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MULTISCALE MODELING OF NEUROBIOLOGICAL SYSTEMS

Cihan Kaya, PhD

University of Pittsburgh, 2018

The centrahervous systefCNS)is one of thenost complicated living structusen the universe.
A single gene expression, tlexpression levebf a single protein orthe concentration of a
neurotransmitter could regulate the entire functionatitythe CNS The CNS need to be
investigatedas a muiscale system with connectioreamong different levels. The existing
technology significantly limits experimentsiudies andcomputationamodeling is a useful tool
for understanishg how parts are connected, regulat@ad function togetherdeally, thegoal is to
develop unifieccomputationamethodologiedor exploringbiological systemsat multiplescales
ranging from molecular to cellular to tissue levé¥hile rigorous models haugeen developedt
the molecular scaldigher level approaches uslyauffer from lack of physical realism and lack
of knowledge on model parametekéolecular level studies can help to define reaction schemes
and parameters which coub@ usedn cellularmicrophysiologymodels and imagedataprovide

a structural basis faeconstructing theurroundings of the cellular system of interest.

This dissertationlevelopsand tests a new multiscale model of dopaminesigisalingand
a detailed model dheactivationtriggered subunit exchangeectanism of calcium/calmodulin
dependent kinase type Il (CaMKIIThe goal is to develop and usmmputational model$o
understandhe molecular mechanisms of neurotransmission, and how disrsiptiap cause
complexdisorders and conditiorsuch as drug abasThe simulationf the dopamine (DA)

signaling modekhow that the addition of the geometry of the environment and localization of



individual molecules significantly affect the DA reuptake. Consequently, the formation of DAT
clustersreduce theDA clearance rate and increases DA receptor actiltgddition,the effects

of the psychostimulants such as cocaine and amphetaargnalso investigatedConstructed
model andmethod can potentially serve asiarsilico microscope to understand the molecular
basis of signaling and regulation events in the CQ8&libration of CaMKII modekhows the
limitations of the current parameter estimation methods for large biological models with long
simulation times such as houiide high dimensional parameter space tedimited and noisy

data makes the parameter estimation task a challenge.
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1.0 INTRODUCTION

The human brain is one of the most complex livstgicturesn the universe.The human brain
can store morenformation than any supercomputand the connections in the brdiaingmore
extensivethan any social netwottkata human can imagind@he advances in technologyovide
us with much useful informationabout the way brainvorks and thereare manyunresolved
guestions such as how it controls all the other organs and povcéssememories and emotions.
The brain plays a central rol@ many behavioral conditionanddefect#disruptions in the brain
cancause over ,000 disordersBrain disordersaffect approximatelpnesixth of the population

and cost billions of dollars tineeconomy.

As in the case of any complex systeiting brain has a lot of heteroggsusandmoving
parts.It hasvariouscell types and eacleell functionsin different wayg (Churchland & Sejnowski,
2016) As an example, hippocampal neurtrase a lengtlof the orderof micrometerqum 6, and
theymakemanyconnections with othareuronswhereasciaticneuroncango up to a metdong
and thetotal number of connections may not be as large as a hippocampal (&atten 2002)
The functional differencegre not only causday the lengthof scale othe numberof connections
butalsocanbe identifiedwith low-level components such as the neurotransmiytes titslocation

in the brainor the primarytype of neurotransmittetransporter thathe neuronexpresses.



In the central nervous systenCNS) neurons are connected through synapsesl
signaling at synaptic connectiois one of theprimary processes thanediatebrain function
(Shepherd, 2003Pue totheimportanceof synapses the CNSfunction, a significant portion of
neurodegemativedisorderss uc h  as P ar kordug abus&an batauseddyadsferts
in this signaling proceg®agher & Robbins, 2009Y he disruption of synapsegtween neurons
can lead to imbalances between excitation and inhibition in neural circuits, which can give rise to
abnormal cognitive processiffigranken, Stam, Hendriks, & van den Brink, 2003)erefore, it is
necessaryo understand howonventionalkircuits maintain balance resolve issues caused by
disturbances in synaps&ifferent synapse types uddferent sets of neurotransmitters, receptors
and transporter molecules. These differences lead to different funciwhthe defects lead to
different diseased.ovinger, 2010) One of the most widely studieddimportantsynapsaypes

is the dopaminergic synapse du@saole in reward prediction/valuatiqiVise & Rompre, 1989)

Dopamine (DA)is in various regions othe brain Dopamine transporters (DAT) are
membrane proteins that transpbr acrossthe cell membraneDAT-mediated DA reuptake is
the primary mechanism for removal of extracell(EC) DA from synapticandextrasynaptic
space(Torres, Gainetdinov, & Caron, 2003)he regulation ofDA reuptake depends on the
localization and expression level of DATs on the memb(dok, Hanson, & Fleckenstein, 2007)
as well asthe intramolecular and intermoleculateraction mechanismthat enableeffective
transport signaling, regulationandrecycling. The mechanisms that control the distribution and
trafficking of DAT are still ambiguoudt is essentiato understand howarious factors regulate

DA reuptake mechanism

Lack of DA clearance irtertainregionsof the brain increaseDA levels in the extra
synapticregions andthe activity of the DA receptorss upregulatedaccordingly Downstream
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signaling from DA receptors activates the reward and satisfaction patlf\Wéss & Rompre,
1989) Therefore DA neurotransmission is one of the focal points of the drug abuse reg¢Parch
Chiara & Imperato, 1988More specificallythe effect ofpsychostimulants such as cocaine and
amphetamind AMPH) on DA neurotrasmissionhas been a topic of study for more than two
decadesMany of these studies are experimerdata group of properties such as surface density

of distribution ofDAT has notbeen extensivelgtudieddue to limitations in technology

The conformational dynamics of DAT is one of giramarydeterminarg of DA transport
efficiency (Vaughan & Foster, 2013)Advances instructural characterization of membrane
proteinshave openetheway tothe resolution of therystal structure of DATPenmatsa, Wang,
& Gouaux, 2013; Wang, Penmatsa, & Goua@®15) and molecular simulations of these
structures identified various states and dynamics of their trans{fidaxyy Hongying Cheng &
Bahar, 2015; Mary Hongying Cheng et al., 2015; Mary Hongying Cheng, Galicaes,
Wasserman, DiPietro, & Bahar, 2017; Khelashvili et al., 2015; Ma et al., 2017; Razauvi,
Khelashvili, & Weinstein, 2017)Individual states of the DAT havmaultiple interactions with
downstreamsignaling molecules and extracellulahDand these interactiolead DAT to a
central role in DA signalingThe resolution of DATtructuresnable us tosimulate transporters
with different drugs oneurotransmitterand estimatethe rates oftructuraltransitiors at long

time scalesuchas millisecondsthat molecular simulations are not able to reach

On the cellular leveprevious effortaregenerallyrevolved around how DA concentration
mediatedat thespecificregions of the brairspecificallyin the striatum anchucleus accumbens
(Garris Ciolkowski, Pastore, & Wightman, 1994More recent efforts include how the spatial
complexity of the system regulates the EC,pét no detailed description of the cetiorphology

andindividual transporter/receptor localizatidrasbeen includedn modeling efforts (Block et
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al.,, 2015) However, the complexity of the cell surface and H€ space in the brain is
consideably more tortuousompared t@ regular celsuch as blood celand the models that do
not include spatial complexity may ndite able toprovide a proper description of the

microphysiologyof the DA neurons anBC space.

DAT is the primary target for gychostimularg such as cocaine and amphetamine. The
mechanism of actioof cocaine is known as competitive inhibitieuming et al., 2008 ocaine
bindingto DAT blocks the DAranslocatiormpathway Continued exposure to cocaine leadario
increasdn EC DA concentratiorabove the metabolic level, which in turn increstses activity
level of DA receptors thadtiggerreward pathwaysAMPH hasmore complicated interaction with
DAT than cocaine AMPH is transporéd by DAT into the cell and interacts with various
downstreansignalingpathwayssuch as Cd signaling, Rho signalingand Gprotein signaling
pathwaygqSaunders et al., 20Q0)he activated intracellular signaling pathways regulate the state
of DAT and activate DA effluxo the cell exteriownhich, in turn, affectDA receptor activation.
Intracelldar signaling is significantly moreompicatedthan extracellular signalingince the
number of signaling molecules is considerablgre abundanin the cel| and the number of

interactions growexponentially.

Memory and learning are two of the most econamly studied areas in brain research. A
mechanisnproposed t@xplain memory and learning is tegnaptic plasticity. Synaptic plasticity
canbe definedasthe strengthening or weakening of the interactions depending on the activity
patternsof the neuronitself and its neighborsHigh input frequencies result ilongterm
potentiation (LTP) which strengthen the synaptamnectivity whereas low input frequency
causesongtermdepression (LTD) which shrink the size of the spine. One of the key molecules
in LTP is the calciunvalmodulindependenkinase type Il (CaMKII). CaMKIl is a central piece

4



of Ca™ signaling pathwaydt hasmanyconnectionsdetweenseveralsignaling molecules. More
interestingly, CaMKII is alarge complex usually assembled asdodecamerand its rapid
dissociation/association andtramolecular activatiorpropertiesmake it challenging tgain a

guantitative understanding of the molecular basis of CAMKII signaling events.

1.1 THE PROBLEM

Modeling DA reuptake and DA neurotransmissare one of the most popular questioasda
significant efforthas beemmade to build a comprehensive model at both cellular and molecular
levels(Mortensen & Amara, 2003)In the 1990s a weltmixed model of extracellar region in
thedorsalstriatum to predict the time trajectory of DA concentratied beenintroduced Garris,
1994) . The first DA concentration model wi tr
transmi ssi on@agd, Ndhdlsomkkudi&itksTao, & Rice, 2001; Cragg & Rice,
2004; Rice & Cragg, 2008; Rice, Patel, & Cragg, 2011; Sulzer, Cragg, & Rice, 20J16)odels
assume spatial/volume exclusion/transmission properties as individual parametersenifae
message fronthesemodels isthat theconsideratiorof realistic diffusion and reéions in EC
microenvironmentsignificantly affecs the model predictions foDA dynamics. However, a
detailed model that considers both spatial complexity and localization of DAT hdseent

developed

Another determinant of DAlynamicis the spectrum b transitionsthat take place ora
molecularlevel. The ecentresolution of Drosophila DATenables structurbased simulation
studies(Penmatsa, Wang, & Gouaux, 2015uch simulations provide significant information

about the discrete states of DAT ahétransitions among #sestates The trajectaesfrom the



simulationsare not adequatén making predictiors on the eventson a timescale longer than
microsecondsyet they can provide valuable informatioon the kinetics of conformational

transitions.

The advances immaging technologiesnd modeling methods both molecular and
cellular level improved the accuracy and specificiticomputationaimodels To have a better
understanding of DA neurotransmissidihge connecion betweenthese two scales using a
multiscale modeling strategg required The timescaleof molecular simulationss generallyin
the order of nanosecondis microsecondswhich istoo shortcompared to cellulaeventsthat
happerat muchlongertimescalesuch asnicrosecondgo secondsAlso, the length scale of the
diffusion of individual neurtsansmittersis considerablymore significantthan the simulation
environment thais usedin molecular level simulations. Such diffusion eveats generally
ignoredin molecular simulation@ndmolecular simulations usually planeurotransmittesin the
close vicinity of transporter/receptor molecules. A more realistic understanding of such
complicated systems is required to identify the defects and develop therapies for various conditions

originatingfrom deficiencies irDA signaling

DAT is the primarytarget of psychostimulantbatare widely studiedn the context of
drug abuseg(Di Chiara & Impeato, 1988) A major inhibitor of DAT is cocaine. Cocaine
competitively inhibits DATfunction to transport DASince cocaine ia potentinhibitor of DAT
function, itis generally assumetat cocainestayson DAT for hours Theeffect of DAT recycling
on the membraneand the effect of spatial complexity on the cocaine inhibition haseen
examinedAnother drughatdisturbs DA signaling isMPH. The mechanism of action for AMPH
is more complicatethancocaine AMPH regulatesseveralintracellular dowrstream signaling

pathways. Theseomplkex pathwaysare generally studiedithout spatialpropertiesdue tothe
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largecopy numbef individual molecules A complete picture of DA dynamida the presence

of psychostimularstisnecessaryo provideinsightsto design therapeutiegainstdrug abuse.

CaMKII has along-lastingactivity after initial stimulatiorby calmoduin and calciumA
mechani sm call ed o6@®laihsrithe dctivityQuantitativex poddlsiavg been
usng this mechanism to explaithe high activity levels of CaMKII observedeven afterthe
completion ofstimulation. However, calmodulin trappidpcks the phosphorylation of CaMKI|
on a secondarthreoninesite and activatiortriggered subunit exchang@ recent experimental
study show that CaMKIl canbe phosphorylate@t two threonine sites and asrasult an
activationtriggered subunit exchange on the holoenzyisesbserved A detailed model of
CaMKIl dynamics in the presence ifbunit exchange can show how the activity sppeadoss

CaMKIl moleculeswith the help of activatiottriggered subunit exchange mechanism.

1.2 THE APPROACH

This dissertation addressfour main problems(l) theabsenc®f the binding and transitiorates
of DAT, (2) the lackof the inclusion of theeffect of DA neuronalspatial complexity and
heterogeneities itomputational modeling of the DAansmission(3) the lack of complete
spatially realistic model$or DA signalingunder psychostimutds andlastly, @), the lack of
detailed quantitative model of CaMKIl interactions to explain activatiggered subunit

exchange.

The first problemhas beemecentlyaddressedsingtwo rigorous methodéM. H. Cheng,
Kaya, & Bahar, 2018)(I) alchemical free energy calculations with free engrggturbation and

(I, thepotential of the mean force calculations using adaptive biasing force methuadsuiate



binding free energies of DAinding and-unbinding téfrom DAT. As an input to these methods,

our coworker DrMary Chengfrom Bahar latused a variety of molecular level simulations and
generatedh total of more thantwo microseconds$ong trajectories. As a result, we were able to
estimate the energy landscape of DAT andstruct a model for the conformational dynamics of

DAT.

The secongroblemhasbeenaddresseth three steps. The first ste@sthe reconstruction
of the 3D geometrpf DA synaptic environmenfrom electron microscopy and fluorescence
microscopy image®btained by Dr. Alexande®Borkin and coworkergBlock et al., 2015)1
determined thgeometry of DAT expressing cells and other neutyngsing semautomated 3D
reconstruction algorithm whiicuses integer programmiriguretken et al., 2016)n addition to
geometry, the location of DAT clusters and DA active zdvaagbeenidentified The secondtep
was the implementation of the DAT transition kinetitgo a spatially realistianodel of DA
reuptake from DATand determination of stochastic DA release times using diffexetitn
potential firing frequencies and patterddl simulationswere performedn MCell, a software
developed for spatiotemporally realistic simulatiasfsmicro physiologicalevents near CNS
synapsesMCell outputs the location of the individual molecules and the number of molecules in
specified compartments. Using molecule couhtsstimatedthe concentration and activation
levels of DA receptors. In additio to activation levels] evaluated thelocal and global
concentration of DA in the EC space. In the third stegarried outMCell simulationsunder
diverseconditions such athe variousdistribution of DAT under different DA release patterns.
Since MCell is a spatial stochastic simulation tool, it is required to simulate the models for a
significantly large number of times to have a proper statistical estimate. Thetetpeatedhe

third step for more thahOO0 timesfor individual settingsMCell simulations showhat the DAT



distribution on the cell membraraad the complexity of the cellular morphology argnificant

factors for DA reuptake efficiency.

| addressedhe third problen by extendinghe model developed fahe second problem
with the addition of psychostimulantFirst, | studied the effect afocaine The mechanism of
action of the cocaine only involves the extracellular region. Therdfadgled cocaine molecules
with known concentrations to the system gederated trajectoriesor AMPH, it is impossible
to usea similar strategy since AMPH entethe DAT-expressing cell through DATs and disrsipt
the intracellular signaling networkd he intracellularsignaling netwrks have manymolecules
which makes it infeasible to use spatial stochastic simulation tools such as MCell. To this end,
in collaboration with Dr. Bing Liu in the Bahar Lab, | build a multiscale modéiMPH-induced
DA efflux model. The effect dbcdization of the DATandconcentration oAMPH with varying
action potential firingpatterns arestudied. MCell simulations show that spatial complegites
not havea significant effect on the DA reuptake efficiency in the presencdowf cocaine
concentrationsThe effect of AMPH on EC DA concentration is significantly small if the DATs
are nonuniformly distributedue to reduced AMPH uptake rate from DAJn the other hand, the
EC DA concentration considerably increased uralemniform distribuion of DAT since the

AMPH uptake is more efficient and many DAT are phosphorylated and efflux DA.

| approachedhe last problem by creating a model of CaMiKitra- and intersubunit
dynamics to reproduce the experimental datailableat bothshorttime scales (seconds) and
long-time scales (minutes)Since the CaMKII is structurally a dodecamtrere is a neetb
simulatethe system using networkee methods instead of conventionatworkbasedmethods.
The model calibratiomwasperformed using genetalgorithms The CaMKII is one of the central

moleculesandl would like to learn about the activation dynamidswever | discovered a bottle
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neck in the parameter calibration stepincethe model simulations/ere not efficient, and the
objective functionwashard to optimizel introduced a hybrid model checking/genetic algorithm
strategy to overcome the computational probleihse to technical difficulties in netwoikee
simulations, the suggested hybrid model checking/geadgiarithm strategy did not converge
However the application of the method on simple models show promising restabout the

increase in efficiency witthe additionof model checking.

Multiscalemodelsallow us to understand how the componentgautewith each otheand
function togetherhow the functionalitys alteredwhen a drug is preserandif a protein is ina
dysfunctioral state The molecular modeling part provela foundation of the dynamics of
essentiaimolecules. Cellular simulatignintegrate data from various sources such as molecular
simulations, microscopy studieand physiological experiments to bridge differestales The
hybrid multiscale models can explain various events that can describe physiology in different
length andtime scales. Multiscale modetnablethe adoption ofparametes estimatel from
molecular simulationsn higher scale simulation® examine regulatorynechanism that can

affect thecellular systenbehaviorat significantlylong-time scales.

1.3 HYPOTHESES AND MAJOR FINDINGS

The mainaspectf this dissertatiomrethe introduction of relationshifbetweenevents at the
molecular and cellular levels for DA neurotransmissibie developmenbf a detailed spatially
realistic reactiondiffusion model of DAT release and reuptakand the construction ofa

guantitativeand detailed model of activation triggered subunit exchadgmg literature data
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answergo the followinghypothesesvere investigatedandthe followingsignificantconclusions

were reached

Claim 1. Spatial complexity of the EC region and the localization of DAT molecules are
the two main contributors to DA release and reuptake dynamics under various neuron firing
frequencies. Thespatially realisticmodel and MCell simulationgprovide realistic and time
dependent information on theoncentrationlevels anddistribution of DA molecules in the

synapses.

Claim 2. The local and global effects of theesencand the dosef thepsychostimulants
can be identifiedusing spatial stochastic models connection withlargescale interaction
networks generally identified as ngpatial modelsMCell simulations provided new insights
the inhibitory effect of cocaine on DA transmission &hd complex effects of AMPH on

dopaminergic signaling.

Claim 3. The subunit exchange mechanism can explain how low levels'6é&aactivate
CaMKII for an extendedperiod of times such as houfSonstructing and calibrating a detailed
guantitative model of subunit exchange needs smart parameter estimatmusrend network
free simulation tools. The intrasubunit interactiansithe rates ophosphorylation events should
be recalibratedo provide a realistic description of the role safbunit exchange mechanisn

CaMKII activation

1.4  SIGNIFICANCE

DA modultes motor control, cognitiprand drug addiction. Understanding the mechanism of
dopamine transmission is essential to designing therapies for neurological didodeeeoped
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a multiscale model using advances in imaging and 4pigtiormancecomputingtechnologies,
which permitted us to perform spatially realistic simulation®Afreuptake. Simulations show
large temporal and spatial variations in the local densiyAfdepending on the morphology of
the synapti&xtrasynaptiaegiorsneartheDA release siteand orthefiring pattern DA clearance

is less efficient undethe heterogeneous distribution &IAT compared tahe uniform DAT
distribution with the same average surface denBiyT membrane distribution, accessibility of
DAT dopamine reuptake transporters outwafaicing conformation, anidrgefluctuations inDA
levels emerge asrucial features that modulate dopaminergic transmissigychostimulants
significantly disruptthe EC DA concentration arfdA receptor activity. Cocaine comtetely
binds to DATs and blockthe DA clearance whereas AMPH disrupts the intracellular signaling
pathways and indus®A efflux from DATs. The DAT localization does not have a significant
effect on the way cocaine disrupts DA signaling. Instead, gheary modulator is the
concentration of the cocaine in the systéniThe effect of DAT localization is more significant

for the effect of AMPH due to limited uptake of AMPH under nonuniform DAT distribution.

CaMKIl is one of thecritical nodes in the signaling network which can affieeportant
processes such as neurotransmitter degradatidtranscription factor regulation. Structurally,
CaMKIl is a dodecameandeach subunit hamanyfunctional sitese.g, calmodulin binding site
and phosphorylation regiond’he subunit exchange mechanism of CaMKIl can explain how the
activity of CaMKIl lass for an houri n t he absence of stimulati on
Trappingd mechani sm. The subunit tleatecthaathg e mec
CaMKII activation meaning that subunit exchange takes place afteri€adleasedrom the

trapped state.
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1.5 OVERVIEW

This dissertatiotis organizeds follows:

Chapter2 provides detailed informatioon theconstruction of spatiotemporally realistic
model starting from both molecular simulation data and microscopy tlatetermined how the
variations in the spatial complexity and structural heterogeaéfiegt the DA reuptakeand the

EC DA concentratiomat both local and global leveunder various DA neuron firing patterns.

Chapter3 presentshe alterations in the spatiotemporally realistic DA release and reuptake
in the presence of psychostimulants such as cocaine and AMPH. The implementiigonadel
ondifferentscalesand the effect of spatial complexiye investigatedThe effect of cocaine on
the DA signalingdependsn the concentration more than the localization of the D@&dntrary,
theprimarytriggering factor for AMPH induced DA effluis the process of AMPH uptake. Since
the nonuniform distribution of DAT has a low AMPH uptake rate, the effectinémal under
nonuniform DAT distributionHowever, there are significant differences in ghentsof DA
clearance and DA efflux with diffent DAT distributions. In the end, the two alterations neutralize

the total effect.

Chapter 4 presentsdetailed quantitative model aftivationtriggered subunit exchange
for CaMKII. | created the modelindperformeda parameter scan to check the validitghemodel
on the experimental datdhe initial model does not capture the activatinggered subunit
exchangeHencewe calibrated the model parameters ugjagetic algorithmsDue to the complex
nature of theoptimization problem, a scalable heuristic optimization technigiik genetic
algorithmsis used The genetic algorithms hawesignificantoverhead due tthe entire trajectory

generation at each stefp increase the efficiency and the accuracy of geaéjorithms a hybrid
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online model checking/genetic algoritimmimplementedThe methodshowed promising results
on simple modelsbut technical issues witthe simulation engingorevented application to the

CaMKIl model
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2.0 HETEROGENEITIES IN A XONAL STRUCTURE AND TRANSPORTER

DISTRIBUTION LOWER D OPAMINE REUPTAKE EFF ICIENCY

21 BACKGROUND

Midbrain dopaminergic neurons have a strong influence on striatum functions such asmotor
action planning, cognitive functionsand motivation (Roeper, 2013) Dysregulation of
dopaminergic transmission leads to impairment o$éhactivities, resulting in disorders such as
Par ki ns on 0 s(Hodrg,s2614)atentidndeixiyhyperactivity disorder (ADHDYWu,
Bellve, Fogarty, & Melikian, 2015)and drg addiction(Nutt, LingfordHughes, Erritzoe, &
Stokes, 2015)A mechanistic understanding of dopam{iDA) transmission events is essential to
developing therapeutistrategiesbecause many behavioral states strongly correlate with DA

releaseandreuptakeg(Sulzer et al., 2016; Tsai et al., 2009)

DA release to the synapseactivatedoy excitatorystimulation andexhibits patterntike
neuronal firings. DA excitatory signaling proceeds by activation of DA recepfms binding
DA molecules. DA rapidly diffuses from the active zoA&), or release siteo extrasynaptic
regions in the extracellular (EC) medium. DA transporters (DATs) membrane proteins usually
located on the surface of presynaptic axon terminajgilage DA signaling by removing excess
DA from extrasynaptic regiong§Torres et al., 2003; Vaughan & Foster, 20I3\Ts ae targets

for addictive substances, which inhibit their functigimara & Sonders, 1998)hus resulting in
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excess (neurotoxic) DA levels in the EC reg{bm Chiara & Imperato, 1988Wwhereas low levels
of DA cause motor impairments associated with(P&tharius & Brundin, 2002) Also, reuptake
by DATSs, the rate of DA diffusion from th&Z to the exta-synaptic regior{Taylor, llitchev, &
Michael, 2013) and the frequency and patterns of action potentials (BRs) et al., 2009)are

known to modulate the efficiency of DA signaling.

The dynamics of DA reuptake by DATs has been a focal topic in modeling efforts, both at
the cellular and molecular leveslortensen & Amara, 2003Early efforts at the cellular level
adopted a welnixed model focusing on predicting the DA concentraiiosome aresof the
brain, such as the nucleus accumdber dorsal striaturfGarris et al.1994) The effect of EC DA
concentration on the activation of DA recept(v&ggiano, Vallone, & Sadile, 2004as well as
spatial/volume exclusion/transmissiproperties affecting EC DA levels, have been included in
later, volume transmission (VT) modé(Sragg et al., 2001; Cragg & Rice, 2004; Dreyer, Herrik,
Berg, & Hounsgaard, 2010; Dreyer & Hounsgaard, 2013; Rice & Cragg, 2008; Sulze2@16)
Thesestudies highlighted a need for considering the distinctive diffusion and uptake characteristics
of the EC microenvironmenilo quantitative models/simulations haxeen developéderformed
to date that would permit us to assess how the complex geomé&ytefminals, and the spatial
distribution and conformational dynamics of DATs alter dopaminergic signdlimgadvances in
imaging DA neurons and visualizing individual DATBlock et al., 2015now enable us to
reconstructn silico the detailed morphology ne&Zs, and examine the time evolution of DA
release and reuptake with the helpMEell, a softwaranitially developed Czech, Dittrich, &
Stiles, 2009; Kerr et al., 2008; Stilegan Helden, Bartol, Salpeter, & Salpeter, 19%&)

spatiotemporally realistic simulations ofngptic signaling events.
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In addition to cellular structure and heterogeneities, the conformational dynamics of DATs
is a determinant of DA transport efficiency. Recent crystal structui@sogbphilaDAT (dDAT)
(Penmatsa et al., 2013; Penmatsa et al., 2015; Wang et al., 2@débppened the way to structure
based studies of DAT dynamics. Simulations based on these structures helped elucidate the
sequence of molecular events that take place during the transport cycle of the human orthologue,
hDAT (Mary HongyingCheng & Bahar, 2015; Mary Hongying Cheng, Tor8dazar, Gonzalez
Suarez, Amara, & Bahar, 2017; Huang & Zhan, 2007; Khelashvili et al., 2015; Razavi et al., 2017)
We are now able to make reasonable approximations for the kinetic scheme and parameters
associated with thBAT transport cycle based on statistical analyses of thafaihic trajectories

and free energy calculations.

Here,| present an integrated model of synaptic signaling in DA neurons developed from
cellular and moleculastructuresand molecular dynamicsWe investigate the effects df) the
conformational kinetics of DATs]I( the spatial complexity of DA terminals aAds based on
fluorescence images]ll() the firing patterns, phasigs tonic and (V), the heterogeneous
distribution of DATs on the plsma membrane based on experimentally observed DAT density
fluctuations. Simulations reveal the strong dependency of local DA levels as well as overall DA
clearance efficiency on the local geometry of axon terminals. They also reveal that the presence of
DAT clusters (consistent with the DAT density heterogeneities observed indsghlution images
(Block et al., 2019)causes a reduction in the efficiency of DA reuptake compared to uniformly
distributed DATs with the same average surface denBitig effect becomes more pron@eal

with increasing heterogeneity of the surface distribution of DATS.
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2.2 METHODS

2.2.1 Confocal imaging of immunolabeled DATSs in transgenic mouse brains

The procedure for preparing and imaging acute brain slices from transgeniekmoicle of either

sex expressing DAT molecules tagged with the hemagglekir(iHA) epitope (HADAT; (Rao,
Richards, Simmons, Zahniser, & Sorkin, 20bha$been describeith previous workgBlock et al.,

2015; Rao, Sorkin, & Zahniser, 2013riefly, brains were submergednto an ice slush of
oxygenated artificial cerebrospinal fluid, and 0.8 mm thick sagittal slices were cut using microtome
blades and a stainlesteel slicing blockThe subcellular localizationf@ell-surface HADAT
molecules was deduced from intact living DA neurons in acute sagittal brain slices as detected by
mouse antHA antibodies with CyZonjugated artimouse antibodiedlock et al., 2015)Slices

were incubated in artificial cerebrospinal fluid (ACSF) at room temperatureongg/ml mouse
antrHA antibodies for 1 hour. After remog unbound antibodies, slices were incubated for one

hour at 4°C in ACSF with 2.5 pg/ml Cy&njugated arimouse Fab fragments.

Dr. Sorkin and coworkershave not observed substantial differences in-BIAT
distribution between liveell and posfixation labeling with HA antibodies, suggesting that
axonal varicosities revealed by DAT staining were not the result of blebbing during the labeling
procedure of live slices he binding of antibodies to live neurons followed by fixation provides
much superior image quality and lower sigt@hoise ratio as compared to the conventional
protocol of fixationfirst and then staining with antibodies. Importantly, {veuron staining
protocol allows labeling of ceBurface DATSs, which igssentiafor defining the distribution of

DATs on the neuronal surfaces in the model. Observations of DAT endocjBt=ik et al.,
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2015) normal lateral membrane mobility of DAT, and healthy mitochondria in dopaminergic
neurons from slices kept alive for at least two hours were indicative of functional neurons in these
slices. Moreover, DA neurons labeled as described above have been observed to exhibit pH

dependent vesicular trapping of antipsychotic d(digeker, Block, & Levitan, 2015)

Dr. Sorkinand coworkersbtaired high-resolution3D images of DA neurongnda zstack of 18
confocal images at 400 nm interstack distance was acquired 10 um deep from the cut face of the
slice through the 561 filter channel using a spinning disk confocal system based on a Zeiss Axio
Observer Z1 inverted fluorescence microscop&h(vd3x Plan Apo PH NA 1.4 objective),
equipped with a comput@ontrolled Spherical Aberration Correction unit, Yokogawa ©8l)

Vector photo manipulation module, Photometrics Evolvebit@&EMCCD camera, Hamamatsu
CMOS camera, environmental chamtzerd pezo stage controller and lasers (405, 445, 488, 515,
561, and 640 nm), all controlled by SlideBook 6 software (Intelligent Imaging Innovation, Denver,

CO).

The imageaeconstruction and modeling described below are based cortif@ned use of
slices oflight microscopy images and electron microscopy im#&B&sck et al., 2015)Block et
al., 2015)that were obtained omtact animals aftercardioperfusionfixation by Sorkin and

coworkers

2.2.2 In silico reconstruction of DA axonal terminals in the striatum

| reconstructeéh silicoa 10pum x10um x 7.2um volume from the above described stria¢agion
using a semdautomated 3D reconstruction algorithfTuretken et al., 2016)The 3D

reconstruction algorithmsesnteger programming to suggest the connections between the borders
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of thecell membrane on each confocal image. Manually, suggested cedisraieh andthe 3D
geometry of DATFexpressing ells are generatedA detailed description of the reconstruction
method is available in Fiji tutorialdmageJ) The size of the simulation box was large enough to
allow for the diffusion of DA over a sufficiently broad EC region, in accord with previous
estimates(Venton, Michael, & Wightman, 2003)and the reconstruction yielded a realistic
representation of both the heterogeneous shape of axonal terminals and the surface distribution of

individual DAT molecules.
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Figure 1. Reconstruction of the morphology of DA neuronal axons

A, HA-DAT distribution in different regions of mouse brain including midbramb)(and striatum (str)
acquired from sagittal slices. The slicgsre labeledvith HA11l antibody detected with Cy&njugated Fab 1gG
fragments (HA, red). Nonspecific staining the vasculaturgvasg is also highlightedWhite scale bar, 2 mm. B,
Maximalprojection image of the first five (starting 10 m deep from the edge alitt®) confocal sections of the 3D
image fromthe striatalregion. The slice labels are same as those in A. Green scale bar, 10 m. C, Maximal projection
of the first five sections of 3D image of the small striatal region, used to construct the simulationraent (inset),
magnified from B. Blue scale baruin. D, 3D reconstruction of the region shown in C, visualized using CellBlender
(Bartol, Keller, et al., 2015pn adeon for Blender 2.78 (http://www.blender.org). Different colors refer to 13 different
axonal varicosities (DA teninals).Cells that do not express DAT occupies the remaining portitims location of
six AZs is shown by the labelsi16. The dashed line indicates A# that is not visible from this perspective. E, Full

isometric view of the simulation box. White dis indicate the locations of thra&s.
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Table 1. Geometric characteristics of axon terminals reconstructed for simulations.

Surface Available ®
Subsystem V(um)3
area (um)?2 Surface area [im)?
Terminal 1 1.22 6.8 5.47
Terminal 2 24.63 59.47 53.83
Terminal 3 3.53 20.18 18.03
Terminal 4 15.84 56.33 51.11
Terminal 5 4,72 25.14 25.14
g Terminal 6 1.71 10.12 10.12
c>é Terminal 7 0.82 5.57 5.57
<DE Terminal 8 2.04 12.94 12.94
Terminal 9 15.32 46.86 39.08
Terminal 10 15.18 58.65 55.5
Terminal 11 3.85 18.99 18.98
Terminal 12 9.69 34.31 31.75
Terminal 13 2.58 12.35 9.64
Total 101.03 367.71 337.16
NornDA expressing cells 463.62 1058.00 0
DA axons+ other cells 564.65 1425.71 337.16
Available EC volume® 155.35

The reconstructed region contained 13 axon termirkatgife 1B). The corresponding
volumes and surface areas (listedrable 1) were calculated usg the NeuroMorphJorstad et
al., 2015) a Blender adan that uses triangular meshes to evaluate the surface area and
corresponding normal to determine the volume of each tetrahedron. The total volume occupied by

the 13 axon terminals was 10140&° and the corresponding total sudearea, 337.16m>.
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The DA axonal terminals reconstruciadilico contained six varicositiesge., 3D globular
regions with densely expressed DATSs, distributed over three DA terminals: one of the largest
terminals had three varicosities, another had two, and the remaining varicosity was on a third
terminal.AZs lie within varicosities but are not uslygbopulated with DAT molecule@Block et
al., 215) accordingly,subregions (of varicosities) which lacked DAT molecules withtrieast
a 50 nm radiusvere identifiedas AZs. The region between DA@xpressing cells (detected by
fluorescence microscopy) and othdrsot visible) was representdaly an interstitial (void) space
of 30 nm thickness surrounding the D&Xpressing termals (Figure 1E). The void fractionis
calculated af.21, consistent with previous estimaf€sagg et al., 2001pr an overall volume of
155.35um? (Tablel) that formed the available for DA diffusion. These narrow regions form the
synaptic clefts and extigynaptic regions available for the diffusion of DA molecules. The number
of AZs for a given volume was verified to be comparable to that used in afide¥s¢Dreyer et

al., 2010)

2.2.3 Distribution of DATs on the axonal surfaces

Next, | proceeedto the placement of DAT nlecules on the membrane of axonal terminals. To
investigate the effect of DAT surface distribution heterogeneities on the efficiency of DA reuptake,
| examined four casegigure2). Case 1 refers to the uniform distributidfigure 2A), taken as

r (DAT) = 800um?, based on the electron microscopy images of gold particle laB&eDAT,
assuming 10% labeling efficiendiBlock & al., 2015) Case 2 is a neaniform (bimodal)
distribution Eigure 2B), outlined in accord with the actual distribution of DATs observed in
experiments. Higllensity regionsvere detectedh the fluorescence images, @mntinuousoright

regions Figure 1C). These regions covered ~10% of the plasma membrane anea
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approximately 90% of DATsvere localizedn these regions. The surface densities of DATS in

the high and lowdensity regionsvere takeras/n = 6,339iim? and | = 50{um?, respectively.

Casel

4

Case 2

F

Case 3

i

4 ’“‘ on "I{'ﬂ -

Case 4

25 5 75 10

o

DAT distance to closest
active zone (um)

Figure 2. Four spacedependent models of different plasma distributions of DATs
Ai D, Distant (left) and magnified (right) view of the axon terminals in case$. Each color shows a
different terminal, and the red dots represent the DATS. The white regions in A represent the regions with high
fluorescence intensity, and those regiame filled witha high density of DATs (red dots), magnified in B, where the
blue region shows th&Z The red patches iniB® illustrate highdensity regions where 90% of DATSs are clustered.

Ei H, Distance distribution of DATS to close&F center, from 40 independent simulations.
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Table 2. Parameters and properties used in MCell simulations

Parameter Value Unit Reference
DA diffusion coefficient 4.00x 10| cnméls (Rooney & Wallace, 2015)
6
Vesicle release probability 0.06
(Dreyer et al., 2010)
Theaveragdiring rate of DA 4.00 Hz
neurons
# of DA released per release everl 3,250 (Pothos, Davila, & Sulzer, 199§
OF A OF* rate constantk{2) 9.60x | Mist
10°
OF* A IF* rate constantkbs) 20.00 st
(M. H. Cheng et al., 2018)
IF* A IF rate constantkgs) 5.00 st
IFT OFforwardrate constantkgs) 2.00 st
IFT OF reverse rate constaii4) 8.00 st
Total axonal surface area 337.16 pm?
Uniform DAT surface density, 800 1/
r(DAT)
High DAT surface densityrn (DAT) | 6,339 | 1/un? (Block et al., 2015)
Low DAT surface density;(DAT) 50 1/un?
Very high DAT surface density, | 30,000 | 1/un?
rn2(DAT)

25



DA density of neuronsph 9.3 pg/cn? (Bannon, Michaud, & Roth,
1981)
Theratio of the total DA released pg 0.05% (Gubernator et al., 2009)
AP
Density of DA terminalSt term 0.104 | 1/jum® | (Doucet, Descarries, & Garcia
1986)

In Case 3, the distribution is again bimodal, similar to Case 2, but the central parts of the
high-density regiongrom Case 2are selecteds the new verhigh-density regions, withrn, =
30,000pm? and ry = 50fum? elsewherewhich leads to a sharper heterogeneity in the spatial
distribution of DATs Figure2C). In Case 4, DATs are assumed to be clustered in the immediate
neighborhood ofZs, as a mimic for conventional synaptic models where DATS act as gatekeepers
near the synaptic cleffFgure 2D) (Danbolt, 2001; Rothstein et al., 1994nd DAT surface
concentrations in higland lowdensity regions are the same as in Case 3. The histogr&igsiia

2E-H describe the probability distribution of the distances of DAT molecules from the cdd&est

2.2.4 MCell simulations of DA release and reuptake events in DA neurons

Spatiotemporally realistic simulations vegoerbrmedusing MCell(Kerr et al., 2008; Stiles et al.,
1996) a 3D reactiordiffusion system solver that allows users to reconstruct complex geometries,
define the subcellular localization of discrete molecudes simulate their dynamichere are

four levels in the MCell simulation algorithm. The first level is the diffusion ofntiadéeculesn

2D and 3D. Fodiffusion of volume molecules, the direction and the lengtthefdiffusion path
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is determined usinlylonte Carlo methods he probability distribution of theengthof diffusion

for a given time step is determined using the following equation:

Equation 1

where(r) is the distance a volume molecutaveledat the time step(t) and (D) is the diffusion
coefficient of the volume molecule. For determination of the direction of the diffusion, two angles
for the spherical coordinatese calculatedrirst, the azimuthal angleis sampledrom a uniform
distribution between 0 and 2Thedistribution for the polar angle isinusoidaland generated
using inversdaransform sampling. The surfaces in MCalé dividedinto triangular tiles. In the
2D dffusion, like the 3D diffusion, a directionis selectedn the plane othetile that molecule
resides. Thanoleculediffused in 2D using thesimilar strategy thatis describedfor volume
molecules. Wen the molecule changestile, the direction vectorsi transformed tdhe local
coordinate system on the ndité. The ®condlevel of the simulation algorithm is the collision
detection step. The collision detection is perforngethpletelybased on the distance between
molecules. If the distance betweemotparticles is less than a predefined collision radius, the
moleculesare evaluatefor a bimolecular reaction. The third level of the MCell algorithm is the
evaluation of bimolecular reactions. The propensity of eéaahtionis calculated using the bulk
rate of eacheaction To obtain the correct bulk rata proper probability afeactionper collision

should be selected. This value is determined by the following formula:

Equation 2

~

n = QO
0]
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where(k) is the observed reaction ratd) is thetile areaor aosssectionof 3D diffusion. For

surface volume reactions the probability per collision is defined as:

Equation 3

0 ad "
"5 o
Forthesurfaceto surface reactions:
Equation 4
. Q.
n 830
Forthevolume tovolume reactions:
Equation 5
Q “30 1

" 307 o7

If the calculatedprobability islargerthan 1, the reaction becomes diffusion limjteddif
the collision occurghereactionis triggered. If the molecules are not part of a reaction, they can
be part of unimolecular reactions. The fourth step of the MCell algorithm is the unimolecular
reactions. In MCell, when a molecule is created, the bf next unimolecular reaction is identified
using Gillespiebs st othénoleduledoes ot umdergoeatbimolatulaa | g o r

reaction, a unimolecular reaction occurs at the time calculated at the creation time.

There are a lot of diffsion and reaction parameters in MCell simulatj@msithe parameters used

in thesimulationsare given infable2. Unimolecular reactions are scheduled accordimgfmed
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reaction ratesand bimolecular reactions occur with predefined probabilities that are chosen to
match bulk reaction rates. Collisions between molecules are detected by ray tracing algorithm. We
adopted Neumann boundary conditidik® those usedni recent simulations of Casignaling

(Bartol, Keller, et al., 2015).e., DA molecules are subjected to reflective boundary conditions at
the simulation box walls. In addition, to reduce the bias from reflective boundaries,aksrmin
within 1 um from the box boundary were assumed to be inactive, such that the available surface

area on DA axon terminals was 33716 (seeTable 1). A detailed description of the MCell

algorithm is provided in Appendik.

The probability of a release succeeding an action potential depends on multiple factors
(Dreyer et al., 2010)ncluding the content of DA in the striatunb{) (Bannon et al., 1981jhe
ratio of the amount of total DA released per action potentiall@pernator et al., 2009he
volumetric density of DA terminals &Zs (rwrm) (Doucet et al., 1986and the number of DA
moleales released per quantumglNPothos et al., 1998Yhe parameters are given in Table 2,
which yielded a release event probability of @6eyer et al., 2010)EachAZ has a release site
located at its center; and upon a release event, a totaDoA Kolecules is assumed to be released
from the release sit@he MCell algorithm is applied to DA moleculegth a fixed time step dbt
= 0.1 us. The distribution of DA step sizes yielded an average of 13.3 nm using a DA diffusion
coefficient of 4 x 10 cnm?/s. A timestep of 100 ps was used for the slow events such as the
transition of DAT to reuptakecady (ECexposed outwarfacing) state 140 independent runs,

each of 10s, were performed to extract statistically significant results.

28



2.2.5 Conformational dynamics of DAT

The recent duaboost accelerated molecular dynamiesvD) (Hamelbeg, de Oliveira, &
McCammon, 2007; Miao, Nichols, Gasper, Metzger, & McCammon, 2&idyronventional MD
(cMD) simulations of DAT dynamicperformed by Dr. Mary Cheng theBahar Lalshowed that
the DA transport cycle by DAT can be approximated by fuecessargteps Figure 3) (Mary
Hongying Cheng & Bahar, 2015; M. H. Cheng et al., 20{B) recognition and binding of DA
(and cetransported Naions) from the EC region to DAT in the outwdiating (OF) state. We
designate the substraend N&d-bound (or loaded) OF stagés OF*; (2) global structural change
of DAT from OF* to inwardfacing loaded (IF*) state; (3) release of cargo to the IC region (IF*
A IF); and (4) reverse transition of the unbound/apo DAT from IF to OF siidte.respective
forward rate constants are denotekaskos, kss, andks1, andreverse rate constants &, kaz,

ka3, andka4 (Figure 3).
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Outward-facing

Inward-facing

Figure 3. Schematic representation of the sequence of events occurring during the transport cycle
A succession of founajorstates is observed in MD simulations: unbound and DAjmumnd outwareacing
states (OF and OF) followed by unbound and bound infaridg states (IF and IF). The corresponding hydration
patterns (water molecules in white and pink spheres) and interacti intra and extracellular gating residues (R85
D476 and R6D436, respectively, in stick representation) are displayed. Green arrows indicate the transitions that
were observed and evaluated in molecular simulatisegTable 2). The events indicated by the red arrows were
unlikely (k21) or not observed gkand ks) in MD runs. Curved arrows refer to the binding or unbinding of DA (purple,

spacilling), cotransportedNaions Nal and Na2 (yellow spheres), and the chloride ion (blue sphere).

The molecular events of DA binding and unbinding to DAT generally involve local
conformational changesnd their energetics can be estimated using established free energy

calculation methodsTwo methodshave been usedl) alchemical free energy calculation with
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free energy perturbation (FEP) meth@bhorille, Jarzynski, & Chipot, 2010and (1), potential

of mean force (PMF) calculations using the adaptive biasing force (ABF) m@&@hgubt & Hénin,

2005) based on cMD trajectories. TREP calculations yielded a binding free energy change of
PGna= T 7. 8 (McHaChenmetlal., 2018h excellent agreement with the experimental
value ofi 7. 4 k ®ar] Metrger, Vandenbergh, & Uhl, 2006; Huang & Zhan, 200D
simulations indicated that the average time required to bind DA molecule originally placed at a
distance of 15 A from the binding site is approximately 125 ns. To convert this number into the
binding rate constantik we perfemed the following: First, using an EC DA concentration,7.5
nM (Feifel, Shilling, Kuczenski, & Segal, 2008k calculatd the density of DA molecules to be

7.5 10° moles/nm x 6.02 x 16® molecules/moles = 4.5 x £anolecules/nmy The free volume
(excluding that occupiely DAT itself) for DA translocation originally located at a separation of
15A from the binding is evaluated to be 2 Anusing POVME (Durrant, de Oliveira, &
McCammon, 2011)The number of DA molecules colliding with DAT based on this accessible
volume is 2 nMx 4.5 x 10° = 9 x 10°, which also represents the primobability/frequency of
collision of a given DA moleculeThis leads to an effective binding time of 125 ns / 9 X 20
13.88 s. By normalizing with respect to EC DA concentration, the bimolecular reaction constant

is determined as (1/13.88 s) / 7.5 x°#09.6 x 106 Ms?.

Dr. Mary Cheng andfurther obsered that ) the binding of Na+ ions was fast (< 100 ns) and the
subsequent binding of DA readily prompted the closure of the EC gate such that the escape of DA
(and ions) back to the EC region was negligibly small, ke<k ki2; (Il) no DA efflux to EC

region was detectedd., kiz=ks2&  Oll)) the DAfree (with Na/Cl- bound) OF IF transition

(k14) was two to three times slower than that in thelb@ded transition (f); Na'- and substrate

binding allosterically promoted a cooperative transition to IF* s@eeng and Bahar, 2015;
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Bahar et al., 2015)but such cooperativity was not observed inape stateand (V), the DAfree

IF- OFt r an skijtwiaen eiven s| owlekF ttrhakmdituthieda ®F({t he di f f
closingceéehleuli(@M.r gti.t eGhengrhegt o®RU IFt 2@Hh8) ti on r
were thoroughl y e x avb smalationsohDA4nee DATQ whech showned

that the population of reuptakeeady (OF) conformers was lower than that of IF (or other
intermediate) conformers by a factof 4, or kiskss & (M. H. Cheng et al., 2018)These
considerations provided us with robust information on the relative rates of the individual steps and

led to the rate constamnin Table 2, the absolute values of which were verified tocbenpatible

with experimentally observed turnover rates and ststalg concentrations of DA molecules.

To investigate the sensitivity of DA reuptake efficiency to DAT conformational kinetics,
we also performed global sensitivity analysis with respect to rate constahigune 3. We
performed 729 independent runs with different combinations ks, kss, ka1, andkis, which
we varied by three orders of magnitude. The results are presenkégune 4. Each blue dot
represents the outcome, EC DA concentration in the simulation boxggD#$m one run. A
broad range of [DAJc values, from 0.1 nM to more than 100 nM, are observed. Yehcapase
in DA binding ratekioresults in a more efficient clearance and thereby IsweDA levels in the
EC region Figure4A). A similar trend is detected witmancrease in the transition rekg from
IF to OF, which exposes more reuptakady DATS to the EC regioffrigure4C), and the reverse
transition induces the oppteseffect Figure4D). An even sharper effect is observed upon plotting
[DA] ec against the ratidua/ks1 highlighting the importance of the equilibrium population of the
OF and IF states of DAT after releasing its carggyre 4E). The examination of the relative
effect of DA binding ki2) versus back transition to the IF statg)for the OF DAT also indicates

that the OF DAT level is a major determinant of [RA[Figure 4F). Further quantitative
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assessment of the statistical significance of these observations using Spearman rank correlation
coefficients confirmed that the binding rate constintand the ratio kisks1 are two major

determinants of DA clearance efficiency. Nea effect was seen f&#s (Figure4B) or ka4 (data

not shown).
150 150 150
A B C
S 100 L 100 7“0 00
<
o]

log k1,

Figure 4. Results from global sensitivity analysis performed for kinetigparameters representing DAT
conformational dynamics
Yellow dots represent the default parameters used in the present study, and blue dots show the results
obtained by using aandom inputombinations of the parametersy(kos, ks, ka1, andki4) and tleir ratios. Results
for kas, which are very similar to those fosskare not shown. The red curves indicate the mean values and the standard

error for successive bins of width 0.5. The Spearman correlation coefficientOafg, 0.01, 0.01,7 0.44, 044,

0.63, and 0.48, in the six respective panels.
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2.3 RESULTS

2.3.1 Insilico turnover and [DA] ec at half-maximal-rate conform to experimental data

We first verified thatMCell simulations yielded macroscopic properties consistent with
experimental data. We calculated the turnover rate by adopting in simujatierssme protocol

as that adopted in experime®ao et al., 2013)multiple runs are performed for a series of aiti
concentration of DA in the EC region, [DA]and in each case, the mass of DA molecules
transported per unit time is measured. The number of DA molecules transported per sgsond, V
under saturation conditions ([D&{is of the order of tens @fM) is used to evaluate the turnover
rate as the ratio of Wi to the total number &x of DAT molecules present in the system.aln
simulationenvironment, Bax@ 220, 000, based on f (Blocketalscence
2015) To evaluate the turnover raite silico, we counted the number of DAs transported as a
function of [DA]o and examined for each concentration the number of DAs translocated per
second. This led to a reuptake rate of 1.2 %X[As/s at saturation (Wa). Division by Bnaxgave

a turnover rate of 0.55/s, which is comparable to the reported values ofRad/et al., 2013)
0.9/s(Prasad & Amara, 200Bnd 1.8/fBeuming et al., 2008; Prasad & Amara, 2001; Rao et al.,

2013)

The average DA level in the EC medium, [RA]observed in silico after reachisteady
stateconditions was 7.8 nMHgure5A). The physiological concentration of DA in the striatum
varies between 5 nM and 50 nfOwessorWhite et al., 2012) consistent with the large
fluctuations (of the order affDAJecd N 10 n M) we @ Moseghatthe shturatingn [ DA’

concentration for DATSs is estimated to belQuM (Prasad & Amara, 2001; Rao et al., 2013)
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Simulations yielde@ substrate concentration at haldximatrate, Km value, of 2.2M, which

falls within the broad range of reported experimental values of 50 nM oMb @Beuming et al.,
2008; Prasad & Amara, 2001; Rao et al., 20T3)ese data confirm th#te MCell model and
simulations reproduce macrogoo quantities consistent with observables such as the average DA

concentration in the EC regiontalf maximal rate, and the overall turnover rate. We now proceed

to a closer examination of microscopic properties.
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Figure 5. Time evolution of DA concentration and DAT conformational states averaged over 140
independent MCell runs
A, Extracellular DA concentration, [DA}. The average concentration reached under stsiady conditions
is 7.8 nM, and the standard deviation of thaaentration is indicated by the shaded region is l2AD nM. B, the
number of DAT molecules, in the unbound inwasd outwardfacing statelf: red; OF; blue), denoted as N(IF) and
N(OF), respectively, as a function of time. C, D, The average numbBi&Ts in substratdound OF and IF states,

N(OF) and N(IF), respectively. The light blue bands show the variance observed in multiple simulations.
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2.3.2 DAT conformers reach a dynamic equilibrium within hundreds of milliseconds.

First, | examined the equilibration of the simulated system utideuniform surface distribution

of DAT molecules on the axonal membrane. The four snapshé&igumne 6 illustrate the initial

DA release events and the gradual equilibration of the conformational states of DATs. All DAT
molecules are assumed to be in the OF state & (White dotson the surface of the terminals).
Simulations start with a first release ev@ttAZ 1; Figure6A), followed by firings with Poisson
distribution. The released DA moleculesd dot3 rapidly diffuse to the vicinity of the release
site, as illstrated in the snapshotstat 1 and 5 mgFigure6B-C). Att = 700 ms, we observe a

broad spatial distribution of DAH{gure6D).
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Figure 6. Snapshotsfrom MCell simulations of DA release and reuptake by DATs on DA terminals.
Snapshots from an equilibration simulation of 1 s, initiated by a release event at t=0, and followed by AP
firings at 4Hz frequency are displayed, visualized using Blender. Color code: red, DA; white, OF DAT; green, IF
DAT. The purple region shows an axtamminal that is inactive during the simulations. Initially, all DATs are in the
OF state (A). A release event at 1 ms is shown in B, and another at 5 ms (C), where most of the DATS reside in the
OF state. DA molecules diffuse &xtrasynapticregions in10 ms. D, the high population of DATSs in the IF state

reached 700 ms.

Figure6D shows that most of DATSs reside in the IF state (colgmeer) att = 700 ms.
This is consistent with the equilibrium probabilities of the four DAT conformers (19.86% OF,
79.90% IF, 0.05% OF* and 0.19% IF*) which is reached within 500Fgsire5B-D displays the
time evolution of the population of the different state&T averaged over 140 independent
runs of 10s duration each. Most of the DATs fluctuate between unbound OF and IF states, while

the bound states (OF* and IF*) areosHived. Due to their scarcity, the numbers of DATs in IF*
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