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The central nervous system (CNS) is one of the most complicated living structures in the universe. 

A single gene expression, the expression level of a single protein or the concentration of a 

neurotransmitter could regulate the entire functionality of the CNS. The CNS needs to be 

investigated as a multiscale system with connections among different levels. The existing 

technology significantly limits experimental studies, and computational modeling is a useful tool 

for understanding how parts are connected, regulated, and function together. Ideally, the goal is to 

develop unified computational methodologies for exploring biological systems at multiple scales 

ranging from molecular to cellular to tissue level.  While rigorous models have been developed at 

the molecular scale, higher level approaches usually suffer from lack of physical realism and lack 

of knowledge on model parameters. Molecular level studies can help to define reaction schemes 

and parameters which could be used in cellular microphysiology models, and image data provide 

a structural basis for reconstructing the surroundings of the cellular system of interest.  

This dissertation develops and tests a new multiscale model of dopaminergic signaling and 

a detailed model of the activation-triggered subunit exchange mechanism of calcium/calmodulin-

dependent kinase type II (CaMKII). The goal is to develop and use computational models to 

understand the molecular mechanisms of neurotransmission, and how disruptions may cause 

complex disorders and conditions such as drug abuse. The simulations of the  dopamine (DA) 

signaling model show that the addition of the geometry of the environment and localization of 
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individual molecules significantly affect the DA reuptake. Consequently, the formation of DAT 

clusters reduces the DA clearance rate and increases DA receptor activity. In addition, the effects 

of the psychostimulants such as cocaine and amphetamine are also investigated. Constructed 

model and method can potentially serve as an in silico microscope to understand the molecular 

basis of signaling and regulation events in the CNS. Calibration of CaMKII model shows the 

limitations of the current parameter estimation methods for large biological models with long 

simulation times such as hours. The high dimensional parameter space and the limited and noisy 

data makes the parameter estimation task a challenge.  
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1.0 INTRODUCTION 

The human brain is one of the most complex living structures in the universe.  The human brain 

can store more information than any supercomputer, and the connections in the brain being more 

extensive than any social network that a human can imagine. The advances in technology provide 

us with much useful information about the way brain works, and there are many unresolved 

questions such as how it controls all the other organs and how it processes memories and emotions. 

The brain plays a central role in many behavioral conditions, and defects/disruptions in the brain 

can cause over 1,000 disorders. Brain disorders affect approximately one-sixth of the population 

and cost billions of dollars to the economy.  

As in the case of any complex systems, the brain has a lot of heterogeneous and moving 

parts. It has various cell types, and each cell functions in different ways (Churchland & Sejnowski, 

2016).  As an example, hippocampal neurons have a length of the order of micrometers µm’s, and 

they make many connections with other neurons, whereas sciatic neuron can go up to a meter long 

and the total number of connections may not be as large as a hippocampal neuron (Nolte, 2002). 

The functional differences are not only caused by the length of scale or the number of connections 

but also can be identified with low-level components such as the neurotransmitter type, its location 

in the brain, or the primary type of neurotransmitter transporter that the neuron expresses.  
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In the central nervous system (CNS) neurons are connected through synapses, and 

signaling at synaptic connections is one of the primary processes that mediate brain function 

(Shepherd, 2003). Due to the importance of synapses in the CNS function, a significant portion of 

neurodegenerative disorders such as Parkinson’s disease or drug abuse can be caused by defects 

in this signaling process (Dagher & Robbins, 2009). The disruption of synapses between neurons 

can lead to imbalances between excitation and inhibition in neural circuits, which can give rise to 

abnormal cognitive processing (Franken, Stam, Hendriks, & van den Brink, 2003). Therefore, it is 

necessary to understand how conventional circuits maintain balance to resolve issues caused by 

disturbances in synapses. Different synapse types use different sets of neurotransmitters, receptors, 

and transporter molecules. These differences lead to different functions, and the defects lead to 

different diseases (Lovinger, 2010). One of the most widely studied and important synapse types 

is the dopaminergic synapse due to its role in reward prediction/valuation (Wise & Rompre, 1989). 

Dopamine (DA) is in various regions of the brain. Dopamine transporters (DAT) are 

membrane proteins that transport DA across the cell membrane. DAT-mediated DA reuptake is 

the primary mechanism for removal of extracellular (EC) DA from synaptic and extra-synaptic 

space (Torres, Gainetdinov, & Caron, 2003). The regulation of DA reuptake depends on the 

localization and expression level of DATs on the membrane (Volz, Hanson, & Fleckenstein, 2007), 

as well as the intramolecular and intermolecular interaction mechanisms that enable effective 

transport, signaling, regulation, and recycling. The mechanisms that control the distribution and 

trafficking of DAT are still ambiguous. It is essential to understand how various factors regulate 

DA reuptake mechanism.  

Lack of DA clearance in certain regions of the brain increases DA levels in the extra-

synaptic regions, and the activity of the DA receptors is upregulated accordingly. Downstream 
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signaling from DA receptors activates the reward and satisfaction pathways (Wise & Rompre, 

1989). Therefore, DA neurotransmission is one of the focal points of the drug abuse research (Di 

Chiara & Imperato, 1988). More specifically, the effect of psychostimulants such as cocaine and 

amphetamine (AMPH) on DA neurotransmission has been a topic of study for more than two 

decades. Many of these studies are experimental, and a group of properties such as surface density 

of distribution of DAT has not been extensively studied due to limitations in technology.  

The conformational dynamics of DAT is one of the primary determinants of DA transport 

efficiency (Vaughan & Foster, 2013). Advances in structural characterization of membrane 

proteins have opened the way to the resolution of the crystal structure of DAT (Penmatsa, Wang, 

& Gouaux, 2013; Wang, Penmatsa, & Gouaux, 2015), and molecular simulations of these 

structures identified various states and dynamics of their transitions (Mary Hongying Cheng & 

Bahar, 2015; Mary Hongying Cheng et al., 2015; Mary Hongying Cheng, Garcia-Olivares, 

Wasserman, DiPietro, & Bahar, 2017; Khelashvili et al., 2015; Ma et al., 2017; Razavi, 

Khelashvili, & Weinstein, 2017). Individual states of the DAT have multiple interactions with 

downstream signaling molecules and extracellular DA, and these interactions lead DAT to a 

central role in DA signaling.  The resolution of DAT structures enables us to simulate transporters 

with different drugs or neurotransmitters and estimate the rates of structural transitions at long 

time scales such as milliseconds, that molecular simulations are not able to reach.  

On the cellular level, previous efforts are generally revolved around how DA concentration 

mediated at the specific regions of the brain, specifically in the striatum and nucleus accumbens 

(Garris, Ciolkowski, Pastore, & Wightman, 1994).  More recent efforts include how the spatial 

complexity of the system regulates the EC DA, yet no detailed description of the cell morphology 

and individual transporter/receptor localization has been included in modeling efforts  (Block et 
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al., 2015).  However, the complexity of the cell surface and the EC space in the brain is 

considerably more tortuous compared to a regular cell such as blood cell, and the models that do 

not include spatial complexity may not be able to provide a proper description of the 

microphysiology of the DA neurons and EC space.   

DAT is the primary target for psychostimulants such as cocaine and amphetamine. The 

mechanism of action of cocaine is known as competitive inhibition (Beuming et al., 2008). Cocaine 

binding to DAT blocks the DA translocation pathway. Continued exposure to cocaine leads to an 

increase in EC DA concentration above the metabolic level, which in turn increases the activity 

level of DA receptors that trigger reward pathways.  AMPH has more complicated interaction with 

DAT than cocaine. AMPH is transported by DAT into the cell and interacts with various 

downstream signaling pathways such as Ca++ signaling, Rho signaling, and G-protein signaling 

pathways (Saunders et al., 2000). The activated intracellular signaling pathways regulate the state 

of DAT and activate DA efflux to the cell exterior which, in turn, affect DA receptor activation.  

Intracellular signaling is significantly more complicated than extracellular signaling since the 

number of signaling molecules is considerably more abundant in the cell, and the number of 

interactions grows exponentially.  

Memory and learning are two of the most commonly studied areas in brain research. A 

mechanism proposed to explain memory and learning is the synaptic plasticity. Synaptic plasticity 

can be defined as the strengthening or weakening of the interactions depending on the activity 

patterns of the neuron itself and its neighbors. High input frequencies result in long-term 

potentiation (LTP) which strengthen the synaptic connectivity, whereas low input frequency 

causes long-term depression (LTD) which shrink the size of the spine. One of the key molecules 

in LTP is the calcium/calmodulin-dependent kinase type II (CaMKII). CaMKII is a central piece 
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of Ca++ signaling pathways. It has many connections between several signaling molecules. More 

interestingly, CaMKII is a large complex, usually assembled as a dodecamer, and its rapid 

dissociation/association and intramolecular activation properties make it challenging to gain a 

quantitative understanding of the molecular basis of CAMKII signaling events.  

1.1 THE PROBLEM 

Modeling DA reuptake and DA neurotransmission are one of the most popular questions, and a 

significant effort has been made to build a comprehensive model at both cellular and molecular 

levels (Mortensen & Amara, 2003).  In the 1990s, a well-mixed model of extracellular region in 

the dorsal striatum to predict the time trajectory of DA concentration had been introduced (Garris, 

1994). The first DA concentration model with a spatial component is defined as ‘volume 

transmission’ (VT) models (Cragg, Nicholson, Kume-Kick, Tao, & Rice, 2001; Cragg & Rice, 

2004; Rice & Cragg, 2008; Rice, Patel, & Cragg, 2011; Sulzer, Cragg, & Rice, 2016). VT models 

assume spatial/volume exclusion/transmission properties as individual parameters.  The central 

message from these models is that the consideration of realistic diffusion and reactions in EC 

microenvironment significantly affects the model predictions for DA dynamics.  However, a 

detailed model that considers both spatial complexity and localization of DAT has not been 

developed.  

Another determinant of DA dynamic is the spectrum of transitions that take place on a 

molecular level. The recent resolution of Drosophila DAT enables structure-based simulation 

studies (Penmatsa, Wang, & Gouaux, 2015). Such simulations provide significant information 

about the discrete states of DAT and the transitions among these states. The trajectories from the 
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simulations are not adequate in making predictions on the events on a timescale longer than 

microseconds, yet they can provide valuable information on the kinetics of conformational 

transitions.  

The advances in imaging technologies and modeling methods in both molecular and 

cellular level improved the accuracy and specificity of computational models. To have a better 

understanding of DA neurotransmission, the connection between these two scales using a 

multiscale modeling strategy is required. The timescale of molecular simulations is generally in 

the order of nanoseconds to microseconds, which is too short compared to cellular events that 

happen at much longer timescales such as microseconds to seconds. Also, the length scale of the 

diffusion of individual neurotransmitters is considerably more significant than the simulation 

environment that is used in molecular level simulations. Such diffusion events are generally 

ignored in molecular simulations, and molecular simulations usually place neurotransmitters in the 

close vicinity of transporter/receptor molecules. A more realistic understanding of such 

complicated systems is required to identify the defects and develop therapies for various conditions 

originating from deficiencies in DA signaling.  

DAT is the primary target of psychostimulants that are widely studied in the context of 

drug abuse (Di Chiara & Imperato, 1988). A major inhibitor of DAT is cocaine. Cocaine 

competitively inhibits DAT function to transport DA. Since cocaine is a potent inhibitor of DAT 

function, it is generally assumed that cocaine stays on DAT for hours. The effect of DAT recycling 

on the membrane and the effect of spatial complexity on the cocaine inhibition has not been 

examined. Another drug that disturbs DA signaling is AMPH. The mechanism of action for AMPH 

is more complicated than cocaine. AMPH regulates several intracellular down-stream signaling 

pathways. These complex pathways are generally studied without spatial properties due to the 
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large copy number of individual molecules. A complete picture of DA dynamics in the presence 

of psychostimulants is necessary to provide insights to design therapeutics against drug abuse. 

CaMKII has a long-lasting activity after initial stimulation by calmodulin and calcium. A 

mechanism called ‘Calmodulin Trapping’ explains the activity. Quantitative models have been 

using this mechanism to explain the high activity levels of CaMKII observed even after the 

completion of stimulation. However, calmodulin trapping blocks the phosphorylation of CaMKII 

on a secondary threonine site and activation-triggered subunit exchange. A recent experimental 

study shows that CaMKII can be phosphorylated at two threonine sites and as a result, an 

activation-triggered subunit exchange on the holoenzymes is observed. A detailed model of 

CaMKII dynamics in the presence of subunit exchange can show how the activity spreads across 

CaMKII molecules with the help of activation-triggered subunit exchange mechanism. 

1.2 THE APPROACH 

This dissertation addresses four main problems: (1) the absence of the binding and transition rates 

of DAT, (2) the lack of the inclusion of the effect of DA neuronal spatial complexity and 

heterogeneities in computational modeling of the DA transmission, (3) the lack of complete 

spatially realistic models for DA signaling under psychostimulants and lastly, (4), the lack of 

detailed quantitative model of CaMKII interactions to explain activation-triggered subunit 

exchange.  

The first problem has been recently addressed using two rigorous methods (M. H. Cheng, 

Kaya, & Bahar, 2018): (I) alchemical free energy calculations with free energy perturbation and 

(II), the potential of the mean force calculations using adaptive biasing force methods to calculate 
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binding free energies of DA-binding and -unbinding to/from DAT. As an input to these methods, 

our coworker Dr. Mary Cheng from Bahar lab used a variety of molecular level simulations and 

generated a total of more than two microseconds long trajectories. As a result, we were able to 

estimate the energy landscape of DAT and construct a model for the conformational dynamics of 

DAT. 

The second problem has been addressed in three steps. The first step was the reconstruction 

of the 3D geometry of DA synaptic environment from electron microscopy and fluorescence 

microscopy images obtained by Dr. Alexander Sorkin and coworkers (Block et al., 2015). I 

determined the geometry of DAT expressing cells and other neurons by using semi-automated 3D 

reconstruction algorithm which uses integer programming (Turetken et al., 2016). In addition to 

geometry, the location of DAT clusters and DA active zones have been identified. The second step 

was the implementation of the DAT transition kinetics into a spatially realistic model of DA 

reuptake from DAT and determination of stochastic DA release times using different action 

potential firing frequencies and patterns. All simulations were performed in MCell, a software 

developed for spatiotemporally realistic simulations of micro physiological events near CNS 

synapses. MCell outputs the location of the individual molecules and the number of molecules in 

specified compartments. Using molecule counts, I estimated the concentration and activation 

levels of DA receptors. In addition to activation levels, I evaluated the local and global 

concentration of DA in the EC space. In the third step, I carried out MCell simulations under 

diverse conditions such as the various distribution of DAT under different DA release patterns. 

Since MCell is a spatial stochastic simulation tool, it is required to simulate the models for a 

significantly large number of times to have a proper statistical estimate. Therefore, I repeated the 

third step for more than 100 times for individual settings. MCell simulations show that the DAT 
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distribution on the cell membrane and the complexity of the cellular morphology are significant 

factors for DA reuptake efficiency. 

I addressed the third problem by extending the model developed for the second problem 

with the addition of psychostimulants. First, I studied the effect of cocaine. The mechanism of 

action of the cocaine only involves the extracellular region. Therefore, I added cocaine molecules 

with known concentrations to the system and generated trajectories. For AMPH, it is impossible 

to use a similar strategy since AMPH enters the DAT-expressing cell through DATs and disrupts 

the intracellular signaling networks. The intracellular signaling networks have many molecules 

which makes it infeasible to use in spatial stochastic simulation tools such as MCell. To this end, 

in collaboration with Dr. Bing Liu in the Bahar Lab, I build a multiscale model of AMPH-induced 

DA efflux model. The effect of localization of the DAT and concentration of AMPH with varying 

action potential firing patterns are studied. MCell simulations show that spatial complexity does 

not have a significant effect on the DA reuptake efficiency in the presence of low cocaine 

concentrations. The effect of AMPH on EC DA concentration is significantly small if the DATs 

are nonuniformly distributed due to reduced AMPH uptake rate from DAT. On the other hand, the 

EC DA concentration considerably increased under a uniform distribution of DAT since the 

AMPH uptake is more efficient and many DAT are phosphorylated and efflux DA.  

I approached the last problem by creating a model of CaMKII intra- and inter-subunit 

dynamics to reproduce the experimental data available at both short-time scales (seconds) and 

long-time scales (minutes). Since the CaMKII is structurally a dodecamer, there is a need to 

simulate the system using network-free methods instead of conventional network-based methods. 

The model calibration was performed using genetic algorithms. The CaMKII is one of the central 

molecules, and I would like to learn about the activation dynamics. However, I discovered a bottle-
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neck in the parameter calibration step.  Since the model simulations were not efficient, and the 

objective function was hard to optimize, I introduced a hybrid model checking/genetic algorithm 

strategy to overcome the computational problems. Due to technical difficulties in network-free 

simulations, the suggested hybrid model checking/genetic algorithm strategy did not converge. 

However, the application of the method on simple models show promising results and about the 

increase in efficiency with the addition of model checking.  

Multiscale models allow us to understand how the components interact with each other and 

function together, how the functionality is altered when a drug is present, and if a protein is in a 

dysfunctional state. The molecular modeling part provides a foundation of the dynamics of 

essential molecules. Cellular simulations integrate data from various sources such as molecular 

simulations, microscopy studies, and physiological experiments to bridge different scales. The 

hybrid multiscale models can explain various events that can describe physiology in different 

length and time scales. Multiscale models enable the adoption of parameters estimated from 

molecular simulations in higher scale simulations to examine regulatory mechanisms that can 

affect the cellular system behavior at significantly long-time scales.  

1.3 HYPOTHESES AND MAJOR FINDINGS 

The main aspects of this dissertation are the introduction of a relationship between events at the 

molecular and cellular levels for DA neurotransmission, the development of a detailed spatially 

realistic reaction-diffusion model of DAT release and reuptake, and the construction of a 

quantitative and detailed model of activation triggered subunit exchange. Using literature data, 
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answers to the following hypotheses were investigated, and the following significant conclusions 

were reached:  

Claim 1. Spatial complexity of the EC region and the localization of DAT molecules are 

the two main contributors to DA release and reuptake dynamics under various neuron firing 

frequencies. The spatially realistic model and MCell simulations provide realistic and time-

dependent information on the concentration levels and distribution of DA molecules in the 

synapses.  

Claim 2. The local and global effects of the presence and the dose of the psychostimulants 

can be identified using spatial stochastic models in connection with large-scale interaction 

networks generally identified as non-spatial models. MCell simulations provided new insights on 

the inhibitory effect of cocaine on DA transmission and the complex effects of AMPH on 

dopaminergic signaling.     

Claim 3. The subunit exchange mechanism can explain how low levels of Ca++ can activate 

CaMKII for an extended period of times such as hours. Constructing and calibrating a detailed 

quantitative model of subunit exchange needs smart parameter estimation methods and network 

free simulation tools. The intrasubunit interactions and the rates of phosphorylation events should 

be recalibrated to provide a realistic description of the role of subunit exchange mechanism on 

CaMKII activation.   

1.4 SIGNIFICANCE 

DA modulates motor control, cognition, and drug addiction. Understanding the mechanism of 

dopamine transmission is essential to designing therapies for neurological disorders. I developed 
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a multi-scale model using advances in imaging and high-performance-computing technologies, 

which permitted us to perform spatially realistic simulations of DA reuptake. Simulations show 

large temporal and spatial variations in the local density of DA depending on the morphology of 

the synaptic/extra-synaptic regions near the DA release site, and on the firing pattern. DA clearance 

is less efficient under the heterogeneous distribution of DAT compared to the uniform DAT 

distribution with the same average surface density. DAT membrane distribution, accessibility of 

DAT dopamine re-uptake transporters outward-facing conformation, and large fluctuations in DA 

levels emerge as crucial features that modulate dopaminergic transmission. Psychostimulants 

significantly disrupt the EC DA concentration and DA receptor activity. Cocaine competitively 

binds to DATs and blocks the DA clearance whereas AMPH disrupts the intracellular signaling 

pathways and induces DA efflux from DATs. The DAT localization does not have a significant 

effect on the way cocaine disrupts DA signaling. Instead, the primary modulator is the 

concentration of the cocaine in the system. A The effect of DAT localization is more significant 

for the effect of AMPH due to limited uptake of AMPH under nonuniform DAT distribution.  

CaMKII is one of the critical nodes in the signaling network which can affect important 

processes such as neurotransmitter degradation and transcription factor regulation. Structurally, 

CaMKII is a dodecamer, and each subunit has many functional sites, e.g., calmodulin binding site 

and phosphorylation regions. The subunit exchange mechanism of CaMKII can explain how the 

activity of CaMKII lasts for an hour in the absence of stimulation in addition to ‘Calmodulin 

Trapping’ mechanism. The subunit exchange mechanism is observed significantly later than the 

CaMKII activation meaning that subunit exchange takes place after CaM is released from the 

trapped state.  
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1.5 OVERVIEW 

This dissertation is organized as follows: 

Chapter 2 provides detailed information on the construction of spatiotemporally realistic 

model starting from both molecular simulation data and microscopy data.  I determined how the 

variations in the spatial complexity and structural heterogeneity affect the DA reuptake and the 

EC DA concentration at both local and global levels under various DA neuron firing patterns.  

Chapter 3 presents the alterations in the spatiotemporally realistic DA release and reuptake 

in the presence of psychostimulants such as cocaine and AMPH. The implementation of the model 

on different scales and the effect of spatial complexity are investigated.  The effect of cocaine on 

the DA signaling depends on the concentration more than the localization of the DAT. Contrary, 

the primary triggering factor for AMPH induced DA efflux is the process of AMPH uptake. Since 

the nonuniform distribution of DAT has a low AMPH uptake rate, the effect is minimal under 

nonuniform DAT distribution. However, there are significant differences in the extents of DA 

clearance and DA efflux with different DAT distributions. In the end, the two alterations neutralize 

the total effect.  

Chapter 4 presents a detailed quantitative model of activation-triggered subunit exchange 

for CaMKII. I created the model and performed a parameter scan to check the validity of the model 

on the experimental data. The initial model does not capture the activation-triggered subunit 

exchange. Hence we calibrated the model parameters using genetic algorithms. Due to the complex 

nature of the optimization problem, a scalable heuristic optimization technique with genetic 

algorithms is used. The genetic algorithms have a significant overhead due to the entire trajectory 

generation at each step. To increase the efficiency and the accuracy of genetic algorithms, a hybrid 
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online model checking/genetic algorithm is implemented. The method showed promising results 

on simple models, but technical issues with the simulation engine prevented application to the 

CaMKII model.
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2.0 HETEROGENEITIES IN AXONAL STRUCTURE AND TRANSPORTER 

DISTRIBUTION LOWER DOPAMINE REUPTAKE EFFICIENCY 

2.1 BACKGROUND 

Midbrain dopaminergic neurons have a strong influence on striatum functions such as motor or 

action planning, cognitive functions, and motivation (Roeper, 2013). Dysregulation of 

dopaminergic transmission leads to impairment of these activities, resulting in disorders such as 

Parkinson’s disease (PD) (Hoang, 2014), attention-deficit/hyperactivity disorder (ADHD) (Wu, 

Bellve, Fogarty, & Melikian, 2015), and drug addiction (Nutt, Lingford-Hughes, Erritzoe, & 

Stokes, 2015). A mechanistic understanding of dopamine (DA) transmission events is essential to 

developing therapeutic strategies because many behavioral states strongly correlate with DA 

release and reuptake (Sulzer et al., 2016; Tsai et al., 2009). 

DA release to the synapse is activated by excitatory stimulation and exhibits patterns like 

neuronal firings. DA excitatory signaling proceeds by activation of DA receptors upon binding 

DA molecules. DA rapidly diffuses from the active zone (AZ), or release site, to extra-synaptic 

regions in the extracellular (EC) medium. DA transporters (DATs) membrane proteins usually 

located on the surface of presynaptic axon terminals, regulate DA signaling by removing excess 

DA from extra-synaptic regions (Torres et al., 2003; Vaughan & Foster, 2013). DATs are targets 

for addictive substances, which inhibit their function (Amara & Sonders, 1998), thus resulting in 
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excess (neurotoxic) DA levels in the EC region (Di Chiara & Imperato, 1988), whereas low levels 

of DA cause motor impairments associated with PD (Lotharius & Brundin, 2002).  Also, reuptake 

by DATs,  the rate of DA diffusion from the AZ to the extra-synaptic region (Taylor, Ilitchev, & 

Michael, 2013), and the frequency and patterns of action potentials (APs) (Tsai et al., 2009), are 

known to modulate the efficiency of DA signaling.  

The dynamics of DA reuptake by DATs has been a focal topic in modeling efforts, both at 

the cellular and molecular levels (Mortensen & Amara, 2003). Early efforts at the cellular level 

adopted a well-mixed model focusing on predicting the DA concentration in some areas of the 

brain, such as the nucleus accumbens or dorsal striatum (Garris et al., 1994). The effect of EC DA 

concentration on the activation of DA receptors (Viggiano, Vallone, & Sadile, 2004), as well as 

spatial/volume exclusion/transmission properties affecting EC DA levels, have been included in 

later, volume transmission (VT) models (Cragg et al., 2001; Cragg & Rice, 2004; Dreyer, Herrik, 

Berg, & Hounsgaard, 2010; Dreyer & Hounsgaard, 2013; Rice & Cragg, 2008; Sulzer et al., 2016). 

These studies highlighted a need for considering the distinctive diffusion and uptake characteristics 

of the EC microenvironment. No quantitative models/simulations have been developed/performed 

to date that would permit us to assess how the complex geometry of DA terminals, and the spatial 

distribution and conformational dynamics of DATs alter dopaminergic signaling. The advances in 

imaging DA neurons and visualizing individual DATs (Block et al., 2015) now enable us to 

reconstruct in silico the detailed morphology near AZs, and examine the time evolution of DA 

release and reuptake with the help of MCell, a software initially developed (Czech, Dittrich, & 

Stiles, 2009; Kerr et al., 2008; Stiles, Van Helden, Bartol, Salpeter, & Salpeter, 1996) for 

spatiotemporally realistic simulations of synaptic signaling events.  
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In addition to cellular structure and heterogeneities, the conformational dynamics of DATs 

is a determinant of DA transport efficiency. Recent crystal structures of Drosophila DAT (dDAT) 

(Penmatsa et al., 2013; Penmatsa et al., 2015; Wang et al., 2015), have opened the way to structure-

based studies of DAT dynamics. Simulations based on these structures helped elucidate the 

sequence of molecular events that take place during the transport cycle of the human orthologue, 

hDAT (Mary Hongying Cheng & Bahar, 2015; Mary Hongying Cheng, Torres-Salazar, Gonzalez-

Suarez, Amara, & Bahar, 2017; Huang & Zhan, 2007; Khelashvili et al., 2015; Razavi et al., 2017). 

We are now able to make reasonable approximations for the kinetic scheme and parameters 

associated with the DAT transport cycle based on statistical analyses of the full-atomic trajectories 

and free energy calculations. 

Here, I present an integrated model of synaptic signaling in DA neurons developed from 

cellular and molecular structures and molecular dynamics.  We investigate the effects of (I) the 

conformational kinetics of DATs, (II) the spatial complexity of DA terminals and AZs based on 

fluorescence images, (III) the firing patterns, phasic vs tonic and (IV), the heterogeneous 

distribution of DATs on the plasma membrane based on experimentally observed DAT density 

fluctuations. Simulations reveal the strong dependency of local DA levels as well as overall DA 

clearance efficiency on the local geometry of axon terminals. They also reveal that the presence of 

DAT clusters (consistent with the DAT density heterogeneities observed in high-resolution images 

(Block et al., 2015)) causes a reduction in the efficiency of DA reuptake compared to uniformly 

distributed DATs with the same average surface density. This effect becomes more pronounced 

with increasing heterogeneity of the surface distribution of DATs.   
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2.2 METHODS 

2.2.1 Confocal imaging of immunolabeled DATs in transgenic mouse brains  

The procedure for preparing and imaging acute brain slices from transgenic knock-in mice of either 

sex expressing DAT molecules tagged with the hemagglutinin-A (HA) epitope (HA-DAT; (Rao, 

Richards, Simmons, Zahniser, & Sorkin, 2012) has been described in previous works (Block et al., 

2015; Rao, Sorkin, & Zahniser, 2013). Briefly, brains were submerged into an ice slush of 

oxygenated artificial cerebrospinal fluid, and 0.8 mm thick sagittal slices were cut using microtome 

blades and a stainless-steel slicing block. The subcellular localization of cell-surface HA-DAT 

molecules was deduced from intact living DA neurons in acute sagittal brain slices as detected by 

mouse anti-HA antibodies with Cy3-conjugated anti-mouse antibodies (Block et al., 2015). Slices 

were incubated in artificial cerebrospinal fluid (ACSF) at room temperature with one µg/ml mouse 

anti-HA antibodies for 1 hour. After removing unbound antibodies, slices were incubated for one 

hour at 4°C in ACSF with 2.5 µg/ml Cy3-conjugated anti-mouse Fab fragments.  

Dr. Sorkin and coworkers have not observed substantial differences in HA-DAT 

distribution between live-cell and post-fixation labeling with HA antibodies, suggesting that 

axonal varicosities revealed by DAT staining were not the result of blebbing during the labeling 

procedure of live slices. The binding of antibodies to live neurons followed by fixation provides 

much superior image quality and lower signal-to-noise ratio as compared to the conventional 

protocol of fixation first and then staining with antibodies. Importantly, live-neuron staining 

protocol allows labeling of cell-surface DATs, which is essential for defining the distribution of 

DATs on the neuronal surfaces in the model.  Observations of DAT endocytosis (Block et al., 
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2015), normal lateral membrane mobility of DAT, and healthy mitochondria in dopaminergic 

neurons from slices kept alive for at least two hours were indicative of functional neurons in these 

slices. Moreover, DA neurons labeled as described above have been observed to exhibit pH-

dependent vesicular trapping of antipsychotic drugs (Tucker, Block, & Levitan, 2015). 

Dr. Sorkin and coworkers obtained high-resolution 3D images of DA neurons, and a z-stack of 18 

confocal images at 400 nm interstack distance was acquired 10 µm deep from the cut face of the 

slice through the 561 filter channel using a spinning disk confocal system based on a Zeiss Axio 

Observer Z1 inverted fluorescence microscope (with 63x Plan Apo PH NA 1.4 objective), 

equipped with a computer-controlled Spherical Aberration Correction unit, Yokogawa CSU-X1, 

Vector photo manipulation module, Photometrics Evolve 16-bit EMCCD camera, Hamamatsu 

CMOS camera, environmental chamber, and piezo stage controller and lasers (405, 445, 488, 515, 

561, and 640 nm), all controlled by SlideBook 6 software (Intelligent Imaging Innovation, Denver, 

CO).  

The image reconstruction and modeling described below are based on the combined use of 

slices of light microscopy images and electron microscopy images (Block et al., 2015) (Block et 

al., 2015) that were obtained on intact animals after cardioperfusion fixation by Sorkin and 

coworkers. 

2.2.2 In silico reconstruction of DA axonal terminals in the striatum 

I reconstructed in silico a 10 µm x10 µm x 7.2 µm volume from the above described striatal region 

using a semi-automated 3D reconstruction algorithm (Turetken et al., 2016). The 3D 

reconstruction algorithm uses integer programming to suggest the connections between the borders 
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of the cell membrane on each confocal image. Manually, suggested cells are a match, and the 3D 

geometry of DAT-expressing cells are generated. A detailed description of the reconstruction 

method is available in Fiji tutorials (ImageJ). The size of the simulation box was large enough to 

allow for  the diffusion of DA over a sufficiently broad EC region, in accord with previous 

estimates (Venton, Michael, & Wightman, 2003), and the reconstruction yielded a realistic 

representation of both the heterogeneous shape of axonal terminals and the surface distribution of 

individual DAT molecules.  
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Figure 1. Reconstruction of the morphology of DA neuronal axons 

A, HA-DAT distribution in different regions of mouse brain including midbrain (mb) and striatum (str) 

acquired from sagittal slices. The slices were labeled with HA11 antibody detected with Cy3-conjugated Fab IgG 

fragments (HA, red). Nonspecific staining of the vasculature (vasc) is also highlighted. White scale bar, 2 mm. B, 

Maximal-projection image of the first five (starting 10 m deep from the edge of the slice) confocal sections of the 3D 

image from the striatal region. The slice labels are same as those in A. Green scale bar, 10 m. C, Maximal projection 

of the first five sections of 3D image of the small striatal region, used to construct the simulation environment (inset), 

magnified from B. Blue scale bar, 1 µm. D, 3D reconstruction of the region shown in C, visualized using CellBlender 

(Bartol, Keller, et al., 2015), an add-on for Blender 2.78 (http://www.blender.org). Different colors refer to 13 different 

axonal varicosities (DA terminals). Cells that do not express DAT occupies the remaining portions. The location of 

six AZs is shown by the labels 1– 6. The dashed line indicates an AZ that is not visible from this perspective. E, Full 

isometric view of the simulation box. White circles indicate the locations of three AZs. 
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Table 1. Geometric characteristics of axon terminals reconstructed for simulations. 

Subsystem V(µm)3 

Surface 

area (µm)2 

Available (3) 

Surface area (µm)2 

D
A

 a
x
o
n
s 

Terminal 1 1.22 6.8 5.47 

Terminal 2 24.63 59.47 53.83 

Terminal 3 3.53 20.18 18.03 

Terminal 4 15.84 56.33 51.11 

Terminal 5 4.72 25.14 25.14 

Terminal 6 1.71 10.12 10.12 

Terminal 7 0.82 5.57 5.57 

Terminal 8 2.04 12.94 12.94 

Terminal 9 15.32 46.86 39.08 

Terminal 10 15.18 58.65 55.5 

Terminal 11 3.85 18.99 18.98 

Terminal 12 9.69 34.31 31.75 

Terminal 13 2.58 12.35 9.64 

Total  101.03 367.71 337.16 

 

Non-DA expressing cells 

 

463.62 1058.00 0 

DA axons + other cells 564.65 1425.71 337.16 

Available EC volume (2) 155.35 

 

The reconstructed region contained 13 axon terminals (Figure 1B). The corresponding 

volumes and surface areas (listed in Table 1) were calculated using the NeuroMorph (Jorstad et 

al., 2015), a Blender add-on that uses triangular meshes to evaluate the surface area and 

corresponding normal to determine the volume of each tetrahedron. The total volume occupied by 

the 13 axon terminals was 101.03 µm3, and the corresponding total surface area, 337.16 µm2.   
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The DA axonal terminals reconstructed in silico contained six varicosities, i.e., 3D globular 

regions with densely expressed DATs, distributed over three DA terminals: one of the largest 

terminals had three varicosities, another had two, and the remaining varicosity was on a third 

terminal. AZs lie within varicosities but are not usually populated with DAT molecules (Block et 

al., 2015); accordingly, sub-regions (of varicosities) which lacked DAT molecules within at least 

a 50 nm radius were identified as AZs. The region between DAT-expressing cells (detected by 

fluorescence microscopy) and others, (not visible), was represented by an interstitial (void) space 

of 30 nm thickness surrounding the DAT-expressing terminals (Figure 1E). The void fraction is 

calculated as 0.21, consistent with previous estimates (Cragg et al., 2001), or an overall volume of 

155.35 µm3 (Table 1) that formed the available for DA diffusion. These narrow regions form the 

synaptic clefts and extra-synaptic regions available for the diffusion of DA molecules.  The number 

of AZs for a given volume was verified to be comparable to that used in other studies (Dreyer et 

al., 2010). 

2.2.3 Distribution of DATs on the axonal surfaces 

Next, I proceeded to the placement of DAT molecules on the membrane of axonal terminals. To 

investigate the effect of DAT surface distribution heterogeneities on the efficiency of DA reuptake, 

I examined four cases (Figure 2). Case 1 refers to the uniform distribution (Figure 2A), taken as 

(DAT) = 800/µm2, based on the electron microscopy images of gold particle labeled HA-DAT, 

assuming 10% labeling efficiency (Block et al., 2015). Case 2 is a non-uniform (bimodal) 

distribution (Figure 2B), outlined in accord with the actual distribution of DATs observed in 

experiments. High-density regions were detected in the fluorescence images, as continuous bright 

regions (Figure 1C). These regions covered ~10% of the plasma membrane area, and 
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approximately 90% of DATs were localized in these regions.  The surface densities of DATs in 

the high- and low-density regions were taken as h = 6,339/µm2 and l = 50/µm2, respectively.   

 

 

Figure 2. Four space-dependent models of different plasma distributions of DATs 

A–D, Distant (left) and magnified (right) view of the axon terminals in cases 1– 4. Each color shows a 

different terminal, and the red dots represent the DATs. The white regions in A represent the regions with high 

fluorescence intensity, and those regions are filled with a high density of DATs (red dots), magnified in B, where the 

blue region shows the AZ. The red patches in B–D illustrate high-density regions where 90% of DATs are clustered. 

E–H, Distance distribution of DATs to closest AZ center, from 140 independent simulations. 
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Table 2. Parameters and properties used in MCell simulations 

Parameter Value Unit Reference 

DA diffusion coefficient 4.00 x 10-

6 

cm2/s (Rooney & Wallace, 2015) 

Vesicle release probability 0.06  

(Dreyer et al., 2010) 

 
The average firing rate of DA 

neurons 

4.00 Hz 

# of DA released per release event  3,250  (Pothos, Davila, & Sulzer, 1998) 

OF → OF* rate constant (k12)  9.60 x 

106 

M-1s-1 

(M. H. Cheng et al., 2018) 

OF* → IF* rate constant (k23)  20.00 s-1 

IF* → IF rate constant (k34)  5.00 s-1 

IF ↔ OF forward rate constant (k41) 2.00 s-1 

IF ↔ OF reverse rate constant (k14) 8.00 s-1 

Total axonal surface area 337.16 µm2 

(Block et al., 2015) 

Uniform DAT surface density, 

(DAT)  

800 1/µm2 

High DAT surface density, h (DAT)  6,339 1/µm2 

Low DAT surface density, l(DAT)  50 1/µm2 

Very high DAT surface density, 

h2(DAT)  

30,000 1/µm2 
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DA density of neurons, IDA 9.3 µg/cm3 (Bannon, Michaud, & Roth, 

1981) 

The ratio of the total DA released per 

AP 

0.05%  (Gubernator et al., 2009) 

Density of DA terminals, term 0.104 1/µm3 (Doucet, Descarries, & Garcia, 

1986) 

 

In Case 3, the distribution is again bimodal, similar to Case 2, but the central parts of the 

high-density regions from Case 2 are selected as the new very-high-density regions, with h2 = 

30,000/µm2; and l = 50/µm2 elsewhere, which leads to a sharper heterogeneity in the spatial 

distribution of DATs (Figure 2C). In Case 4, DATs are assumed to be clustered in the immediate 

neighborhood of AZs, as a mimic for conventional synaptic models where DATs act as gatekeepers 

near the synaptic cleft (Figure 2D) (Danbolt, 2001; Rothstein et al., 1994); and DAT surface 

concentrations in high- and low-density regions are the same as in Case 3. The histograms in Figure 

2E-H describe the probability distribution of the distances of DAT molecules from the closest AZ.  

2.2.4 MCell simulations of DA release and reuptake events in DA neurons 

Spatiotemporally realistic simulations were performed using MCell (Kerr et al., 2008; Stiles et al., 

1996), a 3D reaction-diffusion system solver that allows users to reconstruct complex geometries, 

define the subcellular localization of discrete molecules, and simulate their dynamics. There are 

four levels in the MCell simulation algorithm. The first level is the diffusion of the molecules in 

2D and 3D. For diffusion of volume molecules, the direction and the length of the diffusion path 
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is determined using Monte Carlo methods. The probability distribution of the length of diffusion 

for a given time step is determined using the following equation:  

Equation 1 

𝜌(𝑟, 𝑡) =
1

(4𝜋𝐷𝑡)
𝑒
2⁄
𝑒
−𝑟2

4𝐷𝑡⁄  

where (r) is the distance a volume molecule traveled at the time step (t) and (D) is the diffusion 

coefficient of the volume molecule. For determination of the direction of the diffusion, two angles 

for the spherical coordinates are calculated. First, the azimuthal angle ϕ is sampled from a uniform 

distribution between 0 and 2π. The distribution for the polar angle is sinusoidal and generated 

using  inverse transform sampling. The surfaces in MCell are divided into triangular tiles. In the 

2D diffusion, like the 3D diffusion, a direction is selected in the plane of the tile that molecule 

resides. The molecule diffused in 2D using the similar strategy that is described for volume 

molecules. When the molecule changes a tile, the direction vector is transformed to the local 

coordinate system on the next tile.  The second level of the simulation algorithm is the collision 

detection step. The collision detection is performed completely based on the distance between 

molecules. If the distance between two particles is less than a predefined collision radius, the 

molecules are evaluated for a bimolecular reaction. The third level of the MCell algorithm is the 

evaluation of bimolecular reactions. The propensity of each reaction is calculated using the bulk 

rate of each reaction. To obtain the correct bulk rate, a proper probability of reaction per collision 

should be selected. This value is determined by the following formula:  

Equation 2 

𝑝 =
𝑘

𝐴
𝑓(𝐷, 𝑡) 
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where (k) is the observed reaction rate, (A) is the tile area or cross-section of 3D diffusion. For 

surface volume reactions the probability per collision is defined as:  

Equation 3 

𝑝 =
𝑘

𝐴
(
𝜋Δ𝑡

𝐷
)

1
2
 

For the surface to surface reactions: 

Equation 4 

𝑝 =
𝑘

𝐴
Δ𝑡 

For the volume to volume reactions: 

Equation 5 

𝑝 =
𝑘

4𝐴
(

(𝜋Δ𝑡)1/2

𝐷1
1/2 + 𝐷1

1/2) 

If the calculated probability is larger than 1, the reaction becomes diffusion limited, and if 

the collision occurs, the reaction is triggered. If the molecules are not part of a reaction, they can 

be part of unimolecular reactions. The fourth step of the MCell algorithm is the unimolecular 

reactions. In MCell, when a molecule is created, the time of next unimolecular reaction is identified 

using Gillespie’s stochastic simulation algorithm. If the molecule does not undergo a bimolecular 

reaction, a unimolecular reaction occurs at the time calculated at the creation time.  

There are a lot of diffusion and reaction parameters in MCell simulations, and the parameters used 

in the simulations are given in Table 2. Unimolecular reactions are scheduled according to defined 
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reaction rates, and bimolecular reactions occur with predefined probabilities that are chosen to 

match bulk reaction rates. Collisions between molecules are detected by ray tracing algorithm. We 

adopted Neumann boundary conditions like those used in recent simulations of Ca++ signaling 

(Bartol, Keller, et al., 2015), i.e., DA molecules are subjected to reflective boundary conditions at 

the simulation box walls. In addition, to reduce the bias from reflective boundaries, terminals 

within 1 µm from the box boundary were assumed to be inactive, such that the available surface 

area on DA axon terminals was 337.16 µm2 (see Table 1). A detailed description of the MCell 

algorithm is provided in Appendix A.  

The probability of a release succeeding an action potential depends on multiple factors 

(Dreyer et al., 2010), including the content of DA in the striatum (IDA) (Bannon et al., 1981), the 

ratio of the amount of total DA released per action potential (R) (Gubernator et al., 2009), the 

volumetric density of DA terminals at AZs (term) (Doucet et al., 1986) and the number of DA 

molecules released per quantum (N0) (Pothos et al., 1998). The parameters are given in Table 2, 

which yielded a release event probability of 6% (Dreyer et al., 2010). Each AZ has a release site 

located at its center; and upon a release event, a total of N0 DA molecules is assumed to be released 

from the release site. The MCell algorithm is applied to DA molecules with a fixed time step of t 

= 0.1 µs. The distribution of DA step sizes yielded an average of 13.3 nm using a DA diffusion 

coefficient of 4 x 106 cm2/s. A time-step of 100 µs was used for the slow events such as the 

transition of DAT to reuptake-ready (EC-exposed outward-facing) state. 140 independent runs, 

each of 10s, were performed to extract statistically significant results.  
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2.2.5 Conformational dynamics of DAT  

The recent dual-boost accelerated molecular dynamics (aMD) (Hamelberg, de Oliveira, & 

McCammon, 2007; Miao, Nichols, Gasper, Metzger, & McCammon, 2013) and conventional MD 

(cMD) simulations of DAT dynamics performed by Dr. Mary Cheng in the Bahar Lab showed that 

the DA transport cycle by DAT can be approximated by four necessary steps (Figure 3) (Mary 

Hongying Cheng & Bahar, 2015; M. H. Cheng et al., 2018): (1) recognition and binding of DA 

(and co-transported Na+ ions) from the EC region to DAT in the outward-facing (OF) state. We 

designate the substrate- and Na+-bound (or loaded) OF state as OF*; (2) global structural change 

of DAT from OF* to inward-facing loaded (IF*) state; (3) release of cargo to the IC region (IF* 

→ IF); and (4), reverse transition of the unbound/apo DAT from IF to OF state. The respective 

forward rate constants are denoted as k12, k23, k34, and k41, and reverse rate constants are k21, k32, 

k43, and k14 (Figure 3).  
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Figure 3. Schematic representation of the sequence of events occurring during the transport cycle 

A succession of four major states is observed in MD simulations: unbound and DA/ion-bound outward-facing 

states (OF and OF) followed by unbound and bound inward-facing states (IF and IF). The corresponding hydration 

patterns (water molecules in white and pink spheres) and interactions of intra- and extracellular gating residues (R85-

D476 and R60-D436, respectively, in stick representation) are displayed. Green arrows indicate the transitions that 

were observed and evaluated in molecular simulations (see Table 2). The events indicated by the red arrows were 

unlikely (k21) or not observed (k32 and k43) in MD runs. Curved arrows refer to the binding or unbinding of DA (purple, 

space filling), cotransported Na ions Na1 and Na2 (yellow spheres), and the chloride ion (blue sphere). 

 

The molecular events of DA binding and unbinding to DAT generally involve local 

conformational changes, and their energetics can be estimated using established free energy 

calculation methods. Two methods have been used: (I) alchemical free energy calculation with 
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free energy perturbation (FEP) method (Pohorille, Jarzynski, & Chipot, 2010), and (II), potential 

of mean force (PMF) calculations using the adaptive biasing force (ABF) method (Chipot & Hénin, 

2005), based on cMD trajectories. The FEP calculations yielded a binding free energy change of 

ΔGbind = −7.8 kcal/mol (M. H. Cheng et al., 2018) in excellent agreement with the experimental 

value of −7.4 kcal/mol (Dar, Metzger, Vandenbergh, & Uhl, 2006; Huang & Zhan, 2007). MD 

simulations indicated that the average time required to bind DA molecule originally placed at a 

distance of 15 Å from the binding site is approximately 125 ns. To convert this number into the 

binding rate constant k12, we performed the following: First, using an EC DA concentration,7.5 

nM (Feifel, Shilling, Kuczenski, & Segal, 2003) we calculated the density of DA molecules to be 

7.5 10-9 moles/nm3 x 6.02 x 1023 molecules/moles = 4.5 x 10-9 molecules/nm3.  The free volume 

(excluding that occupied by DAT itself) for DA translocation originally located at a separation of 

15Å from the binding is evaluated to be 2 nm3 using POVME (Durrant, de Oliveira, & 

McCammon, 2011). The number of DA molecules colliding with DAT based on this accessible 

volume is 2 nm3 x 4.5 x 10-9 = 9 x 10-9, which also represents the prior probability/frequency of 

collision of a given DA molecule. This leads to an effective binding time of 125 ns / 9 x 10-9 = 

13.88 s. By normalizing with respect to EC DA concentration, the bimolecular reaction constant 

is determined as (1/13.88 s) / 7.5 x 10-9 = 9.6 x 106 M-1s-1. 

Dr. Mary Cheng and I further observed that (I) the binding of Na+ ions was fast (< 100 ns) and the 

subsequent binding of DA readily prompted the closure of the EC gate such that the escape of DA 

(and ions) back to the EC region was negligibly small, i.e. k21 << k12; (II) no DA efflux to EC 

region was detected (i.e., k43 = k32 ≈ 0); (III) the DA-free (with Na+/Cl− bound) OF→IF transition 

(k14) was two to three times slower than that in the DA-loaded transition (k23); Na+- and substrate-

binding allosterically promoted a cooperative transition to IF* state (Cheng and Bahar, 2015; 
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Bahar et al., 2015), but such cooperativity was not observed in the apo state, and (IV), the DA-free 

IF→OF transition (k41) was even slower than the OF→IF transition (k14) due to the difficulty in 

closing the intra-cellular gates (M. H. Cheng et al., 2018). The global OF  IF transition rates 

were thoroughly examined in microseconds aMD simulations of DA-free DAT, which showed 

that the population of reuptake- ready (OF) conformers was lower than that of IF (or other 

intermediate) conformers by a factor of 4, or k14/k41 ≈ 4 (M. H. Cheng et al., 2018). These 

considerations provided us with robust information on the relative rates of the individual steps and 

led to the rate constants in Table 2, the absolute values of which were verified to be compatible 

with experimentally observed turnover rates and steady-state concentrations of DA molecules.  

To investigate the sensitivity of DA reuptake efficiency to DAT conformational kinetics, 

we also performed global sensitivity analysis with respect to rate constants in Figure 3. We 

performed 729 independent runs with different combinations of k12, k23, k34, k41, and k14, which 

we varied by three orders of magnitude. The results are presented in Figure 4. Each blue dot 

represents the outcome, EC DA concentration in the simulation box, [DA]EC, from one run. A 

broad range of [DA]EC values, from 0.1 nM to more than 100 nM, are observed. Yet, an increase 

in DA binding rate k12 results in a more efficient clearance and thereby lowers the DA levels in the 

EC region (Figure 4A). A similar trend is detected with an increase in the transition rate k41 from 

IF to OF, which exposes more reuptake-ready DATs to the EC region (Figure 4C), and the reverse 

transition induces the opposite effect (Figure 4D). An even sharper effect is observed upon plotting 

[DA]EC against the ratio k14/k41 highlighting the importance of the equilibrium population of the 

OF and IF states of DAT after releasing its cargo (Figure 4E). The examination of the relative 

effects of DA binding (k12) versus back transition to the IF state (k14) for the OF DAT also indicates 

that the OF DAT level is a major determinant of [DA]EC (Figure 4F). Further quantitative 
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assessment of the statistical significance of these observations using Spearman rank correlation 

coefficients confirmed that the binding rate constant k12 and the ratio k14/k41 are two major 

determinants of DA clearance efficiency. No clear effect was seen for k23 (Figure 4B) or k34 (data 

not shown).  

 

Figure 4. Results from global sensitivity analysis performed for kinetic parameters representing DAT 

conformational dynamics 

Yellow dots represent the default parameters used in the present study, and blue dots show the results 

obtained by using as random input combinations of the parameters (k12, k23, k34, k41, and k14) and their ratios. Results 

for k34, which are very similar to those for k23, are not shown. The red curves indicate the mean values and the standard 

error for successive bins of width 0.5. The Spearman correlation coefficients are – 0.71, 0.01, – 0.01, – 0.44, 0.44, 

0.63, and – 0.48, in the six respective panels. 
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2.3 RESULTS 

2.3.1 In silico turnover and [DA]EC at half-maximal-rate conform to experimental data  

We first verified that MCell simulations yielded macroscopic properties consistent with 

experimental data. We calculated the turnover rate by adopting in simulations, the same protocol 

as that adopted in experiments (Rao et al., 2013): multiple runs are performed for a series of initial 

concentration of DA in the EC region, [DA]0, and in each case, the mass of DA molecules 

transported per unit time is measured. The number of DA molecules transported per second, Vmax, 

under saturation conditions ([DA]sat is of the order of tens of µM) is used to evaluate the turnover 

rate as the ratio of Vmax to the total number Bmax of DAT molecules present in the system. In a 

simulation environment, Bmax ≈ 220,000, based on fluorescence microscopy data (Block et al., 

2015). To evaluate the turnover rate in silico, we counted the number of DAs transported as a 

function of [DA]0 and examined for each concentration the number of DAs translocated per 

second. This led to a reuptake rate of 1.2 x 105 DAs/s at saturation (Vmax). Division by Bmax gave 

a turnover rate of 0.55/s, which is comparable to the reported values of 0.2/s (Rao et al., 2013), 

0.9/s (Prasad & Amara, 2001) and 1.8/s (Beuming et al., 2008; Prasad & Amara, 2001; Rao et al., 

2013).  

The average DA level in the EC medium, [DA]EC, observed in silico after reaching steady-

state conditions was 7.8 nM (Figure 5A). The physiological concentration of DA in the striatum 

varies between 5 nM and 50 nM (Owesson-White et al., 2012), consistent with the large 

fluctuations (of the order of Δ[DA]EC ≈ ± 10 nM) we observed  in [DA]EC. Note that the saturating 

concentration for DATs is estimated to be ~ 10µM (Prasad & Amara, 2001; Rao et al., 2013). 
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Simulations yielded a substrate concentration at half-maximal-rate, Km value, of 2.2 µM, which 

falls within the broad range of reported experimental values of 50 nM to 6.6 µM (Beuming et al., 

2008; Prasad & Amara, 2001; Rao et al., 2013). These data confirm that the MCell model and 

simulations reproduce macroscopic quantities consistent with observables such as the average DA 

concentration in the EC region at half maximal rate, and the overall turnover rate. We now proceed 

to a closer examination of microscopic properties. 

 

Figure 5. Time evolution of DA concentration and DAT conformational states averaged over 140 

independent MCell runs 

A, Extracellular DA concentration, [DA]EC. The average concentration reached under steady-state conditions 

is 7.8 nM, and the standard deviation of the concentration is indicated by the shaded region is [DA]EC 10 nM. B, the 

number of DAT molecules, in the unbound inward- or outward-facing state (IF: red; OF; blue), denoted as N(IF) and 

N(OF), respectively, as a function of time. C, D, The average numbers of DATs in substrate-bound OF and IF states, 

N(OF) and N(IF), respectively. The light blue bands show the variance observed in multiple simulations. 
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2.3.2 DAT conformers reach a dynamic equilibrium within hundreds of milliseconds.  

First, I examined the equilibration of the simulated system under the uniform surface distribution 

of DAT molecules on the axonal membrane. The four snapshots in Figure 6 illustrate the initial 

DA release events and the gradual equilibration of the conformational states of DATs. All DAT 

molecules are assumed to be in the OF state at t = 0 (white dots on the surface of the terminals). 

Simulations start with a first release event (at AZ 1; Figure 6A), followed by firings with Poisson 

distribution. The released DA molecules (red dots) rapidly diffuse to the vicinity of the release 

site, as illustrated in the snapshots at t = 1 and 5 ms (Figure 6B-C). At t = 700 ms, we observe a 

broad spatial distribution of DA (Figure 6D).  
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Figure 6. Snapshots from MCell simulations of DA release and reuptake by DATs on DA terminals. 

Snapshots from an equilibration simulation of 1 s, initiated by a release event at t=0, and followed by AP 

firings at 4-Hz frequency are displayed, visualized using Blender. Color code: red, DA; white, OF DAT; green, IF 

DAT. The purple region shows an axon terminal that is inactive during the simulations. Initially, all DATs are in the 

OF state (A). A release event at 1 ms is shown in B, and another at 5 ms (C), where most of the DATs reside in the 

OF state. DA molecules diffuse to extra-synaptic regions in 10 ms. D, the high population of DATs in the IF state 

reached 700 ms. 

 

Figure 6D shows that most of DATs reside in the IF state (colored green) at t = 700 ms. 

This is consistent with the equilibrium probabilities of the four DAT conformers (19.86% OF, 

79.90% IF, 0.05% OF* and 0.19% IF*) which is reached within 500 ms. Figure 5B-D displays the 

time evolution of the population of the different states of DAT averaged over 140 independent 

runs of 10s duration each. Most of the DATs fluctuate between unbound OF and IF states, while 

the bound states (OF* and IF*) are short-lived. Due to their scarcity, the numbers of DATs in IF* 
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and OF* states show significant fluctuations during simulations (indicated the light blue band in 

Figure 5C-D).  

2.3.3 DA levels exhibit large fluctuations depending on AZ structure and DAT surface 

distribution 

I presented in Figure 5A the time course of the DA concentration in the EC region, [DA]EC, 

averaged over 140 runs, which exhibited a standard deviation of ~10 nM about the mean value of 

7.8 nM. These are global fluctuations, i.e., they refer to the average behavior of the overall 

microenvironment simulated by MCell. A look at local time- and space-resolved patterns of DA 

levels, on the other hand, reveals even broader fluctuations depending on the AZ and space- or 

time-window examined. 

The curves in Figure 7A display the time evolution of the local concentration, [DA]local, 

within a spherical shell of 1.5 µm thickness, with respective inner and outer radii of 1 µm and 2.5 

µm (i.e. 1 ≤ r < 2.5 µm) centered at the release site, following a release event from the release site 

on each of the 6 AZs. Results represent the averages over multiple release events (140 per AZ) 

observed within the time interval 0 < t < 40 ms. 
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Figure 7. Time evolution of DA levels in the EC region after a single release event in different AZs. 

A, Time evolution of EC DA levels within a spherical shell of inner radius ri 1 µm and outer radius ro 2.5 µm 

centered at the AZ or top of the ellipsoid for six different AZs and ellipsoid geometry with same volume and surface 

area (labeled AZ1–AZ6 and ellipsoid, shown in different colors and patterns; see inset labels). B, C, the local 

concentration of DA within spherical regions of radius 0.5 µm (blue) and within spherical shells of 0.5-1 µm (red), 1-

2.5 µm (green), and 2.5-5 µm (black), near AZ4 (B) and AZ6 (C), as labeled. 

 

A considerable variation in the maximum level of DA reached and in the succeeding decay 

rate is observed in Figure 7A, depending on the AZ that discharges the DA molecules. For AZ 2 

and AZ 3, [DA]local can reach 20-25 nM, but for AZ 6 it remains below 7 nM. AZ 2 and 3 are on a 

surface-exposed region of axon terminal 2, near of non-DAT expressing cells (Figure 1C). AZ 6, 

however, lies inside a cavity on axon terminal 4 that harbors a large density of DATs (Figure 1C), 
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hence the rapid depletion of the released DA. Other AZs (AZ 1,4 and 5) show an intermediate 

behavior because although they are exposed to the EC region, the DAT level in their vicinity is 

also relatively high (according to fluorescence images).  

To examine the effect of neuronal region structural complexity, computations were 

repeated for a hypothetical EC region with a simplified (ellipsoidal) geometry that preserved the 

same EC volume and neuronal surface area as those of the simulated system, together with the 

same number of DAT molecules on the surface, thus maintaining the same DAT surface density 

as the above system. DA reuptake evaluated for the same spherical shell (Figure 7A, dashed black 

curve) centered around the release site was observed to be faster compared to that occurring in the 

realistic environment. The faster removal of DA molecules is due to the more efficient diffusion 

of DA in this hypothetical environment devoid of irregularities/obstacles.  

To make a further quantitative assessment of the role of the AZ geometry and local 

structural heterogeneity in affecting the different time evolutions of DA clearance observed in 

Figure 7A, we examined the tortuosity and void fraction in the vicinity (within 2.5 µm radius) of 

each of the 6 AZs. To evaluate the tortuosity, I randomly selected 5,000 pairs of mesh points and 

evaluated the ratio of their shortest arc distance along the surface to the corresponding Euclidean 

distance. The calculations are performed using built-in Blender functions and Neuromorph add-on 

in Blender (Jorstad et al., 2015). The results are presented in Table 3. Both properties affect 

[DA]local: the clearance of DA is less efficient when the void fraction is low, and the tortuosity is 

high (e.g., AZ 3, followed by AZ 2). While void fraction appears to have a dominant effect, 

tortuosity becomes an important factor when distinguishing the rise time and peak height between 

AZs that exhibit similar void fractions. AZ 6 has a high void fraction and a low tortuosity which 
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leads to rapid reuptake of DA. Another variable we examined is the distance to the closest DAT 

(Table 3), but it does not have a substantial effect since the diffusion is rapid.  

Table 3. Structural properties near AZs 

Active Zone Void Fraction Tortuosity Distance to closest DAT (µm) 

1 0.35 1.22 0.20 

2 0.22 1.38 0.21 

3 0.20 1.56 0.24 

4 0.31 1.28 0.20 

5 0.37 1.36 0.89 

6 0.36 1.23 1.22 

 

Overall these results show that (i) the different time evolutions of [DA]local in response to 

DA release from different AZs can be traced back to differences in tortuosity and void fractions, 

and (ii) the adoption of uniform tortuosity and void fraction for all AZs would not provide a realistic 

representation of the heterogeneous synaptic structure, nor would it account for the differential 

reuptake efficiency originating from these local geometric effects. 

Panels B-C of Figure 7 further illustrate the variations in [DA]local within gradually 

increasing distance ranges with respect to the release sites in AZs 4 and 6. [DA]local within a 

spherical volume of radius r = 0.5 µm remains above 10 µM for about 1 ms after DA release from 

AZ 4 and that within 0.5 ≤ r < 1.0 µm rises more slowly and temporarily reaches 1 µM (Figure 7B). 

Comparison with AZ 6 shows the lower [DA]local near the release site (r < 0.5 µm) and the depletion 
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of DA at t ≈ 100 ms (Figure 7C). The large variations in [DA]local due to stochasticity and 

heterogeneity of the release sites occur during the entire course of the simulations.  

The variations in [DA]local are critically important because, while [DA]EC may not be 

enough for activating DA receptors, [DA]local or the corresponding fluctuations Δ[DA], may bring 

the local DA concentration above the threshold levels required for activating even low-affinity 

receptors. These results underscore the significance of considering the space-dependent, stochastic 

nature of DA density fluctuations for estimating the probability of DA receptor activation in 

complex microenvironments.  

2.3.4 Cellular structural complexity modulates the fractional occupancy of high-affinity 

DA receptors   

Dopaminergic signals are transmitted upon DA receptor activation. There are five different types 

of DA receptors, commonly classified as D1-like (D1, D5), which have low-affinity for DA (EC50 

~1 µM), and D2-like (D2, D3, D4), which have high-affinity (EC50 ~10 nM) (Rice & Cragg, 2008). 

As shown in Figure 7B-C, [DA]local may reach 10-100 µM near an AZ, immediately following 

vesicular discharge, and low-affinity receptors may be activated if they are in proximity. However, 

DA molecules rapidly diffuse from the release site and the synaptic cleft (of ~ 0.25 to 0.5 µm 

radius) to extra-synaptic regions, such that synaptic [DA] decreases by ~3 orders of magnitude 

within tens of milliseconds.  

We evaluated the fractional occupancy f(t) of high-affinity DA receptors following a 

release event for each of the 6 AZs. For the calculation of occupancy, high- and low-affinity 

receptors were assumed to be uniformly distributed on the membrane of all pre- and postsynaptic 



 

  44 

cells similar to previous approaches (Dreyer et al., 2010). Note that the activation of low-affinity 

receptors requires high [DA]local values, and such high concentration levels are temporarily 

attained only in the proximity of the release sites. So, in practice, only those low-affinity receptors 

located sufficiently close to the AZs will be activated. As to high-affinity receptors, they are likely 

to be activated at all locations. To evaluate the fractional occupancy of high affinity DA receptors 

for each of the 6 AZs, we analyzed 140 x 6 = 840 runs as follows: we divided the simulation box 

into cubic grids of 1 femtoliter (10-15 liters); we counted the number of DA molecules in each cube, 

to obtain the local concentrations. If the latter was zero at all time-points, the cube was labeled as 

an excluded volume (inaccessible to DA molecules); otherwise, the probability of satisfying the 

threshold level (10 nM) for high-affinity receptors was evaluated for each AZ, as a function of time 

elapsed after DA release. The results are presented in Figure 8A. f(t) temporarily reaches a 

maximum fmax before it decays to near zero within ~ 100 ms.  fmax shows a strong dependence on 

the release site, varying from 0.27 (site 6) to 0.78 (site 3), again indicating the importance of the 

local environment.  

To compare simulation results with those predicted by the VT model, we first evaluated 

the two parameters of the model: the tortuosity of the terminals and the void fraction of cytoplasmic 

regions accessible to DA diffusion (Dreyer et al., 2010). of the average tortuosity of the surface is 

1.79. The void fraction was 0.21, as noted above (Table 1). The results are displayed by the dashed 

curves in Figure 8A-B. 
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Figure 8. Expected fractional occupancy (or percentage saturation) of DA high-affinity receptors in 

response to successive releases. 

Fractional occupancy as a function of time is based on the probabilistic occurrence of saturation conditions 

([DA]local 10 nM) in the synaptic region associated with each AZ. Results are shown for different AZs (as labeled) in 

response to single release (A), two releases with 50-ms interspike interval (B), and four releases with 30-ms interspike 

intervals (C). Results from the VT model are shown for comparison in A and B. 

 

Figure 8 reveals several differences between the predictions of the VT model and those 

obtained by MCell simulations. The VT model predicts a higher percent saturation (based on 10 

nM threshold value), slower binding kinetics (indicated by the longer time to reach the maximal 

occupancy, and faster decay kinetics, compared to MCell predictions. Furthermore, the VT model 

reaches saturation conditions after two releases with 50 ms spike interval (Figure 8B) - a level not 

reached in MCell simulations even after four spikes with inter-spike interval shortened to 30 ms 

(Figure 8C). Finally, the VT model cannot capture the variations in [DA]local depending on the AZs 

(or their specific structure or nearby DAT density). 
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2.3.5 Phasic firing favors high transient levels in [DA] while retaining the average [DA]EC 

We investigated the effect of distinctive release patterns, tonic and phasic (Goto, Otani, & Grace, 

2007), on DA reuptake efficiency.  
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Figure 9. Comparative analysis of global EC DA levels under different firing patterns and the effect 

of the complexity of cell geometry and the heterogeneity of DAT surface density 

A, Schematic description of the firing patterns: tonic (upper bar) and phasic (lower bar). Each color represents 

a different firing frequency. Tonic firing has a constant vesicular release frequency of 4 Hz throughout the complete 

duration of the simulations (here shown for 4 s). Phasic firing has burst periods of 0.25 s with a firing frequency of 20 

Hz separated by pauses of 1 s. B–F, Time evolution of [DA]EC for five models: well-mixed (background colored red); 

MCell with uniform distribution of DATs (background in green); MCell with nonuniform distributions of DATs (cases 

2– 4 in Fig. 2; background in blue, magenta, and gray, respectively), presented for tonic (left) and phasic (right) firing 

patterns. Each panel displays the results from 140 individual trajectories from independent runs. G, H, Probability 

distributions of log [DA]EC level observed in different runs, shown for tonic (G) and phasic (H) firing patterns. The 

respective insets show the behavior in the range log [DAEC/nM] 1.5. Results for ellipsoid geometry are presented in 

cyan. The principal semi-axis lengths of the ellipsoid are 8.73, 1.44, and 4.36 µm, which yield the same surface area 

and volume with the realistic geometry. 
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 The tonic firing was implemented as random spikes generated from a Poisson distribution 

at 4 Hz frequency (Dreyer et al., 2010); whereas phasic firing consisted of a burst phase for 0.25 s 

at 20 Hz frequency followed by a pause of 1 s (Figure 9A), both yielding the same average 

frequency. The time evolution of [DA]EC was examined under those two firing patterns for five 

different models: a well-mixed system (Figure 9B), and four spatially realistic models derived 

from image data (Cases 1-4 in Figure 2), which differ in the membrane distribution of DATs. The 

cases are (1) uniform (Figure 9C), (2) non-uniform (Figure 9D), and (3-4) sharply non-uniform 

with two different localizations of high-density regions (Figure 9E-F) (see Table 2 for 

corresponding surface densities). Each panel displays 140 curves, each corresponding to an 

independent run. 

Tonic and phasic firing patterns elicit markedly different fluctuations in [DA]EC. Tonic 

firing shows irregular fluctuations (left panels in Figure 9B-F), which usually remain below 60 nM 

in panels B-F; whereas phasic firing in the same cases (right panels) easily exceeds 60 nM, 

especially when the surface density of DATs is non-uniform (panel D). Sharply non-uniform 

distributions of DATs (panels E-F) give rise to increased [DA]EC, while the difference in the 

fluctuation behavior [DA]EC under tonic and phasic firing persists. These results suggest that 

phasic firing could more readily favor low-affinity DA receptor activation, even though the 

average [DA]EC values over the entire duration of simulations are comparable (Table 4), consistent 

with the same average firing frequency shared between the five cases.  
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Table 4. [DA]EC values (mean ± standard error of the mean) under different conditions 

  [DA]EC ±  [DA]EC (nM) 

Space DAT distribution Tonic Phasic 

 Well-mixed DA 8.16±0.92 8.29±1.41 

 Ellipsoid geometry 8.21±0.85 8.33±1.44 

Case 1 

Complex space 

Uniform 7.54±0.86 6.93±1.92 

Case 2 Nonuniform 16.59±1.26 14.19±2.44 

Case 3 Sharp bimodal 33.12±3.13 29.65±4.49 

Case 4 Sharp bimodal 32.49±2.86 32.89±3.68 
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Figure 10. Time evolution of DA level in the synapse after a release event 

A–D, [DA]syn as a function of time for tonic (left) and phasic (right) firing, under uniform (top) and 

nonuniform (bottom) distribution of DATs. The mean and variation in [DA]syn within 1 µm collected from 140 

independent runs are displayed. Results are shown for the time interval 2.5–3.75 s as a single firing block, 

representative of dynamic equilibrium reached under stationary conditions. The thick line in the middle of the cloud 

is the mean value over all runs, and the cloud represents the standard deviation, highlighting the large fluctuations in 

the synaptic DA levels. 

 

A closer examination of the transient DA levels within the synaptic region reveals the 

difference between phasic and tonic firing. We defined [DA]syn as the transient DA level within a 



 

  51 

sphere of 0.5 µm radius centered at a release site and examined [DA]syn following a single release 

event.  Figure 10 displays the mean (central dark curve) and the standard deviation (light curves 

and shade) in [DA]syn for tonic (A and C) and phasic (B and D) firing, under uniform (Case 1) (A 

and B) and non-uniform (Case 2) (C and D) distributions of DATs. Similar to the results for the 

overall EC (synaptic and extra-synaptic) region (Figure 9C-D), phasic firing temporarily leads to 

a higher accumulation of DA in the synapse compared to tonic, which, can more readily activate 

the high-affinity DA receptors (the dashed line indicates the threshold concentration, 10 nM, for 

their activation).  

Finally, we computed the fractional occupancy of low-affinity receptors (Casado et al., 

2009; Vivo, Lin, & Strange, 2006) during the burst and pause periods of phasic firing, and overall 

period of tonic firing.  The results summarized in Table 5 show that the probability of reaching the 

threshold DA level of 1 µM for binding low-affinity DA receptors is enhanced by a factor of 2 to 

5 in the burst phase of phasic firing, compared to tonic firing. Further computations by adopting a 

Michaelis-Menten type occupancy model with half-maximal substrate concentration (Km) of 10 

nM for high-affinity receptors and 1 µM for low-affinity receptors confirmed the same behavior. 

In the latter model, the occupancy of DA receptors as a function of [DA]local is given by 

𝜃([𝐷𝐴]𝑙𝑜𝑐𝑎𝑙) =
[𝐷𝐴]𝑙𝑜𝑐𝑎𝑙

𝐾𝑚+[𝐷𝐴]𝑙𝑜𝑐𝑎𝑙
, and the results in the last column of the Table 5 are obtained upon 

integration over snapshots at 1 µs intervals in 140 trajectories.   
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Table 5. Percentage of high- and low-affinity DA receptors that DAs can potentially bind 

System Properties 

 

Percent probability of DA binding to  

DA receptors 

DAT 

distribution 

DA 

receptor 

type 

Firing pattern  

and stage 

based on 

saturation 

threshold levels 

based on Michaelis-

Menten kinetics  

Uniform 

(Case 1) 

High 

affinity 

Tonic 40.26 45.98 

Phasic Burst  45.09 51.80 

Phasic Pause  4.54 50.07 

Low 

affinity 

Tonic 0.40 2.22 

Phasic Burst  1.10 4.64 

Phasic Pause  0.06 1.92 

Nonuniform 

(Case 2) 

High 

affinity 

Tonic 71.14 63.84 

Phasic Burst  65.88 62.70 

Phasic Pause  72.05 64.5 

Low 

affinity 

Tonic 0.35 3.47 

Phasic Burst  1.97 5.47 

Phasic Pause  0.03 2.97 
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2.3.6 Non-uniform surface distribution of DATs is a major modulator of the strength and 

intensity of DA signaling 

Results in  Figure 9 and Table 4 reveal the strong dependence of DA clearance efficiency on DAT 

surface distribution. DA reuptake is significantly more efficient with a uniform surface distribution 

of DATs than with a nonuniform distribution, as evidenced by the relative heights of the peaks at 

low concentrations in the histograms displayed in Figure 9G-H and the average [DA]EC values 

listed in Table 4. We investigated the differences among well-mixed, simple spatial (ellipsoid), 

and complex realistic geometries while keeping the EC volume, surface area and total density of 

DAT fixed. Results suggest that the approximation of the axonal morphology by a simplified 

(ellipsoidal) geometry yields results comparable to those predicted by a well-mixed model. The 

inclusion of realistic geometry, on the other hand, leads to a broad range of results depending on 

the specific AZ (Figure 7 and Figure 8) and on the surface distribution of DATs (Figure 9G-H). 

The most efficient clearance is observed in MCell simulations with a uniform distribution of DAT. 

The bimodal distribution of DATs, on the other hand, shows a distinctive distribution of [DA]EC 

skewed toward higher concentrations, or a significantly suppressed DA reuptake efficiency, as can 

be seen more clearly in the insets, irrespective of the firing pattern (Figure 9G-H). This effect 

becomes more pronounced with increasing heterogeneity of DAT distribution, i.e., going from 

Case 2 to Cases 3 and 4.  
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Figure 11. Distribution of peak heights and widths for EC DA levels 

Results are presented for four different types of DAT distribution on the plasma membrane, in addition to the 

well-mixed case. The curves are color-coded, as labeled. The probability distributions of peak widths (A and B) and 

peak heights (C and D) are presented for tonic (tonic) and phasic (bottom) firing patterns. 

 

We analyzed the peak heights and widths in Figure 9B-F, for a more critical assessment of 

the duration and intensity of excitatory stimulation induced in response to the two firing patterns, 

and under different spatial distributions of DATs. The results in Figure 11confirm that DAT spatial 

distribution is a major determinant of dopaminergic signaling strength and duration, while the 

effect of different firing patterns is moderate. In particular, the histograms of the peak widths in 

panels A-B, and peak heights in panels C and D clearly show that bimodal DAT distribution (black 

and magenta curves) leads to more sustained and stronger excitations compared to uniform (or 

well-mixed) cases (green and blue curves), originating from less efficient removal of DA. Note 
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that the bimodal distribution was selected to mimic the physiological density heterogeneities 

observed in high-resolution images (Figure 1 and Figure 2). The effect of DAT density 

heterogeneity manifested by an overall suppression in DA reuptake is further accentuated in 

sharply heterogeneous distributions of DATs (Cases 3 and 4). The most probable peak heights in 

those cases are of the order of hundreds of nM and may result in neurotoxicity. These results 

demonstrate that heterogeneity of DAT density can modulate DA signaling.  

A comparison between Cases 3 and 4 further shows that the placement of DATs in the 

close neighborhood of the AZs does not increase clearance. The diffusion of DA is fast enough to 

sample extra-synaptic regions and the localization of DATs with respect to the AZ has a minimal 

effect. These results suggest that the mechanism of local clearance as envisioned by the gatekeeper 

model (Rothstein et al., 1994) does not necessarily increase reuptake efficiency.  
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Figure 12. Probability distributions of [DA]EC level under lateral DAT diffusion and Probability 

distributions of DAT distances to closest AZ. 

A, Probability distributions of [DA]EC level under lateral DAT diffusion, shown for tonic and [DA]EC. Green, 

blue, and red represent uniform DAT distribution, nonuniform DAT distribution, and nonuniform DAT distribution 

with the lateral diffusion of DAT, respectively. B, Probability distributions of DAT distances to closest AZ from 140 

independent simulations for the nonuniform DAT distribution with (red) and without (blue) lateral diffusion. 

 

To examine the change in DA reuptake behavior possibly induced by DAT 2D 

displacement, we repeated the simulations by allowing DAT 2D diffusion with a coefficient of 

3x10-10 cm2/s on the plasma membrane (Figure 12). Comparison of the initial and final (at the 

end of 10 s simulations) averaged over 140 independent runs showed that no significant change 
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occurred in the position of DATs, due to the slow diffusion of DATs compared to the timescale of 

simulations. Overall, these results show that increasing heterogeneity in the surface distribution of 

DAT leads to lower DA clearance efficiency and/or stronger and more sustained signaling.   

2.4 DISCUSSION 

2.4.1 Overview 

In the present study, I reconstructed in silico the 3D structure of DA terminals, the location of AZs 

and the spatial distribution of DATs based on EM and fluorescence microscopy data with 

transgenic mice (Block et al., 2015), and conducted a series of MCell simulations under different 

conditions. I determined the spatiotemporal distribution of DA molecules in the synapse and extra-

synaptic regions in response to different firing patterns and in the presence of different surface 

distributions of DATs. These simulations show the effects of the synaptic and extra-synaptic 

morphology, as well as the heterogeneity of DAT surface distribution (as observed in experiments) 

on the overall efficiency of DA clearance and on the probability of activating high- and low-

affinity receptors. Heterogeneous distribution of DATs is shown to reduce the clearance efficiency, 

the effect being sharper with increased heterogeneity, and not affected by DAT 2D diffusion on 

the plasma membrane. While DA dynamics is diffusion-controlled in general, a global sensitivity 

analysis indicated that the DA-binding rate of DAT and the relative population of its outward- and 

inward-facing conformers in the apo state (denoted as OF and IF) had significant effects on DA 

reuptake efficiency. Overall the results underscore the utility of conducting spatiotemporally 

realistic simulations in elucidating the dependence of dopaminergic signaling on both the surface 

distribution and conformational mechanics of DATs. 
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Recent MCell simulations of glutamatergic signaling based on EM images of hippocampal 

neuropil for investigation of the effect of spatial heterogeneities (Bartol, Bromer, et al., 2015; 

Bartol, Keller, et al., 2015; J. P. Kinney et al., 2013) also indicated the importance of including the 

microenvironment for an accurate description of the electrophysiology and biochemistry of 

neurotransmission events. No such simulations had been performed for DA neurons to date, mainly 

due to lack of high-resolution image data of DA terminals for reconstituting in silico the simulation 

environment. Recent advances in imaging DA neurons (Block et al., 2015) permitted us to 

overcome this barrier.  Furthermore, improved understanding of the structural dynamics of DAT 

(Mary Hongying Cheng & Bahar, 2015; Mary Hongying Cheng et al., 2015; M. H. Cheng et al., 

2018; Gur, Cheng, Zomot, & Bahar, 2017) helped us build a simplified kinetic scheme (Figure 3) 

that we adopted in MCell simulations.  

2.4.2 DA reuptake simulations require spatially extended models 

The simulation of dopaminergic signaling events presents new challenges compared to that of 

neurotransmission in glutamatergic synapses. The transporter cycle rate in the latter case is around 

35 glutamate molecules per second per glutamate transporter, whereas the rate in dopaminergic 

neurons is 1-5 DA molecules per second per DAT (Povlock & Schenk, 1997; Prasad & Amara, 

2001; Rice et al., 2011; Wadiche, Arriza, Amara, & Kavanaugh, 1995). Thus, simulation of DA 

clearance requires longer computing times. In addition, glutamate transporters are localized in pre- 

and post-synaptic regions and mostly in the surrounding glia in the close neighborhood of the AZ 

(Danbolt, 2001; Seal & Amara, 1999). DATs, on the other hand, are preferentially located in the 

extra-synaptic regions of the axons and dendrites and most of the reuptake events take place at 

distal sites from the AZs (Block et al., 2015; Nirenberg, Vaughan, Uhl, Kuhar, & Pickel, 1996; 
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Rice et al., 2011). Realistic simulations of such spatially distributed events require the adoption of 

model systems composed of multiple synapses, multiple AZs, and heterogeneous distributions of 

multiple DAT clusters. We reconstructed in silico a relatively large (10 µm x 10 µm x 7.2 µm) 

striatal region.   

2.4.3 Spatial irregularities and hindrance in the interstitial region between neurons limits 

DA receptor activation  

MCell simulations show that under conditions that reproduce physiological levels of DA and 

turnover rates (Beuming et al., 2008; Prasad & Amara, 2001; Rao et al., 2013), the complex 

geometry of DA terminals modulates the occupancy of high-affinity DA receptors to below 100%, 

even under sustained, elevated stimulation conditions (Figure 8A-C), consistent with the concept 

of a dead-space (Kamali-Zare & Nicholson, 2013). In contrast, less detailed partial differential 

equation models (Dreyer et al., 2010) and algebraic models (Cragg & Rice, 2004) predict full 

occupancy of high-affinity receptors under the same conditions. This difference invites attention 

to the effect of EC spatial irregularities on dopaminergic signaling efficiency in the brain (Sykova 

& Nicholson, 2008). 

2.4.4 Heterogeneous surface distribution of DAT reduces the effectiveness of DA clearance 

EM and fluorescence images showed that the distribution of DAT is heterogeneous in different 

parts of the striatum (Block et al., 2015). Recent studies indicate that the population of DATs may 

vary depending on the membrane curvature (Caltagarone, Ma, & Sorkin, 2015)  . Notably, selected 

DAT mutants that have disrupted OF conformations do not accumulate in filopodia, suggesting 
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that access to the OF/OF* state may be a prerequisite for DAT to populate the filopodia 

(Caltagarone et al., 2015). Further examination showed that binding of cocaine and its fluorescent 

analog JHC1-64 also alters the plasma membrane distribution of both wild-type and mutant DATs. 

Cocaine binding arrests DAT in the OF state, and cocaine-bound DATs predominantly localize in 

the filopodia (Ma et al., 2017). Likewise, zinc binding, also known to stabilize the OF state, led to 

an increase in the level of DAT mutants in the filopodia. These observations suggest that the 

membrane curvature is a determinant of DAT clustering, with the convex shape of the filopodia 

favoring the localization of DATs. Furthermore, the clustering of OF DATs could remodel the 

membrane to induce an overall outward bending (Ma et al., 2017). The present study suggests that 

such targeting of axonal protrusions by OF DATs, along with their membrane remodeling 

capacities, may regulate DA reuptake.   

The total number of DAT molecules was sufficiently abundant in current simulations 

(around 200,000) to ensure standard DA clearance consistent with physiological levels. However, 

simulations repeated with the same number of DATs distributed non-uniformly on the neuronal 

membranes showed a reduction in reuptake capacity that became more pronounced with increasing 

surface density heterogeneity. The surface distribution of DATs indeed emerged as a major 

determinant of the efficiency of reuptake, or conversely, the strength and duration of excitatory 

signaling (Figure 9 and Figure 11).  

In principle, one might expect that the increased population of DATs in dense regions 

would counterbalance the effect of lower surface area coverage on DA reuptake efficiency. 

However, DA diffuses fast enough to escape from these dense regions after a few encounters 

resulting in reduced DA reuptake. These observations further support the importance of adopting 
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a realistic representation of the heterogeneity of DAT surface distribution, especially with low 

copy numbers of neurotransmitters, for a realistic assessment of DA reuptake capacity.  

2.4.5 Firing patterns determine the relative levels of inhibitory vs. excitatory responses  

Simulations revealed that the average [DA]EC exhibited little dependence on firing pattern, 

provided that the average firing frequency was maintained, but the local levels within a synapse, 

or close to DA release sites exhibited strong dependencies. The size of the fluctuations Δ[DA]  in 

DA levels was relatively small in tonic firing, but large in phasic firing, especially at the burst 

phase and under sustained phasic firing (Figure 9B-F). Low-affinity DA receptors need two orders 

of magnitude larger DA concentrations than high-affinity receptors to get activated. As a result, 

the activation of low-affinity receptors is limited, if not unlikely, with tonic firing (Table 5). Phasic 

firing, on the contrary, induces a more considerable variance both in global and local DA 

concentrations and is 2 to 5 times more likely to activate low-affinity receptors during the burst 

phase of DA signaling (Table 5). Previous work showed that the D1 receptors are mostly localized 

at the post-synaptic membrane (Cadet, Jayanthi, McCoy, Beauvais, & Cai, 2010); and MCell 

simulations show that only those low-affinity receptors localized near the synapse can be activated.  

In the case of high-affinity receptors, on the other hand, proximity to release site is not a 

requirement for being activated; high-affinity receptors located on distal regions may be equally 

activated.  

DA receptors regulate the activity of DA neurons. One distinction between high- and low-

affinity DA receptors is the type of response they elicit in the cell, inhibitory or excitatory (Keeler, 

Pretsell, & Robbins, 2014), following their activation upon DA binding. D1-like receptors, which 
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are usually low-affinity receptors, are involved in excitatory signaling; whereas D2-like receptors 

trigger inhibitory signaling processes. High-affinity receptors may be activated by both phasic and 

tonic firing. However, simulations suggest that low-affinity receptors would be instead activated 

upon phasic firing. 

Among D2-like receptors, D2 autoreceptors are known to be critical regulators of DA 

transmission, located on most axon terminals (Ford, 2014).  While D2-like receptors are usually 

high-affinity receptors, D2 autoreceptors exist in both high- and low-affinity states, and recent 

studies indicate that the functionally relevant D2-autoreceptors are predominantly in the low-

affinity state.  Their inhibitory action is particularly necessary for suppressing DA release from the 

presynaptic cell under a prolonged burst of action potentials. They suppress DA release in the 

striatum by several mechanisms, e.g., by inhibiting the voltage-gated calcium channels that trigger 

exocytotic DA release or increasing DAT activity or surface expression (Ford, 2014). Previous 

studies suggested that tonic firing does not raise [DA]EC to levels sufficiently high to activate those 

receptors activate D2-autoreceptor mediated DAT regulations (Beckstead, Ford, Phillips, & 

Williams, 2007; Ford, 2014). The low probability of binding low-affinity receptors under tonic 

firing demonstrated in the present simulations is consistent with the functioning of D2-

autoreceptors as low-affinity receptors.  

A previous model modified the probability of DA release upon an action potential 

according to high-affinity receptor occupancy (Dreyer & Hounsgaard, 2013). In the current model, 

receptor occupancy has not been coupled with DA release and reuptake. However, the suggested 

modeling framework allows for implementing a mechanistic model that incorporates the mediation 

of DA release and DAT expression by D2-autoreceptors. Such an extension may be crucial to 

improving interpretation of DA reuptake dynamics at longer time scales and under disease states.  
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2.4.6 The modeling framework is extensible to analyzing the effect of psychostimulants on 

DA reuptake dynamics 

DAT kinetics is often described by the alternating access model (Vaughan & Foster, 2013). Most 

cell-level models of DA transport at the cellular level assume an immediate transition from IF to 

OF state right after DA release to the cell interior (Cragg & Rice, 2004; Rice & Cragg, 2008; 

Sulzer et al., 2016) and the transition from OF to IF in the unbound form is not explicitly 

considered. In contrast, molecular simulations revealed a complex dynamics (Mary Hongying 

Cheng & Bahar, 2015), which we reduced to a 4-state kinetic model (OF, IF, OF* and IF*). The 

translocation and release events after substrate binding are much faster compared to the return of 

apo IF state to OF state and succeeding substrate binding event which depends on prior 

probabilities of encounters between DAT and DA molecules. These features result in short 

lifetimes for the bound forms of DAT and the dominance of the relative populations of the unbound 

OF and IF states in determining the overall clearance rate (Figure 4). The balance between the OF 

and IF states, or the ratio of the associated rate constants, k14/k41, using detailed balance principle) 

emerged as a major determinant of reuptake efficiency, as it directly defines the fraction of 

reuptake-ready (OF) DATs.  

Previous X-ray crystallographic studies (Penmatsa et al., 2015; Wang et al., 2015) as well 

as structure-based simulations (Mary Hongying Cheng et al., 2015) have shown how the 

conformational state of DAT and substrate binding affinity may change in the presence of different 

antidepressant and psychostimulants drugs, such as cocaine and amphetamine (AMPH). 

Antidepressants usually arrest DAT in OF state (and the same effect has been observed for the 

homolog serotonin transporter in the presence of antidepressants (S)-citalopram or paroxetine 
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(Coleman, Green, & Gouaux, 2016)), thus preventing the progress of the transport cycle, and 

causing an increase in EC DA levels. On the other hand, the occupancy of the Zn++-binding site 

(Stockner et al., 2013) (by zinc or other transition metals) reduces the DA binding affinity of DAT 

(Li et al., 2017). The current modeling framework can readily be extended to incorporate such 

effects through a suitable readjustment of kinetic parameters in Figure 3.  

AMPH, on the other hand, appears to be a substrate for DAT that competes with DA for 

transport (Zhu & Reith, 2008). AMPH is also known to promote both DA efflux (reverse transport 

from the cell interior to the EC region) and DAT internalization (Wheeler et al., 2015). The current 

simulations focused on the influx of DA from the EC region to the presynaptic cell interior, but 

the modeling framework is readily extensible to simulating DA efflux as well. Other extensions of 

the present framework could incorporate the effects of DAT internalization, membrane 

polarization (Richardson et al., 2016), or perturbations at the membrane-proximal N-terminal 

residues (Sorkina, Richards, Rao, Zahniser, & Sorkin, 2009). Thus, the present study opens the 

way to quantitative modeling of the effects of antidepressants, psychostimulants, and substances 

of abuse on the deregulation of DA signaling.
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3.0 EFFECT OF PSYCHOSTIMULANTS ON DOPAMINERGIC SIGNALING 

3.1 BACKGROUND 

Drug abuse is one of the major threats to public health worldwide, and approximately 7% of the 

population are drug users (Council, 1993). Drugs such as opiates and nicotine cause addiction. A 

few therapy options exist for such conditions. Yet, many of them are ineffective, and the effective 

ones have significant failure rate due to side effects including life-threatening conditions 

(McLellan, Lewis, O'Brien, & Kleber, 2000). Therefore, there is a need to identify how the 

function of the central nervous system (CNS) is altered under drug abuse conditions and to design 

therapeutics against addictions. Drug addiction is a complex process that is mainly viewed as a 

neurobiological impairment with various influencing factors (Kozel & Adams, 1986). Many drugs 

disturb the activity levels of neurons in the CNS with an initial effect on transporters or receptors 

followed by a more substantial downstream effect on the regulatory pathways (Cosgrove, 2010). 

As a result, there are multiple components that contribute to drug addiction on different levels of 

the CNS. Such a complex problem with multiple lengths and timescales requires multiscale models 

to understand the interactions between proteins and drugs.  

Dopamine (DA) is one of the critical components of many drug abuse problems due to its 

importance in motor control, cognition and reward pathways (Wise & Rompre, 1989). Deficient 

DA signaling is thought to underlie critical pathological features of a variety of brain disorders 
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including drug addiction (Money & Stanwood, 2013). DA neurons are functionally heterogeneous 

and morphologically complex (Block et al., 2015). Proper DAT distribution in the DA neuron is 

critical for understanding the functional difference of the dopaminergic system between its normal 

and disturbed states (Ma et al., 2017). The DA transporter (DAT) is responsible for the clearance 

of the extracellular (EC) DA, which terminates the DA receptor activation and regulates DA 

neurotransmission. DAT is the primary target of the psychostimulant cocaine (Bai et al., 2014). 

Cocaine competitively binds to DAT and blocks its activity (Beuming et al., 2008). As a result, 

the EC DA concentration remains higher, and the activity levels of DA receptors increase 

significantly. The effects of cocaine on the CNS have been investigated by both experimental and 

computational studies, but computational studies have not included the spatial complexity and 

DAT distribution, and the effect of the spatial complexity is not investigated in experimental 

studies.  

Another psychostimulant that targets DAT is amphetamine (AMPH) which induces the 

non-vesicular release of DA from DAT via modifications in downstream signaling (Wheeler et al., 

2015). AMPH enters the cell through DAT in a similar mechanism to DA and disrupts the 

downstream events such as the interaction between Rho and GTP. Consequently, AMPH induces 

DA efflux through DAT (Wheeler et al., 2015).  

With recent advances in imaging technologies and high-performance computing, it is 

possible to explore the molecular basis of the deficiencies in neurotransmission underlying drug 

abuse and drug addiction. The changes in regulating molecules in the presence of psychostimulants 

such as cocaine and AMPH helped us to identify the major players in a complex downstream 

signaling pathway (Wheeler et al., 2015).  As described in the previous chapter, quantitative 

characterization of the spatiotemporal distribution of DATs in the striatum enabled us to carry out 
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a spatiotemporally realistic simulation of DA reuptake. The effects of drugs under realistic spatial 

conditions are not well-established and coupling spatial complexity and the intracellular protein-

protein interactions using network models provide new insights on the alteration of DA signaling.  

Here, my coworkers and I developed and implemented computational approaches at both 

spatiotemporal and subcellular levels of DA signaling in the presence of psychostimulants. I used 

biological modeling tools to determine the effects of exposure to AMPH and cocaine on cell 

signaling and regulation. For cocaine exposure, I studied the effect of different concentration of 

cocaine levels on the DA neurotransmission. For AMPH, I connected the cellular interaction 

network model created by Dr. Bing Liu with the spatially realistic model of DA reuptake described 

in Chapter 2 and used the integrated model to model the effect of varying AMPH levels on 

extracellular DA levels. Results suggest that the effect of the cocaine is more drastic under higher 

cocaine concentrations. The spatial complexity and heterogeneous distribution of DAT attenuate 

the rate of AMPH influx and the effect on the intracellular signaling becomes minor at low AMPH 

concentrations. However, if a uniform distribution of DAT is assumed, the effects of AMPH 

become more pronounced due to an increase in the AMPH intake rate. 

3.2 METHOD 

3.2.1 Spatially realistic model of DA release and reuptake in the presence of 

psychostimulant cocaine 

For the spatiotemporal dynamics of DA release and reuptake, we used the model that is described 

in Chapter 2.0In addition to the kinetics of DA binding/unbinding to DAT; I included an additional 

reaction with cocaine molecules. Cocaine molecules have diffusion properties similar to DA (K. 
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M. Kahlig & Galli, 2003). In terms of interaction with DAT, cocaine has a significantly higher 

binding affinity compared to DA (Gether, Andersen, Larsson, & Schousboe, 2006). The half-life 

of the cocaine is of the order of hours (Jufer, Wstadik, Walsh, Levine, & Cone, 2000), which is 

considerably higher than our simulation duration (10 s). The forward binding rate of cocaine to 

DAT is assumed to be 10-fold higher than DA-binding which approximates the cocaine binding 

as an irreversible reaction. The resulting kinetic scheme is given in Figure 13. The DAT states are 

in black, and the transitions are colored as green. The parameters of the system are given in Table 

2. The only additional parameter is the cocaine binding rate to OF DAT which is 9.60 x 107 M-1 s-

1  (Chapter 2.0).   
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Figure 13. Kinetic scheme of cocaine and DA binding to DAT 

The model created in Chapter 2.0is used as a basis. Different DAT states are colored as black, and the 

transitions are colored as green. The additional neurotransmitters/psychostimulants are shown in purple. In addition 

to four states described, cocaine bound DAT state OFi is defined. The cocaine binding rate constant is kcocaine. In this 

scheme, OF DAT can undergo three reactions instead of two and the equilibrium distribution of DAT states are 

changed with respect to cocaine concentrations.  

3.2.2 Network model of intracellular dopamine dynamics 

Dr. Bing Liu created a detailed mathematical model of the signaling network that governs AMPH-

induced DA efflux and DAT trafficking. A detailed network diagram is in Figure 14.In the model, 

the effect of AMPH in intracellular signaling is initiated with the internalization of AMPH from 

DAT. Intracellular AMPH interacts with the trace amine associated receptor (TAAR1) and 

activates a common signaling complex composed of a transcription termination protein, Rho, and 

guanosine diphosphate (GDP). The Rho-GTP complex is assumed to be a central regulator of DAT 
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internalization (Freyberg et al., 2016; Wheeler et al., 2015). Also, TAAR1 activates subunit 

interactions of a family of guanine nucleotide binding proteins (G-proteins) that acts as molecular 

switches in the cell (Smrcka, 2008)and leads to the release of ɣ subunit. ɣ subunit of the G-protein 

activates protein kinase A (PKA); PKA interacts with Rho-GTP complex. Because of PKA 

activity, Rho is released from the complex in phosphorylated form. Phosphorylated Rho induces 

Ca2+ pathways and activates calcium-calmodulin-dependent kinase type II (CaMKII), which in 

turn phosphorylates DAT. Phosphorylated DAT exhibits an increase in the transport of 

intracellular DA to extracellular space (DA efflux). Phosphorylated DAT also tends to be 

internalized. Both effects may lead to excess DA accumulation in the synapse. In addition to direct 

interactions of AMPH, the ɣ subunit of the G-protein induces the release of Ca2+ from the 

endoplasmic reticulum (ER) via phospholipase C (PLC) and the inositol 1,4,5-triphoshate receptor 

(IP3R) resulting in an increase in the level of intracellular Ca2+. Another AMPH interaction 

included in the model is its translocation via vesicular monoamine transporters (VMATs) into 

vesicles, which promotes the release of DA from the vesicles due to pH gradient, which, in turn, 

increases the amount of intracellular DA.  
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Figure 14. A detailed description of the AMPH-induced intracellular signaling model 

The AMPH induced DA efflux pathway is shown. The pathway has several compartments. The first 

compartment is the part the DAT (green circle) uptakes DA (red dot) and AMPH (blue dot) into the cell. The second 

compartment is responsible for TAAR1 (maroon) activation by AMPH and phosphorylation of Rho-GDP complex. 

Rho is shown as an orange ellipse, and GDP/GTP is shown as a red circle. TAAR1 activates the third compartment 

which is composed of various G-protein subunits, DA receptors, PKA and adenylate cyclase (AC). The G-proteins 

and AC are shown as light blue. The DA receptors located on the membrane and shown as curved lines. D1 type of 

receptors are given in yellow and D2 type receptors are given in dark blue. PKA is shown as yellow ellipses. The G-

proteins activate the next compartment which is composed of PLC, IP3R, and phosphatidylinositol 4-5 biphosphaste 

(PIP2). The proteins in this compartment are shown as pink ellipses. The last compartment is the compartment of Ca++ 

signaling. Calmodulin (CaM) and CaMKII are two major parts of this compartment, and they are shown as dark blue 

ellipses. The additional items are voltage-gated calcium channels (CaV) and the vesicular monoamine transporters 

(VMAT). VMAT is like DAT shown as green ellipses, and CaV’s are dark blue cylinders on the membrane.  
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The model of AMPH-induced DA efflux and DAT trafficking consists of 49 ordinary 

differential equations and 66 kinetic parameters. Dr. Bing Liu performed the  parameter estimation 

using the experimental data in the literature (Freyberg et al., 2016; Palaniappan, Gyori, Liu, Hsu, 

& Thiagarajan, 2013; Wheeler et al., 2015) with statistical model checking (Liu & Faeder, 2016). 

3.3 RESULTS 

3.3.1 Cocaine competitively inhibits DAT and exponentially increases DA receptor activity 

The model developed in Chapter 2.0 is simulated in the presence of two different cocaine 

concentrations for 10 seconds. The first selected concentration is the cocaine concentration that 

reduces the visible activity of DAT by half, IC50, which is 380 nM  (Reith, Berfield, Wang, Ferrer, 

& Javitch, 2001) . In addition to IC50 value, we also simulated the system with half of the IC50 

level of cocaine to investigate the effect of low cocaine on the EC DA concentration.  

Results show that there is a reduction in the activity of DAT, or accumulation of DA in the 

EC region, due to competitive inhibition from the cocaine molecules. At IC50 concentration, the 

EC DA concentration values close to zero are reduced regardless of the distribution of DAT, and 

the values at higher concentration levels are increased if the DAT distribution is nonuniform 

(Figure 15).  However, the half of the IC50 level of cocaine’s effect on the EC DA is not as drastic 

as the IC50 level. The difference between the DA levels in  simulations with no cocaine and the 

simulations with half IC50 cocaine level is slight at the large EC DA concentrations. The main 

reason is due to the large number of DAT (< 220,000) on the surface in our simulation environment 

of 720 fl, and 75% of the DAT molecules are in the inward-facing state (Chapter 2), which does 

not bind cocaine. When the majority of outward-facing DAT molecules are blocked by cocaine, 
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inward-facing DAT molecules start to transition into an outward-facing state. Accordingly, the 

reuptake efficiency is only slightly downregulated at low cocaine concentrations. If the cocaine 

concentration is high enough to reduce the amount of OF DAT significantly such as IC50 level, 

the effect of cocaine becomes more pronounced. Since the DA receptor activity is directly related 

with the EC DA concentration, it is possible to assume that high cocaine concentrations increase 

the DA receptor activity by reducing DA reuptake efficiency.  

 

Figure 15. Comparative analysis of EC DA concentration under different cocaine concentrations 

The probability distribution of the logarithm of the EC DA concentration is obtained from multiple runs 

shown for tonic (A, C) and phasic (B, D) firing patterns and uniform (A, B) and nonuniform (C, D) DAT distributions. 

The distribution of the EC DA concentration is shown between 0.1 to 100 nM. The cocaine concentration is denoted 

as three different colors. The simulation with no cocaine (green), half of the IC50 level (magenta) and IC50 level 

(black) are performed.  
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3.3.2 Hybrid spatial-network model of AMPH-induced DA efflux 

The efflux model is constructed using DA reuptake model as a basis. All model equations and 

parameters are used as described in Chapter 2. The primary driver of the DA efflux is the AMPH 

uptake to the cell. AMPH and DA are similar molecules. Therefore, AMPH diffusion and reaction 

constants for interactions with DAT are assumed to be the same as those of DA. In the DA reuptake 

model, the intracellular DA concentration was not tracked, and it was assumed that each re-uptaken 

DA molecule was degraded for simplicity. However, a DA efflux is triggered by the interactions 

of AMPH with intracellular signaling molecules. Thus, we need to track AMPH in the cell. AMPH 

has two significant effects in the cell, both resulting in the accumulation of DA in the synapse. 

First, AMPH induces the phosphorylation of outward facing DAT via CaMKII signaling cascade, 

which promotes DA efflux (Figure 14). Second, AMPH triggers the Rho pathway and initiates 

Rho-dependent DAT internalization.  

To estimate how intracellular AMPH induces DAT phosphorylation, I used data generated 

from the network model of AMPH-induced DA efflux by Dr. Bing Liu. To introduce diffusion 

limitations to the model,  I considered the relation between the rate of DAT phosphorylation and 

intracellular AMPH concentration. According to the intracellular network model, the forward rate 

constant for DAT phosphorylation is 0.184 s-1 without the direct influence of AMPH 

concentration. The rate of DAT phosphorylation is evaluated at steady state conditions under 

different AMPH concentrations. The relationship between intracellular AMPH concentration and 

DAT phosphorylation rate is modeled (Figure 16A). From the fit of the intracellular AMPH 

concentration to DAT phosphorylation rate, the following relation is obtained for DAT rate 

constant based on intracellular AMPH concentration. Instead of checking the AMPH concentration 
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at every time step, the rate parameter is updated in every half second intervals based on current 

intracellular AMPH concentrations since it is not possible to identify concentration-dependent 

kinetic rates in MCell.  

Equation 6 

𝑘𝐷𝐴𝑇𝑝 =
−1.26 ∙ 10−7 ∙ log([𝐴𝑀𝑃𝐻𝑖]) − 9.5 ∙ 10−8

[𝐴𝑀𝑃𝐻𝑖]
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Figure 16. Correlation between intracellular AMPH concentration, DAT phosphorylation rate, and 

DAT endocytosis 

The relations of steady-state intracellular AMPH concentration with the DAT phosphorylation rate (A) and 

DAT endocytosis rate (B) are given. The blue dots show the calculated reaction rates at the steady state generated 

from the intracellular network varying EC AMPH concentration from 1 nM to 100 µM, and orange dots show the 

same rate between 1 mM to 1M. The fits are shown with dashed blue and orange lines. The difference between 

simulations with no diffusion component has a minor difference at low concentrations. However, the rates differ 

significantly due to the presence of diffusion. The expected reaction rates are shown as blue “X” and the difference is 

shown with a yellow arrow. Notably, at low AMPH concentrations, the effect of diffusion is more pronounced.  
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 A similar strategy is used to understand how AMPH induced the endocytosis of the DAT. 

To avoid the limitations that are due to the diffusion of the AMPH in the cell, only large 

concentration values are used for estimation. Based on the steady-state values of outward facing 

DAT and the rate constants provided from the network model, the relation between intracellular 

AMPH concentration and the rate constant of rho-dependent endocytosis rate is determined. The 

following equation shows how intracellular AMPH regulates the DAT endocytosis rate. 

Equation 7  

𝑘𝐷𝐴𝑇_𝐸𝑁𝐷𝑂 =
−3.28 ∙ 10−8 ∙ log([𝐴𝑀𝑃𝐻𝑖]) − 2.48 ∙ 10−8

[𝐴𝑀𝑃𝐻𝑖]
 

Similar to DAT phosphorylation rate constant, DAT endocytosis rate constant is also 

updated every half second.  According to the results from the simulation of the network model at 

both high and low AMPH concentrations, the intracellular AMPH concentration reaches the 

equilibrium level after a second (Figure 17). Therefore, choosing an average length for time 

intervals is an excellent strategy to avoid issues arising from AMPH concentration spikes. A 

schematic description of the spatial AMPH induced DA efflux model is given in Figure 18. 
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Figure 17. Intracellular AMPH dynamics in the intracellular network model 

The change in the intracellular AMPH concentration calculated from the nonspatial network model. The blue 

dots show the intracellular AMPH concentration for 1 nM EC AMPH concentration and orange dots shows the IC 

AMPH concentration for 1 M EC AMPH concentration. The results show that both simulations converge around 1 

second.  

 

Figure 18. Spatial model AMPH-induced DA efflux 

The simplified spatial AMPH-induced DA efflux model is shown. In addition to states that are used in 

Chapter 2.0three new states are introduced. A phosphorylated DAT state (OFp), phosphorylated and DA bound DAT 

state (OFp*) and the state of DAT after endocytosis (Ø) Direct interactions are shown with green arrows and the 

induced relations are shown with red dashed arrow. Three new rates parameters (kefflux , kDAT_ENDO, and kICDA_binding) 

are introduced. 
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In Figure 18, the green arrows show the interactions used from the DA reuptake model in 

Chapter 2.0The new additions are the following: (i) AMPH uptake from outward-facing DAT 

(OF), (ii) DAT phosphorylation regulated by AMPH (OF → OFp), (iii) DAT endocytosis regulated 

by AMPH (OF → Ø), (iv) IC DA recruitment to phosphorylated DAT (OFp → OFp*) and (v) DA 

efflux (OFp* to OFp). The primary assumption of this model is the following. The phosphorylated 

DAT is assumed to be in the outward-facing state, and IC DA can bind to outward-facing state. In 

reality, DA binds to phosphorylated and inward-facing DAT, and DA is released afterward. For 

simplicity, this two-step process is reduced into a single reaction. In addition, the endocytosis event 

is only assumed to be occurring at OF state for increased efficiency in computation. This event 

can take place in all the states of DAT. This model is simulated under varying DAT distributions 

(uniform and non-uniform), action potential firing patterns (tonic and phasic), and AMPH 

concentrations (1 nM and 10 nM).  

3.3.3 DAT distribution affects the activation of DA efflux from DAT 

I performed simulations under two different extracellular AMPH concentrations using the model 

described. Under uniform DAT distribution, EC DA concentration is considerably higher 

compared to that observed in the absence of AMPH (Figure 19A,B) The AMPH uptake efficiency 

is considerably higher than that in the simulations with non-uniform DAT distribution. As a result 

of high intracellular AMPH concentration, DAT endocytosis and DAT phosphorylation are 

triggered. Both of these events increase the EC DA concentration by reducing the DA reuptake 

and triggering DA efflux, respectively. On the contrary, the effect of nonuniformity of DAT 

distribution on the EC DA concentration is weak (Figure 19C and D). At low AMPH levels and 

nonuniform distribution of DAT, the amount of intracellular AMPH is considerably small due to 
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the reduced efficiency of AMPH uptake. As a result, DAT endocytosis and DAT phosphorylation 

events are not triggered.  

 

Figure 19. Comparative analysis of EC DA concentration under different AMPH concentrations 

The probability distribution of the logarithm of the EC DA concentration is obtained from multiple runs 

shown for tonic (A, C) and phasic (B, D) firing patterns and uniform (A, B) and nonuniform (C, D) DAT distributions 

varying AMPH concentrations. The distribution of the EC DA concentration is shown between 0.1 to 100 nM. Three 

different AMPH concentrations, 0 nM (green), 1 nM (black) and 10 nM (magenta) are used.   

 

A secondary reason for the increased EC DA concentration under uniform DAT 

distribution is the increase in the number of interactions between DATs and intracellular AMPH 

molecules. Since DAT endocytosis and DAT phosphorylation events are initiated by intracellular 

AMPH, increased number of contacts results in higher EC DA concentration. Finally, the 

simulations are performed with low AMPH concentrations. The effect of the concentration of 

AMPH on the EC DA levels is determined to be similar under uniform DAT distribution (Figure 

19). This is due to the diffusion limited nature of the model and the fact that the Rho activity from 
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AMPH is a rapid process. Simulation with higher AMPH concentrations is significantly slow due 

to the nature of spatial stochastic simulators. It will be valuable to see how one order of magnitude 

higher level of AMPH affects the efflux rate.  

3.4 DISCUSSION 

3.4.1 Overview 

In this chapter, I expanded the model that is described in Chapter 2.0with the addition of 

psychostimulants and their interactions and performed MCell simulations with varying action 

potential firing patterns and DAT distributions. I determined the effect of cocaine is dependent on 

the concentration of cocaine at realistic DAT distribution. At low cocaine concentrations, the 

DATs in inward-facing states will overcome the shortage of the outward-facing DAT molecules 

and recover the DA efficiency. At high cocaine concentrations, cocaine can block a significant 

amount of DAT molecules, and the DA clearance efficiency reduces such that the EC DA 

concentrations increase. No simulations have been performed with a realistic description of 

cocaine molecules in a realistic geometry to date. The geometry and the localization of the 

molecules play a significant role in the function of cocaine since the measurements on the different 

regions of the brain such as substantia nigra (SNc), Nucleus Accumbens (NAc) and dorsal striatum 

(Str) showed that the effect of cocaine is significantly different (Nelson, Larson, & Zahniser, 

2009). SNc and Str differ based on tortuosity of the cell membranes, void fraction of the space, 

density and distribution of DATs (Hoffman, Lupica, & Gerhardt, 1998; Rice & Cragg, 2008). 

Therefore, having a realistic geometry of the DAT can improve the accuracy of the prediction of 

the effect of cocaine.  
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The model developed in Chapter 2.0 is also expanded with the addition of AMPH 

molecules and its intracellular interactions. AMPH interacts with various molecules including G-

proteins, Ca++ signaling proteins, and Rho. These interactions lead to two crucial mechanisms,  

DAT endocytosis and DAT phosphorylation, followed by DA efflux that modulates the EC DA 

concentration. MCell simulations were performed to investigate the effect of spatial complexity 

and firing patterns on the EC DA concentration with the presence of varying AMPH concentration. 

Under the uniform surface distribution of DAT, DATs efficiently uptake AMPH molecules, and 

the intracellular interaction network is activated. As a result, DAT endocytosis is promoted, and 

phosphorylated DAT starts to release DA molecules to EC space. The DA reuptake is also more 

efficient with a uniform distribution of DATs. The effect of AMPH on DA efflux and endocytosis 

is stronger than the effect on DA reuptake. Therefore, the EC DA concentration increases. On the 

other hand, nonuniformly distributed DATs are not able to uptake enough AMPH molecules to 

activate the AMPH-induced DA efflux pathway. Therefore, the effect of low AMPH 

concentrations under a non-uniform distribution of DAT is considerably small. The main addition 

of the realistic spatial model is the addition of the diffusion limitations for molecules like AMPH 

at low concentrations.  

3.4.2 Cocaine inhibits DA reuptake at sufficient concentrations 

MCell simulations were performed with three different cocaine concentrations: 0, half IC50 and 

IC50 levels of cocaine. The results show that under realistic DAT localization and distribution, the 

former two do not have a visible effect on the EC DA concentration. The mechanism of action of 

cocaine on DAT is competitive inhibition. Cocaine binds to the extracellular substrate-binding 

pocket of DAT and blocks the binding and translocation of DA molecules. In Chapter 2.0, the 
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steady-state distribution of DAT states was presented. A significant number of DATs is in the 

inward-facing state, which cannot be targeted by cocaine molecules. At low cocaine 

concentrations, inward-facing DATs transition to outward-facing conformation and keep DA 

clearance efficiency at a certain level. At high concentrations, the effect of inhibition is more 

pronounced since the amount of DAT molecules that are transitioned to the outward-facing state 

cannot keep DA clearance rate at a basal level. Simulations indicate features similar to those 

observed in experimental studies that measured the dose-dependency of the cocaine inhibition on 

DAT (Ferris et al., 2012). Generally, experimental studies are performed to understand the effect 

of repetitive administration of cocaine for an extended period of times such as hours and days 

(Ferris et al., 2012; Jones, Garris, & Wightman, 1995). However, the effect of cocaine at 

sufficiently high levels is visible regardless of the duration of the experiment.  

3.4.3 AMPH uptake is the main regulator of DA efflux at low AMPH concentrations 

MCell simulations were repeated with the addition of different concentrations of EC AMPH 

molecules. The results show that the AMPH has a significant adverse effect on DA clearance rate 

under a uniform distribution of DAT; whereas the effect is minor under nonuniform distribution. 

The main difference between uniform and nonuniform distribution is the efficiency of DA 

clearance rate due to the limited likelihood of interactions between volume molecules such as DA 

and AMPH with DAT (Chapter 2.0). The model is simplified from a complex reaction network 

composed of 66 reactions and 49 species by reducing the total number of reactions to 20 and 

species to 11. All the reactions inside the cell are assumed to be rate-limited except the interactions 

of AMPH with DATs, and the rate of AMPH and DAT interactions are modulated by the 

intracellular concentration of the AMPH.  The DAT distribution also has a negative effect on the 
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likelihood of interactions between DAT and the intracellular AMPH. Therefore, the effect of 

AMPH is weakened both by AMPH uptake and intracellular AMPH diffusion. The uniform 

distribution of DAT shows that AMPH significantly affects the EC DA concentration.  

AMPH is involved in several other interactions in the cell in addition to DAT endocytosis and 

DAT phosphorylation. It can induce vesicular release upon its interaction with VMATs. The model 

assumes that AMPH interaction with DAT is the critical modulator instead of the intracellular DA 

concentration. This assumption was justified in a previous study by using a reserpine-like 

compound which induces depletion of vesicles and increases in cytoplasmic concentrations (Jones, 

Gainetdinov, Wightman, & Caron, 1998). Even with the addition of reserpine-like compounds, the 

EC DA concentration is mainly controlled by AMPH concentration. Our simulations were 

performed at low concentrations of AMPH since it is computationally expensive to track 

intracellular molecules without degradation. In the DA reuptake model (Chapter 2.0), intracellular 

DA molecules were assumed to be degraded since the intracellular DA concentration is not a 

quantity of interest. Although, the concentrations of AMPH used in MCell simulations are slightly 

lower than those used in previous AMPH-induced efflux studies which are around 1-10 µM 

(Wheeler et al., 2015), high concentrations of AMPH did not result in higher efflux rate and 

additional AMPH molecules diffusion to nerve terminals due to the lipophilic nature of AMPH 

(Kristopher M. Kahlig et al., 2005).  
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3.4.4 Addition of key modulators to simulation environment make simulations more 

realistic 

The current model reduced all the elaborate interaction scheme described in Figure 14 to two 

reactions: AMPH induced DAT endocytosis, and AMPH induced DAT phosphorylation. 

However, the AMPH molecules need to diffuse to intracellular regions to have interactions with 

signaling molecules such as Rho, TAAR1, and VMAT. It is possible to add those signaling 

molecules inside the cell with no diffusion to speed up the simulations. The interactions between 

AMPH and these molecules can be modeled to change the state of AMPH from inactive to an 

active state that can trigger the internalization and the phosphorylation of DATs. These reactions 

guarantee diffusion of AMPH molecules to intracellular regions which makes the model more 

accurate in terms of DAT activation. The high likelihood of interactions between intracellular 

AMPH and DATs exaggerate the rate of DA efflux and DAT endocytosis under uniform DAT 

distribution. In addition, the interactions between different states of DAT and intracellular AMPH 

could differ as explained in a previous study (Kristopher M. Kahlig et al., 2005).
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4.0 MODELING AND ANALYSIS OF THE SUBUNIT EXCHANGE MECHANISM IN 

CAMKII SIGNALING 

4.1 BACKGROUND 

The primary function of the brain is to process information from the environment and respond 

accordingly. Neurons process information, receive and make connections with other neurons. On 

average, there are billions of neurons in the human brain, and the number of connections is in the 

order of trillions (Herculano-Houzel, 2009). The connections among neurons are called “synapses” 

and the signal is propagated through action potential in the central nervous system (CNS). Action 

potential causes depolarization on the presynaptic membrane of the neurons. The vesicles that 

contain neurotransmitter molecules move to the regions that are called ‘active zones’ on the 

presynaptic membrane because of depolarization and many neurotransmitters released to synapse 

from these regions. Neurotransmitter molecules diffuse and activate the receptors on the 

postsynaptic cells and trigger the downstream signaling.  Depending on the response of 

neurotransmitters, neurons are divided into two categories: inhibitory and excitatory (Kennedy, 

2013). In this chapter, I focused mainly on the excitatory synapses.  

A large number of excitatory neurons are on the spinal regions. The number of synapses on such 

neurons is generally in the order of thousands (Kennedy, 2013). A typical example of an excitatory 

synapse is located between hippocampal (Cornu Ammonis) CA1 and CA3 neurons which plays a 
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crucial role in memory and learning. The postsynaptic membrane of this type of synapses has 

ligand-gated ion channels that are activated by neurotransmitters such as glutamate. The two 

receptor types that are activated by glutamate are α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor and N-methyl-D-aspartate (NMDA) receptor. AMPA 

receptor is activated by glutamate binding, and its primary function is the influx of sodium (Na+) 

ions. NMDA receptors are structurally more complicated, and in addition to Na+ ions, they allow 

calcium (Ca++) ions into the cell. (Mayer, Westbrook, & Guthrie, 1984; Nowak, Bregestovski, 

Ascher, Herbet, & Prochiantz, 1984) 

One of the most important mechanisms that are related to memory and learning is the synaptic 

plasticity, and it can be defined as the long-lasting strengthening or weakening of the spinal 

connections depending on the activity patterns. In high-frequency activation patterns, synapses 

become stronger by an increase in size and by addition of new receptors. This process is called 

‘long-term potentiation’, LTP. On the other hand, low-frequency activity leads to a reduction in 

the size of synapses and the number of receptors. This process is called, ‘long-term depression’, 

LTD (Franks & Sejnowski, 2002). The effect of LTP and LTD remains longer than the duration 

of the activation. Both processes are controlled by Ca++ signaling.  

One of the central regulators of calcium signaling in post-synaptic cells and LTP is the 

calcium-calmodulin-dependent kinase type II (CaMKII). CaMKII is activated by active 

calmodulin (CaM) and Ca++ complex. CaMKII and the Ca++ signaling pathway causes recruitment 

of AMPA receptors (Opazo et al., 2010) to the post-synaptic membrane and phosphorylation of 

the AMPA receptors that increases sodium conductivity leading to more efficient synapses 

(Lisman, Yasuda, & Raghavachari, 2012). CaMKII is one the highly expressed signaling kinases 

in the brain and more specifically in the excitatory neurons (Bennett, Erondu, & Kennedy, 1983; 
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Erondu & Kennedy, 1985; Sik, Hajos, Gulacsi, Mody, & Freund, 1998). CaMKII is located in 

various regions in neurons, but the highest expression level is in the postsynaptic density (PSD) 

which is the closest region to the postsynaptic membrane in the excitatory neurons (Kennedy, 

2013). 

CaMKII holoenzyme is structurally dodecamer, and the Ca++/CaM activation has complex 

intramolecular dynamics (Bennett et al., 1983; Kolb, Hudmon, Ginsberg, & Waxham, 1998). Each 

subunit has an association module and a catalytic module which includes a flexible linker and a 

kinase domain. Association domains and kinase domains are connected via flexible linker region. 

The dodecamer holoenzyme is kept together with interactions between the association domains 

(Rosenberg et al., 2006; Rosenberg, Deindl, Sung, Nairn, & Kuriyan, 2005). Six of these 

association domains create a ring-like structure which is called ‘central hub’ (Stratton et al., 2014). 

Two of these hexamer structures compose the dodecamer holoenzyme. In the inactive state, the 

flexible linker folds and the catalytic domain positions very close to association domain. The 

binding region of the Ca++/CaM complex is very close to the linker region and kinase domains 

opens upon Ca++/CaM binding. There are three important threonine residues on the linker region, 

and phosphorylation of such residues regulates the activity of CaMKII (Rellos et al., 2010).   

The first significant threonine residue is (T286) is an only catalytic module and located 

near the kinase domain. The phosphorylation of T286 keeps the kinase domain open even if the 

Ca++ concentration drops to a low level or CaM unbinds from the complex (Miller & Kennedy, 

1986; Miller, Patton, & Kennedy, 1988). More interestingly, T286 phosphorylation is an inter-

subunit event meaning that only an active (Ca++/CaM bound or auto-phosphorylated) and 

neighboring CaMKII subunit can phosphorylate a Ca++/CaM bound subunit (Hanson, Meyer, 

Stryer, & Schulman, 1994; Rellos et al., 2010). Thus, the initial CaMKII activity is strongly 
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dependent on the active CaM concentration, and the rate of Ca++ influx indirectly regulates the 

initiation of the CaMKII activity (Chao et al., 2010).  

The other two threonine residues (T305 and T306) are located on the CaM-binding domain 

of the subunit and phosphorylation of such residues block Ca++/CaM binding (Patton, Miller, & 

Kennedy, 1990). The effect of these two phosphorylation sites is not as apparent as T286, yet a 

knock-in study in mice shows the importance of learning and memory (Elgersma et al., 2002). 

Since this phosphorylation blocks the reactivation of the CaMKII by Ca++/CaM binding, the 

protein phosphatases such as protein phosphatase 1 (PP1) and protein phosphatase 2 (PP2A) bring 

the CaMKII back to inactive state (Shields, Ingebritsen, & Kelly, 1985).  

Recently, it is proposed that activated CaMKII subunits can initiate a subunit exchange 

between CaMKII holoenzymes (Stratton et al., 2014). The existing of such process is proved using 

a group of in vitro experiments. The suggested mechanism of the subunit exchange is the 

following: (I) Following T286 and T305 phosphorylation, the kinase domain docks on top of the 

association domain, (II) upon docking of the kinase domain, a vertical dimer of subunits can 

release from a holoenzyme, and (III), a free vertical dimer can bind to a holoenzyme and create a 

tetradecamer form of the holoenzyme (Bhattacharyya et al., 2016). Since the autophosphorylation 

of T286 is dependent on the activity level of a neighboring subunit, the subunit exchange 

mechanism is a plausible mechanism to spread CaMKII activity even in the absence of  Ca++/CaM 

(Lisman, 1994).  

In modeling CaMKII dynamics, it is preferred to use a reduced kinetic scheme to overcome 

the combinatorial complexity caused by the multimeric structure of the holoenzyme. A mean field 

approximation of the kinetics with dimer or trimer holoenzyme assumption can reproduce the 
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frequency dependence of the CaMKII activation at short time scales (Michalski, 2013; Michalski 

& Loew, 2012). However, subunit exchange mechanism needs a proper description of the 

holoenzyme structure since the mechanism is involved in vertical CaMKII dimers. A complete 

deterministic model requires species with several states in the order of thousands. Therefore, 

building a network among such complex species is generally computationally expensive, and it is 

often impossible to generate reaction network above a certain size threshold. Network-free 

simulation approaches can efficiently deal with the problem of combinatorial complexity 

(Sneddon, Faeder, & Emonet, 2011).  

The calibration of biological models is generally challenging due to the scarcity of 

experimental data and a large number of parameters involved with the system. Since these 

simulations of such models are computationally expensive, it is required to implement an efficient 

and scalable method to estimate the parameters of biological models. Genetic algorithms (GA) are 

one of the most widely used heuristic methods to solve optimization problems. However, it still 

needs to generate full-length trajectories to calculate the objective function of an individual 

parameter set. Online model checking (OMC) is a proper strategy that suggests terminating a 

simulation if a trajectory does not provide a pre-defined logic (Liu & Faeder, 2016). A genetic 

algorithm implementation with online model checking (GA/OMC) can provide a significant 

improvement on the performance of the parameter estimation.  

Here, I build a detailed model of activation-triggered subunit exchange in CaMKII. The 

model is calibrated with a hybrid genetic algorithm implementation with online model checking 

based on experimental data of frequency dependence of the CaMKII activation at short time scales, 

and the amount of subunit exchange at long timescales. Even though the online model checking 
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and parallelization provides significant improvements, the parameter estimation procedure did not 

converge due to the size of the parameter space and slow simulations.  

4.2 METHODS 

4.2.1 Model construction 

Rule-based modeling is a way of representing the interactions of multiple interacting molecules 

with multiple parts and states (Faeder, 2011). Because of a considerable number of interactions 

that are involved in multiple types of molecules, the total number of interaction possibilities grows 

exponentially. To capture all the possible interactions, an extensive network with a lot of edges 

and nodes is required (Hlavacek, Faeder, Blinov, Perelson, & Goldstein, 2003). Rule-based 

modeling provides a local representation of the molecular interactions. The local representations 

could convert into an extensive network using graph enumeration methods. For multimer 

molecules with multiple intramolecular interactions, the rule-based modeling is the only plausible 

method to construct a large model. BioNetGen language (BNGL) is a rule-based modeling 

language that uses graph formalism to enumerate all possible species and reactions of the system 

(Blinov, Faeder, Goldstein, & Hlavacek, 2004; Faeder, Blinov, & Hlavacek, 2009). 

I constructed a detailed model of activation-triggered subunit exchange using a previously 

published model of CaMKII interactions as a basis (Michalski & Loew, 2012). This model 

includes interactions for an individual subunit, between subunits and holoenzyme level. The rules 

for intramolecular interactions can be divided into two groups depending on the species. The first 

group of rules identifies how Ca++ ions bind to CaM molecules and create Ca++/CaM complexes 

then bind to CaMKII to trigger activation (Xia & Storm, 2005). There are four Ca++ ion binding 
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sites on CaM. Even though partially active CaM molecule with less than four Ca++ ions can bind 

and activate CaMKII, only CaM with four Ca++ ions assumed to be the trigger of the activity of 

CaMKII for simplicity (Michalski, 2013). The second group of the rules contains information 

related to different states and their transformations in CaMKII subunits. The CaMKII molecule 

has six individual states that are based on Ca++/CaM binding, T286 phosphorylation and T305/6 

phosphorylation (Figure 20A). CaMKII is an inactive state without any Ca++/CaM molecules since 

the kinase domain is docked on the association domain and the substrate binding site is blocked 

(Duu) (Rellos et al., 2010). Upon Ca++/CaM binding, the kinase domain is displaced from the 

association domain (Cuu). In such a state, both the substrate and ATP binding sites are exposed, 

and the CaMKII is active (Rellos et al., 2010). The Ca++/CaM bound state of the CaMKII can be 

autophosphorylated at T286 by a neighboring active CaMKII subunit (Cpu) (Rich & Schulman, 

1998). Auto-phosphorylated subunit remains active even after the release of Ca++/CaM complex. 

The T286 phosphorylation suppresses linker folding and keeps the activity of CaMKII (Dpu) (De 

Koninck & Schulman, 1998). Upon release of Ca++/CaM complex T305/6 is being exposed and 

can be phosphorylated (Dpp) (Mukherji & Soderling, 1994). The T305/6 phosphorylation prevents 

Ca++/CaM binding (Hanson et al., 1994) and it can return to inactive states via phosphatases PP1 

and PP2A. Finally, an inactive CaMKII subunit can be phosphorylated at T305/6 with a slow rate 

(Dup) (Colbran, 1993). This state is inactive and inhibits the Ca++/CaM binding (Figure 20B).  
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Figure 20. CaMKII model 

A - The relevant states of CaMKII subunit. CaMKII subunit has three different domains. These domains are 

association domain (light blue), linker domain (yellow) and kinase domain (dark blue). The CaM is shown as a purple 

circle, and the phosphorylation sites are shown as red rectangles on the linker domain. Duu state denotes the inactive 

state with no CaM and phosphorylation. Cuu state denotes the active CaMKII subunit with CaM and no phosphorylation 

on threonine residues. Cpu state denotes the CaM bound, and T286 phosphorylated active CaMKII subunit. Dpu is 

another active state with only T286 phosphorylation. Dpp is the active state with phosphorylation on both T286 and 

T305/6 sites. Dup is the inactive state with only T305/6 phosphorylation. In active states, the linker domain unfolds, 

and kinase domain is far from association domain. Both phosphorylation sites are on linker of close to the linker. B - 

Interactions in individual CaMKII subunit. The T286 phosphorylation is triggered by active neighboring subunit. C – 

The subunit exchange mechanism in holoenzyme. If one of the molecules is in Dpp state two vertical CaMKII subunit 

(vertical dimer) can release from CaMKII holoenzyme regardless of the state on the vertical neighbor. The thick black 

bond between association domains shows the binding between two association domains of the vertical dimer.  
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In a previous study (Michalski & Loew, 2012), the CaMKII holoenzyme is assumed to be 

a dimer, trimer or hexamer and the reduced scheme is hard-coded as an ordinary differential 

equation model. In my rule-based model, CaMKII holoenzyme is either dodecamer or 

tetradecamer and is formed by two vertical ring-like hexamer or heptamer structure. The subunit 

exchange mechanism includes six distinct process: (i) tetradecamer opening, (ii) release of a 

vertical subunit from tetradecamer, (iii) diffusion and binding of vertical dimer to open dodecamer, 

(iv) tetradecamer closing, (v) dodecamer opening and (vi) dodecamer closing (Bhattacharyya et 

al., 2016). For the simplicity opening and closing events are assumed to be more rapid compared 

to release and binding events. A vertical dimer could be released if one of the subunits is in Dpp 

state Figure 20C. The kinetic parameters of the interactions of individual subunits are used from a 

previous study (Michalski & Loew, 2012) and given in Table 6. The parameters for subunit 

exchange are estimated.  
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Table 6. Kinetic parameters of the CaMKII model adopted from (Michalski & Loew, 2012) 

Parameter Explanation Value Source 

kon,0 1st Ca++ binding 

2.5 µM-1 

s-1 

(Chiba, Schneider, Matsuoka, 

& Noma, 2008) 

koff,0 1st Ca++ unbinding 50 s-1 

kon,1 2nd Ca++ binding 

88.25 µM-

1 s-1 

koff,1 2nd Ca++ unbinding 50 s-1 

kon,2 3rd  Ca++ binding 

12.5 µM-1 

s-1 

koff,2 3rd  Ca++ unbinding 1250 s-1 

kon,3 4th  Ca++ binding 

250 µM-1 

s-1 

koff,3 4th  Ca++ unbinding 1250 s-1 

koff,u 

CaM unbinding from 

unphosphorylated CaMKII 

2 s-1 

(Meyer, Hanson, Stryer, & 

Schulman, 1992) 

kon,u 

CaM binding to unphosphorylated 

CaMKII 

30 µM-1 s-

1 

koff,p 

CaM unbinding from 

phosphorylated CaMKII 

0.001 s-1 

kon,p 

CaM binding to phosphorylated 

CaMKII 

10 µM-1 s-

1 

r1, r2 Cuu to Cuu phosphorylation 1.0 s-1 (Michalski & Loew, 2012) 
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r3 Dpu or Dpp to Cuu phosphorylation 0.8 r1 

r305 Dpu to Dpp phosphorylation 10 s-1 

rbasal Basal phosphorylation 

5 x 10-4 s-

1 

(Colbran, 1993) 

kcat Phosphatase catalysis rate 1.72 s-1 

(Bradshaw, Kubota, Meyer, & 

Schulman, 2003) Km 

Phosphatase half-max 

concentration 

11 µM 

4.2.2 Experimental data 

The constructed model has some missing parameters, and these parameters need to be estimated. 

For the estimation of the subunit exchange parameters, two groups of experimental data are used. 

The first group is the CaMKII activity level data response to various Ca++/CaM stimulations with 

various dose, frequency, and stimulation period (De Koninck & Schulman, 1998). In(Michalski & 

Loew, 2012), it is stated that the given parameter set reproduces the input frequency dependence 

of CaMKII activation (Michalski & Loew, 2012). Therefore, the addition of subunit exchange 

should not change the activity levels of CaMKII on the experimental data. The second group of 

the data contains the colocalization amount of the red and green fluorescence. As a result of 

activation-triggered subunit exchange of CaMKII holoenzymes with different Ca++/CaM 

concentrations and some genetic modifications on CaMKII subunits (Stratton et al., 2014).  

 The first group of the data is collected from the following three different types of 

experiments. The first type of the experiment is the activity level at 6 seconds after continuous 

exposure to varying concentrations of Ca++/CaM levels for 6 seconds (Figure 21A). The second 
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experiment is the response level of the CaMKII to various frequencies of 200 ms pulses of 0.1 M 

of Ca++/CaM complex (Figure 21B).  The third experiment is the measurement of CaMKII activity 

level with respect to different pulse durations with various frequencies leading up to the same 

exposure time to Ca++/CaM complex in total (Figure 21C). These experiments are completed in a 

short time scale with a maximum of 100 seconds.  
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Figure 21. Frequency-dependent CaMKII activation data 

A – Activity level of CaMKII to continuous 6 seconds exposure to varying concentrations of CaM. The EC50 

values are around 0.2 µM. B – CaMKII activity as a function of time with different frequencies of 1 Hz (orange), 2.5 

Hz (blue) and 4 Hz (gray) of 200 ms pulses. The number of pulses for frequencies are 100, 40 and 25 for 1 Hz, 2.5 

Hz, and 4 Hz, respectively. The total duration of the exposure to Ca++/CaM is the same for all three frequencies. C – 

CaMKII activity as a function of frequency and individual pulse duration. The different pulse lengths 1000 ms (blue), 

500 ms (orange), 200 ms (gray) and 80 ms (yellow) are shown. The total CaMKII exposure time for each data point 

is 6 seconds.     
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The second experiment is the measurement of the colocalization of different colored 

CaMKII molecules with different concentration of Ca++/CaM and modifications of CaMKII 

subunits such as mutations at phosphorylation sites (Stratton et al., 2014). In the experimental 

setting, half of the CaMKII holoenzymes are tagged with red color Alexa 594 fluorescent dye and 

the other half are tagged with green color Alex 488 fluorescent dye. All CaMKII holoenzymes are 

immobilized using the biotin-streptavidin connection on polyethylene glycol (PEG)-treated glass 

(Figure 22A). At certain time points, a portion of the CaMKII molecules are removed from the 

experiment, and a multicolor total internal reflection fluorescence (TIRF) microscopy is 

performed. The colocalization data is filtered, and the ratio of the colocalization to the maximum 

colocalization observed if all the CaMKII holoenzymes have both red and green color is reported. 

The experimental data reported for different concentrations of   Ca++/CaM (Figure 22B) and, for 

complete mutation of T286D which creates constitutively active CaMKII in the absence of 

Ca++/CaM (Figure 22C). These experiments are completed in timescales of minutes to hours that 

is larger compared to the first group of experiments. There is a major drawback of these 

experimental data. There are 66 different configurations with red and green color colocalized 

CaMKII subunits. The colocalized holoenzymes might have only one red and eleven green 

subunits or six green and six red subunits. Therefore, experimental data may not be the best data 

to use for a quantitative task, yet it is the only available quantitative data to fit in this context.  
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Figure 22. Activation triggered subunit exchange data 

A – CaMKII holoenzymes are immobilized using PEG-biotin-streptavidin functionalization. Because of 

subunit exchange, green and red subunits are colocalized. B – The percent colocalization to maximal colocalization 

under different Ca++/CaM concentrations, 1 µM (blue) and 8 µM (orange). The experimental data is collected for 45 

minutes. C – The percent colocalization to maximal colocalization wit T286D mutation. The T286D mutation makes 

CaMKII subunit active regardless of Ca++/CaM concentration.  
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4.2.3 Network-Free simulations 

In conventional rule-based modeling, the interactions of individual species are defined as rules, 

and all possible combinations of rules (reactions) are generated using graph enumeration strategies. 

In general, small to medium size rule-based models (<10000 reactions) can be simulated using 

network generation followed by integration of ordinary differential equations or application of a 

stochastic method such as Gillespie (Sneddon et al., 2011). If reaction network size is larger than 

10000 or infinite, rule-based models are simulated using a network-free strategy to overcome the 

problem of combinatorial complexity.  

In network-free simulations, each species is defined as a particle, and their transitions are 

regulated by the rule definitions. A Monte Carlo update scheme is used to transform each species 

to its next state at runtime (Monine, Posner, Savage, Faeder, & Hlavacek, 2010).  At each time 

step, the following procedure is followed: (i) patterns of reactants are defined at rules are identified 

in the molecular complexes, (ii) propensities of rules are calculated, (iii) depending on the 

propensity of a rule, transformations are selected and (iv) transformations are applied to a 

randomly selected species that contains the reactant pattern of the rule. The propensities are 

calculated, and transformations are triggered at runtime. There is no need to create a reaction 

network as in the case of network-based simulation methods. An efficient implementation of 

network-free simulations for rule-based models is available in NFsim tool (Sneddon et al., 2011). 

NFsim provides a flexible environment for simulating models that are built in BNGL framework 

and have a large number of states/reactions.  In this study, all CaMKII models are simulated using 

NFsim software.  
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4.2.4 Genetic algorithms with online model checking 

Parameter estimation is a common problem in building models of biological systems. For small 

rule-based models, it is generally preferred to use Bayesian techniques such as Markov Chain 

Monte Carlo. However, such methods require a large number of model simulations and Markov 

Chain properties limit the parallelization capabilities (Ballnus, Schaper, Theis, & Hasenauer, 

2018). In the case of large models that require long CPU time, it is better to use a heuristic method 

with a parallel implementation. GA is one of the most commonly used optimization methods due 

to easy parallelization (van Soest & Casius, 2003).  

 GA has the following steps: (i) Simulate the model and evaluate the objective function for 

each parameter set. (ii) Create a new population based on pre-defined rules such as selection, 

crossover, mutation. The selection is defined as the removal of parameter sets with high objective 

functions. The crossover is defined as the exchange of parameters between the two parameter sets. 

The mutation is defined as a random change of an individual parameter in a single parameter set. 

(iii) Replace the high objective function parameter sets with the newly created ones. Since the 

simulation of a trajectory is entirely dependent on the individual parameter set, all the trajectories 

can run in an embarrassingly-parallel way. With a large number of processors, the generations are 

faster, and the estimation problem can rapidly converge. BioNetFit is an efficient, flexible, open-

source implementation of parameter estimation tool using GA for BNGL models (Thomas et al., 

2016). BioNetFit has its own parallelization method that can work on various computer cluster 

environments.  

Even with a complete parallelization of the simulations, GA methods may not converge 

due to time limitations on a computer cluster environment. The most computation intensive part 
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of any parameter estimation procedure is generating a trajectory for each parameter set. Online 

model checking, combines simulation with model checking in shorter time intervals instead of a 

complete simulation followed by objective function evaluation (Liu & Faeder, 2016). The model 

checker returns a decision at each time point with an experimental data. If the trajectory 

significantly diverges from the experimental data, the parameter set is terminated, and a new 

trajectory with a new parameter set is initiated (Figure 23).  

 

Figure 23. Schematic description GA implementation with model checking 

Multiple trajectories with different parameter sets are created for a given model. Instead of a full trajectory, 

simulations are performed until a time point with pre-defined logic information. At this time point, each trajectory is 

evaluated for the pre-defined logic. If it fails, the simulation is started from the previous checkpoint. If it is successful, 

the simulation proceeds until the next time point. Many trajectories are rejected before they reach to complete length 

of trajectory. Instead of linear CPU time per generation, an adaptive CPU time per generation model is used.  
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4.3 RESULTS AND DISCUSSION 

4.3.1 Subunit exchange can take place in timescales from minutes to hours 

Prior to parameters estimation, a sensitivity analysis of the dissociation constant of vertical dimer 

from tetradecamer CaMKII is performed. The range of the parameters in the scan is ranging from 

0.01 M to 100 M. The model simulated for 6 seconds of the continuous pulse of Ca++/CaM 

complex with varying concentrations. A total of 1 M CaMKII subunits are in the solution. The 

results of the parameter scan are given in Figure 24. The results show that changing the value of 

the dissociation constant does not have any significant effect on the CaMKII activity (Figure 24A). 

It is expected because the subunit exchange events started to occur after longer time scales around 

minutes. The CaMKII subunits need to reach to double phosphorylated and CaM unbound state 

(Dpp) 6-second simulations are not enough to Dpp state of CaMKII.  

On the other hand, regardless of the dissociation constant of the vertical dimer, vertical 

dimer release is almost never observed in Figure 24B because CaMKII subunits never reach to Dpp 

state. Further analysis on the amount of CaMKII in Dpu state shows that after CaMKII binding and 

T286 phosphorylation, CaMKII subunit remains in Dpu state for hours. Therefore, the model does 

not thoroughly capture the subunit exchange dynamics of CaMKII.  
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Figure 24. Parameter scan results for varying dissociation constant. 

A – The CaMKII activity level is evaluated with varying Ca++/CaM concentrations of 6 seconds of the 

continuous pulse. Different colors denote different dissociation constant for vertical dimer binding/unbinding to 

holoenzyme. The difference between the curves is slight. The experimental data are shown as red “x”. B – The percent 

maximal colocalization is evaluated for 45 minutes varying vertical dimer dissociation constant from holoenzyme. 

Each color shows a different dissociation constant denoted in the legend. The experimental data are shown as red “x.”  
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A widely studied mechanism in CaMKII intrasubunit dynamics is the ‘Calmodulin 

Trapping’ mechanism. An active Ca++/CaM complex binds to CaMKII, and upon phosphorylation 

at the T286 site, Ca++/CaM complex moves to a different region on CaMKII surface with a high 

binding affinity. Thus, CaM is trapped in CaMKII which keeps it activated for a long time. 

However, the existence of subunit exchange shows that the CaM trapping should not last longer 

than subunit exchange occurrence. Previous models that are calibrated based on short time scale 

experiments modeled the CaM unbinding from the Cpu state with mass action kinetics and select a 

binding rate which is thousand times slower than CaM unbinding rate from Cuu state. The results 

show that parameters such as binding/unbinding rate constants of CaM from/to Cpu state and Dpu 

to Dpp phosphorylation rate constant also needs to be estimated.     

4.3.2 GA implementation with NFsim fails due to the size of the model 

Since the size of the model is extremely large (over a billion reactions) and several of the molecules 

are not considerably small (>1000), using a conventional Bayesian technique for parameter 

estimation is not feasible. GA method is a parallel heuristic algorithm that is used for optimization 

problems. BioNetFit is an efficient and flexible GA implementation for BNGL models. BioNetFit 

provides a scalable implementation for parameter estimation tasks on models with one or multiple 

types of experimental data using NFsim as the simulation engine. Due to the stochasticity of the 

network-free simulations, it is required to have repeated simulations to have statistically significant 

estimates, and it is possible to simulate individual trajectories with the same parameter set for 

multiple times.  
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 For objective function definition, a chi-square function is used. For each time point, the Z-

score is calculated using the mean value and the standard deviation. The chi-square error is 

calculated with the following formula: 

Equation 8 

𝜒 =∑
(𝑦𝑖 − 𝑦̂𝑖)

2

𝜎𝑖2
𝑖

 

where yi is the simulation data, 𝑦̂𝑖 is the mean value of the experimental data at time point i and σi 

is the standard deviation at time point i. The other important parameters are selected as the 

following: recombination rate of 0.5, the mutation rate of 0.2 and mutation amplitude of 0.1 are 

used. Using a GA implementation with a population size of 50, repeat number of 50 and a total of 

300 generations, the subunit exchange rate constants and Ca++/CaM binding/unbinding rate 

constants for phosphorylated CaMKII (Cpu) are estimated. A large group of trajectories are not 

completed or failed to simulate due to limitations on the computer infrastructure and limitations 

on the memory. NFsim calculates the propensity for each individual rule based on pattern matching 

on individual species. Since the size and the structure of the species are quite large in CaMKII 

model, is the task is memory intensive. Reducing the number of repeats to 3 helped GA to converge 

based on relative change in the objective function yet the final objective function is not ideal. A 

large portion of data from the frequency dependence of the CaMKII activation experiments are in 

good agreement yet there is a significant difference between subunit exchange experiment values. 

Therefore, a more efficient parameter estimation strategy which is less memory intensive needs to 

be implemented. A hybrid GA/OMC strategy can resolve the memory problems.  
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Figure 25. Best calculated objective functions for different generations 

The chi-square objective function is evaluated for each parameter set at each generation, and the lowest chi-

square value is plotted. After 40 generations, the objective function stuck around 81, and the simulation is converged 

since the best objective function did not change for 10 generations.  

4.3.3 GA with Online Model Checking 

Online model checking is an auxiliary parameter estimation strategy that speeds up the 

convergence rate of the optimization. The most expensive calculation in any parameter estimation 

method is the trajectory generation. In the offline mode of the genetic algorithm, all trajectories 

are entirely generated for each parameter set then parameters are updated according to estimated 

objective function. Many of the generated trajectories have large objective functions and do not 

provide useful information for the generation of the next parameter set. In online mode, each 

simulation trajectory is simulated for a shorter amount of time and based on a pre-defined logic; 

model checker decides to proceed with the next time interval or terminate the simulation and 

initiate a new simulation with a new parameter set.  Since CaMKII model does not have any pre-
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defined logic, model checker checked that the absolute error of an individual trajectory is less than 

one standard deviation at this time point.  

Before applying OMC on the CaMKII model, the method is tested on the trivalent ligand 

and bivalent receptor (TLBR) model. TLBR model is a simple model with only three rules and 

two molecule types. However, the receptor has two identical binding sites, and ligand has three 

identical receptor binding sites. Therefore, two molecule types and three rules create a reaction 

network with infinite size due to the presence of the identical binding sites on multiple molecules. 

A detailed description of the model is given in (Monine et al., 2010).  For the simplicity, instead 

of using NFsim as simulation engine, we used the SSA method (Gillespie, 2007). We kept the 

maximum iteration number as three in network generation and a reaction network with 19 species, 

and 29 reactions are created. Using the parameters given in Table 7, the output is generated at 10 

different time points and due to stochasticity simulations are repeated 50 times. The total number 

of LR clusters, LR motifs, free receptor sites and free receptor monomers are generated. The 

average values and the standard deviations are used to prepare a synthetic experimental data as 

input to hybrid OMC/GA.  The generated experimental data with standard deviations are given in 

Figure 26.  
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Table 7. Parameters for TLBR model 

Parameter Value Unit 

Total Ligand 50000  

Total Receptor 3000  

Free binding parameter 2.7 s-1 

Crosslinking parameter 16.8 s-1 

Dissociation rate 0.01 s-1 

 

 

 



 

  111 

 

Figure 26. The data generated for parameter estimation from TLBR model. 

The synthetic data is presented. The clusters (green diamond) are the species with at least two receptors cross-

linked with ligands. The LRmotif (yellow triangle) is the number of ligand-receptor bounds. Rfreesite (blue “X”) is 

the total number of ligand binding sites on the receptors. Rmonomer (green cross) is the total number of receptors that 

do not have any bound with ligands. The simulations are performed for 3000 seconds and every 300 seconds the mean 

and the standard deviation of the simulation output is calculated as synthetic data.  

The parameter estimation is performed with conventional GA and GA/OMC methods. The 

parameters for the GA implementations are the following: recombination rate of 0.5, the mutation 

rate of 0.2 and mutation amplitude of 0.1. Each generation has 50 parameter sets, and each 

parameter is simulated 50 times with a different random number of seeds until convergence. The 

change in the best objective function for each generation and the total number of model evaluation 

are plotted in Figure 27. Since the trajectories which are one standard deviation away from the 

average experimental data points at a given time point are rejected, GA/OMC drops down to a 

reasonable parameter value in the first generation. However, the GA method stays at a high 

objective function value for many generations. The number of function evaluations in the 
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GA/OMC method is significantly larger compared to the GA method for the first couple 

generations due to online rejections. Even though the number of function evaluations is 

significantly large, none of the rejected trajectories simulated until it reaches to last experimental 

point. In the initial stages of the conventional GA method, the drop in the objective function is 

considerably slow compared to GA/OMC.  
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Figure 27. Performance of the hybrid GA/OMC method 

A – The change in the best chi-square objective function evaluated for each generation is plotted.  The blue 

curve shows the GA output, and the orange curve shows the GA/OMC output. In GA/OMC method, the best objective 

function at the end of the first generation is significantly small. In GA, the objective function drops after 13th 

generation. B – The total number of function evaluations are plotted. The linear blue curve shows the GA and orange 

curve shows the GA/OMC. GA/OMC have a significantly large number of function evaluations at first generation, 

and it converges to the same number of function evaluations with GA after a couple generations.   
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The results show that GA/OMC method converges significantly faster compared to 

conventional GA method both in terms of generations and number of function evaluations. A 

significant portion of the computation is performed at the early generations due to rejections based 

on pre-defined logic, and later stages have the same number of function evaluations with 

conventional GA.  A hybrid GA/OMC method may overcome the efficiency issues of GA.  

I tried to apply the GA/OMC method to the subunit exchange model of the CaMKII. NFsim 

can output the current state of the simulation and can load a given state as input if species have 

less than 20 molecules. If a species contains more than 20 molecules, NFsim cannot load such 

species without losing information and results are considerably different from the real trajectory. 

Due to limitations in NFsim, it is impossible to test the suggested GA/OMC method on a model 

with the size of CaMKII.  

4.4 CONCLUSION 

CaMKII is one of the most complex proteins in human CNS. It is generally known for its long-

lasting activity after long-lasting stimulation, which can be explained by the activation-triggered 

subunit exchange mechanism identified in recent qualitative experimental studies [REF]. 

Constructing a quantitative model of such an extensive system still remains a challenge. The 

following lessons were learned from the construction of the model: (i) CaMKII models constructed 

based on rapid events after exposure to Ca++ cannot quantitatively reproduce the activation-

triggered subunit exchange mechanism. (ii) The parameter search space for CaMKII is large, and 

even scalable heuristic methods for parameter estimation, such as genetic algorithms, fail to find 

the global optimum. (iii) The model checker implementation improves the efficiency of the 
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parameter estimation by application of genetic algorithms. However, the improvement is still not 

adequate to perform parameters estimation with CaMKII model.
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5.0 CONCLUSION 

In this work, I built a detailed 3D structure of dopamine (DA) neurons including the location of 

the active zones and surface distribution of dopamine transporters (DATs) from various 

microscopy studies. I performed spatial diffusion-reaction simulations with varying firing patterns 

and transporter surface distributions. I reported the effect of simulation conditions on the local and 

global distributions of DA molecules in the striatum. These simulations provide information on 

how cellular morphology and surface distribution can affect DA clearance efficiency and DA 

receptor activation. It is shown that heterogeneity in the surface distribution of DAT reduces the 

DA clearance rate, and increasing heterogeneity makes the effect more drastic. The results show 

that the DA dynamics are diffusion controlled. However, in addition to DA-binding kinetics to 

outward facing DAT, the equilibrium distribution between the inward- and outward-facing DAT 

is also a major factor for DA clearance efficiency.  

I created a multiscale model to study the effect of psychostimulants on DA signaling in the 

presence of spatial complexity. The effects of cocaine and amphetamine (AMPH) are studied using 

a spatially realistic model. The mechanism of action of the cocaine is straightforward: cocaine 

completely shuts down the DAT and DA clearance, and the spatial complexity does not have a 

significant effect. For AMPH, it is required to build a two-scale model, an inner one with spatial 

resolution and an outer one that treats the network components as well-mixed. The network level 

model provided information related to intracellular AMPH concentration and the DA efflux from 
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DAT, and the spatial model focused on how DA is cleared and AMPH translocated into the cell. 

The results show that even low doses of AMPH can disturb the Rho pathway and increase the rate 

of DA efflux by 1000-fold.  

I also built a detailed quantitative model of calcium-calmodulin-dependent kinase type II 

(CaMKII) dynamics with an activation-triggered subunit exchange mechanism. Rule-based 

modeling and network-free simulation tools enabled us to develop and simulate a large CaMKII 

model with an infinite number of possible reactions. The constructed model is calibrated using 

heuristic parameter estimation approaches. Due to the long time required for individual simulations 

and limitations on the simulation software, the parameter calibration did not converge to a 

reasonable parameter set even using advanced methods for optimization. A recently developed 

hybrid model checking/genetic algorithm method shows promising results for efficient parameter 

estimation that can overcome this bottleneck. Further development on the network-free 

simulations with this hybrid method can help the estimation of subunit exchange related 

parameters in activation-triggered subunit exchange model for CaMKII. The calibrated model 

might provide insights into the activation dynamics of CaMKII.  

5.1 LIMITATIONS 

The results presented in this dissertation show that our multiscale model for DA signaling is 

accurate, and our quantitative CaMKII model includes a detailed description of critical 

intramolecular events, but the following limitations need to be considered when interpreting the 

results:  
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a. The molecular simulations yield insights about events and provide reasonable estimates 

for accessible states, their equilibrium probabilities, and relative interconversion rates, 

which are used in the cellular simulations. However, the absolute rates of transitions 

involve many factors, and it is currently not possible to accurately predict those values.  

b. The box of 10 x 10 x 7.2 µm3 is large enough to simulate diffusion events that are of 

the order of seconds and take place around the synapse and surroundings. If there are 

events that are initiated at relatively distant loci from the synapse, such as DAT 

recycling, a larger simulation box is required.  

c. The intracellular signaling pathway does include major players related to DA efflux. 

However, all intracellular reactions are assumed to be diffusion independent except 

AMPH reactions. If some of the intracellular signaling molecules are limited to specific 

compartments such as endoplasmic reticulum, the compartmental localization of these 

biomolecules needs to be specified in the model.  

d. The CaMKII model can only be simulated with a limited number of CaMKII 

molecules. The network-free simulations use an agent-based strategy that keeps 

information about the state and interactions of every single species in the simulation. 

As a result, the number of CaMKII and CaM molecules in the simulations and the 

memory requirements are correlated. If the number of molecules reaches more than 

10,000,000, it is not possible to simulate the system with 32 GB of memory. Such large 

numbers of molecules can be required to simulate multiple post-synaptic cells or to 

simulate a full post-synaptic cell with many CaM molecules. Even though CaMKII 
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molecules are limited to post-synaptic density area, CaM can be uniformly distributed.  

Therefore, the CaMKII model has size limitations for network-free simulations.  

5.2 FUTURE WORK 

The work presented in this dissertation suggests the following future directions: 

5.2.1 Parkinson’s disease condition implementation 

In Parkinson’s disease, DA neurons lose their function and stop releasing DA to the extracellular 

(EC) space. A simple implementation of this disease is based on rendering some of the DA active 

zones inactive. These simulations are performed, and preliminary results show that the EC DA 

concentration is significantly reduced if the number of active axons is reduced. Because of low 

activity at active zones, the EC DA concentration is dropped down to low levels (< 10 nM) locally. 

Another aspect of the Parkinson’s disease is the shrinkage of inactive DA neurons. In the spatial 

model, the void fraction could be increased. Consequently, the EC DA concentration would be 

reduced due to increased extracellular space. The Meshmorph is an algorithm to adapt the void 

fraction of a given geometry without causing disruptions on the surface (J. Kinney, 2009). The DA 

receptor activation can drop to low levels as a result of the low activity.  

5.2.2 Improvement of vesicular DA release mechanism 

The vesicular release mechanism is dependent on the magnitude and the frequency of the action 

potential (Lodish, 2000). In the spatial DA reuptake model, a heuristic equation is used to 
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determine that an action potential triggers a vesicular DA release (Dreyer et al., 2010). However, 

the vesicular release event is the last step of a complex pathway triggered by calcium that is 

transported to the cell by voltage-gated calcium channels. The voltage-gated calcium channels 

uptake Ca++ ions from extracellular space.  Ca++ ions can diffuse through intracellular regions and 

bind to synaptotagmin molecules which control the release events at the docked vesicles in the 

active zone. There are computational spatial models available for both N-type Ca++ channels 

(Dittrich et al., 2013),  which are highly populated on DA neurons and DA vesicular release 

activation on Ca++ (Nadkarni, Bartol, Sejnowski, & Levine, 2010). The input of the N-type calcium 

channels is the membrane potential with respect to time. To generate changes in membrane 

potential, it is possible to use NEURON, a software that uses the cable equation to simulate the 

dynamics of neurons and neural networks (Hines & Carnevale, 1997). There is also a database 

called “ModelDB” for models that can be simulated by NEURON (Hines, Morse, Migliore, 

Carnevale, & Shepherd, 2004). A network model of DA neurons under different stimulation 

patterns (tonic and phasic) is also available in the database (Canavier & Landry, 2006). Use of the 

NEURON model to generate membrane potential data is a proper way to provide action potential 

input to voltage-gated calcium channels followed by Ca++ uptake into the cell.  

5.2.3 A more realistic placement of DA receptors 

In the spatial DA reuptake model, DA receptors are not explicitly defined and are assumed to be 

uniformly distributed. Based on the half-activation concentration (EC50 values) of low- and high-

affinity receptors, the activation amounts are determined. The low-affinity DA receptors are 

generally activated around the DA synapses since their EC50 values are around 1 µM. On the other 

hand, high-affinity receptors are generally on DAT expressing cells, but their localization is not 
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known. The explicit representation of DA receptors can be implemented in the DA reuptake model 

by assuming a uniform distribution of DA receptors on DA neurons. To make more precise 

predictions, it would be possible to use another imaging study (Sedaghat, Nantel, Ginsberg, 

Lalonde, & Tiberi, 2006) to determine the heterogeneous distribution of DA receptors. The effects 

of the distribution of receptors in addition to that of transporters could be examined as another 

model parameter.   

5.2.4 The effect of  the DA auto-receptor activation on the DA release and reuptake process   

The D2 auto-receptors, located on DAT expressing cells, regulate three mechanisms on DA 

neurons (Ford, 2014): inhibition of DA release by blocking the activity of voltage-gated calcium 

channels, increasing the DAT activity, and reducing the synthesis of the DA molecules. A previous 

study used the effect of the D2-autoreceptor activation as a regulator of DA release probability by 

an action potential (Dreyer & Hounsgaard, 2013). A simple implementation of D2 receptors is the 

addition of explicit D2 autoreceptors with a uniform distribution on DA releasing neurons. From 

the number of activated D2 auto-receptors, the release rate could be increased. A more realistic 

implementation is an explicit definition of α-, β- and ɣ-subunits and interacting molecules. Like 

the AMPH-induced DA efflux model, the signaling molecules that interact with D2 autoreceptors 

need to be included in the model. It could increase the number of molecules in the spatial model. 

The computational cost is exponentially correlated to the number of molecules. Hence, it may not 

be plausible to simulate it with an explicit definition of receptors. A simplified scheme can be 

implemented using a similar strategy that is used to calculate the relation between intracellular 

AMPH concentration and the rate of phosphorylation. The relation between D2 auto-receptor 
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activity and DA release, DA synthesis, and DAT activity can be estimated. All the rate constants 

are modified based on the amount of D2 auto-receptor activity at a given time.   

5.2.5 Signaling molecules can change the outcome of the AMPH-induced DA efflux model 

In the current AMPH-induced DA efflux model, the only diffusion limited interaction is the 

diffusion of the AMPH inside the cell. However, AMPH can interact with various signaling 

molecules such as Rho, TAAR1, and CaMKII which eventually phosphorylate DAT or trigger the 

endocytosis of DAT. Depending on the concentrations of these signaling molecules, immobile and 

uniformly distributed molecules can be used in simulations. In addition to individual diffusion of 

AMPH molecule, some additional states that denote the previous interactions with other signaling 

molecules can be introduced. Because of the addition of the states related to the AMPH 

interactions, the DAT phosphorylation, and DAT endocytosis rates need to be re-evaluated. A 

more complex reaction scheme can also be implemented with the addition of more signaling 

molecules.  

5.2.6 Proper implementation of hybrid genetic algorithm/online model checking with 

NFsim 

NFsim does not have a proper way to stop and start simulations if the aggregate sizes are larger 

than 20. However, NFsim can provide an output of the model for individual time points without 

stopping the simulation. The model checker can decide to terminate or continue a trajectory 

without stopping the simulation engine. Due to the asynchronous nature of stochastic simulations, 

all runs have a different trajectory, and it takes different CPU-time to reach same time points in 
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the simulation. Instead of stopping a simulation and waiting for other repeats to reach the same 

simulation time, all the simulations are kept running until they reach a time point with pre-defined 

logic. When the last repeat reaches the time point with pre-defined logic, the termination criterion 

for the parameter set is evaluated. Depending on the logic evaluation, the model checker makes 

the decision to terminate or proceed with the other simulations, which reduces the amount of CPU-

time that is required to generate individual trajectories.  

5.2.7 Spatial modeling of CaMKII dynamics 

CaMKII is activated in the post-synaptic cells of the glutamatergic synapses. A detailed spatial 

model of the glutamatergic synapses and ionotropic glutamate receptor activation was developed 

in a previous study  (Bartol, Keller, et al., 2015).  This model has a simplified scheme for CaMKII 

kinetics where each CaMKII is assumed as a monomer. If the model calibration  for activation-

triggered subunit exchange mechanism is completed, a comprehensive model of the glutamatergic 

signaling starting from action potential to CaMKII activation could be built. This model would 

provide a mechanistic description of multiple components of the computational model such as 

voltage-gated calcium channels, activation of glutamate release by synaptotagmin, AMPA 

receptors, NMDA receptors, CaM and CaMKII.  With the implementation of network-free 

simulations in MCell algorithm, the elaborate kinetic scheme that is described in Chapter 4.0  could 

be simulated in a spatial setting. Since the size of the postsynaptic synapse is one order of 

magnitude smaller than the simulation box that is described in Chapter 2.0, it may be possible to 

simulate the glutamatergic synapse model with MCell efficiently. Therefore, more extended 

simulations could be performed to investigate the sustained activity of CaMKII associated with 

memory formation.  
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APPENDIX A CELL SIMULATIONS 

In this chapter, I describe how I built the spatially realistic model of DA signaling in the model 

description language (MDL) that is used as input to the MCell simulator. The MDL syntax and 

file modules created are explained in detail.  

A.1 ANATOMY OF AN MCELL MODEL 

There are 12 different modules that describe a spatial model in MCell. All 10 modules are imported 

in the main file, and all modules are simulated. The main file includes all the modules and 

additional specifications of the model. All those modules are explained in detail below:  

A.1.1 Simulation specifications and main file 

The main file includes the general information for the simulation, and the main file is divided into 

four different sections. The first section is the definition of the simulation parameters. Some 

example simulation parameters that need to be specified in the main file are the time step, the 

number of iterations and the seed number for random number generation. This first block also 

includes information related to simulation optimization through partitioning and checkpointing if 

defined. Partitioning reduces the total number of collision detection and speeds up the simulation. 

Checkpointing is a useful feature to use for long simulations. These parameters are defined in the 

following syntax:  
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ITERATIONS = 10000000 

TIME_STEP = 1e-06 
   

The second section is the definition of the mesh objects in the simulation system. All these 

objects are instantiated in this block. This block starts with an instantiate command followed by 

the name of the objects used in the model. The syntax for this block is the following:  

INSTANTIATE Scene OBJECT 

{ 

axon1 OBJECT axon1 {} 

axon10 OBJECT axon10 {} 

}  

The third section in the main file is the definition of the molecule placements. Each release site is 

defined in this block. In the same block with the definition of the mesh objects, the release sites 

are also defined. An example of a release sire definition is given in the following:  

rel_axon1_datall RELEASE_SITE 

{ 

SHAPE = Scene.axon1[DAT_all] 

MOLECULE = DATo' 

DENSITY = 800 

RELEASE_PROBABILITY = 1 

} 

 
 

The name of the release site is given as ‘rel_axon1_datall’ which contains the information 

related to how DAT placed on a surface based on given information. ‘SHAPE’ argument shows 

the surface that the molecules located. ‘MOLECULE’ describes the type and the orientation of the 

molecule. There are three different orientation definition exists in MCell. The outward facing 

molecules are defined with “’” sign, inward-facing molecules are defined with “,” and the 

orientation ignored molecules are defined with “;” sign. In our case, DAT molecules are in outward 

facing orientation. For surface molecules, the density arguments show the surface density in 
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several molecules per µm2. Release probability argument can be used for molecules that can be 

placed with a probability. In our case, all DATs are placed with release probability of 1. All regions 

that are determined from fluorescence images are tagged in the geometry files, and the release sites 

are identified from the definition of the site. For volume molecules, the release site information 

can be included in a different form: 

DA_release5 RELEASE_SITE 

{ 

SHAPE = Scene.rel4 

MOLECULE = DA 

NUMBER_TO_RELEASE = 3250 

RELEASE_PROBABILITY = 1 

RELEASE_PATTERN = DA_release5 

}  

The shape is defined as the name of the object that DA molecules are released. In this 

model, rel4 object is a sphere with 0.01 µm diameter with all transparent surfaces to DA molecules. 

Similarly, all six DA active zone have the same diameter and surface properties. These objects act 

as a point source for DA release. The last parameter “release pattern” is an explicitly defined set 

of values that describe properties of a release event. These parameters are explained in detail 

below. 

The last section of the main MCell file is the inclusion of the other modules of the model. 

An example of module inclusion is given in the following:  

INCLUDE_FILE = "Scene.molecules.mdl" 

INCLUDE_FILE = "Scene.surface_classes.mdl"  

The definitions and descriptions in included files are added to the main simulation file at 

runtime.  
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A.1.2 Simulation environment and geometry 

The second component of the MCell model is the geometry definition. The geometry definition 

includes the information about the vertices, edges, and surfaces. An example description of the 

geometry file is the following:  

Cube POLYGON_LIST 

{ 

  VERTEX_LIST 

  { 

    [ 5.10000228881836, 5.10000228881836, -2.2518424987793 ] 

    [ 5.10000228881836, 5.10000228881836, 5.34815740585327 ] 

         . 

     . 

     . 

 

 

 

  ELEMENT_CONNECTIONS 

  { 

    [ 3, 0, 2 ] 

    [ 7, 2, 6 ] 

    [ 5, 6, 4 ] 

    [ 1, 4, 0 ] 

 

 . 

 . 

 . 

 

 

DEFINE_SURFACE_REGIONS 

  { 

    DAT1 

    { 

      ELEMENT_LIST = [4843, 4911, 4980, 4981, 5036, 5168, 5239, 5243, 5287, 5358, 5402, 

5455, 5461, 5462, 5465, 5504, 5510, 5511, 11590, 11733, 11802,  

    } 

} 
 

“Cube” is the name of the simulation box in the geometry file. In “VERTEX_LIST” block, 

the cartesian coordinates of individual vertices are connected. In MCell, the coordinates and the 
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index of an individual vertex are stored. In “ELEMENT_CONNECTIONS” block, the vertices 

that create triangles faces are reported. MCell also stores the index of a triangle and the indices of 

the vertices of the triangle. Finally, in “DEFINE_SURFACE_REGIONS” block, the name of the 

surface region and the indices of the triangles that define that surface. The geometry is defined 

using fluorescence images, and the extracellular geometry is imported to Blender. All surfaces are 

triangulated using built-in functions in Blender, and the regions are identified using Blender 

interface. Finally, the geometry files are exported by “Cell Blender” , a special purpose add-on to 

create and simulate MCell models. 

A.1.3 Parameters 

The third module of an MCell file is the parameter block. All simulation parameters can be defined 

in any module. However, it is cleaner to define all the model parameters in a single parameter 

block for readability purposes. The parameter definitions are given in the following format:  

large_dat = 0.00000 

small_dat = 800.000000  

A.1.4 Molecules 

The fourth module is used to define the properties of the molecules. The two main properties of a 

molecule are the name and the diffusion constant of a molecule. The molecules are defined in the 

following way:  
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DEFINE_MOLECULES 

{ 

  DA 

  { 

    DIFFUSION_CONSTANT_3D = 4e-06 

  } 

  DATi 

  { 

    DIFFUSION_CONSTANT_2D = 0 

    CUSTOM_TIME_STEP = 1e-04 

  } 

} 
 

The block starts with ‘DEFINE_MOLECULES’ command, and for any molecule, name 

and the diffusion constants are specified. If required, custom time or diffusion step may be defined 

to optimize the simulation. For example, inward-facing DAT molecules (DATi) have transition 

rates of 8.33 s-1 and 20 s-1 . Therefore, it is not required to calculate the propensity of the reactions 

of the DAT every time step and the custom time step specifies the time intervals the DATi 

transition propensities are calculated.  

A.1.5 Reactions 

The fifth module is the block that the reactions are specified. In MCell reactions, reactants and 

products with orientations and rate constants need to be identified. An example of a reaction is the 

following:  

DEFINE_REACTIONS 

{ 

  DA' + DATo' -> DA_DATo' [>9.6e+07] : r1 

} 
 

In the example reaction above, DA molecule on the outward facing side of the membrane 

and outward facing DAT on the outward facing side of the membrane reacted to produce a DA, 
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DAT complex which is also in the outward facing orientation. The term in square brackets shows 

the directionality of the reaction and the rate constant. Finally, the name of the reaction is defined. 

Reaction names are also useful in MCell simulations since it is possible to track how many times 

a reaction triggered.  

A.1.6 Surface classes  

The sixth module is the definition of the definition of the properties of specific surface regions. 

The transparency of a surface for a specific type of molecule is defined in this module. An example 

surface definition is the following: 

DEFINE_SURFACE_CLASSES 

{ 

  DA_trans 

  { 

    TRANSPARENT = DA; 

  } 

}  

The surface class defined in the snippet is ‘DA_trans’ which modifies surfaces that are 

transparent to DA molecules. The absorptive, reflective or transparent properties of the surfaces 

are defined using this module.  

A.1.7 Surface modifications 

The seventh module is the block that the defined surface classes are assigned to surface regions. 

In “MODIFY_SURFACE_REGION” block, the specified region of a mesh object is assigned to a 

predefined surface class. As described below, all point sources that used for DA release are 

spherical objects with transparent DA surfaces. The assignment is given in the following:  
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MODIFY_SURFACE_REGIONS 

{ 

  rel6[region] 

  { 

    SURFACE_CLASS = DA_trans 

  } 

} 
  

“rel6” is the release site around the sixth active zone. The triangle that created this mesh 

object names as “region”. Since the “region” part of the mesh object assigned as “DA_trans”, this 

region is transparent to DA molecules.    

A.1.8 Release patterns 

The eighth module is the block that the release patterns are identified. In MCell, there are a large 

variety of release patterns. It is possible to set a specific time for a release or define a periodic 

release with specific release durations and frequencies. A simple DA release event is given below:  

DEFINE_RELEASE_PATTERN DA_release3 

{ 

DELAY = 8.016 

RELEASE_INTERVAL = 1e-6 

TRAIN_DURATION = 1e-6 

TRAIN_INTERVAL = 1e-6 

NUMBER_OF_TRAINS = 1 

}  

The release pattern DA_release3 is defined in the given block. The first parameter 

“DELAY” means that the DA release event occurs at 8.016 seconds after the simulation is started. 

Since this is an instant release, “RELEASE_INTERVAL” needs to be set to a smaller value than 

the time step of the simulation. The other parameters are used to define periodic release events 

which I do not use in dopaminergic signaling model.  
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A.1.9 Model outputs 

The ninth and tenth modules are the blocks where the reaction output and the visualization outputs 

are specified. An example reaction output is given in the following:  

REACTION_DATA_OUTPUT 

{ 

  OUTPUT_BUFFER_SIZE = 1000 

  STEP=1e-04 

  {COUNT[DA,WORLD]}=> "./react_data/seed_" & seed & "/DA.World.dat" 

  {COUNT[r1,WORLD]}=> "./react_data/seed_" & seed & "/r1.World.dat" 

} 
 

“OUTPUT BUFFER SIZE” argument specifies how often MCell dumps the reaction 

output to specified file. “STEP” argument defines the time interval that the reaction outputs are 

stored. For instance, MCell stores reaction output every 100 µs but it only writes the output to a 

file at every 10 ms. The “COUNT” command counts the specified molecule in each compartment. 

In MCell simulation, “WORLD” is defined as an infinitely large simulation box, and everything 

in the system is counted. The count output is written on the specified file in the right-hand side of 

the count statement. An example visualization output is given in the following:  

VIZ_OUTPUT 

{ 

  FILENAME = "./viz_data/seed_" & seed & "/Scene" 

  MOLECULES 

  { 

    NAME_LIST {ALL_MOLECULES} 

    ITERATION_NUMBERS {ALL_DATA @ [[0 TO 100000 STEP 1000]]} 

} 
 

In the block above, a file name is defined to output the location of individual molecules in 

the MCell simulation. The molecules should be specified as an argument to “NAME_LIST” block, 

and the output frequency and the length can be defined in “ITERATION_NUMBERS” block.  
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The final block is the initialization block of MCell simulations. This section includes 

various parameters about the properties of the simulator. All the warnings and notifications that 

MCell creates throughout the simulation is defined in this block. A detailed description of the 

initialization parameters is provided in MCell quick reference guide. For our model, the surface 

grid density parameter set to 10000 µm-2 to enable MCell to have dense clusters of DAT. An 

example MCell model of DA signaling is available at 

https://github.com/cihankayacihan/dopamine_striatum_mcell.git
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APPENDIX B BIONETGEN MODEL OF ACTIVATION-TRIGGERED SUBUNIT 

EXCHANGE OF CAMKII 

Similar to MCell models, models that are described in BioNetGen Language (BNGL) are 

composed of different parts. A BNGL file consists of at least seven different parts. I will explain 

these seven parts for the activation triggered exchange model.  

B.1 PARAMETERS 

The first part of a BNGL model is the parameter block. An example of a parameter block is given 

in the following:  

begin parameters 

Nav   6e23 

Vol   2e-14 

CaM_in_conc 5e-6   

CaM_in  CaM_in_conc*Nav*Vol # count 

end parameters  

After the “begin parameters” line, each parameter is defined. The variable definitions do 

not have an equal sign as in MCell models. Instead, any white space character on the same line set 

the parameters. In BNGL, parameters do not have defined units. Therefore, the modeler needs to 

take care of all unit conversion and conservations. Finally, it is possible to define parameters from 

the other parameters defined in the block. For instance, the parameter “CaM_in” which is the 
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number of calmodulin (CaM) molecules at the beginning of the simulations is defined using three 

other parameters: Avogadro’s number “Nav”, the volume of interest “Vol”, and the initial 

concentration of the CaM “CaM_in_conc”. All constant parameters such as forward and backward 

rate constants, half-max concentration, and forward rate for Michaelis-Menten kinetics and Hill 

coefficients are defined in this block. All blocks are finished with an “end” statement in BNGL.  

B.2 MOLECULE TYPES 

The second block is the molecule type definition block. The following shows the definition of 

molecule types in BNGL.  

begin molecule types 

 Ca(cam) 

 CaM(ca,ca,ca,ca,camk) 

 CaMK(cam,t286~u~p,t305~u~p,camk6left,camk6right,vert,color~red~green) 

end molecule types  

The molecule names, binding sites, and states need to be defined in molecule types block. 

The first example in this block is the calcium molecule “Ca”. Calcium molecules can only bind to 

CaM molecule, and this binding site is denoted as “cam”. The second molecule type “CaM” has 

multiple binding sites. First, “CaM” has four identical calcium binding sites that are denoted as 

“ca”. In addition, an activated CaM molecule can bind to a CaMKII subunit. For this purpose, the 

binding site “camk” is added. The CaMKII subunit is the most complicated molecule type in this 

model. Since CaMKII is activated by CaM molecules, it needs to have a binding site for CaM 

“cam”. It also has two phosphorylation sites named as “t286” and “t305”. The unphosphorylated 

states and phosphorylated states at these two sites are denoted with “u” and “p”, respectively. The 

“~” notation enables the user to define all possible values for a given state definition. The ring 
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structure in CaMKII holoenzyme is composed of individual subunits. Each CaMKII subunit has a 

connection with its counter-clockwise and clockwise neighbor. These two connections are denoted 

as binding with two CaMKII subunit. Each subunit has a “camk6left” and a “camk6right” binding 

site. In addition, two hexamer rings create the dodecamer holoenzyme. Therefore, a subunit at the 

bottom ring needs to be connected to a specific subunit on the top ring. These subunits are also 

connected through binding at “vert” binding site. Finally, in the colocalization experiment, each 

CaMKII subunit has a fluorescence color, which could be red or green. These states are defined in 

molecule type definitions.  

B.3 INITIALIZATION 

The third block of the BNGL model is the block that specifies the number of all species at the 

beginning of the simulation. The “seed species” block is defined as the following:  
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begin seed species 

Ca(cam)       Ca_in 

CaM(ca,ca,ca,ca,camk) CaM_in  

 CaMK(cam,t286~u,t305~u,camk6left!1,camk6right!2,vert!13,color~red).CaMK(cam,t28

6~u,t305~u,camk6left!2,camk6right!3,vert!14,color~red).CaMK(cam,t286~u,t305~u,camk6left!

3,camk6right!4,vert!15,color~red).CaMK(cam,t286~u,t305~u,camk6left!4,camk6right!5,vert!16,

color~red).CaMK(cam,t286~u,t305~u,camk6left!5,camk6right!6,vert!17,color~red).CaMK(cam,

t286~u,t305~u,camk6left!6,camk6right!1,vert!18,color~red).CaMK(cam,t286~u,t305~u,camk6le

ft!7,camk6right!8,vert!13,color~red).CaMK(cam,t286~u,t305~u,camk6left!8,camk6right!9,vert!

14,color~red).CaMK(cam,t286~u,t305~u,camk6left!9,camk6right!10,vert!15,color~red).CaMK(

cam,t286~u,t305~u,camk6left!10,camk6right!11,vert!16,color~red).CaMK(cam,t286~u,t305~u,c

amk6left!11,camk6right!12,vert!17,color~red).CaMK(cam,t286~u,t305~u,camk6left!12,camk6ri

ght!7,vert!18,color~red) CaMK12_in_red 

 CaMK(cam,t286~u,t305~u,camk6left!1,camk6right!2,vert!13,color~green).CaMK(cam,t

286~u,t305~u,camk6left!2,camk6right!3,vert!14,color~green).CaMK(cam,t286~u,t305~u,camk6

left!3,camk6right!4,vert!15,color~green).CaMK(cam,t286~u,t305~u,camk6left!4,camk6right!5,v

ert!16,color~green).CaMK(cam,t286~u,t305~u,camk6left!5,camk6right!6,vert!17,color~green).

CaMK(cam,t286~u,t305~u,camk6left!6,camk6right!1,vert!18,color~green).CaMK(cam,t286~u,t

305~u,camk6left!7,camk6right!8,vert!13,color~green).CaMK(cam,t286~u,t305~u,camk6left!8,c

amk6right!9,vert!14,color~green).CaMK(cam,t286~u,t305~u,camk6left!9,camk6right!10,vert!15

,color~green).CaMK(cam,t286~u,t305~u,camk6left!10,camk6right!11,vert!16,color~green).Ca

MK(cam,t286~u,t305~u,camk6left!11,camk6right!12,vert!17,color~green).CaMK(cam,t286~u,t

305~u,camk6left!12,camk6right!7,vert!18,color~green) CaMK12_in_green 

 CaMK(cam,t286~u,t305~u,camk6left!1,camk6right!2,vert!15,color~red).CaMK(cam,t28

6~u,t305~u,camk6left!2,camk6right!3,vert!16,color~red).CaMK(cam,t286~u,t305~u,camk6left!

3,camk6right!4,vert!17,color~red).CaMK(cam,t286~u,t305~u,camk6left!4,camk6right!5,vert!18,

color~red).CaMK(cam,t286~u,t305~u,camk6left!5,camk6right!6,vert!19,color~red).CaMK(cam,

t286~u,t305~u,camk6left!6,camk6right!7,vert!20,color~red).CaMK(cam,t286~u,t305~u,camk6le

ft!7,camk6right!1,vert!21,color~red).CaMK(cam,t286~u,t305~u,camk6left!8,camk6right!9,vert!

15,color~red).CaMK(cam,t286~u,t305~u,camk6left!9,camk6right!10,vert!16,color~red).CaMK(

cam,t286~u,t305~u,camk6left!10,camk6right!11,vert!17,color~red).CaMK(cam,t286~u,t305~u,c

amk6left!11,camk6right!12,vert!18,color~red).CaMK(cam,t286~u,t305~u,camk6left!12,camk6ri

ght!13,vert!19,color~red).CaMK(cam,t286~u,t305~u,camk6left!13,camk6right!14,vert!20,color

~red).CaMK(cam,t286~u,t305~u,camk6left!14,camk6right!8,vert!21,color~red) 

CaMK14_in_red 

 CaMK(cam,t286~u,t305~u,camk6left!1,camk6right!2,vert!15,color~green).CaMK(cam,t

286~u,t305~u,camk6left!2,camk6right!3,vert!16,color~green).CaMK(cam,t286~u,t305~u,camk6

left!3,camk6right!4,vert!17,color~green).CaMK(cam,t286~u,t305~u,camk6left!4,camk6right!5,v

ert!18,color~green).CaMK(cam,t286~u,t305~u,camk6left!5,camk6right!6,vert!19,color~green).

CaMK(cam,t286~u,t305~u,camk6left!6,camk6right!7,vert!20,color~green).CaMK(cam,t286~u,t

305~u,camk6left!7,camk6right!1,vert!21,color~green).CaMK(cam,t286~u,t305~u,camk6left!8,c

amk6right!9,vert!15,color~green).CaMK(cam,t286~u,t305~u,camk6left!9,camk6right!10,vert!16

,color~green).CaMK(cam,t286~u,t305~u,camk6left!10,camk6right!11,vert!17,color~green).Ca

MK(cam,t286~u,t305~u,camk6left!11,camk6right!12,vert!18,color~green).CaMK(cam,t286~u,t

305~u,camk6left!12,camk6right!13,vert!19,color~green).CaMK(cam,t286~u,t305~u,camk6left!1 

The first and second species are the calcium and CaM species which do not have any 

connections or states at the beginning of the simulations. However, CaMKII subunits form 
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dodecamer through multiple connections. In the beginning, all CaMKII subunits are in the 

unphosphorylated state and CaM-free. The ring structure is formed using binding between 

individual subunits. The numbers after “!” means the tag of the bond. Using these tags, the 

interactions among subunits are defined. For instance, the connection “1” defines the connection 

between the “camk6left” of the first subunit on the top ring, with “camk6right” of the sixth subunit 

on the top ring. Using the same methodology, a ring is created. Similarly, the connections between 

the top and bottom subunits are also constructed. For instance, connection “13” is the vertical 

binding between the first subunit on the top and bottom rings. Finally, the red and green tags of 

the CaMKII subunits are also defined in this state.  

B.4 OBSERVABLES 

The next block is the definition of the observables block. The observables are defined as the counts 

of the given molecules or species. An example observable block is given in the following:  

begin observables 

 Molecules Duu CaMK(cam,t286~u,t305~u) 

 Molecules Cu CaMK(cam!+,t286~u,t305~u) 

 Molecules CaMK_tot CaMK() 

 Species colocal CaMK(color~red).CaMK(color~green)  

end observables 

  

The syntax in the observable block includes three levels. First, the type of observable needs 

to be defined. “Molecules” argument is used to count individual molecule types whereas, 

“Species” argument is used to count species that has a specific pattern. The first observable in the 

block given above is the count of the CaMKII subunits in the CaM unbound and double 

unphosphorylated state (Duu). The second state is the CaM bound and the double unphosphorylated 

state.  In the observables block, it is not required to add any additional context that is not related 
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to the observable. For example, in the first two observable definitions, the state “color” or 

intermolecular binding among CaMKII subunits are not specified. It is also possible to count all 

molecule types, regardless of the binding or phosphorylation state. In the third observable, the 

count of all CaMKII subunits is calculated. Finally, the “Species” argument is used to find species 

with at least one subunit where the color is in state “red”, and another subunit where the color is 

in “green” state. This value is used to calculate colocalization.  

 

B.5 FUNCTIONS 

The fifth block in BNGL is the definition of the functions. The functions block is used to calculate 

observable dependent parameters. An example function definition in BNGL model is given in the 

following:  

begin functions 

P_rate() = kcat * pp1a / (Km + Cp + Dpu + Dpp + Dpp) 

    Phospho() = (Cp + Dpu + Dpp) / CaMK_tot 

end functions   

The first reaction definition in the block is the phosphorylation rate constant. It follows the 

Michaelis-Menten kinetics. The “kcat” and “Km” are defined in the parameter block. Other values 

“pp1a” is the count of the phosphatase molecules, and “Cp”,”Dpu”, and “Dpp” are the different 

states of the CaMKII subunits. The double occurrence of “Dpp” in the formula is because the 

phosphorylation rate constant is inversely proportional to a total number of phosphorylation sites 

instead of phosphorylated molecules. In the second function, the ratio of the phosphorylated 

CaMKII subunits is determined.  
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B.6 REACTION RULES 

The sixth and arguably the most critical block of a BNGL model is the reaction rules block. Rules 

are local definitions of reactions. A couple of example rule definitions are given in the following:  

begin reaction rules 
# CaM binding to unphosphorylated CaMKII 
R5 : CaMK(cam,t286~u,t305~u,camk6left!+,camk6right!+) + CaM(camk) <-> 
CaMK(cam!5,t286~u,t305~u,camk6left!+,camk6right!+).CaM(camk!5) kon_u,koff_u 
# T286 phosphorylation of Cu by Cp 
R13 : 
CaMK(cam!5,t286~u,t305~u,camk6left!1).CaM(camk!5).CaMK(cam!4,t286~p,t305~u,camk6right!1).CaM
(camk!4) -> \ 
CaMK(cam!5,t286~p,t305~u,camk6left!1).CaM(camk!5).CaMK(cam!4,t286~p,t305~u,camk6right!1).CaM
(camk!4) r2 
R92 : CaMK(t286~p) -> CaMK(t286~u) P_rate() 
end reaction rules  

The rule syntax has four parts. The first part is the definition of the reactants. Instead of 

defining complete reactant, the only required part for the reaction context needs to be defined. For 

example, CAM can only bind to CaMKII if the “cam” binding site is not occupied. Also, the 

binding rates of CaMKII are different depending on the phosphorylation state at “t286” and “t305”. 

Therefore, it is required to describe the context of the reaction in the reactants. The second part of 

the reaction rule is the directionality part of the reactions. Since CaM binding/unbinding is an 

equilibrium reaction, “<->” needs to be used. The third part is the definition of the product part. 

The species of multiple molecules are created with “.” notation. Basically, a species can be 

constructed by concatenating a lot of molecules with a “.” sign between them. The “+” sign after 

“!” means that the site needs to be occupied regardless of the molecule. More specifically, the 

addition of binding partner requirement at “camk6left” and “camk6right” binding sites avoid CaM 

binding to vertical dimers resulted from subunit exchange mechanism.   The second rule is more 

complicated because it is the definition of a state change of a molecule based on the structure of 
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the molecule. The first CaMKII subunit has a bound CaM, and both phosphorylation sites are in 

the unphosphorylated state. The neighboring CaMKII subunit also has a CaM, and “t286” site is 

phosphorylated. Therefore, the second subunit can phosphorylate the “t286” site of the first subunit 

with the rate of “r2”. The rule-based modeling enables us to define this type of complex reactions 

with a single rule without even defining whole species. In the last rule, the dephosphorylation rate 

of the CaMKII is used as a function that is defined in the “functions” block. The dephosphorylation 

events are completely independent of context and can happen if a “t286” is in a phosphorylated 

state.  

B.7 MODEL EXECUTION 

The final block of the model is the part that the actions on the model are defined.  

begin actions 

simulate({method=>"nf",t_end=>6,n_steps=>600,print_functions=>1,gml=>5000000}) 

end actions  

All the actions that are applied to the model with specifications are defined in the “actions” block. 

In conventional rule-based model simulations, first a network is generated or loaded from a file, 

and secondly, a simulate method is used to generate trajectories. However, since NFsim is used in 

this model, it is possible to use a “simulate” command directly. The command “simulate”, has 

many arguments, but in the given example the arguments are the following: (i) “method” defines 

the simulation method that is used for generating trajectories. In this case, the selection is defined 

as “nf” and NFsim simulation engine is called. (ii) “t_end” defines the end of the simulation. In 

this case, the system is simulated for 6 seconds. (iii) “n_steps” defines the number of times the 

observables and functions are dumped into a trajectory file. By specifying it as 600, simulation 
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engine output observables every 0.01 seconds. (iv) “print_functions” is a flag that is used to choose 

function outputs at each time point. (v) “gml” is the global molecule limit which used to specify 

the maximum number of molecules in the simulation. To have models with many molecules, that 

value needs to be set to a large value. The complete model of activation-triggered subunit exchange 

is provided in the following repository: https://github.com/cihankayacihan/camkii_bng.git

https://github.com/cihankayacihan/camkii_bng.git
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