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The central nervous system (CNS) is one of the most complicated living structures in the universe. 

A single gene expression, the expression level of a single protein or the concentration of a 

neurotransmitter could regulate the entire functionality of the CNS. The CNS needs to be 

investigated as a multiscale system with connections among different levels. The existing 

technology significantly limits experimental studies, and computational modeling is a useful tool 

for understanding how parts are connected, regulated, and function together. Ideally, the goal is to 

develop unified computational methodologies for exploring biological systems at multiple scales 

ranging from molecular to cellular to tissue level.  While rigorous models have been developed at 

the molecular scale, higher level approaches usually suffer from lack of physical realism and lack 

of knowledge on model parameters. Molecular level studies can help to define reaction schemes 

and parameters which could be used in cellular microphysiology models, and image data provide 

a structural basis for reconstructing the surroundings of the cellular system of interest.  

This dissertation develops and tests a new multiscale model of dopaminergic signaling and 

a detailed model of the activation-triggered subunit exchange mechanism of calcium/calmodulin-

dependent kinase type II (CaMKII). The goal is to develop and use computational models to 

understand the molecular mechanisms of neurotransmission, and how disruptions may cause 

complex disorders and conditions such as drug abuse. The simulations of the  dopamine (DA) 

signaling model show that the addition of the geometry of the environment and localization of 
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individual molecules significantly affect the DA reuptake. Consequently, the formation of DAT 

clusters reduces the DA clearance rate and increases DA receptor activity. In addition, the effects 

of the psychostimulants such as cocaine and amphetamine are also investigated. Constructed 

model and method can potentially serve as an in silico microscope to understand the molecular 

basis of signaling and regulation events in the CNS. Calibration of CaMKII model shows the 

limitations of the current parameter estimation methods for large biological models with long 

simulation times such as hours. The high dimensional parameter space and the limited and noisy 

data makes the parameter estimation task a challenge.  
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1.0 INTRODUCTION  

The human brain is one of the most complex living structures in the universe.  The human brain 

can store more information than any supercomputer, and the connections in the brain being more 

extensive than any social network that a human can imagine. The advances in technology provide 

us with much useful information about the way brain works, and there are many unresolved 

questions such as how it controls all the other organs and how it processes memories and emotions. 

The brain plays a central role in many behavioral conditions, and defects/disruptions in the brain 

can cause over 1,000 disorders. Brain disorders affect approximately one-sixth of the population 

and cost billions of dollars to the economy.  

As in the case of any complex systems, the brain has a lot of heterogeneous and moving 

parts. It has various cell types, and each cell functions in different ways (Churchland & Sejnowski, 

2016).  As an example, hippocampal neurons have a length of the order of micrometers µmôs, and 

they make many connections with other neurons, whereas sciatic neuron can go up to a meter long 

and the total number of connections may not be as large as a hippocampal neuron (Nolte, 2002). 

The functional differences are not only caused by the length of scale or the number of connections 

but also can be identified with low-level components such as the neurotransmitter type, its location 

in the brain, or the primary type of neurotransmitter transporter that the neuron expresses.  
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In the central nervous system (CNS) neurons are connected through synapses, and 

signaling at synaptic connections is one of the primary processes that mediate brain function 

(Shepherd, 2003). Due to the importance of synapses in the CNS function, a significant portion of 

neurodegenerative disorders such as Parkinsonôs disease or drug abuse can be caused by defects 

in this signaling process (Dagher & Robbins, 2009). The disruption of synapses between neurons 

can lead to imbalances between excitation and inhibition in neural circuits, which can give rise to 

abnormal cognitive processing (Franken, Stam, Hendriks, & van den Brink, 2003). Therefore, it is 

necessary to understand how conventional circuits maintain balance to resolve issues caused by 

disturbances in synapses. Different synapse types use different sets of neurotransmitters, receptors, 

and transporter molecules. These differences lead to different functions, and the defects lead to 

different diseases (Lovinger, 2010). One of the most widely studied and important synapse types 

is the dopaminergic synapse due to its role in reward prediction/valuation (Wise & Rompre, 1989). 

Dopamine (DA) is in various regions of the brain. Dopamine transporters (DAT) are 

membrane proteins that transport DA across the cell membrane. DAT-mediated DA reuptake is 

the primary mechanism for removal of extracellular (EC) DA from synaptic and extra-synaptic 

space (Torres, Gainetdinov, & Caron, 2003). The regulation of DA reuptake depends on the 

localization and expression level of DATs on the membrane (Volz, Hanson, & Fleckenstein, 2007), 

as well as the intramolecular and intermolecular interaction mechanisms that enable effective 

transport, signaling, regulation, and recycling. The mechanisms that control the distribution and 

trafficking of DAT are still ambiguous. It is essential to understand how various factors regulate 

DA reuptake mechanism.  

Lack of DA clearance in certain regions of the brain increases DA levels in the extra-

synaptic regions, and the activity of the DA receptors is upregulated accordingly. Downstream 
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signaling from DA receptors activates the reward and satisfaction pathways (Wise & Rompre, 

1989). Therefore, DA neurotransmission is one of the focal points of the drug abuse research (Di 

Chiara & Imperato, 1988). More specifically, the effect of psychostimulants such as cocaine and 

amphetamine (AMPH) on DA neurotransmission has been a topic of study for more than two 

decades. Many of these studies are experimental, and a group of properties such as surface density 

of distribution of DAT has not been extensively studied due to limitations in technology.  

The conformational dynamics of DAT is one of the primary determinants of DA transport 

efficiency (Vaughan & Foster, 2013). Advances in structural characterization of membrane 

proteins have opened the way to the resolution of the crystal structure of DAT (Penmatsa, Wang, 

& Gouaux, 2013; Wang, Penmatsa, & Gouaux, 2015), and molecular simulations of these 

structures identified various states and dynamics of their transitions (Mary Hongying Cheng & 

Bahar, 2015; Mary Hongying Cheng et al., 2015; Mary Hongying Cheng, Garcia-Olivares, 

Wasserman, DiPietro, & Bahar, 2017; Khelashvili et al., 2015; Ma et al., 2017; Razavi, 

Khelashvili, & Weinstein, 2017). Individual states of the DAT have multiple interactions with 

downstream signaling molecules and extracellular DA, and these interactions lead DAT to a 

central role in DA signaling.  The resolution of DAT structures enables us to simulate transporters 

with different drugs or neurotransmitters and estimate the rates of structural transitions at long 

time scales such as milliseconds, that molecular simulations are not able to reach.  

On the cellular level, previous efforts are generally revolved around how DA concentration 

mediated at the specific regions of the brain, specifically in the striatum and nucleus accumbens 

(Garris, Ciolkowski, Pastore, & Wightman, 1994).  More recent efforts include how the spatial 

complexity of the system regulates the EC DA, yet no detailed description of the cell morphology 

and individual transporter/receptor localization has been included in modeling efforts  (Block et 
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al., 2015).  However, the complexity of the cell surface and the EC space in the brain is 

considerably more tortuous compared to a regular cell such as blood cell, and the models that do 

not include spatial complexity may not be able to provide a proper description of the 

microphysiology of the DA neurons and EC space.   

DAT is the primary target for psychostimulants such as cocaine and amphetamine. The 

mechanism of action of cocaine is known as competitive inhibition (Beuming et al., 2008). Cocaine 

binding to DAT blocks the DA translocation pathway. Continued exposure to cocaine leads to an 

increase in EC DA concentration above the metabolic level, which in turn increases the activity 

level of DA receptors that trigger reward pathways.  AMPH has more complicated interaction with 

DAT than cocaine. AMPH is transported by DAT into the cell and interacts with various 

downstream signaling pathways such as Ca++ signaling, Rho signaling, and G-protein signaling 

pathways (Saunders et al., 2000). The activated intracellular signaling pathways regulate the state 

of DAT and activate DA efflux to the cell exterior which, in turn, affect DA receptor activation.  

Intracellular signaling is significantly more complicated than extracellular signaling since the 

number of signaling molecules is considerably more abundant in the cell, and the number of 

interactions grows exponentially.  

Memory and learning are two of the most commonly studied areas in brain research. A 

mechanism proposed to explain memory and learning is the synaptic plasticity. Synaptic plasticity 

can be defined as the strengthening or weakening of the interactions depending on the activity 

patterns of the neuron itself and its neighbors. High input frequencies result in long-term 

potentiation (LTP) which strengthen the synaptic connectivity, whereas low input frequency 

causes long-term depression (LTD) which shrink the size of the spine. One of the key molecules 

in LTP is the calcium/calmodulin-dependent kinase type II (CaMKII). CaMKII is a central piece 
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of Ca++ signaling pathways. It has many connections between several signaling molecules. More 

interestingly, CaMKII is a large complex, usually assembled as a dodecamer, and its rapid 

dissociation/association and intramolecular activation properties make it challenging to gain a 

quantitative understanding of the molecular basis of CAMKII signaling events.  

1.1 THE PROBLEM  

Modeling DA reuptake and DA neurotransmission are one of the most popular questions, and a 

significant effort has been made to build a comprehensive model at both cellular and molecular 

levels (Mortensen & Amara, 2003).  In the 1990s, a well-mixed model of extracellular region in 

the dorsal striatum to predict the time trajectory of DA concentration had been introduced (Garris, 

1994). The first DA concentration model with a spatial component is defined as óvolume 

transmissionô (VT) models (Cragg, Nicholson, Kume-Kick, Tao, & Rice, 2001; Cragg & Rice, 

2004; Rice & Cragg, 2008; Rice, Patel, & Cragg, 2011; Sulzer, Cragg, & Rice, 2016). VT models 

assume spatial/volume exclusion/transmission properties as individual parameters.  The central 

message from these models is that the consideration of realistic diffusion and reactions in EC 

microenvironment significantly affects the model predictions for DA dynamics.  However, a 

detailed model that considers both spatial complexity and localization of DAT has not been 

developed.  

Another determinant of DA dynamic is the spectrum of transitions that take place on a 

molecular level. The recent resolution of Drosophila DAT enables structure-based simulation 

studies (Penmatsa, Wang, & Gouaux, 2015). Such simulations provide significant information 

about the discrete states of DAT and the transitions among these states. The trajectories from the 
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simulations are not adequate in making predictions on the events on a timescale longer than 

microseconds, yet they can provide valuable information on the kinetics of conformational 

transitions.  

The advances in imaging technologies and modeling methods in both molecular and 

cellular level improved the accuracy and specificity of computational models. To have a better 

understanding of DA neurotransmission, the connection between these two scales using a 

multiscale modeling strategy is required. The timescale of molecular simulations is generally in 

the order of nanoseconds to microseconds, which is too short compared to cellular events that 

happen at much longer timescales such as microseconds to seconds. Also, the length scale of the 

diffusion of individual neurotransmitters is considerably more significant than the simulation 

environment that is used in molecular level simulations. Such diffusion events are generally 

ignored in molecular simulations, and molecular simulations usually place neurotransmitters in the 

close vicinity of transporter/receptor molecules. A more realistic understanding of such 

complicated systems is required to identify the defects and develop therapies for various conditions 

originating from deficiencies in DA signaling.  

DAT is the primary target of psychostimulants that are widely studied in the context of 

drug abuse (Di Chiara & Imperato, 1988). A major inhibitor of DAT is cocaine. Cocaine 

competitively inhibits DAT function to transport DA. Since cocaine is a potent inhibitor of DAT 

function, it is generally assumed that cocaine stays on DAT for hours. The effect of DAT recycling 

on the membrane and the effect of spatial complexity on the cocaine inhibition has not been 

examined. Another drug that disturbs DA signaling is AMPH. The mechanism of action for AMPH 

is more complicated than cocaine. AMPH regulates several intracellular down-stream signaling 

pathways. These complex pathways are generally studied without spatial properties due to the 
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large copy number of individual molecules. A complete picture of DA dynamics in the presence 

of psychostimulants is necessary to provide insights to design therapeutics against drug abuse. 

CaMKII has a long-lasting activity after initial stimulation by calmodulin and calcium. A 

mechanism called óCalmodulin Trappingô explains the activity. Quantitative models have been 

using this mechanism to explain the high activity levels of CaMKII observed even after the 

completion of stimulation. However, calmodulin trapping blocks the phosphorylation of CaMKII 

on a secondary threonine site and activation-triggered subunit exchange. A recent experimental 

study shows that CaMKII can be phosphorylated at two threonine sites and as a result, an 

activation-triggered subunit exchange on the holoenzymes is observed. A detailed model of 

CaMKII dynamics in the presence of subunit exchange can show how the activity spreads across 

CaMKII molecules with the help of activation-triggered subunit exchange mechanism. 

1.2 THE APPROACH 

This dissertation addresses four main problems: (1) the absence of the binding and transition rates 

of DAT, (2) the lack of the inclusion of the effect of DA neuronal spatial complexity and 

heterogeneities in computational modeling of the DA transmission, (3) the lack of complete 

spatially realistic models for DA signaling under psychostimulants and lastly, (4), the lack of 

detailed quantitative model of CaMKII interactions to explain activation-triggered subunit 

exchange.  

The first problem has been recently addressed using two rigorous methods (M. H. Cheng, 

Kaya, & Bahar, 2018): (I) alchemical free energy calculations with free energy perturbation and 

(II), the potential of the mean force calculations using adaptive biasing force methods to calculate 
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binding free energies of DA-binding and -unbinding to/from DAT. As an input to these methods, 

our coworker Dr. Mary Cheng from Bahar lab used a variety of molecular level simulations and 

generated a total of more than two microseconds long trajectories. As a result, we were able to 

estimate the energy landscape of DAT and construct a model for the conformational dynamics of 

DAT. 

The second problem has been addressed in three steps. The first step was the reconstruction 

of the 3D geometry of DA synaptic environment from electron microscopy and fluorescence 

microscopy images obtained by Dr. Alexander Sorkin and coworkers (Block et al., 2015). I 

determined the geometry of DAT expressing cells and other neurons by using semi-automated 3D 

reconstruction algorithm which uses integer programming (Turetken et al., 2016). In addition to 

geometry, the location of DAT clusters and DA active zones have been identified. The second step 

was the implementation of the DAT transition kinetics into a spatially realistic model of DA 

reuptake from DAT and determination of stochastic DA release times using different action 

potential firing frequencies and patterns. All simulations were performed in MCell, a software 

developed for spatiotemporally realistic simulations of micro physiological events near CNS 

synapses. MCell outputs the location of the individual molecules and the number of molecules in 

specified compartments. Using molecule counts, I estimated the concentration and activation 

levels of DA receptors. In addition to activation levels, I evaluated the local and global 

concentration of DA in the EC space. In the third step, I carried out MCell simulations under 

diverse conditions such as the various distribution of DAT under different DA release patterns. 

Since MCell is a spatial stochastic simulation tool, it is required to simulate the models for a 

significantly large number of times to have a proper statistical estimate. Therefore, I repeated the 

third step for more than 100 times for individual settings. MCell simulations show that the DAT 
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distribution on the cell membrane and the complexity of the cellular morphology are significant 

factors for DA reuptake efficiency. 

I addressed the third problem by extending the model developed for the second problem 

with the addition of psychostimulants. First, I studied the effect of cocaine. The mechanism of 

action of the cocaine only involves the extracellular region. Therefore, I added cocaine molecules 

with known concentrations to the system and generated trajectories. For AMPH, it is impossible 

to use a similar strategy since AMPH enters the DAT-expressing cell through DATs and disrupts 

the intracellular signaling networks. The intracellular signaling networks have many molecules 

which makes it infeasible to use in spatial stochastic simulation tools such as MCell. To this end, 

in collaboration with Dr. Bing Liu in the Bahar Lab, I build a multiscale model of AMPH-induced 

DA efflux model. The effect of localization of the DAT and concentration of AMPH with varying 

action potential firing patterns are studied. MCell simulations show that spatial complexity does 

not have a significant effect on the DA reuptake efficiency in the presence of low cocaine 

concentrations. The effect of AMPH on EC DA concentration is significantly small if the DATs 

are nonuniformly distributed due to reduced AMPH uptake rate from DAT. On the other hand, the 

EC DA concentration considerably increased under a uniform distribution of DAT since the 

AMPH uptake is more efficient and many DAT are phosphorylated and efflux DA.  

I approached the last problem by creating a model of CaMKII intra- and inter-subunit 

dynamics to reproduce the experimental data available at both short-time scales (seconds) and 

long-time scales (minutes). Since the CaMKII is structurally a dodecamer, there is a need to 

simulate the system using network-free methods instead of conventional network-based methods. 

The model calibration was performed using genetic algorithms. The CaMKII is one of the central 

molecules, and I would like to learn about the activation dynamics. However, I discovered a bottle-
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neck in the parameter calibration step.  Since the model simulations were not efficient, and the 

objective function was hard to optimize, I introduced a hybrid model checking/genetic algorithm 

strategy to overcome the computational problems. Due to technical difficulties in network-free 

simulations, the suggested hybrid model checking/genetic algorithm strategy did not converge. 

However, the application of the method on simple models show promising results and about the 

increase in efficiency with the addition of model checking.  

Multiscale models allow us to understand how the components interact with each other and 

function together, how the functionality is altered when a drug is present, and if  a protein is in a 

dysfunctional state. The molecular modeling part provides a foundation of the dynamics of 

essential molecules. Cellular simulations integrate data from various sources such as molecular 

simulations, microscopy studies, and physiological experiments to bridge different scales. The 

hybrid multiscale models can explain various events that can describe physiology in different 

length and time scales. Multiscale models enable the adoption of parameters estimated from 

molecular simulations in higher scale simulations to examine regulatory mechanisms that can 

affect the cellular system behavior at significantly long-time scales.  

1.3 HYPOTHESES AND MAJOR FINDINGS  

The main aspects of this dissertation are the introduction of a relationship between events at the 

molecular and cellular levels for DA neurotransmission, the development of a detailed spatially 

realistic reaction-diffusion model of DAT release and reuptake, and the construction of a 

quantitative and detailed model of activation triggered subunit exchange. Using literature data, 
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answers to the following hypotheses were investigated, and the following significant conclusions 

were reached:  

Claim 1. Spatial complexity of the EC region and the localization of DAT molecules are 

the two main contributors to DA release and reuptake dynamics under various neuron firing 

frequencies. The spatially realistic model and MCell simulations provide realistic and time-

dependent information on the concentration levels and distribution of DA molecules in the 

synapses.  

Claim 2. The local and global effects of the presence and the dose of the psychostimulants 

can be identified using spatial stochastic models in connection with large-scale interaction 

networks generally identified as non-spatial models. MCell simulations provided new insights on 

the inhibitory effect of cocaine on DA transmission and the complex effects of AMPH on 

dopaminergic signaling.     

Claim 3. The subunit exchange mechanism can explain how low levels of Ca++ can activate 

CaMKII for an extended period of times such as hours. Constructing and calibrating a detailed 

quantitative model of subunit exchange needs smart parameter estimation methods and network 

free simulation tools. The intrasubunit interactions and the rates of phosphorylation events should 

be recalibrated to provide a realistic description of the role of subunit exchange mechanism on 

CaMKII activation.   

1.4 SIGNIFICANCE  

DA modulates motor control, cognition, and drug addiction. Understanding the mechanism of 

dopamine transmission is essential to designing therapies for neurological disorders. I developed 
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a multi-scale model using advances in imaging and high-performance-computing technologies, 

which permitted us to perform spatially realistic simulations of DA reuptake. Simulations show 

large temporal and spatial variations in the local density of DA depending on the morphology of 

the synaptic/extra-synaptic regions near the DA release site, and on the firing pattern. DA clearance 

is less efficient under the heterogeneous distribution of DAT compared to the uniform DAT 

distribution with the same average surface density. DAT membrane distribution, accessibility of 

DAT dopamine re-uptake transporters outward-facing conformation, and large fluctuations in DA 

levels emerge as crucial features that modulate dopaminergic transmission. Psychostimulants 

significantly disrupt the EC DA concentration and DA receptor activity. Cocaine competitively 

binds to DATs and blocks the DA clearance whereas AMPH disrupts the intracellular signaling 

pathways and induces DA efflux from DATs. The DAT localization does not have a significant 

effect on the way cocaine disrupts DA signaling. Instead, the primary modulator is the 

concentration of the cocaine in the system. A The effect of DAT localization is more significant 

for the effect of AMPH due to limited uptake of AMPH under nonuniform DAT distribution.  

CaMKII is one of the critical nodes in the signaling network which can affect important 

processes such as neurotransmitter degradation and transcription factor regulation. Structurally, 

CaMKII is a dodecamer, and each subunit has many functional sites, e.g., calmodulin binding site 

and phosphorylation regions. The subunit exchange mechanism of CaMKII can explain how the 

activity of CaMKII lasts for an hour in the absence of stimulation in addition to óCalmodulin 

Trappingô mechanism. The subunit exchange mechanism is observed significantly later than the 

CaMKII activation meaning that subunit exchange takes place after CaM is released from the 

trapped state.  
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1.5 OVERVIEW  

This dissertation is organized as follows: 

Chapter 2 provides detailed information on the construction of spatiotemporally realistic 

model starting from both molecular simulation data and microscopy data.  I determined how the 

variations in the spatial complexity and structural heterogeneity affect the DA reuptake and the 

EC DA concentration at both local and global levels under various DA neuron firing patterns.  

Chapter 3 presents the alterations in the spatiotemporally realistic DA release and reuptake 

in the presence of psychostimulants such as cocaine and AMPH. The implementation of the model 

on different scales and the effect of spatial complexity are investigated.  The effect of cocaine on 

the DA signaling depends on the concentration more than the localization of the DAT. Contrary, 

the primary triggering factor for AMPH induced DA efflux is the process of AMPH uptake. Since 

the nonuniform distribution of DAT has a low AMPH uptake rate, the effect is minimal under 

nonuniform DAT distribution. However, there are significant differences in the extents of DA 

clearance and DA efflux with different DAT distributions. In the end, the two alterations neutralize 

the total effect.  

Chapter 4 presents a detailed quantitative model of activation-triggered subunit exchange 

for CaMKII. I created the model and performed a parameter scan to check the validity of the model 

on the experimental data. The initial model does not capture the activation-triggered subunit 

exchange. Hence we calibrated the model parameters using genetic algorithms. Due to the complex 

nature of the optimization problem, a scalable heuristic optimization technique with genetic 

algorithms is used. The genetic algorithms have a significant overhead due to the entire trajectory 

generation at each step. To increase the efficiency and the accuracy of genetic algorithms, a hybrid 
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online model checking/genetic algorithm is implemented. The method showed promising results 

on simple models, but technical issues with the simulation engine prevented application to the 

CaMKII model.
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2.0 HETEROGENEITIES IN A XONAL STRUCTURE AND TRANSPORTER 

DISTRIBUTION LOWER D OPAMINE REUPTAKE EFF ICIENCY  

2.1 BACKGROUND  

Midbrain dopaminergic neurons have a strong influence on striatum functions such as motor or 

action planning, cognitive functions, and motivation (Roeper, 2013). Dysregulation of 

dopaminergic transmission leads to impairment of these activities, resulting in disorders such as 

Parkinsonôs disease (PD) (Hoang, 2014), attention-deficit/hyperactivity disorder (ADHD) (Wu, 

Bellve, Fogarty, & Melikian, 2015), and drug addiction (Nutt, Lingford-Hughes, Erritzoe, & 

Stokes, 2015). A mechanistic understanding of dopamine (DA) transmission events is essential to 

developing therapeutic strategies because many behavioral states strongly correlate with DA 

release and reuptake (Sulzer et al., 2016; Tsai et al., 2009). 

DA release to the synapse is activated by excitatory stimulation and exhibits patterns like 

neuronal firings. DA excitatory signaling proceeds by activation of DA receptors upon binding 

DA molecules. DA rapidly diffuses from the active zone (AZ), or release site, to extra-synaptic 

regions in the extracellular (EC) medium. DA transporters (DATs) membrane proteins usually 

located on the surface of presynaptic axon terminals, regulate DA signaling by removing excess 

DA from extra-synaptic regions (Torres et al., 2003; Vaughan & Foster, 2013). DATs are targets 

for addictive substances, which inhibit their function (Amara & Sonders, 1998), thus resulting in 
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excess (neurotoxic) DA levels in the EC region (Di Chiara & Imperato, 1988), whereas low levels 

of DA cause motor impairments associated with PD (Lotharius & Brundin, 2002).  Also, reuptake 

by DATs,  the rate of DA diffusion from the AZ to the extra-synaptic region (Taylor, Ilitchev, & 

Michael, 2013), and the frequency and patterns of action potentials (APs) (Tsai et al., 2009), are 

known to modulate the efficiency of DA signaling.  

The dynamics of DA reuptake by DATs has been a focal topic in modeling efforts, both at 

the cellular and molecular levels (Mortensen & Amara, 2003). Early efforts at the cellular level 

adopted a well-mixed model focusing on predicting the DA concentration in some areas of the 

brain, such as the nucleus accumbens or dorsal striatum (Garris et al., 1994). The effect of EC DA 

concentration on the activation of DA receptors (Viggiano, Vallone, & Sadile, 2004), as well as 

spatial/volume exclusion/transmission properties affecting EC DA levels, have been included in 

later, volume transmission (VT) models (Cragg et al., 2001; Cragg & Rice, 2004; Dreyer, Herrik, 

Berg, & Hounsgaard, 2010; Dreyer & Hounsgaard, 2013; Rice & Cragg, 2008; Sulzer et al., 2016). 

These studies highlighted a need for considering the distinctive diffusion and uptake characteristics 

of the EC microenvironment. No quantitative models/simulations have been developed/performed 

to date that would permit us to assess how the complex geometry of DA terminals, and the spatial 

distribution and conformational dynamics of DATs alter dopaminergic signaling. The advances in 

imaging DA neurons and visualizing individual DATs (Block et al., 2015) now enable us to 

reconstruct in silico the detailed morphology near AZs, and examine the time evolution of DA 

release and reuptake with the help of MCell, a software initially developed (Czech, Dittrich, & 

Stiles, 2009; Kerr et al., 2008; Stiles, Van Helden, Bartol, Salpeter, & Salpeter, 1996) for 

spatiotemporally realistic simulations of synaptic signaling events.  
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In addition to cellular structure and heterogeneities, the conformational dynamics of DATs 

is a determinant of DA transport efficiency. Recent crystal structures of Drosophila DAT (dDAT) 

(Penmatsa et al., 2013; Penmatsa et al., 2015; Wang et al., 2015), have opened the way to structure-

based studies of DAT dynamics. Simulations based on these structures helped elucidate the 

sequence of molecular events that take place during the transport cycle of the human orthologue, 

hDAT (Mary Hongying Cheng & Bahar, 2015; Mary Hongying Cheng, Torres-Salazar, Gonzalez-

Suarez, Amara, & Bahar, 2017; Huang & Zhan, 2007; Khelashvili et al., 2015; Razavi et al., 2017). 

We are now able to make reasonable approximations for the kinetic scheme and parameters 

associated with the DAT transport cycle based on statistical analyses of the full-atomic trajectories 

and free energy calculations. 

Here, I present an integrated model of synaptic signaling in DA neurons developed from 

cellular and molecular structures and molecular dynamics.  We investigate the effects of (I) the 

conformational kinetics of DATs, (II) the spatial complexity of DA terminals and AZs based on 

fluorescence images, (III ) the firing patterns, phasic vs tonic and (IV), the heterogeneous 

distribution of DATs on the plasma membrane based on experimentally observed DAT density 

fluctuations. Simulations reveal the strong dependency of local DA levels as well as overall DA 

clearance efficiency on the local geometry of axon terminals. They also reveal that the presence of 

DAT clusters (consistent with the DAT density heterogeneities observed in high-resolution images 

(Block et al., 2015)) causes a reduction in the efficiency of DA reuptake compared to uniformly 

distributed DATs with the same average surface density. This effect becomes more pronounced 

with increasing heterogeneity of the surface distribution of DATs.   



 

  18 

2.2 METHODS 

2.2.1 Confocal imaging of immunolabeled DATs in transgenic mouse brains  

The procedure for preparing and imaging acute brain slices from transgenic knock-in mice of either 

sex expressing DAT molecules tagged with the hemagglutinin-A (HA) epitope (HA-DAT; (Rao, 

Richards, Simmons, Zahniser, & Sorkin, 2012) has been described in previous works (Block et al., 

2015; Rao, Sorkin, & Zahniser, 2013). Briefly, brains were submerged into an ice slush of 

oxygenated artificial cerebrospinal fluid, and 0.8 mm thick sagittal slices were cut using microtome 

blades and a stainless-steel slicing block. The subcellular localization of cell-surface HA-DAT 

molecules was deduced from intact living DA neurons in acute sagittal brain slices as detected by 

mouse anti-HA antibodies with Cy3-conjugated anti-mouse antibodies (Block et al., 2015). Slices 

were incubated in artificial cerebrospinal fluid (ACSF) at room temperature with one µg/ml mouse 

anti-HA antibodies for 1 hour. After removing unbound antibodies, slices were incubated for one 

hour at 4°C in ACSF with 2.5 µg/ml Cy3-conjugated anti-mouse Fab fragments.  

Dr. Sorkin and coworkers have not observed substantial differences in HA-DAT 

distribution between live-cell and post-fixation labeling with HA antibodies, suggesting that 

axonal varicosities revealed by DAT staining were not the result of blebbing during the labeling 

procedure of live slices. The binding of antibodies to live neurons followed by fixation provides 

much superior image quality and lower signal-to-noise ratio as compared to the conventional 

protocol of fixation first and then staining with antibodies. Importantly, live-neuron staining 

protocol allows labeling of cell-surface DATs, which is essential for defining the distribution of 

DATs on the neuronal surfaces in the model.  Observations of DAT endocytosis (Block et al., 
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2015), normal lateral membrane mobility of DAT, and healthy mitochondria in dopaminergic 

neurons from slices kept alive for at least two hours were indicative of functional neurons in these 

slices. Moreover, DA neurons labeled as described above have been observed to exhibit pH-

dependent vesicular trapping of antipsychotic drugs (Tucker, Block, & Levitan, 2015). 

Dr. Sorkin and coworkers obtained high-resolution 3D images of DA neurons, and a z-stack of 18 

confocal images at 400 nm interstack distance was acquired 10 µm deep from the cut face of the 

slice through the 561 filter channel using a spinning disk confocal system based on a Zeiss Axio 

Observer Z1 inverted fluorescence microscope (with 63x Plan Apo PH NA 1.4 objective), 

equipped with a computer-controlled Spherical Aberration Correction unit, Yokogawa CSU-X1, 

Vector photo manipulation module, Photometrics Evolve 16-bit EMCCD camera, Hamamatsu 

CMOS camera, environmental chamber, and piezo stage controller and lasers (405, 445, 488, 515, 

561, and 640 nm), all controlled by SlideBook 6 software (Intelligent Imaging Innovation, Denver, 

CO).  

The image reconstruction and modeling described below are based on the combined use of 

slices of light microscopy images and electron microscopy images (Block et al., 2015) (Block et 

al., 2015) that were obtained on intact animals after cardioperfusion fixation by Sorkin and 

coworkers. 

2.2.2 In silico reconstruction of DA axonal terminals in the striatum 

I reconstructed in silico a 10 µm x10 µm x 7.2 µm volume from the above described striatal region 

using a semi-automated 3D reconstruction algorithm (Turetken et al., 2016). The 3D 

reconstruction algorithm uses integer programming to suggest the connections between the borders 
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of the cell membrane on each confocal image. Manually, suggested cells are a match, and the 3D 

geometry of DAT-expressing cells are generated. A detailed description of the reconstruction 

method is available in Fiji tutorials (ImageJ). The size of the simulation box was large enough to 

allow for  the diffusion of DA over a sufficiently broad EC region, in accord with previous 

estimates (Venton, Michael, & Wightman, 2003), and the reconstruction yielded a realistic 

representation of both the heterogeneous shape of axonal terminals and the surface distribution of 

individual DAT molecules.  
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Figure 1. Reconstruction of the morphology of DA neuronal axons 

A, HA-DAT distribution in different regions of mouse brain including midbrain (mb) and striatum (str) 

acquired from sagittal slices. The slices were labeled with HA11 antibody detected with Cy3-conjugated Fab IgG 

fragments (HA, red). Nonspecific staining of the vasculature (vasc) is also highlighted. White scale bar, 2 mm. B, 

Maximal-projection image of the first five (starting 10 m deep from the edge of the slice) confocal sections of the 3D 

image from the striatal region. The slice labels are same as those in A. Green scale bar, 10 m. C, Maximal projection 

of the first five sections of 3D image of the small striatal region, used to construct the simulation environment (inset), 

magnified from B. Blue scale bar, 1 µm. D, 3D reconstruction of the region shown in C, visualized using CellBlender 

(Bartol, Keller, et al., 2015), an add-on for Blender 2.78 (http://www.blender.org). Different colors refer to 13 different 

axonal varicosities (DA terminals). Cells that do not express DAT occupies the remaining portions. The location of 

six AZs is shown by the labels 1ï 6. The dashed line indicates an AZ that is not visible from this perspective. E, Full 

isometric view of the simulation box. White circles indicate the locations of three AZs. 
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Table 1. Geometric characteristics of axon terminals reconstructed for simulations. 

Subsystem V(µm)3 

Surface 

area (µm)2 

Available (3) 

Surface area (µm)2 

D
A

 a
x
o

n
s 

Terminal 1 1.22 6.8 5.47 

Terminal 2 24.63 59.47 53.83 

Terminal 3 3.53 20.18 18.03 

Terminal 4 15.84 56.33 51.11 

Terminal 5 4.72 25.14 25.14 

Terminal 6 1.71 10.12 10.12 

Terminal 7 0.82 5.57 5.57 

Terminal 8 2.04 12.94 12.94 

Terminal 9 15.32 46.86 39.08 

Terminal 10 15.18 58.65 55.5 

Terminal 11 3.85 18.99 18.98 

Terminal 12 9.69 34.31 31.75 

Terminal 13 2.58 12.35 9.64 

Total  101.03 367.71 337.16 

 

Non-DA expressing cells 

 

463.62 1058.00 0 

DA axons + other cells 564.65 1425.71 337.16 

Available EC volume (2) 155.35 

 

The reconstructed region contained 13 axon terminals (Figure 1B). The corresponding 

volumes and surface areas (listed in Table 1) were calculated using the NeuroMorph (Jorstad et 

al., 2015), a Blender add-on that uses triangular meshes to evaluate the surface area and 

corresponding normal to determine the volume of each tetrahedron. The total volume occupied by 

the 13 axon terminals was 101.03 µm3, and the corresponding total surface area, 337.16 µm2.   
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The DA axonal terminals reconstructed in silico contained six varicosities, i.e., 3D globular 

regions with densely expressed DATs, distributed over three DA terminals: one of the largest 

terminals had three varicosities, another had two, and the remaining varicosity was on a third 

terminal. AZs lie within varicosities but are not usually populated with DAT molecules (Block et 

al., 2015); accordingly, sub-regions (of varicosities) which lacked DAT molecules within at least 

a 50 nm radius were identified as AZs. The region between DAT-expressing cells (detected by 

fluorescence microscopy) and others, (not visible), was represented by an interstitial (void) space 

of 30 nm thickness surrounding the DAT-expressing terminals (Figure 1E). The void fraction is 

calculated as 0.21, consistent with previous estimates (Cragg et al., 2001), or an overall volume of 

155.35 µm3 (Table 1) that formed the available for DA diffusion. These narrow regions form the 

synaptic clefts and extra-synaptic regions available for the diffusion of DA molecules.  The number 

of AZs for a given volume was verified to be comparable to that used in other studies (Dreyer et 

al., 2010). 

2.2.3 Distribution of DATs on the axonal surfaces 

Next, I proceeded to the placement of DAT molecules on the membrane of axonal terminals. To 

investigate the effect of DAT surface distribution heterogeneities on the efficiency of DA reuptake, 

I examined four cases (Figure 2). Case 1 refers to the uniform distribution (Figure 2A), taken as 

r(DAT) = 800/µm2, based on the electron microscopy images of gold particle labeled HA-DAT, 

assuming 10% labeling efficiency (Block et al., 2015). Case 2 is a non-uniform (bimodal) 

distribution (Figure 2B), outlined in accord with the actual distribution of DATs observed in 

experiments. High-density regions were detected in the fluorescence images, as continuous bright 

regions (Figure 1C). These regions covered ~10% of the plasma membrane area, and 
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approximately 90% of DATs were localized in these regions.  The surface densities of DATs in 

the high- and low-density regions were taken as rh = 6,339/µm2 and rl = 50/µm2, respectively.   

 

 

Figure 2. Four space-dependent models of different plasma distributions of DATs 

AïD, Distant (left) and magnified (right) view of the axon terminals in cases 1ï 4. Each color shows a 

different terminal, and the red dots represent the DATs. The white regions in A represent the regions with high 

fluorescence intensity, and those regions are filled with a high density of DATs (red dots), magnified in B, where the 

blue region shows the AZ. The red patches in BïD illustrate high-density regions where 90% of DATs are clustered. 

EïH, Distance distribution of DATs to closest AZ center, from 140 independent simulations. 



 

  25 

Table 2. Parameters and properties used in MCell simulations 

Parameter Value Unit Reference 

DA diffusion coefficient 4.00 x 10-

6 

cm2/s (Rooney & Wallace, 2015) 

Vesicle release probability 0.06  

(Dreyer et al., 2010) 

 
The average firing rate of DA 

neurons 

4.00 Hz 

# of DA released per release event  3,250  (Pothos, Davila, & Sulzer, 1998) 

OF Ą OF* rate constant (k12)  9.60 x 

106 

M-1s-1 

(M. H. Cheng et al., 2018) 

OF* Ą IF* rate constant (k23)  20.00 s-1 

IF* Ą IF rate constant (k34)  5.00 s-1 

IF ҭ  OF forward rate constant (k41) 2.00 s-1 

IF ҭ  OF reverse rate constant (k14) 8.00 s-1 

Total axonal surface area 337.16 µm2 

(Block et al., 2015) 

Uniform DAT surface density, 

r(DAT)   

800 1/µm2 

High DAT surface density, rh (DAT)   6,339 1/µm2 

Low DAT surface density, rl(DAT)   50 1/µm2 

Very high DAT surface density, 

rh2(DAT)   

30,000 1/µm2 
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DA density of neurons, IDA 9.3 µg/cm3 (Bannon, Michaud, & Roth, 

1981) 

The ratio of the total DA released per 

AP 

0.05%  (Gubernator et al., 2009) 

Density of DA terminals, rterm 0.104 1/µm3 (Doucet, Descarries, & Garcia, 

1986) 

 

In Case 3, the distribution is again bimodal, similar to Case 2, but the central parts of the 

high-density regions from Case 2 are selected as the new very-high-density regions, with rh2 = 

30,000/µm2; and rl = 50/µm2 elsewhere, which leads to a sharper heterogeneity in the spatial 

distribution of DATs (Figure 2C). In Case 4, DATs are assumed to be clustered in the immediate 

neighborhood of AZs, as a mimic for conventional synaptic models where DATs act as gatekeepers 

near the synaptic cleft (Figure 2D) (Danbolt, 2001; Rothstein et al., 1994); and DAT surface 

concentrations in high- and low-density regions are the same as in Case 3. The histograms in Figure 

2E-H describe the probability distribution of the distances of DAT molecules from the closest AZ.  

2.2.4 MCell  simulations of DA release and reuptake events in DA neurons 

Spatiotemporally realistic simulations were performed using MCell (Kerr et al., 2008; Stiles et al., 

1996), a 3D reaction-diffusion system solver that allows users to reconstruct complex geometries, 

define the subcellular localization of discrete molecules, and simulate their dynamics. There are 

four levels in the MCell simulation algorithm. The first level is the diffusion of the molecules in 

2D and 3D. For diffusion of volume molecules, the direction and the length of the diffusion path 
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is determined using Monte Carlo methods. The probability distribution of the length of diffusion 

for a given time step is determined using the following equation:  

Equation 1 

”ὶȟὸ
ρ

τ“Ὀὸ
Ὡ  

where (r) is the distance a volume molecule traveled at the time step (t) and (D) is the diffusion 

coefficient of the volume molecule. For determination of the direction of the diffusion, two angles 

for the spherical coordinates are calculated. First, the azimuthal angle ◖ is sampled from a uniform 

distribution between 0 and 2́. The distribution for the polar angle is sinusoidal and generated 

using  inverse transform sampling. The surfaces in MCell are divided into triangular tiles. In the 

2D diffusion, like the 3D diffusion, a direction is selected in the plane of the tile that molecule 

resides. The molecule diffused in 2D using the similar strategy that is described for volume 

molecules. When the molecule changes a tile, the direction vector is transformed to the local 

coordinate system on the next tile.  The second level of the simulation algorithm is the collision 

detection step. The collision detection is performed completely based on the distance between 

molecules. If the distance between two particles is less than a predefined collision radius, the 

molecules are evaluated for a bimolecular reaction. The third level of the MCell algorithm is the 

evaluation of bimolecular reactions. The propensity of each reaction is calculated using the bulk 

rate of each reaction. To obtain the correct bulk rate, a proper probability of reaction per collision 

should be selected. This value is determined by the following formula:  

Equation 2 
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where (k) is the observed reaction rate, (A) is the tile area or cross-section of 3D diffusion. For 

surface volume reactions the probability per collision is defined as:  

Equation 3 
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For the surface to surface reactions: 

Equation 4 
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For the volume to volume reactions: 

Equation 5 
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If the calculated probability is larger than 1, the reaction becomes diffusion limited, and if 

the collision occurs, the reaction is triggered. If the molecules are not part of a reaction, they can 

be part of unimolecular reactions. The fourth step of the MCell algorithm is the unimolecular 

reactions. In MCell, when a molecule is created, the time of next unimolecular reaction is identified 

using Gillespieôs stochastic simulation algorithm. If the molecule does not undergo a bimolecular 

reaction, a unimolecular reaction occurs at the time calculated at the creation time.  

There are a lot of diffusion and reaction parameters in MCell simulations, and the parameters used 

in the simulations are given in Table 2. Unimolecular reactions are scheduled according to defined 
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reaction rates, and bimolecular reactions occur with predefined probabilities that are chosen to 

match bulk reaction rates. Collisions between molecules are detected by ray tracing algorithm. We 

adopted Neumann boundary conditions like those used in recent simulations of Ca++ signaling 

(Bartol, Keller, et al., 2015), i.e., DA molecules are subjected to reflective boundary conditions at 

the simulation box walls. In addition, to reduce the bias from reflective boundaries, terminals 

within 1 µm from the box boundary were assumed to be inactive, such that the available surface 

area on DA axon terminals was 337.16 µm2 (see Table 1). A detailed description of the MCell 

algorithm is provided in Appendix A.  

The probability of a release succeeding an action potential depends on multiple factors 

(Dreyer et al., 2010), including the content of DA in the striatum (IDA) (Bannon et al., 1981), the 

ratio of the amount of total DA released per action potential (R) (Gubernator et al., 2009), the 

volumetric density of DA terminals at AZs (rterm) (Doucet et al., 1986) and the number of DA 

molecules released per quantum (N0) (Pothos et al., 1998). The parameters are given in Table 2, 

which yielded a release event probability of 6% (Dreyer et al., 2010). Each AZ has a release site 

located at its center; and upon a release event, a total of N0 DA molecules is assumed to be released 

from the release site. The MCell algorithm is applied to DA molecules with a fixed time step of Dt 

= 0.1 µs. The distribution of DA step sizes yielded an average of 13.3 nm using a DA diffusion 

coefficient of 4 x 106 cm2/s. A time-step of 100 µs was used for the slow events such as the 

transition of DAT to reuptake-ready (EC-exposed outward-facing) state. 140 independent runs, 

each of 10s, were performed to extract statistically significant results.  
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2.2.5 Conformational dynamics of DAT  

The recent dual-boost accelerated molecular dynamics (aMD) (Hamelberg, de Oliveira, & 

McCammon, 2007; Miao, Nichols, Gasper, Metzger, & McCammon, 2013) and conventional MD 

(cMD) simulations of DAT dynamics performed by Dr. Mary Cheng in the Bahar Lab showed that 

the DA transport cycle by DAT can be approximated by four necessary steps (Figure 3) (Mary 

Hongying Cheng & Bahar, 2015; M. H. Cheng et al., 2018): (1) recognition and binding of DA 

(and co-transported Na+ ions) from the EC region to DAT in the outward-facing (OF) state. We 

designate the substrate- and Na+-bound (or loaded) OF state as OF*; (2) global structural change 

of DAT from OF* to inward-facing loaded (IF*) state; (3) release of cargo to the IC region (IF* 

Ą IF); and (4), reverse transition of the unbound/apo DAT from IF to OF state. The respective 

forward rate constants are denoted as k12, k23, k34, and k41, and reverse rate constants are k21, k32, 

k43, and k14 (Figure 3).  
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Figure 3. Schematic representation of the sequence of events occurring during the transport cycle 

A succession of four major states is observed in MD simulations: unbound and DA/ion-bound outward-facing 

states (OF and OF) followed by unbound and bound inward-facing states (IF and IF). The corresponding hydration 

patterns (water molecules in white and pink spheres) and interactions of intra- and extracellular gating residues (R85-

D476 and R60-D436, respectively, in stick representation) are displayed. Green arrows indicate the transitions that 

were observed and evaluated in molecular simulations (see Table 2). The events indicated by the red arrows were 

unlikely (k21) or not observed (k32 and k43) in MD runs. Curved arrows refer to the binding or unbinding of DA (purple, 

space filling), cotransported Na ions Na1 and Na2 (yellow spheres), and the chloride ion (blue sphere). 

 

The molecular events of DA binding and unbinding to DAT generally involve local 

conformational changes, and their energetics can be estimated using established free energy 

calculation methods. Two methods have been used: (I) alchemical free energy calculation with 
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free energy perturbation (FEP) method (Pohorille, Jarzynski, & Chipot, 2010), and (II), potential 

of mean force (PMF) calculations using the adaptive biasing force (ABF) method (Chipot & Hénin, 

2005), based on cMD trajectories. The FEP calculations yielded a binding free energy change of 

ȹGbind = ī7.8 kcal/mol (M. H. Cheng et al., 2018) in excellent agreement with the experimental 

value of ī7.4 kcal/mol (Dar, Metzger, Vandenbergh, & Uhl, 2006; Huang & Zhan, 2007). MD 

simulations indicated that the average time required to bind DA molecule originally placed at a 

distance of 15 Å from the binding site is approximately 125 ns. To convert this number into the 

binding rate constant k12, we performed the following: First, using an EC DA concentration,7.5 

nM (Feifel, Shilling, Kuczenski, & Segal, 2003) we calculated the density of DA molecules to be 

7.5 10-9 moles/nm3 x 6.02 x 1023 molecules/moles = 4.5 x 10-9 molecules/nm3.  The free volume 

(excluding that occupied by DAT itself) for DA translocation originally located at a separation of 

15Å from the binding is evaluated to be 2 nm3 using POVME (Durrant, de Oliveira, & 

McCammon, 2011). The number of DA molecules colliding with DAT based on this accessible 

volume is 2 nm3 x 4.5 x 10-9 = 9 x 10-9, which also represents the prior probability/frequency of 

collision of a given DA molecule. This leads to an effective binding time of 125 ns / 9 x 10-9 = 

13.88 s. By normalizing with respect to EC DA concentration, the bimolecular reaction constant 

is determined as (1/13.88 s) / 7.5 x 10-9 = 9.6 x 106 M-1s-1. 

Dr. Mary Cheng and I further observed that (I) the binding of Na+ ions was fast (< 100 ns) and the 

subsequent binding of DA readily prompted the closure of the EC gate such that the escape of DA 

(and ions) back to the EC region was negligibly small, i.e. k21 << k12; (II ) no DA efflux to EC 

region was detected (i.e., k43 = k32 å 0); (III ) the DA-free (with Na+/Cl- bound) OF­IF transition 

(k14) was two to three times slower than that in the DA-loaded transition (k23); Na+- and substrate-

binding allosterically promoted a cooperative transition to IF* state (Cheng and Bahar, 2015; 
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Bahar et al., 2015), but such cooperativity was not observed in the apo state, and (IV), the DA-free 

IF­OF transition (k41) was even slower than the OF­IF transition (k14) due to the difficulty in 

closing the intra-cellular gates (M. H. Cheng et al., 2018). The global OF Ú IF transition rates 

were thoroughly examined in microseconds aMD simulations of DA-free DAT, which showed 

that the population of reuptake- ready (OF) conformers was lower than that of IF (or other 

intermediate) conformers by a factor of 4, or k14/k41 å 4 (M. H. Cheng et al., 2018). These 

considerations provided us with robust information on the relative rates of the individual steps and 

led to the rate constants in Table 2, the absolute values of which were verified to be compatible 

with experimentally observed turnover rates and steady-state concentrations of DA molecules.  

To investigate the sensitivity of DA reuptake efficiency to DAT conformational kinetics, 

we also performed global sensitivity analysis with respect to rate constants in Figure 3. We 

performed 729 independent runs with different combinations of k12, k23, k34, k41, and k14, which 

we varied by three orders of magnitude. The results are presented in Figure 4. Each blue dot 

represents the outcome, EC DA concentration in the simulation box, [DA]EC, from one run. A 

broad range of [DA]EC values, from 0.1 nM to more than 100 nM, are observed. Yet, an increase 

in DA binding rate k12 results in a more efficient clearance and thereby lowers the DA levels in the 

EC region (Figure 4A). A similar trend is detected with an increase in the transition rate k41 from 

IF to OF, which exposes more reuptake-ready DATs to the EC region (Figure 4C), and the reverse 

transition induces the opposite effect (Figure 4D). An even sharper effect is observed upon plotting 

[DA] EC against the ratio k14/k41 highlighting the importance of the equilibrium population of the 

OF and IF states of DAT after releasing its cargo (Figure 4E). The examination of the relative 

effects of DA binding (k12) versus back transition to the IF state (k14) for the OF DAT also indicates 

that the OF DAT level is a major determinant of [DA]EC (Figure 4F). Further quantitative 
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assessment of the statistical significance of these observations using Spearman rank correlation 

coefficients confirmed that the binding rate constant k12 and the ratio k14/k41 are two major 

determinants of DA clearance efficiency. No clear effect was seen for k23 (Figure 4B) or k34 (data 

not shown).  

 

Figure 4. Results from global sensitivity analysis performed for kinetic parameters representing DAT 

conformational dynamics 

Yellow dots represent the default parameters used in the present study, and blue dots show the results 

obtained by using as random input combinations of the parameters (k12, k23, k34, k41, and k14) and their ratios. Results 

for k34, which are very similar to those for k23, are not shown. The red curves indicate the mean values and the standard 

error for successive bins of width 0.5. The Spearman correlation coefficients are ï 0.71, 0.01, ï 0.01, ï 0.44, 0.44, 

0.63, and ï 0.48, in the six respective panels. 
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2.3 RESULTS 

2.3.1 In silico turnover and [DA] EC at half-maximal-rate conform to experimental data  

We first verified that MCell simulations yielded macroscopic properties consistent with 

experimental data. We calculated the turnover rate by adopting in simulations, the same protocol 

as that adopted in experiments (Rao et al., 2013): multiple runs are performed for a series of initial 

concentration of DA in the EC region, [DA]0, and in each case, the mass of DA molecules 

transported per unit time is measured. The number of DA molecules transported per second, Vmax, 

under saturation conditions ([DA]sat is of the order of tens of µM) is used to evaluate the turnover 

rate as the ratio of Vmax to the total number Bmax of DAT molecules present in the system. In a 

simulation environment, Bmax å 220,000, based on fluorescence microscopy data (Block et al., 

2015). To evaluate the turnover rate in silico, we counted the number of DAs transported as a 

function of [DA]0 and examined for each concentration the number of DAs translocated per 

second. This led to a reuptake rate of 1.2 x 105 DAs/s at saturation (Vmax). Division by Bmax gave 

a turnover rate of 0.55/s, which is comparable to the reported values of 0.2/s (Rao et al., 2013), 

0.9/s (Prasad & Amara, 2001) and 1.8/s (Beuming et al., 2008; Prasad & Amara, 2001; Rao et al., 

2013).  

The average DA level in the EC medium, [DA]EC, observed in silico after reaching steady-

state conditions was 7.8 nM (Figure 5A). The physiological concentration of DA in the striatum 

varies between 5 nM and 50 nM (Owesson-White et al., 2012), consistent with the large 

fluctuations (of the order of ȹ[DA] EC å Ñ 10 nM) we observed  in [DA]EC. Note that the saturating 

concentration for DATs is estimated to be ~ 10µM (Prasad & Amara, 2001; Rao et al., 2013). 
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Simulations yielded a substrate concentration at half-maximal-rate, Km value, of 2.2 µM, which 

falls within the broad range of reported experimental values of 50 nM to 6.6 µM (Beuming et al., 

2008; Prasad & Amara, 2001; Rao et al., 2013). These data confirm that the MCell model and 

simulations reproduce macroscopic quantities consistent with observables such as the average DA 

concentration in the EC region at half maximal rate, and the overall turnover rate. We now proceed 

to a closer examination of microscopic properties. 

 

Figure 5. Time evolution of DA concentration and DAT conformational states averaged over 140 

independent MCell runs 

A, Extracellular DA concentration, [DA]EC. The average concentration reached under steady-state conditions 

is 7.8 nM, and the standard deviation of the concentration is indicated by the shaded region is [DA]EC 10 nM. B, the 

number of DAT molecules, in the unbound inward- or outward-facing state (IF: red; OF; blue), denoted as N(IF) and 

N(OF), respectively, as a function of time. C, D, The average numbers of DATs in substrate-bound OF and IF states, 

N(OF) and N(IF), respectively. The light blue bands show the variance observed in multiple simulations. 
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2.3.2 DAT conformers reach a dynamic equilibrium within hundreds of milliseconds.  

First, I examined the equilibration of the simulated system under the uniform surface distribution 

of DAT molecules on the axonal membrane. The four snapshots in Figure 6 illustrate the initial 

DA release events and the gradual equilibration of the conformational states of DATs. All DAT 

molecules are assumed to be in the OF state at t = 0 (white dots on the surface of the terminals). 

Simulations start with a first release event (at AZ 1; Figure 6A), followed by firings with Poisson 

distribution. The released DA molecules (red dots) rapidly diffuse to the vicinity of the release 

site, as illustrated in the snapshots at t = 1 and 5 ms (Figure 6B-C). At t = 700 ms, we observe a 

broad spatial distribution of DA (Figure 6D).  
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Figure 6. Snapshots from MCell simulations of DA release and reuptake by DATs on DA terminals. 

Snapshots from an equilibration simulation of 1 s, initiated by a release event at t=0, and followed by AP 

firings at 4-Hz frequency are displayed, visualized using Blender. Color code: red, DA; white, OF DAT; green, IF 

DAT. The purple region shows an axon terminal that is inactive during the simulations. Initially, all DATs are in the 

OF state (A). A release event at 1 ms is shown in B, and another at 5 ms (C), where most of the DATs reside in the 

OF state. DA molecules diffuse to extra-synaptic regions in 10 ms. D, the high population of DATs in the IF state 

reached 700 ms. 

 

Figure 6D shows that most of DATs reside in the IF state (colored green) at t = 700 ms. 

This is consistent with the equilibrium probabilities of the four DAT conformers (19.86% OF, 

79.90% IF, 0.05% OF* and 0.19% IF*) which is reached within 500 ms. Figure 5B-D displays the 

time evolution of the population of the different states of DAT averaged over 140 independent 

runs of 10s duration each. Most of the DATs fluctuate between unbound OF and IF states, while 

the bound states (OF* and IF*) are short-lived. Due to their scarcity, the numbers of DATs in IF* 




















































































































































































































