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Exercise has been established an effective treatment for depression, both as an 

independent treatment and as an augmentation to standard first-line treatments (e.g., medication, 

psychotherapy). Further, the benefits of exercise for depression have been demonstrated across 

age groups (i.e., older and younger adults) and in those with clinical and subclinical levels of 

depressive symptoms. However, the neural mechanisms underlying the antidepressant effects of 

exercise have only been examined in two studies with significant limitations. To address this 

critical gap in the literature, this dissertation leveraged data from two randomized pilot 

intervention studies to characterize the effects of exercise on depression across clinical, 

cognitive, and brain-based outcomes. To optimally translate exercise treatments to real-world 

settings, its efficacy in various depressed subgroups was explored, including younger (20-39 

years) and older adults (60-79 years) with Major Depression, and older adults with subclinical 

depressive symptoms and mild cognitive impairment (MCI).   

Briefly, in study 1, exercise as an augmentation to medication treatment for Major 

Depression resulted in more rapid and stable decline in depressive symptoms, improvement in 

cognitive performance in younger but not older adults, and increased hippocampal-default mode 

network connectivity relative to medication treatment alone. Further, in regions showing 

reductions in cortical thickness with greater depression severity, intervention-related 

improvement in aerobic fitness was marginally associated with an increase in regional cortical 

thickness. In study 2, exercise as an augmentation to psychotherapy for older adults with 
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subclinical depression and MCI was not effective due to suboptimal implementation of the 

intervention. However, results revealed greater engagement in moderate-to-vigorous physical 

activity and greater stability of rest-activity patterns prior to the intervention was predictive of 

greater improvement in cognitive performance and resulted in greater reduction in depressive 

symptoms over the course of the intervention, respectively. Overarching conclusions from these 

pilot studies highlight the utility of exercise-based interventions for alleviating clinical and 

subclinical levels of depression and cognitive decline, possibly via protective effects on neural 

pathways sensitive to the deleterious effects of depression and cognitive impairment. 
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1.0  SPECIFIC AIMS 

Exercise has emerged as a promising non-pharmaceutical intervention for reducing depressive 

symptoms in clinical and nonclinical populations (Cooney et al., 2013; Rebar et al., 2015). 

Moreover, exercise improves cognitive functioning in healthy (Patrick J Smith et al., 2010) and 

cognitively impaired adults (Blondell, Hammersley-Mather, & Veerman, 2014), and may 

improve cognitive function in depressed adults (Malchow et al., 2013). Exercise has an effect on 

the volume and function of several brain regions that are involved in cognitive function 

(Erickson, Leckie, & Weinstein, 2014; Michelle W Voss et al., 2013); these regions, including 

the prefrontal cortex, anterior cingulate cortex, striatum, and hippocampus, have also been 

implicated in depression (Singh & Gotlib, 2014). Thus exercise effects on neural architecture and 

function may be a common neurobiological pathway by which exercise influences both mood 

and cognitive function.        

 Despite the benefits of exercise for both depression and cognitive function and the likely 

overlapping neural mechanisms underlying these effects, these literatures have largely remained 

historically separate. Few studies have examined the effects of exercise on both depressive 

symptoms and cognitive function in depressed adults (Hoffman et al., 2008; Kubesch et al., 

2003; Vasques, Moraes, Silveira, Deslandes, & Laks, 2011). Further, late life depression is 

highly comorbid with mild cognitive impairment, and both result in an elevated risk of dementia 

(Diniz, Butters, Albert, Dew, & Reynolds, 2013); yet, no investigations have examined the 
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effects of exercise on reducing depression and cognitive impairment in older adults with 

depression and mild cognitive impairment. The neural benefits of exercise for depressed adults 

are also unknown; only one small study with poor adherence examined exercise effects on 

hippocampal volume, resulting in null findings (Krogh et al., 2014). No study to our knowledge 

has investigated the effects of exercise on brain function in depressed adults. These key gaps in 

the field point to the need for a comprehensive, multi-level examination of the neurobehavioral 

effects of exercise on depression.         

 To this end, I used data from two sources to examine neurobehavioral changes associated 

with physical activity engagement in adults with depressive symptoms; key outcome measures 

included change in depressive symptoms, cognitive function, gray matter volume, and resting 

state functional brain dynamics. The data for this project were derived from the following 

studies: Study 1) A 12-week pilot randomized controlled trial designed to test neural changes 

associated with engagement in aerobic exercise as an adjunct treatment to antidepressant 

medication (venlafaxine). Fifteen participants were randomized to an antidepressant medication 

group or an antidepressant medication + exercise group. All participants met with a clinician for 

medication management on a biweekly basis throughout the intervention, and those randomized 

to the exercise group additionally received supervised exercise 3-times a week for 12 weeks. 

Participants underwent the following assessments at baseline and post-intervention: structural 

and resting-state functional neuroimaging assessments in a 7-T MRI scanner, physical fitness 

testing (VO2 submax), neuropsychological testing, and depression severity assessments 

(Montgomery Asberg Depression Rating Scale). Study 2) A 16-month pilot randomized trial 

designed to reduce depressive symptoms and prevent Major Depression in older adults with mild 

cognitive impairment (MCI) and subthreshold depressive symptoms. This study tested the effects 
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of a 16-week (4-month) problem-solving therapy (PST) intervention and as an exploratory aim 

the effects of exercise were tested as an adjunct to PST to reduce depressive symptoms. Long-

term depression outcomes were examined at a 12-month follow-up post-intervention. 

Participants were randomized to one of three groups: 1) enhanced usual care 2) PST or 3) PST + 

exercise. Physical activity levels were assessed using accelerometers at baseline, post-

intervention (4 month), as well as at the long-term follow-up visit (16 month). Depressive 

symptoms, assessed using the patient health questionnaire (PHQ-9), and cognitive function were 

also assessed at those three time points.  Using these data, I proposed the following aims:         

1) Examine whether greater amounts of physical activity are associated with a reduction in 

depressive symptoms.                     

H1.1 (Study 1): The antidepressant medication + exercise group would show a more rapid 

reduction in depressive symptoms relative to the medication only group. Exploratory 

hypothesis: Greater increases in physical fitness (VO2) levels from pre- to post- intervention 

would be associated with a decrease in depressive symptoms in adults with Major Depression. 

H1.2 (Study 2): Increased physical activity (PA) and/or improved regularity in rest activity 

rhythms (RARs) over a 16-week period would be associated with a decrease in depressive 

symptoms from pre- to post-intervention, as well as from post-intervention to the 16- month 

follow-up visit in older adults with MCI and mild depressive symptoms.                                     

2) Examine whether greater amounts of physical activity are associated with changes in 

cognitive function among adults with depressive symptoms.          

H2.1 (Study 1): The antidepressant medication + exercise group would show greater 

improvements on cognitive measures relative to the medication only group. Exploratory 

hypotheses: Increased physical fitness (VO2) levels from pre- to post-intervention would be 
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associated with a decrease in depressive symptoms in adults with Major Depression. Depressed 

older adults may show greater cognitive improvements relative to younger adults.                    

H2.2 (Study 2): Increased physical activity may be associated with an improvement in 

performance on cognitive measures from pre- to post-intervention, as well as from post- 

intervention to the 16-month follow-up visit in older adults with MCI and mild depressive 

symptoms.                     

3) Examine whether 12-weeks of aerobic exercise leads to changes in gray matter volume and 

resting-state functional dynamics in adults with Major Depression.                       

H3 (Study 1): The antidepressant medication + exercise group would show greater increases 

relative to the medication only group from pre- to post- intervention in volume and functional 

connectivity in the hippocampus, prefrontal cortex, and anterior cingulate cortex. Functional 

connectivity within the default mode network and hippocampal connectivity with cortical 

regions may increase with exercise, given that they have shown to be influenced by exercise in 

prior studies (Burdette et al., 2010; Voss, Erickson, et al., 2010; Voss, Prakash, et al., 2010). As 

an exploratory hypothesis, it was also predicted that change in fitness levels would be associated 

with increased voxelwise gray matter volume and functional connectivity.  
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2.0  BACKGROUND 

2.1 EXERCISE EFFECTS ON DEPRESSION 

Depression is a significant global public health concern; it is the leading cause of disability 

worldwide and is currently estimated to affect 350 million people (WHO, 2012). Given the 

significant heterogeneity in etiologies, symptomatology, and functional disability associated with 

depression across individuals, the focus of depression treatment research has shifted from testing 

generalized treatment efficacy towards identifying subtypes of depression using brain-based 

factors, in addition to symptomatology, and tailoring treatment regimens based on the unique and 

interactive effects of individual-level and intervention-specific factors on treatment response. In 

this new wave of depression treatment research, exercise has emerged as an effective non-

pharmacological treatment for depression, both as an augmentation and as an independent 

treatment, with comparable efficacy to first-line treatments (e.g., psychotherapy and medication) 

(Committe, 2018).          

 Numerous meta-analytic investigations have confirmed exercise is an effective treatment 

for depression across the lifespan at clinical and subclinical levels of depressive symptoms, and 

have identified important moderators of treatment effectiveness (i.e., intervention duration, 

duration of bout of exercise, depression severity, risk of bias) (Bailey, Hetrick, Rosenbaum, 

Purcell, & Parker, 2018; Cooney et al., 2013; Krogh, Hjorthoj, Speyer, Gluud, & Nordentoft, 

2017; Kvam, Kleppe, Nordhus, & Hovland, 2016; Rethorst, Wipfli, & Landers, 2009; Schuch, 
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Vancampfort, Richards, et al., 2016). A Cochrane Review and meta-analysis of 35 randomized 

controlled trials (RCTs) (N= 1356) found that exercise is moderately effective in reducing 

depressive symptoms relative to a control condition in adults with clinical depression 

(Standardized mean difference ((SMD) = -0.62 (95% CI: -0.81 to - 0.42)) (Cooney et al., 2013); 

control conditions ranged from waitlist or treatment as usual groups, to placebo interventions 

(i.e., social engagement, health education), to first-line treatments for depression (i.e. CBT, 

pharmacotherapy). Significant heterogeneity was found between study outcomes (I2 = 63%), 

possibly due to high variability in duration (range: 10 days-16 weeks) and type of exercise and 

control interventions. A sensitivity analysis of the long-term effects of exercise on depressive 

symptoms (8 studies, N = 377), suggested that exercise has a small long-term effect on 

depressive symptoms post-treatment (SMD -0.33, 95% CI -0.63 to -0.03). Subgroup analyses 

also indicated that there is no evidence of a difference in the effectiveness of exercise, 

psychotherapy (7 trials), and pharmacotherapy (4 trials), in treating depression, although this 

conclusion was based on a limited number of trials. In sum, this meta- analytic review concluded 

that exercise is moderately effective in reducing acute depressive symptoms in adults with 

clinical depression, and may have long-term benefits.     

 Another  meta-analysis of 35 RCTs (N=2498) examining the effects of exercise on 

depression reported positive effects of exercise relative to control conditions on reduction in 

depressive symptom severity and depression remission (depressive symptom severity: SMD= -

0.66 (95% CI -0.85 to -0.46); remission: Risk Ratio for lack of remission: 0.78 (95% CI 0.68 to 

0.90) (Krogh et al., 2017). Exercise effects on reduction of depressive symptom severity 

corresponded with an effect on the Hamilton 17-item Depression Scale of -4.1 points (95% CI -

5.3 to -2.9) (Krogh et al., 2017). Substantial heterogeneity was found in effect sizes reported 
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across studies (I2 = 81%). Subgroup analyses exploring this heterogeneity in effect sizes 

revealed that studies reporting larger effect sizes included those with shorter durations (<10 

weeks), fewer participants (<50 participants), high- intensity/high-dose exercise (limited to 4 

trials), and higher risk of bias (e.g., lack of blinding of participants and outcome assessors, for-

profit studies). Notably, exercise effects on depression did not significantly differ between those 

with major and minor depression. Long-term benefits of exercise on depressive symptoms were 

not found in this meta- analysis (N=7 studies; SMD= -0.10 95% CI: -0.28 to 0.09). These meta-

analytic findings confirm the beneficial effects of exercise for depression, while also highlighting 

several intervention-specific factors that may contribute to variability in effect sizes reported 

across studies.          

 Importantly, exercise is an effective treatment for depression across the lifespan. 

Although the majority of the evidence reviewed thus far focuses on young to middle-aged adults, 

meta-analytic evidence from RCTs specifically focused on adolescents/young adults and older 

adults suggests exercise may be a particularly viable treatment option for depression in these age 

groups (Bailey et al., 2018; Schuch, Vancampfort, Richards, et al., 2016). For instance, a meta-

analysis of 16 RCTs (N=771) examining the effects of a PA on depressive symptoms in 

adolescents and young adults with clinical depression (aged 12-25 years) reported a large effect 

of PA (SMD= -0.82 (95% CI: -1.02 to -0.61); I2= 38%) relative to a control condition (i.e., both 

active and no treatment control conditions included) (Bailey et al., 2018). The effect size 

remained similar when only including studies with an active control condition (N=7). Likewise, 

a meta-analysis of 8 RCTs (N=267) in older adults reported a large effect of exercise on 

depressive symptoms relative to a non-active control group (SMD= -0.90 95% CI: -0.29 to -1.51) 

(Schuch, Vancampfort, Rosenbaum, et al., 2016). In this study, meta-regression also revealed a 
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marginal moderating effect of baseline depression severity on the antidepressant effects of 

exercise in older adults, such that exercise was more effective in reducing depressive symptoms 

in those with greater severity of depressive symptoms at baseline (B=0.156, p=0.06). In addition 

to being an effective treatment option for depression in adolescents and older adults, exercise 

may preferable to pharmaceutical treatment in these age groups, given the frequency and severity 

of side effects of antidepressant medications in these populations.     

 As mentioned above, exercise has shown to be an effective intervention for reducing 

depressive symptom severity in clinical and subclinical depression, although effects may be 

magnified in those with clinical relative to subclinical depression (Cooney et al., 2013; Rebar et 

al., 2015; Rethorst et al., 2009). Given that those with clinical depression have more vulnerable 

brains than non-clinical populations (e.g., disruptions in neurocircuitry, regional volumetric 

reductions) they may be more sensitive to exercise-related brain changes, which may in turn 

result in a greater reduction in depressive symptoms. Further, those with subclinical depressive 

symptoms have less ‘room for improvement,’ which may result in floor effects in studies 

including only participants with very mild levels of depressive symptoms (Cooney et al., 2013; 

Rebar et al., 2015; Rethorst et al., 2009).       

 Despite likely differences in the relative benefit of exercise for depressive symptoms in 

clinical vs. non-clinical populations, two high-quality meta-analyses provide support for the 

benefits of exercise in reducing depressive symptoms in adults with subclinical symptoms of 

depression (defined differently across studies, typically using standard clinical thresholds on self-

reported depression symptom measures) (Conn, 2010; Rethorst et al., 2009). Specifically, a 

meta-analysis of 41 RCTs (N=2408) comparing moderate to vigorous exercise with a no-

treatment control condition in adults with subclinical depressive symptoms reported exercise is 
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moderately effective in reducing subthreshold levels of depressive symptoms (ES=-0.59 (95% 

CI: -0.50 to -0.67) relative to no treatment (Rethorst et al., 2009). Studies examined in this meta-

analysis included 20 to 60 bouts of aerobic or resistance training 2 to 3 times per week, and 

ranged between 4 and 16 weeks in duration; some studies were double-blinded. The specificity 

of these effects must be interpreted with caution, given that the comparison groups in these 

studies received no treatment rather than engaging in an active control condition. Another meta-

analysis of 38 supervised (N=1598) and 22 unsupervised (N=1081) physical activity (PA) RCTs 

reported both supervised and unsupervised PA interventions were moderately effective in 

reducing subthreshold depressive symptoms (Supervised PA: ES= -0.37 (95% CI: -0.50 to -

0.24); Unsupervised PA: ES= -0.52 (95% CI: -0.77 to -0.28)) (Conn, 2010). Although slightly 

larger effect sizes were reported for unsupervised relative to supervised PA interventions, greater 

heterogeneity in effect sizes was found for unsupervised (I2= 64%) relative to supervised 

interventions (I2= 30%). In sum, exercise has shown to be a promising behavioral intervention 

for reducing depressive symptoms regardless of diagnostic thresholds.  

 Consistent with these meta-analytic findings, the recent scientific report released by the 

2018 Physical Activity Guidelines Advisory Committee concluded there is strong evidence 

demonstrating the effects of physical activity on reducing depressive symptoms in individuals 

with and without Major Depression across the lifespan (Committe, 2018). Moderate to large 

effect sizes were consistently reported for physical activity effects on depressive symptoms 

across 13 systematic reviews and meta-analyses (range of Hedge’s g= -0.53 to -1.39), with larger 

effects observed in those with Major Depression (Hedge’s g= - 1.03) relative to those with 

subclinical depression (Hedge’s g= -0.59) (Committe, 2018). No difference was observed 

between the effectiveness of exercise relative to psychotherapy or pharmaceutical treatments in 
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reducing depression severity, suggesting exercise may be as effective as more conventional 

treatment approaches for depression (Committe, 2018).     

 Despite the high comorbidity between depression and cognitive impairment in late- life, 

investigations of exercise effects on depression in older adults with cognitive impairment are 

rare(Barreto Pde, Demougeot, Pillard, Lapeyre-Mestre, & Rolland, 2015; Diniz et al., 2013) 

(Arkin, 2003; Heyn, Abreu, & Ottenbacher, 2004; Teri et al., 2003; C. L. Williams & Tappen, 

2008); however, see (MacRae et al., 1996; Rolland et al., 2007). One single-blind randomized 

12-month Tai Chi intervention in older adults with amnestic MCI (N=389) reported a reduction 

in depressive symptoms in the Tai Chi group relative to the stretching and toning control group 

among those who completed the intervention, although study attrition was significantly higher in 

the Tai Chi group (46%) relative to the stretching control group (23%) (Lam et al., 2012). 

Disproportionally high attrition in the experimental group may result in a biased sample of those 

who completed the intervention (e.g., those with greater perceived intervention-related benefits 

and/or with premorbid characteristics facilitating intervention adherence). Exercise effects on 

depressive symptoms in institutionalized older adults with dementia have been more frequently 

examined with mixed results (Arkin, 2003; Barreto Pde et al., 2015; Heyn et al., 2004; Teri et al., 

2003; C. L. Williams & Tappen, 2008); however, see (MacRae et al., 1996; Rolland et al., 

2007)). One meta-analysis (N=7 studies) found a moderate effect of exercise on depression 

symptoms in older adults diagnosed with dementia (SMD = −0.306; 95% CI: −0.571 to−0.041), 

with moderate heterogeneity between studies (I2 = 46.8%). These effects remained significant 

for individuals living in institutional settings (p=0.03) but were no longer significant when 

comparing exercise to social control groups (p=0.08) (Barreto Pde et al., 2015). These results 

suggest that exercise may be effective in reducing depressive symptoms relative to ‘no 
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treatment’ but not relative to an active control condition in adults with dementia. Collectively, 

these findings must be interpreted with caution due to poor intervention adherence (i.e., only two 

studies reported >50% adherence and one of the largest effect sizes were reported from a study 

that did not report adherence rates). Key factors contributing to the variability in this limited 

literature include insufficient use of active control groups, implementation of exercise 

intervention (e.g., multicomponent vs. exercise only training) risk of attrition bias, depressive 

symptom measures used, depression severity, variability in severity of cognitive impairment, and 

comorbid health conditions (e.g., CAD, stroke). In sum, the evidence is limited and mixed 

regarding the benefits of exercise for depression in older adults with cognitive impairment.  

2.1.1 Types And Durations Of Exercise 

Given that exercise is a broad term used to define any type of structured physical activity, 

it would be useful to understand which types and durations of exercise may be most beneficial 

for depression. Through an exhaustive literature review of 41 meta-analyses and systematic 

reviews examining exercise effects on depression, the 2018 PAGAC concluded that exercise 

treatments for depression have typically lasted approximately 12 weeks and included aerobic or 

resistance training, or a combination of these exercise modalities.  The majority of interventions 

included across meta-analyses examining exercise effects on depression included aerobic 

training, providing substantial support for a moderate positive effect of aerobic exercise on 

depressive symptoms. A meta-analysis of 33 studies (N= 1877) specifically focused on the 

benefits of resistance training likewise reported a moderate positive effect of resistance training 

interventions on depressive symptoms (SMD= 0.66 (95% CI, 0.48-0.83) p < .001), although 

significant heterogeneity was found in effect sizes reported across studies (I
2
= 76%). A recent 
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meta-analysis of 10 studies comparing the effects of aerobic and resistance training for clinical 

depression found no differences between the two types of exercise with regard to effects on 

depressive symptoms (Silveira et al., 2013). Moderate to large beneficial effects of exercise for 

depressive symptoms (SMD= -0.61) were observed collapsing across exercise modalities 

(Silveira et al., 2013).  These results suggest that both aerobic and resistance training are likely 

beneficial in the treatment of depression. Further, a large RCT in depressed older adults (N=121) 

examined the effects of six months of exercise as an adjunct to pharmacotherapy for depression, 

and found that both moderate-intensity aerobic exercise  and low-intensity stretching and toning-

based exercise resulted in significantly higher remission rates (moderate intensity: 81% 

remission; low intensity: 73% remission) relative to pharmacotherapy alone (45% remission). 

These findings highlight the challenges in detecting significant benefits of exercise treatments for 

depression in studies including low- intensity stretching and toning control groups. Effects of 

non-traditional forms of exercise for depression have also been reported (i.e., yoga, Tai Chi, 

Qigong, dance), although the interpretability of these conclusions is limited by poor 

methodological rigor of these intervention studies (Committe, 2018). Regarding exercise 

duration, limited evidence suggests a dose-response effect of exercise on depression symptoms 

in adults. Even brief durations of exercise (i.e., 20 minutes per day) have been shown to be 

sufficient to reduce depression symptoms, with larger effects observed for longer durations 

(Committe, 2018).  The ideal duration for exercise interventions targeting depression remains 

unclear, but the evidence largely suggests that 12-weeks of exercise is sufficient to observe 

clinically meaningful reductions in depression severity.   
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2.1.2 Summary 

A large body of methodologically rigorous meta-analytic evidence indicates moderate to 

large beneficial effects of exercise on depression severity throughout adulthood in individuals 

with clinical and subclinical depressive symptoms. Evidence regarding exercise effects on 

depression in older adults with cognitive impairment is limited and mixed, with inconclusive 

evidence in those with MCI (N=2 studies) and small to moderate effects inconsistently reported 

in those with dementia. Multiple exercise modalities have demonstrated benefits for depression 

(e.g., aerobic, resistance, yoga, tai-chi), with limited evidence supporting dose-response effects.  

The majority of exercise treatments for depression have reported clinically significant reductions 

in depression severity in as few as 12 weeks (Committe, 2018). 

2.2 EXERCISE EFFECTS ON COGNITIVE FUNCTION 

2.2.1 Effects in Cognitively Healthy Adults 

Epidemiological, cross-sectional, and experimental evidence supports the benefits of 

exercise for cognitive function in cognitively healthy non-depressed adults (Bherer, Erickson, & 

Liu-Ambrose, 2013; S. Colcombe & Kramer, 2003; Committe, 2018; Roig, Nordbrandt, 

Geertsen, & Nielsen, 2013; Patrick J Smith et al., 2010).  In young and middle-aged adults, effect 

sizes are small (Range: 0.12-0.15) for exercise effects on cognition, with effects reported across 

several domains (i.e., executive functioning, attention, processing speed, and memory) (Roig et 

al., 2013; P. J. Smith et al., 2010). One meta-analysis (N=16 studies) focused on the effects of 
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aerobic exercise on memory performance found a small effect for immediate (SMD= 0.15; 95% 

CI = 0.02, 0.27) but not for delayed memory (SMD = 0.07; 95% CI =−0.13, 0.26; p = 0.51). 

Another meta-analysis (N=29 studies) similarly reported modest benefits of aerobic exercise for 

cognitive functioning but across a range of domains, including attention and processing speed (g 

= .158 [95% CI: .055 to .260], P = .003), executive functioning (g = .123 [95% CI: .021 to 225], 

P = .018), and memory (g = .128 [95% CI: .015 - .241], P = .026) (Smith et al., 2010). Overall, 

evidence suggests modest benefits of aerobic exercise for cognitive function in cognitively 

healthy younger and middle-aged adults.  

In cognitively healthy older adults, one meta-analysis (18 RCTs) identified beneficial 

effects of aerobic exercise relative to non-aerobic control conditions on cognitive performance 

across several domains (attention, processing speed, visuospatial functioning, executive 

functioning), with greatest improvements observed in executive function (Hedge’s g = 0.68).  

The disproportionately large effect of aerobic exercise on executive functioning in older adults 

may in part be attributed to earlier age-related declines observed in executive functioning relative 

to other domains (Hindin & Zelinski, 2012). Interestingly, another meta-analysis (N=25 studies) 

did not report benefits of aerobic exercise for cognitive functioning (Kelly et al., 2014), but 

rather identified positive effects of resistance training (N=3) relative to stretching and toning on 

executive functioning and a positive effect of Tai Chi (N=2) relative to a non-exercise control 

condition on attention and processing speed. The discrepancy between these meta-analytic 

findings may arise from inclusion of different studies, heterogeneity among effect sizes reported 

across aerobic exercise trials, and variability in measures used to assess cognitive domains. 

Despite these inconsistencies, meta-analytic evidence in cognitively healthy older adults 

collectively indicates that multiple exercise modalities may have beneficial cognitive effects.   
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2.2.2 Effects in Older Adults with MCI 

Moderate evidence from randomized trials also supports the positive effects of exercise 

on cognitive function in cognitively impaired older adults (Groot et al., 2016; Heyn et al., 2004; 

P. J. Smith et al., 2010; Zheng, Xia, Zhou, Tao, & Chen, 2016). A recent meta-analysis of 11 

RCTs in older adults with MCI found positive effects of aerobic exercise on global cognitive 

functioning and immediate and delayed memory recall (Zheng et al., 2016) 2016). The above-

mentioned meta-analysis by Smith et al. (Patrick J Smith et al., 2010) compared aerobic exercise 

effects on cognitive function between adults who were cognitively healthy and those with MCI, 

and found no difference in the domain of attention and processing speed, a weaker effect on 

executive function in those with MCI, and a greater effect on memory in those with MCI. It is 

possible that those with greater memory impairment, who have more to ‘gain’, may show greater 

improvement in response to exercise training.  Further, a meta-analysis of exercise trials in older 

adults with MCI (n= 9) and with dementia (n = 21) found a moderate positive effect of exercise 

on overall cognitive performance (ES= 0.57 95% CI= 0.43-1.17), primarily including trials with 

non-aerobic exercise regimens (Heyn et al., 2004). Another meta-analysis (N=18) in older adults 

with dementia reported a similar effect size (SMD=0.42 95% CI=0.23-0.62), with sensitivity 

analyses showing this effect was robust to different etiologies for dementia (i.e., AD vs. non-AD) 

and was greater for combined aerobic and non-aerobic exercise interventions (SMD= -0.59 95% 

CI=0.32-0.86) (Groot et al., 2016). In sum, the evidence suggests that both aerobic and non-

aerobic exercise benefit cognitive function in older adults with MCI, with limited evidence 

supporting selective effects on learning and memory. In interpreting this literature, it is also 

important to consider that in older adults with MCI, stability of cognitive functioning relative to 
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decline over the course of an exercise intervention may be considered a positive outcome (J. C. 

Smith, Nielson, Woodard, Seidenberg, & Rao, 2013).  

2.2.3 Exercise Effects on Cognitive Function in Depressed Adults 

Impaired cognitive functioning constitutes a salient feature of depression throughout 

adulthood, and can exacerbate its functional consequences and blunt treatment response   (Greer, 

Grannemann, Chansard, Karim, & Trivedi, 2015) (Koenig et al., 2015; S. Wagner, Helmreich, 

Lieb, & Tadic, 2012) (Bora, Harrison, Yucel, & Pantelis, 2013; Lee, Hermens, Porter, & 

Redoblado-Hodge, 2012; Rock, Roiser, Riedel, & Blackwell, 2014). The evidence is mixed 

regarding cognitive domains that are most affected in depression; nonetheless acutely depressed 

adults perform worse than their never-depressed counterparts on tasks assessing most cognitive 

domains, including attention, processing speed, visuospatial ability, memory, and executive 

function. A recent meta-analysis of 15 studies (N= 644 MDD, 570 controls) examined cognitive 

impairment in adults during their first episode of depression, and found that depressed adults 

performed worse than never depressed controls in the domains of psychomotor speed (ES= 

0.48), attention (ES= 0.36), visual learning and memory (ES= 0.53), and several executive 

functions, including set-shifting ability (ES= 0.22), verbal fluency (ES =0.59), and cognitive 

flexibility (0.53) (Lee et al., 2012). Another meta-analysis of 15 studies (N=375 MDD, 481 

controls) specifically examined impairment in executive function in depressed young adults and 

found that depressed individuals performed worse than the never-depressed controls with regard 

to response inhibition (ES=1.18), cognitive flexibility (ES=1.11), semantic fluency (ES= 0.92), 

and planning and organization (ES= 0.44) (S. Wagner, Doering, Helmreich, Lieb, & Tadic, 

2012).  
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Cognitive impairment associated with depression in late-life likewise encompasses most 

cognitive domains, and may be more severe relative to depression earlier in adulthood (Bora et 

al., 2013; Koenig et al., 2015; Rock et al., 2014; Trivedi & Greer, 2014). Cognitive deficits that 

may be most pronounced in late-life depression include impaired information processing speed 

and executive functioning. In fact, some evidence suggests that reduced information processing 

speed and/or working memory capacity may mediate cognitive impairment linked to late-life 

depression (Butters et al., 2004; Nebes et al., 2000; Sheline et al., 2006). One of the largest cross-

sectional studies (N= 120 acute MDD, N=128 never-depressed controls) to examine cognitive 

impairment in late-life depression found that depressed older adults performed more poorly than 

never depressed controls on measures assessing  a broad range of cognitive domains, including 

episodic memory, attention and processing speed, verbal ability, visuospatial ability, and aspects 

of executive functioning. The greatest differences were observed in attention and processing 

speed, consistent with previous literature (Koenig et al., 2015). Importantly, co-occurring 

cognitive impairment and depression in late-life significantly elevates the risk of incident 

dementia (Diniz et al., 2013; Vu & Aizenstein, 2013). A recent community cohort study 

(N=2160) in older adults found that depressive symptoms increased risk for incident dementia 

(Hazard Ratio (HR) = 1.7; 95% CI: 1.2-2.3), but those with depression and MCI were at an 

especially high risk for progression to vascular dementia (HR= 4.3; 95% CI: 1.1-17.0) (Richard 

et al., 2013).  
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State vs. Trait Effects 

Increasing evidence suggests that to a large extent, cognitive impairment persists after 

remission from depression (Trivedi & Greer, 2014). A recent meta-analysis of 27 studies (N= 

895 remitted MDD, 997 never-depressed controls) reported that remitted adults with a history of 

depression performed lower than never-depressed controls across all cognitive domains, 

including verbal fluency, attention, processing speed, memory, and executive function; the most 

pronounced differences were observed with inhibitory control (Cohen’s d = 0.74) (Rock et al., 

2014). Further, individuals with late-onset (>60 years) depression exhibited worse cognitive 

performance across most domains relative to those with earlier onset depression (Cohen’s d = 

1.20). In concert with these findings, a study by Koenig and colleagues (N=120 acutely 

depressed, N= 190 euthymic remitted N=128 never depression) found no difference in cognitive 

functioning across domains between acutely depressed and remitted older adults and found that 

both groups performed poorer than never-depressed older adults (Koenig et al., 2015). A modest 

amount of evidence also supports beneficial effects of antidepressant treatment on cognitive 

performance for select domains, including psychomotor speed, memory, and response inhibition, 

(Rock et al., 2014; Rosenblat, Kakar, & McIntyre, 2016; S. Wagner, Doering, et al., 2012). 

However, this evidence is mixed and based on studies with small sample sizes.  

Exercise effects on cognitive impairment in depressed adults 

Two recent meta-analyses (N=8; N=9) of exercise effects on cognitive impairment in 

depressed adults failed to find a positive effect of exercise on global cognition or individual 

cognitive domains (Brondino et al., 2017; Sun, Lanctot, Herrmann, & Gallagher, 2018). 

However, sensitivity analyses in Sun et al. (Sun et al., 2018) indicated combined exercise and 

cognitive training interventions and low-intensity exercise interventions with higher adherence 
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rates had a positive effect on global cognition (Sun et al., 2018)  Consistent with the results of 

these sensitivity analyses, one study found that exercise combined with cognitive training 

resulted in improvements in processing speed, working memory, and visual learning in depressed 

adults, relative to relaxation combined with cognitive training (Oertel-Knochel et al., 2014). 

Another large randomized trial (N=202) found that aerobic exercise, relative to antidepressant 

medication, had a positive effect on sustained attention and processing speed (Hoffman et al., 

2008).  Cognitive performance did not differ between the aerobic exercise and placebo control 

group post-intervention; however, exercisers showing the greatest improvements in fitness levels 

(i.e., top tertile) performed better than the placebo control group on a measure of verbal fluency 

and marginally better on a working memory task. These findings suggest that exercise may have 

positive, albeit limited effects on performance in select cognitive domains in depressed adults, 

but also highlights the possibility of a threshold or dose-response effect of fitness on cognitive 

performance.  

Overall, the evidence regarding exercise-related improvements in cognitive function in 

depressed adults is limited and equivocal, highlighting the need for further high-quality trials to 

investigate these questions. Key barriers to consider in future investigations of the cognitive 

benefits of exercise in depressed individuals include the enduring nature of some cognitive 

deficits after depression remission and insufficient knowledge regarding the type and duration of 

exercise that would be optimal to achieve cognitive improvements in any population.  
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2.3 EXERCISE EFFECTS ON BRAIN STRUCTURE AND FUNCTION IN 

DEPRESSION 

2.3.1 Neural Circuit Dysfunction in Depression 

Depression is associated with widespread disruptions in neurocircuitry throughout the 

brain (Iwabuchi et al., 2015; Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015; L. M. 

Williams, 2016). Investigators have used resting-state functional connectivity approaches to 

examine functional abnormalities in depression, in which regional brain activity at rest is 

correlated with activity in other brain regions, and this regional synchronicity in activation 

patterns is thought to reflect functional interactions between regions. Depressed adults have 

shown broad reductions in interhemispheric connectivity (G. Wagner et al., 2013), as well as 

abnormalities in connectivity within and between intrinsic-connectivity networks. One recent 

meta-analysis of seed-based resting state functional connectivity (rsFC) studies (N=27) 

comparing individuals with depression with their non-depressed counterparts found large-scale 

network-level abnormalities in depressed individuals, including hypoconnectivity within the 

frontoparietal network (FPN), which is involved in top-down regulation of attention and 

emotion, hyperconnectivity within the default mode network (DMN), which subserves internally 

oriented and self-referential thought, hyperconnectivity between the DMN and FPN, and 

hypoconnectivity between the salience network, involved in the detection and processing of 

salient events, and medial prefrontal regions involved in emotion regulation(Kaiser et al., 2015). 

Another meta-analysis (N=10) examining localized disruptions in connectivity (i.e., within 

specific regions) found the most consistent and robust abnormality to be elevated localized 

connectivity within the medial prefrontal cortex (mPFC), with greater connectivity in 
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medication-free patients with a history of multiple depressive episodes (Iwabuchi et al., 2015). 

These results suggest that in depressed individuals, elevated connectivity within the mPFC may 

reflect this region’s involvement in internally oriented, self-referential functions consistent with 

the DMN, rather than reflecting its typical role in emotion regulation. Inefficient circuitry within 

the mPFC has also been considered a marker of rumination, a signature symptom of depression. 

In a theoretical review of the literature examining neural circuit dysfunction in depression and 

anxiety, Williams (2016) argues for a taxonomy of types of neural circuit dysfunction implicated 

in depression and anxiety, including the DMN, SN, positive affect network (i.e., reward), 

attentional network, and cognitive control network; Williams suggests that these network-level 

disruptions may map onto specific clinical symptom clusters and may in turn, have specific 

treatment implications. This may help explain the variability in findings of case-control and 

treatment studies related to depression using rsFC, as well as help explain the heterogeneity in 

clinical manifestations of depression.  

2.3.2 Structural Brain Abnormalities in Depression 

Regional gray matter abnormalities have been have identified in acutely depressed adults 

relative to age-matched non-psychiatric controls in numerous meta-analytic studies (See (Gujral, 

Aizenstein, Reynolds, Butters, & Erickson, 2017)for review); the most reliable regional 

abnormalities identified through structural MRI studies include the anterior cingulate cortex, 

other prefrontal regions (i.e., OFC, dlPFC, dmPFC), and the hippocampus.  

Reduced volume in the anterior cingulate cortex (ACC) may be the most replicated 

regional gray matter abnormality found in depression(Bora, Harrison, Davey, Yucel, & Pantelis, 

2012; Bora et al., 2013; Du et al., 2012; Koolschijn, van Haren, Lensvelt-Mulders, Hulshoff Pol, 
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& Kahn, 2009; Lai, 2013; Sacher et al., 2012) The ACC is a medial prefrontal cortical structure, 

including sub-regions with distinct functions; the dorsal ACC has been implicated in higher-level 

executive and motor functions, the subgenual ACC is involved in emotional and interoceptive 

processing, and the pregenual ACC is thought to integrate cognitive and emotional information 

(Gasquoine, 2013). The subgenual cingulate, located in the anterior ventral portion of the ACC, 

is a key region implicated in depression (Drevets, Savitz, & Trimble, 2008).  Meta-analytic 

reviews have also documented volumetric reductions in other prefrontal cortical (PFC) regions in 

depressed individuals relative to healthy controls, namely in the orbitofrontal cortex (OFC) 

(Bora, Harrison, et al., 2012; Du et al., 2012; Kempton et al., 2011; Koolschijn et al., 2009), 

dorsolateral PFC (dlPFC) (Bora, Fornito, Pantelis, & Yucel, 2012; Zhao et al., 2014), and 

dorsomedial PFC (dmPFC) (Bora, Fornito, et al., 2012; Sacher et al., 2012).  

The hippocampus is also one of the most studied brain regions in the context of 

depression. The hippocampus has an important role in stress regulation, as it exerts inhibitory 

control over HPA-axis activity, and is also more broadly involved in cognitive and affective 

processing via its widespread connections with other limbic and prefrontal regions (Duman & 

Monteggia, 2006). Reductions in hippocampal volume appear to be a robust structural 

abnormality observed in depressed adults relative to nondepressed controls. These volumetric 

reductions may be related to duration, number of episodes, or age of onset of depression, but 

inconsistencies between meta-analytic findings preclude a clear understanding of moderators 

(Bora, Fornito, et al., 2012; Cole, Costafreda, McGuffin, & Fu, 2011; Du et al., 2012; Kempton 

et al., 2011; Koolschijn et al., 2009; McKinnon, Yucel, Nazarov, & MacQueen, 2009; Schmaal 

et al., 2015; Zhao et al., 2014). 
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2.3.3 Neural Mechanisms underlying Antidepressant Effects of Exercise 

Converging evidence suggests that exercise and antidepressant medication may alleviate 

depression through similar neuromolecular mechanisms, including increased expression of 

neurotrophic factors, increased availability of serotonin and norepinephrine, increased regulation 

of HPA-axis activity, and reduced chronic systemic inflammation (Garza, Ha, Garcia, Chen, & 

Russo-Neustadt, 2004; Russo-Neustadt, Beard, Huang, & Cotman, 2000). Exercise-induced 

changes in molecular systems influence the development of new neurons, increase synaptic 

connections between neurons, and increase cerebral vasculature (See Stillman et al. (2016) for 

review). These micro-structural changes further influence widespread changes in structural and 

functional networks in the brain (Erickson et al., 2014; Voss, Vivar, Kramer, & van Praag, 

2013). Considering that exercise and antidepressant medication may exert effects on depression 

through overlapping molecular pathways, it is possible that they also influence overlapping 

neural systems. Antidepressant pharmaceutical treatment increases the volume of the 

hippocampus, anterior cingulate, and orbitofrontal cortex, increases white matter integrity, and 

induces changes in functional dynamics of frontal-limbic neural networks (e.g., DMN) in 

depressed adults (Fu, Steiner, & Costafreda, 2013; Singh & Gotlib, 2014). However, we still 

have a poor understanding of exercise effects on neural systems in depressed adults.  

Only two studies have examined brain mechanisms associated with exercise effects on 

depression. Krogh and colleagues (2014) tested the effects of aerobic exercise on hippocampal 

volume in depressed adults using a 12-week randomized controlled trial, and found no 

volumetric differences between the exercise group (N=41) and the active control group (N=38) 

from baseline to post-intervention. However, these findings must be interpreted with caution due 

to intervention adherence (mean= 30%). One pilot study (N=16) examined the effects of an 8-
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week aerobic exercise intervention on task-related functional changes in the hippocampus during 

an associative memory task in low-fit depressed and non-depressed adults (Gourgouvelis, 

Yielder, & Murphy, 2017). The results revealed a decrease in task-evoked hippocampal activity 

(i.e., enhanced neural efficiency) from baseline to post-intervention in both depressed and non-

depressed adults. In light of the dearth of mechanistic investigations of exercise effects on 

depression, well-documented exercise-induced changes in brain structure and function in non-

depressed samples may shed light on neural changes that may occur with exercise training in 

depressed adults (Erickson et al., 2014; Voelcker-Rehage & Niemann, 2013b; M. W. Voss et al., 

2013). 

2.3.4 Exercise Effects on Resting-State Functional Connectivity 

Widespread changes in connectivity patterns have been observed with exercise training 

(Voelcker-Rehage & Niemann, 2013a). A recent systematic review of 14 studies examining 

exercise effects on functional connectivity within the DMN in non-depressed adults reported 

aerobic exercise may increase functional connectivity within the hippocampus, cingulate cortex, 

and the parahippocampal gyrus (Li et al., 2017). One cross-sectional study in older adults related 

higher levels of cardiorespiratory fitness to increased connectivity in the default-mode network 

(DMN) (Voss, Erickson, et al., 2010) and found that fitness was associated with increased 

connectivity between the posterior cingulate cortex and the frontal medial cortex, medial 

temporal gyrus, medial frontal gyrus, and parahippocampal gyrus. A large cross-sectional study 

in young adults (N=242) reported more widespread fitness associations with whole-brain 

connectivity patterns, such that activity in a broad range of fitness-related regions (i.e., frontal, 

temporal, parietal, and cerebellar) was related to intrinsic network connectivity in the FPN, 



 25 

DMN, and dorsal and ventral attention network (Talukdar et al., 2017). Intervention studies 

(range: 4-12 months) in non-depressed older adults have additionally demonstrated a range of 

aerobic exercise-related changes in intrinsic network connectivity, including increased 

hippocampal connectivity with the anterior cingulate (Burdette et al., 2010), decreased 

hippocampal connectivity with the primary motor cortex (Flodin, Jonasson, Riklund, Nyberg, & 

Boraxbekk, 2017),  increased connectivity between the DMN and ECN (Flodin et al., 2017; 

Prehn et al., 2017), and increased connectivity within the DMN (Voss, Prakash, et al., 2010). 

Taken together, cross-sectional evidence suggests cardiorespiratory fitness may be associated 

with connectivity across a range of networks in young adults and may be selectively associated 

with DMN connectivity in older adults (Talukdar et al., 2017; Voss, Erickson, et al., 2010). 

Further, experimental evidence in older adults suggests prolonged aerobic exercise training may 

result in changes in hippocampal connectivity with frontal regions and in network-level 

connectivity within and between the DMN and ECN (Burdette et al., 2010; Flodin et al., 2017; 

Prehn et al., 2017; Voss, Prakash, et al., 2010).  Given that abnormalities in default mode 

network connectivity may be a core neural feature of depression (Tahmasian et al., 2013), 

exercise treatments for depression may have the potential to alter these disruptions in neural 

circuitry.   

2.3.5 Exercise effects on Gray Matter Volume 

Two meta-analytic investigations of exercise-induced changes in hippocampal 

morphology have found that prolonged aerobic exercise training results in increases in 

hippocampal volume(Firth et al., 2018; Li et al., 2017), with one of these studies (N=14 studies; 

N=767) reporting exercise-related prevention of volumetric decrease over time in the left 
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hippocampus, while the other study (N=14 studies; N=631) reports significant exercise-induced 

bilateral volumetric increases in the total and anterior hippocampus (Li et al., 2017). A seminal 

study investigating the effects of aerobic exercise on hippocampal volume in sedentary older 

adults (N=120) found 12-months of moderate intensity aerobic exercise (brisk walking) 3 

times/week (N= 60) resulted in a ~2% increase in hippocampal volume (Erickson et al., 2011). 

Regional specificity was also observed, such that the aerobic exercise resulted in volumetric 

increases in the anterior hippocampus. This sub-region includes both the hippocampal head, 

which has been linked to emotional and motivational functioning (Kheirbek & Hen, 2011) and 

the dentate gyrus, where neurogenesis occurs (Kempermann, Kuhn, & Gage, 1998). In addition, 

exercise-induced improvements in CRF (~7.8%) were related to increases in hippocampal 

volume. Taken together, the overlap between hippocampal volume reductions in depression and 

exercise-induced increases in hippocampal volume suggests that this region may be a likely 

neural target of exercise treatments for depression.  

Moderate experimental evidence also suggests exercise-related volumetric increases in 

prefrontal regions, including the anterior cingulate cortex.  One 6-month randomized 

intervention study (N=59) (S. J. Colcombe et al., 2006) found that a brisk walking intervention 

was effective in improving CRF, and resulted in increased volume of bilateral PFC and ACC and 

left lateral temporal lobe. The stretching and toning group showed no increases in gray matter 

volume throughout the intervention. Another 6-month randomized trial in sedentary older adults 

(N= 62) using a similar protocol  interestingly found that change in self-reported PA from pre- to 

post-intervention was positively associated with increased PFC and ACC volume, irrespective of 

intervention group. Self-reported PA was measured by weekly energy expenditure, which 

accounted for both leisure and sport-related PA, weighted by the intensity of the activity. These 
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findings suggest that PA engagement outside of structured sessions during an intervention can 

have significant effects on brain structure. Despite inconsistencies in these findings, outcomes 

from both interventions suggest that prefrontal cortical regions, including the ACC, may be 

another likely neural target of exercise treatments for depression.  

 

Figure 1. Gray Matter Regions that show abnormalities in depression but also show volumetric 

improvements with prolonged exercise engagement or improved fitness 

2.3.6 Summary 

Meta-analyses of structural and functional abnormalities in depressed adults relative to 

adults with no psychiatric illness have identified volumetric reductions in the hippocampus, 

ACC, and other prefrontal regions, as well as aberrant connectivity patterns within and between a 

broad range of networks (i.e., DMN, SN, ECN, positive affect network, attentional network). 

Fortunately, randomized exercise trials in non-depressed adults have demonstrated exercise 

training-induced volumetric increases in the hippocampus, anterior cingulate, and other 

prefrontal regions, as well as alterations in hippocampal-frontal connectivity and in network-

level connectivity within and between the DMN and ECN. These data point to the overlap 

between regional and network-level brain abnormalities associated with depression and exercise-
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induced structural and functional changes in the brain. These regions and networks of overlap 

may serve as neural targets of exercise treatments for depression.   

Present Study 

Numerous trials have established that exercise is an effective non-pharmaceutical 

approach for reducing depressive symptoms in younger and older adults with clinical and 

subclinical depression. However, few investigations have explored cognitive-correlates of 

exercise treatments for depression, and structural and functional neural changes that may 

underlie the antidepressant effects of exercise. Given that depression and cognitive impairment 

are highly comorbid in late-life, exercise may have dual-benefits for cognitively impaired older 

adults with depressive symptoms. Yet, we still have a poor understanding of the combined 

effects of exercise on depression and cognitive function, because these literatures have 

historically remained separate.  

To bridge these literatures, and to better characterize the clinical, cognitive, and neural 

changes associated with exercise treatments for depression, the current study will examine 

neurobehavioral changes associated with exercise in 1) older adults with MCI and subclinical 

depressive symptoms , and 2) clinically depressed younger and older adults. Data for this study 

will be drawn from two sources: 1) A 16-month pilot intervention testing the long-term effects of 

problem-solving therapy and exercise as an adjunct to PST in reducing depressive symptoms in 

older adults with MCI, and 2) A 12-week pilot treatment trial testing the neural mechanisms of 

aerobic exercise as an adjunct to antidepressant medication. Using data from both of these 

samples, I will first examine whether greater amounts of physical activity is associated with a 

reduction in depressive symptoms. This will clarify whether physical activity associations with 

depressive symptoms observed in these samples mirror effect sizes observed in the literature. 
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Next, in both of these samples, I will examine whether greater amounts of physical activity is 

associated with improvements in performance on cognitive tasks. This will contribute to the 

currently limited data examining the cognitive benefits of exercise treatments for depression.   

This will also be the first study to examine the benefits of physical activity for cognitive function 

in those with co-occurring depressive symptoms and MCI. Third, I will use high-resolution 

structural and resting-state functional neuroimaging data from the exercise-augmented 

medication trial for depression to explore aerobic exercise effects on brain structure and function 

above and beyond the effects of antidepressant medication. My predictions will focus on regional 

and network-level brain abnormalities associated with depression in adults. Addressing these 

aims will ultimately provide a preliminary multi-level characterization of exercise effects on 

depression across age groups (younger and older adults), symptom levels (clinical and 

subclinical depression), and levels of cognitive impairment (MCI and non-MCI).  
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3.0  EXPERIMENT 1: EXERCISE EFFECTS ON DEPRESSIVE SYMPTOMS, 

COGNITIVE FUNCTION, AND BRAIN HEALTH IN ADULTS WITH MAJOR 

DEPRESSION 

Experiment 1 involved a 12-week pilot randomized controlled trial examining neural 

mechanisms underlying the effects of moderate intensity aerobic exercise as an adjunct to 

antidepressant pharmaceutical treatment (i.e., venlafaxine XR)  for Major Depression in younger 

(aged 20-39) and older (aged 60-79) adults. The intervention included two groups of 10 

participants each: pharmacotherapy + aerobic exercise and pharmacotherapy alone (with 

treatment as usual, TAU). The aerobic exercise group attended a one hour session of structured 

physical activity three days per week for 12 weeks. Primary outcome measures included 

intervention-related changes in 1) hippocampal seed-based functional connectivity patterns, 2) 

markers of structural integrity (e.g., volume, thickness) in regions linked to depression (e.g., 

hippocampus, ACC), 3) depression symptoms, and 4) cognitive functioning in domains 

commonly affected by depression (e.g., attention, executive function, learning and memory). 

Further, associations of cardiorespiratory fitness (VO2 submax) and objective physical activity 

measures with outcome measures were also tested.   

Given that this was a pilot study, the primary aim of this study was to establish the 

infrastructure, protocol, and procedures for recruiting, screening, enrolling, and maintaining a 

sample of 20 adults with major depression in a 12-week exercise intervention. We did not expect 
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intervention effects on outcome measures to achieve statistical significance, but rather were 

interested in exploring trends in brain-related changes and neurocognitive changes that may co-

vary with treatment-related reductions in depressive symptoms. Identifying possible mechanisms 

of exercise effects on depression can help inform future treatment trials that are fully powered to 

test these mechanisms.  

3.1 METHODS 

3.1.1 Participants   

Table 1. Experiment 1 Inclusion Criteria 

Age 20-39 or 60-79 years old 

PRIME-MD diagnosis: Major Depressive Disorder (MDD) or Depression NOS 

Montgomery Asperg Depression Rating Scale > 15 

In-town and available to commute to Oakland during the course of the study  

Study nurse practitioner approval to participate in ann12wk exerrcise 

intervention 

Eligible to undergo MRI at 7T strength 

 
Table 2. Experiment 1 Exclusion Criteria 

Inability to provide informed consent 

3MS < 84 or dementia  

Lifetime diagnosis of bipolar I or II disorder, schizophrenia, schizoaffective 

disorder, schizophreniform disorder, delusional disorder, or current psychotic 

symptoms 

Abuse of or dependence on alcohol or other substances within the past 3 

months 

High risk for suicide AND unable to be managed safely in the clinical trial 

Contraindication to venlafaxine XR as determined by study physician 
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including history of intolerance of venlafaxine XR in the study target dosage range 

(venlafaxine XR at up to 300 mg/day) 

Failure to respond to at least six weeks of venlafaxine (>300 mg/d) 

Inability to communicate in English 

Non-correctable clinically significant sensory impairment  

Unstable medical illness, including delirium, uncontrolled diabetes mellitus, 

hypertension, hyperlipidemia, or cerebrovascular or cardiovascular risk factors that are 

not under medical management 

Subjects taking psychotropic medications that cannot be safely tapered or 

discontinued prior to study initiation 

History of antipsychotic induced leukopenia, neutropenia, or agranulocytosis 

Exclusion criteria for MR scans include:  cardiac pacemaker, aneurysm clip, 

cochlear implant, pregnancy, IUD, shrapnel, history of metal fragments in the eye, 

neurostimulators, weight >250 lbs., tinnitus, or claustrophobia 

Report current medical condition or treatment for a medical condition that 

could affect balance, gait, or contraindicate participation in moderate intensity 

physical activity 

Observed gait condition or use of walking assisted device 

Current congestive heart failure, angina, uncontrolled arrhythmyia, or other 

symptoms indicative of an increased acute risk for a cardiovascular event; within the 

previous 12 months having a myocardial infarction, coronary artery bypass grafting, or 

angioplasty; conditions requiring chronic anticoagulation 

Eating disorders 

Report exercise > 3 days/week for > 20 minutes/day over the past 3 months 

Report plans to relocate to a location not accessible to the study site or having 

employment, personal, or travel commitments that prohibit attendance to at least 80% 

of the scheduled intervention sessions and all of the scheduled assessments. 

3.1.2 Recruitment Methods 

Recruitment strategies involved referrals by word of mouth and referrals by clinicians in 

primary care and specialty mental health sectors, IRB approved advertisements in the 

community, in the print, and on air media (e.g., KDKA radio), postings on the internet and 

message boards (e.g., Craigslist, UPMC Extra, message boards in UPMC hospitals), use of (IRB 

# 0602151) “The Advanced Center for Intervention and Services Research for Late-Life Mood 
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Disorders (ACISR/LLMD) Research Registry”, (IRB# PRO08010419) CTSI’s Research 

Participant Registry, and presentations to lay groups of elderly and their families. 

Intervention 

 

Figure 2. Study Timeline and Assessment Schedule for Experiment 1 

3.1.3 Measures 

Preliminary Screening (Phone Screens) 

Potential participants with symptoms of depression who learned about the study called 

the Geriatric Psychiatry Neuroimaging Lab (PI: Howard Aizenstein, M.D., Ph.D) for eligibility 

screening. During this screening, potential participants were administered an MRI screening 

questionnaire to determine their eligibility to undergo an MRI. Once it was determined that the 

potential participant was eligible for neuroimaging and willing to continue with the research 

study, s/he was administered the Patient Health Questionnaire (PHQ-9) and Physical Activity 

Readiness Questionnaire (PAR-Q) (Thomas, Reading, & Shephard, 1992) by a research clinician 

to determine eligibility to participate in the aerobic exercise intervention. If the PHQ-9 was 
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scored 10 or higher and the potential participant met eligibility criteria to undergo neuroimaging 

and participate in physical activity, then the participant was invited to come in for further 

evaluation, at which time s/he signed the formal study consent form and then completed 

additional study assessments to determine eligibility to participate in the study. 

Psychiatric Screening Evaluation 

All participants were either younger adults (20-39 years old) or older adults (60-79 

years old) suffering from depression (Major Depressive Disorder (MDD) as per the Primary Care 

Evaluation of Mental Disorders (PRIMEMD) criteria (Spitzer et al., 1994).  A physician 

investigator in the study initially explained the risks and benefits of participating in the study 

prior to potential participants signing an informed consent form approved by the University of 

Pittsburgh Institutional Review Board (IRB). Participants then completed the baseline research 

psychiatric assessments administered by a research clinician at the Late-life Mood Disorders 

Clinic. Participants were screened with the PRIMEMD and MINI Neuropsychiatric Interview 

(Sheehan et al., 1998). The PRIMEMD and MINI composite assesses current and lifetime 

depression and other psychiatric disorders. It is used to clarify psychiatric inclusion and 

exclusion criteria. To determine eligibility, we used the DSM-IV criteria for dementia and 

Modified Mini Mental State Exam (3MS). The Montgomery Asberg Rating Scale for Depression 

(MADRS) was also administered, and subjects scoring 15 or greater were eligible for the study 

(Montgomery & Asberg, 1979). At the time of enrollment, and prior to receiving any study 

medication, all participants completed a medical history and physical examination to determine 

whether they can safely take the study medication and to determine whether there might be a 

medical illness that is causing the symptoms of depression. All ineffective psychotropic 

medications were tapered and discontinued before starting the study medication, venlafaxine XR. 
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Participants were required to be antidepressant-free for a minimum of seven days prior to 

completing a baseline brain MRI. 

Screening Measures  

 

Primary Care Evaluation of Mental Disorders (PRIME-MD): This was used as a 

diagnostic screening tool to confirm diagnosis of Major Depression, and to screen out individuals 

with exclusionary psychiatric diagnoses (i.e., bipolar disorder)(Spitzer et al., 1994).  

Physical Activity Readiness Questionnaire (PAR-Q): This was used to assess any 

contraindications for physical activity while screening potential participants over the phone 

(Thomas et al., 1992). The PAR-Q is a 9-item questionnaire with dichotomous responses. 

Participants scoring >2 on this questionnaire required PCP approval for participation in the 

study.    

Baseline and Follow-Up Assessments 

Before randomization into one of the two intervention groups (venlafaxine XR only vs. 

venlafaxine XR + exercise), and prior to receiving any study medication, participants underwent 

a series of baseline assessments to evaluate depression severity, physical activity levels, fitness 

levels, cognitive performance, and brain imaging. These assessments could be done in up to four 

visits or could be combined into fewer depending on the participant’s preference. Each of these 

assessments is described below: 
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Physical Activity Level Assessment: 

Physical activity levels were assessed using a Sensewear physical activity-monitoring device 

over a period of 1-week at baseline and post-intervention. This device is worn on the upper left 

arm by the triceps and records body temperature, movement, energy expenditure, and sleep 

efficiency. Participants were asked to wear the device for a period of 1 week except while 

showering or swimming. Physical activity measures collected using this device were processed 

using BodyMedia SenseWear software. 

Depression Severity: 

The Montgomery-Asperg Depression Rating Scale (MADRS) was used to assess severity 

of depressive symptoms (Montgomery & Asberg, 1979). This is a 10-item questionnaire, in 

which each item yields a score of 0-6, with a total possible score of 60. Scores ranging between 

0-6 indicate minimal depressive symptoms, and a symptom rating of <7 is frequently used to 

assess remission from a depressive episode. Scores ranging from 7-19 are indicative of mild 

depression, scores ranging from 20-34 are indicative of moderate depression, and scores >34 are 

indicative of severe depression. The MADRS has shown to have good reliability and validity 

(Maier et al., 1988). 

Cardiorespiratory Fitness Level Assessment: 

Participants were provided with 5-10 minutes of warm-up stretching exercises. The 

participant then walked on a motor-driven treadmill at a self-selected speed between 2.0-4.0mph. 

Participants walked at his/her self-selected speed, and there were 2% grade increments every two 

minutes to a maximal heart rate of 85% of the age-based maximum (220-age) or a rating of 

perceived exertion equal to or greater than 15 for those individuals whose heart rate response 
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was blunted due to medication. The submaximal VO2 assessment usually lasted approximately 

15 minutes, at which time the participant was helped off of the treadmill and allowed a cooldown 

session. Blood pressure was also monitored both before and after the fitness test to ensure that 

changes in blood pressure resulting from exercise were all normal.  

Cognitive Performance Assessment: 

A comprehensive neuropsychological battery was administered by trained clinicians. The 

neuropsychological battery focused on cognitive domains most affected by normal aging, 

including attention/processing speed, episodic memory, and executive functions. It also included 

a brief measure of premorbid IQ.  All of the tests have demonstrated reliability and validity. The 

cognitive assessments in this battery and domains assessed are described below and summarized 

in Table 1   

Attention and Processing Speed 

Basic attention was assessed by the RBANS Digit Span subtest (forward span), an 

auditory digit repetition task. Attention and psychomotor speed (processing speed) was assessed 

using the RBANS Coding task, a speeded task in which participants were asked to match digits 

to symbols. Participants’ performance on these two tests was combined to create an Attention 

Index score, which was used in data analyses, in addition to individual cognitive tasks. The 

Wechsler Assessment of Intelligence Scale-4
th

 edition (WAIS-IV) Digit Span subtest,  a 3-part 

digit repetition task, was also used to assess basic attention and working memory (Benson, 

Hulac, & Kranzler, 2010).  
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Executive Functioning 

1) Perceptual inhibition was assessed using the Computerized Motor and Perceptual 

Inhibition Test (MAPIT) (Jennings, Mendelson, Redfern, & Nebes, 2011). The MAPIT task is a 

computerized assessment of perceptual and motor inhibition, and has previously been shown to 

detect age-differences in inhibition processes (Jennings et al., 2011). In this task assessing 

perceptual inhibition, the participant is shown an arrow pointing left or right and positioned on 

the screen on the side congruent or incongruent with the direction of the arrow. Participants are 

asked to respond to the key consistent with the direction of the arrow regardless of the spatial 

position of the arrow on the screen. (Jennings et al., 2011).  

2) Verbal response inhibition was assessed using condition 3 of the DKEFS Color Word 

Interference Task, in which participants were asked to inhibit the automatic dominant response 

of reading while naming colors aloud. 

3) The D-KEFS Trail Making Task is a speeded visual scanning and motor sequencing 

task, in which set-shifting is assessed by comparing the participant’s response time in completing 

a motor sequencing task while switching between numbers and letters in order, relative to the 

response time for completing a simple motor sequencing task.   

4) The D-KEFS Color Word Interference Task condition 4 assesses the ability to flexibly 

switch between rules for inhibiting specific verbal responses (reading vs. color naming) during a 

speeded verbal recitation task.  

Memory 

Delayed verbal memory was assessed using the RBANS word-list recall and recognition 

tasks and RBANS story-recall task. In these tasks, participants are asked to freely recall words 



 39 

from a 10-word list learned 20-minutes earlier, recognize words from that 10-word list out of 20 

of words, and freely recall a 2-sentence story that they learned 20-minutes earlier, respectively. 

Delayed nonverbal memory was assessed by asking participants to reconstruct a geometric figure 

from memory that they copied 20-minutes earlier. Participants’ performance on these 4 measures 

were combined using RBANS age-based norms to create a Delayed Memory Index score, which 

was used in data analyses, in addition to the individual cognitive tasks. Delayed verbal memory 

was also assessed using the CVLT-II delayed recall and recognition tasks; in these tasks, 

participants were asked to freely recall words from a 20-word list learned 20-minutes earlier and 

recognize words from that 20-word list.  

Visuospatial Function 

Visuospatial function was assessed using two tasks that were described earlier in 

Experiment 1: the RBANS figure copy and line orientation subtests. Participants’ performance 

on these two tasks were combined using RBANS age-based norms to create a Visuospatial 

Function Index, which was used in data analyses, in addition to individual subtest scores.  

Verbal Fluency 

Semantic fluency was assessed using an RBANS semantic fluency task described in 

Experiment 1. Phonemic fluency was assessed using a the Controlled Oral Word Association 

Test (COWAR), in which participants were asked to generate as many words as possible 

beginning with a particular letter within one minute (Benton, Hamsher, & AB, 1982). 

Participants were asked to complete three trials in response to three letters (FAS), and trial scores 

were summed.   
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Table 3. Summary of Cognitive Measures used in Experiment 1 

Experiment 1 

Cognitive Domains Cognitive Measures 

Attention  

& Processing Speed 

WAIS-IV Digit Span Task 

RBANS Coding Subtest 

Executive Function DKEFS Color-Word Interference Conditions  3 & 4 

Computerized Perceptual Inhibition Test 

DKEFS Trail Making Test Condition 4 vs. 5 Contrast Scaled 

CVLT-II Proactive and Retroactive Interference Scaled Score  

Learning  

and Memory 

RBANS List Learning Raw Score 

CVLT-II List Learning T-score 

CVLT-II Delayed Recall 

RBANS Modified Delayed Memory Index 

Visuospatial Skills RBANS Modified Visuospatial Constructional Index  

Language Skills RBANS Language Index 

Neuroimaging 

Participants underwent structural and resting-state functional MRI scanning on a 7 Tesla 

(7T) Siemens scanner. This 7T system is a Siemens retrofit of a GE magnet. As part of this 

retrofit, the scanner was upgraded to 32 independent receive channels, each other them with 

multi-nuclear capabilities. To achieve high slew rate, the scanner is fitted with a head only, 

removable gradient set capable of 80 mT/m gradients and 800mT/m/s slew rate. The 7T supports 

parallel transmission capabilities with the addition of a parallel transmission unit from Siemens 

Medical Systems. This unit provides 8 independent transmission channels as well as support for 

additional gradient controllers that could be used for dynamic shimming applications. All of 

these development activities are supported by an onsite systems engineer from Siemens Medical 

Systems and MR faculty with expertise in MRI hardware.  
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High resolution T1 weighted brain images were collected using a 3D Magnetization 

Prepared Rapid Gradient Echo Imaging (MPRAGE) protocol, collecting 256 contiguous slices. 

Scanning parameters include an echo time (TE) of 2.5 ms, repetition time (TR) of 3,000ms, and 

field of view (FOV) of 176 x 223 mm. Participants also underwent a functional scan, during 

which they were asked to focus on a fixation cross while not thinking about anything in 

particular and not falling asleep. T2*-weighted blood oxygen-level dependent (BOLD) 

acquisition using gradient-echo echoplanar imaging (EPI) was collected using the following 

parameters: repetition time = 2500 ms, echo time = 20 ms, field of view= 176 x 223, slices = 

155). After completion of the baseline scan, participants were administered Venlafaxine XR or 

Venlafaxine XR + aerobic exercise in a double-blind randomized design. Participants underwent 

another structural and functional MRI scan on the 7T scanner after completing the intervention. 

Three participants completed baseline and post-intervention MRI scans on a 3 Tesla Scanner due 

to a temporary shutdown of the 7T scanner for 6 weeks.  The same imaging protocols were 

completed (i.e., MPRAGE and EPI) and similar scanning parameters were used. 

3.1.4 Data Analysis 

3.1.4.1 Behavioral Data Analysis (Aims 1.1 and 2.1) 

Repeated Measures ANOVA was used to examine whether treatment with aerobic 

exercise + antidepressant medication led to a greater reduction in depressive symptoms (Aim 

1.1) relative to antidepressant medication alone over 12-weeks. Specifically, group differences in 

change in depressive symptoms were examined over seven time-points (week 1, 2, 4,6,8,10,12) 

using a group x time interaction, adjusting for titration of antidepressant medication. Exercise-

related changes in cognitive functioning was also tested using repeated measures ANCOVAs, 
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adjusting for age and years of education. For all models, group differences at baseline and post-

intervention and change over time were tested to understand whether adding exercise to 

medication treatment for depression magnifies antidepressant effects and/or improvements in 

cognitive functioning. Given the high likelihood that this dataset is underpowered to detect 

significant interaction effects, t-tests were additionally used to test the presence of post-

intervention group differences in depressive symptoms/cognitive function that were not present 

at baseline. If so, group differences at baseline were examined.  Sensitivity analyses using 

regression models were conducted to examine the association of change in fitness and levels with 

change in depressive symptoms and change in cognitive performance.   

3.1.4.2 Aim 3 Neuroimaging Data Analysis 

Longitudinal Structural Neuroimaging Data Analysis 

Preprocessing: 

Structural MR data from baseline and post-intervention scans were preprocessed using 

tools in the FMRIB Software Library (Image Analysis Group, FMRIB, Oxford, UK; 

http://www.fmrib.ox.ac.uk/fsl/; (S. M. Smith et al., 2004)). All high-resolution MPRAGE images 

were pre-processed using the following steps: (1) non-brain matter was removed using the brain 

extraction technique in FSL (S. M. Smith & Nichols, 2009). (2) All brain-extracted images were 

visually inspected for any residual non-brain matter, and any residual matter was then manually 

removed from the image. (3) Next, these brain-extracted images were segmented into gray 

matter, white matter, and cerebrospinal fluid using FSL’s automated segmentation technique 

(Zhang, Brady, & Smith, 2001). Values were thresholded at >.2 to eliminate voxels that are of 

questionable tissue type. (4) Next, all images (across time points) were averaged to create a 
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study-specific template that was adjusted for sample and time specific variation.  The partial 

volume estimate maps of gray matter were then registered to the study specific template 

(Jenkinson & Smith, 2001). (5) Each voxel of each registered gray matter image was modulated 

by applying the Jacobian determinant from the transformation matrix (Good et al., 2001b). (6) 

These modulated images were concatenated into a 4D image, which was smoothed using a 3 mm 

Gaussian kernel. Statistical analyses were conducted on these segmented, registered, modulated, 

and smoothed gray matter images.   

Longitudinal Whole-Brain Volumetric Analyses 

Intervention-related volumetric changes across the whole-brain were examined using 

voxel-based morphometry (VBM), a classic semi-automated approach for identifying voxelwise 

partial volume estimates. VBM analysis computes the probability that each voxel in a structural 

MR image is cerebrospinal fluid, gray matter, or white matter and yields statistical maps for each 

voxel type (see (Ashburner & Friston, 2000) for a detailed description of VBM methods). Voxels 

are then classified into the structural category with the highest probability and can be statistically 

analyzed between subjects. Separate statistical maps are created for gray matter voxels and white 

matter voxels, which can then be used for volumetric analysis. For the current study, I limited 

my investigation to gray matter statistical maps, as the advent of Diffusion Tensor Imaging has 

resulted in infrequent use of VBM to assess white matter volume. VBM has shown to be a 

reliable method for analyzing gray matter data from healthy older adults (S. J. Colcombe et al., 

2006; Good et al., 2001a; Good et al., 2001b); and provides estimates that are similar to manual 

tracing in this population (Kennedy & Raz, 2009).  

Longitudinal VBM analyses have been done in prior depression treatment trials to 

examine differences treatment effects on brain structure (R. Smith, Chen, Baxter, Fort, & Lane, 
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2013). Longitudinal regression models were conducted using FSL to examine the main effects of 

group and time, and a group x time interaction in predicting change in regional partial volume 

estimates, while adjusting for age and scanner type (i.e., 3T vs. 7T).  Given that this dataset was 

underpowered to detect interactions, independent t-tests were additionally used to examine the 

presence of post-intervention group differences in voxelwise gray matter volume that were not 

present at baseline. This analysis was used to identify possible trends in exercise-related regional 

volumetric changes that can be tested in larger clinical trials.  

Vertex-based morphological Brain Changes 

Additionally, vertex-based estimates of regional gray matter thicknesss were generated 

using Freesurfer, version 6.0. Additionally, vertex-based estimates of regional gray matter 

thicknesss were generated using Freesurfer, version 6.0. The methods used to in the surface-

based processing pipeline in Freesurfer are described in detail in Fischl et al., 1999. Briefly, 1) 

the image is registered with the MNI305 atlas, 2) the B1 bias field is estimated by measuring 

variation in white matter intensity, and images are bias-corrected on a voxelwise basis, 3) non-

brain better is removed, 4) voxels are classified as white matter or non-white matter, 5) the white 

surface (between white and gray matter) and pial surface (between gray matter and CSF) are 

generated for each hemisphere and further refined, 6) the white and pial surfaces are overlaid on 

the original T1-weighted image, and 7) the distance between the white and pial surface is used to 

estimate gray matter thickness at each location in the cortex.   

In this study, the exploration of exercise-related changes in cortical thickness was limited 

to prefrontal, anterior cingulate, and medial temporal cortical regions, given that these have 

previously been associated with depression and appear to be sensitive to and exercise-related 

structural brain changes. Regional cortical thickness was calculated using the following steps: 1) 
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registration of the MPRAGE to the MNI atlas, 2) removal of non-brain matter, 3) segmentation 

of white matter segmentation, 4) generation of the ‘white surface’ in each hemisphere (i.e., 

surface between white matter and gray matter), 5) generation of the pial surface (i.e., surface 

between gray matter and CSF) , and 6) measurement of the distance between the white and pial 

surfaces at each location on the cortex .  

Volumetric changes in Hippocampal Subfields 

Numerous automated methods have been developed to segment the hippocampus in high-

resolution structural MR images (Dill, Franco, & Pinho, 2015). An automated segmentation tool 

in Freesurfer, version 6.0 was used to segment hippocampal subfields using the T1 image only. 

This automated segmentation method uses a statistical model of image formation around the 

hippocampus to segment hippocampal subfields in each hemisphere, using Bayesian inference, 

and has been validated against manual tracing of hippocampal subfields (Leemput et al., 2009). 

Change in volume (in mm
3
) of these hippocampal subfields was examined using paired-samples 

t-tests. 

Functional Connectivity Analysis 

Preprocessing 

Functional MR data from baseline and post-intervention scans were pre-processed using 

tools in the FMRIB Software Library (Image Analysis Group, FMRIB, Oxford, UK; 

http://www.fmrib.ox.ac.uk/fsl/; (S. M. Smith et al., 2004)). Preprocessing of the functional data 

included four key steps: 1) removing non-brain matter from the images using the brain extraction 

technique (BET) tool in FSL (S. M. Smith & Nichols, 2009), 2) rigid body motion correction, 3) 

temporal filtering with a low pass and high pass filter,  and 5) spatial smoothing using a 6 mm 

http://www.fmrib.ox.ac.uk/fsl/
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3D Gaussian kernel. Functional MR data from baseline and post-intervention scans were pre-

processed using tools in the FMRIB Software Library (Image Analysis Group, FMRIB, Oxford, 

UK; http://www.fmrib.ox.ac.uk/fsl/; (S. M. Smith et al., 2004)). Preprocessing of the functional 

data included four key steps: 1) removing non-brain matter from the images using the brain 

extraction technique (BET) tool in FSL (S. M. Smith & Nichols, 2009), 2) rigid body motion 

correction, 3) temporal filtering with a low pass and high pass filter,  and 5) spatial smoothing 

using a 6 mm 3D Gaussian kernel. First, non-brain matter was removed from both the functional 

image and structural anatomical image. All brain-extracted images were visually inspected for 

any residual non-brain matter, and any residual matter was manually removed from the image by 

creating a brain mask and multiplying the manually revised brain mask by the original image. 

The data was then corrected for motion in 6 directions using the MCFLIRT tool in FSL. If 

excessive motion (peaks >1.7 mm) was found, the total motion for each participant in each 

direction was included as a covariate in the regression analyses to correct for motion.  Next, the 

low pass filter was applied at 0.1 Hz  (25) and the high-pass filter was separately applied at 0.01 

Hz in the process of completing the first-level analysis for each participant. Finally, the data was 

spatially smoothed by adjusting voxel values based on nearby voxel values using a 3D 6 mm 

Gaussian kernel.  

Registration 

After completing preprocessing steps, the preprocessed functional images were registered 

to each participant’s respective structural anatomical MPRAGE image for baseline and post-

intervention scans. FSL’s Linear Registration Technique (FLIRT) was used to transform each 

participant’s functional image into standard space. Registration for each participant was visually 

checked before proceeding to statistical analyses.  

http://www.fmrib.ox.ac.uk/fsl/
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Seed region extraction: Given the important role of the hippocampus in depression and its 

sensitivity to exercise-based interventions, a seed-based resting state analysis was conducted, 

using the left and right hippocampus as the primary seeds. In this type of analysis, the mean time 

series signal (across volumes) from regions-of-interest (i.e., seeds) is extracted from each 

participant and is correlated with every other voxel in the brain.  All seed regions were 

determined separately for pre- and post-intervention MR images.  

The left and right hippocampal seeds were segmented from the MPRAGE image using 

FreeSurfer image analysis suite (version 6.0; http://surfer.nmr.mgh.harvard.edu). The tool 

performs subcortical structural segmentation using the method presented in Fischl et al. (2002). 

First, each image is linearly aligned with an average template. A frequency histogram of possible 

structures (defined by the spatial template prior) is used to compute the probability of a given 

anatomical label (e.g., hippocampus) occurring at a given location. The prior of a given spatial 

arrangement of different labels (i.e., subcortical structures) is also incorporated into the 

segmentation. Using this process, the hippocampal seeds were determined from the MPRAGE 

image for each participant at each time point. The hippocampal seeds were then registered to the 

4D functional image, and the mean time series (during the 6.5 minute passive viewing paradigm) 

was extracted for the left and right hippocampus.  

Analysis 

First, Pearson and Chi-square statistics were used to summarize demographic, physical, 

cognitive, and brain characteristics as appropriate. Mean differences between groups for all 

outcome measures were examined using independent samples t-tests. All analyses were two-

tailed. Next, within-subject analyses were conducted on the preprocessed resting state data. 

Separate general linear models were conducted for both hippocampal seeds (left and right) on 
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each individual participant at each time point, controlling for the six rigid body directional 

motion parameters. Including the volume-by-volume motion parameters allowed for additional 

control against motion-related noise by accounting for the variability of movement throughout 

the time series for each participant. This within-subject analysis yielded two statistical 

parametric maps representing brain regions that were either positively or negatively functionally 

correlated with the seed regions (left and right hippocampus) for each participant at each time 

point (baseline, post-intervention). Fisher’s r-to-z transformations were conducted on these maps 

and resulting z-score statistics were analyzed in the group-level analysis. The first goal in 

examining functional connectivity patterns in this dataset was to examine whether adding aerobic 

exercise to antidepressant medication treatment for depression yields greater changes in 

hippocampal connectivity patterns relative to treatment with antidepressant medication alone in 

adults with Major Depression. As such, the first step was to determine brain regions where 

connectivity changed across time as a function of group. Given the very small sample size of this 

study and the high likelihood of being insufficiently powered to detect Time x Group interaction 

effects, a more simplistic analytic approach (i.e., independent samples t-test examining group 

differences at each time point) was used to explore group differences in intervention-related 

change in hippocampal functional connectivity patterns. First, group differences in hippocampal 

functional connectivity patterns were examined post-intervention. Next, group differences in 

hippocampal functional connectivity patterns were tested at baseline. Group differences in 

hippocampal connectivity patterns post-intervention that were not present at baseline were 

hypothesized to be due to intervention-related effects. To examine the direction of change in 

functional correlations observed post-intervention (i.e., increase in positive correlation vs. 

attenuation of negative correlation) and to conduct additional analyses with behavioral variables, 
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the beta-values and z-scores in clusters that were functionally correlated with the hippocampal 

seeds post-intervention were extracted at both time points for each participant. These regions 

were then compared against participant fitness to examine whether change in fitness related to 

change in connectivity. Pearson correlations were run between percent change values (i.e., post-

intervention – baseline, normalized by baseline value) for functional connectivity and percent 

change values for estimated VO2 max and functional connectivity post-intervention was 

examined. We hypothesized that group differences in functional connectivity post-intervention 

would likely be attributable to intervention-related changes in fitness levels.  If similar regions 

were correlated with the hippocampal seeds in both sets of analyses (i.e., group differences and 

change in fitness), it may suggest that change in fitness mediates group differences in functional 

connectivity observed post-intervention (although a formal mediation analysis was not 

conducted). To examine general medication-treatment related changes in hippocampal 

connectivity patterns, the association between percent change in depression severity (i.e., 

MADRS score) and functional connectivity post-intervention was examined. Finally, the 

association between depression severity at baseline and functional connectivity at baseline was 

examined in order to help interpret post-intervention group differences in functional connectivity 

post-intervention.   
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3.1.5 Predictions 

Effects of Aerobic Exercise on Depression  

I predicted that both treatment groups would demonstrate a clinically significant decline 

in depressive symptoms, with most participants experiencing full remission from depression after 

completion of the trial. In addition, the ADM + EX group would demonstrate a greater decline in 

depression severity, an earlier trajectory of decline, and greater stability of decline in depressive 

symptoms during the 12-week intervention relative to the ADM only group. Finally, increases in 

fitness levels and daily physical activity levels would be associated with a decline in depression 

severity.  

 

Effects of Aerobic Exercise on Cognitive Function in Depressed Adults 

I predicted that both treatment groups would demonstrate improvements in cognitive 

efficiency. The ADM + EX group would demonstrate a greater increase in cognitive 

performance within domains commonly affected by depression (i.e., attention, processing speed, 

executive functioning, learning and memory) relative to the ADM only group. Finally, greater 

improvements in cognitive performance would be observed in older adults relative to younger 

adults across treatment groups.  

 

 Effects of Aerobic Exercise on Hippocampal Connectivity Patterns  

I predicted that both treatment groups would demonstrate a reduction in hippocampal 

connectivity with DMN regions, with the ADM + EX group showing broader reductions in 

hippocampal connectivity with DMN regions relative to the ADM only group, suggestive of 

greater improvements in neural efficiency.  
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Effects of Aerobic Exercise on Brain Morphology 

a. Although 12-weeks is a relatively brief time course for detecting gross structural 

changes in the brain, changes may be observed in both treatment groups for brain markers of 

structural integrity (i.e., gray matter thickness, surface area, volume) in regions commonly 

showing volumetric abnormalities in depression (i.e., ACC, mPFC, HC, ventral striatum, 

amygdala). Possible volumetric changes may be magnified in the ADM + EX group relative to 

the ADM only group (e.g., greater number and/or broader areas).  

 

b. Exploratory analyses of intervention-related volumetric changes in hippocampal 

subfields may distinguish hippocampal subfields sensitive to the effects of aerobic exercise 

relative to the effects of SNRI medication in depressed adults (e.g., dentate gyrus). Older adults 

may be more likely to demonstrate structural brain changes across treatment groups relative to 

younger adults, given that LLD is associated with broader reductions in structural brain integrity 

relative to depression in younger adults. Specifically, older adults may demonstrate structural 

changes in regions associated with depression and age-related atrophy (e.g., PFC).  

3.2 RESULTS EXPERIMENT 1 

3.2.1 Feasibility 

The primary aim of this pilot study was to establish the feasibility of conducting an 

exercise intervention study in depressed older and younger adults. Detailed results regarding 
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recruitment can be found in Appendix A. Briefly, 192 adults were screened over the phone.  

Primary reasons for exclusion after screening included 1) not meeting DSM-5 criteria for a 

Major Depressive Episode 2) lack of interest in participation after learning about the study 3) 

current or past diagnosis of bipolar disorder or a psychotic spectrum disorder, 4) exercising more 

than three days per week, more than 20 minutes per day over the last three months, 5) 

ineligibility due to age-criteria (i.e., too young for older adult group) 6) contraindications for 

MRI, and 7) unwillingness to taper off of current antidepressant medication or safety concerns 

related to tapering off of current medication regimen.  Thirty-one participants (16%) enrolled in 

the study, of which 15 participants (48%) started treatment. Key reasons for exclusion after 

enrolling in the study included history of exclusionary medical or comorbid psychiatric 

diagnoses identified after enrollment, administrative reasons (i.e., difficulty with transportation, 

moved), and participant withdrawal of consent. Of the 15 participants who were randomized to 

treatment groups (i.e., MED=8 EX=7), 11 participants (73%) completed the study (i.e., MED=5 

EX=6). Two participants were lost to follow-up, one participant was non-adherent to study 

procedures (e.g., refusing ratings), and one participant withdrew consent. All participants 

completing the study completed MRI, biomarker, cognitive, clinical, fitness, and physical 

activity assessments without difficulty or endorsing burden related to the quantity of assessments 

or length of time required to complete study assessments.  

Barriers to Feasibility and Possible Solutions 

 

The principal barrier to feasibility of this study was identifying optimal recruitment 

strategies to enroll depressed older adults. Recruitment difficulties of this sub-set of the 

participant sample largely accounted for the prolonged study timeline (i.e., 24 months to 
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completion vs. target of 12 months) and resulted in disproportionately higher enrollment of 

younger adults relative to older adults (i.e., 10 younger adults vs. 5 older adults). Primary 

recruitment strategies used included advertisement in University of Pittsburgh Clinical and 

Translational Science Institute (CTSI) Research Registry via internet and paper-based 

advertising, advertisements via radio, bus, and newspaper, Online advertisement via Craig’s List 

and ClinicalTrials.gov, flyers and brochures distributed locally around the University of 

Pittsburgh campus and senior living centers, collaborations with medical providers at two 

primary care clinics, and recruitment presentations at senior centers.  Successful recruitment 

strategies included the research registry (n=5), paper-based or radio advertisements (n=4), flyers 

(n=2), online advertisements (n=2), referral from medical provider (n=1), and self-referral 

through word of mouth (n=1).         

 The most successful recruitment strategy for older adult participants was the CTSI 

research registry. Unfortunately, this strategy was utilized heavily only late in the course of the 

study after other approaches had failed. (i.e., less than 6 months before the end of study 

recruitment). The pattern of recruitment over the course of the study revealed that recruitment 

was most successful in the spring and summer seasons; older adults may be especially sensitive 

to weather-related variability in recruitment due to transportation barriers and greater anxiety 

regarding driving in inclement weather conditions. Significant time and resources were invested 

towards setting up a collaboration with the Pennsylvania Pharmaceutical Assistance Contract for 

the Elderly (PACE) program to assist with recruitment of older adults; however, this recruitment 

strategy ultimately could not be implemented due to the PACE program’s ethical concerns 

regarding promotion of a specific medication to their members for the purposes of this study. 

Educational/recruitment presentations at local senior centers did not yield new participants but 
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were helpful in understanding sociocultural barriers to recruitment of depressed older adults.  

Feedback during these presentations revealed the broader older adult community’s  bias against 

participation in a pharmaceutical treatment study in general, and more specifically against the 

use of pharmaceuticals to address a mental health condition; audience members frequently 

expressed they may be interested if this was a strictly non-pharmacological intervention (i.e., 

exercise only). Further, audience members at these senior centers expressed reluctance to 

promote this study to their family and friends, even if they were concerned about their mental 

health, due to stigma associated with both having mental health symptoms and mental health 

treatment utilization. Ultimately, older adult recruitment challenges in this study may primarily 

be attributed to insufficient allocation of resources towards advertising platforms that target older 

adults (e.g., radio, newspaper,  and research registry), wasted resource allocation to an 

unimplemented recruitment strategy (i.e., PACE), inadequate efforts to establish collaborations 

with local primary care providers, and limited availability of resources to maintain a continuous 

presence in primary care clinics with which collaboration was established.  Despite these 

recruitment challenges , we learned how to improve recruitment towards the end of the funding 

period for the intervention and learned a number of strategies to ensure feasibility for similar 

future studies.            

 Future studies can avoid the above-mentioned recruitment challenges by allotting a 

greater amount of resources to ‘active’ relative to ‘passive’ recruitment efforts, with an emphasis 

on recruitment strategies targeting older adults. Active recruitment approaches that may have a 

high yield include initiating meaningful collaborations with primary care offices through in-

person visits and periodic presentations to staff members; maintaining a presence in the clinic 

may ultimately lead to a consistent referral source. A second recruitment approach that was not 
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implemented in this pilot study is presenting to groups of mental health providers in different 

contexts to raise awareness of the study. Future studies should also ensure the allocation of 

adequate resources to multiple recruitment platforms in parallel rather than using serial 

recruitment approach (i.e., relying heavily on one recruitment strategy at a time). In order to 

better target older adults, future studies may also consider allocation of funds for transportation 

arrangements as necessary, given that this can be a key barrier to study participation among older 

adults. Further, research registries should be tapped into at frequent intervals using online and 

paper-based advertising, especially during the spring and summer, since this yielded the greatest 

success in the present study.  

3.2.2 Participant Characteristics  

Fifteen participants (10 younger adults (YA) and 5 older adults (OA)) with Major 

Depression were randomized to receive Venlafaxine XR (YA=5, OA=3) or Venlafaxine XR and 

supervised aerobic exercise (YA=5, OA=2) for 12-weeks. Among the younger adult participants, 

attrition was significantly higher for the medication only group (60%) relative to the medication 

+ exercise group (20%). Among younger adults in the medication only group, one participant 

was lost to follow-up immediately after completing baseline study assessments, one participant 

was unable to be contacted from weeks 5-11 but returned to complete post-intervention 

assessments, and a third participant was lost to follow-up after completing eight weeks of the 

study. Among younger adults randomized to the medication + exercise group, only one 

participant was lost to follow-up immediately after completing baseline study assessments. 

Among the older adult participants, there was 0% attrition among both treatment groups. Of 

those who completed the study, all participants were reportedly adherent to the medication 
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regimen, and participants randomized to the exercise intervention attended 91% of the sessions 

on average out of 36 sessions. Exercise adherence did not significantly differ between younger 

and older adults (YA=93% OA=90%).       

 Treatment groups differed on sex distribution, with the OA MED group including only 

women. Other treatment groups did not differ from each other on sex. Across older and younger 

adults, the MED group included 80% women whereas the EX group included 50% women. 

Education did not significantly differ across groups. The OA EX and YA EX groups included 

significantly more non-Caucasian participants relative to the MED groups. Duration of current 

Major Depressive Episode was significantly longer for participants in the OA MED and YA 

MED groups relative to the EX groups. None of the participants in the EX groups were using 

antidepressant medication at the time of enrollment in the study, whereas 40% of the participants 

in the MED groups (combined OA and YA) had to be tapered off of an antidepressant 

medication at baseline prior to starting the study medication. Body Mass Index (BMI), 

cardiorespiratory fitness (i.e., EstimatedVO2 Max), and physical activity levels did not differ 

between treatment groups at baseline (See Table 2).  
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Table 4. Participant Characteristics at Baseline  

 Medication Only Medication +Exercise 

Variable Older 

(N=3) 

Younger 

(N=5) 

Older  

(N=2) 

Younger 

(N=5)  

Age  62.33 33.60 67.50 28.60 

Sex (% Female) 100 60 50 60 

Education 15.33 14.40 16.00 16.40 

Race (%White) 100 80 50 60 

MADRS Baseline 22.33 

(3.51) 

24.50 

(5.20) 

24.50 

(0.71) 

24.50 

(6.46) 

 23.57 (4.35) 24.50 (5.01) 

Duration MDE (weeks) Baseline 208.44 

(269.91) 

55.8 

(47.0) 

27.50 

(34.64) 

28.2(29.3

) 

 113.00 (168.25) 28.00 (27.78) 

Age at 1
st 

MDE 53.00 

(8.89) 

24.00 

(4.63) 

41.5 

(16.26) 

17.20(8.3

4) 

 34.88 (16.13) 24.14 (15.20) 

% Antidepressant Use Baseline 33 20 0 0 

 40 0 

BMI Baseline 30.35 

(1.70) 

32.04 

(3.61) 

26.62 

(4.19) 

28.34 

(7.40) 

 31.41 (3.00) 27.85 (6.33) 

Est. VO2 Max Baseline 27.73 

(8.13) 

26.73 

(3.47) 

26.12 

(6.78) 

30.40(6.6

2) 

 27.11 (5.10) 29.18 (6.42) 

Hours of Daily PA Baseline 0.64 

(0.42) 

1.94 

(0.85) 

2.74 

(1.3) 

1.42 

(1.13) 

 1.39 (0.95) 1.86 (1.26) 

3.2.3 Intervention Fidelity 

The EX group showed an increase in fitness (mean ∆= 3.74% SD=10.74) whereas the 

MED group showed a decline in fitness (mean ∆= -8.30% SD=16.52) from baseline to post-

intervention. Group differences in change in fitness were non-significant due to high within-

group variability (t=-1.66 p=0.132).  Among younger adults, the EX group showed an increase in 

fitness from baseline to post-intervention (mean ∆=8.76% SD=6.68), whereas the MED group 

showed a decline in fitness from baseline to post-intervention (mean ∆= -2.23% SD=12.54). 

Similar to the overall sample, group differences between the young adult MED and EX groups 
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were non-significant due to high variability within the MED group (t= -1.085 p=0.454). Among 

older adult participants, both the EX and MED groups showed a decline in fitness (EX: mean=-

6.29% SD=11.86; MED: mean=-14.36 SD=20.35). The MED group showed a greater decline 

relative to the EX group on average, but group differences were non-significant due to high 

within-group variability (t=-0.492 p=0.657).      

 Treatment group differences in change in physical activity (PA) were examined using the 

following indicators: 1) daily hours of PA 2) hours of sedentary time 3) active energy 

expenditure 4) metabolic equivalents 5) time in moderate activity 6) time in vigorous activity 7) 

number of 10-minute bouts across time device is worn, and 8) minutes in 10-minute bouts of PA 

across time device is worn. A paired-samples t-test was conducted separately for each treatment 

group to examine change in indicators of PA from baseline to post-intervention. The EX group 

did not show an increase in any indicator of PA. The MED group also did not show an increase 

in any indicator of PA. Both the MED and EX groups showed a non-significant decline in total 

hours of sedentary time (MED: t=1.938 p=0.125; EX: t= 1.907 p=0.115). As reported earlier, 

treatment groups did not significantly differ on indicators of PA at baseline.  However, the EX 

group engaged in a greater amount of activity in 10-minute bouts relative of MED group post-

intervention (t= -2.602 p =0.029) (See Table 3). 
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Table 5. Intervention Fidelity Outcomes 

 

 

 

 

 

 

 

 

 MEDICATION ONLY MEDICATION + EXERCISE 

Variable Older 

(N=3) 

Younger 

(N=2) 

Older 

(N=2) 

Younger 

(N=4) 

% Adherence (Completed Study)  100% 40% 100% 80% 

 63% 86% 

% Change Estimated VO2 Max 

 

-

14.36% (20.35) 

-2.23% 

(12.54) 

-6.29% 

(11.86) 

8.76% (6.68) 

 -8.30%  (16.52) 3.74% (10.74) 

% Requiring Venlafaxine Titration > 

150 mg  

33% 50% 100% 25% 

 40% 50% 

% Exercise Adherence (Sessions 

Attended) 

-- -- 93% 90% 

  91% 

% Remission from Depression 

(MADRS Score < 10) 

67% 100% 0% 100% 

 83.3% 67% 

MADRS Final 8.33 10.50 11.50 4.25 

 9.57 6.67 

Raw Change MADRS -11.33 

(6.66) 

-14.50 

(9.88) 

-14.00 

(7.07) 

-18.25 (6.29) 

 -13.14 (8.15) -16.83 (6.21) 

% Change MADRS -

65.48% 

-62.64% -

57.31% 

-82.86% 

 -63.85% (32.56) -74.34% (16.37) 
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Table 6. Physical Activity and Fitness Outcomes 

3.2.4 Depression Outcomes 

Participants in both treatment groups showed a significant reduction in depressive 

symptoms (MED: mean =-63.85% SD=35.56; EX: mean= -74.34% SD=16.37), with 83% 

achieving remission (i.e., MADRS score < 10) in the MED group and 67% achieving remission 

in the EX group. Groups did not significantly differ with regard to number of participants 

 MEDICATION ONLY MEDICATION + EXERCISE 

Variable Older Younger         Older  Younger  

Est. VO2 Max Baseline 27.73 26.73 26.12 30.40 

Est. VO2 Max Final 23.52 24.55 24.23 33.89 

Change Est. VO2 Max -4.22 -0.65 -1.89 3.19 

% Change Est. VO2 Max -14.36 -2.23 -6.29 8.76 

Avg. Steps Per Day Baseline 5032.11           10716.93         18037.21            6548.52 

Avg. Steps Per Day Final 4148.76           14586.55           5805.79 

                  

           9895.05 

Avg. Daily Measured Active EE 

Baseline 201.64 692.52             911.04 422.70 

Avg. Daily Measured Active EE Final 212.47 968.89             324.03 694.21 

Minutes of PA Per Day Baseline 38.78 116.92             164.78 85.34 

Minutes of PA Per Day Final 38.28 171.36 74.82 124.63 

# of BOUTS Baseline 1.67 6.25 9.00 15.75 

# of BOUTS Final 0.67 3.67 6.50 15.25 

Minutes In BOUTS Baseline 21.33 86.25             161.50 293.00 

Minutes In BOUTS Final 7.33 51.67 110.0 264.00 

Hours of Armband Data Baseline 183.62 142.72 82.38 203.10 

Hours of Armband Data Final 127.26 76.08 75.93 155.23 

Sleep Efficiency Baseline 73.05 76.68 83.06 82.46 

Sleep Efficiency Final 71.95 58.06 79.67 79.23 
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requiring medication titration > 150 mg (i.e., standard dose). All younger adult participants in 

both groups achieved remission, whereas two out of three older adults in the MED group and 

zero out of two older adults in the EX group achieved remission. Notably both OA EX group 

members achieved near remission (i.e., MADRS final score =11 & 12, respectively). There was 

no group difference in trajectory of decline in depressive symptoms during the course of the 

intervention (Repeated Measures ANOVA: F= 0.227 p= 0.966); however, the EX group 

demonstrated a more stable decline in depressive symptoms after the first 4 weeks relative to the 

MED group (See Figures 2a and 2b).  Given that 5 out of 6 participants in the EX group and 2 

out of 5 participants in the MED group showed improvements in fitness, the trajectory of change 

in depressive symptoms was examined as a function of a binary variable reflecting improvement 

in fitness. Trajectory of change in depressive symptoms did not significantly differ between 

those showing improvement in fitness relative to those not showing improvement in fitness; 

however, the stability of decline in depressive symptoms appeared even more prominent in the 

group showing improvement in fitness (i.e., more so than examining intervention group 

differences). Further,  change in depression severity was examined as a function of age group, 

which revealed significant group differences (Repeated Measures ANOVA Age Group x 

MADRS: F= 2.412 p=0.039) such that younger adults showed more rapid and stable decline in 

depressive symptoms relative to older adults.  
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Figure 3 Spaghetti Plot showing individual trajectories of change in depression symptoms over the course of 

the intervention. RED=EXERCISE GROUP GREEN=MEDICATION ONLY GOUP  
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Figure 4. Group differences in Change in Depression Symptoms over the course of  

the Intervention.  
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Figure 5. Trajectory of change in Depressive Symptoms over the course of the Intervention, split by 

participants showing increases versus no improvement or decreases in fitness levels.  
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Figure 6 Separate Trajectories of Change in Depressive Symptoms for Older and Younger Adults across 

intervention groups.  

3.2.5 Cognitive Outcomes 

Participants across treatment groups did not differ on performance across most cognitive 

measures at baseline, with the exception of the EX group performing marginally better on 

measures of attention (t= -2.310, p=0.05) relative to the MED group. Generalized medication 

treatment effects (i.e., across both treatment groups) included improvement in attention (RBANS 

Attention Index (t= -2.495 p=0.037) and marginal improvement in verbal learning (CVLT List 

Learning: t=-2.115 p=0.064). The MED group showed improvement in global cognition 

(RBANS Total Index Score:  t= -7.071 p0.006), response inhibition (D-KEFS Color Word 
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Interference Condition 4: t=-3.207 p=0.03), and verbal learning (RBANS Immediate Memory 

Index: t=-6.403 p=0.003). The EX group did not show significant changes in performance on any 

cognitive measures due to high within-group variability.     

 Given that late-life depression (LLD) is highly comorbid with cognitive impairment and 

cognitive deficits observed in LLD are more resistant to improvement with treatment, cognitive 

performance was also examined separately in older and younger adults. Consistent with age-

related cognitive decline, older adults performed worse than younger adults on a measure of 

processing speed (RBANS Coding subtest Raw Score: t= 3.645 p=0.003) and showed a trend 

toward greater vulnerability to retroactive interference (CVLT retroactive interference Z-score t= 

-2.043 p=0.067) across both treatment groups at baseline. After completion of the intervention, 

older adults continued to perform worse the younger adults for processing speed (RBANS 

Coding subtest Raw Score: t= 2.975 p=0.016) and also performed worse than younger adults for 

basic attention (WAIS-IV Digit Span Forward Span: t= 3.159 p=0.010).     

 Among younger adults, the YA EX group performed better than the YA MED group on 

measures of visuospatial skills (RBANS Visuospatial/Constructional Index: t= -5.253 p=0.006) 

and psychomotor set-shifting (D-KEFS Trails Condition 4 vs. 5: t=-3.746 p=0.02), and 

marginally better than the MED group for global cognitive functioning (RBANS Total Index: t= 

-2.466 p=0.07) and working memory (WAIS-IV Digit Span Backwards Span: t=-2.242 p=0.088) 

at baseline. After completion of the intervention, the YA EX group continued to perform better 

than the YA MED group on a measure of psychomotor set-shifting (t= -2.416 p=0.07), but the 

difference became marginal.  Although group differences in performance on the following 

measures were non-significant at baseline, after completing of the intervention, the YA EX 

group performed marginally better than the YA MED group on measures of basic attention 
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(WAIS-IV Digit Span Forward Span: t=-2.309 p=0.082), as well as verbal learning, memory 

recall, and recognition (CVLT List Learning: t= -2.705 p=0.071; CVLT Long-Delay Free Recall 

Z-score: t= -2.121 p=0.10;  CVLT discriminability index Z-score: t=-2.359 p=0.078). Among 

older adults, the OA EX group performed marginally worse than the YA MED group on 

measures of visuospatial skills (RBANS Visuospatial/Constructional Index: t= 2.934 p=0.06) at 

baseline. After completion of the intervention, the OA EX group performed worse than the OA 

MED group on measures of language skills and verbal memory recall (RBANS Language Index: 

t=8.33 p=0.014; CVLT Long Delay Free Recall Z-score: t=3.919 p=0.03) and marginally worse 

than the OA MED group on a measure of verbal memory recognition (CVLT discriminability 

index Z-score: t=2.643 p=0.077) (See Table 5).       

 In a sensitivity analysis, improvement in fitness was strongly associated with better 

performance for perceptual inhibition (r=-0.645, p=0.044). 

 

Figure 7. Correlation between %Change Fitness and %Change Perceptual Inhibition 
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Table 7. Experiment 1 Cognitive Outcomes 

  Medication Only Medication + 

Exercise 

 Variable Older N=3 Younger N=2 Older N=2 Younger N=4 

 Global Cognition     

P

RE 

RBANS Total Index 

Score (SS) 

95.00 (14.11) 80.00 (7.07) 77.00 (0.00) 101.00  (13.78) 

P

OST 

RBNS Total Index Score 

(SS) 

100.5 (17.68) 85.50 (7.77) 81.50 (3.54) 102.75 (19.74) 

 Attention/Processing 

Speed 

    

P

RE 

RBANS Attention Index 78.67 (6.51) 78.50 (9.19) 76.50 (28.99) 97.50 (19.62) 

P

OST 

RBANS Attention Index 91.00 (8.49) 79.00 (21.21) 78.50 (26.16) 108.00 (16.73) 

P

RE 

RBANS Coding Subtest 

Raw Score 

35.33 (5.03) 47.00 (4.24) 30.50 (0.71) 56.75 (11.47) 

P

OST 

RBANS Coding Subtest 

Raw Score 

42.00 (2.83) 44.50 (12.02) 27.50 (6.36) 59.00 (9.83) 

P

RE 

Digit Span Forward Span 5.67 (1.15) 6.50 (2.12) 4.50 (0.71) 7.0 (1.41) 

P

OST 

Digit Span Forward Span  5.67 (1.15) 6.0 (1.41) 4.50 (0.71) 8.0 (0.82) 

P

RE 

Digit Span Backward 

Span  

4.67 (1.15) 3.50 (0.71) 4.00 (1.40) 5.25 (0.96) 

P

OST 

Digit Span Backward 

Span  

5.00 (1.00) 3.50 (0.71) 4.00 (1.40) 4.75 (0.97) 

 Learning and Memory     

P

RE 

RBANS Delayed 

Memory Index  

107.33 (13.05) 89.50 (6.36) 84.00 (18.39) 99.50 (18.12) 

P

OST 

RBANS Delayed 

Memory Index 

110.50 (14.85) 91.00 (4.24) 83.00 (16.97) 87.25 (24.66) 

P

RE 

CVLT-II List Trials 1-5 

T-score 

57.67 (16.44) 39.50 (3.54) 43.00 (22.63) 56.75 (14.43) 

P

OST 

CVLT-II List Trials 1-5 

T-score 

59.00 (18.74) 44.00 (1.41) 36.00 (7.07) 64.50 (15.02) 

P

RE 

CVLT-II Short Delay 

Recall Z-score  

0.50 (1.80) -2.00 (1.41) -1.00 (2.12) 0.13 (1.38) 

P

OST 

CVLT-II Short Delay 

Recall Z-score 

0.33 (2.08) -1.75 (1.77) -2.5 (0.71) 0.25 (0.96) 

P

RE 

CVLT-II Long-Delay 

Free Recall (Z) 

0.17 (1.31) -1.50 (0.00) -1.25 (1.77) 0.00 (1.47) 

P

OST 

CVLT-II Long-Delay 

Free Recall (Z) 

0.67 (0.76) -2.00 (1.41) -2.00 (0.71) 0.38 (1.25) 

P

RE 

CVLT-II Discriminability 0.50 (1.32) -0.25 (0.35) -0.75 (0.35) -0.13 (1.11) 

P

OST 

CVLT-II Discriminability 0.83 (0.76) -0.75 (1.06) -0.75 (0.35) 0.63 (0.48) 

 Visuospatial Skills      

P

RE 

RBANS Visuospatial 

Const. Index  

100.33 (14.01) 75 (4.24) 69.00 (4.24) 113.25 (9.39) 

P

OST 

RBANS Visuospatial 

Const. Index  

94.33 (15.57) 97.00 (7.07) 85.50 (2.12) 106.25 (9.88) 
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 Executive Functioning      

P

RE 

CWI3 Baseline 9.67 (0.57) 8.50 (2.12) 9.00 (2.83) 11.25 (3.40) 

P

OST 

CWI3 Final 9.67 (0.57) 9.50 (4.95) 8.50 (2.12) 10.25 (4.57) 

P

RE 

CWI4 Baseline 10.67 (2.08) 8.50 (3.54) 9.50 (2.12) 11.00 (3.74) 

P

OST 

CWI4 Final 11.33 (1.53) 10.50 (3.54) 8.50 (2.12) 12.00 (2.71) 

P

RE 

Trail Making 4vs.5 

Baseline 

8.67 (4.16) 4.50 (2.12) 10.00 (0) 9.50 (1.29) 

P

OST 

Trail Making 4vs.5 Final 10.00 (1.00) 5.50 (3.54) 5.50 (3.53) 10.00 (1.41) 

  

3.2.6 Structural Brain Outcomes 

Intervention-related change in brain structure was examined using two methods: 1) 

voxel-based morphometry, a semi-automated probabilistic method used to obtain voxelwise 

volume estimates of gray matter across the whole-brain and  1) a vertex-based automated 

segmentation method used to calculate regional gray matter thickness and surface area, in 

addition to volume in mm
3
. For the purposes of this study, only gray matter thickness and 

volume were used in analyses.  

3.2.6.1 Voxel-based morphometry 

 

After obtaining partial volume estimates of gray matter using voxel based morphometry, 

intervention effects were examined using 1) a repeated measures ANOVA, 2) visual comparison 

of group differences at baseline and post-intervention using independent-samples t-tests at each 

time point, and 3) two sets of correlation analyses examining the association of change in fitness 

and change in depression severity with change in voxelwise volume estimates across the whole-
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brain. Significant change in voxelwise estimates of volume over the course of the 12-week 

intervention was not observed across all participants (i.e., main effect of time), nor was a 

significant group x time interaction observed in predicting volumetric changes, after correcting 

for multiple comparisons using FSL’s threshold free cluster enhancement method (TFCE). 

Significant group differences in gray matter volume estimates were not observed at baseline or 

post-intervention after correction using TFCE. The association between change in fitness and 

change in depression severity with whole-brain voxelwise gray matter volume was also non-

significant after correction using TFCE. However, see Figures X and Y below for raw t-statistic 

maps showing cross-sectional and longitudinal group differences that did not survive correction 

for multiple comparisons. Per these maps, the EX Group  showed a trend toward a greater 

increase in regional gray matter volume in the medial orbitofrontal cortex and motor cortex 

relative to the MED group, whereas the MED group showed a trend toward a greater increase in 

right insular, caudate, and medial occipital cortex volume relative to the EX group, although not 

statistically significant. An examination of group differences in gray matter volume estimates 

post-intervention revealed that the EX group trended toward greater regional volume relative to 

the MED group post-intervention in the prefrontal cortex, posterior cingulate cortex, and parieto-

occipital junction while group differences in these regions were not observed at baseline; 

however, this association did not survive correction for multiple comparisons. The MED group 

trended toward greater volume in the subgenual cingulate cortex at baseline (non-significant after 

correction) but did not show notable trends towards greater regional volume relative to the EX 

group post-intervention.   
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Figure 8. Uncorrected T-statistic maps thresholded at p<0.05 illustrating regions in which  

intervention groups differed in volumetric change from baseline to post-intervention (based on group  

x time interaction in repeated measures ANOVA). 

Red=EX group showed greater volumetric increase over time relative to MED group                     

Blue= MED group showed greater volumetric increase over time relative to EX group 

 

 

Figure 9. Uncorrected T-statistic maps thresholded at p<0.05 illustrating regions in which  EX group  

> MED group in voxelwise gray matter volume estimates across the whole-brain 

Blue= EX group > MED group at baseline  

Red=EX group > MED group post-intervention 
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Figure 10. Uncorrected T-statistic maps thresholded at p<0.05 illustrating regions in which MED  

group > EX group in voxelwise gray matter volume estimates across the whole-brain 

Blue= MED group > EX group at baseline  

Red= MED group > EX group post-intervention 

3.2.6.2 Vertex-based Structural Brain Outcomes 

 

Based on apriori hypotheses regarding regions associated with depression, regions in the 

medial prefrontal cortex, anterior cingulate cortex, hippocampal/parahippocampal regions, 

amygdala, and dorsal and ventral striatum were examined in the vertex-based structural data 

analyses. First, the association between depression severity at baseline at regional gray matter 

thickness and volume in mm
3
 in regions within the broad areas listed above was examined. 

Depression severity was negatively associated with gray matter thickness in the following 

regions at baseline after adjusting for age, sex, education, and intracranial volume: 1) right 

medial orbitofrontal cortex (OFC) (Beta = -0.98, p=0.016, r
2
=0.72) right rostral anterior 

cingulate cortex (ACC) (Beta = -0.71, p=0.023, r
2
=0.38), and 3) right parahippocampal gyrus 

(PHCG) (Beta = -0.88, p=0.003, r
2
=0.59) (See Figures 11-17). These associations remained 

significant after adjusting for duration of current depressive episode and age of onset of first 

depressive episode in sensitivity analyses. Further analyses related to intervention-related 

morphological brain changes were limited to these regions. Generalized treatment-related 
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changes in gray matter thickness of these regions were examined using paired-samples t-tests 

across all participants, and emerged non-significant for all three regions (R medial OFC: t=-

0.924 p=0.379; R PHCG: t= 0.882 p= 0.401; R rostral ACC: t=-0.501 p=0.628). Treatment group 

differences in change in gray matter thickness of the R medial OFC, R PHCG, and R rostral 

ACC were also non-significant, likely due to significant within-group variability. Although not 

statistically significant, the EX group showed an increase in mean gray matter thickness of the R 

medial OFC and R rostral ACC, whereas the MED group showed a decrease in mean thickness 

of these regions; further, the EX group showed no change in gray matter thickness of the R 

PHCG whereas the MED group showed a decrease in thickness. Change in depressive symptoms 

was not associated with change in gray matter thickness of the R medial OFC, R PHCG, or the R 

rostral ACC (p > 0.05). However, greater increases in fitness were marginally associated with 

greater increases in R medial OFC thickness (r=0.57, p=0.08). Although not statistically 

significant, greater increases in fitness showed a similar trend towards an association with 

increased thickness of the R rostral ACC thickness (r=0.53, p=0.11), and R PHCG (r=0.49 

p=0.15). Additionally, 60% of the EX group relative to 20% of the MED group showed an 

increase in R PHCG thickness, and 80% of the EX group relative to the 40% of the MED group 

showed an increase in R rostral ACC thickness (See Figures 12 and 14).  
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Figure 11 Association between Baseline Depression Severity and R rostral ACC cortical thickness 

Figure 12 Association between % Change in Fitness and % Change in R rostral ACC cortical  

thickness 

  

Figure 13 Association between Baseline Depression Severity and R parahippocampal gyrus cortical  

thickness 

Figure 14 Association between % Change in Fitness and % Change in R parahippocampal gyrus  

cortical thickness 

  

Figure 15 Association between Baseline Depression Severity and R medial OFC cortical thickness 

Figure 16 Association between % Change in Fitness and % Change in R medial OFC cortical thickness 
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Figure 17. Group Differences in Mean Change in Cortical Thickness from Baseline to Post- 

Intervention in Regions in with Cortical Thickness was Negatively Associated with Depression  

Severity at Baseline 

3.2.6.3 Brain-Behavior Relationships 

Exploratory analyses were conducted examining whether increase in gray matter 

thickness in the R medial OFC, R PHCG, and R rostral ACC was associated with improvement 

on measures of cognitive function. Increase in thickness of the R medial OFC was associated 

with improved performance on measures of verbal learning and memory (CVLT List Learning: 

r= 0.713 p=0.03; CVLT Long-Delay Free Recall: r=0.739 p=0.02), and was marginally 

associated with improved performance on a measure of set-shifting (D-KEFS Color Word 

Interference Test Condition 4: r=0.61 p=0.08). Increase in thickness of the R rostral ACC was 
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also associated with improvement in verbal learning (CVLT List Learning: r=0.67 p=0.048) (See 

Figures 18-21).  

  

Figure 18 Association between %Change in cortical thickness in R medial OFC and %Change in  

Verbal Learning  

Figure 19 Association between %Change in cortical thickness in R medial OFC and %Change in  

Verbal Memory 

 

  

Figure 20 Association between %Change in cortical thickness in R medial OFC and %Change in                               

Executive Functioning (LEFT) 

Figure 21 Association between %Change in cortical thickness in R rostral ACC and %Change in                               

Verbal Learning (RIGHT) 
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3.2.6.4 Hippocampal Subfield Outcomes 

 

Using paired t-tests to examine group differences in change in volume of hippocampal 

subfields, no significant volumetric changes were observed for subfields in the left hippocampus. 

An examination of group differences in volumetric changes in the right hippocampus across 

older and younger adults revealed a volumetric decline in the right whole hippocampus (t= 

6.324, p=0.003), parasubiculum (t= 3.178, p=0.034), and the hippocampus-amygdala transition 

area (t= 3.071, p=0.037) in the MED group but not in the EX group (all ps > 0.10). The EX 

group exhibited a volumetric decline in the right CA1 subfield of the hippocampus (t= 4.135, 

p=0.014). In subgroup analyses of OA and YA separately, the YA MED group showed an 

increase in subiculum volume (t= -37.71, p=0.001) whereas the OA EX group showed a decline 

in subiculum volume (t=27.159, p= 0.023). The YA EX group showed a volumetric decline in 

the granule cell layer of the dentate gyrus (t= 4.747, p=0.042) and the CA4 (t=4.610, p=0.044) 

(See Tables 6 and 7).   
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Table 8. Left Hippocampal Subfield Volumes in mm
3 

  MEDICATION ONLY 

 

MEDICATION+EXERCISE 

 

LEFT 

HIPPOCAMPAL 

SUBFIELDS 

Older (N=2) Younger (N=3) Older (N=2)  Younger (N=3) 

WHOLE HIPPOCAMPUS         

BASELINE 3259(173) 2491(876) 3253(606) 3084(61) 

FOLLOW-UP 3262(302) 3001(535) 2600(1461) 3139(497) 

SUBICULUM         

BASELINE 448(31) 314(108) 410(92) 355(73) 

FOLLOW-UP 457(75) 388(69) 323(207) 386(57) 

PRESUBICULUM         

BASELINE 312(39) 242(97) 281(62) 279(48) 

FOLLOW-UP 315(55) 293(65) 216(117) 313(37) 

PARASUBICULU

M 

        

BASELINE 58(1) 51(26) 57(5) 59(16) 

FOLLOW-UP 63(.03) 63(23) 43(22) 64(9) 

GRANULE CELL LAYER 

OF DENTATE GYRUS 

        

BASELINE 263(3) 218(23) 277(55) 255(51) 

FOLLOW-UP 264(8) 258(55) 235(130) 257(39) 

CA1         

BASELINE 614(84) 443(153) 622(88)              548(144) 

FOLLOW-UP 614(84) 538(87) 475(253)              553(105) 

CA3         

BASELINE 167(6) 145(39) 206(38) 178(42) 

FOLLOW-UP 168(14) 170(30) 175(100) 176(32) 

CA4         

BASELINE 229(4) 183(52) 237(47) 217(45) 

FOLLOW-UP 228(8) 216(46) 204(114) 216(39) 

HIPPOCAMPAL 

TAIL 

        

BASELINE 502(36) 368(166) 478(74)              543(112) 

FOLLOW-UP 478(1) 431(84) 392(194)              508(137) 

HIPPOCAMPUS-

AMYGDALA 

TRANSITION AREA 

        

BASELINE 48(1) 45(19) 49(26) 60(23) 

FOLLOW-UP 53(2) 59(12) 41(35) 57(10) 

HIPPOCAMPAL 

FISSURE 
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BASELINE 186(57) 138(54) 169(5) 144(4) 

FOLLOW-UP 198(31) 149(23) 132(60) 145(50) 

FIMBRIA         

BASELINE 79(1) 72(27) 81(17) 92(20) 

FOLLOW-UP 86(4) 84(20) 56(38) 93(16) 

MOLECULAR 

LAYER 

        

BASELINE 540(37) 409(136) 555(103)            498(109) 

FOLLOW-UP 539(65) 499(89) 439(252)            515(78) 

 

Table 9. Right Hippocampal Subfield Volumes in mm
3 

  MEDICATION 

ONLY 

 

MEDICATION+EXERCISE 

RIGHT 

HIPPOCAMPAL 

SUBFIELDS 

Older 

(N=2) 

Younger (N=3)  Older (N=2) Younger (N=3) 

WHOLE 

HIPPOCAMPUS 

        

BASELINE 3320(80) 3161(375) 3450(233) 3108(384) 

FOLLOW-UP 3248(61) 3090(388) 3435(390) 2901(420) 

SUBICULUM         

BASELINE 448(16) 388(46) 408(62) 364(52) 

FOLLOW-UP 448(19) 400(46) 400(63) 357(54) 

PRESUBICULU

M 

        

BASELINE 285(22) 254(33) 280(39) 281(15) 

FOLLOW-UP 267(27) 256(31) 285(55) 249(15) 

PARASUBICUL

UM 

        

BASELINE 55(12) 65(16) 54(8) 66(15) 

FOLLOW-UP 52(11) 62(18) 51(2) 60(7) 

GRANULE CELL LAYER             

OF DENTATE GYRUS 

        

BASELINE 265(8) 265(33) 297(24) 264(37) 

FOLLOW-UP 270(17) 249(42) 299(50) 250(35) 

CA1         

BASELINE 633(33) 610(54) 704(9) 567(106) 

FOLLOW-UP 606(19) 605(60) 690(1) 541(94) 

CA3         

BASELINE 183(15) 184(17) 197(22) 184(34) 

FOLLOW-UP 188(19) 170(21) 194(51) 172(31) 

CA4         

BASELINE 226(3) 225(26) 252(15) 225(31) 

FOLLOW-UP 231(10) 211(34) 255(43) 211(29) 
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HIPPOCAMPAL 

TAIL 

        

BASELINE 538(16) 497(74) 555(27) 495(54) 

FOLLOW-UP 524(7) 475(46) 571(42) 427(120) 

HIPPOCAMPUS

-AMYGDALA 

TRANSITION AREA 

        

BASELINE 61(3) 66(7) 64(3) 63(11) 

FOLLOW-UP 54(5) 63(9) 61(4) 57(5) 

HIPPOCAMPAL 

FISSURE 

        

BASELINE 195(51) 133(21) 168(25) 142(11) 

FOLLOW-UP 193(63) 143(10) 171(8) 126(37) 

FIMBRIA         

BASELINE 87(18) 85(32) 66(9) 92(22) 

FOLLOW-UP 77(8) 87(32) 60(2) 97(19) 

MOLECULAR 

LAYER 

        

BASELINE 539(2) 523(57) 571(55) 507(70) 

FOLLOW-UP 530(5) 513(65) 569(82) 481(67) 

3.2.7 Hippocampal Functional Connectivity Outcomes 

Given that a repeated measures ANOVA was unable to be conducted on this sample, 

independent samples t-tests were conducted to examine group differences in hippocampal 

functional connectivity. At baseline, the EX group showed greater right hippocampal 

connectivity with the left inferior frontal gyrus, precentral gyrus, and posterior cingulate cortex 

relative to the MED group (See Table 8). Post-intervention, the EX group exhibited greater right 

hippocampal functional connectivity relative to the MED group with four broad regions for 

which group differences were not observed at baseline: 1) R medial temporal lobe, central 

operculum, and insula 2) R inferior temporal lobe 3) R precuneus, and 4) R supramarginal gyrus 

and superior temporal gyrus and (See Figure 22). Paired t-tests revealed that functional 

connectivity of the right hippocampus with the R medial temporal lobe and the R supramarginal 

gyrus significantly increased in the EX group over time (MTL: t=-6.325, p=0.003; SMG: t= -
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4.276, p=0.013).  There was a trend towards an increase in right hippocampal connectivity with 

the R precuneus over time, although this did not reach statistical significance (t=-2.02, p=0.11). 

The MED group also showed a significant increase over time in R hippocampal functional 

connectivity with the supramarginal gyrus (t=-3.031, p=0.039), although to a lesser extent than 

the EX group. An exploratory analysis of associations between depression severity and 

hippocampal connectivity at baseline revealed lower hippocampal functional connectivity with a 

broad range of prefrontal and temporal regions at higher levels of depression severity. 

Interestingly, there was significant overlap between regions showing lower hippocampal 

functional connectivity at higher levels of depression severity at baseline and regions with which 

the exercise group showed an increase in hippocampal functional connectivity from baseline to 

post-intervention.   

Table 10. Hippocampal Functional Connectivity Results 

Region Number of 

Voxels 

COG X COG Y COG Z 

Post-Intervention EX > MED 

R Hippocampal Connectivity 

    

R Middle Temporal Gyrus/Central 

Operculum/Insula 

425 48 -18 20 

R Inferior temporal gyrus 345 48 -58 -12 

R Precuneus 240 2 -56 66 

R Supramarginal Gyrus/Superior Temporal 

Cortex 

949 58 -30 12 

R Cerebellum 310 28 -54 -28 

Baseline EX > MED R Hippocampal Connectivity     

L Inferior Frontal Gyrus/Precentral 

Gyrus/Posterior Cingulate 

473 4 -14 44 

Baseline Depression Severity Negative Association 

with L Hippocampal Connectivity 
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R Middle Temporal Gyrus 755 54 -14 -12 

R Frontal Pole 881 40 38 16 

R Middle Frontal Gyrus 541 32 16 46 

L Heschl’s Gyrus 337 -48 -20 8 

R Superior Frontal Gyrus 267 10 22 52 

R Lateral Orbitofrontal Cortex 249 48 36 -12 

  

 

Figure 22 Post-Intervention Group Differences in Right Hippocampal Functional Connectivity  

RED: EX>MED HC Connectivity Post-Intervention; BLUE: EX>MED HC Connectivity at Baseline 

3.3 EXPERIMENT 1: CONCLUSIONS 

Results from this 12-week double-blind randomized controlled pilot intervention study 

examining the benefits of adding aerobic exercise to pharmaceutical treatment for Major 

Depression in older and younger adults revealed several exercise-related benefits for depression, 

cognitive function, and brain health outcomes. There was disproportionate attrition in the MED 

group relative to the EX group, but intervention adherence was high across groups in those who 
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completed the intervention (N=11). Notably, exercise intervention adherence was 91%, which 

was higher than typical supervised exercise adherence rates reported in the literature (Gujral et 

al., 2017b). With regard to intervention fidelity, participants in the EX group achieved a mean 

increase of ~4% in fitness, whereas the MED group showed a mean decline of ~8% in fitness.  

Group differences in fitness were non-significant post-intervention due to within group 

variability. Specifically, intervention-related change in fitness varied by age group, such that the 

EX OA group showed a mean decline of ~6% in fitness, while the EX YA group showed a mean 

increase of ~8% in fitness. The extent of fitness-related improvement observed in the EX YA 

group in this intervention is comparable, if not higher than rates of improvement in fitness levels 

reported in other aerobic exercise interventions of similar durations (Firth et al., 2018).  

3.3.1 Depression Outcomes 

Generalized medication treatment outcomes included 73% remission from depression 

across all participants. We hypothesized that those randomized to the exercise condition would 

demonstrate a more rapid and greater extent of decline in depressive symptoms relative to 

participants receiving medication treatment alone. These predictions are based on the animal 

literature demonstrating overlapping neuromolecular pathways between the antidepressant 

effects of medication and exercise (e.g., reduction in systemic inflammatory signaling, increased 

expression of neurotrophic factors, altering kinetics of neurotransmitter systems) (Phillips, 

2017). Our hypotheses were partially confirmed, such that both treatment groups showed a 

similar trajectory of decline in depressive symptoms, but the EX group exhibited a trend towards 

more rapid and stable decline in depressive symptoms relative to the MED group (although not 

statistically significant). We were unable to test whether augmentation with exercise would result 
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in “magnified” antidepressant effects. The use of medication titration for managing persistence 

of depressive symptoms to promote remission for all participants in treatment precluded a clear 

examination of group differences in the “extent” of decline in depressive symptoms. The ability 

to detect group differences in trajectories of change in depressive symptoms was further limited 

by an outlier in the EX group, whose depressive symptoms fluctuated dramatically during the 

course of the study and whose trajectory of symptom changes could have significantly biased 

group differences observed in this small sample. Further, intervention group differences in 

depressive symptom trajectories was likely influenced by age-group differences, such that OA 

exhibited a slower decline in depression relative to YA (across treatment groups).  

3.3.2 Cognitive Outcomes 

With regard to exercise-related cognitive benefits, different patterns of cognitive 

performance were observed for OA and YA. The OA EX group performed worse than the OA 

MED group for memory and language functioning post-intervention. Further, OA across 

treatment groups performed worse than YA on measures of attention and processing speed, 

consistent with general age-related cognitive decline. It is unclear whether the pattern of 

cognitive changes observed in the OA EX group is generalizable beyond this sample; 

nonetheless, the divergent findings between age groups highlights the persistence of cognitive 

impairment even after remission from depression in older adults but not in younger adults 

(Koenig et al., 2015).          

 Among YA, both treatment groups showed an improvement in attention and learning, 

which is consistent with cognitive changes commonly observed after remission from depression 

(Greer et al., 2015) After completion of the intervention, the YA EX group performed better than 
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the YA MED group on measures of attention, learning, and memory, while these differences in 

cognitive performance were not present at baseline. These results suggest that the YA EX 

showed greater improvement on measures of attention and learning relative to the YA MED 

group. Other evidence pointing to the potential cognitive benefits of exercise engagement (or 

fitness-related improvement) includes an association between improvement in fitness and 

improvement in performance on a task assessing perceptual inhibition (i.e., an aspect of 

executive functioning), observed across age groups. This association between change in fitness 

and change in cognitive performance did not clearly translate to intervention group differences, 

given that the OA EX group did not show improvement in fitness and 40% of the participants in 

the MED group did show improvement in fitness.  

3.3.3 Structural Brain Outcomes 

In addition to examining depression and cognitive outcomes, a key innovation in this 

pilot study was the ability to explore neural mechanisms underlying the antidepressant effects of 

exercise as an augmentation to medication treatment. The availability of high-resolution 

structural MRI data acquired from the 7T MR scanner allowed for a rich exploration of exercise-

related changes in brain morphology using multiple methods to leverage several morphological 

indices, including 1) probabilistic voxelwise volume estimates across the whole-brain, 2) 

regional volume estimates (in mm
3
) in subcortical regions in which reduced volume has been 

commonly found in depression (i.e., whole hippocampus and hippocampal subfields, amygdala, 

dorsal and ventral striatum), and 3) vertex-based estimates of gray matter thickness in cortical 

regions showing structural abnormalities in depression (i.e., PFC, ACC, parahippocampal gyrus). 

An examination of group differences in change in voxelwise estimates of gray matter volume 
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across the whole brain revealed a trend towards a greater increase in regional gray matter volume 

in the medial OFC and motor cortex in the EX group relative to the MED group, although this 

was not statistically significant after correction for multiple comparisons.    

 We predicted that favorable morphological changes (e.g., volumetric increases) related to 

exercise may be observed in regions showing depression-related structural abnormalities (e.g., 

volumetric reductions). The rationale for this prediction was based on the assumption that 1) 

regions that are sensitive to the effects of depression are likely to demonstrate plasticity in the 

context of exercise training, due to the opposing neuromolecular cascades associated with 

depression and exercise (), and 2) regions showing volumetric reductions due to any cause have 

greater ‘room’ for growth or improvement. Our prediction of favorable exercise-related regional 

morphological changes was in part tempered by considering that the duration of our study (i.e., 

12-weeks) was at least 50% shorter than the duration of  most mechanistic exercise interventions 

demonstrating volumetric brain changes in non-depressed adults (Firth et al., 2018). However, by 

testing exercise-related changes in multiple markers of brain morphology, we observed several 

interesting patterns of morphological changes that may be related to exercise.   

 A preliminary exploration of group differences in change in hippocampal volume 

estimates (in mm3) revealed a volumetric decline in the right whole hippocampus and anterior 

hippocampal subfields (i.e., parasubiculum and hippocampus amygdala transition area) in the 

MED group but not in the EX group, while the EX group showed a volumetric decline in the 

CA1 subfield of the right hippocampus. There was no evidence of additional subcortical 

volumetric changes in regions associated with depression in either treatment group. The meaning 

of group differences observed in volumetric changes in hippocampal subfields remains 

ambiguous, given that treatment-related volume loss in either group would not be expected. It is 
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possible that exercise may be protective against hippocampal volume loss when compared to 

treatment with medication alone for depression, although these findings must be interpreted with 

caution due to the limited sample size and the novel methodological approach used to segment 

the hippocampus in this study that has not been well validated.     

 An examination of exercise-related changes in cortical thickness revealed that in regions 

showing reductions in cortical thickness with greater depression severity at baseline (i.e., R 

medial OFC, rostral ACC, parahippocampal gyrus) revealed a trend such that improvement in 

fitness was associated with an increase in cortical thickness over the course of the intervention. 

These findings are particularly notable, because the regions in which reduction in cortical 

thickness was linked to greater depression severity have consistently shown structural 

abnormalities in depression in the meta-analytic literature (Gujral et al., 2017).  Further, the 

selective association between increase in cortical thickness in these regions and improvement in 

fitness, but not decline in depression severity, suggests that change in fitness may mediate these 

structural brain changes, although this was not formally tested. These results also highlight the 

utility of exploring several markers of brain morphology, given that regional estimates of cortical 

thickness (but not volume estimates in the same regions) explained a remarkable amount of 

variance in depressive symptom severity at baseline (medial OFC: 72%, PHC: 59%, and rostral 

ACC: 38%) and change in cortical thickness in these regions shared substantial variance with 

change in fitness (>20%) in this study.  

3.3.4 Brain-Behavior Relationships 

The utility of understanding intervention-related changes in brain outcomes stems from 

the assumption that brain-related changes underlie behavioral changes. Even in this small 
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sample, changes in brain morphology were associated with cognitive changes such that an 

increase in cortical thickness in the right medial OFC was associated with improved performance 

for learning and memory and executive functioning (marginal). Additionally, an increase in 

cortical thickness in the right rostral ACC was associated with improved performance for verbal 

learning. Interpreted in the context of previously reported findings that these regions show 

reductions in cortical thickness with greater depression severity and are sensitive to 

improvements in fitness, these results suggest that in regions affected by depression, fitness-

related increases in cortical thickness may translate to improvements in cognitive functioning, 

although this was not formally tested in this study.  

3.3.5 Hippocampal Functional Connectivity Outcomes 

Concerning exercise-related changes in functional brain outcomes, a hippocampal seed-

based approach was used in these preliminary analyses, given the sensitivity of the hippocampus 

to exercise-related changes (e.g., exercise-induced volumetric increases in the hippocampus).  

Briefly, the EX group, relative to the MED group, exhibited greater right hippocampal 

connectivity with right-lateralized default-mode network regions post-intervention, namely with 

the precuneus, and superior and inferior temporal gyri, and supramarginal gyrus. These group 

differences were not present at baseline.  Exploration of group differences in change in 

connectivity patterns in these regions revealed that hippocampal functional connectivity 

selectively increased with medial and superior temporal regions in the EX group but not the 

MED group over the course of the intervention. Interestingly, greater depression severity at 

baseline was associated with negative hippocampal functional connectivity with medial temporal 

and superior temporal regions. Taken together, these findings may point to exercise-related 
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“normalization” of hippocampal connectivity patterns with DMN regions in the context of 

depression, although this is speculative given the small sample size of this study. Nonetheless, 

these results are generally consistent with meta-analytic evidence of the aerobic-exercise related 

structural and functional changes in DMN regions (Li et al., 2017). In a meta-analysis of 14 

prospective controlled studies (N=631), results revealed aerobic exercise-related increases in 

functional connectivity within the hippocampus, ACC, and PCC, as well as reduced atrophy in 

the medial temporal lobe and ACC.        

 Although increased hippocampal connectivity with DMN regions (rather than with ECN 

regions) was not our initial prediction, these findings are plausible, given that the DMN in 

depression and treatment for depression is still debated within the literature. One medication 

treatment study for depression (i.e., duloxetine) in middle aged adults (N=32) reported an 

increase in DMN connectivity from baseline to post-treatment (Fu et al., 2013). Another 

medication treatment study (i.e., venlafaxine) for late-life depression found treatment related 

increases intra-network coupling (i.e., DMN-MTG) but reduced inter-network coupling (DMN-

IFG) in remitters vs. non-remitters (Karim et al., 2017). The exercise intervention literature in 

older adults suggests that exercise engagement (Voss et al., 2011) and higher fitness levels are 

each independently associated with increased DMN connectivity (Voss et al., 2016). Therefore, 

the current findings can fit with both exercise-related changes observed in non-depressed adults 

and medication treatment-related changes found in functional connectivity. Of note, previous 

functional connectivity studies largely used network-level connectivity measures as opposed to a 

hippocampal seed-based approach as was used in the present study.  
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3.3.6 Limitations 

The availability of a range of valuable neurobiological, clinical, and cognitive data in this 

randomized pilot intervention study allowed for a rich characterization of exercise effects on 

behavioral and brain outcomes; however, the implications of these findings are first and foremost 

limited by the very small sample size. Generalizability of these findings is further complicated 

by the inclusion of polar age groups, with disproportionate enrollment of YA relative to OA, 

which was ultimately counterbalanced by greater attrition among YA relative to OA participants. 

Further, technical difficulties related to the MR scanner resulted in some participants being 

scanned on a 3T MR scanner, which introduced a number of possible neuroimaging-related 

confounds into the results (i.e., strength of magnet, variability in scanner drift, scanning 

parameters), making it difficult to accurately characterize exercise effects on brain outcomes, a 

primary aim of this study.         

 Further, there a number of limitations to the analytic methods used to process 

neuroimaging measures, as automated segmentation tools are subject to several sources of bias.  

A key limitation of voxel-based morphometry is that it does not provide absolute values of 

volume. The hippocampal subfield segmentation tool in Freesurfer version 6.0 is a novel 

segmentation tool and subject to significant error, particularly when using only a T1 image for 

segmentation instead of the combination of a T1 and T2 image. Additionally, exercise effects on 

functional connectivity are subject to several sources of methodological error and are difficult to 

interpret (e.g., state vs. trait effects, lack of clinical specificity). 
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3.3.7 Summary 

Despite these limitations, findings from this 12-week pilot randomized controlled trial 

revealed that adding exercise to antidepressant medication treatment for depression resulted in 

more rapid and stable decline in depressive symptoms relative to medication treatment alone. 

Further, exercise had variable effects for cognitive functioning in younger versus older adults, 

resulting in cognitive benefits in attention and learning in younger but not in older adults. 

Notable effects of exercise on regional brain morphology was evidenced through associations 

found between improvements in fitness and increases in cortical thickness in prefrontal, anterior 

cingulate, and parahippocampal regions, all which showed reductions in cortical thickness with 

greater depression severity prior to the intervention.  Intervention-related increases in cortical 

thickness in medial OFC and rostral ACC were additionally associated with improvements in 

executive functioning and learning and memory performance. Exercise-related changes in 

hippocampal (HC) functional connectivity patterns included increased connectivity with default 

mode network (DMN) regions, which not observed in response to medication treatment alone.  
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4.0  EXPERIMENT 2: PHYSICAL ACTIVITY ASSOCIATIONS WITH DEPRESSIVE 

SYMPTOMS AND COGNITIVE FUNCTION IN OLDER ADULTS WITH MILD 

COGNITIVE IMPAIRMENT 

4.1 EXPERIMENT 2 METHODS 

Data from Experiment 2 were used to test aims 1.2 and 2.2 of this proposal. Specifically, data 

from this study were leveraged to explore the association of objectively-measured daily activity 

levels with depression and cognitive trajectories in the context of a psychotherapy-based 

intervention augmented with exercise aimed to prevent depression and slow progression of 

cognitive decline in older adults with MCI. Intervention group differences in mood and cognitive 

outcomes were not of primary interest in the current study, given that the exercise intervention 

was not well controlled. In fact, participants in the exercise group complained about difficulty 

engaging in exercise, and adherence was not enforced or documented. Rather, it is possible that 

objective measures of physical activity across intervention groups may better capture physical 

activity associations with mood and cognitive outcomes. 

4.1.1 Participants 

Participants were part of the RECALL study (Dyadic Problem-Solving Therapy to 

Prevent MDD in Individuals with Mild Cognitive Impairment and their Caregivers) between 



 93 

2010-2015, a 16-month (4-months + 1 year follow-up) randomized intervention testing the 

effects of PST and PST + Exercise on reducing depressive symptoms and preventing Major 

Depression in older adults with MCI. 94 participants (including patients and caregivers) were 

recruited for the intervention, 11 people withdrew consent prior to the intervention. 75 

participants with MCI completed the intervention and the long-term follow-up visit, of which 18 

participants were accompanied by a caregiver and 47 participants were not accompanied by a 

caregiver.  

4.1.1.1 Inclusion Criteria: 

1. Age > 60 years 

2. New MCI Diagnosis (<1 month) 

3. PHQ-9 Score >2 but <9 

4. Adequate physical and sensory function to undergo neuropsychological assessment 

5. If accompanied by a caregiver, caregiver must have normal cognitive function (3MS 

>80) and meet same psychiatric criteria including PHQ-9 <9 

4.1.1.2 Exclusion Criteria: 

1. CNS neurological disorder 

2. History of Major Depression in the last 5 years 

3. Substance Use Disorder in the last 5 years 

4. Lifetime history of Bipolar Disorder of Schizophrenia 
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4.1.2 Intervention 

Participants were randomized to one of three intervention groups: 1) Enhanced Usual 

Care, 2) 16-weeks of Problem-Solving Therapy (PST), and 3) 16-weeks of Problem-Solving 

Therapy + Exercise (90 minutes per week). Participants randomized to the two PST groups also 

received 2 PST booster sessions over a 12-month follow-up period post-intervention. Physical 

activity levels, depressive symptoms, and cognitive function were assessed at baseline, post-

intervention, and at the 12-month follow-up visit. See Figure 1 for a timeline of the intervention 

and assessment schedule in Experiment 1. 

 

Figure 23. Timeline of Intervention of Assessment Schedule for Experiment 2 

4.1.2.1 Enhanced Usual Care 

16 participants were randomized to this group. These participants underwent all clinical 

and cognitive assessments, as well as physical activity monitoring at the same time-points as 

participants in other groups. This group did not undergo any intervention, but a study psychiatrist 

monitored the mental health treatment of participants in the EUC group throughout the study.  
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4.1.2.2 Problem-Solving Therapy (PST) 

11 participants were randomized to this group. Participants were administered problem-

solving therapy based on the PST manual developed by the Alexopoulos-Arean group (Arean et 

al., 1993; Nezu & Perri, 1989), but modified for those living with cognitive impairments (PST-

cog). The conventional 12-week therapy format was also extended to 16-weeks to allow for skill 

acquisition and repetition given participants’ memory deficits. For those participants 

accompanied by a caregiver, a caregiver-version of PST was administered based on a manual 

developed by Dr. Garand (Garand et al., 2014), but adapted to focus on supporting problem-

solving skills of the participant with MCI rather than the caregiver, to promote maintenance and 

generalization of skills post-intervention. For both MCI participants and caregivers, 8 PST 

sessions (45-60 minutes each), were administered bi-weekly over 16 weeks on an individual 

basis in either the PCP office or home. Experienced research clinicians provided PST under the 

supervision of a licensed clinical psychologist. Booster sessions were also provided to all 

participants receiving PST at 3-months and 9-months post-intervention.  

4.1.2.3 Problem-Solving Therapy + Exercise (PST+EX) 

17 participants were randomized to this group. Participants and caregivers in this group 

were also administered PST as described above, but were additionally asked to engage in 

moderate-intensity aerobic exercise at home 3 times per week. Participants were also provided 

with a stretching band and instructed how to use it for stretching before and after exercise 

sessions. Unfortunately, exercise was only promoted and not enforced, and adherence was not 

documented in this study. As mentioned above, exercise augmentation was an ancillary aim in 

the study design, and therefore not well controlled in this pilot study. Study therapists reported 
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that participants assigned to the PST + Exercise group complained about difficulty maintaining 

an exercise routine. 

4.1.3 Measures: 

Screening measures:  

Structured Clinical Interview for DSM-IV-TR Axis 1 Disorders (SCID-IV): The SCID-

IV is a diagnostic manual including most information that would be diagnostically useful to 

assess the presence of current and past DSM-IV-TR Axis 1 disorders, including mood disorders, 

psychotic disorders, substance use disorders, anxiety disorders, somatoform disorders, and eating 

disorders (First, Spitzer, Gibbon M, & Williams, 2002). The SCID-IV was used to assess the 

following exclusionary criteria while screening participants for enrollment in this study: history 

of a Major Depressive Episode over the last 5 years, history of a substance use disorder over the 

last 5 years, and lifetime history of Bipolar Disorder and Schizophrenia.  

Modified Mini-Mental State Examination (3MS): The 3MS is a widely used brief 

screening tool used to assess dementia. A score of < 80 on the 3MS is used as the cut-off to 

assess probable dementia (Teng & Chui, 1987). This measure was used to screen and exclude 

potential participants who may meet criteria for dementia.   

Primary Measures 

Physical Activity (Aims 1.2 & 2.2) 

Physical activity levels were assessed using a Sensewear physical activity-monitoring 

device over a period of 1-week at 3 time points during the study: baseline (N=62), post-

intervention (N=48), and 12-month follow-up (N=44). This device is worn on the upper left arm 
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by the triceps and records body temperature, movement, energy expenditure, and sleep 

efficiency. Participants were asked to wear the device for a period of 1 week except while 

showering or swimming. Physical activity measures collected using this device were processed 

using BodyMedia SenseWear software. 

 In highly sedentary samples, such as older adults with depression and MCI, there is no 

gold standard dose of physical activity engagement due to limited variability in activity levels 

and peak activity levels that typically fall below the threshold for ‘moderate-intensity activity’, 

as defined by American College of Sports Medicine and Center for Disease Control and 

Prevention Guidelines (i.e., 3.0 to 6.0 METs). Therefore, physical activity levels were examined 

in multiple ways in the present study (See Table XX): traditional indicators of physical activity 

and rest activity rhythms (i.e., markers of stability and variability in activity levels within and 

across days that device is worn).  

Examination of rest-activity rhythms (RARs) may be a particularly valuable approach for 

detecting clinically meaningful variability in activity levels in older adults with MCI and 

depressive symptoms. Markers of RARs harness and combine measures of sleep and physical 

activity, both of which are critical for maintaining mental health and cognitive and brain health, 

particularly in late life. Moreover, disruptions in RARs have been previously applied to detecting 

early signs of depression and preventing depression in late-life (Smagula, 2015, Smagula et al., 

2016), and have also been linked to age-related cognitive decline (Oosterman et al., 2009), 

preclinical Alzheimer’s Disease (Musiek et al., 2018), elevated risk for MCI and dementia 

(Tranah et al., 2011), and poorer functional status and quality of life among individuals with 

dementia (Carvalho-Bos et al., 2007) .  

 



 98 

Table 11.  Summary of Physical Activity Measures used in Experiment 2 

Physical Activity Measures 

Average Daily Active Energy Expenditure (EE) 

Average Daily metabolic equivalent (METs) 

Average Daily Minutes of Physical Activity  

Average Daily Number of Steps 

Physical Activity Composite Score (Std. Avg. of: active EE, METs, min of PA, Steps)  

IntraDaily Variability (IV)/Fragmentation of Rest-Activity Rhythms (IV) 

Interdaily Stability (IS) of Rest-Activity Rhythms (IS) 

Relative Amplitude (RA) of Rest-Activity Rhythms: normalized diff. between most 

active 10 hours and least active 5 hours (uninterrupted) within a day 

Depressive Symptoms (Aim 1.2) 

Depressive symptoms were assessed using the 9-item Patient Health Questionnaire 

(PHQ-9) (Kroenke, Spitzer, Williams, & Lowe, 2010) at baseline, post-intervention, and the 12-

month follow-up visit. This is a brief screening tool used to assess severity of depressive 

symptoms. Given that this study was focused on subclinical levels of depression, participants 

scoring ≥2 but < 9 on the PHQ-9 were eligible to participate. The mean severity of depressive 

symptoms at baseline for all MCI participants was 6.05 (2.81). 

Cognitive Function (Aim 2.2) 

Cognitive functioning was assessed using two primary measures. These measures 

included the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) 

(Randolph, Tierney, Mohr, & Chase, 1998) and two subtests from the Delis-Kaplan Executive 

Function System (D-KEFS) (Delis, Kramer, Kaplan, & Holdnack, 2004) assessment: the Trail 

Making Test and the Color-Word Interference Test. Cognitive domains assessed included 

attention and processing speed, executive function, memory, visuospatial function, and verbal 
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fluency. All cognitive tasks and respective domains that will be included in the current study are 

listed in Table 10 below. 

Attention and Processing Speed 

Basic attention was assessed by the RBANS Digit Span subtest (forward span), an 

auditory digit repetition task. Attention and psychomotor speed (processing speed) was assessed 

using the RBANS Coding task, a speeded task in which participants were asked to match digits 

to symbols. Participants’ performance on these two tests was combined to create an Attention 

Index score, which was used in data analyses, in addition to individual cognitive tasks.  

Executive Function 

Two primary executive functions were assessed in this study: response inhibition and set-

shifting ability. Response inhibition was assessed using condition 3 of the DKEFS Color Word 

Interference Task, in which participants were asked to inhibit the automatic dominant response 

of reading while naming colors aloud. Set-shifting ability was assessed using two tasks; first, 

participants were asked to switch between reading words and inhibiting the automatic reading 

response to name colors on condition 4 of the DKEFS Color Word Interference Task. Second, 

participants were asked to draw a line while switching between connecting numbers and letters 

in a sequential order on condition 4 of the DKEFS Trail-Making Task.  

Memory 

Delayed verbal memory was assessed using the RBANS word-list recall and recognition 

tasks and RBANS story-recall task. In these tasks, participants are asked to freely recall words 

from a 10-word list learned 20-minutes earlier, recognize words from that 10-word list out of 20 

of words, and freely recall a 2-sentence story that they learned 20-minutes earlier, respectively. 
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Delayed nonverbal memory was assessed by asking participants to reconstruct a geometric figure 

from memory that they copied 20-minutes earlier. Participants’ performance on these 4 measures 

were combined using RBANS age-based norms to create a Delayed Memory Index score, which 

was used in data analyses, in addition to the individual cognitive tasks.  

Visuospatial Function 

Visuospatial function was assessed using two tasks. The RBANS Figure Copy subtest, in 

which participants were asked to copy a complex geometric figure, assesses visuospatial 

constructional ability. The RBANS line orientation task, in which participants were asked to 

determine the spatial orientation of line pairs, assesses spatial perception and orientation. 

Participants’ performance on these two tasks were combined using RBANS age-based norms to 

create a Visuospatial Function Index, which were used in data analyses, in addition to individual 

subtest scores.  
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Table 12. Summary of cognitive measures and domains assessed in Experiment 2 

4.1.4 Data Analysis: 

Very similar to the first study, Repeated Measures ANOVA was used to examine changes 

in PA/RAR indices, depressive symptoms, and performance on cognitive measures, covarying 

for age, sex, education, and race, as appropriate. Further, t-tests were additionally used to test the 

presence of post-intervention group differences in depressive symptoms/cognitive function that 

were not present at baseline. If so, group differences at baseline were examined.  Sensitivity 

analyses using regression models were conducted to examine the association of change in fitness 

and levels with change in depressive symptoms and change in cognitive performance.   

Experiment 2 

Cognitive Domains Cognitive Measures 

Attention &  

Processing Speed 

RBANS Attention Index 

RBANS Digit Span Forward Subtest 

RBANS Coding Subtest 

 

Executive Function DKEFS Color-Word Interference Conditions  3 & 4 

DKEFS Trail Making Test Condition 4 (Set-Shifting) 

Memory RBANS Delayed Memory Index 

RBANS List Recall  

Visuospatial Function RBANS Figure Copy Subtest 

RBANS Line Orientation Subtest 

RBANS Modified Visuospatial Constructional Index 

Language Skills RBANS Language Index 
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4.1.5 Predictions  

1) Cross-Sectional Associations between PA/RARs and Depression/Cognition 

Greater amounts of PA, lower intradaily variability in RARs, and greater interdaily 

stability in RARs at baseline would be negatively associated with depression severity and 

positively associated with global cognitive functioning, executive functioning, and 

learning and memory at baseline in older adults with MCI and depression symptoms.   

 

2) Longitudinal Associations between PA and Change in Depression/Cognition  

A. Greater amounts of PA, lower intradaily variability in RARs, and greater interdaily 

stability in RARs at baseline would predict greater reduction in depression severity and 

improvement in cognitive functioning from pre- to post-intervention in older adults with 

MCI and depression symptoms.  

 

B. Greater amounts of PA, lower intradaily variability in RARs, and greater interdaily 

stability in RARs at baseline would predict greater improvement in cognitive functioning 

(i.e., less decline) from baseline to the 12-month follow-up in older adults with MCI and 

depression symptoms.   

 

3) Covariance of PA with Depression and Cognition  

A. Greater increases in PA, reductions in intradaily variability in RARs, and increases in 

interdaily stability in RARs from pre- to post-intervention would be associated with a 

greater reduction in depression severity and improvement in cognitive functioning from 

pre- to post-intervention.  
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B. Greater stability (i.e., less decline) in amount of PA, intradaily variability in RARs, 

and interdaily stability in RARs from post-intervention to the 12-month follow-up would 

be associated with the following outcomes in older adults with MCI and depression 

symptoms:  

i.) Greater stability in intervention-related changes in depression from post-intervention 

to the 12-month follow-up 

iii.) Greater stability in cognitive functioning from post-intervention to 12-month follow-

up in older adults with MCI and depression symptoms.  

4.2 EXPERIMENT 2 RESULTS 

4.2.1 Participant characteristics at Baseline 

Prior to the intervention, all participants had a diagnosis of mild cognitive impairment 

and subclinical depressive symptoms (Baseline 3MS score = 92.66 (4.59); Baseline PHQ-9 

score: 6.16 (2.95)). Mean age of the sample was 74.45 years (SD=8.703), including 66% women 

and 73% Caucasians. More than 75% of the sample had completed some level of post-secondary 

education (mean years of education = 15.34 (2.605)). Participants were highly sedentary at 

baseline based on objective PA monitoring (mean hours of PA per day: 1.17 (0.94); Range: 0.27 

– 3.33). Participants wore the accelerometers for an average of 6.47 days (SD=1.14) at baseline. 

Number of hours of accelerometer data collected did not significantly differ across time points 

(F=2.291, p=0.109). Intervention groups differed with regard to PA levels at baseline, such that 
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those randomized to the PST+EX group had higher mean daily physical activity levels at 

baseline relative to the PST alone and usual care groups (Steps: F=8.236 p=0.001; Active Energy 

Expenditure: F=5.103 p=0.011; Hours of PA: F=4.432 p=0.019; 10-minute Bouts of PA: 3.911 

p=0.029; Minutes spent in 10-minute bouts of PA: F=3.763 p=0.032). Intervention groups did 

not differ with regard to severity of depressive symptoms or cognitive performance at baseline (p 

> 0.10).  

4.2.2 Associations of Demographic Factors (i.e., Education, Race, Sex) with PA/RARs, 

Depressive Symptoms, and Cognitive Functioning 

Higher education attainment was associated with higher levels of daily physical activity 

at baseline (METs: r= 0.44, p=0.004; Active Energy Expenditure: r=0.34, p=0.03; Hours of PA: 

r=0.35, p=0.02, 10-minute Bouts of PA: 0.32, p=0.04) but was not associated with depressive 

symptom severity or cognitive performance at baseline, with the exception of an association with 

better performance for response inhibition (D-KEFS Color Word Interference Condition 3: r= 

0.04, p=0.007). This sample included a higher proportion non-Caucasian participants than is 

observed in the general population (20% African American, 2% Asian, 2% Mixed Race).  An 

examination of racial difference on behavioral measures at baseline revealed that non-Caucasian 

participants had lower intradaily variability (i.e., less fragmentation) in RARs (lnIV: t= 2.917, 

p=0.006), greater severity of depressive symptoms (PHQ-9: t= -2.684, p=0.01), and better 

performance on measures of global cognition (t= 2.126, p=0.04 ), verbal learning (RBANS List 

Learning: t= -2.582, p=0.007), and visuospatial functioning (RBANS Visuospatial 

Constructional Index: t= 2.558, p=0.04). Sex differences were also observed on several 

behavioral measures at baseline, such that male participants had higher levels of daily physical 
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activity (METs: t=-2.194, p=0.03; Active Energy Expenditure: t=-2.484, p=0.017), higher levels 

of depressive symptoms, (PHQ-9: t= 3.122, p=0.003), and better performance for global 

cognition (RBANS Total Index: t=2.231, p=0.031) and verbal learning (RBANS Immediate 

Memory Index: t=2.915, p=0.006) relative to female participants. See Table 11 for further details 

regarding participant characteristics at baseline.  

Table 13. Participant Demographic Characteristics Experiment 2 

Variable Overall Sample 

Mean (N=44)        EUC        PST    PST+EX 

Age 74.45 (8.70) 76.19 (9.54) 76.18 (6.26) 71.71 (8.98) 

Years of Education 15.34 (2.61) 14.81 (2.71) 15.36 (2.58) 15.82 (2.58) 

% Female 65.90% 75.00% 81.80% 47.10% 

% Caucasian 75.00% 68.80% 81.80% 76.50% 

4.2.3 Intervention Fidelity 

Although it was not the primary aim of this study to examine intervention effects on 

depressive symptoms in this subsample (N=44) of the parent study (N=65), understanding 

intervention fidelity may help in interpreting key outcomes of the present study. Intervention 

group differences were found with regard to trajectory of change in depressive symptoms from 

baseline to the 1-year follow-up (F= 3.26, p=0.049, r
2
=0.15), after covarying for age, sex, and 

race.  The PST group showed the greatest decline in depressive symptoms from baseline to the 1-

year follow-up. At the 1-year follow-up, depressive symptom severity was the lowest within the 

PST group, and was significantly different than the usual care group. The PST + EX group did 

not differ from either group at the 1-year follow-up. Group differences in depressive symptom 



 106 

severity was non-significant at baseline and post-intervention. These results suggest that the PST 

intervention when implemented alone had long-term benefits (i.e., one year after completion of 

the intervention) for reduction in depressive symptoms relative to usual care; however, adding  a 

prescription of exercise to the PST intervention did not have long-term benefits for reduction in 

depressive symptoms.  In fact, physical activity levels did not increase during the intervention or 

after completion of the intervention in the PST+EX group relative to the PST alone or usual care 

groups (all PA and RAR indices: p > 0.10), suggestive of ineffective implementation of the 

PST+EX intervention (i.e., poor exercise adherence).  
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Figure 24 Group differences in Trajectory of Depressive Symptoms over the 16-month study across 3  

timepoints.  

 

4.2.4 Cross-Sectional Associations between PA/RARs and Depressive Symptoms and 

Cognitive Functioning at Baseline 

Lower levels of physical activity was associated with greater severity of depressive 

symptoms at baseline across several indices of daily PA (METs: r= -0.31, p=0.05; Active Energy 

Expenditure: r= -0.33, p=0.03; Hours of PA: r= -0.36, p=0.02; 10-minute Bouts: r= -0.31, 

p=0.05; Minutes spent in 10-minute Bouts: r= -0.31 p=0.04). RARs indices were not associated 

with depression severity at baseline. However, lower intradaily variability in RARs was 

associated with cognitive functioning at baseline, specifically verbal learning (RBANS List 
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Learning raw score: r= -0.47, p=0.002). After adjusting for age, education, sex, and race, the 

effect size was reduced and the association became marginal (Beta= -0.264, p=0.093, r
2
=0.05). 

Significant sex differences in verbal learning performance likely contributed to the reduction in 

effect size and statistical significance of the association (i.e., men performed better for verbal 

learning relative to women). The association between intradaily variability in RARs and verbal 

learning was also examined using new norms for RBANS performance in older adults, corrected 

for age, sex, gender, and race (Duff et al., 2017), which also yielded a marginal association 

(RBANS List Learning raw score: r=0.26, p=0.10).  

In an exploratory analysis, high and low exercise groups were generated by dividing the 

participants based on the median number of minutes of PA engagement in 10-minute bouts 

(Median Minutes in 10-minute bouts = 21). This variable was specifically used to generate ‘high’ 

and ‘low’ exercise groups, because 10-minute bouts of MVPA are thought to reflect ‘exercise’ 

rather than simply reflecting brief periods of light-intensity PA that naturally occur throughout 

the day. Participants who engaged in at least 20-minutes of MVPA (across the duration that the 

accelerometer was worn: mean=6.47 days) performed better than the ‘low’ exercise group on 

measures of visuospatial constructional skills and executive functioning (i.e., set-shifting and 

response inhibition) at baseline (Modified Visuospatial Constructional Index: t=-2.20 p=0.03; D-

KEFS Trail Making Task Condition 4 vs. 5: t= -4.26 p<0.001; D-KEFS Color Word Interference 

Condition 3: t= -2.44, p=0.02). ‘High’ and ‘low’ exercise groups did not differ on depressive 

symptom severity at baseline (See Table 12 for further details regarding cognitive measures ).  
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Table 14. Cognitive Measures in Experiment 2 

Timepoint Measure Overall Sample (N=44)  EUC (N=16) PST (N=11) PST+EX (N=17) 

  Depression Outcomes         

Baseline  PHQ-9  6.16 (2.95) 5.75 (2.72) 7.18 (3.37) 5.88 (2.89) 

Post-
Intervention PHQ-9  3.80 (2.17) 4.44 (2.42) 3.45 (1.75) 3.41 (2.15) 

12-month 

Follow-Up PHQ-9  3.43 (2.99) 4.56 (4.15) 2.09 (1.45) 3.24 (2.02) 

Post-
Intervention Percent Change PHQ-9              28.39 (48.85) 12.7 (48.68) 48.30 (24.63) 30.28 (57.36) 

12-month 

Follow-Up Percent Change PHQ-9           -17.43 (145.81) 

-

2.04 (69.63) 12.03 (98.56) 

-

53.07 (214.38) 

  Global Cognition         

Baseline  RBANS Total Index            94.93 (10.65) 93.67 (8.31) 97.91 (10.01) 94.12 (12.9) 

Post-

Intervention RBANS Total Index            96.50 (12.31) 94.63 (11.28) 99.91 (12.43) 96.06 (13.4) 

12-month 
Follow-Up RBANS Total Index            97.79 (12.98) 94.4 (12.33) 100.4 (11.72) 99.24 (14.29) 

  Attention         

Baseline  RBANS Attention Index            98.34 (16.50) 95.44 (16.84) 102.45 (17.28) 98.41 (16.09) 

Post-
Intervention RBANS Attention Index            99.91 (16.99) 98.5 (19.03) 103.73 (14.19) 98.76 (17.22) 

12-month 

Follow-Up RBANS Attention Index         118.12 (137.81) 96.27 (16.4) 181.82 (270.21) 96.18 (15.42) 

  Executive Functioning         

Baseline  

D-KEFS Trails 4 vs. 5 Contrast 

Scaled Score 9.55 (3.22) 9.63 (3.90) 8.00 (3.00) 10.47 (2.35) 

Post-

Intervention 

D-KEFS Trails 4 vs. 5 Contrast 

Scaled Score 8.57 (3.20) 8.56 (3.05) 8.64 (3.38) 8.53 (3.41) 

12-month 

Follow-Up 

D-KEFS Trails 4 vs. 5 Contrast 

Scaled Score             10.83 (13.81) 8.13 (3.70) 9.50 (2.22) 14 (21.35) 

Baseline  

D-KEFS Color Word Interference 

Condition 3 9.89 (4.26) 8.88 (3.78) 10.45 (5.03) 10.47 (4.24) 

Post-

Intervention 

D-KEFS Color Word Interference 

Condition 3 10.11 (4.08) 8.88 (4.30) 11.00 (4.10) 10.71 (3.79) 

12-month 

Follow-Up 

D-KEFS Color Word Interference 

Condition 3 11.07 (3.79) 10.86 (3.55) 11.6 (4.62) 10.94 (3.67) 

  Learning and Memory         

Baseline  RBANS Immediate Memory Index              96.43 (13.65) 99.25 (11.74) 99.82 (11.19) 91.59 (15.9) 

Post-
Intervention RBANS Immediate Memory Index             101.86 (13.13) 102.88 (11.02) 107.64 (9.58) 97.18 (15.65) 

12-month 

Follow-Up RBANS Immediate Memory Index            105.31 (15.18) 105.53 (12.83) 109.40 (14.54) 102.71 (17.61) 

Baseline  
RBANS List Learning subtest Raw 

Score  23.86 (4.15) 24.44 (4.83) 24.55 (3.21) 22.88 (4.05) 

Post-

Intervention 

RBANS List Learning subtest Raw 

Score  26.86 (3.64) 27.38 (3.59) 28.09 (2.74) 25.59 (3.97) 

12-month 
Follow-Up 

RBANS List Learning subtest Raw 
Score  26.90 (5.83) 27.33 (5.56) 27.00 (6.27) 26.47 (6.13) 

Baseline  RBANS Delayed Memory Index                94.20 (11.95) 95.75 (11.54) 94.55 (10.96) 92.53 (13.36) 
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Post-

Intervention RBANS Delayed Memory Index               96.02 (12.09) 97.00 (11.68) 95.55 (16.21)  95.41 (9.97) 

12-month 
Follow-Up RBANS Delayed Memory Index               98.33 (14.02) 96.73 (12.94) 98.6 (13.33) 99.59 (15.92) 

  Language Skills         

Baseline  RBANS Language Index 98.52 (9.48) 96.63 (7.57) 101.55 (12.67) 98.35 (8.8) 

Post-
Intervention RBANS Language Index              97.75 (12.11) 94.25 (9.47) 102.45 (11.46) 98 (14.16) 

12-month 

Follow-Up RBANS Language Index               98.17 (10.63)  95.33 (8.10) 102.1 (13.13) 98.35 (10.87) 

  Visuospatial Skills         

Baseline  
RBANS Visuospatial 

Constructional Index                94.81 (15.26) 90.33 (14.19) 96.55 (12.80) 97.65 (17.41) 

Post-

Intervention 

RBANS Visuospatial 

Constructional Index  92.5 (16.21) 88.81 (15.73) 90.73 (16.82) 97.12 (16.11) 

12-month 
Follow-Up 

RBANS Visuospatial 
Constructional Index               93.71 (18.22) 86.87 (16.07) 91.8 (17.3) 100.88 (18.85) 

 

4.2.5 Changes in PA/RARs, Depressive Symptoms, and Cognitive Functioning from 

Baseline to Post-Intervention 

Indices of PA and RARs did not change from baseline to post-intervention across all 

participants (p > 0.10 for all measures of PA and RARs). Therefore, our hypothesis that change 

in indices of physical activity would be associated with change in depressive symptoms was 

unable to be tested. Across all participants, a reduction in depressive symptoms was observed 

from baseline to post-intervention (t= 4.731 p< 0.001). Cognitive performance improved from 

baseline to post-intervention for verbal learning (RBANS Immediate Memory Index: t= -3.132 

p= 0.003; RBANS List Learning raw score: t=-6.625 p< 0.001). A trend towards a decline in 

performance for executive functioning was observed based on one measure assessing 

psychomotor set-shifting (t=1.938 p= 0.059). Given racial differences on cognitive measures at 

baseline, racial differences in change in cognitive performance from baseline to post-intervention 

was assessed, and results revealed that improvement in verbal learning was found only in 

Caucasian participants (RBANS Immediate Memory Index: t= -3.489 p= 0.001; RBANS List 
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Learning raw score: t=-6.698 p< 0.001) but was not observed for non-Caucasian participants 

(p>0.10).  

4.2.6 Changes in PA/RARs, Depressive Symptoms, and Cognitive Functioning from Post-

Intervention to 1-year follow-up 

Average number of steps declined across all participants from post-intervention to the 1-

year follow-up (t= 2.421 p=0.021). There was a trend towards continued improvement in 

performance for verbal learning (RBANS Immediate Memory Index: t=-1.647 p=0.10), as well 

as a trend toward improvement in memory performance (RBANS Delayed Memory Index: t= -

1.652 p= 0.10) and executive functioning (i.e., response inhibition) (D-KEFS Color Word 

Interference Condition 3: t= -1.926 p=0.061) from post-intervention to the 1-year follow-up . An 

examination of racial differences in change in cognitive performance from post-intervention to 

the 1-year follow-up revealed that only non-Caucasian participants showed improvement in 

cognitive performance during this follow-up period, within the domains of verbal learning ( 

RBANS Immediate Memory Index: t= -2.414, p=0.042) and executive functioning (D-KEFS 

Color Word Interference Condition 3: t=-4.648, p= 0.002) and a trend towards improvement in 

memory  performance (RBANS Delayed Memory Index: t= -1.955, p=0.086). Changes in 

cognitive performance from post-intervention to the 1-year follow-up were non-significant 

across domains for Caucasian participants (p>0.10).  
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4.2.7 Longitudinal associations between PA/RARs and Depressive Symptoms 

Given that PA and RARs levels did not change during the intervention, longitudinal 

associations between physical activity levels at baseline and change in depressive symptoms and 

measures of cognitive functioning were explored. The rationale for this analysis was based on 

the assumption that accelerometry-based indices of physical activity may be a marker of broader 

health behavior patterns, which may in turn reflect overall health status and specifically relate to 

brain health (e.g., structural brain integrity, neurovascular health). As such, markers of PA and/or 

circadian activity patterns (i.e., RARs) at baseline may predict intervention adherence and 

responsiveness to the intervention (i.e., change in depressive symptoms and cognitive 

functioning). To test the predictive value of baseline PA/RARs indices for change in depressive 

symptoms and cognitive functioning, step-wise regression models were conducted predicting 

percent change in depressive symptoms from baseline to post-intervention, using individual PA 

and RAR indices as the independent variable (in separate models), and age, education, sex, race, 

and baseline depressive symptoms as covariates. The results revealed that lower intradaily 

variability in RARs at baseline (i.e., less fragmented RARs) was associated with greater decline 

in depressive symptoms from baseline to post-intervention (Beta= -0.34, p=0.046, r
2 

=0.08).  

Likewise, higher intradaily variability in RARs at baseline was associated with greater severity 

of residual depressive symptoms post-intervention, after covarying for baseline depression 

severity, age, education, sex, and race (Beta = 0.52, p= 0.004, r
2 

=0.18) (See Figure 2). 

Additionally, engagement in at least 20-minutes of MVPA within 10-minute bouts at baseline 

(i.e., ‘high’ exercise group) was predictive of greater improvement in memory performance from 

baseline to post-intervention (% Change in RBANS Delayed Memory Index: t=-2.022, p=0.05). 
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No other PA or RARs indices at baseline were predictive of change in depressive symptoms or 

cognitive functioning (p > 0.10). See Table 13 for further details regarding PA variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 114 

Table 15. Physical Activity Measures in Experiment 2 

Timepoint Measure 

Overall Sample 

(N=44) EUC (N=16) PST (N=11) PST+EX (N=17) 

 
Daily Overall Physical Activity          

Baseline Steps 4076.52 (2679.70) 

3270.12 

(2972.61) 

2350.27 

(1201.77) 5756.05 (2128.72) 

Post-

Intervention Steps 3999.00 (2705.77) 

3316.53 

(2898.08) 

2633.15 

(1260.52) 5525.09 (2566.29) 

12-month 

Follow-Up Steps 

3609.06 

(2562.82) 

3161

.65 (2972.12) 

2471

.64 (1855.05) 

4655.51 

(2338.34) 

Baseline Metabolic Equivalent (METs) 1.16 (0.19) 1.12 (0.20) 1.09 (0.12) 1.24 (0.19) 

Post-

Intervention Metabolic Equivalent (METs) 1.17 (0.19) 1.16 (0.22) 1.15 (0.18) 1.2 (0.18) 

12-month 
Follow-Up Metabolic Equivalent (METs) 1.18 (0.19) 1.15 (0.18) 1.20 (0.25) 1.18 (0.17) 

 

Daily Moderate-to-Vigorous 

Physical Activity         

Baseline Minutes of MVPA 46.33 (47.64) 33.70 (40.50) 23.41 (12.28) 70.2 (56.42) 

Post-
Intervention Minutes of MVPA 49.00 (46.29) 45.92 (48.05) 35.35 (28.29) 60.56 (53.14) 

12-month 

Follow-Up Minutes of MVPA 48.99 (41.58) 42.28 (30.30) 46.81 (45.87) 54.97 (46.91) 

Baseline Active Energy Expenditure 997.13 (1067.57) 698.15 (839.02) 453.52 (253.32) 1563.11 (1279.82) 

Post-

Intervention Active Energy Expenditure 979.61 (945.39) 836.25 (896.70) 667.99 (637.39) 1316.17 (1089.31) 

12-month 
Follow-Up Active Energy Expenditure 1403.93 (2123.67) 855.57 (870.84) 825.90 (780.10) 2176.47 (3017.19) 

 

Total Bouts of Moderate to 

Vigorous PA         

Baseline Number of 10-minute Bouts 4.61 (8.44) 2.36 (5.51) 0.90 (0.88) 8.65 (11.06) 

Post-

Intervention Number of 10-minute Bouts 4.68 (7.29) 3.38 (6.14) 2.64 (3.67) 7.24 (9.36) 

12-month 
Follow-Up Number of 10-minute Bouts 4.34 (6.86) 3.08 (4.60) 1.30 (1.95) 7.19 (9.06) 

Baseline 

Minutes of MVPA in 10-minute 

Bouts 82.73 (150.93) 47.93 (129.37) 12.10 (11.94) 152.94 (184) 

Post-
Intervention 

Minutes of MVPA in 10-minute 
Bouts 92.68 (151.58) 69.63 (144.37) 40.55 (59.29) 148.12 (185.33) 

12-month 

Follow-Up 

Minutes of MVPA in 10-minute 

Bouts 80.45 (138.81) 44.83 (80.18) 21.80 (35.44) 143.81 (185.67) 

 
Rest Activity Rhythm Indices         

Baseline Intradaily Variability in RARs 0.73 (0.24) 0.81 (0.32) 0.64 (0.15) 0.72 (0.20) 

Post-

Intervention Intradaily Variability in RARs 0.70 (0.20) 0.76 (0.24) 0.64 (0.18) 0.68 (0.16) 

12-month 
Follow-Up Intradaily Variability in RARs 0.74 (0.20) 0.71 (0.28) 0.77 (0.11) 0.73 (0.18) 

Baseline Interdaily Stability in RARs 0.48 (0.18) 0.46 (0.18) 0.43 (0.22) 0.53 (0.13) 

Post-

Intervention Interdaily Stability in RARs 0.5 (0.21) 0.47 (0.25) 0.48 (0.20) 0.53 (0.17) 

12-month 

Follow-Up Interdaily Stability in RARs 0.44 (0.19) 0.39 (0.20) 0.45 (0.22) 0.46 (0.16) 

Baseline  Relative Amplitude of RARs 0.73 (0.22) 0.72 (0.27) 0.68 (0.23) 0.78 (0.16) 

Post-

Intervention Relative Amplitude of RARs 0.71 (0.25) 0.67 (0.32) 0.69 (0.20) 0.77 (0.19) 

12-month 
Follow-Up Relative Amplitude of RARs 0.69 (0.23) 0.62 (0.26) 0.71 (0.28) 0.74 (0.17) 
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Figure 25. Negative association between Intradaily Variability in RARs at Baseline and Percent  

Change in Depression Severity from Baseline to Post-Intervention after adjusting for baseline  

depressive symptoms, age, education, sex, and race 
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Figure 26. Positive Association between Intradaily Variability in RARs at Baseline and Depressive  

Symptoms Post-Intervention, after adjusting for baseline depressive symptoms, age, education, sex,  

and race. 

4.2.8 Cross-Sectional Associations between PA/RAR Indices and Depressive Symptoms 

and Cognitive Functioning Post-Intervention and at 1-year follow-up 

After completion of the intervention, higher interdaily stability in RARs was associated 

with better response inhibition (D-KEFS Color Word Interference Condition 3: r=0.34, p=0.02). 

However, adjusting for sex, education, and race resulted in this association becoming non-

significant (Beta= 0.212, p=0.109, r
2
=0.04). Significant associations of education and race with 

inhibition performance likely contributed to the association becoming non-significant. 

Interestingly, there was a trend such that race moderated the association between interdaily 

stability in RARs and response inhibition post-intervention (Race x lnIS.2: Beta= 0.47, p=0.069, 

r
2
=0.05) (See Figure 27).  Higher interdaily stability in RARs was strongly associated with better 

response inhibition in non-Caucasian participants (i.e., 82% African American) but not in 
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Caucasian participants.  At the 1-year follow-up, lower intradaily variability in RARs was 

associated with better response inhibition after adjusting for sex, education, and race (Beta= -

0.347, p=0.042, r
2
=0.11) (See Figure 28). In summary, less fragmentation of daily RARs and 

greater stability of RARs across several days was associated with better executive functioning 

(i.e., response inhibition).  

4.2.9 Cross-Sectional Associations between PA/RAR Indices and Depressive Symptoms 

and Cognitive Functioning Post-Intervention and at 1-year follow-up 

After completion of the intervention, higher interdaily stability in RARs was associated 

with better response inhibition (D-KEFS Color Word Interference Condition 3: r=0.34, p=0.02). 

However, adjusting for sex, education, and race resulted in this association becoming non-

significant (Beta= 0.212, p=0.109, r
2
=0.04). Significant associations of education and race with 

inhibition performance likely contributed to the association becoming non-significant. 

Interestingly, there was a trend such that race moderated the association between interdaily 

stability in RARs and response inhibition post-intervention (Race x lnIS.2: Beta= 0.47, p=0.069, 

r
2
=0.05) (See 27).  Higher interdaily stability in RARs was strongly associated with better 

response inhibition in non-Caucasian participants (i.e., 82% African American) but not in 

Caucasian participants.  At the 1-year follow-up, lower intradaily variability in RARs was 

associated with better response inhibition after adjusting for sex, education, and race (Beta= -

0.347, p=0.042, r
2
=0.11) (See Figure 28). In summary, less fragmentation of daily RARs and 

greater stability of RARs across several days was associated with better executive functioning 

(i.e., response inhibition).  
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Figure 27. Race moderates the association between interdaily stability in rest activity rhythms and  

response inhibition post-intervention (Trend) 
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Figure 28. The association between Intradaily variability in RARs and response inhibition at the one- 

year follow-up 

4.3 CONCLUSIONS 

4.3.1 Intervention fidelity 

The findings from the present study must be interpreted in the context of good 

intervention fidelity to the PST condition when implemented alone and poor intervention fidelity 

to the PST+exercise condition. Partially attributable to suboptimal intervention implementation, 

a key finding from the parent study is that the PST intervention when implemented alone, but not 

in combination with exercise, resulted in long-term benefits for reduction in subclinical levels of 

depressive symptoms (i.e., at 12-month follow-up) relative to enhanced usual care in older adults 

with MCI.  
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4.3.2 Depression Outcomes 

An examination of MVPA/RARs associations with depressive symptoms across all 

participants (irrespective of intervention group) revealed that lower levels of MVPA were 

associated with greater severity of depressive symptoms at baseline. This finding is consistent 

with the strong reciprocal relationship between physical inactivity and depressive symptoms 

reported in the literature (Adamson & Motl, 2016). RARs indices were not directly related to 

depressive symptom severity at baseline. These findings suggest that depression severity is 

sensitive to the total amount of current daily MVPA engagement, which can be quantified using 

several conventional accelerometry measures (e.g., Hours of MVPA, Active Energy 

Expenditure, Minutes of PA in 10-minute bouts). In contrast, the RARs indices capture 

regularity of patterns of rest and activity (i.e., sensitive to patterns of PA and sleep) within and 

across days. We found lower intradaily variability in RARs prior to the intervention was 

longitudinally associated with greater decline in depressive symptom severity over the course of 

the 4-month intervention. The meaning or clinical significance of this longitudinal association 

remains ambiguous, as RARs indices have not yet been applied as predictors or outcomes in the 

context of depression treatment. Previous work suggests that RARs indices capture both amount 

and to some extent, quality of PA engagement and sleep (e.g., brief periods of low intensity PA 

vs. bouts of MVPA, frequent daytime napping, night-time awakenings) and may capture 

additional variance in health status beyond what is accounted for by specific metrics of MVPA 

and sleep (Smagula et al., 2015). In light of this, we speculate that variability in RARs likely 

reflects a set of longstanding premorbid health characteristics (e.g., PA, sleep & diet habits; 

cerebrovascular risk factors) that can potentially influence intervention engagement and 

responsiveness (i.e., change in depressive symptoms).  
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4.3.3 Cognitive Outcomes 

Engagement in MVPA and variability in RARs were both associated with distinct aspects 

of cognitive functioning in older adults with MCI.  MVPA engagement was not associated with 

measures of cognitive functioning when examined continuously; however, subgroup analysis at 

baseline revealed that the most active 50% of the sample (thresholded at median level of MVPA 

engagement in 10-minute bouts) performed better on measures of executive functioning and 

visuospatial skills relative to the least active 50% of the sample. Further, the most active 50% of 

the sample demonstrated improvement in memory performance over the course of the 

intervention, whereas the least active 50% of the sample did not show any improvement in 

memory performance. Less fragmentation of intradaily RARs was associated with better verbal 

learning at baseline and greater stability of RARs across days was associated with better 

executive functioning (i.e., inhibition) post-intervention, but both associations became marginal 

after adjustment for demographic covariates. Less fragmentation of intradaily RARs at the 12-

month follow-up was also associated with better executive functioning, and remained significant 

after adjustment for demographic covariates.  Given that MVPA and RARs indices did not 

change over the course of the study, cross-sectional associations observed between RARs indices 

and cognitive functioning at some time points but not others may seem puzzling; changes in 

these associations across time points is likely due to intervention-related changes in cognitive 

functioning (i.e., inhibition performance improved from post-intervention to the 12-month 

follow-up).  
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4.3.4 Racial differences in PA/RAR associations with Depression and Cognitive Outcomes 

An interesting and unexpected finding in this study was racial differences observed in 

intervention-related changes in depressive symptoms and cognitive function, as well as racial 

differences in the association between RARs indices and cognitive functioning. Non-Caucasian 

participants, who were primarily African American, reported greater severity of depressive 

symptoms at baseline but demonstrated a much steeper decline in depressive symptoms (>100%) 

from baseline to post-intervention relative to Caucasian participants. Further, racial differences 

were observed in the timing of improvement in cognitive functioning, such that Caucasian 

participants exhibited improved performance in verbal learning from baseline to post-

intervention, but non-Caucasian participants demonstrated improvements in executive 

functioning and verbal learning and memory from post-intervention to the 12-month follow-up. 

A deeper exploration of the data revealed that racial differences in timing of improvement in 

cognitive performance corresponded with a ‘normalization’ of group differences on those 

respective cognitive measures (i.e., racial differences in verbal learning performance at baseline 

were normalized by improvement exhibited in Caucasian participants). Although based on a 

small sample size, these racial differences in timing of cognitive changes may imply that 

cognitive domains that show ‘deficits’ (or relative weaknesses) may be more sensitive to 

intervention-related improvement. Further, racial differences were observed in the association of 

RARs indices with verbal learning at baseline and executive functioning post-intervention, such 

that there was a strong association between RARs indices and cognitive performance in non-

Caucasian but not in Caucasian participants.  
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4.3.5 Implications 

The findings from this study collectively highlight the web of reciprocal relationships 

between health behavior patterns, brain health, cognitive functioning, and depressive symptoms. 

The strength and directionality of these relationships also change over time, making it difficult to 

truly delineate “predictors” and “outcomes.” In the present study, health behavior patterns were 

examined as ‘predictors’ of depression and cognitive ‘outcomes’, despite the bidirectional nature 

of these associations, with the primary motivation of characterizing the role of modifiable 

lifestyle factors in promoting cognitive and emotional health in late-life. Longitudinal 

associations observed between variability in RARs at baseline and change in depression severity, 

as well as between MVPA at baseline (i.e., median split groups of high vs. low MVPA) and 

change in memory performance, point to the long-term implications of health behavior patterns 

prior to an intervention for predicting intervention responsiveness. In light of these findings, it is 

important for future studies to consider premorbid health behaviors when examining treatment 

outcomes. Given that variability in RARs and MVPA at baseline was associated with 

intervention outcomes in this highly sedentary sample with limited variability in activity levels, 

stronger associations between pre-existing health behavior patterns and treatment outcomes will 

likely be detected in other populations. 

4.3.6 Limitations  

Several important limitations of this study must be considered in interpreting these 

results. First, small sample size was a key limitation given this was a pilot study and only 

included a subsample of the parent study. Further, the subsample included in this study included 
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an uneven distribution of participants across intervention groups, such that fewer participants 

from the group showing the greatest change in depressive symptoms (PST alone) were included 

relative to the other two groups (PST+EX and EUC) within the parent study. The participant 

sample was also subject to selection bias, as most participants were highly educated (mean years 

of education >15 years), which is not representative of the general older adult population 

diagnosed with MCI. Even greater selection bias may have been apparent in the African 

American subset of the sample, given that that the non-Caucasian subgroup (82% African 

American) performed better on several measures of cognitive function at baseline relative to 

Caucasian participants, which is not representative of racial differences observed in the general 

population of older adults with MCI. Further, due to recruitment challenges, the inclusion criteria 

for level of depressive symptoms required changed over time and resulted in a sample with low 

depressive symptom severity overall than might be expected in the general population with co-

occurring MCI and depressive symptoms.        

 With regard to limitations concerning PA/RARs assessment, the level of ‘objectivity’ in 

accelerometry-based assessments of PA levels and patterns must be interpreted with caution, 

given that the one week that participants wear these devices at each time point of the study may 

not be truly representative of their overall levels and patterns of activity (i.e., due to situational 

factors and demand characteristics). Further, given the multitude of approaches available to 

analyze accelerometry-based measures of PA and RARs (e.g., total, mean, daily vs. total 

duration, non-parametric, extended cosine), associations observed across multiple indicators 

assessing similar aspects of PA/RARs should be weighted more heavily when interpreting 

findings. Finally, the limited cross-sectional and longitudinal variability in MVPA and RARs 

indices observed in this highly sedentary sample may underestimate associations observed 
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between MVPA/RARs indices and measures of depression and cognitive function.   

 As mentioned earlier, several overarching concerns regarding suboptimal implementation 

of the intervention must also be considered in interpreting these data, such as poor adherence to 

the exercise intervention in contrast to good adherence to the PST intervention when 

implemented alone. Moreover, study clinicians reported spending a disproportionate amount of 

time in therapy focused on problem-solving barriers to exercise adherence in the PST+EX group, 

which additionally resulted in suboptimal implementation of PST in in the PST+EX group. A 

key component of the parent study was the inclusion of dyads of older adults with MCI and their 

caregivers for participants who had caregivers available and willing to participate, and this key 

indicator of social support was not considered in the present study. Notably, the primary findings 

from the parent study suggest that social support may have a critical role in predicting primary 

treatment outcomes (i.e., change in depression) in this sample.  

4.3.7 Summary 

Despite these limitations, there are a number of notable strengths to this pilot study, 

namely the implementation of a novel combination of non-pharmacological interventions (PST 

and exercise) to reduce mental health symptom burden and slow cognitive decline in a 

population that is at high-risk for accelerated cognitive and functional decline (i.e., converting to 

dementia) and for developing Major Depression, all of which contribute to poor trajectories of 

brain health and quality of life in older adults. Further, the value of subtle changes in health 

behavior patterns (i.e., PA levels or RARs) has seldom been examined in this highly sedentary 

segment of the population for whom small increases in physical activity levels and regularity of 

RARs may have important implications for preventing or attenuating neurodegenerative 
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processes. To our knowledge, this is the first study to utilize RARs indices in the context of 

treatment for depressive symptoms, despite previous work demonstrating the high sensitivity of 

RARs for capturing behavioral manifestations of depression (Smagula et al., 2015). Moreover, 

the comparison of RARs indices and conventional accelerometry-based PA measures used may 

inform future studies regarding the distinct clinical implications of each measure and also 

highlight that using a combination of these measures may capture the greatest clinically-

meaningful variance in PA levels in highly sedentary populations.     

 In conclusion, consistent with patterns observed in the general population, this sample of 

older adults with MCI and depressive symptom was highly sedentary. Across the overall sample, 

physical activity patterns did not change during or following a behavioral intervention aimed to 

reduce depressive symptoms and attenuate cognitive decline, even in the subgroup for which 

exercise was prescribed as a component of the intervention. Nonetheless, individual variability in 

several indicators of physical activity patterns, as assessed by engagement in MVPA and 

naturally occurring intra- and inter-daily variability in RARs, was related to cognitive 

performance and depressive symptom severity. Higher MVPA engagement was associated with 

lower depressive symptom severity at baseline and was predictive of greater improvement in 

memory performance over the course of the intervention. Lower intradaily variability in RARs at 

baseline was predictive of greater decline in depressive symptom severity over the course of the 

intervention. Further, less fragmentation of daily RARs and greater stability of RARs across days 

was related to better executive functioning, and this association was stronger for non-Caucasian 

(i.e., mostly African American) relative to Caucasian participants. In sum, MVPA engagement 

and RARs appear to be partially overlapping but distinct markers of health status that may each 

have unique implications for depression and neurocognitive function in late-life, and may both 
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help to better understand variability in intervention responsiveness in older adults with cognitive 

impairment and co-occurring depressive symptoms.  
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5.0  DISCUSSION 

This dissertation aimed to characterize the effects of exercise on depression, cognitive function, 

and brain morphology and functional dynamics in older and younger adults by utilizing data 

from two randomized pilot intervention studies. The overarching goal of this project was to 

highlight the utility of exercise as a valuable and feasible behavioral intervention for attenuating 

co-occurring mood and cognitive symptoms, via its beneficial effects on brain health (i.e., 

reduced neuroinflammation, increased neurovasculature, proliferation of neurotrophic factors). 

Despite using only pilot data, two key innovations in this project allow for a novel contribution 

to the literature: 1) the exploration of neural mechanisms underlying the antidepressant effects of 

exercise by leveraging multiple distinct markers of brain morphology and examining exercise-

related changes in intrinsic functional network dynamics, as well as 2) a comparison of the 

relevance of multiple objective markers of physical activity for attenuating depressive symptoms 

and cognitive decline in a highly sedentary older adult population with an elevated risk for 

developing Major Depression and Major Neurocognitive Disorder (i.e., dementia).   

 The two pilot studies included in this project were initially combined with the goal of 

examining exercise effects on depression and cognitive function in samples with varying levels 

of depression and cognitive dysfunction (i.e., clinical vs. subclinical depressive symptoms, MCI 

vs. cognitive symptoms of depression). Ultimately, it was difficult to draw cohesive conclusions 

across both studies due to marked differences in the study samples, study design, intervention 



 129 

implementation, and primary outcome measures examined. Nonetheless, overarching themes 

across results from both pilot intervention studies will be highlighted. 

5.1 EXERCISE/PA EFFECTS ON DEPRESSIVE SYMPTOMS  

First, juxtaposing the results from these two studies reinforces subtle but important distinctions 

between various PA-related constructs, and the unique implications of various markers of PA for 

clinical and cognitive outcomes. For instance, regular engagement in supervised aerobic exercise 

may exert influences on cognitive and mood outcomes via changes in aerobic fitness. However, 

the broader literature suggests that exercise interventions in which depressed adults do not show 

improvements in fitness still achieve remission from depression (Stubbs et al., 2017), suggesting 

that exercise engagement may alleviate depression via direct and indirect pathways (e.g., 

increased motivation to remain active, increased social engagement). The notion of multiple 

pathways underlying PA-related benefits for depression is consistent with the results from 

Experiment 2, which highlight the value of regularity in patterns of PA (even at low-intensities), 

in addition to the role of engagement in MVPA, for alleviating depressive symptoms. These 

findings further relate to results from a  large RCT(N=620) examining the effects of various 

doses of PA on depressive symptoms, which revealed that low-intensity but not moderate- or 

high-intensity PA predicted maintenance of intervention-related benefits in depressive symptom 

reduction 12-months following completion of the intervention (Helgadottir et al., 2017).   

Two additional studies demonstrated potentially large, clinically meaningful benefits of 

exercise-augmentation to conventional depression treatments.  In one pilot study, Gourgouvelis 

et al. (2018) showed that adding exercise to a combination of medication treatment and group 
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psychotherapy for depression resulted in a significantly  greater reduction in depressive symptom 

severity and markedly better odds of remission from depression relative to no PA (PA group: 

75% remission vs. no-PA: 25% remission).  Further, a large RCT (N=121) involving treatment 

for late-life depression, in which exercise was an augmentation to medication treatment, revealed 

a similar pattern of findings as Experiment 1, such that exercise significantly benefited 

depression outcomes through more rapid symptom reduction, with selective benefits reported for 

affective rather than somatic symptoms of depression (Murri et al., 2018). 

5.2 EXERCISE/PA ASSOCIATIONS WITH COGNITIVE FUNCTIONING, IN 

ADULTS WITH DEPRESSIVE SYMPTOMS  

In both older adults with MCI and younger adults with Major Depression, exercise/PA-related 

benefits in performance on select cognitive domains were observed, including attention, learning, 

and memory. These exercise-related cognitive changes/associations were somewhat surprising, 

given the limited power to detect effects in these pilot studies, and in light of the mixed literature 

regarding cognitive benefits associated with depression treatment (Xu et al., 2011). Nonetheless, 

select cognitive benefits associated with exercise or PA are plausible in these two clinical sample 

with highly ‘vulnerable’ brains,  given that exercise-related benefits for cognitive function have 

been observed in neurologically healthy younger and older adults (Committe, 2018).The 

implications of age differences in exercise effects on cognitive functioning observed in 

Experiment 1 remain ambiguous, when considered in the context of cognitive benefits of 

PA/RARs observed in more cognitively ‘vulnerable’ older adults (i.e., MCI diagnosis) in 

Experiment 2.   
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5.3 EXPERIMENT 1: EXERCISE EFFECTS ON BRAIN MORPHOLOGY IN 

ADULTS WITH MAJOR DEPRESSION  

The novelty of Experiment 1 primarily stemmed from the inclusion of high-resolution brain MRI 

measures collected using a 7T MR scanner, which allowed for an exploration of exercise-related 

changes in microstructural brain outcomes (e.g., hippocampal subfields) that cannot be as clearly 

delineated using data collected from 3T MR scanners, which are most commonly used in 

mechanistic clinical intervention studies. Further, the availability both structural and functional 

MRI data allowed for a preliminary exploration of the augmentive effects of exercise on a range 

of brain health outcomes in the context of antidepressant treatment. First, we observed an 

unexpected decline in the right global hippocampal volume, as well as volume of right anterior 

hippocampal subfields in the MED group relative to the EX group. The meaning of these results 

remains unclear, given that hippocampal volumetric decline is inconsistent with brain changes 

that would expected in the context of effective pharmaceutical treatment for depression. 

However, the lack of hippocampal volumetric decline in the EX group partially maps onto 

findings reported in a meta-analysis of 14 studies examining aerobic exercise effects on 

hippocampal volume (N=737) suggesting that aerobic exercise may be protective against 

hippocampal volumetric decreases over time (Firth et al., 2018).  Further, our null finding with 

regard to volumetric increases in the hippocampus is consistent with the only prior study to 

examine exercise effect on brain morphology in the context of depression treatment, which 

neglected to find exercise-related volumetric increases in the hippocampus (Krogh et al., 2014).  

In contrast to the ambiguous findings regarding group differences in hippocampal 

volumetric changes, the most promising results in the present study with regard to exercise 

effects on brain morphology were observed in relation to estimates of cortical thickness, rather 
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than volume. First, reduced cortical thickness in the medial OFC, rostral ACC, and 

parahippocampal gyrus, was strongly associated with greater depression severity at baseline in 

this clinically depressed sample with a moderate range in depressive symptom severity (MADRS 

score range: 15-36). Importantly, the association between cortical thickness in PFC, ACC, and 

PHC and depression severity was independent of duration of current depressive episode and age 

of onset of first depressive episode, suggestive of specificity of the association to current 

depression severity (but could also be due to a third variable explaining variance in regional 

cortical thickness and depression severity). The selective association between cortical thickness 

in these regions and depression severity is striking, given that the medial OFC, rostral ACC, and 

PHC have consistently shown structural abnormalities in depressed relative to non-depressed 

adults (Gujral et al., 2017). In fact, structural abnormalities in the rostral ACC may be the most 

consistent regional structural abnormality associated with depression across the meta-analytic 

literature (Gujral et al., 2017). If reduced cortical thickness in these regions is a function of 

depression severity alone, one might expect to observe increases in cortical thickness in these 

regions as a function of decline in depression severity (or remission). However, this pattern was 

not observed in the current sample. Rather, an increase cortical thickness in the medial OFC, 

rostral ACC, and PHC was marginally associated with improvement in fitness, suggesting these 

regions that are sensitive to effects of depression also appear to be sensitive to improvements in 

aerobic fitness. Although we may theoretically predict a negative association between depression 

severity and cortical thickness in prefrontal, ACC, and PHC regions, and a positive association 

between improvement in fitness and cortical thickness in these regions, the co-occurrence of 

associations we expect to be related is seldom actually observed, particularly in the context of 

pilot studies. Although not statistically significant in this small sample, the strength of the 
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associations between change in fitness and change in cortical thickness in PFC, ACC, and PHC 

regions, in the expected direction, warrants further exploration in large-scale intervention studies.  

5.4 EXPERIMENT 1: IMPROVEMENT IN FITNESS: ASSOCIATIONS WITH 

BRAIN-BEHAVIOR RELATIONSHIPS 

This pilot intervention study was likely underpowered to detect neural mechanisms underlying 

the antidepressant effects of exercise. However, any associations found between exercise-related 

changes in markers of brain integrity and behavioral outcome measures may signal potential 

brain mechanisms associated with exercise related clinical or cognitive benefits, in the context of 

depression treatment.  In the right medial OFC and rostral ACC, an increase in cortical thickness 

was associated improvement in cognitive performance on a measure of verbal learning, and an 

increase in cortical thickness in the medial OFC was additionally associated with improvement 

in performance on measures of executive functioning and memory. Given that improvement in 

fitness was also marginally associated with increases in cortical thickness in these regions, it is 

possible that morphological changes in the right medial OFC and rostral ACC may subserve 

exercise-related improvements in cognitive functioning observed during treatment for 

depression. To gain a more comprehensive understanding the role of these regions in the 

association between fitness and cognitive functioning in depressed adults, important next steps 

will be to examine exercise and/or fitness-related changes in functional connectivity within and 

between these regions, using seed-to-voxel and seed-to-seed analytic approaches. 
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5.5 EXPERIMENT 1: EXERCISE EFFECTS ON HIPPOCAMPAL FUNCTIONAL 

CONNECTIVITY IN ADULTS WITH MAJOR DEPRESSION 

As a preliminary point of exploration, a simple hippocampal seed-based approach was utilized to 

examine intervention group differences post-intervention that were not present at baseline, with 

the aim of capturing variability in hippocampal functional connectivity patterns that is sensitive 

to exercise training as a component of treatment for depression. At baseline, the EX group 

demonstrated greater right hippocampal connectivity with ECN (i.e., inferior frontal gyrus, 

precentral gyrus) and DMN regions (i.e., posterior cingulate cortex) relative to the MED group.  

After completion of the intervention, both treatment groups demonstrated an increase in 

hippocampal connectivity with the supramarginal gyrus (SMG), which has been implicated in 

range of somatosensory and cognitive, and social-cognitive functions (i.e., visuospatial 

awareness, cognitive control, and expression of empathy) (Silani, Lamm et al., 2013). The 

meaning of increased hippocampal connectivity with the right SMG for clinical outcomes 

remains unclear, given the various cognitive and social-cognitive functions of the SMG. The EX 

group additionally demonstrated an increase in HC functional connectivity with medial temporal 

regions, known to be a part of the DMN. As mentioned earlier, the DMN is involved in self-

referential processes and high DMN connectivity may relate to rumination, a prominent 

symptom of depression. The meta-analytic depression literature has largely demonstrated 

hyperconnectivity of DMN regions in depression (Kaiser et al., 2015), although there have been 

a number of inconsistencies in this literature. One meta-analysis in mid-life depression reported 

increased DMN connectivity was a predictive of treatment response (Pizzagalli, 2011).  In the 

exercise literature, increased DMN connectivity has been observed as a function of exercise 

training (Voss et al., 2011), although this may to some extent be influenced by the age-related 
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increases in DMN connectivity, given the majority of mechanistic exercise trials have been 

conducted in older adults. In sum, based on the results of this targeted, apriori approach to 

examining exercise-related changes in intrinsic functional network dynamics, it is difficult to 

conclude the clinical meaning or relevance of these group differences in intervention-related 

changes in hippocampal functional connectivity patterns.   

5.6 FEASIBILITY 

Significant recruitment challenges were encountered in both pilot trials included in this 

dissertation; nonetheless, towards the end of the recruitment period, successful recruitment 

strategies were identified in both studies, which have been detailed in the results section for  

Experiment 1 and have been outlined in Gildengers et al. (2016) for Experiment 2. Inevitable 

challenges in the overall recruitment of older adults for clinical intervention studies must be 

considered, such as significant medical illness burden and heightened vulnerability to 

transportation challenges. These general barriers to recruitment, when coupled with cognitive 

impairment and depressive symptoms, in the context of possibly limited social and instrumental 

support structures, challenges to intervention recruitment and adherence are compounded. 

Nonetheless, the unexpectedly high intervention adherence rates observed in Experiment 1 

(91%), in combination with meta-analytic evidence of non-significant dropout of depressed 

adults from exercise trials (Stubbs et al., 2015), suggests that study retention may be less of an 

issue if recruitment challenges can be overcome. Key limitations of each study have been 

detailed in earlier conclusions sections; however it is worth reiterating that the most striking 

limitation across both of these studies is the limited sample size.  
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5.7 FUTURE DIRECTIONS 

With regard to Experiment 1, a further exploration of exercise- and fitness-related brain changes 

is warranted, given the strength of associations observed within the expected direction. A deeper 

exploration of exercise-related changes in functional connectivity measures is additionally 

needed, given that the simplistic hippocampal seed-based approach may not capture the most 

meaningful exercise-related changes in intrinsic connectivity patterns. Next steps in these 

analyses may include using an a broader eigenvector centrality approach (EVC) to explore intra- 

and inter-network coupling and de-coupling, consistent with the methods used in Karim et al. 

(2017)), as well as testing seed-to-voxel connectivity using alternative seed regions that were 

sensitive to depression and fitness-related changes and in this study (i.e., medial OFC, rostral 

ACC, and PHC).  

 

5.8 BROADER IMPLICATIONS / SUMMARY 

 

Results from this dissertation, albeit based on data from pilot intervention studies, reveal the 

important role of exercise/PA for a range of clinical, cognitive, and brain health outcomes. 

Across unique two clinical samples with varying degrees of depressive symptom burden and 

cognitive impairment, improvement in fitness, regularity of rest activity patterns, and 

engagement in exercise were each uniquely associated with depression and cognitive outcomes.  

Overarching conclusions from this dissertation highlight the widespread utility of exercise 
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interventions for alleviating clinical and subclinical levels of depression and cognitive decline, 

via protective effects on neural pathways that may be sensitive to the deleterious effects of 

depression and cognitive impairment. 
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