
LEARNER MODELING FOR INTEGRATION

SKILLS IN PROGRAMMING

by

Yun Huang

B.E. in Intelligence Science and Technology, School of Computer

Science, Beijing University of Posts and Telecommunications,

China, 2011

M.S. in Intelligent Systems, Dietrich School of Arts and Sciences,

University of Pittsburgh, 2015

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences, University of Pittsburgh

in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2018

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Yun Huang

It was defended on

July 5, 2018

and approved by

Dr. Peter Brusilovsky, School of Computing and Information, University of Pittsburgh

Dr. Marek Druzdzel, School of Computing and Information, University of Pittsburgh

Dr. Christian Schunn, Learning Research and Development Center, University of

Pittsburgh

Dr. Kenneth Koedinger, Human-Computer Interaction Institute, Carnegie Mellon

University

Dissertation Director: Dr. Peter Brusilovsky, School of Computing and Information,

University of Pittsburgh

ii

LEARNER MODELING FOR INTEGRATION SKILLS IN PROGRAMMING

Yun Huang, PhD

University of Pittsburgh, 2018

Mastery development requires not only acquiring component skills, but also practicing their

integration into more complex skills. When learning programming, an example is to first

learn += and loops, then learn how to combine them into a loop that sums a sequence

of numbers. The existence of integration skills has been supported by cognitive science re-

search, yet it has rarely been considered in learner modeling, the key component for adaptive

assistance in an intelligent tutoring system (ITS). Without this, early assertions of mastery

in ITSs after only basic component skill practice or practice in limited contexts may be

merely indicating shallow learning.

My dissertation introduces integration skills, widely acknowledged by cognitive science

research, into learner modeling. To demonstrate this, I chose program comprehension with

a complex integrative nature. To provide grounds for skill modeling, I applied a Difficulty

Factors Assessment (DFA) approach (from cognitive science) and identified integration skills

along with generalizable integration difficulty factors in common basic programming pat-

terns. I used the DFA data to inform the construction of the learner model, CKM-HI, which

incorporates integration skills in a hierarchical structure in a Bayesian network (BN). Com-

pared with other machine learning approaches, BN naturally utilizes domain knowledge and

maintains interpretable knowledge states for adaptation decisions. To address the limitation

of prediction metrics to evaluate such multi-skill learner models, I proposed and applied a

multifaceted evaluation framework. Data-driven evaluations on a real-world dataset show

that CKM-HI is superior to two popular multi-skill learner models, CKM and WKT, regard-

ing predictive performance, parameter plausibility, and expected instructional effectiveness.

iii

To evaluate its real-world impact, I built a program comprehension ITS driven by learner

modeling and a classroom study deploying this system suggests that CKM-HI could lead to

better learning than the CKM model.

My dissertation work is the first to systematically demonstrate the value of integration

skill modeling, and offers novel integration-level learner modeling and multifaceted evalua-

tion approaches applicable to a broader context. Further, my work contributes recent ITS

infrastructure and techniques to programming education, and also contributes an example

of taking an interdisciplinary approach to ITS research.

iv

TABLE OF CONTENTS

PREFACE . xiii

1.0 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Main Directions of Work and Contributions 5

1.3 Research Questions . 7

1.4 Dissertation Organization . 8

2.0 BACKGROUND AND RELATED WORK 10

2.1 Integration Skills in Expertise . 10

2.2 Learner Modeling in ITSs . 14

2.2.1 Popular Learner Models in ITSs . 14

2.2.2 Learner Models in the Programming Domain 18

2.3 Difficulty Factors Assessment for Skill Modeling 21

2.4 Learner Model Evaluation . 22

3.0 INVESTIGATING COMPOSITION EFFECTS AND

INTEGRATION SKILLS IN PROGRAM COMPREHENSION . . . 25

3.1 Method . 26

3.1.1 Overall Idea . 26

3.1.2 Design and Materials . 27

3.1.3 Latin Square and Within-Subject Design 29

3.1.4 Participants and Procedure . 29

3.1.5 Grading . 31

3.2 Results . 31

v

3.2.1 Existence of Composition Effects 32

3.2.1.1 Comparing Sequential Problems with Integration Problems 32

3.2.1.2 Comparing Basic Problems with Integration Problems . . . 34

3.2.1.3 Examining Composition Effects on Topic Level 35

3.2.2 Nature of Composition Effects and Integration Skills 36

3.2.2.1 Integration Error Analysis 37

3.2.2.2 Identification of Integration Skills 42

3.2.2.3 Identification of Integration Difficulty Factors 44

3.2.3 Individual Differences in Integration Skills Explained by Integration

Difficulty Factors and Topics . 45

3.3 Discussion and Conclusions . 50

4.0 BUILDING AN INTEGRATION-LEVEL LEARNER MODEL 52

4.1 Building the Skill Model . 52

4.1.1 Item-to-Skill Mapping . 52

4.1.2 Skill-to-Skill Integration Graph . 57

4.2 Building the Bayesian Network Given the Skill Model 58

4.2.1 Learner Model Structure and Parameters 58

4.2.2 Dynamic, Individualized Knowledge Update 62

5.0 A MULTIFACETED EVALUATION FRAMEWORK FOR

LEARNER MODELS . 63

5.1 Data-Driven Evaluations . 63

5.1.1 Predictive Performance . 64

5.1.2 Parameter Plausibility . 65

5.1.3 Expected Instructional Effectiveness 67

5.1.3.1 Score . 67

5.1.3.2 Effort . 68

5.1.3.3 Mastery Thresholds . 70

5.1.3.4 Imputation . 70

5.1.3.5 Summative Score-Effort Curve 71

5.2 Real-world Intervention Study Evaluations 73

vi

5.3 Discussion and Conclusions . 74

6.0 BUILDING A PROGRAM COMPREHENSION ITS DRIVEN BY

LEARNER MODELING . 75

6.1 Trace Table Practice Interface . 75

6.2 Interface Implementation . 78

6.3 Hint Generation and Skill Labeling . 79

6.4 Learner Modeling Service . 82

6.5 Problem Selection Service . 83

6.6 System Deployment and Data Logging . 84

7.0 DATA-DRIVEN EVALUATIONS OF THE PROPOSED

INTEGRATION-LEVEL LEARNER MODEL 86

7.1 Baseline Models . 86

7.2 Real-World Dataset Experiments . 88

7.2.1 Experimental Setup . 88

7.2.1.1 Dataset . 88

7.2.1.2 Learner Models’ Initial Parameters 90

7.2.1.3 Cross-Validation . 91

7.2.2 Results for the Problem Level Assessment Data 91

7.2.3 Results for the Step Level Assessment Data 94

7.2.4 Discussion and Conclusions . 97

7.3 Simulated Dataset Experiments . 99

7.3.1 Method . 99

7.3.2 Results . 101

7.3.3 Discussion and Conclusions . 105

8.0 REAL-WORLD ADAPTATION EFFECTIVENESS EVALUATION

OF THE PROPOSED INTEGRATION-LEVEL LEARNER MODEL 107

8.1 Method . 107

8.1.1 Differences in Problem Selection . 108

8.1.2 Differences in Hints . 109

8.1.3 Procedure . 110

vii

8.1.4 Learner Model Parameters and Initialization 110

8.1.5 Practice Problems and Skills . 111

8.1.6 Pretest and Posttest . 112

8.1.7 Participants . 113

8.2 Results . 114

8.2.1 Posttest Scores . 115

8.2.2 Posttest Time . 118

8.2.3 Posttest Scores with Time Constraints 124

8.2.4 The Composition Effect (CE) . 127

8.2.4.1 Existence of CEs on the Pretest and Practice Problems . . 127

8.2.4.2 Comparison of CEs on Posttest Problems 129

8.3 Discussion and Conclusions . 132

9.0 CONCLUSIONS, DISCUSSION AND FUTURE WORK 134

9.1 Conclusions . 134

9.2 Discussion, Limitations and Future Work 136

9.3 Contributions . 140

APPENDIX. INTEGRATION ERROR ANALYSIS 144

BIBLIOGRAPHY . 148

viii

LIST OF TABLES

1 Problem sets and the corresponding hypothesized integration skills in the topics

of for loops, while loops and lists. 30

2 Latin square design for the composition effect DFA study. 31

3 Number of students for each study session (topic). 31

4 Examining the composition effect for each problem set and all problem sets. . 33

5 Examining the composition effects for groups of problem sets. 36

6 Definitions of the conceptual parts of integration skills. 43

7 Integration (itgt.) difficulty factors identified by the integration error analysis. 44

8 A random splitting of all problem sets into two groups. 46

9 The Spearman correlation of average CE strength among integration difficulty

factors. 47

10 The Spearman correlation of average CE strength among topics. 49

11 An example of the final rule table involving state update problems. 55

12 (Potential) integration skills for my study context. 56

13 Basic skills for my study context. 56

14 A rule for labeling the conceptual part of an integration skill. 81

15 Hints for the highlighted cell in Figure 13. 82

16 Descriptive statistics for the data on problem and the step levels. 89

17 Descriptive statistics for skill models on problem and step levels. 90

18 Comparison of predictive performance and parameter plausibility between the

three learner models, based on the problem level data. 92

ix

19 Predictive performance and parameter plausibility metrics of the learner mod-

els, based on the problem level data. 93

20 Comparison of predictive performance and parameter plausibility between the

three learner models, based on the step level data. 95

21 Predictive performance and parameter plausibility metrics of the three learner

models, based on the step level data. 96

22 Generalized linear mixed models predicting correctness per problem per student.117

23 Number of students who submitted each specified posttest problem. 119

24 Descriptive statistics and statistical tests based on the median time for different

sets of problems. 120

25 Linear mixed models predicting time spent on each submitted problem. . . . 121

26 Number of students who succeeded in each specified posttest problem. 122

27 Linear mixed models predicting time spent per correctly solved problem by a

student. 122

28 Generalized linear mixed models predicting posttest correctness per problem

per student within easy integration problems with time constraints. 126

29 Examining the composition effect on pretest and practice problems from both

conditions. 128

30 Comparing composition effects on posttest problems between the control group

and the experimental group. 130

31 The integration error analysis for the nested loop integration type. 145

32 The integration error analysis for the state update integration type. 146

33 The integration error analysis for the nonconceptual integration type. 147

x

LIST OF FIGURES

1 Two main learner models for multi-skill practice situations. 16

2 The problem set for the hypothesized integration skill for&x=x+i. 28

3 The problem set for the hypothesized integration skill for&for. 28

4 Percentiles of different integration errors for different problem sets. 38

5 The correlation of the average CE between the Group 1 and Group 2 problem

sets. 46

6 An example of a decision tree for judging the existence of potential integration

skills and CIDFs. 54

7 An example of an integration graph. 57

8 The BN structure of an integration-level learner model. 59

9 Score-effort curves for two learner models . 72

10 The initial interface of a practice problem with a trace table. 76

11 The interfaces of a practice problem for the situations where a student enters

a wrong answer. 77

12 The initial interface of an isolated integration problem for the conceptual part

of an integration skill. 78

13 The highlighted cell is labeled with the conceptual part of an integration skill. 81

14 BN structures of two popular multi-skill practice learner models. 87

15 Comparison of expected instructional effectiveness between the three learner

models, based on the problem level data. 93

16 Comparison of expected instructional effectiveness between the three learner

models, based on the step level data. 96

xi

17 The Bayesian network for generating simulated datasets. 100

18 Comparison of RMSE values on test set prediction with datasets generated

from different ground truth guess and slip parameters. 102

19 Comparison of guess values fitted on datasets generated from different ground

truth guess and slip parameters. 103

20 Comparison of slip values fitted on datasets generated from different ground

truth guess and slip parameters. 104

21 The interface for a pretest/posttest problem. 113

22 Percentile comparison of different types of problems between conditions. . . . 114

23 Comparison of the posttest scores over different sets of problems between the

condition and experimental groups. 117

24 Comparison of the median time for different sets of problems between the

control and experimental groups. 120

25 Comparison of the median time spent on correctly solved problems over differ-

ent sets of problems between the control and experimental groups. 123

26 Posttest total time distributions for the control and experimental groups. . . 125

27 Comparison of posttest scores on easy integration problems with different time

constraints between the control and experimental groups. 125

28 Comparison of composition effects on posttest problems between the control

and the experimental groups. 131

xii

PREFACE

This PhD journey has been a very fulfilling experience for me thanks to all the amazing

people I got to work with or share time with during these years. There are so many people

I want to thank and I am sure I will end up missing a few.

Firstly, I want to thank my advisor, Peter, for his believing in me, his great support and

advice on my research path and personal growth, for all these six years. I am very grateful

to my other committee members, Chris, Ken and Marek, for their invaluable advice, and

for their spending so much time to guide me, without which I couldn’t have developed new

perspectives to identify problems and form solutions. I want to thank my mentor, Jose,

who guided me when I started the PhD, and taught me skills and rigorousness that are so

important for doing research. Also, I am grateful to Rosta, Yuru, and Igor, for their help

and inspiration when I got stuck, and UACH teachers for their patience to work with me.

Secondly, I want to thank all my friends and colleagues who have accompanied and

helped me to grow on this journey, through collaborations, discussions, and their kind un-

derstanding, encouragement and support. I especially want to thank Rosta, my roommates

Linda and Ziyi, Di, Roya, Khushboo, who gave me so much love and made me feel I was not

alone, thank Yeye for running and sharing feelings and thoughts with me almost everyday

during these last stressful months, thank Lingjia for helping me settling down Pittsburgh,

and thank Jordan for helping me running initial studies regardless of his tight schedule.

Last but not least, I want to thank my my husband, Daniel, in whose arms I always feel

so peaceful, from whose eyes and voice I feel so loved and strong. I also want to thank my

parents-in-law for their support and love. I am eternally grateful to my parents, without

whom I couldn’t have reached here. Dad and mom, my every taste of happiness and peace,

the quest for the truth and excellency, originated and have been molded by you. Thank you!

xiii

1.0 INTRODUCTION

1.1 MOTIVATION

Mastery development requires not only the acquisition of basic component skills, but also

practicing the integration of these skills [Ambrose et al., 2010], during which students acquire

common chunks, schemas or patterns, as evidenced by research into expertise acquisition in

a wide range of domains, such as chess [Chase and Simon, 1973, De Groot, 1978], electronic

circuitry [Egan and Schwartz, 1979], physics [Larkin et al., 1980] and geometry [Koedinger

and Anderson, 1990]. Especially relevant to my study is Heffernan and Koedinger’s re-

search on algebra [Heffernan and Koedinger, 1997], which has provided empirical evidence

demonstrating that additional knowledge is required in order to accomplish specific skill

combinations. In this research, students were found to be significantly worse at translating

two-step algebra story problems into expressions (e.g., 800 - 40x) than they were at trans-

lating two closely matched one-step problems (with answers 800 - y and 40x). The authors

suggested that the students lacked a recursive grammar rule which would allow expressions

(e.g., 40x) to be embedded within other expressions (e.g., 800 - 40x). Further, they called the

situation where a two-operator problem is more difficult than two decomposed one-operator

problems sequentially presented the composition effect. Similarly, research on computer sci-

ence education and pedagogy has long argued that knowledge of a programming language

can’t be reduced to the sum of knowledge about different programming constructs, since

there are many integrating patterns, schemas or plans that must be taught and practiced

[Shneiderman, 1976, Adelson, 1981, Soloway and Ehrlich, 1984].

The above different constructs (e.g., chunks, schemas, plans, patterns, etc.), which have

been identified across diverse domains, share the same essence: they refer to skills of inte-

1

grating basic component skills that are essential to domain expertise, which I have referred

to as integration skills in my dissertation. In the Knowledge-Learning-Instruction (KLI)

framework [Koedinger et al., 2012a], a knowledge component (KC)1 that “integrates or must

be integrated (or connected) with other KCs to produce behavior” is called an integrative

knowledge component, and “descriptions of integrative KCs make reference to internal men-

tal states either in their condition (e.g., a deep feature produced by another KC) or in their

response (e.g., a subgoal for another KC to achieve).” This is a formal and also more general

definition of integration skills.

Despite being recognized in cognitive science research and teaching practices, skill in-

tegration has rarely been taken into account in learner modeling, the key component for

adaptive assistance within an intelligent tutoring system (ITS). Traditional learner model-

ing approaches don’t explicitly monitor the levels of knowledge that exist in the different

types of skill integration [Corbett and Anderson, 1995, Mayo and Mitrovic, 2001, Conati

et al., 2002]. For example, the most popular learner modeling approach, Bayesian knowledge

tracing (BKT) [Corbett and Anderson, 1995], is based on decomposing domain knowledge

into individual component skills, and monitors each individual component skill on decom-

posed steps. It doesn’t address the possible skill integration that wholly underlies solving

a multi-skill problem. Even some of the more advanced learner models [Mayo and Mitro-

vic, 2001, Conati et al., 2002, Millán and Pérez-De-La-Cruz, 2002, Xu and Mostow, 2012],

which address the skill responsibility assignment in multi-skill problems in a more sophis-

ticated way, still decompose domain knowledge into individual component skills, and don’t

explicitly monitor possible integration skills.

Specifically in the programming domain, where tasks intrinsically involve integrating

multiple skills at the same time, only a few early attempts have been made to consider the

integrative nature of problem-solving in programming [Brusilovsky, 1992, Weber, 1996a].

Moreover, learner modeling addressing integration skills by formal probabilistic approaches

has barely been explored.

1In KLI framework [Koedinger et al., 2012a], a knowledge component is defined as an acquired unit of
cognitive function or structure that can be inferred from students’ performance on a set of related tasks.
It generalizes multiple terms—production rule, schema, misconception, or facet, as well as everyday terms,
such as concept, principle, fact, or skill—for describing pieces of cognition or knowledge.

2

Although ignoring explicit integration skill differentiation may make knowledge engi-

neering and modeling easier, it may also result in a non-trivial negative impact on student

learning. ITSs that ignore integration skill modeling risk giving early assertions of mastery

after merely observing successes in decomposed component skill practices or practices in

limited application contexts, which will lead to shallow, non-robust learning: students may

still fail in problems applying the learned component skills in a new context, because they

have learned the component skills in an overly specific way, encoded by surface features, or

haven’t encountered problems that reveal other aspects of the component skills; students

may also make errors on learned component skills when they need to attend to other skills in

an integration problem, because they haven’t reached enough fluency in using the component

skills, which would have been obtained by practicing the skills in varied contexts. Also, ITSs

that ignore integration skill modeling risk giving ineffective remediation: when students who

have mastered basic component skills fail in complex integration problems, such ITSs might

not provide targeted remediation for learning (simpler) skill integration but instead keep

supplying basic component skill practice, resulting in students “spinning their wheels.”

My dissertation investigates the introduction of integration skills, long acknowledged by

cognitive science research into learner modeling in ITS. I chose program comprehension with

a complex integrative nature as a demonstration of integration skill modeling. Modeling

integration skills is non-trivial and imposes several challenges, particularly in the context of

programming. Firstly, although several empirical studies (mentioned above) have provided

support for some integration skills in specific contexts, it is still not clear what factors

decide the existence of an integration skill, and what the integration skills exactly are in

a new context. In particular, there are still no unified, clear, fine-grained skill definitions

(including those of integration skills) in programming, unlike the better-defined ones found

in the math domain, although efforts have been made to identify CS standards on a coarse-

grained, high level (e.g., CSTA K-12 Computer Science Standards2, ISTE Standards3, and

the K-12 Computer Science framework4). Admittedly, less accurate, coarse-grained, or even

“black box” skill models could be applied to build adaptation techniques, yet a clear, fine-

2https://dl.acm.org/citation.cfm?id=2593249
3https://www.iste.org/standards/for-computer-science-educators
4http://www.k12cs.org

3

grained understanding of domain skills and techniques built based on this foundation, would

better enable the broader community, including researchers from different backgrounds and

teachers, to interpret results, utilize the techniques in new contexts, and gain insights to

better develop instructional policies and learning materials.

Secondly, machine learning methods for skill discovery/refinement [Barnes, 2005, Winters

et al., 2005, Cen et al., 2006, Desmarais, 2012, Lan et al., 2014, González-Brenes, 2015]

developed by the educational data mining (EDM) community have only shown effectiveness

on datasets where each assessment unit (item) maps to one to three skills. Meanwhile,

a program comprehension problem or an integration problem may involve an even larger

number of skills mapping to one assessment unit. Recent work from [Van de Sande, 2016]

has pointed out conditions5 a multi-skill practice dataset has to meet in order to apply his

method of plotting learning curves for items with multiple skills, which serves as an initial

attempt in the community to understand the limitations brought by multi-skill practice

datasets to distinguish between different skills with machine learning methods.

Thirdly, the improvement of an integration-level over a basic-level learner model might

not be sufficiently measured by predictive performance, which is used as the only evaluation

on learner models in most work in the EDM community, where new learner models are

actively proposed. One possible reason (which is validated by my simulation study, see

Section 7.3) is that integration practice involves multiple skills mapping to one assessment

unit and a relatively large skill space, so models without integration skills could utilize the

flexibility in the parameter space to reach a similar predictive performance. Several studies

have pointed out the limitation of predictive performance evaluation. There may be a set of

parameter estimates that make identical predictions where some are clearly incorrect about

students’ knowledge [Beck and Chang, 2007]. Also, learner models with a similar predictive

performance might suggest that substantially different amounts of practice are necessary

[Rollinson and Brunskill, 2015]. My prior work has also shown that a highly predictive

5Van de Sande in his work [Van de Sande, 2016] pointed out that if there is a skill that always appears
along with another skill for several problems and all the students in the dataset solve nearly the same
ordered sequence of problems, then there is no way to distinguish between the two skills for one or more
practice opportunities, because this will result in a Hessian matrix that is not positive-definite and the
matrix inversion will fail. He argued that this situation will rarely arise in practice, yet is common in many
real-world programming datasets.

4

model can be useless for adaptive tutoring [González-Brenes and Huang, 2015], and may

have implausible parameters [Huang et al., 2015]. Moreover, there is still little work in the

EDM community that “closes the loop”, i.e., completes the “4d cycle” of system design,

deployment, data analysis and discovery, recycling back to design. To “close the loop”, it

would be necessary to examine whether a redesigned system based on a new learner model

produces better student learning [Koedinger et al., 2013] compared with the original one.

1.2 MAIN DIRECTIONS OF WORK AND CONTRIBUTIONS

I proposed and applied the following approaches in my dissertation, to address the above

challenges to modeling integration skills.

Since the nature of integration skills is still unclear (particularly in the programming

domain) and automatic machine learning methods fall short in complex integration situa-

tions, I applied a Difficulty Factors Assessment (DFA) method [Koedinger and Nathan, 2004]

borrowed from empirical cognitive task analysis methods [Clark et al., 2007] in cognitive sci-

ence, to systematically generate and analyze data, and to study the existence and nature of

integration skills and integration difficulties in common basic programming patterns.

The DFA methodology, combined with an automatic program text analysis, was used

to build a skill model with integration skills. Based on the skill model, I constructed an

integration-level learner model, CKM-HI, which incorporates integration skills in a hierar-

chical structure in a Bayesian network (BN). It learns parameters from student data, and

gives dynamic, individualized knowledge estimates when deployed in a system. I chose BN

among the many machine learning approaches in the area of artificial intelligence, because it

naturally utilizes domain knowledge and maintains interpretable knowledge states for adap-

tation decisions, which provides an important practical value beyond predictive performance.

To address the limitations of prediction metrics in evaluating multi-skill learner models, I

proposed a general, multifaceted evaluation framework for learner models that combines im-

portant analytic evaluations, such as predictive performance, parameter (model) plausibility

and expected instructional effectiveness, with real-world intervention study evaluations.

5

I conducted extensive data-driven analytical evaluations based on a real-world dataset,

comparing the proposed learner model, CKM-HI, with two popular multi-skill practice

learner models that don’t incorporate integration skills, CKM and WKT, over multiple

aspects of the proposed evaluation framework. I also conducted a simulation study to better

understand model behaviors observed in the real-world dataset.

To evaluate the real-world impact of the proposed learner model, I built an ITS, Trace

Table Tutor (T3), that teaches students program comprehension skills by using trace ta-

bles. This tutor provides hints and adaptive problem selection, driven by underlying learner

modeling. I conducted a classroom study comparing a version of the ITS driven by an

integration-level learner model to another version driven by a basic-level learner model. The

combination of analytic and empirical study evaluations gives a comprehensive examination

of the proposed integration-level learner model.

To sum up, my dissertation makes five main contributions, listed as follows:

• Firstly, it is a pioneer work that systematically demonstrates the value of integration

skill modeling, and offers a novel, general integration-level learner modeling approach

which should be applicable to a broader context beyond program comprehension.

• Secondly, it contributes to both EDM and ITS research a unified, multifaceted evaluation

framework for learner models, which includes both data-driven analytical evaluations

and empirical user study evaluations, and demonstrates applying this framework to the

evaluation of the proposed integration-level learner model.

• Thirdly, it is the first work to apply a DFA approach which originated in cognitive science

research to computer science education research. The DFA approach provides a way to

systematically generate and analyze data for investigating difficulty factors, and my work

is the first to apply it to studying integration skills in program comprehension.

• Fourthly, it contributes to bringing recent ITS infrastructure and techniques into com-

puter science education.

• Last but not least, it contributes an example to EDM and ITS research of utilizing cog-

nitive science discoveries, and taking an interdisciplinary approach (combining empirical

methods from cognitive science and analytic methods from computer science) to tackling

a topic which is ultimately aimed at the practical value of improving student learning.

6

1.3 RESEARCH QUESTIONS

My dissertation addresses five main research questions. The motivations have been explained

in detail in the previous Section 1.1 while in this section I briefly explain why I have asked

each research question and how the research questions interconnect.

[RQ 1] Does the composition effect exist in program comprehension, and if

so, what is the nature of it? This question sets the foundation for building a skill

model for an integration-level learner model (RQ 2), and provides insights for building a

program comprehension ITS for evaluating the integration-level learner model (RQ 5). The

existence of a composition effect indicates the existence of an integration skill, and with

deeper investigation into the errors made in integration, one should be able to reliably

confirm the existence of integration skills, and abstract, generalizable integration difficulty

factors for identifying integration skills in new contexts. Thus, this question is the first

question investigated in my dissertation.

[RQ 2] How to build a learner model for integration skills? This question is the

core question in my dissertation. As defined in my dissertation, learner modeling includes

constructing a skill model (specifying the skill set, item-to-skill relationships and skill-to-skill

relationships), and constructing a mechanism to infer knowledge from performance, based

on a modeling approach (e.g., Bayesian networks, logistic regression). To construct a skill

model, automation and generalization, based on the DFA discoveries from RQ 1, should be

taken into consideration. To construct an inference mechanism based on the skill model, I

have chosen Bayesian networks. Finding a proper way to represent different kinds of skills

and relationships, based on discoveries from the RQ 1 studies, as well as how to enable

effective adaptive tutoring in this context, should be taken into consideration. Thus, this

question also needs to be carefully investigated.

[RQ 3] How to evaluate a learner model? This question aims to address the

challenge of evaluating multi-skill practice learner models in general, and is necessary to

reveal the value of my proposed integration-level learner modeling. The answer to this

question is a unified, multifaceted evaluation framework for learner models that is applicable

to both single-skill and multi-skill learner models, with a range of dimensions and metrics

7

that is well-informed by prior work, including both analytical data-driven evaluations on

collected datasets and empirical user study evaluations. This framework is necessary for

later applications, when answering RQ 4 and RQ 5.

[RQ 4] Is learner modeling for integration skills beneficial in terms of multi-

faceted data-driven evaluations? The data-driven evaluations under this question apply

the evaluation framework proposed in RQ 3 and serve as one major part of the evaluations of

the proposed learner model from RQ 2. The experimental setup—such as baseline models,

density levels of assessment units and learner model initialization—needs to be considered.

[RQ 5] Is learner modeling for integration skills in an ITS beneficial in terms

of improving student learning? This question relates to the ultimate goal of learner

modeling, improving student learning, and completes the evaluation of the proposed learner

model (RQ 2) under the proposed evaluation framework (RQ 3).

1.4 DISSERTATION ORGANIZATION

The chapters in my dissertation are organized as follows: Each chapter (except Chapter 2

and 9) focuses on one research question, and introduces the approach for answering the

research question.

Chapter 2 gives a thorough literature review on the background and related work of

my dissertation, including integration skills in expertise, learner modeling in ITS, Difficulty

Factors Assessment (DFA) for skill modeling and learner model evaluation.

Chapter 3 reports my investigation into RQ 1. Classroom Study 1 was conducted. I

applied the DFA approach with systematically designed problems and analyzed students’

performance to examine the existence of the composition effect. I further conducted a drill-

down integration errors analysis and a correlation analysis to identify integration skills and

generalizable integration difficulty factors.

Chapter 4 explains how I constructed a learner model for integration skills for answering

RQ 2. To construct the skill model, I proposed an automatic program text analysis algorithm

based on a simple set of rules with contextual features, informed by the identified integration

8

skills and generalizable integration difficulty factors from Chapter 3. To construct the mech-

anism for inferring knowledge from performance, I used the Bayesian network technique and

built an integration-level learner model, CKM-HI, which has integration skills incorporated

in a hierarchical structure and is based on the constructed skill model.

Chapter 5 explains my multifaceted evaluation framework to address RQ 3. Based on

various important aspects identified in prior work, I proposed a multifaceted, general evalu-

ation framework with a traditional analytical dimension (predictive performance) and new

analytical dimensions (parameter plausibility and expected instructional effectiveness) in-

stantiated by novel metrics, as well as real-world intervention study evaluations.

Chapter 6 explains the design and implementation of a novel program comprehension

ITS, the Trace Table Tutor (T3), as the basis for my investigation into RQ 5. I designed

trace table practice problems which naturally address the integration difficulties discovered

from the composition effect study in Chapter 3. I designed an automatic process to generate

hints and a problem selection algorithm, both of which are driven by underlying learner

modeling. An existing ITS infrastructure was utilized to implement T3.

Chapter 7 reports the experiments of data-driven evaluations for the proposed learner

model, answering RQ 4. An analytical study with cross-validation was conducted. I con-

ducted experiments on a real-world dataset comparing the proposed learner model, CKM-HI,

with two popular multi-skill learner models, CKM and WKT, that don’t incorporate integra-

tion skills. I considered a range of aspects, which were proposed in my evaluation framework.

Further, I conducted a simulation study to better understand the model comparison results

obtained from the real-world dataset.

Chapter 8 reports the real-world intervention study evaluation of the proposed learner

model, answering RQ 5. Classroom Study 2 was conducted, comparing two versions of T3:

one version was driven by CKM-HI and the other version driven by CKM. I analyzed the

results from several aspects, including posttest scores, time, scores under time constraints

and composition effects. This analysis, combined with the data-driven analytical evaluations,

gives a comprehensive evaluation of the proposed integration-level learner model, CKM-HI.

Chapter 9 summarizes conclusions, limitations and future work, as well as the contribu-

tions of my dissertation.

9

2.0 BACKGROUND AND RELATED WORK

In this chapter, I review the background and related work of my dissertation from following

aspects: integration skills in expertise, learner modeling in ITSs in various domains including

the programming domain, Difficulty Factors Assessment for skill modeling, and learner model

evaluation.

2.1 INTEGRATION SKILLS IN EXPERTISE

It has been well-established in cognitive science research that experts organize and store

knowledge by chunks or schemas while novices can’t. A chunk is defined as a familiar

collection of more elementary units that have been inter-associated and stored in memory

repeatedly and act as a coherent, integrated group when retrieved [Tulving and Craik, 2000];

similarly, a schema is defined as mental constructs that allow patterns or configurations to be

recognized as belonging to a previously learned category and which specify what moves are

appropriate for that category [Sweller and Cooper, 1985]. In the context of my dissertation, I

will use these two concepts interchangeably. Experts organize individual pieces of information

into larger, meaningful, functional units as chunks and schemas, that allow them to retrieve

and apply related knowledge with facility and autonomy. The early evidence of chunks

comes from the chess domain [Chase and Simon, 1973, De Groot, 1978] where chess masters

were found to recall more positions than novices did. Latter experiments across different

domains including electronic circuitry [Egan and Schwartz, 1979], physics [Larkin et al.,

1980], programming [Soloway and Ehrlich, 1984], geometry [Koedinger and Anderson, 1990]

provided further evidence of chunks in defining expertise.

10

Particularly, researchers in the area of psychology of programming have long argued that

programming schemas, plans or patterns form an important part of programming expertise

[Shneiderman, 1976, Adelson, 1981, Soloway and Ehrlich, 1984]. For example, [Soloway and

Ehrlich, 1984] compared the performance between experts and novices on program compre-

hension tasks involving various programming plans, and found out that experts have and use

programming plans, which are generic program fragments that represent stereotypic action

sequences in programming (e.g., maximum search loop plan, running total variable plan).

Recent multi-institutional studies on program comprehension [Whalley et al., 2006, Lister

et al., 2006] found out that experts or high level students presented more relational responses

in theirs answers compared to low level students. They defined a relational response as a

response where the student integrates the parts of the problem into a coherent structure

and uses that structure to solve the task (e.g., inferring that a code counts the number of

common elements in the two arrays and calculating answers without step-by-step tracing).

In addition, a recent study on program construction [de Raadt, 2008] also discovered that

experts applied algorithmic plans while novices didn’t, which is consistent with the conclu-

sions drawn from program comprehension studies. Further, programming patterns were used

by researchers in the area of ITS to support intelligent analysis of student programs, such as

PROUST [Johnson and Soloway, 1985], TALUS [Murray, 1985], ELM-PE [Weber, 1996b],

INCOM [Le and Menzel, 2009] and Haskell [Gerdes et al., 2012].

What are the potential difficulties in the acquisition of schemas? I summarized research

in cognitive science from two perspectives to explain the difficulties. One potential difficulty

is that the acquisition of schemas requires a correct conceptual understanding of how elemen-

tary units are integrated together, which could be missed or implicit in the original learning

process. For example, in an algebra symbolization study [Heffernan and Koedinger, 1997],

students were found to be significantly worse at translating two-step algebra story problems

into expressions (e.g., 800 - 40x) than they were at translating two closely matched one-step

problems (with answers 800 - y and 40x). This phenomenon where a problem is harder

than the parts made it up together was termed as the composition effect. Students might

have viewed an expression as a recipe rather than a first-class object [Sfard and Linchevski,

1994], and thought that only single numerals or variables (e.g., 40 or x) could be combined

11

with mathematical operators. The researchers further hypothesized that students lacked a

hidden symbolic production skill (or recursive grammar rule) indicating expressions (e.g.,

40x) can be embedded within other expressions (e.g., 800 - 40x). This work has an impor-

tant implication that additional skills may arise supplementing or adjusting the conceptual

understanding of previously learned skills when they are applied together in an unseen situ-

ation, and actually, such additional skills may only be manifested when its component skills

are integrated in specific ways. In the programming domain, it is still unclear and thus it is

one of my goals to investigate whether some difficulties in programming results from a lack

of correct conceptual understanding in how basic constructs are integrated together.

Another potential difficulty in the acquisition of schemas is that novices are still very

unfamiliar to the task and they have to use demanding process (e.g., means-ends analysis

[Sweller, 1988]) with high cognitive load, which increases the chance of failure and also

deprives them of cognitive resources to construct schemas [Sweller and Cooper, 1985]. Here,

cognitive load refers to the effort being used in the working memory. According to [Miller,

1956], working-memory capacity has inherent limits, so the demands imposed by a complex

task applying multiple skills simultaneously can easily exceed what a novice can manage

[Kahneman, 1973]. However, experts could recognize and invoke schemas stored in the long-

term memory to be processed in the working memory as a single unit, with a manageable

cognitive load.

Based on research in cognitive science and learning science, [Ambrose et al., 2010] has

proposed a principle for developing mastery: students must acquire component skills, practice

integrating skills, and know when to apply skills. Particularly, the second level they stated is

the focus of my dissertation. In their Knowledge-Learning-Instruction framework, [Koedinger

et al., 2012b] also pointed out the integrative aspect of some knowledge components, and

defined a knowledge component that “integrates or must be integrated (or connected) with

other KCs to produce behavior” as an integrative knowledge component, and “descriptions

of integrative KCs make reference to internal mental states either in their condition (e.g., a

deep feature produced by another KC) or in their response (e.g., a subgoal for another KC

to achieve).” This is a formal and also more general definition of integration skills, because a

knowledge component is a general term which could refer to a concept, a principle or a fact,

12

but I primarily focus on skills in my dissertation. Borrowing the wording from these two

work, I used the term integration skills to refer to any of the constructs mentioned in my

literature review (chunks, schemas, plans, patterns, etc.) that describe skills of integration

basic component skills which are essential to domain expertise, and allows for fluency in

solving domain tasks.

Based on the numerous research on the existence and difficulty of acquiring integration

skills, is there further evidence showing the effectiveness of teaching integration skills, so

that it’s worth the effort to modify instructions or build tutoring systems to address them?

Prior work has provided some successful examples. To address the conceptual difficulty

in integration, [Koedinger and McLaughlin, 2010] designed symbolic substitution problems

in the ASSISTMENT system [Heffernan and Heffernan, 2014] for exercising two operator

expressions (and thus should exercise the hidden integration skill, the recursive grammar

rules) without the cover story, and students under this condition significantly improved their

performance compared with the control group given simpler story problems. To address the

cognitive load difficulty in integration, [Sweller and Cooper, 1985] demonstrated in a variety

of quantitative fields from statistics to physics that worked-examples could free up cognitive

resources that allowed students to notice the key features to construct schemas and enabled

students to improve their performance on subsequent problem-solving.

In the programming domain, some preliminary studies have provided initial evidence of

the effectiveness of teaching integration skills. When explicit instruction of programming pat-

terns was incorporated into an actual introductory programming curriculum, [Proulx, 2000]

qualitatively reported that students performed better on the midterm exam and seemed more

confident than in the past; [Muller et al., 2007, de Raadt, 2008] used comparative research

studies to show that novices who studied under the revised course exhibited better problem-

solving competence than those who studied in a traditional manner. In the area of ITS, an

example is the dialogue-based intelligent tutoring system ProPI [Lane and VanLehn, 2005]

which elicited goal decompositions and program plans from students in natural language.

Their small-scale evaluation showed that students who received tutoring from ProPl seemed

to have developed an improved ability in problem composition and displayed behaviors that

suggested they were able to think at greater levels of abstraction than the controlled group.

13

2.2 LEARNER MODELING IN ITSS

2.2.1 Popular Learner Models in ITSs

Intelligent tutoring systems (ITSs) strive to select educational activities and deliver individ-

ual feedback that is most relevant to the learner’s level of knowledge, and a learner model

which represents mostly the learner’s knowledge of the subject domain is essential for ITSs

to provide the adaptation effect, i.e., to behave differently for different learners [Brusilovsky

and Millán, 2007].

The current most popular knowledge model mechanism in ITSs is to use an overlay

model based on a domain model (cognitive model, skill model), which reflects the expert-level

knowledge of the subject domain. For each fragment of domain knowledge (concept, skill,

production rule, or in a general term knowledge component), an overlay model stores some

estimation of the learner’s knowledge level of this fragment [Brusilovsky and Millán, 2007].

Particularly, during the interaction with an ITS, learners’ knowledge change dynamically,

and the process of maintaining explicit knowledge estimations of domain skills over time, is

also called knowledge tracing [Corbett and Anderson, 1995].

In the context of my dissertation, learning modeling includes both constructing a mech-

anism based on a modeling approach (e.g., Bayesian networks, logistic regression), and con-

structing a skill model (specifying the skills in the domain, skill-to-problem relationships and

skill-to-skill relationships), and often these two aspects affect each other.

Bayesian networks (BN) [Pearl, 2014] has been one of the major probabilistic approaches

to learning modeling, and it is the approach I applied in my dissertation. The main ad-

vantages of Bayesian networks are that they can encode domain expert knowledge in an

interpretable, intuitive graphical representation (which are good for cognitive diagnosis),

and offer a well-defined formalism for sound probability computations of unobservables from

the evidence of observables [Desmarais and Baker, 2012].

In this section, I mainly review popular learner models in ITSs that apply Bayesian

networks, and briefly mention others in the end. Also, for models used in the programming

domain, I give more details in Section 2.2.2.

14

One of the most widely used learner model for single-skill practice situation is the classic

Bayesian knowledge tracing (BKT) [Corbett and Anderson, 1995] based on the ACT-R the-

ory [Anderson et al., 2004]. Here, each observed assessment unit (i.e., a practice opportunity,

an observation, a step, a problem or in a general term an item) only requires a single skill.

One major assumption made here is that skills are independent of each other. A hidden

Markov model (HMM), one kind of the dynamic Bayesian networks, is used to model the

learning process of each skill with four parameters: the probability of initially knowing the

skill (init), the probability of transferring from an unlearned to a learned state (learn), the

probability of accidentally failing a known item (slip), and the probability of correctly an-

swering an item by chance (guess). BKT has been used in Cognitive Tutors for programming

and maths learning and proved to be educationally successful [Ritter et al., 2007].

However, BKT has been designed for modeling basic component skills in decomposed

practice opportunities but not for complex tasks where multiple skills or integration skills

are required. In the latter situation, each observed assessment unit involving multiple skills

poses substantial challenges in assigning responsibility (credit or blame) to each individual

skill. Currently, there are two main streams of work that address this problem.

The first stream of work [Gong et al., 2010, Koedinger et al., 2011, Xu and Mostow,

2012, González-Brenes et al., 2014] converts the many-to-many skill-to-item mapping into a

one-to-many (one-to-one) mapping during the model training process, where the classic BKT

can be applied1 (referred to as the one-to-many BN paradigm). Such models assume that

skills are independent of each other and each skill is fully responsible for the performance

(during training process). This is achieved by duplicating each observation for each required

skill to form an individual skill practice sequence, and train a hidden Markov model for it.

Variants within this paradigm differ in how they conduct prediction and updating during

the predicting phrase. One variant I consider in my dissertation as a low baseline is called

weakest knowledge tracing (WKT) (Figure 14a), which has been shown to have the best

predictive performance on several datasets as compared with other variants [Gong et al.,

2010, González-Brenes et al., 2014, Xu and Mostow, 2012]. It takes the minimum of the

1Note that recent work [Xu and Mostow, 2012, González-Brenes et al., 2014] still conducts single-skill
practice knowledge tracing on coarse-grained skill levels and treats multiple fined-grained subskills as features.

15

predicted probability of success among involved skills as the final prediction; it only updates

the knowledge of the weakest skill when observing an incorrect response, and updates all skills

otherwise. Overall, models from this paradigm reduce modeling complexity, but simplifies

the responsibility assignment issue. Existed applications have been focusing on modeling

basic component skills and haven’t considered modeling integration skills.

Figure 1: Two main learner models for multi-skill practice situations. O nodes represent the

observed binary student performance and K nodes represent binary skill knowledge levels.

The second stream of work [Conati et al., 2002, Mayo and Mitrovic, 2001, Millán and

Pérez-De-La-Cruz, 2002] maintains the many-to-many skill-to-item mapping in both the

training and predicting phrases (referred to as the many-to-many BN paradigm). In such

models, skills are dependent conditioned on items, and could be dependent on other skills

if relations among skills are considered in the structure. Each individual skill is assigned

responsibility according to the conditional probability table and the Bayesian rule. Here,

I focus on the models that assume a conjunctive relationship among skills (i.e., success in

an item requires knowing all required skills) and that use noisy-AND gates for modeling

the conjunctive relations. Noisy-AND gates were commonly used in many prior studies

[Carmona et al., 2005, Conati et al., 2002, VanLehn et al., 1998], due to their linear rather

than exponential complexity in inference. I call such a model that uses item-level noisy-AND

gates with a flat structure among skills conjunctive knowledge modeling (CKM) and use it as

a high baseline (Figure 14b). These models also closely relate to the popular psychometric

16

model DINA [Junker and Sijtsma, 2001]. Each noisy-AND gate uses a slip parameter to

capture the probability of accidentally failing a known item, and a guess parameter to capture

the probability of correctly answering an item by chance. Further, in this avenue of work,

some use a hierarchical structure among skills, focusing on either the prerequisite relations

[Carmona et al., 2005, Conati et al., 2002, Käser et al., 2014] or granularity relationships

(including competency-based networks) [Collins et al., 1996, Conati et al., 2002, Millán and

Pérez-De-La-Cruz, 2002, Mislevy and Gitomer, 1995, Morales et al., 2006]. However, they

are substantially different from the integration relationship that I model and the level of

remediation that I target. In addition, most work doesn’t model transition probabilities

across time steps, due to the complexity imposed by the skill model in an arbitrary practice

order, yet the online knowledge update could still be easily achieved by applying the Bayesian

rule based on incoming evidence.

Besides the above Bayesian network based approach, logistic regression based approaches

such as some models from the Item Response Theory [Embretson and Reise, 2013], Addi-

tive Factor Model [Cen et al., 2006], and Performance Factor Analysis [Pavlik et al., 2009]

have also been used for assess learner ability (knowledge) and conduct adaptation [Chen

et al., 2005] in ITSs. Under this paradigm, existed work except a recent one [Koedinger

and McLaughlin, 2016] have also been focusing on modeling basic component skills and

haven’t considered integration skills. While it has been shown that some of these models

could achieve equivalent or better predictive performance compared with the one-to-many

BN paradigm in multi-skill practice situations [Gong et al., 2010], the logistic regression

formulation intrinsically requires independence among skills to avoid multicollinearity in or-

der to get reliable parameter estimates (which is not the case in the many-to-many BN

paradigm). Moreover, efficient online estimation of student ability parameters (to be used

as dynamic knowledge estimation) is still an active research [Weng et al., 2018, Ekanadham

and Karklin, 2017], while the online update of knowledge could be easily done by applying

the Bayesian rule in the Bayesian network approach. Giving the predictive advantages of

logistic regression models, it will be an interesting future step to explore integration skill

modeling under this approach.

17

2.2.2 Learner Models in the Programming Domain

Learner modeling in the programming domain is challenging since program comprehension

or construction tasks usually require a wide range of knowledge and skills, and typically

requires applying multiple skills simultaneously (multi-skill practice). It is still not yet clear

what is the best representation for the skill model in the context of learning modeling for

programming. In this section, I classify prior work by skill models, starting from approaches

modeling basic component skills (e.g., using basic programming constructs), followed by

approaches that explicitly model integration skills (e.g., applying programming patterns).

One of the early work is the classic BKT [Corbett and Anderson, 1995] introduced before

(Section 2.2.1). It was deployed in ACT Programming Tutor for teaching students to write

short Lisp, Prolog or Pascal programs. The procedural knowledge involved in the tasks here

was represented by goal-specific production rules defined on fine-grained elementary skill

level (e.g., if the goal is to move the last element to the front of a list, then code reverse,

and set a goal to code the list), and it is the base for the underlying process called model

tracing, where students’ actions were compared with an ideal student model. BKT was used

in the knowledge tracing process on such production rules to maintain the probabilities that

the student has learned each of the rules. One important feature of the system is that the

model tracing process made sure students maintained in a recognized solution path, so it

was possible and suitable to use a single-skill practice knowledge tracing model, which is

usually not the case in other programming systems.

Another early work is the Constraint-Based Modeling (CBM) [Ohlsson, 1994], with its

major successful application in SQL-Tutor [Mitrovic, 2012] for teaching students to write

SQL queries. CBM focuses on domain principles that correct solutions follow, and encodes

domain knowledge into constraints describing fine-grained features of correct solutions (e.g.,

if the student’s solution contains the JOIN keyword in the FROM clause, then the ON

keyword must also appear in the same clause). This has been proved to be effective for many

ill-defined domains. Originally, a simple heuristic overlay model (e.g., computing ratio of the

correctness of each constraint) was used, and later a Bayesian network model was constructed

and proved effective [Mayo and Mitrovic, 2000]. Although an attempt has been made in J-

18

LATTE [Holland et al., 2009] to apply CBM in Java (with 11 problems and 89 constraints),

it is still unclear the knowledge engineering effort required to construct a sufficient set of

constraints for the desired topic coverage for learning to program in imperative languages

(e.g., Java, Python) compared with relatively simpler declarative languages (e.g., SQL).

A considerable amount of recent work in learner modeling in programming has used

the simplified representation of domain knowledge by elementary programming constructs

(concepts), such as local variable, for statement, or higher level constructs (concepts or

topics), such as variable, loop statement, sometimes organized in a granularity hierarchy

with different abstraction levels (which was called a domain ontology). Most of such work

relied on expert manual annotation, while some recent work used automatic extraction by

a parser [Hosseini and Brusilovsky, 2013] or an Abstract Syntax Tree library [Rivers et al.,

2016]. Based on such a simplified skill model, different modeling approaches have been used:

[Vesin et al., 2012] in their Protus 2.0 system for learning Java used a heuristic rule-based

approach; some of my prior work [Huang et al., 2014, González-Brenes et al., 2014] and

other people’s work [Zapata-Rivera and Greer, 2001, Wang et al., 2017] applied Bayesian

networks in Java or C programming, with [Zapata-Rivera and Greer, 2001] further modeled

the prerequisite structure in the network; [Yudelson et al., 2014, Berges and Hubwieser, 2015]

applied logistic regression based models (e.g., Rasch model, AFM) in Java programming.

On the other hand, a few researchers have explored learner modeling on the level of

integration skills (patterns). One of the earliest work was by [Brusilovsky, 1992], where

multiple programming concept pairs were connected by “usage” link in the domain model.

A usage link indicated that one concept could be used in the context of another. For example,

a specific kind of condition could be connected by one usage link with a loop and by another

with a conditional operator. All problems in the system were indexed with usage links (i.e.,

concept pairs rather than individual concepts) to distinguish different applications of the

same concept.

Another early work was by [Weber, 1996a] which demonstrated a complex approach of

modeling patterns in the episodic learner model (ELM): Firstly, a database was constructed

by experts including task descriptions (with algorithmic plans), concept frames (with related

rules for solving plans) and rule frames. Then, a cognitive diagnosis was conducted to

19

generate a learner’s code by applying rules resulting in a derivation tree, from which episodic

frames was extracted, generalized and inserted into a student’s learner model consisting

of a hierarchy of episodic frames, their abstracted versions, and their associated concepts.

Each episodic frame or its abstraction was actually an algorithmic pattern (e.g., checking

whether the list contains a NIL value). When a new solution was presented, the stored model

would be used to shorten the diagnosis process by giving higher priority to the patterns the

learner used before. ELM with such pattern-level information has been proved effective for

the adaptive recommendation of programming examples in ELM-PE [Weber, 1996b] and

ELM-ART [Brusilovsky et al., 1996, Weber and Brusilovsky, 2001] systems.

However, the episodic learner model has never been expanded or ported to other sys-

tems or languages, due to its high demand for knowledge engineering. Instead, recent work

has used simpler knowledge representations: [Kumar, 2006] enhanced a concept map with

learning objectives and organized them in a hierarchical way, and the mastery of a domain

concept requires mastering each pedagogic concepts (e.g., to understand variable, one needs

to understand variable declaration, variable assignment and variable referencing); [Math-

ews, 2006] grouped elementary SQL problems that share a common SQL query pattern into

problem templates, and conducted a small-scale preliminary study showing students using

template-based ITS achieved high levels of learning within short periods of time; [Chrysafi-

adi and Virvou, 2013] constructed patterns (such as count in a for loop, sum in a for loop)

as knowledge components and further constructed prerequisite relations among them to

propagate performance. However, in terms of modeling approach, they have all employed

heuristics (e.g., checking the number of correct attempts, giving heuristic thresholds in a

fuzzy logic approach) rather than formal probabilistic approaches. It could be an interesting

next step to compare my work based on probabilistic approaches with them. An exception

is [Kasurinen and Nikula, 2009] which applied BKT to model students’ knowledge levels in

Python program construction. However, the patterns they modeled concerned the design

aspect of programming (e.g., when to apply a for loop vs. a while loop) rather than the

integration aspect (e.g., how to use a for loop with an addition assignment to sum over a

sequence of numbers) that I focus in my current work.

20

Section 2.1 reviewed different representations for integration skills mainly from cognitive

science research, and Section 2.2 reviewed learner models with their skill models in ITSs

including the programming domain. Compared with prior work, my dissertation work offers

a unique approach that possesses all of following characteristics: 1) a right complexity level

of knowledge representation, which enables (semi-)automatic methods to construct the skill

model, but doesn’t reduce to oversimplified elementary skills since it also includes integration

skills, 2) high cognitive fidelity, which is supported by the DFA and multifaceted evaluations,

and 3) high robustness and generalizability, due to applying a modern probabilistic approach,

Bayesian network which has a sound formalism to reason under uncertainty.

2.3 DIFFICULTY FACTORS ASSESSMENT FOR SKILL MODELING

Cognitive Task Analysis (CTA), a well-established methodology in cognitive science [Clark

et al., 2007], has been applied as a way to uncover the explicit and implicit knowledge (skills)

that experts use to perform complex tasks, and help to design or redesign instructions for

novices [Velmahos et al., 2004, Feldon et al., 2010]. It uses qualitative research methods such

as interviews, think-alouds, observations, which could be expensive and subjective.

The Difficulty Factors Assessment (DFA) approach has been proposed as a new way to

conduct cognitive task analysis quantitatively for discovering hidden skills. It is a method-

ology of conducting studies with problems generated systematically by crossing factors ex-

pected to influence the degree of problem difficulty [Koedinger and Nathan, 2004]. Since

such DFA data can be collected by paper form tests or tutoring systems, it can be more

economical and has the potential to scale up which enables more objectivity, compared with

traditional CTA. DFA doesn’t focus on enumerating all of the errors any students make

[VanLehn, 1990], but focuses on identifying factors that present the greatest difficulties for

students. An example of using the DFA is the work from [Koedinger and Nathan, 2004] which

found that students were more successful in solving simple algebra story problems than in

solving mathematically equivalent equations, contrary to beliefs held by practitioners and re-

searchers in mathematics education. In the same stream of work, [Heffernan and Koedinger,

21

1997] utilized DFA and discovered that the symbolic production skill (i.e., recursive gram-

mar rule) is a critical element of student competence. Based on this discovery, symbolic

substitution exercises were provided in a redesigned tutor which led to improved learning

compared with the original one giving simpler story problems [Koedinger and McLaughlin,

2010]. [Baker et al., 2007] further expand the idea of DFA into a difficulty factor approach to

design intelligent tutors. Albeit the effectiveness of DFA, to the best of my knowledge, there

were still no attempts to use it in the programming domain for understanding the difficulty

factors and nature in programming skills, which is one of the innovation in my dissertation.

In addition, it’s worth mentioning that DFA could prove cognitive foundations and en-

hance interpretability for automated skill discovery or refinement methods actively explored

in the ITS and EDM community. Learning Factor Analysis [Cen et al., 2006] is one exam-

ple that takes the input of expert identified difficulty factors into a search algorithm and

generates more predictive cognitive models.

2.4 LEARNER MODEL EVALUATION

In the field of educational data mining (EDM) particularly in the topic of learner modeling,

data-driven assessment using predictive performance in a cross-validation setting has become

the gold standard [Corbett and Anderson, 1995, Pavlik et al., 2009, Pardos and Heffernan,

2010a, Yudelson et al., 2013, González-Brenes et al., 2014, Khajah et al., 2014]. [Pelánek,

2015] gave a comprehensive comparison among different prediction metrics. However, prior

work has expressed concerns about using prediction performance as the only evaluation ap-

proach. [Beck and Chang, 2007] pointed out that there could be a family of parameter

estimates that make identical predictions where some are clearly incorrect about students’

latent knowledge (i.e., the identifiablity problem). [Yudelson and Koedinger, 2013] suggested

that even small differences in RMSE can have a significant impact on student over-practice

and under-practice. [Rollinson and Brunskill, 2015] proposed a predictive similarity policy,

and found out that learner models with similar predictive accuracies can suggest that sub-

stantially different amounts of practice are necessary. My prior work has also shown that a

22

highly predictive model can be useless for adaptive tutoring [González-Brenes and Huang,

2015], and can have implausible parameters [Huang et al., 2015] reducing the reliability of

the latent knowledge inference.

In particular, [Baker et al., 2008] has termed the problem where parameter values violate

the learner model’s conceptual meaning (such as a student being more likely to get a correct

answer if he/she does not know a skill than if he/she does) as Model Degeneracy. Such

parameters are not plausible and reduce the reliability and interpretability of the knowledge

estimations. Several studies have taken parameter plausibility into consideration to evaluate

learner models. Some used external measurements, such as pretest scores [Gong et al., 2010],

exercise scores [Corbett and Anderson, 1995], or some domain-specific measurements [Beck

and Chang, 2007]. However, such external resources are not always available. Some exam-

ined plausibility by internal validity. For example, [Baker et al., 2008] proposed 0.5 as the

theoretical degeneration threshold for BKT guess and slip parameters, and considered two

metrics for judging empirical degeneracy. However, their metrics relied on some heuristically

selected values. One innovation of my dissertation work is that it provides internal validity

metrics which don’t rely on heuristic values for a family of learner models.

Another dimension that has been considered is a learner model’s impact on adaptive tu-

toring or instructional decisions measured by the number of practices to reach inferred mas-

tery [Gong et al., 2010, Yudelson and Koedinger, 2013, Lee and Brunskill, 2012]. However, it

is hard to make grounded claims about the actual number of practices to reach mastery since

real mastery can’t be decided from the data. Simulation experiments provided ground truth

for the moments of learning [Lee and Brunskill, 2012, Pardos and Yudelson, 2013, Pelánek

and Řihák, 2017], yet they hardly reflect real-world learning. Evaluation independent of sim-

ulation, and with better validation of mastery assertion are needed. One of my co-authored

work [González-Brenes and Huang, 2015], learner effort-outcomes paradigm (LEOPARD)

was the first to address this. It introduced the expected outcome dimension when evaluating

the expected effort (number of practices to reach inferred mastery). However, this framework

is limited to single-skill practice situations and a single mastery threshold. My dissertation

work extends this framework to a more general setting where multi-skill practice learner

models under a range of mastery thresholds can be evaluated.

23

In addition, learning curves have been widely used to examine and refine skill models.

They are plotted based on student performance data [Corbett and Anderson, 1995] and can

be further inspected by parameters from fitted power law function [Martin et al., 2011],

or fitted Additive Factors Models [Koedinger et al., 2012c]. Flat or jagged curves indicate

potential problems in the skill model. However, this evaluation method is only readily

applicable to single-skill practice situations, and only one recent work has made an initial

attempt to generalize it to multi-skill practice situation [Van de Sande, 2016].

Meanwhile, in the field of ITS, conducting user studies deploying learner models into

real systems has long been the standard [Anderson et al., 1995, Mitrovic et al., 2001, Van-

lehn et al., 2005], since the ultimate goal of is to improve students’ learning outcomes, and

also data-driven evaluation is only reliable when the data is sufficient for running predic-

tive models. However, the field of EDM which actively introduces new learner modeling

(including skill modeling) approaches, mostly only conducted data-driven evaluations, and

there are only very few close-the-loop studies (from the same research group) ([Cen et al.,

2007, Koedinger and McLaughlin, 2010, Koedinger et al., 2013, Liu and Koedinger, 2017])

that actually redesigned the ITS according to data-driven discovered learner (skill) models,

and examined whether the new instructions could lead to higher student outcomes, compared

with the original system in a controlled experimental study.

A caution is that such user studies of on the system level typically jointly assess both

learner modeling and adaptation decision making. The other extreme of only using such a

user study evaluation doesn’t suffice to evaluate the learner model either. This has been

pointed out by the proponents of layered evaluation argued that holistic evaluation should

be complemented by approaches that independently assess each layer [Brusilovsky et al.,

2004a, Paramythis et al., 2010].

In my dissertation work, I developed a multifaceted evaluation framework for learner

models that 1) combines and extends existed data-driven evaluation dimensions, and 2)

includes close-the-loop user study evaluation. I demonstrated how I used this framework to

conduct a comprehensive evaluation of my proposed learner model.

24

3.0 INVESTIGATING COMPOSITION EFFECTS AND

INTEGRATION SKILLS IN PROGRAM COMPREHENSION

In this chapter, I describe a classroom study (Classroom Study 1) investigating composition

effects and integration skills in program comprehension, for novice programmers. This chap-

ter contributes to RQ 1, Does the composition effect exist in program comprehension, and

if so what is the nature of it? Here, the composition effect is defined as the phenomenon

where a problem requiring the integration of multiple component skills is more difficult than

a problem made up of decomposed parts, each of which requires only one component skill.

As opposed to prior work, which has investigated the overall comprehension skills of

novice programmers [Lister et al., 2004, Whalley et al., 2006], my work is the first to deploy

a Difficulty Factors Assessment (DFA) approach to give an in-depth, systematic investigation

of integration skills in program comprehension of common basic programming patterns. My

studies aim to:

1. examine the existence of the composition effect in the common basic programming pat-

terns for novice programmers;

2. reveal the nature of the composition effect and conceptualize the integration skills that

explain the composition effect; and

3. investigate individual differences in integration skills and the generalizability of the com-

position effect.

The DFA approach applied here, combined with the automated program text analysis

introduced in Section 4.1, provides the approach for building a skill model with integration

skills. Also, analyses from this chapter shed light on the building of instructional materials

(e.g., trace tables) in Chapter 6 for evaluating the proposed learner model.

25

3.1 METHOD

3.1.1 Overall Idea

The basic idea of the Difficulty Factors Assessment (DFA) approach [Koedinger and Nathan,

2004] is to systematically generate a pool of items based on the main factors which experts

hypothesize would cause difficulties, and use the performance difference between items, with

and without a difficulty factor, to confirm the existence of each hypothesized difficulty factor.

On a highly abstract level, the difficulty factor hypothesized here is skill integration.

Following the basic idea of DFA, the key idea of the design is to examine whether prob-

lems requiring skill integration are (significantly) more difficult than tasks using the same

component skills without skill integration. If significant or noticable performance differ-

ences are found, this will suggest that a composition effect exists [Heffernan and Koedinger,

1997, Koedinger and McLaughlin, 2016]. In the context of program comprehension, the

key idea of the design is to examine whether novice programmers have significantly more

difficulties in understanding code that requires the integration of basic programming skills

(constructs) together, as compared to understanding code involving these same skills, but

without their integration.

However, such a high, abstract level difficulty factor may not provide enough information

to construct a learner model that gives sufficient integration practice to the student, nor to

gain generalizable insights on skill integration. Therefore, I have hypothesized a range of

integration skills which can also be interpreted as the finest-grained difficulty factors in the

context of my dissertation, and used them to systematically design a set of problems with

enough variety to reflect the wide range of common basic programming practices.

The data collected from students working on these problems is also called the DFA data.

It was first used to examine the existence of the composition effect, and then to study the

nature of the composition effect, to confirm whether each hypothesized integration skill exists

or not, and to elicit integration difficulty factors with appropriate abstraction levels.

26

3.1.2 Design and Materials

Following the above overall idea, for each hypothesized integration skill, a problem set was

constructed with three types of problems:

• Basic problem(s): Each basic problem requires applying a single basic component skill.

For a problem set, some basic problems might have already appeared in a previous

problem set, but only the remaining basic problem(s) is(are) included in the current

problem set.

• Sequential problem: Each sequential problem requires applying basic component skills

sequentially, as though directly solving one basic problem after another.

• Integration problem: Each integration problem requires integrating basic component

skills together.

In each problem, a program is presented, and students are asked to write an execution

table (which they have learned from lectures) recording the values of the variables and

the printed outputs that will appear in the console. Figure 2 shows a problems set for

a hypothesized integration skill for&x=x+i, i.e., being able to get cumulative sums for a

sequence of consecutive numbers in a for loop. Figure 3 shows another problem set for

a hypothesized integration skill for&for, i.e., being able to get the sequence of numbers

resulting from a nested for loop.

The performance comparison between each matching sequential problem and integration

problem examines the composition effect: if the integration version is significantly more dif-

ficult than the sequential version, then the composition effect exists. Similarly, the combined

performance of the set of basic problems, compared with the matching integration problem,

also examines the composition effect. The inclusion of both basic and sequential problems

rather than only one of them enables two ways of analyzing the composition effect, as used

in prior work [Heffernan and Koedinger, 1997, Koedinger and McLaughlin, 2016]. I used two

guidelines when designing each problem set: 1) The basic and sequential problems include

repetition so that in each pairwise comparison, the non-integrated version has the same

number of steps (or more than) those in the integrated version. This is to avoid increasing

the difficulty (if any) in the integrated version, merely as a result of having more steps (due

27

Figure 2: The problem set for the hypothesized integration skill for&x=x+i.

Figure 3: The problem set for the hypothesized integration skill for&for.

to the loop), thus increasing the possibility of errors. 2) Problems vary in their variable

names and literal values but keep the same number of variables and have similar values for

the literals in each pairwise comparison.

The problem sets and hypothesized integration skills are listed in Table 11. In the table,

the symbol & means integration and the hypothesized integration skill is the integration

of the basic skills connected by &. The problem set name is also used as the integration

problem name. Each problem set (except the list-V one) is designed to investigate only one

2-component integration skill, which suffices to lay the foundation for investigating more

complex integration skills in the future. But in the topic of lists, common patterns (e.g.,

1I removed the problem sets for&x=x+167 and while&x=x+167 from the analysis, because the hypothe-
sized integration skills are of the same nature as for&x=x+4 and while&x=x+4. Using larger numbers only
increases the summation complexity, which is not a targeted factor in my thesis.

28

sorting) easily involve more than one integration skill, so I also include problem set V in

the topic of lists. Skills with subscripts denote variants of the same programming construct

corresponding to different common programming patterns. For example, forv2 denotes a for

loop where the number of iterations depends on another variable rather than on a literal

(i.e., the range function receives a variable rather than a literal as the argument). This kind

of for loop could be used as an inner loop, while the outer loop iteration variable appears as

the condition part of a nested loop pattern.

3.1.3 Latin Square and Within-Subject Design

In order to reduce the order effect when computing the composition effect for a problem

set, a Latin square design rotating the order of basic, sequential and integration problems

was deployed (Table 2). Since I don’t (primarily) aim at comparing different hypothesized

integration skills, a fixed order of integration skill problem sets was used. Each order corre-

sponded to one quiz. Each student was randomly assigned to one of the three quizzes, each

of which contained the same set of problems. This is a within-subject design.

3.1.4 Participants and Procedure

I conducted the classroom study (Classroom Study 1) in an introductory Python program-

ming course at the Austral University of Chile (Universidad Austral de Chile) from April

to June 2017 in three sessions covering three topics (for loops, while loops and lists con-

secutively, following the syllabus). The number of participants in each session are listed in

Table 3. Each session was held as an in-class quiz session two weeks after the targeted topic

was lectured on and students had already done some exercises on this topic. In each session,

students were asked to complete a hard-copy quiz within one hour. In agreement with the

instructor, the scores of the quiz were considered as part of the students’ course grades.

29

T
ab

le
1:

P
ro

b
le

m
se

ts
an

d
th

e
co

rr
es

p
on

d
in

g
h
y
p

ot
h
es

iz
ed

in
te

gr
at

io
n

sk
il
ls

in
th

e
to

p
ic

of
fo

r
lo

op
s,

w
hi

le
lo

op
s

an
d

li
st

s.

R
om

an
n
u
m

er
al

s
d
en

ot
e

th
e

or
d
er

of
p
ro

b
le

m
se

ts
in

ea
ch

q
u
iz

,
w

h
il
e

A
ra

b
ic

n
u
m

b
er

s
d
en

ot
e

th
e

ov
er

al
l

or
d
er

.

P
ro

b
le

m
se

t
H

y
p

ot
h
es

iz
ed

in
te

gr
at

io
n

sk
il
l(

s)

N
am

e
N

am
e

D
efi

n
it

io
n

(b
ei

n
g

ab
le

to
ge

t.
..
)

I
1

fo
r&

fo
r

A
se

q
u
en

ce
of

n
u
m

b
er

s
re

su
lt

in
g

fr
om

a
n
es

te
d

fo
r

lo
op

.

II
2

fo
r&

x
=

x
+

i
T

h
e

su
m

of
a

se
q
u
en

ce
of

co
n
se

cu
ti

ve
n
u
m

b
er

s
in

a
fo

r
lo

op
.

II
I

3
fo

r&
fo

r v
2

A
se

q
u
en

ce
of

n
u
m

b
er

s
re

su
lt

in
g

fr
om

a
n
es

te
d

fo
r

w
h
er

e
th

e
ou

te
r

lo
op

it
er

at
io

n
va

ri
ab

le

d
ec

id
es

th
e

n
u
m

b
er

of
in

n
er

lo
op

it
er

at
io

n
s.

IV
4

fo
r&

x
=

x
+

4
T

h
e

cu
m

u
la

ti
ve

su
m

w
h
en

a
fi
x
ed

n
u
m

b
er

is
ad

d
ed

d
u
ri

n
g

ea
ch

fo
r

lo
op

it
er

at
io

n
.

V
5

fo
r&

x
=

4+
i

T
h
e

su
m

of
a

fi
x
ed

n
u
m

b
er

an
d

th
e

va
lu

e
of

th
e

it
er

at
io

n
va

ri
ab

le
in

ea
ch

fo
r

lo
op

it
er

at
io

n
.

I
6

w
h
il
e&

w
h
il
e

A
se

q
u
en

ce
of

n
u
m

b
er

s
re

su
lt

in
g

fr
om

a
n
es

te
d

w
hi

le
lo

op
.

II
7

w
h
il
e&

x
=

x
+

i
T

h
e

su
m

of
a

se
q
u
en

ce
of

co
n
se

cu
ti

ve
n
u
m

b
er

s
in

a
w

hi
le

lo
op

.

II
I

8
w

h
il
e&

w
h
il
e v

2
A

se
q
u
en

ce
of

n
u
m

b
er

s
re

su
lt

in
g

fr
om

a
n
es

te
d

w
hi

le
w

h
er

e
th

e
ou

te
r

lo
op

it
er

at
io

n
va

ri
ab

le

d
ec

id
es

th
e

n
u
m

b
er

of
in

n
er

lo
op

it
er

at
io

n
s.

IV
9

w
h
il
e&

x
=

x
+

4
T

h
e

cu
m

u
la

ti
ve

su
m

w
h
en

a
fi
x
ed

n
u
m

b
er

is
ad

d
ed

d
u
ri

n
g

ea
ch

w
hi

le
lo

op
it

er
at

io
n
.

V
10

w
h
il
e&

x
=

4+
i

T
h
e

su
m

of
a

fi
x
ed

n
u
m

b
er

an
d

th
e

va
lu

e
of

th
e

it
er

at
io

n
va

ri
ab

le
in

ea
ch

w
hi

le
lo

op
it

er
at

io
n
.

V
I

11
w

h
il
e&

fo
r

A
se

q
u
en

ce
of

n
u
m

b
er

s
re

su
lt

in
g

fr
om

h
av

in
g

a
fo

r
lo

op
n
es

te
d

in
si

d
e

a
w

hi
le

lo
op

.

I
12

fo
r&

a 1
=

a 1
+

a 2
L

is
t

va
lu

es
af

te
r

ap
p

en
d
in

g
an

ot
h
er

li
st

to
it

m
u
lt

ip
le

ti
m

es
in

a
fo

r
lo

op
.

II
13

se
ar

ch
-m

ax
fo

r&
if

T
h
e

m
ax

im
u
m

va
lu

e
in

a
li
st

w
it

h
a

fo
r

lo
op

.

II
I

14
fo

r&
x
=

x
+

a[
i]

fo
r&

x
=

x
+

i
T

h
e

su
m

of
a

li
st

,
u
si

n
g

a
fo

r
lo

op
.

IV
15

fo
r&

a[
i]
v
3

L
is

t
va

lu
es

af
te

r
cr

ea
ti

n
g

th
e

li
st

as
a

F
ib

on
ac

ci
se

q
u
en

ce
,

u
si

n
g

a
fo

r
lo

op
.

V
16

in
se

rt
-s

or
t

fo
r&

w
h
il
e v

3
,

a[
i]
v
4
&

a[
i]
v
5

L
is

t
va

lu
es

af
te

r
d
oi

n
g

an
in

se
rt

io
n

so
rt

w
it

h
in

th
e

li
st

,
u
si

n
g

a
fo

r
lo

op
.

V
I

17
fo

r&
a[

i]
v
2

L
is

t
va

lu
es

w
h
en

cr
ea

ti
n
g

a
li
st

of
co

n
se

cu
ti

ve
o
d
d

n
u
m

b
er

s,
u
si

n
g

a
fo

r
lo

op
.

30

Table 2: Latin square design for the composition effect DFA study. Each Roman numeral

denotes one integration skill problem set.

Quiz I II ...

A basic integration sequential basic integration sequential ...

B integration sequential basic integration sequential basic ...

C sequential basic integration sequential basic integration ...

Table 3: Number of students for each study session (topic).

Topic(session) For While Lists Participated in all topics

#students 81 76 68 60

3.1.5 Grading

Each problem was graded as correct (1) or wrong (0), using the same rubrics. When a

printed output was an exact match with the standard answer, it was graded as correct. In

the cases of inexact match, if it was clear from the execution table (if written out) that a

student knew the skill, but he/she committed a computation error (e.g., 4+9=12), missed

some intermediate printed outputs, or wrote a list with correct elements but in a strange

format (e.g., missing the brackets), then the answer was also graded as correct. All other

cases were graded as wrong (including inertial thinking errors, as defined in Section 3.2.2).

3.2 RESULTS

In this section, I conduct an in-depth analysis investigating 1) the existence of the composi-

tion effects in common basic programming patterns, 2) the nature of the composition effects

and integration skills, and 3) individual differences in integration skills.

31

3.2.1 Existence of Composition Effects

3.2.1.1 Comparing Sequential Problems with Integration Problems

First, I examined each problem set to see whether a composition effect exists. For each prob-

lem set, each student’s correctness on the sequential problem was compared with his(her)

correctness on the matching integration problem, which is similar to the analysis by [Heffer-

nan and Koedinger, 1997]. A Wilcoxon signed-rank test was conducted on the differences,

with the sample size equal to the number of students. If the difference between the two

versions of problems was significant, then the composition effect exists for the problem set.

As shown in Table 4, among the 17 problem sets across three topics, 71% (12/17) shows

a composition effect at a 0.05 significance level, and 82% (14/17) shows a composition effect

at a 0.1 significance level. Only three problem sets don’t show a composition effect, although

their sequential versions are all easier than the integration versions.

Problem sets requiring loop&loop(v2) consistently show significant composition effects

across three topics with p<0.1. Specifically, considering only nested loops composed of the

same loop construct (e.g., for&for(v2), while&while(v2)), each composition effect is very strong

with p<0.003. This provides some support for the existence of integration skills related to

loop&loop(v2). Problem sets requiring loop&x=x+i also consistently show significant compo-

sition effects across three topics with p<0.05. This provides some support for the existence

of integration skills related to loop&x=x+i.

Meanwhile, problem sets requiring loop&x=x+4 only show a significant composition

effect in the for loops topic (p< 0.001) but not in the while loops topic (p=0.157); problem

sets requiring loop&x=4+i show a significant composition effect in the while loops topic

(p<0.01), but not in the for loops topic (p=0.225). The existence of the hypothesized

integration skills related to loop&x=x+4 and loop&x=4+i needs further investigation (see

Section 3.2.2).

Other problem sets with hypothesized integration skills specific to the lists topic mostly

show significant composition effects (p<0.1), with the exception of for&a[i]v3 (p=0.346).

This provides some support for the existence of integration skills related to a[i]&a[i], for&if,

and for&a1=a1+a2, but for&a[i] needs further investigation (see Section 3.2.2).

32

Table 4: Examining the composition effect for each problem set and all problem sets. For each

problem set, pKx denotes the proportion correct among students on the corresponding basic

problem; pM denotes the estimated proportion correct on the sequential problems, as com-

puted by multiplying pKxs (or picking the smallest in the cases of for&forv2, while&whilev2,

or a[i]v4&a[i]v5); pS (pI) denotes the proportion correct on the matching sequential (integra-

tion) problems. Wilcoxon’s signed-rank test (WT) was used when examining each problem

set or when normality was violated; otherwise a paired t-test (PT) was used. (Significance

level ***:<.001, **:<.01, *:<.05, • :<.1; WT effect size (es) +++:>.5, ++:>.3, ++:>.1; PT

effect size +++:>.8, ++:>.5, +:>.2; Itgt.: Integration.)

ID Hypothesized K1,(K2 pK1 (pK2 pM pS pI pM-pS pM-pI pS-pI

Itgt. skill(s) K3,K4) pK3 pK4) val p-val es

3 for&forv2 for,forv2 .86 .80 .80 .77 .46 .04 .35 .31 <.001 .38 ∗∗∗++

4 for&x=x+4 for,x=x+4 .86 .96 .83 .79 .62 .04 .21 .17 <.001 .26 ∗∗∗+

1 for&for for .86 .86 .60 .38 .26 .48 .22 .002 .24 ∗∗+

2 for&x=x+i for,x=x+i .86 .90 .78 .72 .62 .06 .16 .10 .033 .17 ∗+

5 for&x=4+i for,x=4+i .86 .99 .85 .75 .69 .10 .16 .06 .225 .09

8 while&whilev2 while,whilev2 .89 .91 .89 .88 .57 .01 .33 .32 <.001 .40 ∗∗∗++

6 while&while while .89 .89 .86 .61 .04 .29 .25 <.001 .34 ∗∗∗++

10 while&x=4+i while,x=4+i .89 .97 .87 .86 .71 .02 .16 .14 .008 .22 ∗∗+

7 while&x=x+i while,x=x+i .89 .95 .85 .89 .82 -.05 .03 .08 .034 .17 ∗+

11 while&for while,for .89 .96 .86 .84 .76 .02 .10 .08 .058 .15 •+

9 while&x=x+4 while,x=x+4 .89 .97 .87 .89 .84 -.02 .03 .05 .157 .11 +

16 for&whilev3 for,whilev3 .90 .74 .44 .50 .22 -.06 .22 .28 <.001 .33 ∗∗∗++

a[i]v4&a[i]v5 a[i]v4,a[i]v5 .68 .66

17 for&a[i]v2 for,a[i]v2 .90 .68 .61 .65 .44 -.04 .17 .21 <.001 .28 ∗∗∗+

14 for&x=x+i for,x=x+i,a[i] .90 .97 .72 .63 .72 .57 -.09 .05 .15 .004 .25 ∗∗+

13 for&if for,if,a[i] .90 .90 .72 .58 .68 .57 -.10 .01 .10 .035 .18 ∗+

12 for&a1=a1+a2 for,a1=a1+a2 .90 .79 .71 .79 .72 -.08 -.01 .07 .096 .14 •+

15 for&a[i]v3 for,a[i]v3 .90 .63 .57 .60 .54 -.04 .02 .06 .346 .08

Avg (p-value) – – .76 .75 .60 .01(.8) .16(<.001)∗∗∗+++

33

3.2.1.2 Comparing Basic Problems with Integration Problems

Secondly, I examined the composition effects using basic and integration problems. This was

the method used in prior work [Koedinger and McLaughlin, 2016], where they compared

the product of the proportion correct (treated as a probability) of each decomposed basic

problem (pM) with the matching integration problem (pI). I use this as another way to

examine the composition effects. Multiplying the single probabilities serves as an estimate

of the proportion correct of the sequential problem (pS), with the added assumption that

the performance on each basic problem is independent of performance on other basic prob-

lems. While the satisfaction of this assumption needs to be examined, a benefit of using

basic problems over using sequential problems is that it could reduce the total number of

problems in a study design, since many problem sets share the same basic skills. Mean-

while, this method of estimation belongs to the family of conjunctive models used in prior

work [Conati et al., 2002, Mayo and Mitrovic, 2001, Millán and Pérez-De-La-Cruz, 2002] for

multi-skill practice problems, with the simplification of assuming independence among skills,

no integration skills, and no noise associated with items or skills.

To compute the joint probability in this new way, I used the following guidelines for two

special cases: 1) If a basic skill is applied multiple times with the same complexity, the joint

probability equates to the probability of succeeding in a problem applying the basic skill

once, e.g, P(for)×P(for)=P(for); 2) if a basic skill is applied multiple times with different

complexities (e.g., with or without the outer loop iteration variable in the condition part of

the inner loop), the joint probability equates to the smaller one of the probabilities of succeed-

ing in problems applying the basic skill in different ways, e.g., P(for)×P(forv2)=min(P(for),

P(forv2)). Both 1) and 2) are based on the assumption that different instantiations of the

same basic skill should be considered as highly dependent.

As shown in Table 4, all problem sets (except for&a1=a1+a2) have shown a positive

difference (pM-pI), and the average difference over all problem sets is 0.16. A paired t-test

(after confirming the normality) on the difference values (sample size=17) further reveals that

the difference is statistically different from 0 (p<0.001) with a large effect size (1.07). This

is consistent with the result of a Wilcoxon signed-rank test (due to violation of normality)

on the difference values between the sequential and integration problems (pS-pI) with an

34

average value of 0.16, p<0.001 and a large effect size (0.62). The results suggest that, in

general, the composition effect exists in the pool of common basic programming patterns.

In addition, I also validated that pM and pS are not statistically different by a Wilcoxon

signed-rank test (due to violation of normality) with p=0.83. This suggests that the inde-

pendence assumption among basic skills is reasonable when using basic problems to estimate

a sequential (joint) problem, for cases where sequential problems are not available. Yet, it’s

worth mentioning that sequential problems, compared with basic problems, offer a straight-

forward way to conduct statistical tests for examining each problem set.

3.2.1.3 Examining Composition Effects on Topic Level

I also examined the composition effects on groups of problem sets on each or all topics to see

whether, in general, the composition effect exists in a selected pool of programming patterns.

Since the students and problem sets considered here are still only a subset of the entire

student population and possible common basic patterns, I conducted a generalized linear

mixed-effect modeling for further analysis. I constructed generalized linear mixed-effect

models predicting the correctness of each problem for each student, given a binary indicator

of whether the current problem was an integration problem or not (as a fixed effect), the

problem set id (as a random effect) and the student id (as a random effect). Only the sequen-

tial problems and matching integration problems in a targeted group (for/while/lists/ all)

were used to construct a model. I conducted the analysis by using the R package lme4, using

the formula: correctness ∼ is itgt prob+(1|prob set)+(1|stu).

Table 5 reports the results. As shown in the table, regardless of the unit of a group

(for/while/lists/ all), the fixed effect is itgt prob (the Est. column) is consistently signifi-

cantly negative (p<0.001), i.e., the integration version is much more difficult than the match-

ing sequential version. The results provide further support that, in general, the composition

effect exists in the pool of common basic programming patterns. The results demonstrate

the robustness of the composition effect across topics.

35

Table 5: Examining the composition effects for groups of problem sets. Generalized linear

mixed effect models were constructed for predicting the correctness on each problem of each

student based on the following formula: correctness ∼ is itgt prob+(1|prob set)+(1|stu).

Residuals are (approximately) normally distributed. (ps: problem set; FE: fixed effect; RE:

random effect; WT: Wald test; LRT: likelihood ratio test comparing this model with the

model without the fixed effect; LL: log likelihood; significance level ***:<0.001.)

Topic #ps. #stu. #obs. FE is itgt prob p-value RE SD LL

Est. SE WT LRT stu ps

for 5 81 810 -1.48 0.21 <.001*** <.001*** 2.55 0.68 -378

while 6 76 912 -1.94 0.28 <.001*** <.001*** 2.60 0.65 -314

lists 6 68 816 -1.23 0.21 <.001*** <.001*** 2.52 1.01 -380

all 17 86 2538 -1.20 0.11 <.001*** <.001*** 1.88 1.00 -1153

3.2.2 Nature of Composition Effects and Integration Skills

So far, I have gathered evidence proving the existence of composition effects and providing

some preliminary support for the hypothesized integration skills. This section further inves-

tigates the nature of composition effects and integration skills by posing following questions:

• Why does the composition effect exist in some cases but not in others? Is the composition

effect due to missing/wrong conceptual understanding, cognitive load or both?

• What are the integration skills and integration difficulty factors that could explain the

composition effect?

These two sets of questions are interconnected with each other, and they provide the basis

for generalizing the composition effect and integration skills over a broader range of topics

and problems, and should form the basis for later learner model construction.

36

3.2.2.1 Integration Error Analysis

To answer the above questions, I analyzed the errors on integration problems for students

who succeeded in a sequential problem but failed in the matching integration problem. I

excluded sequential problem errors that resulted from the lack of basic skills, and only focused

on the errors introduced by integration itself. I defined such errors as integration errors and

classified them into the following types, according to the error analysis:

• Conceptual errors : In this type of error, students have a missing or wrong conceptual

understanding of how integration works, such as in the following two cases:

– State update errors : Students fail to update a variable correctly.

– Nested loop errors : Students fail to execute the nested loop with the right procedure.

• Nonconceptual errors : In this type or error, students demonstrate enough conceptual

understanding of how integration works, but commited errors similar to the following

examples:

– Cognitive load errors : Students make errors on basics skills, e.g., when summing over

a list using a loop, in some iterations, the students used the value of the iteration

variable i rather than the list element a[i], while in other iterations they were able to

retrieve a[i] correctly, as well as in the sequential problem. In this case, students lack

fluency in the basic skills, so during a complex integration process they are deprived

of cognitive resources and intermittently commit errors on basic skills.

– Inertial thinking errors : Students use a similar operation with the same or increased

complexity which has been used in previous problems of the quiz, or has been prac-

ticed more often in other materials, e.g., in while&x=4+i problem, students did

x=4+i in the first iteration and also in the sequential problem, but did x=4+x in

later iterations (note that while&x=4+i was positioned after while&x=x+4). This

is different from the cognitive load errors, because students need the same or even

more cognitive resources for the mistakenly chosen operation.

• Uncategorized errors : Such errors can’t be categorized into the above categories, e.g.,

empty answers, errors with too few students (1 or 2).

37

My error analysis revealed that integration difficulty can be a result of multiple types of

errors, as listed above. I classified an integration error into one of the following three types,

depending on the dominant type of integration error among them state update conceptual

errors, nested loop conceptual errors and nonconceptual errors.

• Nested loop integration type: The highest percentile is nested loop conceptual errors.

• State update integration type: The highest percentile is state update conceptual errors.

• Nonconceptual integration type: The highest percentile is nonconceptual errors.

Figure 4 summarizes the percentile of integration errors of each integration (problem

set) and grouped integrations (problems sets) into integration types according to the major

integration errors. The details are reported in Tables 31, 32 and 33 in the Appendix.

Figure 4: Percentiles of different integration errors for different problem sets. Problem sets

are classified into three integration types, and are ordered by the effect size of the composition

effect, from large to small (left to right), within each type.

38

Before examining each integration type, I would like to explain two situations that I

need to specifically address when grouping integrations: 1) The problem set insert-sort with

the hypothesized integration skills for&whilev3, a[i]v4&a[i]v5 has the same percentile of state

update conceptual errors and nested loop conceptual errors (23%). I classified this as a state

update integration type because its composition effect (pS-pI) has a much higher average

correlation with those in the state update integration type than with those in the nested loop

integration type (0.28 vs. -0.07). Similarly, the problem set while&x=x+i also has the same

percentile of nonconceptual errors and state update conceptual errors (43%). I classified it

into the nonconceptual integration type because its composition effect (pS-pI) has a much

higher average correlation with those in the nonconceptual integration type than with those

in the state update integration type (0.20 vs. 0.11).

Regarding the nested loop integration type (Figure 4, Table 31), the main integration

errors are nested loop related conceptual errors (≥58%). One major conceptual error which

persisted across different types of nested loops was that students could only do one outer

iteration with all its inner iterations. It could be that students only did the first outer

iteration not knowing that they should return to the outer iteration again after finishing

the inner iterations, or that the students only did the last outer iteration because they

enumerated all values of the outer iteration variable first and then did the inner iterations.

Other surprising nested loop conceptual errors are listed in the Table 31. Students should be

able to figure out nested loops once they have learned the basic loop, since the inner loop as

a whole could be treated as statements put in a standard loop body, but it turned out that

many students had learned the basic loop on a surface level and failed to decompose a nested

loop correctly. These results suggest that nested loops should be considered as integration

skills, and students should benefit from sufficient, explicit practice on them.

Regarding the state update integration type (Figure 4, Table 32), the main integration

errors are state update related conceptual errors (≥23%). Student committed such concep-

tual errors mainly due to using the initial value of a variable (which points to a number or

a list) in all iterations, instead of updating the variable or the list with each iteration and

using the updated value in a new iteration. Interestingly, when the state update statement,

39

the addition assignment statement2, is explicitly written multiple times consecutively (see

Figure 2 sequential or basic problems), many students were able to use the updated variable

from a previous addition assignment statement in a repeated addition assignment state-

ment, but failed to do so within a loop when the repetition is implicit and interrupted by the

loop statement. This suggests that additional skills exist which require students to use the

updated values of variables in loop iterations, and students should benefit from sufficient,

explicit practice on these skills.

Unfortunately, the integration error analysis on the state update integration type didn’t

provide more insights into the understanding the non-existence of the composition effect

in for&a[i]v3 in contrast to the existence of the composition effect in for&a[i]v2, since both

problem sets share the similar composition of integration errors. The integration problem of

for&a[i]v3 is expected to be more difficult than that of for&a[i]v2, since the former not only

requires retrieving the previous list element (which is required in for&a[i]v2 for creating an

odd number sequence), but also requires retrieving the element two positions before to create

a Fibonacci sequence. As shown in Table 4, pI of the former is 0.54 and pI of the latter is 0.44,

while their pS s are quite close (0.60 vs. 0.65). I posit several hypotheses requiring further

testing in the future: for&a[i]v2 was positioned at the end of the quiz and students might

lack time or attention to solve the integration problem correctly, but students might have

decided and were able to pay more attention to the for&a[i]v3 integration problem which was

positioned earlier after seeing its complexity; a Fibonacci sequence is inherently recursive,

making it natural to express it as a[i]=a[i-1]+a[i-2] in the code, but an odd number sequence

is not recursive, making it a bit unnatural to express it as a[i]=a[i-1]+2 in the code, so

students might be more able to recognize the Fibonacci pattern rather than the odd number

pattern and thus were more able to solve the for&a[i]v3 integration problem correctly.

The nonconceptual integration type (Figure 4, Table 33) contains the most unexpected

cases for the (non)existence of the composition effect. The main integration errors are non-

conceptual (≥40%), and in some cases state update conceptual errors were also committed.

2In my dissertation, an assignment statement like x=x+i is also called an addition assignment, although
strictly speaking, only an assignment with a += operator (e.g., x+=i) should be called this. I define it in
this way because the courses for my dissertation studies had only taught the former one, at the time the
studies were run, and both ways essentially share the same kind of state update structure.

40

According to the integration error analysis, the unexpected c omposition effect on

while&x=4+i is mainly because many students (14×79%=11) did x=4+i in the first itera-

tion, but did x=4+x or x=x+i afterwards due to inertial thinking. The reason this problem

set has such severe inertial thinking slips is probably due to it being positioned at the end

of quizzes after while&x=x+4, while&x=x+i. Meanwhile, for&x=4+i, as expected, doesn’t

show a composition effect; it has fewer students who committed inertial thinking integration

errors and any kind of integration errors, compared with while&x=4+i. It might be that

while&x=4+i has one more explicit addition assignment for the iteration variable within the

loop body, which could increase the integration difficulty due to cognitive load.

Two more unexpected cases are the while&x=x+i and while&x=x+4 problem sets. Com-

pared with their counterparts, for&x=x+i, for&x=x+4, these integration problems also re-

quire updating the state, but they have shown a much higher ratio of nonconceptual errors,

all belonging to the cognitive load error type. This suggests that students had gradually

acquired the conceptual understanding of loop&x=x+i or loop&x=x+4 by the time they

reached while loops topic, but the while loops topic introduced a new level of difficulty, re-

quiring a higher cognitive load, probably due to the explicit addition assignment statement

of the iteration variable in the loop body.

Interestingly, although the integration problem for&x=x+a[i] also requires updating

states as loop&x=x+i, the main errors are cognitive load errors (73%), such as using the

iteration variable rather than the list element to do summation in some iterations, or start-

ing the list element indexes with 1. This suggests that most students had already acquired

the conceptual understanding of loop&x=x+i or loop&x=x+4 when they reached the lists

topic, but putting such an integration in the context of lists increased the cognitive load

substantially, since students still hadn’t reached fluency in basic skills in lists.

The integration error analysis also gives insight into what causes difficulty in the inte-

gration problem search-max with the hypothesized integration skill for&if : the main errors

here are also cognitive load errors (44%), such as starting the list element indexes with 1,

or doing one more or one less iterations. Despite being very different from loop&x=x+i in

the surface, for&if actually shares with loop&x=x+i the deep feature of requiring a state

update: here, it requires updating the variable storing the cumulative maximum value.

41

3.2.2.2 Identification of Integration Skills

Based on the above integration error analysis (Section 3.2.2.1) and previous composition

effect existence analysis (Section 3.2.1), I examined which hypothesized integration skills

can be accepted for explaining the composition effects. An integration skill exists and only

exists when a composition effect exists and any (substantial number of) conceptual integra-

tion errors can be found in the DFA data. The existence of conceptual integration errors

is necessary: without them, the composition effect could be an artifact of the study design

(like the case of while&4+i, where a composition effect was found and no conceptual errors

were associated with it), and also it was not clear how to define the skill. However, one

should be cautious that this doesn’t mean that integration skills don’t involve a nonconcep-

tual difficulty. As shown in the integration error analysis, a noticeable number of integration

errors may be due to cognitive load. Table 6 gives the definitions of the conceptual parts

of integration skills. The definitions are informed by the detailed conceptual and noncon-

ceptual integration errors summarized from the DFA data shown in Table 31, 32 and 33 (in

Appendix). Note that these definitions differ from the previous definitions in Table 1, which

gives the overall definitions of integration skills in terms of their functionalities, including

both their conceptual and nonconceptual parts.

Note that I have merged for&x=x+i and for&x=x+4 into one integration skill for&+=

(the same applies to while), because for&x=x+i and for&x=x+4 contained the same kind of

state update conceptual error, i.e., using the initial value of the sum variable in all iterations,

and only differed in nonconceptual errors and uncategorized errors (the same applies to

while), according to the detailed integration error analysis (Table 32, 33).

Also, I excluded the hypothesized integration skills for&x=4+i and while&x=4+i from

the set of integration skills, because the integration error analysis (Table 33) revealed that

most of their errors were due to inertial thinking, probably resulting from positioning this

problem set at the end of the quiz, and there were no conceptual errors associated with

them. Such a composition effect will probably disappear if the order of the problem sets is

permuted.

Meanwhile, the integration skills for&a1=a1+a2, for&a[i] and for&if may be generaliz-

able to the while loop, but I leave it to future research to confirm such hypotheses.

42

Table 6: Defining the conceptual parts of integration (itgt.) skills, as identified by the

integration error analysis of the DFA data. A student who demonstrates the described

behavior is considered to know how the integration skill works, conceptually. Loop refers to

either a for loop or a while loop.

Itgt. skill Definition of the conceptual part (being able to ...)

while&while Get the correct iteration variable values for at least two outer loop iterations

with corresponding inner loop iterations inside a nested while loop.

for&for Get the correct iteration variable values for at least two outer loop iterations

with corresponding inner loop iterations inside a nested for loop.

while&for Get the correct iteration variable values for at least two outer loop iterations

with corresponding inner loop iterations, when a for loop is nested inside a

while loop.

for&+= Use the value of the updated variable x (which stores the cumulative sum

of numbers) from the previous iteration in a new iteration in a for loop.

while&+= Use the value of the updated variable x (which stores the cumulative sum

of numbers) from the previous iteration in a new iteration in a while loop.

for&a1=a1+a2 Use an updated list from a previous iteration to conduct list appending in

a new iteration, in a for loop.

for&a[i] Use an updated list element from a previous iteration to conduct numeric

operations in a new iteration, in a for loop.

for&if Update a variable x (which stores the current maximum value of some list

elements) and use the value of the updated x from the previous iteration in

a new iteration, in a for loop.

a[i]&a[i] Update both list elements correctly in a value swap pattern.

43

Admittedly, the number of integration errors (i.e., the number of students who have

succeeded in the sequential problem but failed in the integration problem) for conducting the

integration error analysis is still not large enough, reducing the reliability of the conclusions

drawn. I am considering conducting a large scale study to solidify the discoveries found here

in the future.

3.2.2.3 Identification of Integration Difficulty Factors

The above integration skills can be further abstracted into three integration difficulty factors,

loop nesting, state update and cognitive load3, which are more coarse-grained than integration

skills, but more fine-grained than the single difficulty factor, skill integration. This level of

abstraction could enable generalization of composition effects and integration skills.

Table 7: Integration (itgt.) difficulty factors identified by the integration error analysis.

Itgt. difficulty factor Type Definition

Loop nesting (LN) Conceptual A loop nested inside another loop.

State update (SU) Conceptual Retrieving the previous value of a variable to con-

duct operations, then storing the result back in the

same variable, when the statement is in a loop, or the

variable points to a list (or a list element).

Cognitive load (CL) Nonconceptual The effort required to conduct an integration involv-

ing any of the above integration difficulty factors.

Table 7 gives the definitions of these three integration difficulty factors. They summarize

the common integration difficulties, or common major patterns in integration errors, among

integration skills across different topics (or programming constructs) in common basic pro-

gramming patterns. Loop nesting summarizes the common integration difficulty involved in

different kinds of nested loops (involving for and/or while). State update summarizes the

common integration difficulty involved in updating and retrieving updated values of vari-

3Inertial thinking is excluded from being an integration difficulty factor since it is highly likely an artifact
of the fixed ordering over problem sets, as explained before.

44

ables pointing to different kinds of objects (e.g., integers, strings, lists) in a loop or in list

operations. Cognitive load refers to the effort required to conduct the above two types of

integrations. In Section 3.2.3, I provide further support for the abstraction of these three

integration difficulty factors by showing how they could explain individual student differ-

ences in integration skills. In Section 4.1.1, I show an example of using the two conceptual

integration difficulty factors to identify potential integration skills in new contexts.

3.2.3 Individual Differences in Integration Skills Explained by Integration Dif-

ficulty Factors and Topics

So far, I have demonstrated and explained the existence of the composition effects (CEs) and

integration skills in common basic programming patterns. A natural question to ask next,

for informing later learner modeling, is whether there are individual differences in integration

skills, e.g., whether some students have higher or lower integration skills than others (over

a period of time). If individual differences in integration skills exist, then it is reasonable

and beneficial for a learner model to monitor different students’ levels of integration skills,

and thus elicit personalized guidance to help individuals, based on their levels. An similar

question, from another perspective, is to ask whether a CE or integration difficulty could

generalize to new problems.

In order to answer these questions, I conducted the following analysis: I removed two

problem sets, for&x=4+i and while&x=4+i, in which integration difficulties are due to the

artifact of the fixed order of problem sets, and only kept those corresponding to the identified

integration skills in Table 6. This resulted in 15 problem sets. I permuted 15 problem sets

so that different types of integration skills, according to integration difficulty factors, were

distributed evenly in the sequence. I called the first half of the problem sets Group 1 and the

second half Group 2 (Table 8). Although Group 2 data has been used in previous sections

to maximize the amount of data to be analyzed, in the analysis of this section, it serves as

an approximation of a group of new problems. I used the strength of the CE (pS-pI) as the

indicator for integration skill levels (the larger the CE, the lower the integration skill level).

I only used the 60 students who participated in all three sessions for the analysis.

45

Table 8: A random splitting of all problem sets into two groups, where topics and integration

difficulty factors are evenly distributed (Integration difficulty factors LN: loop nesting, SU:

state update, CL: cognitive load).

For While Lists

Group 1 LN for&for while&whilev2 –

(7) SU for&x=x+i – insert-sort(for,while), for&a[i]v3

CL – while&x=x+4 for&x=x+a[i]

Group 2 LN for&forv2 while&while, while&for –

(8) SU for&x=x+4 – for&a[i]v2, for&a1=a1+a2

CL – while&x=x+i search-max(for)

Figure 5: The correlation of the average CE strength (pS-pI), between the Group 1 and Group

2 problem sets. A linear regression line with a 95% confidence interval for the regression

estimate has been added.

46

Table 9: The Spearman correlation (with p-value) of average CE strength among integration

difficulty factors. The within-type correlation is between the same types in Group 1 and

Group 2; while the cross-type correlation is between one type from both groups to another

type from both groups. There were 60 students (data points) for computing each correlation.

(Sig. level ***:<.001, **:<.01, *:<.05.)

LN (for,while) SU (for,while,lists) CL (for,while,lists)

LN (for,while) .39(.002)** .08(.55) .30(.02)*

SU (for,[while,]lists) – .43(<.001)*** .02(.87)

CL (for,while,lists) – – .38(.003)**

First, I investigated whether individual differences in integration skills exist by consid-

ering two problem set groups, and investigating whether the CE could be generalized from

Group 1 to Group 2. For each student, I computed the average value of the CE strength

(pS-pI) over the problem sets of Group 1, and that of Group 2, and then computed the

Spearman correlation (after confirming that bivariate normality is violated) over the 60 stu-

dents. As shown in Figure 5, the correlation between these two groups is 0.47 and it is highly

significant (p<0.001). This shows that students with have higher (lower) integration skills on

a group of problems also have higher (lower) integration skills on a new group of problems,

suggesting that individual differences in integration skills exist. This also supports that CEs

in a group of problems could generalize to a new group of problems.

However, one might notice that both groups have the same coverage of integration diffi-

culty factors and topics, so it is not clear whether and how integration difficulty factors and

topics affect the interpretation of the correlation. Firstly, I investigated the effect of integra-

tion difficulty factors on individual difference and the generalizability of the CE. I compared

the pairwise correlation of average CE strength among integration difficulty factors. Within

each group obtained before, the problem sets were further split according to the their major

integration difficulty factors (as displayed in Table 8).

47

To compute a within-type correlation, I compared the average CE strength of a type

in Group 1 with that of the same type in Group 2; to compute a cross-type correlation, I

gathered all problem sets from both groups of a type and computed the average CE strength,

and did the same for another type. The result is shown in Table 9. As shown in the table,

within each integration difficulty factor, there is a significant positive correlation (p<0.01).

This shows that students with higher (lower) integration skills of an integration difficulty

factor (type) on a group of problems also have higher (lower) integration skills of the same

integration difficulty factor (type) on another group of problems, suggesting that individual

differences in integration skills holds within the same integration difficulty factor. This also

shows that CEs can be generalized within the same integration difficulty factor.

In terms of the cross-type correlations, there is no correlation between LN and SU, SU

and CL, but there is a significantly positive correlation between LN and CL (p<0.05). The

absence of a correlation between LN and SU, SU and CL suggests that LN and SU are

essentially different integration difficulty factors, and SU and CL are also fundamentally

different integration difficulty factors. We shouldn’t merge LN and SU, merge SU and CL,

or use a single integration difficulty factor, skill integration, to abstract the integration skills.

Meanwhile, the significant correlation between LN and CL (p<0.05) suggests that stu-

dents’ individual differences may still exist and the CEs may generalize when merging both

types, and LN may be highly related to CL. This is actually consistent with our understand-

ing that nested loop problems typically require a high cognitive load. However, since LN

and CL are fundamentally different integration difficulty factors in that the former includes

a conceptual part while the latter doesn’t (see their definitions in Table 7), we should be

cautious about merging them. I leave this for future investigation.

One might argue that the above correlations might have resulted from generalizability

within the same topic (or main programming construct). Therefore, I conducted a similar

analysis as above but focused on the correlation among topics. As shown in Table 10, signif-

icant positive correlations are found within each topic (p<0.001), but there is no correlation

between for and lists topics, while and lists topics, although each pair shares one integration

difficulty factor. This suggests that topic plays a role in explaining the existence of individual

differences and generalized CEs. However, topic alone is not sufficient for the explanation:

48

Table 10: The Spearman correlation (with p-value) of average CE strength among topics.

The within-type correlation is between the same topics in Group 1 and Group 2; while the

cross-type correlation is between one topic from both groups to another topic from both

groups. There were 60 students (data points) for computing each correlation. (Sig. level

***:<.001, **:<.01, *:<.05, • :<.1.)

for (LN,SU) while (LN,CL) lists (SU,CL)

for (LN,SU) .43(<.001)*** .24(.07)• .19(.15)

while (LN,CL) – .50(<.001)*** -.04(.74)

lists (SU,CL) – – .49(<.001)***

in Table 9, LN and SU share similar topics (for, while), and SU and CL also share similar

topics (for, while, lists), but there is no correlation found in each pair; meanwhile, LN in

Group 1 and LN in Group 2 each involves two topics, SU in Group 1 and SU in Group 2 each

involves two to three topics, and CL in Group 1 and CL in Group 2 each involves all three

topics, and significant correlations were found in each within-type pairwise relation. This

contrast suggests that both integration difficulty factors and topics are needed for explaining

the existence of individual differences and generalized CEs. Meanwhile, a marginally signifi-

cant correlation was found between the for and the while topics (p<0.1), which is consistent

with our understanding that both loops share some similarities.

A further analysis within the same integration difficulty factor removing the effect of

sharing topics (for loop SU problem sets vs. while loop SU problem sets), or within the same

topic removing the effect of sharing integration difficult factors (e.g., for loop SU problem

sets vs. other for loop SU problem sets), is not supplied here, due to having insufficient

problem sets to conduct such a correlation (e.g., having only one problem set to be analyzed

with another problem set) and the fixed order over problem sets imposed in the study. Such

a per-item level analysis probably contains a lot of noise introduced by the fixed order (e.g.,

a lower performance on a problem set could be due to its position), which can significantly

reduce the reliability of the conclusion. I leave further investigation of this to future research.

49

Combining the results from both drill-down correlation analyses, I conclude that students’

individual differences in integration skills and the generalizability of CEs are due to both the

integration difficulty factors and topics. The results also provide additional evidence that the

three factors loop nesting, state update, and cognitive load are playing the role of integration

difficulty factors, while loop nesting and state update are playing the role of two different

conceptual integration difficulty factors for identifying potential new integration skills.

One might also suggest that loop nesting and state update could be used to represent a

student’s higher level, more abstract integration skills, based on the results. However, one

disadvantage of basing our model on such an abstracted representation is that students may

lose explicit practice on different instantiations of the same integration type, using differ-

ent constructs. As one can see from integration error analysis in Section 3.2.2.1, although

for&x=x+i and while&x=x+i both involve state update and even have similar constructs

(loop and addition assignment), students have exhibited substantially more cognitive load

errors in the latter case. In addition, in this section, the insufficient number of problems

doesn’t allow for examining correlation within the same integration difficulty factor, which

would tease apart the topics to provide supporting evidence. So, it is more grounded to

represent integration skills on the current finer-grained level, and use the current integration

difficulty factors more abstractly than the integration skills, as a bridge to help identify

potential integration skills. I leave further investigation of this issue to future research.

3.3 DISCUSSION AND CONCLUSIONS

In this section, I describe the classroom study I conducted to investigate composition effects

and integration skills in program comprehension for novice programmers, on three topics (for

loops, while loops and lists). The results, on these three topics, consistently demonstrated

the existence of composition effects and integration skills in common basic programming

patterns. A drill-down integration error analysis revealed the nature of the composition

effect and the integration skills: the difficulty can be conceptual or nonconceptual, resulting

from one to multiple integration difficulty factors loop nesting, state update, and cognitive

50

load. Further, I conducted correlation analysis between two separate pools of problems, and

results suggest that students’ individual differences in integration skills exist and composition

effects could be generalized due to both integration difficulty factors and topics. Based on

the above analysis, the two conceptual integration difficulty factors, loop nesting and state

update could be used to identify potential new integration skills.

The results described in this section have several implications. First, they lay the founda-

tion for building learner models addressing integration. For each validated integration skill,

I will include it when conducting skill labeling for problems, and create a latent knowledge

variable in the learner model. For unseen contexts, the identified integration difficulty fac-

tors could be used to identify potential integration skills, which could be used to reduce the

user study design space, or an automated learner model’s search space. Secondly, it provides

insights into designing hints and trace tables for building a Python programming compre-

hension tutor (Chapter 6) teaching students program comprehension skills. For example, for

problems requiring state update integration, a hint could be designed to emphasize retrieving

the updated value from the previous iteration as input for the current iteration. Thirdly, this

set of studies informs investigation of the composition effect in program construction in the

future. Although comprehension and construction are very different tasks, they share con-

ceptual knowledge, so the identified integration skills in program comprehension can serve

as candidates for skill development, in the context of learning program construction.

An important next step to improve our current studies is to conduct a new study where

problems sets are also permutated so that the inertial thinking errors caused by the order

effect can be eliminated, and problem sets with varying, finer-grained potential difficulty

factors can be compared. This will enable a cleaner investigation of the nature of composition

effects and finer-grained integration difficulty factors. Moreover, increasing the scale of the

current studies, in terms of participants, coverage of skills and topics and extending them to

other programming languages domains would further solidify the conclusions drawn here.

51

4.0 BUILDING AN INTEGRATION-LEVEL LEARNER MODEL

This chapter explains how I built a learner model for integration skills. This chapter con-

tributes to RQ 2, How to build a learner model for integration skills? A learner model

consists of a skill model and a mechanism to infer knowledge from performance. Section 4.1

introduces how I constructed the skill model and Section 4.2 explains how I constructed the

mechanism to infer knowledge, based on a Bayesian network for this skill model.

4.1 BUILDING THE SKILL MODEL

A skill model (defined in my dissertation) includes the item-to-skill structural relationship

(mapping) and the skill-to-skill structural relationship (mapping), and is the foundation for

a learner model. In this section, I describe my approach to construct these two mappings

consecutively. I explain the general approach and demonstrate examples of applying the

general approach to the targeted context of my later analytical and classroom studies, the

topics of for loops and lists. The targeted topics serve as an example to illustrate the critical

steps for building a skill model for integration-level learner models. These two topics have

been chosen because they cover most common basic programming patterns.

4.1.1 Item-to-Skill Mapping

Integration skills are defined in a context, i.e., only when basic skills interact in specific

ways can certain integration skills be associated with an item. Fortunately, programs give

highly structured and abstract contexts for skill applications, and there are many program

52

analysis techniques available. I hereby proposed a general automated potential integration

skill identification algorithm (APIS) using automated program analysis based on contextual

features, to construct item-to-skill mapping. APIS labels the required potential integration

skills (if any) for each item (a problem or a step), and outputs a mapping from items to

potential integration skills in the targeted study context. APIS requires two inputs:

• conceptual integration difficulty factors (CIDF) with contextual features describing them.

• aspects for describing potential integration skills which constitute contextual features

describing integration skills.

Contextual features consist of the necessary features which must appear in an item, and

unwanted features which should not appear in an item. These instantiated features, along

with the aspects for each skill, constitute a rule. These two inputs can be obtained by directly

consulting domain experts, or conducting Difficulty Factors Assessment (DFA) studies. A

DFA study may be a more objective and reliable way to obtain the inputs, compared to

directly consulting domain experts, since student performance data is collected to examine

hypothesized difficulty factors, reducing expert bias and expert blind spots [Clark et al.,

2007]. In my dissertation, I have conducted a DFA study, abstracted two conceptual difficulty

factors and identified a set of aspects for describing (potential) integration skills.

To conduct automated program analysis, APIS performs string or regular expression

matching, or checks variable states, using the debugger library of the programming language1.

The parser or AST tree of a program can be further utilized for identifying potential complex

integration skills. In my dissertation, I demonstrate how simple automated program analysis

and a small set of rules are sufficient in my study context.

Before moving on, one aspect worth mentioning is the assessment unit that APIS operates

at. Depending upon the assessment unit, the rules (or aspects) differ slightly. ITSs can be

classified into two types, according to the assessment unit level. The first type places the

assessment on the problem level, where only the final answer to a problem is evaluated by the

system and used for learner modeling, although a fine-grained level of hints or decomposed

scaffolding of problems might still be provided. Examples include the SQL-Tutor [Mitrovic

1I used the library from Online Python Tutor (https://github.com/pgbovine/OnlinePythonTutor/).

53

Figure 6: An example of a decision tree for judging the existence of potential integration

skills and CIDFs in my study context (LN: loop nesting, SU: state update).

et al., 2001], ASSISTment [Heffernan and Heffernan, 2014] and QuizGuide [Brusilovsky

et al., 2004b]. The second type places the assessment on the step level, where problems

are decomposed into steps (according to the underlying model-tracing process). Step level

answers are evaluated and step level assistance is provided by the system. Examples include

Cognitive Tutor [Anderson et al., 1995] and Andes [Vanlehn et al., 2005]. I refer to an

assessment unit (a problem or a step) as an item. APIS can operate at the problem level or

the step level assessment unit.

APIS works as follows. For each item (to be labeled) in a targeted study context:

1. Judge the existence of potential integration skills by CIDFs and examine what CIDFs are

involved for the problem. For example, Figure 6 shows an example of using loop nesting

(LN) and state update (SU) discovered by my previous DFA study (Chapter 3) to judge

whether potential integration skills exist or not and examine what CIDFs are involved in

common basic programming patterns (among for loops, while loops, lists topics). Given

definitions of CIDFs which encode features describing them (e.g., Table 7), an automated

program analysis could be applied. If the item doesn’t involve any of the factors, move

to the next item; otherwise, continue to the next step.

2. For each matching CIDF, extract values of aspects from the problem (when the item is

a problem) or from both the problem and the current step (when the item is a step) and

look up the rule table to check whether any rules are matched. If a rule is matched, label

the corresponding skill; otherwise, add a new rule to the table. For example, Table 11

lists the final rule table involving SU for problems in my study context.

54

Table 11: An example of the final rule table involving state update problems in my study

context. Operator refers to the operator (which is not the assignment operator) used in the

line where an assignment occurs or the retrieval of the previous value occurs.

Involves

for loop?

What is being up-

dated?

What is used to

update?

Operator? Potential

integration skill

Yes x (number) x (number) +, * for&#=

Yes x (number) a[i] (list element) <,>, ≤, ≥ for&if

Yes a[i] (list element) a[i] (list element) +, -, * for&a[i]

No a (list) a[i] (list element) +, -, * a[i]&=

APIS enables generalization, i.e., APIS can use CIDFs to identify new potential integra-

tion skills. For example, in Table 11, a new potential integration skill for&#= is identified

because it involves the state update CIDF, and it is a natural extension to for&+=. It was

identified in Chapter 3 by including the multiplication assignment2 (for&*=) situation. In

addition, another new potential integration skill a[i]&= is identified because it involves the

state update CIDF for list and slightly differs from for&a[i] in that it requires writing the

complete value of a list rather than one list element, and focuses on whether a list can be up-

dated correctly, regardless of whether list elements in later positions depend on list elements

in former positions or not.

Identifying this kind of potential integration skills can inform the design of new empirical

user studies (e.g., my Classroom Study 2 in Chapter 8), or narrow down the search space for

a machine learning model to discover integration skills, the results of which can also serve

as further validation of potential integration skills.

2Similar to the addition assignment defined in my dissertation, an assignment like x=x*i is called a
multiplication assignment although strictly speaking only an assignment with the *= operator (e.g., x*=i)
should be called so. I defined it in this way because the courses had only been taught in the former way, by
the time my studies were run, and both ways in essence share the same state update structure.

55

Table 12: (Potential) integration skills for my study context.

Name Overall definition (being able to get ...)

for&for A sequence of numbers resulting from a nested for where the outer loop iter-

ation variable decides the number of inner loop iterations. In my study, since

all instances of nested loops interact in this way, the subscript v2 is ignored.

for&#= The sum or product of a sequence of consecutive numbers with a for loop and

an addition or a multiplication assignment.

for&if The maximum or minimum value of a list with a for loop. Although the name

doesn’t include a[i], the context of list is required.

for&a[i] List values after creating a list of numbers where the later numbers depend on

the former numbers (e.g., a list of a Fibonacci sequence) with a for loop.

a[i]&= List values when some list elements have been updated.

Table 13: Basic skills for my study context.

Name Overall definition (being able to get ...)

for The sequence of values of the iteration variable.

#= The value of a variable after its addition or multiplication assignment(s).

if The value of the condition expression, and enter/skip the body correctly.

a[i] The value of a list element with the index involving a variable (e.g., i, i-1, i+2).

% The value of an expression with the modulus operator.

// The value of an expression resulting from a floor division.

By adding aspects for basic skills, APIS could be converted to automated potential skills

identification algorithm (APS) for labeling both integration skills and basic skills. Definitions

of skills could be obtained by converting the features into descriptions. A skill set could be

obtained by gathering the pool of skills labeled for a set of items. Table 12 and 13 list the

definitions of (potential) integration skills and basic skills in the context of my study.

56

4.1.2 Skill-to-Skill Integration Graph

Another component in the skill model is the skill-to-skill mapping. My dissertation focuses

on the integration relationship. I introduce a new type of knowledge graph, the integration

graph, which shows how component skills progressively integrate and form integration skills

that are essential to describe domain expertise (Figure 7). Lower levels consist of more basic

component skills and higher levels consist of integration skills integrating previous levels’

skills. Although my dissertation focuses on 2-component integration skills, integration graphs

could be built for more complex integrations. Nodes are created for each skill with a skill

tag (e.g., for&x=x+i), and a description (e.g., get the sum of numbers with a for loop and

an addition assignment). Edges denote component-integration prerequisite relationships.

Figure 7: An example of an integration graph showing how basic skills x=x+i, for, and a[i]

integrate and form more complex integration skills.

One important principle for constructing an integration graph is that an integration skill

is only included if a composition effect and integration conceptual difficulty exist. Other-

wise, we end up with numerous ungrounded “integration skills” many of which students can

naturally acquire once they have learned basic skills. For example, in Figure 7, the integra-

tion skill for&+= is included because a composition effect is found as shown in Chapter 3.

However, iterating through a list and printing its elements with a for loop or adding a list

element to a variable with addition assignment hasn’t been proven to have a composition

effect, so the hypothesized integration skills are not included.

57

Admittedly, to construct a reliable, complete integration graph, a sufficient number of

DFA studies may be needed. Alternatively, when student performance data is available,

one could construct a potential integration graph and then use fitness or predictive metrics

computed from the data to tune or validate the learner model that is built on the foundation

of that integration graph. However, this may require data with sufficient numbers of and

diversity in problems.

As a general future direction for building a skill model with integration skills, one could

collect and analyze data from MOOCs or large courses, which provide a large number and

high variety of problems and students, as well as exploring machine learning approaches.

4.2 BUILDING THE BAYESIAN NETWORK GIVEN THE SKILL MODEL

In this section, I introduce how to construct a Bayesian network that is based on the skill

model (which was constructed using the approaches introduced in the above Section 4.1)

for integration skill modeling. Compared to other machine learning approaches, I chose the

Bayesian network (BN) technique for learner modeling because it offers a natural mechanism

to convert the given skill model, by encoding existent domain knowledge into a network

structure. Also, it maintains interpretable knowledge states which can be directly used

for diagnosis and adaptive decisions. The construction of the Bayesian network, including

decisions about its structure, parameters and update mechanism are explained as follows.

4.2.1 Learner Model Structure and Parameters

Figure 8 shows the structure of an integration-level learner model based on a Bayesian

network. The key features of such a BN are explained as follows:

• Basic component skills and integration skills are separately represented by different

nodes. A basic component skill node (Kb
i) represents the basic understanding and ap-

plication of a basic component skill (e.g., conducting a simple addition assignment). An

integration skill node (Ki&j) represents the understanding and application of an integra-

58

Figure 8: The BN structure of an integration-level learner model. A specific formulation,

CKM-HI, which assumes conjunctive skills for item performance and uses a noisy-AND

gate, shares the same structure as the one shown in the graph. O nodes represent the binary

observed student performance, and K nodes represent binary latent skill knowledge levels.

tion skill (e.g., getting the sum of numbers with a for loop and an addition assignment).

This separation of two kinds of skills and explicit representation of integration skills help

to provide targeted practice, and to assure full practice coverage.

• Each integration skill node has its own parent node (Kc
i&j for Ki&j), which denotes the

conceptual part of the integration skill. The construction of Kc
i&j nodes was informed by

the DFA study in Chapter 3, where results clearly showed that students have conceptual

misunderstanding or are missing conceptual understandings of how basic skills integrate

together, even if they already know how each separate, basic component skill works. Such

nodes in BN indicate that the level of integration depends not only on the levels of basic

component skills, but also on the conceptual understanding of each specific integration.

• Integration skills (if not serving as components for more complex integration skills) are

directly connected to items, and edges from more basic component skills to items are

removed if their integration skills are required. For example, in Figure 8, O2 requires

the integration skill K1&2, so the edges from Kb
1 to O2, from Kb

2 to O2 are removed. In

this way, remediation can directly operate at integration skill levels. This is different

from granularity-based networks [Collins et al., 1996, Conati et al., 2002, Millán and

Pérez-De-La-Cruz, 2002] including competency-based networks [Mislevy and Gitomer,

59

1995, Morales et al., 2006] where higher level nodes represent aggregation or abstraction,

not integration, of lower level skills and aren’t directly connected to items. As a result,

remediation can’t directly operate at such higher levels.

• Latent skills are organized in a hierarchical way capturing the dependencies among skills.

Lower levels consist of more basic components skills, and higher levels consist of inte-

gration skills that require the integration of lower-level skills. This hierarchical structure

allows knowledge increase/decrease from one skill node to propagate to other skill nodes.

This helps reduce over-practicing basic skills when students already know integration

skills, and also helps reduce over-practicing very similar integration skills when students

already know an integration skill along with its basic skills.

• Multinomial (here, binomial) distributions are used as conditional probability distribu-

tions for integration skills, where the basic component skills and conceptual parts of

integration skills serve as parents, whose knowledge state combination determines the

state of the integration skill. Multinomial distributions allow component skills to have

different levels of importance to the integration, and have generated a better model than

noisy-AND gates in my preliminary analytical cross-validation experiments, while main-

taining a relatively low time and space complexity for 2-component integration skills.

However, for highly complex integration skills requiring a larger number of components

as parents, noisy-AND gates should be considered to keep the complexity linear rather

than exponential.

In my thesis, I construct Conjunctive Knowledge Modeling with Hierarchical Integration

skills (CKM-HI), which has the key features listed above, but further assumes a conjunctive

effect of skills for item performance and uses a noisy-AND gate to model this conjunctive

relationship. The assumption of the conjunctive relationship is suitable when each prob-

lem has only one solution, which requires that students know all of the underlying skills

(rather than using alternative skills or only some of the skills), which is the case in my con-

text of program comprehension as well as in many other contexts [Embretson, 1997, Cen,

2009, Carmona et al., 2005, Conati et al., 2002, VanLehn et al., 1998]. Furthermore, the use

of a noisy-AND gate to model the conjunctive relationship in BN is beneficial when problems

require a relatively large number of skills (e.g., more than 3) so that computational complex-

60

ity can be reduced [Carmona et al., 2005, Conati et al., 2002, VanLehn et al., 1998]. However,

the core of an integration-level learner model is not about the conjunctive or compensatory

relationship chosen for depicting a multi-skill effect on item performance, but about the

representation of skills, skill-to-skill relationships, and whether skills are directly linked with

an item or not, i.e., the key features summarized previously. Whether other formulations (in

other contexts) would be better suited than CKM-HI, is left for future investigation.

As mentioned before in Section 4.1.1, there are two granularity levels of assessment units

that exist in the current tutoring systems, problem level and step level, which results in two

granularity levels of observables and leads to two density levels of the item-to-skill relations.

Using problem-level observables, CKM-HI has quite a complex (dense) structure between

skills and items. It utilizes its specified conditional probability tables and Bayesian rules to

manage the uncertainty underlying multi-skill practices. Then, using step-level observables,

CKM-HI reduces the complexity (density) of the structure between skills and items. This

likely reduces the level of uncertainty and increases the accuracy of the knowledge inference.

Where the observables are on the problem level or the step level, CKM-HI maintains the key

features of an integration-level learner model, as summarized above.

The next step for building a learner model is to specify/obtain values for the parameters.

CKM-HI has three sets of parameters: 1) the probabilities of a student initially knowing

a skill (init/l0), 2) the conditional probability tables (CPTs) for integration skills, and 3)

two noise parameters indicating the probability of correctly answering an item by chance

(guess/g), and the probability of accidentally failing a known item (slip/s). Such param-

eters have been gathered from collected student interaction data. Since there are latent

variables, the expectation maximization algorithm is used. Also, a standard junction-tree

algorithm is used to conduct the exact inference. However, when there is no pre-existing

student interaction data, the setting of these parameters depends on expert knowledge or

the requirements of the study design. Then, with the incoming student interaction data in

an online setting, each student’s own BN will update the beliefs (estimations) of the skill

levels, which will be explained in the following section.

61

4.2.2 Dynamic, Individualized Knowledge Update

Given the network’s structure and parameters, one can use the network to predict item

performance, and infer the knowledge level of each skill at each practice opportunity for a

student. Different BNs are maintained for different students as their own learner models. All

students’ BNs are initialized with the same parameters, so for a student’s first practice, the

same prior probabilities (obtained by init/l0 parameters) for latent skill nodes are used to

predict performance; but after observing different students’ practice sequences, the BNs start

to differentiate among students by maintaining different up-to-date knowledge estimates. In

order to achieve this, CKM-HI follows the same dynamic BN roll-up mechanism as in [Conati

et al., 2002]: it uses posterior knowledge probabilities conditioned on historical observations

as the priors for the next time steps. Currently, CKM-HI doesn’t model the transition

probabilities of latent skills between time steps (slices). There are three reasons why I

consider such a static BN rather than a fully dynamic BN to be sufficient for my work:

• The change in knowledge estimates is mainly determined by new evidence (i.e. observed

performance), since the learning gain from each practice will be ultimately translated into

an observed performance serving as the evidence for updating the student’s knowledge

beliefs. This is suggested by prior work [Conati et al., 2002].

• Constructing a fully dynamic BN requires estimating posteriors for each latent variable

at each time slice for each student, in an iterative EM setting. This significantly increases

time and space complexity, and requires more data for reliable inference.

• According to the results in my prior work [Huang et al., 2017], such a static BN mech-

anism indeed achieves good performance, and it is better than a (simple) dynamic BN

using HMMs (WKT).

I leave incorporating learning dynamics for future work, which is a non-trivial task for a

network which has a hierarchical structure between the latent variables.

62

5.0 A MULTIFACETED EVALUATION FRAMEWORK FOR

LEARNER MODELS

In this chapter, I introduce a general, multifaceted evaluation framework for learner models,

in order to answer RQ 3, How to evaluate a learner model? There are two main motivations

for developing this framework: 1) there has been a growing concern from various commu-

nities (EDM, UMAP, ITS, AIED) about evaluating learner models from a single aspect,

2) multi-skill learner models, such as my proposed integration-level learner model, posit

challenges to traditional predictive performance metrics, most likely due to their flexibil-

ity in the parameter space. This multifaceted framework is applied later to evaluate my

proposed integration-level learner model, in answer to RQ 4. This is one of the first uni-

fied frameworks to evaluate learner models and extends our two prior frameworks [Huang

et al., 2015, González-Brenes and Huang, 2015]. Compared to our prior work [González-

Brenes and Huang, 2015], it is applicable to a broader context, including both single- and

multi-skill practice situations. This new framework contains two parts: 1) data-driven evalu-

ations, and 2) real-world intervention study evaluations. Under the data-driven evaluations,

there are multiple dimensions: predictive performance, parameter plausibility, and expected

instructional effectiveness. Equal weights are given to these different dimensions. In the

following sections, I will introduce these dimensions.

5.1 DATA-DRIVEN EVALUATIONS

This section introduces the three dimensions for data-driven analytical evaluations of learner

models. The usage of various dimensions is to address the growing concern about using

63

predictive performance as the only aspect to evaluate learner (including skill) models in the

EDM community [Baker et al., 2008, Beck and Chang, 2007, Gong et al., 2010, González-

Brenes and Huang, 2015, Huang et al., 2015], and to address the long-standing goal of

finding a holistic evaluation method in the adaptive system community [Brusilovsky et al.,

2004a, Paramythis et al., 2010]. A more thorough review, expressing the motivation behind

using different dimensions, can be found in Chapter 2.

5.1.1 Predictive Performance

Predictive performance is the first dimension in this proposed evaluation framework. Pre-

dictive performance through cross-validation has long been a golden standard for evaluating

learner models in the EDM community, and is the first dimension in my evaluation frame-

work. For latent variable-based learner models, such as knowledge-tracing-based models

(including CKM-HI, CKM, WKT), predictive performance indirectly assesses the accuracy

of the latent knowledge inference, through testing the accuracy of the predictions.

While a wide range of prediction metrics could have been considered under this frame-

work, in this dissertation, I demonstrate the use of the most relevant ones. I chose two

popular prediction metrics used in evaluating learner (skill) models, the root mean squared

error (RMSE) and area under the Receiver Operating Characteristic curve (AUC). The

RMSE metric has demonstrated a high correlation to the ‘moment of learning’ (i.e., the step

in which a student learned a skill) which could significantly affect student under-practice

and over-practice for the BKT models [Pardos and Yudelson, 2013, Baker et al., 2011].

The AUC metric measures quite a different aspect of a learner model from that measured

by RMSE. It assesses the models’ abilities to discriminate each student’s performance failures

from successes, considering a range of decision thresholds for prediction, even if the data is

imbalanced. The need to report both metrics is based on thorough investigations of predictive

metrics in recent papers [Pardos and Yudelson, 2013, Pelánek, 2015], which raised concerns

about using only AUC for evaluating learner (skill) models.

In addition, I also report the recall and precision metrics for incorrect outcomes. [Pardos

and Yudelson, 2013] demonstrated that recall and F-measure for correct outcomes have a high

64

correlation with the moment of learning in BKT simulation studies, yet a less explored aspect

in the EDM field is the effectiveness of the corresponding metrics for incorrect outcomes. I

argue that the recall for incorrect responses, which reflects the ratio of incorrect responses

that can be identified by the learner model, is the most important of all the recall/precision

metrics for incorrect/correct outcomes, since it is of primary concern that an ITS doesn’t

miss any knowledge/skill weakness that is reflected in each problem failure of a student.

5.1.2 Parameter Plausibility

Parameter plausibility is the second dimension of my proposed evaluation framework, and is

inherited from my prior work [Huang et al., 2015]. The definition of parameter plausibility,

under my framework, consists of two aspects. Firstly, the parameters of a learner model

shouldn’t violate common human understanding about learning (which typically is reflected

in the learner model’s underlying assumptions about learning). This has been pointed out

by prior work [Baker et al., 2008]. For example, knowing required skills generally leads

to successful performance, and not knowing any required skills generally leads to a failing

performance [Baker et al., 2008]; practice shouldn’t hurt learning [Newell and Rosenbloom,

1981]. Secondly, the parameters of a learner model should enable clear, explicit and mean-

ingful interpretations of a student’s cognitive states, which has also been pointed out by

prior work [Gong et al., 2010, Beck and Chang, 2007]. The plausibility of the estimated

parameters is of crucial importance, because it determines the plausibility of how latent

knowledge is inferred, and ultimately affects the students’ learning experience. For example,

if a learner model has a high slip parameter, then even after observing a lot of incorrect

responses, it will estimate that students already learned and fail because of slipping; at the

same time, a model with a low slip parameter will estimate that students haven’t learned

because it is very unlikely they will fail if the student has already learned it. Under the first

model, student practice will stop much earlier than under the second model, risking that

many students will not have enough practice to learn the skill.

There are two sources that affect parameter plausibility. Firstly, students could exhibit

noisy behaviors, affecting real-world performance data, such as guessing the answer correctly

65

even if the student doesn’t know the skills, or making careless errors even though the student

already knows the skills. Such noisy behaviors could affect the fitting of noise parameters to

learner models. Secondly, a skill model could mis-specify underlying skills which also affects

the fitting of parameters. For example, if a skill model fails to identify several difficult

skills of an item and students mostly reach a high knowledge level of the identified easier

skills when facing this item, the learner model based on that skill model might fit high slip

parameters to explain the high ratio of incorrect performance on this item that is observed

in the data, instead of identifying the missing skill.

Under my proposed, flexible evaluation framework, parameter plausibility can be eval-

uated in various ways, depending on the learner model involved. My dissertation focuses

on knowledge-tracing based learner models with guess and slip noise parameters. I propose

two metrics, guess and slip, the value of which corresponds to the value of two parame-

ters, to describe the parameter plausibility of such learner models. From the perspective

of using student performance to predict/approximate knowledge, guess could be considered

to be a false positive, and slip a false negative. For two learner models with statistically

the same predictive performance, as evaluated by cross-validation on the same dataset, the

model fitted with a smaller guess and slip is considered to be a model with a higher param-

eter plausibility, because student performance could be explained explicitly and clearly by

knowledge levels of skills rather than with noise parameters, raising the explaining power of

the learner model.

Admittedly, one might argue that certain levels of guess and slip are needed to re-

flect/express a student’s true noisy behaviors. Also, it might be possible to give theoretical

upper bounds for guess (using assumptions), such as giving an upper bound of 0.25 of guess

for multiple-choice questions with four choices. Yet it is non-trivial to solidly specify the

upper and lower bounds of guess and slip in a general setting, regarding dataset and item

characteristics. I leave the investigation of this issue as future work.

66

5.1.3 Expected Instructional Effectiveness

Expected instructional effectiveness (EIE) is the third dimension of my proposed evaluation

framework. The ultimate goal of a learner model is to improve instructional effectiveness,

i.e., whether students can acquire the targeted skills without wasting any effort. Usually,

one deploys the learner model in a real system to examine this, yet considering the cost and

constraints of deployment, is there an analytical way to forecast the expected instructional

effectiveness, in order to further improve a learner model or eliminate some learner models

before final deployment? When there is no intention to deploy a learner model further, is

there a way to estimate the instructional effectiveness of learner models? Unfortunately, the

above-mentioned predictive performance and parameter plausibility metrics still wouldn’t

be able to give direct answers to these questions. Our prior framework, the learner effort-

outcomes paradigm (LEOPARD) [González-Brenes and Huang, 2015] offers a way to quantify

the amount of effort required to achieve a learning outcome. It is designed for single-skill

learner models.

In my dissertation, I extend this framework from a single-skill to a multi-skill learner

model evaluation, from a single hypothesized mastery threshold to a range of mastery thresh-

olds, allowing for a more systematic joint examination of effort and scores. I call this new,

general evaluation metric, expected instructional effectiveness (EIE). The key idea of EIE

is to examine student effort and performance by simulating different instructional decisions

(i.e., when to stop instruction), based on real-world data, according to the learner model’s

knowledge inference. In my thesis, I use the test data to compute the metric, after fitting a

learner model from the training data. The EIE is based on the calculation of two metrics,

effort and score and is reflected in a score-effort curve across a range of mastery thresholds.

The details are explained as follows.

5.1.3.1 Score

This metric empirically quantifies the expected performance of students when they reach

mastery of skills inferred by a learner model. For a given mastery threshold and a given

student, the metric is calculated by the mean performance (accuracy) of the student when

67

the learner model asserts that the student reaches the given mastery threshold for all of the

required skills for a current item, by comparing the estimated probabilities of the student

knowing the skills with the threshold, based on collected real-world data. The original

metric suggested in our prior work [González-Brenes and Huang, 2015] only applies when

each item maps to a single skill by simply examining the performance sequence of a skill.

It is not applicable to multi-skill practice situations, since the responsibility of each skill for

the final performance is not clear, i.e., if we convert the item level performance to single skill

level performance, it is not clear what correctness should be assigned. To address this, my

thesis introduces an extension of the original metric by jointly examining the multiple skill

knowledge states.

The following formula explains the computation of the score averaging over a set of

students U for mastering the set of skills Q given a mastery threshold m:

Scorem,u =

∑
1≤t≤|Ou|

∏
q∈Qu,t

I(Ku,q,t ≥ m) · I(Ou,t = 1)∑
1≤t≤|Ou|

∏
q∈Qu,t

I(Ku,q,t ≥ m)

Scorem =
1

|U |
∑
u∈U

Scorem,u

(5.1)

Ou denotes a student u’s observed practice sequence; Qu,t denotes the set of direct parent

skills of the item corresponding to Ou,t; Ku,q,t denotes the estimated probability of student u

knowing a skill q right before tth observation (i.e., before being updated by this observation);

U denotes the set of students on the dataset; I denotes an indicator function taking value 1

if the condition in the bracket is satisfied and 0 otherwise.

5.1.3.2 Effort

This metric empirically quantifies the expected number of practice opportunities that are

needed to reach mastery for all skills under investigation inferred by a learner model. For

a given mastery threshold and a given student, it is calculated by counting the number of

practice opportunities the student needs in order to reach the given mastery threshold for

a set of targeted skills, by comparing the estimated probabilities of the student knowing

the skills with the threshold, based on collected real-world data. This metric was originally

68

suggested in our prior work [González-Brenes and Huang, 2015], but this dissertation has

adjusted it for multi-skill practice cases: integration items are considered in computing the

effort for integration skills, but not considered in computing the effort for corresponding basic

component skills or conceptual parts of integration skills, so that effort already considered

in integration skills won’t be repeatedly counted. Meanwhile, integration items are still

considered for computing the effort for non-corresponding basic component skills, and items

solely for practicing basic component skills are still considered for computing the effort for

basic component skills.

The following formulas explain the computation of the effort averaging over students for

mastering the set of skills Q, given a mastery threshold m:

Effortm,q =
1

|Uq|
∑
u∈Uq

∑
1≤t≤|Ku,q |+1

∏
1≤t′≤t

I(Ku,q,t′ < m)

Effortm =
∑
q∈Q

Effortm,q

(5.2)

Ku,q denotes the sequence of estimated probabilities of a student u knowing a skill q

right before each practice that directly requires this skill, which has the same length of the

student u’s direct practice sequence for the skill q; Ku,q,t′ denotes the estimated probability

of a student u knowing a skill q right before t′th observation (i.e. before updated by this

observation); Uq denotes the set of students on the dataset that have ever practiced on

the skill q; I denotes an indicator function taking value 1 if the condition in the bracket is

satisfied and 0 otherwise. Note that when computing Effortm,q, index t is up to |Ku,q|+1

because the updated knowledge states that after the last observation is considered, i.e., if a

student still hasn’t reached mastery of a skill after the last practice, then he/she still needs

at least one more practice.

As shown in the formula, to compute Effortm,u,q for a student u, we incrementally examine

the estimated knowledge levels of skill q for each position t, and if Ku,q,t′ for the current and

all previous observations of t hasn’t reached the mastery threshold, i.e.,
∏

1≤t′≤t I(Ku,q,t′ <

m) = 1, the effort value adds 1; otherwise no effort is added.

69

5.1.3.3 Mastery Thresholds

A mastery threshold determines when an ITS supported by a learner model stops (focused)

instruction on a skill, and moves on to the next skill(s). Conventionally, 0.95 is chosen as the

mastery threshold probability, yet to the best of my knowledge, only one work has provided

justification for this threshold and it based this on simulated data [Fancsali et al., 2013].

It is still unclear whether this 0.95 threshold in a real-world system could lead to better

learning than alternative thresholds. As demonstrated by [Fancsali et al., 2013], a mastery

threshold can be treated as a parameter that can be tuned according to course preference or

constraints, in the sense of trading off false positives (in which a student without knowledge

is judged to have mastered a skill) for false negatives (in which a student is presented with

additional practice opportunities after acquiring knowledge). Thus, a good mastery threshold

might also depend on the context in which the learner model is deployed. This work and the

scarcity of work on this topic suggest that more attention needs to paid to understanding the

effect of a mastery threshold, how to set it in a given context, or even to consider methods

that do not require a deterministic mastery threshold when eliciting instructions from the

learner model, such as the predictive similarity policy [Rollinson and Brunskill, 2015] and

the method proposed in [VanLehn et al., 1998].

Here, as a strategy with the least assumptions made, I consider a full range of mastery

thresholds in the range from 0.5 to 0.99, at intervals of 0.01 which improves over our original

framework [González-Brenes and Huang, 2015] of using a heuristic 0.6 as the threshold.

Although primarily aiming at examining the effort and scores under a range of situations,

this treatment also helps to explain the effect of mastery thresholds.

5.1.3.4 Imputation

As can been seen in the above score metric, at each mastery threshold m, only observations

in which the required skills reached the mastery threshold will be examined. On high thresh-

olds and datasets without sufficient practice, there may be insufficient data for computing

the score. This could render the metric susceptible to outliers and reduces the reliability of

the estimation. Following the original LEOPARD framework [González-Brenes and Huang,

2015], I conducted imputation as follows: for students who have never reached the mastery

70

threshold for any skill, the student’s average performance on all his/her observations will be

used as the score. Regarding effort, for students who have never reached the mastery thresh-

old for a skill, the effort value will be the number of observed student practice opportunities

on this skill, and for students who have never had practice on a skill, they are excluded when

computing the average effort for that skill. Such treatments on computing the effort happen

because it is not straightforward to impose imputation. In the future, I will consider using

the fitted learner model to forecast/project future effort not observed from the data, similar

to the method used in [Lee and Brunskill, 2012, Yudelson and Koedinger, 2013].

As can be seen, both score and effort metrics were computed after the students reached

a mastery threshold. So EIE is more suitable for datasets where students haven’t been

stopped from practicing by using pre-defined mastery thresholds, because in these datasets

a full range of simulated situations can be examined with sufficient data for the chosen

learner model. This is actually the case for the dataset used in my dissertation.

5.1.3.5 Summative Score-Effort Curve

Only the effort or only the score metric isn’t enough to indicate the expected instructional

effectiveness. Consider a learner model that tends to overestimate students’ knowledge levels

but on which students still frequently fail after the model has asserted mastery. Although

the expected effort to reach mastery will be low, the expected score will also be low. Such a

learner model will not be preferable in an adaptive tutor system, since it risks leading students

toward under-practice. However, prior work that examines instructional effectiveness on real-

world datasets has only computed the expected effort (number of practice opportunities)

needed to reach mastery, assuming mastery is achieved when the inferred knowledge level

from a chosen learner model reaches a chosen threshold (e.g., 0.95) [Gong et al., 2010,

Koedinger et al., 2011, Lee and Brunskill, 2012, Yudelson and Koedinger, 2013].

In this framework, scores and efforts are jointly examined, and further, they are examined

by a summative score-effort curve, which extends our original framework [González-Brenes

and Huang, 2015]. Previously, the score and effort were only examined at one threshold. To

plot the curve, the score and effort under the same mastery threshold are paired as a dot

with x=effort and y=score, and such dots are ordered from low to high mastery thresholds;

71

then a curve is plotted to connect these dots. Using the common assumption in the ITS field

that practice doesn’t hurt learning [Newell and Rosenbloom, 1981], increasing effort should

result in a non-decreasing score, but due to noise in the data and the imputation to address

insufficient data, a score-effort curve might fluctuate. To construct a more reliable score-

effort curve, a smoothing rule is imposed: the score on a new mastery threshold is set as

the largest value of all the scores from the current and previous smaller mastery thresholds.

This results in an adjusted, non-decreasing score-effort curve. The original curve has been

shown in the graph with a light grey color. Figure 9 shows an example.

10 0 10 20 30 40 50 60 70

Effort

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

S
co

re

model 1

model 2

Figure 9: Score-effort curves for two learner models. Grey curves are non-adjusted curves.

To use the curve to compare learner models to find the one with the best learning

effectiveness, choose the curve with the larger area under the curve or the steeper slope,

which indicates that the learner model has a higher expected instructional effectiveness

(EIE): using the same effort, students under this learner model are more likely to have a

higher score (performance); or when reaching the same score, students under this learner

model are more likely to use less effort (the number of practice opportunities). For example,

in Figure 9 , model 2 is evaluated as having a better EIE than model 2. Currently, one

still needs to visually inspect the curve to judge the expected instructional effectiveness, so a

72

future step would be to convert this curve into a single metric, similar to the AUC metric for

the receiver operating characteristic (ROC) curve, or the instructional effectiveness measure

[Paas and Van Merriënboer, 1993], but it needs a more thorough investigation beyond the

scope of my dissertation.

5.2 REAL-WORLD INTERVENTION STUDY EVALUATIONS

The ultimate goal of learner modeling is to improve student learning, and the ultimate way to

examine whether a (new) learner model leads to better learning is to deploy it in an ITS, and

compare the impact on student learning between this redesigned ITS and the original ITS, in

an experimental study. Such a study is called a real-world intervention study, or a close-the-

loop study (as it completes the “4d cycle” of system design, deployment, data analysis, and

discovery–leading back to design) [Koedinger et al., 2013] in my dissertation. Unfortunately,

in the EDM community where new learner modeling approaches are actively proposed (and

accepted) once an increase in predictive performance is achieved, corresponding close-the-

loop studies examining their real-world effectiveness are rarely performed.

To examine the real-world effectiveness of an intervention (e.g., a new learner model),

the most widely-used measurement is student learning gain, as measured by the difference

between posttest and pretest scores. If pretest scores from the control and experimental

groups are statistically the same, posttest performance can also be directly compared. Higher

learning gain or posttest performance (controlled for pretest performance) is a clear evidence

of the effectiveness of an intervention, as compared with its original design. Note that

learning gain is usually compared when time is controlled to be the same for both conditions.

Another measurement that should be paid more attention to is student learning time, or

posttest time. If students under a redesigned ITS use less learning time or solve the posttest

faster with the same posttest performance, compared with the original ITS, then the new

intervention (e.g., the learner model) should be considered as more effective. An example

is the accelerated learning effect achieved by the SHERLOCK system, which reduced four-

year’s troubleshooting experience to only seven days of practice [Lesgold et al., 1988].

73

One concern of evaluating a learner model deployed in an ITS is that other components

such as the problem selection approach could affect the overall effectiveness, too. So, this

evaluation should also be combined with the above data-driven evaluations which focus on

only the learner model component. This issue has been pointed out by the proponents of

layered evaluation, who argue that holistic evaluation should be complemented by approaches

that independently assess each layer [Brusilovsky et al., 2004a, Paramythis et al., 2010].

5.3 DISCUSSION AND CONCLUSIONS

The main concept of my multifaceted evaluation framework is that a learner model should

be examined from multiple perspectives beyond the traditional comparison of predictive

performance, and should include both data-driven evaluations and real-world intervention

study evaluations. Each dimension included in this framework has been supported by prior

work with clear groundings [Pelánek, 2015, Baker et al., 2008, Beck and Chang, 2007, Van de

Sande, 2013, Lee and Brunskill, 2012, Huang et al., 2015, González-Brenes and Huang, 2015].

However, the metrics used in my framework can be further improved. For example,

regarding the EIE metric, it would be helpful to summarize the score-effort graph into a

single value, and use the fitted learner model to conduct a simulation to forecast future

effort not observed from the data, similar to the method used in [Lee and Brunskill, 2012];

regarding the parameter plausibility metric, it could take other forms (rather than guess or

slip parameters) in other types of learner models.

Also, more dimensions or metrics could be considered to enhance this framework, such

as the Brier score decomposed into additive components for better understanding learner

models’ prediction behaviors[Käser et al., 2017], parameter consistency examining whether

a learner model converge to consistent parameters with different training settings [Huang

et al., 2015], predictive similarity policy [Rollinson and Brunskill, 2015] which reveals the

instructional effect of a learner model without relying on specific mastery thresholds.

In the remaining part of my thesis, I demonstrate how this framework is used and provide

a comprehensive picture of the effectiveness of the proposed learner model.

74

6.0 BUILDING A PROGRAM COMPREHENSION ITS DRIVEN BY

LEARNER MODELING

This chapter introduces a Python program comprehension intelligent tutoring system, Trace

Table Tutor (T3), which was designed and implemented for the evaluation of the proposed

learner model in a real-world intervention study to answer RQ 5 (results reported in Chap-

ter 8). At the same time, the tutor also serves as an example of adopting ITS techniques

and infrastructure to the computer science education domain. The key features of T3 are as

follows: 1) it provides trace table practice problems which teach both basic and integration

skills in program comprehension, and 2) it provides hints and personalized practice problems

driven by underlying learner modeling. In the following part of this chapter, I first introduce

the trace table practice interface and its implementation, then I describe hint generation and

skill labeling, followed by an introduction of the learner modeling service and the problem

selection service. Finally, I briefly explain system deployment and logging.

6.1 TRACE TABLE PRACTICE INTERFACE

In this section, I introduce the main practice interfaces and basic functionalities of T3,

including the practice interface with trace tables, and the practice interface with partially-

filled trace tables for learning the conceptual parts of integration skills.

The main component of a practice problem in T3 is a trace table which requires students

to fill the values of the variables which are initialized or updated after each line execution of

the program in the cells. There are two reasons why I have chosen trace tables for the tutor.

Firstly, trace tables are among the first tools for teaching programming to novices, dating

75

Figure 10: The initial interface of a practice problem with a trace table.

as far back as the 1970s when they were used for teaching Pascal and Fortran programming

languages [Taylor, 1977, Du Boulay, 1986], and specifically, the introductory Python courses

where I conducted all classroom studies for my dissertation have been teaching trace tables.

Although there is no formal assessment of the effectiveness of teaching trace tables (to the

best of my knowledge), teachers at Austral University of Chile have commented that trace

tables seem to be useful at least for students’ initial learning and for explaining some complex

programs. Secondly, trace tables naturally offer a way to address the integration difficulty

factors discovered in the composition effect studies (Chapter 3) for teaching integration skills

in program comprehension. It decomposes the program into small individual steps, which

could reduce the cognitive load, one of the integration difficulty factors, allowing students

to focus on one step at one time. Meanwhile, some cells in trace tables directly match the

conceptual parts of the integration skills, and hint messages could be attached to these cells

(steps) to address the conceptual integration difficulties.

Figure 10 shows the main interface of the system: the initial interface of a practice

problem with a trace table. Each practice problem provides a program (top left), some

instructional text (top right) and requires students to fill in a trace table (bottom right)

with rows corresponding to the line-by-line execution of the program. The cell to be filled

76

next is highlighted. A student can enter a value in a cell multiple times. When a student

enters a value wrongly and wants to move to the next cell, the answer will be marked as

red, which serves as immediate feedback (Figure 11a). Then, a student can request a hint

by clicking the hint button and hint messages will be displayed in the hint window (bottom

left) (Figure 11b). There are first-level hints providing conceptual knowledge and procedural

guidance for the cells, and bottom-level hints which tells the correct answer directly. When

a student enters a value correctly, the cell will turn grey and the next cell to be filled will

be highlighted. A student can only move to the next cell when the current cell is correct; a

student can only move to the next problem when all required cells in the current problem

are correct. The next problem is selected according to the underlying learning modeling and

problem selection algorithm, and it is displayed in the same window in the same format.

(a) feedback interface (b) hint interface

Figure 11: The interfaces of a practice problem for the situations where a student enters a

wrong answer and wants to move to the next cell (a), and the situation where a student asks

for a hint (b).

I also created partially-filled trace tables for problems focusing on the conceptual parts

of integration skills. Here, only the cells with the conceptual parts of integration skills are

missing and other cells are automatically filled. Figure 12 shows the initial interface of an

isolated integration problem for practicing for&a[i]c in contrast to the initial interface of the

full integration problem for practicing for&a[i] in Figure 10.

77

Figure 12: The initial interface of an isolated integration problem for the conceptual part of

an integration skill, for&a[i]c, where cells not addressing it are automatically filled.

I conducted a pilot study to check whether the above practice problem design with trace

tables could be easily understood by students. The pilot study involved 5 undergraduates at

the University of Pittsburgh and 4 undergraduates at the Austral University of Chile, taking

introductory Python programming courses. They were required to try a demo (5 minutes),

answer a pretest (5 minutes), practice in the system (45 minutes), answer a posttest (10

minutes), and answer interview questions (15 minutes). Interview results showed the trace

tables were in general easy to understand for the students, and they gave some suggestions

to make the instructional text clearer.

6.2 INTERFACE IMPLEMENTATION

To implement the above interfaces and basic functionalities, I utilized the Cognitive Tu-

tor Authoring Tools (CTAT)1. More details can be found elsewhere [Aleven et al., 2006,

1https://github.com/CMUCTAT/CTAT/wiki

78

Koedinger et al., 2003]. CTAT provides a set of tools with user-friendly GUIs, and it has a

detailed wiki and a responsive support team. The adoption of the Cognitive Tutor infras-

tructure in building T3 has only required a small amount of effort.

One important feature of CTAT is that it supports the model tracing process, which

is a key component for Cognitive Tutors. A solution path for each problem needs to be

constructed (in BRD files) so that each step (cell) can be mapped to a state in this path,

and the answer could be compared with the pre-specified correct answer, based on which

feedback and hints can be given. CTAT automatically generates such a solution path given

a demonstration (through a GUI) of how to solve a problem (as a student). To further speed

up and scale up the content generation process, I implemented a process to automatically

generate HTML and BRD files for any given programs utilizing the library provided by the

Online Python Tutor2.

6.3 HINT GENERATION AND SKILL LABELING

One intelligent functionality of T3 is that it provides targeted hint messages for remediating

weak skills. The hint generation is enabled by underlying learning modeling. In the practice

problems with trace tables, step-level hint messages are attached to cells based on an un-

derlying learner model. A learner model (defined in my dissertation) contains a skill model

which includes the specification of skills required by items (on the problem or the step level).

For each skill (across different cells), I created a corresponding hint message explaining the

conceptual knowledge and procedural guidance to apply the skill.

This kind of hint-to-skill relationship helps to differentiate skill (learner) models for

better evaluation: for the version of ITS driven by an integration-level learner model (e.g.,

CKM-HI), students can receive hints for understanding the conceptual parts of integration

skills; for the version of ITS driven by a basic-level learner model (e.g., CKM, WKT),

students only receive hints for basic skills. Also, this kind of hint-to-skill one-to-one mapping,

compared with constructing different hints for the same skill in different problems, allows

2https://github.com/pgbovine/OnlinePythonTutor

79

for automation and scaling up. Admittedly, the latter method could offer more fine-grained

assistance, and I leave it for future work. The hint generation process is addressed by a skill

labeling process. I tailored the general skill labeling algorithm described in Chapter 4 to

addressing the situation here where each step maps to a cell in a trace table. Details of this

tailored skill labeling algorithm are explained as follows:

1. Generate a JSON-formatted execution trace after the line-by-line execution of the pro-

gram, based on the library provided by the Online Python Tutor3. An execution trace

is an ordered list of execution points. An execution point is an object representing the

state of the computer’s (abstract) memory at a certain point in execution (including the

values of the variables). Details can be found elsewhere [Guo, 2013].

2. Get the names of the variables (or headers of the trace table) whose values need to be

filled in the trace table (e.g., iteration variables, cumulative sum variables).

3. Iterate over the execution trace object by object, which is equivalent to iterating over

the program line by line, and at each line:

a. Iterate over each variable listed in the trace table headers. If the variable is initialized

or its value has been changed, conduct the skill labeling for this step (cell) according

to a set of rules based on its contextual features. The judgement of the existence

of each feature is based on a straightforward program text analysis (such as string

matching, indentation checking). Table 14 shows the features of a rule for labeling

the conceptual part of an integration skill, for&a[i]c, for the highlighted cell (step)

shown in Figure 13.

b. Update the variables.

4. Return an ordered list of steps (cells) with the associated skill(s). Label each cell in the

solution path file with its required skill.

After the above skill labeling process, hint messages for each problem can be generated

by matching the hints with skills, and adding the hint messages into the solution path

files. Table 15 shows an example of hints for the highlighted cell in Figure 13, based on an

integration-level learner model or a basic-level learner model.

3https://github.com/pgbovine/OnlinePythonTutor

80

Table 14: A rule with necessary features for labeling the conceptual part of an integration

skill, for&a[i]c, for a cell (step). Note that this rule doesn’t have unwanted features.

ID Features

1 Current corresponding variable is a list element and its index uses the iteration

variable, e.g., a[i], a[i-1].

2 Current corresponding variable is on the right side of the assignment operator.

3 Current corresponding line is inside a for loop.

4 Current corresponding line has an assignment operator.

5 The variable on the left side of the assignment operator is a list element with the

iteration variable as its index, e.g., a[i].

6 This is the second visit of the current corresponding line.

Figure 13: The highlighted cell (step) is labeled with the conceptual part of an integration

skill, for&a[i]c, based on an integration-level learner model.

81

Table 15: Hints for the highlighted cell in Figure 13, based on an integration-level learner

model or a basic-level learner model.

Learner model Skill label Hint message

basic-level a[i] In a list L, L[0] returns the item at index 0, which is the first

item, and L[i] returns the the item at index i, which is the

(i+1)th item. If initially L=[0,0,0], and we set L[0]=1, then

L[0] will return 1 when you access it next time.

integration-level for&a[i]c The list assignment statement (e.g. L[i]=L[i-1]+1) is in a for

loop. You should use the updated value (not the initial value)

of L[i-1] from the previous iteration. The new value of L[i] will

be used in the next iteration when you access L[i-1].

6.4 LEARNER MODELING SERVICE

In the backend of the system, I have implemented a learner modeling service that maintains

and updates each student’s learner model based on the incoming student’s performance

sequence. Additionally, it also logs the problem-level student interaction data in real time.

The learner modeling service works as follows in an online system: After each problem

submission, a student’s performance on the cell level is extracted from the JSON formatted

data in the HTTP requests from the TutorShop (the LMS that hosts the content), and it is

used to update the corresponding skills in the student’s learner model. The BN structure

and parameters are pre-stored on the server. Students share the same BN structure (in the

same condition group) and obtain the same initial estimations of skill levels in their learner

models. The learner model is implemented based on the SMILE library [Druzdzel, 1999],

which is a reasoning engine for graphical models such as Bayesian networks. It is a highly

efficient engine with fast parameter learning and latent variable inference, and it has enabled

responsive adaptation functionality of T3. In addition, the learner models for students are

stored in a server database (and also through the TutorShop service).

82

6.5 PROBLEM SELECTION SERVICE

Another major intelligent and adaptive functionality of T3 is the problem selection, and it

is also driven by the underlying learner modeling. Based on the learner modeling service, I

developed a problem selection service4 that takes as input a student’s latest learner model

(a vector of knowledge estimations) and his/her recent performance, and returns a problem

for the student to work on next. The service is implemented in a general way so that any

specific problem selection algorithms could be embedded. Since problem selection is not the

focus of my dissertation, I only describe the conceptual idea and the generic algorithm for

problem selection here. Note that when deploying T3 in Classroom Study 2 (Chapter 8),

some modifications (preserving the general idea) were introduced according to the need of

the study design.

The key idea of the problem selection algorithm is to give higher chances to stronger

unmastered skills to be remediated first, and after picking a skill, pick the problem with

the most focus on this skill. The reason of preferring stronger unmastered skills rather than

weaker unmastered skills is that in many situations students’ stronger skills are prerequisites

for weaker skills, and if a student still hasn’t mastered his/her stronger skills, then probably

he/she is not ready to learn weaker skills.

The generic algorithm is explained as follows:

1. Update a student’s learner model based on the just submitted problem.

2. Pick an unmastered skill according to following steps:

a. Retrieve the student’s latest learner model, i.e., the probabilities of knowing each

skill k, P(known)k.

b. Find unmastered skills, which are the skills with P(known)k ≤ m (the pre-specified

mastery threshold); if there are no unmastered skills, stop practicing the current

topic and move to the next topic5.

c. Compute the probability of an unmastered skill i being selected, P(select)i, as fol-

lows, so that stronger unmastered skills are more likely to be remediated first:

4The learning modeling and problem selection are implemented in a single service.
5In my Classroom Study 2 reported in Chapter 8, a modification was made in this step regarding the

stop-practice criterion in order to adjust to the study design.

83

P (select)i =
P (known)i∑
u P (known)u

(6.1)

where u ∈ unmastered skills in the skill set of the current topic.

d. Pick a skill according to the multinomial distribution (of the skill index) specified

by the set of P(select)i, so that skills with higher P(select)i values have higher prob-

abilities to be picked. Then, move to pick a problem.

3. Pick a problem focusing on remediating the chosen skill w:

a. Compute the focus score Fwj for each problem j requiring the chosen skill w as

follows, considering the relative strength of the skill w compared with other skills

and the total amount of unlearned knowledge in the problem j:

Fwj =
P (unknown)w∑
s P (unknown)s

(6.2)

where s ∈ skills of the current problem j.

b. Pick the problem with the highest Fwj as the final selected problem, so that a problem

with the most focus on skill w will be chosen.

6.6 SYSTEM DEPLOYMENT AND DATA LOGGING

To deploy T3, I used the TutorShop6 platform, a customized learning management system

(LMS) for CTAT tutors. The learner modeling and problem selection service is called through

an HTTP URL from the TutorShop. The TutorShop platform provides a user-friendly GUI

for deploying and testing learning materials developed by CTAT, with a responsive support

team. The deployment of the T3 into TutorShop has been straightforward.

Besides showing the content interface and the links of different assignments (stages),

TutorShop also has some functionalities to control the access: 1) a student can only access

the next assignment (stage) once he/she finishes all the problems in the current assignment

6https://tutorshop.web.cmu.edu/

84

(stage), 2) a teacher can activate/deactivate any assignments at any time (even if students

haven’t finished them), so that the the teacher can have better controls of the maximum

amount of time on an assignment.

Regarding logging the student interaction data, the fine-grained cell (step) level data is

logged by DataShop7, and the more coarse-grained problem level data is also logged by my

learner modeling service.

7https://pslcdatashop.web.cmu.edu/

85

7.0 DATA-DRIVEN EVALUATIONS OF THE PROPOSED

INTEGRATION-LEVEL LEARNER MODEL

In this chapter I experiment on real-world and simulated datasets to evaluate the proposed

learner model CKM-HI (introduced in Chapter 4), based on the data-driven evaluation

dimensions and metrics under the proposed multifaceted evaluation framework (introduced

in Chapter 5). This chapter contributes to my RQ 4, Is learner modeling for integration skills

beneficial in terms of multifaceted data-driven evaluations? I first describe the baseline

models chosen for comparison, then I introduce the main experiments on the real-world

dataset collected from T3 to demonstrate the evaluations using both problem and step

level data, and finally I describe a focused experiment using simulated datasets to further

investigate issues discovered in the real-world dataset experiments.

7.1 BASELINE MODELS

To evaluate the proposed integration-level learner model CKM-HI, two popular multi-skill

practice learner models that don’t incorporate integration skills were considered. The first

baseline is the weakest knowledge tracing (WKT) model. As introduced in the Chapter

2, WKT is a representative model from one family of multi-skill practice learner models

which assumes (marginal and conditional) independence between skills, and ignores modeling

possible integration between the skills. Prior work [Gong et al., 2010, González-Brenes et al.,

2014, Xu and Mostow, 2012] has shown that WKT has the best predictive performance,

based on several datasets that compared it with other variants in the same family. WKT

predicts the probability of success for each of the the involved skills, then picks the minimum

86

Figure 14: BN structures of two popular multi-skill practice learner models. O nodes repre-

sent the observed binary student performance and the K nodes represent the latent binary

knowledge levels.

probability as the final prediction; it only updates the knowledge of the weakest skill when

observing an incorrect response, and updates all skills otherwise. The network structure of

WKT is shown in Figure 14(a). WKT differs from CKM-HI in the multi-skill responsibility

assignment mechanism, the explicit differentiation between component and integration skills,

and the skill-to-skill integration relations. WKT serves as a low baseline.

The second baseline is the conjunctive knowledge modeling (CKM) model. As introduced

in Chapter 2, CKM is a representative model of another family of multi-skill practice learner

models where skills are marginally independent but conditionally dependent on items, and

uses noisy-AND gates on items with Bayesian rule to assign responsibility for performance

to skills and to update skills. It has been used in several prior studies [Carmona et al., 2005,

Conati et al., 2002, VanLehn et al., 1998]. However, it also ignores the modeling of possible

integration between the skills. The network structure of CKM is shown in Figure 14(b).

CKM has the same multi-skill responsibility assignment mechanism as CKM-HI, but still

differs from CKM-HI in the explicit differentiation between component and integration skills

and the skill-to-skill integration relationships. The comparison between CKM-HI and CKM

evaluates the benefit of incorporating integration skills. CKM serves as a high baseline model

for evaluating CKM-HI. Meanwhile, CKM has the same skill specifications and skill-to-skill

relations as WKT, and only differs from WKT in the multi-skill responsibility assignment

87

mechanism. The comparison between CKM and WKT helps to tease apart the effect of the

multi-skill responsibility assignment mechanism which exists in both CKM and CKM-HI

models, so that we can cleanly examine the effect of incorporating integration skills in the

comparison between CKM-HI and WKT.

7.2 REAL-WORLD DATASET EXPERIMENTS

The section provides multifaceted data-driven evaluation of the proposed integration-level

learner model CKM-HI, as compared to CKM and WKT, on a real-world dataset. I start by

explaining the experimental set up and then report the analysis results for both the problem-

and step-level data.

7.2.1 Experimental Setup

7.2.1.1 Dataset

I used the dataset collected from classroom and lab studies deploying T3 (Trace Table Tutor),

an ITS I designed and implemented to teach skills in Python program comprehension, using

trace tables (details in Chapter 6). The classroom and lab studies participants were students

taking introductory level Python programming courses from Fall 2017 to Spring 2018, at the

University of Pittsburgh and Austral University of Chile (Universidad Austral de Chile).

The majority of the students in the dataset were from the Classroom Study 2 introduced

in Chapter 8. Note that although the dataset was obtained after running studies deploying

T3, CKM-HI had already been tested on a dataset and a user study of a Java program

comprehension tutor, QuizJET [Hsiao et al., 2010], and had shown advantages over CKM

and WKT over a wide range of aspects. The details were reported in my prior paper [Huang

et al., 2017]. In this prior work, the skill model was constructed by expert-labeling, which

is very different from the skill modeling approach used here.

This dataset contains problems on the for loops topic and the lists topic. The complete

skill set can be found in Table 12 and Table 13 in Chapter 4. The characteristics of this

88

tutor enabled me to build Bayesian networks for learner models on two density levels, the

problem level and the step level. The motivation and construction of these two levels of

learner models can be found in Chapter 4. The original finest-grained data logged students’

attempts on the step level. To convert the data to the problem level, I examined all steps in

a problem and labeled it as correct if the first attempts of all steps were correct, and labeled

it as incorrect, otherwise.

I used students’ first attempts on the practice problems and the submitted attempts

(which were their last attempts) on the pretest and posttest problems to train and test the

learner models. Using only their first attempts in step level tutoring data is a common way to

create learner models in the educational data mining (EDM) field, since this method may be

able to reflect student knowledge levels more accurately. Later attempts at solving practice

problems may carry too much noise for knowledge inference, since students might have asked

for hints and even bottom-level hints showing correct answers, in later attempts. Keep in

mind that the tutor only allows students to move to the next step or next problem if the

student has made a correct attempt in the current step or current problem during the practice

state. Therefore, the last attempts to solve the practice problems are all correct. However,

on the pretest and posttest problems, students don’t get any feedback after each attempt,

and may enter answers multiple times before finally submitting a problem. Therefore, the

submitted attempts on the pre/posttests are the ones that are preserved for the dataset.

The descriptive statistics for the final dataset can be found in Table 16, 17.

Table 16: Descriptive statistics for the data on problem and the step levels.

#stu. #obs. Proportion #items

correct Pretest Posttest Practice Total

Problem level 129 4,531 0.55 10 13 66 89

Step level 129 18,484 0.81 10 13 540 563

89

Table 17: Descriptive statistics for skill models for different learner models on problem and

step levels. For computing the number of basic/integration/all skills per item, the mean

with minimum and maximum are reported in the format of mean[min, max]. An integration

item refers to an item labeled as having integration skills.

WKT/CKM CKM-HI

Problem Step Problem Step

#labeled basic skills 6 6

#labeled (conceptual parts of/full) integration skills 0 10

#skills labeled per pre/posttest problem 1.7[1,3] 3.0[1,11]

%pre/posttest problems labeled with integration skills 0 48%

#skills labeled per practice item 1.8[1,5] 1.0[1,2] 3.3[1,11] 1.4[1,4]

%practice items labeled with integration skills 0 0 64% 33%

7.2.1.2 Learner Models’ Initial Parameters

The parameters of all my learner models were learned from data. However, since the learner

models involved latent variables, an expectation maximization (EM) algorithm was used.

The EM algorithm is known to be prone to local optimum and sensitive to initial pa-

rameters. Prior work [Pardos and Heffernan, 2010b] has shown that when setting the

initial parameters to plausible ranges, the BKT model [Corbett and Anderson, 1995] is

less prone to getting stuck in a local optimum. Being aware of this issue and trying to

maintain fairness, for all learner models, I initialized the init parameters (the probabil-

ity of initially knowing the skill) of all root skill nodes (including the basic skills K
(b)
i ,

and the conceptual parts of integration skills Kc
i&j) by the average proportion correct over

the number of problems that require this skill. I initialized all learner models with the

same (plausible) parameters explained as follows. I initialized the learn parameter for

WKT as 0.15, and all models’ guess and slip parameters as 0.1. For CKM-HI, I initial-

ized the conditional probability table of each integration skill node Ki&j, given the val-

90

ues of its parents Kb
i , K

b
j and Kc

i&j by setting {P(T|TTT)=0.999, P(T|TTF)=P(T|TFT)=

P(T|TFF)=P(T|FTT)=P(T|FTF)=P(T|FFT)=P(T|FFF)=0.001}, indicating that a

student has a low probability (0.001) of knowing an integration skill if he/she doesn’t know

any of the prerequisite basic skills or conceptual parts of integration skills, and a high prob-

ability (0.999) otherwise. I used the SMILE library [Druzdzel, 1999], which is a reasoning

engine for graphical models, such as Bayesian networks, to construct all learner models. It

is a highly efficient engine with fast latent variable inference and parameter learning.

7.2.1.3 Cross-Validation

I conducted a modified 10-fold student stratified cross-validation explained as follows. Stu-

dents were randomly split into ten folds. For each fold, data from the other nine folds

(90% of students) was used as the training data, and the data from the current fold (10%

of students) was further split into two parts with these students’ pretest data being placed

into the training set, and the practice data being held back as the testing set. This way

is slightly different from the standard method of student stratified cross-validation in that

the pretest data of test students is also used for training. This is because in a real-world

setting, the pretest would be constructed to initialize the learner models or for computing

learning gain, and the prediction of scores on it doesn’t affect adaptation decisions. The

most important part is the performance prediction and knowledge inference of the learner

model in the practice stage, because this affects adaptation decisions.

7.2.2 Results for the Problem Level Assessment Data

In this section, I compare CKM-HI with CKM and WKT using the problem level assessment

data from multifaceted perspectives: predictive performance, parameter plausibility and ex-

pected instructional effectiveness. The statistical tests and values of predictive performance

and parameter plausibility metrics are reported in Table 18 and Table 19. The score-effort

curve for expected instructional effectiveness is displayed in Figure 15. I report and interpret

results of each pairwise comparison between the three learner models, considering the three

dimensions as follows.

91

Table 18: Comparison of predictive performance and parameter plausibility between the

three learner models, based on the problem level data. The tables report the mean dif-

ference with a 95% confidence interval (CI) over ten folds, the paired t-test (approximate

normality met) p-value (df=9) and Cohen’s d effect size. (Sig. level: ***:<.001/3=.00033,

**:<.01/3=.0033, *:<.05/3=.017, •:<.1/3=.033; effect size +++:>.8, ++:>.5, +:>.2.)

(a) Predictive Performance

CKM-HI vs. WKT CKM-HI vs. CKM CKM vs. WKT

M p d M p d M p d

RMSE -.034±.014 .00032 3 ∗∗∗+++ .0003±.002 .77 .02 -.034±.013<.0003 3 ∗∗∗
+++

AUC .103±.038 <.0003 3 ∗∗∗+++ -.003±.006 .28 .07 .106±.036 <.0003 3 ∗∗∗
+++

Recall(0) .157±.044 <.0003 4 ∗∗∗+++ .015±.011 .01 .36 ∗+ .142±.043 <.0003 3 ∗∗∗
+++

Precs.(0) .042±.039 .038 .6 ++ -.012±.012 .06 .19 .054±.041 .016 .78 ∗++

(b) Parameter Plausibility

CKM-HI vs. WKT CKM-HI vs. CKM CKM vs. WKT

M p d M p d M p d

guess+slip -.141±.012<.0003 10 ∗∗∗+++ -.065±.012 <.0003 4 ∗∗∗
+++ -.076±.007<.0003 7 ∗∗∗

+++

guess -.149±.007<.0003 12 ∗∗∗+++ -.050±.006 <.0003 3 ∗∗∗
+++ -.099±.007<.0003 8 ∗∗∗

+++

slip .008±.011 .126 / -.015±.009 .005 1 ∗
+++ .024±.004<.0003 5 ∗∗∗

+++

Comparing CKM-HI with WKT, CKM-HI clearly outperforms WKT in all three aspects.

Regarding predictive performance, CKM-HI has performed significantly better on the RMSE,

AUC and recall (for incorrect responses) metrics (p<0.00033) with large effect sizes, and is

close to marginally significantly better than WKT in the precision for incorrect responses

metric (p=0.038). Regarding parameter plausibility, CKM-HI also has significantly smaller

guess+slip and guess (p<0.0003) with large effect sizes, yet has statistically the same slip

as WKT. Regarding expected instructional effectiveness, CKM-HI shows an advantage over

92

Table 19: Predictive performance and parameter plausibility metrics of the learner models,

based on the problem level data. The table reports the mean with a 95% CI over ten folds.

Model Predictive Performance Parameter Plausibility

RMSE AUC Recall(0) Precs.(0) guess+slip guess slip

CKM-HI .445±.012 .761±.033 .778±.030 .711±.043 .526±.014 .205±.011 .321±.013

CKM .444±.011 .764±.030 .763±.031 .723±.045 .591±.009 .255±.011 .336±.004

WKT .478±.006 .657±.020 .620±.035 .670±.054 .667±.006 .444±.011 .312±.003

5 10 15 20 25 30 35 40 45

Effort

0.30

0.35

0.40

0.45

0.50

0.55

0.60

S
co

re

WKT

CKM

CKM-HI

Figure 15: Comparison of expected instructional effectiveness between the three learner

models, based on the problem level data. For each model, the sequence of values (dots)

corresponds to mastery thresholds ranging from 0.50 to 0.99, in increments of 0.01. The

grey curve is the original one, without smoothing.

93

WKT on most mastery thresholds (≥0.62): using the same effort, CKM-HI appears to enable

students to reach higher scores, or when reaching the same score, CKM-HI appears to enable

students to take less effort.

Comparing CKM-HI to CKM, CKM-HI is superior to CKM considering all three aspects.

Although the RMSE, AUC and precision for incorrect responses metrics are statistically the

same, CKM-HI has a significantly higher recall for incorrect responses (p=0.01, d=0.36).

This recall metric is important in a tutoring system, since it describes the ability of a

learner model to retrieve all failures of students when weak skills exist, and is arguably more

important than the precision for incorrect responses metric. When it comes to parameter

plausibility, the advantage of CKM-HI over CKM is dramatic: it has significantly smaller

guess+slip, guess and slip values (p<0.017) with large effect sizes. In addition, in terms

of expected instructional effectiveness, CKM-HI clearly outperforms CKM on high mastery

thresholds (≥0.92), in that it can enable students to reach higher scores given the same

effort, and it can enable students to reach the same score with less effort.

The comparison between CKM and WKT is a bit mixed. CKM significantly defeats

WKT in all predictive performance metrics (p<0.017, with medium to large effect sizes)

and has significantly smaller guess+slip, guess (p<0.0003, with large effect sizes), but CKM

has a significantly larger slip (p<0.0003, with a large effect size). Regarding the expected

instructional effectiveness, CKM seems to be better than WKT on high thresholds (≥0.80),

yet the significance and persistence of the advantage is not clear.

7.2.3 Results for the Step Level Assessment Data

In this section, I compare CKM-HI with CKM and WKT on multifaceted perspectives: pre-

dictive performance, parameter plausibility and expected instructional effectiveness, based

on the step level assessment data. The statistical tests and values of predictive performance

and parameter plausibility metrics are reported in Table 20 and Table 21. The score-effort

curve for expected instructional effectiveness is displayed in Figure 16. I report and interpret

results of each pairwise comparison between the three learner models, considering the three

dimensions as follows.

94

Table 20: Comparison of predictive performance and parameter plausibility between the

three learner models, based on the step level data. The table reports the mean difference

with a 95% confidence interval (CI) over ten folds, the paired t-test (PT) (approximate

normality met) p-value (df=9) and Cohen’s d effect size. In the comparison between CKM

and WKT on RMSE, Wilcoxon signed-rank (WT) test was used since normality is strongly

violated. (Sig. level: ***:<.001/3=.00033, **:<.01/3=.0033, *:<.05/3=.017, •:<.1/3=.033;

PT effect size +++:>.8, ++:>.5, +:>.2; WT effect size +++:>.5.)

(a) Predictive Performance

CKM-HI vs. WKT CKM-HI vs. CKM CKM vs. WKT

M p d M p d M p d

RMSE -.015±.005<.0003 .4 ∗∗∗+ -.0034±.0026 .015 .1 ∗ -.012±.005 .007 .6 ∗+++

AUC .083±.022<.0003 3 ∗∗∗+++ .0069±.0068 .048 .3 + .076±.019 <.0003 2 ∗∗∗+++

Recall(0) .252±.053<.0003 6 ∗∗∗+++ .018±.023 .10 / .233±.066 <.0003 4 ∗∗∗+++

Precs.(0) .100±.064 .006 1 ∗+++ .021±.022 .06 / .079±.071 .0328 1 •+++

(b) Parameter Plausibility

CKM-HI vs. WKT CKM-HI vs. CKM CKM vs. WKT

M p d M p d M p d

guess+slip -.231±.007<.0003 31 ∗∗∗+++ -.048±.011 <.0003 4 ∗∗∗
+++ -.183±.012 <.0003 16 ∗∗∗+++

guess -.216±.007<.0003 33 ∗∗∗+++ -.040±.013 <.0003 3 ∗∗∗
+++ -.176±.014 <.0003 14 ∗∗∗+++

slip -.015±.001<.0003 7 ∗∗∗
+++ -.008±.002 <.0003 2 ∗∗∗

+++ -.0075±.002<.0003 2 ∗∗∗
+++

As in the problem level results, the step level results show that CKM-HI clearly outper-

forms WKT in all three aspects. CKM-HI is significantly more predictive in all predictive

performance metrics (p<0.017), with small to large effect sizes; CKM-HI has significantly

smaller guess+slip, guess and slip values (p<0.0003), with large effect sizes; and CKM-HI

has higher expected instructional effectiveness on all mastery thresholds. However, we still

need to compare CKM with WKT to investigate where the advantages come from.

95

Table 21: Predictive performance and parameter plausibility of the learner models, based on

the step level data. The table reports the mean with a 95% CI over ten folds.

Model Predictive Performance Parameter Plausibility

RMSE AUC Recall(0) Precs.(0) guess+slip guess slip

CKM-HI .351±.025 .790±.015 .319±.047 .575±.033 .314±.005 .192±.004 .122±.002

CKM .354±.026 .783±.020 .301±.063 .555±.037 .362±.011 .232±.013 .130±.003

WKT .366±.025 .707±.030 .067±.017 .475±.074 .545±.006 .408±.005 .137±.002

10 0 10 20 30 40 50 60 70

Effort

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

S
co

re

WKT

CKM

CKM-HI

Figure 16: Comparison of expected instructional effectiveness between the three learner mod-

els, based on the step level data. For each model, the sequence of values (dots) corresponds

to mastery thresholds from 0.50 to 0.99, in increments of 0.01. The grey curve is the original

one without smoothing.

96

The step level comparison between CKM-HI and CKM reaches the same conclusions as

the problem level did: CKM-HI is superior to CKM, considering all aspects. CKM-HI has

a significantly lower RMSE (p<0.017) and a close to marginally significantly higher AUC

(p=0.048), with recall and precision for incorrect responses statistically the same; CKM-

HI still has significantly smaller guess+slip, guess and slip values (p≤0.0003), with large

effect sizes; CKM-HI clearly outperforms CKM on expected instructional effectiveness on

all mastery thresholds. Together with the problem level results, the comparison between

CKM-HI and CKM suggests that it’s beneficial to add integration skills with a hierarchical

structure to a learner model for multi-skill practice involving integration. Mostly, it helps

correctly assign credit/blame to the right skills rather than increase the guess and slip noise

parameters, and it helps improve the expected instructional effectiveness. This will increase

the learner model’s ability to diagnose weak skills, and will significantly affect students’

learning efficiency.

Comparing CKM and WKT on the step level, CKM still significantly defeats WKT in

all predictive performance metrics (p<0.033, with large effect sizes) with only the precision

on incorrect responses metric having a decreased significance level, from 0.05 to 0.1. Dif-

ferent from the problem level results, the step level results show that CKM has not only

significantly smaller guess+slip, guess (p<0.0003, with large effect sizes), but also a smaller

slip (p<0.0003, with a large effect size); different from the problem level results, CKM seems

to have a lower expected instructional effectiveness on high thresholds (≥0.90), while the

significance and persistence of the disadvantage is not clear. Together with the problem level

results, the comparison between CKM and WKT suggests that the item-to-skill credit/blame

assignment mechanism that both CKM and CKM-HI possess brings a predictive improve-

ment over WKT, but it doesn’t necessarily bring improvement on parameter plausibility or

expected instructional effectiveness over WKT.

7.2.4 Discussion and Conclusions

Summarizing the results on both the problem and step level assessment data collected from

the real-world Python tutor, the proposed model CKM-HI offers significant improvements

97

over two popular multi-skill practice learner models, WKT and CKM. I considered a range

of aspects in my multifaceted evaluation framework: performance prediction accuracy, pa-

rameter plausibility, and expected instructional effectiveness.

Modeling integration skills (in CKM-HI) dramatically increases the parameter plausibil-

ity and expected instructional effectiveness, while it increases or maintains similar predictive

performance, as evidenced by the comparisons between CKM-HI and CKM. Meanwhile,

modeling conditional dependencies between skills with a conjunctive noisy-AND gate brings

predictive advantages, but not necessarily improves parameter plausibility or expected in-

structional effectiveness, as evidenced by the comparison between CKM and WKT. These

results clearly demonstrate the feasibility and value of learner modeling for integration skills,

and the validity of the skill model and modeling approach I have proposed.

As a showcase for my proposed multifaceted data-driven evaluation framework, the above

analysis also provides evidence about the limitations of performance prediction evaluation:

by examining the expected instructional effectiveness, a model with a limited performance

prediction gain can still have a significant improvement in adaptive tutoring (CKM-HI vs.

CKM); and surprisingly, a model with a significant prediction gain can have a slight im-

provement or no improvements in adaptive tutoring (CKM vs. WKT).

One limitation of the current analysis is that it doesn’t allow us to conclude whether the

addition of a hierarchical structure to CKM brings an advantage to CKM-HI. To answer this

question, another model using the flat structure of CKM, incorporating integration skills

should be compared with CKM-HI. Yet, the conclusions obtained from the current analysis

are still valuable: at a minimum, even with one model formulation investigated here, the

results clearly demonstrate the advantage of using an integration-level model, which inspires

further investigation.

One phenomenon is worthy to be further investigated: CKM-HI only achieves a limited

predictive improvement over CKM, but the advantage in parameter plausibility is non-trivial,

which should significantly increase the accuracy of latent knowledge inference. I hypothesize

that this may be due to the fact that CKM uses less plausible parameters to fit the data,

and that a larger prediction gain should be revealed if we impose parameter constraints. In

the next section, I describe experiments on simulated datasets for testing this hypothesis.

98

In future work, I plan to explore skill integration in a broader range of contexts, while

continuing to contribute to best practices in evaluating adaptive educational systems. Specif-

ically, I plan to explore automated methods for extracting integration skills, advancing my

preliminary approach [Huang et al., 2016].

7.3 SIMULATED DATASET EXPERIMENTS

The goal of this section is to understand the limited predictive improvement of CKM-HI

over CKM, as shown in the real-world dataset, and answer the following question: will

the magnitude of predictive improvement of CKM-HI over CKM increase when we impose

parameter constraints on both models?

As reported above, CKM-HI has only achieved a limited predictive improvement over

CKM, but it has significantly reduced the guess and slip noise parameters on the real-world

dataset. This might be caused by CKM utilizing higher noise parameters to fit the data,

which leads me to the hypothesis that a larger prediction gain would have been revealed if we

had imposed parameter constraints on both models. However, in real-world datasets, it’s not

clear what the ground truth values of guess and slip noise parameters are, and thus it is not

clear how strict the parameter constraints should be. So, I created simulated datasets where

the ground truth values of guess and slip noise parameters were specified, and examined both

models’ predictive performance with different levels of parameter constraints (including the

one exactly matching the ground truth level). Note that using simulated datasets to examine

learner models has been used in several previous research [Pardos and Heffernan, 2010b, Lee

and Brunskill, 2012, Klingler et al., 2015].

7.3.1 Method

Figure 17 shows the Bayesian network used to generate simulated datasets, which is called

the true network in the experiments. In terms of the structure, it consists of three basic

skills, three conceptual parts of the integration skills, three full integration skills, and seven

99

Figure 17: The Bayesian network for generating simulated datasets. O nodes represent the

observed binary performance and K nodes represent latent binary knowledge levels.

items which progressively assess these skills. No learning is assumed. Each sample consists

of observations on all items. A total number of 500 samples (corresponding to 500 students)

was generated. 80% (400) of the samples (students) were used as the training set, and the

remaining 20% (100) samples (students) were used as the test set.

The parameters of the true network were set as follows. For each basic skill Kb
i , the

probability of a student initially knowing the skill, P(Kb
i =T) was set to be 0.95; for each

conceptual part of the integration skill Kc
i&j, the probability of a student initially knowing

the skill, P(Kc
i&j=T) was set to be 0.05; the conditional probabilities of each integration skill

Ki&j given the values of its parents Kb
i , K

b
j and Kc

i&j was set as follows: {P(T|TTT)=0.99,

P(T|TTF)=P(T|TFT)=P(T|FTT)=0.1, P(T|TFF)=P(T|FTF)=P(T|FFT)=0.05,

P(T|FFF)=0.01}, where students have a low probability of knowing an integration skill if

any of its basic and conceptual parts is unknown and has a high probability of knowing the

integration skill otherwise. For all items, guess and slip values found in prior literature [Van-

Lehn et al., 1998, Pavlik et al., 2009, Liu and Koedinger, 2017] were used as the parameter

values in the simulation: guess/slip=0.1/0.1, 0.2/0.2, 0.3/0.1, 0.3/0.3. As can be seen, the

true network for generating the simulated data is ideal for the CKM-HI model where CKM-

HI should demonstrate a higher predictive performance than CKM, even without imposing

parameter constraints; if not, it will suggest that the noise parameters of CKM might have

played an important role in fitting the data.

100

The CKM-HI model used to learn from the simulated datasets has the same structure

as the true network, but it has different initial parameters for the network: P(Kb
i =T)=0.85,

P(Kc
i&j=T)=0.15, the conditional probabilities of each integration skill node Ki&j given the

values of its parents Kb
i , K

b
j and Kc

i&j are set as follows: {P(T|TTT)=0.99, P(T|TTF)=

P(T|TFT)=P(T|FTT)=0.25, P(T|TFF)=P(T|FTF)=P(T|FFT)=0.1, P(T|FFF)=0.01},

guess=slip=0.3. The CKM model used to learn from the simulated datasets has the same

structure as the one obtained by removing all integration skill related nodes and edges from

the true network, and the initial values of its overlapping parameters with CKM-HI are set

to the same: P(Kb
i =T)=0.85, P(Kc

i&j=T)=0.15, guess=slip=0.3.

To impose parameter constraints on the training process, I used the technique from

Bayesian statistical modeling of adding strong Bayesian priors to the guess and slip pa-

rameters. I achieved this by using a large effective sample size (ESS=10,000) in the prior

distribution for guess and slip parameters. I use the usual conjugate prior, beta distribu-

tion, for the binomially distributed guess and slip parameters (random variables) here. Such

strong priors should only be imposed on large guess and slip parameters, and not on guess

and slip parameters that are already small; otherwise, it will fundamentally distort the entire

fitting procedure. In order to address this, I firstly fit the parameters without strong priors

(constraints), and then added strong priors to a guess/slip parameter if it exceeds 0.3 and

conducted a new round of fitting. In each guess and slip ground-truth setting, I tried a range

of priors ranging from more strict to more relaxed constraints on the guess/slip parameters.

7.3.2 Results

Figure 18 shows the comparison of RMSE values on test sets with training and test sets

generated from different ground truth guess and slip parameters. In each setting (subfig-

ure), each learner model is fitted with different parameter constraints, ranging from the most

strict (guess≤0.1, slip≤0.1) to the least strict (guess≤0.5, slip≤0.5), to no constraint. Sur-

prisingly, without any parameter constraints, CKM-HI and CKM don’t have any difference

in predictive performance, as measured by RMSE, even though the simulated datasets are

generated by an ideal CKM-HI network.

101

(a) True guess/slip=0.1/0.1 (b) True guess/slip=0.2/0.2

(c) True guess/slip=0.3/0.1 (d) True guess/slip=0.3/0.3

Figure 18: Comparison of RMSE values on test set prediction with datasets generated from

different ground truth guess and slip parameters. In each setting of the ground truth parame-

ters (i.e., in each subfigure), each learner model is fitted with different parameter constraints,

ranging from the most strict (guess≤0.1, slip≤0.1) to the least strict (guess≤0.5, slip≤0.5),

to no constraint.

102

(a) True guess/slip=0.1/0.1 (b) True guess/slip=0.2/0.2

(c) True guess/slip=0.3/0.1 (d) True guess/slip=0.3/0.3

Figure 19: Comparison of guess values fitted on datasets generated from different ground

truth guess and slip parameters. In each setting of the ground truth parameters (i.e., in

each subfigure), each learner model is fitted from the most strict parameter constraints

(guess≤0.1, slip≤0.1) to the least strict (guess≤0.5, slip≤0.5), to no constraint.

103

(a) True guess/slip=0.1/0.1 (b) True guess/slip=0.2/0.2

(c) True guess/slip=0.3/0.1 (d) True guess/slip=0.3/0.3

Figure 20: Comparison of slip values fitted on datasets generated from different ground

truth guess and slip parameters. In each setting of the ground truth parameters (i.e., in

each subfigure), each learner model is fitted from the most strict parameter constraints

(guess≤0.1, slip≤0.1) to the least strict (guess≤0.5, slip≤0.5), to no constraint.

104

As more and more strict parameter constraints are added, CKM dramatically decreases

its predictive performance while CKM-HI maintains it. Figure 19 and Figure 20 confirm

that my method of imposing constraints using strong Bayesian priors has indeed constrained

the parameters within each specified limit. As shown by the figures, without imposing any

parameter constraints, CKM has consistently fitted higher guess and slip parameters than

CKM-HI (particularly in the clearly implausible regions where guess≥0.5 or slip≥0.5) under

different ground truth settings.

7.3.3 Discussion and Conclusions

In this section, I describe the methods I used to conduct a simulated experiment addressing

the limited predictive improvement of CKM-HI over CKM in the real-world dataset, and

found that the magnitude of the predictive improvement of CKM-HI over CKM increases

after imposing parameter constraints on both models. After adding parameter constraints,

CKM has dramatically decreased the predictive performance while CKM-HI maintains a

similar predictive performance, in the simulated datasets.

These results suggest that the reason that CKM-HI has only a limited predictive improve-

ment over CKM but a dramatic improvement on parameter plausibility on the real-world

dataset is that CKM has fitted higher (less plausible) guess and slip parameters due to the

fluctuations (irregularities) in problem performance caused by integration skills. Meanwhile,

CKM-HI has explicitly specified integration skills to account for the fluctuations in the per-

formance, and thus has a better modeling mechanism with a higher parameter plausibility

without sacrificing predictive performance. High guess or slip parameters decrease the ac-

curacy and reliability of the latent knowledge inference provided by learner models, since

student performance is less attributed to the skills specified in the learner models, but more

attributed to noise. Thus, imposing parameter constraints in the parameter fitting process

is important.

The technique of configuring a strong Bayesian prior, to impose constraints is straight-

forward and effective on simulated experiments, yet it remains questionable as to how to

set priors on the real-world dataset. Although several studies have imposed parameter con-

105

straints (e.g., disallowing negative learning rates) on logistic regression based models [Gong

et al., 2010, Pavlik et al., 2009], adding parameter constraints to Bayesian network based

learner models is still a challenging, less investigated topic. In future work, I will investigate

adding parameter constraints to learner models when training on real-world datasets.

106

8.0 REAL-WORLD ADAPTATION EFFECTIVENESS EVALUATION OF

THE PROPOSED INTEGRATION-LEVEL LEARNER MODEL

In this chapter, I explain the design and results of the Classroom Study 2 for investigating

the adaptation effectiveness of the proposed integration-level learner model (CKM-HI) de-

ployed in an ITS for teaching students program comprehension skills. This chapter aims at

answering my RQ 5, Is learner modeling for integration skills beneficial in terms of improving

student learning when applied in an ITS? In the following sections, I start by introducing the

study design, and then report analyses from several aspects including posttest performance,

time, performance under time constraints and the composition effects.

8.1 METHOD

This study compares the adaptation effectiveness of two versions of the program comprehen-

sion ITS, T3 (introduced in Chapter 6), which are driven by two different learner models: the

proposed model CKM-HI (introduced in Chapter 4) and the traditional learner model CKM

(introduced in Section 7.1). There are three main reasons for choosing CKM over WKT as

the baseline: 1) If I compare CKM-HI and WKT directly, it is not clear whether the benefit

comes from the credit-blame assignment mechanism, or from incorporating the integration

skills; 2) CKM is already one of the most widely used multi-skill knowledge tracing models,

as shown in my literature review (Chapter 2), 3) my prior work [Huang et al., 2017] on a

Java program comprehension dataset has shown that CKM is superior to WKT over a range

of aspects; and 4) a more solid comparison requires a larger scale, more students to reach

enough statistical power, but in my study, only a limited number of students were available.

107

I chose a between-subject design, where students were randomly assigned to one of the

two versions of the ITS. I called the condition using the CKM-driven ITS the control group,

and the one using the CKM-HI driven ITS the experimental group. Borrowing the termi-

nologies from [Vanlehn, 2006], these two versions of ITS differ, but only in the outer-loop

problem selection and the inner-loop hints (as a result of the differences in their learner

models). They share the same set of problems and the same interface. Section 8.1.1 intro-

duces their differences in problem selection, and Section 8.1.2 introduces their differences in

hints. The remaining sections introduce study procedures, learner model parameters and

initialization, practice problems and skill, and the pre/posttest.

8.1.1 Differences in Problem Selection

In both conditions, I employed the same problem selection algorithm. This algorithm is

based on the generic algorithm introduced in Section 6.5, with a modification to its stop-

practice criterion. The main reason for this modification is that the practice time in both

conditions is now controlled to be identical, and the performance on posttests (and pretests)

will be examined to compare the learner models. To achieve this, the algorithm gradually

increases mastery thresholds to select unmastered skills, and switches to random selection

when the maximum threshold is reached1. Since T3 is a new tutor with no prior data or

knowledge to help set up the parameters, any fixed mastery threshold risks giving improper

instructional decisions (the effect of mastery thresholds is discussed in Section 5.1.3.3). Also,

if students in a condition are stopped later and also have higher posttest scores than those

in the other condition, it will not be clear whether the benefits result from simply giving

more practice, which could be achieved by a naive model, or result from the accuracy of

knowledge inference. Moreover, both conditions also receive the same pool of problems

and the same learner model parameters (for the overlapping parameters), so the selection of

practice problems are only affected by the learner model and the student’s own performance.

1The details of this algorithm are explained as follows: For each student, the initial mastery threshold m
is set at 0.90. If there are no unmastered skills using this threshold, then the algorithm raises the mastery
threshold m by one unit d (d=0.01 when m≤0.99 and d=0.001 when m>0.99) and keeps doing so until there
is at least one unmastered skill. If the mastery threshold has been raised to m>0.9999 but there are still no
unmastered skills, then an unattempted problem will be randomly selected. Note that there is a sufficient
number of practice problems and none of the students has been able to finish even half of the problems.

108

Based on the different skill models and knowledge update mechanisms of CKM-HI and

CKM, the two conditions can provide different practice experiences for students. If a student

has already mastered basic skills but still has difficulty with the integration of basic skills,

the CKM-HI condition could use the unmastered integration skill(s) to identify targeted

integration problems, while the CKM group might still use basic skills to search within a

mixed pool of integration problems and basic problems to select problems. In the result

section, I provide validation that these two conditions indeed differ in their selection of

problems.

The CKM-HI condition could not only differentiate integration practice from basic prac-

tice better than the CKM condition could, but on a finer-grained level, could also further

differentiate isolated integration practice from full integration practice, adapting to a stu-

dent’s level. According to the problem selection algorithm in Section 6.5, a student’s stronger

unmastered skill has a higher chance to be selected first and a problem with the highest focus

on the chosen skill will be selected. According to the BN structure and parameters (explained

later in Section 8.1.4) of CKM-HI, the conceptual part of an integration skill will always be

stronger than the full integration skill (since the former is the prequisite of the latter). So

when a student has already mastered basic skills but still doesn’t know how the integration

works, the conceptual part of an integration skill will be more likely to be selected first than

the full integration skill, and the isolated integration problems will be selected (if not yet

attempted) since they have the highest focus on the conceptual parts of integration skills

compared to other integration problems.

8.1.2 Differences in Hints

Both conditions also differ in hint messages for cells labeled with conceptual parts of in-

tegration skills. As introduced in Section 6.3, hint messages are generated based on the

underlying learner model (more specifically, the skill model used by the learner model). The

learner models from two conditions differ in their skill labels for cells requiring conceptual

parts of integration skills: such cells in the CKM group are labeled with basic skills, while

such cells in the CKM-HI group are labeled with the conceptual parts of integration skills.

109

When a problem addressing an integration skill is selected to be presented, CKM is not

aware of the integration skill underlying the problem, and gives hints explaining the basic

skill, while CKM-HI in the experimental condition is aware of the underlying integration

skill and presents hints explaining the conceptual parts of the integration skill. Note that

both conditions differ in their first level hints (second level hints are not provided) but have

the same bottom-out hints (which give the correct answers directly). In order to make the

comparison fair, I made sure that the number of words in both conditions were similar with

at most a one - three word count difference, in both English and Spanish. An example can

be found in Table 15 (Chapter 6).

8.1.3 Procedure

This study was held as an in-class practice session in a computer lab, two weeks after the

topic of lists was lectured on (the topic of for loops had already been lectured on several

weeks before this) and students had already done some exercises on the lists topic. The

session lasted for about 80 minutes. The procedure is as follows:

1. Demo: Firstly, students were given instructions on how to use the system and required

to finish a very simple demo example within the system.

2. Pretest : Secondly, students were required to take a pretest.

3. Practice: After each student had finished the pretest, they were able to access the main

practice link. Here students were given a sequence of program comprehension problems

that were selected by the backend student engine.

4. Posttest : 15 minutes before the class ended, the posttest link was activated, and students

were asked to exit the main practice window and attempt the posttest.

8.1.4 Learner Model Parameters and Initialization

Both learner models are constructed on the step level (since the fine-grained step level perfor-

mance is available from T3), and perform a knowledge update after each problem submission.

Learner models in both conditions have the same guess and slip probabilities (0.1) on step

level items, and the same initial probability (0.5) for all skills (including basic skills and con-

110

ceptual parts of integration skills) for all students. For CKM-HI, the conditional probability

table of each integration skill node Ki&j given the values of its parents Kb
i , K

b
j and Kc

i&j is

set to be {P(T|TTT)=0.999, P(T|TTF)=P(T|TFT)=P(T|FTT)=P(T|TFF)=P(T|FTF)=

P(T|FFT)=P(T|FFF)=0.001}, indicating that a student has a very low probability (0.001)

of knowing an integration skill if he/she doesn’t know any of the prerequisite basic skills or

conceptual parts of integration skills, and a very high probability (0.999), otherwise.

Both learner models use students’ pretest scores to update their knowledge levels. Once

a student attempts the pretest, the performance is used to update the student’s learner

model, so when each student starts his/her main practice, the student could be recommended

problems based on his/her own learner model.

Note that I didn’t use parameters trained from data because there was no past data

on the same type of contents; nor did I use expert knowledge to set the initial knowledge

probabilities in a way that differentiates different skills’ intrinsic difficulties, because it may

introduce bias and unfairness across the conditions.

8.1.5 Practice Problems and Skills

The main practice problems are trace table problems, as introduced in Section 6.1. The

problem and skill focus is on the topic of lists and the topic of for loops. The problems

designed in this study focused on five integration skills: for&for, for&#=, for&if, for&a[i],

a[i]&= (the definitions for these are introduced in Section 4.1 Table 12). Only the CKM-HI

condition is aware of these integration skills. At the same time, there are six basic skills

involved: for, #=, if, a[i], %, // (definitions introduced in Section 4.1 Table 13). Both

conditions are aware of these basic skills. Different variants of problems were created for each

integration skill and each basic skill. They were designed in a way that didn’t introduce new

skills to be learned, but merely slightly changed the degree of overall difficulty. For example,

variants within for&#= could be: getting the average of a sequence of numbers with a for

loop and an addition assignment, or getting the sum of the even numbers with a for loop,

an addition assignment, if and modulus (%), etc. Each integration skill has one isolated

problem (Chapter 6 Figure 12) designed for practicing the conceptual part of the integration

111

skill. Each basic skill has at least two problems to practice on, and each integration skill has

at least five problems to practice on. In total there are 66 problems, with 42 (64%) of the

problems requiring integration skills.

8.1.6 Pretest and Posttest

The adaptation effectiveness of a learner model is measured by the learning effectiveness

(considering both accuracy and speed in solving problems) for students, based on the pretests

and posttests. In addition, the pretest was also designed for initializing the learner models.

I designed six pretest problems each of which tested only one basic skill, and they are also

referred to as basic problems. I didn’t include integration skills in the pretest, due to practical

constraints explained as follows. The TutorShop platform doesn’t have an automatic time

control; it depends on manual activation/deactivation of different study stages (assignments)

by the teacher/administrator, or it automatically activates the next stage once a student

finishes all the problems in the current stage. If students mostly arrive at the same time,

manual activation will be the perfect choice for controlling time on pretest, yet according

to the teachers, many students often arrive late, making manual time control difficult to

accomplish. In addition, due to the implementation time limit and technical complications,

I couldn’t include an automatic time control in the backend service in time for deployment.

So I decided to use the default access design in TutorShop for the pretest and practice stages

and limited the pretests to only basic problems so that students could have more time for the

main practice and the time they needed for the posttest. Meanwhile, learner models could

still at least be aware of students’ initial levels of basic skills based on students’ performance

on basic problems. The posttest included the same kind of basic problems (six of them)

as in the pretest (with changes in the values of the literals), while adding five integration

problems covering all the targeted integration skills. Each posttest problem focused on one

to four targeted integration skills. These five integration problems are also referred to as

integration problems. In each pretest or posttest problem, students were asked to give the

printed output or final values of the key variables, and the trace table space was not provided

in the problem. Figure 21 shows the interface for a pretest or posttest problem.

112

Figure 21: The interface for a pretest/posttest problem.

In terms of grading pretests and posttests, each problem was graded as correct(1) or

incorrect(0). I refer to the proportion correct on the pretest/posttest as pretest/posttest

score. I used the last attempt for each problem, and allowed only the key part matching,

i.e., if the target-skill-related parts were correct, then the answer was graded as correct.

This ignores most of the printing-format-related errors (except in nested loop, where the

printing format might matter). For example, when students were asked to print a sequence

of numbers in one line without spaces, answers that added spaces or commas as separators

between numbers were considered as correct. In pretest and posttest phrases, all students

were shown the problems in the same sequence, and students could only move to the next

problem after submitting the previous problem.

8.1.7 Participants

I conducted the classroom study (Classroom Study 2) in an introductory Python program-

ming course at the Austral University of Chile (Universidad Austral de Chile) in November

of 2017. 80 students submitted at least one problem, and 74 students submitted at least one

problem in each of these: pretest, main practice and posttest. These 74 students were used

for the final analysis. Among the 74 students, 36 were assigned to the control condition and

38 were assigned to the experimental condition. All hints and instructions in the system

were translated into Spanish since the students were Spanish speakers.

113

8.2 RESULTS

This section reports analyses from different aspects to compare the learning effectiveness be-

tween the control and experimental conditions, and thus compare the real-world adaptation

effectiveness of CKM and CKM-HI learner models. To start with, there are three important

aspects to examine, so that reliable conclusions about learner models can be drawn upon.

Firstly, I examined whether both conditions differ in the learning materials provided in

the practice stage. As shown in Figure 22, both conditions indeed differ in the percentile

of different types of problem selected by the learner models. Specifically, more than 50%

of the selected problems were basic problems in the condition group, while more than 50%

of selected problems were integration related problems in the experimental group. This

difference also reflects the difference in hints the students have received, since integration

skill related hints are only provided in integration related problems.

Figure 22: Percentile comparison of different types of problems (basic/isolated-

integration/full-integration problems) between conditions.

Secondly, I examined total practice time and the number of problems in both conditions,

to be sure that any advantage in learning effectiveness only results from the learner models

(which provide different problem sequences and hints), rather than being due to a longer

114

practice time or having a higher number of practice problems. According to my study

design, students in both conditions should have spent the same total time in the practice

stage (since learner models in both conditions kept selecting practice problems from a large

pool of problems, until 15 minutes before the class ended). Indeed, a two-sample t-test

(after confirming approximate normality) comparing the total practice time (minutes) in the

control condition (M=41.0, SD=9.4) and experimental condition (M=44.1, SD=9.7) revealed

no significant difference [t(72)=-1.37, p=0.17] between the conditions. Similarly, a two-

sample t-test (after confirming approximate normality) comparing the number of practice

problems in the control condition (M=12.9, SD=11.8) and experimental condition (M=13.2,

SD=8.7) revealed no significant difference [t(72)=-0.10, p=0.92] between the conditions.

Both conditions have statistically the same total practice time and number of problems.

Finally, I examined whether students in each condition have learned from the system in

general. I only considered the basic problems in the posttest in comparison to the pretest,

because the pretest only covers basic problems. In the control condition, a paired t-test

(after confirming approximate normality) comparing the proportion correct of posttest basic

problems (M=0.90, SD=0.15) to that of the pretest (M=0.82, SD=0.18) for control group

students, revealed a significant difference [t(35)=2.41, p=0.02, d=0.44]; in the experimental

condition, a paired t-test (after confirming approximate normality) comparing the propor-

tion correct of posttest basic problems (M=0.88, SD=0.15) to that of the pretest (M=0.75,

SD=0.21) for experimental group students, revealed a significant difference [t(37)=4.25,

p<0.001, d=0.75]. So students did in fact learn from the system in each condition.

Next, I report the main results, which compare the learning effectiveness of two versions of

ITSs in order to decide whether the CKM (control condition) or the CKM-HI (experimental

condition) learner model has the best adaptation effectiveness.

8.2.1 Posttest Scores

To compare the learning effectiveness between the two educational interventions, one of

the most common ways is to compare posttest scores (controlling for pretest scores), after

students have finished the practice stage. To start with, I examined pretest scores to see

115

whether it was necessary to account for pretest scores when comparing posttest scores. A

two-sample t-test (after confirming approximate normality) revealed a marginally significant

difference [t(72)=1.69, p=0.096, d=0.39] between the control condition (M=0.82, SD=0.18)

and the experimental condition (M=0.75, SD=0.21). Thus, I found it necessary to take into

account pretest scores when comparing posttest scores. The conventional learning gain (i.e.,

the increased scores from pretest to posttest) computation which accounts for pretest scores

is not readily applicable here, since the posttest almost doubled the number of problems by

adding the integration type of problems not included in the pretest.

Based on the above considerations, I have chosen a regression analysis that easily allows

taking into account pretest scores, and in particular, I have chosen generalized linear mixed

models (GLMM) which capture the dependency among data, allowing for the variances

introduced by problems and students. I constructed GLMMs (by R package lme4) to predict

posttest correctness per problem per student, given the continuous overall pretest score (fixed

intercept), the binary condition indicator (fixed intercept), the problem indicator (random

intercept) and the student indicator (random intercept). A positive significant coefficient of

the condition indicator will suggest that students in the experimental group have significantly

higher posttest scores than those in the control group, on average.

Also, in order to have a fine-grained understanding, I further split the integration prob-

lems into easy integration problems (itgt-easy) and hard integration problems (itgt-hard),

depending on whether the proportion correct was higher than 0.35 or not. This resulted in

placing three problems in the easy integration group, and two problems in the hard integra-

tion group. The hard integration group contains the only two nested loop related problems.

Then, I constructed separate GLMM models for the different posttest problem groups.

As shown in Table 22, the coefficients for the condition indicators are all positive yet not

significant (and same coefficient estimates were obtained for models without the random

intercept of problems), with the easy integration group having the condition indicator close

to marginally significant (p=0.13). Figure 23 visually displays the means and confidence in-

tervals of the posttest scores of different problem groups within each condition. The posttest

scores considering different problem groups between the two conditions are statistically the

same, even though the pretest score difference is taken into account.

116

Table 22: Generalized linear mixed models predicting correctness per problem per student

based on the formula: posttest correctness ∼ condition + pretest score + (1|problem) +

(1|student). Likelihood Ratio Test statistics (χ2) and p-values comparing each model with

its counterpart (which removes the targeted fixed effect) are reported. Residuals are (ap-

proximately) normally distributed. For models with a random effect SD=0, results of models

without the random factor are reported. (Sig. level ***:<.001, **:<.01, *:<.05.)

posttest #obs fixed effect random effect

prob. condition(EP) pretest score prob. stu.

grp Est. SE χ2(1) p Est. SE χ2(1) p SD SD

basic 444 0.09 0.39 0.05 0.82 3.42 0.93 14.30 <0.001*** 0.67 0.74

itgt-easy 222 0.88 0.59 2.32 0.13 8.08 1.96 24.3 <0.001*** – 1.68

itgt-hard 148 0.33 0.98 0.11 0.74 6.00 2.82 5.97 0.015* – 3.03

itgt 370 0.91 0.79 1.40 0.24 8.92 2.39 19.1 <0.001*** 0.13 2.66

all 814 0.40 0.48 0.67 0.41 5.34 1.22 17.91 <0.001*** 2.35 1.77

Figure 23: Comparison of the posttest scores over different sets of problems between the

condition (CT) and experimental (EP) groups.

117

Is the effect on posttest scores from conditions dependent on the students’ levels? To

answer this, I added an interaction term between the pretest score and the condition indicator

into each of the above models. Still, the coefficients of the condition indicator from all

models were positive but not significant (p>0.12); the interaction terms (for the experimental

condition) were all negative and not significant (p>0.18). The lack of significant interaction

and the direction of the interaction terms is a bit unexpected, since the CKM-HI model

should be able to help students with high level basic skills but low level integration skills

learn more effectively, while behaving similarly to CKM for students with low level basic

skills. One probable reason is that the pretest with only basic problems fails to reflect

students’ integration skill levels, and thus the pretest score is not representative of students’

knowledge levels.

Overall, there is insufficient evidence showing that the experimental intervention (CKM-

HI learner model) could significantly increase posttest scores compared with the control

intervention (CKM learner model) in the current analysis setting. My following analysis

continues to examine the effects of the experimental intervention from other aspects.

8.2.2 Posttest Time

Although there was no significant difference between posttest scores for the two conditions,

students sometimes differed in the time they spent on posttest problems. In this section, I

report three different ways to analyze this to help draw reliable conclusions.

Firstly, I conducted an initial analysis where I compared the students’ median time over

posttest problems in both conditions. For each student, I calculated the median time over

the set of posttest problems, and then I compared the average value of such median time over

students from two conditions. However, for students who failed to submit all posttest prob-

lems (as shown in Table 23), the median time over the submitted problems will introduce

bias towards the time required on earlier problems. To address this, I conducted an impu-

tation on missing problems: I computed the average value of time within a problem group

(basic/integration), and filled the missing value with the corresponding average according

to its group association. Note that before computing any median or average values of time

118

of one condition group, I always conducted a 90% winsorizing, setting data below the 5th

percentile to the 5th percentile, and data above the 95th percentile to the 95th percentile, if

the distribution fails the Shaipiro-Wilk normality test (α=0.05) .

Table 23: Number of students who submitted each specified posttest problem, numbered 1

to 11, in the control (CT) and experimental (EP) conditions.

total basic problems integration problems

#stu 1 2 3 4 5 6 7 8 9 10 11

CT 36 36 36 36 36 34 34 34 32 29 28 27

EP 38 38 38 38 38 38 38 37 37 37 36 35

Table 24 reports basic descriptive statistics and statistical test results. As shown in the

table, both conditions don’t have statistical difference in the average pretest median time, but

students in the experimental condition spends significantly less median time on posttest basic

problems (p<0.05) and hard integration problems (p<0.01) with around medium effect size

(d≥0.49). Particularly, on posttest hard integration problems, the average median time has

decreased by around 36 seconds (from 115.9 seconds on the condition group to 80.3 seconds

on the experimental group). As a result of the effect from hard integration problems, viewing

integration problems as a whole or all problems as a whole, the reduction in median time

is still significant (p<0.05) with around medium effect size (d≥0.49). Similar conclusions

can be drawn from data without imputation. Figure 24 displays the means and confidence

intervals of median time over problem groups in each condition for better visual inspection.

Secondly, I conducted linear mixed modeling (LMM) which accounts for the individual

time differences (or variances) on problems and students and allows modeling dependency

among the data. The constructed linear mixed models (by R package lme4) predict time

on each submitted posttest problem of a student, based on the following predictors: the

binary condition indicator (fixed intercept), the continuous total time on pretest for this

student (fixed intercept), the problem indicator (random intercept) and the student indicator

(random intercept). I constructed each LMM based on only the data of a targeted set of

119

Table 24: Descriptive statistics and statistical tests based on the median time (sec) for

different sets of problems, between the control (CT) and experimental (EP) conditions. The

distributions are approximately normally distributed. A Welch’s t-test was conducted for the

posttest(all) group since Levene’s test for equal variance failed. (Sig. level **:<.01, *:<.05.)

CT (#obs=36) EP(#obs=38) two-sample t-test

M SD M SD t(72) p Cohen’s d

pretest 71.7 29.5 67.0 25.3 0.73 0.469 –

posttest(basic) 37.9 15.2 31.4 11.2 2.08 0.041* 0.49

posttest(itgt-easy) 93.1 41.6 82.2 35.3 1.21 0.231 –

posttest(itgt-hard) 115.9 52.5 80.3 41.4 3.20 0.002** 0.74

posttest(itgt) 96.5 41.6 77.0 36.4 2.12 0.037* 0.49

posttest(all) 57.1 23.3 46.0 14.7 2.39 0.020* 0.56

Figure 24: Comparison of the median time for different sets of problems, between the control

(CT) and experimental (EP) groups.

120

posttest problems, without the time imputation, and with the winsorizing on pretest total

time and posttest time within each subset of the data. The results are reported in Table 25.

As shown in the Table 25, students in the experimental condition used significantly less

time (p<0.01) on the hard integration problems with an average of 36 seconds fewer than in

the control group. As a result of less time being spent on hard integration problems, viewing

integration problems or all problems as a whole, the reduction in time is still significant

(p<0.05). On basic problems and easy integration problems, students in the experimental

group also spent less time, although the difference was not significant (p>0.1). The same

levels of significance for the condition indicator coefficients were also found for models without

the non-significant pretest total time predictors (e.g., models for itgt-hard and itgt groups).

Table 25: Linear mixed models predicting time spent (sec) on each submitted problem by a

student based on the formula: posttest time ∼ condition+pretest total time+(1|problem)+

(1|student). Likelihood Ratio Test statistics (χ2) and p-values comparing each model with

its counterpart (which removes the targeted fixed effect) are reported. Residuals of all models

are (approximately) normally distributed. (Sig. level ***:<.001, **:<.01, *:<.05, •:<.1.)

posttest #obs fixed effect random effect

prob. condition(EP) pretest total tme prob. stu.

grp Est. SE χ2(1) p Est. SE χ2(1) p SD SD

basic 440 -4.05 2.82 2.04 0.15 0.052 0.007 38.00 <0.001*** 11.3 9.0

itgt-easy 199 -7.38 9.05 0.66 0.42 0.047 0.025 3.50 0.06• 17.6 24.6

itgt-hard 133 -35.74 10.76 10.18 0.0014** -0.009 0.029 0.10 0.75 26.1 22.2

itgt 332 -18.78 8.62 4.58 0.03* 0.025 0.023 1.08 0.30 21.3 27.8

all 772 -10.38 3.95 6.59 0.0103* 0.044 0.011 15.64 <0.001*** 30.7 12.2

A common way to compare time on task in educational research is to compare the time

spent on correct answers. However, as shown in Table 26, the number of students who

succeeded in posttest integration problems was very small, which significantly reduces the

power of any analysis. So, the results here only serve as a supplement to the above time

121

analysis. I conducted similar linear mixed effect modeling (LMM) investigating the effect of

the experimental condition. The linear mixed models (Table 27) predict time on each correct

posttest problem of a student, based on the binary condition indicator (fixed intercept), the

continuous variable of total time on correct pretest problems of this student (fixed intercept),

the problem indicator (random intercept) and the student indicator (random intercept).

Table 26: Number of students who succeeded in each specified posttest problem, numbered

1 to 11, in the control (CT) and experimental (EP) conditions.

total basic problems integration problems

#stu 1 2 3 4 5 6 7 8 9 10 11

CT 36 34 35 32 34 33 26 11 12 14 11 13

EP 38 31 37 35 36 32 30 15 13 16 10 13

Table 27: Linear mixed models predicting time spent (sec) per correct problem by a student

based on the formula: posttest time on correct∼condition+pretest total time on correct+

(1|prob) + (1|stu). LRT statistics (χ2) and p-values comparing each model with its coun-

terpart (which removes the targeted fixed effect) are reported. Residuals of all models are

(approximately) normally distributed. For the model with a random effect SD=0, results of

the model without the random factor is reported. (Sig. level ***:<.001, **:<.01, *:<.05.)

posttest #obs fixed effect random effect

prob. condition(EP) pretest total time on correct prob. stu.

grp Est. SE χ2(1) p Est. SE χ2(1) p SD SD

basic 395 -4.06 2.92 1.92 0.16 0.038 0.007 23.8 <0.001*** 11.0 9.4

itgt-easy 82 1.80 14.13 0.02 0.90 0.039 0.036 1.18 0.28 10.5 32.2

itgt-hard 46 -31.15 15.34 3.93 0.047* 0.013 0.038 0.12 0.73 27.8 –

itgt 128 -9.46 14.02 0.45 0.50 0.042 0.036 1.41 0.24 16.8 36.5

all 523 -4.86 3.06 2.49 0.11 0.039 0.008 22.8 <0.001*** 29.6 7.0

122

According to Table 27, students in the experimental group spent significantly less time

(31 seconds on average) to correctly solve a hard integration problem (p<0.05), and the same

coefficient estimate was obtained in models without the random intercept of students. On

other problem groups (basic/itgt-easy/itgt/all), the differences are not significant. Note that

the datapoints available to construct integration problem related mixed models are limited,

and also the standard errors for the coefficients of the condition indicator are much higher

than those of the mixed models predicting time on a submitted problem (Table 25). For

better visual inspection, Figure 25 displays the means and confidence intervals of median

time on correct answers over problem groups in each condition, and it shows a similar pattern

as in Figure 24, but with larger variances over correct integration problems (particularly on

hard integration problems) than those over submitted integration problems. I leave for future

research the collection of more data to conduct a more reliable analysis.

Figure 25: Comparison of the median time spent on correctly solved problems over different

sets of problems, between the control (CT) and experimental (EP) groups.

The above posttest time related analyses demonstrated that the experimental group

(CKM-HI group) helped students solve problems faster than the condition group, with a

larger effect on integration problems than on basic problems and a consistently significant

(α = 0.05) effect on hard integration problems across the analyses, while reaching the same

123

level of accuracy on each set of problems2. Such a reduction in problem solving time suggests

that the learner model CKM-HI in the experimental group enables students to reach a higher

fluency in skills given the same amount of practice time, compared with the learner model

CKM in the control group.

8.2.3 Posttest Scores with Time Constraints

Inspired by the conclusions drawn from the above posttest scores and posttest time analyses,

this subsection provides a further analysis attempting to jointly analyze posttest scores and

time. To start with, I examined the posttest total time distributions in each condition, as

shown in Figure 26. Specifically, a non-trivial number of students actually spent more than

15 minutes on the posttest in both conditions3. The choice of 15 minutes, in the study

design, was based on an heuristic estimation. If we had given them different time limits, the

students’ scores on the posttest might have been different. Indeed, I examined the posttest

scores with time constraints from 10 minutes to 15 minutes, treating answers as incorrect

for problems submitted after the specific time constraint. I focused my analysis on the easy

integration problems, since they showed the biggest contrast between posttest scores in the

two conditions under time constraints among basic/itgt-easy/itgt-hard/all problem groups.

Figure 27 displays the means and confidence intervals of posttest scores, given a range of

strict time constraints on easy integration problems in each condition.

I conducted generalized linear mixed modeling which takes into account the variances

introduced by problems and students for predicting posttest correctness per problem per

student, given the continuous overall pretest score (fixed intercept), the binary condition in-

dicator (fixed intercept), the problem indicator (random intercept) and the student indicator

(random intercept). The results are reported in Table 28.

As shown in Table 28, the coefficients for the experimental condition are significant

(p<0.05) with 10 and 11 minutes time constraints, and are consistently marginally significant

2In Section 8.2.1, it was found that students in both conditions had statistically the same proportion
correct in basic/itgt-easy/itgt-hard/all posttest problems.

3Although we had deactivated the main practice component in the system 15 minutes before the class
ended, some students insisted on finishing the posttest even though the class had finished, so we waited for
these students.

124

(a) CT (N=36, M=12, SD=4, min=5, max=20) (b) EP (N=38, M=11, SD=3, min=3, max=19)

Figure 26: Posttest total time (minutes) distributions for the control (CT) and experimental

(EP) groups. The red lines indicate median values.

10 11 12 13 14 15 None
posttest with total time limit (minute)

0.0

0.1

0.2

0.3

0.4

0.5

pr
op

or
tio

n
co

rre
ct

 o
n

itg
t-e

as
y

pr
ob

le
m

s
(m

ea
n

wi
th

 9
5%

 C
I)

CT(36)
EP(38)

Figure 27: Comparison of posttest scores on easy integration problems with different time

constraints between the control (CT) and experimental (EP) conditions.

125

Table 28: Generalized linear mixed models predicting posttest correctness per problem per

student within easy integration problems (itgt-easy) with time constraints, based on the for-

mula: posttest correctness ∼ condition + pretest score + (1|problem) + (1|student). Like-

lihood Ratio Test statistics (χ2) and p-values comparing each model with its counterpart

(which removes the targeted fixed effect) are reported. Residuals of all models are (approx-

imately) normally distributed. (Sig. level ***:<.001, **:<.01, *:<.05, •:<.1.)

time #obs. fixed effect random effect

constr. condition(EP) pretest score prob. stu.

Est. SE χ2(1) p Est. SE χ2(1) p SD SD

10 min 222 1.51 0.67 5.70 0.017* 4.26 1.83 6.43 0.011* 0.80 1.78

11 min 222 1.27 0.65 4.25 0.039* 5.42 1.88 10.52 0.0012** 0.59 1.80

12 min 222 1.29 0.76 3.11 0.078• 6.35 2.20 10.68 0.0011** 0.37 2.27

13 min 222 1.06 0.68 2.63 0.105 6.47 2.03 13.36 <0.001*** 0.22 2.00

14 min 222 1.16 0.64 3.54 0.060• 6.49 1.94 14.84 <0.001*** 0.15 1.85

15 min 222 1.14 0.65 3.38 0.066• 7.15 2.01 17.55 <0.001*** 0.18 1.86

(p<0.11) with 12 to 15 minutes time constraints. I repeated the above analysis for the hard

integration problems and basic problems, and the coefficients for the experimental condition

were not significant, although they were all positive. Note that the non-significant coefficients

on the hard integration problems were not due to positioning them in the end of quizzes,

because the easy integration problems were evenly distributed in the second half of the

posttest, being interwoven with hard integration problems. This set of results shows that

given the same limited total time on task after practicing, students in the experimental

condition have a significantly higher proportion correct on the easy integration problems.

The effect is larger when the time constraint is more strict.

126

8.2.4 The Composition Effect (CE)

In this section, I revisit the issue of the composition effect, thanks to new data from this

study, and also provide a novel way to evaluate learning effectiveness, by examining the

strength of the composition effect in the posttest.

8.2.4.1 Existence of CEs on the Pretest and Practice Problems

In Chapter 3, the DFA classroom study (Classroom Study 1) with students from an intro-

ductory Python course in Spring 2017 provided evidence of the existence of composition

effects and integration skills. Here, the intervention study with a program comprehension

ITS was run in the same introductory Python course with a new population of students and

different teachers than in Fall 2017. This new set of data enabled me to again investigate the

composition effect: Do the composition effects of the identified integration skills still exist

among new students? Also, do the two hypothesized new integration skills identified by the

integration difficulty factors indeed show composition effects? To answer these questions, I

gathered pretest and practice problems from both groups, with a total of 74 students. Fol-

lowing the methods used in Chapter 3 to make the analysis as focused as possible, I picked

practice problems that focused on only one integration skill without basic skills, not as com-

ponents of the integration skill; yet for some cases, where an integration skill always occurred

with basic skills but not as components of it, I picked corresponding integration problems

with a minimum of extra basic skills. In the pretest, there were only basic problems, so they

naturally were used for estimating the basic skill levels (together with other basic problems

from the practice stage). I removed isolated integration problems from this analysis, because

the definition of integration skills corresponds to the full version, and isolated integration

problems, as observed from the data, are mostly much easier than full integration problems,

although with some exceptions (e.g., on for&#= they are harder than the full counterparts).

Table 29 shows the results with the column of pM-pI denoting the existence and strength of

the composition effect. Note that for corresponds to a version of for loop with the start and

end values explicitly specified, e.g., range(1, 3), range(2, k); forv2
4 It corresponds to a much

4The subscript v2 in for denotes a meaning different from that in Chapter 3.

127

harder version (observed from the data) with only the end value explicitly specified and it

only occurs in nested loop integration problems, e.g., range(3), range(k). Also, the joint

probability pM in the case of for&forv2 equates to the smaller probability of being correct

between the two for instances, based on the assumption that different instantiations of the

same basic skill should be considered as highly dependent (same as Chapter 3).

Table 29: Examining the composition effect on pretest and practice problems from both

conditions (74 students). For each integration skill under investigation, pKx denotes the

proportion correct among students on the corresponding basic problem; pM denotes the

estimated proportion correct of the sequential problem computed by multiplying pKxs (or

picking the smallest in the cases of for&forv2); pI denotes the proportion correct on the

integration problem. pM-pI denotes the strength of a composition effect.

itgt. skill K1 K2 K3 pK1 pK2 pK3 pM pI pM-pI

a[i]&= a[i] = #= 0.81 1.00 0.93 0.75 0.28 0.47

for&forv2 for forv2 0.70 0.51 0.51 0.05 0.46

for&a[i] for a[i] 0.70 0.81 0.57 0.13 0.43

for&#= for #= 0.70 0.93 0.65 0.49 0.16

for&if for if a[i] 0.70 0.80 0.81 0.45 0.35 0.10

avg – – – – – – 0.59 0.26 0.32

Table 29 provides consistent results as the ones obtained from Table 4 in Chapter 35.

In particular, the new hypothesized integration skill a[i]&= identified by the state update

integration difficulty factor and generalized from for&a[i] discovered in Chapter 3 has a

very high pM-pI (0.47), suggesting a strong composition effect. The newly hypothesized

integration skill for&#= extended from for&x=x+i also has a high pM-pI (0.16) suggesting

5Note that the Wilcoxon signed-rank test or paired t-tests used for each hypothesized integration skill in
Table 4 in Chapter 3 is not readily applicable here, because different problems used for the calculation had
different pools of students, due to adaptive practice (except for the pretest, which all students attempted),
and some problems used for calculating pI had only a small number of students. More complex statistical
analyses could be considered (e.g., mixed effect modeling), and I leave this for future research. Also, I used
pS-pI rather than pM-pI in Table 4 to compare with the composition effect strength pM-pI here, because
pS-pI was a more accurate estimation of the composition effect in Table 4 for Classroom Study 2.

128

the existence of the composition effect, consistent with the significant composition effect for

for&+= in Table 4. Meanwhile, although for&a[i] received mixed results in terms of the

significance of the composition effect in Table 4, the data here clearly shows a very high

pM-pI (0.43), suggesting a strong composition effect. Regarding for&forv2, the strength of

the composition effect is consistent and even larger than that in Table 46 (0.46 vs. 0.38). Re-

garding for&if, the strength of the composition effect is similar to the one which is significant

in Table 4 (0.10 vs. 0.18).

To get an idea of the overall existence of the composition effect in the targeted topics

(for and lists), I also ran nonparametric tests on the five values of pM-pI. A one-sided exact

Wilcoxon signed-rank test and a one-sided sign test (binomial test) both show that the

overall composition effect is significant (p=0.03) with a large effect size (1). Admittedly,

the sample size here is quite small, yet the tests provides some additional information to

interpret the results.

Overall, this section of analyses provides additional support for the existence of the

composition effects and integration skills for the overlapping ones investigated in Chapter 3,

and provides evidence for the generalizability of composition effects to new students and new

contexts (problems). It also shows a successful example of using the state update integration

difficulty factor to identify new integration skills (e.g., a[i]&=, for&#=), providing additional

support for the generalizability of the difficulty factor.

8.2.4.2 Comparison of CEs on Posttest Problems

The T3 tutor is designed for teaching both basic and integration skills in program compre-

hension under both conditions. As shown in Table 23, students from both conditions have

reached a high level of basic skills, as suggested by the high average score on the posttest

basic problems (≥0.88) in each condition, and they are not statistically different. Thus,

a lower composition effect (pM-pI) should indicate a higher level of integration skills, and

overall, better learning by students. This serves as a new method to compare the learning

effectiveness of the two conditions grounded on different learner models.

6Although forv2 has a meaning here different from that in Table 4, in both cases, for&forv2 denotes a
nested loop where the outer loop iteration variable appears as the argument of the range function of the
inner loop.

129

Similar to the method used above (Section 8.2.4.1), the main idea is to compare per-

formance differences between matching non-integration and integration problems. Here,

posttest basic problems are used for getting individual basic skill knowledge estimates, and

ultimately getting the estimated proportion correct on the sequential problem (pM). Posttest

integration problems are used as the units to examine composition effects. Different from

Section 8.2.4.1 where each integration problem only involves one integration skill, a posttest

integration problem here can involve multiple integration skills (and also basic skills that are

not components of the integration skills), so the composition effect here could be an overall

effect from multiple integration skills in complex integration contexts.

Table 30: Comparing composition effects on posttest problems between the control group

(CT) with 36 students and the experimental group (EP) with 38 students. For each prob-

lem, pKx denotes the proportion correct on the corresponding basic problem; pM denotes

the estimated proportion correct on the sequential problem by multiplying pKxs; pI de-

notes the proportion correct on the integration problem. pM-pI denotes the strength of the

composition effect.

id itgt. skill(s) K1,K2, pK1 pK2 (pK3 pK4) pM pI pM-pI

(K3,K4) CT EP CT EP CT EP CT EP

8 for&a[i],a[i]&= for,a[i],= .94 .92 1 .95 .84 1 .87 .80 .31 .39 .56 .40

9 for&for,for&a[i] for,a[i],#=,= .94 .92 .97 1 .95 .84 .97 1 .84 .78 .33 .34 .51 .43

a[i]&=,for&#=

10 for&if for,if,a[i] .94 .89 .92 .95 .92.84 .77 .73 .39 .42 .38 .31

11 for&for for,a[i] .94 .92 .95 .84 .87 .80 .31 .26 .56 .53

12 a[i]&=,a[i]&a[i] for,a[i],//,= .94 .92 .94 1 .95 .84 .82 1 .82 .65 .36 .34 .46 .31

Table 30 reports the analysis of the composition effect. Figure 28 gives a graphical

summary. As shown by the table and the figure, the experimental group consistently has

smaller values of pM-pI, compared to the control group, suggesting smaller composition ef-

fects over the set of posttest integration problems. Further, a one-sided exact Wilcoxon

130

Figure 28: Comparison of composition effects (pM-pI) on posttest problems, between the

control (CT) and experimental (EP) groups.

signed-rank test and a one-sided sign test (binomial test) both show that the reduction of

composition effects from control group to experimental group is significant (p=0.03) with

a large effect size (1). The small sample size here requires caution to interpret the results.

Another caution when interpreting these results is that the initial composition effects before

practicing in the system is unknown, since the pretest doesn’t include integration problems

(due to practical constraints, as explained in Section 8.1.6). However, student performance

on basic problems might positively correlate with that on integration problems. According

to Table 22, students’ pretest scores significantly positively correlate with the performance

on easy/hard/all integration problems (controlled for other variables). As analyzed in Sec-

tion 8.2.1, the control condition had marginally significantly higher pretest scores (p=0.096),

so it is possible that students in the control condition also had (slightly) higher integration

skill levels, which could lead to similar initial composition effects as the experimental group.

However, a rigorous, thorough investigation is needed for drawing a reliable conclusion. So

far, the results provide promising initial evidence that the experimental group reduces the

composition effect to a larger extent than the control group.

131

8.3 DISCUSSION AND CONCLUSIONS

Combining the above analyses, a clear advantage of the experimental group intervention

with the integration-level learner model CKM-HI over the control group intervention with the

basic-level learner model CKM, has been demonstrated: without strict total time constraints

on the posttest, students in the CKM-HI group were significantly faster on posttest difficult

integration problems, reaching the same level of accuracy; with a range of strict total time

constraints on posttest, students in the CKM-HI group were significantly more accurate

on posttest easy integration problems. In addition, an analysis of composition effects on

posttest problems shows that the composition effects are much weaker in students in the

CKM-HI group compared to those in the CKM group.

There are several aspects that could have hindered revealing a larger effect for the CKM-

HI experimental condition. Firstly, the trace table working space was not provided in the

posttest, and during this study we didn’t find students using a paper or editors on the com-

puter to help them make drafts to solve the posttest problems. Students had to mentally

trace the programs and give the final answers. As a result, even if students in the experimen-

tal condition had conceptually understood how integration works and could solve integration

problems using trace tables in the practice stage, they might still lack enough fluency to be

able to solve problems mentally without the assistance of the trace tables. This might ac-

count for them having a similar level of accuracy as the control group. To address this, a

future study should include matching conditions where either the trace tables are removed

from the practice problems so that students would be trained to trace programs mentally;

or an optional trace table working space should be included in the posttest problems.

Secondly, the total practice time for both conditions was still quite limited (with a

mean of 41 minutes in the control condition and a mean of 44 minutes in the experimental

condition). With a longer span study, it’s highly likely that the experimental intervention

(with CKM-HI learner model) could have a larger impact on student learning compared to

the control condition, e.g., enabling higher accuracy on the hard integration problems and

shortening the time to correctly solve easy integration problems, based on the trend found

in the current study. I leave a longer span study for further investigation to future research.

132

Finally, the lack of integration problems in the pretest (due to study time constraints)

limited conducting a more accurate and deeper learning-gain analysis, and failed to inform

the CKM-HI learner model the initial levels of integration skills of students. A future study

should include integration problems in the pretest (and also lengthen the total study time),

so that the CKM-HI learner model could utilize its advantage to help students with high

basic skill levels to focus on practicing their weak(est) integration skills.

133

9.0 CONCLUSIONS, DISCUSSION AND FUTURE WORK

In this chapter, I first summarize the conclusions from all studies and analyses, then dis-

cuss the implications, limitations and future work. Finally, I state the contributions of my

dissertation.

9.1 CONCLUSIONS

In this dissertation, I have proposed a learner modeling approach for integration skills and

have systematically demonstrated its grounding and value through a set of empirical class-

room studies and data-driven analytical studies.

To provide solid grounds and generalizable insights for integration skill modeling, I con-

ducted a classroom study following a Difficulty Factors Assessment (DFA) approach. The

data consistently showed that students have significant difficulties in integrating the basic

skills found in common basic programming patterns, even if they have already learned these

basic skills by following a standard curriculum. A drill-down integration error analysis and

correlation analysis investigating these integration skills further revealed that students lacked

these skills due to wrong/missing conceptual understanding about how components work to-

gether or due to procedural cognitive load during integration. Students exhibited individual

differences in integration skills due to both integration difficulty factors and topics (main

programming constructs). (Chapter 3)

I have developed a general algorithm called Automated Potential Integration Skill iden-

tification (APIS), based on conceptual integration difficulty factors and the aspects for de-

scribing (potential) integration skills. In the context of my dissertation, I obtained these

134

inputs through the aforementioned DFA study. I also introduced a new type of knowledge

graph, an integration graph, which shows how component skills progressively integrate and

form integration skills. Based on this skill model, I constructed an integration-level learner

model, CKM-HI, using a Bayesian network, which incorporates integration skills in a hierar-

chical structure. It learns parameters from student data, and gives dynamic, individualized

knowledge estimates when deployed in a tutoring system. (Chapter 4)

Being aware of the challenges in evaluating such multi-skill practice learner models, I

proposed a multifaceted evaluation framework for learner models (Chapter 5). Under this

framework, I conducted data-driven evaluations based on a real-world Python program com-

prehension dataset, and demonstrated that my proposed learner model, CKM-HI, is superior

to two popular multiple-skill knowledge tracing models that do not incorporate integration

skills, WKT and CKM. I considered a range of aspects: predictive performance, parame-

ter plausibility, and expected instructional effectiveness. Further, I conducted a simulated

study and discovered that larger improvements in predictive performance can take place if

parameter constraints are imposed on the noise parameters. (Chapter 7)

As the last important aspect in my evaluation framework, I designed and implemented

a Python program comprehension ITS (T3), to evaluate the real-world impact of CKM-

HI on student learning. T3 has assistance-enhanced trace tables to address the integration

difficulties I discovered in my earlier composition effect studies (Chapter 6). Although having

limited time on practice during the classroom study, students in the CKM-HI intervention

group were significantly faster on difficult posttest integration problems than the CKM group,

while reaching the same level of accuracy, without strict time constraints on the posttest.

When there was a range of strict time constraints on the posttest, students in the CKM-

HI group were significantly more accurate on easy posttest integration problems than the

CKM group. Also, composition effects on posttest problems were weaker in students in the

CKM-HI group than with those in the CKM group. Additionally, this study also provides

more evidence for the existence and generalizability of composition effects and integration

skills to a new population of students and new problems. This classroom study evaluation,

together with the data-driven evaluation give a comprehensive picture of the value of learner

modeling for integration skills. (Chapter 8)

135

9.2 DISCUSSION, LIMITATIONS AND FUTURE WORK

The implications, limitations and future work of my dissertation are outlined as follows.

Firstly, I have only investigated learner modeling for integration skills in one Python

programming dataset on selected basic topics. To reliably conclude the effectiveness of the

idea and approach for integration-level learner modeling, broader contexts in terms of topics,

programming languages, and domains should be examined.

To consider broader contexts, my approach of building a Bayesian network based on a skill

model with integration skills is readily applicable to other contexts, yet building the skill

model in new contexts remains a challenge. The general automated potential integration

skill identification algorithm (APIS) I created could be considered to construct the item-

to-skill mapping. APIS is based on conceptual integration difficulty factors and aspects for

describing integration skills. These two inputs can be obtained by directly consulting domain

experts, or by conducting DFA studies. In less understood contexts, DFA studies might be

needed to help reduce expert bias or expert blind spots (as compared with directly consulting

domain experts), while maintaining the interpretability of the resulting skill model, and

enabling generalizable insights (compared with machine learning approaches). However, a

considerable amount of time is required to design, deploy a DFA study and analyze its data.

On the other hand, machine learning approaches could be explored, when there is a

sufficient amount of student performance data available. They eliminate the time required by

DFA studies, at the potential cost of losing interpretability. Specifically, data from multiple

MOOCs or courses with a large number and high variety of problems and students could be

good inputs for developing such approaches. Also, parameter constraint optimization might

be necessary to address the challenge of having a flexible parameter space in the context of

multi-skill practice problems. My preliminary approach [Huang et al., 2016] demonstrated

an initial step in this direction. More advanced data-driven Bayesian network structure

learning or causal discovery methods could be explored here, inspired by successful methods

for prerequisite structure discovery [Desmarais et al., 2006, Chen et al., 2016]. To increase the

interpretability of such machine learning approaches, direct expert knowledge on potential

integration difficulty factors and aspects for describing integration skills could be applied (as

136

in the APIS algorithm) to narrow down the search space, or could be utilized to conduct a

post-hoc analysis on discovered skill models. Concerning the complexity and the potentially

high number of integration skills in domains like programming, direct expert knowledge may

potentially be considered to be approximated by crowdsourced knowledge from experienced

programmers.

Another limitation is that my dissertation hasn’t thoroughly investigated the gener-

alization of integration skills, integration difficulty factors, nor the proper representation

abstraction level of integration skills. Due to an insufficient number of problems and the

fixed order imposed in my DFA study, I didn’t examine the correlation between the lev-

els of integration skills of related topics under the same integration difficulty factor (e.g.,

for&for with while&while) or different integration difficulty factors (e.g., for&x=x+i with

while&x=x+i). Thus it is not clear 1) whether the level of an integration skill in one topic

can be generalizable to its counterpart in another topic1, and further, 2) whether the ac-

quisition (learning) of one integration skill can be transferred to the acquisition (learning)

of other integration skills. An additional limitation is that I have only investigated three

topics in Python program comprehension, and used a subset of problems across the three

topics as an approximation of new problems in Section 3.2.3. It is not clear whether the

identified integration difficulty factors and aspects for describing integration skills are readily

applicable to new topics.

The limited exploration on the generalization of integration skills and integration dif-

ficulty factors also results in insufficient grounds to represent integration skills on the in-

tegration difficulty factor level. Since there is no evidence supporting that the integration

difficulty or learning from an integration skill in one topic can be generalized to its counter-

part in another topic under the same integration difficulty factor, representing integration

skills on integration difficulty factor level risks losing a more varied practice for students,

which is necessary for them to reach mastery in a set of topics. However, the answers to

both the generalization and representation questions may depend on the instruction, e.g.,

whether the teacher has introduced an integration skill in a more abstract way or not, as

1On a group level, integration skills on a set of topics can be generalized to other integration skills in the
same set of topics under the same integration difficulty factor, as shown by Table 9.

137

well as the level of students. For example, higher level students may find it easier to transfer

from one integration skill to another with similar constructs. Thus, representing integration

skills on a more abstract level may be sufficient. Data-driven evaluations (e.g., applying

the framework in Section 5) comparing a set of learner models varying the integration skill

representation levels could shed light on selecting the proper representation level; DFA stud-

ies with more problems and topics as well as intervention studies teaching integration skills

could help provide solid answers to these two questions.

My proposed integration-level learner model incorporates integration skills in a hierar-

chical structure, based on a Bayesian network, but it is not clear whether and how much the

benefit over baseline models without integration skills comes from incorporating integration

skills, or from the hierarchical structure, or from both. Although the hierarchical structure

allows knowledge inference to propagate across nodes, which can improve the accuracy of

inference, it increases the overall complexity of the model and increases the difficulty of

introducing learning dynamics. On the other hand, flat structures assuming independence

among skills allow for easy incorporation of learning dynamics, but sacrifice knowledge infer-

ence propagation across skills. Such flat-structured integration-level learner models should

be added into the comparison as an immediate next step of my dissertation.

One interesting direction is to extend the Bayesian network of the integration-level learner

model into a decision network (equivalently, an inference diagram). A decision network would

provide a mechanism to make adaptive tutorial decisions based on the network’s beliefs of a

student’s anticipated states (e.g., knowledge, focus of attention) after a tutorial action, and

multiple competing objectives [Howard, 1983, Murray, 2005].

My dissertation also provides some implications for teaching integration skills. The ex-

istence and nature of conceptual errors that occurred during integration but not sequential

applications of basic skills suggest that additional, new skills arise when basic skills inter-

weave together. Even though students followed the standard curriculum and knew how basic

skills work, a significant number of the students still failed in integration. These results sug-

gest that the acquisition of integration skills may not be achieved by merely teaching basic

skills. Including explicit conceptual explanations and the practice of integration skills could

be beneficial for curriculum/course design and ITSs. Prior work has provided strong ev-

138

idence of the effectiveness of teaching integration skills in the algebra domain [Heffernan

and Koedinger, 1997], and it would be interesting to conduct further studies to see whether

the same effect holds true in the programming domain following initial attempts [Proulx,

2000, Muller et al., 2007, de Raadt, 2008, Lane and VanLehn, 2005].

Another future direction would be to improve the instructional methods in the program

comprehension ITS (T3) and explore the effect of different instructional methods on learning

integration skills. Program tracing, although helpful to program comprehension, doesn’t

equate to program comprehension [Lister et al., 2009]. Many participants in my studies have

commented that it would be even more beneficial to let them know or reflect on what the

goal of a program is. This goal abstraction process would encourage a deeper understanding

of integration skills, enabling a more accurate and faster application of them as well as

transferring them to new contexts. In addition, some participants suggested that they would

like to see concrete, straightforward examples given while T3 is explaining the conceptual

parts of skills, indicating the potential use of program examples for teaching integration skills.

Moreover, different kinds of integration skills may require different instructional methods.

To investigate this issue, intervention studies could be conducted to compare the reduction of

the composition effect (or the increase of integration skill levels) under the same instructional

methods for different (kinds of) integration skills, and under different instructional methods

for the same (kind of) integration skill, controlling for other factors. My current Classroom

Study 2 (Section 8.2.4.2) is insufficient to investigate this issue, since the posttest problem

composition effects have been affected by other factors (e.g., practice opportunities, whether

the trace table space was provided or not, and the number of integration skills).

A fruitful application of the integration-level skill model, particularly the integration

graph, would be to guide the evaluation and construction of learning content. As shown in

Chapter 3, students following a standard programming course curriculum still exhibit signif-

icant integration difficulties, even after lectures and assignments about each topic, indicating

the need for improving learning materials. An integration-level skill model sheds light on the

design of courses and ITSs from several aspects: 1) it could be beneficial or even necessary

to explicitly teach the conceptual parts of integration skills, 2) sufficient diverse exercises

following the skill model might be needed for reaching fluency in basic and integration skills

139

within each topic and across topics, and 3) a progressive exercise design starting from sim-

ple integration to more complex integration, mixing multiple integration skills or involving

new (basic) skills following the integration graph might be needed for helping students to

develop integration skills to a suitable difficulty level. Meanwhile, datasets collected from

such courses or ITSs would also help to validate or improve integration-level skill models.

Another fruitful future direction would be to understand, improve and enrich the multi-

faceted learner model evaluation framework, such as investigating how parameter plausibil-

ity relates to expected instructional effectiveness and whether it matters in the real world,

addressing the problem of having insufficient “mastery” data when computing expected in-

structional effectiveness in a principled probabilistic way. Moreover, more dimensions or

metrics could be considered to enhance this framework in other ways, such as the use of the

Brier score [Pelánek, 2015], parameter consistency (used in my prior work) [Huang et al.,

2015] and having a predictive similarity policy [Rollinson and Brunskill, 2015].

A natural extension to my dissertation would be to investigate learner modeling for

program construction. Here, skill modeling is more challenging, since students can use

different skills to write a program that achieves the same functionality. Also, it is not

straightforward how to evaluate the correctness of applying a skill, and it is not clear what

an assessment unit (or a step) is in the forward-backward process of developing a program.

However, since program comprehension and construction share similar conceptual knowledge,

the integration difficulties/skills identified here and the learner model constructed here might

be helpful to program construction. If learner models for program construction are built,

they could be combined with automated hint generation [Rivers and Koedinger, 2017], and

potentially enhance the overall effectiveness of programming ITSs.

9.3 CONTRIBUTIONS

The contributions of my dissertation work are summarized as follows.

Firstly, my dissertation brings a new perspective to the construction of learner models—

skill integration—which raises the cognitive level that ITSs can diagnose and act on. I created

140

a new type of knowledge graph that I call an integration graph, which shows how basic

component skills progressively integrate and form new skills that are essential to describing

domain expertise. I also created a new learner model, CKM-HI, that incorporates integration

skills as explicit nodes in a hierarchical structure in a Bayesian network. Although numerous

cognitive science research and educational practices have repeatedly claimed the existence of

integration skills in expertise and the importance of practicing integration skills [Chase and

Simon, 1973, De Groot, 1978, Egan and Schwartz, 1979, Larkin et al., 1980, Soloway and

Ehrlich, 1984, Koedinger and Anderson, 1990], very little effort has been made to incorporate

the skill integration viewpoint into learner modeling in modern ITSs2. If integration-level

learner models are built and are used to inform the content design and adaptation decision

making in ITSs, ITSs could have a greater chance of preparing students to be robust learners

who have a deeper, conceptual understanding or higher fluency in solving complex tasks in

varied contexts. My classroom study described in Chapter 8 provides evidence for the positive

impact of incorporating integration skills into an ITS on learning.

Secondly, my dissertation research provides a multifaceted evaluation framework and

showcases a comprehensive evaluation example which contributes to several communities.

For the educational data mining (EDM) community, my framework provides metrics for

parameter plausibility and expected instructional effectiveness. It also alerts the community

to the limitations of predictive performance and thus demonstrates the value of looking

at learner models from new aspects: it’s important for learner models to be predictive,

but it’s at least equally important for them to be plausible, interpretable, and useful for

instructional decisions, in order to reach the ultimate goal of improving student learning. In

addition, a multifaceted perspective (such as the joint examination of parameter plausibility

and predictive performance in Chapter 7) also helps to explain why a certain model is not

predicting as it is expected to, and provide insights to improve the model or raise caution

when applying the model. Moreover, I have shown how a real-world classroom study can

reveal a learner model’s actual effect on student learning, the ultimate goal of ITSs, which

adds to the growing literature by advocates for close-the-loop studies in EDM. For the ITS,

2Prior work which has incorporated the skill integration viewpoint into learner modeling used heuristic
approaches [Brusilovsky, 1992, Weber, 1996a, Kumar, 2006, Mathews, 2006, Chrysafiadi and Virvou, 2013],
and my work is the first to apply a formal probabilistic approach.

141

AIED and UMAP community, my framework provides multiple data-driven metrics for the

separate evaluation of the learner modeling component, as a supplement to a holistic system-

level evaluation.

Thirdly, my dissertation work is also the first work to apply an empirical cognitive task

analysis method (specifically, a DFA) to computer science education research to systemat-

ically study integration skills in program comprehension. One of the biggest challenges in

programming education is the lack of unified, clear, fine-grained skill definitions, such as the

those defined in the math domain. The DFA method from cognitive science research could

be a helpful way to develop interpretable, generalizable techniques, effective instructional

policies and also better learning materials. It provides a way to unravel the underlying skills

and difficulty factors that are contained in integration skills within program comprehension.

Hopefully, my dissertation work can inspire more efforts to applying empirical methods to

collect and analyze student data, in order to understand the skills and processes underlying

programming tasks.

Fourthly, my dissertation work is also among the first steps to bringing recent ITSs

infrastructure and techniques into programming education. I built a program comprehension

tutor (T3) with a common ITS infrastructure [Ritter et al., 2007, Vanlehn et al., 2005],

based on the learning-by-doing philosophy. It contains both knowledge tracing (achieved

by a probabilistic learner model) and model tracing (achieved by developing an underlying

solution graph), with both inner loop (e.g., hints) and outer loop (e.g., problem selection)

adaptation techniques that are driven by a learner model. The learning gain observed in

both conditions and the highly positive feedback from students and teachers in Classroom

Study 2 (Chapter 8) have indicated the promise of such a programming ITS. On top of this,

such a benefit is not at the price of a high engineering effort, thanks to existing, mature ITSs

infrastructures CTAT3 [Aleven et al., 2006, Koedinger et al., 2003] and automated methods

to analyze programs. Hopefully, my dissertation can spark more endeavors in this direction.

Last but not least, my dissertation work contributes an example to EDM and ITS re-

search of taking an interdisciplinary approach (combining analytic methods from computer

science and empirical methods from cognitive science) to tackle a topic which is ultimately

3https://github.com/CMUCTAT/CTAT/wiki

142

aimed at the practical value of improving student learning. A cognitive science approach (a

DFA) has been used to provide the foundation for building a machine learning model and a

real-world ITS; the machine learning model and real-world ITS have been constructed which

could hopefully enable scalable ways to expand research efforts in this field and beyond.

As shown by my dissertation, cognitive science methods can be of benefit when machine

learning methods for skill discovery/refinement fall short. Machine learning methods for

skill discovery/refinement [Barnes, 2005, Winters et al., 2005, Cen et al., 2006, Desmarais,

2012, Lan et al., 2014, González-Brenes, 2015] have only shown effectiveness on data where

each assessment unit maps to one to three skills, yet a program comprehension problem

or a complex integration problem may involve a larger number of skills mapping to each

assessment unit, raising significant challenges for such methods. On the other hand, an em-

pirical method from cognitive science research, the DFA, which utilizes experts’ hypotheses

(knowledge), provides a systematic way to generate and analyze data, enabling a much more

reliable analysis to draw insights as the foundation for building machine learning models.

143

APPENDIX

INTEGRATION ERROR ANALYSIS

144

Table 31: The integration error analysis for the nested loop integration type, among students

who succeeded in the sequential problem but failed in the matching integration problem.

(Sig. level ***:<.001, **:<.01, *:<.05, • :<.1; effect size ++ :>.3, + :>.1).

Hypothesized integration skills (f:for, w:while) w
&

w
v
2

f&
f v

2

w
&

w

f&
f

w
&

f

Topic (F:For, W:While, L:List) W F W F W

Problem set id 8 3 6 1 11

Composition effect (pS-pI) sig. level and effect size ∗∗∗
++

∗∗∗
++

∗∗∗
++

∗∗∗
+

•
+

#stu. with seq. prob. correct but itgt. prob. wrong 24 26 20 26 8

Nested loop conceptual errors 91% 58% 65% 58% 76%

When outer loop iter. var. is used in inner loop condition,

missed the middle repeated numbers 33% 31%

used outer loop bound as the bound for all inner loops 25% 4%

Treated inner(outer) loop as outer(inner) loop 4% 27% 13%

Only did one outer iter.(with all inner iter.) and it was correct 33% 19% 65% 31% 63%

Nonconceptual errors (conceptually knew how itgt. works) 0% 4% 0% 12% 13%

Made errors on basic skills due to cognitive load

Did first two outer iter. correctly, added 1 more outer iter. 4% 13%

Added one more inner iter. in the last outer iter. 4%

Did inertial thinking slip by printing outer not inner iter. var. 8%

State update conceptual errors 0% 0% 0% 0% 0%

Uncategorized errors 9% 38% 35% 30% 11%

Made errors on basic skills 4%

Empty 15% 4%

Other errors 9% 23% 35% 22% 11%

145

Table 32: The integration error analysis for the state update integration type, among students

who succeeded in the sequential problem but failed in the matching integration problem. (Sig.

level ***:<.001, **:<.01, *:<.05, • :<.1; effect size ++ :>.3, + :>.1).

Hypothesized integration skills (f:for, w:while) f&
w

v
3
,

a[
i]
v
4
&

a[
i]
v
5

f&
a[

i]
v
2

f&
x
=

x
+

4

f&
x
=

x
+

i

f&
a 1

=
a 1

+
a 2

f&
a[

i]
v
3

Topic (F:For, W:While, L:List) L L F F L L

Problem set id 16 17 4 2 12 15

Composition effect (pS-pI) sig. level and effect size ∗∗∗
++

∗∗∗
+

∗∗∗
+

∗
+

•
+

#integration errors 22 16 16 11 8 11

State update conceptual errors 23% 44% 25% 64% 43% 45%

Failed to update both list elem. in a swap pattern 23%

Used initial list (which should be updated) in all iter. 44% 43% 45%

Used initial value of the sum variable in all iter. 25% 64%

Nested loop conceptual errors 23% 0% 0% 0% 0% 0%

Only did 1st outer iter. and it was correct 23% 0% 0% 0% 0%

Nonconceptual errors(conceptually knew how itgt. works) 0% 0% 13% 9% 14% 0%

Made errors on basic skills due to cognitive load

Did first two iter. correctly, but added 1 more iter. 9% 14%

Did inertial thinking slip by doing x=x+i after 1st iter. 13%

Uncategorized errors 54% 56% 62% 27% 43% 55%

Only did 1st iteration and it was correct 0% 25% 50% 9% 14% 18%

Made errors on basic skills 14%

Empty 36% 6% 6% 15% 9%

Other errors 18% 25% 6% 18% 28%

146

Table 33: The integration error analysis for the nonconceptual integration type, among stu-

dents who succeeded in the sequential problem but failed in the matching integration prob-

lem. (Sig. level **:<.01, *:<.05, • :<.1; effect size ++ :>.3, + :>.1).

Hypothesized integration skills (f:for, w:while) f&
x
=

x
+

i

w
&

x
=

4+
i

f&
if

w
&

x
=

x
+

i

w
&

x
=

x
+

4

f&
x
=

4+
i

Topic (F:For, W:While, L:List) L W L W W F

Problem set id 14 10 13 7 9 5

Composition effect (pS-pI) sig. level and effect size ∗∗
+

∗∗
+

∗
+

∗
+ +

#stu. with seq. prob. correct but itgt. prob. wrong 12 14 9 10 10 11

Nonconceptual errors (conceptually knew how itgt. works) 73% 79% 44% 43% 40% 54%

Made errors on basic skills due to cognitive load

Used iter. var. i not list elem. a[i] to do sum in some iter. 37%

Used the wrong list elem. index (e.g., by starting with 1) 18% 33%

Did one more or one fewer iteration 9% 11% 40% 9%

Forgot the add the initial value of the sum var. 9%

Used initial value of the iteration variable in all iter. 43%

Slipped due to inertial thinking

Did x=4+i in 1st iter. but did x=4+x or x=x+i afterwards 79% 45%

State update conceptual errors 9% 0% 22% 43% 20% 0%

Used initial value of the sum variable in all iter. 9% 43% 20%

Didn’t update the max variable or updated it using iter. var. 22%

Nested loop conceptual errors 0% 0% 0% 0% 0% 0%

Uncategorized errors 18% 21% 34% 14% 40% 46%

Only did 1st iteration and it was correct 9% 7% 11% 14% 20% 9%

Made errors on basic skills 11%

Empty 7% 9%

Other errors 9% 7% 12% 20% 28%

147

BIBLIOGRAPHY

[Adelson, 1981] Adelson, B. (1981). Problem solving and the development of abstract cate-
gories in programming languages. Memory & cognition, 9(4):422–433.

[Aleven et al., 2006] Aleven, V., McLaren, B. M., Sewall, J., and Koedinger, K. R. (2006).
The cognitive tutor authoring tools (ctat): preliminary evaluation of efficiency gains. In
International Conference on Intelligent Tutoring Systems, pages 61–70. Springer.

[Ambrose et al., 2010] Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., and
Norman, M. K. (2010). How learning works: Seven research-based principles for smart
teaching. John Wiley & Sons.

[Anderson et al., 2004] Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C.,
and Qin, Y. (2004). An integrated theory of the mind. Psychological review, 111(4):1036.

[Anderson et al., 1995] Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R.
(1995). Cognitive tutors: Lessons learned. The journal of the learning sciences, 4(2):167–
207.

[Baker et al., 2008] Baker, R., Corbett, A., and Aleven, V. (2008). More accurate student
modeling through contextual estimation of slip and guess probabilities in bayesian knowl-
edge tracing. In Woolf, B., Aı̈meur, E., Nkambou, R., and Lajoie, S., editors, ITS, volume
5091 of Lecture Notes in Computer Science, pages 406–415. Springer.

[Baker et al., 2007] Baker, R. S., Corbett, A. T., and Koedinger, K. R. (2007). The difficulty
factors approach to the design of lessons in intelligent tutor curricula. International Journal
of Artificial Intelligence in Education, 17(4):341–369.

[Baker et al., 2011] Baker, R. S., Goldstein, A. B., and Heffernan, N. T. (2011). Detecting
learning moment-by-moment. International Journal of Artificial Intelligence in Education,
21(1-2):5–25.

[Barnes, 2005] Barnes, T. (2005). The q-matrix method: Mining student response data for
knowledge. In American Association for Artificial Intelligence 2005 Educational Data
Mining Workshop, pages 1–8.

148

[Beck and Chang, 2007] Beck, J. and Chang, K.-m. (2007). Identifiability: A fundamental
problem of student modeling. In Conati, C., McCoy, K., and Paliouras, G., editors,
User Modeling 2007, volume 4511 of Lecture Notes in Computer Science, pages 137–146.
Springer Berlin / Heidelberg.

[Berges and Hubwieser, 2015] Berges, M. and Hubwieser, P. (2015). Evaluation of source
code with item response theory. In Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education, pages 51–56. ACM.

[Brusilovsky, 1992] Brusilovsky, P. (1992). Intelligent tutor, environment and manual for
introductory programming. Educational and Training Technology International, 29(1):26–
34.

[Brusilovsky et al., 2004a] Brusilovsky, P., Karagiannidis, C., and Sampson, D. (2004a).
Layered evaluation of adaptive learning systems. International Journal of Continuing
Engineering Education and Life Long Learning, 14(4-5):402–421.

[Brusilovsky and Millán, 2007] Brusilovsky, P. and Millán, E. (2007). User models for adap-
tive hypermedia and adaptive educational systems. In The adaptive web, pages 3–53.
Springer-Verlag.

[Brusilovsky et al., 1996] Brusilovsky, P., Schwarz, E., and Weber, G. (1996). Elm-art: An
intelligent tutoring system on world wide web. In International conference on intelligent
tutoring systems, pages 261–269. Springer.

[Brusilovsky et al., 2004b] Brusilovsky, P., Sosnovsky, S., and Shcherbinina, O. (2004b).
Quizguide: Increasing the educational value of individualized self-assessment quizzes with
adaptive navigation support. In E-Learn: World Conference on E-Learning in Corpo-
rate, Government, Healthcare, and Higher Education, pages 1806–1813. Association for
the Advancement of Computing in Education (AACE).

[Carmona et al., 2005] Carmona, C., Millán, E., Pérez-de-la Cruz, J.-L., Trella, M., and
Conejo, R. (2005). Introducing prerequisite relations in a multi-layered bayesian student
model. In User Modeling, pages 347–356. Springer.

[Cen, 2009] Cen, H. (2009). Generalized learning factors analysis: improving cognitive mod-
els with machine learning. Carnegie Mellon University.

[Cen et al., 2006] Cen, H., Koedinger, K., and Junker, B. (2006). Learning factors analysis:
A general method for cognitive model evaluation and improvement. In Ikeda, M., Ashley,
K., and Chan, T.-W., editors, Intelligent Tutoring Systems, volume 4053 of Lecture Notes
in Computer Science, pages 164–175. Springer Berlin / Heidelberg.

[Cen et al., 2007] Cen, H., Koedinger, K. R., and Junker, B. (2007). Is over practice
necessary?-improving learning efficiency with the cognitive tutor through educational data
mining. Frontiers in artificial intelligence and applications, 158:511.

149

[Chase and Simon, 1973] Chase, W. G. and Simon, H. A. (1973). Perception in chess. Cog-
nitive psychology, 4(1):55–81.

[Chen et al., 2005] Chen, C.-M., Lee, H.-M., and Chen, Y.-H. (2005). Personalized e-learning
system using item response theory. Computers & Education, 44(3):237–255.

[Chen et al., 2016] Chen, Y., González-Brenes, J. P., and Tian, J. (2016). Joint discovery of
skill prerequisite graphs and student models. In EDM, pages 46–53.

[Chrysafiadi and Virvou, 2013] Chrysafiadi, K. and Virvou, M. (2013). Persiva: An empir-
ical evaluation method of a student model of an intelligent e-learning environment for
computer programming. Computers & Education, 68:322–333.

[Clark et al., 2007] Clark, R. E., Feldon, D. F., van Merrinboer, J. J. G., Yates, K. A., and
Early, S. (2007). Cognitive task analysis. Handbook of research on educational communi-
cations and technology (3rd ed.), pages 577–593.

[Collins et al., 1996] Collins, J. A., Greer, J. E., and Huang, S. X. (1996). Adaptive as-
sessment using granularity hierarchies and bayesian nets. In International Conference on
Intelligent Tutoring Systems, pages 569–577. Springer.

[Conati et al., 2002] Conati, C., Gertner, A., and Vanlehn, K. (2002). Using bayesian net-
works to manage uncertainty in student modeling. User Modeling and User-Adapted In-
teraction, 12(4):371–417.

[Corbett and Anderson, 1995] Corbett, A. T. and Anderson, J. R. (1995). Knowledge trac-
ing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted
Interaction, 4(4):253–278.

[De Groot, 1978] De Groot, A. D. (1978). Thought and choice in chess, volume 4. Walter
de Gruyter GmbH & Co KG.

[de Raadt, 2008] de Raadt, M. (2008). Teaching programming strategies explicitly to novice
programmers. PhD thesis, University of Southern Queensland.

[Desmarais, 2012] Desmarais, M. C. (2012). Mapping question items to skills with non-
negative matrix factorization. ACM SIGKDD Explorations Newsletter, 13(2):30–36.

[Desmarais and Baker, 2012] Desmarais, M. C. and Baker, R. S. (2012). A review of recent
advances in learner and skill modeling in intelligent learning environments. User Modeling
and User-Adapted Interaction, 22(1-2):9–38.

[Desmarais et al., 2006] Desmarais, M. C., Meshkinfam, P., and Gagnon, M. (2006). Learned
student models with item to item knowledge structures. User Modeling and User-Adapted
Interaction, 16(5):403–434.

150

[Druzdzel, 1999] Druzdzel, M. J. (1999). Smile: Structural modeling, inference, and learning
engine and genie: a development environment for graphical decision-theoretic models. In
Aaai/Iaai, pages 902–903.

[Du Boulay, 1986] Du Boulay, B. (1986). Some difficulties of learning to program. Journal
of Educational Computing Research, 2(1):57–73.

[Egan and Schwartz, 1979] Egan, D. E. and Schwartz, B. J. (1979). Chunking in recall of
symbolic drawings. Memory & Cognition, 7(2):149–158.

[Ekanadham and Karklin, 2017] Ekanadham, C. and Karklin, Y. (2017). T-skirt: On-
line estimation of student proficiency in an adaptive learning system. arXiv preprint
arXiv:1702.04282.

[Embretson, 1997] Embretson, S. E. (1997). Multicomponent response models. In Handbook
of modern item response theory, pages 305–321. Springer.

[Embretson and Reise, 2013] Embretson, S. E. and Reise, S. P. (2013). Item response theory.
Psychology Press.

[Fancsali et al., 2013] Fancsali, S., Nixon, T., and Ritter, S. (2013). Optimal and worst-
case performance of mastery learning assessment with bayesian knowledge tracing. In
Educational Data Mining 2013.

[Feldon et al., 2010] Feldon, D. F., Timmerman, B. C., Stowe, K. A., and Showman, R.
(2010). Translating expertise into effective instruction: The impacts of cognitive task
analysis (cta) on lab report quality and student retention in the biological sciences. Journal
of research in science teaching, 47(10):1165–1185.

[Gerdes et al., 2012] Gerdes, A., Jeuring, J., and Heeren, B. (2012). An interactive functional
programming tutor. In Proceedings of the 17th ACM annual conference on Innovation and
technology in computer science education, pages 250–255. ACM.

[Gong et al., 2010] Gong, Y., Beck, J. E., and Heffernan, N. T. (2010). Comparing knowledge
tracing and performance factor analysis by using multiple model fitting procedures. In
Proc. 10th Int. Conf. Intelligent Tutoring Systems, pages 35–44. Springer.

[González-Brenes, 2015] González-Brenes, J. (2015). Modeling skill acquisition over time
with sequence and topic modeling. In Artificial Intelligence and Statistics, pages 296–305.

[González-Brenes and Huang, 2015] González-Brenes, J. P. and Huang, Y. (2015). Your
model is predictive but is it useful? theoretical and empirical considerations of a new
paradigm for adaptive tutoring evaluation. In Proc. 8th Intl. Conf. Educational Data
Mining, pages 187–194.

[González-Brenes et al., 2014] González-Brenes, J. P., Huang, Y., and Brusilovsky, P. (2014).
General features in knowledge tracing: Applications to multiple subskills, temporal item

151

response theory, and expert knowledge. In Proc. 7th Int. Conf. Educational Data Mining,
pages 84–91.

[Guo, 2013] Guo, P. J. (2013). Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium on Computer
science education, pages 579–584. ACM.

[Heffernan and Heffernan, 2014] Heffernan, N. T. and Heffernan, C. L. (2014). The assist-
ments ecosystem: Building a platform that brings scientists and teachers together for
minimally invasive research on human learning and teaching. International Journal of
Artificial Intelligence in Education, 24(4):470–497.

[Heffernan and Koedinger, 1997] Heffernan, N. T. and Koedinger, K. R. (1997). The com-
position effect in symbolizing: The role of symbol production vs. text comprehension. In
Proc. 19th Annual Conf. Cognitive Science Society, pages 307–312.

[Holland et al., 2009] Holland, J., Mitrovic, A., and Martin, B. (2009). J-latte: a constraint-
based tutor for java.

[Hosseini and Brusilovsky, 2013] Hosseini, R. and Brusilovsky, P. (2013). Javaparser: A fine-
grain concept indexing tool for java problems. In CEUR Workshop Proceedings, volume
1009, pages 60–63. University of Pittsburgh.

[Howard, 1983] Howard, R. A. (1983). Readings on the principles and applications of decision
analysis, volume 1. Strategic Decisions Group.

[Hsiao et al., 2010] Hsiao, I.-H., Sosnovsky, S., and Brusilovsky, P. (2010). Guiding stu-
dents to the right questions: adaptive navigation support in an e-learning system for java
programming. Journal of Computer Assisted Learning, 26(4):270–283.

[Huang et al., 2015] Huang, Y., González-Brenes, J. P., Kumar, R., and Brusilovsky, P.
(2015). A framework for multifaceted evaluation of student models. In Proc. 8th Int.
Conf. Educational Data Mining, pages 203–210.

[Huang et al., 2017] Huang, Y., Guerra-Hollstein, J., Barria-Pineda, J., and Brusilovsky, P.
(2017). Learner modeling for integration skills. In Proceedings of the 25th Conference on
User Modeling, Adaptation and Personalization, pages 85–93. ACM.

[Huang et al., 2016] Huang, Y., Guerra-Hollstein, J. D., and Brusilovsky, P. (2016). Mod-
eling skill combination patterns for deeper knowledge tracing. In UMAP (Extended Pro-
ceedings).

[Huang et al., 2014] Huang, Y., Xu, Y., and Brusilovsky, P. (2014). Doing more with less:
Student modeling and performance prediction with reduced content models. In the 22nd
Conf. User Modeling, Adaptation and Personalization.

[Johnson and Soloway, 1985] Johnson, W. L. and Soloway, E. (1985). Proust: Knowledge-
based program understanding. IEEE Transactions on Software Engineering, (3):267–275.

152

[Junker and Sijtsma, 2001] Junker, B. W. and Sijtsma, K. (2001). Cognitive assessment
models with few assumptions, and connections with nonparametric item response theory.
Applied Psychological Measurement, 25(3):258–272.

[Kahneman, 1973] Kahneman, D. (1973). Attention and effort, volume 1063. Prentice-Hall
Englewood Cliffs, NJ.

[Käser et al., 2014] Käser, T., Klingler, S., Schwing, A. G., and Gross, M. (2014). Beyond
knowledge tracing: Modeling skill topologies with bayesian networks. In International
Conference on Intelligent Tutoring Systems, pages 188–198. Springer.

[Käser et al., 2017] Käser, T., Klingler, S., Schwing, A. G., and Gross, M. (2017). Dynamic
bayesian networks for student modeling. IEEE Transactions on Learning Technologies,
10(4):450–462.

[Kasurinen and Nikula, 2009] Kasurinen, J. and Nikula, U. (2009). Estimating programming
knowledge with bayesian knowledge tracing. In ACM SIGCSE Bulletin, volume 41, pages
313–317. ACM.

[Khajah et al., 2014] Khajah, M., Wing, R., Lindsey, R., and Mozer, M. (2014). Integrating
latent-factor and knowledge-tracing models to predict individual differences in learning.
In Educational Data Mining 2014. Citeseer.

[Klingler et al., 2015] Klingler, S., Käser, T., Solenthaler, B., and Gross, M. (2015). On the
performance characteristics of latent-factor and knowledge tracing models. International
Educational Data Mining Society.

[Koedinger and McLaughlin, 2010] Koedinger, K. and McLaughlin, E. (2010). Seeing lan-
guage learning inside the math: Cognitive analysis yields transfer. In Proceedings of the
Annual Meeting of the Cognitive Science Society, volume 32.

[Koedinger et al., 2003] Koedinger, K. R., Aleven, V., and Heffernan, N. (2003). Toward a
rapid development environment for cognitive tutors. In Artificial Intelligence in Education:
Shaping the Future of Learning through Intelligent Technologies, Proceedings of AI-ED,
pages 455–457.

[Koedinger and Anderson, 1990] Koedinger, K. R. and Anderson, J. R. (1990). Abstract
planning and perceptual chunks: Elements of expertise in geometry. Cognitive Science,
14(4):511–550.

[Koedinger et al., 2012a] Koedinger, K. R., Corbett, A. T., and Perfetti, C. (2012a). The
knowledge-learning-instruction framework: Bridging the science-practice chasm to en-
hance robust student learning. Cognitive Science, 36(5):757–798.

[Koedinger et al., 2012b] Koedinger, K. R., Corbett, A. T., and Perfetti, C. (2012b). The
knowledge-learning-instruction framework: Bridging the science-practice chasm to en-

153

hance robust student learning. Cognitive Science, 36(5):757798. Robust learning: sts,
transfers, accelerates future learning.

[Koedinger and McLaughlin, 2016] Koedinger, K. R. and McLaughlin, E. A. (2016). Closing
the loop with quantitative cognitive task analysis. In EDM, pages 412–417.

[Koedinger et al., 2012c] Koedinger, K. R., McLaughlin, E. A., and Stamper, J. C. (2012c).
Automated student model improvement. Proc. 8th Intl. Conf. on Educational Data Min-
ing, pages 17–24.

[Koedinger and Nathan, 2004] Koedinger, K. R. and Nathan, M. J. (2004). The real story
behind story problems: Effects of representations on quantitative reasoning. The journal
of the learning sciences, 13(2):129–164.

[Koedinger et al., 2011] Koedinger, K. R., Pavlik Jr, P. I., Stamper, J. C., Nixon, T., and
Ritter, S. (2011). Avoiding problem selection thrashing with conjunctive knowledge trac-
ing. In Proc. 7th Int. Conf. Educational Data Mining, pages 91–100.

[Koedinger et al., 2013] Koedinger, K. R., Stamper, J. C., McLaughlin, E. A., and Nixon,
T. (2013). Using data-driven discovery of better student models to improve student learn-
ing. In International Conference on Artificial Intelligence in Education, pages 421–430.
Springer.

[Kumar, 2006] Kumar, A. N. (2006). Using enhanced concept map for student modeling in
programming tutors. In FLAIRS Conference, pages 527–532.

[Lan et al., 2014] Lan, A. S., Waters, A. E., Studer, C., and Baraniuk, R. G. (2014). Sparse
factor analysis for learning and content analytics. The Journal of Machine Learning Re-
search, 15(1):1959–2008.

[Lane and VanLehn, 2005] Lane, H. C. and VanLehn, K. (2005). Teaching the tacit knowl-
edge of programming to noviceswith natural language tutoring. Computer Science Edu-
cation, 15(3):183–201.

[Larkin et al., 1980] Larkin, J., McDermott, J., Simon, D. P., and Simon, H. A. (1980).
Expert and novice performance in solving physics problems. Science, 208(4450):1335–
1342.

[Le and Menzel, 2009] Le, N.-T. and Menzel, W. (2009). Usingweighted constraints to diag-
nose errors in logic programming–the case of an ill-defined domain. International Journal
of Artificial Intelligence in Education, 19(4):381–400.

[Lee and Brunskill, 2012] Lee, J. I. and Brunskill, E. (2012). The impact on individu-
alizing student models on necessary practice opportunities. In Proceedings of the 5th
International Conference on Educational Data Mining, pages 118–125, Chania, Greece.
www.educationaldatamining.org.

154

[Lesgold et al., 1988] Lesgold, A., Lajoie, S., Bunzo, M., and Eggan, G. (1988). Sherlock:
A coached practice environment for an electronics troubleshooting job. Computer-assisted
instruction and intelligent tutoring systems: shared goals and complementary approaches.

[Lister et al., 2004] Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm,
M., McCartney, R., Moström, J. E., Sanders, K., Seppälä, O., et al. (2004). A multi-
national study of reading and tracing skills in novice programmers. In ACM SIGCSE
Bulletin, volume 36, pages 119–150. ACM.

[Lister et al., 2009] Lister, R., Fidge, C., and Teague, D. (2009). Further evidence of a
relationship between explaining, tracing and writing skills in introductory programming.
In Acm sigcse bulletin, volume 41, pages 161–165. ACM.

[Lister et al., 2006] Lister, R., Simon, B., Thompson, E., Whalley, J. L., and Prasad, C.
(2006). Not seeing the forest for the trees: novice programmers and the solo taxonomy.
ACM SIGCSE Bulletin, 38(3):118–122.

[Liu and Koedinger, 2017] Liu, R. and Koedinger, K. R. (2017). Closing the loop: Auto-
mated data-driven cognitive model discoveries lead to improved instruction and learning
gains. Journal of Educational Data Mining, 9(1):25–41.

[Martin et al., 2011] Martin, B., Mitrovic, A., Koedinger, K. R., and Mathan, S. (2011).
Evaluating and improving adaptive educational systems with learning curves. User Mod-
eling and User-Adapted Interaction, 21(3):249–283.

[Mathews, 2006] Mathews, M. (2006). Investigating the effectiveness of problem templates
on learning in intelligent tutoring systems.

[Mayo and Mitrovic, 2000] Mayo, M. and Mitrovic, A. (2000). Using a probabilistic student
model to control problem difficulty. In International Conference on Intelligent Tutoring
Systems, pages 524–533. Springer.

[Mayo and Mitrovic, 2001] Mayo, M. and Mitrovic, A. (2001). Optimising its behaviour with
bayesian networks and decision theory.

[Millán and Pérez-De-La-Cruz, 2002] Millán, E. and Pérez-De-La-Cruz, J. L. (2002). A
bayesian diagnostic algorithm for student modeling and its evaluation. User Modeling
and User-Adapted Interaction, 12(2-3):281–330.

[Miller, 1956] Miller, G. A. (1956). The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review, 63(2):81.

[Mislevy and Gitomer, 1995] Mislevy, R. J. and Gitomer, D. H. (1995). The role of
probability-based inference in an intelligent tutoring system. ETS Research Report Se-
ries, 1995(2).

155

[Mitrovic, 2012] Mitrovic, A. (2012). Fifteen years of constraint-based tutors: what we have
achieved and where we are going. User modeling and user-adapted interaction, 22(1-2):39–
72.

[Mitrovic et al., 2001] Mitrovic, A., Mayo, M., Suraweera, P., and Martin, B. (2001).
Constraint-based tutors: a success story. In International Conference on Industrial, En-
gineering and Other Applications of Applied Intelligent Systems, pages 931–940. Springer.

[Morales et al., 2006] Morales, R., Van Labeke, N., and Brna, P. (2006). Approximate mod-
elling of the multi-dimensional learner. In International Conference on Intelligent Tutoring
Systems, pages 555–564. Springer.

[Muller et al., 2007] Muller, O., Ginat, D., and Haberman, B. (2007). Pattern-oriented in-
struction and its influence on problem decomposition and solution construction. ACM
SIGCSE Bulletin, 39(3):151–155.

[Murray, 2005] Murray, R. C. (2005). An evaluation of decision-theoretic tutorial action
selection. PhD thesis, University of Pittsburgh.

[Murray, 1985] Murray, W. R. (1985). Heuristic and formal methods in automatic program
debugging. Computer Science Department, University of Texas at Austin.

[Newell and Rosenbloom, 1981] Newell, A. and Rosenbloom, P. S. (1981). Mechanisms of
skill acquisition and the law of practice. Cognitive skills and their acquisition, 1(1981):1–
55.

[Ohlsson, 1994] Ohlsson, S. (1994). Constraint-based student modeling. In Student mod-
elling: the key to individualized knowledge-based instruction, pages 167–189. Springer.

[Paas and Van Merriënboer, 1993] Paas, F. G. and Van Merriënboer, J. J. (1993). The effi-
ciency of instructional conditions: An approach to combine mental effort and performance
measures. Human factors, 35(4):737–743.

[Paramythis et al., 2010] Paramythis, A., Weibelzahl, S., and Masthoff, J. (2010). Layered
evaluation of interactive adaptive systems: framework and formative methods. User Mod-
eling and User-Adapted Interaction, 20(5):383–453.

[Pardos and Heffernan, 2010a] Pardos, Z. A. and Heffernan, N. T. (2010a). Modeling indi-
vidualization in a bayesian networks implementation of knowledge tracing. In International
Conference on User Modeling, Adaptation, and Personalization, pages 255–266. Springer.

[Pardos and Heffernan, 2010b] Pardos, Z. A. and Heffernan, N. T. (2010b). Navigating the
parameter space of bayesian knowledge tracing models: Visualizations of the convergence
of the expectation maximization algorithm. EDM, 2010:161–170.

[Pardos and Yudelson, 2013] Pardos, Z. A. and Yudelson, M. (2013). Towards moment of
learning accuracy. In AIED Workshops.

156

[Pavlik et al., 2009] Pavlik, P., Cen, H., and Koedinger, K. (2009). Performance Factors
Analysis–A New Alternative to Knowledge Tracing. In Proceeding of the 2009 confer-
ence on Artificial Intelligence in Education: Building Learning Systems that Care: From
Knowledge Representation to Affective Modelling, pages 531–538. IOS Press.

[Pearl, 2014] Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of
plausible inference. Elsevier.

[Pelánek, 2015] Pelánek, R. (2015). Metrics for evaluation of student models. Journal of
Educational Data Mining, 7(2):1–19.

[Pelánek and Řihák, 2017] Pelánek, R. and Řihák, J. (2017). Experimental analysis of mas-
tery learning criteria. In Proceedings of the 25th Conference on User Modeling, Adaptation
and Personalization, pages 156–163. ACM.

[Proulx, 2000] Proulx, V. K. (2000). Programming patterns and design patterns in the
introductory computer science course. In ACM SIGCSE Bulletin, volume 32, pages 80–
84. ACM.

[Ritter et al., 2007] Ritter, S., Anderson, J. R., Koedinger, K. R., and Corbett, A. (2007).
Cognitive tutor: Applied research in mathematics education. Psychonomic bulletin &
review, 14(2):249–255.

[Rivers et al., 2016] Rivers, K., Harpstead, E., and Koedinger, K. R. (2016). Learning curve
analysis for programming: Which concepts do students struggle with? In ICER, pages
143–151.

[Rivers and Koedinger, 2017] Rivers, K. and Koedinger, K. R. (2017). Data-driven hint gen-
eration in vast solution spaces: a self-improving python programming tutor. International
Journal of Artificial Intelligence in Education, 27(1):37–64.

[Rollinson and Brunskill, 2015] Rollinson, J. and Brunskill, E. (2015). From predictive mod-
els to instructional policies. International Educational Data Mining Society.

[Sfard and Linchevski, 1994] Sfard, A. and Linchevski, L. (1994). The gains and the pitfalls
of reification?the case of algebra. In Learning mathematics, pages 87–124. Springer.

[Shneiderman, 1976] Shneiderman, B. (1976). Exploratory experiments in programmer be-
havior. International Journal of Computer & Information Sciences, 5(2):123–143.

[Soloway and Ehrlich, 1984] Soloway, E. and Ehrlich, K. (1984). Empirical studies of pro-
gramming knowledge. IEEE Trans. Software Engineering, SE-10(5):595–609.

[Sweller, 1988] Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.
Cognitive science, 12(2):257–285.

157

[Sweller and Cooper, 1985] Sweller, J. and Cooper, G. A. (1985). The use of worked exam-
ples as a substitute for problem solving in learning algebra. Cognition and Instruction,
2(1):59–89.

[Taylor, 1977] Taylor, R. P. (1977). Teaching programming to beginners. In ACM SIGCSE
Bulletin, volume 9, pages 88–92. ACM.

[Tulving and Craik, 2000] Tulving, E. and Craik, F. I. (2000). The Oxford handbook of
memory. Oxford: Oxford University Press.

[Van de Sande, 2013] Van de Sande, B. (2013). Properties of the bayesian knowledge tracing
model. JEDM-Journal of Educational Data Mining, 5(2):1–10.

[Van de Sande, 2016] Van de Sande, B. (2016). Learning curves for problems with multiple
knowledge components. In EDM, pages 523–526.

[VanLehn, 1990] VanLehn, K. (1990). Mind bugs: The origins of procedural misconceptions.
MIT press.

[Vanlehn, 2006] Vanlehn, K. (2006). The behavior of tutoring systems. International journal
of artificial intelligence in education, 16(3):227–265.

[Vanlehn et al., 2005] Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor,
L., Treacy, D., Weinstein, A., and Wintersgill, M. (2005). The andes physics tutoring
system: Lessons learned. International Journal of Artificial Intelligence in Education,
15(3):147–204.

[VanLehn et al., 1998] VanLehn, K., Niu, Z., Siler, S., and Gertner, A. S. (1998). Student
modeling from conventional test data: A bayesian approach without priors. In Interna-
tional Conference on Intelligent Tutoring Systems, pages 434–443. Springer.

[Velmahos et al., 2004] Velmahos, G. C., Toutouzas, K. G., Sillin, L. F., Chan, L., Clark,
R. E., Theodorou, D., and Maupin, F. (2004). Cognitive task analysis for teaching tech-
nical skills in an inanimate surgical skills laboratory. The American Journal of Surgery,
187(1):114–119.

[Vesin et al., 2012] Vesin, B., Ivanović, M., KlašNja-MilićEvić, A., and Budimac, Z. (2012).
Protus 2.0: Ontology-based semantic recommendation in programming tutoring system.
Expert Systems with Applications, 39(15):12229–12246.

[Wang et al., 2017] Wang, S., Han, Y., Wu, W., and Hu, Z. (2017). Modeling student learn-
ing outcomes in studying programming language course. In Information Science and
Technology (ICIST), 2017 Seventh International Conference on, pages 263–270. IEEE.

[Weber, 1996a] Weber, G. (1996a). Episodic learner modeling. Cognitive Science, 20(2):195–
236.

158

[Weber, 1996b] Weber, G. (1996b). Individual selection of examples in an intelligent learning
environment. Journal of Interactive Learning Research, 7(1):3.

[Weber and Brusilovsky, 2001] Weber, G. and Brusilovsky, P. (2001). Elm-art: An adaptive
versatile system for web-based instruction. International Journal of Artificial Intelligence
in Education, 12(4):351–384.

[Weng et al., 2018] Weng, R. C.-H., Coad, D. S., et al. (2018). Real-time bayesian parameter
estimation for item response models. Bayesian Analysis, 13(1):115–137.

[Whalley et al., 2006] Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Ku-
mar, P., and Prasad, C. (2006). An australasian study of reading and comprehension skills
in novice programmers, using the bloom and solo taxonomies. In Proceedings of the 8th
Australasian Conference on Computing Education-Volume 52, pages 243–252. Australian
Computer Society, Inc.

[Winters et al., 2005] Winters, T., Shelton, C., Payne, T., and Mei, G. (2005). Topic ex-
traction from item-level grades. In American Association for Artificial Intelligence 2005
workshop on educational datamining, Pittsburgh, PA, volume 1, page 3.

[Xu and Mostow, 2012] Xu, Y. and Mostow, J. (2012). Comparison of methods to trace
multiple subskills: Is LR-DBN best? In Proc. 5th Intl. Conf. Educational Data Mining,
pages 41–48, Chania, Greece.

[Yudelson et al., 2014] Yudelson, M., Hosseini, R., Vihavainen, A., and Brusilovsky, P.
(2014). Investigating automated student modeling in a java mooc. Educational Data
Mining 2014, pages 261–264.

[Yudelson and Koedinger, 2013] Yudelson, M. and Koedinger, K. (2013). Estimating the
benefits of student model improvements on a substantive scale. In Educational Data
Mining 2013.

[Yudelson et al., 2013] Yudelson, M. V., Koedinger, K. R., and Gordon, G. J. (2013). Indi-
vidualized bayesian knowledge tracing models. In International Conference on Artificial
Intelligence in Education, pages 171–180. Springer.

[Zapata-Rivera and Greer, 2001] Zapata-Rivera, J.-D. and Greer, J. (2001). Smodel server:
Student modelling in distributed multi-agent tutoring systems. In Proceedings of AIED,
pages 446–455.

159

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Problem sets and the corresponding hypothesized integration skills in the topics of for loops, while loops and lists.
	2. Latin square design for the composition effect DFA study.
	3. Number of students for each study session (topic).
	4. Examining the composition effect for each problem set and all problem sets.
	5. Examining the composition effects for groups of problem sets.
	6. Definitions of the conceptual parts of integration skills.
	7. Integration (itgt.) difficulty factors identified by the integration error analysis.
	8. A random splitting of all problem sets into two groups.
	9. The Spearman correlation of average CE strength among integration difficulty factors.
	10. The Spearman correlation of average CE strength among topics.
	11. An example of the final rule table involving state update problems.
	12. (Potential) integration skills for my study context.
	13. Basic skills for my study context.
	14. A rule for labeling the conceptual part of an integration skill.
	15. Hints for the highlighted cell in Figure 13.
	16. Descriptive statistics for the data on problem and the step levels.
	17. Descriptive statistics for skill models on problem and step levels.
	18. Comparison of predictive performance and parameter plausibility between the three learner models, based on the problem level data.
	19. Predictive performance and parameter plausibility metrics of the learner models, based on the problem level data.
	20. Comparison of predictive performance and parameter plausibility between the three learner models, based on the step level data.
	21. Predictive performance and parameter plausibility metrics of the three learner models, based on the step level data.
	22. Generalized linear mixed models predicting correctness per problem per student.
	23. Number of students who submitted each specified posttest problem.
	24. Descriptive statistics and statistical tests based on the median time for different sets of problems.
	25. Linear mixed models predicting time spent on each submitted problem.
	26. Number of students who succeeded in each specified posttest problem.
	27. Linear mixed models predicting time spent per correctly solved problem by a student.
	28. Generalized linear mixed models predicting posttest correctness per problem per student within easy integration problems with time constraints.
	29. Examining the composition effect on pretest and practice problems from both conditions.
	30. Comparing composition effects on posttest problems between the control group and the experimental group.
	31. The integration error analysis for the nested loop integration type.
	32. The integration error analysis for the state update integration type.
	33. The integration error analysis for the nonconceptual integration type.

	LIST OF FIGURES
	1. Two main learner models for multi-skill practice situations.
	2. The problem set for the hypothesized integration skill for&x=x+i.
	3. The problem set for the hypothesized integration skill for&for.
	4. Percentiles of different integration errors for different problem sets.
	5. The correlation of the average CE between the Group 1 and Group 2 problem sets.
	6. An example of a decision tree for judging the existence of potential integration skills and CIDFs.
	7. An example of an integration graph.
	8. The BN structure of an integration-level learner model.
	9. Score-effort curves for two learner models
	10. The initial interface of a practice problem with a trace table.
	11. The interfaces of a practice problem for the situations where a student enters a wrong answer.
	(a). feedback interface
	(b). hint interface
	12. The initial interface of an isolated integration problem for the conceptual part of an integration skill.
	13. The highlighted cell is labeled with the conceptual part of an integration skill.
	14. BN structures of two popular multi-skill practice learner models.
	15. Comparison of expected instructional effectiveness between the three learner models, based on the problem level data.
	16. Comparison of expected instructional effectiveness between the three learner models, based on the step level data.
	17. The Bayesian network for generating simulated datasets.
	18. Comparison of RMSE values on test set prediction with datasets generated from different ground truth guess and slip parameters.
	(a). True guess/slip=0.1/0.1
	(b). True guess/slip=0.2/0.2
	(c). True guess/slip=0.3/0.1
	(d). True guess/slip=0.3/0.3
	19. Comparison of guess values fitted on datasets generated from different ground truth guess and slip parameters.
	(a). True guess/slip=0.1/0.1
	(b). True guess/slip=0.2/0.2
	(c). True guess/slip=0.3/0.1
	(d). True guess/slip=0.3/0.3
	20. Comparison of slip values fitted on datasets generated from different ground truth guess and slip parameters.
	(a). True guess/slip=0.1/0.1
	(b). True guess/slip=0.2/0.2
	(c). True guess/slip=0.3/0.1
	(d). True guess/slip=0.3/0.3
	21. The interface for a pretest/posttest problem.
	22. Percentile comparison of different types of problems between conditions.
	23. Comparison of the posttest scores over different sets of problems between the condition and experimental groups.
	24. Comparison of the median time for different sets of problems between the control and experimental groups.
	25. Comparison of the median time spent on correctly solved problems over different sets of problems between the control and experimental groups.
	26. Posttest total time distributions for the control and experimental groups.
	(a). CT (N=36, M=12, SD=4, min=5, max=20)
	(b). EP (N=38, M=11, SD=3, min=3, max=19)
	27. Comparison of posttest scores on easy integration problems with different time constraints between the control and experimental groups.
	28. Comparison of composition effects on posttest problems between the control and the experimental groups.

	PREFACE
	1.0 INTRODUCTION
	1.1 Motivation
	1.2 Main Directions of Work and Contributions
	1.3 Research Questions
	1.4 Dissertation Organization

	2.0 BACKGROUND AND RELATED WORK
	2.1 Integration Skills in Expertise
	2.2 Learner Modeling in ITSs
	2.2.1 Popular Learner Models in ITSs
	2.2.2 Learner Models in the Programming Domain

	2.3 Difficulty Factors Assessment for Skill Modeling
	2.4 Learner Model Evaluation

	3.0 INVESTIGATING COMPOSITION EFFECTS AND INTEGRATION SKILLS IN PROGRAM COMPREHENSION
	3.1 Method
	3.1.1 Overall Idea
	3.1.2 Design and Materials
	3.1.3 Latin Square and Within-Subject Design
	3.1.4 Participants and Procedure
	3.1.5 Grading

	3.2 Results
	3.2.1 Existence of Composition Effects
	3.2.1.1 Comparing Sequential Problems with Integration Problems
	3.2.1.2 Comparing Basic Problems with Integration Problems
	3.2.1.3 Examining Composition Effects on Topic Level

	3.2.2 Nature of Composition Effects and Integration Skills
	3.2.2.1 Integration Error Analysis
	3.2.2.2 Identification of Integration Skills
	3.2.2.3 Identification of Integration Difficulty Factors

	3.2.3 Individual Differences in Integration Skills Explained by Integration Difficulty Factors and Topics

	3.3 Discussion and Conclusions

	4.0 BUILDING AN INTEGRATION-LEVEL LEARNER MODEL
	4.1 Building the Skill Model
	4.1.1 Item-to-Skill Mapping
	4.1.2 Skill-to-Skill Integration Graph

	4.2 Building the Bayesian Network Given the Skill Model
	4.2.1 Learner Model Structure and Parameters
	4.2.2 Dynamic, Individualized Knowledge Update

	5.0 A MULTIFACETED EVALUATION FRAMEWORK FOR LEARNER MODELS
	5.1 Data-Driven Evaluations
	5.1.1 Predictive Performance
	5.1.2 Parameter Plausibility
	5.1.3 Expected Instructional Effectiveness
	5.1.3.1 Score
	5.1.3.2 Effort
	5.1.3.3 Mastery Thresholds
	5.1.3.4 Imputation
	5.1.3.5 Summative Score-Effort Curve

	5.2 Real-world Intervention Study Evaluations
	5.3 Discussion and Conclusions

	6.0 BUILDING A PROGRAM COMPREHENSION ITS DRIVEN BY LEARNER MODELING
	6.1 Trace Table Practice Interface
	6.2 Interface Implementation
	6.3 Hint Generation and Skill Labeling
	6.4 Learner Modeling Service
	6.5 Problem Selection Service
	6.6 System Deployment and Data Logging

	7.0 DATA-DRIVEN EVALUATIONS OF THE PROPOSED INTEGRATION-LEVEL LEARNER MODEL
	7.1 Baseline Models
	7.2 Real-World Dataset Experiments
	7.2.1 Experimental Setup
	7.2.1.1 Dataset
	7.2.1.2 Learner Models' Initial Parameters
	7.2.1.3 Cross-Validation

	7.2.2 Results for the Problem Level Assessment Data
	7.2.3 Results for the Step Level Assessment Data
	7.2.4 Discussion and Conclusions

	7.3 Simulated Dataset Experiments
	7.3.1 Method
	7.3.2 Results
	7.3.3 Discussion and Conclusions

	8.0 REAL-WORLD ADAPTATION EFFECTIVENESS EVALUATION OF THE PROPOSED INTEGRATION-LEVEL LEARNER MODEL
	8.1 Method
	8.1.1 Differences in Problem Selection
	8.1.2 Differences in Hints
	8.1.3 Procedure
	8.1.4 Learner Model Parameters and Initialization
	8.1.5 Practice Problems and Skills
	8.1.6 Pretest and Posttest
	8.1.7 Participants

	8.2 Results
	8.2.1 Posttest Scores
	8.2.2 Posttest Time
	8.2.3 Posttest Scores with Time Constraints
	8.2.4 The Composition Effect (CE)
	8.2.4.1 Existence of CEs on the Pretest and Practice Problems
	8.2.4.2 Comparison of CEs on Posttest Problems

	8.3 Discussion and Conclusions

	9.0 CONCLUSIONS, DISCUSSION AND FUTURE WORK
	9.1 Conclusions
	9.2 Discussion, Limitations and Future Work
	9.3 Contributions

	APPENDIX. INTEGRATION ERROR ANALYSIS
	BIBLIOGRAPHY

