
, −1

2

〉
−
√

2

3
|1, −1〉

∣∣∣∣12 , 1

2

〉
+

√
1

3
|1, 0〉

∣∣∣∣12 , −1

2

〉
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21. Determine the following matrix elements given in the coupled representation (|l, j mj〉).

If you need to first express the states in the uncoupled representation (|l, ml〉|s, ms〉)

you can use the preceding table.

a. 〈ψ3|µBBext

~ (L̂z + 2Ŝz)|ψ3〉 = 〈1, 3
2
, 3

2
|µBBext

~ (L̂z + 2Ŝz)|1, 3
2
, 3

2
〉

b. 〈ψ5|µBBext

~ (L̂z + 2Ŝz)|ψ6〉 = 〈1, 3
2
, 1

2
|µBBext

~ (L̂z + 2Ŝz)|1, 1
2
, 1

2
〉

c. 〈ψ5|µBBext

~ (L̂z + 2Ŝz)|ψ1〉 = 〈1, 3
2
, 1

2
|µBBext

~ (L̂z + 2Ŝz)|0, 1
2
, 1

2
〉

22. Is the Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz) matrix a diagonal matrix if the coupled representation is

chosen as the basis? [Hint: The answers to the preceding question may be helpful.]
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Consider the following conversation regarding whether the Ĥ ′Z matrix is a diagonal matrix

if any arbitrary complete orthonormal basis found with linear combinations of the coupled

or uncoupled states is chosen as the basis.

Student 1: Since states in the uncoupled representation are eigenstates of Ĥ ′Z , any

linear combination of states in the uncoupled representation must also be eigenstates of

Ĥ ′Z . Thus, Ĥ ′Z is diagonal in the uncoupled representation and also when any arbitrary

complete orthonormal basis is constructed with a linear combination of a complete set

of the uncoupled states.

Student 2: I disagree with Student 1. If we consider Ĥ ′Z which is proportional to

(L̂z + 2Ŝz), then states in the uncoupled representation |n l s ml ms〉 are eigenstates of

Ĥ ′Z . However, in general, linear combinations of states in the uncoupled representation

are NOT eigenstates of Ĥ ′Z . For example, if we consider the states |ψ1〉 = |2 0 1
2

01
2
〉 and

|ψ2〉 = |2 0 1
2

0 − 1
2
〉

(L̂z + 2Ŝz)|ψ1〉 = (L̂z + 2Ŝz)
∣∣2 01

2
0 1

2

〉
= ~

∣∣2 01
2

0 1
2

〉
(L̂z + 2Ŝz)|ψ2〉 = (L̂z + 2Ŝz)

∣∣2 01
2

0 − 1
2

〉
= −~

∣∣2 01
2

0 − 1
2

〉
But the linear combination of |ψ1〉 and |ψ2〉 is not an eigenstate.

(L̂z + 2Ŝz)(|ψ1〉+ |ψ2〉) = (L̂z + 2Ŝz)
(∣∣2 01

2
01
2

〉
+
∣∣2 0 1

2
0 − 1

2

〉)
= ~

[∣∣2 01
2

0 1
2

〉
−
∣∣2 01

2
0 − 1

2

〉]
= ~ [|ψ1〉 − |ψ2〉]

6= Constant(|ψ1〉+ |ψ2〉)

Explain why you agree or disagree with each student.
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Consider the following conversation regarding whether the Ĥ ′Z matrix is a diagonal

matrix if any arbitrary complete orthonormal basis constructed with linear combinations

of the coupled or uncoupled states is chosen as the angular basis.

Student 1: The Zeeman term Ĥ ′Z is diagonal if the uncoupled representation is chosen

as the basis. However, Ĥ ′Z is not diagonal if the coupled representation or any arbitrary

complete orthonormal basis constructed with linear combinations of the coupled or

uncoupled states is chosen as the angular basis.

Student 2: I disagree. Since Ĥ ′Z is diagonal in the uncoupled representation, then Ĥ ′Z

must also be diagonal if any arbitrary complete orthonormal basis constructed with

linear combinations of the uncoupled states is chosen as the basis.

Student 3: I disagree with Student 2. For example, the states in the coupled rep-

resentation can be constructed with linear combinations of states in the uncoupled

representation. Therefore, if Ĥ ′Z were to be diagonal when any arbitrary complete

orthonormal basis constructed with linear combinations of the uncoupled states is

chosen as the basis, then Ĥ ′Z would also be diagonal if the coupled representation were

chosen as the basis. However, this is not the case because Ĥ ′Z is not diagonal in the

coupled representation. But Ĥ ′Z is diagonal in the uncoupled representation.

Student 1: I agree with Student 3. Also, if a matrix is diagonal if any arbitrary

complete orthonormal basis constructed with linear combinations of the coupled states

is chosen as the basis, then that matrix must also be diagonal when any complete

orthonormal basis is chosen. Therefore, the matrix must also be diagonal if any

arbitrary complete orthonormal angular basis constructed with a linear combination of

the uncoupled states is chosen as the angular basis.

Explain why you agree or disagree with each student.
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In one to two sentences, summarize what you have learned about the Zeeman term

Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz) for the hydrogen atom (pertaining to whether Ĥ ′Z is diagonal

if the coupled representation, the uncoupled representation, or any arbitrary complete

orthonormal basis constructed with linear combinations of the coupled or uncoupled

states with the same principal quantum number n is chosen as the angular basis).
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SUMMARY: Zeeman Effect

• For a given n, the Zeeman term in the Hamiltonian, Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz), is

diagonal if the uncoupled representation is chosen as the angular basis.

• For a given n, the Zeeman term in the Hamiltonian, Ĥ ′Z = µBBext

~ (L̂z+2Ŝz), is NOT

diagonal if the coupled representation is chosen as the angular basis. (You must

have found some non-zero off-diagonal matrix elements in question 21.)

Are States in the Are States in the Is Any Arbitrary Linear

Hamiltonian Uncoupled Uncoupled Coupled Coupled Combination of Orthonormal

Ĥ Representation Representation Representation Representation States (with the same n and l)

(for a fixed n) the Angular Part of (for a fixed n) the Angular Part of in the Coupled or Uncoupled

Eigenstates of Ĥ? Eigenstates of Ĥ? Representation the Angular Part

of an Eigenstate of Ĥ

Ĥ0 Diagonal Yes Diagonal Yes Yes

Ĥ ′r Diagonal Yes Diagonal Yes Yes

Ĥ ′SO Not Diagonal No Diagonal Yes No

Ĥ ′Z Diagonal Yes Not Diagonal No No
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** Check your answers to questions 19-22: **

19a. µBBext

19b. 0

19c. 2µBBext

19d. 0

20. Ĥ ′Z is diagonal if the uncoupled representation is chosen as the basis. If the

basis states are chosen in the uncoupled representation (|l, ml, ms〉) in the order

|ψ1〉 = |0, 0, 1
2
〉, |ψ2〉 = |0, 0, −1

2
〉, |ψ3〉 = |1, 1, 1

2
〉, |ψ4〉 = |1, 1, −1

2
〉, |ψ5〉 =

|1, 0, 1
2
〉, |ψ6〉 = |1, 0, −1

2
〉, |ψ7〉 = |1, −1, 1

2
〉, and |ψ8〉 = |1, −1, −1

2
〉, the Ĥ ′Z

matrix is

Ĥ ′Z =
µBBext

~
(L̂z + 2Ŝz) = µBBext



1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −2



21a. 2µBBext

21b. −
√
2
3
µBBext

21c. 0
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22. Ĥ ′Z is not diagonal if the coupled representation is chosen as the basis. If the

basis states are chosen in the coupled representation (|l, j, mj〉) in the order |ψ1〉 =

|1, 3
2
, 3

2
〉, |ψ2〉 = |1, 3

2
, 1

2
〉, |ψ3〉 = |1, 3

2
, −1

2
〉, |ψ4〉 = |1, 3

2
, −3

2
〉, |ψ5〉 = |1, 1

2
, 1

2
〉,

|ψ6〉 = |1, 1
2
, −1

2
〉, |ψ7〉 = |0, 1

2
, 1

2
〉 and |ψ8〉 = |0, 1

2
, −1

2
〉, the Ĥ ′Z matrix is

Ĥ ′Z =
µBBext

~
(L̂z + 2Ŝz) = µBBext



2 0 0 0 0 0 0 0

0 2
3

0 0 −
√
2
3

0 0 0

0 0 −2
3

0 0 −
√
2
3

0 0

0 0 0 −2 0 0 0 0

0 −
√
2
3

0 0 1
3

0 0 0

0 0 −
√
2
3

0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1



If any of your answers do not match the checkpoint answers to questions 19-22, go back

and reconcile any differences you may have.2

2Ĥ ′
Z is also diagonal if an orthonormal basis includes certain special linear combination of states in the

uncoupled representation corresponding to each degenerate subspace of Ĥ ′
Z . However, Ĥ ′

Z is NOT diagonal
if any arbitrary complete orthonormal basis constructed with linear combinations of states in the uncoupled
representation with the same n is chosen as the basis. We will not focus on these issues in this tutorial since
our goal is to find one “good” basis for perturbation theory.
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B.8 CHOOSING A “GOOD” BASIS

To find the first order corrections to the energies of the hydrogen atom in perturbation

theory, we must first choose a “good” angular basis for the given Ĥ0 and Ĥ ′. Depending

on the nature of the perturbation, the coupled representation, the uncoupled representa-

tion, or any arbitrary complete orthonormal basis constructed with linear combinations

of the coupled or uncoupled states can form the “good” angular basis. Recall that the

determination of a “good” basis depends on both Ĥ0 and Ĥ ′.

23. In the following questions, a perturbation Ĥ ′ acts on a hydrogen atom with the unper-

turbed Hamiltonian Ĥ0 = − ~2
2m
∇2 − e2

4πε0

(
1
r

)
. For each of the following perturbations,

circle ALL of the representations that form a “good” angular basis. Assume that for all

cases, the principal quantum number is fixed to n = 2. (A and C are constants which

makes the dimensions of Ĥ ′ that of energy in each case.)

a. Ĥ ′ = Cδ(r)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

b. Ĥ ′ = CL̂z

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),
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iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

c. Ĥ ′ = CĴz

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

d. Ĥ ′ = C(L̂z + 2Ŝz)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation
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e. Ĥ ′ = C(L̂z + Ŝz)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

f. Ĥ ′ = C(~L · ~S)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

g. Ĥ ′ = C
(

1
rn

)
i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation
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h. Ĥ ′ = Cp̂2

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

i. Ĥ ′ = Cp̂4

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation

j. Ĥ ′ = C(L̂z + 2Ŝz) + A(~L · ~S)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the coupled representation with the same l (i.e., states with different

l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations

of states in the uncoupled representation with the same l (i.e., states with differ-

ent l values are not mixed),

v. Neither coupled nor uncoupled representation
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Consider the following conversation regarding determining a “good” angular basis for

the perturbations Ĥ ′ = C(L̂z + Ŝz) and Ĥ ′ = CĴz acting on the hydrogen atom with

the unperturbed Hamiltonian Ĥ0 = − ~2
2m
∇2 − e2

4πε0

(
1
r

)
.

Student 1: The uncoupled representation forms a “good” basis when the perturba-

tion Ĥ ′ = C(L̂z + Ŝz) acts on a hydrogen atom with the unperturbed Hamiltonian

Ĥ0 = − ~2
2m
∇2 − e2

4πε0

(
1
r

)
.

Student 2: I agree. And the coupled representation forms a “good” basis when the

perturbation Ĥ ′ = CĴz acts on a hydrogen atom with the unperturbed Hamiltonian

Ĥ0 = − ~2
2m
∇2 − e2

4πε0

(
1
r

)
.

Student 3: I agree with both Student 1 and Student 2, but both students are

overlooking the fact that Ĵz = L̂z + Ŝz. The perturbation Ĥ ′ = CĴz is identical

to the perturbation Ĥ ′ = C(L̂z + Ŝz). Therefore, both the coupled and uncoupled

representations form a “good” basis for the perturbation Ĥ ′ = C(L̂z + Ŝz) = CĴz.

Explain why you agree or disagree with each student.

Consider the following statement regarding whether any arbitrary orthonormal basis

constructed with linear combinations of states in the coupled or uncoupled representation

with the same principal quantum number n forms a “good” angular basis if both the

coupled and uncoupled representations form a “good” angular basis.

Student 1: Since both the uncoupled and coupled representations form a “good” basis

when the perturbation is Ĥ ′ = C(L̂z + Ŝz), then any arbitrary complete orthonormal

basis constructed with linear combinations of states in the uncoupled representation with

the same n must form a “good” basis. Also, any arbitrary complete orthonormal basis

constructed with linear combinations of states in the coupled representation with the

same n must form a “good” basis.

Explain why you agree or disagree with the student.
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Consider the following conversation regarding whether for the perturbation

Ĥ ′ = C(L̂z + 2Ŝz) + A(~L · ~S), the coupled representation, the uncoupled repre-

sentation, both the coupled and uncoupled representations, or neither the coupled nor

uncoupled representation form a “good” angular basis to find the first order corrections

to the unperturbed energies of the hydrogen atom.

Student 1: When the perturbation Ĥ ′ = C(L̂z + 2Ŝz) + A(~L · ~S) acts on a hydrogen

atom with the unperturbed Hamiltonian Ĥ0 = − ~2
2m
∇2− e2

4πε0

(
1
r

)
, to find the corrections

to the energies, neither the coupled nor the uncoupled representations form a “good”

angular basis.

Student 2: I disagree. Both the coupled and the uncoupled representations are “good”

angular bases since C(L̂z + 2Ŝz) is diagonal in the coupled representation and A(~L · ~S)

is diagonal in the uncoupled representation.

Student 3: I agree with Student 1. Neither the coupled nor uncoupled representation

form a “good” angular basis to find the first order corrections to the unperturbed

energies of the hydrogen atom due to the perturbation Ĥ ′ = C(L̂z + 2Ŝz) + A(~L · ~S).

However, a “good” angular basis will be made up of some special linear combinations of

states in the coupled representation that diagonalizes Ĥ ′ in each degenerate subspace of

Ĥ0. These same angular basis states could be expressed as special linear combinations

of states in the uncoupled representation.

Explain why you agree or disagree with each student.
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** Check your answers to question 23: **

23a. i, ii, iii, iv

23b. ii

23c. i, ii

23d. ii

23e. i, ii

23f. i

23g. i, ii, iii, iv

23h. i, ii, iii, iv

23i. i, ii, iii, iv

23j. v

If any of your answers do not match the checkpoint answers to question 23, go back and

reconcile any difference you may have.
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APPENDIX C

FINDING THE SPLITTING IN THE HYDROGEN

ATOM ENERGY SPECTRUM DUE TO AN EXTERNAL MAGNETIC

FIELD (ZEEMAN EFFECT) TUTORIAL- PART II

Finding the Splitting in the Hydrogen Atom Energy Spectrum Due to an External

Magnetic Field (Zeeman Effect)- PART II

The focus in degenerate perturbation theory is on ensuring that Ĥ ′ is diagonal in each

degenerate subspace of Ĥ0. The degeneracy in Ĥ0 is 2n2 fold for each n. Our focus is always

on a fixed n. The radial basis states are always Rnl(r), which are solutions to the radial

part of the time-independent Schrödinger equation for Ĥ0. We will learn how to determine

a “good” angular basis.

C.1 DEFINITION

For a given unperturbed Hamiltonian Ĥ0 and perturbation Ĥ ′, a “good” basis consists of

a complete set of eigenstates of Ĥ0 that diagonalizes Ĥ ′ in each degenerate subspace of Ĥ0

(Ĥ0 remains diagonal everywhere since the basis states are eigenstates of Ĥ0).

• Once you have a “good” basis for a given Ĥ0 and Ĥ ′, you can use the same expressions

that you use in non-degenerate perturbation theory for perturbative corrections.
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C.2 NOTES FOR THIS TUTORIAL:

* If you are not familiar with the steps to determine a “good” basis for finding corrections to

the unperturbed energies when the energy spectrum has degeneracy, please work through

the pretest, tutorial and posttest for Basics of Degenerate Perturbation Theory before

working on this tutorial.

* A Hermitian operator Q̂ has the property Qij = (Qji)
∗. Here ∗ denotes the complex

conjugate.

* For the matrix representation of a Hermitian operator Q̂ in a given basis, we will use

“=” or “is equal to” instead of “
.
=” or “is represented by” as in the notation below

Q̂ =


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 is equivalent to Q̂
.
=


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 .

* In this tutorial, “degeneracy” indicates degeneracy in the unperturbed energy eigenvalue

spectrum, i.e., the fact that more than one distinct energy eigenstate can have the same

energy eigenvalue. For example, if

Ĥ0|ψa〉 = Ea|ψa〉 and Ĥ0|ψb〉 = Ea|ψb〉,

|ψa〉 and |ψb〉 are degenerate eigenstates of the Hamiltonian Ĥ0 since they correspond to

the same energy Ea.

* We will only consider the bound states of the hydrogen atom.

* The unperturbed bound state energies En are given by En = −13.6eV
n2 , n = 1, 2, 3, . . ..

* For any basis we choose, the radial part of the wavefunctions Rnl (for given

quantum numbers n and l) will always be chosen to be the radial part of a

complete set of eigenstates of Ĥ0. In other words, our focus will be on the

choice of the angular part of the wavefunction in order to find a “good” basis

for degenerate perturbation theory for the given Ĥ0 and Ĥ ′ for the hydrogen

atom.

* We will restrict our focus to a finite subspace of the infinite dimensional Hilbert space.
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– As an example of a degenerate subspace of the unperturbed Hamiltonian Ĥ0, only

the subspace with the principal quantum number n = 2 will be considered.

– The results can be generalized to any quantum number n.

* The external magnetic field will be chosen to be a uniform, time independent field along

the ẑ direction given by ~B = Bextẑ.

* We will account for the coupling of the external magnetic field with both the orbital and

spin angular momentum.

* We will use the following notations interchangeably to write states in the uncoupled

representation (in which basis states are eigenstates of L̂2, Ŝ2, L̂Z , and ŜZ) with a given

set of quantum numbers (notation for quantum numbers is standard):

– |n l s ml ms〉

– |l, ml〉|s, ms〉 (if n is fixed)

– |l, ml, ms〉 (if n and s are fixed)

* ~J = ~L+ ~S

* We will use the following notations interchangeably to write states in the coupled repre-

sentation (in which basis vectors are eigenstates of L̂2, Ŝ2, Ĵ2, and ĴZ) with a given set

of quantum numbers (notation for quantum numbers is standard):

– |n l s j mj〉

– |l, s, j, mj〉 (if n is fixed)

– |l, j, mj〉 (if n and s are fixed)

* In both Part I and Part II of this tutorial, we will consider the case in which s = 1
2

so

this quantum number may be suppressed in writing a state (e.g., |l ml ms〉 or |l j mj〉).
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C.3 PHYSICAL CONSTANTS

Below is a list of physical constants used in this tutorial.

Planck’s constant: ~ = 1.05× 10−34 J s

Mass of the electron: m = 9.11× 10−31 kg

Magnitude of charge of an electron: e = 1.60× 10−19 C

Speed of light: c = 2.99× 108 m/s

Permittivity of space: ε0 = 8.85× 10−12 C2/J m

Bohr radius: a = 4πε0~2
me2

= 0.529× 10−10 m

Bohr magneton: µB = e~
2m

= 5.79× 10−5 eV/T

Fine structure constant: α = e2

4πε0~c ≈
1

137
= 7.30× 10−3

NOTE : The following equations may be helpful.

E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉

|ψ1
n〉 =

∑
m 6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
(E0

n − E0
m)
|ψ0
m〉

Ŝ2|s ms〉 = ~2s(s+ 1)|s ms〉 Ŝz|s ms〉 = ~ms|s ms〉

Ŝ±|s ms〉 = ~
√
s(s+ 1)−ms(ms ± 1))|s ms ± 1〉

L̂2|l ml〉 = ~2l(l + 1)|l ml〉 L̂z|l ml〉 = ~ml|l ml〉

L̂±|l ml〉 = ~
√
l(l + 1)−ml(ml ± 1))|l ml ± 1〉

~J = ~L+ ~S

Ĵ2|l, s, j, mj〉 = ~2j(j + 1)|l, s, j, mj〉 Ĵz|l, s, j mj〉 = ~mj|l, s, j, mj〉

Ŝ2|l, s, j, mj〉 = ~2s(s+ 1)|l, s, j, mj〉 L̂2|l, s, j mj〉 = ~2l(l + 1)|l, s, j, mj〉

~L · ~S =
1

2
(Ĵ2 − Ŝ2 − L̂2) =

1

2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz
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C.4 OBJECTIVES:

Upon completion of this tutorial, you should be able to do the following for the

hydrogen atom:

1. Identify the unperturbed Hamiltonian Ĥ0 and the perturbing Hamiltonian Ĥ ′.

2. Identify the degeneracy in the unperturbed Hamiltonian Ĥ0 in each degenerate subspace

corresponding to a principal quantum number n.

3. Determine a “good” basis for finding the corrections to the unperturbed energies of the

hydrogen atom for only the fine structure perturbation Ĥ ′fs.

4. Find the first order corrections to energies due to the fine structure perturbation Ĥ ′fs.

5. Determine a “good” basis for finding the corrections to the unperturbed energies of the

hydrogen atom due to the Zeeman effect (including in intermediate, strong, and weak

magnetic field).

6. Find the first order corrections to energies in the intermediate field Zeeman effect.

7. Find the first order corrections to energies in the strong field Zeeman effect.

8. Find the first order corrections to energies in the weak field Zeeman effect.
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C.5 THE HYDROGEN ATOM PLACED IN AN EXTERNAL MAGNETIC

FIELD

The Hamiltonian of the hydrogen atom placed in an external magnetic field is

Ĥ = Ĥ0 + Ĥ ′r + Ĥ ′SO + Ĥ ′Z = Ĥ0 + Ĥ ′fs + Ĥ ′Z (C.1)

in which

• Ĥ0 = p̂2

2m
− e2

4πε0

(
1
r

)
accounts only for the interaction of the electron with the nucleus via

Coulomb attraction

• Ĥ ′r = − p̂4

8m3c2
is the relativistic correction term

• Ĥ ′SO =
(

e2

8πε0

)
1

m2c2r3
(~L · ~S) is the spin-orbit interaction term

and combining the relativistic and spin-orbit terms

• Ĥ ′fs = Ĥ ′SO + Ĥ ′r is the fine structure term

• Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz) is the Zeeman term, in which ~Bext = Bextẑ.

C.6 PERTURBATION THEORY

• In order to find the first order corrections to the energies due to a perturbation Ĥ ′, we

must first find a “good” basis for the given Ĥ0 and Ĥ ′.

• A “good” basis is defined as one which satisfies the following two conditions:

1. The entire unperturbed Hamiltonian Ĥ0 is diagonal (i.e., basis states are eigenstates

of Ĥ0).

– We know from Part I of this tutorial that the unperturbed Hamiltonian ma-

trix Ĥ0 is diagonal if the coupled or uncoupled representation or any arbitrary

complete orthonormal basis found with linear combinations of the coupled or

uncoupled states with the same principal quantum number n is chosen as the

angular basis (as a consequence of the spherical symmetry of Ĥ0 and the unper-

turbed energy only depending on n as En = −13.6 eV
n2 ).
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2. The perturbing Hamiltonian Ĥ ′ is diagonal in each degenerate subspace of Ĥ0.

– We always choose Rnl as the radial part of the basis and focus on the angular

basis for determining a “good” basis for a given Ĥ0 and Ĥ ′.

– We shall consider several types of perturbing Hamiltonian, Ĥ ′, and determine

whether the coupled representation, the uncoupled representation, some special

orthonormal basis constructed with linear combinations of the coupled or the

uncoupled states, or any arbitrary complete orthonormal basis constructed with

linear combinations of the coupled or the uncoupled states with the same prin-

cipal quantum number n and the same l diagonalizes Ĥ ′ in each degenerate

subspace of Ĥ0.

• In Part I, we found:

– Ĥ0 (spherically symmetric with energy only depending on n as En = −13.6 eV
n2 ) is

diagonal if the coupled representation, the uncoupled representation, or any arbitrary

complete orthonormal basis constructed with linear combinations of states in the

coupled or the uncoupled representation (with the same n) is chosen as the angular

basis.

– Ĥ ′r (spherically symmetric with energy depending on both n and l) is diagonal in

each degenerate subspace of Ĥ0 if the coupled representation, the uncoupled rep-

resentation, or any arbitrary complete orthonormal basis constructed with linear

combinations of states with the same n and l in the coupled or the uncoupled rep-

resentation is chosen as the angular basis.

– Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 if the coupled representation is

chosen as the angular basis.

– Ĥ ′Z is diagonal if the uncoupled representation is chosen as the angular basis.
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C.6.1 The Hydrogen Atom in an External Magnetic Field

• In order to find the corrections to the unperturbed energies in the presence of an external

magnetic field, we shall consider the following two terms in the Hamiltonian perturba-

tively:

Ĥ ′ = Ĥ ′fs + Ĥ ′Z (C.2)

in which Ĥ ′fs is the fine structure correction term and Ĥ ′Z is the Zeeman term incorpo-

rating the effect of the external magnetic field.

• The perturbative corrections due to these terms are small compared to the unperturbed

energies due to Ĥ0, but both terms are important in terms of determining splittings in

the energy spectrum so that they should both be considered simultaneously.

• Let’s first consider the fine structure. Here is the order in which we shall proceed:

I. Determining a “good” angular basis and corrections to the energies for ONLY the fine

structure perturbation Ĥ ′fs.

– The fine structure correction Ĥ ′fs is made up of two mechanisms: Ĥ ′fs = Ĥ ′r + Ĥ ′SO,

in which Ĥ ′r is the relativistic correction term and Ĥ ′SO is the spin-orbit interaction

term (due to the coupling of the orbital and spin angular momenta of the electron).

II. Determining a “good” angular basis and corrections to the energies for ONLY the Zee-

man perturbation Ĥ ′Z .

– The Zeeman effect in the hydrogen atom (or any atom) is the splitting of the energy

spectrum as a result of placing the atom in an external magnetic field.
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III. Determining a “good” angular basis and corrections to the energies for BOTH the fine

structure and Zeeman perturbations combined: Ĥ ′ = Ĥ ′fs + Ĥ ′Z .

– In this tutorial we will learn about three cases with Ĥ ′ = Ĥ ′fs + Ĥ ′Z :

∗ CASE 1: The Intermediate Field Zeeman Effect (E ′Z ≈ E ′fs)

· The intermediate field Zeeman effect describes a situation when the corrections

to the energies from the fine structure term E ′fs and the Zeeman term E ′Z are

comparable to one another (We will use the notations E ′Z ≈ E ′fs to denote the

intermediate field Zeeman effect).

– Along with two limiting cases:

∗ CASE 2: The Strong Field Zeeman Effect (E ′Z � E ′fs)

· The strong field Zeeman effect describes a situation when the corrections to

the energies from the Zeeman term E ′Z are much larger than the corrections

to the energies from the fine structure term E ′fs (We will use the notation

E ′Z � E ′fs to denote the strong field Zeeman effect).

∗ CASE 3: The Weak Field Zeeman Effect (E ′fs � E ′Z)

· The weak field Zeeman effect describes a situation when the corrections to the

energies from the fine structure term E ′fs are much larger than the corrections

to the energies from the Zeeman term E ′Z (We will use the notation E ′fs � E ′Z

to denote the weak field Zeeman effect).
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I. Determining the “GOOD” Angular Basis and Corrections to the Energies for

ONLY the Fine Structure Perturbation Ĥ ′fs.

As noted, the fine structure perturbation is comprised of two mechanisms: the relativistic

correction Ĥ ′r and the spin-orbit interaction Ĥ ′SO:

Ĥ ′fs = Ĥ ′r + Ĥ ′SO. (C.3)

We shall discuss each separately and then find the first order corrections to the energies

of the hydrogen atom due to the combined effect of the relativistic correction and the

spin-orbit interaction.
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Relativistic Correction

C.6.2 Finding a “GOOD” Basis for the Relativistic Correction Term as a Per-

turbation for the Hydrogen Atom

A perturbation Ĥ ′r acts on a hydrogen atom with the unperturbed Hamiltonian Ĥ0 =

− ~2
2m
∇2 − e2

4πε0
1
r

such that the relativistic correction term in the Hamiltonian is

Ĥ ′r = − p̂4

8m3c2
. (C.4)

1. For the perturbation Ĥ ′r, will a “good” angular basis for finding the corrections to

the energies be the coupled representation, the uncoupled representation, or any arbi-

trary complete orthonormal basis constructed with linear combinations of the coupled

or uncoupled states with the same principal quantum number n and the same l? Explain.
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Consider the following conversation regarding finding a “good” basis for the relativistic

term Ĥ ′r as a perturbation on Ĥ0 for the hydrogen atom.

Student 1: We found that for a fixed n the spherically symmetric unperturbed

Hamiltonian Ĥ0 is diagonal in the coupled or the uncoupled representation, as well as in

any arbitrary complete orthonormal basis constructed with linear combinations of states in

the coupled representation or the uncoupled representation. Since the relativistic correction

Ĥ ′r is also spherically symmetric, Ĥ ′r will also be diagonal in the coupled or the uncoupled

representation, as well as in any arbitrary complete orthonormal basis constructed with

linear combinations of basis states with the same n and l in the coupled representation or

the uncoupled representation.

Student 2: I agree. Ĥ0 = p̂2

2m
− e2

4πε0
(1
r
) and Ĥ ′r is proportional to p̂4. Both terms are

spherically symmetric because [Ĥ0, ~̂L] = 0 and [Ĥ ′r, ~̂L] = 0. However, the eigenvalues of Ĥ0

only depend on n while the eigenvalues of Ĥ ′ depend on both n and l. Thus, Ĥ ′r will also

be diagonal in both the coupled and the uncoupled representation, as well as any arbitrary

complete orthonormal basis constructed with linear combinations of states in the coupled

representation or the uncoupled representation.

Student 3: I disagree with both Student 1 and Student 2. The fact that Ĥ ′r is spherically

symmetric is not enough information to determine whether the coupled or uncoupled

representation or both will form a “good” angular basis.

Student 4: I agree with Student 1 and Student 2. For finding the corrections to the

energies due to the perturbation Ĥ ′r, a “good” angular basis can be chosen to be the coupled

representation, the uncoupled representation, or any arbitrary complete orthonormal basis

found with linear combinations of the coupled or uncoupled states with the same principal

quantum number n and the same l.

Explain why you agree or disagree with each student.
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The relativistic correction term Ĥ ′r is spherically symmetric and its energy eigenvalues

depend on the quantum numbers n and l, and therefore the coupled representation, the un-

coupled representation, or any arbitrary complete orthonormal basis constructed with linear

combinations of states with a fixed n and l in the coupled or the uncoupled representation

will form a “good” basis. For example, using the same reasoning as for the unperturbed

Hamiltonian Ĥ0 and the example when Ĥ ′ was proportional to δ(r) in Part I of this tutorial,

for a given n and l, Ĥ ′r will be a diagonal in each degenerate subspace of Ĥ0 because the

angular part of the matrix elements of Ĥ ′r will involve 〈l, j,mj|l′, j′,m′j〉 = δl,l′δj,j′δmj ,m′
j

if

we choose the coupled representation or 〈l,ml,ms|l′,m′l,m′s〉 = δl,l′δml,m
′
l
δms,m′

s
if we choose

the uncoupled representation. The off-diagonal matrix elements will be zero due to the

Kronecker deltas in either case.

** Check your answers to question 1. **

1. The coupled representation, the uncoupled representation, or any arbitrary complete

orthonormal basis constructed with linear combinations of states with the same n and l

in the coupled or the uncoupled representation with the same principal quantum number

n and the same l will form a “good” angular basis for finding the corrections to the

energies of the hydrogen atom due to the spherically symmetric relativistic correction

term Ĥ ′r = − p̂4

8m3c2
.

If your answer to question 1 does not match with the checkpoint, go back and reconcile any

differences.
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C.6.3 First Order Corrections to the Energy Spectrum of the Hydrogen Atom

Due to the Relativistic Correction Term Using Perturbation Theory

Now that we have determined that the coupled representation, the uncoupled representation,

or any arbitrary complete orthonormal basis constructed with linear combinations of states

in the coupled or the uncoupled representation will form a “good” angular basis for Ĥ ′r as

the perturbation, we can determine the corrections to the energies.

• Let {|ψn〉} represent a “good” basis set in which the quantum numbers to describe the

angular part of the {|ψn〉} have been suppressed (those quantum numbers will depend,

e.g., on whether we choose the coupled or uncoupled representation for the angular part).

• If {|ψn〉} forms a “good” basis for Ĥ ′r as a perturbation on the unperturbed Hamiltonian

Ĥ0, then the first order correction to the energy due to Ĥ ′r is given by (using the fact

that p̂2 is Hermitian, i.e., (p̂2)† = p̂2)

E ′r = 〈ψn|Ĥ ′r|ψn〉 = 〈ψn| −
p̂4

8m3c2
|ψn〉 = − 1

8m3c2
〈p̂2ψn|p̂2ψn〉. (C.5)

Consider the following statement regarding evaluating p̂2|ψn〉.

Student 1: We evaluate p̂2|ψn〉 by considering the Time-Independent Schrödinger Equa-

tion or TISE for the unperturbed Hamiltonian Ĥ0|ψn〉 = En|ψn〉. Using the TISE [ p̂
2

2m
+

V (r)]|ψn〉 = En|ψn〉, rearranging and solving for p̂2|ψn〉 gives p̂2|ψn〉 = 2m[En − V (r)]|ψn〉

which is helpful in evaluating E ′r in equation (C.5). Using 〈p̂2ψn|p̂2ψn〉 = (2m)2〈ψn|[En −

V (r)]2|ψn〉, in which V (r) for the hydrogen atom is proportional to 1
r
, we can find the first

order corrections to the energies due to Ĥ ′r in Eq. (C.5).

Do you agree with Student 1’s approach? Explain your reasoning.
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Student 1’s method is helpful in determining p̂2|ψn〉. The first order correction to the energy

due to Ĥ ′r in the “good” basis {|ψn〉} is given by

E ′r = − 1

8m3c2
〈p̂2ψn|p̂2ψn〉 = − 1

8m3c2
〈ψn|[2m(En − V (r))]2|ψn〉 (C.6)

E ′r = − 1

2mc2
〈ψn|E2

n − 2EnV (r) + (V (r))2|ψn〉. (C.7)

For the Coulomb potential energy V (r) = − 1

4πε0

(
e2

r

)
, the first order correction to the

energy becomes

E ′r = − 1

2mc2
〈ψn|

[
E2
n + 2En

e2

4πε0

(
1

r

)
+

(
e2

4πε0

)2(
1

r2

)]
|ψn〉. (C.8)

It can be shown that using the radial part of the wavefunction Rnl (for a given n and l) for

the unperturbed Hamiltonian Ĥ0 for the hydrogen atom yields〈
1

r

〉
=

1

n2a
and

〈
1

r2

〉
=

1

(l + 1/2)n3a2

with Bohr radius

a =
4πε0~2

me2
.

The first order correction to the nth energy state En due to the relativistic correction is

E ′r = − E2
n

2mc2

[
4n

l + 1/2
− 3

]
. (C.9)

In one to two sentences, summarize what you have learned about the “good” angular basis

states for finding the first order corrections to the energy spectrum of the hydrogen atom

due to the relativistic correction Ĥ ′r (pertaining to whether the coupled representation, the

uncoupled representation, or any arbitrary complete orthonormal basis found with linear

combinations of a complete set of states with the same principal quantum number n and

the same l in the coupled or uncoupled representation form a “good” angular basis or all of

them form a “good” angular basis).
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Summary: Finding a “GOOD” Angular Basis for the Relativistic Correction

• The perturbation matrix due to the relativistic correction Ĥ ′r is a diagonal matrix in the

degenerate subspace of Ĥ0 in both the coupled and the uncoupled representation, or in

any arbitrary complete orthonormal basis constructed with linear combinations of the

coupled or uncoupled states with the same principal quantum number n and the same l.

• The coupled representation, the uncoupled representation, or any arbitrary complete

orthonormal basis constructed with linear combinations of the coupled or uncoupled

states with the same principal quantum number n and the same l form a “good” basis

for finding corrections to the energies.

Hamiltonian Uncoupled Is the Uncoupled Coupled Is the Coupled Is Any Arbitrary Complete Orthonormal Energy

Representation Representation Representation Representation Basis Constructed with Linear Combinations

(for a fixed n) a “Good” Basis? (for a fixed n) a “Good” Basis? of a Complete Set of States with the

Same n and l in the Coupled or Uncoupled

Representation a “Good” Basis?

Ĥ0 Diagonal — Diagonal — — En = −13.6eV
n2

Ĥ ′r Diagonal Yes Diagonal Yes Yes E ′r = − E2
n

2mc2

[
4n

l+1/2
− 3
]
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Spin-orbit Interaction

C.6.4 Finding a “GOOD” Angular Basis for the Spin-orbit Interaction Cor-

rection to the Energy Spectrum of the Hydrogen Atom in Perturbation

Theory

A perturbation Ĥ ′SO acts on a hydrogen atom with the unperturbed Hamiltonian Ĥ0 =

− ~2
2m
∇2 − e2

4πε0
1
r

such that the spin-orbit interaction term in the Hamiltonian is

Ĥ ′SO =

(
e2

8πε0

)
1

m2c2r3
~L · ~S. (C.10)

2. In each degenerate subspace of Ĥ0, the off-diagonal matrix elements of Ĥ ′SO should

be zero in a “good” basis. Does the coupled or the uncoupled representation, or any

arbitrary complete orthonormal basis found with linear combinations of the coupled or

uncoupled states with the same principal quantum number n form a “good” angular

basis for finding the corrections to the energies? Explain.
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Consider the following conversation about finding a “good” angular basis for the hydrogen

atom due to the spin-orbit interaction term as the perturbation.

Student 1: The spin-orbit interaction term is proportional to ~L · ~S. Does the coupled

or uncoupled representation, or any arbitrary complete orthonormal basis found with their

linear combinations form a “good” angular basis for finding the corrections to the energies?

Student 2: Since ~L · ~S = L̂xŜx + L̂yŜy + L̂zŜz, the uncoupled representation must be a

“good” basis because the basis states in the uncoupled representation are eigenstates of both

Ŝz and L̂z.

Student 3: I disagree with Student 2. ~L· ~S is diagonal in the coupled representation because

J2 = (~L+ ~S) · (~L+ ~S) = L̂2 + Ŝ2 + 2~L · ~S which implies ~L · ~S = 1
2
(Ĵ2 − Ŝ2 − L̂2). The basis

states in the coupled representation are eigenstates of Ĵ2, Ŝ2, and L̂2 and hence eigenstates

of ~L · ~S.

Student 4 I agree with Student 3. Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 when

the coupled representation is chosen as the basis, but not when the uncoupled representation

is chosen as the basis. The coupled representation forms a “good” basis for the given Ĥ0

and Ĥ ′SO.

Do you agree with Student 2 or Student 3? Explain.

(If you need further help with why ~L · ~S is diagonal in the coupled representation, see Part

I of this tutorial.)
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** Check your answer to question 2. **

2. The coupled representation forms a “good” angular basis for finding the corrections

to the energies of the hydrogen atom due to the spin-orbit interaction term Ĥ ′SO.

If your answer to question 2 does not match with the checkpoint, go back and reconcile any

differences.

C.6.5 First Order Corrections to the Energy Spectrum of the Hydrogen Atom

in Perturbation Theory Due to the Spin-orbit Interaction

Student 3 is correct in the preceding conversation in stating that the coupled representation

will form a “good” angular basis for finding the correction to the energy due to the spin-orbit

interaction as a perturbation. The first order corrections to the energies due to the spin-orbit

interaction in this “good” basis are given by

E ′SO = 〈n l s j mj|Ĥ ′SO|n l s j mj〉 =

(
e2

8πε0

)
1

m2c2
〈n l s j mj|

1

r3
~L · ~S|n l s j mj〉

E ′SO = A〈n l s j mj|
1

r3
~L · ~S|n l s j mj〉 (C.11)

where A =
(

e2

8πε0

)
1

m2c2
.

Separating the radial (Rnl(r)) and angular parts of eigenstates {|ψ〉} of Ĥ0 in the coupled

representation, the angular part is〈
l s j mj

∣∣∣~L · ~S∣∣∣ l s j mj

〉
=

〈
l s j mj

∣∣∣ Ĵ2−L̂2−Ŝ2

2

∣∣∣ l s j mj

〉
= ~2

2
[j(j + 1)− l(l + 1)− s(s+ 1)]

(C.12)
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and the radial part is 〈
n l

∣∣∣∣ 1

r3

∣∣∣∣n l〉 =
1

l(l + 1)(l + 1/2)n3a3
. (C.13)

Thus, combining equations (C.11), (C.12), and (C.13), the first order correction to the energy

due to the spin-orbit interaction is

E ′SO =
E2
n

mc2

[
n(j(j + 1)− l(l + 1)− 3/4)

l(l + 1)(l + 1/2)

]
. (C.14)

In one to two sentences, summarize what you have learned about the “good” states for

finding the first order corrections to the energy spectrum of the hydrogen atom due to the

spin-orbit interaction Ĥ ′SO (pertaining to whether the coupled representation, the uncoupled

representation, or any arbitrary complete orthonormal basis found with linear combinations

of a complete set of states with a fixed principal quantum number n in the coupled or

uncoupled representation form a “good” basis).
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Summary: Finding a “GOOD” Angular Basis for the Spin-orbit Interaction

Term Ĥ ′SO

• Ĥ ′SO = A 1
r3

(~L · ~S) = A 1
r3

[
1
2
(Ĵ2 − L̂2 − Ŝ2)

]
is diagonal in the each degenerate subspace

of Ĥ0 in the coupled representation.

– The basis states in the coupled representation are eigenstates of Ĵ2, L̂2 and Ŝ2 and

hence Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 if the coupled representation

is chosen as the angular basis.

• The coupled representation forms a “good” angular basis for finding the corrections to

the energies of the hydrogen atom due to Ĥ ′SO.

Hamiltonian Uncoupled Is the Uncoupled Coupled Is the Coupled Is Any Arbitrary Complete Orthonormal Energy

Representation Representation Representation Representation Basis Constructed with Linear Combinations

(for a fixed n) a “Good” Basis? (for a fixed n) a “Good” Basis? of a Complete Set of States with the

Same n and l in the Coupled or Uncoupled

Representation a “Good” Basis?

Ĥ0 Diagonal — Diagonal — — En = −13.6eV
n2

Ĥ ′r Diagonal Yes Diagonal Yes Yes E ′r = − E2
n

2mc2

[
4n

l+1/2
− 3
]

Ĥ ′SO Not Diagonal No Diagonal Yes No E ′SO = E2
n

mc2

[
n(j(j+1)−l(l+1−3/4))

l(l+1)(l+1/2)

]
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Fine Structure Correction

C.6.6 Finding a “Good” Angular Basis for the Fine Structure Correction Term

to the Energy Spectrum of the Hydrogen Atom in Perturbation Theory

Consider the following conversation regarding finding a “good” angular basis for fine

structure term Ĥ ′fs = Ĥ ′r + Ĥ ′SO as a perturbation on the unperturbed Hamiltonian Ĥ0.

Student 1: The fine structure term Ĥ ′fs is made up of two mechanisms: Ĥ ′SO and Ĥ ′r. The

“good” angular basis is one in which both Ĥ ′SO and Ĥ ′r are diagonal in each degenerate

subspace of Ĥ0.

Student 2: I agree. In the preceding table, the coupled representation is a “good” angular

basis for both the relativistic correction term Ĥ ′r and the spin-orbit interaction term Ĥ ′SO,

because Ĥ ′r and Ĥ ′SO are both diagonal in each degenerate subspace of Ĥ0 in the coupled

representation. Therefore, the coupled representation forms a “good” angular basis for

finding the corrections to the energies due to the fine structure term Ĥ ′fs = Ĥ ′r + Ĥ ′SO.

Explain why you agree or disagree with each student.

C.6.7 First Order Corrections to the Energy Spectrum of the Hydrogen Atom

in Perturbation Theory Due to the Fine Structure

Combining the first order corrections to the energies for the hydrogen atom due to the

relativistic correction term in equation (C.9) and spin-orbit interaction term from equation

(C.14) gives the first order correction to the energies due to the fine structure correction

term in the hydrogen atom.

E ′fs = − E2
n

2mc2

[
4n

(j + 1/2)
− 3

]
(C.15)

3. How many distinct energies does the n = 2 state split into? Explain. [Hint: How many

possible values of j are there for the n = 2 subspace?]
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** Check your answer to question 3. **

3. For n = 2, there are two possible values of j, j = {1
2
, 3
2
}. The energies split into two

distinct levels.

l s j E ′fs Number of States

0
1

2

1

2
− 5E2

2

2mc2
2

1
1

2

1

2
− 5E2

2

2mc2
2

1
1

2

3

2
− E2

2

2mc2
4

If your answers to question 3 do not match with the checkpoint, go back and reconcile any

differences.

In one to two sentences, summarize what you have learned about the “good” angular basis

states for finding the first order corrections to the energy spectrum of the hydrogen atom

due to the fine structure term Ĥ ′fs (pertaining to whether the coupled representation, the

uncoupled representation, or any arbitrary complete orthonormal basis found with linear

combinations of a complete set of states with a fixed principal quantum number n in the

coupled or uncoupled representation form a “good” angular basis).
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Summary: Finding a “GOOD” Angular Basis for the Fine Structure

• For the entire fine structure perturbation Ĥ ′ = Ĥ ′r + Ĥ ′SO, the coupled representation

forms a “good” angular basis because Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0

in the coupled representation.

Hamiltonian Uncoupled Is the Uncoupled Coupled Is the Coupled Is Any Arbitrary Complete Orthonormal Energy

Representation Representation Representation Representation Basis Constructed with Linear Combination

(for a fixed n) a “Good” Basis? (for a fixed n) a “Good” Basis? of a Complete Set of States with the

Same n and l in the Coupled or Uncoupled

Representation a “Good” Basis?

Ĥ0 Diagonal — Diagonal — — En = −13.6eV
n2

Ĥ ′r Diagonal Yes Diagonal Yes Yes E ′r = − E2
n

2mc2

[
4n

l+1/2
− 3
]

Ĥ ′SO Not Diagonal No Diagonal Yes No E ′SO = E2
n

mc2

[
n(j(j+1)−l(l+1−3/4))

l(l+1)(l+1/2)

]

Ĥ ′fs = Not Diagonal No Diagonal Yes No E ′fs = − E2
n

2mc2

[
4n

(j+1/2)
− 3
]

Ĥ ′r + Ĥ ′SO
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II. Determining a “GOOD” Angular Basis and Correc-

tions to the Energies for ONLY the Zeeman Perturba-

tion Ĥ ′Z.

Zeeman Effect

C.6.8 Finding a “GOOD” Angular Basis for the Zeeman term as a Perturba-

tion for the Hydrogen Atom

Note: Treating the Zeeman term as the only perturbation on the unperturbed Hamiltonian is

a hypothetical case, one should always consider both the Zeeman term and the fine structure

term when an external magnetic field is applied to the hydrogen atom. This hypothetical

case is presented here to help when later we consider both the fine structure term and the

Zeeman term as perturbations for the hydrogen atom.

• A perturbation Ĥ ′Z acts on a hydrogen atom with the unperturbed Hamiltonian Ĥ0 =

− ~2
2m
∇2 − e2

4πε0
1
r
. The Zeeman perturbation term in the Hamiltonian is

Ĥ ′Z =
e

2m
(~L+ 2~S) · ~Bext =

µBBext

~
(L̂z + 2Ŝz) (C.16)

in which ~Bext = Bextẑ.

4. In each degenerate subspace of Ĥ0, the off-diagonal matrix elements of Ĥ ′Z will be zero

in a “good” basis. Is a “good” angular basis for finding the corrections to the energies

the coupled representation, the uncoupled representation, or any arbitrary complete

orthonormal basis found with linear combinations of the coupled or uncoupled states

with the same principal quantum number n? Explain.
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Consider the following conversation regarding choosing a “good” basis when the perturba-

tion is

Ĥ ′Z = µBBext

~ (L̂z + 2Ŝz).

Student 1: When a perturbation Ĥ ′Z = µBBext(L̂z + 2Ŝz) acts on a hydrogen atom, the

uncoupled representation is a “good” angular basis for finding the first order corrections to

the energies.

Student 2: I disagree. We can use either the coupled or the uncoupled representation

to find the first order corrections to the energies. Since ĴZ = L̂z + Ŝz, the perturbation

Ĥ ′Z = µBBext(L̂z + 2Ŝz) is not much different from ĴZ and so the coupled representation is

also a “good” angular basis.

Student 3: I only agree with Student 1. ĴZ is diagonal in both the coupled and the uncou-

pled representation. However, Ĥ ′ = µBBext(L̂z + 2Ŝz) = µBBex(Ĵz + Ŝz) is not proportional

to Ĵz. Therefore, Ĥ ′Z = µBBext(L̂z + 2Ŝz) is only diagonal in the uncoupled representation

in which the basis states are eigenstates of L̂z and Ŝz.

Explain why you agree or disagree with each student.

(If you need further help with why L̂z + 2Ŝz is diagonal in the uncoupled representation and

not the coupled representation, refer to the Part I of this tutorial.)
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** Check your answer to question 4. **

4. The uncoupled representation forms a “good” basis for finding the corrections to the

energies of the hydrogen atom due to only the Zeeman term Ĥ ′Z .

If your answer to question 4 does not match with the checkpoint, go back and reconcile any

differences.

C.6.9 First Order Corrections to the Energy Spectrum of the Hydrogen Atom

in Perturbation Theory Due to the Zeeman Term

Student 1 and Student 3 are correct in the preceding conversation in stating that the un-

coupled representation will form a “good” angular basis for Ĥ ′Z on Ĥ0.

5. What are the first order corrections to the energies due to the Zeeman term Ĥ ′Z using a

“good” basis?

6. How many distinct energies does the n = 2 state split into when we take into account

Ĥ ′Z as a perturbation on Ĥ0? Explain. [Hint: How many possible values of ml + 2ms

are there for n = 2?]

568



** Check your answer to questions 5-6. **

5. The first order corrections to the energies due to only the Zeeman term Ĥ ′Z using a

“good” basis (the uncoupled representation) is given by

E ′Z = µBBext(ml + 2ms) (C.17)

6. 5 distinct energies. For the n = 2 subspace, there are three possible values of ml

(−1, 0, 1) for l = 1 and one possible values of ml (0) for l = 0. For each value of l, there

are two possible values of ms (1
2
,−1

2
).

l ml ms Energy (E ′Z)

1

−1 1
2

0

−1 −1
2

−2µBBext

0 −1
2

−µBBext

0 1
2

µBBext

1 −1
2

0

1 1
2

2µBBext

0
0 −1

2
−µBBext

0 1
2

µBBext

If your answers to questions 5 and 6 do not match with the checkpoint, go back and reconcile

any differences.

In one to two sentences, summarize what you have learned about the “good” states for

finding the first order corrections to the energy spectrum of the hydrogen atom due to

only the Zeeman term Ĥ ′Z (pertaining to whether the coupled representation, the uncoupled

representation, or any arbitrary complete orthonormal basis found with linear combinations

of a complete set of states with a fixed principal quantum number n in the coupled or

uncoupled representation form a “good” basis).
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Summary: Finding a “GOOD” Angular Basis for Various Perturbations on Ĥ0

• Ĥ ′Z is diagonal in each degenerate subspace of Ĥ0 in the uncoupled representation.

– The basis states in the uncoupled representation are eigenstates of L̂z and Ŝz

• The uncoupled representation forms a “good” angular basis for finding the corrections

to the energies due to the Zeeman perturbation Ĥ ′Z .

Hamiltonian Uncoupled Is the Uncoupled Coupled Is the Coupled Is Any Arbitrary Complete Orthonormal Energy

Representation Representation Representation Representation Basis Constructed with Linear Combinations

(for a fixed n) a “Good” Basis? (for a fixed n) a “Good” Basis? of a Complete Set of States with the

Same n and l in the Coupled or Uncoupled

Representation a “Good” Basis?

Ĥ0 Diagonal — Diagonal — — En = −13.6eV
n2

Ĥ ′r Diagonal Yes Diagonal Yes Yes E ′r = − E2
n

2mc2

[
4n

l+1/2
− 3
]

Ĥ ′SO Not Diagonal No Diagonal Yes No E ′SO = E2
n

mc2

[
n(j(j+1)−l(l+1−3/4))

l(l+1)(l+1/2)

]

Ĥ ′fs = Not Diagonal No Diagonal Yes No E ′fs = − E2
n

2mc2

[
4n

(j+1/2)
− 3
]

Ĥ ′r + Ĥ ′SO

Ĥ ′Z Diagonal Yes Not Diagonal No No E ′Z = µBext(ml + 2ms)
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III. Determining a “GOOD” Angular Basis and Correc-

tions to the Energies due to BOTH the Fine Structure

and the Zeeman Perturbations Ĥ ′ = Ĥ ′fs + Ĥ ′Z.

As we work through the remainder of the tutorial, we will fill in the following flowchart after

each section regarding the intermediate, strong, and weak field Zeeman effect.

Determining a “GOOD” Angular Basis and

Corrections to the Energies due to BOTH the Fine

Structure and Zeeman Terms
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CASE 1: Intermediate Field Zeeman Effect (E ′fs ≈ E ′Z), when the fine structure

term is comparable to the Zeeman term in Ĥ ′)

C.6.10 Finding a “Good” Angular Basis for the Intermediate Field Zeeman

Effect

Consider the following conversation regarding whether the coupled or uncoupled represen-

tation forms a “good” angular basis for the intermediate field Zeeman effect (in order to

find the first order corrections to the energies).

Student 1: In the intermediate field Zeeman effect, we must treat Ĥ ′fs and Ĥ ′Z on an equal

footing. Does the coupled or uncoupled representation form a “good” angular basis?

Student 2: Since the coupled representation is a “good” angular basis for the fine structure

term and the uncoupled representation is a “good” angular basis for the Zeeman term,

both the coupled and uncoupled representation form “good” angular bases and are equally

appropriate to find the first order corrections to the energies for Ĥ ′ = Ĥ ′fs + Ĥ ′Z .

Student 3: I disagree with Student 2. You cannot consider different bases for different

parts of Ĥ ′. If we choose the coupled representation, Ĥ ′ = Ĥ ′fs + Ĥ ′Z is not diagonal in

each degenerate subspace of Ĥ0 since Ĥ ′Z is not diagonal in the coupled representation.

Similarly, if we choose the uncoupled representation, Ĥ ′ = Ĥ ′fs + Ĥ ′Z , is not diagonal in

each degenerate subspace of Ĥ0 since Ĥ ′fs is not diagonal in the uncoupled representation.

Neither of these representations forms a “good” basis.

Explain why you agree or disagree with Student 2 or Student 3.
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Consider the following conversation regarding whether to choose the coupled representation

or uncoupled representation as the angular basis for finding the corrections to the energies

in the intermediate field Zeeman effect.

Student 1: In the intermediate field Zeeman effect, neither the coupled nor uncoupled

representation forms a “good” angular basis. How do we determine the “good” angular

basis?

Student 2: We can express Ĥ ′ = Ĥ ′fs + Ĥ ′Z initially in either the coupled or uncoupled

representation which will not be a “good” angular basis. Then, a “good” angular basis is

found by diagonalizing Ĥ ′ in each degenerate subspace of Ĥ0. Thus, the “good” angular

basis states will be linear combinations of the originally chosen angular basis states.

Do you agree with Student 2? Explain.

The angular basis states for n = 2 are listed below in the coupled representation (left), and

each state in the coupled representation is given in terms of a linear combination of states

in the uncoupled representation (right) using the Clebsch-Gordon table (s = 1/2).

Using the following table, the perturbing Hamiltonian Ĥ ′ = Ĥ ′Z + Ĥ ′fs in the coupled rep-

resentation is given on the next page, in which γ =
(
α
8

)2
13.6 eV, α = e2

4πε0~c , β = µBBext

and the angular basis states are chosen in the order |ψ1〉 = |0, 1
2
, 1

2
〉, |ψ2〉 = |0, 1

2
, −1

2
〉,

|ψ3〉 = |1, 3
2
, 3

2
〉, |ψ4〉 = |1, 3

2
, −3

2
〉, |ψ5〉 = |1, 3

2
, 1

2
〉, |ψ6〉 = |1, 1

2
, 1

2
〉, |ψ7〉 = |1, 3

2
, −1

2
〉,

and |ψ8〉 = |1, 1
2
, −1

2
〉:
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Coupled Representation Uncoupled Representation

|l, j, mj〉 |l, ml〉|s, ms〉

|ψ1〉
∣∣∣∣0, 1

2
,

1

2

〉
|0, 0〉

∣∣∣∣12 , 1

2

〉
|ψ2〉

∣∣∣∣0, 1

2
, −1

2

〉
|0, 0〉

∣∣∣∣12 , −1

2

〉
|ψ3〉

∣∣∣∣1, 3

2
,

3

2

〉
|1, 1〉

∣∣∣∣12 , 1

2

〉
|ψ4〉

∣∣∣∣1, 3

2
, −3

2

〉
|1, −1〉

∣∣∣∣12 , −1

2

〉
|ψ5〉

∣∣∣∣1, 3

2
,

1

2

〉 √
2

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
+

√
1

3
|1, 1〉

∣∣∣∣12 , −1

2

〉
|ψ6〉

∣∣∣∣1, 1

2
,

1

2

〉
−
√

1

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
+

√
2

3
|1, 1〉

∣∣∣∣12 , −1

2

〉
|ψ7〉

∣∣∣∣1, 3

2
, −1

2

〉 √
1

3
|1, −1〉

∣∣∣∣12 , 1

2

〉
+

√
2

3
|1, 0〉

∣∣∣∣12 , −1

2

〉
|ψ8〉

∣∣∣∣1, 1

2
, −1

2

〉
−
√

2

3
|1, −1〉

∣∣∣∣12 , 1

2

〉
+

√
1

3
|1, 0〉

∣∣∣∣12 , −1

2

〉

Ĥ ′ = −



5γ − β 0 0 0 0 0 0 0

0 5γ + β 0 0 0 0 0 0

0 0 γ − 2β 0 0 0 0 0

0 0 0 γ + 2β 0 0 0 0

0 0 0 0 γ − 2
3
β

√
2
3
β 0 0

0 0 0 0
√
2
3
β 5γ − 1

3
β 0 0

0 0 0 0 0 0 γ + 2
3
β

√
2
3
β

0 0 0 0 0 0
√
2
3
β 5γ + 1

3
β
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Consider the following conversation regarding diagonalizing the Ĥ ′ = Ĥ ′fs + Ĥ ′Z matrix in

the n = 2 degenerate subspace of Ĥ0 for the intermediate field Zeeman effect.

Student 1: In the case of n = 2, Ĥ0 possesses an eight-fold degeneracy, which means that

in order to find a “good” angular basis for the correction to the n = 2 energy spectrum, we

must diagonalize the entire 8 x 8 Ĥ ′ matrix in the n = 2 degenerate subspace of Ĥ0.

Student 2: While it is true that we must diagonalize the Ĥ ′ matrix in the degenerate

subspace of Ĥ0, we are fortunate that the symmetry of the hydrogen atom yields many

zero off-diagonal matrix elements. Therefore, Ĥ ′ will be block diagonal in the degenerate

subspaces of Ĥ0.

Student 3: I agree with Student 2. We must make an effort to diagonalize Ĥ ′ only in those

block diagonal subspaces with smaller dimensions than the original 8× 8 Ĥ ′ matrix in order

to diagonalize the entire Ĥ ′ matrix in the degenerate subspace of Ĥ0 to obtain the “good”

angular basis set.

Student 4: I agree with Student 1, Student 2, and Student 3. When I calculate the Ĥ ′

matrix for n = 2 in the coupled representation and the angular basis states are chosen

in the order |ψ1〉 = |0, 1
2
, 1

2
〉, |ψ2〉 = |0, 1

2
, −1

2
〉, |ψ3〉 = |1, 3

2
, 3

2
〉, |ψ4〉 = |1, 3

2
, −3

2
〉,

|ψ5〉 = |1, 3
2
, 1

2
〉, |ψ6〉 = |1, 1

2
, 1

2
〉, |ψ7〉 = |1, 3

2
, −1

2
〉, and |ψ8〉 = |1, 1

2
, −1

2
〉, I get the block

diagonal matrix Ĥ ′ below

Ĥ ′ = −



5γ − β 0 0 0 0 0 0 0

0 5γ + β 0 0 0 0 0 0

0 0 γ − 2β 0 0 0 0 0

0 0 0 γ + 2β 0 0 0 0

0 0 0 0 γ − 2
3
β

√
2
3
β 0 0

0 0 0 0
√
2
3
β 5γ − 1

3
β 0 0

0 0 0 0 0 0 γ + 2
3
β

√
2
3
β

0 0 0 0 0 0
√
2
3
β 5γ + 1

3
β



 
 

575



We will only need to diagonalize the 2× 2 matrices −

 γ − 2
3
β

√
2
3
β

√
2
3
β 5γ − 1

3
β

 and

−

 γ + 2
3
β

√
2
3
β

√
2
3
β 5γ + 1

3
β

 to obtain the “good” angular basis.

Explain why you agree or disagree with each student.
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C.6.11 First Order Corrections to the Energy Spectrum of the Hydrogen Atom

in Perturbation Theory for the Intermediate Field Zeeman Effect

Consider the following conversation regarding whether choosing the coupled representation

or the uncoupled representation as the initial angular basis and then carrying out a change

of basis by diagonalizing Ĥ ′ in the degenerate subspace of Ĥ0 affects the corrections to the

energies in the intermediate field Zeeman effect.

Student 1: When calculating the first order corrections to the energies in the intermediate

field Zeeman effect, we can choose either the coupled or the uncoupled representation as

the initial angular basis even if we know it is not a “good” angular basis. Then, a “good”

angular basis will be found by diagonalizing Ĥ ′ in each degenerate subspace of Ĥ0. After

diagonalizing Ĥ ′, the new basis is “good” and the first order corrections to the energies are

the diagonal matrix elements.

Student 2: I disagree. Since the diagonal matrix elements of Ĥ ′ will depend on the choice

of initial basis, a different choice of the initial basis in which we diagonalize Ĥ ′ in the

degenerate subspace of Ĥ0 will change the first order corrections to the energies.

Student 3: I disagree with Student 2. After diagonalizing Ĥ ′ in each degenerate subspace

of Ĥ0, a “good” basis is obtained and the first order correction to the energy will be the

same regardless of which basis, e.g., the coupled or uncoupled representation, you had

initially chosen. In a “good” basis, you will end up with the same diagonal matrix elements

of Ĥ ′ which are the first order corrections to the energies.

Explain why you agree or disagree with each student.
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In one or two sentences, summarize what you have learned about the “good” angular

basis states for finding the first order corrections to the energy spectrum of the hydrogen

atom due to the intermediate field Zeeman effect (pertaining to whether the coupled

representation, the uncoupled representation, or any arbitrary complete orthonormal basis

constructed with linear combinations of a complete set of states with a fixed principal

quantum number n in the coupled or uncoupled representation form a “good” angular basis).

Shortly, we shall calculate the first order corrections to the energies due to the intermediate

field Zeeman effect. But before we do so, let’s first consider the limiting cases when one

perturbation is stronger than the other.
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Review the following flowchart concerning a “good” angular basis and corrections to the

energies for the intermediate field Zeeman effect. Using the intermediate field Zeeman effect

as a guide, attempt to fill in the steps required to determine a “good” angular basis and

corrections to the energies due to both the fine structure (Ĥ ′fs) and Zeeman (Ĥ ′Z) terms for

the strong field Zeeman effect (EZ � E ′fs) and the weak field Zeeman effect (E ′fs � E ′Z).

You can add or remove boxes in the flowchart if necessary.

Determining a “GOOD” Angular Basis and

Corrections to the Energies due to BOTH the Fine

Structure and Zeeman Term
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Summary: Finding a “GOOD” Angular Basis for the Intermediate Field Zeeman

Effect Ĥ ′ = Ĥ ′Z + Ĥ ′fs

• Neither the coupled nor the uncoupled representation forms a “good” angular basis when

E ′Z ≈ E ′fs.

• To find a “good” angular basis for the intermediate field Zeeman effect E ′Z ≈ E ′fs:

– First choose either the coupled or the uncoupled representation as the basis.

– Diagonalize Ĥ ′ = Ĥ ′Z + Ĥ ′fs in each degenerate subspace of Ĥ0.

– The “good” basis will be a special linear combinations of the originally chosen basis

set.

C.6.12 Limiting Cases

Consider the following conversation regarding finding a “good” basis when treating the

perturbation in two steps.

Student 1: If we have a perturbation that has two terms in which one perturbation is

stronger than the other, we can first take into account the correction due to the stronger

perturbation and then take into account the weaker perturbation as a second perturbation.

Student 2: I agree. In the first step, we must find a “good” basis for Ĥ0 and Ĥ ′strong,

so Ĥ ′strong must be diagonal in each degenerate subspace of Ĥ0. Then in the second step,

treat Ĥ0
strong = Ĥ0 + Ĥ ′strong as the unperturbed Hamiltonian and Ĥ ′weak as perturbation on

Ĥ0
strong = Ĥ0 + Ĥ ′strong. A “good” basis for step 2 is one in which Ĥ ′weak is diagonal in each

degenerate subspace of Ĥ0
strong = Ĥ0 + Ĥ ′strong.

Student 3: I disagree with Student 2. You cannot find one “good” basis for step 1 and a

different “good” basis for step 2.

Student 4: I agree with Student 1 and Student 2. It is approprate to use a two step

perturbation theory when one part of the perturbation is stronger than another if the error

due to this two step process will be negligible. If the basis after step 1 is not a “good” basis

for step 2, we would need to diagonalize Ĥ ′weak in each degenerate subspace of Ĥ0
strong =

Ĥ0 + Ĥ ′strong to find a “good” basis in step 2.

Explain why you agree or disagree with each student.
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• Summary of Two-Step Approximation

– STEP 1: First consider only the stronger perturbation Ĥ ′strong as a perturbation on

Ĥ0.

∗ Choose a basis in which Ĥ0 is diagonal and Ĥ ′strong is diagonal in each degenerate

subspace of Ĥ0.

∗ Determine the first order corrections to the energies E ′strong due to the stronger

perturbation Ĥ ′strong.

– STEP 2: Consider the weaker perturbation Ĥ ′weak as a perturbation on the new

unperturbed Hamiltonian Ĥ0
strong = Ĥ0 + Ĥ ′strong.

∗ Treat as the new unperturbed Hamiltonian Ĥ0
strong = Ĥ0 + Ĥ ′strong.

∗ Treat E0
strong = E0 + E ′strong as the new unperturbed energies.

∗ Determine the degeneracy of Ĥ0
strong = Ĥ0 + Ĥ ′strong (i.e., how many distinct

states have the same energy E0
strong,i).

∗ Determine if Ĥ ′weak is diagonal in each degenerate subspace of Ĥ0
strong = Ĥ0 +

Ĥ ′strong.

· If Ĥ ′weak is already diagonal in each degenerate subspace of Ĥ0
strong = Ĥ0 +

Ĥ ′strong then the basis is “good” and the diagonal elements of Ĥ ′weak will give

the corrections E ′weak.

· If Ĥ ′weak is not diagonal in each degenerate subspace of Ĥ0
strong = Ĥ0 + Ĥ ′strong,

diagonalize Ĥ ′weak in each degenerate subspace of Ĥ0
strong to find a “good” basis.
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Consider the following conversation regarding approximating the corrections to the energy

when one perturbation is stronger than the other.

Student 1: When the hydrogen atom is placed in an external magnetic field, we must

consider both the Zeeman term and the fine structure term in the Hamiltonian as perturba-

tions. Therefore, neither the coupled nor the uncoupled representation form a “good” basis.

We must diagonalize the entire Ĥ ′ = Ĥ ′Z + Ĥ ′fs matrix in the degenerate subspace of Ĥ0.

Student 2: That is true. However, if one term is much stronger than the other, we can

approximate the first order corrections to the energy using perturbation theory in two steps.

In the first step, consider only the stronger perturbation. Then, as the second step, consider

the weaker perturbation. This two-step approximation may simplify the process for finding

a “good” basis and provide an alternative to diagonalizing the entire Ĥ ′ = Ĥ ′Z + Ĥ ′fs matrix

in each degenerate subspace of Ĥ0.

Student 3: I agree with Student 2. We will find that in the limiting case, the first order

corrections to the energies obtained using this two-step approximation match with the first

order corrections to the energies obtained by diagonalizing the entire Ĥ ′ = Ĥ ′Z + Ĥ ′fs matrix

in each degenerate subspace of Ĥ0 as in the intermediate field Zeeman effect when we take

the appropriate limit.

Explain why you agree or disagree with each student.
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All the students are correct in the preceding conversation. However, we will focus on the

limiting cases and use the method described by Student 2 and Student 3.

• When E ′Z � E ′fs or E ′fs � E ′Z , we can use a two step approximation to find the first

order corrections to the energies of the hydrogen atom.

• Two-Step Approximation for the Strong and Weak Field Zeeman Effect

– CASE 2: Strong Field Zeeman Effect (E ′Z � E ′fs)

∗ The Zeeman term dominates.

· STEP 1: Treat only Ĥ ′Z as the perturbation on Ĥ0.

· STEP 2: Now, treat Ĥ ′fs as the perturbation on the new unperturbed Hamil-

tonian Ĥ0
Z = Ĥ0 + Ĥ ′Z after the first step.

– CASE 3: Weak Field Zeeman Effect (E ′fs � E ′Z)

∗ The fine structure term dominates.

· STEP 1: Treat only Ĥ ′fs as the perturbation on Ĥ0.

· STEP 2: Now, treat Ĥ ′Z as the perturbation on the new unperturbed Hamil-

tonian Ĥ0
fs = Ĥ0 + Ĥ ′fs after the first step.
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CASE 2: Strong Field Zeeman Effect: Perturbation Theory in Two Steps to

Find the Corrections to Energy Spectrum

C.6.12.1 Finding a “GOOD” Basis for the Strong Field Zeeman Effect in the

Hydrogen Atom STEP 1:

For the case E ′Z � E ′fs, in step 1, we treat only Ĥ ′Z as the perturbation on Ĥ0.

7. For the case E ′Z � E ′fs, what is a “good” angular basis for step 1 when we only consider

Ĥ ′Z as perturbation? Explain.

8. Write an expression for the first order corrections to the energies due to only the stronger

perturbation Ĥ ′Z acting on the unperturbed Hamiltonian Ĥ0 (once you have found a

“good” basis). Here the first order corrections are the exact results for the energies for

the Hamiltonian Ĥ = Ĥ0 + Ĥ ′Z after STEP 1 since Ĥ0 and Ĥ ′Z commute (so Ĥ0 and

Ĥ ′Z can be diagonalized simultaneously in a “good” basis).

STEP 2:

In the strong field when E ′Z � E ′fs, in step 2, the unperturbed Hamiltonian includes the

Zeeman term and becomes

Ĥ0
Z = Ĥ0 + Ĥ ′Z = − ~2

2m
∇2 − e2

4πε0r
+

e

2m
Bext(L̂z + 2Ŝz). (C.18)

9. Is the Ĥ0
Z matrix a diagonal matrix if the coupled representation or the uncoupled

representation is chosen as the basis? Explain your reasoning. Your answer should be

consistent with your response to question 7 above.
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Now for the n = 2 subspace, take a look at the Ĥ0
Z = Ĥ0 +Ĥ ′Z and Ĥ ′fs matrices given below

in which E2 = −13.6eV
4

and the basis vectors are chosen in the uncoupled representation

(|l, ml, ms〉) in the order |ψ1〉 = |0, 0, 1
2
〉, ψ2〉 = |1, 0, −1

2
〉, |ψ3〉 = |1, 1, 1

2
〉, |ψ4〉 =

|1, 1, −1
2
〉, |ψ5〉 = |1, 0, 1

2
〉, |ψ6〉 = |1, 0, −1

2
〉, |ψ7〉 = |1, −1, 1

2
〉, and |ψ8〉 = |1, −1, −1

2
〉.

Then answer questions 10-13 for the Strong field Zeeman effect.

Ĥ0
Z = Ĥ0 + Ĥ ′Z

Ĥ0
Z = −13.6eV

4



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



+ µBBext



1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −2



=



E2 + µBBext 0 0 0 0 0 0 0

0 E2 − µBBext 0 0 0 0 0 0

0 0 E2 + 2µBBext 0 0 0 0 0

0 0 0 E2 0 0 0 0

0 0 0 0 E2 + µBBext 0 0 0

0 0 0 0 0 E2 − µBBext 0 0

0 0 0 0 0 0 E2 0

0 0 0 0 0 0 0 E2 − 2µBBext



(C.19)

Ĥ ′fs = Ĥ ′r+Ĥ
′
SO = Ĥ ′fs =

(−13.6 eV)α2

192



15 0 0 0 0 0 0 0

0 15 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 11 4
√

2 0 0 0

0 0 0 4
√

2 7 0 0 0

0 0 0 0 0 7 4
√

2 0

0 0 0 0 0 4
√

2 11 0

0 0 0 0 0 0 0 3



(C.20)
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10. Determine the degeneracy in the energy eigenvalues of the “new” unperturbed Hamil-

tonian Ĥ0
Z = Ĥ0 + Ĥ ′Z after accounting for the stronger perturbation. Then circle the

corresponding degenerate subspaces of Ĥ0
Z = Ĥ0 + Ĥ ′Z (for the n = 2 subspace) in the

preceding matrix representation in equation (C.19).

11. Identify the matrix elements of Ĥ ′fs in equation (C.20) that correspond to each degenerate

subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z in equation (C.19) and determine whether Ĥ ′fs is diagonal

in any of these subspaces of Ĥ0
Z .

12. Determine whether the uncoupled representation chosen as the basis in question 9 is a

“good” basis for the unperturbed Hamiltonian Ĥ0
Z = Ĥ0 + Ĥ ′Z and the perturbation

Ĥ ′fs. Explain how you made the determination.
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** Check your answers to questions 7-12. **

7. The uncoupled representation forms a “good” basis when only the Zeeman term Ĥ ′Z

is the perturbation on the unperturbed Hamiltonian Ĥ0.

8. As we determined in equation (C.17), the first order corrections to the energies due

to the Zeeman term Ĥ ′Z in the uncoupled representation are E ′Z = µBBext(ml + 2ms).

9. Ĥ0
Z = Ĥ0 + Ĥ ′Z is diagonal if the uncoupled representation is chosen as the basis.

10. Ĥ0
Z = Ĥ0 + Ĥ ′Z possesses three two-fold degeneracies (see equation C.19) in the

n = 2 subspace of Ĥ0. There are two distinct states that share the new unperturbed

energies E2 + µBext, E2 − µBext, and E2.

11. The perturbation Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z

treated as the unperturbed Hamiltonian in step 2 of perturbation theory.

12. Yes. The uncoupled representation is a “good” angular basis in this case since

Ĥ0
Z = Ĥ0 + Ĥ ′Z is diagonal and Ĥ ′fs is diagonal in each degenerate subspace of

Ĥ0
Z = Ĥ0 + Ĥ ′Z .

If your answers to questions 7-12 do not match with the checkpoint answers, go back and

reconcile any differences.
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For the following conversation, consider the n = 2 subspace for which the unperturbed

Hamiltonian for the strong field Zeeman effect is Ĥ0
Z = Ĥ0 + Ĥ ′Z after the first step for the

strong field Zeeman effect (E ′Z � E ′fs).

Student 1: In the limit E ′Z � E ′fs, we can only take the Zeeman term Ĥ ′Z as the

perturbation first when we are using the two-step approximation. Then, after the first

step, consider the unperturbed Hamiltonian as Ĥ0
Z = Ĥ0 + Ĥ ′Z with unperturbed energies

E0
n = En+µBext(ml+2ms), and consider the degeneracy left in E0

n to determine the degener-

ate subspaces of Ĥ0
Z . In the second step, treat the fine structure part Ĥ ′fs as the perturbation

on Ĥ0
Z = Ĥ0 + Ĥ ′Z .

Student 2: What is the degeneracy left in the hydrogen atom energy spectrum when it is

placed in a strong external magnetic field after accounting for only the Zeeman term Ĥ ′Z as

the perturbation in the first step?

Student 3: In the n = 2 subspace, the Ĥ0
Z = Ĥ0 + Ĥ ′Z matrix is the following if the basis

states are chosen in the uncoupled representation (|l, ml, ms〉) in the order |ψ1〉 = |0, 0, 1
2
〉,

|ψ2〉 = |0, 0, −1
2
〉,|ψ3〉 = |1, 1, 1

2
〉, |ψ4〉 = |1, 1, −1

2
〉, |ψ5〉 = |1, 0, 1

2
〉, |ψ6〉 = |1, 0, −1

2
〉,

|ψ7〉 = |1, −1, 1
2
〉, and |ψ8〉 = |1, −1, −1

2
〉

Ĥ0
Z = Ĥ0 + Ĥ ′Z has three separate two-fold degeneracies for the energies

E2 + µBBext, E2 − µBBext, and E2 as indicated by the boxed, underlined, and circled

matrix elements of Ĥ0
Z above.

Student 4: I agree with both Student 1 and Student 3. By considering the stronger

perturbation Ĥ ′Z first, some of the degeneracies are broken and the eight-fold degeneracy

in the energy spectrum of Ĥ0 has become three separate two-fold degeneracies plus two

nondegenerate levels in the energy spectrum of Ĥ0
Z = Ĥ0 + Ĥ ′Z .

Explain why you agree or disagree with each student.
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Consider the following conversation regarding the case E ′Z � E ′fs and treating the pertur-

bation in two steps with the stronger Zeeman term considered as part of the unperturbed

Hamiltonian Ĥ0
Z = Ĥ0 + Ĥ ′Z to find the corrections due to the weaker perturbation Ĥ ′fs.

Student 1: Even in a two step process, how can we find a “good” basis easily when both

the fine structure term Ĥ ′fs and the Zeeman term Ĥ ′Z are present? The “good” basis is one

in which there are no off-diagonal matrix elements of Ĥ ′ = Ĥ ′Z + Ĥ ′fs in the degenerate

subspace of Ĥ0. Since Ĥ ′fs is diagonal in the coupled representation and Ĥ ′Z is diagonal in

the uncoupled representation, neither the coupled nor the uncoupled representation could

possibly form a “good” basis when we have Ĥ ′ = Ĥ ′Z + Ĥ ′fs.

Student 2: I agree. In step 1, when we only consider Ĥ ′Z as the perturbation on Ĥ0, we

choose the uncoupled representation as the “good” basis. Once the uncoupled representation

is chosen as the “good” basis, we are guaranteed to have off-diagonal matrix elements in the

weaker fine structure perturbation matrix Ĥ ′fs. Thus, the “good” basis for step 1 cannot be

a “good” basis for step 2.

Student 3: Actually, once we treat the stronger Zeeman perturbation Ĥ ′Z in the first step,

we lift some of the degeneracy in the energy spectrum of Ĥ0. There is still degeneracy in

the energy spectrum E0
n = En + µBBext(ml + 2ms) after the first step, but now the degen-

eracy is present in smaller subspaces of Ĥ0. For example, for the n = 2 subspace in step 2,

Ĥ0
Z = Ĥ0 + Ĥ ′Z in the uncoupled representation is

In the uncoupled representation, Ĥ ′fs is not diagonal in the entire n = 2 subspace, but it

is diagonal in each degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z . In the Ĥ ′fs matrix below, the

elements of the degenerate subspace of Ĥ0
Z corresponding to the degenerate energy E2 +

µBBext are boxed. We see that Ĥ ′fs is diagonal in the 2 × 2 subspace corresponding to the

degenerate energy E2 + µBBext.
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Similarly, Ĥ ′fs is diagonal in the degenerate subspace of Ĥ0
Z for the degenerate energies E2

and E2 − µBBext. Therefore, the uncoupled representation does form a “good” basis in this

two step process.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding choosing the basis states in a different order

to easily determine a “good” basis for the strong field Zeeman effect (E ′Z � E ′fs).

Student 1: In the strong field Zeeman effect, for the n = 2 subspace, we chose basis

states in the uncoupled representation (|l, ml, ms〉) in the order |ψ1〉 = |0, 0, 1
2
〉, |ψ2〉 =

|0, 0, −1
2
〉,|ψ3〉 = |1, 1, 1

2
〉, |ψ4〉 = |1, 1, −1

2
〉, |ψ5〉 = |1, 0, 1

2
〉, |ψ6〉 = |1, 0, −1

2
〉,

|ψ7〉 = |1, −1, 1
2
〉, and |ψ8〉 = |1, −1, −1

2
〉 to write the Ĥ0

Z = Ĥ0 + Ĥ ′Z matrix in equation

(C.19) and the Ĥ ′fs matrix in equation (C.20). Can we choose to write the basis states in

a different order to make the Ĥ0
Z = Ĥ0 + Ĥ ′Z matrix such that the degenerate eigenvalues

along the diagonal are adjacent? Doing so may make it easier to determine if we have a

“good” basis.

Student 2: Yes. Suppose we choose the basis states in the order |φ1〉 = |0, 0, 1
2
〉, |φ2〉 =

|1, 0, 1
2
〉, |φ3〉 = |0, 0, −1

2
〉, |φ4〉 = |1, 0, −1

2
〉, |φ5〉 = |1, 1, −1

2
〉, |φ6〉 = |1, −1, 1

2
〉,

|φ7〉 = |1, 1, 1
2
〉, and |φ8〉 = |1, −1, −1

2
〉, then in the n = 2 subspace, the Ĥ0

Z = Ĥ0 + Ĥ ′Z

matrix is

The degenerate subspaces of Ĥ0
Z = Ĥ0 + Ĥ ′Z are boxed. Each degenerate subspace of Ĥ0

Z

is now diagonal. Student 3: I agree with Student 2. In order to determine if the “good”

basis for step 1 is also a “good” basis for step 2, we must check that Ĥ ′fs is diagonal in

each degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z . When basis states are chosen in the order

|φ1〉 = |0, 0, 1
2
〉, |φ2〉 = |1, 0, 1

2
〉, |φ3〉 = |0, 0, −1

2
〉, |φ4〉 = |1, 0, −1

2
〉, |φ5〉 = |1, 1, −1

2
〉,

|φ6〉 = |1, −1, 1
2
〉, |φ7〉 = |1, 1, 1

2
〉, and |φ8〉 = |1, −1, −1

2
〉, the Ĥ ′fs matrix is

Now we can more easily see that Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0
Z =

Ĥ0 + Ĥ ′Z .

Student 4: I disagree with Student 2 and Student 3. We are not permitted to write the

basis states in any order we choose. If we change the order of the basis states, we change the

first order corrections to the energies. Since the first order corrections to the energies are
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the diagonal matrix elements of the perturbation in a “good” basis, writing the basis states

in a different order will produce incorrect first order corrections to the energies.

Student 3: No! Reordering the basis states just changes the order in which the unperturbed

energies and their corrections appear, but corrections to each unperturbed energy will be the

same. Remember that we need to reorder both Ĥ0
Z and Ĥ ′fs matrices since the basis vectors

must be chosen in the same order for all matrices.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding the off-diagonal matrix elements of Ĥ ′ in each

degenerate subspace of Ĥ0
Z in the strong field Zeeman effect (E ′Z � E ′fs).

Student 1: Since Ĥ ′Z is diagonal in the uncoupled representation and Ĥ ′fs is diagonal

in the coupled representation, we were fortunate that after the first step in our two-step

approximation, the off-diagonal matrix elements of Ĥ ′fs were zero in each degenerate

subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z in the uncoupled representation after step 1.

Student 2: I agree with Student 1. Considering Ĥ0
Z = Ĥ0 + Ĥ ′Z as the new unperturbed

Hamiltonian after the first step, the stronger perturbation Ĥ ′Z breaks some of the degeneracy

in the energy spectrum of Ĥ0. In the second step in perturbation theory, the non-zero

off-diagonal matrix elements of the weaker perturbation Ĥ ′fs are NOT in the degenerate

subspaces of Ĥ0
Z = Ĥ0 + Ĥ ′Z when we consider the unperturbed Hamiltonian Ĥ0

Z = Ĥ0 + Ĥ ′Z

and the uncoupled representation as the basis.

Student 3: You are correct. We got lucky! After the first step, if the off-diagonal matrix

elements of the weaker perturbation Ĥ ′fs were not zero in the degenerate subspaces of

Ĥ0
Z = Ĥ0 + Ĥ ′Z , we would need to determine the “good” basis by diagonalizing Ĥ ′fs in each

degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z in the second step. The uncoupled representation

would not have been a “good” basis.

Explain why you agree or disagree with each student.
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C.6.12.2 Finding Corrections to the Energies for the Strong Field Zeeman

Effect After the first step, the unperturbed Hamiltonian including the Zeeman term is

Ĥ0
Z = Ĥ0 + Ĥ ′Z = − ~2

2m
∇2 − e2

4πε0r
+

e

2m
Bext(Lz + 2Sz) (C.21)

and the corresponding unperturbed energies are

E0
Z = −13.6eV

n2
+ µBBext(ml + 2ms) (C.22)

13. After step 2, find one of the first order corrections to the energies due to the weaker

perturbation Ĥ ′fs for the hydrogen atom placed in a strong external magnetic field for

the n = 2 subspace.
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** Check your answers to question 13. **

13. The first order corrections to the energies due to the fine structure term for the

hydrogen atom placed in a strong external magnetic field for the n = 2 subspace are the

diagonal elements of Ĥ ′fs in equation (??).

E ′1 =
(−13.6 eV)α2

192
(15) E ′2 =

(−13.6 eV)α2

192
(7)

E ′3 =
(−13.6 eV)α2

192
(15) E ′4 =

(−13.6 eV)α2

192
(7)

E ′5 =
(−13.6 eV)α2

192
(11) E ′6 =

(−13.6 eV)α2

192
(11)

E ′7 =
(−13.6 eV)α2

192
(3) E ′8 =

(−13.6 eV)α2

192
(3)

If your answers to question 13 do not match with the checkpoint answers, go back and

reconcile any differences.

In one to two sentences, summarize what you have learned about the “good” angular basis

states for finding the first order corrections to the energy spectrum of the hydrogen atom

due to the strong field Zeeman effect (pertaining to whether the coupled representation,

the uncoupled representation, or any arbitrary complete orthonormal basis constructed with

linear combinations of a complete set of states with a fixed principal quantum number n in

the coupled or uncoupled representation form a “good” angular basis).
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Summary: Finding a “GOOD” Angular Basis for the Strong Field Zeeman Effect

(E ′Z � E ′fs)

• We can use a two step process in perturbation theory to find corrections to the hydrogen

atom energy spectrum when E ′Z � E ′fs.

Step 1: Treat the stronger perturbation Ĥ ′Z as a perturbation on the unperturbed Hamilto-

nian Ĥ0.

– Ĥ ′Z is diagonal in the uncoupled representation.

Step 2: Treat the fine structure part of the Hamiltonian, Ĥ ′fs, as a perturbation on the new

unperturbed Hamiltonian Ĥ0
Z = Ĥ0 + Ĥ ′Z .

– In the uncoupled representation, Ĥ ′fs is diagonal in each degenerate subspace of

Ĥ0
Z = Ĥ0 + Ĥ ′Z (even though Ĥ ′fs has off-diagonal matrix elements in the uncoupled

representation, they are not in the degenerate subspaces of Ĥ0
Z = Ĥ0 + Ĥ ′Z).

• The uncoupled representation forms a “good” angular basis for finding the corrections

to the energies.

Review the following flowchart concerning the “good” basis and how to find the corrections

to the energies for the intermediate and strong field Zeeman effect. Using the intermediate

and strong field Zeeman effect as a guide, attempt to fill in the steps required to determine a

“good” basis and corrections to the energies due to both the fine structure (Ĥ ′fs) and Zeeman

(Ĥ ′Z) terms for the the weak field Zeeman effect (E ′fs � E ′Z). You may add or remove boxes

in the flowchart if necessary.
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Determining a “GOOD” Angular Basis and

Corrections to the Energies due to BOTH the Fine

Structure and Zeeman Effect

CASE 3: Weak Field Zeeman Effect: Perturbation Theory in Two Steps to Find

the Corrections to the Energy Spectrum

C.6.12.3 Finding a “GOOD” Basis for the Weak Field Zeeman Effect (E ′fs �

E ′Z) STEP 1:

In step 1, for the case E ′fs � E ′Z , we treat only Ĥ ′fs as the perturbation on Ĥ0.

14. For the case E ′fs � E ′Z , what is the “good” angular basis for step 1 when we ignore Ĥ ′Z?

Explain.
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15. Write an expression for the first order corrections to the energies due to the stronger

perturbation Ĥ ′fs.

STEP 2:

In the weak field when Ĥ ′fs � Ĥ ′Z , in step two, the unperturbed Hamiltonian including the

fine structure term becomes

Ĥ0
fs = − ~2

2m
∇2 − e2

4πε0r
− p̂4

8m3c2
+

(
e2

8πε0

)
1

m2c2r3
~L · ~S. (C.23)

16. For Ĥ0
fs = Ĥ0 + Ĥ ′fs, is Ĥ0

fs diagonal if the angular basis is chosen to be the coupled

representation, uncoupled representation, or neither? Explain your reasoning.
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Now for the n = 2 subspace, take a look at the Ĥ0
fs = Ĥ0+Ĥ ′fs and Ĥ ′Z matrices given below

in the coupled representation (|l, j, mj〉) in which E2 = −13.6eV
4

and the basis states are

chosen in the order |Φ1〉 = |1, 3
2
, 3

2
〉, |Φ2〉 = |1, 3

2
, 1

2
〉, |Φ3〉 = |1, 3

2
, −1

2
〉, |Φ4〉 = |1, 3

2
, −3

2
〉,

|Φ5〉 = |1, 1
2
, 1

2
〉, |Φ6〉 = |1, 1

2
, −1

2
〉, |Φ7〉 = |0, 1

2
, 1

2
〉 and |Φ8〉 = |0, 1

2
, −1

2
〉. Then, answer

questions 16-20 for the weak field Zeeman effect.

Ĥ0
fs = Ĥ0 + Ĥ ′fs

Ĥ0
fs = E2



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



+
E2

2

mc2



−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −5 0 0 0

0 0 0 0 0 −5 0 0

0 0 0 0 0 0 −5 0

0 0 0 0 0 0 0 −5



0
fs =



E2 − E2
2

mc2
0 0 0 0 0 0 0

0 E2 − E2
2

mc2
0 0 0 0 0 0

0 0 E2 − E2
2

mc2
0 0 0 0 0

0 0 0 E2 − E2
2

mc2
0 0 0 0

0 0 0 0 E2 − 5E2
2

mc2
0 0 0

0 0 0 0 0 E2 − 5E2
2

mc2
0 0

0 0 0 0 0 0 E2 − 5E2
2

mc2
0

0 0 0 0 0 0 0 E2 − 5E2
2

mc2



(C.24)
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Ĥ ′Z = µBBext



2 0 0 0 0 0 0 0

0 2
3

0 0 −
√
2
3

0 0 0

0 0 −2
3

0 0 −
√
2
3

0 0

0 0 0 −2 0 0 0 0

0 −
√
2
3

0 0 1
3

0 0 0

0 0 −
√
2
3

0 0 −1
3

0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1



(C.25)

17. In step 2, determine the degeneracy of the “new” unperturbed Hamiltonian

Ĥ0
fs = Ĥ0 + Ĥ ′fs after accounting for the stronger perturbation and circle the cor-

responding degenerate subspaces in Ĥ0
fs = Ĥ0 + Ĥ ′fs for the n = 2 subspace in the

preceding matrix representation in equation (C.24).

18. Identify the matrix elements of Ĥ ′Z in equation (C.25) that correspond to each degenerate

subspace of Ĥ0
fs = Ĥ0 + Ĥ ′fs in equation (C.24) and determine whether Ĥ ′Z is diagonal

in any of these subspaces of Ĥ0
fs.

19. Determine whether the basis chosen in question 16 is a “good” angular basis for the

unperturbed Hamiltonian Ĥ0
fs = Ĥ0 + Ĥ ′fs and the perturbation Ĥ ′Z . Explain how you

made the determination.
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** Check your answers to questions 14-19. **

14. The coupled representation forms a “good” basis when only the fine structure term

Ĥ ′fs is the perturbation on the unperturbed Hamiltonian Ĥ0

15. As we determined in equation (C.15), the first order corrections to the energies due to

the fine structure term Ĥ ′fs in the coupled representation are E ′fs =
E2
n

2mc2

[
3− 4n

j + 1/2

]
.

16. For a fixed n, Ĥ0
fs = Ĥ0 + Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0 if the

coupled representation is chosen as the angular basis.

17. Ĥ0
fs = Ĥ0 + Ĥ ′fs possesses two four-fold degeneracies in the n = 2 subspace. There

are four distinct states that share the new unperturbed energies E2− 5E2
2

mc2
and E2− E2

2

mc2
.

18. The perturbation Ĥ ′Z is diagonal in each degenerate subspace of Ĥ0
fs = Ĥ0 + Ĥ ′fs

treated as the unperturbed Hamiltonian in step 2 of perturbation theory.

19. Yes. The coupled representation is a “good” angular basis. In the second step,

the new perturbation term Ĥ0
fs = Ĥ0 + Ĥ ′fs is diagonal in the coupled representation

for a fixed n and the perturbation Ĥ ′Z is diagonal in each degenerate subspace of

Ĥ0
fs = Ĥ0 + Ĥ ′fs.

If your answers to questions 14-19 do not match with the checkpoint, go back and reconcile

any differences.
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Consider the following conversation regarding the weak field Zeeman effect (E ′fs � E ′Z) and

finding a “good” basis for the two-step process in the weak field Zeeman effect (E ′fs � E ′Z).

Student 1: Since Ĥ ′Z = µBBext(L̂z + 2Ŝz), we cannot use the coupled representation as

the angular basis. Ĥ ′Z is not diagonal in the coupled representation. To find the first order

corrections to the energies, we must use the uncoupled representation since Ĥ ′Z is diagonal

in the uncoupled representation.

Student 2: I don’t see how either the coupled or uncoupled representation form a “good”

angular basis when we have both Ĥ ′fs and Ĥ ′Z . They simply cannot be diagonalized simul-

taneously in either basis. We must choose linear combinations of the states in the coupled

or uncoupled representation so that the basis diagonalizes the sum of Ĥ ′fs and Ĥ ′Z in each

degenerate subspace of Ĥ0.

Student 3: I agree with Student 2 only for the intermediate field Zeeman effect with

E ′fs ≈ E ′Z . In the weak field Zeeman effect in which E ′fs � E ′Z , we can use the two step

approximation by considering only the stronger perturbation Ĥ ′fs in the first step. In the

second step, we consider the “new” unperturbed Hamiltonian Ĥ0
fs = Ĥ0 + Ĥ ′fs and the

perturbation Ĥ ′Z . If the coupled representation is chosen as the angular basis, then in the

n = 2 subspace, the Ĥ0
fs = Ĥ0 + Ĥ ′fs matrix is (the basis vectors are chosen the same order

as in questions 17-19):

Student 4: I agree with Student 3. Ĥ ′Z is diagonal in each degenerate subspace of Ĥ0
fs =

Ĥ0 + Ĥ ′fs shown for the n = 2 subspace in the following matrix. Therefore, the coupled

representation is a “good” basis in the limit E ′fs � E ′Z . When we use a two step process in

the limit Ĥ ′fs � Ĥ ′Z , some degeneracy is lifted in the first step.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding the off-diagonal matrix elements of Ĥ ′Z in the

degenerate subspace of Ĥ0
fs in the weak field Zeeman effect (E ′fs � E ′Z).

Student 1: Since Ĥ ′Z is diagonal in the uncoupled representation and Ĥ ′fs is diagonal in

the coupled representation for a fixed n, we were fortunate that, after the first step in our

approximation, the off-diagonal matrix elements of Ĥ ′Z are zero in each degenerate subspace

of Ĥ0
fs = Ĥ0 + Ĥ ′fs.

Student 2: I agree with Student 1. The stronger perturbation Ĥ ′fs breaks some of the

degeneracy in the energy spectrum of Ĥ0. When we consider Ĥ0
fs = Ĥ0 + Ĥ ′fs as the new

unperturbed Hamiltonian in step 2, the non-zero off-diagonal matrix elements of Ĥ ′Z are

not in the degenerate subspaces of Ĥ0
fs = Ĥ0 + Ĥ ′fs.

Student 3: You are correct. We got lucky! In step 2, if the off-diagonal matrix elements

of the weaker perturbation Ĥ ′Z were non-zero in any of the degenerate subspaces of

Ĥ0
fs = Ĥ0 + Ĥ ′fs, we would have needed to determine the “good” basis by diagonalizing Ĥ ′Z

in each degenerate subspace of Ĥ0
fs = Ĥ0 + Ĥ ′fs that is not diagonal already after the first

step.

Explain why you agree or disagree with each student.
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C.6.12.4 Finding Corrections to the Energies for the Weak Field Zeeman Effect

(E ′fs � E ′Z) After the first step, the unperturbed Hamiltonian including the fine structure

term is

Ĥ0
fs = − ~2

2m
∇2 − e2

4πε0r
− p̂4

8m3c2
+

(
e2

8πε0

)
1

m2c2r3
~L · ~S (C.26)

and the corresponding unperturbed energies are

Enjmj
= −13.6eV

n2
+

E2
n

mc2

[
3− 4n

j + 1/2

]
(C.27)

20. After step 2, find one of the first order corrections to the energies due to the weaker

perturbation Ĥ ′Z for the hydrogen atom placed in a weak external magnetic field for the

n = 2 subspace.
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** Check your answers to question 20. **

20. The first order corrections to the energies due to the Zeeman term only for the

hydrogen atom placed in a weak external magnetic field for the n = 2 subspace are the

diagonal elements of Ĥ ′Z

E ′1 = 2µBBext

E ′2 = 2
3
µBBext

E ′3 = −2
3
µBBext

E ′4 = −2µBBext

E ′5 = 1
3
µBBext

E ′6 = −1
3
µBBext

E ′7 = µBBext

E ′8 = −µBBext

If your answer to question 20 does not match with the checkpoint, go back and reconcile

any differences.

In one to two sentences, summarize what you have learned about the “good” angular basis

for finding the first order corrections to the energy spectrum of the hydrogen atom due to the

weak field Zeeman effect (pertaining to whether the coupled representation, the uncoupled

representation, or any arbitrary complete orthonormal basis constructed with linear combi-

nations of a complete set of states with a fixed principal quantum number n in the coupled

or uncoupled representation form a “good” angular basis).
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Summary: Finding a “GOOD” Angular Basis for the Weak Field Zeeman Effect

(E ′fs � E ′Z)

• We can use a two step process for perturbation theory to find the corrections to the

hydrogen atom energy spectrum for E ′fs � E ′Z .

Step 1: Treat the stronger perturbation Ĥ ′fs as the entire perturbation on the unperturbed

Hamiltonian Ĥ0.

– Ĥ ′fs is diagonal in the coupled representation for a fixed n (in each degenerate sub-

space of Ĥ0).

Step 2: Treat the Zeeman part of the Hamiltonian, Ĥ ′Z , as the perturbation on the new

unperturbed Hamiltonian Ĥ0
fs = Ĥ0 + Ĥ ′fs.

– In the coupled representation, Ĥ ′Z is diagonal in each degenerate subspace of

Ĥ0
fs = Ĥ0 + Ĥ ′fs (even though Ĥ ′Z has off-diagonal matrix elements in the coupled

representation, they are not in the degenerate subspaces of Ĥ0
fs = Ĥ0 + Ĥ ′fs).

– See equation (C.25) as an example for the n = 2 subspace.

• The coupled representation forms a “good” angular basis for finding the corrections to

the energies.

Fill in the following flowchart concerning a “good” angular basis and how to find the cor-

rections to the energies for the intermediate (E ′fs ≈ E ′Z), strong (E ′Z � E ′fs), and weak field

Zeeman effect (E ′fs � E ′Z).

606



Determining a “GOOD” Angular Basis and

Corrections to the Energies Due to BOTH the Fine

Structure and Zeeman Effect
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Determining a “GOOD” Angular Basis and

Corrections to the Energies Due to BOTH the Fine

Structure and Zeeman Effect
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Fill in the following table for the Strong Field Zeeman Effect.

Strong Field Zeeman Effect

Hamiltonian Is the Matrix Diagonal Is the Uncoupled Is the Matrix Diagonal Is the Coupled Energy/

or Non-Diagonal Representation or Non-Diagonal Representation Energy Correction

in the Uncoupled a “Good” in the Coupled a “Good” (Using the “Good” Basis)

Representation? Basis? Representation? Basis?

(for a fixed n) (for a fixed n)

Step 1

Unperturbed

Ĥ0

Perturbation

Ĥ ′Z

Step 2

Unperturbed

Ĥ0
Z = Ĥ0 + Ĥ ′Z

Perturbation

Ĥ ′fs
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Fill in the following table for the Weak Field Zeeman Effect.

Weak Field Zeeman Effect

Hamiltonian Is the Matrix Diagonal Is the Uncoupled Is the Matrix Diagonal Is the Coupled Energy/

or Non-Diagonal Representation or Non-Diagonal Representation Energy Correction

in the Uncoupled a “Good” in the Coupled a “Good” (Using the “Good” Basis)

Representation? Basis? Representation? Basis?

(for a fixed n) (for a fixed n)

Step 1

Unperturbed

Ĥ0

Perturbation

Ĥ ′fs

Step 2

Unperturbed

Ĥ0
fs = Ĥ0 + Ĥ ′fs

Perturbation

Ĥ ′Z
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** Check your answers to questions in the preceding tables.**

Strong Field Zeeman Effect

Hamiltonian Is the Matrix Diagonal Is the Uncoupled Is the Matrix Diagonal Is the Coupled Energy/

or Non-Diagonal Representation or Non-Diagonal Representation Energy Correction

in the Uncoupled a “Good” in the Coupled a “Good” (Using the “Good” Basis)

Representation? Basis? Representation? Basis?

(for a fixed n) (for a fixed n)

Step 1

Unperturbed Diagonal Yes, because Diagonal E0 = −13.6eV
n2

Ĥ0 Ĥ ′Z is diagonal No, because

in each degenerate Ĥ ′Z is not diagonal

subspace of Ĥ0. in each degenerate

Perturbation Diagonal (actually both Ĥ0 Non-Diagonal subspace of Ĥ0. E ′Z = µBBext(ml + 2ms)

Ĥ ′Z and Ĥ ′Z can be

diagonalized

simultaneously

since [Ĥ0, Ĥ ′Z ] = 0).

Step 2

Unperturbed Diagonal Non-Diagonal E0
Z = E0 + E ′Z

Ĥ0
Z = Ĥ0 + Ĥ ′Z Yes, because No, because = E0 + µBBext(ml + 2ms)

Ĥ ′fs is diagonal Ĥ ′Z is not diagonal

in each degenerate in each degenerate

Perturbation Non-diagonal subspace of Diagonal subspace of Ĥ0. Use Clebsch-Gordon

Ĥ ′fs Ĥ0
Z = Ĥ0 + Ĥ ′Z . table to express uncoupled states

in the coupled basis

to determine E ′fs
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Weak Field Zeeman Effect

Hamiltonian Is the Matrix Diagonal Is the Uncoupled Is the Matrix Diagonal Is the Coupled Energy/

or Non-Diagonal Representation or Non-Diagonal Representation Energy Correction

in the Uncoupled a “Good” in the Coupled a “Good” (Using the “Good” Basis)

Representation? Basis? Representation? Basis?

(for a fixed n) (for a fixed n)

Step 1

Unperturbed Diagonal Diagonal E0 = −13.6eV
n2

Ĥ0 No, because Yes, because

Ĥ ′fs is not diagonal Ĥ ′fs is diagonal

in each degenerate in each degenerate

Perturbation Non-Diagonal subspace of Ĥ0. Diagonal subspace of Ĥ0.

Ĥ ′fs E ′fs = E2
n

2mc2

[
3− 4n

(j+1/2)

]

Step 2

Unperturbed Non-Diagonal Diagonal E0
fs = E0 + E ′fs

Ĥ0
fs = Ĥ0 + Ĥ ′fs No, because Yes, because = E0 − E2

n

2mc2

[
4n

(j+1/2)
− 3
]

Ĥ ′fs is not diagonal Ĥ ′Z is diagonal

in each degenerate in each degenerate

Perturbation Diagonal subspace of Ĥ0. Non-Diagonal subspace of Use Clebsch-Gordon

Ĥ ′Z Ĥ0
fs = Ĥ0 + Ĥ ′fs. table to express coupled states

in the uncoupled basis

to determine E ′Z
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Summary: Finding a “GOOD” Basis for the Zeeman Effect in the Hydrogen

Atom

• Intermediate Field Zeeman Effect (E ′Z ≈ E ′fs)

– Neither the coupled nor the uncoupled representation forms a “good” basis for finding

corrections to the energies.

– One needs to diagonalize Ĥ ′ = Ĥ ′Z+Ĥ ′fs in each degenerate subspace of Ĥ0 explicitly

to find the “good” basis.

• Strong Field Zeeman Effect (E ′Z � E ′fs)

– We can carry out perturbation theory in two steps.

– The uncoupled representation forms a “good” basis for finding corrections to the

energies.

• Weak Field Zeeman Effect (E ′fs � E ′Z)

– We can carry out perturbation theory in two steps.

– The coupled representation forms a “good” basis for finding corrections to the ener-

gies.

613



Hamiltonian Uncoupled Is Uncoupled Coupled Is Coupled Is Any Arbitrary Complete Orthonormal Unperturbed First Order

Representation Representation Representation Representation Basis Found with Linear Combinations Energy Correction to

(for a fixed n) a “Good” Basis? (for a fixed n) a “Good” Basis? of a Complete Set of the Coupled the Energy

or Uncoupled States a “Good” Basis?

(with the same n and l)

Ĥ0 Diagonal — Diagonal — — En = −13.6eV
n2 -

Ĥ ′r Diagonal Yes Diagonal Yes Yes En E ′r = − E2
n

2mc2

[
4n

l+1/2
− 3
]

Ĥ ′SO Not Diagonal No Diagonal Yes No En E ′SO = E2
n

mc2

[
n(j(j+1)−l(l+1−3/4))

l(l+1)(l+1/2)

]

Ĥ ′fs = Not Diagonal No Diagonal Yes No En E ′fs = − E2
n

2mc2

[
4n

(j+1/2)
− 3
]

Ĥ ′r + Ĥ ′SO

Ĥ ′Z Diagonal Yes Not Diagonal No No En E ′Z = µBext(ml + 2ms)

Ĥ0
Z= Diagonal Yes Not Diagonal No No En + µBext(ml + 2ms) Diagonal matrix elements of

Ĥ0 + Ĥ ′Z Ĥ ′fs in the uncoupled representation

Ĥ0
fs= Not Diagonal No Diagonal Yes No En + E2

n

2mc2

[
3− 4n

(j+1/2)

]
Diagonal matrix elements of

Ĥ0 + Ĥ ′fs Ĥ ′Z in the coupled representation
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C.7 FINDING FIRST ORDER ENERGY CORRECTIONS FOR THE

INTERMEDIATE FIELD ZEEMAN EFFECT CONTINUED

Reconsider the following perturbing Hamiltonian Ĥ ′ = Ĥ ′Z + Ĥ ′fs in the coupled representa-

tion (|l, j, mj〉) when E ′fs ≈ E ′Z .

Ĥ ′ = −



5γ − β 0 0 0 0 0 0 0

0 5γ + β 0 0 0 0 0 0

0 0 γ − 2β 0 0 0 0 0

0 0 0 γ + 2β 0 0 0 0

0 0 0 0 γ − 2
3
β

√
2
3
β 0 0

0 0 0 0
√
2
3
β 5γ − 1

3
β 0 0

0 0 0 0 0 0 γ + 2
3
β

√
2
3
β

0 0 0 0 0 0
√
2
3
β 5γ + 1

3
β


(C.28)

in which γ =
(
α
8

)2
13.6 eV, α = e2

4πε0~c , β = µBBext and the basis states are chosen in

the order of |ψ1〉 = |0, 1
2
, 1

2
〉, |ψ2〉 = |0, 1

2
, −1

2
〉, |ψ3〉 = |1, 3

2
, 3

2
〉, |ψ4〉 = |1, 3

2
, −3

2
〉,

|ψ5〉 = |1, 3
2
, 1

2
〉, |ψ6〉 = |1, 1

2
, 1

2
〉, |ψ7〉 = |1, 3

2
, −1

2
〉, and |ψ8〉 = |1, 1

2
, −1

2
〉.

21. Explain in words how to find a “good” basis and corrections to the energies for the

intermediate field Zeeman effect (E ′fs ≈ E ′Z).
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OPTIONAL: The final three questions in this tutorial are optional.

22. Determine the first order corrections to the energies for the intermediate field Zeeman

effect (E ′fs ≈ E ′Z) in which the perturbation Ĥ ′ = Ĥ ′Z+Ĥ ′fs in the coupled representation

is given in equation (C.28).

616



The energy levels for the n = 2 states of the hydrogen atom in the intermediate field

Zeeman effect are given below.

Table 48: Energy Levels in the Intermediate Field Zeeman Effect (n = 2)

ε1 = E2 − 5γ + β

ε2 = E2 − 5γ − β

ε3 = E2 − γ + 2β

ε4 = E2 − γ − 2β

ε5 = E2 − 3γ + β/2 +
√

4γ2 + (2/3)γβ + β2/4

ε6 = E2 − 3γ + β/2−
√

4γ2 + (2/3)γβ + β2/4

ε7 = E2 − 3γ − β/2 +
√

4γ2 − (2/3)γβ + β2/4

ε8 = E2 − 3γ − β/2−
√

4γ2 − (2/3)γβ + β2/4

23. Use the appropriate Taylor series expansion to check that the corrections to the energies

in the intermediate field Zeeman effect are consistent with the corrections found in the

limiting cases of the strong and weak field Zeeman effects earlier.

617



24. Below is a graph of the splitting of the energy levels of the hydrogen atom for the weak,

intermediate, and strong field Zeeman effect for the n = 2 subspace. Discuss whether the

graph is consistent with what you have learned. Be sure to state whether the number of

states is consistent in each regime (weak, strong, and intermediate field Zeeman effect).

1

1Griffiths, David J. Introduction to Quantum Mechanics. 2nd ed. Upper Saddle River, NJ: Pearson
Prentice Hall, 2005. pg. 249
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** Check your answers to questions 21-24. **

21. To find a “good” basis, we must diagonalize Ĥ ′ in the degenerate subspace of

Ĥ0. This requires diagonalizing the 2 × 2 block diagonals −

 γ − 2
3
β

√
2
3
β

√
2
3
β 5γ − 1

3
β


and −

 γ + 2
3
β

√
2
3
β

√
2
3
β 5γ + 1

3
β

. The “good” basis will be {|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉, a|ψ5〉 +

b|ψ6〉, c|ψ5〉 + d|ψ6〉, e|ψ7〉 + f |ψ8〉, g|ψ7〉 + h|ψ8〉}, in which a, b, c, d, e, f, g, and h are

obtained by diagonalizing the block diagonals.

The corrections to the energies in Table 48 are the diagonal matrix elements of Ĥ ′ in the

“good” basis.

22.

E ′1 = 5γ − β

E ′2 = 5γ + β

E ′3 = γ − 2β

E ′4 = γ + 2β

E ′5 = 3γ − β/2−
√

4γ2 + (2/3)γβ + β2/4

E ′6 = 3γ − β/2 +
√

4γ2 + (2/3)γβ + β2/4

E ′7 = 3γ + β/2−
√

4γ2 − (2/3)γβ + β2/4

E ′8 = 3γ + β/2 +
√

4γ2 − (2/3)γβ + β2/4

23. In the strong field limit (β � γ),
√

4γ2 ± 2
3
γβ + 1

4
β2 ≈ 1

2
β ± 2

3
γ.

E ′1 = E2 − 5γ + β

E ′2 = E2 − 5γ − β

E ′3 = E2 − γ + 2β

E ′4 = E2 − γ − 2β

E ′5 = E2 + β − 7
3
γ

E ′6 = E2 − 11
3
γ

E ′7 = E2 − 11
3
γ

E ′8 = E2 − β − 7
3
γ
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In the weak field limit (γ � β),
√

4γ2 ± 2
3
γβ + 1

4
β2 ≈ 2γ ± 1

6
β.

E ′1 = E2 − 5γ + β

E ′2 = E2 − 5γ − β

E ′3 = E2 − γ + 2β

E ′4 = E2 − γ − 2β

E ′5 = E2 − γ + 2
3
β

E ′6 = E2 − 5γ + 1
3
β

E ′7 = E2 − γ − 2
3
β

E ′8 = E2 − 5γ − 1
3
β

24. In the strong field, we found a two-fold degeneracy remaining in the energy spectrum

after the two step approximation. In the weak field, we found no degeneracy remaining

in the energy spectrum after the two step approximation. The results are consistent.

If your answers to questions 21-24 do not match with the checkpoint, go back and reconcile

any differences.
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APPENDIX D

SYSTEM OF IDENTICAL PARTICLES QUANTUM INTERACTIVE

LEARNING TUTORIAL

D.1 SYSTEM OF IDENTICAL PARTICLES PRETEST

Identical Particles Pretest

Notes:

• Do not consider spin of the particles unless explicitly stated in the problem.

• Ĥi are the single-particle Hamiltonians in the product space.

• ψn1 , ψn2 , etc. are the single-particle stationary state wavefunctions for a non-interacting

system.

• For all problems, assume the particles are confined in one spatial dimension.

1. Write the Hamiltonian Ĥ for a system of N non-interacting, identical particles in the

product space in terms of the Hamiltonian for the ith particle (i = 1, 2, . . . , N).
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2. For a system of three non-interacting identical particles, write a properly normalized

three-particle stationary state wavefunction in the position representation where all

three particles are in different single-particle states for the following three cases:

indistinguishable fermions, indistinguishable bosons, and identical particles treated as

distinguishable. If there is no such possible three-particle stationary state wavefunction

for the given system of three particles, state the reason. Ignore the spin of the

particles and only consider the spatial part of the wavefunction.

a. The three non-interacting identical particles are fermions.

b. The three non-interacting identical particles are bosons.

c. The three non-interacting identical particles are distinguishable.
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3. For a system of three non-interacting identical particles, write a properly normalized

three-particle stationary state wavefunction in the position representation when

two of the particles are in same single-particle state ψn1 for the following three cases: in-

distinguishable fermions, indistinguishable bosons, and identical particles treated as dis-

tinguishable. If there is no such possible three-particle stationary state wavefunction for

the given system of three particles, state the reason. Ignore the spin of the particles

and only consider the spatial part of the wavefunction (assume n1 6= n2 6= n3).

a. The three non-interacting identical particles are fermions.

b. The three non-interacting identical particles are bosons.

c. The three non-interacting identical particles are distinguishable.
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4. Consider a system of non-interacting identical particles. For each of the following wave-

functions, identify whether it is a possible wavefunction for a system of identical fermions,

identical bosons, both a system of identical fermions and a system of identical bosons,

or neither a system of identical fermions or bosons. Ignore the spin of the particles

and only consider the spatial part of the wavefunction. Be sure to explain

your reasoning.

a. Ψ(x) = ψn1(x)ψn2(x)

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

b. Explain your reasoning.

c. Ψ(x1, x2) = ψn1(x1)ψn2(x2)

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

d. Explain your reasoning.

e. Ψ(x1, x2) = ψn1(x1) + ψn2(x2)

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

f. Explain your reasoning.
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g. Ψ(x1, x2) = ψn1(x1)ψn1(x2)

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

h. Explain your reasoning.

i. Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2)− ψn2(x2)ψn1(x1)]

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

j. Explain your reasoning.

k. Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x1)− ψn1(x2)ψn2(x2)]

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

l. Explain your reasoning.
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m. Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2)− ψn2(x2)ψn1(x1)]

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

n. Explain your reasoning.

o.
Ψ(x1, x2, x3) = 1√

3
[ψn1(x1)ψn2(x2)ψn3(x3)− ψn1(x2)ψn2(x3)ψn3(x1)

+ψn1(x3)ψn2(x1)ψn3(x2)]

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

p. Explain your reasoning.

q.
Ψ(x1, x2, x3) = 1√

3
[ψn1(x1)ψn2(x2)ψn3(x3) + ψn1(x2)ψn2(x3)ψn3(x1)

+ψn1(x3)ψn2(x1)ψn3(x2)]

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

r. Explain your reasoning.
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5. For a system of three non-interacting identical particles, there are four distinct single-

particle states ψn1(x), ψn2(x), ψn3(x), and ψn4(x) available to each single particle. How

many different three-particle states can you construct if the particles are

a. Fermions? (Ignore spin).

b. Bosons? (Ignore spin).

c. Distinguishable particles? (Ignore spin).
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6. For a system of two non-interacting identical particles in a one-dimensional infinite square

well, the total energy of the two particle system is En1,n2 = (n2
1 + n2

2)E1, in which E1 is

the single-particle ground state energy. The total energy of the system is E = 338E1.

Assume that all of the possible three-particle states with this total energy 338E1 are

equally probable.

Note: The only possible integers n1 and n2 whose squares sum to 338 are given below.

338 = 72 + 172

= 132 + 132

a. If the particles are indistinguishable fermions and you randomly measure the energy

of one particle, what energies might you obtain and with what probabilities?

b. If the particles are indistinguishable bosons and you randomly measure the energy

of one particle, what energies might you obtain and with what probabilities?

c. If the particles are distinguishable and you randomly measure the energy of one

particle, what energies might you obtain and with what probabilities?

628



7. Suppose a system with eleven single-particle states has 7 particles. The degeneracy

of the lowest energy states with energy E1 is d1 = 4 and the degeneracy of the first-

excited states with energy E2 is d2 = 7. If the total energy of the system is such that 3

particles are in the lowest energy states and 4 particles are in the first-excited states, what

is the number of distinct seven-particle states Q(3, 4) corresponding to this particular

arrangement (3, 4):

a. if the particles are indistinguishable fermions? Ignore spin.

b. if the particles are indistinguishable bosons? Ignore spin.

c. if the particles are distinguishable? Ignore spin.

Notes:

• For the remaining problems, consider the spin of the particles.

• |s, ms〉 are eigenstates of Ŝ2 and Ŝz. |si, msi〉 are eigenstates of Ŝ2
i and Ŝiz for

i = 1, 2, 3.

• We will use the following abbreviated notation for a spin-1/2 particle in the uncou-

pled representation

| ↑〉1 = |s1, ms1〉 = |1/2, 1/2〉1, and | ↓〉1 = |s1, ms1〉 = |1/2, −1/2〉1

| ↑〉2 = |s2, ms2〉 = |1/2, 1/2〉2, and | ↓〉2 = |s2, ms2〉 = |1/2, −1/2〉2

| ↑〉3 = |s3, ms3〉 = |1/2, 1/2〉3, and | ↓〉3 = |s3, ms3〉 = |1/2, −1/2〉3

• The following information may be helpful for a system of two particles:

~S = ~S1 + ~S2

~Sz = ~S1z + ~S2z
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• For a system of two spin-1/2 particles
(
s1 = 1

2
⊗ s2 = 1

2

)
, basis states in the coupled

representation |s, ms〉 are written in terms of the uncoupled representation as follows:

|1, 1〉 = | ↑↑〉 = | ↑〉1| ↑〉2
|1, −1〉 = | ↓↓〉 = | ↓〉1| ↓〉2
|1, 0〉 = 1√

2
(| ↑↓〉+ | ↓↑〉) = 1√

2
(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2)

|0, 0〉 = 1√
2

(| ↑↓〉 − | ↓↑〉) = 1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2)

• In the following table, for spin degrees of freedom for two spin-1 particles (s1 =

1⊗s2 = 1) in the coupled representation the product states, |s, ms〉, (left) are given in

terms of a linear combination of the product states in the uncoupled representation,

|s1, ms1〉1|s2, ms2〉2, (right) using the Clebsch-Gordon table.

Product states in Written in terms of product states

Coupled Representation in Uncoupled Representation

|s, ms〉
∑

ms1+ms2=ms

Cs1,s2,s
ms1 ,ms2 ,ms

|s1, ms1〉1|s2, ms2〉2

|2, 2〉 |1, 1〉1|1, 1〉2
|2, 1〉 1√

2
(|1, 1〉1|1, 0〉2 + |1, 0〉1|1, 1〉2)

|1, 1〉 1√
2
(|1, 1〉1|1, 0〉2 − |1, 0〉1|1, 1〉2)

|2, 0〉 1√
6
|1, 1〉1|1, −1〉2 +

√
2
3
|1, 0〉1|1, 0〉2 + 1√

6
|1, −1〉1|1, 1〉2

|1, 0〉 1√
2
(|1, 1〉1|1, −1〉2 − |1, −1〉1|1, 1〉2)

|0, 0〉 1√
3
|1, 1〉1|1, −1〉2 − 1√

3
|1, 0〉1|1, 0〉2 + 1√

3
|1, −1〉1|1, 1〉2

|2, −1〉 1√
2
(|1, 0〉1|1, −1〉2 + |1, −1〉1|1, 0〉2)

|1, −1〉 1√
2
(|1, 0〉1|1, −1〉2 − |1, −1〉1|1, 0〉2)

|2, −2〉 |1, −1〉1|1, −1〉2
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8. Consider a system of three non-interacting identical spin-1/2 particles. If two of the

particles are in the spin up state (| ↑〉) and one of the particles is in the spin down state

(| ↓〉), construct a completely symmetric spin state for the three particles. If no such

spin state exists, state the reason why.

9. Write one possible spin part of the wavefunction for a system of two non-interacting spin-

1/2 particles whose spatial part of the wavefunction is ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2) +

ψn2(x1)ψn1(x2)]. If it is not possible to write a spin part of the wavefunction with the

given spatial part of the wavefunction, write not possible and state the reason.

10. Write one possible spin part of the wavefunction for a system of two non-interacting

spin-1/2 particles whose spatial part of the wavefunction is ψ(x1, x2) = ψn1(x1)ψn1(x2).

If it is not possible to write a spin part of the wavefunction with the given spatial part

of the wavefunction, write not possible and state the reason.
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11. Consider a system with three non-interacting identical spin-1 particles. If the three

particles are in different spin states, construct a completely symmetric spin state for the

three particles. If no such spin state exists, state the reason why.

12. Write one possible spatial part of the wavefunction for two non-interacting identical

spin-1 particles whose spin part of the wavefunction (expressed in terms of the uncou-

pled representation) is χ(ms1 ,ms2) = 1√
2
[|1 1〉1|1 0〉2 + |1 0〉1|1 1〉2]. If it is not possible

to write a spatial part of the wavefunction with the given spin part of the wavefunction,

write not possible and state the reason.

13. Write one possible spatial part of the wavefunction for two non-interacting identical

spin-1 particles whose spin part of the wavefunction (expressed in terms of the coupled

representation) is χ(ms1 ,ms2) = 1√
2
[|2 2〉 − |1 1〉]. If it is not possible to write a spatial

part of the wavefunction with the given spin part of the wavefunction, write not possible

and state the reason.
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D.2 SYSTEM OF IDENTICAL PARTICLES PRETEST

Identical Particles Posttest

Notes:

• Do not consider spin of the particles unless explicitly stated in the problem.

• Ĥi are the single-particle Hamiltonians in the product space.

• ψn1 , ψn2 , etc. are the single-particle stationary state wavefunctions for a non-interacting

system.

• For all problems, assume the particles are confined in one spatial dimension.

1. Write the Hamiltonian Ĥ for a system of N non-interacting, identical particles in the

product space in terms of the Hamiltonian for the ith particle (i = 1, 2, . . . , N).

2. For a system of three non-interacting identical particles, write a properly normalized

three-particle stationary state wavefunction in the position representation where all

three particles are in different single-particle states for the following three

cases: indistinguishable fermions, indistinguishable bosons, and identical particles

treated as distinguishable. If there is no such possible three-particle stationary state

wavefunction for the given system of three particles, state the reason. Ignore the spin

of the particles and only consider the spatial part of the wavefunction.

a. The three non-interacting identical particles are fermions.

b. The three non-interacting identical particles are bosons.

c. The three non-interacting identical particles are distinguishable.
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3. For a system of three non-interacting identical particles, write a properly normalized

three-particle stationary state wavefunction in the position representation when two

of the particles are in same single-particle state ψn1 for the following three cases: indis-

tinguishable fermions, indistinguishable bosons, and identical particles treated as distin-

guishable. If there is no such possible three-particle stationary state wavefunction for the

given system of three particles, state the reason. Ignore the spin of the particles

and only consider the spatial part of the wavefunction.

a. The three non-interacting identical particles are fermions.

b. The three non-interacting identical particles are bosons.

c. The three non-interacting identical particles are distinguishable.
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4. Consider a system of non-interacting identical particles. For each of the following wave-

functions, identify whether it is a possible wavefunction for a system of identical fermions,

identical bosons, both a system of identical fermions and a system of identical bosons,

or neither a system of identical fermions or bosons. Ignore the spin of the particles

and only consider the spatial part of the wavefunction (assume n1 6= n2 6= n3).

Be sure to explain your reasoning.

a. Ψ(x) = ψn1(x)ψn2(x)

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

b. Explain your reasoning.

c. Ψ(x1, x2) = ψn1(x1)ψn2(x2)

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

d. Explain your reasoning.

e. Ψ(x1, x2) = ψn1(x1) + ψn2(x2)

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

f. Explain your reasoning.
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g. Ψ(x1, x2) = ψn1(x1)ψn1(x2)

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

h. Explain your reasoning.

i. Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2)− ψn2(x2)ψn1(x1)]

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

j. Explain your reasoning.

k. Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x1)− ψn1(x2)ψn2(x2)]

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

l. Explain your reasoning.
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m. Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2)− ψn2(x2)ψn1(x1)]

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

n. Explain your reasoning.

o.
Ψ(x1, x2, x3) = 1√

3
[ψn1(x1)ψn2(x2)ψn3(x3)− ψn1(x2)ψn2(x3)ψn3(x1)

+ψn1(x3)ψn2(x1)ψn3(x2)]

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

p. Explain your reasoning.

q.
Ψ(x1, x2, x3) = 1√

3
[ψn1(x1)ψn2(x2)ψn3(x3) + ψn1(x2)ψn2(x3)ψn3(x1)

+ψn1(x3)ψn2(x1)ψn3(x2)]

i. Identical fermions

ii. Identical bosons

iii. Both identical fermions and identical bosons

iv. Neither identical fermions nor identical bosons

r. Explain your reasoning.
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5. For a system of two non-interacting identical particles, there are five distinct single-

particle states ψn1(x), ψn2(x), ψn3(x), ψn4(x), and ψn5(x) available to each single particle.

How many different two-particle states can you construct if the particles are

a. Fermions? (Ignore spin).

b. Bosons? (Ignore spin).

c. Distinguishable particles? (Ignore spin).
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6. For a system of three non-interacting identical particles in a one-dimensional infinite

square well, the total energy of the three particle system is En1,n2,n3 = (n2
1 + n2

2 + n2
3)E1,

in which E1 is the single-particle ground state energy. The total energy of the system is

E = 75E1. Assume that all of the possible three-particle states with this total energy

75E1 are equally probable.

Note: The only possible integers n1, n2 and n3 whose squares sum to 75 are given below.

75 = 12 + 52 + 72

75 = 52 + 52 + 52

a. How many distinct three-particle states can you construct if the particles are

i. Indistinguishable fermions? Explain your reasoning.

ii. Indistinguishable bosons? Explain your reasoning.

iii. Identical particles that can be treated as distinguishable? Explain your reason-

ing.

b. If the particles are indistinguishable fermions and you randomly measure the energy

of one particle, what energies might you obtain and with what probabilities?

c. If the particles are indistinguishable bosons and you randomly measure the energy

of one particle, what energies might you obtain and with what probabilities?

d. If the particles are distinguishable and you randomly measure the energy of one

particle, what energies might you obtain and with what probabilities?
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7. Suppose a system with nine single-particle states has 8 particles. The degeneracy of

the lowest energy states with energy E1 is d1 = 5 and the degeneracy of the first-

excited states with energy E2 is d2 = 4. If the total energy of the system is such

that 3 particles are in the lowest energy states and 5 particles are in the first-excited

states, what is the number of distinct eight-particle states Q(3, 5) corresponding to this

particular arrangement (3, 5):

a. if the particles are indistinguishable fermions? Ignore spin.

b. if the particles are indistinguishable bosons? Ignore spin.

c. if the particles are distinguishable? Ignore spin.

Notes:

• For the remaining problems, consider the spin of the particles.

• |s, ms〉 are eigenstates of Ŝ2 and Ŝz. |si, msi〉 are eigenstates of Ŝ2
i and Ŝiz for

i = 1, 2, 3.

• We will use the following abbreviated notation for a spin-1/2 particle in the uncou-

pled representation

| ↑〉1 = |s1, ms1〉 = |1/2, 1/2〉1, and | ↓〉1 = |s1, ms1〉 = |1/2, −1/2〉1

| ↑〉2 = |s2, ms2〉 = |1/2, 1/2〉2, and | ↓〉2 = |s2, ms2〉 = |1/2, −1/2〉2

| ↑〉3 = |s3, ms3〉 = |1/2, 1/2〉3, and | ↓〉3 = |s3, ms3〉 = |1/2, −1/2〉3

• The following information may be helpful for a system of two particles:

~S = ~S1 + ~S2

~Sz = ~S1z + ~S2z
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• For a system of two spin-1/2 particles
(
s1 = 1

2
⊗ s2 = 1

2

)
basis states in the coupled

representation |s, ms〉 are written in terms of the uncoupled representation as follows:

|1, 1〉 = | ↑↑〉 = | ↑〉1| ↑〉2
|1, −1〉 = | ↓↓〉 = | ↓〉1| ↓〉2
|1, 0〉 = 1√

2
(| ↑↓〉+ | ↓↑〉) = 1√

2
(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2)

|0, 0〉 = 1√
2

(| ↑↓〉 − | ↓↑〉) = 1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2)

• In the following table, for spin degrees of freedom for two spin-1 particles (s1 =

1⊗s2 = 1) in the coupled representation the product states, |s, ms〉, (left) are given in

terms of a linear combination of the product states in the uncoupled representation,

|s1, ms1〉1|s2, ms2〉2, (right) using the Clebsch-Gordon table.

Product states in Written in terms of product states

Coupled Representation in Uncoupled Representation

|s, ms〉
∑

ms1+ms2=ms

Cs1,s2,s
ms1 ,ms2 ,ms

|s1, ms1〉1|s2, ms2〉2

|2, 2〉 |1, 1〉1|1, 1〉2
|2, 1〉 1√

2
(|1, 1〉1|1, 0〉2 + |1, 0〉1|1, 1〉2)

|1, 1〉 1√
2
(|1, 1〉1|1, 0〉2 − |1, 0〉1|1, 1〉2)

|2, 0〉 1√
6
|1, 1〉1|1, −1〉2 +

√
2
3
|1, 0〉1|1, 0〉2 + 1√

6
|1, −1〉1|1, 1〉2

|1, 0〉 1√
2
(|1, 1〉1|1, −1〉2 − |1, −1〉1|1, 1〉2)

|0, 0〉 1√
3
|1, 1〉1|1, −1〉2 − 1√

3
|1, 0〉1|1, 0〉2 + 1√

3
|1, −1〉1|1, 1〉2

|2, −1〉 1√
2
(|1, 0〉1|1, −1〉2 + |1, −1〉1|1, 0〉2)

|1, −1〉 1√
2
(|1, 0〉1|1, −1〉2 − |1, −1〉1|1, 0〉2)

|2, −2〉 |1, −1〉1|1, −1〉2
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8. Consider a system with three non-interacting identical spin-1/2 particles. If two of the

particles are in the spin up state (| ↑〉) and one of the particles is in the spin down state

(| ↓〉), construct a completely symmetric spin state for the three particles. If no such

spin state exists, state the reason why.

9. Write one possible spin part of the wavefunction for a system of two non-interacting spin-

1/2 particles whose spatial part of the wavefunction is ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2) +

ψn2(x1)ψn1(x2)]. If it is not possible to write a spin part of the wavefunction with the

given spatial part of the wavefunction, write not possible and state the reason.

10. Write one possible spin part of the wavefunction for a system of two non-interacting

spin-1/2 particles whose spatial part of the wavefunction is ψ(x1, x2) = ψn1(x1)ψn1(x2).

If it is not possible to write a spin part of the wavefunction with the given spatial part

of the wavefunction, write not possible and state the reason.
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11. Consider a system of three non-interacting identical spin-1/2 particles. If two of the

particles are in the spin up state (| ↑〉) and one of the particles is in the spin down state

(| ↓〉), construct a completely antisymmetric spin state for the three particles. If no such

spin state exists, state the reason why.

12. Write one possible spatial part of the wavefunction for two non-interacting identical

spin-1/2 particles whose spin part of the wavefunction is χ(ms1 ,ms2) = | ↑↓〉. If it is

not possible to write a spatial part of the wavefunction with the given spin part of the

wavefunction, write not possible and state the reason.

13. Write one possible spatial part of the wavefunction for two non-interacting identical spin-

1/2 particles whose spin part of the wavefunction is χ(ms1 ,ms2) = 1√
2
[| ↑↓〉 + | ↓↑〉]. If

it is not possible to write a spatial part of the wavefunction with the given spin part of

the wavefunction, write not possible and state the reason.
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14. Consider a system with three non-interacting identical spin-1 particles. If the three

particles are in different spin states, construct a completely antisymmetric spin state for

the three particles. If no such spin state exists, state the reason why.

15. Write one possible spin part of the wavefunction for two non-interacting identical spin-

1 particles whose spatial part of the wavefunction is ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2) −

ψn2(x1)ψn1(x2)]. If it is not possible to write a spin part of the wavefunction with the

given spatial part of the wavefunction, write not possible and state the reason.

16. Write one possible spin part of the wavefunction for two non-interacting identical spin-1

particles whose spatial part of the wavefunction is ψ(x1, x2) = 1√
2
[ψn1(x1)ψn1(x2)]. If it

is not possible to write a spin part of the wavefunction with the given spatial part of the

wavefunction, write not possible and state the reason.
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D.3 SYSTEM OF IDENTICAL PARTICLES TUTORIAL

Identical Particles Tutorial

D.4 NOTES FOR THIS TUTORIAL:

• We will only consider systems of non-interacting identical particles.

• The word “identical” in this tutorial will refer to one type of particle (all particles with

the same properties). For example, all electrons are identical.

• Assume that all systems with more than one particle consist of identical particles. For

example, a system of fermions is made up of identical fermions (e.g., electrons) and a

system of bosons is made up of identical bosons (e.g., Helium-4 atoms).

• Identical particles (particles of one type with the same properties) are in general in-

distinguishable (e.g., you cannot distinguish which particle is in which single particle

stationary state). Exchanging these indistinguishable particles with each other does not

produce a distinctly different many-particle state.

• Assume that particles are restricted to one spatial dimension (spatial coordinate given

by x) for convenience.

• We will use the notation Ĥi to denote the Hamiltonian in the M -dimensional Hilbert

space for the ith particle. We will use the boldface notation Ĥi to denote the Hamiltonian

of the ith particle in the MN -dimensional Hilbert space for the N particle system.

• Unless otherwise stated, the single-particle wavefunction, ψn(x), in this tutorial refers to

the normalized single-particle stationary state wavefunction.

• The N -particle wavefunction, ψ(x1, x2, · · · , xN) = ψn1,n2,··· ,nN
(x1, x2, · · · , xN), in

this tutorial refers to the many-particle stationary state wavefunction with coordinates

x1, x2, . . . , xN for different particles.
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• The wavefunction of a system of two non-interacting identical particles has terms such

as ψn1(x1)ψn2(x2), where ψn1(x1) and ψn2(x2) are the single-particle wavefunctions for

particles in states n1 and n2 and coordinates x1 and x2, respectively.

– Remark: ψn1(x1) and ψn2(x2) should be regarded as any single-particle wavefunctions

for particles 1 and 2, respectively (i.e., in general, ψn1 does not refer to the ground

state and ψn2 does not refer to the first-excited state wavefunction).

• Here, for convenience, we will refer to all direct products of single-particle states as

“basis states”. Please note that for identical fermions, only completely antisymmetric

linear combinations of these basis states are allowed, while for bosons only completely

symmetric linear combinations are allowed. For distinguishable particles, all basis states

are allowed.

• The energy of the system of N non-interacting identical particles is given by E = En1 +

En2 + · · ·+EnN
=

N∑
i=1

Eni
, in which Eni

is the energy corresponding to the single-particle

state ψni
.

• Unless otherwise specified, there is no degeneracy in the energy spectrum of the single-

particle states. That is Eni
6= Enj

for ni 6= nj, in which Eni
is the energy corresponding

to the single-particle state with wavefunction ψni
and Enj

is the energy corresponding

to the single-particle state ψnj
.

• Unless otherwise specified, assume that the particles are spinless for the purposes of con-

structing the many-particle wavefunction and ignore the spin part of the wavefunction.

• The product notation, e.g,
N∏
i=1

xi, will be used to represent the product of xi for i =

1, 2, . . . , N (i.e.
N∏
i=1

xi = x1x2x3 · · ·xN).
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D.5 OBJECTIVES

Upon completion of this tutorial, you should be able to do the following:

1. Determine the form of the Hamiltonian for non-interacting identical particles.

2. Determine the basis states in the product space for a system of non-interacting identical

particles

3. Determine the form of the wavefunction for a system of non-interacting identical particles

if the particles are indistinguishable fermions, indistinguishable bosons, or a hypothetical

case in which identical particles can be treated as distinguishable.

4. Construct the wavefunction for the ground state and first-excited state for a specific

two-particle system for two non-interacting identical particles (particles of one type with

the same properties) if the particles are:

• Indistinguishable bosons

• Indistinguishable fermions

• Hypothetical case: Identical particles which can be treated as distinguishable

5. Determining the Number of Distinct Many-Particle States

a. CASE 1: The total energy of the many-particle system is not fixed, but a fixed

number of single-particle states are available to the system:

i. Calculate the number of distinct many-particle states if you have two particles,

three particles, or N particles (N � 1) in the following cases:

• Particles are indistinguishable bosons

• Particles are indistinguishable fermions

• Hypothetical case: Identical particles which can be treated as distinguishable

ii. Compare the results for the cases of indistinguishable bosons and indistinguish-

able fermions to the results for the hypothetical case when identical particles can

be treated as distinguishable.

b. CASE II: The total energy of the many-particle system is fixed:

i. Calculate the number of distinct many-particle states if you have two particles

or three particles in the following cases:

• Particles are indistinguishable bosons
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• Particles are indistinguishable fermions

• Hypothetical case: Identical particles which can be treated as distinguishable

ii. Compare the results for the cases of indistinguishable bosons and indistinguish-

able fermions to the results for the hypothetical case when identical particles can

be treated as distinguishable.

iii. For a system of two non-interacting identical particles, determine the probability

of obtaining a particular value of the energy of a particle when the single-particle

energy is measured at random and the total energy is fixed for a specified many-

particle system if the particles are:

• Indistinguishable bosons

• Indistinguishable fermions

• Hypothetical case: Identical particles which can be treated as distinguish-

able

iv. Compare the results for the cases of indistinguishable bosons and indistinguish-

able fermions to the results for the hypothetical case when identical particles can

be treated as distinguishable.

c. CASE III: The single-particle states have degeneracy and the total energy of the

many-particle system is fixed by fixing the number of particles in each group of

degenerate single-particle states with a given energy.

i. Calculate the number of distinct many-particle states in the following cases:

• Particles are indistinguishable bosons

• Particles are indistinguishable fermions

• Hypothetical case: Identical particles which can be treated as distinguishable.

6. Determine the wavefunction including spin for a system of non-interacting identical par-

ticles if the particles are indistinguishable fermions or bosons.

7. Construct the wavefunction for the ground state and first-excited state for specific many-

particle system for many non-interacting identical particles if the particles are:

• Indistinguishable bosons

• Indistinguishable fermions.
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8. Determine the form of the wavefunction for a system of non-interacting identical particles

in the limiting case when identical particles can be treated as distinguishable.

D.6 BASICS FOR A SYSTEM OF N NON-INTERACTING PARTICLES

D.6.1 Hamiltonian for a System of Non-interacting Particles

• Before we determine the form of the stationary state wavefunction for a system of N

non-interacting identical particles, let’s determine the form of the Hamiltonian for a

system of non-interacting particles in terms of the single-particle Hamiltonian.

• We will use the notation Ĥi to denote the Hamiltonian in the M -dimensional Hilbert

space for the ith particle. We will use the boldface notation Ĥi to denote the Hamiltonian

of the ith particle in the MN -dimensional Hilbert space for the many-particle system.

• The following question and conversations will guide you as you think about the Hamil-

tonian for a system of N non-interacting identical particles in which each particle is in

a M -dimensional space.

1. For a system of N non-interacting particles, write the Hamiltonian of the system in

the product space Ĥ, in terms of Ĥi, the Hamiltonian for the ith particle (i = 1, 2, . . . , N)

in the product space.
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Consider the following conversation regarding constructing the Hamiltonian for a system

of N non-interacting identical particles in which each particle is in a M -dimensional

space.

Student 1: The Hamiltonian for the non-interacting N -particle system in the

MN -dimensional product space is Ĥ = Ĥ1 ⊗ Ĥ2 ⊗ Ĥ3 ⊗ · · · ⊗ ĤN , in which

Ĥi = Î1⊗ Î2⊗ · · ·⊗ Îi−1⊗ Ĥi⊗ Îi+1 · · · ⊗ ÎN is the Hamiltonian of the ith particle in the

MN -dimensional space. The single-particle Hamiltonian, Ĥi, and the identity operator,

Îi, are for the ith particle in the M -dimensional space.

Student 2: I disagree with Student 1. The Hamiltonian Ĥ for non-interacting particles

in the MN -dimensional product space is Ĥ = Ĥ1 ⊗ Ĥ2 ⊗ Ĥ3 ⊗ · · · ⊗ ĤN .

Student 3: I disagree with Student 1 and Student 2. If we know the single-particle

Hamiltonian Ĥi for the ith particle in the system in the M -dimensional space, then the

Hamiltonian for a system of N non-interacting identical particles in the MN -dimensional

product space has the form Ĥ = Ĥ1 + Ĥ2 + · · ·+ ĤN .

Student 4: I disagree with Student 1, Student 2, and Student 3. Since the Hamiltonian

for the system must be in the MN -dimensional product space, Ĥ = Ĥ1 +Ĥ2 + · · ·+ĤN .

The single-particle Hamiltonian for the ith particle in the MN -dimensional product

space is Ĥi = Î1 ⊗ Î2 ⊗ · · · Îi−1 ⊗ Ĥi ⊗ Îi+1 ⊗ · · · ⊗ ÎN , where the boldface notation

Ĥi is for the MN -dimensional product space. The sum of the M -dimensional single-

particle Hamiltonians Ĥ1 + Ĥ2 + · · · + ĤN is only M -dimensional and is not in the

MN -dimensional product space.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding constructing the Hamiltonian for a system

of N non-interacting identical particles in which each particle is in a M -dimensional

space.

Student 1: If we know the single-particle Hamiltonian Ĥi for the ith particle in

the system in the MN -dimensional space, then the Hamiltonian for a system of N

non-interacting identical particles has the form Ĥ = (Ĥ1⊗ Î2⊗ Î3⊗· · ·⊗ ÎN)+(Î1⊗Ĥ2⊗

Î3⊗· · ·⊗ ÎN)+ · · ·+(Î1⊗ Î2⊗· · ·⊗ ÎN−2⊗ĤN−1⊗ ÎN)+(Î1⊗ Î2⊗· · ·⊗ ÎN−1⊗ĤN), with

the single-particle Hamiltonian, Ĥi, and the identity operator, Îi, for the ith particle in

the M -dimensional space.

Student 2: I agree with Student 1. Since the particles are non-interacting, the

Hamiltonian Ĥi for the ith particle is not entangled with the Hamiltonian Ĥj for the jth

particle. A short hand notation for the sum is Ĥ =
N∑
i=1

Ĥi = Ĥ1 + Ĥ2 + Ĥ3 + · · ·+ ĤN .

Explain why you agree or disagree with each student.
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** CHECKPOINT: Check your answer to question 1. **

1. Ĥ =
N∑
i=1

Ĥi = Ĥ1 + Ĥ2 + Ĥ3 + · · ·+ ĤN

If your answer does not match the checkpoint, go back and reconcile any difference you

may have with the checkpoint answer.

Consider the following conversation regarding two non-interacting identical particles in

a one-dimensional infinite square well.

Student 1: In an infinite square well, we are only permitted to have one-particle in

the well. If the system has two non-interacting identical particles, we MUST have two

infinite square wells in order to place each particle.

Student 2: I disagree. We can have two non-interacting identical particles in the same

infinite square well. If the particles are non-interacting and confined to a well of width

a, the Hamiltonian for each particle in the product space will be Ĥi =
p̂2i
2m

+ V (xi), in

which

V (xi) =

0 if 0 ≤ xi ≤ a

∞ otherwise

(i = 1, 2).

The Hamiltonian for the system of two non-interacting identical particles in the same

well in the product space is Ĥ = Ĥ1 +Ĥ2 = Ĥ1⊗ Î2 + Î1⊗ Ĥ2, where Ĥ1 and Ĥ2 are the

single-particle Hamiltonians in the product space and Ĥ1 and Ĥ2 are the single-particle

Hamiltonians in the subspaces for the individual particles.

Explain why you agree or disagree with each student.
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Summary of the Hamiltonian for a System of N Non-interacting Particles.

• The Hamiltonian Ĥ for a system of N non-interacting particles in the product space

is the sum of the Hamiltonians for each particle in the product space, Ĥ =
N∑
i=1

Ĥi =

Ĥ1 + Ĥ2 + Ĥ3 + · · ·+ ĤN with Ĥi = Î1 ⊗ Î2 ⊗ · · · ⊗ Îi−1 ⊗ Ĥi ⊗ Îi+1 ⊗ · · · ⊗ ÎN .

D.6.2 Determining Whether the Basis States in the Product Space for a

System of N Non-Interacting Identical Particles Should be Written in Terms

of the Sum or Product of the Single-Particle Stationary State Wavefunctions

• Now that we know the form of the Hamiltonian Ĥ for a system of N non-interacting

identical particles in terms of the single-particle Hamiltonian Ĥi in the product space,

let’s think about the form of the stationary state wavefunction for this system.

• The form of the stationary state wavefunction for a system of non-interacting iden-

tical particles will depend on the type of particle. We will consider three cases:

– Indistinguishable fermions

– Indistinguishable bosons

– Hypothetical case: Identical particles which can be treated as distinguishable.

• Here, for convenience, we will refer to all direct products of single-particle states as

“basis states”. Please note that for identical fermions, only completely antisymmetric

linear combinations of these basis states are allowed, while for bosons only completely

symmetric linear combinations are allowed. For distinguishable particles, all basis

states are allowed..

– Let’s consider the appropriate basis states, e.g., whether the wavefunction for a

system of N non-interacting identical particles can be written in terms of the sum

or the product of the single-particle wavefunctions of individual particles.
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2. Explain why you agree or disagree with the following student. If you disagree, write a

correct statement.

Student 1: The wavefunction ψn1(x1) describes a particle in a single-particle state

denoted by quantum number n1 specifying a single-particle energy and coordinate x1.

3. Write the right-hand side without operators if possible in the following questions for a

system of two non-interacting identical particles, whose single-particle wavefunctions

satisfy the Time Independent Schrödinger Equation (TISE), Ĥiψnj
(xi) = Enj

ψnj
(xi)

for the ith particle with coordinate xi in the single-particle state given by nj. Assume

n1 6= n2. If it is not possible to write the right-hand side without operators and without

encountering difficulties or inconsistencies, explain why.

a. Ĥ1[ψn1(x1) + ψn2(x2)] =

b. Ĥ2[ψn1(x1) + ψn2(x2)] =

c. (Ĥ1 + Ĥ2)[ψn1(x1) + ψn2(x2)] =

d. Ĥ1[ψn1(x1)ψn2(x2)] =

e. Ĥ2[ψn1(x1)ψn2(x2)] =

f. (Ĥ1 + Ĥ2)ψn1(x1)ψn2(x2) =

g. (Ĥ1 + Ĥ2)[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)] =

h. (Ĥ1 + Ĥ2)[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)] =
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4. Circle all of the following wavefunctions “Ψ” (taken from question 3) that are “possible”

two-particle stationary state wavefunctions. Ignore normalization. (Hint: The wave-

function Ψ should satisfy ĤΨ = EΨ in which Ĥ = Ĥ1 + Ĥ2 is the Hamiltonian in the

product space and E = E1 + E2 is the energy, respectively, of the two-particle system.)

a. Ψ(x1, x2) = ψn1(x1) + ψn2(x2)

b. Ψ(x1, x2) = ψn1(x1)ψn2(x2)

c. Ψ(x1, x2) = ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)

d. Ψ(x1, x2) = ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)

Consider the following conversation regarding whether the basis states for constructing

the two-particle stationary state wavefunction for a system of two non-interacting iden-

tical particles can be written in terms of the sum of the single-particle wavefunctions.

Student 1: The basis states that can be used to construct a two-particle stationary

state wavefunction for a system of two non-interacting identical particles can be written

in terms of the sum of the single-particle wavefunctions, Ψ(x1, x2) = ψn1(x1) + ψn2(x2).

Student 2: I disagree. The sum of the single-particle states ψn1(x1) + ψn2(x2) is not

in the Hilbert space of the two-particle system. When the two-particle Hamiltonian

Ĥ1 + Ĥ2 acts on the state ψn1(x1) + ψn2(x2), there are inconsistencies. Consider terms

of the type Ĥ1ψn2(x2) when Ĥ1 + Ĥ2 acts on ψn1(x1) + ψn2(x2).

Student 1: Isn’t Ĥ1ψn2(x2) = 0?

Student 2: No. The single-particle Hamiltonian Ĥ1 only acts on the wavefunction

corresponding to particle one. The wavefunction ψn2(x2) can be written as 1 · ψn2(x2).

The wavefunction corresponding to particle one is “1”, which is not normalizable.

Student 3: I agree with Student 2. The sum of the single-particle states

ψn1(x1) + ψn2(x2) cannot be a basis state for a two-particle system.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding whether the basis states for constructing

the many-particle stationary state wavefunction for a system of two non-

interacting identical particles can be written in terms of the product of the single-

particle wavefunctions.

Student 1: The basis states used to construct a two-particle stationary state wave-

function for a system of two non-interacting identical particles can be written in terms

of the product of the single-particle wavefunctions, such as ψn1(x1)ψn2(x2).

Student 2: I agree with Student 1. Also, if we consider terms of the type

ψn1(x1)ψn2(x2) in the wavefunction for a system of two non-interacting identical

particles, then it satisfies the TISE, as follows:

Ĥψn1(x1)ψn2(x2) = (Ĥ1 + Ĥ2)ψn1(x1)ψn2(x2)

= (Ĥ1 ⊗ Î2)ψn1(x1)ψn2(x2) + (Î1 ⊗ Ĥ2)ψn1(x1)ψn2(x2)

= Ĥ1ψn1(x1)Î2ψn2(x2) + Î1ψn1(x1)Ĥ2ψn2(x2)

= Ĥ1ψn1(x1)ψn2(x2) + Ĥ2ψn1(x1)ψn2(x2)

= [Ĥ1ψn1(x1)]ψn2(x2) + ψn1(x1)[Ĥ2ψn2(x2)]

= En1ψn1(x1)ψn2(x2) + ψn1(x1)En2ψn2(x2)

= En1ψn1(x1)ψn2(x2) + En2ψn1(x1)ψn2(x2)

= (En1 + En2)ψn1(x1)ψn2(x2)

= Eψn1(x1)ψn2(x2) in which E = En1 + En2 .

Explain why you agree or disagree with each student.
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Consider the following conversation regarding whether the basis states consisting of the

product of the single-particle stationary state wavefunctions span the product space of

the many-particle system.

Student 1: The products of the single-particle stationary state wavefunctions are

solutions to the TISE and therefore, they must be basis states for the system of N

non-interacting identical particles.

Student 2: I agree. A complete set of energy eigenstates ψn1(x1)ψn2(x2) will span the

product space and will form a suitable basis.

Student 3: I agree with both Student 1 and Student 2. Since the products of the

single-particle stationary state wavefunctions form a complete set of energy eigenstates

for the many-particle system, they must span the product space for the many-particle

system.

Explain why you agree or disagree with each student.

Summarize in your own words whether the sums or products of the single-particle

wavefunctions can form a suitable basis for N non-interacting identical particles in the

product space.
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• The following conversation and questions will help you learn about the notation

for the stationary state wavefunction for a system of N non-interacting identical

particles

Consider the following conversation regarding whether the single-particle wavefunctions

in the basis states should have the same or different coordinates to properly specify a

three-particle wavefunction for a system of three non-interacting identical particles.

Student 1: We must assign a different coordinate to each identical particle. The

wavefunction will have basis states such as ψn1(x1)ψn2(x2)ψn3(x3).

Student 2: No. I disagree with Student 1. When the particles are indistinguishable,

we can’t possibly distinguish their individual coordinates. So the wavefunction will

have basis states such as ψn1(x)ψn2(x)ψn3(x).

Explain why you agree or disagree with each student.
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5. After each statement, explain why you agree or disagree with the following students. If

you disagree, write a correct statement.

a. Student 1: ψn1(x)ψn2(x) is a basis state that can be used to construct the

two-particle stationary state wavefunction for a system of two non-interacting

particles. Particle 1 is in a single-particle state denoted by n1 and particle 2 is in a

single-particle state denoted by n2.

b. Student 2: ψn1(x2)ψn2(x1) is a basis state that can be used to construct the

two-particle stationary state wavefunction for a system of two non-interacting

particles. Particle 1 with coordinate x2 is in a single-particle state denoted by n1

and particle 2 with coordinate x1 is in a single-particle state denoted by n2.

c. Student 3: ψn2(x2)ψn1(x1) is a basis state that can be used to construct the

two-particle stationary state wavefunction for a system of two non-interacting

particles. Particle 1 with coordinate x1 is in a single-particle state denoted by n1

and particle 2 with coordinate x2 is in a single-particle state denoted by n2.

d. Student 4: ψn1(x1)ψn2(x2)ψn3(x3) is a basis state that can be used to construct

the three-particle stationary state wavefunction for a system of three non-interacting

particles. Particle 1 with coordinate x1 is in a single-particle state denoted by n1,

particle 2 with coordinate x2 is in a single-particle state denoted by n2, and particle

3 with coordinate x3 is in a single-particle state denoted by n3.

6. In your own words, describe what the symbols x1, x2, and x3 in the basis state

ψn1(x1)ψn2(x2)ψn1(x3) mean to you. (Labels representing the single-particle states are

n1, n2 and n1, respectively, with two of the labels being the same.)
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Consider the following conversation regarding whether a different ordering of the

single-particle wavefunctions in the basis states yields a different basis state for a

system of non-interacting identical particles.

Student 1: For a system of two non-interacting identical particles, the terms

ψn1(x1)ψn2(x2) and ψn2(x2)ψn1(x1) represent two different basis states.

Student 2: No. I disagree with Student 1. When writing the basis states, different

orderings of the single-particle wavefunctions does not produce a different basis state.

Both terms ψn1(x1)ψn2(x2) and ψn2(x2)ψn1(x1) represent the same basis state in which

particle 1 with coordinate x1 is in a single-particle state denoted by n1, and particle 2

with coordinate x2 is in a single-particle state denoted by n2.

Explain why you agree or disagree with each student.
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** CHECKPOINT: Check your answers to questions 2-6. **

2. Student 1 is correct.

3a. There is an inconsistency in the term Ĥ1[ψn2(x2)]. The single-particle Hamil-

tonian Ĥ1 can only act on the wavefunction in the part of the Hilbert space corre-

sponding to particle 1 but this term has a wavefunction “1” corresponding to particle

1 which is not possible (in other words, Ĥ1 acts on “1” for the wavefunction which

is not a possible wavefunction since it is not normalizable)

3b. There is an inconsistency in the term Ĥ2[ψn1(x1)]. The single-particle Hamil-

tonian Ĥ2 can only act on the wavefunction in the part of the Hilbert space corre-

sponding to particle 2 but this term has a wavefunction “1” corresponding to particle

2 which is not possible (in other words, Ĥ1 acts on “1” for the wavefunction which

is not a possible wavefunction since it is not normalizable)

Ĥ2[ψn1(x1) + ψn2(x2)] is undefined as the term Ĥ2ψn1(x1) = (Î1 ⊗ Ĥ2)ψn1(x1) =

[Î1ψn1(x1)][Ĥ21] and 1 is not a normalizable wavefunction for particle 2.

3c. (Ĥ1 + Ĥ2)[ψn1(x1) + ψn2(x2)] is undefined by reasoning as in a and b.

3d. Ĥ1[ψn1(x1)ψn2(x2)] = En1 [ψn1(x1)ψn2(x2)]

3e. Ĥ2[ψn1(x1)ψn2(x2)] = En2 [ψn1(x1)ψn2(x2)]

3f.

Ĥψn1(x1)ψn2(x2) = (Ĥ1 + Ĥ2)ψn1(x1)ψn2(x2)

= (Ĥ1 ⊗ Î2)ψn1(x1)ψn2(x2) + (Î1 ⊗ Ĥ2)ψn1(x1)ψn2(x2)

= Ĥ1ψn1(x1)Î2ψn2(x2) + Î1ψn1(x1)Ĥ2ψn2(x2)

= [Ĥ1ψn1(x1)]ψn2(x2) + ψn1(x1)[Ĥ2ψn2(x2)]

= En1ψn1(x1)ψn2(x2) + ψn1(x1)En2ψn2(x2)

= En1ψn1(x1)ψn2(x2) + En2ψn1(x1)ψn2(x2)

= (En1 + En2)ψn1(x1)ψn2(x2)

= Eψn1(x1)ψn2(x2)
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3g.

(Ĥ1 + Ĥ2)[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)] = En1ψn1(x1)ψn2(x2)

+En2ψn2(x1)ψn1(x2)

+En2ψn1(x1)ψn2(x2)

+En1ψn2(x1)ψn1(x2)

= (En1 + En2)[ψn1(x1)ψn2(x2)

+ψn2(x1)ψn1(x2)]

= E[ψn1(x1)ψn2(x2)

+ψn2(x1)ψn1(x2)]

3h.

(Ĥ1 + Ĥ2)[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)] = En1ψn1(x1)ψn2(x2)

−En2ψn2(x1)ψn1(x2)

+En2ψn1(x1)ψn2(x2)

−En1ψn2(x1)ψn1(x2)

= (En1 + En2)[ψn1(x1)ψn2(x2)

−ψn2(x1)ψn1(x2)]

= E[ψn1(x1)ψn2(x2)

−ψn2(x1)ψn1(x2)]

4. b, c, and d. The wavefunctions in the preceding question f, g, and h, which are

products of the single-particle wavefunctions, all satisfy the TISE for Ĥ1 + Ĥ2 and

are possible many-particle stationary state wavefunctions.

5a. Student 1 is incorrect. The coordinates for each particle must be unique in the

basis states (e.g., particle 1 has coordinate x1 and particle 2 has coordinate x2).

5b. Student 2 is incorrect. Ψ(x1, x2) = ψn1(x2)ψn2(x1) is a basis state that can be

used to construct the two-particle stationary state wavefunction for a system of two

non-interacting particles. Particle 1 with coordinate x1 is in a single-particle state

denoted by n2 and particle 2 with coordinate x2 is in a single-particle state denoted

by n1.
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5c. Student 3 is correct.

5d. Student 4 is correct.

56. For the system of three non-interacting particles, particle 1 with coordinate x1 is

in a single-particle state denoted by n1, particle 2 with coordinate x2 is in a single-

particle state denoted by n2, and particle 3 with coordinate x3 is in a single-particle

state denoted by n1.

If your answers do not match the checkpoint, go back and reconcile any differences you

may have with the checkpoint answers.

Summary of the Basis States for a System of N Non-Interacting Particles.

• The basis states used to construct the many-particle stationary state wavefunc-

tion for a system of N non-interacting identical particles are written in terms of

products of the single-particle wavefunctions (NOT the sum of the single-particle

wavefunctions) with different coordinates xi for each particle.

663



D.6.3 Stationary State Wavefunction for a System of N Identical Particles

which are Indistinguishable

• Now that we know that the products of the single-particles wavefunctions form

appropriate basis states for the product space, let’s focus on how to use these basis

states to construct the many-particle stationary state wavefunction (i.e., the form of

the many-particle stationary state wavefunction for identical particles which reflects

indistinguishability).

• A system of identical particles which are indistinguishable can consist of either a

system of identical fermions or identical bosons.
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Consider the following conversation regarding identical particles which are indistinguis-

ble.

Student 1: If we have two identical fermions, we can paint one fermion red and the

other fermion green. Then, all we need to do is to keep track of the color to keep track

of each fermion.

Student 2: In general, in quantum mechanics, if two particles in a system are identical

fermions, we couldn’t paint one red and the other green. Quantum particles are truly

indistinguishable. There is no measurement we can perform that could distinguish

one identical fermion from the other. For example, there is no measurement that can

distinguish which fermion was in which single-particle state and had which coordinate.

The wavefunction must reflect the fact that we cannot attach identifiers to each identical

fermion.

Student 3: Yes. Similarly, if both particles are identical bosons, we couldn’t paint one

red and the other green either. In general, when the single-particle wavefunctions for

the two identical bosons overlap, there is no measurement we can perform that could

distinguish one boson from the other, for example, which boson had which coordinate

and was in which single-particle state.

Explain why you agree or disagree with each student.

Consider the following conversation regarding the spin of identical particles regardless

of whether the particles are fundamental particles (indivisible or composite).

Student 1: When we have a system of identical particles, all particles have the same

intrinsic properties such as mass, charge, and spin.

Student 2: I agree. Also, the property of spin differentiates a boson from a fermion.

The spin of a boson must be an integer. For example, Helium-4 is a boson since it has

integer spin. The spin of a fermion must be a half-integer. For example, an electron,

proton, and neutron are fermions with spin 1/2.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding whether the coordinates of each particle

should be the same or different in the wavefunction for a system of non-interacting

identical particles which are indistinguishable.

Student 1: For a system of three identical particles, the wavefunction will have terms

such as

ψn1(x)ψn2(x)ψn3(x) in which ψn1(x), ψn2(x), and ψn3(x) are the single-particle wave-

functions with the same coordinate for all three particles since the particles are

indistinguishable.

Student 2: I disagree. Even though the particles are indistinguishable, we must still

assign a different coordinate to each particle in a given state. The wavefunction will

have terms such as ψn1(x1)ψn2(x2)ψn3(x3).

Student 3: No. I agree with Student 1 and disagree with Student 2. When the particles

are indistinguishable, we can’t possibly distinguish their individual coordinates. So the

wavefunction will have terms such as ψn1(x)ψn2(x)ψn3(x).

Explain why you agree or disagree with each student.

Student 2 is correct in the preceding conversation.

• The coordinates do not account for the indistinguishability of the particles, rather

the indistinguishability is reflected in the way the many-particle wavefunction is

written (either as a completely symmetric or antisymmetric wavefunction).

• The wavefunction for indistinguishable fermions has different properties than the

wavefunction for indistinguishable bosons.

• Before considering the wavefunction for indistinguishable fermions or indistinguish-

able bosons, let’s review how to determine whether a many-particle wavefunction is

completely symmetric versus antisymmetric with respect to the exchange of any two

particles.
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Symmetric Wavefunction: A symmetric wavefunction of two-particles

Ψ(x1, x2) produces the same wavefunction (with the same sign) when the two particles

are exchanged. Therefore,

Ψ(x2, x1) = Ψ(x1, x2).

A completely symmetric wavefunction for N particles

Ψ(x1, x2, x3 . . . , xi, . . . , xj, . . . , xN) produces the same wavefunction (with the same sign)

when any two particles labeled by xi and xj are exchanged:

Ψ(x1, x2, x3 . . . , xj, . . . , xi, . . . , xN) = Ψ(x1, x2, x3 . . . , xi, . . . , xj, . . . , xN).

The following permutations of coordinates of the particles underlined are all examples of

the consequences of exchanging particles for a completely symmetric wavefunction (i.e.,

the many-particle wavefunction is unchanged)

i. One permutation

Ψ(x1, x2, x3, . . . , xN) = Ψ(x2, x1, x3, . . . , xN) (Permuting x1 and x2)

ii. Two total permutations

Ψ(x1, x2, x3, x3, x4, . . . , xN) = Ψ(x2, x1, x3, x4, . . . , xN) (First permutation:

Permuting x1 and x2)

= Ψ(x2, x3, x1, x4, . . . , xN) (Second permutation:

Permuting x1 and x3)

iii. Three total permuations

Ψ(x1, x2, x3, x4, . . . , xN) = Ψ(x2, x1, x3, x4, . . . , xN) (First permutation:

Permuting x1 and x2)

= Ψ(x2, x3, x1, x4, . . . , xN) (Second permutation:

Permuting x1 and x3)

= Ψ(x3, x2, x1, x4, . . . , xN) (Third permutation:

Permuting x2 and x3)

Continuing in this manner, you can perform any number of permutations to show that

the many-particle is unchanged for each exchange of particles.
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◦ The wavefunction for indistinguishable bosons must be a completely symmetric

wavefunction with respect to exchange of any two particles.

Antisymmetric Wavefunction: An antisymmetric wavefunction of two-

particles Ψ(x1, x2) produces a wavefunction that is related to the original wavefunction

as follows when the two particles are exchanged:

Ψ(x2, x1) = −Ψ(x1, x2).

A completely antisymmetric wavefunction of N particles Ψ(x1, x2, x3, . . . , xN) pro-

duces a wavefunction that is related to the original wavefunction as follows when two

particles are exchanged. The following permutations of the coordinates are all examples

of the consequences of exchanging particles for a completely antisymmetric wavefunction

i. One permutation

Ψ(x1, x2, x3, . . . , xN) = −Ψ(x2, x1, x3, . . . , xN) (Permuting x1 and x2)

ii. Two total permutations

Ψ(x1, x2, x3, x4, . . . , xN) = −Ψ(x2, x1, x3, x4, . . . , xN) (First Permutation:

Permuting x1 and x2)

= −[−Ψ(x2, x3, x1, x4, . . . , xN)] (Second Permutation:

Permuting x1 and x3)

= Ψ(x2, x3, x1, x4, . . . , xN) (Simplifying −1×−1

for two permutations)
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iii. Three total permutations

Ψ(x1, x2, x3, x4, . . . , xN) = −Ψ(x2, x1, x3, x4, . . . , xN) (First Permutation:

Permuting x1 and x2)

= −[−Ψ(x2, x3, x1, x4, . . . , xN)] (Second Permutation:

Permuting x1 and x3)

= Ψ(x2, x3, x1, x4, . . . , xN) (Simplifying −1×−1

for two permutations)

= −Ψ(x3, x2, x1, x4, . . . , xN) (Third Permuation:

Permuting x2 and x3)

Continuing in this manner, you can perform any number of permutations to show that

the many-particle wavefunction develops a plus or minus sign for each exchange of

particles depending upon whether the number of exchanges was even or odd, respectively.

◦ The wavefunction for indistinguishable fermions must be a completely antisym-

metric wavefunction with respect to the exchange of any two particles.
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Consider the following conversation regarding the only two ways of constructing a

wavefunction for identical particles which are indistinguishable (either completely

symmetric or completely antisymmetric with respect to exchange of any two particles).

Student 1: Since there is no measurement we can perform to distinguish different

identical particles in a system consisting of N identical particles, the wavefunction must

reflect this symmetry.

Student 2: I agree with Student 1. There are two possible ways to construct the

wavefunction for a system of N non-interacting indistinguishable particles from the

single-particle wavefunctions for that system. The wavefunction could be either

completely symmetric or completely antisymmetric with respect to exchange of two

particles because it is |ψ|2 that determines the measurable properties and the overall

sign of the many-particle wavefunction is not important.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding the eigenvalues of the “permutation op-

erator.”

Student 1: Let’s consider the permutation operator P̂ij acting on a many-particle sta-

tionary state wavefunction for a system of identical particles. The permutation operator

P̂ij acting on the many-particle stationary state wavefunction exchanges particle i and

particle j in the many-particle stationary state wavefunction.

Student 2: I agree. If the permutation operator P̂ij is applied twice, the original

wavefunction is obtained. That is,

P̂ 2
ijΨ(x1, x2, . . . , xi, . . . , xj, . . . , xN) = Ψ(x1, x2, . . . , xi, . . . , xj, . . . , xN).

Therefore, P̂ 2
ij = Î, in which Î is the identity operator. Thus, the eigenvalues of the

permutation operator P̂ij are ±1. The eigenvalue 1 corresponds to the completely

symmetric bosonic wavefunction and the eigenvalue −1 corresponds to the completely

antisymmetric fermionic wavefunction.

Explain why you agree or disagree with the students.
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D.6.3.1 Stationary State Wavefunction for a System of N Indistinguishable

Fermions

• Now let’s consider the case in which the identical particles are indistinguishable

fermions.

• We will begin with a system of two fermions and then consider a system of three

fermions and finally consider a system of N fermions.

7. Consider a system of two non-interacting identical fermions in which ψn1(x) and ψn2(x)

are the single-particle wavefunctions for the system and n1 6= n2. Choose all of the fol-

lowing normalized wavefunctions that are appropriate for a system of two non-interacting

fermions considering that indistinguishable fermions must have a completely antisym-

metric wavefunction.

a. ψn1(x1)ψn2(x1) (same coordinate)

b. ψn1(x1)ψn2(x2)

c. 1√
2
[ψn1(x1)ψn2(x2) + ψn1(x2)ψn2(x1)]

d. 1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]

e. ψn1(x1)ψn1(x2) (same state label n1)

Consider the following conversation regarding the wavefunction for a system of two

non-interacting indistinguishable fermions.

Student 1: For a system of two non-interacting indistinguishable fermions, the

wavefunction describing the system is ψn1(x1)ψn2(x2), in which ψn1(x1) and ψn2(x2) are

the single-particle wavefunctions for the two-particles.

Student 2: I disagree. If the system consists of two fermions, there is no way to

distinguish which fermion is in the state labeled by n1 and which is in the state labeled

by n2. The wavefunction must reflect this symmetry.
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Student 3: I agree with Student 2. The wavefunction describing a system of non-

interacting indistinguishable fermions must be completely antisymmetric. Therefore,

the normalized wavefunction for a system of two non-interacting fermions must be

1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)].

1

Explain why you agree or disagree with each student.

Consider the following conversation regarding whether the Pauli exclusion principle and

identical fermions having a completely antisymmetric wavefunction are consistent with

each other.

Student 1: The fact that a wavefunction for a system of fermions must be completely

antisymmetric is consistent with the Pauli exclusion principle.

Student 2: I thought the Pauli exclusion principle states that no two fermions can be

in the same single-particle state. How is that consistent with the wavefunction being

completely antisymmetric?

Student 1: Let’s suppose we have two fermions in the same single-particle state. Then

n1 = n2 and the wavefunction would be

Ψ(x1, x2) =
1√
2

[ψn1(x1)ψn1(x2)− ψn1(x2)ψn1(x1)] = 0.

Thus Ψ(x1, x2) = 0 is not a possible wavefunction.

Student 3: The same is true for a system of more than two indistinguishable fermions.

Since a system of fermions has a completely antisymmetric wavefunction, no two

fermions can be in the same single-particle state. If you try to put two or more fermions

in the same state, the wavefunction will be zero for the N -fermion system.

Explain why you agree or disagree with Student 1 and Student 3.

1The wavefunction for a system of indistinguishable fermions must always be completely antisymmetric.
This must also be true when the system includes interactions between the indistinguishable fermions so that
the stationary state wavefunction cannot be expressed as 1√

2
[ψn1

(x1)ψn2
(x2)− ψn1

(x2)ψn2
(x1)].
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Consider the following conversation regarding whether different orderings of the single-

particle stationary state wavefunctions yield different many-particle wavefunctions.

Student 1: The basis states for a system of non-interacting identical fermions

with only two available single-particle states n1 and n2 are ψn1(x1)ψn2(x2),

ψn2(x2)ψn1(x1), ψn2(x1)ψn1(x2), and ψn1(x2)ψn2(x1). The normalized many-particle

stationary state wavefunction for a system of two indistinguishable fermions is

1√
4
[ψn1(x1)ψn2(x2) + ψn2(x2)ψn1(x1)− ψn2(x1)ψn1(x2)− ψn1(x2)ψn2(x1)].

Student 2: I disagree with Student 1. The terms ψn1(x1)ψn2(x2) and ψn2(x2)ψn1(x1)

are two ways to write the same basis state. Changing the order of the single-particle

wavefunctions does not give a different basis state.

Student 3: I agree with Student 2. The expression 1√
4
[ψn1(x1)ψn2(x2)

+ ψn2(x2)ψn1(x1)− ψn2(x1)ψn1(x2)− ψn1(x2)ψn2(x1)] = 1√
4
[2ψn1(x1)ψn2(x2)

− 2ψn2(x1)ψn1(x2)] = ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2), which is not a properly normal-

ized wavefunction. The normalization factor should be 1√
2
.

Explain why you agree or disagree with Student 1 and Student 3.

8. Is the completely antisymmetric wavefunction 1√
2
[ψn1(x1)ψn2(x2) − ψn1(x2)ψn2(x1)] a

stationary state wavefunction for the two-fermion system? Explain.
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Consider the following conversation regarding whether, after antisymmetrizing the wave-

function for a system of two non-interacting fermions, the state remains a stationary

state wavefunction of the many-particle system with n1 6= n2.

Student 1: When we completely antisymmetrize the wavefunction for two fermions,

the wavefunction is Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2) − ψn1(x2)ψn2(x1)]. However, since

this is a linear superposition of two basis states, it is not a stationary state wavefunction

for the two-particle system.

Student 2: I disagree with Student 1’s claim that Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2) −

ψn1(x2)ψn2(x1)] is not a stationary state wavefunction for the two-particle system. If

we completely antisymmetrize the wavefunction for a system of two non-interacting

fermions, then this completely antisymmetric wavefunction

Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2) − ψn1(x2)ψn2(x1)] constructed from products of single-

particle wavefunctions is a stationary state wavefunction for the two-particle system.

That is,

ĤΨ(x1, x2) = Ĥ
{

1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]

}
= E1

{
1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]

}
+E2

{
1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]

}
= E

{
1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]

}
= EΨ(x1, x2).

This is true because each basis state in the product space satisfies the TISE with the

same energy E = E1 + E2

Explain why you agree or disagree with each student.
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Use the following questions to check your answer to the preceding question about the

conversation.

9. Consider a system of two non-interacting identical fermions. As we learned, the Hamil-

tonian for a system of two non-interacting identical particles is given by Ĥ = Ĥ1 + Ĥ2.

Using the TISE, determine whether the completely antisymmetric wavefunction

1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)] is a stationary state wavefunction for the two

fermion system.

ĤΨ(x1, x2) = Ĥ{ 1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]} =

10. What is the energy for a system of two non-interacting identical fermions in which one

fermion is in a single-particle state labeled by n1 with energy En1 and the other fermion

is in a single-particle state labeled by n2 with energy En2?
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• Now, let’s construct the completely antisymmetric wavefunction for a system of

more than one non-interacting, indistinguishable fermion.

• We will begin with a system of two indistinguishable fermions followed by a system

of three indistinguishable fermions.

11. Starting with the expression ψn1(x1)ψn2(x2), construct the completely antisymmetric

wavefunction for a system of two non-interacting, indistinguishable fermions by per-

muting the coordinates (hold n1 and n2 fixed) and combining the terms with different

permutations to make the wavefunction completely antisymmetric.

12. Starting with the expression ψn1(x1)ψn2(x2), construct the completely antisymmetric

wavefunction for a system of two non-interacting, indistinguishable fermions by permut-

ing the labels n1 and n2 for the states (hold x1 and x2 fixed) and combining the terms

with different permutations to make the wavefunction completely antisymmetric.

13. Compare your answers to questions 11 and 12 and state the reasoning for what you

found.
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Consider the following conversation regarding constructing a completely antisymmetric

wavefunction for a system of two indistinguishable fermions starting with the expression

ψn1(x1)ψn2(x2).

Student 1: If we start with the expression ψn1(x1)ψn2(x2), we can construct a

completely antisymmetric wavefunction by interchanging the two single-particle

wavefunction labels, multiplying the new permutation by -1 and then summing

over all the permutations, which in this case is just two permutations. If we permute

n1 and n2 in ψn1(x1)ψn2(x2), the new term is −ψn2(x1)ψn1(x2). After normalization,

the completely antisymmetric wavefunction for a system of two identical fermions is

Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)].

Student 2: If we start with the expression ψn1(x1)ψn2(x2), we can construct a com-

pletely antisymmetric wavefunction by interchanging the coordinates, multiplying

the new permutation by -1 and then summing over all the permutations, which in

this case is just two permutations. If we permute x1 and x2 in ψn1(x1)ψn2(x2), the

new term is −ψn1(x2)ψn2(x1). The sum of the terms after normalization for the

completely antisymmetric wavefunction for a system of two identical fermions is

Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)].

Student 3: I agree with both Student 1 and Student 2. Both students constructed

the same completely antisymmetric wavefunction. The single-particle wavefunctions

are not operators, so we can switch the order of single-particle wavefunctions, i.e.,

ψn1(x2)ψn2(x1) = ψn2(x1)ψn1(x2). The completely antisymmetric wavefunction can be

generated by interchanging either the coordinates or the labels for the states.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding constructing a completely antisymmetric

wavefunction for a system of indistinguishable fermions by switching both the coordi-

nates and the labels for the states.

Student 1: If we interchange both the labels for the states and the coordinates, the

resulting wavefunction is a completely antisymmetric wavefunction for the system of

identical fermions.

Student 2: I disagree with Student 1. Let’s consider a system of two indistinguishable

fermions. If we start with the basis state ψn1(x1)ψn2(x2) and interchange two single-

particle wavefunction labels and multiply the new permutation by -1, the new term

is −ψn2(x1)ψn1(x2). Now if we interchange the coordinates of the two-particles and

multiply the new permutation by -1, the new term is ψn2(x2)ψn1(x1) = ψn1(x1)ψn2(x2).

By switching both the coordinates and the labels, we recovered the original expression

and did not generate a new term. The original expression ψn1(x1)ψn2(x2) that we got

back by exchanging both the labels for the states and the coordinates is not antisym-

metric and therefore it cannot be the wavefunction for a system of two indistinguishable

fermions.

Student 3: I agree with Student 2. For a system of indistinguishable fermions,

we cannot generate a completely antisymmetric wavefunction by switching both the

coordinates and the labels for the states. We should only permute one of them to

generate a completely antisymmetric wavefunction.

Explain why you agree or disagree with each student.
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14. Starting with the expression ψn1(x1)ψn2(x2)ψn3(x3), construct the completely antisym-

metric wavefunction for the system of three indistinguishable fermions. Hint: Switch

either the coordinates or the states (but not both) two at a time and remember to

make the wavefunction completely antisymmetric by multiplying the new permutation

by -1 each time you interchange two particles. Two interchanges will produce -1 × -1

=1 times the new permutation. Then sum all of the permutations and normalize the

completely antisymmetric wavefunction.

Consider the following conversation regarding the number of terms and the normaliza-

tion factor for a completely antisymmetric wavefunction for a system of indistinguishable

fermions.

Student 1: When constructing the completely antisymmetric wavefunction for a

system of three indistinguishable fermions, how do I know that I have found all the

possible permutations?

Student 2: In general, for a system of N indistinguishable fermions, there are N !

permutations of the labels. For example, there are N ! permutations of the coordinates

x1, x2, . . . , xN or N ! permutations of the labels for the single-particle states

ψn1 , ψn2 , . . . , ψnN
. The normalization factor is 1√

N !
.

Student 3: I agree with Student 2. For a system of three indistinguishable fermions,

the completely antisymmetric wavefunction will have 3! = 6 terms and the normaliza-

tion factor will be 1√
6
.

Explain why you agree or disagree with Student 2 and Student 3.
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Consider the following conversation regarding a method for constructing completely

antisymmetric wavefunctions for indistinguishable fermions.

Student 1: To find the completely antisymmetric wavefunction for a system of three

indistinguishable fermions, we start with the expression ψn1(x1)ψn2(x2)ψn3(x3) and then

find all possible permutations of either the coordinates (x1, x2, x3) or the state indices

(n1, n2, n3). Each time we interchange two labels, we multiply the new permuted term

by -1. Once we find all the permutations, we add them and normalize the completely

antisymmetric wavefunction obtained.

Student 2: Although I agree with Student 1’s method for more than two-particles, it

can be easy to make a mistake with the sign of each term or omit a term altogether.

A more systematic approach to help eliminate these sign mistakes is to use the “Slater

determinant”. For three-particles, the Slater determinant is

A

∣∣∣∣∣∣∣∣∣
ψn1(x1) ψn2(x1) ψn3(x1)

ψn1(x2) ψn2(x2) ψn3(x2)

ψn1(x3) ψn2(x3) ψn3(x3)

∣∣∣∣∣∣∣∣∣ =

A[ψn1(x1)ψn2(x2)ψn3(x3)− ψn1(x1)ψn3(x2)ψn2(x3)

−ψn2(x1)ψn1(x2)ψn3(x3) + ψn2(x1)ψn3(x2)ψn1(x3)

+ψn3(x1)ψn1(x2)ψn2(x3)− ψn3(x1)ψn2(x2)ψn1(x3)]

in which A is the normalization constant which needs to be found separately. Here,

A = 1√
N !

= 1√
6

for a system of three fermions since each single-particle state is itself

normalized. The Slater determinant can equivalently be expressed as

A

∣∣∣∣∣∣∣∣∣
ψn1(x1) ψn1(x2) ψn1(x3)

ψn2(x1) ψn2(x2) ψn2(x3)

ψn3(x1) ψn3(x2) ψn3(x3)

∣∣∣∣∣∣∣∣∣ =

A[ψn1(x1)ψn2(x2)ψn3(x3)− ψn1(x1)ψn2(x3)ψn3(x2)

−ψn1(x2)ψn2(x1)ψn3(x3) + ψn1(x2)ψn2(x3)ψn3(x1)

+ψn1(x3)ψn2(x1)ψn3(x2)− ψn1(x3)ψn2(x2)ψn3(x1)].

Student 3: I agree with Student 2. The wavefunction is the same using either form

of the Slater determinant since the rows and columns are transposed. Also, the Slater

determinant works for a system of any number of fermions although even this method

can become tedious when applied to more than three fermions.

Explain why you agree or disagree with the students.
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15. Using the Slater determinant, determine the stationary state wavefunction of a system

of two fermions and check your answer to question 7.

Consider the following conversation regarding the Slater determinant and the Pauli ex-

clusion principle for a system of two identical fermions.

Student 1: The Slater determinant yields a many-particle wavefunction which is con-

sistent with the Pauli exclusion principle. For example, for a system of two fermions, if

we put both fermions in the same single-particle state, then∣∣∣∣∣∣ ψn1(x1) ψn1(x2)

ψn1(x1) ψn1(x2)

∣∣∣∣∣∣ = ψn1(x1)ψn1(x2)− ψn1(x2)ψn1(x1) = 0

which is not a possible wavefunction since zero represents the absence of a wavefunction.

Student 2: I agree with Student 1. We can extend the Slater determinant method to

find the many-particle wavefunction for a system with more than two particles. Con-

sistent with Pauli’s exclusion principle, having two particles in the same single-particle

state produces two columns or rows with the same entries so the Slater determinant of

the many-particle wavefunction is zero, which is not a possible wavefunction.

Explain why you agree or disagree with the students.
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**CHECKPOINT: Check your answers to questions 7-14. **

7. d

8. Yes, the completely antisymmetric wavefunction 1√
2
[ψn1(x1)ψn2(x2) −

ψn1(x2)ψn2(x1)] is a stationary state wavefunction for the two fermion system as

it satisfies the TISE, ĤΨ(x1, x2) = EΨ(x1, x2)

9.

ĤΨ(x1, x2) = (Ĥ1 + Ĥ2)
{

1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]

}
= Ĥ1

{
1√
2
[ψn1(x1)ψn2(x2)]

}
− Ĥ1

{
1√
2
[ψn1(x2)ψn2(x1)]

}
+Ĥ2

{
1√
2
[ψn1(x1)ψn2(x2)]

}
− Ĥ2

{
1√
2
[ψn1(x2)ψn2(x1)]

}
= En1

{
1√
2
[ψn1(x1)ψn2(x2)]

}
− En2

{
1√
2
[ψn1(x2)ψn2(x1)]

}
+En2

{
1√
2
[ψn1(x1)ψn2(x2)]

}
− En1

{
1√
2
[ψn1(x2)ψn2(x1)]

}
= En1

{
1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]

}
+En2

{
1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]

}
= (En1 + En2)

{
1√
2
[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)]

}
= E

{
1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]

}
in which E = En1 + En2

= EΨ(x1, x2)

10. E = En1 + En2

11. Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]

12. Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)]

13. The completely antisymmetric wavefunction for the system of two fermions is

the same if we permute either the coordinates or the labels for the states (but NOT

both simultaneously).
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14.

Permutation Switch New Permutation

ψn1(x1)ψn2(x2)ψn3(x3) n1 ↔ n2 −ψn2(x1)ψn1(x2)ψn3(x3)

−ψn1(x1)ψn3(x2)ψn2(x3) n1 ↔ n3 ψn3(x1)ψn1(x2)ψn2(x3)

ψn1(x1)ψn2(x2)ψn3(x3) n2 ↔ n3 −ψn1(x1)ψn3(x2)ψn2(x3)

−ψn2(x1)ψn1(x2)ψn3(x3) n1 ↔ n3 ψn2(x1)ψn3(x2)ψn1(x3)

ψn3(x1)ψn1(x2)ψn2(x3) n1 ↔ n2 −ψn3(x1)ψn2(x2)ψn1(x3)

Adding the different permutations, we get the completely antisymmetric wavefunc-

tion

Ψ(x1, x2, x3) = 1√
6
[ψn1(x1)ψn2(x2)ψn3(x3)− ψn2(x1)ψn1(x2)ψn3(x3)

+ψn3(x1)ψn1(x2)ψn2(x3)− ψn1(x1)ψn3(x2)ψn2(x3)

+ψn2(x1)ψn3(x2)ψn1(x3)− ψn3(x1)ψn2(x2)ψn1(x3)]

15. 1√
2
[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)]

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answers.

Summary for the Properties of the Wavefunction for Fermions

• The wavefunction for a system of indistinguishable fermions is completely antisym-

metric with respect to exchange of any two particles.
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D.6.3.2 Stationary State Wavefunction for a System of N Indistinguishable

Bosons

• Now let’s consider the case in which the particles are indistinguishable bosons.

16. Consider a system of two non-interacting, indistinguishable bosons in which ψn1(x) and

ψn2(x) are the single-particle wavefunctions for the system (n1 6= n2). Choose all of

the following wavefunctions that are appropriate for a system of two non-interacting

indistinguishable bosons considering that bosons must have a completely symmetric

wavefunction.

a. ψn1(x1)ψn2(x1)

b. ψn1(x1)ψn2(x2)

c. 1√
2
[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)]

d. 1√
2
[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)]

e. ψn1(x1)ψn1(x2) (same label n1 for the states)

Consider the following conversation regarding the wavefunction for a system of two

non-interacting indistinguishable bosons.

Student 1: For a system of two non-interacting, indistinguishable bosons, if the

bosons are in the same single-particle state, say ψn1 , the wavefunction describing the

two-particle system is ψn1(x1)ψn1(x2).

Student 2: I disagree. If the system consists of two indistinguishable bosons, the

bosons cannot be in the same single-particle state. So, ψn1(x1)ψn1(x2) is not a

possible wavefunction for a system of two non-interacting, indistinguishable bosons.

ψn1(x1)ψn1(x2) is the wavefunction for distinguishable particles only.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding two indistinguishable bosons in the same

single-particle state.

Student 1: If we have a system consisting of two indistinguishable bosons, then the

Pauli exclusion principle tells us that the bosons must be in different single-particle

states.

Student 2: I disagree with Student 1. The Pauli exclusion principle applies only to

fermions. Since the wavefunction for a system of indistinguishable bosons is symmetric

with respect to exchange of two particles, the wavefunction is not zero when the

indistinguishable bosons are in the same single-particle state.

Student 3: I agree with Student 2. The antisymmetrized wavefunction for two

indistinguishable fermions in the same single-particle state is zero, which is not a

possible wavefunction consistent with the Pauli’s exclusion principle. However, for two

indistinguishable bosons, if both bosons are in state n1, then the normalized two-particle

wavefunction would be ψn1(x1)ψn1(x2).

Explain why you agree or disagree with each student.
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Consider the following conversation regarding two indistinguishable bosons having the

same two-particle stationary state wavefunction as a system of identical particles that

can be treated as distinguishable.

Student 1: For two indistinguishable bosons, if both bosons are in state n1, then the

normalized two-particle wavefunction is ψn1(x1)ψn1(x2).

Student 2: I disagree with Student 1. The wavefunction ψn1(x1)ψn1(x2) is not a

possible stationary state wavefunction for a system of bosons. The wavefunction for a

system of indistinguishable bosons must be completely symmetric and we must have a

sum of terms in the wavefunction for it to be completely symmetric. The wavefunction

ψn1(x1)ψn1(x2) is only possible for a system of identical particles that can be treated as

distinguishable.

Student 3: I agree with Student 1 and disagree with Student 2. A completely

symmetric wavefunction does not necessarily have to be written in terms of a sum.

The wavefunction ψn1(x1)ψn1(x2) is completely symmetric with respect to exchange of

the two particles. If all of the indistinguishable bosons are in the same single-particle

state, then the many-particle wavefunction for a system of indistinguishable bosons is

the same as the wavefunction for a system of identical particles that can be treated as

distinguishable.

Explain why you agree or disagree with each student.

17. Check whether the wavefunction ψn1(x1)ψn1(x2) satisfies the TISE and is symmetric

with respect to exhange of the two particles.
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Consider the following conversation regarding the wavefunction for a system of two

non-interacting indistinguishable bosons when n1 6= n2.

Student 1: For a system of two non-interacting indistinguishable bosons, if the two

bosons are in different single-particle states, the wavefunction describing the two-

particle system is ψn1(x1)ψn2(x2), in which ψn1(x1) and ψn2(x2) are the single-particle

wavefunctions for the two-particles.

Student 2: I disagree. If the system consists of two bosons, there is no way to

distinguish which boson is in the single-particle state denoted by n1 and which is in the

single-particle state denoted by n2. The wavefunction must reflect this symmetry.

Student 3: The wavefunction describing a system of non-interacting indistinguishable

bosons must be completely symmetric.2 Therefore, the two-particle wavefunction for

a system of two non-interacting, indistinguishable bosons, where the bosons are in

different single-particle states, must be 1√
2
[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)].

Explain why you agree or disagree with each student.

2The wavefunction for a system of indistinguishable bosons must always be completely symmetric. This
must also be true when the system includes interactions between the indistinguishable bosons so that the
stationary state wavefunction cannot be expressed as 1√

2
[ψn1

(x1)ψn2
(x2) + ψn2

(x1)ψn1
(x2)].
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18. Does the two-particle wavefunction 1√
2
[ψn1(x1)ψn2(x2)+ψn2(x1)ψn1(x2)] satisfy the TISE

for a two-particle system? Explain.

19. What is the energy for a system of two non-interacting identical bosons in which one

boson is in a single-particle state labeled by n1 and the other boson is in a single-particle

state labeled by n2?

20. For a system of two non-interacting, indistinguishable bosons, how many terms will be

present in the two-particle wavefunction for the system if the bosons are in different

single-particle states?

21. For a system of two non-interacting, indistinguishable bosons, how many terms will be

present in the two-particle wavefunction for the system if the bosons are in the same

single-particle state?

22. For a system of three non-interacting, indistinguishable bosons, how many terms will be

present in the three-particle wavefunction for the system if two of the three bosons are

in the same single-particle stationary state?
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Consider the following conversation regarding the normalization factor for a system of

indistinguishable bosons.

Student 1: For a system of N non-interacting, indistinguishable bosons, the normal-

ization factor must be 1√
N !

.

Student 2: I agree with Student 1. To ensure we have a symmetric wavefunction, the

many-particle wavefunction will be the sum of all the permutations of the product of the

single-particle wavefunctions. Since there are N ! ways to permute the N single-particle

wavefunctions, the normalization factor will be 1√
N !

.

Student 3: I disagree with both Student 1 and Student 2. The normalization factor

will be 1√
N !

only if all the bosons are in different single-particle states. If we have all

of the bosons in one single-particle state,
N∏
i=1

ψn(xi) is a valid many-particle state, e.g.,

ψn1(x1)ψn1(x2)ψn1(x3) is an appropriately symmetrized wavefunction and the overall

normalization factor for ψn1(x1)ψn1(x2)ψn1(x3) is 1 since all three particles are in the

same single-particle state given by the label n1. We must be careful not to over count

the number of unique permutations of the N single-particle states.

Explain why you agree or disagree with each student.
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23. Construct the completely symmetric normalized three-particle wavefunction for the sys-

tem of three non-interacting, indistinguishable bosons in the following cases:

a. All the bosons are in different states.

b. Two of the bosons are in the same state ψn1 .

c. All the bosons are in the same state ψn1 .
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**CHECKPOINT: Check your answers to questions 16-23.

**

16. c and e

17. Yes, the wavefunction ψn1(x1)ψn2(x2) is symmetric with respect to exchange of

the two particles and satisfies the TISE.

Ĥ[ψn1(x1)ψn2(x2)] = (En1 + En2)[ψn1(x1)ψn2(x2)] = E[ψn1(x1)ψn2(x2)]

18. Yes, the completely symmetric wavefunction 1√
2
[ψn1(x1)ψn2(x2)+ψn1(x2)ψn2(x1)]

is a stationary state wavefunction for the two boson system as it satisfies the TISE,

ĤΨ(x1, x2) = EΨ(x1, x2).

ĤΨ(x1, x2) = (Ĥ1 + Ĥ2)
{

1√
2
[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)]

}
= Ĥ1

{
1√
2
[ψn1(x1)ψn2(x2)]

}
+ Ĥ1

{
1√
2
[ψn2(x1)ψn1(x2)]

}
+Ĥ2

{
1√
2
[ψn1(x1)ψn2(x2)]

}
+ Ĥ2

{
1√
2
[ψn2(x1)ψn1(x2)]

}
= En1

{
1√
2
[ψn1(x1)ψn2(x2)]

}
+ En2

{
1√
2
[ψn2(x1)ψn1(x2)]

}
+En2

{
1√
2
[ψn1(x1)ψn2(x2)]

}
+ En1

{
1√
2
[ψn2(x1)ψn1(x2)]

}
= (En1 + En2)

{
1√
2
[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)]

}
= E

{
1√
2
[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)]

}
= EΨ(x1, x2)

19 E = En1 + En2

20. There must be two terms to satisfy the symmetrization requirement for bosons.

Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)]

21. One. For example, if both bosons are in the single-particle state ψn1 , the many-

particle stationary state wavefunction is Ψ(x1, x2) = ψn1(x1)ψn1(x2)

22. There must be three terms to satisfy the symmetrization requirement for bosons.

For example, if two of the three bosons are in the single-particle state ψn1 , the many-

particle stationary state wavefunction is Ψ(x1, x2, x3) = 1√
3
[ψn1(x1)ψn1(x2)ψn2(x3) +
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ψn2(x1)ψn1(x2)ψn1(x3) + ψn1(x1)ψn2(x2)ψn1(x3)]

23a.

Ψ(x1, x2, x3) = 1√
6
[ψn1(x1)ψn2(x2)ψn3(x3) + ψn1(x1)ψn2(x3)ψn3(x2)

+ψn1(x2)ψn2(x1)ψn3(x3) + ψn1(x2)ψn2(x3)ψn3(x1)

+ψn1(x3)ψn2(x1)ψn3(x2) + ψn1(x3)ψn2(x2)ψn3(x1)]

23b. Ψ(x1, x2, x3) = 1√
3
[ψn1(x1)ψn1(x2)ψn2(x3) + ψn1(x1)ψn2(x2)ψn1(x3) +

ψn2(x1)ψn1(x2)ψn1(x3)]

c. Ψ(x1, x2, x3) = ψn1(x1)ψn1(x2)ψn1(x3)

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answer.

Summary of Properties of the Wavefunction for Bosons

• The wavefunction for a system of indistinguishable bosons is completely symmetric

with respect to exchange of any two particles.

693



D.6.3.3 Hypothetical Case: Stationary State Wavefunction for a System

of N Non-Interacting Identical Particles if They Could Be Treated as Distin-

guishable

• Let’s contrast the cases of indistinguishable fermions and indistinguishable bosons

with a hypothetical case in which the identical particles could be treated as distin-

guishable.

• We compare the resulting many-particle stationary state wavefunctions to what

was obtained for indistinguishable fermions and indistinguishable bosons to learn

why care must be taken to ensure that the many-particle wavefunction reflects the

indistinguishability of the particles.

• If identical particles (particles of one type with the same properties) could be

treated as distinguishable, we can assign a distinct label (e.g., red, blue, etc.) to

distinguish each particle from the other particles in the system even though the

particles have the same properties.

Consider the following conversation regarding the symmetrization requirements of the

wavefunction for a system of two non-interacting identical particles if they could be

treated as distinguishable.

Student 1: For a system of two non-interacting identical particles which can be treated

as distinguishable, we must still symmetrize the wavefunction.

Student 2: I disagree with Student 1. Since the particles can be treated as distin-

guishable, we can determine which particle is in which single-particle state. There is no

requirement to symmetrize the wavefunction.

Explain why you agree or disagree with the students.
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24. Consider a system of two non-interacting, identical particles which can be treated as

distinguishable, in which ψn1 and ψn2 are the single-particle wavefunctions for the system

(n1 6= n2). Choose all of the following wavefunctions that are appropriate two-particle

stationary state wavefunctions for a system of two non-interacting, identical particles

which can be treated as distinguishable.

a. ψn1(x1)ψn2(x1) (same label x1)

b. ψn1(x1)ψn2(x2)

c. ψn1(x1)ψn1(x2) (same label n1)

d. ψn1(x)ψn1(x) (same label x)

Consider the following conversation regarding the appropriate wavefunctions for a sys-

tem of two non-interacting identical particles that can be treated as distinguishable.

Student 1: For a system of two non-interacting identical particles which can be treated

as distinguishable, the wavefunction describing the system can be

ψn1(x1)ψn2(x2) in which n1 6= n2. ψn1(x1) means that particle 1 with coordinate x1 is

in a single-particle energy state denoted by n1. Similarly, ψn2(x2) means that particle 2

with coordinate x2 is in a single-particle energy state denoted by n2.

Student 2: I agree with Student 1. Additionally, ψn1(x1)ψn1(x2) is also a valid wave-

function for two identical particles which can be treated as distinguishable as there is

nothing prohibiting both particles from occupying the same single-particle state with

label n1.

Student 3: Only for the case when both particles are in the same single-particle state

ψn1 is the two-particle wavefunction ψn1(x1)ψn1(x2) the same as for the case of identical

bosons.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding constructing a wavefunction for a system

of N non-interacting identical particles which can be treated as distinguishable from the

corresponding single-particle wavefunctions ψni
, i = 1, 2, . . . ,∞.

Student 1: For a system of N non-interacting identical particles which can be treated

as distinguishable, a stationary state wavefunction describing the system must be a

product of the single-particle wavefunctions, i.e.,

Ψ(x1, x2, . . . , xN) = ψn1(x1)ψn2(x2)ψn3(x3) · · ·ψnN
(xN),

in which the ni need not be different. Student 2: How can the stationary state

wavefunction describing the system be the product of the single-particle wavefunctions

Ψ(x1, x2, . . . , xN) = ψn1(x1)ψn2(x2)ψn3(x3) · · ·ψnN
(xN) when the Hamiltonian for a sys-

tem of the N non-interacting identical particles which can be treated as distinguishable

is the sum of the Hamiltonian of each particle Ĥ =
N∑
i=1

Ĥi?

Student 3: Let’s consider the stationary state wavefunction to be the product of the

single-particle wavefunctions Ψ(x1, x2, . . . , xN) = ψn1(x1)ψn2(x2)ψn3(x3) · · ·ψnN
(xN).

From the TISE, ĤΨ = EΨ, where Ĥ is the Hamiltonian, Ψ is a stationary state

wavefunction, and E is the energy of the many-particle system. Thus,

ĤΨ(x1, x2, . . . , xN) =
N∑
i=1

ĤiΨ(x1, x2, . . . , xN)

=
N∑
i=1

Ĥi

(
N∏
j=1

ψnj
(xj)

)
= (Ĥ1 + Ĥ2 + . . .+ ĤN)(ψn1(x1)ψn2(x2) . . . ψnN

(xN))

= Ĥ1(ψn1(x1)ψn2(x2) . . . ψnN
(xN)) + Ĥ2(ψn1(x1)ψn2(x2) . . . ψnN

(xN))

+ . . .+ ĤN(ψn1(x1)ψn2(x2) . . . ψnN
(xN))

= En1(ψn1(x1)ψn2(x2) . . . ψnN
(xN)) + En2(ψn1(x1)ψn2(x2) . . . ψnN

(xN))

+ . . .+ EnN
(ψn1(x1)ψn2(x2) . . . ψnN

(xN))

= (En1 + En2 + . . .+ EnN
)(ψn1(x1)ψn2(x2) . . . ψnN

(xN))

= (En1 + En2 + . . .+ EnN
)

(
N∏
i=1

ψni
(xi)

)

=

(
N∑
i=1

Eni

)(
N∏
j=1

ψnj
(xj)

)
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= E

(∏
i

= 1Nψnj
(xj)

)
= EΨ(x1, x2, . . . , xN)

which is the constant E times the same wavefunction and so
N∏
i=1

ψni
(xi) is a many-

particle stationary state wavefunction. Therefore, stationary state wavefunctions for

a system of N non-interacting particles which can be treated as distinguishable are

products of the single-particle wavefunctions.

Explain why you agree or disagree with Student 1 and Student 3 .

25. Write the wavefunction for a system of two non-interacting, identical particles which

can be treated as distinguishable in which particle 1 is in the single-particle state

labeled by n1 and particle 2 is in a single-particle state labeled by n2 with n1 6= n2. Do

not forget to use appropriate coordinates for each particle.

26. Is the wavefunction in question 25 a stationary state wavefunction for a system of two

non-interacting identical particles which can be treated as distinguishable? Explain.
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27. What is the energy for a system of two non-interacting identical particles which can

be treated as distinguishable in which particle 1 is in the single-particle state labeled

by n1 and particle 2 is in a single-particle state labeled by n2?

28. Compare your answer for question 27 to the energy for a system of two indistinguishable

particles (questions 10 and 19 for fermions and bosons, respectively) where one particle

is in a single-particle state labeled by n1 and the other particle is in a single-particle

state labeled by n2.

29. For a system of N non-interacting identical particles which can be treated as

distinguishable, write the stationary state wavefunction for the N -particle system, in

which ψni
is the single-particle wavefunction for the ith particle. Do not forget to use

appropriate coordinates for each particle.

30. Write the stationary state wavefunctions for a system of two non-interacting indistin-

guishable fermions and a system of two indistinguishable bosons (for the distinct single-

particle states ψn1 and ψn2) and compare to the stationary state wavefunction for a

system of two non-interacting identical particles which can be treated as distinguishable

in question 25.
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** Checkpoint: Check your answer to questions 24-30. **

24. b and c

25. Ψ(x1, x2) = ψn1(x1)ψn2(x2)

26. Yes. ĤΨ = (Ĥ1+Ĥ2)ψn1(x1)ψn2(x2) = (En1 +En2)ψn1(x1)ψn2(x2) = EΨ(x1, x2)

27. E = En1 + En2

28. The energy of a system of two identical particles which are indistinguishable

fermions or bosons is the same as the energy for a system of two identical particles

which can be treated as distinguishable, for which E = En1 +En2 for all three cases.

29. Ψ(x1, x2, . . . , xN) =
N∏
i=1

ψni
(xi) = ψn1(x1)ψn2(x2) · · ·ψnN

(xN).

30. The stationary state wavefunctions for two non-interacting identical particles

occupying the two distinct single-particle states ψn1 and ψn2 are given in the following

chart

System Stationary State Wavefunction

Distinguishable Particles Ψ(x1, x2) = ψn1(x1)ψn2(x2)

or Ψ(x1, x2) = ψn2(x1)ψn1(x2)

Indistinguishable Fermions Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)]

Indistinguishable Bosons Ψ(x1, x2) = 1√
2
[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)]

The wavefunction for a system of indistinguishable particles must reflect sym-

metrization requirements.

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answer.
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Summary of the Properties of the Wavefunction for Distinguishable Particles

• There is no symmetrization requirement for the many-particle stationary state wave-

function for a system of identical particles which can be treated as distinguishable.

• The wavefunction for a system of non-interacting identical particles which can be

treated as distinguishable is the product of the single-particle wavefunctions:

◦ Ψ(x1, x2, . . . , xN) =
N∏
i=1

ψni
(xi).

In two to three sentences, summarize the properties of the wavefunction for identical

particles (particles of the same type with the same properties). Be sure to describe the

properties of indistinguishable fermions, indistinguishable bosons, and identical particles

if they could be treated as distinguishable.
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Fill in the table below with the properties of an N -particle system consisting of identical

particles.

IDENTICAL PARTICLES

How would you explain to someone why in an N -particle quantum system consisting of identical particles, the particles must be treated as indistinguishable?

Type of Particle Properties

What is the constraint on the spin of a fermion?

INDISTINGUISHABLE Give an example of a physical system consisting of identical fermions in which the fermions must be treated as indistinguishable.

FERMIONS

What is the symmetrization requirement of the N -particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,

or No requirement)?

What is the constraint on the spin of a boson?

INDISTINGUISHABLE Give an example of a physical system consisting of identical bosons in which the bosons must be treated as indistinguishable.

BOSONS

What is the symmetrization requirement of the N -particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,

or No requirement)?

What is the symmetrization requirement of the N -particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,

HYPOTHETICAL CASE: or No requirement)?

DISTINGUISHABLE

PARTICLES
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Construct the wavefunction for the following systems of three non-interacting particles

with correct normalization. Use thelabels n1, n2, and n3 to represent the single-particle

stationary state wavefunctions of the system when necessary. If no suchwavefunction is

permissible, mark the box with an X.

All 3 particles in the 2 particles in the same single-particle All 3 particles in different

same single-particle state state labeled by n1 single-particle states labeled by

labeled by n1. 1 particle in a different single-particle n1, n2, and n3.

state labeled by n2.

INDISTINGUISHABLE

FERMIONS

INDISTINGUISHABLE

BOSONS

HYPOTHETICAL CASE:

DISTINGUISHABLE

PARTICLES
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** Check your answers in the preceding tables.**

IDENTICAL PARTICLES

How would you explain to someone why in an N -particle quantum system consisting of identical particles, the particles must be treated as indistinguishable?

Nature is found to behave in this manner. A system of identical particles consists of N particles in which all the particles

are of the same type with the same properties and the particles must be treated as indistinguishable.

Type of Particle Properties

What is the constraint on the spin of a fermion?

The N fermions must all be the same half-integer spin particle.

INDISTINGUISHABLE Give an example of a physical system consisting of identical fermions in which the fermions must be treated as indistinguishable.

FERMIONS

Electrons in a metal.

What is the symmetrization requirement of the N -particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,

or No requirement)?

Completely antisymmetric

What is the constraint on the spin of a boson?

The N bosons must all be the same integer spin particle.

INDISTINGUISHABLE Give an example of a physical system consisting of identical bosons in which the bosons must be treated as indistinguishable.

BOSONS

He-4 atoms for which there is overlap of the single-particle wavefunctions (i.e., the average separation between

atoms is less than the de Broglie wavelength).

What is the symmetrization requirement of the N -particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,

or No requirement)?

Completely symmetric

What is the symmetrization requirement of the N -particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,

HYPOTHETICAL CASE: or No requirement)?

DISTINGUISHABLE

PARTICLES No Requirement
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All 3 Particles in the 2 particles in the same single-particle All 3 particles in different

same single-particle state state labeled by n1 single-particle states labeled by

labeled by n1. 1 particle in a different single-particle n1, n2, and n3.

state labeled by n2.

INDISTINGUISHABLE X X 1√
6
[ψn1(x1)ψn2(x2)ψn3(x3)− ψn1(x1)ψn2(x3)ψn3(x2)

FERMIONS −ψn1(x2)ψn2(x1)ψn3(x3) + ψn1(x2)ψn2(x3)ψn3(x1)

+ψn1(x3)ψn2(x1)ψn3(x2)− ψn1(x3)ψn2(x2)ψn3(x1)]

INDISTINGUISHABLE ψn1(x1)ψn1(x2)ψn1(x3)
1√
3
[ψn1(x1)ψn1(x2)ψn2(x3)

1√
6
[ψn1(x1)ψn2(x2)ψn3(x3) + ψn1(x1)ψn2(x3)ψn3(x2)

BOSONS +ψn1(x1)ψn2(x2)ψn1(x3) ψn1(x2)ψn2(x1)ψn3(x3) + ψn1(x2)ψn2(x3)ψn3(x1)

+ψn2(x1)ψn1(x2)ψn1(x3)] +ψn1(x3)ψn2(x1)ψn3(x2) + ψn1(x3)ψn2(x2)ψn3(x1)]

HYPOTHETICAL CASE:

DISTINGUISHABLE ψn1(x1)ψn1(x2)ψn1(x3) ψn1(x1)ψn1(x2)ψn2(x3)
3 ψn1(x1)ψn2(x2)ψn3(x3)

4

PARTICLES

3 There are two other possibilities: ψn1(x1)ψn2(x2)ψn1(x3) and ψn2(x1)ψn1(x2)ψn1(x3)

4 There are five other possibilities: ψn1(x1)ψn2(x3)ψn3(x2), ψn1(x2)ψn2(x1)ψn3(x3),

ψn1(x2)ψn2(x3)ψn3(x1), ψn1(x3)ψn2(x1)ψn3(x2), and ψn1(x3)ψn2(x2)ψn3(x1)
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Summary of the Properties of the Wavefunction for Non-Interacting

Identical Particles

• Indistinguishable Fermions

– The basis states used to construct the many-particle stationary state wavefunction

for a system of indistinguishable fermions are written in terms of the products of

single-particle wavefunctions.

– The coordinate corresponding to each particle is different in the many-particle

stationary state wavefunction.

– The many-particle wavefunction describing a system of indistinguishable

fermions must be completely antisymmetric with respect to exchange of any two

particles.

• Indistinguishable Bosons

– The basis states used to construct the many-particle stationary state wavefunction

for a system of N indistinguishable bosons are written in terms of the products of

single-particle wavefunctions.

– The coordinate corresponding to each particle is different in the many-particle

stationary state wavefunction.

– The many-particle wavefunction describing a system of indistinguishable

bosons must be completely symmetric with respect to exchange of any two parti-

cles.

• Hypothetical Case: Identical Particles if they could be treated as Distinguishable

– The basis states for the many-particle stationary state wavefunction for a system

of identical particles which can be treated as distinguishable can be written in

terms of the product of the single-particle wavefunctions.

– The coordinate corresponding to each particle is different in the many-particle

stationary state wavefunction.

– There is no symmetrization requirement for the many-particle wavefunction for a

system of identical particles which can be treated as distinguishable.
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D.7 EXAMPLES OF FINDING MANY-PARTICLE STATIONARY

STATE WAVEFUNCTIONS AND ENERGIES

D.7.1 One-Dimensional Infinite Square Well (Ignoring spin)

Recall: The single-particle wavefunctions for the infinite square well are

ψn(x) =

√
2

a
sin
(nπ
a
x
)

0 < x < a n = 1, 2, 3, . . .

and the single-particle energies are given by

En = n2

(
π2~2

2ma2

)
= n2E1.

31. Suppose we have two non-interacting particles, both of mass m, in a one-dimensional

infinite square well of width a (the well is between x = 0 and x = a). Find the ground

state and first-excited state energies of the many-particle system for the following cases:

a. Indistinguishable fermions. (Ignore spin)

b. Indistinguishable bosons. (Ignore spin)

c. Hypothetical case: Identical particles which can be treated as distinguishable. (Ig-

nore spin)
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32. Construct the ground state and first-excited state wavefunctions for two non-

interacting particles in that infinite square well for the following cases:

a. Indistinguishable fermions. (Ignore spin)

b. Indistinguishable bosons. (Ignore spin)

c. Hypothetical case: Identical particles which can be treated as distinguishable. (Ig-

nore spin)

Consider the following conversation regarding finding the ground state energy of the

many-particle system in a one-dimensional infinite square well of width a (ignore spin).

Student 1: For a system of two non-interacting identical particles, the energy is

En1,n2 = En1 + En2 =
(
n2
1π

2~2
2ma2

)
+
(
n2
2π

2~2
2ma2

)
= (n2

1 + n2
2)
(
π2~2
2ma2

)
= (n2

1 + n2
2)E1.

Student 2: I agree with Student 1. The ground state energy for a system of two iden-

tical particles corresponds to the case in which both particles are in the single-particle

state labeled by n1 = n2 = 1. Thus, the ground state energy of the two-particle system

is E1,1 = (12 + 12)E1 = 2E1

Student 3: I agree with Student 2 only for the cases in which the two particles are

indistinguishable bosons or particles which can be treated as distinguishable. In both

cases, the particles are permitted to occupy the same lowest single-particle state labeled

by n1 = n2 = 1. However, two indistinguishable fermions cannot occupy the same

single-particle state. The ground state energy for a system of two indistinguishable

fermions is E1,2 = E2,1 = (12 + 22)E1 = 5E1.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding finding the first-excited state energy of

the many-particle system in a one-dimensional infinite square well of width a (ignore

spin).

Student 1: For a system of two non-interacting identical particles, the first-excited

state energy is E1,2 = (12 + 22)E1 = 5E1.

Student 2: I agree with Student 1 only for the cases in which the identical particles are

indistinguishable bosons or identical particles which can be treated as distinguishable.

The ground state for a system of two indistinguishable fermions corresponds to the

case in which one fermion is in the single-particle state labeled by n1 = 1 and the

other fermion is in the single-particle state labeled by n2 = 2. The first-excited state

energy for a system of two identical fermions corresponds to the case in which one

fermion is in the single-particle state labeled by n1 = 1 and the other fermion is in the

single-particle state labeled by n2 = 3. Thus, the first-excited state energy for a system

of two fermions is E1,3 = (12 + 32)E1 = 10E1.

Explain why you agree or disagree with each student.

Consider the following conversation about finding the ground state wavefunction of the

many-particle system involving a one-dimensional infinite square well of width a (ignore

spin).

Student 1: For a system of two non-interacting identical particles, the ground state

wavefunction is Ψ(x1, x2) = ψ1(x1)ψ1(x2).
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Student 2: I agree with Student 1 only for the cases in which the identical particles

are indistinguishable bosons or particles which can be treated as distinguishable since in

both cases the particles are permitted to be in the same single-particle state. However,

two indistinguishable fermions must be in different single-particle states and the ground

state wavefunction for a system of two indistinguishable fermions must be completely

antisymmetric.

Student 3: I agree with Student 2. The ground state wavefunction for a system of two

indistinguishable fermions is Ψ(x1, x2) = 1√
2

[ψ1(x1)ψ2(x2)− ψ2(x1)ψ1(x2)].

Explain why you agree or disagree with each student.

Consider the following conversation regarding finding the first-excited state wavefunction

of the many-particle system in a one-dimensional infinite square well of width a (ignore

spin).

Student 1: For a system of two non-interacting identical particles, the first-excited

state wavefunction is Ψ(x1, x2) = ψ1(x1)ψ2(x2).

Student 2: I agree with Student 1 only if the particles can be treated as distinguishable.

Student 3: I agree with Student 2. Also, the first-excited state wavefunction for a

system of two indistinguishable bosons ignoring spin is

Ψ(x1, x2) =
1√
2

[ψ1(x1)ψ2(x2) + ψ2(x1)ψ1(x2)] .

Student 2: I agree with Student 3. Furthermore, the first-excited state wavefunction

for a system of two indistinguishable fermions ignoring spin is

Ψ(x1, x2) =
1√
2

[ψ1(x1)ψ3(x2)− ψ3(x1)ψ1(x2)] .

Explain why you agree or disagree with each student.
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**CHECKPOINT: Check your answers to questions 31-32.

**

31a. Ground state: E = E1 + E2 = π2~2
2ma2

+ 4π2~2
2ma2

= 5π2~2
2ma2

= 5E1

First excited state:E = E1 + E3 = π2~2
2ma2

+ 9π2~2
2ma2

= 5π2~2
ma2

= 10E1

31b. Ground state: E = E1 + E1 = π2~2
2ma2

+ π2~2
2ma2

= π2~2
ma2

= 2E1

First excited state:E = E1 + E2 = π2~2
2ma2

+ 4π2~2
2ma2

= 5π2~2
2ma2

= 5E1

31c. Ground state: E = E1 + E1 = π2~2
2ma2

+ π2~2
2ma2

= π2~2
ma2

= 2E1

First excited state:E = E1 + E2 = π2~2
2ma2

+ 4π2~2
2ma2

= 5π2~2
2ma2

= 5E1

32a. Ground state:

Ψ(x1, x2) = 1√
2

[ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)]

= 1√
2

[
2
a

sin
(
π
a
x1
)

sin
(
2π
a
x2
)
− 2

a
sin
(
π
a
x2
)

sin
(
2π
a
x1
)]

First excited:

Ψ(x1, x2) = 1√
2

[ψ1(x1)ψ3(x2)− ψ1(x2)ψ3(x1)]

= 1√
2

[
2
a

sin
(
π
a
x1
)

sin
(
3π
a
x2
)
− 2

a
sin
(
π
a
x2
)

sin
(
3π
a
x1
)]

32b. Ground state:

Ψ(x1, x2) = ψ1(x1)ψ1(x2)

= 2
a

sin
(
π
a
x1
)

sin
(
π
a
x2
)

First excited:

Ψ(x1, x2) = 1√
2

[ψ1(x1)ψ2(x2) + ψ1(x2)ψ2(x1)]

= 1√
2

[
2
a

sin
(
π
a
x1
)

sin
(
2π
a
x2
)

+ 2
a

sin
(
π
a
x2
)

sin
(
2π
a
x1
)]

32c. Ground state:

Ψ(x1, x2) = ψ1(x1)ψ1(x2)

= 2
a

sin
(
π
a
x1
)

sin
(
π
a
x2
)
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First excited:

Ψ(x1, x2) = ψ1(x1)ψ2(x2)

= 2
a

sin
(
π
a
x1
)

sin
(
2π
a
x2
)

or

Ψ(x1, x2) = ψ2(x1)ψ1(x2)

= 2
a

sin
(
2π
a
x1
)

sin
(
π
a
x2
)

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answers.
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D.8 COUNTING THE NUMBER OF DISTINCT MANY-PARTICLE

STATES

• Now that we know how to construct stationary state wavefunctions from the single-

particle wavefunctions for indistinguishable fermions, indistinguishable

bosons, and identical particles if they could be treated as distinguishable, let’s de-

termine the number of distinct many-particle states for the three different cases,

beginning with indistinguishable fermions.

• We will only consider systems in which there is no degeneracy in the single-particle

wavefunctions (i.e., Eni
6= Enj

in which Eni
is the energy corresponding to the

single-particle state ψni
and Enj

is the energy corresponding to the single-particle

state ψnj
)

• Recall: The number of ways to arrange K identical objects among N available slots

is
(
N
K

)
= N !

K!(N−K)!
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CASE I: A Fixed Number of Single Particle States are Avail-

able to the System (but the Total Energy of the Many-Particle

System is NOT Fixed).

D.8.1 Determining the Number of Distinct Many-Particle States for IN-

DISTINGUISHABLE FERMIONS (no constraints on the total energy of the

many-particle system)

33. Suppose you have two indistinguishable fermions and three distinct single-particle states

ψn1 , ψn2 , and ψn3 . How many distinct two-particle states can you construct (neglecting

spin)? Think about how you could use the diagram below to answer this question by

placing the fermions into the single-particle states.

ψn1

ψn2

ψn3
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Consider the following conversation regarding the number of distinct two-particle states

for a system of two indistinguishable fermions and three distinct single-particle states

ψn1 , ψn2 , and ψn3 .

Student 1: For a system of two fermions and three distinct single-particle states ψn1 ,

ψn2 , and ψn3 , there are three available single-particle states for the first fermion. That

leaves two single-particle states for the second fermion since the second fermion cannot

occupy the same single-particle state as the first fermion. The number of two-particle

states is 3× 2 = 6.

Student 2: I agree with Student 1. Here is the diagrammatic representation for the 6

distinct two-particle states:

u1u
2

ψn1

ψn2

ψn3 u1
u2 ψn1

ψn2

ψn3

u1u
2 ψn1

ψn2

ψn3

u2u
1

ψn1

ψn2

ψn3 u2
u1 ψn1

ψn2

ψn3

u2u
1 ψn1

ψn2

ψn3

Student 3: I disagree with Student 1 and Student 2. You are overcouting the number

of distinct two-particle states. Since the fermions are indistinguishable, we cannot

distinguish which fermion is in which single-particle state. We can only tell that

one fermion is in single-particle state ψn2 and another fermion in single-particle state

ψn3 . But there is no way to tell which fermion is in which single-particle state. This

indistinguishability is reflected in the antisymmetrized wavefunction. There are 3

distinct two-particle states. Here is the diagrammatic representation for the 3 distinct

two-particle states:

uu
ψn1

ψn2

ψn3 u
u ψn1

ψn2

ψn3

uu ψn1

ψn2

ψn3
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Explain why you agree or disagree with each student.

Consider the following conversation regarding the number of distinct two-particle states

that you can construct for a system of two indistinguishable fermions and three distinct

single-particle states.

Student 1: The Pauli exclusion principle forbids two fermions from occupying the same

single-particle state. Each single-particle state can either have one or zero fermions.

Student 2: I agree. There are three distinct single-particle states available to the

fermions and we must choose any two for the fermions to occupy. The number of

distinct two-particle states for a system of two indistinguishable fermions and three

distinct single-particle states is
(
3
2

)
= 3!

2!(3−2)! = 3.

Explain why you agree or disagree with the students.
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34. Suppose you have three indistinguishable fermions and three distinct single-particle

states ψn1 , ψn2 , and ψn3 . How many distinct three-particle states can you construct

(neglecting spin)? If you would like, you can think about how you could use the di-

agram below to answer this question by placing the fermions into the corresponding

states.

ψn1

ψn2

ψn3

Consider the following conversation regarding the number of distinct three-particle

states for a system of three indistinguishable fermions.

Student 1: For a system of three indistinguishable fermions and three available

single-particle states, there is only one distinct three-particle state. There must be one

fermion is each single-particle state.

Student 2: I agree. There are three distinct single-particle states available to the

fermions and we must choose three single-particle states for the fermions to occupy.

The number of distinct three-particle states for a system of three indistinguishable

fermions and three distinct single-particle states is
(
3
3

)
= 3!

3!(3−3)! = 1.

Explain why you agree or disagree with the students.
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35. Suppose you have N indistinguishable fermions (N � 1) and three distinct single-

particle states ψn1 , ψn2 , and ψn3 . How many distinct N -particle states can you construct

(neglecting spin)?

Consider the following conversation regarding the number of distinct three-particle

states for a system of N (N � 1) indistinguishable fermions.

Student 1: For a system of N fermions (N � 1) and three distinct single-particle

states, there is no possible way to place the fermions into the three distinct single-

particle states such that no two particles are in the same single-particle state. Therefore,

this situation is impossible.

Student 2: I agree. We need at least as many distinct single-particle states available

in a situation as the number of fermions in order for such a many-particle system to be

possible.

Explain why you agree or disagree with the students.
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36. Suppose you have N fermions (N � 1) and M distinct single-particle states (M � 1).

How many distinct N -particle states can you construct (neglecting spin)?

In two to three sentences, describe in words how to determine the number of distinct

N -particle states for N indistinguishable fermions and M distinct single-particle states

when there are no constraints on the total energy of the many-particle system.

Let’s connect the number of distinct single-particle states with the number of possible

many-particle stationary state wavefunctions for fermions.

37. Write all the possible two-particle stationary state wavefunctions you found for two

indistinguishable fermions in three distinct single-particle states ψn1 , ψn2 , and ψn3 in

question 33.
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**CHECKPOINT: Check your answers to questions 33-37.

**

33.
(
3
2

)
=3

uu
ψn1

ψn2

ψn3 u
u ψn1

ψn2

ψn3

uuψn1

ψn2

ψn3

34.
(
3
3

)
=1

uu
u ψn1

ψn2

ψn3

35. 0. There cannot be more fermions than available single-particle states since that

would mean there would be more than one fermion in at least one single-particle

state, which is not permitted.

36. The number of distinct N -particle states for a system of N fermions with M

available single-particle states is


(
M
N

)
M ≥ N

0 M < N

37.

Ψ(x1, x2) =
1√
2

[ψn1(x1)ψn2(x2)− ψn1(x2)ψn2(x1)]

Ψ(x1, x2) =
1√
2

[ψn1(x1)ψn3(x2)− ψn3(x2)ψn1(x1)]

Ψ(x1, x2) =
1√
2

[ψn2(x1)ψn3(x2)− ψn3(x2)ψn2(x1)]

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answers.
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Summary for Determining the Number of Distinct Many-Particle States of

INDISTINGUISHABLE FERMIONS for a Fixed Number of Single-Particle

States (no constraints on the total energy of the many-particle system)

• The number of distinct N -particle states for a system of N indistinguishable

fermions with M available single-particle states when N ≤M is
(
M
N

)
.

• The number of distinct N -particle states for a system of N indistinguishable

fermions with M available single-particle states when N > M is 0.

D.8.2 Determining the Number of Distinct Many-Particle States for IN-

DISTINGUISHABLE BOSONS (no constraints on the total energy of the

many-particle system)

38. Suppose you have two indistinguishable bosons and three distinct single-particle states

ψn1 , ψn2 , and ψn3 . How many distinct two-particle states can you construct (neglecting

spin)? Think about how you could use the diagram below to answer this question by

placing the bosons into the corresponding single-particle states.

ψn1

ψn2

ψn3
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Consider the following conversation regarding the number of distinct two-particle states

for a system of two indistinguishable bosons and three distinct single-particle states

ψn1 , ψn2 , and ψn3 available.

Student 1: For a system of two bosons and three distinct single-particle states ψn1 ,

ψn2 , and ψn3 , there are three available states for the first boson and three available

states for the second boson. The number of two-particle states is 3× 3 = 9.

Student 2: I disagree with Student 1. You are overcounting since you are not taking

into account the fact that bosons are indistinguishable. If the bosons are in the same

single-particle state, there are three possibilities as follows:

u u
ψn1

ψn2

ψn3

u u ψn1

ψn2

ψn3

u u ψn1

ψn2

ψn3

But, if the bosons are in different single-particle states, there are three possibilities since

bosons are indistinguishable and swapping the two bosons in the two single-particle

states in each of the following situations does not produce a new two-particle state:

uu
ψn1

ψn2

ψn3 u
u ψn1

ψn2

ψn3

uu ψn1

ψn2

ψn3

There are 6 distinct two-particle states for a system of two bosons and three distinct

single-particle states.

Explain why you agree or disagree with each student.
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Consider the following conversation about a method for determining the number of

distinct ways two indistinguishable bosons can be arranged in the three distinct single-

particle states.

Student 1: For a system of two bosons, there can be more than one boson in a given

single-particle state. We can treat the single-particle states as bins to be filled with

bosons and dividers to separate the different single-particle states or bins. For example,

if the system had two bosons in the first single-particle state then the first bin would

have two bosons. For a system with three single-particle states available, we would need

two dividers between the three single-particle states. In the case of three single-particle

states and two bosons, we must find the number of possible arrangements of the two

bosons and two dividers.

Student 2: I agree with Student 1. Furthermore, since the two dividers cannot be

distinguished from one another and the bosons cannot be distinguished from one another,

we can permute the indistinguishable dividers with the indistinguishable bosons to find

all possible ways to permute two bosons in the three single-particle states as follows:

Two Bosons in the First State

u u
Two Bosons in the Second State

u u
Two Bosons in the Third State

u u
One Boson in the First State and One Boson in the Second State

u u
One Boson in the First State and One Boson in the Third State
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u u
One Boson in the Second State and One Boson in the Third State

u u
Student 3: I agree with both Student 1 and Student 2. The number of distinct many-

particle states comes from the number of ways the two bosons and two dividers can be

permuted. We have a total of four objects (two bosons and two dividers) and we can find

the number of ways to permute the two bosons or equivalently the number of ways to

permute the two dividers among the four objects. The number of distinct two-particle

states is
(
4
2

)
= 4!

2!(4−2)! = 6.

Student 2: Yes! Since the dividers are indistinguishable, permuting them with each

other does not give us a new two-particle state. Similarly, since the bosons are indistin-

guishable, permuting them with each other does not give us a new two-particle state.

Explain why you agree or disagree with the students.
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39. Suppose you have three indistinguishable bosons and three distinct single-particle states

ψn1 , ψn2 , and ψn3 . How many distinct three-particle states can you construct (neglecting

spin)? If you would like, you can think about how you could use the diagram below to

answer this question by placing the bosons into the corresponding states.

ψn1

ψn2

ψn3

Consider the following conversation regarding determining the number of distinct ways

three indistinguishable bosons can be arranged in the three distinct single-particle

states.

Student 1: Using the bin and divider method, we have three bosons and three bins or

single-particle states constructed with two dividers. There are five total objects, three

bosons and two dividers, and we must calculate the number of distinct permutations re-

membering that the bosons are indistinguishable and the dividers are indistinguishable.

Student 2: I agree. We can find the number of ways to permute the three bosons

among the five total objects or equivalently the number of ways to permute the two

dividers among the five total objects. When we calculate the number of ways to place

the two dividers between the three bins, we get
(
5
2

)
= 5!

2!(5−2)! = 5!
2!3!

= 10. If instead, we

calculate the number of ways to place the three bosons among the two dividers, we get(
5
3

)
= 5!

3!(5−3)! = 5!
3!2!

= 10. Either way it is the same!

Explain why you agree or disagree with the students.
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40. Suppose you have N bosons (N � 1) and three distinct single-particle states ψn1 , ψn2 ,

and ψn3 . How many distinct N -particle states can you construct (neglecting spin)?

Consider the following conversation regarding determining the number of distinct ways

N indistinguishable bosons can be arranged in the three distinct single-particle states.

Student 1: Using the bin and divider method, there are N + 2 total objects to be

permuted out of which the N bosons are indistinguishable from each other and the two

dividers are indistinguishable from each other. We must calculate the number of distinct

arrangements.

Student 2: I agree. When we calculate the number of ways to place the two dividers

among the N bosons, we get(
N + 2

2

)
=

(N + 2)!

2![(N + 2)− 2)]!
=

(N + 2)!

2!N !
=

(N + 2)(N + 1)

2

. If instead, we calculate the number of ways to place the N bosons among the two

dividers, we get(
N + 2

M

)
=

(N + 2)!

N ![(N + 2)−N)]!
=

(N + 2)!

N !2!
=

(N + 2)(N + 1)

2

.

Explain why you agree or disagree with each student.
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41. Suppose you have N bosons (N � 1) and M distinct single-particle states (M � 1).

How many distinct N -particle states can you construct (neglecting spin)?

Consider the following conversation regarding determining the number of distinct ways

N indistinguishable bosons can be arranged in the M distinct single-particle states.

Student 1: Using the bin and divider method, there are N +M − 1 total objects that

must be permuted, out of which N bosons are indistinguishable from each other and the

M − 1 dividers are indistinguishable from each other. We must calculate the number of

distinct arrangements.

Student 2: I agree. When we choose the number of ways to place the M − 1 indistin-

guishable dividers among the N bosons, we get(
N +M − 1

M − 1

)
=

(N +M − 1)!

(M − 1)![(N +M − 1)− (M − 1))]!
=

(N +M − 1)!

(M − 1)!N !

. If instead we choose the number of ways to place the N bosons among M − 1 dividers,

we get (
N +M − 1

N

)
=

(N +M − 1)!

N ![(N +M − 1)−N)]!
=

(N +M − 1)!

N !(M − 1)!

. Either way it is the same!

Explain why you agree or disagree with the students.
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In two to three sentences, describe how to determine the number of distinct N -particle

states for N indistinguishable bosons and M distinct one-particle states.

Let’s connect the number of distinct many-particle states with the number of possible

many-particle stationary state wavefunctions for bosons.

42. Write the two-particle stationary state wavefunctions for the two indistinguishable

bosons in three distinct single-particle states ψn1 , ψn2 , and ψn3 in question 38.
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**CHECKPOINT: Check your answers to questions 38-42.

**

38.
(
4
2

)
= 6

u u
ψn1

ψn2

ψn3

u u ψn1

ψn2

ψn3

u uψn1

ψn2

ψn3

uu
ψn1

ψn2

ψn3 u
u ψn1

ψn2

ψn3

uuψn1

ψn2

ψn3

39.
(
5
2

)
= 10

40.
(
N+2
N

)
= (N+2)(N+1)

2

41.
(N +M − 1

N
)
=
(N +M − 1

M − 1
)
=

(N +M − 1)!

N !(M − 1)!
42.

Ψ(x1, x2) = ψn1(x1)ψn1(x2)

Ψ(x1, x2) = ψn2(x1)ψn2(x2)

Ψ(x1, x2) = ψn3(x1)ψn3(x2)

Ψ(x1, x2) =
1√
2

[ψn1(x1)ψn2(x2) + ψn1(x2)ψn2(x1)]

Ψ(x1, x2) =
1√
2

[ψn1(x1)ψn3(x2) + ψn1(x2)ψn3(x1)]

Ψ(x1, x2) =
1√
2

[ψn2(x1)ψn3(x2) + ψn2(x2)ψn3(x1)]

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answers.
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Summary for Determining the Number of Distinct Many-Particle States of

INDISTINGUISHABLE BOSONS for a Fixed Number of Single-Particle

States (no constraints on the total energy of the many-particle system)

• The number of distinct N -particle states for a system of N indistinguishable bosons

with M available single-particle states is(N +M − 1
N

)
=
(N +M − 1

M − 1
)
=

(N +M − 1)!

N !(M − 1)!

D.8.3 Hypothetical Case: Determining the Number of Distinct Many-

Particle States for IDENTICAL PARTICLES IF THEY COULD BE

TREATED AS DISTINGUISHABLE (no constraints on the total energy of

the many-particle system)

• Now that we know how to determine the number of distinct many-particle states for

indistinguishable fermions and indistinguishable bosons, let’s consider a contrasting

case in which the particles can be treated as distinguishable.

• Next, compare the resulting number of many-particle states to what was obtained

for indistinguishable fermions and indistinguishable bosons to learn why care must be

taken to ensure that the many-particle wavefunction reflects the indistinguishability

of the particles.

43. Suppose you have two identical particles which can be treated as distinguishable and

three distinct single-particle states ψn1 , ψn2 , and ψn3 . How many distinct two-particle

states can you construct (neglecting spin)? Think about how you could use the diagram

below to answer this question by placing the distinguishable particle into the single-

particle states.

ψn1

ψn2

ψn3
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Consider the following conversation regarding the number of distinct two-particle states

for a system of two identical particles which can be treated as distinguishable and three

distinct single-particle states ψn1 , ψn2 , and ψn3 .

Student 1: The first particle can be placed in one of the three states so there are three

possibilities. The same is true about the second particle since there is no restriction

on how many particles can be placed in a given single-particle state. Thus, the total

number of distinct two-particle states for the system of two identical particles which can

be treated as distinguishable with three available single-particle states is 3× 3 = 9.

Student 2: I disagree with Student 1. You are double counting when the particles

occupy the same two single-particle states. For example, you are counting the states

ψn1(x1)ψn2(x2) and ψn1(x2)ψn2(x1) as two distinctly different states. However, there

must be only one distinctly different state 1√
2
[ψn1(x1)ψn2(x2) +ψn1(x2)ψn2(x1)] in which

one particle is in the state labeled by ψn1 and the other particle is in the state labeled

by ψn2 .

Student 3: I agree with Student 1. There are three two-particle states when the par-

ticles are in the same single-particle state and six two-particle states when the particles

are in different single-particle states. Since the particles can be treated as distinguish-

able, we know which particles is in which state. ψn1(x1)ψn2(x2) is the stationary state

wavefunction corresponding to particle 1 in the single particle state ψn1 and particle 2

in the single particle state ψn2 . Also, particle 1 in state ψn1 and particle 2 in state ψn1

is different than particle 2 in state ψn1 and particle 1 in state ψn1 . These are two possi-

ble stationary state wavefunctions and must be determined as two distinct two-particle

states as illustrated in the diagram below.

u2u
1 ψn1

ψn2

ψn3

u1u
2 ψn1

ψn2

ψn3

Explain why you agree or disagree with each student.
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Student 1 and Student 3 are correct in the previous conversation. Let’s extend the

rationale to three identical particles which can be treated as distinguishable.

44. Suppose you have three identical particles which can be treated as distinguishable and

three distinct single-particle states ψn1 , ψn2 , and ψn3 . How many distinct three-particle

states can you construct (neglecting spin)? If you would like, think about how you could

use the diagram below to answer this question by placing the distinguishable particles

into the single-particle states.

ψn1

ψn2

ψn3
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Consider the following conversation regarding the number of distinct three-particle states

for a system of three identical particles which can be treated as distinguishable and three

distinct single-particle states ψn1 , ψn2 , and ψn3 .

Student 1: The first particle can be placed in one of the three states so there are three

possibilities. The same is true for the second particle and the third particle since there

is no restriction on how many particles we can place in a given single-particle state. The

total number of distinct three-particle states for the system of three identical particles

which can be treated as distinguishable with three available single-particle states is

3× 3× 3 = 27.

Student 2: I agree with Student 1. The total number of distinct three-particle states

for the system of three identical particles which can be treated as distinguishable with

three available single-particle states is

[Three single-particle states](Three Particles) = 33 = 27.

Student 3: I agree with both Student 1 and Student 2. And in general, the total

number of distinct states for a system of identical particles which can be treated as

distinguishable is

[Number of Single-Particle States](Number of Particles).

Explain why you agree or disagree with the students.
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45. Suppose you have N identical particles which can be treated as distinguishable (N � 1)

and three distinct single-particle states ψn1 , ψn2 , and ψn3 . How many distinct N -particle

states can you construct (neglecting spin)?

46. Suppose you have N identical particles which can be treated as distinguishable (N � 1)

and M distinct single-particle states (M � 1). How many distinct N -particle states

can you construct?
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In two to three sentences, summarize how to determine the number of distinct N -particle

states for N identical particles which can be treated as distinguishable and M distinct

single-particle states.

Rank the number of distinct N -particle states for identical particles if they are indistin-

guishable fermions, indistinguishable bosons, or identical particles that can be treated

as distinguishable for N identical particles (N � 1) and M distinct single-particle

states (M � 1).
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Let’s connect the number of distinct single-particle states with the number of possible

stationary state wavefunctions for identical particles which can be treated as distinguish-

able.

47. Write all of the possible two-particle stationary state wavefunctions you found for two

identical particles which can be treated as distinguishable in three distinct single-particle

states given by the wavefunctions ψn1 , ψn2 , and ψn3 in question 43 for the following

situations:

• Both particles are in the same single-particle state: (Hint: There are three possible

two-particle stationary state wavefunctions).

• Two particles are in different single-particle states: (Hint: There are six possible

two-particle stationary state wavefunctions).
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**CHECKPOINT: Check your answers to questions 43-47.

**

43. 3× 3 = 32 = 9

u1 u2
ψn1

ψn2

ψn3

u1 u2 ψn1

ψn2

ψn3

u1 u2ψn1

ψn2

ψn3

u1u
2

ψn1

ψn2

ψn3 u1
u2 ψn1

ψn2

ψn3

u1u
2ψn1

ψn2

ψn3

u2u
1

ψn1

ψn2

ψn3 u2
u1 ψn1

ψn2

ψn3

u2u
1ψn1

ψn2

ψn3

44. 3× 3× 3 = 33 = 27

45. 3N

46. MN

47.

Two particles in the same state: Ψ(x1, x2) = ψn1(x1)ψn1(x2)

Ψ(x1, x2) = ψn2(x1)ψn2(x2)

Ψ(x1, x2) = ψn3(x1)ψn3(x2)
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Two particles in different states: Ψ(x1, x2) = ψn1(x1)ψn2(x2)

Ψ(x1, x2) = ψn1(x1)ψn3(x2)

Ψ(x1, x2) = ψn2(x1)ψn1(x2)

Ψ(x1, x2) = ψn2(x1)ψn3(x2)

Ψ(x1, x2) = ψn3(x1)ψn1(x2)

Ψ(x1, x2) = ψn3(x1)ψn2(x2)

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answers.

Summary for Determining the Number of Distinct Many-Particle States of

IDENTICAL PARTICLES IF THEY COULD BE TREATED AS DISTIN-

GUISHABLE for a Fixed Number of Single-Particle States (no constraints

on the total energy of the many-particle system)

• The number of distinct N -particle states for a system of N identical particles if they

could be treated as distinguishable with M available single-particle states is MN .

To summarize what you have learned about determining the number of distinct

many-particle states for a fixed number of single-particle states (total energy of the

many-particle system is not fixed), fill in the following table with how many disinct

many-particle states you can construct for the given situation.
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Identical Particles

5 particles and 7 distinct single-particle states

INDISTINGUISHABLE

FERMIONS 5 particles and 3 distinct single-particle states

5 particles and 7 distinct single-particle states

INDISTINGUISHABLE

BOSONS 5 particles and 3 distinct single-particle states

5 particles and 7 distinct single-particle states

HYPOTHETICAL CASE:

DISTINGUISHABLE

PARTICLES 5 particles and 3 distinct single-particle states

In two to three sentences, summarize how to determine the number of distinct N -particle

states for N identical particles and M distinct single-particle states. Be sure to describe

the cases of indistinguishable fermions, indistinguishable bosons, and the hypothetical

case of identical particles which can be treated as distinguishable.
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Review your answers to the questions in the preceding table for the given system of

identical particles for a fixed number of single-particle states (no constraints on the

total energy of the many-particle system).

Identical Particles

5 particles and 7 distinct single-particle states

INDISTINGUISHABLE
(
7
5

)
= 21

FERMIONS 5 particles and 3 distinct single-particle states

None, there are more particles than available states.

5 particles and 7 distinct single-particle states

INDISTINGUISHABLE
(
11
5

)
=
(
11
6

)
=462

BOSONS 5 particles and 3 distinct single-particle states

(
7
5

)
=
(
7
2

)
=21

5 particles and 7 distinct single-particle states

HYPOTHETICAL CASE:

DISTINGUISHABLE 75 = 16, 807

PARTICLES 5 particles and 3 distinct single-particle states

35 = 243
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Summary of CASE I: Determining the Number of Distinct Many-Particle

States for a Fixed Number of Single-Particle States (no constraints on the

total energy of the

many-particle system)

• Indistinguishable Fermions

– The number of distinct N -particle states for a system of N indistinguishable

fermions with M available single-particle states when N ≤M is
(
M
N

)
.

– The number of distinct N -particle states for a system of N indistinguishable

fermions with M available single-particle states when N > M is 0 (such a state is

NOT possible).

• Indistinguishable Bosons

– The number of distinct N -particle states for a system of N indistinguishable bosons

with M available single-particle states is(
N +M − 1

N

)
=

(
N +M − 1

M − 1

)
=

(N +M − 1)!

N !(M − 1)!

• Identical Particles which are Distinguishable

– The number of distinct N -particle states for a system of N identical particles which

can be treated as distinguishable with M available single-particle states is MN .
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CASE II: Determining the Number of Distinct Many-Particle

States when the Total Energy of the Many-Particle System is

Fixed (Ignore spin).

• Let’s consider three non-interacting identical particles of mass m in a one-

dimensional infinite square well of width “a”.

• Recall that the total energy of the many-particle system can be written in terms of

the single-particle energy as

E = En1 + En2 + En3 = (n2
1 + n2

2 + n2
3)

(
π2~2

2ma2

)
= (n2

1 + n2
2 + n2

3)E1.

Here n1, n2, n3 are positive integers that label the single-particle states in which the

three particles can be placed.

• Suppose the total energy is E = 243
(
π2~2
2ma2

)
= 243E1

• Note: The only possible integers n1, n2, and n3 whose squares sum to 243 are given

below.

243 = 12 + 112 + 112

243 = 32 + 32 + 152

243 = 52 + 72 + 132

243 = 92 + 92 + 92

48. List all of the combinations of three positive integers (n1, n2, n3) whose squares sum to

243. For example, two combinations would be (1, 11, 11) and (11, 1, 11).
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D.8.4 Determining the Number of Distinct Many-Particle States for

Three INDISTINGUISHABLE FERMIONS in a One-

Dimensional Infinite Square Well with a Fixed Total Energy for the Many-

Particle System

49. Suppose you have three indistinguishable fermions and the total energy of the three-

particle system is E = 243
(
π2~2
2ma2

)
= 243E1. How many distinct three-particle states

can you construct? [Hint: Consider the combinations in question 48 that are possible

for indistinguishable fermions and the antisymmetric requirement for the wavefunction.]

50. Write all of the possible three-particle stationary state wavefunctions for the system of

three indistinguishable fermions in the one-dimensional infinite square well with total

energy E = 243E1. (The Slater determinant may be helpful.)
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Consider the following conversation regarding the number of distinct three-particle

states you can construct for a system of three indistinguishable fermions with a total

energy of E = 243E1.

Student 1: For a system of three indistinguishable fermions with a total energy

of E = 243E1, there is only one three-particle state. There is one fermion in the

single-particle state ψ5, one fermion in the state ψ7, and one fermion in the state ψ13.

Student 2: I disagree with Student 1. There are four disinct three-particle states for

the three fermions: ψ1(x1)ψ11(x2)ψ11(x3), ψ3(x1)ψ3(x2)ψ15(x3), ψ5(x1)ψ7(x2)ψ13(x3),

and ψ9(x1)ψ9(x2)ψ9(x3).

Student 3: I agree with Student 1. There cannot be more than one fermion in each

single-particle state. The combination (9, 9, 9) is a system with three fermions in the

state ψ9. The combinations (3, 3, 15), (3, 15, 3), and (15, 3, 3) have two fermions in the

state ψ3 and the combinations (1, 11, 11), (11, 1, 11), and (11, 11, 1) have two fermions

in the state ψ11. None of these are possible for fermions.

Student 1: I agree with Student 3. A system of indistinguishable fermions must satisfy

the antisymmetrization requirement, so there is only one distinct three-particle state,

corresponding to the combinations (5, 7, 13), (5, 13, 7), (7, 5, 13), (7, 13, 5),

(13, 5, 7), and (13, 7, 5).

Explain why you agree or disagree with each student.
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Consider the following conversation regarding the number of three-particle states you

can construct for a system of three indistinguishable fermions with total energy of

E = (52 + 72 + 132)
(
π2~2
2ma2

)
= 243E1.

Student 1: How can there only be one distinct three-particle state for a system of three

indistinguishable fermions corresponding to the six combinations (5, 7, 13),

(5, 13, 7), (7, 5, 13), (7, 13, 5), (13, 5, 7), and (13, 7, 5)?

Student 2: Since the fermions are indistinguishable, we cannot say which fermion

is in which single-particle state. All we can say is that one fermion is in the single-

particle state ψ5, one fermion is in the single-particle state ψ7, and one fermion is

in the single-particle state ψ13. The stationary state wavefuntion for the three in-

distinguishable fermions must be completely antisymmetric. The six combinations

(5, 7, 13), (5, 13, 7), (7, 5, 13), (7, 13, 5), (13, 5, 7), and (13, 7, 5) correspond to the labels

for the products of the single-particle states to be summed to obtain the three-particle

stationary state wavefunction.

Student 3: I agree with Student 2. To find the three-particle stationary state wave-

function for a system of three indistinguishable fermions, we must ensure that the wave-

function is completely antisymmetric and normailized. The normalization factor is 1√
3!

.

We can use the Slater determinant to ensure that we include all the terms with the

correct sign and obtain

1√
6

∣∣∣∣∣∣∣∣∣
ψ5(x1) ψ7(x1) ψ13(x1)

ψ5(x2) ψ7(x2) ψ13(x2)

ψ5(x3) ψ7(x3) ψ13(x3)

∣∣∣∣∣∣∣∣∣ =

1√
6
[ψ5(x1)ψ7(x2)ψ13(x3)− ψ5(x1)ψ13(x2)ψ7(x3)

−ψ7(x1)ψ5(x2)ψ13(x3) + ψ7(x1)ψ13(x2)ψ5(x3)

+ψ13(x1)ψ5(x2)ψ7(x3)− ψ13(x1)ψ7(x2)ψ5(x3)].

Explain why you agree or disagree with Student 2 and Student 3.
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**CHECKPOINT: Check your answers to questions 48-50.

**

48.

(9, 9, 9)

(3, 3, 15), (3, 15, 3), (15, 3, 3)

(1, 11, 11), (11, 1, 11), (11, 11, 1)

(5, 7, 13), (5, 13, 7), (7, 5, 13), (7, 13, 5), (13, 5, 7), (13, 7, 5)

49. 1. Two or more fermions in the same single-particle state are not possible.

Identical fermions must satisfy the antisymmetrization requirement.

50.

Ψ(x1, x2, x3) = 1√
6
[ψ5(x1)ψ7(x2)ψ13(x3)− ψ5(x1)ψ13(x2)ψ7(x3)

−ψ7(x1)ψ5(x2)ψ13(x3) + ψ7(x1)ψ13(x2)ψ5(x3)

+ψ13(x1)ψ5(x2)ψ7(x3)− ψ13(x1)ψ7(x2)ψ5(x3)]

If your answers do not match the checkpoint, go back and reconcile any differences you

may have with the checkpoint answers.
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D.8.5 Determining the Number of Distinct Many-Particle States for

Three INDISTINGUISHABLE BOSONS in a One-

Dimensional Infinite Square Well with a Fixed Total Energy for the Many-

Particle System (Ignore Spin)

51. Suppose you have three indistinguishable bosons and the total energy of the three-

particle system is E = 243E1. How many distinct three-particle states can you

construct? [Hint: Consider the combinations in question 48 that are possible for

indistinguishable bosons.]

52. Write all of the possible three-particle stationary state wavefunctions for the system

of three indistinguishable bosons in the one-dimensional infinite square well with total

energy E = 243E1.
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Consider the following conversation regarding the number of three-particle states

you can construct for a system of three indistinguishable bosons with total energy

E = 243E1.

Student 1: For a system of three indistinguishable bosons with a total energy of

E = 243E1, there is only one three-particle state. There is one boson in the state ψ5,

one boson in the state ψ7, and one boson in the state ψ13.

Student 2: I disagree with Student 1. It is possible for bosons to occupy the same

single-particle state. Since the bosons are indistinguishable, there are four disinct

three-particle states for the three bosons with the total energy E.

Student 3: I agree with Student 2. All three bosons could be in the state ψ9. There

could also be two bosons in state ψ3 and one boson in state ψ15, two bosons in state

ψ11 and one boson in state ψ1, or one boson in each of the states ψ5, ψ7, and ψ13.

Explain why you agree or disagree with each student.
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**CHECKPOINT: Check your answers to questions 51-52.

**

51. 4.

52.

Ψ(x1, x2, x3) = ψ9(x1)ψ9(x2)ψ9(x3)

Ψ(x1, x2, x3) =
1√
3

[ψ3(x1)ψ3(x2)ψ15(x3) + ψ3(x1)ψ15(x2)ψ3(x3)+

ψ15(x1)ψ3(x2)ψ3(x3)]

Ψ(x1, x2, x3) =
1√
3

[ψ1(x1)ψ11(x2)ψ11(x3) + ψ11(x1)ψ1(x2)ψ11(x3)+

ψ11(x1)ψ11(x2)ψ1(x3)]

Ψ(x1, x2, x3) = 1√
6
[ψ5(x1)ψ7(x2)ψ13(x3) + ψ5(x1)ψ13(x2)ψ7(x3)

+ψ7(x1)ψ5(x2)ψ13(x3) + ψ7(x1)ψ13(x2)ψ5(x3)

+ψ13(x1)ψ5(x2)ψ7(x3) + ψ13(x1)ψ7(x2)ψ5(x3)]

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answer.5

5Note, the four states can be regarded as a basis for the three-particle system and any linear superposition
of the four states listed in question 52 would also be a three-particle stationary state wavefunction for the
system of three indistinguishable bosons due to the degeneracy in the energy spectrum. However, in this
tutorial we will not focus on the linear superpostion of these states.

748



D.8.6 Hypothetical Case: Determining the Number of Distinct Many-

Particle States for Three IDENTICAL PARTICLES IF THEY COULD BE

TREATED AS DISTINGUISHABLE in a One-Dimensional Infinite Square

Well with a Fixed Total Energy for the Many-Particle System (Ignore spin)

53. Suppose you have three identical particles which can be treated as distinguishable

and the total energy of the three-particle system E = 243E1. How many distinct

three-particle states can you construct if the total energy of the many-particle system

is fixed? [Hint: Consider the combinations in question 48 that are possible for identical

particles which can be treated as distinguishable.]

54. Write four possible three-particle stationary state wavefunctions for a system of three

identical particles which can be treated as distinguishable in the one-dimensional

infinite square well with total energy E = 243E1.
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Consider the following conversation regarding the number of three-particle states you

can construct with a total energy E = 243E1 for a system of three identical particles

which can be treated as distinguishable.

Student 1: For a system of three identical particles which can be treated as distin-

guishable with a total energy E = 243E1, there are four distinct three-particle states

with wavefunctions: ψ1(x1)ψ11(x2)ψ11(x3), ψ3(x1)ψ3(x2)ψ15(x3),

ψ5(x1)ψ7(x2)ψ13(x3), and ψ9(x1)ψ9(x2)ψ9(x3).

Student 2: I disagree with Student 1. Since the particles can be treated as distin-

guishable, we can tell which particle is in which single-particle state. For example,

there are three distinct many-particle states corresponding to the particles in the

single-particle states ψ3, ψ3, and ψ15: ψ3(x1)ψ3(x2)ψ15(x3), ψ3(x1)ψ15(x2)ψ3(x3), and

ψ15(x1)ψ3(x2)ψ3(x3). Similarly, there are three distinct states corresponding to the

particles in the single-particle states ψ1,ψ11, and ψ11.

Student 3: I agree with Student 2. There is one distinct many-particle state

corresponding to all three particles in the single-particle state ψ9 and six distinct

many-particle states corresponding to the particles in the single-particle states ψ5, ψ7,

and ψ13 because the particles can be treated as distinguishable.

Student 2: I agree with Student 3. There are 13 distinct many-particle states for the

system of three identical particles which can be treated as distinguishable with energy

E = 243E1.

Explain why you agree or disagree with each student.
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**CHECKPOINT: Check your answers to questions 53-54.

**

53. 13. There are 13 combinations that are distinct for identical particles which can

be treated as distinguishable.

54.

Ψ(x1, x2, x3) = ψ9(x1)ψ9(x2)ψ9(x3)

Ψ(x1, x2, x3) = ψ3(x1)ψ3(x2)ψ15(x3)

Ψ(x1, x2, x3) = ψ3(x1)ψ15(x2)ψ3(x3)

Ψ(x1, x2, x3) = ψ15(x1)ψ3(x2)ψ3(x3)

Ψ(x1, x2, x3) = ψ1(x1)ψ11(x2)ψ11(x3)

Ψ(x1, x2, x3) = ψ11(x1)ψ1(x2)ψ11(x3)

Ψ(x1, x2, x3) = ψ11(x1)ψ11(x2)ψ1(x3)

Ψ(x1, x2, x3) = ψ5(x1)ψ7(x2)ψ13(x3)

Ψ(x1, x2, x3) = ψ5(x1)ψ13(x2)ψ7(x3)

Ψ(x1, x2, x3) = ψ7(x1)ψ5(x2)ψ13(x3)

Ψ(x1, x2, x3) = ψ7(x1)ψ13(x2)ψ5(x3)

Ψ(x1, x2, x3) = ψ13(x1)ψ5(x2)ψ7(x3)

Ψ(x1, x2, x3) = ψ13(x1)ψ7(x2)ψ5(x3)

If your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answers.6 In two or three sentences, compare the

hypothetical case if particles could be treated as distinguishable to the case of indistin-

6Note, the thirteen states can be regarded as a basis for the three-particle system and any linear super-
position of the thirteen states listed in question 54 is a three-particle stationary state wavefunction for the
system of three distinguishable particles due to the degeneracy in the energy spectrum. However, in this
tutorial we will not focus on linear superpostions of these states.
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guishable fermions and bosons.

Summary of CASE II: Determining the Number of Distinct Many-Particle

States for a Many-Particle System with Fixed Energy (Ignore spin)

To summarize what you have learned about determining the number of distinct many-

particle states for a many-particle system with fixed energy, answer the following ques-

tions in the table below for a system of two particles in a one-dimensional infinite square

well with fixed total energy E = 200
(
π2~2
2ma2

)
= 200E1.

a. What are the possible combinations (i.e., what are the possible combinations of

(n1, n2) that yield a total energy of 200E1 for the two-particle system)?

b. How many disinct two-particle states can you construct?

Note: The only possible integers n1 and n2 whose squares sum to 200 are given below

200 = 102 + 102

200 = 22 + 142
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Identical Particles

(a) Possible combinations (n1, n2)

INDISTINGUISHABLE

FERMIONS (b) How many distinct two-particle states?

(a) Possible combinations (n1, n2)

INDISTINGUISHABLE

BOSONS (b) How many distinct two-particle states?

(a) Possible combinations (n1, n2)

HYPOTHETICAL CASE:

DISTINGUISHABLE

PARTICLES (b) How many distinct two-particle states?
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Summary of CASE II: Determining the Number of Distinct Many-Particle

States for a Many-Particle System with Fixed Energy (Ignore Spin)

Check your answers to the questions in the preceding table.

Identical Particles

(a) Possible combinations (n1, n2)

INDISTINGUISHABLE (2, 14), (14, 2)

FERMIONS (b) How many distinct two-particle states?

1

(a) Possible combinations (n1, n2)

INDISTINGUISHABLE (2, 14), (14, 2), (10, 10)

BOSONS (b) How many distinct two-particle states?

2

(a) Possible combinations (n1, n2)

HYPOTHETICAL CASE:

DISTINGUISHABLE (2, 14), (14, 2), (10, 10)

PARTICLES (b) How many distinct two-particle states?

3
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55. Suppose that for a system of two non-interacting identical particles in a one-

dimensional infinite square well, the total energy of the two-particle system is En1,n2 =

(n2
1 + n2

2)E1, in which E1 is the ground state energy for the single-particle system.

The total energy of the two-particle system is E = 50E1. Assume all of the possible

combinations are equally probable.7

Note: The only possible integers n1 and n2 whose squares sum to 50 are given below.

50 = 12 +72

= 52 +52

a. If the particles are indistinguishable fermions and you randomly measure the en-

ergy of one particle, what single-particle energies might you obtain and with what

probability? Explain.

b. If the particles are indistinguishable bosons and you randomly measure the en-

ergy of one particle, what single-particle energies might you obtain and with what

probability? Explain.

c. Hypothetical case: If the particles could be treated as distinguishable and you

randomly measure the energy of one particle, what single-particle energies might

you obtain and with what probability? Explain.

Briefly describe how the probability of the possible values of energy differs in the case

of indistinguishable fermions, indistinguishable bosons, and the hypothetical case in

which particles can be treated as distinguishable.

7Due to the degeneracy of the two-particle system, any linear combination of degenerate two-particle
stationary states is a two-particle stationary state with the same energy. However, in this tutorial we will
not focus on linear superpostions of these states.
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Consider the following conversation regarding the possible outcomes if you measure

the energy of a single particle and the corresponding probability if the particles are

indistinguishable fermions.

Student 1: For a system of two indistinguishable fermions in which the total energy

of the two-particle system is E = 50E1, there are two possible combinations: (1, 7) and

(7, 1). The two combinations contribute to the completely antisymmetric wavefunction

in which one fermion is in the state ψ1 and one fermion is in the state ψ7.

Student 2: I agree with Student 1. Additionally, the fermions could have the

combination (5, 5) in which both fermions are in the single-particle state ψ5. Therefore,

if you randomly measure the energy you could obtain the energies E1, 49E1, or 25E1

with equal probability 1/3.

Student 1: I disagree with Student 2. The fermions cannot be in the same single-

particle state ψ5. One fermion must be in the single-particle state ψ1 and one fermion

must be in the single-particle state ψ7. If you randomly measure the energy, you could

obtain the energy E1 or 49E1 with equal probability of 1/2.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding the possible outcomes if you measure

the energy of a single particle and the corresponding probability if the particles are

indistinguishable bosons.

Student 1: For a system of two indistinguishable bosons in which the total energy

of the two-particle system is E = 50E1, there are three possible combinations: (1, 7),

(7, 1), and (5, 5). The combinations (1, 7) and (7, 1) correspond to the completely sym-

metric state 1√
2
[ψ1(x1)ψ7(x2) + ψ7(x1)ψ1(x2)]. The combination (5, 5) corresponds to

two bosons in the same state ψ5.

Student 2: I agree with Student 1. It is equally probable that the bosons are in the

same state ψ5 or one boson is in the state ψ1 and the other boson is in the state ψ7. If

you randomly measure the energy you could obtain the energies E1, 49E1, or 25E1.

Student 3: I agree with Student 2. Since the three combinations are equally likely, the

probability that the system has the combination (1, 7), (7, 1), or (5, 5) is 1/3. For the

combination (1, 7), the probability of obtaining 12E1 is 1/2. Similarly, the probability of

obtaining E1 for the combination (7, 1) is 1/2. Therefore, the probability of obtaining

E1 is (1/3) × (1/2) + (1/3) × (1/2) = 1/3. By the same reasoning, the probability of

obtaining 49E1 is (2/3) × (1/2) = 1/3. The probability of the system with the combi-

nation (5, 5) is 1/3 and for bosons with the combination (5, 5), the probability of being

in state ψ5 is 1. Thus, the probability of obtaining 25E1 is (1/3)× 1 = 1/3.

Student 1: I agree with Student 2, but disagree with Student 3. The probabil-

ity of the bosonic system having the combination (5, 5) is 1/2 and the probability

of having the combinations (1, 7) and (7, 1), which correspond to one two-particle

state 1√
2
[ψ1(x1)ψ7(x2) + ψ7(x1)ψ1(x2)] is 1/2. The probability of obtaining E1 is

(1/2) × (1/2) = 1/4, the probability of obtaining 49E1 is (1/2) × (1/2) = 1/4, and

the probability of obtaining 25E1 is (1/2)× 1 = 1/2.

Explain why you agree or disagree with each student.
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Hypothetical Case: Treating the identical particles as distinguishable.

Consider the following conversation regarding the possible outcomes if you measure the

energy of a single particle and the corresponding probability if identical particles could

be treated as distinguishable.

Student 1: For a system of two identical particles if they could be treated as dis-

tinguishable, there are three possible combinations (1, 7), (7, 1) and (5, 5) if the total

energy of the two-particle system is E = 50E1. Each combination is equally probable

with probability 1/3.

Student 2: I agree with Student 1. If identical particles which can be treated as

distinguishable are in the combination (1, 7) and you measure the energy, you could

obtain the energy E1 with probability (1/3) × (1/2) = 1/6 and the energy 49E1 with

probability (1/3)× (1/2) = 1/6.

Student 3: I agree with Student 1 and Student 2. If identical particles which can be

treated as distinguishable are in the combination (7, 1) and you measure the energy,

you could obtain the energy E1 with probability (1/3) × (1/2) = 1/6 and the energy

49E1 with probability (1/3)× (1/2) = 1/6.

Student 1: I agree with Student 2 and Student 3. If identical particles which can be

treated as distinguishable are in the combination (5, 5) and you measure the energy you

would obtain the energy, 25E1 with probability (1/3)× 1 = 1/3.

Student 2: To sum up, if you randomly measure the energy, you could obtain the

energy E1 with probability (1/3) × (1/2) + (1/3) × (1/2) = 1/3, the energy 49E1 with

probability (1/3) × (1/2) + (1/3) × (1/2) = 1/3, and the energy 25E1 with probability

(1/3)× 1 = 1/3.

Explain why you agree or disagree with each student.
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**CHECKPOINT: Check your answers to question 55. **

a. E1 with probability 1
2

or 49E1 with probability 1
2

b. E1 with probability 1
4
, 49E1 with probability 1

4
or 25E1 with probability 1

2

c. E1 with probability 1
3
, 49E1 with probability 1

3
or 25E1 with probability 1

3

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answer.
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D.9 DETERMINING THE NUMBER OF DISTINCT

MANY-PARTICLE STATES WHEN THE TOTAL ENERGY OF THE

MANY-PARTICLE SYSTEM IS FIXED AND THE SINGLE-PARTICLE

STATES HAVE DEGENERACY

• Here, we will consider a system of identical particles in which there is degeneracy

in the single-particle energy spectrum and there are constraints on the number of

particles in different single-particle states with a certain energy. We will focus on

the spatial part of the wavefunction and ignore the spin degrees of freedom.

• We will consider a group of degenerate states together and the arrangement

(N1, N2, N3, . . . , Nn, . . .) is such that for all of the single-particle states with energy

Ei, the total number of particles is Ni. We will use the notation

Q(N1, N2, N3, . . . , Nn, . . .) to represent the number of distinct many-particle

states for a given arrangement (N1, N2, N3, . . . , Nn, . . .).

• If there are no particles with energy greater than Em, then for the arrangement

(N1, N2, N3, . . . , Nn, . . .), we only list the number of particles (Nm) up to and includ-

ing the highest occupied energy level Em.

– For example, (3, 4) denotes that there are three particles in the single-particle

states with the lowest energy E1, four particles in the single-particle states with

the first-excited state energy E2, and zero particles in the single-particle states

with higher energy.

• We will use the symbol di to represent the degeneracy corresponding to the energy

Ei.

– For example, if di = 5 then there are five degenerate single-particle states with

energy Ei.

• We will ignore the spin degrees of freedom and only consider the spatial part of the

wavefunction.
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56. Suppose a system with ten single-particle states has 4 particles. The degeneracy of the

lowest single-particle stationary states with energy E1 is d1 = 4 and the degeneracy of

the first-excited single-particle states with energy E2 is d2 = 6. If the energy of the

system is such that 2 particles occupy the lowest single-particle stationary states and 2

particles occupy the first-excited single-particle states, what is the number of distinct

four-particle states Q(2, 2) corresponding to this particular arrangement (2, 2):

a. if the particles are indistinguishable fermions? Ignore spin.

b. if the particles are indistinguishable bosons? Ignore spin.

c. (Hypothetical case) if the identical particles can be treated as distinguishable? Ig-

nore spin.
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Consider the following conversation regarding the number of distinct four-particle states

Q(2, 2) corresponding to the arrangement (2, 2) for a system of identical particles in

which the degeneracy of the lowest energy single-particle states with energy E1 is d1 = 4

and the degeneracy of the first-excited single-particle states with energy E2 is d2 = 6.

Student 1: In the given example, since the lowest energy single-particle states with

energy E1 have degeneracy d1 = 4 and the degeneracy of the first-excited single-particle

states with energy E2 is d2 = 6, there are a total of 10 available single-particle states. We

must determine all the permutations of the four particles among the 10 single-particle

states.

Student 2: I agree with Student 1 only in the case in which there is no constraint on

the total energy of the system. However, in this example, the permutations of the four

particles must be consistent with the fixed total energy of the system. Therefore, only

two particles with energy E1 and two particles with energy E2 are permitted.

Student 3: I agree with Student 2. To determine the number of ways to arrange the

two identical particles in the single-particle states with energy E1, we find the number

of ways to arrange the two identical particles when there are four single-particle state

available. We can use the following diagram to arrange the two identical particles in

the four single-particle states with energy E1:
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Student 2: I agree with Student 3. Similarly to determine the number of ways to

arrange the two identical particles in the first-excited single-particle states with energy

E2, we find the number of ways to arrange the two identical particles when there are

six single-particle states available. We can use the following diagram to arrange the two

identical particles in the six single-particle states with energy E2:

Then combine the number of ways to arrange the particles in the lowest energy single-

particle states with the number of ways to arrange the particles in the first-excited

single-particle states to find the total number of distinct four-particle states.

Explain why you agree or disagree with each student.
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Consider the following three conversations regarding the number of distinct four-particle

states Q(2, 2) corresponding to the arrangement (2, 2) for a system of indistinguishable

fermions in which the degeneracy of the lowest energy single-particle states with energy

E1 is d1 = 4 and the degeneracy of the first-excited single-particle states with energy

E2 is d2 = 6. Two students consider the number of ways two indistinguishable fermions

can be arranged in the lowest energy single-particle states.

Consider the following conversation in which three students consider the number of

ways two indistinguishable fermions can be arranged in the lowest energy single-particle

states.

Student 1: For the lowest energy single-particle states with energy E1, which have de-

generacy d1 = 4, we must find the number of ways to arrange the two indistinguishable

fermions among the four degenerate single-particle states with energy E1.

Student 2: I agree with Student 1. There are four states in which to arrange the two

fermions. Since there can only be one or zero fermions in each degenerate state, there

are
(
4
2

)
= 6 ways to arrange the two fermions among the lowest energy single-particle

states with energy E1.

Explain why you agree or disagree with each student.
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Consider the following conversation in which two students consider the number of

ways in which two indistinguishable fermions can be arranged in the first-excited

single-particle states.

Student 1: For the first-excited single-particle states with energy E2 which have de-

generacy d2 = 6, we must find the number of ways to arrange the two indistinguishable

fermions among the six degenerate single-particle states with energy E2.

Student 2: I agree with Student 1. There are six states in which to arrange the two

fermions. Since there can only be one or zero fermions in each degenerate state, there

are
(
6
2

)
= 15 ways to arrange the two fermions among the first-excited single-particle

states with energy E2.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding the total number of distinct four-particle

states Q(2, 2) corresponding to the arrangement (2, 2) for a system of indistinguishable

fermions.

Student 1: Since there are 6 ways to arrange the two indistinguishable fermions

among the four degenerate single-particle states with energy E1 and 15 ways to arrange

the two indistinguishable fermions among the six degenerate single-particle states with

energy E2, there are a total of 6 + 15 = 21 distinct four-particle states corresponding

to the arrangment of two fermions in the lowest energy states and two fermions in the

first-excited states.

Student 2: I disagree with Student 1. The total number of distinct four-particle states

Q(2, 2) corresponding to the arrangement of two fermions in the lowest energy states

and two fermions in the first-excited states is the product of the number of ways to

arrange the indistinguishable fermions in the four degenerate states with energy E1

and the six degenerate states with energy E2, not the sum. The number of distinct

four-particle states corresponding to the arrangement of two fermions in the lowest

energy states and two fermions in the first-excited states of the system is 6× 15 = 90.

Do you agree with Student 1 or Student 2? Explain your reasoning.
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Consider the following conversation regarding the number of distinct N -particle states

Q(N1, N2, N3, . . . , Nn, . . .) for a system of indistinguishable fermions in which Nn parti-

cles are in the nth single-particle states with energy En, which have degeneracy dn.

Student 1: For each set of degenerate single-particle states, we must find the number

of ways to arrange the Nn fermions among the dn degenerate states. Since each state

can contain at most one fermion, the number of ways to choose the Nn occupied states

is
(
dn
Nn

)
in which Nn ≤ dn.

Student 2: I agree with Student 1. The total number of distinct N -particle states is

the product of the number of ways to arrange the fermions into each single-particle state

and is given by ∏
n

dn!

Nn!(dn −Nn)!
=

(
d1
N1

)(
d2
N2

)(
d3
N3

)
· · · .

Explain why you agree or disagree with the students.
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Consider the following two conversations regarding the number of distinct four-particle

states Q(2, 2) corresponding to the arrangement (2, 2) for a system of indistinguishable

bosons in which the degeneracy of the lowest energy single-particle states with energy

E1 is d1 = 4 and the degeneracy of the first-excited single-particle states with energy

E2 is d2 = 6. Three students consider the number of ways two indistinguishable bosons

can be arranged in the lowest energy single-particle states.

Consider the following conversation in which three students consider the number of

ways in which two indistinguishable bosons can be arranged among the lowest energy

single-particle states.

Student 1: For the lowest energy single-particle states with energy E1 which have de-

generacy d1 = 4, we must find the number of ways to arrange the two indistinguishable

bosons among the four degenerate single-particle states with energy E1.

Student 2: I agree with Student 1. Using the bin and divider method, there are

two indistinguishable bosons and three indistinguishable dividers between the four

degenerate states. There are five total objects that must be permuted.

Student 3: I agree with both Student 1 and Student 2. When we calculate the number

of ways to permute the three indistinguishable dividers with the two bosons, we get(
5
3

)
= 10. There are 10 ways to arrange the two indistinguishable bosons in the lowest

energy single-particle states with energy E1.

Explain why you agree or disagree with the students.

768



Consider the following conversation in which three students consider the number of ways

two indistinguishable bosons can be arranged among the first-excited single-particle

states and the total number of distinct four-particle states Q(2, 2) corresponding to the

arrangement (2, 2) for a system of indistinguishable bosons.

Student 1: For the first-excited single-particle states with energy E2 which have de-

generacy d2 = 6, we must find the number of ways to arrange the two indistinguishable

bosons among the six degenerate single-particle states with energy E2.

Student 2: I agree with Student 1. Using the bin and divider method, there are two

indistinguishable bosons and five indistinguishable dividers between the six degenerate

states. There are seven total objects to be permuted, two indistinguishable bosons and

five indistinguishable dividers. When we calculate the number of ways to permute the

five indistinguishable dividers with the two bosons, we get
(
7
2

)
= 21.

Student 3: I agree with both Student 1 and Student 2. There are 10 ways to arrange

the two indistinguishable bosons among the lowest stationary states with energy E1

and 21 ways to arrange the two indistinguishable bosons among the first-excited single-

particle states with energy E2. The total number of distinct four-particle states Q(2, 2)

corresponding to the arrangement (2, 2) is 10 · 21 = 210.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding the number of distinct N -particle states

Q(N1, N2, N3, . . . , Nn, . . .) for a system of indistinguishable bosons in which Nn particles

are in the nth single-particle states with energy En, which has degeneracy dn.

Student 1: For each set of degenerate single-particle states, we must find the number

of ways to arrange the Nn bosons among the dn degenerate states. Using the bin and

divider method, there are Nn indistinguishable bosons and dn − 1 indistinguishable

dividers between the dn degenerate states. There are Nn + dn − 1 total objects that

must be permuted. When we calculate the number of ways to permute the dn − 1

indistinguishable dividers with the Nn bosons, we get
(
Nn+dn−1
dn−1

)
=
(
Nn+dn−1

Nn

)
.

Student 2: I agree with Student 1. The total number of distinct N -particle states is the

product of the ways to arrange the bosons into each group of degenerate single-particle

states and is given by

∞∏
n=1

(Nn + dn − 1)!

Nn!(dn − 1)!
=

(
N1 + d1 − 1

d1 − 1

)(
N2 + d2 − 1

d2 − 1

)(
N3 + d3 − 1

d3 − 1

)
· · · .

Explain why you agree or disagree with the students.
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Hypothetical Case: Treating the identical particles as distinguishable.

Consider the following two conversations regarding the number of distinct four-particle

states Q(2, 2) corresponding to the arrangement (2, 2) for a system of identical particles

which can be treated as distinguishable, in which the degeneracy of the lowest energy

single-particle states with energy E1 is d1 = 4 and the degeneracy of the first-excited

single-particle states with energy E2 is d2 = 6. Three students consider the number of

ways two identical particles can be arranged in the lowest energy single-particle states

if they can be treated as distinguishable.

In the following conversation three students consider the number of ways two distin-

guishable particles can be arranged among the lowest energy single-particle states.

Student 1: For the lowest energy single-particle states with energy E1 which has

degeneracy d1 = 4, we must find the number of ways to arrange the two distinguishable

particles among the four degenerate single-particle states with energy E1.

Student 2: I agree with Student 1. Since the particles can be treated as distinguishable,

we need to take into account which particles we are choosing, i.e., there are
(
4
2

)
= 6

different two particle combinations to arrange in the lowest energy single-particle states

with energy E1. Within the 4-fold degenerate lowest energy single-particle states, there

are four degenerate single-particle states available to the first particle and four degenerate

single-particle states for the second particle. There are 42 ways to arrange the two

particles.

Student 3: I agree with both Student 1 and Student 2. There is a total of 6 · 16 = 96

ways to arrange two of the four identical particles which can be treated as distinguishable

in the lowest energy single-particle states.

Explain why you agree or disagree with the students.
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Consider the following conversation in which three students consider the number of ways

two distinguishable particles can be arranged among the first-excited single-particle

states and the total number of distinct four-particle states Q(2, 2) corresponding to the

arrangement (2, 2) for a system of distinguishable particles.

Student 1: For the set of degenerate first-excited single-particle states with energy

E2 which has degeneracy d2 = 6, we must find the number of ways to arrange the two

distinguishable particles among the six degenerate single-particle states with energy E2.

Student 2: I agree with Student 1. If the particles can be treated as distinguish-

able, we need to take into account which particles we are choosing. Since we chose two

particles for the lowest energy single-particle states, there are two identical particles

remaining for the first-excited single-particle states. There is only
(
4−2
2

)
=
(
2
2

)
= 1

two particle combination to arrange among the first-excited single-particle states with

energy E2. Within the 6-fold degenerate first-excited single-particle states, there are

six degenerate single-particle states available to the first particle and six degenerate

single-particle states for the second particle. There are 62 = 36 ways to arrange the two

particles.

Student 3: I agree with both Student 1 and Student 2. There are 96 ways to arrange

two particles among the lowest energy single particle stationary states first and 36 ways

to arrange the remaining two particles among the first-excited single-particle states.

The number of distinct four-particle states corresponding to the arrangement (2, 2) for

a system of identical particles which can be treated as distinguishable is 96 · 36 = 3456.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding the number of distinct N -particle states

Q(N1, N2, N3, . . . , Nn, . . .) for a system of N identical particles which can be treated as

distinguishable in which Nn particles are in the dn-fold degenerate single-particle states

with energy En.

Student 1: To determine the number of distinct N -particle states for a system of

N identical particles which can be treated as distinguishable in which Nn

particles are in the dn-fold degenerate single-particle states with energy En, we can first

choose which of the N particles are in the set of degenerate states with energy En and

then multiply by the number of ways to arrange the particles among the single-particle

states.

Student 2: I agree with Student 1. If there are N1 particles in the d1-fold degenerate

lowest stationary state, then there are
(
N
N1

)
ways to choose the N1 particles in the

lowest stationary state and there are dN1
1 ways to arrange the N1 particles among the

d1 degenerate lowest single-particle states.

Student 3: I agree with Student 2. If there are N2 particles in the d2-fold degenerate

first-excited single-particle states, then there are N −N1 particles from which to choose

the N2 particles in the first-excited single-particle states. Then, there are d2 states

available to the N2 particles so there are dN2
2 ways to arrange the particles in the

first-excited single-particle states.

773



Student 1: I agree with both Student 2 and Student 3. We can continue this way and

the total number of distinct N -particle states for a system of N identical particles which

can be treated as distinguishable is[(
N

N1

)
dN1
1

]
·
[(
N −N1

N2

)
dN2
2

]
·
[(
N −N1 −N2

N3

)
dN3
3

]
· · ·

=

[
N !

N1!(N −N1)!
dN1
1

]
·
[

(N −N1)!

N2!(N −N1 −N2)!
dN2
2

]
·
[

(N −N1 −N2)!

N3!(N −N1 −N2 −N3)!
dN3
3

]
· · ·

= N !
dN1
1 dN2

2 dN3
3 · · ·

N1!N2!N3! · · ·

= N !
∏
n

dNn
n

Nn!

Explain why you agree or disagree with each student.
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Summary for Determining the Number of Distinct Many-Particle States

when the Total Energy of the Many-Particle System is Fixed and the

Single-Particle States have Degeneracy

To summarize what you have learned about determining the number of distinct many-

particle states for a many-particle system with fixed energy and in which the single-

particle states have degeneracy, answer the following question.

57. Suppose a system with six single-particle states has 6 particles. The degeneracy of the

lowest single-particle states with energy E1 is d1 = 3 and the degeneracy of the first-

excited single-particle states with energy E2 is d2 = 3. If the system has the arrangement

(2, 4) such that 2 particles are in the lowest single-particle states and 4 particles are in

the first-excited single-particle states, what is the number of distinct six-particle states

Q(2, 4) corresponding to this particular arrangement (2, 4):

a. if the particles are indistinguishable fermions? Ignore spin.

b. if the particles are indistinguishable bosons? Ignore spin.

c. (Hypothetical case) if the identical particles can be treated as distinguishable? Ig-

nore spin.

Compare the number of distinct four-particle states Q(2, 4) for the cases in which the 6

particles are indistinguishable fermions, indistinguishable bosons, and the hypothetical

case in which particles can be treated as distinguishable particles.
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**CHECKPOINT: Check your answers to questions 56-57.

**

56a.

(
4

2

)
·
(

6

2

)
= 6× 15 = 90

or equivalently
∏
n

dn!

Nn!(dn −Nn)!
=

(
4!

2!(4− 2)!

)(
6!

2!(6− 2)!

)
= 90

56b.

(
2 + 4− 1

2

)
·
(

2 + 6− 1

2

)
=

(
5

2

)
·
(

7

2

)
= 10× 21 = 210

or equivalently
∏
n

(Nn + dn − 1)!

Nn!(dn − 1)!
=

(
(2 + 4− 1)!

2!(4− 1)!

)(
(2 + 6− 1)!

2!(6− 1)!

)
= 210

56c.

[(
4

2

)
· 42

] [(
4− 2

2

)
· 62

]
= 96× 36 = 3456

or equivalently N !
∏
n

dn
Nn

Nn!
= 4!

(
42

2!

)(
62

2!

)
= 3456

57a. 0. There cannot be four fermions in the second single-particle state with

energy E2 since it has degeneracy d2 = 3. There must at least as many available

states as the number of fermions.

57b.

(
2 + 3− 1

2

)
·
(

4 + 3− 1

4

)
=

(
4

2

)
·
(

6

4

)
= 6× 15 = 90

or equivalently
∏
n

(Nn + dn − 1)!

Nn!(dn − 1)!
=

(
(2 + 3− 1)!

2!(3− 1)!

)(
(4 + 3− 1)!

4!(3− 1)!

)
= 90

57c.

[(
6

2

)
· 32

] [(
6− 2

4

)
· 34

]
= [15 · 9][1 · 81] = 10, 935

or equivalently N !
∏
n

dn
Nn

Nn!
= 6!

(
32

2!

)(
34

4!

)
= 10, 935

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answer.
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D.10 STATIONARY STATE WAVEFUNCTION FOR A SYSTEM OF N

NON-INTERACTING PARTICLES (INCLUDING SPIN)

• When considering the spin part of the wavefunction for a single-particle, we will use

the notation |si, msi〉 (in which si and msi are the quantum numbers corresponding

to the total spin and z-component of the spin for the ith particle, respectively).

– The states |s1, ms1〉 are eigenstates of Ŝ2
1 and Ŝ1z and the states |s2, ms2〉 are

eigenstates of Ŝ2
2 and Ŝ2z.

• When considering the spin part of the wavefunction for the two particles in the

uncoupled representation in the product space, we will use the notation

|s1, ms1〉1|s2, ms2〉2 for the basis states.

• Unless otherwise specified, we will consider only systems of spin-1/2 particles con-

fined in one spatial dimension.

• Even though the spatial and spin parts of the wavefunction can be entangled in

many situations, we will only consider separable many-particle wavefunctions in one-

dimension that can be written as the product of the spatial part of the wavefunction

ψ(x1, x2, x3, . . .) and the spin part of the wavefunction

χ(ms1 ,ms2 ,ms3 , . . .)

Ψ(x1, x2, x3, . . . ,ms1 ,ms2 ,ms3 , . . .) = ψ(x1, x2, x3, . . .)χ(ms1 ,ms2 ,ms3 , . . .)

Recall: The eigenstates of the z-component of spin for a spin-1/2 system |si msi〉i can

be

{∣∣∣∣12 , 1

2

〉
i

,

∣∣∣∣12 , −1

2

〉
i

}
(since for si = 1

2
, msi = 1

2
or −1

2
). For a system of two

spin-1/2 particles, e.g. electrons, we will use the following notation for the spin state of

each particle since it can have spin “up” or spin “down”:

Spin “Up” | ↑〉i =

∣∣∣∣12 , 1

2

〉
i

Spin “Down” | ↓〉i =

∣∣∣∣12 ,−1

2

〉
i

• When considering the spin part of the wavefunction for the two spin-1/2 particles

(s1 = 1/2⊗ s2 = 1/2) in the uncoupled representation in the product space, we

will use the notation | ↑〉1| ↑〉2, | ↑〉1| ↓〉2, | ↓〉1| ↑〉2, and | ↓〉1| ↓〉2 for the basis states.
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• We will also use the notation in the coupled representation |s, ms〉 in which the

quantum numbers s and ms correspond to the total spin angular momentum and the

z component of the total spin angular momentum including both spins, respectively

(we will use the notation that a state in the coupled representation will not have

a subscript whereas states in the uncoupled representation will have a subscript

indicating the particle associated with each spin state).

– The states |s, ms〉 in the coupled representation are eigenstates of Ŝ2 and Ŝz where

~S = ~S1 + ~S2.

• For a system of two spin-1/2 particles (s1 = 1/2⊗s2 = 1/2), the total spin quantum

number s = s1 + s2 = 1/2 + 1/2 = 1 or s = |s1 − s2| = |1/2− 1/2| = 0.

– If the total spin quantum number is s = 1 then the corresponding ms = −1, 0, 1

and the states in the coupled representation are given by |s,ms〉 = {|1, 1〉, |1, 0〉,

|1, −1〉}. If s = 0, then the corresponding ms = 0 and the state in the coupled

representation is given by |s,ms〉 = |0, 0〉.

• We will use the following abbreviated notation for a complete set of normalized

states for a system of two spin-1/2 particles in the coupled representation |s, ms〉

written in terms of the uncoupled representation.

|1, 1〉 = | ↑↑〉 = | ↑〉1| ↑〉2
|1, −1〉 = | ↓↓〉 = | ↓〉1| ↓〉2
|1, 0〉 = 1√

2
(| ↑↓〉+ | ↓↑〉) = 1√

2
(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2)

|0, 0〉 = 1√
2

(| ↑↓〉 − | ↓↑〉) = 1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2)

• If you are not familiar with the formalism of addition of angular momentum (in-

cluding how to write a complete set of basis states in the coupled and uncoupled

representations or how to write various operators in the coupled and uncoupled rep-

resentations), please work through the pretest, warm-up, tutorial and posttest for

the Addition of Angular Momentum Tutorial (since it would help you in writing the

spin part of the many-particle state in a particular representation).
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58. For the spin part of the wavefunction (spin state) of a two-particle system (s1 = 1/2⊗

s2 = 1/2) given below in the uncoupled representation, identify whether the spin state

is symmetric, antisymmetric, or neither symmetric nor antisymmetric with respect to

exchange of the two particles. Labels 1 and 2 denote particles 1 and 2, respectively.

Explain your reasoning.

a. | ↑〉1| ↑〉2

b. | ↓〉1| ↓〉2

c. C1| ↑〉1| ↑〉2 + C2| ↓〉1| ↓〉2 (with C1 6= C2 and |C1|2 + |C2|2 = 1)

d. | ↑〉1| ↑〉2 − | ↓〉1| ↓〉2

e. | ↑〉1| ↓〉2

f. | ↓〉1| ↑〉2

g. C1| ↑〉1| ↓〉2 + C2| ↓〉1| ↑〉2 (with C1 6= ±C2 and |C1|2 + |C2|2 = 1)

h. C1| ↑〉1| ↑〉2 +C2| ↓〉1| ↓〉2 + C3√
2
(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2) (with |C1|2 + |C2|2 + |C3|2 = 1)
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59. Based on your answer to 58, in the uncoupled representation (s1 = 1/2 ⊗ s2 = 1/2),

are the spin states | ↑〉1| ↑〉2, | ↓〉1| ↓〉2, | ↑〉1| ↓〉2, | ↓〉1| ↑〉2, | ↑〉1| ↑〉2 + | ↓〉1| ↓〉2 and

| ↑〉1| ↑〉2 − | ↓〉1| ↓〉2 an appropriate spin part of the wavefunction for a system of two

indistinguishable spin-1/2 particles for writing a completely symmetric/antisymmetric

wavefunction? Explain your reasoning.

60. For the spin part of the wavefunction (spin state) for (s1 = 1/2 ⊗ s2 = 1/2) of a two-

particle system given below in the coupled representation and expressed in terms of the

uncoupled representation, identify whether the spin state is symmetric, antisymmetric,

or neither symmetric nor antisymmetric with respect to exchange of the two particles.

Explain your reasoning.

a. |1, 1〉 = | ↑↑〉

b. |1, −1〉 = | ↓↓〉

c. |1, 0〉 = 1√
2

(| ↑↓〉+ | ↓↑〉)

d. |0, 0〉 = 1√
2

(| ↑↓〉 − | ↓↑〉)

e. C1|1, 0〉+ C2|0, 0〉 = C1√
2

(| ↑↓〉+ | ↓↑〉) + C2√
2

(| ↑↓〉 − | ↓↑〉) (with C1 6= 0, C2 6= 0,

and |C1|2 + |C2|2 = 1)

f. C1|1, 1〉+ C2|1, −1〉+ C3|1, 0〉 = C1| ↑↑〉+ C2| ↓↓〉+ C3√
2

(| ↑↓〉+ | ↓↑〉) (with

|C1|2 + |C2|2 + |C3|2 = 1)
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61. Based on your answer to question 60, in the coupled representation, are the spin states

|1, 1〉, |1, −1〉, |1, 0〉, |0, 0〉, and 1√
3
[|1, 1〉+ |1, −1〉+ |0, 0〉] an appropriate spin part

of the wavefunction for a system of two indistinguishable spin-1/2 particles for writing

a completely symmetric/antisymmetric wavefunction? Explain your reasoning.

Consider the following conversation regarding whether a spin state in the coupled

representation is symmetric or antisymmetric for a system of two spin-1/2 particles

(s1 = 1/2⊗ s2 = 1/2).

Student 1: The spin state 1√
2

(| ↑↓〉 − | ↓↑〉) = 1√
2

(| ↑〉1| ↓〉2〉 − | ↓〉1| ↑〉2) is symmetric

since exchanging the particles results in the same spin state.

Student 2: I disagree with Student 1. The spin state 1√
2

(| ↑↓〉 − | ↓↑〉)

= 1√
2

(| ↑〉1| ↓〉2〉 − | ↓〉1| ↑〉2) is antisymmetric. If we exchange the particles, we get

1√
2

(| ↑〉2| ↓〉1〉 − | ↓〉2| ↑〉1) = 1√
2

(| ↓↑〉 − | ↑↓〉) = − 1√
2

(| ↑↓〉 − | ↓↑〉).

Student 3: I agree with Student 2. The antisymmetric spin state 1√
2

(| ↑↓〉 − | ↓↑〉) is

referred to as the “singlet” state since it corresponds to the total spin quantum number

s = 0 for a system of two spin-1/2 particles for which the only possibility for ms is

ms = 0.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding whether a spin state in the coupled

representation for a system of two spin-1/2 particles (s1 = 1/2⊗ s2 = 1/2) is symmetric

or antisymmetric.

Student 1: The spin state | ↑↑〉 = | ↑〉1| ↑〉2 is symmetric since exchanging the two

particles results in the same spin state | ↑↑〉 = | ↑〉2| ↑〉1. Similarly, the spin state

| ↓↓〉 = | ↓〉1| ↓〉2 is symmetric.

Student 2: I agree with Student 1. The spin state 1√
2

(| ↑↓〉+ | ↓↑〉)

= 1√
2

(| ↑〉1| ↓〉2〉+ | ↓〉1| ↑〉2) is also symmetric since exchanging the two particles results

in the same spin state.

Student 3: The spin states | ↑↑〉, | ↓↓〉, and 1√
2

(| ↑↓〉+ | ↓↑〉) are all symmetric and

referred to as the “triplet” states since they correspond to the total spin quantum

number s = 1 for a system of two spin-1/2 particles with ms = +1,−1, 0, respectively.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding choosing states for a system of two

spin-1/2 particles with regard to symmetrization requirements.

Student 1: In the uncoupled representation, the two-particle spin states

| ↑〉1| ↑〉2, | ↓〉1| ↓〉2, | ↑〉1| ↓〉2, and | ↓〉1| ↑〉2 are all appropriate choices for

spin part of the wavefunction to satisfy the symmetrization requirement.

Student 2: I disagree with Student 1. In order to satisfy the symmetrization require-

ment of the wavefunction, we must choose spin states which are either symmetric or

antisymmetric. In the uncoupled representation, the two-particle spin states | ↑〉1| ↓〉2
and | ↓〉1| ↑〉2 are neither symmetric nor antisymmetric. For example, exchanging

particles 1 and 2 transforms the state | ↑〉1| ↓〉2 to | ↑〉2| ↓〉1 = | ↓〉1| ↑〉2 but

| ↑〉1| ↓〉2 6= ±| ↓〉1| ↑〉2 so | ↑〉1| ↓〉2 is neither symmetric nor antisymmetric. The same

is true for the spin state | ↓〉1 ↑〉2.

Student 3: I agree with Student 2. The two-particle spin states | ↑↑〉, | ↓↓〉, and

1√
2

(| ↑↓〉+ | ↓↑〉) in the coupled representation expressed in terms of states in the

uncoupled representation, are symmetric. The two-particle spin state 1√
2

(| ↑↓〉 − | ↓↑〉)

is antisymmetric. Therefore, the two-particle spin states | ↑↑〉, | ↓↓〉,
1√
2

(| ↑↓〉+ | ↓↑〉), and 1√
2

(| ↑↓〉 − | ↓↑〉) are all appropriate choices for spin part of the

two-particle wavefunction with suitable spatial wavefunction to satisfy the symmetriza-

tion requirement.

Explain why you agree or disagree with each student.

62. Write four possible two-particle wavefunctions including spin for a system of two non-

interacting indistinguishable fermions in single-particle states labeled by n1 and n2.
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Consider the following conversation regarding constructing a completely antisymmetric

wavefunction for a system of indistinguishable non-interacting fermions.

Student 1: For a system of two fermions, the two-particle wavefunction, which is

made up of the product of the spatial part and spin part of the wavefunction, must be

antisymmetric.

Student 2: I disagree with Student 1. We must only ensure that the spatial part of

the two-particle wavefunction is antisymmetric. The spatial part of the two-particle

stationary state wavefunction must be 1√
2
[ψn1(x1)ψn2(x2) − ψn1(x2)ψn2(x1)]. The

spin part of the two-particle wavefunction can be either the antisymmetric singlet

state 1√
2

(| ↑↓〉 − | ↓↑〉) or one of the three symmetric triplet states {| ↑↑〉, | ↓↓〉,
1√
2

(| ↑↓〉+ | ↓↑〉)}.

Student 3: I agree with Student 2 in that the spatial part of the two-particle

wavefunction must be antisymmetric. However, we must also choose the antisymmetric

singlet state as the spin part of the two-particle wavefunction.

Student 4: I disagree with both Student 2 and Student 3. The overall two-particle

wavefunction must be antisymmetric. If the spatial part of the two-particle wavefunc-

tion is symmetric 1√
2
[ψn1(x1)ψn2(x2) +ψn1(x2)ψn2(x1)], the spin part of the two-particle

wavefunction must be the antisymmetric singlet state 1√
2

(| ↑↓〉 − | ↓↑〉).

Student 1: I agree with Student 4. Additionally, the spatial part of the two-particle

wavefunction could be antisymmetric 1√
2
[ψn1(x1)ψn2(x2)−ψn1(x2)ψn2(x1)] which would

imply that the spin part of the two-particle wavefunction can be one of the symmetric

triplet states {| ↑↑〉, | ↓↓〉, 1√
2

(| ↑↓〉+ | ↓↑〉)}. In either case, the product of one

symmetric and one antisymmetric wavefunction produces an overall antisymmetric

two-particle wavefunction.
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Student 4: I agree with Student 1. However, remember that a linear combination of

the triplet states such as C1| ↑↑〉+C2| ↓↓〉+ C3√
2

(| ↑↓〉+ | ↓↑〉) is a completely symmetric

spin state. This state is normalized if we choose |C1|2 + |C2|2 + |C3|2 = 1.

Explain why you agree or disagree with each student.

63. Fill in all the possibilities in the table below based on what you learned about the

symmetric/antisymmetric characteristic (with respect to exchange of two particles) of

the many-particle wavefunction for a system of identical particles.
Type of Particle Spatial Part of Spin part of Complete

the Many-Particle the Many-Particle Many-Particle

Wavefunction Wavefunction Wavefunction

(Symmetric/Antisymmetric) (Symmetric/Antisymmetric) (Symmetric/Antisymmetric)

Indistinguishable

Fermions

Indistinguishable

Bosons
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**CHECKPOINT: Check your answers to questions 58-63.

**

58a. Symmetric

58b. Symmetric

58c. Symmetric

58d. Symmetric

58e. Neither symmetric nor antisymmetric

58f. Neither symmetric nor antisymmetric

58g. Neither symmetric nor antisymmetric

58h. Symmetric

59. The spin states | ↑〉1| ↓〉2 and | ↓〉1| ↑〉2 are neither symmetric nor antisymmetric.

It is not possible to combine either of these two spin states individually with the

spatial part of the wavefunction to produce a wavefunction that is either completely

symmetric or completely antisymmetric.

The spin states | ↑〉1| ↑〉2, | ↓〉1| ↓〉2, and | ↑〉1| ↑〉2 + | ↓〉1| ↓〉2 are symmetric and the

spin state | ↑〉1| ↑〉2 − | ↓〉1| ↓〉2 is antisymmetric and could be combined with the

spatial part of the wavefunction to produce a wavefunction that is either completely

symmetric or completely antisymmetric.

60a. Symmetric

60b. Symmetric

60c. Symmetric

60d. Antisymmetric

60e. Neither symmetric nor antisymmetric

60f. Symmetric

61. The spin states C1|1, 0〉 + C2|0, 0〉 is neither symmetric nor antisymmetric.

It is not possible to combine this spin states individually with the spatial part of

the wavefunction to produce a wavefunction that is either completely symmetric or

completely antisymmetric.
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The spin states |1, 1〉, |1, −1〉, |1, 0〉, and C1|1, 1〉+C2|1, −1〉+C3|1, 0〉 in the cou-

pled representation are symmetric. The spin state |0, 0〉 is antisymmetric. Therefore

it is possible to combine these spin states with the spatial part of the wavefunction

to produce a wavefunction that is either completely symmetric or completely anti-

symmetric.

62. The following are examples of a two-particle wavefunction including spin for

a system of two non-interacting indistinguishable fermions in single-particle states

labeled by n1 and n2

Ψ(x1, x2,ms1 ,ms2) = [ 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)}][| ↑↑〉]

Ψ(x1, x2,ms1 ,ms2) = [ 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)}][| ↓↓〉]

Ψ(x1, x2,ms1 ,ms2) = [ 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)}

][ 1√
2
{| ↑↓〉+ | ↓↑〉}]

Ψ(x1, x2,ms1 ,ms2) = [ 1√
2
{ψn1(x1)ψn2(x2)− ψn2(x1)ψn1(x2)}]

[ 1√
2
{| ↑↑〉+ | ↓↓〉}]

Ψ(x1, x2,ms1 ,ms2) = [ 1√
2
{ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)}]

[ 1√
2
{| ↑↓〉 − | ↓↑〉}]

63.

Type of Particle Spatial Part of Spin part of Complete

the Wavefunction the Wavefunction Wavefunction

(Symmetric/ (Symmetric/ (Symmetric/

Antisymmetric) Antisymmetric) Antisymmetric)

Indistinguishable Symmetric Antisymmetric Antisymmetric

Fermions Antisymmetric Symmetric

Indistinguishable Symmetric Symmetric Symmetric

Bosons Antisymmetric Antisymmetric

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answer.
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64. Consider a system with three identical non-interacting spin-1/2 particles. If two of the

particles are in the spin up state and one of the particles is in the spin down state,

construct a completely symmetric spin state for the three particle system. If no such

spin state exists, state the reason why. (Hint: Start with the basis state | ↑〉1| ↑〉2| ↓〉3.)

65. Consider a system with three identical non-interacting spin-1/2 particles. If two of

the particles are in the spin up state and one of the particles is in the spin down state,

construct a completely antisymmetric spin state for the three particle system. If no such

spin state exists, state the reason why. (Hint: Start with the basis state | ↑〉1| ↑〉2| ↓〉3.)
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64. 1√
3
[| ↑〉1| ↑〉2| ↓〉3 + | ↑〉1| ↓〉2| ↑〉3 + | ↓〉1| ↑〉2| ↑〉3]

65. It is not possible to construct a completely antisymmetric spin state for a

system with two particles in the same spin state.

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answer.
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D.11 EXAMPLES OF FINDING THE MANY-PARTICLE

STATIONARY STATE WAVEFUNCTIONS AND ENERGIES

(INCLUDING SPIN)

In this section and the next, we shall focus on determining the many-particle stationary

state wavefunction for a system of non-interacting particles placed in a one-dimensional

harmonic oscillator potential well. Previously, we considered the many-particle station-

ary state wavefunction for a system of non-interacting particles placed in an infinite

square well potential. Take a moment to think about the form of the many-particle

stationary state wavefunction for a system of identical fermions or bosons in these two

systems and whether the different potential energy terms affect the form of the many-

particle stationary state wavefunction.

D.11.1 One-Dimensional Harmonic Oscillator - Two Spin-1/2 Fermions

Two identical non-interacting spin-1/2 fermions are placed in a one-dimensional har-

monic oscillator potential energy well with Hamiltonian Ĥi =
p̂2i
2m

+ 1
2
mω2x̂i

2. The

single-particle energies are given by

En =

(
n+

1

2

)
~ω. n = 0, 1, 2, . . .

For the following questions, you can denote the spatial state of the ith particle in the

ni
th single-particle state of the oscillator by ψni

(xi).

66. Find the two-particle ground state and first-excited state energies of the two-particle

system if the particles are

a. Indistinguishable fermions with spin-1/2 in a total spin s = 0 state.

b. Indistinguishable fermions with spin-1/2 in a total spin s = 1 state.
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67. Construct the spatial part of the two-particle ground state and first-excited state for two

non-interacting particles in the one-dimensional harmonic oscillator potential energy well

if the particles are

a. Indistinguishable fermions with spin-1/2 in a total spin s = 0 state.

b. Indistinguishable fermions with spin-1/2 in a total spin s = 1 state.

Consider the following conversation regarding the two-particle ground state and ground

state energy for two indistinguishable fermions with spin-1/2 in a total spin s = 0 state

placed in a one-dimensional harmonic oscillator potential energy well.

Student 1: For the two-particle ground state for a system of two indistinguishable

fermions with spin-1/2 in a total spin S = 0 state, both fermions are in the single-

particle spatial state ψ0, so n1 = n2 = 0. The many-particle ground state energy is

E00 = E0 + E0 = ~ω.

Student 2: I disagree with Student 1. The two fermions cannot both be in the same

single-particle spatial state ψ0. For the two-particle ground state, one fermion is in

the lowest single-particle spatial state ψ0 and the other fermion is in the first-excited

single-particle spatial state ψ1, so n1 = 0 and n2 = 1 or n1 = 1 and n2 = 0. The

two-particle ground state energy is E10 = E1 + E0 = 2~ω.

Student 3: I agree with Student 1 and disagree with Student 2. For a system of indis-

tinguishable fermions, the overall two-particle state must be antisymmetric. Since the

fermions are in the total spin s = 0 antisymmetric singlet state |χ〉 = 1√
2
(| ↑↓〉− ↓↑〉),

the spatial part of the many-particle state must be symmetric. Two fermions in

the same single-particle spatial state ψ0 correspond to the symmetric spatial state

ψ0(x1)ψ0(x2)
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Student 1: I agree with Student 3. The overall two-particle ground state including

both spatial and spin parts is Ψ00 = [ψ0(x1)ψ0(x2)][
1√
2
(| ↑↓〉− ↓↑〉)]. In the total

spin s = 0 state, the two fermions can be in the same single-particle spatial state

ψ0 since the fermions are in different spin states with the two-particle spin-state

|χ〉 = 1√
2
(| ↑↓〉− ↓↑〉) being antisymmetric.

Explain why you agree or disagree with each student.

Consider the following conversation regarding the two-particle first-excited state and

first-excited state energy for two indistinguishable fermions with spin-1/2 in a total spin

s = 0 state placed in a one-dimensional harmonic oscillator potential energy well.

Student 1: For a system of indistinguishable fermions, the overall two-particle state

must be antisymmetric. Since the fermions are in the total spin s = 0 antisymmetric

singlet state |χ〉 = 1√
2
(| ↑↓〉− ↓↑〉), the spatial part of the two-particle state must be

symmetric.

Student 2: In the two-particle first-excited spatial state for a system of two indistin-

guishable fermions with spin-1/2 in a total spin s = 0 state, one fermion is in the lowest

single-particle spatial state ψ0 and the other fermion is in the first-excited single-particle

spatial state ψ1, so n1 = 1 and n2 = 0 or n1 = 0 and n2 = 1. The two-particle first-

excited state energy is E10 = E1 + E0 = 2~ω.

Student 3: I agree with Student 1 and Student 2. The spatial part of the two-

particle first-excited state is symmetric and given by 1√
2
(ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2)).

The overall two-particle first-excited state including both spatial and spin parts is

Ψ01 = [ 1√
2
(ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2))][

1√
2
(| ↑↓〉− ↓↑〉)].

Explain why you agree or disagree with the students.
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Consider the following conversation regarding the two-particle ground state and ground

state energy for two indistinguishable fermions with spin-1/2 in a total spin s = 1 state

placed in a one-dimensional harmonic oscillator potential energy well.

Student 1: For the two-particle ground state for a system of two indistinguishable

fermions with spin-1/2 in a total spin S = 1 state, both fermions are in the single-

particle spatial state ψ0, so n1 = n2 = 0. The two-particle ground state energy is

E00 = ~ω.

Student 2: I disagree. For a system of indistinguishable fermions, the overall two-

particle state including both spatial and spin parts must be antisymmetric. Since

the fermions are in a total spin s = 1 symmetric triplet state, the spatial part of the

two-particle state must be antisymmetric. The two fermions cannot be in the same

single-particle spatial state ψ0 because that is a symmetric state.

Student 3: I agree with Student 2. The two-particle ground state must include the

antisymmetric spatial state in which one fermion is in the single-particle state ψ0 and

the other fermion is in the single-particle spatial state ψ1, so n1 = 1 and n2 = 0 or

n1 = 0 and n2 = 1.

Student 2: Right! The antisymmetric spatial part of the two-particle ground state

is 1√
2
(ψ0(x1)ψ1(x2) − ψ1(x1)ψ0(x2)). One possible two-particle ground state including

both spatial and spin parts is Ψ00 = [ 1√
2
(ψ0(x1)ψ1(x2) − ψ1(x1)ψ0(x2))][| ↑↑〉]. The

two-particle ground state energy is E10 = 2~ω.

Student 3: I agree with Student 2. Additionally, if the spatial part of two-particle

ground state is 1√
2
(ψ0(x1)ψ1(x2)−ψ1(x1)ψ0(x2)), then the spin part of the wavefunction

could be | ↓↓〉, 1√
2
(| ↑↓〉 + | ↓↑〉), or C1| ↑〉 + C2| ↓〉 + C3√

2
(| ↑↓〉 + | ↓↑〉) in which

|C1|2 + |C2|2 + |C3|2 = 1.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding the two-particle first-excited state and

first-excited state energy for two indistinguishable fermions with spin-1/2 in a total

spin s = 1 state placed in a one-dimensional harmonic oscillator potential energy well.

Student 1: The two-particle first-excited state energy for two spin-1/2 fermions

in a total spin s = 1 state is E11 = 3~ω, in which both fermions are in the same

single-particle spatial state ψ1.

Student 2: I disagree. In the total spin s = 1 state, both fermions are in the same

spin state and therefore cannot be in the same single-particle spatial state ψ1.

Student 3: I disagree with Student 1’s reasoning. Since the fermions are in a

total spin s = 1 symmetric triplet state, the spatial part of the two-particle state

must be antisymmetric so that the overall two-particle state is antisymmetric. The

two fermions cannot be in the same spatial state ψ1 because this would mean that

both the spatial part and spin part of the wavefunction are symmetric, which is not

allowed. I disagree with Student 2’s reasoning, as it does not hold for the triplet state

|χ〉 = 1√
2
(| ↑〉1| ↓〉2 + | ↑〉2| ↓〉1).

Student 4: In the two-particle first-excited state for a system of two indistinguishable

fermions with spin-1/2 in a total spin s = 1 state, one fermion is in the single-particle

spatial state ψ0 and the other fermion is in the single-particle spatial state ψ2, so n1 = 2

and n2 = 0 or n1 = 0 and n2 = 2. The spatial part of the two-particle first-excited state

is antisymmetric and given by 1√
2
(ψ0(x1)ψ2(x2) − ψ2(x1)ψ0(x2)). Neglecting various

superpositions, one of the three possible two-particle first-excited state including both

spatial and spin parts is Ψ01 = [ 1√
2
(ψ0(x1)ψ2(x2)− ψ2(x1)ψ0(x2))][

1√
2
(| ↑↓〉+ ↓↑〉)]. The

two-particle first-excited state energy is E20 = 3~ω.

Explain why you agree or disagree with each student.
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**CHECKPOINT: Check your answers to questions 66-67.

**

66a. Ground state: E00 = ~ω

First-excited state: E01 = 2~ω

66b. Ground state: E01 = 2~ω

First-excited state: E02 = 3~ω

67a. Ground state: Ψ00 = ψ0(x1)ψ0(x2)

First-excited state: Ψ01 = 1√
2
(ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2))

67b. Ground state: Ψ01 = 1√
2
(ψ0(x1)ψ1(x2)− ψ1(x1)ψ0(x2))

First-excited state: Ψ02 = 1√
2
(ψ0(x1)ψ2(x2)− ψ2(x1)ψ0(x2))

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answer.
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D.11.2 One-Dimensional Harmonic Oscillator - Two Spin-1 Bosons

Two identical non-interacting spin-1 bosons (s1 = 1 ⊗ s2 = 1) are placed in a one-

dimensional harmonic oscillator potential energy well with Hamiltonian Ĥ = p̂2

2m
+

1
2
mω2x̂2. The single-particle energies are given by

En =

(
n+

1

2

)
~ω. n = 0, 1, 2, . . .

• For a spin-1 boson, |si,msi〉 = {|1, −1〉, |1, 0〉, |1, 1〉} for each particle.

• When considering the spin part of the wavefunction for the two spin-1 particles

(s1 = 1⊗ s2 = 1) in the uncoupled representation in the product space, we will use

the notation |1, 1〉1|1, 1〉2, |1, 1〉1|1, 0〉2, |1, 1〉1|1, −1〉2, |1, 0〉1|1, 1〉2, |1, 0〉1|1, 0〉2,

|1, 0〉1|1, −1〉2, |1,−1〉1|1, 1〉2, |1,−1〉1|1, 0〉2, and |1,−1〉1|1, −1〉2 for the basis

states.

• In the following table, for two identical non-interacting spin-1 bosons (s1 = 1⊗s2 =

1), the product states for spin degrees of freedom in the coupled representation

|s, ms〉 (left) are given in terms of a linear combination of product states in the un-

coupled representation |s1, ms1〉1|s2, ms2〉2 (right) using the Clebsch-Gordon table.
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Product states in Written in terms of product states

Coupled Representation in Uncoupled Representation

|s, ms〉
∑

ms1+ms2=ms

Cs1,s2,s
ms1 ,ms2 ,ms

|s1, ms1〉1|s2, ms2〉2

|2, 2〉 |1, 1〉1|1, 1〉2
|2, 1〉 1√

2
(|1, 1〉1|1, 0〉2 + |1, 0〉1|1, 1〉2)

|1, 1〉 1√
2
(|1, 1〉1|1, 0〉2 − |1, 0〉1|1, 1〉2)

|2, 0〉 1√
6
|1, 1〉1|1, −1〉2 +

√
2
3
|1, 0〉1|1, 0〉2 + 1√

6
|1, −1〉1|1, 1〉2

|1, 0〉 1√
2
(|1, 1〉1|1, −1〉2 − |1, −1〉1|1, 1〉2)

|0, 0〉 1√
3
|1, 1〉1|1, −1〉2 − 1√

3
|1, 0〉1|1, 0〉2 + 1√

3
|1, −1〉1|1, 1〉2

|2, −1〉 1√
2
(|1, 0〉1|1, −1〉2 + |1, −1〉1|1, 0〉2)

|1, −1〉 1√
2
(|1, 0〉1|1, −1〉2 − |1, −1〉1|1, 0〉2)

|2, −2〉 |1, −1〉1|1, −1〉2

68. Find the two-particle ground state and first-excited state energies of the two-particle

system if the particles are indistinguishable bosons with spin 1.
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69. Construct at least two possible overall two-particle ground state wavefunctions (includ-

ing both spatial and spin parts) for two non-interacting particles in the one-dimensional

harmonic oscillator potential energy well if the particles are indistinguishable bosons

with spin 1.

70. Construct at least two possible overall two-particle first-excited state wavefunctions

(including both spatial and spin parts) for two non-interacting particles in the one-

dimensional harmonic oscillator potential energy well if the particles are indistinguish-

able bosons with spin 1.
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Consider the following conversation regarding the two-particle ground state and

ground state energy for two non-interacting indistinguishable bosons with spin 1

(s1 = 1⊗ s2 = 1) placed in a one-dimensional harmonic oscillator potential energy well.

Student 1: The two-particle ground state for a system of two indistinguishable bosons

with spin 1 (s1 = 1 ⊗ s2 = 1) must be symmetric. There are two possibilities for the

two-particle ground state: both the spatial part and the spin part are symmetric or

both the spatial part and spin part are antisymmetric.

Student 2: While that is generally the case, the two-particle ground state must be a

state with the lowest energy. The lowest energy occurs when both bosons are in the

same single-particle spatial state ψ0. Therefore, the spatial part of the two-particle

ground state is the symmetric state ψ0(x1)ψ0(x2). The two-particle ground state energy

is E00 = ~ω.

Student 3: I agree with Student 2. Since the spatial part of the two-particle ground

state is symmetric, the spin part of the two-particle ground state must also be sym-

metric. Six possible symmetric combinations for the spin part of the many-particle

state for two indistinguishable spin-1 bosons (s1 = 1, s2 = 1) in coupled representation

are |2, 2〉, |2, 1〉, |2, 0〉, |0, 0〉, |2, −1〉, and |2, −2〉 in the preceding table. One

possible overall two-particle ground state including both spatial and spin parts is

Ψ00 = [ψ0(x1)ψ0(x2)][|2, 2〉].

Student 2: I agree with Student 3. We can also construct a completely sym-

metric spin state by taking a linear combination of these symmetric states.

C1|2, 2〉 + C2|2, 1〉 + C3|2, 0〉 + C4|0, 0〉 + C5|2, −1〉 + C6|2, −2〉 where

|C1|2 + |C2|2 + |C3|2 + |C4|2 + |C5|2 + |C6|2 = 1 will yeild a normalized state.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding the two-particle first-excited state and

first-excited state energy for two non-interacting indistinguishable spin-1 bosons (s1 =

1⊗ s2 = 1) placed in a one-dimensional harmonic oscillator potential energy well.

Student 1: If the two-particle first-excited state energy is E01 = 2~ω, one boson is in the

single-particle spatial state ψ0 and the other boson is in the single-particle spatial state

ψ1. The spatial part of the two-particle first-excited state MUST be 1√
2
[ψ0(x1)ψ1(x2) +

ψ1(x1)ψ0(x2)] since the overall wavefunction should be symmetric. Therefore, the spin

part of the two-particle first-excited state must be a symmetric spin state.

Student 2: The spatial part of the two-particle first-excited state can also be

1√
2
[ψ0(x1)ψ1(x2) − ψ1(x1)ψ0(x2)] in which case the spin part of the two-particle first-

excited state must be an antisymmetric spin state.

Explain why you agree or disagree with each student.
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In the preceding conversation, Student 1 is correct that both the spatial and spin part of

the two-particle stationary state wavefunction can be symmetric to produce an overall

symmetric first-excited state wavefunction for the two bosons. However, it is also possi-

ble that both the spatial and spin parts of the two-particle stationary state wavefunction

can be antisymmetric resulting in an overall symmetric first-excited state wavefunction

for the two bosons as stated by Student 2.

**CHECKPOINT: Check your answers to questions 68-69.

**

68. Ground state: E00 = ~ω

First-excited state: E01 = 2~ω

69. We will use the following notation, |s,i msi〉i represents the spin state of particle

i.

Ground State:

Ψ00 = ψ0(x1)ψ0(x2)][|1, 1〉1|1, 1〉2]

Ψ00 = ψ0(x1)ψ0(x2)][
1√
2
(|1, 1〉1|1, 0〉2 + |1, 0〉1|1, 1〉2)]

Ψ00 = ψ0(x1)ψ0(x2)][
1√
6
|1, 1〉1|1, −1〉2 +

√
2
3
|1, 0〉1|1, 0〉2

+ 1√
6
|1, −1〉1|1, 1〉2]

Ψ00 = ψ0(x1)ψ0(x2)][
1√
3
|1, 1〉1|1, −1〉2 − 1√

3
|1, 0〉1|1, 0〉2

+ 1√
3
|1, −1〉1|1, 1〉2]

Ψ00 = ψ0(x1)ψ0(x2)][
1√
2
(|1, 0〉1|1, −1〉2 + |1, −1〉1|1, 0〉2)]

Ψ00 = ψ0(x1)ψ0(x2)][|1, −1〉1|1, −1〉2]

70. We will use the following notation, |s, ms〉i represents the spin state of particle

i.
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First-excited state:

Ψ01 = 1√
2
[ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2)][|1, 1〉1|1, 1〉2]

Ψ01 = 1√
2
[ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2)][

1√
2
(|1, 1〉1|1, 0〉2 + |1, 0〉1|1, 1〉2)]

Ψ01 = 1√
2
[ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2)][

1√
6
|1, 1〉1|1, −1〉2

+
√

2
3
|1, 0〉1|1, 0〉2 + 1√

6
|1, −1〉1|1, 1〉2]

Ψ01 = 1√
2
[ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2)][

1√
3
|1, 1〉1|1, −1〉2

− 1√
3
|1, 0〉1|1, 0〉2 + 1√

3
|1, −1〉1|1, 1〉2]

Ψ01 = 1√
2
[ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2)][

1√
2
(|1, 0〉1|1, −1〉2+

|1, −1〉1|1, 0〉2)]

Ψ01 = 1√
2
[ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2)][|1, −1〉1|1, −1〉2]

Ψ01 = 1√
2
[ψ0(x1)ψ1(x2)− ψ1(x1)ψ0(x2)][

1√
2
(|1, 1〉1|1, 0〉2

−|1, 0〉1|1, 1〉2)]

Ψ01 = 1√
2
[ψ0(x1)ψ1(x2)− ψ1(x1)ψ0(x2)][

1√
2
(|1, 1〉1|1, −1〉2

−|1, −1〉1|1, 1〉2)]

Ψ01 = 1√
2
[ψ0(x1)ψ1(x2)− ψ1(x1)ψ0(x2)][

1√
2
(|1, 0〉1|1, −1〉2

−|1, −1〉1|1, 0〉2)]

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answer.
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71. Consider a system with three identical non-interacting spin-1 particles. If the three

particles are in different spin states, construct a completely symmetric spin state for the

three particles starting with the basis state |1, 1〉1|1, 0〉2|1, −1〉3. If no such spin state

exists, state the reason why.

72. Consider a system with three identical non-interacting spin-1 particles. If the three

particles are in different spin states, construct a completely antisymmetric spin state for

the three particles starting with the basis state |1, 1〉1|1, 0〉2|1, −1〉3. If no such spin

state exists, state the reason why.
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**CHECKPOINT: Check your answers to questions 71-72.

**

71. 1√
6
[|1, 1〉1|1, 0〉2|1, −1〉3 + |1, 1〉1|1, 0〉3|1, −1〉2 + |1, 1〉2|1, 0〉3|1, −1〉1 +

|1, 1〉2|1, 0〉1|1, −1〉3 + |1, 1〉3|1, 0〉1|1, −1〉2 + |1, 1〉3|1, 0〉2|1, −1〉1]

72. 1√
6
[|1, 1〉1|1, 0〉2|1, −1〉3 − |1, 1〉1|1, 0〉3|1, −1〉2 + |1, 1〉2|1, 0〉3|1, −1〉1 −

|1, 1〉2|1, 0〉1|1, −1〉3 + |1, 1〉3|1, 0〉1|1, −1〉2 − |1, 1〉3|1, 0〉2|1, −1〉1]

If any of your answers do not match the checkpoint, go back and reconcile any differences

you may have with the checkpoint answer.
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OPTIONAL: This final optional section of this tutorial deals

with examples of limiting cases when identical paticles can be

treated as distinguishable.

D.12 LIMITING CASE: WHEN IDENTICAL PARTICLES CAN BE

TREATED AS DISTINGUISHABLE

• So far we considered the distinguishable particle case as a hypothetical case for

contrast with the cases of identical fermions and identical bosons. Now we will learn

about some limiting cases in which identical microscopic particles can be treated as

distinguishable.

• In limiting situations in which identical particles (particles of one type with the same

properties) can be treated as distinguishable, you can distinguish which particle is

in which single-particle stationary state. Exchanging distinguishable particles in

different single-particle states with each other produces a distinctly different many-

particle state.

Consider the following conversation regarding identical particles which can be treated

as distinguishable versus indistinguishable.

Student 1: In general, in quantum mechanics, if two particles in a system are

identical, we couldn’t paint one red and the other green. Quantum particles are truly

indistinguishable. There is no measurement we can perform that could distinguish

one identical particle from the other. For example, there is no measurement that can

distinguish which fermion was in which single-particle state and had which coordinate.
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Student 2: I agree with Student 1. Identical particles are indistinguishable. However,

under certain circumstances, for example, when the overlap of the single-particle

wavefunctions is negligible, we can treat the particles as distinguishable.

Explain why you agree or disagree with the students.

Consider the following conversation regarding when identical particles (particles of the

same type with the same properties) can be treated as distinguishable.

Student 1: In nature, aren’t all identical microscopic particles with the same proper-

ties, e.g., electrons, indistinguishable? How can we consider the identical particles as

distinguishable?

Student 2: That is a good question! In certain limits, microscopic identical particles

can be treated as distinguishable. For example, when the overlap of the single-particle

wavefunctions of the identical fermions or identical bosons is negligible, we can treat

them as distinguishable particles. As an example, if we are considering electrons in

two metal blocks with a macroscopic separation between them, then there is negligible

overlap in their single-particle wavefunctions and the electrons in the two metal blocks

can be treated as distinguishable from those in the other block.

Student 3: I agree with Student 2. Also, in the classical limit, for a system of electrons

at “high” temperature, the de Broglie wavelength of the electron in a material becomes

small compared to the average separation between the particles. The overlap of the

single-particle wavefunctions for the electrons becomes negligible and the electrons can

be treated as distinguishable.

Explain why you agree or disagree with Student 2 and Student 3.
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73. Consider a system of two non-interacting, identical particles in the limiting case in

which they can be treated as distinguishable. ψn1(x) and ψn2(x) are the single-particle

wavefunctions for the system (n1 6= n2). Choose all of the following wavefunctions

that are appropriate two-particle stationary state wavefunctions for a system of two

non-interacting, identical particles if they can be treated as distinguishable.

a. ψn1(x1)ψn2(x1) (same label x1)

b. ψn1(x1)ψn2(x2)

c. ψn1(x1)ψn1(x2) (same label n1)

d. ψn1(x)ψn1(x)

Consider the following conversation regarding appropriate wavefunctions for a system of

two non-interacting identical particles in the limiting case in which they can be treated

as distinguishable.

Student 1: For a system of two non-interacting identical particles which can be treated

as distinguishable, the wavefunction describing the system can be

ψn1(x1)ψn2(x2). Here ψn1(x1) means that particle 1 with coordinate x1 is in a single-

particle state denoted by n1. Similarly, ψn2(x2) means that particle 2 with coordinate

x2 is in a single-particle state denoted by n2.

Student 2: I agree with Student 1. In this limiting case, we can treat the identical

particles independently and we can just multiply their single-particle wavefunctions.

There is no need to symmetrize or antisymmetrize the many-particle stationary state

wavefunction.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding the appropriate wavefunction for a system

of two non-interacting identical fermions which can be treated as distinguishable.

Student 1: For a system of two non-interacting identical fermions which can be

treated as distinguishable, it is possible for the wavefunction describing the system

to be ψn1(x1)ψn1(x2). Here ψn1(x1) means that particle 1 with coordinate x1 is in

a single-particle state denoted by n1. Similarly, ψn1(x2) means that particle 2 with

coordinate x2 is in a single-particle state denoted by n1.

Student 2: I disagree with Student 1. Two fermions can never be in the same single-

particle state even in limiting cases for which fermions can be treated as distinguishable.

Student 3: I agree with Student 2. In limiting cases where fermions can be treated

as distinguishable, the average occupancy of each single-particle state is less than 1.

In this case, we can treat the fermions independently and we can just multiply their

single-particle wavefunctions in which all the single-particle states have different indices.

There is no need to antisymmetrize the many-particle stationary state wavefunction.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding the appropriate wavefunction for a system

of two non-interacting identical bosons which can be treated as distinguishable.

Student 1: For a system of two non-interacting identical bosons which can be treated

as distinguishable, the wavefunction describing the system can be ψn1(x1)ψn1(x2).

ψn1(x1) means that particle 1 with coordinate x1 is in a single-particle state denoted by

n1. Similarly, ψn1(x2) means that particle 2 with coordinate x2 is in a single-particle

state denoted by n1.

Student 2: I agree with Student 1. There is nothing that prohibits two bosons from

occupying the same single-particle state. In the limiting case in which identical bosons

can be treated as distinguishable, the stationary state wavefunction is the product of

the single-particle stationary state wavefunctions.

Student 3: While I agree with Student 2 that nothing forbids two identical bosons

from occupying the same single-particle state, in the limit in which identical bosons can

be treated as distinguishable, the average number of bosons in any given single-particle

state is less than 1.

Student 4: I agree with Student 3. In this limiting case, we can just multiply their

single-particle wavefunctions in which all the single-particle states have different indices.

There is no need to symmetrize the many-particle stationary state wavefunction.

Explain why you agree or disagree with each students.
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Consider the following conversation regarding a physical system in which two non-

interacting identical bosons can be treated as distinguishable.

Student 1: If we consider two He-4 atoms separated by a distance greater than

the de Broglie wavelength such that there is negligible overlap in their single-particle

wavefunctions, we can treat the He-4 atoms as distinguishable and treat each atom

independently.

Student 2: I agree. For example, if we treat each He-4 atom as a separate system and

each is in its OWN ground state, the two-particle stationary state wavefunction would

be the product of the single-particle ground state wavefunctions for each He-4 atom.

Student 3: I disagree with Student 2. If both He-4 atoms are in their ground states,

then the He-4 atoms are in the same single-particle state ψ1. The two-particle stationary

state wavefunction would be Ψ(x1, x2) = ψ1(x1)ψ1(x2).

Student 2: I disagree with Student 3. Even though the He-4 atoms are both in their

respective ground states, the He-4 atoms are not in the SAME single-particle state

because they are separated spatially by a macroscopic distance. They are essentially

two different systems. There is no overlap in these ground state wavefunctions for the

two He-4 atoms.

Student 1: I agree with Student 2. Perhaps using identifiers for the two ground states

would help. For example, the two-particle stationary state wavefunction would be

Ψ(x1, x2) = ψ1(x1)ψ
′
1(x2) in which ψ1(x1) is the ground state of the first He-4 atom and

ψ′1(x2) is the ground sate of the second He-4 atom.

Explain why you agree or disagree with each students.
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**CHECKPOINT: Check your answer to question 73. **

73. b

If your answer does not match the checkpoint, go back and reconcile any difference you

may have with the checkpoint answer.
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Review the following flowchart which summarizes the properties of non-interacting iden-

tical particles

* In certain circumstances, e.g., when the overlap of the wavefunctions of the identi-

cal particles is negligible, we can treat them as distinguishable. In this limiting case,

the average occupancy of each single-particle state is less than 1 and Pauli’s exclusion

principle is not violated.
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