
PROGRAM CONSTRUCTION EXAMPLES IN COMPUTER

SCIENCE EDUCATION: FROM STATIC TEXT TO ADAPTIVE

AND ENGAGING LEARNING TECHNOLOGY

by

Roya Hosseini

B.S. in IT Engineering, Shiraz Univ. of Technology, 2009
M.S. in IT Engineering (E-Commerce),
Amirkabir Univ. of Technology, 2012

M.S. in Intelligent Systems, Univ. of Pittsburgh, 2015

Submitted to the Graduate Faculty of
the School of Computing and Information

in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2018

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Roya Hosseini

It was defended on

July 24th 2018

and approved by

Peter Brusilovsky, PhD, Professor

Christian D. Schunn, PhD, Professor

Diane Litman, PhD, Professor

Vincent Aleven, PhD, Associate Professor

Dissertation Director: Peter Brusilovsky, PhD, Professor

ii

PROGRAM CONSTRUCTION EXAMPLES IN COMPUTER
SCIENCE EDUCATION: FROM STATIC TEXT TO ADAPTIVE

AND ENGAGING LEARNING TECHNOLOGY

Roya Hosseini, PhD

University of Pittsburgh, 2018

My dissertation is situated in the field of computer science education research, specifi-

cally, the learning and teaching of programming. This is a critical area to be studied,

since, primarily, learning to program is difficult, but also, the need for programming

knowledge and skills is growing, now more than ever. This research is particularly fo-

cused on how to support a student’s acquisition of program construction skills through

worked examples, one of the best practices for acquiring cognitive skills in STEM areas.

While learning from examples is superior to problem-solving for novices, it is not

recommended for intermediate learners with sufficient knowledge, who require more

attention to problem-solving. Thus, it is critical for example-based learning environ-

ments to adapt the amount and type of assistance given to the student’s needs. This

important matter has only recently received attention in a few select STEM areas and

is still unexplored in the programming domain. The learning technologies used in pro-

gramming courses mostly focus on supporting student problem-solving activities and,

with few exceptions, examples are mostly absent or presented in a static, non-engaging

form.

To fill existing gaps in the area of learning from programming examples, my disser-

tation explores a new genre of worked examples that are both adaptive and engaging,

to support students in the acquisition of program construction skills. My research ex-

iii

amines how to personalize the generation of examples and how to determine the best

sequence of examples and problems, based on the student’s evolving level of knowledge.

It also includes a series of studies created to assess the effectiveness of the proposed

technologies and, more broadly, to investigate the role of worked examples in the process

of acquiring programming skills.

Results of our studies show the positive impact that examples have on student

engagement, problem-solving, and learning. Adaptive technologies were also found to

be beneficial: The adaptive generation of examples had a positive impact on learning

and problem-solving performance. The adaptive sequencing of examples and problems

engaged students more persistently in activities, resulting in some positive effects on

learning.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 MOTIVATION . 1

1.2 OVERVIEW AND RESEARCH QUESTIONS 3

1.2.1 Design and development of interactive program examples (PCEX) 4

1.2.2 Adaptive fading in the PCEX examples 5

1.2.3 Adaptive recommendation of PCEX examples and problems . 5

1.3 DISSERTATION TASKS . 6

1.4 CONTRIBUTIONS . 7

1.5 THESIS ORGANIZATION . 8

2.0 BACKGROUND AND RELATED WORK 10

2.1 WORKED EXAMPLES IN PROBLEM-SOLVING 10

2.2 WORKED EXAMPLES IN PROGRAMMING 12

2.3 ADAPTIVE LEARNING TECHNOLOGIES 15

2.4 PERSONALIZING WORK WITH PROGRAM EXAMPLES 17

2.4.1 Personalized access . 19

2.4.2 Problem-solving support . 22

2.4.3 Adaptive scaffolding . 22

2.5 PROGRAM CONSTRUCTION ASSESSMENT TOOLS 23

2.6 INTEGRATED SYSTEMS . 24

3.0 TOOL DESIGN . 25

3.1 ITERATIVE DESIGN PROCESS . 25

v

3.2 TARGETED ASPECTS OF ENGAGEMENT 26

3.3 PCEX: CHARACTERISTICS AND DESIGN 27

4.0 AN OVERVIEW OF STUDIES . 32

4.1 CLASSROOM AND USER STUDIES 32

4.1.1 Classroom Study 1 . 33

4.1.2 Classroom Study 2 . 33

4.1.3 User Study . 34

4.1.4 Classroom Study 3 . 35

4.2 OVERVIEW OF COMMON METRICS AND INSTRUMENTS . . . 35

4.2.1 Engagement metrics . 35

4.2.2 Performance metrics . 36

4.2.3 Learning metrics . 36

4.2.4 Survey instruments . 36

4.2.4.1 Example evaluation survey 36

4.2.4.2 Recommendation evaluation survey 37

5.0 CLASSROOM STUDY 1: EXPLORATORY STUDY OF PCEX . 38

5.1 RESEARCH QUESTIONS . 38

5.2 STUDY DESIGN . 39

5.3 PRACTICE SYSTEM . 41

5.4 COLLECTED DATA . 41

5.5 RESULTS . 44

5.5.1 Relationship between usage of PCEX and student’s learning . 44

5.5.1.1 Correlation between usage of PCEX and learning gain 44

5.5.1.2 Correlation between usage of PCEX and performance

in coding exercises . 45

5.5.1.3 Correlation between usage of PCEX and course perfor-

mance . 45

5.5.2 Correlation between usage of PCEX and student’s learning over

time . 46

vi

5.5.2.1 Correlation analysis during the first and second half of

the course . 46

5.5.2.2 Correlation analysis of the regular and exam prepara-

tion usage . 47

5.6 SURVEY ANALYSIS . 49

5.7 SUMMARY AND DISCUSSION . 52

6.0 CLASSROOM STUDY 2: CONTROLLED STUDY OF PCEX . . 54

6.1 RESEARCH QUESTIONS . 54

6.2 CONTROL GROUP INTERFACE 55

6.3 THE STUDY . 56

6.3.1 Hypotheses . 57

6.3.2 Study design . 58

6.3.3 Study procedure . 58

6.3.4 Materials . 59

6.3.4.1 Practice Content . 59

6.3.4.2 Pre- and Post-Tests 59

6.3.5 Metrics . 60

6.3.5.1 Engagement metrics 61

6.3.5.2 Performance metrics 61

6.3.5.3 Learning metrics . 63

6.4 RESULTS . 63

6.4.1 Students participation and collected data 63

6.4.2 Engagement analysis . 65

6.4.3 Performance analysis . 68

6.4.4 Learning analysis . 71

6.4.5 Survey analysis . 74

6.5 SUMMARY AND DISCUSSION . 77

6.5.1 Summary . 77

6.5.1.1 Overall effects on engagement 77

vii

6.5.1.2 Overall effects on problem-solving performance 77

6.5.1.3 Overall effects on learning outcomes 78

6.5.1.4 Students’ feedback . 78

6.5.2 Discussion . 79

7.0 USER STUDY: CONTROLLED STUDY OF ADAPTIVE FADING 81

7.1 RESEARCH QUESTIONS . 81

7.2 ADAPTIVE FADING STRATEGY 82

7.3 BAYESIAN NETWORK STUDENT MODEL 83

7.4 THE STUDY . 84

7.4.1 Hypotheses . 84

7.4.2 Study design . 85

7.4.3 Participants and procedure . 85

7.4.4 Materials . 86

7.4.4.1 Practice content . 86

7.4.4.2 Pre- and post-tests . 87

7.4.5 Metrics . 87

7.5 RESULTS . 89

7.5.1 Overall practice . 90

7.5.2 Effects of adaptive fading on performance in practice problems 93

7.5.3 Effects of adaptive fading on performance in test problems . . 96

7.5.4 Effects of adaptive fading on learning 100

7.6 SUMMARY AND DISCUSSION . 101

8.0 CLASSROOM STUDY 3: CONTROLLED STUDY OF ADAP-

TIVE RECOMMENDATION . 104

8.1 RESEARCH QUESTIONS . 104

8.2 ADAPTIVE RECOMMENDATION STRATEGY 105

8.2.1 Proactive recommendation . 105

8.2.2 Reactive recommendation . 111

8.3 THE STUDY . 113

viii

8.3.1 Hypotheses . 113

8.3.2 Study design . 113

8.3.3 Participants and procedure . 114

8.3.4 Materials . 115

8.3.4.1 Practice content . 115

8.3.4.2 Pre- and post-tests . 115

8.3.5 Metrics . 115

8.4 RESULTS . 116

8.4.1 Overall engagement analysis 117

8.4.2 Persistence analysis . 120

8.4.3 Learning analysis . 123

8.4.3.1 Impact of the system on midterm score 123

8.4.3.2 Impact of the system on post-test score 125

8.4.4 Analysis of reactive recommendations 128

8.4.5 Survey analysis . 129

8.5 SUMMARY AND DISCUSSION . 134

8.5.1 SUMMARY . 134

8.5.1.1 Effects of adaptive proactive recommendations 135

8.5.1.2 Effects of adaptive reactive recommendations 136

8.5.2 Discussion . 136

9.0 SUMMARY, CONTRIBUTIONS, AND FUTURE WORK 139

9.1 INTERACTIVE PROGRAM CONSTRUCTION EXAMPLES 139

9.2 PERSONALIZING WORK WITH PROGRAM EXAMPLES 142

9.2.1 Adaptive fading of steps in program examples 142

9.2.2 Adaptive recommendation of program examples and problems 143

9.3 CONTRIBUTIONS . 144

9.4 LIMITATIONS AND FUTURE WORK 147

9.4.1 Example design . 147

9.4.2 Studies assessing examples and adaptive technologies 148

ix

9.4.3 Other directions . 152

9.5 Discussion . 152

APPENDIX A. PCEX MOCK-UPS . 155

APPENDIX B. PRE- AND POST-TESTS 161

B.1 PRE- AND POST-TEST IN CLASSROOM STUDY 1 161

B.2 PRE- AND POST-TEST IN CLASSROOM STUDY 2 164

B.3 PRE- AND POST-TEST IN USER STUDY 1 173

B.4 PRE- AND POST-TEST IN CLASSROOM STUDY 3 177

APPENDIX C. SURVEYS . 182

C.1 EXAMPLE EVALUATION SURVEY 182

C.2 RECOMMENDATION EVALUATION SURVEY 183

APPENDIX D. VIDEOS . 185

BIBLIOGRAPHY . 186

x

LIST OF TABLES

1 Adaptive approaches for supporting work with problem-solving examples 18

2 Relationships between RQs, objectives, studies, and chapters 33

3 System usage statistics in Classroom Study 1 43

4 Summary of learning results for clusters of students in Classroom Study 1 49

5 Overview of the metrics used to evaluate PCEX examples 62

6 Summary of hypotheses and results of Classroom Study 2 65

7 Engagement metrics statistics in Classroom Study 2 66

8 Regression results for predicting performance metrics in Classroom Study 2 69

9 Regression results for predicting post-test score in Classroom Study 2 . 72

10 Regression results for predicting exam grade in Classroom Study 2 . . . 73

11 Survey summary in Classroom Study 2 75

12 Summary of hypotheses and results of User Study 89

13 Descriptive statistics for example usage during the practice session . . . 91

14 Descriptive statistics related to faded examples in the Fading condition 92

15 Problem-solving statistics in practice session 94

16 Mixed model results for predicting performance in practice problems . . 95

17 Problem-solving performance statistics in test problems 97

18 Mixed model results of predicting performance in test problems 99

19 Mixed model results of predicting post-test scores 101

20 Summary of hypotheses and results of Classroom Study 3 117

21 Usage summary statistics in Classroom Study 3 118

xi

22 Summary statistics for engagement on recommended examples 120

23 Summary statistics for engagement on examples in the Experimental group121

24 Summary statistics for engagement on recommended problems 122

25 Summary statistics for engagement on problems in the Experimental group122

26 Regression models for learning analysis 124

27 Descriptive statistics for usage of reactive recommendations 130

28 The survey items assessing the value of examples and recommendations 133

29 Summary of hypotheses and results of the studies in this dissertation . . 140

xii

LIST OF FIGURES

1 Categories of past work on programming examples 3

2 Tasks defined in this dissertation . 6

3 A classification of past work personalizing work with program examples 19

4 Key to example annotation in NaveEx 20

5 The interface of Mastery Grids with recommendations 21

6 A Java programming worked example in the PCEX activity 28

7 A Java programming challenge in the PCEX activity 29

8 A Python programming worked example in the PCEX activity 30

9 A Python programming challenge in the PCEX activity 31

10 An example of the PCRS problem in our practice system 40

11 Mastery Grids interface . 42

12 Correlation between PCEX activity completion and line clicks on prob-

lems solved . 47

13 Percentage of practice for clusters of students in Classroom Study 1 . . 48

14 Distribution of answers for the survey items in Classroom Study 1 . . . 51

15 An example in the default mode of Control group 56

16 An example in the code-only mode of Control group 57

17 An instance of the Parson’s problems in the practice system 60

18 WOE × Group interaction for predicting submission earliness 70

19 WOE × Group interaction for predicting post-test score 73

20 Plot of group ratings in survey constructs in Classroom Study 2 76

xiii

21 A non-faded example in the user study 87

22 A faded example in the user study . 88

23 Plot of faded steps by individual user 92

24 Plot of number of faded steps vs. faded examples 93

25 Problem × Condition interaction for predicting practice performance . . 96

26 Recommendations in the practice system interface 106

27 Proactive recommendation flowchart . 108

28 Reactive recommendations in the practice system interface 112

29 Recommended attempts × Group interaction to predict midterm score . 126

30 Distribution of answers for the survey items in Classroom Study 3 . . . 131

31 Plot of group ratings in survey constructs in Classroom Study 3 132

32 Plot of followers’ ratings in survey constructs in Classroom Study 3 . . . 134

xiv

1.0 INTRODUCTION

1.1 MOTIVATION

In recent years, the importance of computer science as a component of STEM educa-

tion has been significantly increasing. In particular, the importance of learning how

to program has become broadly recognized and the number of college students tak-

ing programming courses has grown rapidly. Programming is considered an important

skill for high school students aiming for a career in computer science, but has now

grown broadly important to even non-computer science majors as well as to younger,

middle school students. This emphasizes the need for developing instructional mate-

rials and computer tools that can support students in learning programming. In this

context, learning technologies play an important role in increasing the effectiveness of

programming instruction and can offer crucial support to students with lower levels

of prior preparation, which often includes students from underserved populations. We

argue that researchers in the field of cyberlearning should embrace the established best

practices in the field of computer science education to develop learning technologies to

support and promote these practices.

This dissertation focuses on one of these best practices – worked programming ex-

amples. Programming code examples play a crucial role in learning how to program.

Instructors use examples extensively to demonstrate the semantics of the programming

language being taught and to highlight fundamental coding patterns. Programming

textbooks also place a heavy emphasis on examples, with a large proportion of text-

1

book space being devoted to program examples and associated comments. Moreover,

the code of all presented examples is typically provided on an accompanying CD or

website, in order to encourage students to explore, run, and modify the examples. Fi-

nally, recent studies have also shown that, on many occasions, students prefer seeing

examples to receiving hints on how to build the code and fix their programs [Rivers,

2017].

Therefore, it is surprising that learning technologies for computer science education

pay little attention to code examples. In this aspect, computer science education signif-

icantly lags behind other STEM areas such as mathematics and physics, where the role

of problem-solving examples is comparable to the role of code examples in learning pro-

gramming. In the field of math and science learning, worked problem-solving examples

are extensively studied, particularly in physics [Chi et al., 1989; Conati and Vanlehn,

2000], algebra [Anthony, 2008; Kalyuga and Sweller, 2005; Sweller and Cooper, 1985],

geometry [Salden et al., 2009; Schwonke et al., 2007, 2009], chemistry [McLaren et al.,

2008], and SQL [Najar et al., 2016].

Despite the importance of examples in the domain of programming, existing research

on program examples is limited. Existing program examples focus on either demonstrat-

ing program behavior (i.e., what is happening inside a program or an algorithm when

it is executed) or program construction (i.e., they illustrate how to construct a program

that achieves a specific purpose). As shown in Figure 1, which categorizes existing work

on programming examples, advanced types of worked programming examples have not

been fully explored. The majority of work has been focused on non-adaptive and non-

engaging examples (e.g., [Brusilovsky et al., 2009]). Even in the more explored category

of behavior examples, the engagement and personalization aspects have not been ex-

plored in combination. Existing engaging examples are not adaptive (e.g., [Naps et al.,

2000]) while personalized examples are not engaging (e.g., [Loboda and Brusilovsky,

2010; Yudelson and Brusilovsky, 2005]). Moreover, program construction examples are

still limited to primitive static examples with text-based explanations. While person-

2

Program Behavior Examples Program Construction Examples

Non-Engaging Engaging Non-Engaging Engaging

N
on

-A
da

pt
iv

e

[Brusilovsky et al.,
2009] [Naps et al., 2000]

N
on

-A
da

pt
iv

e

[Brusilovsky et al.,
2009] ?

A
da

pt
iv

e

[Loboda and
Brusilovsky, 2010] ?

A
da

pt
iv

e

[Yudelson and
Brusilovsky, 2005] ?

Figure 1: Past work on programming examples categorized by adaptivity and en-
gaging features in examples. Question marks indicate the areas that have not been
explored to date.

alization approaches for these examples were explored, no work that aimed to improve

engagement in program construction examples has been reported.

In sum, some areas in the research related to worked program examples remain that

have not been studied extensively. First, although examples have been consistently

proven to be valuable for the student’s learning, the field lacks program construction

examples with interactive elements that could engage students. Second, research is

limited on personalizing access to program examples.

1.2 OVERVIEW AND RESEARCH QUESTIONS

The goal of this dissertation is to investigate the value of the “adaptive” and “engaging”

features in programming examples. I limit the scope of my dissertation to program

construction examples because, despite the importance of program construction skills,

3

fewer tools are available for supporting students in acquiring these skills. Furthermore,

I focus on the less explored areas within the program construction genre, filling gaps

in the existing research (shown in Figure 1 by question marks in the program con-

struction category). Within this context, I am interested in investigating three aspects

related to the program construction examples. First, my goal is to design and develop

a learning tool for presenting interactive program construction examples, which I re-

fer to as PCEX. Next, my goal is to provide support for each student’s learning with

PCEX examples by generating and selecting examples based on each student’s current

knowledge. Specifically, my goal is to adapt example generation to the student by

progressively fading example steps as the student’s knowledge increases. Another goal

is to personalize the presentation of learning activities during the student’s practice to

her/his knowledge, in order to guide the student at each stage of learning to the learning

activity that could benefit her/him the most in terms of learning programming.

1.2.1 Design and development of interactive program examples (PCEX)

To achieve the first goal of my dissertation, I developed and evaluated an interactive

online tool for presenting Program Construction Examples (PCEX). I am interested

in investigating the following research questions to evaluate the effectiveness of PCEX

examples on learning how to construct programs, first through an exploratory evaluation

of PCEX examples (RQ1) and then by comparing the impact of their usage to the use

of non-interactive worked examples in a controlled study (RQ2 – RQ4):

RQ1. How much would students use PCEX examples on a voluntary basis, and what

is the relationship between using PCEX examples and student’s progress in learning

related to programming concepts?

RQ2. Will the PCEX examples engage students to work with them more than with

non-interactive worked examples?

RQ3. Will working with PCEX examples lead to better performance in solving pro-

gram construction problems than working with non-interactive worked examples?

4

RQ4. Will working with PCEX examples lead to better learning outcomes than work-

ing with non-interactive worked examples?

RQ1 was assessed through an exploratory study and by using correlation analysis.

RQ4 on the other hand, was assessed through a controlled study, by comparing learning

for the control and experimental group.

1.2.2 Adaptive fading in the PCEX examples

To achieve the second goal of my dissertation, I investigated the effect of adaptive fading

in the PCEX examples on each student’s problem-solving performance and learning.

The research questions are stated as follows:

RQ5. Would the adaptive fading of PCEX example steps, based on a student’s current

knowledge, lead to better problem-solving performance than by not fading any

example steps?

RQ6. Would the adaptive fading of PCEX example steps based on a student’s knowl-

edge lead to better learning than by not fading any example steps?

1.2.3 Adaptive recommendation of PCEX examples and problems

To achieve the third goal of my dissertation, I wanted to learn how to personalize a

student’s practice by adaptively selecting PCEX examples and problems that match

the student’s knowledge level at each stage of learning. Therefore, I investigated the

effect that the adaptive recommendation of PCEX examples and problems had on

students engagement in the recommended learning activities as well as on their learning

outcomes. The research questions are stated as follows:

RQ7. Would students be more engaged in the PCEX examples and problems selected

by an adaptive approach compared to a non-adaptive approach?

5

RQ8. Would the recommendations of PCEX examples and problems using an adap-

tive approach improve a student’s learning outcomes more than a non-adaptive

approach?

1.3 DISSERTATION TASKS

To answer the research questions in my dissertation, I first developed and evaluated the

interactive program construction examples (PCEX)1. Next, I designed, implemented,

and evaluated the personalization technologies to provide personalized access to the

(PCEX) examples. Thus, I structured my research and development work along the

following tasks:

• Task 1: Developing and assessing interactive program construction examples (PCEX).

• Task 2: Developing and assessing personalization technologies for (PCEX) exam-

ples.

Figure 2 shows how these tasks address the areas where current research on program

construction examples is insufficient or non-existent.

Program Construction Examples

Non-Engaging Engaging

Non-Adaptive Already explored Task 1

Adaptive Already explored Task 2

Figure 2: The tasks defined in this dissertation to fill the gaps in the program con-
struction examples.

1I received help from a graduate student in my department for developing the current version of
PCEX.

6

In Task 1, PCEX examples were developed using an innovative technology that

makes examples explorable, meaning that the student can interact with the example

and be challenged by tasks that are similar to the example that she/he has viewed. Task

1 was completed by conducting two studies to evaluate the impact of PCEX examples

on learning programming. In Task 2, personalization technologies were developed to

generate and recommend PCEX examples. In particular, an adaptive sequencing ap-

proach has been implemented to personalize the selection of learning activities in the

student’s practice sequence (“outer loop” adaptation). Another personalized approach

that was implemented was to use adaptive fading, which adapts the amount of support

provided within an example to the student’s knowledge, by adaptively fading exam-

ple steps (“inner loop” adaptation). Task 2 was completed by conducting a controlled

classroom and a user study to assess the value of the developed technologies on the

acquisition of program construction skill.

1.4 CONTRIBUTIONS

This dissertation is the first attempt to systematically explore worked programming

examples as a new cyberlearning genre in the domain of computer science education. As

part of this dissertation, we developed and evaluated an advanced online learning tool,

named PCEX, to present interactive worked program construction examples, one of the

crucial components of learning how to program. The developed worked examples use

an interactive, explorable nature, to improve each student’s engagement and learning

outcomes. We built personalized technologies on top of this tool to adapt the selection

and generation of examples to each student’s knowledge, thereby helping students with

differing levels of prior preparation.

The findings from the studies in this dissertation gather new insights on how stu-

dents acquire programming skills from worked examples and how to use examples ef-

fectively in computer-supported learning. We hope that our results would lead to the

7

development of novel learning technologies that actively utilize advanced worked exam-

ples in computer science education. Finally, we hope that the developed examples and

personalized technologies can be deployed and evaluated in numerous programming

courses; thus, directly benefiting larger populations of undergraduate and graduate

students.

1.5 THESIS ORGANIZATION

The remainder of this dissertation is organized as follows: Chapter 2 presents the

theoretical background related to learning from examples and provides an overview of

the role worked examples have played in the field of math and science learning, as well as

in learning programming. It also explains the existing research that uses personalization

technologies to support each student’s work with program examples. The chapter ends

with a brief overview of the existing tools for program construction problems as well as

some integrated systems that offer practice with both examples and problems.

Chapter 3 describes the design process of interactive Program Construction Exam-

ples (PCEX), explains the different aspects of the student’s engagement and elaborates

on the aspects of those that was focused on in the design of PCEX. It also presents the

interface, and discusses which interactivity elements were used in the PCEX examples

to engage students.

Chapter 4 provides an overview of the studies conducted in this dissertation, con-

necting studies with research questions and hypotheses that were formulated based on

the findings of prior research as well as on learning theories. This chapter also presents

an overview of the common measures and instruments that were used in our studies.

This is done to avoid repeating common details in later chapters.

Chapter 5 and 6 present the evaluation of PCEX through two semester-long class-

room studies. Chapter 5 describes an initial exploratory evaluation of PCEX in an

introductory Java programming class (with 71 undergraduate students) which was con-

8

ducted to understand the student’s perception of the tool. Chapter 6 presents a con-

trolled study with a between-subject design that was conducted in a large introductory

Python programming class (with 723 undergraduate students), in order to compare

PCEX with non-interactive worked examples that also focused on program construc-

tion.

Chapters 7 and 8 introduce the personalization technologies that we used to pro-

vide individualized access to the PCEX examples. Chapter 7 explains how the example

steps are adaptively faded in the PCEX example, based on each student’s knowledge.

It also reports on the results of a controlled user study with a within-subject design

(with 38 participants) that was conducted to compare the adaptive fading of example

steps to no fading of example steps. Chapter 8 explains how PCEX examples and prob-

lems are recommended to each student, using an adaptive recommendation approach.

It also presents the results of the controlled classroom study with a between-subject

design that was conducted in a large intermediate Java programming class (with 205

undergraduate students), in order to compare the proposed recommendation approach

to a non-adaptive approach.

Finally, Chapter 9 summarizes the main findings and conclusions of the dissertation,

discusses the limitations of the work, and suggests directions for future research.

9

2.0 BACKGROUND AND RELATED WORK

This chapter is a literature review of the past research that supports and motivates

my dissertation. The work performed by other researchers is described in this chapter

with a focus on six areas: (1) worked examples in math and science problem-solving,

(2) worked examples in programming, (3) adaptive learning technologies, (4) adaptive

technologies for personalizing program examples, (5) program construction assessment

tools, and (6) integrated systems for practicing programming. The first four areas

provide the theoretical background for my dissertation and review related work on

examples. The last two areas review work on systems and tools that are related to

the platform that I used in conducting my studies. Specifically, the fifth area reviews

the tools for assessing each student’s program construction knowledge. The sixth area

reviews existing resources that parallel my dissertation, integrating the use of program

examples and problems.

2.1 WORKED EXAMPLES IN PROBLEM-SOLVING

Over the last 30 years, worked examples, also referred to as worked-out examples [Atkin-

son et al., 2000], have gradually emerged as an important instructional approach that

is supported by learning technology. A sizable body of research on instructional prac-

tices that support the use of worked examples for acquiring cognitive skills has been

accumulated in such domains such as mathematics and physics [Atkinson et al., 2000;

10

Chi et al., 1989; Sweller and Cooper, 1985]. Worked examples are comprised of the

presentation of a problem, the solution steps, and the final solution. Students use them

as models of how to solve certain types of problems. Research on studying worked

examples has consistently shown that in early stages of skill acquisition, when students

typically have little or no domain knowledge, instruction that relies more heavily on

studying worked examples is more effective for learning than the traditional approach

of being focused on only problem-solving. It has been shown that early example-based

instruction leads to better learning outcomes, which are reached in less time and with

less effort. This is usually referred to as the “worked example effect” [Sweller et al.,

1998].

The positive effect of examples has also been shown in Cognitive Tutor, a particular

type of intelligent tutoring system (ITS). Also, Lynnette (for teaching basic equation

solving) [Long and Aleven, 2013], Fractions tutor (for teaching conceptual learning of

fractions) [Rau et al., 2012], Stoichiometry tutor (for teaching stoichiometry in chem-

istry) [McLaren et al., 2014], AdaptErrEx (for teaching decimals) [McLaren et al., 2015],

Geometry tutor [Salden et al., 2009], Algebra tutor [Anthony, 2008], and Dragoon (for

teaching the construction of models of dynamic systems) [Wetzel et al., 2017] are in-

stances of example-tracing tutors that have been shown to enhance learning with an

ITS or to make it more efficient by decreasing the instructional time needed.

The examples appear to be most valuable when example presentation is combined

with problem-solving. Specifically, past studies found that the pairing of worked ex-

amples with practice problems is more effective than providing the learners with only

practice problems [Sweller and Cooper, 1985] or examples only [Trafton and Reiser,

1993]. During the later stages of skill acquisition, however, the positive effect of worked

examples gradually declines. In fact, example-based learning is inferior to problem-

solving when learners have gained a reasonable degree of domain knowledge [Kalyuga

et al., 2000, 2001, 2003]. While learning from examples is superior to problem-solving

for learners with little domain knowledge, this advantage disappears over time as the

learners develop more content expertise. This phenomenon is referred to as the “exper-

11

tise reversal effect” [Kalyuga et al., 2003]. On the one hand, this research points out the

importance of examples for less prepared students, while on the other hand, it stresses

the importance of carefully adapting to the current level of the student’s knowledge by

decreasing the number of worked examples as the student gains expertise.

According to [Nokes-Malach et al., 2013], worked examples are hypothesized to be

effective for several reasons. First, they provide constraints to the solution space, i.e.,

highlight the correct solution path so students do not need to waste time on incorrect

or unfruitful searches. As a result, novices obtain the information needed to gain gen-

eralized knowledge more quickly [Salden et al., 2010]. Secondly, they reduce irrelevant

cognitive load by highlighting the important elements of the problem and solution for

the learner to focus on, encode, and reason about [Paas and Van Merriënboer, 1994;

Ward and Sweller, 1990]. Thirdly, they encourage constructive cognitive processes such

as self-explanation in which the learner explains to herself the underlying conceptual

logic and justification behind each step [Catrambone, 1998; Renkl, 1997]. This may be

particularly important for helping students link the features of an example to abstract

domain concepts or underlying principles.

It is worth noting that while the example-based learning approach often fosters

learning for students with low prior knowledge, this outcome is not guaranteed [Atkinson

and Renkl, 2007]. The positive impact of examples for the student’s learning can only

be observed when (a) examples are designed effectively, and (b) students study the

examples thoroughly.

2.2 WORKED EXAMPLES IN PROGRAMMING

While worked examples are generally less explored in the domain of programming, there

is a reasonable body of research that has guided the work completed for this dissertation.

The earliest successful research showing the value of examples for learning program-

ming dates back to the early 1980s, when Pirolli and Anderson [1985] reported that

12

examples are helpful for guiding students to solutions for novel and difficult problems.

Since then, a considerable amount of research has been devoted to the development

of example-based learning environments to support students in learning programming

in various programming languages, such as LISP [Getao, 1990; Lieberman, 1987; We-

ber, 1996; Weber and Brusilovsky, 2001; Weber and Mollenberg, 1994], Prolog [Brna,

1998], C/Java [Brusilovsky and Yudelson, 2008; Esteves and Mendes, 2003; Loboda and

Brusilovsky, 2010; Sirkiä, 2013], Javascript [Davidovic et al., 2003], and mini-languages

[Brusilovsky, 1994].

We classify program examples that have been used in teaching and learning to pro-

gram into two groups, according to their primary instructional goal: program behavior

examples and program construction examples. Program behavior examples are used

to demonstrate the semantics (i.e., behavior) of various programming constructs (i.e.,

what is happening inside a program or an algorithm when it is executed). Program

construction examples attempt to communicate important programming patterns and

practices by demonstrating how a program that achieves various meaningful purposes

(e.g., summing an array) is constructed. This distinction might not be clear cut for

examples with no use of learning technology, since the same example code could be used

for both purposes. However, attempts to augment examples with learning technologies

to increase their instructional value (i.e., add code animation or explanations) usually

focus on one of these goals.

Program behavior examples have been extensively studied. While textbooks and

tutorials still explain program behavior by using textual comments attached to lines of

program code, a more advanced method for this purpose — program visualization, which

visually illustrates the runtime behavior of computer programs — is becoming increas-

ingly more popular. Over the past three decades, a number of specialized educational

tools for observing and exploring program execution in a visual form have been built

and assessed [Sorva et al., 2013]. Despite their visual and dynamic nature, the majority

of tools for presenting animated examples could be considered non-engaging in that

they limit the student role to watching the animation passively (e.g., [Miyadera et al.,

13

2007; Sajaniemi and Kuittinen, 2003; Sirkiä, 2013]). Following several studies that

have demonstrated the low effectiveness of “passively-watched” animation examples,

several researchers have experimented with interactive animations that are explorable

and challenging, for example, allowing the student to change input data [Lawrence,

1993], asking students to predict the result of a specific step [Byrne et al., 1999], or

asking strategic questions about the visualization [Hansen et al., 2000; Myller, 2006;

Naps et al., 2000]. Several studies reported that engaging the students to be more

active in watching the visualization improved their learning [Byrne et al., 1999, 1996;

Hundhausen et al., 2002; Lawrence, 1993; Naps, 2005; Sears and Wolfe, 1995] and had a

positive influence on their problem-solving abilities in that domain [Evans and Gibbons,

2007].

Advanced technologies for presenting program construction examples are much less

developed. In contrast to interactive and engaging worked examples in math and

physics, for many years the dominant approach for presenting worked code examples

was simply a text with comments [Davidovic et al., 2003; Linn and Clancey, 1992;

Morrison et al., 2016]. More recently, this technology has been enhanced by showing

video fragments of code screencasts with the instructor’s narration being heard while

watching slides or an editor window [Sharrock et al., 2017]. Both approaches, however,

can still be considered as a passive presentation that does not allow for exploration

and engagement. Research on making a screencast engaging has only recently begun

to receive attention, as in [Khandwala and Guo, 2018; Park et al., 2018] which have

attempted to make the screencasts more engaging by allowing inline code editing or em-

bedding programming exercises into the videos. An earlier attempt to add interactivity

and exploration to worked program construction examples was made in the WebEx sys-

tem, which allows students to interactively explore line-by-line comments for program

examples via a web-based interface [Brusilovsky et al., 2009]. However, even this ap-

proach lacks the engagement power now available to modern technologies for presenting

program behavior examples. In this dissertation, we attempt to use research findings

14

in the area of program behavior examples to produce interactive program construction

examples, called PCEX, that better engage students and improve their learning.

2.3 ADAPTIVE LEARNING TECHNOLOGIES

Another gap in research on worked program examples is personalized access to exam-

ples. Personalization is important to address the needs of students with different levels

of preparation, as well as being important in the transition to mastery, mentioned ear-

lier in Section 2.1. Thus, a key goal of adaptivity in learning environments is to improve

methods for assessing prior knowledge and knowledge growth and then adapting the

instruction accordingly [Aleven et al., 2016]. We distinguish two levels for personalizing

access to learning contents, namely the “outer loop” and “inner loop” adaptations. These

personalization levels have been defined by Vanlehn [2006], to discriminate categories of

guidance needed in intelligent tutoring systems (ITSs). The “outer loop” adaptation

(also called task-loop adaptation [Aleven et al., 2016]) pertains to the selection of an

appropriate learning activity for the student while the “inner loop” adaptation (also

called adaptive scaffolding, or step-loop adaptation [Aleven et al., 2016]) is concerned

with the steps taken within the learning activity and the amount of support that the

system provides to the student within that activity.

There is good evidence from past studies that adaptive forms of task and step

selection, based on the dynamic assessment of each student’s evolving knowledge, can

substantially contribute to the effectiveness of instruction [Aleven et al., 2016]. For

example, adaptively fading support has been found to be effective when the amount

of support provided is faded according to a student’s needs by including gaps (i.e.,

faded steps) in the example that the student has to solve [Najar et al., 2016; Salden

et al., 2009], when feedback is adapted to the student solution [Mitrovic et al., 2013], or

when the amount of support for self-explanation of worked-example steps is adaptively

determined, based on a student’s knowledge level [Conati and Vanlehn, 2000].

15

Adapting task selection to each student’s increase in knowledge was also found to

be effective. Just to name a few research studies that have attempted to do this:

• When in a fixed sequence of learning activities, the type of task (a worked

example, a faded example or a problem to be solved) next presented was determined

by the amount of assistance the student needed in the previous problems that he/she

attempted [Najar et al., 2016]

• When the best example for each problem to be solved was adaptively selected by

taking into account 1) the student’s current knowledge and 2) the similarity between

the candidate example and the problem at hand, in order to promote learning by

analogy [Muldner and Conati, 2007]

• When cognitive efficiency (calculated using performance and self-reported val-

ues of cognitive load) was used to provide appropriate learning tasks [Kalyuga and

Sweller, 2005], or

• When students were guided to program examples using adaptive navigation

support techniques (described in detail in Section 2.4.1).

While adapting instructional task and step selection to a student’s knowledge growth

was proven to be effective across several studies, in some studies (e.g., Kalyuga and

Sweller [2005]’s outer loop adaptation and Conati and Vanlehn [2000]’s inner loop adap-

tation), the positive effective was found only for students with low prior knowledge —

that is, as students became more knowledgeable, they needed less structured, adaptive

help and the more likely scaffolding would interfere with their work.

In the programming domain, there have been a few recent attempts at providing

adaptation to support each student’s work with appropriate program examples, a review

of which is provided in Section 2.4. Many of the recent attempts to support students

in programming aimed at providing inner loop adaptations to the student’s problem-

solving tasks. One example is the work by Price et al. [2017], which provides on-demand,

data-driven hints for each student’s programs in iSnap, an extension of Snap!, a block-

based programming environment for novices. Other similar attempts were the work

16

done in [Nguyen et al., 2014; Piech et al., 2015], which presented data-driven approaches

to generating hints for students’ problem-solving attempts in a programming MOOC

and also the work by Rivers and Koedinger [2017], which provided real-time hints

to students while they were writing programs in ITAP, a tutoring system for Python

programming. Outer loop adaptation has also been explored to support problem-solving

tasks. For example, [Hsiao et al., 2010] used a personalized guidance technology known

as adaptive navigation support to guide students to questions with an appropriate

difficulty level in a Java programming course.

2.4 PERSONALIZING WORK WITH PROGRAM EXAMPLES

There have been very few attempts to personalize student programming instruction

with worked examples. Excluding the earlier research of our team (in the Personalized

Adaptive Web Systems Lab) on exploring “outer loop” [Brusilovsky et al., 2006; Guerra

et al., 2018; Hosseini and Brusilovsky, 2017; Hosseini et al., 2015, 2016; Yudelson and

Brusilovsky, 2005] and “inner loop” [Loboda and Brusilovsky, 2010] adaptations for ac-

cessing examples, I know of only three other studies that use “outer loop” adaptations

for recommending relevant examples when a student fails to solve a problem [Davi-

dovic et al., 2003; Weber and Brusilovsky, 2001; Weber and Mollenberg, 1994]. Table 1

summarizes the related work in terms of their adaptive characteristics by showing the

technological (student model and adaptation technology) and educational dimensions

(application domain, type of examples, and characteristics of students are used as the

source of adaptation). I classified the approaches in Table 1 into three non-exclusive

categories, according to the technique by which they provided personalization: person-

alized access, problem-solving support, and adaptive scaffolding. Figure 3 shows how

the related work and this dissertation fit into these classifications.

17

T
ab

le
1:

A
da

pt
iv
e
ap

pr
oa

ch
es

fo
r
su
pp

or
ti
ng

st
ud

en
t
in
st
ru
ct
io
n
w
it
h
pr
ob

le
m
-s
ol
vi
ng

ex
am

pl
es
.
(K

ey
:
A
N
S:

A
da

pt
iv
e

N
av

ig
at
io
n
Su

pp
or
t;

D
G
:D

ir
ec
t
G
ui
da

nc
e;

P
P
S:

P
ro
bl
em

-S
ol
vi
ng

Su
pp

or
t,
A
P
:A

da
pt
iv
e
P
re
se
nt
at
io
n)

A
pp

ro
ac
h

D
om

ai
n

E
xa

m
pl
e
T
yp

e
St
ud

en
t
M
od

el

E
LM

-P
E

[W
eb

er
an

d
M
ol
le
nb

er
g,

19
94
]

LI
SP

co
de

ex
am

pl
e

ep
is
od

ic

E
LM

-A
R
T

[W
eb

er
an

d
B
ru
si
lo
vs
ky

,2
00
1]

LI
SP

so
lv
ed

ex
am

pl
e

ov
er
la
y
&

ep
is
od

ic

SE
A
T
S
Tu

to
r
[D

av
id
ov

ic
et

al
.,
20
03
]

Ja
va
Sc
ri
pt

ex
ec
ut
ab

le
co
de

ex
am

pl
e

ov
er
la
y

N
av

E
x
A
D
V
IS
E

[B
ru
si
lo
vs
ky

et
al
.,
20
06
],
N
av

E
x
[Y
ud

el
so
n
an

d
B
ru
si
lo
vs
ky

,2
00
5]

C
an

no
ta
te
d
ex
am

pl
e

ov
er
la
y

W
A
D
E
In

II
[L
ob

od
a
an

d
B
ru
si
lo
vs
ky

,2
01
0]

C
pr
og
ra
m

vi
su
al
iz
at
io
n

ov
er
la
y

M
as
te
ry

G
ri
ds

[H
os
se
in
ie

t
al
.,
20
15
]

Ja
va

an
no

ta
te
d
ex
am

pl
e

ov
er
la
y

M
as
te
ry

G
ri
ds

[H
os
se
in
ie

t
al
.,
20
16
]

Ja
va

an
no

ta
te
d
ex
am

pl
e,

an
im

at
ed

ex
am

pl
e

ov
er
la
y

jH
el
p
[H

os
se
in
ia

nd
B
ru
si
lo
vs
ky

,2
01
7]

Ja
va

an
no

ta
te
d
ex
am

pl
e

ov
er
la
y

M
as
te
ry

G
ri
ds

[G
ue
rr
a
et

al
.,
20
18
]

Ja
va

an
no

ta
te
d
ex
am

pl
e,

an
im

at
ed

ex
am

pl
e

ov
er
la
y

A
pp

ro
ac
h

A
da

pt
at
io
n
So

ur
ce

A
da

pt
at
io
n
Te

ch
no

lo
gy

E
LM

-P
E

[W
eb

er
an

d
M
ol
le
nb

er
g,

19
94
]

kn
ow

le
dg

e
P
SS

E
LM

-A
R
T

[W
eb

er
an

d
B
ru
si
lo
vs
ky

,2
00
1]

kn
ow

le
dg

e,
pr
ef
er
en
ce
s

P
SS

SE
A
T
S
Tu

to
r
[D

av
id
ov

ic
et

al
.,
20
03
]

kn
ow

le
dg

e
A
N
S,

D
G
,P

SS

N
av

E
x
A
D
V
IS
E

[B
ru
si
lo
vs
ky

et
al
.,
20
06
],
N
av

E
x
[Y
ud

el
so
n
an

d
B
ru
si
lo
vs
ky

,2
00
5]

kn
ow

le
dg

e
A
N
S

W
A
D
E
In

II
[L
ob

od
a
an

d
B
ru
si
lo
vs
ky

,2
01
0]

kn
ow

le
dg

e
A
P

M
as
te
ry

G
ri
ds

[H
os
se
in
ie

t
al
.,
20
15
]

kn
ow

le
dg

e
D
G

M
as
te
ry

G
ri
ds

[H
os
se
in
ie

t
al
.,
20
16
]

pr
og
re
ss

A
N
S

jH
el
p
[H

os
se
in
ia

nd
B
ru
si
lo
vs
ky

,2
01
7]

kn
ow

le
dg

e,
go
al

P
SS

M
as
te
ry

G
ri
ds

[G
ue
rr
a
et

al
.,
20
18
]

kn
ow

le
dg

e
A
N
S

18

Figure 3: A classification of student modeling and personalization approaches for
supporting a student’s work with programming examples. The shaded area indicates
the contribution of my dissertation to the subareas in adaptive educational systems
that support a student’s work with programming examples.

2.4.1 Personalized access

Personalized access approaches help students locate examples that match their individ-

ual goals, interests, and current knowledge by using combinations of adaptive naviga-

tion support technologies such as adaptive annotation [Brusilovsky et al., 2006; Hosseini

et al., 2015, 2016; Yudelson and Brusilovsky, 2005] to augment examples, linked with

dynamic and personalized visual cues and direct guidance [Hosseini et al., 2015] to

provide each student with the most useful example according to her current state of

knowledge. All of the systems in [Brusilovsky et al., 2006; Davidovic et al., 2003; Guerra

et al., 2018; Hosseini et al., 2015; Yudelson and Brusilovsky, 2005] use concept-based

adaptive link annotation to guide students to the most appropriate example in the

system.

In both NavEx [Yudelson and Brusilovsky, 2005] and its successor NavEX ADVISE

[Brusilovsky et al., 2006], examples that are not-ready-to-be-learned are marked with

red cross stop icons, while ready-to-be-learned examples are annotated with fillable

19

Figure 4: Key to example annotation in NaveEx.

circles. Depending upon the amount of work already completed by a student within

an example, the circle would be empty, partially filled, or completely filled in (Figure

4). The SEATS Tutor [Davidovic et al., 2003] uses the same idea for link annotation

but implements it in a slightly different way: links to examples that are not-ready-

to-be-learned are red, while links to examples that are learned are blue, and links to

ready-to-be-learned material are in green.

More recent attempts were presented in Mastery Grids [Loboda et al., 2014], which is

a personalized interface designed to help students monitor their topic-by-topic progress

and compare it with other students in the class (Figure 5). Mastery Grids provides

separate views of course topics (i.e., a row of the grid) to illustrate the progress of the

student and her peers in the class. In each row of the grid, each topic cell and all

examples that belong to that topic are colored, based on either the student’s progress

or the progress of the rest of the class, depending on which row the topic cell belongs

to. As a result, each student has a personalized view of her progress in course topics

and examples that belong to those topics. This information can be used to guide

student navigation through the examples and problems presented by Mastery Grids

20

Figure 5: The interface of Mastery Grids with recommendations. The cells with a
red star symbol indicate a recommended activity.

[Hosseini et al., 2015, 2016]. In [Hosseini et al., 2015], direct guidance is available in

addition to the progress-based coloring of links to examples and problems. The links

to examples that the system recommends to be viewed in the next step are marked

with a red star (Figure 5). In this study, Mastery Grids uses an adaptive sequencing

strategy to maximize the student’s gain in knowledge, which recommends the top three

(3) examples or problems that the student should explore next. The recommendations

are updated after each student attempts to solve a problem. In [Guerra et al., 2018],

the topic-level open learned model in Mastery Grids is augmented with a more fine-

grained concept-level extension and a learning gauge to guide the student to choose

the learning content to maximize learning, either by alerting the student about content

that does not provide new knowledge, or alerting the student of content that might be

too difficult.

21

2.4.2 Problem-solving support

Problem-solving approaches, similar to example-based problem-solving support in the

ITS domain [Brusilovsky and Peylo, 2003], help students when they are having trou-

ble solving a problem, by providing relevant examples which might be helpful to solve

that problem. This approach has been used, for example, in ELM-ART [Weber and

Brusilovsky, 2001] and ELM-PE [Weber and Mollenberg, 1994] to suggest relevant suc-

cessful problem-solving cases to the students from their earlier experience (i.e., examples

explained to them or problems solved by them earlier). The SEATS Tutor [Davidovic

et al., 2003] provides remedial support by guiding students to an example with the

identical or similar structure or pages that help the student in understanding the not-

yet-learned prerequisites. Finally, in a recent attempt, we [Hosseini and Brusilovsky,

2017] investigated a range of concept-level similarity approaches that assessed the sim-

ilarity of problems and examples in terms of programming concepts and by considering

student factors, such as expected student’s knowledge level and learning goals.

2.4.3 Adaptive scaffolding

Adaptive scaffolding aims to improve learning from worked examples by providing an

individualized level of support during the example study. To our knowledge, the only

attempt that provided adaptive scaffolding in the domain of programming was pre-

sented in WADEIn II [Loboda and Brusilovsky, 2010], which is a system for visualizing

expression evaluations in C. WADEIn II adapts animation speed and level of explana-

tion to the level of the student’s knowledge. As the student progresses, the speed of

these animations increases while explanations are collapsed.

22

2.5 PROGRAM CONSTRUCTION ASSESSMENT TOOLS

Program construction assessment tools are currently the most popular e-learning tech-

nology to help students to acquire program construction knowledge. Early program-

ming assessment tools received uploads of entire student programs and evaluated them

against a set of instructor-defined tests [Brusilovsky and Higgins, 2005]. A popular

example of these assignment-focused tools is Web-CAT [Edwards and Perez-Quinones,

2008]. More recent tools have evolved into sites which pose questions to students and

accept answers in online text editors. Many of these tools ask the students to write

small pieces of code, rather than entire programs and insert the student responses into

pre-existing starter code. Nick Parlante’s CodingBat was one of the earliest examples

of these tools [Parlante, 2017]. This model has been adopted by several tools, including

CodeWrite [Denny et al., 2011]; CodeAssessor [Zanden et al., 2012]; PCRS [Zingaro

et al., 2013]; CloudCoder [Hovemeyer et al., 2013]; and CodeWorkout [Buffardi and

Edwards, 2014], which was developed from the Web-CAT project.

All of the aforementioned tools expect the student to write syntactically correct code

from scratch, which could take a large and unpredictable amount of time. Therefore,

another line of work focused on developing tools that require less time to construct the

programs and can be less challenging for students, which is especially appropriate for

novices. Parsons and Haden [2006] originally created Parson’s problems as an easy way

for novices to solve programming assignments without having to type any code or think

about the exact syntax of the programming language. The idea is clever: there is a

small number of code fragments in a random order and the novice is asked to construct

the described function or a small program by placing the fragments in the correct order.

Each fragment may contain one or more lines of code and all of the fragments may not

be required in the solution. In [Ihantola and Karavirta, 2011], the author introduced

a new family of Parson’s puzzles inspired by the Python programming language. They

proposed a two-dimensional variant of Parson’s puzzles where lines of code are not only

sorted but also placed on a two-dimensional surface. The vertical dimension is used for

23

ordering the code, as in the traditional Parson’s puzzles. The horizontal dimension is

used to define code blocks, based on indentation. In another attempt, Ericson et al.

[2017] proposed a 2D Parson’s problem with paired distractors where each distractor

was shown paired with the matching correct code block so that the learner only had to

choose the distractor or the correct code.

2.6 INTEGRATED SYSTEMS

While animated examples and program construction assessment tools were originally

designed as independent systems, platforms that incorporate more than one type of

tool have become increasingly popular in “inverted courses”, MOOCs, ebooks [Campbell

et al., 2014, 2016; Cooper and Sahami, 2013; Ericson et al., 2015], and online practice

systems [Guerra et al., 2018; Hosseini et al., 2016]. As a result, a number of recent tools

have been designed to be easily reusable in different contexts. For example, the Online

Python Tutor (OPT) [Guo, 2013], which provides memory visualizations for a range of

languages, has been incorporated into ebooks [Ericson et al., 2015], MOOCs and online

courses [Guo, 2013]. Our work follows this approach. PCEX examples were designed

as reusable learning content. In the classroom studies conducted in this dissertation,

access to examples was provided through an integrated practice system, which also

offered coding problems served by the PCRS tool [Zingaro et al., 2013] (Figure 10) as

well as Parson’s problems [Ihantola and Karavirta, 2011] served by the ACOS server

[Sirkiä and Haaranen, 2017] (Figure 17).

24

3.0 TOOL DESIGN

This chapter introduces PCEX, an online tool developed to present program construc-

tion examples in an engaging fashion. First, it describes the design process of PCEX.

Then, it defines what exactly the student’s engagement is, what are its different con-

structs, and which of the engagement constructs are used in the PCEX examples. After

that, it presents the interface and discusses which interactivity elements are used in the

PCEX examples to engage students.

3.1 ITERATIVE DESIGN PROCESS

We followed an iterative design process in the development of PCEX. The version we

describe in this chapter is the end result of two cycles of design and evaluation. We

first designed the mock-ups, then evaluated the mock-ups, then iterated on the design,

then developed the working prototypes, then evaluated the prototypes, and finally used

the lessons learned to inform the development of a functional interface. To evaluate

the mock-ups, we conducted a pilot study and interviewed four students (two males,

two females) who were taking an introductory Java programming class at University

of Pittsburgh during the Spring 2017 semester. The mock-ups are shown in Appendix

A. To evaluate the prototypes, we conducted a usability study with 11 students (eight

males, three females) during the summer 2017 semester. Most of the participants

were unfamiliar or beginner in computer programming. They were presented with two

25

examples in Java and two examples in Python and asked various usability questions

related to each feature in the prototypes.

3.2 TARGETED ASPECTS OF ENGAGEMENT

Engagement is a construct that has many different definitions in education, ranging from

activity completion to particular cognitive and affective forms of activity completion.

Therefore, we need to define our conception of student’s engagement to ground our

approach to creating examples that support engagement. We define engagement as the

extent of a student’s active involvement in a learning activity, [Christenson et al., 2012].

It is often considered to be a multi-dimensional construct of possibly four distinct, yet

intercorrelated and mutually supportive aspects: behavioral engagement, emotional

engagement, cognitive engagement, and agentic engagement [Christenson et al., 2012;

Reeve, 2013; Reeve and Tseng, 2011].

Behavioral engagement refers to how effortfully involved the student is in the learn-

ing activity in terms of attention, effort, and persistence [Skinner et al., 2009]. Emo-

tional engagement refers to the presence of positive emotions during task involvement,

such as interest, and to the absence of negative emotions, such as anxiety [Skinner

et al., 2009]. Cognitive engagement refers to how strategically the student attempts

to learn in terms of using sophisticated rather than superficial learning strategies, such

as elaboration rather than memorization [Walker et al., 2006]. Agentic engagement is

a fourth and newly proposed aspect of student’s engagement that refers to the extent

of the student’s constructive contribution to the flow of the instruction they receive in

terms of asking questions, expressing preferences, and letting the teacher know what

the student wants and needs [Reeve, 2013].

Engaging examples, in this work, engage students through two of the aforementioned

constructs, namely behavioral and cognitive engagement, the aspects most consistently

linked with learning outcomes [Bathgate and Schunn, 2017]. That is, we sought to de-

26

sign examples that would make students be more actively involved in working through

the full examples and encouraging them to think more deeply; these forms of engage-

ment would lead to more learning from the examples.

3.3 PCEX: CHARACTERISTICS AND DESIGN

PCEX (Program Construction EXamples) is an interactive tool to support mastering

program construction skills through examples. The innovative idea behind PCEX is to

create “rich examples” that support free exploration and challenge the student. Figure

6 illustrates a PCEX example. Each PCEX example includes a “goal” (Figure 6, A)

and worked program steps (Figure 6, B). The goal states what function the example

program performs. The worked steps begin with a subgoal label (Figure 6, C) and are

represented in the form of the sequence of short fragments of code (no more than a

few lines of code) that illustrate how the program is constructed. Labeling subgoals

in worked examples is known to increase student’s performance by leading students to

group a set of steps and encouraging them to self-explain the reason for clustering those

steps [Catrambone, 1998]. The example is enriched with instructional explanations that

are indicated by question mark icons next to all or a subset of example lines (Figure 6,

D). Once a student clicks on a question mark, an explanation is shown on the right side

(Figure 6, E). The student can request additional details for the selected line by clicking

on the “Additional Details” button (Figure 6, G) or can navigate to the previous or next

line to read an explanation (Figure 6, F).

In addition to being explorable, PCEX examples challenge students by engaging

them into a problem-solving activity. When a student clicks on the “Challenge me”

button (Figure 6, H), an interactive challenge activity is presented to the student as

shown in Figure 7. The goal of a challenge is to encourage students to apply the program

construction knowledge presented in the original example to self-assess whether their

understanding is correct. In essence, a challenge is a programming problem that is very

27

A

B

E

G

F

H

C

D

Figure 6: A Java programming worked example in the PCEX activity. The example
includes the goal (A), interactive worked code (B), the subgoal label presented as a
comment (C), the link to instructional explanations (question mark symbols) (D),
explanations (E), a navigation link to the explanation for the previous/next line (F),
additional details for the highlighted line (G), and a challenge navigation link (H).

similar to the original example in both the goal to achieve and the code. A challenge

has a problem statement (Figure 7, I) and code. However, the code has no explanation

and is not complete — one or more of the code lines are missing. The student’s goal is

to complete the code by dragging and dropping lines from the set of options (Figure 7,

J) to each of the missing fields. This drag-and-drop interaction approach is similar to

Parsons problems (puzzles) [Parsons and Haden, 2006]. The student can check whether

the challenge is solved correctly by clicking on the “Check" button (Figure 7, K). The

feedback is presented to the student by highlighting correctly (in green) and incorrectly

(in red) placed lines. The student can also request a hint or more detailed feedback

(Figure 7, L). If the student cannot solve the challenge with three attempts, she can

request the solution.

28

At any moment, the student can navigate to the core explained example by pressing

the “Back” button (Figure 7, M). Also, if an example has several challenges the student

may navigate between them by pressing the “Challenge Me” button (Figure 7, N). The

student can navigate to the next challenge only when the current challenge is solved or

the solution is seen after the third incorrect attempt.

In this dissertation, we use the term PCEX activity to refer to the PCEX worked

example and its associated challenges. Each PCEX activity was created by annotating

the example and challenge code with a set of predefined tags. The annotated code was

parsed to generate a corresponding JSON file for each of the PCEX activities. The

JSON file was used by a single-page JavaScript application to support interactive work

with examples and challenges as shown in Figures 6 and 7. The current version of

I

M

L

K

J

N

Figure 7: A Java programming challenge in the PCEX activity that follows the worked
example in Figure 6. The challenge includes the goal (I), has one or more missing lines,
and asks the student to drag and drop a line from the given options (J) to each missing
line to construct the program. A student can request feedback by pressing the “Check”
button (K). The feedback message is shown in part (L). The student can go back to
the example by pressing the “Back” button (M). If there are more challenges available,
the student can go to the next challenge by pressing the “Challenge Me” button (N).
This button is shown only when the current challenge is solved or the student checks
the solution after the third incorrect attempt.

29

A

B E

G

F

C
D

H

Figure 8: A Python programming worked example in the PCEX activity. The ex-
ample includes the goal (A), interactive worked code (B), the subgoal label presented
as a comment (C), the link to instructional explanations (question mark symbols)
(D), explanations (E), a navigation link to the explanation for the previous/next line
(F), additional details for the highlighted line (G), and a challenge navigation link
(H).

the PCEX supports any executable code in Java or Python. Note that the program

code for a challenge requires to produce an output as PCEX employs an output-based

evaluation of the student answer.

The Python interface for presenting a PCEX activity is similar to the Java interface.

Figure 8 illustrates a PCEX worked example in Python. As it can be seen from this

figure, the interface features are the same as the Java version of the tool. The interface

features for presenting the Python challenges are also similar to the Java version of

the tool, but with this difference that the Python interface has an additional feature

to support indenting the code for the missing lines. The student can decrease/increase

the indentation of the line by using the indentation buttons (Figure 9, K/L).

30

I

O P

N

M

J
K L

Figure 9: A Python programming challenge in the PCEX activity that follows the
worked example in Figure 8. The challenge includes the goal (I), has one or more
missing lines, and asks the student to drag and drop a line from the given options
(J) to each missing line to construct the program. The student can decrease/increase
the indentation of the line by using the indentation buttons (K)/(L). A student can
request feedback by pressing the “Check” button (M). The feedback message is shown
in part (N). The student can go back to the example by pressing the “Back” button
(O). If there are more challenges available, the student can go to the next challenge
by pressing the “Challenge Me” button (P). This button is shown only when the cur-
rent challenge is solved or the student checks the solution after the third incorrect
attempt.

31

4.0 AN OVERVIEW OF STUDIES

This chapter presents an overview of the studies presented in the following chapters. It

also explains how each study contributes to the research questions in this dissertation.

Although the studies have different settings, they share some measures and instruments

that we used to evaluate our hypotheses, such as pre-test, post-test, system usage

variables, and surveys. This chapter provides an overview of these common measures

and instruments, in order to avoid repeating the same information for each study.

4.1 CLASSROOM AND USER STUDIES

The goal of the evaluation process was to investigate the value of the “adaptive” and

“engaging” features in the proposed program construction examples. We conducted

four experimental studies (three classroom studies and one user study) to answer our

research questions, which were stated in Section 1.2. Table 2 shows the studies that

were employed to answer the research questions, the objective of the studies, and the

corresponding chapters describing the studies.

The rest of this section describes the research questions that are investigated in each

study. The hypotheses for the research questions were formulated based on the findings

of prior studies and the theoretical foundations related to my dissertation work.

32

Table 2: Relationships between RQs, objectives, studies, and chapters.

Research Question Objective Study Described in

RQ1 Exploratory evaluation of PCEX examples Classroom Study 1 Chapter 5

RQ1, RQ2, RQ3, RQ4
Evaluation of PCEX examples relative to

non-interactive examples
Classroom Study 2 Chapter 6

RQ5, RQ6 Evaluation of adaptive fading in PCEX examples User Study Chapter 7

RQ7, RQ8
Evaluation of adaptive recommendation of

PCEX examples and problems
Classroom Study 3 Chapter 8

4.1.1 Classroom Study 1

The goal of this study was to explore how PCEX would be used by students in the

classroom and what the relationship would be between working with PCEX examples

and student’s engagement and learning outcomes. The research question addressed in

this study is as follows:

RQ1. How much would students use PCEX examples on a voluntary basis, and what

is the relationship between using PCEX examples and student’s progress in learning

related to programming concepts?

I stated no hypothesis for the first research question as this study was the

first deployment of the new tool and there was no past data on which to

base our expectations.

4.1.2 Classroom Study 2

This study aimed to examine the impact of PCEX examples on student’s engagement

and learning compared to non-interactive examples. The research questions addressed

in this study are as follows:

33

RQ1. How much would students use PCEX examples on a voluntary basis, and what

is the relationship between using PCEX examples and student’s progress in learning

related programming concepts?

RQ2. Will the PCEX examples engage students to work with them more than with

non-interactive worked examples?

RQ3. Will working with PCEX examples lead to better performance in solving pro-

gram construction problems than working with non-interactive worked examples?

RQ4. Will working with PCEX examples lead to better learning outcomes than work-

ing with non-interactive worked examples?

I hypothesized that the PCEX examples would increase student’s en-

gagement, problem-solving performance, and learning, compared to non-

engaging examples.

4.1.3 User Study

This study investigated the effect of adaptive fading in the PCEX examples on student’s

problem-solving performance and learning relative to not fading any example step. The

research questions are stated as follows:

RQ5. Would the adaptive fading of PCEX example steps, based on a student’s current

knowledge, lead to better problem-solving performance than by not fading any

example steps?

RQ6. Would the adaptive fading of PCEX example steps based on a student’s knowl-

edge lead to better learning than by not fading any example steps?

I hypothesized that the adaptive fading of PCEX example steps, based

on student’s knowledge, would lead to better problem-solving performance

and learning outcomes than not fading any example steps.

34

4.1.4 Classroom Study 3

This study investigated the effect of the adaptive recommendation of PCEX examples

and problems on student’s engagement in activities as well as the learning outcomes

relative to non-adaptive recommendations. The research questions are stated as follows:

RQ7. Would students be more engaged in the PCEX examples and problems selected

by an adaptive approach compared to a non-adaptive approach?

RQ8. Would the recommendations of PCEX examples and problems using an adap-

tive approach improve a student’s learning outcomes more than a non-adaptive

approach?

I hypothesized that adaptive recommendations of PCEX examples and

problems would lead to more engagement in learning activities as well as

better learning outcomes than non-adaptive recommendations.

4.2 OVERVIEW OF COMMON METRICS AND INSTRUMENTS

We used different measures to compare the impact of the PCEX examples and the

personalization technologies on student’s engagement and learning. We grouped these

measures into three categories: engagement, performance, and learning metrics. A

brief overview of these measures is presented below. More detailed explanations of the

measures are provided in later chapters, when each study is presented separately.

4.2.1 Engagement metrics

We aimed to assess behavioral engagement using this category of measures. Specifically,

we measured the amount of work on examples and problems, such as by counting the

number of attempts on examples, the number of example line clicks to view explana-

tions, the number of attempts on problems, and time on task as an indicator of the

35

depth of engagement on the attempted activities. In some studies, we also measured

the overall usage of the practice system, such as total time spent on the practice system,

total attempts on activities, and the number of sessions the student practiced with the

system. In Classroom Study 3, we also investigated student’s persistence in working

with examples and solving problems.

4.2.2 Performance metrics

We aimed to assess problem-solving performance using this category of measures.

Specifically, we counted the total number of student attempts and the number of prob-

lems that the student solved in the practice system. In Classroom Study 2, we also

looked into problem-solving performance on problems that the student solved outside

of the system.

4.2.3 Learning metrics

We measured student’s learning by using pre- and post-tests. The pre-test and post-

test used in each study are presented in Appendix B. In some studies, we also used

midterms, final exams, and normalized learning gain as measures of learning. The

normalized learning gain is defined as the ratio of the actual gain to the maximum

possible gain, based on pre-test performance. Equation 4.1 shows this measure. In this

equation, PosttestMax is the maximum possible post-test score.

E =
Posttest− Pretest

PosttestMax − Pretest
(4.1)

4.2.4 Survey instruments

4.2.4.1 Example evaluation survey To collect student feedback on the example

activities, we administered a two-part survey related to system use and system impact.

This survey is presented in Appendix C.1 and it was used in Classroom Study 1, 2, and

36

3. In the first part of the survey, students responded to questions about the amount

of system use: Yes-more than 10 times, Yes-between 5 and 10 times, Yes-less than 5

times, and No. Those who chose one of the last two options were asked to provide their

opinion on six follow-up items that focused on why the system was not used. Two of

the items referred to bad system experience, two emphasized no help needed, and two

addressed other reasons, especially, a poor introduction to the system and lack of time

to use the system. For this section of the survey and all questions in the second part

of the survey, students were asked to respond using a 5-point Likert scale ranging from

Strongly Disagree (1) to Strongly Agree (5).

The second part of the survey aimed to evaluate the impact of the example activities,

focusing on only students who used the system. Following the suggestion in [Kay and

Knaack, 2009] that identified key constructs required to evaluate a learning objective,

we included three constructs: learning, quality, and engagement. Each construct had

four items, two negatively and two positively worded. For the learning construct, items

referred to student’s perception of how much they learned from the examples. For the

quality construct, items referred to the quality of the example activities. Finally, for the

engagement construct, items examined the level of student involvement in the example

activities.

4.2.4.2 Recommendation evaluation survey To assess student experience with

the recommendations in Classroom Study 3, we used a survey, which is presented in

Appendix C.2. Similar to the example evaluation survey, described in Section 4.2.4.1,

this survey focused only on the students who used the system. This survey included two

constructs, namely, perceived recommendation quality and system satisfaction, which we

adapted from the framework introduced by Knijnenburg et al. [2012a,b]. Students were

asked to respond using a 5-point Likert scale ranging from Strongly Disagree (1) to

Strongly Agree (5).

37

5.0 CLASSROOM STUDY 1: EXPLORATORY STUDY OF PCEX

This chapter describes the first evaluation of our new learning tool for presenting in-

teractive Program Construction EXamples (PCEX). This study was exploratory in

nature and aimed to address RQ1 (described in Section 1.2) to understand how stu-

dents would use PCEX examples and also investigate the relationship between using

PCEX examples and student’s learning of programming.

5.1 RESEARCH QUESTIONS

We have formulated the following research question to build a better understanding of

how PCEX, the new learning tool that we have developed, would be used by students

in the classroom and what would be the relationship between using PCEX and learning

programming.

RQ1. How much would students use PCEX examples on a voluntary basis, and what

is the relationship between using PCEX examples and student’s progress in learning

related to programming concepts?

Our research question is exploratory in its nature. We stated no hypoth-

esis as we have no previous data regarding the usage of PCEX examples.

38

5.2 STUDY DESIGN

We conducted a classroom study to evaluate the relationship between using PCEX and

the student’s learning of programming concepts. The subjects were students enrolled

in an undergraduate Introductory Java Programming course in the Fall of 2017. The

course had two sections with a shared syllabus and lecture materials. The students who

took the course were not required to have any prior programming background.

The study followed a pre/post-test experimental design to examine the relationship

between usage of PCEX and student’s learning. At the beginning of the semester,

students completed a pre-test, consisting of six questions that evaluated their prior

knowledge of the subset of programming constructs covered in the course. The questions

were designed to cover both easy and complex concepts in programming. The first three

questions asked the student to complete code by filling in blank line(s) or writing small

code snippets. The remaining three questions asked the student to determine the correct

order of the provided lines of code, in order to achieve a certain purpose. The lines

were shuffled and included distractors.

A post-test, isomorphic to the pre-test, was administered at the end of the semester.

The maximum possible score on the pre/post-test was 29, 14 points for the first three

questions and 15 points for the last three questions. The example evaluation survey

(described in Section 4.2.4.1) was also administered at the end of the semester to collect

students’ perceptions of the PCEX examples.

All students were provided with a link and an individual account to access the

practice system described in Section 5.3. The practice system included 55 PCEX ac-

tivities (as in Figures 6 and 7) and 46 coding problems served by the PCRS tool (as in

Figure 10). The learning content in the practice system was organized into 14 topics.

All PCEX activities started with a worked example and were followed by one to three

challenges (the median was 1). In total, PCEX activities included 55 interactive ex-

amples with 628 line explanations and 76 challenges. Although the use of the practice

system was voluntary, students were encouraged to use the system by offering extra

39

Figure 10: An example of a PCRS problem in our practice system. The feedback
message shows whether test cases were passed or not.

credit to those who completed at least three PCEX activities (i.e., viewed the exam-

ples and solved all the associated challenges for the example they viewed) and solved

seven coding problems.

Figure 10 illustrates a PCRS coding problem from our practice system. In this type

of problem, the student is asked to write the code for a given task. After submitting

the code, the code is tested using a set of unit-tests and the student is shown the result

of each test case. If their code fails the tests, they are shown their code output vs. the

expected output for the test case. For the subset of failed test cases, the input to the

program is also shown. After receiving feedback, the student can modify the code and

submit it again without any restriction on the number of attempts.

40

5.3 PRACTICE SYSTEM

All practice content in our system can be accessed through the Mastery Grids portal

[Loboda et al., 2014]. To engage students to work with the content, the Mastery Grids

portal provides visual personal progress tracking (known as Open Student Modeling

(OSM)), as well as social comparison visualizations (known as Open Social Student

Modeling (OSSM)). Only the OSM features of the interface were enabled for this study.

Figure 11 shows the Mastery Grids interface in this study. The grid has one row

for overall learner progress and separate rows for each content type. Mastery Grids

organizes the content in topics that are represented as a series of colored cells, which

get darker as the student completes the content within a topic. The row in the grid

shows the current student’s topic-by-topic progress by using different shades of green;

the darker the color, the higher the progress.

Mastery Grids can integrate different types of smart content. For examples, the

smart content in Figure 11 is divided into two types: example-challenges that are

PCEX examples and PCRS coding problems. By clicking on a topic cell, the student

can access content that falls inside that topic. For example, in Figure 11, the student

has clicked the topic “While Loops”, and the system displays cells to access examples

and coding exercises related to this topic.

5.4 COLLECTED DATA

Data from students all sections were combined. 71 students took the final exam. 64

took both the pre-test and post-test and logged in to the system, and 62 attempted at

least one activity (i.e., loaded a PCEX activity or attempted a coding exercise). Table

3 shows the summary statistics for all usage variables, after removing outliers1.
1We excluded the line clicks of one student who clicked on 400 (64%) example lines and also the

time on examples for another student who spent over 500 mins. on examples. It should be noted that
using all student data showed the same pattern of results for all analyses.

41

Figure 11: The Mastery Grids interface.

We measured the usage of activities by counting the number of examples accessed,

example line clicked, challenges and coding exercises solved, and PCEX activities com-

pleted (that is, all challenges associated with the examples were solved). We also

tracked the time spent on each of the challenges and activities. For the examples, we

distinguished between the time a student spent inspecting the examples before clicking

any of the lines and the time the student spent reading the explanation while clicking

through example lines. The total time spent on examples is the sum of these two.

The total time spent on PCEX activities includes the total time the student spent on

worked examples and associated challenges.

On average, students accessed 31 (56%) worked examples, clicked on 72 (11%) ex-

ample lines, solved 38 (50%) distinct challenges and 17 (37%) distinct coding exercises,

and completed 28 (51%) PCEX activities. The average time that students spent in-

specting the examples before clicking any of the lines with explanations (49 mins.) was

about the same as the average time that students spent accessing explanations (47

mins.). The average time spent on challenges (80 mins.) was about 2.7 times less than

the average time students spent on coding exercises (213 mins.). Overall, the average

42

Table 3: Summary statistics for usage of PCEX and coding exercises by students
who logged in to the system and attempted at least one activity (N=62).

Median Mean Min Max

EXAMPLES
Example accesses 33 30.7 1 55
Example line clicks 41.5 72.4 0 517
Time on examples before line clicks (mins.) 29.5 49.3 0.4 273.8
Time on example lines (mins.) 26.2 47.0 0 302.3
Total time on examples (mins.) 60.3 96.4 0.4 576.1

CHALLENGES
Challenge attempts 80 86.2 0 336
Challenges solved 40 41.7 0 96
Distinct challenge attempts 38.5 38.4 0 76
Distinct challenges solved 37 38.1 0 76
Time on challenges (mins.) 59.4 80.5 0 342

PCEX ACTIVITIES
PCEX activities completed 27 27.8 0 55
Total time on PCEX activities (mins.) 115.9 176.9 0.4 918.1

CODING EXERCISES
Coding exercise attempts 71 105.5 0 382
Coding exercises solved 12.5 19.3 0 73
Distinct coding exercise attempts 14 19.2 0 46
Distinct coding exercises solved 11 17.2 0 46
Time on coding exercises (mins.) 128.8 212.5 0 868.2

total time that students spent on PCEX activities (examples and challenges) was 177

mins., which is comparable to the time spent on coding exercises.

Many of these fine-grained measures were highly correlated with one another and

should not be considered as independent measures. In particular, the number of distinct

successful attempts on PCEX challenges was highly correlated with challenge attempts

(ρ = 0.92), challenges solved (ρ = 0.99), distinct challenge attempts (ρ = 1), and

time on challenges (ρ = 0.83). Similarly, the number of distinct successful attempts on

coding exercises was highly correlated with coding exercise attempts (ρ = 0.88), coding

exercises solved (ρ = 0.99), distinct coding exercise attempts (ρ = 0.99), and time on

43

coding exercises (ρ = 0.9). PCEX activities were also highly correlated to the total

time on PCEX activities (ρ = 0.74). We also found a moderate correlation between

example accesses and example line clicks (ρ = 0.44) and a strong correlation between

example line clicks and time on example lines (ρ = 0.87).

After examining the correlations between these variables, we decided to use only

three independent variables that were not highly correlated: example line clicks, rep-

resenting the amount of interaction with examples; PCEX activities completed, repre-

senting the total work done with PCEX activities; and distinct coding exercises solved,

representing the amount of work done on coding exercises.

5.5 RESULTS

We started by investigating the correlation between usage of PCEX activities and

student’s learning. This overall usage analysis is then complemented with a more

detailed analysis that describes the relationship between usage of PCEX and student’s

learning over time and identifies which usage behaviors resulted in better learning.

5.5.1 Relationship between usage of PCEX and student’s learning

We evaluated the correlation between usage of PCEX activities and student’s learning,

using several measures of process success and outcomes: (1) learning gain, (2) number

of challenges that the student solved; (3) number of coding exercises that the student

solved; (4) midterm grade; and (5) final exam grade.

5.5.1.1 Correlation between usage of PCEX and learning gain Learning

gain was calculated for the 64 students who had taken both pre-test and post-test, an-

swering all of the questions in the test. The learning gain followed a normal distribution

and ranged from 0.07 to 1.0 with a mean of 0.58. The number of example line clicks

were not correlated with the learning gain; however, PCEX activities completed had

44

a significant positive correlation with learning gain (ρ = 0.30, p = .02). In addition,

coding exercises were found to have a strong positive correlation with the learning gain

(ρ = 0.62, p < .001).

5.5.1.2 Correlation between usage of PCEX and performance in coding

exercises We looked into the relationship between usage of PCEX activities and

distinct successful attempts on coding exercises and found that working with PCEX

activities was positively correlated with student coding performance: the number of

example line clicks (ρ = 0.31, p = .01) was correlated with distinct successful attempts

on coding exercises, as was the number of PCEX activities completed (ρ = 0.71, p <

.001).

We also ran multiple regression analyses to examine whether the PCEX activi-

ties and example line clicks could significantly predict the number of distinct coding

exercises solved, when the effect of prior knowledge, as measured by the pre-test, is

controlled for. We fitted two multiple regressions, one with example lines clicked and

pre-test score as factors and one with PCEX activities completed and the pre-test as

factors. Both were significant independent predictors of distinct coding exercises solved

even after controlling for the effect of the pre-test: each additional example line click

and each PCEX activity a student completed resulted in a 0.05 (SE = 0.02, p = .03)

and 0.62 (SE = 0.07, p < .001) increase in the number of distinct coding exercises

solved, respectively.

5.5.1.3 Correlation between usage of PCEX and course performance We

also looked into the relationship between total usage of PCEX activities and the stu-

dent’s midterm or final grade, while controlling for the effect of prior knowledge (i.e.,

pre-test score). Only the number of distinct coding exercises a student solved was a

significant predictor of the midterm and final grade. Each successful attempt on coding

exercises was associated with a 0.43 (SE = 0.12, p < .001) increase in the midterm and

a 0.45 (SE = 0.13, p < .01) increase in the final grade.

45

5.5.2 Correlation between usage of PCEX and student’s learning over time

5.5.2.1 Correlation analysis during the first and second half of the course

Research studying worked examples has consistently shown that the positive effect of

worked examples is stronger in early stages of skill acquisition, when students typically

have little or no domain knowledge, while gradually declining in later stages of skill

acquisition as the learner develops more expertise [Kalyuga et al., 2003; Sweller et al.,

1998]. To investigate whether this relationship exists in our data, we split the data

into halves, resulting in data from 55 students in the first half and 44 students in the

second half of the course. We fitted regression models to predict the number of distinct

coding exercises that student solved in each half using the PCEX activities completed

and example line clicks. We also fitted regressions to predict the number of distinct

challenges that student solved using the example line clicks. In all these regressions, we

controlled for differences in pre-test scores.

We plotted the estimated coefficients obtained from the regression analysis in Figure

12. Figure 12(a) shows the estimated coefficients for the PCEX activities completed. In

both the first and second half of the course, PCEX activities completed was significant

predictor of the distinct coding exercise solved. More specifically, in the first half, each

PCEX activity completed was associated with a 0.7 (SE = 0.1, p < .001) increase in

the number of distinct coding exercise solved. In the second half, each PCEX activity

completed was associated with only a 0.4 (SE = 0.1, p < .001) increase in the number

of distinct coding exercises solved (i.e., approximately half the early correlation).

The estimated coefficient for example line clicks was smaller than the coefficient for

the PCEX activities completed (Figure 12(b)). It was significant only in the first half

of the course and only for predicting the number of distinct challenges that a student

solved. In the first half, each example line that was clicked increased the distinct correct

attempts on challenges by 0.1 (SE = 0.03, p = .01). This coefficient was no longer

statistically significant in the second half of the course, which suggests that individual

line explanations accessible through line clicks are most important in the first half of

46

0.0

0.2

0.4

0.6

0.8

1.0

First half Second half

D
is

t.
co

rr
ec

t c
od

in
g

ex
er

ci
se

s

(a)

0.0

0.2

0.4

0.6

0.8

1.0

First half Second half

D
is

t.
co

rr
ec

t a
tte

m
pt

s

Challenges Coding Exercises

(b)

Figure 12: Regression estimates for (a) PCEX activities completed and (b) example
line clicks on distinct problems that student solved during the first and second half
of the course. Error bars show standard errors. In (b), the solid line represent the
estimated coefficients for predicting the distinct challenges solved while the dashed
line represents the estimated coefficients for predicting the distinct coding exercises
solved.

the course when students are still in the early stages of learning. As students gain more

knowledge in the domain, the knowledge added by each individual explanation becomes

less essential.

5.5.2.2 Correlation analysis of the regular and exam preparation usage To

further investigate how regularity of practice with the system influenced the learning

results, we split the total practice of the students into regular practice during the

semester and exam preparation practice (i.e., one week before the exam). Using spectral

clustering, we grouped students based on the percentage of example lines clicked, the

percentage of PCEX activities completed, and percentage of coding exercise solved2.

2We made sure that the variables used for clustering were not highly correlated (ρ was below 0.8
between each pair of variables).

47

0.0

0.2

0.4

0.6

0.8

%Line clicks %PCEX activity %Coding exercise

Cluster1 Cluster2 Cluster 3

(a)

0.0

0.2

0.4

0.6

0.8

%Line clicks %PCEX activity %Coding exercise

Cluster1 Cluster2 Cluster 3

(b)

Figure 13: Percentage of practice for different clusters when system usage is split
into (a) regular and (b) exam preparation. Usage is expressed as mean and standard
error for the mean (error bars).

We found three clusters that differed by the activity profile. The amount of practice

within each cluster is shown in Figure 13(a) for regular practice and in Figure 13(b) for

exam preparation practice.

Students in Cluster 1 had the highest amount of regular practice: On average, they

completed 70% of the PCEX activities, solved 70% of the coding exercises and clicked

on 10% of the example lines. Meanwhile, on average, the students in Cluster 2 clicked

the same percentage of lines as students in Cluster 1 but completed 2.3 times fewer

PCEX activities and solved 3.5 times fewer coding exercises. The students in Cluster 3

had the least amount of regular practice of all the clusters. On average, they clicked on

10% of the example lines, completed only 20% of the PCEX activities, and solved only

10% of the coding exercises. As seen in Figure 13(b), Cluster 2 was the only cluster

that practiced with the system during the exam preparation week. Students in Cluster

2 had the same amount of practice during the exam preparation week as they had done

throughout the semester.

Table 4 summarizes the learning results across different clusters. The learning

results were analyzed using a one-way analysis of variance (ANOVA), followed by

48

Table 4: Summary of learning results for clusters obtained after splitting practice
into regular and exam preparation. Values are expressed as mean and standard error
for the mean (in parentheses).

Cluster Pre-test Learning gain Exam score Midterm score

1 4.8 (1.5) 0.7 (0.1) 91.9 (2.2) 94.1 (1.3)

2 5.0 (1.4) 0.5 (0.1) 81.0 (4.6) 83.5 (3.6)

3 4.5 (1.0) 0.5 (0.1) 81.0 (3.9) 80.0 (3.6)

Tukey’s post hoc comparisons. Overall, the correlation was significant for learning

gain F (2, 60) = 5.2, p < .01 and midterm score F (2, 60) = 4.9, p = .01 but not on pre-

test scores, ruling out the impact of initial differences between groups. Learning gain

was significantly higher in Cluster 1, which included students with high regular practice

(completing about 70% of the PCEX activities and coding exercises) compared to both

Cluster 2 (moderate constant practice, p = .01) and Cluster 3 (low regular practice,

p = .02). The regular practice in Custer 1 (high regular practice) is also associated with

significantly higher midterm scores than Cluster 3 (low regular practice, p = .01), but

only marginally higher than Cluster 2 (moderate constant practice, p = .08). These ob-

servations further suggest that students who worked with PCEX activities and coding

exercises regularly obtained better learning results.

5.6 SURVEY ANALYSIS

In the first step of the survey analysis, we assessed the reliability of the survey items

under each construct using Cronbach’s α. We dropped two items from the engagement

construct because item-construct correlations were lower than the recommended value,

49

0.30. Additionally, we checked whether the internal consistency could improve if any

of the items within a construct were deleted. All items in the learning and engagement

construct had acceptable internal consistency with the other items within that con-

struct. The α was 0.8 for the learning construct and 0.6 for the engagement construct.

After we discarded two items from the quality construct, the α improved from 0.7 to

0.9. No further item was discarded from the survey. In the end, all three constructs

appeared to be sufficiently reliable to assess the value of PCEX activities, with α val-

ues exceeding the suggested minimum acceptable α coefficient of 0.50 [Nunnally and

Bernstein, 1978].

Out of the 65 students who provided consent to use their data, 43% used the system

more than 10 times, 37% used the system between 5 and 10 times, 14% used the system

less than 5 times, and 6% did not use the system at all. The first plot in Figure 14 shows

the distribution of students answers to the six survey items that referred to the reasons

for low/zero usage of the practice system. Overall, students mostly agreed that they

did not use the system due to lack of time, preferring other resources and materials, and

not feeling the need for additional help. Students disagreed with items that suggested

other reasons for low/zero of the practice system, including the items that referred to

bad system experience.

Distribution of students answers relating to the value of PCEX activities is shown

in the second plot in Figure 14. The mean learning rating was 3.8 (SD = 0.8) which

indicates that students perceived PCEX activities to be helpful for learning. Notably,

more than 70% of the students agreed with the items under the learning construct

(items 1-2, 4-5 in the y-axis). The mean quality rating was 3.7 (SD = 1), indicating

that the students were also positive toward the quality of explanations and code in the

PCEX activities (item 3 and item 6 in the y-axis). The mean engagement rating was

3.2 (SD = .9), very close to the neutral part of the scale. While approximately 40% of

the students agreed that they tried hard to understand the examples and challenges and

did not skim-read them, a sizable fraction of the class disagreed with these statements

(last two items in the y-axis).

50

The system was not introduced properly in class
(M=1.8, SD=.7)

I preferred to use other resources and material
to learn Java (M=3.5, SD=.8)

I didn't think the system can help me to better
master Java (M=2.2, SD=1.1)

I was doing well in class without the system and
did not need any extra help (M=3.5, SD=1.3)

The user interface was too confusing to use
(M=2.2, SD=.8)

I did not have enough time to use the system
(M=3.4, SD=1.3)

100 50 0 50 100
Percentage

Working with the examples−challenges helped me
learn Java (M=4, SD=.9)

The explanations in the examples−challenges
helped me to better understand the Java

programming concepts (M=3.6, SD=1)

Exploring similar examples−challenges helped me
learn Java (M=3.9, SD=.8)

The examples−challenges helped me in solving Java
exercises in this class (M=3.7, SD=1.2)

The explanations in the examples−challenges were
not hard to understand (M=3.7, SD=1.1)

The code in examples−challenges were not too
complicated to understand (M=3.7, SD=1)

I tried hard to understand the
examples−challenges (M=3.3, SD=1)

I did not skim−read the examples−challenges
(M=3.1, SD=1)

100 50 0 50 100
Percentage

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

Figure 14: The distribution of answers for the survey items. The percentage of re-
spondents who agree/disagree with each item is shown to the right/left of the zero
line. The percentage of respondents who neither agree nor disagree are split down the
middle and are shown in a neutral color. The items in the y-axis are ordered based
on the percentage of agreements, with the uppermost/lowermost item having the
most/least agreement.

51

5.7 SUMMARY AND DISCUSSION

To promote learning, the examples in PCEX were enriched by worked steps with sub-

goal labels and explanations. To assess the relationship between usage of this new

educational technology and student’s learning, the paper also reported results from a

semester-long classroom study. In this study, students enrolled in a Java Programming

class were encouraged to use a non-mandatory practice system, which included PCEX

activities as well as automatically-assessed coding exercises.

When analyzing the collected data, we observed that completing PCEX activities

had a significant correlation with learning gain. Those students who completed more

PCEX activities learned more than those who completed fewer (or no) PCEX activities.

We also found that work with PCEX activities had a positive correlation with student’s

performance in coding exercises even when prior knowledge (as measured by the pre-

test) was controlled.

Another interesting observation was that the correlation of work with PCEX activ-

ities and student’s learning was stronger in the first half of the course than the second

half. This finding is consistent with past studies that showed that the worked example

effect is stronger in the early stages of learning and declines as a student’s knowledge

grows [Kalyuga et al., 2003; Sweller et al., 1998].

We also found that regular practice with PCEX activities is associated with better

learning outcomes. Students who used PCEX activities regularly during the course

and, on average, completed 70% of the PCEX activities and coding exercises, achieved

higher learning gain and midterm score than students in the group that used the PCEX

activities and coding exercises less regularly but worked more during the exam prepa-

ration time.

Finally, the survey results suggest that students found the PCEX activities to be

of high quality and helpful for learning programming. At the same time, students’

self-reported level of engagement with PCEX activities was lower than other aspects

of their feedback. This indicates a need for follow-up interviews to uncover possible

52

reasons for lower engagement and discuss options to improve the engagement side of

PCEX.

Bringing together two sources of information (logs and survey), we can also observe

that both approaches to augment traditional examples, line-level explanations and chal-

lenges, were valuable for the students. As shown in Section 5.5.1, every explored line

explanation and every attempted challenge can be associated with an improvement in

student’s performance. Students’ feedback on survey items that separately assessed the

educational value of explanations and challenges was also positive in both cases. At the

same time, the data hints that among these two types of augmentation, the challenges

are more valuable educationally and more appealing to the students. As Section 5.5.1

shows, the positive correlation of one explored line was more than 10 times lower (0.05

vs 0.62) than the positive correlation of one challenge (which typically expected stu-

dents to move 2 – 4 lines of code). Students’ feedback about the value of explanations

was also slightly less positive than their feedback about challenges (3.6 vs 3.9). The

same trend can also be observed in the usage statistics reported in Section 5.4: the

students completed 51% of the PCEX activities, but explored only 11% of the example

lines.

53

6.0 CLASSROOM STUDY 2: CONTROLLED STUDY OF PCEX

This chapter describes the controlled classroom study that I conducted to address

RQ2, RQ3, and RQ4 (described in Section 1.2), in order to measure the effect of PCEX

examples on student’s engagement and learning, compared to non-interactive examples.

After revisiting the research questions that are addressed in this study, I present the

interface that we developed to contrast PCEX with the normal approach for example

presentation. Then, I present the study and explain the results.

6.1 RESEARCH QUESTIONS

We formulated the following research questions in order to build a better understanding

of the impact of PCEX on learning programming and to compare the impact of this

interactive style to that of non-interactive examples. In this study, the non-interactive

examples we presented were textbook-style worked examples that focused on program

construction skills. By textbook-style worked examples we mean the static worked exam-

ples typically presented in textbooks, that lack interactivity and a challenge component.

Specific hypotheses related to the research questions are presented in Section 6.3.1):

RQ1. How much would students use PCEX examples on a voluntary basis, and what

is the relationship between using PCEX examples and student’s progress in learning

related to programming concepts? [Hypothesis 2 and 3]

54

RQ2. Will the PCEX examples engage students to work with them more than with

textbook-style worked examples? [Hypothesis 1]

RQ3. Will working with PCEX examples lead to better performance in solving pro-

gram construction problems than working with textbook-style worked examples?

[Hypothesis 2]

RQ4. Will working with PCEX examples lead to better learning outcomes than work-

ing with textbook-style worked examples? [Hypothesis 3]

6.2 CONTROL GROUP INTERFACE

In this section, we introduce the interface that we developed to compare PCEX with

the normal approach to example presentation. We used this interface to present worked

examples to the Control group of this study. This interface presents the examples in

a textbook-style form using a simple technology that shows examples statically. Figure

15 illustrates a worked example that was presented, using this static interface. Each

example includes a “goal” (Figure 15, A) and worked program steps (Figure 15, B).

To make the presentation of the worked examples similar to those in programming

textbooks, code segments and explanations are interleaved, by default. The student

can click on the “Hide Explanations” button (Figure 15, C) to switch to the mode that

presents the code with no explanations. Figure 16 illustrates the code only mode, with

explanations hidden. The student can switch back to the mode where the explanations

are shown by clicking on the “Show Explanations” link (Figure 16, E). The student can

go to the next similar example by clicking on the “Next Example” link (Figure 15, D).

The next example will be presented in the same style as the previous example. The

student can navigate between similar examples using the navigation links.

55

A
D

C

B

Figure 15: The default mode of a worked example in the Control interface that
presents static worked examples for program construction skills. The example is pre-
sented in a textbook-style form and includes the Goal (A), Worked code with subgoal
labels and explanations (B), the link to Hide explanations (C), and a navigation link
to the Next similar example (D).When appropriate, a Previous example arrow will
appear on the left side.

6.3 THE STUDY

To evaluate the impact on student’s engagement and learning from adding explorability

and challenges to program construction examples , we conducted a controlled classroom

study followed by a survey to collect students’ feedback on the usefulness of the new

style program construction examples. In this section, we present details of the study,

beginning by explaining the design of the study, then presenting the information about

participants and the study procedure. We will conclude this section with information

about the objective and subjective measures that were collected in the study and later

used in the data analysis.

56

E

Figure 16: The code-only mode of a worked example in the Control interface that
presents worked examples focused on program construction skill. The student can
click on link (E) to view the explanations.

6.3.1 Hypotheses

This study tests the following hypotheses regarding the benefits of PCEX compared to

textbook-style, static, worked examples:

H1. PCEX examples would engage students to work with examples more than with

the textbook-style worked examples

H2. Work with PCEX examples would lead to better performance in solving pro-

gram construction problems than the work with textbook-style worked examples;

and

H3. Work with PCEX examples would lead to better learning outcomes than the

work with textbook-style worked examples

57

6.3.2 Study design

To test our hypotheses, we designed a classroom study with two groups. In both groups,

students could practice with examples and problems that were accessible through an

online practice system (similar to the one described in Section 5.3). In order to make the

groups equivalent in terms of the quantity and quality of learning material, both groups

also received the same problems, program examples, and explanations. The difference

between the groups was only in the way examples were presented to the students. In

the Experimental group, students could practice with PCEX activities that presented

the sequence of similar examples with the first example fully worked (Figure 6) and

the rest of the examples being presented as tasks that challenged students (Figure 7).

In the Control group, by contrast, students could practice with textbook-style example

activities that presented similar worked examples in the same order, all in the same

form as shown in Figure 15.

6.3.3 Study procedure

The study was carried out in an introductory Python programming course. The course

was a CS1 service course aimed at students of bachelor programs in various engineering

fields at a large university. The students were not Computer Science majors, and most

of them complete only one or two programming courses in their bachelor studies. The

course consisted of lectures, nine exercise rounds and an exam. To pass the course, the

student had to solve enough problems (small Python coding exercises where the student

mostly wrote the whole program him/herself) in each of the exercise Rounds 1 – 8, and

pass the final test. To obtain a good grade, the student was also required to solve

enough problems in Round 9, which contained coding exercises about object-oriented

programming.

Potential participants included 723 undergraduate students who were enrolled in

the course in the Fall semester of 2017. Students were randomly assigned to one of two

groups. They were given one week to take an online pretest. In the second week of the

58

class, the practice system (similar to the one described in Section 5.3) was introduced

and all students were provided with a link and an individual account to access the

system. The use of the practice system was voluntary, but to encourage students to

practice with the system, a few extra credit points were given to those who completed

eight examples and solved seven problems (similar to Parson’s problems, Figure 17). A

student could practice with the system up until the end of the semester, and at that

point was given one week to respond to an online example evaluation survey (described

in Section 4.2.4.1) and take the online posttest, which was isomorphic to the pretest.

Completion of the pre-test, post-test, and survey was voluntary too. Therefore, to

increase student participation, the pre-test was included in the first assignment, and

students were offered a total of 4 extra final exam points for answering the post-test

and the survey (2 points for each). The maximum number of exam points a student

could achieve without those extra points was 96.

6.3.4 Materials

6.3.4.1 Practice Content Practice content in the system included 52 PCEX ex-

ample activities (as in Figures 8 and 9) and 31 problems similar to 2D Parson’s problems

(Figure 17). In this type of problem, the student was asked to construct the described

program by putting the fragments in the correct order with the correct indentation.

Feedback was shown upon student request, highlighting the correct and incorrect lines

in the code.

All practice content was organized into 15 topics that were ordered by increasing

difficulty. Each example activity started with a worked example and was followed by

one to three challenges (the median was one (1)). In total, the example activities

included 52 examples, collectively containing 531 line explanations, and 71 challenges.

6.3.4.2 Pre- and Post-Tests The pretest consisted of 10 questions that evaluated

a student’s prior knowledge of a subset of programming constructs that were covered

59

Figure 17: An instance of a Parson’s problem in the practice system. The student
assembles the solution to the question (written at the bottom) by dragging lines of
code to the right side.

in the course. The questions were designed to cover both simple and complex concepts

in Python programming. The first five questions were multiple-choice questions that

asked the students to select the correct code snippet for each given task. The remaining

five questions asked the student to determine the correct order of the provided lines

of code, in order to achieve a certain purpose. The lines were shuffled and included

distractors. A post-test was isomorphic to the pre-test. The maximum possible score

on the pre/post-test was 10; one point for each question.

6.3.5 Metrics

We employed a variety of measures to compare the impact of the PCEX and textbook-

style program construction examples on student’s engagement and learning. Table 5

provides an overview of the metrics we used in our study. As mentioned in Section 4.2,

we grouped these into engagement, performance, and learning metrics.

60

6.3.5.1 Engagement metrics Behavioral engagement metrics focused on 1) work

done on the examples and problems, and 2) overall system usage. The specific measures

include number of attempts as well as the time on task for both examples and problems.

Each example activity consisted of subtasks that were similar code examples that

were presented in different formats, depending on the group. In the Experimental

group, the first subtask was a worked example and the next-to-last subtask was a chal-

lenge. In the Control group, all subtasks were worked examples presented in static,

textbook-style form. To measure the amount of work done on examples, we looked at

the student’s work on the first and next-to-last subtasks individually. Therefore, the

collected data included the following measures for representing the work on examples:

number of first subtasks viewed, total time on first subtasks, number of next-to-last sub-

tasks viewed, total time on next-to-last subtasks, and interactions with explanations. In

the Control group, interactions with explanations indicated the number of times the

student switched between the modes with and without explanations. In the Experimen-

tal group, on the other hand, the interactions with explanations indicated the number

of times the student clicked on the question mark symbol next to a line, to view the

explanation.

The data also included several measures related to overall system usage such as

total time spent on the practice system, total attempts on activities, and number of

sessions the student practiced with the system.

6.3.5.2 Performance metrics We looked into coding performance within and out-

side of the practice system. The total number of Parson’s problems solved and the num-

ber of distinct Parson’s problems solved were measures of coding performance within

the practice system. The measures of coding performance outside of the practice system

included: total points that the student earned from coding assignments in the class and

how early students submitted their coding assignments.

The assignment points were obtained from nine rounds of coding exercises during

the course, producing a total with a minimum of 0 and maximum of 5,820 points.

61

Table 5: Overview of the metrics used to evaluate the PCEX examples.

Aspect Goal Metric

Engagement

Work on examples

Number of first subtasks viewed

Total time on first subtasks

Number of next-to-last subtasks viewed

Total time on next-to-last subtasks

Interactions with explanations

Work on problems

Total number of Parson’s problems solved

Distinct Parson’s problems solved

Total time on Parson’s problems

Overall system usage

Total practice time

Total attempts on activities

Number of practice sessions

Performance
Inside-system problem-solving performance

Total number of Parson’s problems solved

Distinct Parson’s problems solved

Outside-system problem-solving performance
Assignment points

Early submission

Learning
Near transfer Pre- and post-test

Far transfer

Final exam

• program comprehension questions

• program construction questions (basic, complex)

Each assignment could be completed during a certain window of time during the term.

Sometimes students spent a large amount of time completing the homework and other

times they were quicker, apparently better prepared from prior instruction. As a proxy

measure for the degree of student preparation, enabling them to complete their home-

work sooner, we calculated the inverse of the median number of days that homework

was submitted after the assignment had been introduced1.

1We chose start date over due date as the time reference because some students submitted homework
after the due date was passed. Therefore, using the difference between the due date and the submission
date would have made interpretation of results difficult as some differences would be negative.

62

6.3.5.3 Learning metrics We measured student’s learning by using the pre- and

post-test (near transfer measure) and final exam score (far transfer measure). The

final exam consisted of questions that assessed program comprehension and program

construction skills. The program construction questions were further grouped into two

basic questions and one complex question. The first basic question asked about basic

concepts in the course. The second basic question asked the student to complete a

quite simple task, writing a simple class and a main program which used that class.

The complex question, required a deeper understanding of loops, opening files, splitting

strings and exception handling and was more difficult than the basic questions. We

separated the grades for each group of exam questions. The maximum points that

students could obtain was: 21 on the program comprehension questions, 55 on the

basic program construction questions, and 20 on the complex program question. The

Cronbach’s α between the three subcomponents in the exam was .67, which indicated

acceptable reliability.

6.4 RESULTS

6.4.1 Students participation and collected data

Out of the 723 students enrolled in the class, only 202 used the system (i.e., had at least

one attempt on an example or problem), 696 took the pre-test, 457 took the post-test,

447 took both the pre-test and post-test, and 456 answered the questionnaire. Among

the students who used the system, 6 students had an extremely high pre-test score (i.e.,

90 percent or above). We discarded the data of those 6 students since they had little

to learn and were likely only participating for extra credit. The final dataset included

the data from 196 students: 118 students in the Control group and 78 students in the

Experimental group. We used this data to perform our analysis of engagement and

performance.

63

According to the learning gain data, we observed that some students had negative

learning gains (minimum value was −0.5), which likely reflects that a few students

did not take the post-test seriously. More precisely, among 196 students who used

the system, 49 earned fewer points in the post-test than in the pre-test, of which

32 were in the Control group and 17 were in the Experimental group. For only the

learning analysis section, we excluded this group of students who had negative learning

gains2. After discarding these students, we were left with data on 147 students (86

in the Control group, 61 in the Experimental) for the learning analysis. Note that

there were no significant differences in the mean pre-test scores of the Experimental

(M = 3.5, SD = 1.8) and Control group (M = 3.2, SD = 1.5), F (1, 116.08) = .77,

p = 0.38.

Prior to data analysis, we identified outliers in the collected data using Tukey’s box-

plot method, which defines outliers as being outside the interval [Q1−1.5× IQR,Q3+

1.5×IQR], where Q stands for “quartile” and IQR stands for “interquartile range”. We

used winsorization to replace the outliers with less extreme values in the same direction

(i.e., Q1− 1.5× IQR or Q3 + 1.5× IQR).

Finally, we examined the collected data to remove highly correlated measures. We

observed that two of the measures related to the overall system usage, namely, total

practice time and total attempts on activities, were highly correlated with each other

(ρ = 0.83). Also, both measures were found to be highly correlated with the number

of first subtasks viewed, and ρ was .80 for the total practice time and .99 for the total

attempts on activities. As a result, we chose to use only the number of sessions as

a measure of overall system usage. Similarly, the total number of Parson’s problems

solved was highly correlated with distinct Parson’s problem solved (ρ = 0.99); therefore,

we excluded the total number of Parson’s problems solved from our analysis.

The following subsections present the results from the data analyses. Table 6 sum-

marizes our results by showing the hypotheses of Classroom Study 2 (described in

2Using all student data showed the same pattern of results for this analysis.

64

Section 6.3.1), the corresponding data analyses, and whether the hypotheses were con-

firmed by the data analyses.

Table 6: Summary of hypotheses and results of Classroom Study 2.

Hypotheses Data Analyses Measures
Hypotheses Confirmed?

Group effect

Hypotheses Confirmed?

Interaction effect

H1 – PCEX vs. textbook-style

examples: engagement

Section 6.4.2 time-on-task X N/A

interactions with explanations x N/A

H2 – PCEX vs. textbook-style

examples: problem-solving

Section 6.4.3 dist. Parson’s problems solved x x

assignment points X x

early submission X X

H3 – PCEX vs. textbook-style

examples: learning

Section 6.4.4 post-test x X

exam: code comprehension x x

exam: basic code construction x x

exam: complex code construction X x

6.4.2 Engagement analysis

Our first hypothesis (H1) was that PCEX would make students be more actively in-

volved in PCEX worked examples than in the textbook-style worked examples. To test

hypothesis H1, we used a one-way ANOVA to compare the group means; for statisti-

cally significant cases, effect sizes using eta-squared (η2) are presented in (Table 7). The

metrics in Table 7 are ordered with a decreasing order of effect size. We used Cohen’s

rules of thumb for interpreting this data, with an effect size of 0.02 being considered

“small” in magnitude, 0.06 being “medium”, and 0.14 being “large”.

We can see that among all the measures, the ones that are related to the worked

examples display the largest differences between the two groups. The largest effect

comes from working on the next-to-last subtask. The mean of total time spent on the

next-to-last subtask was 4 times greater in the Experimental group as compared to the

Control group (36.7 vs. 8.3 mins.). The second largest effect was seen for working on

65

T
ab

le
7:

M
ea
ns

(a
nd

SD
)
fo
r
en
ga

ge
m
en
t
m
et
ri
cs

in
th
e
C
on

tr
ol

an
d
E
xp

er
im

en
ta
lg

ro
up

s,
al
on

g
w
it
h
in
fe
re
nt
ia
ls

ta
ti
s-

ti
cs

an
d
eff

ec
t
si
ze
s,

co
nt
ra
st
in
g
th
e
gr
ou

ps
.

C
on

tr
ol

(N
=
11

8)

M
ea
n
±

SD

E
xp

er
im

en
ta
l(
N
=
78

)

M
ea
n
±

SD
O
ne
-w

ay
A
N
O
VA

E
ffe

ct
si
ze

(η
2
)

W
O
R
K

O
N

E
X
A
M
P
LE

S

To
ta
lt

im
e
on

ne
xt
-t
o-
la
st

su
bt
as
ks

(m
in
s.
)

8.
3
±

14
.9

36
.7
±

29
.5

F
(1
,1
03
.1
2)

=
61
.9
1,
p
<
.0
01

∗∗
∗

.2
9
L

In
te
ra
ct
io
ns

w
it
h
ex
pl
an

at
io
ns

30
.0
±

23
.9

14
.9
±

24
.0

F
(1
,1
64
.1
8)

=
18
.7
4,
p
<
.0
01

∗∗
∗

.0
9
M

To
ta
lt

im
e
on

fir
st

su
bt
as
ks

(m
in
s.
)

2.
1
±

1.
9

3.
1
±

2.
3

F
(1
,1
44
.7
9)

=
10
.5
4,
p
=
.0
01

∗∗
.0
6
M

#
fir
st

su
bt
as
ks

vi
ew

ed
23

.6
±

18
.9

19
.0
±

16
.9

F
(1
,1
77
.1
9)

=
3.
24
,p

=
.0
73

.
.0
2
S

#
ne
xt
-t
o-
la
st

su
bt
as
ks

vi
ew

ed
31

.6
±

27
.2

24
.5
±

24
.0

F
(1
,1
78
.5
6)

=
3.
66
,p

=
.0
57

.
.0
2
S

O
V
E
R
A
LL

SY
ST

E
M

U
SA

G
E

N
um

be
r
of

se
ss
io
ns

3.
8
±

3.
0

5.
1
±

4.
1

F
(1
,1
94
)
=

6.
63
,p

=
.0
11

∗
.0
3
S

W
O
R
K

O
N

P
R
O
B
LE

M
S

D
is
ti
nc
t
P
ar
so
n’
s
pr
ob

le
m
s
so
lv
ed

14
.5
±

11
.9

12
.3
±

11
.5

F
(1
,1
68
.8
2)

=
1.
56
,p

=
.2
13

To
ta
lt

im
e
on

P
ar
so
n’
s
pr
ob

le
m
s
(m

in
s.
)

31
.0
±

29
.4

24
.9
±

26
.5

F
(1
,1
76
.5
6)

=
2.
29
,p

=
.1
32

∗∗
∗ p
<
.0
01

;∗
∗ p
<
.0
1
;∗
p
<
.0
5
;.
p
<
.1

E
ffe

ct
si
ze
:
S
=
sm

al
l;
M

=
m
ed
iu
m
;L

=
la
rg
e

66

the first subtask. The total time students spent on first subtasks was about 1.5 times

greater in the Experimental group (3.1 mins.) than in the Control group (2.1 mins.).

We also observed that students had more interactions with explanations in the

Control group than in the Experimental group. On average, the students in the Control

group clicked on the show/hide explanations links 30 times, twice as high as in the

Experimental group (14.9 times). We also found differences between the two groups in

terms of the number of first subtasks and next-to-last subtasks that students viewed.

Students in the Control group viewed, on average, more first subtasks and next-to-last

subtasks. Yet, the differences reached only marginal significance and the effect size was

small.

In addition to the differences between usage of activities, we also observed that the

two groups were different in terms of number of practice sessions. The mean number of

sessions differed by one across the two groups, with the Experimental group having more

sessions (M = 4.1, SD = 4.1) than the Control group (M = 3.8, SD = 3). However,

both the number of Parson’s problems solved and the time spent on Parson’s problems

were not statistically different between the two groups.

In sum, the ANOVA analyses of cognitive-behavioral engagement data partially

supported hypothesis H1, favoring greater time-on-task but not more interactions with

explanations. While students in the Control group viewed marginally more examples,

they spent less time on the example subtasks. Students in the Experimental group, on

the other hand, spent more time working with examples — about 1.5 more time on

the first subtasks and 4 times more time on the next-to-last subtasks. The increase on

time-on-task can be attributed to students becoming more involved when working with

the PCEX examples than when working with the textbook-style worked examples.

Contrary to our hypothesis for greater interactions with the PCEX examples, we

found that the Control group students used the “show/hide explanation” button more

than the Experimental group students clicked on example lines to view explanations.

This difference, however, could be due to how explanations were presented in the

textbook-style worked examples and PCEX examples. As mentioned earlier in Sec-

67

tion 6.2, explanations were shown by default in the textbook-style examples, to make

the presentation of the worked examples similar to the programming textbooks. On the

other hand, explanations were only available by taking action in the PCEX examples.

Therefore, we conjecture that the students viewing the textbook-style examples were

influenced by needing a greater number of clicks to hide the explanations compared to

viewing the code alone, similar to the way in which it was presented to the Experimen-

tal group. Our data supports this conjecture by showing that, on average, the median

of clicks on the “hide explanation” button was twice more than the median of clicks on

the “show explanation” button in an example (0.2 vs. 0.1).

6.4.3 Performance analysis

Our second hypothesis (H2) was that working with PCEX would improve student’s

performance on program construction tasks more than the textbook-style worked exam-

ples would. To test hypothesis H2, we ran a series of regression analyses–to examine the

effect of group, the amount of work on examples, and the interaction between group and

the amount of work on examples–for the student coding performance, while controlling

for prior learning, as indicated by the pre-test. That is, the independent variables were:

• Group – a dummy variable representing the group that student belonged to,

with the Control group serving as the reference group factor,

• WOE – a continuous variable representing the combined work on the first sub-

tasks and next-to-last subtasks in the example activities,

• Pretest – a continuous variable representing the student’s pretest score, and

• TheGroup ×WOE interaction – This interaction means that the effect ofGroup

on the performance measure is different for different values of work on examples. All

numeric independent variables (Pre-test and WOE) were mean-centered to reduce

potential multicollinearity problems [Aiken et al., 1991].

The dependent variables were measures of coding performance, including

68

Table 8: Regression results of Group, amount of work on examples (WOE), and the
interaction of amount of work on examples with group (Group × WOE), predicting
distinct Parson’s problems solved, assignment points, and earliness of submission of
coding assignments.

Dist. Parson’s problems solved Assignments points Early submission

Predictors B SE β R2 B SE β R2 B SE β R2

Group .67 .74 .06 .82 290.91 146.78 .28∗ .10 .13 .04 .39∗∗ .22

WOE .23 .01 .88 ∗∗∗ 6.07 2.00 .26∗∗ .00 .00 −0.02

Pre-test .38 .21 .06 . 105.17 40.73 .18∗ .05 .01 .29∗∗∗

Group × WOE .02 .02 .07 −2.05 3.43 −0.09 .004 .001 .59∗∗∗

∗∗∗p < .001;∗∗p < .01; ∗p < .05; . p < .1

• Distinct Parson’s problems that student solved,

• Total points that student earned in their coding assignments,

• Earliness of the student’s submissions in the coding assignments, and

• The student’s exam grade in the program comprehension and program construc-

tion questions of the exam.

The data that was used in these analyses was limited to the 194 students who used

the system and had taken the pre-test. For predicting the exam grade, this data was

further limited to the 170 students who had taken the final exam. Table 8 shows the

results of the fitted models.

The results revealed that WOE and Pre-test were positive predictors of distinct

Parson’s problems that student solved (F (4, 189) = 217.2, p < .001, R2 = .82). Impor-

tantly, the effect of WOE on predicting distinct Parson’s problems solved (β = .88) was

about 8 times larger than the effect of pre-test score (β = .06). We found no significant

influence of the Group (p = .371) or the Group × WOE interaction (p = .299). This

indicates that working on examples was associated with solving more Parson’s problems

correctly, regardless of the treatment group.

69

0.00

0.25

0.50

0.75

1.00

−50 −25 0 25 50 75
Work on Examples (centered)

P
re

di
ct

ed
 v

al
ue

s
of

 s
ub

m
is

si
on

 e
ar

lin
es

s

Group

Control

Experimental

Figure 18: Interaction between work on examples (WOE) and Group factor (Con-
trol/Experimental) for predicting the earliness of submissions for coding assignments.
Notches indicate 95% confidence interval ranges.

Group, WOE, and Pre-test were found to be predictors of assignments points,

(F (4, 189) = 5.54, p < .001, R2 = .10), since all were positively associated to as-

signment points. Among them, Group was the most influential (β = .28) and WOE

was the second most influential predictor (β = .26). We found no significant effect for

Group × WOE interaction (p = .551). These results suggest that although work on

examples was generally helpful for getting more points in the coding assignments, it

was overall more helpful to be in the Experimental Group and practice with engaging

examples.

The results of the regression analyses also showed that although WOE was not a

significant predictor of earliness of submission overall (p = .82), Group and Group ×

WOE interaction were a predictor of early submission (Figure 18). As the interaction

plot shows, more activity with examples was associated with submitting assignments

earlier in only the Experimental group. Furthermore, the interaction was found to be

the most important predictor for earliness of submission (β = .59), its effect being

about two times greater than the effect due to pre-test score (β = 0.29).

70

In sum, the multiple regression analyses supported Hypothesis H2 for coding per-

formance outside of the practice system but not within the practice system. We found

an overall positive effect in favor of the Experimental group on assignment points and

submission earliness. Being in the Experimental group and practicing with PCEX ex-

amples was associated with obtaining more points on coding assignments and also with

submitting the assignments earlier. Furthermore, the interaction effect of work with

examples and the treatment group on submission earliness was significant, indicating

that only more work on PCEX examples (and not textbook-style worked examples) led

to earlier submission of assignments.

Our analysis did not show any difference between the treatment groups in terms

of performance within the practice system, though. More work with examples was

associated with solving more Parson’s problems regardless of the treatment group. That

is, textbook-style worked examples and PCEX examples were both helpful for improving

student’s performance on Parson’s problems.

6.4.4 Learning analysis

Our third hypothesis (H3) was that working with PCEX would improve learning out-

comes more than working with the textbook-style worked examples. To test hypothesis

H3, multiple regression analyses were performed to check the effect of work on exam-

ples, the group, and the interaction between the work on examples and group on the

post-test score and exam grade. The independent variables in all the regression models

were similar to the independent variables in Section 6.4.3.

Table 9 shows the results of the regression model that tested the effect of Group,

WOE, and Group × WOE interaction on the post-test score, controlling for the effect

of pre-test score. As expected, Pre-test was the most important predictor of student’s

post-test score (β = .42). Neither Group (p = .128) nor WOE (p = .677) were pre-

dictors of post-test score but Group × WOE was (β = .29); suggesting that the effect

of group depended on the amount of work on example (Figure 19). As it can be seen

71

from the figure, work with examples in the Experimental group increased the student’s

post-test scores more than did work with examples in the Control group.

The results of the fitted models for predicting the exam grade is shown in Table 10.

As the table shows, WOE positively predicts exam grade across all categories of ques-

tions, namely, program comprehension (F (4, 165) = 3.98, p = .004, R2 = .09), basic

program construction (F (4, 165) = 2.56, p = .04, R2 = .06), and complex program con-

struction (F (4, 165) = 3.07, p = .018, R2 = .07). Also, the Group factor is a significant

predictor for complex question performance. The interaction Group × WOE is not

statistically significant for any exam category. For the complex program construction

questions, Group (β = .28) and WOE (β = .23) are the most and second-most impor-

tant predictors, respectively, and the effect of each was about two times more than the

effect of the Pre-test (β = .12).

In sum, the multiple regression analyses of the learning outcomes supports Hypoth-

esis H3, demonstrating a significant positive interaction between work with examples

and treatment group on post-test (near transfer test) and a marginal positive effect

of treatment group on the complex program construction questions in the final exam

(far transfer test). More specifically, more work with only the PCEX examples (and

not the textbook-style worked examples) was associated with a higher post-test score.

Additionally, being in the Experimental group and practicing with PCEX examples

Table 9: Regression results of predicted post-test score, while controlling for the
pre-test score.

Predictors B SE β R2

Group .32 .21 .22 .22

WOE .0 .0 .04

Pre-test .35 .06 .42∗∗∗

Group × WOE .01 .0 .29∗

∗∗∗p < .001;∗∗p < .01; . p < .1

72

6

7

8

9

10

−50 −25 0 25 50 75
Work on Examples (centered)

P
re

di
ct

ed
 v

al
ue

s
of

 p
os

t−
te

st

Group

Control

Experimental

Figure 19: Interaction between work on examples (WOE) and Group factor (Con-
trol/Experimental) for predicting the post-test score. Notches indicate 95% confi-
dence interval ranges.

Table 10: Regression results of group, amount of work on examples (WOE), and the
interaction of amount of work on examples with group predicting exam grade on the
program comprehension and construction questions.

Program Construction

Program Comprehension Basic Complex

Predictors B SE β R2 B SE β R2 B SE β R2

Group −0.66 .75 −0.13 .09 1.03 1.68 .09 .06 1.22 .66 .28 . .07

WOE .02 .01 .20∗ .06 .02 .23∗ .02 .01 .23∗

Pre-test .43 .21 .16∗ .94 .47 .15∗ .31 .18 .12 .

Group × WOE .01 .02 .10 −0.04 .04 −0.15 −0.01 .02 −0.12
∗p < .05; . p < .1

was marginally associated with obtaining a higher grade in the complex program con-

struction questions of the final exam. We found no differences between the PCEX and

textbook-style worked examples on other questions in the final exam. Work with exam-

ples in both groups was found to be positively associated with obtaining a higher grade

73

in the program comprehension questions and basic program construction questions of

the final exam.

6.4.5 Survey analysis

Before analyzing the survey group differences, we assessed each construct’s reliability

using Cronbach’s α. We dropped two items from the engagement construct and one item

from the quality construct because their item-construct correlations were lower than

the recommended value, .30. Additionally, we checked whether the internal consistency

could improve if any of the items within a construct were deleted. We discarded one

item in the quality construct because it increased the internal consistency among the

items of the construct, improving the α from .7 to .73. No item was discarded from

the learning and engagement construct as all items had acceptable internal consistency

with the other items within that construct. The α was .74 for the learning construct

and .7 for the engagement construct. After this step, all three constructs appeared to

be sufficiently reliable for assessing the value of the examples, with α values exceeding

the suggested minimum acceptable α coefficient of .50 [Nunnally and Bernstein, 1978].

Out of the 456 students who completed the survey, 15% (N = 67) used the system

more than 10 times, 14% (N = 62) used the system between 5 and 10 times, 26%

(N = 120) used the system less than 5 times, and 45% (N = 207) did not use the

system at all. The mean and standard deviation for each item in the survey is shown

in Table 11. Overall, students mostly agreed that they did not use the system due to

preferring other resources and materials, not feeling the need for additional help, and

lack of time. Students disagreed with items that suggested other reasons for low/zero of

the practice system, including the items that referred to having a bad system experience.

Overall, about 60% of the students agreed with each of the items in the quality

construct, while less than half of the students agreed with each of the items related

to the learning construct (the agreement level varied from 30% to 45%). Overall

agreement with each of the items in the engagement construct was low (below 30%).

74

Table 11: Survey summary in Classroom Study 2.

Item Mean (SD)

REASONS FOR LOW/ZERO USAGE

I preferred to use other resources and material to learn Python 4.0 (0.9)

I was doing well in class without the system and did not need any extra help 3.9 (1.0)

I did not have enough time to use the system 3.4 (1.1)

The system was not introduced properly in class 3.0 (1.0)

I didn’t think the system can help me to better master Python 3.0 (0.9)

The user interface was too confusing to use 2.9 (0.8)

EXAMPLE EVALUATION

Quality

The explanations in the examples were easy to follow 3.6 (0.8)

The explanations in the examples were not hard to understanda 3.5 (0.9)

Learning

The explanations in the examples helped me to better understand the Python programming conceptsa 3.3 (0.8)

Working with the examples helped me learn Python 3.3 (0.8)

Exploring similar examples helped me learn Python 3.2 (0.7)

The examples helped me in solving Python exercises in this classa 3.0 (0.9)

Engagement

I tried hard to understand the examples 2.9 (1.0)

I did not skim-read the examplesa 2.6 (1.0)

aA reverse-coded item.

Thus many students did not perceive examples to be engaging. Figure 20 illustrates

the mean ratings in the two study groups for the survey constructs that assessed the

value of examples. As it can be seen from Figure 20, in both groups, students were most

positive about the quality of examples and the least positive about engagement with the

examples. The Kruskal-Wallis test showed no significant differences in the the mean

ratings of the study groups in the quality construct (χ2(1) = .67, p = .41), learning

construct (χ2(1) = .26, p = .61), or the engagement construct (χ2(1) = .32, p = .57).

75

0

1

2

3

Quality Learning Engagement
Survey construct

R
at

in
g Group

Control

Experimental

Figure 20: Mean and standard error of group ratings in the survey constructs as-
sessing the value of examples.

The pattern of results did not change when we excluded data of students who used the

system less than 10 times or less than 5 times.

76

6.5 SUMMARY AND DISCUSSION

6.5.1 Summary

This section summarizes and discusses our findings from the classroom study that

compared PCEX to textbook-style worked examples that were focused on program con-

struction skills.

6.5.1.1 Overall effects on engagement Students were more engaged in the work

with PCEX than with the textbook-style worked examples. The largest effect comes

from the work on next-to-last subtasks. The mean of total time on next-to-last subtasks

was 4 times more in the Experimental group compared to the Control group. The

second largest effect was for the work on the first subtasks. The total time student

spent on first subtasks was about 1.5 times higher in the Experimental group than

in the Control group. We also observed that the mean interaction with explanations

was low in both groups, suggesting that the interactivity element implemented in the

first subtask in the Experimental group was not as engaging as next-to-last subtasks

(i.e., challenges) were. We also observed that students in Experimental group had,

on average, more practice sessions. Although the effect size was small, it suggests

that students in the Experimental were more interested in returning to the system for

practice. We could attribute this to PCEX, since the only difference between the groups

was in how examples were presented in the system.

6.5.1.2 Overall effects on problem-solving performance We found that work-

ing on examples and having higher pre-test scores were associated with solving more

Parson’s problems correctly, regardless of the treatment group. Among these two pre-

dictors, the effect of work on examples on predicting distinct Parson’s problems solved

was about 8 times larger than the effect of pre-test score. We also found that work on

examples, group, and pre-test, were positive predictors of assignment points. Notably,

77

group and work on examples were found to be the most influential influential predic-

tors, with higher predictive power than the pre-test scores were. We also found that the

effect of group on submission earliness depended on the amount of work on examples.

More work on the examples in the Experimental group is associated with submitting

assignments earlier. Furthermore, the interaction was found to be the most important

predictor for the earliness of submission, its effect was about two times greater than

pre-test score.

6.5.1.3 Overall effects on learning outcomes For predicting post-test scores,

as expected, pre-test scores had the most predictive power. Yet, we observed that

work with examples in the Experimental group increased the student post-test scores

more than the work with examples in the Control group. This difference gets larger

as the amount of work increases in the Experimental group. Furthermore, work on

examples and pre-test were positively predicting exam grade across all categories of

questions. Work on examples became a more important predictor than pre-test scores

as our analysis moved from program comprehension to basic program construction and

then to complex program construction questions in the exam. For the complex program

construction questions, group was also a positive predictor, and the effect of group and

work on examples was about two times more than the pre-test scores were.

6.5.1.4 Students’ feedback Survey results showed that students were positive

toward the quality of explanation, almost neutral toward the helpfulness of the examples

for learning, and did not perceive examples to be engaging.

78

6.5.2 Discussion

Our findings from Classroom Study 2 support the positive impact of PCEX examples

on student’s engagement, problem-solving performance, and learning. However, some

aspects of our findings need to be discussed further:

Firstly, while the measure of submission earliness could be an indicator of how

students were prepared better/worse to submit the code, we also acknowledge that

submitting coding assignments earlier could have been due to the student’s better time

management skills, or other factors related to the student’s self-regulation skills.

Secondly, on one hand, Hypothesis H1 states that engaging examples increase stu-

dent’s engagement (e.g., time on task) while working with the examples. On the other

hand, Hypotheses H2 and H3 state that engaging examples lead to better performance

in coding and learning outcomes, respectively. We acknowledge that H2 and H3 are

likely results of H1. In general, time on task is positively correlated with learning and

better performance, but the main challenge is how to get the student motivated to

spend more time. The use of engaging examples, which we proposed in this disserta-

tion, are a solution to this challenge. Our results showed that students spent more time

on the PCEX examples because they were engaged more and, as a result, learned more

and obtained better problem-solving performance.

Thirdly, we observed from the survey responses that students in both groups were

neutral toward learning from examples and had a negative opinion about being en-

gaged by the examples. These observations contradict what we have found from our

engagement, learning, and performance analyses, because results showed that PCEX

examples involved students in working more with examples; thus, increasing the time

on task. Similarly, work with PCEX examples improved student’s learning and coding

skills. The difference in the quantitative and qualitative analysis implies that, first,

PCEX examples engaged students and improved their learning but students did not

realize that they were engaged and improving. Second, lower ratings might mean that

students in the context of our study had higher expectations for the learning tool. This

79

is evident when we compare survey responses in Classroom Study 1 and Classroom

Study 2. Students in Classroom Study 2 gave lower ratings to all constructs of the

example evaluation survey compared to the students in Classroom Study 1. Finally, it

might be that students perceived engagement items in the survey differently than how

we expected they would.

80

7.0 USER STUDY: CONTROLLED STUDY OF ADAPTIVE FADING

The chapter describes the controlled user study that I conducted to address RQ5 and

RQ6 (described in Section 1.2) to measure the effect of adaptive fading in PCEX exam-

ples on student’s problem-solving performance and learning, relative to the no fading

of example steps. This chapter explains the fading strategy, student model that I used

to track student’s knowledge during the study, study design, and presents the results.

7.1 RESEARCH QUESTIONS

The research questions that will be addressed in this study are stated below. We inves-

tigated these questions to build a better understanding of the impact of the adaptive

fading in the PCEX examples on learning programming relative to not fading any

example step. Specific hypotheses related to the research questions are presented in

Section 7.4.1.

RQ5. Would the adaptive fading of PCEX example steps, based on a student’s current

knowledge, lead to better problem-solving performance than by not fading any

example steps? [Hypothesis 1 and 2]

RQ6. Would the adaptive fading of PCEX example steps based on a student’s knowl-

edge lead to better learning than by not fading any example steps? [Hypothesis

3]

81

7.2 ADAPTIVE FADING STRATEGY

To adapt the example presentation to the student’s knowledge, we need to decide “how”

and “when” to fade the amount of support in an example. The idea is to help the student

rehearse what she/he already knows. Therefore, we fade the amount of support in an

example by presenting the example with one or more missing steps that the student

has to complete. Any step in the example that the student has acquired sufficient

level of knowledge in its concepts are faded. In this study, we used a Bayesian Network,

described in Section 7.3, to model the student’s knowledge of the programming concepts.

The Bayesian Network updated estimates of student’s knowledge after the student’s

attempt on the pre-test problems as well as the problems in Topic 1 and Topic 2.

During the study, when the student wanted to move to the next example in the

Fading condition, the fading strategy used all of the concepts that appeared in the

lines that could possibly be faded, then received the knowledge estimates for those

concepts, and then calculated the mastery level for each of those lines by averaging the

estimates of concepts inside each of them. If the average of knowledge estimates in a

line’s concepts was above the threshold, set at 0.7, then that line was faded when the

example was presented to the student. In this manner, the adaptive fading strategy

adapted to each individual student’s evolving level of knowledge, giving the student

more practice for what she/he has learned. Note that we set the fading threshold to be

0.7 as it was used by Salden et al. [2009] in a similar study to fade the example steps

based on the student’s knowledge estimates. Furthermore, this threshold provided

reasonable adaptation to student’s knowledge when we pilot-tested it on users with

different performance levels in the study.

82

7.3 BAYESIAN NETWORK STUDENT MODEL

To enable personalized access to examples, we first need a student model that could keep

track of student’s knowledge in the domain concepts. Having such a model enables an

effective transition between worked examples and problems, i.e., starting with worked

examples, and as the student learns, gradually fading the support in the examples, and

finally moving to problems. Various approaches for modeling students have been pro-

posed [Brusilovsky and Millán, 2007]. One of the well-known approaches for modeling

a student is the overlay model. An overlay model represents the domain to be learned

as a set of knowledge components (KCs) and independently models learner’s knowledge

of each of these KCs. Bayesian knowledge tracing [Corbett and Anderson, 1995] is

a successful example of overlay modeling that has enabled high-quality prediction of

student’s problem-solving performance and various personalization approaches.

I modeled student’s knowledge using overlay models based on Bayesian Networks.

The Bayesian Network was developed using the GeNIe modeling environment developed

by the Decision Systems Laboratory of the University of Pittsburgh1. The network con-

sisted of concept nodes that represented the domain knowledge and the activity nodes

that included those concepts. The concepts were from the Java ontology2 and were

extracted automatically from each activity using a parser [Hosseini and Brusilovsky,

2013] that I developed. To reduce the complexity of the network, the parsed concepts

were further reduced to 30% (using TF-IDF) to keep only the most important concepts

related to the activity [Huang et al., 2014]. The concepts and activity nodes were in-

directly dependent on each other through Noisy AND gates. A noisy-AND gate has a

high probability of being true only if at least one of its parents is true. The concept

nodes were parent of the nosiy AND gates and the noisy AND gates were parent of

the activity nodes. We used this structure for the network because, in practice, re-

stricting conditional probabilities to noisy-ANDs (or noisy-ORs) significantly reduces

1http://dsl.sis.pitt.edu
2http://www.sis.pitt.edu/~paws/ont/java.owl

83

http://dsl.sis.pitt.edu
http://www.sis.pitt.edu/~paws/ont/java.owl

the number of required probabilities and makes the modeling of unobserved variables

much simpler [Mayo and Mitrovic, 2001].

The initial estimates for the network nodes were obtained by training the network

on the data that was collected from students’ usage of the activities in classrooms.

In this study, Bayes’ theorem was used to recalculate the probability estimates in the

network nodes after the student’s attempts on the pre-test coding questions. The

estimates were also updated after the student’s attempts on problems. Every time the

student completed a problem, the system updated the probability estimates related to

the concepts involved in that problem. The probability estimates increased when the

student’s answer was correct, and decreased otherwise.

7.4 THE STUDY

7.4.1 Hypotheses

The study tested the following hypotheses regarding the benefits of adaptive Fading

relative to No-Fading of example steps:

H1. Adaptive fading of example steps would improve student’s performance on prac-

tice problems more than not fading any example step

H1a. Adaptive fading of example steps would result in solving problems in a

fewer number of attempts and in less time than not fading any example step

H1b. Adaptive fading of example steps would result in investing a lower amount

of mental effort on solving problems than not fading any example step

H2. Adaptive fading of example steps would improve student’s performance on the

test problems more than not fading any example step

H2a. Adaptive fading of example steps would result in having less problem-

solving time in the post-test problems than not fading any example step

84

H2b. Adaptive fading of example steps would result in higher efficiency in solving

the post-test problems than not fading any example step

H2c. Adaptive fading of example steps would result in investing a lower amount

of mental effort to solve the post-test problems than not fading any example

step

H3. Adaptive fading of example steps would improve student’s learning outcomes

more than not fading any example step

7.4.2 Study design

The study had a 1× 2 factorial design with the within-subject factor “Condition” (No

fading, Fading). Participants practiced two topics (Topic 1 and Topic 2), each under one

condition. In the No fading condition students practiced with the worked example and

problem pairs. In Fading condition students practiced with pairs that included a faded

example and a problem and the decision to fade an example step was made adaptively

based on student’s knowledge. The conditions were counterbalanced across subjects to

control for order effects from practice or fatigue. Some participants were exposed to

the No fading in Topic 1, then Fading in Topic 2. Other participants received Fading

in Topic 1, then No fading in Topic 2. To reduce the learning effect across the two

conditions, we minimized overlap between these two topics. Additionally, to control for

the pre-test effects, we balanced the number of low- and high-pretest students when

assigning the subjects to each of these condition orders.

7.4.3 Participants and procedure

The study was conducted in Spring 2018 semester and included 38 students from the

University of Pittsburgh and Carnegie Mellon University. The requirement for partic-

ipating in the study was to have little or no familiarity with Java but have knowledge

of basic programming concepts in another programming language. The study was con-

ducted in one session lasting about 90 minutes. First, the students read and signed

85

the consent form for the study and answered a short questionnaire about their prior

experience in programming. Then, they were introduced to the system and they were

given some minutes to get familiar with worked examples, faded examples, and prob-

lems. After that, they took the pre-test (20 minutes). Then, they practiced on Topic

1 and Topic 2 (20 minutes each). In both topics, participants were asked how much

effort they invested to complete each problem they attempted. They could respond

using a 9-point Likert scale ranging from very, very low (1) to very, very high (9). In

the end, they took the post-test (20 minutes). All participants were compensated $20

upon completion of the study session.

7.4.4 Materials

7.4.4.1 Practice content The study focused on two topics in Java programming.

Topic 1 was “Boolean Expression and If-Else” and Topic 2 was “For-Loops and Nested

For-Loops”. In each topic, there were 8 pairs of isomorphic tasks of increasing com-

plexity. The first task in each pair was an example and the second task in each pair

was a problem. Examples were presented by the PCEX system (as in Figure 21 for

non-faded examples and Figure 22 for faded examples) and problems were presented

using the PCRS tool (as in Figure 10).

Figure 21 illustrates a non-faded example in the study. A non-faded example showed

the complete code and the link to the explanations for the code lines. The student

could click on question mark symbols to view the explanation for the code lines. A

faded version of the same example is shown in Figure 22. In the faded example, one or

more of the lines were missing (depending on the student’s knowledge) and the student

had to complete the code by dragging and dropping the given lines into the blank lines.

When the student checked the code, the correct (shown in green) and incorrect (shown

in red) lines were highlighted. The student could request to view the reason that the

answer was incorrect or could ask for a hint. The student could navigate to the problem

in the 3rd pair by pressing the button “Next” (located on top of the screen).

86

Figure 21: A non-faded example in the 3rd pair of Topic 1 in the No-fading condi-
tion. The explanation is shown for the highlighted line (in yellow) after the student
clicked on the question mark next to that line. At any time, the student could click
on the button “Next” to go to the problem in the 3rd pair.

7.4.4.2 Pre- and post-tests The pre-test and post-test were different but isomor-

phic tests that consisted of two parts. First, students had to answer 4 questions (2 for

each topic) that asked the students to find the correct order of the lines for the given

tasks. After that, they had to answer 5 questions (3 for Topic 1, 2 for Topic 2) that

asked the students to write the code using the PCRS tool. After each coding question

student rated the mental effort as they did during working on the problems in Topic 1

and Topic 2. The time on pre-test was limited to 20 minutes, 5 minutes for the ordering

question and 15 minutes for the coding questions.

7.4.5 Metrics

We grouped our metrics into performance and learning metrics, as described in Section

4.2. The performance metrics included: median time on all problems attempted as well

as solved problems, the median of perceived mental effort on solved problems, number

87

Figure 22: A faded example in the 3rd pair of Topic 1 in the Fading condition. The
student could click on the “Show Me What’s Wrong” button to view the expected
output vs. the code output. Also, she/he could request a hint by clicking on the
“Show Me Hint” button. The student could click on the “Next” button to go to the
problem in the 3rd pair.

of attempts to solve a problem, and efficiency. For the No fading and Fading condition,

these measures were calculated by taking into account the problems that were related to

the topic for which students received worked examples and faded examples, respectively.

Efficiency was calculated according to the suggestion by Paas and Van Merriënboer

[1993], using the z-scores of the median time on problems and median ratio of the tests

passed on problems (note that higher values indicate higher efficiency). We used the

medians of problem-solving time and mental effort for measuring performance in both

practice and test problems. The number of attempts to solve a problem was used as a

measure of performance in practice problems and efficiency was used as a measure of

test performance.

88

The learning metrics included pre-test and post-test scores. We distinguished be-

tween the overall score and the scores in each of the two parts in the pre-test and

post-test (described in 7.4.4.2).

7.5 RESULTS

18 students received Fading in Topic 1 and 20 students received Fading in Topic 2.

One student receiving Fading in Topic 1 obtained a very high pre-test score and was

therefore discarded from our analyses since there was little to learn. All of the analyses

were performed using the data from the remaining 37 students.

The next subsection compares the No fading and Fading condition in terms of

the amount of practice. After that, the results from the data analyses are presented.

Table 12 summarizes our results by showing the hypotheses of User Study (described

in Section 7.4.1), the corresponding data analyses, and whether the hypotheses were

confirmed by the data analyses.

Table 12: Summary of hypotheses and results of User Study

Hypotheses Data Analyses Measures
Hypotheses Confirmed?

Condition effect

Hypotheses Confirmed?

Interaction effect

H1 – adaptive vs. no fading:

practice problem-solving

Section 7.5.2 number of attempts x X

problem-solving time x X

mental effort x x

H2 – adaptive vs. no fading:

test problem-solving

Section 7.5.3 problem-solving time x N/A

efficiency X N/A

mental effort X N/A

H3 – adaptive vs. no fading:

learning

Section 7.5.4 post-test X N/A

89

7.5.1 Overall practice

Table 13 shows the information about example usage in each condition. On average, in

the No fading condition, students viewed significantly more examples and explanations

than in the Fading condition but spent significantly less time on examples.

Table 14 shows the information related to the usage of faded examples in the Fad-

ing condition. The median number of faded steps ranged from 0 to 4 and followed

a normal distribution, indicating that the adaptation varied across students (Figure

23). Moreover, the number of faded steps significantly increased (ρ = .51, p < .001)

as students viewed more examples (Figure 24), suggesting that the adaptivity mecha-

nism performed reasonably well in adapting to student’s knowledge as it increased the

difficulty of the faded examples through time adapting to evolving levels of knowledge.

Also, the number of faded examples solved was almost the same as the number of faded

examples viewed, suggesting that the students solved almost all of the faded examples

that they viewed. Additionally, the median of the number of attempts and requested

hints on faded examples that the students viewed was 1. This suggests that the adap-

tive fading strategy challenged students with an appropriate level of complexity, and

thus, was not too aggressive in fading example steps.

Table 15 shows the result of the problem-solving attempts during the practice ses-

sion. Students solved significantly more problems in the No Fading condition than in

the Fading condition. The number of complex problems attempted and solved was also

significantly higher in the No fading condition. However, no significant differences were

found for the median of problem-solving time between the two conditions.

We also looked into the differences between the two conditions when faded examples

were included as problem-solving tasks. When faded examples were included, students

solved significantly more problems in the Fading condition than in the No fading con-

dition. Also, when faded examples were included, there was no significant difference

in the number of complex problems solved between the two conditions, even though

the number of attempts on complex problems was marginally higher in the No fading

90

T
ab

le
13

:
D
es
cr
ip
ti
ve

st
at
is
ti
cs

fo
r
ex
am

pl
e
us
ag

e
du

ri
ng

th
e
pr
ac
ti
ce

se
ss
io
n

N
o
fa
di
ng

Fa
di
ng

M
ed
ia
n

M
ea
n

SD
M
in

M
ax

M
ed
ia
n

M
ea
n

SD
M
in

M
ax

W
ilc
ox

on
te
st

T
O
TA

L
E
X
A
M
P
LE

S

N
on

-fa
de
d
ex
am

pl
es

6
5.
9

1.
4

3
8

1
0.
9

1.
2

0
6

V
=

66
6,
p
<
.0
01

∗∗
∗

Fa
de
d
ex
am

pl
es

–
–

–
–

–
4

3.
9

1.
9

0
8

–

N
on

-fa
de
d
&

fa
de
d
ex
am

pl
es

6
5.
9

1.
4

3
8

5
4.
9

1.
3

2
8

V
=

37
0,
p
<
.0
01

∗∗
∗

M
E
D
IA

N
E
X
P
LA

N
A
T
IO

N
S
V
IE

W
E
D

N
on

-fa
de
d
ex
am

pl
es

1
2.
5

3.
9

0
18

1
1

0
1

1
V

=
13
2.
5,
p
=
.1
32

Fa
de
d
ex
am

pl
es

–
–

–
–

–
0

0.
9

2.
1

0
7.
5

–

N
on

-fa
de
d
&

fa
de
d
ex
am

pl
es

1
2.
5

3.
9

0
18

0
0.
9

1.
9

0
7.
5

V
=

28
7.
5,
p
=
.0
05

∗∗

M
E
D
IA

N
T
IM

E
O
N

TA
SK

(S
E
C
)

N
on

-fa
de
d
ex
am

pl
e

33
.5

36
.5

24
.9

10
.5

94
18

28
.4

27
.2

6.
4

10
8.
9

V
=

14
9,
p
=
.2
57

Fa
de
d
ex
am

pl
e

–
–

–
–

–
92

95
.5

30
.4

40
17
1

–

N
on

-fa
de
d
&

fa
de
d
ex
am

pl
e

33
.5

36
.5

24
.9

10
.5

94
86

84
.4

29
33

16
8

V
=

30
,p
<
.0
01

∗∗
∗

∗∗
∗ p
<
.0
01

;∗
∗ p
<
.0
1

91

Table 14: Descriptive statistics related to faded examples in the Fading condition

Median Mean SD Min Max

Median of faded steps 3 2.6 1.2 0 4

Total faded examples viewed 4 3.9 1.9 0 8

Total faded examples solved 4 3.8 1.9 0 8

Median of requested hints 0 0.1 0.2 0 1

Median of attempts 1 1.2 0.4 1 2.5

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

User

M
ed

ia
n

of
 fa

de
d

st
ep

s

Figure 23: The median of faded steps for each user in the study. Each point repre-
sents one user.

condition. And, when faded examples were included, the median of problem-solving

time was significantly lower in the Fading condition than in the No fading condition

— which was expected, as faded examples required less time to solve relative to coding

problems.

92

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8
Example

N
um

be
r

of
 fa

de
d

st
ep

s

Figure 24: The relationship between the faded examples and number of faded steps.
The x-axis shows the order that the examples were presented in the Fading condition.
The y-axis shows the number of faded steps. Darker color represents higher density of
points.

7.5.2 Effects of adaptive fading on performance in practice problems

We first looked into the relative amount of progress during the practice session. All

students completed the first two pairs in each condition, more than 70% reached to the

4th pair, less than half reached the 6th pair, and less than 17% completed the last two

pairs. Since the number of students who completed the last two pairs was too few, we

only focused on the first 6 pairs to compare the impact of the condition on the student’s

problem-solving performance during the practice session.

Our first hypothesis (H1) was that practice in the presence of Fading would improve

student’s performance on practice problems more than No-fading. To test hypothesis

H1, we ran series of mixed models to examine the impact of the condition on the

measures related to problem-solving performance, namely the number of attempts to

solve a problem, the problem-solving time, and the perceived mental effort on problem-

solving. In each model, Condition, Problem, and interaction of Condition with Problem

93

Table 15: Descriptive statistics related to problem-solving attempts during the
practice session

No fading Fading

Mean±SD Mean±SD Wilcoxon test

Problems solved excl. faded examples 3.9±2.3 3.2±2 V = 418.5, p = .036∗

Problems solved incl. faded examples 3.9±2.3 6.9±3.7 V = 23.5, p < .001∗∗∗

Problems solved & partially solved excl. faded examples 4.3±2.2 3.6±1.9 V = 417, p = .013∗

Problems solved & partially solved incl. faded examples 4.3±2.2 7.4±3.7 V = 25, p < .001∗∗∗

Max complexity level attempted excl. faded examples 2.9±1.3 2.3±.9 V = 246, p = .004∗∗

Max complexity level attempted incl. faded examples 2.9±1.3 2.5±1 V = 193.5, p = .079 .

Max complexity level solved excl. faded examples 2.4±1.6 1.8±1.1 V = 276, p = .032∗

Max complexity level solved incl. faded examples 2.4±1.6 2.4±1.1 V = 193.5, p = .832

Median time on a problem excl. faded examples (sec) 183.2±83.2 180.6±86.5 V = 383.5, p = .635

Median time on a problem incl. faded examples (sec) 183.2±83.2 122±53.7 V = 607, p < .001∗∗∗

∗∗∗p < .001;∗∗p < .01; ∗p < .05; . p < .1

were the fixed effects and participant was modeled using a random effect. The variable

Condition was a dummy variable representing the condition during the practice with

No fading condition serving as the reference group factor. The variable Problem was

a continuous variable representing the problem that student completed in the pair i,

i = 1, 2, ..., 6.

Table 16 presents the results of mixed model analysis. The results of the mixed

model analysis for predicting the number of attempts to solve a problem showed that

although Condition was not a significant predictor of number of attempts to solve a

problem overall (p = .112), Condition × Problem interaction was (Figure 25(a)). The

number of attempts to solve a problem was marginally reduced as the student completed

more pairs only in the Fading condition.

94

Table 16: Mixed model results of condition, problem, and the interaction of problem
with condition predicting metrics measuring performance in practice problems

Problem-solving time

Number of attempts All problems Solved problems Mental effort

Predictors β SE p β SE p β SE p β SE p

Condition = Fading .7 .44 .112 29.24 23.59 .216 47.07 21.6 .03∗ .19 .32 .56

Problem −0.02 .09 .813 8.7 4.88 .075 . 6.58 4.67 .16 .07 .07 .33

Condition × Problem −0.23 .14 .096 . −15.27 7.21 .035∗ −19.3 6.8 .005∗∗ −0.05 .1 .63
∗∗p < .01; ∗p < .05; . p < .1

The interaction between Condition and Problem was also found to be significant

predictor of problem-solving time (columns 2 and 3 of Table 16). Compared to the

No fading condition, Fading significantly reduced the time spent on problems as the

students completed more pairs. This relationship existed for all problems as well as

problems solved. For the solved problems, Condition was also a significant positive

predictor of problem-solving time. This suggests that although students in the Fading

condition spent more time on the solved problems overall, they spent less time on

problems as they completed more pairs, even though the complexity of the problems

increased (Figure 25(b)). The results of the mixed model analysis did not show any

impact of the Condition (p = .56) or interaction of Condition with Problem (p = .63)

on the perceived mental effort for solving problems (column 4 of Table 16).

In sum, the mixed model analyses of problem-solving performance during the prac-

tice session supported Hypothesis H1a and H1b, demonstrating a significant negative

interaction between problem and condition on problem-solving time and a marginally

negative interaction between problem and condition on the number of attempts to solve

problems. More specifically, more practice and completion of example-problems pairs

in the Fading condition (and not the No fading condition) was associated with solving

problems in marginally fewer attempts and also in significantly less time. We found

95

0

1

2

3

4

2 4 6

Problem

P
re

di
ct

ed
 v

al
ue

s
of

 n
um

be
r

of
at

te
m

pt
s

to
 s

ol
ve

 a
 p

ro
bl

em

Condition
No fading

Fading

(a)

50

100

150

200

2 4 6

Problem

P
re

di
ct

ed
 v

al
ue

s
of

 ti
m

e
sp

en
t o

n
so

lv
in

g
a

pr
ob

le
m

Condition
No fading

Fading

(b)

Figure 25: Interaction between problem and Condition factor (No fading/Fading)
for predicting (a) the number of attempts to solve a problem and (b) time on solved
problems. Notches indicate 95% confidence interval ranges. The interaction follows
the same pattern for predicting time on all problems.

no differences between No fading and Fading conditions on the perceived mental effort

ratings for the problems students solved.

7.5.3 Effects of adaptive fading on performance in test problems

Our second hypothesis (H2) was that practice in the presence of Fading would improve

student’s performance on test problems more than No-fading. To test hypothesis H2,

we first looked into overall condition differences in terms of the mean performance in

the post-test problems. Table 17 presents the statistics of the performance metrics in

the pre- and post-test. As it can be seen from this table, the Fading condition showed

improvement on all measures from pre-test to post-test. A similar pattern could be

observed for the No fading condition on all measures except efficiency. The mean

efficiency was lower on post-test than pre-test problems in the No fading condition.

When looking at the post-test performance, all measures were in favor of the Fading

96

Table 17: Mean and standard deviation of metrics measuring problem-solving per-
formance in test problems

No fading Fading

Mean±SD Mean±SD

ALL PROBLEMS

Median time on pre-test (sec) 193.6±81 180.8±67.7

Median time on post-test (sec) 150.5±80 131.8±60.1

SOLVED PROBLEMS

Median time on pre-test (sec) 153.2±39.4 176±53.3

Median time on post-test (sec) 116.5±60.9 108.8± 40.3

EFFICIENCY

Pre-test efficiency −0.02±1.05 .01±.9

Post-test efficiency −0.21±1.45 .21±1.08

MENTAL EFFORT

Median of perceived mental effort on pre-test 4.9±.5 4.9±.9

Median of perceived mental effort on post-test 4.0±1.9 3.4±1.7

condition: Compared to the No fading condition, the Fading condition had, on average,

lower median time on problems, higher efficiency, and lower perceived median mental

effort ratings.

We used mixed model analyses to examine whether the effect of Fading exists when

we control for the pre-test performance effect. In all models, Condition and pre-test

performance were fixed effects and a random effect accounted for the user. The variable

Condition was a dummy variable representing the condition during the practice, with

No fading condition serving as the reference group factor. Each variables representing

pre-test performance was a continuous variable.

97

Table 18 presents the results of the fitted models. The mixed model analysis pre-

dicting the median time on post-test problems showed that Median time on pre-test

(β = .32, SE = .1, p = .002) significantly predicted the median time on all post-test

problems but not the solved problem. Although, Condition was not a significant pre-

dictor of the post-test problem-solving time, it had a negative estimated effect for both

all problems and solved problems, pointing to this that Fading tended to reduce the

median time spent on a problem compared to the No fading condition (the first two

DVs in Table 18). Furthermore, results showed that efficiency on post-test problems was

significantly related to pre-test efficiency (β = .61, SE = .13, p < .001) and marginally

related to Fading (β = .41, SE = .23, p = .09) (the third DV in Table 18). And, median

of mental effort ratings on post-test problems was linearly related to both median of

mental effort ratings on pre-test problems (β = .61, SE = .13, p < .001) and condition

(β = .41, SE = .23, p = .089) (the last DV in Table 18).

In sum, mixed models that we ran to investigate the effect of Condition on the

student’s performance on the post-test problems, supported H2b and H2c but not

H2a. The mixed model analyses did not show any significant effect of the condition on

the problem-solving time, but only a tendency for lower time spent on problems favoring

the Fading condition. Furthermore, we found that when the effect of pretest problem-

solving efficiency was controlled, problem-solving efficiency was marginally higher for

post-test problems that were related to the topic that student received faded examples.

Finally, when the effect of mental effort ratings at pre-test was controlled, ratings on

post-test were found to be significantly lower for solved problems that were related to

the topic for which student received faded examples.

98

T
ab

le
18

:
M
ix
ed

m
od

el
re
su
lt
s
of

pr
ed
ic
ti
ng

pe
rf
or
m
an

ce
in

po
st
-t
es
t
pr
ob

le
m
s
co
nt
ro
lli
ng

fo
r
th
e
eff

ec
t
of

co
nd

it
io
n

an
d
pe

rf
or
m
an

ce
in

pr
e-
te
st

pr
ob

le
m
s.

D
V
s
(d
ep

en
de
nt

va
ri
ab

le
s)

ar
e
pr
ed
ic
te
d
us
in
g
th
e
IV

s
(i
nd

ep
en
de
nt

va
ri
ab

le
s)

sh
ow

n
in

th
at

ro
w
.
T
he

da
sh

sy
m
bo

l(
-)

in
di
ca
te
s
th
at

th
e
IV

w
as

no
t
us
ed

in
th
e
m
od

el
.

D
V

M
ed
ia
n
ti
m
e
on

al
l

po
st
-t
es
t
pr
ob

le
m
s

M
ed
ia
n
ti
m
e
on

so
lv
ed

po
st
-t
es
t
pr
ob

le
m
s

P
os
t-
te
st

effi
ci
en
cy

M
ed
ia
n
of

m
en
ta
le

ffo
rt

on

so
lv
ed

po
st
-t
es
t
pr
ob

le
m
s

IV
β

SE
p

β
SE

p
β

SE
p

β
SE

p

C
on

di
ti
on

=
Fa

di
ng

−
14

.6
12

.8
.2
6

−
10

.6
11

.7
.3
8

.4
1

.2
3

.0
89

.
−
0.
53

.2
5

.0
41

∗

M
ed
ia
n
ti
m
e
on

pr
e-
te
st

(s
ec
)

.3
2

.1
.0
02

∗∗
.0
2

.1
2

.8
5

-
-

-
-

-
-

P
re
-t
es
t
effi

ci
en
cy

-
-

-
-

-
-

.6
1

.1
3

<
.0
01

∗∗
∗

-
-

-

M
ed
ia
n
of

m
en
ta
le

ffo
rt

on
pr
e-
te
st

-
-

-
-

-
-

-
-

-
.4
5

.2
5

.0
74

.

∗∗
∗ p
<
.0
01

;∗
∗ p
<
.0
1
;∗
p
<
.0
5
;.
p
<
.1

99

7.5.4 Effects of adaptive fading on learning

Our third hypothesis (H3) was that practice in the presence of Fading would improve

student’s learning outcomes. To test hypothesis H3, mixed model analyses were per-

formed to check the effect of condition on the overall post-test score and on the coding

and ordering questions on their own. However, note that the student score in the order-

ing questions was found to be moderately correlated with performance on the coding

questions (ρ was .4 in the pre-test and .5 in the post-test). In all models, Condition and

pre-test score were fixed effects and a random effect accounted for user. The variable

Condition was a dummy variable representing the condition during the practice with No

fading condition serving as the reference group factor. In the model that predicted the

total post-test score, pre-test score was the combined score in the pre-test coding and

ordering questions. Similarly, in the models predicting the score in ordering/coding

questions in the post-test, pre-test score was the score student obtained in pre-test

ordering/coding questions.

Table 19 shows the results of the fitted models. The result of the model predicting

the total post-test score showed that total post-test score was significantly linearly

related to Condition (β = .26, SE = .09, p = .008), and to the total pre-test score (β =

.40, SE = .08, p < .001). The models predicting student score in the post-test coding

or ordering questions showed similar results. We found that coding post-test score was

significantly linearly related to the Condition (β = .15, SE = .07, p = .040), and to the

pre-test coding questions (β = .33, SE = .09, p = .002). The ordering post-test score

was significantly linearly related to the Condition (β = .10, SE = .03, p = .005), and

to pre-test ordering questions (β = .35, SE = .06, p < .001).

In sum, the results of the mixed model analysis supported hypothesis H3. We

found an overall positive effect in favor of the Fading condition on the student’s post-

test score. Students obtained a higher score in the post-test questions (coding, ordering,

and overall) that were related to the topic that they received faded examples.

100

Table 19: Mixed model results of condition and the pre-test score, predicting the
total post-test score, coding post-test score, and ordering post-test score

DV

Total post-test score Coding post-test score Ordering post-test score

Predictors β SE p β SE p β SE p

Condition=Fading .26 .09 .008∗∗ .15 .07 .04∗ .1 .03 .005∗∗

Total pre-test score .4 .08 < .001∗∗∗ - - - - - -

Coding pre-test score - - - .33 .09 .002∗∗ - - -

Ordering pre-test score - - - - - - .35 .06 < .001∗∗∗

∗∗∗p < .001;∗∗p < .01; ∗p < .05

7.6 SUMMARY AND DISCUSSION

Our findings of the user study supported the positive impact of adaptive fading in terms

of several measures related to performance and learning outcomes:

First, adaptive fading influenced practice performance. Two out of three measures

that we had for practice performance supported better performance of the student on

practice problems. More specifically, more practice in the Fading condition (and not

the No fading condition) was associated with solving problems in marginally fewer

attempts and also in significantly less time. On the other hand, we found that students

perceived the amount of effort invested on problems to be the same across the practice

in No fading and Fading condition.

Second, adaptive fading influenced test performance. Two out of three measures

that we had for test performance supported better performance of the student on test

problems. Practice in Fading condition resulted in marginally higher problem-solving

efficiency and significantly lower perceived mental effort ratings. Moreover, problem-

solving time was observed to be lower in the Fading condition than the No fading

101

condition but the difference did not reach statistical significance with the number of

subjects recruited into the study.

Third, adaptive fading influenced learning. All of the learning measures supported

better learning in the Fading condition. The post-test score was found to be higher in

the Fading condition than the No fading condition in all cases: in the overall post-test

score as well as the scores in each part of the post-test – i.e. ordering questions and

coding questions.

One point that should be taken into account when interpreting and generalizing our

findings is that in the User Study we compared adaptively faded examples against stan-

dard examples to maximize the difference between the two conditions, thus, increasing

the chance of registering differences between them. This is a compromise that doesn’t

allow a reliably measurable separation of the “fading” effects from the “adaptive” ef-

fects. Also, there is not a 100% analogy between faded examples in our study and the

conventional faded examples in physics or geometry. The faded examples explored in

prior studies showed worked steps for all previous steps and the help was faded only for

the current step that the student needed to solve. In our study, we presented a faded

example by hiding the explanations from the whole code. In that sense, the faded ex-

amples in our study changed the code into a mini Parson’s problem with no help being

shown.

Additionally, the reason that we did not observe any significant difference in the

mental effort invested in practice problems may be due to lower reliability of the mea-

surement scale. We argue that it is, generally, harder to register significant differences

for the mental effort because it is a subjective measure and students’ opinion varies

considerably on a rating scale from 1 to 9 such as the one used in our study. As a

result, objective measures such as time on task may be less affected by variations in

the subject’s opinion and may be a better indicator of the student’s problem-solving

performance.

Another point is the choice of the threshold for fading the example steps in our

study. We determined the threshold rather heuristically, first by getting an idea from

102

similar studies and then by trial-and-error. Even though the study session was short,

we observed that the chosen threshold worked reasonably well for providing adaptation

to student’s knowledge. Yet, we have no evidence that using the same threshold to

fade example steps would work for other studies, especially when the student modeling

approach is non-probabilistic.

Finally, in the Fading condition every subject followed the same sequence of activ-

ities. No activity was skipped even if the subject had obtained sufficient knowledge in

the concepts of that activity. However, as shown by Najar et al. [2016], the students

could learn more and faster when the adaptive strategy allows skipping of examples or

problems. Therefore, we speculate that our results could be improved further when the

adaptive strategy allows skipping of faded examples or problems for the students who

have sufficient knowledge of the concepts of those activities.

103

8.0 CLASSROOM STUDY 3: CONTROLLED STUDY OF ADAPTIVE

RECOMMENDATION

The chapter describes the controlled classroom study that I have conducted to address

RQ7 and RQ8 (described in Section 1.2) to measure the effect of the adaptive recom-

mendations of PCEX examples and problems on student’s engagement on activities and

learning, relative to the non-adaptive recommendations. This chapter first explains the

adaptive recommendation approach that was used to recommend examples and prob-

lems in the student’s practice sequence. Then, it explains the study design, and finally

presents the results.

8.1 RESEARCH QUESTIONS

The research questions that will be addressed in this study are stated below. We

investigated these questions to build a better understanding of the impact of the adap-

tive recommendation of the PCEX examples and problems on learning programming

relative to the non-adaptive recommendation. In this study, the non-adaptive recom-

mendations are generated by a random selection of examples and problems within each

topic in the course. Specific hypotheses related to the research questions are presented

in Section 8.3.1.

RQ7. Would students be more engaged in the PCEX examples and problems selected

by an adaptive approach compared to a random approach? [Hypothesis 1]

104

RQ8. Would the recommendations of PCEX examples and problems using an adap-

tive approach improve a student’s learning outcomes more than a random approach?

[Hypothesis 2]

8.2 ADAPTIVE RECOMMENDATION STRATEGY

We have two types of recommendations for guiding the student to the learning materials

that match his/her knowledge: proactive and reactive. Both recommendations provide

the “outer loop” adaption by using the student model to determine when to present

examples, faded examples, or problems in the student’s practice sequence so that the

practice sequence matches student’s knowledge needs. In proactive recommendation,

the system proactively suggests learning materials to the student in order to advance his

or her knowledge. In the reactive recommendations, the recommendations are generated

in reaction to the student’s failures in problem-solving. If the student fails in solving a

problem, the system recommends related examples to the student to help the student

to solve that problem. Our recommendations do not force the student to go to the

recommended content and the student is free in making her/his navigational steps,

as in our previous work [Hosseini et al., 2015]. The subsections below describe our

approach to generating proactive and reactive recommendations.

In both types of recommendations, all estimates for the student’s knowledge are

obtained from the Bayesian Network student model described in Section 7.3. The esti-

mates were updated after the student attempts on the pre-test problems, and challenges

and coding exercises in the practice system.

8.2.1 Proactive recommendation

The proactive recommendations are generated after the student completes an activ-

ity and based on the student’s goal. In the practice system, the student determines

105

his/her goal by selecting a topic. So, when the student clicks on a topic in the prac-

tice system, proactive recommendations will select the next best learning material for

the student for mastering the topic. Figure 26 illustrates the recommendations within

the “If-Else” topic. The recommendations within the topic are shown as a ranked list

with the strongest recommendation being the top element in the list. The cell of the

recommended activities is marked with a star symbol. The size of the stars represents

the importance (rank) of the recommendation. The top recommendation in the list has

the largest star. To see the recommendations, the student could click on the cell with

star symbols or on the activity names on the recommendation list.

Figure 26: The presentation of recommendations in the practice system interface.
The top–3 recommended activities are shown as a list. The cell related to each rec-
ommended activity is marked with a star symbol. The size of the stars is relative to
the position of the recommended activity in the top–3 list, the first recommended ac-
tivity has the largest star. To navigate to a recommended activity, the student could
click on the activity in the list or on a cell with a star symbol.

My recommendation approach for selecting program examples and problems is

grounded in the learning theories, particularly “worked example effect” Sweller et al.

106

[1998] and “expertise reversal effect” [Kalyuga et al., 2003]. According to these theories,

studying worked examples is more beneficial than problem-solving in the early stages of

skill acquisition when the learner typically has little or no domain knowledge (worked

example effect). However, this advantage disappears over time as the learner devel-

ops more content expertise and in that stage problem-solving is superior to studying

worked example (expertise reversal effect). My recommendation approach determines

the most beneficial activity within the topic that student has selected by examining

how prepared the student is to attempt each activity. It aims to select the three most

beneficial activities within the topic that the student plans to practice. Depending on

the student’s knowledge, the most beneficial activities could be examples, or problems

(i.e., challenges or coding exercises), or a combination of both. The recommendation

approach attempts recommending problems first. If we can find no such problem, it

indicates that the student is still not prepared for problem-solving. In other words, it

indicates that the student is at an early stage of learning in the topic; and thus, not

yet ready to transition to problem-solving. As a result, the recommendation approach

attempts to select examples within the topic.

The flowchart in Figure 27 shows the process of generating recommendations for

a typical topic in five ordered steps: (1) generating activity ranked lists, that creates

separate ranked lists for ordering examples, challenges, and coding exercises based on

how ready student is to attempt the activities within each content type ; (2) attempting

to select problems, that aims to select the most helpful problems (i.e., coding exercises

or challenges), if any; (3) attempting to select examples, that aims to select the most

helpful examples, if any; and (4) attempting to select the problems given the student’s

knowledge. The process stops at any time when the recommendation list is complete,

— i.e., three most helpful activities are selected.

Step 1: Generating activity ranked lists

107

G
et

 t
o

p
ic

 a
ct

iv
it

ie
s

Fi
lt

er
 o

u
t

co
m

p
le

te
d

 o
r

m
as

te
re

d
 a

ct
iv

it
ie

s

C
re

at
e

a
ra

n
ke

d
 li

st

o
f

ea
ch

 a
ct

iv
it

y
ty

p
e

G
en

er
at

in
g

ac
ti

vi
ty

 r
an

ke
d

 li
st

s
A

tt
em

p
ti

n
g

to
 s

el
ec

t
p

ro
b

le
m

s

La
st

 a
tt

em
p

t
is

 e
xa

m
p

le
?

Se
le

ct
 t

h
e

ch
al

le
n

ge
s

re
la

te
d

 t
o

 t
h

e
ex

am
p

le

vi
ew

ed

H
av

e
ac

ti
vi

ty
?

Se
le

ct
 r

em
ai

n
in

g
ac

ti
vi

ti
es

in

 o
rd

er
 f

ro
m

 t
h

e
ra

n
ke

d

co
d

in
g

ex
er

ci
se

 li
st

 w
it

h

m
as

te
ry

 le
ve

l a
b

o
ve

 .7

Se
le

ct
 r

em
ai

n
in

g
ac

ti
vi

ti
es

 in
 o

rd
er

fr

o
m

 t
h

e
ra

n
ke

d

ch
al

le
n

ge
 li

st

N
o

N
ee

d
 m

o
re

ac

ti
vi

ti
es

?

Ye
s

N
o

Ye
s

N
ee

d
 m

o
re

ac

ti
vi

ti
es

?
N

o Se
le

ct
 r

em
ai

n
in

g
ac

ti
vi

ti
es

in

 o
rd

er
 f

ro
m

 t
h

e
ra

n
ke

d

ch
al

le
n

ge
 li

st
 w

it
h

 m
as

te
ry

le

ve
l a

b
o

ve
 .7

Ye
s

N
ee

d
 m

o
re

ac

ti
vi

ti
es

?

N
o

Se
le

ct
 r

em
ai

n
in

g
ac

ti
vi

ti
es

 in
 o

rd
er

fr

o
m

 t
h

e
ra

n
ke

d

ex
am

p
le

 li
st

Ye
s

N
ee

d
 m

o
re

ac

ti
vi

ti
es

?

N
o

N
ee

d
 m

o
re

ac

ti
vi

ti
es

?

Se
le

ct
 r

em
ai

n
in

g
ac

ti
vi

ti
es

 in
 o

rd
er

fr

o
m

 t
h

e
ra

n
ke

d

co
d

in
g

lis
t

Ye
s

Ye
s

A
tt

em
p

ti
n

g
to

se

le
ct

 p
ro

b
le

m
s

N
o

A
tt

em
p

ti
n

g
to

se

le
ct

 e
xa

m
p

le
s

St
ar

t

En
d

Ye
s

N
o

F
ig
u
re

27
:
P
ro
ac
ti
ve

re
co
m
m
en
da

ti
on

flo
w
ch
ar
t

108

In this step, the ranked list of activities will be generated. We create one ranked

list for each activity type (i.e., examples, challenges, or coding exercises). This is done

by first getting the list of activities within each topic. We reduce the list to activities

that are not completed, and not mastered. After that, we generate the three ranked

lists, one for each activity type. The idea is that the activity that is closest to the

student’s zone of proximal development is ranked higher on the list. The activities in

the ranked list of challenges or coding exercises are ordered based on decreasing values

of probability of solving the challenges or coding exercises. The activities in the ranked

examples list are ordered based on the probability of understanding the examples which

is the mean probability of knowing the example’s concepts. In case of ties, the activity

that has a fewer number of concepts will be ranked higher on the list.

Note that the Bayesian Network does not take into account the student’s work on

examples. As a result, it makes no prediction on what is the probability that student

could understand an example. I calculated this probability by averaging the probability

estimates for each of the concepts in the examples. To determine whether the student

could understand the example, one could use the estimate for the weakest concept or,

on the other hand, an average of the estimates for all concepts in the example. I chose

to use the average because I found it more suitable for representing student’s knowledge

in a program code. Typically, each program has many concepts and, as a result, under-

standing the examples depends on how much the student knows each of those concepts.

Thus, the average of mastery in all example’s concepts is a better indicator of how

much the student understand the example as opposed to considering the mastery in a

single concept such as the weakest concept.

Step 2: Attempting to select problems

In this step, we search the ranked activity lists for findings problems that the stu-

dent is ready to attempt. If the previous attempt is an example, we select all challenges

in the list of ranked challenges that are related to the example viewed. The idea is

109

that we challenge the student to practice the concepts in the example. If the previous

attempt is not an example or the number of challenges related to the example viewed

is less than three, then we start searching first in the ranked list of coding exercises and

then in ranked list of challenges to select problems that are within the student’s zone

of proximal development. We determine whether an activity is within the student’s

zone of proximal development by comparing the probability of solving that activity to

a threshold of 0.7. If the probability of solving the activity is above 0.7, we consider

that activity to be within the student’s zone of proximal development. We selected

this threshold on a trial-and-error basis because during several rounds of pilot-testing

it generated reasonably good recommendations. We search the ranked list of challenges

only if we could not select all three of the recommended activities from the ranked list

of coding exercises.

Step 3: Attempting to select examples

We get to this step only if we could not find three problems that fall within the

student’s zone of proximal development. In this step, the examples that are more prob-

able to be understood by the student are selected first, as they are placed on the top of

the ranked list of examples. Note that the recommendation approach does not recom-

mend an example if the student has solved all of the challenges related to that example.

Because we assume that if the student has solved all of the challenges related to an

example, the student already knows that example well and, as a result, work with that

example will not help the student to learn more.

Step 4: Attempting to select the problems

We get to this step, only if we could not complete the list of recommended activities

in the previous steps. The idea here is to select the simplest activities first. Because

when we get to this step, it is likely that the student was not ready to attempt prob-

lems and also the number of examples that could be recommended was not sufficient to

complete the list of recommendations. Therefore, since challenges require less effort to

110

solve than the coding exercises, we attempt to recommend them first. If after searching

the ranked list of challenges we still need more activities to complete the list of recom-

mendations, then the we select the remaining activities from the ranked coding exercise

list.

8.2.2 Reactive recommendation

Reactive recommendations occurred only when the student failed in solving a problem

(i.e., a challenge or a coding exercise) correctly in the practice system. When the

student failed to solve a challenge or a coding exercise, the reactive recommendation

approach suggested top–3 most relevant remedial examples to the student. The example

recommendation interface is shown in Figure 28(a), where the left panel shows the top–

3 recommended examples to the student after she/he failed in solving the given coding

exercise. The student can select any of the recommended examples and explore the

explanations (Figure 28(b)). The recommendation interface is the same for challenges

that student could not solve.

In our prior work in [Hosseini and Brusilovsky, 2017], we investigated different ap-

proaches for recommending examples that might be helpful for students who failed to

solve a programming problem. As the key factor for generating recommendations, we

considered similarities between the target problem and different examples. To deter-

mine the best recommendation approach, we explored a range of concept-level similarity

approaches that assessed the similarity of problems and examples in terms of program-

ming concepts measured within small fragments (structures), as well as within the

content as a whole. In addition, we explored the value of considering student factors,

such as student’s knowledge and learning goals, as defined by the student’s position in

a course. Among the approaches explored in [Hosseini and Brusilovsky, 2017], an ap-

proach that took into account both the student’s knowledge and goal delivered excellent

performance in the expert evaluation and was comparable with other top approaches in

the user evaluation. This approach selected the most helpful examples for a problem by

111

(a)

(b)

Figure 28: Part (a) shows the recommended examples for the current problem that
student could not solve. ‘The original activity’ and ‘Recommended activities’ on
the left panel provide access to the problem and the list of recommended examples,
respectively. Part (b) illustrates a recommended example selected by the student.
Student could navigate through the explanations in the examples.

(a) focusing on the examples that were similar to the problem by the structure of the

concepts rather than concept coverage (i.e., being a structural similarity approach), (b)

112

personalizing example selection to select examples that matched student’s knowledge

levels and learning goal (i.e., being a personalized similarity approach), and (c) calcu-

lating the concept-level similarity of the examples to a problem using a cosine metric.

We used this approach to generate the reactive recommendations in this study.

8.3 THE STUDY

8.3.1 Hypotheses

The study tested the following hypotheses regarding the benefits of adaptive recommen-

dation of learning activities relative to random recommendation of learning activities:

H1. Adaptive recommendation approach would lead to greater time-on-task and

interactions with the learning activities than the random recommendation approach

H2. Adaptive recommendation approach would lead to better learning outcomes

than the random recommendation approach

8.3.2 Study design

The study had a 1×2 factorial design with the between-subject factor “recommendation

approach” (Random, Adaptive). Students were randomly assigned to the Control and

Experimental groups at the beginning of the semester. In the Control group students

received recommendation using the random approach while in the Experimental group

students received recommendations using the adaptive approach. In the Control group,

both proactive and reactive recommendations were generated randomly: proactive rec-

ommendations were generated by randomly selecting the learning activities within each

topic and reactive recommendations were generated by randomly selecting top–3 ex-

amples from the current topic or previous topics. In the Experimental group students

113

received proactive and reactive recommendations using the approaches described in

Sections 8.2.1 and 8.2.2, respectively.

8.3.3 Participants and procedure

The study was conducted during the Spring 2018 semester. Participants were 205

undergraduate students with Computer Science majors who were enrolled in the CS0401

Intermediate Java Programming course at the University of Pittsburgh. This course was

meant to be a second course in programming. The prerequisite was prior programming

experience, ideally in Java. The course spent the first month reviewing nearly all

the topics of introductory Java programming course. The remainder of the course

focused heavily on Object-Oriented Programming with several significant projects using

inheritance, implementing interfaces, abstract classes, inner classes, GUIs and event-

driven programming.

At the beginning of the semester, all the students were provided with individual

accounts to access the practice system (similar to the one described in Section 5.3).

Students were first asked to take the online pre-test during a lab that was held during

the first week. After students completed the pre-test, the system was introduced and

students were told that the usage of the practice system is voluntary. The post-test

was conducted one week before the final exam. After taking the post-test, the students

were asked to answer to two online surveys that asked about examples and challenges

(using survey described 4.2.4.1) and recommendations (using the survey described in

4.2.4.2) in the practice system.

To encourage participation in the pre-test, post-test, and survey, students received

lab points for completing them. The usage of the practice system was voluntary. To

encourage students to use the practice system, they were told that they would receive

3% extra credit upon completion of the minimum number of activities inside the practice

system. The minimum amount of practice was completing 3 PCEX examples, 5 PCEX

challenges, and 7 PCRS coding exercises.

114

8.3.4 Materials

8.3.4.1 Practice content The practice contents included 55 PCEX worked exam-

ples (as in Figure 6), 76 PCEX challenges (as in Figure 7), and 46 coding exercises

served by PCRS tool (as in Figure 10). The practice system included 14 topics cov-

ering the topics for the first three weeks of the course which was a review of topics

in the Introductory Programming. As shown in Figure 26, in each topic, there were

three different types of smart content available: 1) worked examples that had the pre-

sentation style that was the same as worked examples in the PCEX tool (Figure 6),

2) challenges that had the presentation style that was the same as challenges in the

PCEX tool (Figure 7), and (3) problems which were presented using the PCRS system

(Figure 10). Note that unlike Classroom Study 1, the examples and challenges were

shown in separate rows of the practice system interface. We made this change to make

the recommendations for individual challenges related to a PCEX activity possible.

8.3.4.2 Pre- and post-tests The pre-test and post-test were online tests that

were different but isomorphic and consisted of 10 questions. The first 5 questions were

comprehension questions that asked the student about the value of a variable after the

code was executed or the program output. After that, they had to answer 5 coding

questions that asked the students to write the code using the PCRS tool. The estimated

time to answer pre-test and post-test was 20 minutes but students could use the whole

lab hour. They were asked to complete the tests without seeking any extra help and

that they would not be penalized for any wrong answer.

8.3.5 Metrics

We grouped our metrics into engagement and learning metrics, as described in Section

4.2. The engagement metrics included measures focused on overall engagement and also

persistence in working with activities. The overall engagement metrics included number

of distinct attempts on each type of activity (examples, challenges, and coding exercises)

115

as well as measures focused on the amount of work with recommended activities: (1)

distinct attempts on the recommended activities overall and on recommended examples,

challenges and coding, and (2) follow rate, which was defined as the percentage of

student’s attempts that were on recommended activities.

We measured student’s persistence in working with examples by using median ex-

ample line clicks and median time on examples. For measuring persistence in solving

problems, we used: median attempts on problems that the student could not solve; per-

sistence probability, which was defined as ratio of problems that the student persisted

on solving the problem after the first incorrect attempt to the problems that student

failed in the first attempt; and the probability of not solving a problem.

We measured student’s learning using pre-test, post-test, and midterm scores. We

also looked into learning efficiency, which was defined as the number of problems the

student solved (including challenges and coding exercises) to get 1 point increase in

the normalized learning gain (as described in Section 4.2). As this was a very small

number, we multiplied this number by 100 to express it as a percentage.

8.4 RESULTS

After the data collection was completed, we had 122 students who had at least one

activity during the semester in the system (61 in Control, 61 in Experimental). Among

them, 23 obtained extremely high pre-test score (i.e., 8.5 or above out of 10). We

discarded the data of those 23 students since they had little to learn and were likely only

participating for extra credit. The final dataset included the data from 99 students: 48

students in the Control group and 51 students in the Experimental group. We used this

dataset for examining the overall usage and performing the engagement analysis. The

groups were balanced in terms of prior knowledge, as the mean pre-test score in Control

(M = 4.5, SD = 2.4) was not significantly different from the Experimental group

(M = 4.6, SD = 2.6), using the One-way ANOVA test (F (1, 96.9) = 0.02, p = .885).

116

For the analysis related to midterm, we limited the final dataset to the data of 87

(41 in Control, 46 in Experimental) students who had taken the midterm and used the

system before the midterm. For the analysis related to post-test, we excluded data of

16 students as their post-test score was lower than their pre-test score — indicating

that they did not take the post-test seriously and most likely took it only to get the

lab points. After discarding those students, we had data of 83 students (39 in Control,

44 in Experimental) for the post-test analysis1.

The following subsections present the results from the data analyses. Table 20

summarizes our results by showing the hypotheses of Classroom Study 3 (described

in Section 8.3.1), the corresponding data analyses, and whether the hypotheses were

confirmed by the data analyses.

Table 20: Summary of hypotheses and results of Classroom Study 3.

Hypotheses Data Analyses Measures
Hypotheses Confirmed?

Group effect

Hypotheses Confirmed?

Interaction effect

H1 – adaptive vs.

random

recommendation:

engagement

Section 8.4.1

and 8.4.2

overall engagement X(only for examples) N/A

median example line clicks x N/A

median time on examples X N/A

median attempts on problems not solved x N/A

persistence probability x N/A

probability of not solving a problem X N/A

H2 – adaptive vs.

random recommendation:

learning

Section 8.4.3 midterm x X

post-test x x

learning efficiency x x

8.4.1 Overall engagement analysis

The first hypothesis (H1) was that Adaptive recommendation approach would lead

to greater time-on-task and interactions with the learning activities than the random

recommendation approach. To test this hypothesis, we compared the groups in terms of
1When all student data were included in the post-test analysis, pre-test score was the only significant

predictor of the post-test score.

117

Table 21: Means (and SD) for usage of learning activities in Control and Experi-
mental groups, along with inferential statistics for the group contrast.

Control (N=48) Experimental (N=51)

Median Mean SD Median Mean SD Wilcoxon test

OVERALL

Dist. activities 24 31.1 27.4 22 33.2 31.6 W = 1226.5, p = .989

Dist. example attempts 7 11.5 11.6 8 12.9 11.9 W = 1137, p = .544

Dist. challenge attempts 8.5 12.4 12.4 8 15.1 17 W = 1207.5, p = .911

Dist. challenges solved 7 11.1 12.4 7 14.1 17.2 W = 1207, p = .908

Dist. complex challenge attempts 4 5.7 5.7 4 6.4 8.1 W = 1288, p = .655

Dist. complex challenges solved 4 5 5.6 4 6 8 W = 1245, p = .885

Dist. coding exercise attempts 7 7.1 6.4 2 5.2 7.2 W = 1539.5, p = .026∗

Dist. coding exercise solved 6 5.8 5.8 1 4 6.5 W = 1573.5, p = .013∗

Dist. coding exercise partially solved 6.5 6.2 5.9 1 4.5 6.8 W = 1560, p = .017∗

Dist. complex coding exercise attempts 0 1.5 2.4 0 1 2.1 W = 1374, p = .245

Dist. complex coding exercise solved 0 1.1 2.3 0 .7 2 W = 1385, p = .171

Dist. complex coding exercise partially solved 0 1.2 2.3 0 .8 2 W = 1351, p = .306

RECOMMENDED

Dist. activities 13.5 15.8 11.5 11 20.4 21.8 W = 1183, p = .777

Dist. example attempts 4 4.3 3.3 5 6.8 6.4 W = 946, p = .051 .

Dist. challenge attempts 6 6.8 5.3 5 10.6 12.1 W = 1156.5, p = .638

Dist. challenges solved 5 6 5 5 9.9 11.7 W = 1152, p = .616

Dist. complex challenge attempts 3 3.5 3.1 3 5 6.1 W = 1180, p = .759

Dist. complex challenges solved 2 3.1 3 3 4.6 5.7 W = 1131, p = .513

Dist. coding exercise attempts 4 4.7 5.3 0 3.1 5.8 W = 1685.5, p < .001∗∗∗

Dist. coding exercise solved 3 3.6 4.8 0 2.5 5.5 W = 1645, p = .002∗∗

Dist. coding exercise partially solved 3 3.9 4.9 0 2.8 5.8 W = 1664, p = .001∗∗

Dist. complex coding exercise attempts 0 1 2.2 0 .7 2 W = 1388, p = .167

Dist. complex coding exercise solved 0 .9 2.1 0 .5 1.9 W = 1342, p = .273

Dist. complex coding exercise partially solved 0 .9 2.1 0 .6 2 W = 1355, p = .243

∗∗∗p < .001;∗∗p < .01; ∗p < .05; . p < .1

overall engagement metrics, described in Section 8.3.5, which included the total work on

activities, the rate students followed recommendations, and the work on recommended

activities.

118

There were no significant differences in the mean follow rates for the two groups

using one-way ANOVA test (F (1, 97) = 1.46, p = .231). The follow rate had a normal

distribution with a mean of .5 in both groups, suggesting that both groups followed the

recommendations, on average, in half of their attempts. Table 21 shows the information

about the usage of the learning activities overall, and usage of recommended learning

activities in both groups. Overall, the two groups did not differ significantly in terms

of the median of total distinct example or challenge attempts. Students in the Con-

trol group attempted and solved significantly more distinct coding exercises. Yet, the

number of distinct attempts on complex coding exercises and the number of distinct

complex coding exercises solved was not significantly different in the two groups. When

looking only at the distinct recommended attempts, the students in the Experimental

group had marginally higher distinct attempts on the recommended examples. The

number of distinct recommended coding exercises attempts and distinct recommended

coding exercise solved was significantly higher in the Control group.

In sum, the comparison of the two groups in terms of overall engagement supported

Hypothesis H1 by showing that the students in the Experimental group were more

engaged in working with the recommended examples. While students in the Control

group attempted and solved more problems, there were no differences in terms of the

number of complex coding exercises that the student solved.

The differences between the usage of learning activities in the two groups suggest

that the recommendation approach in the Control group guided students to simpler

coding exercises while the recommendation approach in the Experimental group did

not. Instead, the recommendation in the Experimental group encouraged students to

work more on the examples, a learning activity that is usually neglected by students (at

least by advanced students in the class such as ours). This hints that recommendations

made by adaptive approach were able to change the behavior of students in a positive

manner by guiding them to work with examples and not recommending them simple

coding exercises that were unnecessary for them. These differences in the recommended

119

Table 22: Descriptive statistics for metrics representing engagement on recom-
mended examples in Control and Experimental groups, along with inferential statis-
tics for the group contrast.

Control (N=47) Experimental (N=49)

Median Mean SD Median Mean SD Wilcoxon test

Median example line clicks 7 6.3 4.5 5.8 5.3 3.8 W = 1039.5, p= .680

Median time on example (sec) 24 54.9 74.2 21 48.5 56.1 W = 1049.5, p = .622

attempts also suggest, but do not provide fully definitive evidence, that the adaptive

approach in the Experimental group was able to adapt to the student’s knowledge.

8.4.2 Persistence analysis

We further tested (H1) by examining the differences between the two groups in terms

of persistence measures, described in Section 8.3.5. We used the Wilcoxon test to

compare the group means for the persistence metrics representing how much the stu-

dent persisted in working with a recommended example and in solving a recommended

problem/challenge.

Table 22 shows the group means for the measures representing how much students

were engaged in their work with the recommended examples. We found no significant

differences on the mean time spent on examples (p = .622) or the number of lines clicks

(p = .680) for the recommended examples in the Control and Experimental groups. We

also compared the recommended examples and not recommended examples inside the

Experimental group. We found no significant differences in the line clicks (p = .322)

but students spent significantly more time on the recommended examples, about twice

more than the time they spent on the examples that were not recommended (p = .013)

(Table 23).

120

Table 23: Descriptive statistics for metrics representing engagement on not-
recommended examples and recommended examples in the Experimental group,
along with inferential statistics for the group contrast.

Recommended examples Not-recommended examples

Median Mean SD Median Mean SD Wilcoxon test

Median example line clicks 5.8 5.3 3.8 5 4.9 4.1 W = 844, p = .332

Median time on example (sec) 21 48.5 56.1 7.1 24 37.1 W = 1255.5, p = .013∗

∗p < .05

Table 24 shows the summary of engagement metrics on the recommended prob-

lems (challenges and coding exercises) in the two groups. The median attempts on

problems not solved was not significantly different (p = .204). Similarly, there was

no significant difference between the two groups in terms of persistence in solving the

recommended problems (p = .505). The mean persistence probability was .9 in both

groups, which indicates that both groups solved 90% of the recommended problems

that they attempted. However, the probability of not solving recommended problems

that the student attempted was about twice less in the Experimental than the Control

group, and the difference was significant (p = .016).

Within the Experimental groups, we found a tendency for students having more

attempt to solve problems. In particular, the median of attempts on problems not

solved was about three times more in the recommended coding exercises than the not

recommended coding exercises. However, the difference was not significant neither on

this metric (p = .146) nor on the persistence probability (p = .411) or probability of

not solving a problem (p = .148) (Table 25).

In sum, the persistence analyses supported Hypothesis H1, by showing differences

in some of the persistence measures related to the work on examples and problems. In

terms of persistence in problem-solving attempts, we found that the probability of not

solving recommended problems in the Experimental group was twice lower than the rec-

121

Table 24: Descriptive statistics for metrics representing engagement on recom-
mended problems in the Control and Experimental groups, along with inferential
statistics for the group contrast.

Control (N=44) Experimental (N=46)

Median Mean SD Median Mean SD Wilcoxon test

Median attempts on problems not solved 3 4.3 3.5 3 3.4 2.8 W = 546, p = .204

Persistence probability 1 .9 .1 1 .9 .2 W = 781, p = .505

Probability of not solving a problem .2 .2 .2 .1 .1 .1 W = 1174, p = .016∗

∗p < .05

Table 25: Descriptive statistics for metrics representing engagement on not rec-
ommended and recommended problems in the Experimental groups, along with
inferential statistics for the group contrast.

Not-recommended Recommended

Median Mean SD Median Mean SD Wilcoxon test

Median attempts on problems not solved 0 0.1 0.1 3 3.4 2.8 W = 416.5, p = .146

Persistence probability 1 1 0.1 1 0.9 0.2 W = 758.5, p = .411

Probability of not solving a problem 0.1 0.2 0.3 0.1 0.1 0.1 W = 970, p = .148

ommended problems in the Control group. In addition, within the Experimental group,

there was a tendency for having more attempts to solve recommended problems and also

the probability of failure was lower on recommended problems than not recommended

problems. In terms of persistence in work on examples, we did not find any differ-

ence between the work on the recommended examples in the Control and Experimental

group. However, within the Experimental group, students spent significantly more time

(about twice more) on the recommended examples than the not recommended exam-

ples. The results from the persistence analysis hints that the recommendations from

the adaptive approach had higher quality compared to the non-adaptive approach.

122

8.4.3 Learning analysis

Our second hypothesis (H2) was the Adaptive recommendation approach would im-

prove learning outcomes more than Random recommendation approach. To evaluate

Hypothesis H2, We ran series of multiple regression analyses, listed in Table 26 to ex-

plore the following aspects of the impact of the system on first the student midterm

and then post-test score in an iteratively deepening way:

• overall group benefit

• benefit of doing activities

• rate of following recommendations

• benefit of following recommendations

• benefit of doing more recommended activities

8.4.3.1 Impact of the system on midterm score Model 1 revealed an overall

negative effect on the midterm for the Group factor (F (2, 84) = 16.18, p < .001,

R2 = .28). Being in the Experimental group was associated with a midterm score

that was −4.5 (SE = 2.6, p = .09) lower than the Control group, at the same level

of pre-test score. Model 2 showed no benefit for doing activities on the midterm score

(F (4, 82) = 10.96, p < .001, R2 = .35). Each distinct activity attempted was associated

with .09 (SE = .09) increase in the midterm score which was not significant (p = .317).

Yet, being in the Experimental group was associated with a midterm score that was 4.8

(SE = 2.5, p = .062) lower than the Control group, at the same level of pre-test score

and at the same level of distinct activity attempts.

Model 3 did not show any relationship between the rate of following recommenda-

tions in the two groups (F (3, 83) = 1.3, p = .279, R2 = .05). Model 4 showed no benefit

for following recommendations (F (5, 81) = 8.42, p < .001, R2 = .34) as neither follow

rate (p = .768) nor the interaction of follow rate with group (p = .752) were significant

123

T
ab

le
26

:
D
et
ai
ls

re
la
te
d
to

th
e
m
ul
ti
pl
e
re
gr
es
si
on

s
m
od

el
s
th
at

w
er
e
pe

rf
or
m
ed

fo
r
th
e
le
ar
ni
ng

an
al
ys
is
.

M
od

el
T
he

eff
ec
t
th
at

is
be

in
g
te
st
ed

In
de
pe

nd
en
t
va
ri
ab

le
s

D
ep

en
de
nt

V
ar
ia
bl
e

1
O
ve
ra
ll
gr
ou

p
be

ne
fit

G
ro
up

P
re
-t
es
t

M
id
te
rm

P
os
t-
te
st

2
B
en
efi

t
of

do
in
g
ac
ti
vi
ti
es

G
ro
up

A
ct
iv
ity

:
To

ta
ld

is
ti
nc

t
ac
ti
vi
ty

at
te
m
pt
s

P
re
-t
es
t

G
ro
up
×

A
ct
iv
ity

:
in
te
ra
ct
io
n
of

G
ro
up

w
it
h
A
ct
iv
ity

M
id
te
rm

P
os
t-
te
st

3
R
at
e
of

fo
llo

w
in
g
re
co
m
m
en
da

ti
on

s

G
ro
up

P
re
-t
es
t

G
ro
up
×

pr
e-
te
st
:
in
te
ra
ct
io
n
of

G
ro
up

w
it
h
P
re
-t
es
t

Fo
llo

w
ra
te

4
B
en
efi

t
of

fo
llo

w
in
g
re
co
m
m
en
da

ti
on

s

G
ro
up

Fr
at
e:

fo
llo

w
ra
te

A
ct
iv
ity

:
To

ta
ld

is
ti
nc

t
ac
ti
vi
ty

at
te
m
pt
s

P
re
-t
es
t

G
ro
up
×

Fr
at
e:

in
te
ra
ct
io
n
of

G
ro
up

w
it
h
Fr
at
e

M
id
te
rm

P
os
t-
te
st

5
B
en
efi

t
of

do
in
g
m
or
e
re
co
m
m
en
de
d
ac
ti
vi
ti
es

G
ro
up

R
ec
A
ct
iv
ity

:
to
ta
ld

is
ti
nc
t
re
co
m
m
en
de
d
ac
ti
vi
ty

at
te
m
pt
s

N
oR

ec
A
ct
iv
ity

:
to
ta
ld

is
ti
nc
t
no

t-
re
co
m
m
en
de
d
ac
ti
vi
ty

at
te
m
pt
s

P
re
-t
es
t

G
ro
up
×

R
ec
A
ct
iv
ity

:
in
te
ra
ct
io
n
of

G
ro
up

w
it
h
R
ec
A
ct
iv
ity

M
id
te
rm

P
os
t-
te
st

A
ll
nu

m
er
ic

in
de
pe

nd
en
t
va
ri
ab

le
s
w
er
e
m
ea
n
ce
nt
er
ed

to
re
du

ce
po

te
nt
ia
lm

ul
ti
co
lli
ne
ar
ity

pr
ob

le
m
s
[A

ik
en

et
al
.,
19
91
].

124

predictors of the midterm. Yet, we found that doing more activities was associated

with a higher midterm score, when the effect of group, follow rate, pre-test, and the

interaction of group and follow rate was controlled. Each additional distinct activity

attempt was associated with a small increase of 0.2 (SE = .06) in the midterm score,

(p = .007). Also, being in the Experimental group was also associated with a midterm

score that was 4.8 (SE = 2.6, p = .068) lower than the Control group.

Model 5 showed the benefit of doing more recommended activities on midterm;

F (5, 81) = 9.26, p < .001, R2 = .37). Although the overall effect of the group on the

midterm was negative (Beta = −5.1, SE = 2.5, p = .047), the interaction of the group

and the distinct recommended activity attempts was positively related to midterm

and close to being statistically significant (p = .054). More distinct attempts on the

recommended activities in just the Experimental group increased the midterm score

by .4 (SE = .2, p = .054) (Figure 29). The interaction of group and work with

recommended learning activity remained to be significant when the model used only

distinct attempts on recommended examples as its predictor (Beta = 1.8, SE = .8, p =

.023). A similar trend was observed for the interaction between distinct recommended

challenge attempts and group (Beta = .9, SE = .5, p = .079) which was marginally

significant, and the interaction between distinct recommended coding exercise attempts

and group (Beta = .8, SE = .5, p = .132) which was near-marginal significant.

8.4.3.2 Impact of the system on post-test score Model 1 revealed no overall

group effect on the post-test score for the Group factor (F (2, 80) = 35.05, p < .001,

R2 = .47). Model 2 showed no benefit for doing activities on the post-test score

(F (4, 78) = 17.17, p < .001, R2 = .47). Model 3 showed that follow rates was marginally

higher when the pre-test increased (F (3, 79) = 3.01, p = .035, R2 = .1). The follow

rate had an increase of .03 (SE = .02, p = .076) for each unit of increase in the pre-test

score. There was no significant effect for group (p = .781) or the interaction of group

with pre-test score on the follow rates (p = .885) . Model 4 showed no benefit for

following recommendations (F (5, 77) = 13.93, p < .001, R2 = .47) as neither follow

125

rate (p = .387) nor the interaction of follow rate with group (p = .817) were significant

predictors of the midterm. No effect was found for the group on follow rates either

(p = .510)

Model 5 showed negative effects, close to being marginally significant, for the group

(Beta = −0.67, SE = .4, p = .101) and for the interaction of group with distinct recom-

mended activity attempts effect (Beta = −0.05, SE = .03, p = .140), (F (5, 81) = 9.26,

p < .001, R2 = .37). There was a tendency for lower post-test scores in the Experimen-

tal group as well as doing more recommended activities at the Experimental group. At

the same time, doing more recommended activities had an overall positive effect on the

post-test score. Each additional distinct recommended activity attempts, regardless of

the group, increased the post-test score by .06 (SE = .03, p = .047). And, interestingly,

each distinct activity attempt that was not recommended decreased the post-test score

50

70

90

0 20 40 60

Number of distinct recommended activities

P
re

di
ct

ed
 v

al
ue

s
of

 m
id

te
rm

 s
co

re

Group
Control

Experimental

Figure 29: Interaction between distinct recommended activity attempts and Group
factor (Control/Experimental) for predicting the midterm score. Notches indicate
95% confidence interval ranges.

126

by −0.03 (SE = .02, p = .039).

Overall, the post-test regressions results did not show any impact of the group or

interaction of group and work with recommended activities on learning. But it should

be noted that the usage data (Table 21) showed that students in the Experimental

group did less work on the recommended coding exercises overall. This indicates that

students in the Experimental group obtained the same amount of learning but with

solving fewer problems. Therefore, we further examined the learning efficiency of the

two group. The mean learning efficiency was higher in the Experimental group (M =

8.7%, SD = 18.6%) than the Control group (M = 4.7%, SD = 9.9%), yet the difference

did not reach the significance (W = 924.5, p = .480). This is an interesting observation

as it shows that despite the Control group solved significantly more coding exercises

(overall, recommended), there was no significant difference in the learning efficiency.

This, in turn, suggests that recommendations were smarter in Experimental group

pointing the student to coding exercises with appropriate complexity level based on

student’s knowledge. As a result, students in the Experimental group obtained the

same amount of learning with solving less coding exercises.

In sum, the multiple regression analyses partially supported hypothesis H2, demon-

strating a positive impact of work with recommended activities in the Experimental

group on the midterm score but not on the post-test scores. In the models predict-

ing the midterm score, we did not find an overall effect for doing activity in (Model 2).

However, in the previous studies we constantly saw the positive effect of doing activities.

This is likely due to the study being conducted in an intermediate class where students

were more advanced in programming compared to our previous studies. As a result,

more distinct attempts does not bring any added value. At the same time, results of

Model 5 showed that more distinct attempts on the recommended activities in the Ex-

perimental group increased the midterm score. This suggests that although the overall

work with learning activities does not have an effect on the student’s midterm in our

127

study, working on meaningful recommendations generated by the Adaptive approach

does.

The regression model also showed a positive impact of the work with recommended

examples on the midterm score inside the Experimental group. This is another confir-

mation of the value of examples. It also indicates that the Adaptive recommendations

changed student’s practice behavior in a positive way by encouraging them to view

examples that were recommended, which in turn, resulted in higher midterm scores.

The regression models for the post-test showed a tendency (close to being marginally

significant) for lower post-test scores in the Experimental group as students completed

more recommended attempts. Overall, more work on the recommended activities, re-

gardless of the group was associated with higher post-test scores, while more work with

not-recommended activities was associated with lower post-test scores. The results of

the post-test are inconsistent with the midterm results. We attribute this to the fact

that post-test was performed too late, during the week before the final exam, when all

students seemed to be in a good level of coding regardless of the amount of practice

with the system. We think that this wrong timing could have caused the effects that

we in observed in the midterm to be disappeared or reversed for the post-test. Given

this, we think that midterm is a better measure of learning in our study compared to

the post-test because it was taken in the 8th week of the class, where the student did

not go very far from the basic topics that we covered in the system.

8.4.4 Analysis of reactive recommendations

Overall, reactive recommendations were not used extensively in this study. The number

of total attempts in which the students could not solve the problems (challenges and

coding exercises) was 944 in the Control group and 791 in the Experimental group.

Among those attempts, the number of times that the students checked recommended

examples was 58 (6%) in the Control group and 55 (7%) in the Experimental group;

128

which indicates a slightly higher usage of examples in the Experimental group. This is

another important sign of better guidance in the Experimental group.

The low usage of remedial examples restricted us from performing any analysis to

understand the impact of the random and adaptive reactive recommendation approach

on student’s learning. Yet, we ran some analysis to examine the group differences

in terms of the number of remedial examples viewed; median line clicks on remedial

examples; median time on remedial examples; revisits of the original problem after

viewing the remedial examples; and solving the original problem after viewing the

remedial examples. The results are shown in Table 27. Statistical analysis with unpaired

t-test showed that, on average, number of recommended examples viewed was higher in

the Experimental group than the Control group, and the difference was close to being

significant (p = .059). No significant difference was observed between the Control and

Experimental group in other measures.

In sum, higher usage of recommended examples in the Experimental group hints

that students were more positive toward the recommendations generated by the adaptive

approach which, in turn, resulted in more views of the examples. Although this is a

sign for better performance of the adaptive approach, more data is needed to make

concrete claims about the benefit of the adaptive approach over random approach for

generating reactive recommendations.

8.4.5 Survey analysis

Before analyzing the survey group differences, we assessed each construct’s reliability

using Cronbach’s α. We dropped two items from the engagement construct and one item

from the quality construct because their item-construct correlations were lower than

the recommended value, .30. Additionally, we checked whether the internal consistency

could improve if any of the items within a construct were deleted. We discarded one

item in the quality construct because it increased the internal consistency among the

items of the construct, improving the α from .69 to .73. No item was discarded from the

129

Table 27: Descriptive statistics for usage of reactive recommendations

Control (N=58) Experimental (N=55)

Mean SD Mean SD t-test

Total examples viewed 2.1 1.3 2.7 1.9 t(96.8) = −1.9, p = .059 .

Median line clicks 1.7 4 2.5 7.3 t(83.4) = −.7, p = .48

Median time on examples (sec) 14.2 30.7 13.4 30.9 t(111) = .1, p = 0.89

Revisit of the original problem .5 .5 .5 .5 t(111) = .7, p = .51

Solving the original problem .5 .5 .4 .5 t(111) = .3, p = 0.76

. p < .1

other constructs as all items had acceptable internal consistency with the other items

within that construct. The α was .64 for the learning construct, .6 for the engagement

construct, .84 for the quality construct, and .79 for the satisfaction construct. All of

the alpha values appeared to be sufficiently reliable to assess the value of examples

and recommendations, with α values exceeding the suggested minimum acceptable α

coefficient of .50 [Nunnally and Bernstein, 1978].

In total, 151 students (71 in Control, 80 in Experimental) responded to the survey

and provided consent to use their data. Among them, 20% (N = 30) used the system

more than 10 times, 27% (N = 41) used the system between 5 and 10 times, 30%

(N = 45) used the system less than 5 times, and 23% (N = 35) did not use the system

at all. Overall, students mostly agreed that they did not use the system due to not

feeling the need for additional help, preferring other resources and materials, and lack

of time. Students disagreed with items that suggested other reasons for low/zero of the

practice system, including the items that referred to bad system experience (Figure 30)

Figure 31 illustrates the mean ratings in the two study groups for the survey con-

structs that assessed the value of examples and recommendations (Table 28). As it can

be seen from Figure 31, in both groups, students tended to agree on all construct except

130

The system was not introduced properly in class
(M=2.1, SD=.9)

I preferred to use other resources and material
to learn Java (M=3.6, SD=.9)

I didn't think the system can help me to better
master Java (M=2.7, SD=1)

I was doing well in class without the system and
did not need any extra help (M=4, SD=1)

The user interface was too confusing to use
(M=2.4, SD=1)

I did not have enough time to use the system
(M=3.3, SD=1.2)

100 50 0 50 100
Percentage

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 30: The distribution of answers for the survey items showing the reasons for
not using the system. The percentage of respondents who agree/disagree with each
item is shown to the right/left of the zero line. The percentage of respondents who
neither agree nor disagree are split down the middle and are shown in a neutral color.
The items in the y-axis are ordered based on the percentage of agreements, with the
uppermost/lowermost item having the most/least agreement.

the engagement. The Kruskal-Wallis test showed no significant differences in the mean

ratings of the study groups in the quality construct (χ2(1) = 2.1, p = .147), learning con-

struct (χ2(1) = .27, p = .605), the quality of recommendations (χ2(1) = .59, p = .444),

or system satisfaction (χ2(1) = 2 = .65, p = .420). The only difference in the mean

construct rating between the two groups was in the engagement construct. The mean

engagement rating was higher in the Control group (M = 3.1, SD = .8) than the

Experimental group (M = 2.8, SD = .9), and the difference was close to significance

(χ2(1) = 3.82, p = .051).

We further investigated the differences between the recommendation constructs for

the students who were followers of recommendations. We considered a follower as the

131

0

1

2

3

Learning Quality Engagement
Survey construct

R
at

in
g

0

1

2

3

4

Satisfaction Quality
Survey construct

R
at

in
g Group

Control

Experimental

Figure 31: Mean and standard error of group ratings in the survey constructs. The
left plot illustrates the mean ratings assessing the value of examples. The plot on the
right illustrates the mean ratings assessing the value of recommendations.

student who had follow rate that was equal to or above the median of the follow rate.

The median of follow rate was .5; therefore, a student was considered to be a follower,

if she/he had followed recommendations in at least half of her/his attempts. By this

definition, we had 57 students who were a follower, 32 were in the Control group,

and 25 were in the Experimental group. Figure 32 shows the mean ratings for the

recommendation and satisfaction constructs among the followers in the two groups. The

followers in the Experimental group rated the quality of recommendation significantly

higher than the followers in the Control group (χ2(1) = 5.7, p = .017). There was no

significant difference in the mean rating of satisfaction construct (χ2(1) = .05, p = .827).

We also examined the differences in ratings in the three constructs related to values of

examples and found no significant difference for the learning (χ2(1) = .672, p = .412),

engagement (χ2(1) = .478, p = .490), or quality construct (χ2(1) = .0, p = .994).

132

Table 28: The survey items assessing the value of examples and recommendations.

EXAMPLE EVALUATION

Quality

The explanations in the examples-challenges were not hard to understand a

The codes in examples-challenges were too complicated to understanda

Learning

The explanations in the examples helped me to better understand the Java programming concepts a

Working with the examples helped me learn Java

Exploring similar examples helped me learn Java

The examples helped me in solving Java exercises in this class a

Engagement

My mind was not wandering to other topics when I was looking at the examples- challengesa

I did not skim-read the examples a

RECOMMENDATION EVALUATION

Perceived Recommendation Quality

I liked the learning materials recommended by the system

The recommended learning materials fitted my needs

The recommended learning materials were well chosen

The recommended learning material were relevant to my goal

The system did not recommend too many bad learning materials a

I liked the recommended learning materials a

System Satisfaction

I would recommend the system to others

The system is not useless a

The learning materials that the system recommends are very helpful for me

The system recommendations help me have a better practice

Using the system is a pleasant experience

The system has real benefit for me a

aA reverse-coded item.

133

0

1

2

3

4

Satisfaction Quality
Survey construct

R
at

in
g Group

Control

Experimental

Figure 32: Mean and standard error of ratings of followers in each group in the
survey constructs assessing the value of recommendations.

In sum, survey analysis showed no significant difference between the ratings of the

two groups for the recommendation constructs. Followers in the Experimental group,

on the other hand, rated the quality of recommendations significantly more than the

followers in the Control group. There was no significant difference in the mean ratings

of the followers for the satisfaction construct, though. The lack of difference in the

satisfaction construct could be explained by the type of items in this construct, which

targeted the system more than the recommendation.

8.5 SUMMARY AND DISCUSSION

8.5.1 SUMMARY

This chapter presented the controlled classroom study that was conducted to measure

the effect of the adaptive recommendation of PCEX examples and problems on stu-

dent’s engagement in activities and learning. This section summarizes and discusses

134

our findings from the classroom study that compared adaptive recommendations to

non-adaptive recommendations.

8.5.1.1 Effects of adaptive proactive recommendations Adaptive recommen-

dations changed the the student’s practice behavior in a positive way: We observed

that the recommendations made by the adaptive approach guided the students to work

with examples more than the random approach. Also unlike the random approach, the

adaptive approach did not suggests students to stay on simple coding exercises that

were not helpful for learning.

The adaptive recommendation made students more persistent to solve the prob-

lems that they attempted: Our analysis supported the engagement hypothesis (H1) by

demonstrating positive effects of the adaptive recommendation on overall engagement

and also on persistence in working with activities. We found that the probability of not

solving problems recommended by the adaptive approach was significantly lower than

the problems recommended by the random approach. Furthermore, when comparing

the level of student’s engagement on the recommended and not recommended activities

within the Experimental group, we observed that the students spent twice more time

on the recommended examples, which was significantly different from the time they

spent on the not recommended examples. Additionally, the students tended to have

more attempts to solve recommended problems and lower probability of failure in the

recommended problems than the not recommended problems, and the difference was

close to being marginally significant.

Adaptive recommendation partially influenced learning: Our analysis partially sup-

ported the learning hypothesis (H2). More distinct attempts on the activities recom-

mended by the adaptive approach increased the midterm score, so did more distinct

attempts on examples recommended by the adaptive approach. However, a rather op-

posite effect was found for the impact of adaptive recommendation on the post-test

scores. We found that work with recommended activities was associated with getting a

higher post-test score regardless of the approach that generated the recommendation.

135

At the same time, more work on the activities recommended by the adaptive approach

tended to result in lower post-test scores (the effect was close to being marginally sig-

nificant). And, more work on not recommended activities was significantly decreasing

post-test score regardless of the group.

We explain this discrepancy between the midterm and post-test results by referring

to the characteristics of the target population. The students in this study were enrolled

in an intermediate programming class which spent more than 2/3 of the course on

advanced programming concepts. It is likely that by the time of the post-test, the

students had gained decent knowledge of programming and the concepts tested in post-

test were too simple for them. As a result, the early effects that were seen at the time

of mid-term disappeared at the end of the semester, when the post-test obtained taken.

8.5.1.2 Effects of adaptive reactive recommendations Remedial examples were

used in very few of the students’ attempts that the students could not solve a problem

(less than 10%). Therefore, not much could be claimed about the benefit of the reactive

over random recommendations of examples. However, our results showed that the stu-

dents were more positive toward the examples recommended by the adaptive approach

as they viewed more examples (close to being statistically significant).

8.5.2 Discussion

Some of our findings need to be further discussed. First, we believe that the random

approach in our study was a fair baseline and did not impair learning. The random

proactive recommendations were selected from the learning activities within the topic

that the student selected and the random reactive recommendations were selected from

the examples that belonged to the current or previous topic of the problem that the

student failed in solving it.

Second, the threshold we chose to determine whether the problems are within the

zone of proximal development was selected by trial-and-error and pilot testing. This

136

limits us in generalizing our approach and findings to the other studies. Yet, we argue

that our proposed adaptive strategy for selecting examples and problems based on

student’s knowledge could be easily applied to other domains.

Third, the findings from different learning measures were not consistent. Midterm

was ideal in terms of the time it was taken during the semester but it was not isomorphic

to the pre-test. Post-test was isomorphic to the pre-test but it was taken at the end of

the semester when most of the students were advanced in programming; which faded

away the impact of working with the recommended activities on student’s learning.

We could not use exam either as it was measuring concepts related to Data structures

which were not covered in the practice system. Yet, we argue that the midterm is more

accurate for measuring student’s learning than the post-test because it was taken at

the time that was close to the time that the review of Java basics was completed and

students could use the system to practice those concepts. Moreover, in our models,

we controlled for the effect of the prior knowledge using the pre-test score; which rules

out any bias related to prior knowledge from our analysis. Therefore, we have enough

evidence for partially accepting the learning hypothesis (H2).

Finally, the subjects in this study were not the ideal population because as they

had prior experience in programming either in Java or another programming language.

As a result, they did not feel the need for additional help and their behavior in the

system was also a proof for that. In particular, when they failed in solving a problem,

they often persisted in solving it without checking any of the recommended examples.

Therefore, lack of usage data restricts us from drawing any conclusion about the benefit

of the reactive recommendation approach over the random approach.

Overall, our study results provided enough evidence to conclude that the recommen-

dations generated by the adaptive proactive approach were more effective for engaging

the students and had some positive results on learning as well. However, we do see the

need for conducting a similar study in an introductory programming class where stu-

dents are in need of guidance which could be provided by the personalized approaches

137

in this study. Moreover, we suggest conducting this study in a larger class which could

give us more statistical power for the regression analysis.

138

9.0 SUMMARY, CONTRIBUTIONS, AND FUTURE WORK

This chapter summarizes the findings of the studies described in previous chapters

(Table 29), presents the contributions of this dissertation, points out the limitations of

the studies conducted, and suggests directions for future research.

9.1 INTERACTIVE PROGRAM CONSTRUCTION EXAMPLES

This dissertation introduced PCEX, an interactive tool to support learning from pro-

gram construction examples. PCEX made each program example explorable and engag-

ing: students can explore each example interactively and check their understanding by

solving challenges that are similar to that example. To promote learning, the examples

in PCEX are enriched by worked steps with subgoal labels and explanations. To assess

the impact of this new educational technology on student’s engagement and learning

(RQ1 – RQ4 in Section 1.2), this dissertation reports results from two semester-long

classroom studies, Classroom Study 1, which explored how students would use PCEX

examples and the relationship between the usage of PCEX examples and students’

learning of programming (Chapter 5), and Classroom Study 2 which investigated the ef-

fect of PCEX examples on student’s engagement and learning relative to non-interactive

examples (Chapter 6).

Classroom Study 1, indicated that working on PCEX activities had a positive

correlation with learning gain and student performance on problem-solving in coding

139

Table 29: Summary of hypotheses and results of the studies in this dissertation.

Hypotheses Measures
Hypotheses Confirmed?

Group/Condition effect

Hypotheses Confirmed?

Interaction effect

CLASSROOM STUDY 2

H1 – PCEX vs. textbook-style

examples: engagement

time-on-task X N/A

interactions with explanations x N/A

H2 – PCEX vs. textbook-style

examples: problem-solving

dist. Parson’s problems solved x x

assignment points X x

early submission X X

H3 – PCEX vs. textbook-style

examples: learning

post-test x X

exam: code comprehension x x

exam: basic code construction x x

exam: complex code construction X x

USER STUDY

H1 – adaptive vs. no fading:

practice problem-solving

number of attempts x X

problem-solving time x X

mental effort x x

H2 – adaptive vs. no fading:

test problem-solving

problem-solving time x N/A

efficiency X N/A

mental effort X N/A

H3 – adaptive vs. no fading:

learning

post-test X N/A

CLASSROOM STUDY 3

H1 – adaptive vs. random

recommendation: engagement

overall engagement X(only for examples) N/A

median example line clicks x N/A

median time on examples X N/A

median attempts on problems not solved x N/A

persistence probability x N/A

probability of not solving a problem X N/A

H2 – adaptive vs. random

recommendation: learning

midterm x X

post-test x x

learning efficiency x x

140

exercises. Classroom Study 2 demonstrated that PCEX examples engage students

more than static examples (similar to those presented in standard textbooks) do, by

increasing their time on task and increase in activities. Specifically, we observed that

students were less engaged in their work with regular examples than when working with

PCEX examples, as indicated by the time spent practicing the PCEX worked examples

and challenges. This is additional evidence in support of the underuse of the regular,

static, textbook-like examples, mentioned earlier in Section 2.2.

Furthermore, PCEX examples resulted in several advantages over non-interactive

examples, in terms of problem-solving performance: the group that practiced with

PCEX examples obtained higher assignment points than the group that worked on

static examples; and more work on PCEX examples was associated with early submis-

sion of assignments. Working with PCEX examples also resulted in an improvement in

student’s learning: practicing with PCEX examples had a positive impact on the stu-

dent’s post-test scores (near-transfer) as well as on the scores on exam questions that

required a deep understanding of programming concepts, revealed when the student

constructed a complex program (far-transfer).

The results from Classroom Study 2 showed several benefits for program construc-

tion examples. Working on examples (regardless of the technology used for presenting

the examples) was associated with solving more Parson’s problems correctly. Interest-

ingly, this effect was even larger than the effect of the student’s prior knowledge in

predicting the number of Parson’s problems solved correctly. Moreover, work on exam-

ples had a positive impact on exam scores, and the effect increased as the complexity of

the exam questions increased. Our studies also provided insightful findings for explain-

ing when and how the value of worked program examples are maximized. In particular,

our results suggest that spaced/distributed practice with worked examples results in

better learning outcomes than cramming practice right before an exam. The value of

regular practice is also supported by modern research on spaced learning [Carpenter

et al., 2012]. Our results also revealed a stronger effect for work with PCEX examples

in the first half of the course than the second half, which reconfirms the findings of

141

previous research, which showed that the worked example effect is stronger in the early

stages of learning and the benefit decreases as a student’s knowledge grows [Kalyuga

et al., 2003; Sweller et al., 1998].

9.2 PERSONALIZING WORK WITH PROGRAM EXAMPLES

To support individualized student work with PCEX examples, this dissertation study

built and assessed technologies that adapted example presentation and selection to

the student’s knowledge. Example presentation was personalized, using an adaptive

fading technology that adapted the amount of support provided within an example to

the student’s knowledge by adaptively fading steps in PCEX examples (“inner loop”

adaptation). Example selection was personalized by using adaptive recommendation

technologies to 1) guide the student to the most useful example or problems, based

on her/his knowledge state and 2) to provide relevant examples to the student when

she/he was having trouble solving a problem (“outer loop adaptation”).

This dissertation reports on the results of two studies related to the area of per-

sonalization: A User Study (Chapter 7), which was conducted to examine the value of

adaptive fading on student problem-solving performance and learning relative to non-

fading example steps (RQ5 and RQ6 in Section 1.2), and Classroom Study 3 (Chapter

8), which investigated the value of adaptive recommendation technologies on student’s

engagement and learning relative to non-adaptive (random) recommendations (RQ7

and RQ8 in 1.2).

9.2.1 Adaptive fading of steps in program examples

The results from the User Study showed that adaptive PCEX examples that adapted

fading of examples steps to the student’s knowledge showed significant improvement

on student problem-solving performance and learning over fully non-adaptive worked

142

examples with no faded step. Our results also showed the positive impact of adaptive

fading on student problem-solving performance. As students progressed in their practice

and completed more faded examples, they solved practice problems in significantly less

time and marginally fewer attempts. Our results also showed that there was significantly

lower mental effort invested in the problem-solving, a marginally higher problem-solving

efficiency, and a tendency for a shorter problem-solving time that correlated with the

adaptive fading of example steps. More importantly, adaptive fading was found to

have an overall positive effect on the student’s learning, as measured by pre-test and

post-test.

9.2.2 Adaptive recommendation of program examples and problems

The results from Classroom Study 3 showed that adaptive recommendations changed

the student’s practice behavior in a positive way by guiding the students to work with

examples when they needed it, instead of suggesting that students stay too long on

simple coding exercises that didn’t help them add to their programming knowledge.

Secondly, our results showed that students with adaptive recommendation persisted

more in working with the recommended examples and also in solving recommended

problems. Specifically, the probability of the student not being able to solve problems

that had been recommended by the adaptive approach was significantly lower than

when the problems were recommended by a random approach. Also, students spent

twice as much time on the adaptive recommended examples as they did on the examples

that were not recommended.

Furthermore, adaptive recommendation partially influenced learning by demon-

strating the positive impact of work on recommended activities on the midterm but

not on the post-test. Our results showed that more distinct attempts on the adaptively

recommended activities and examples increased the midterm score. However, the im-

pact of adaptive recommendation on the post-test scores was not a strong factor. We

found that working with the recommended activities was still associated with getting

143

a higher post-test score, but it didn’t matter which approach generated the recommen-

dation. And, more work on not recommended activities was significantly decreasing

post-test score regardless of the group. This result seems somewhat surprising but is

explainable by the characteristics of the studied population. Classroom Study 3 was

conducted in an intermediate course and students were quite advanced at the time

the post-test was taken. As a result, post-test was too simple for them and was not

an appropriate test to measure the differences on student’s learning at the end of the

semester.

It should be mentioned that our results also showed that students were more positive

toward remedial examples that were recommended to them adaptively. However, due

to the limited scale of our usage data, we need to conduct a larger study in the future,

to better understand the impact of the example-based problem-solving support (as used

in Classroom Study 3) on student’s learning and problem-solving performance.

9.3 CONTRIBUTIONS

This dissertation advances prior work in the area of building interactive program con-

struction examples, designs a new learning technology tool, and studies their impact on

student’s engagement and learning. Our learning technology tool, PCEX, was designed

to replicate and expand (to another domain) prior research on worked examples in the

domains of math and science (e.g., [Atkinson et al., 2000; Chi et al., 1989; Sweller and

Cooper, 1985]). It was designed for the purpose of adaptively supporting individual

students in the domain of programming. It helps them acquire program construction

skills through exploring personalized and engaging worked examples. Our findings from

these studies reconfirm that interactive, engaging worked examples help achieve better

learning outcomes.

Our learning tool (PCEX) and the findings from Classroom Study 1 and Classroom

Study 2 contribute to computer science education, the learning sciences, and worked-

144

example research by demonstrating the positive effect of PCEX examples on student

engagement and the learning of programming, as well as showing some benefits for

problem-solving performance.

The work in this dissertation contributes to the computer science community, in

particular, the instructors of beginning CS courses, by creating more than 120 inter-

active program construction examples for introductory Java and Python. This is a

valuable resource, as there is an emerging need for worked examples in the domain

of programming. As mentioned in [Head et al., 2018], examples are often missing or

insufficient for many programming tasks, and even when available, they may not be

self-explanatory. On the other hand, PCEX examples, presented in this dissertation,

are designed to be reusable so that instructors can easily add them to their course

homepage or any online system that students use to practice on. These examples are

also enriched with explanations and subgoal labels, to make understanding program

construction easier for the students.

The work in this dissertation is an attempt to extend prior work on adaptive pro-

gramming systems by introducing new technologies that are fine-tuned to the student’s

knowledge. Prior work, reviewed in Section 2.4, was not designed to address specifi-

cally how the student would transition from fully explained examples to faded examples

and problems (e.g., [Guerra et al., 2018], [Weber and Brusilovsky, 2001], [Yudelson and

Brusilovsky, 2005], [Davidovic et al., 2003], [Hosseini et al., 2015]). The adaptive rec-

ommendation and adaptive fading technologies in this work extend the existing line

of research on adaptive educational systems in the field of programming, by address-

ing the aforementioned gap. On the one hand, an adaptive technology for proactive

recommendations helps the student work on examples when she/he has none or very

little knowledge of the subject, but as the student’s knowledge grows, the system will

guide her/him to move on to faded examples and later to problems. So, to solve this

later demand, on the other hand, we have also created an adaptive fading technology.

This dissertation describes how the step explanations in the worked program examples

145

can be gradually faded, based on what is appropriate for the student’s current state of

knowledge.

The User Study, described in Chapter 7, replicates prior research on faded examples

(e.g., [Najar et al., 2016; Salden et al., 2009]) and confirms that the adaptive fading of

example steps is helpful for problem-solving and learning. Our findings from this User

Study align with previous research on adapting instruction to the student’s knowledge

by confirming research findings in the domains of Geometry [Salden et al., 2009] and

SQL [Najar et al., 2014]. Moreover, they contribute to the fields of computer science

education and AI in education, by providing insightful implications for how to scaffold

program examples.

Classroom Study 3, described in Chapter 8, extends prior work on adaptive sys-

tems for guiding the student in her/his navigation to learning activities (e.g., [Guerra

et al., 2018], [Weber and Brusilovsky, 2001], [Yudelson and Brusilovsky, 2005], Davi-

dovic et al. [2003], Hosseini et al. [2015]) by demonstrating how and when examples,

faded examples, and problems should be presented to the student in his/her practice

sequence. Our goal was to replicate their findings within a new domain, programming.

The findings from this study showed that the proposed adaptive technologies for rec-

ommending learning activities engaged students to be more persistent in each learning

activity while simultaneously resulting in some positive results on learning achievement.

Finally, our findings from Classroom Study 3 contribute to computer science educa-

tion and AI in education, by introducing a real-time online adaptive system for helping

students learn to program. Recent online systems either support the student in only

problem-solving (such as codingbat [Parlante, 2017], CloudCoder [Hovemeyer et al.,

2013], CodeWorkout [Buffardi and Edwards, 2014]) or provided adaptive support only

in problem-solving [Hsiao et al., 2010]. Only a few attempts offer practice with both

examples and problems. Among them, we have non-adaptive E-books that offer exam-

ple+practice problems [Ericson et al., 2015], as well as our prior work, which guided

students to program behavior examples and problems, based either on progress [Hos-

seini et al., 2016] or an adaptive approach that aimed to maximize student’s knowledge

146

[Guerra et al., 2018; Hosseini et al., 2015]. The system studied in Classroom Study 3

contributes to the existing online systems as well as our past work by using an advanced

student modeling approach which offers personalized practice with program construc-

tion examples and problems.

9.4 LIMITATIONS AND FUTURE WORK

The work on this dissertation can be extended in several ways. The first direction for

future work would be to improve the PCEX interface features. The second and third

directions for future work would be to extend the studies (Section 9.4.2) conducted

in this dissertation that assessed the impact of the examples and inner/outer loop

adaptation for supporting student’s work with PCEX examples. The last direction for

future work would be to share the PCEX examples with a broader audience, as well as

to conduct more studies that connect our work with previous work on program behavior

examples. The following subsections discuss these and other directions for future work.

9.4.1 Example design

In the current design, PCEX combines explorability and challenge in the same interface,

which makes it impossible to assess the value of explorability and challenges separately.

In the future, it would be good to conduct a controlled study to evaluate the combined

and separate impact of explorability and challenge in the PCEX activities. Also, the

interface of worked examples does not have any features to highlight which concepts

or code segments are important to be studied for each block of program code. This

is not an issue for small program coding, but the student may easily get lost when

the program code has many lines of code. Future work may explore possible ways

to emphasize important code segments or motivate the student to think more deeply

about the code. One approach would be to use self-explanation prompts in the worked

147

examples. Future research should study how and when to present the self-explanation

prompts to enhance learning from examples. Finally, our studies showed that hints

and explanations were used very few times by the students. It is not clear why these

features have not been used extensively. Thus, future research needs to run more

usability studies for understanding how to improve the design of these features.

9.4.2 Studies assessing examples and adaptive technologies

First, the usage of the practice system was voluntary and, as a result, many of the

students did not use the system. For example, only 200 (28%) students used the system

in Classroom Study 2. It’s not clear how this bias affected this group of students. This

limitation stems from the voluntary nature of practice which might appeal to certain

types of students. Future work may investigate what happens when the system is

offered in a mandatory way, to see if mandatory work within the practice system would

have positive effects on students who would not be using it otherwise.

Second, due to the loosely controlled nature of classroom studies, students may have

learned the skills that we controlled for by using resources outside the practice system.

This is a factor that we can’t control for in our analyses. Future work may investigate

the impact of the system in a more controlled way, perhaps by distributing the practice

across multiple lab sessions and assessing changes in student’s knowledge before and

after each practice session.

Although Classroom Study 2 was conducted in a rather large course, it was limited

to a specific population. The target course in Classroom Study 2 was presented as a

mandatory course for engineering students. Participants were mainly studying electrical

engineering or civil engineering with a small a number of students from other engineering

programs. For most students, except for electrical engineering students, this was the

only compulsory programming course in their curriculum. Our experience is that there

is a considerable portion of such non-CS students who are not well motivated to learn

to program, especially when compared with computer science (CS) students. Thus, our

148

results from Classroom Study 2 may not generalize well for CS major students elsewhere,

but may better generalize for CS minors or non-CS majors. Another limitation in

Classroom Study 2 was that the Control and Experimental groups had different numbers

of students using the system. This is a limitation of our analysis and our results could

have been influenced by these groups having unmatched numbers. Therefore, a similar

study should be conducted in the future with CS majors, to validate our observations

in Classroom Study 2.

The User Study used a single control condition in which no example steps were

faded. While this is a valid control condition and maximized the chance of registering

the difference between the two conditions in our study, there are alternative methods

such as fixed, backward or forward fading, which may be more suitable [Atkinson and

Renkl, 2007]. Future work may extend the user study to investigate the impact of adap-

tive fading relative to these alternative approaches for fading example steps. Another

limitation of the User Study is related to the duration of the study session, which may

impact our results. Future work could conduct a study in multiple sessions, or alter-

natively in a classroom study. Faded examples in the user study were also presented

without showing any explanations for the non-faded lines. This limits us in generalizing

our findings to other domains, in which faded example only fade the explanations for

steps not included in the solution. Therefore, a future study may investigate the value

of adaptive fading when faded program examples hide the explanations only for the

faded lines. Lastly, in the User Study we compared adaptively faded examples against

standard examples to maximize the difference between the two conditions, thus, in-

creasing the chance of registering differences between them. This is a compromise that

doesn’t allow a reliably measurable separation of the “fading” effects from the “adap-

tive” effects. Future work should improve the study design and increase the number of

conditions in the study to have an additional condition with fixed fading which would

allow us to separate the fading from the adaptive effects.

Classroom Study 3, which examined the effect of an adaptive recommendation for

learning activities, was conducted in an intermediate programming course which re-

149

quired students to have prior experience in programming. As a result, in Classroom

Study 3, the majority of the students were advanced in programming and did not need

any additional support in terms of guidance. Therefore, the impact of the recommen-

dation was probably not properly measured in this study. The characteristics of the

population in this study also limited us in generalizing our findings to other populations,

especially learners with little or no prior programming knowledge. Therefore, a similar

study should be conducted with students in an introductory programming course, to

more reliably assess the impact of adaptive recommendation on student’s learning.

In Classroom Study 3, students were free to make their own navigational decisions,

and as a result, in about half of their attempts, they did not follow the systems’ rec-

ommendations. Free choice rather than sequencing was a design decision, and this

limitation stems from it. We tried to minimize the effect of free choice by controlling

for the effect of the number of student attempts on activities that were not recom-

mended. However, we cannot guarantee that this effect could be fully controlled for

as it is not straightforward how their work on not-recommended activities should be

quantified. Should we take into account the concepts in those activities or the order

they were accessed by the student or another factor? Future work may explore how

students could be encouraged to follow recommendations while they have free choice.

One promising approach would be to use gamification features in the interface, such as

progress meters and winning certificates or badges.

Several studies suggest that adaptive systems should be more transparent to the

users, that is the adaptive system should explain its decisions to the user. Classroom

Study 3 lacks the transparency feature as it does not explain why it recommends the

top–3 activities to the student. Thus, in the future, it would be interesting to examine

the value of recommendations when the interface provides more information about its

decisions to the students, explaining why it recommended each activity. One approach

that could be explored would be to visualize how much each recommended activity

could contribute to the student’s knowledge.

150

One limitation in Classroom Study 3 is that only one adaptive recommendation

approach was investigated. Although we found some positive effects to this approach,

it’s not yet clear whether this approach was more beneficial then other task selection

approaches. In the future, we need to explore and assess more approaches. One ap-

proach for task selection would be to use state-of-the-art student modeling approaches

such as performance factor analysis (PFA) [Pavlik Jr et al., 2009] to predict student

performance on each activity and then determine the best activity should follow next,

accordingly. Another approach would be to use recommendation approaches that take

into account a range of student factors, rather than focusing on student’s knowledge

alone. Similarly, our results are limited to using a single approach in the control con-

dition. Although having a random recommendation seems to be a fair baseline for

within-topic recommendations of learning activities, there are other approaches which

may be more suitable. Future studies should explore alternative baseline approaches

such as a fixed sequence suggested by the teacher.

Another limitation of the adaptive recommendation approaches we used in the User

Study and Classroom Study 3 dealt with the thresholds that we used in the adaptive

fading and adaptive recommendation approaches. We adjusted the threshold for these

approaches on a trial-and-error basis and through pilot-testing. Future research should

determine these thresholds by running cross-validation on the data.

The adaptive technologies in the User Study and Classroom Study 3 could be in-

vestigated in a larger-scale study to evaluate the impact of having different adaptation

levels used together in the same study. An ideal setting for such a study would be

a 2×2 between-subject design with “outer loop” and “inner loop” as between-subject

factors. This study would shed light on which combinations of adaptive educational

technologies in program examples would lead to the best learning outcomes.

Finally, the Bayesian student model had some limitations. First, in programming,

each activity is related to many concepts. On the other hand, the number of parameters

that a Bayesian network can handle is limited. To tackle this issue, we followed the

suggestion by Huang et al. [2014] and used the TF-IDF approach to determine which

151

of the concepts which were the most important for each activity. We kept about 30%

of the concepts. Therefore, we lost precision in modeling, since we ignored 70% of the

concepts in each activity. Another limitation is that we could not model the student’s

work on examples. Future work should explore possible ways of increasing the accuracy

of the Bayesian student model in the domain of programming. Moreover, more research

should be done to understand how student work with examples can be modeled.

9.4.3 Other directions

We plan to connect the work in this dissertation to previous work on program behavior

tools. In particular, we plan to study the impact of integrating program behavior and

program construction learning activities when they are offered together in a practice

system. Also, current adaptive recommendation technologies should be extended to

determine how to provide cross-skill recommendations, i.e., when the student should be

guided to a certain program behavior or program construction activities. Finally, we

plan to build a repository of PCEX examples to make them available to the public. We

also plan to develop an open source authoring tool to allow instructors and researcher

to create and share PCEX examples.

9.5 DISCUSSION

A discussion of general issues in my dissertation is as follows:

We acknowledge that there is a blurred line between PCEX examples and problems

due to the dual nature of “engaging” features within tutoring systems. In general, any

engagement asking for additional student action will cause the student to move from

examples to problem solving. Yet, we find examples to be a more appropriate category

for our developed learning tool rather than problems because the “engaging” features

that we are using in the PCEX examples have been used in previous learning tools

152

that are known as examples. In particular, in the domain of CS education, animated

examples engage the student by asking a question or allowing the student to change the

input used by the example. Other aspects that shaped our study include similarities to

previous example research in the domains of math and science, such as missing steps

that the student has to fill in, or self-explanation prompts that the student has to

answer.

In this dissertation research, a time factor was used in several ways. In some places,

more time spent on an activity was considered to be positive evidence for engagement

while in other places, more time spent on an activity was considered to be negative, as

evidence for having trouble completing the task. We argue that more time spent on an

activity could be taken as a positive sign as long as it is coupled with better learning.

Specifically, if more time spent on an activity does not improve learning achievement or

even impairs learning, then it might merely be pointing to a bad interface design, bad

content design, bad learning strategies in the study design, or bad habits employed by

the learner. On the other hand, if more time spent on an activity results in improved

learning, then it points to a good design of content or interface, indicating the student

has become more engaged in working with activities.

Although, self-selection and free choice limits us from having a reliable, fully con-

trolled study, it also helps us to conduct studies that are closer to the natural context

of learning to program. Specifically, students who seek help for learning to program

have access to abundant resources for learning programming, including online tutors

such as the Python tutor, programming platforms such as CodeWorkOut, CloudCoder,

and CodingBat, and programming MOOCs and video tutorials that are available on

YouTube. The non-mandatory design of our studies enabled us to investigate the impact

of the proposed learning tool and the personalized technologies, in natural contexts.

We acknowledged that Classroom Study 2 and 3 did not have the “best possible”

student audience. Likewise, the Classroom Study 2 that we conducted in Finland helped

us to investigate the impact of our system in the context of an educational system, but it

was one that varied quite a bit from the educational system in the United States, as well

153

as from many other countries in the world. However, this should not be seen as merely

a limitation because the studied population enabled us to see the impact our learning

technologies had on more diverse groups of students (both beginners and intermediate

learners; students in the U.S. and Finland). Similarly, the Classroom Study 3 that we

conducted in intermediate programming classes enabled us to understand the impact

of the proposed learning tool and adaptation technologies in the context of a class that

requires students to have prior programming knowledge.

We observed a contradiction between a log-based and survey-based evaluation of en-

gagement. The survey results showed that students reported low values for engagement

with PCEX examples while the log-based data showed that students were engaged with

the PCEX examples by spending more time on these examples compared to the regular

examples. As mentioned earlier in Section 6.5.2, this contradiction between the survey

and log-based data could be caused by these measures reflecting different constructs

referred by the same name. Another reason might be that when students were ques-

tioned about how engaging the PCEX examples were (survey), they were comparing

it to game apps they play, but when they began to study programming, their actual

engagement with the system (log-based data) was reflecting how enthusiastic they felt

about interactive, adaptive PCEX examples compared to studying a flat, static book, or

the tutoring equivalent to a flat, static book. Future studies should conduct individual

interviews with students to understand possible reasons for reporting lower engagement

in the survey and also discuss options for enhancing engaging features in PCEX.

154

APPENDIX A

PCEX MOCK-UPS

155

1 2

3

4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21
22

23 24

25 26

27 28

29

APPENDIX B

PRE- AND POST-TESTS

B.1 PRE- AND POST-TEST IN CLASSROOM STUDY 1

The pre-test is presented below. The post-test was isomorphic to the pre-test: questions

1–3 were the same as the pre-test, questions 4–6 presented the given lines in a different

order.

For questions 1 – 3 of this section complete the code by filling in the blank

line(s) or box.

1. Complete the following code snippet to find the sum of the integer numbers entered

from the keyboard. Assume that user enters 0 to indicate the end of input.

int sum= 0;

Scanner input=newScanner(System.in);

int num=input.nextInt();

while(....................){

....................

num=input.nextInt();

}

System.out.print("Sum:"+num);

161

2. Complete the following code snippet to print the following output:

*

**

for(..................) {

for(..................) {

System.out.print("*");

}

System.out.println();

}

3. Write a method called firstTwo to receive a string str and return the string made of

its first two chars, so the String "Hello" yields "He". If the string is shorter than length

2, the method returns whatever there is, and the empty string "" yields the empty

string "".

firstTwo("Hello") → "He"

firstTwo("abcdefg") → "ab"

firstTwo("ab") → "ab"

firstTwo("") → ""

The following three questions (4–6) ask you to determine the correct order

of the lines to construct a code snippet that achieves a certain purpose. For

example, if there are four lines in the code snippet and you think that the

first line is d, the second line is b, the third line is a, and the fourth line is

c, you need to write the correct order of the lines as d b a c

4. Determine the correct order of the following lines to construct a code snippet that

swaps pairs of adjacent elements of the array lst. Note that not all lines are relevant.

a.int[]lst= { 1, 2, 3, 4, 5, 6 };

162

b.}

c.for(inti= 0;i<lst.length;i+= 2){

d.lst[i+1] =temp;

e.lst[i] =lst[i+1];

f.for(inti= 0;i<lst.length;i+= 1){

g.inttemp=lst[i];

The correct order of lines is:

5. Assume that we have an ArrayList of strings called list. Determine the correct order

of the following lines to construct a code snippet that receives a sequence of words from

the user and fills up the list with distinct words in the sequence. Assume that user

enters a blank line to indicate the end of input. Note that not all lines are relevant.

a.word=input.nextLine();

b.if(!list.contains(word))

c.list.add(word);

d.}

e.while(!word.equals("")) {

f.Scannerinput=newScanner(System.in);

g.List<String>list=newArrayList<String>();

h.While(word!="") {

163

i.Stringword=input.nextLine();

The correct order of lines is:

6. Assume that we have a two-dimensional list of integer called matrix. Determine the

correct order of the following lines to construct a code snippet that prints the sum of

the elements in each row of the matrix. Note that not all lines are relevant.

a.System.out.println(rowTotal);

b.introwTotal= 0;

c.for(intj= 0;j<matrix[0].length;j++) {

d.}

e.for(inti= 0;i<matrix.length;i++) {

f.}

g.rowTotal=rowTotal+matrix[i][j];

h.rowTotal=rowTotal+matrix[j][i];

The correct order of lines is:

B.2 PRE- AND POST-TEST IN CLASSROOM STUDY 2

The pre-test is presented below. The post-test was isomorphic to the pre-test: ques-

tions 1–5 presented the multiple choices in a different order, questions 6–10 presented

the given lines in a different order.

Welcome to the Python Pretest! The test contains 10 questions with a

total estimated time of 15-20 minutes. The purpose is to know a bit more

about your pre-knowledge about Python programming. Your answers will

only be used for research purposes and to improve the course material. This

WILL NOT be graded. The test has NO impact on your grades AT ALL.

Try your best and thank you!

164

Please answer the following questions (Q1-Q5) by selecting one of the

four options.

Q1. In a bookstore, a $12 book is labeled, "Get a 20% discount". Which one of the

following options is the code that calculates the sale price of this book?

� 12 = original_price

0.20 * original_price = discount

original_price - discount = sale_price

� original_price = 12

discount = 20 * original_price

sale_price = original_price - discount

� original_price = 12

discount = 0.20 * original_price

sale_price = original_price - discount

� original_price = 12

discount = original_price / 20

sale_price = discount - original_price

Q2. The zoo ticket is free if the person’s age is below 15. Otherwise, the price of the

ticket depends on the time of the day that we want to visit the zoo. The ticket costs $2

if it’s before 1:00pm. The price of the ticket increases to $4 for any other time during

the day. Which one of the following options is the code that prints the cost of the zoo

ticket for a certain age and hour of the day.

� if age >= 15:

if hour < 13:

print("The ticket costs $2")

else:

print("The ticket costs $4")

else:

print("Free entrance!")

165

� if hour >= 13:

if age <= 15:

print("The ticket costs $2")

else:

print("The ticket costs $4")

else:

print("Free entrance!")

� if age >= 15:

if hour < 13:

print("The ticket costs $2")

else:

if age < 15:

print("Free entrance!")

else:

print("The ticket costs $4")

� if age >= 15:

if hour < 13:

print("The ticket costs $4")

else:

print("The ticket costs $2")

else:

print("Free entrance!")

Q3. Which one of the following options is the completed version of the following code

that aims to find the sum of the integer numbers entered from the keyboard. Assume

that user enters 0 to indicate the end of input.

sum = 0

num = int(input())

166

while

..................

num = int(input())

print(sum)

� sum = 0

num = int(input())

while num == 0 :

sum += num

num = int(input())

print(sum)

� sum = 0

num = int(input())

while num != 0 :

sum = num

num = int(input())

print(sum)

� sum = 0

num = int(input())

while num != 0 :

sum += num

num = int(input())

print(sum)

� sum = 0

num = int(input())

while num >= 0 :

num = num + sum

num = int(input())

print(sum)

167

Q4. Which one of the following options is the completed version of the following code

that aims to increment all values by 1 in the list referred by variable lst.

lst = [12, 15, 3, 4, 6, 5]

for :

..............

print(lst)

� lst = [12, 15, 3, 4, 6, 5]

for i in range(len(lst)):

lst[i] += 1

print(lst)

� lst = [12, 15, 3, 4, 6, 5]

for x in lst:

x += 1

print(lst)

� lst = [12, 15, 3, 4, 6, 5]

for i in range(1,len(lst)):

lst[i] += 1

print(lst)

� lst = [12, 15, 3, 4, 6, 5]

for i in range(1,len(lst)):

i += 1

print(lst)

Q5. Which one of the following options is the code for the function called firstTwo

that receives a string referred by variable s and returns a string made of the first two

characters in the string s. So, the string "Hello" yields "He". If the string has less than

2 characters, the function returns whatever the string is. The empty string "" yields

the empty string "".

168

� def firstTwo(s):

if len(s) >= 2:

return s

else:

return s[1:3]

� def firstTwo(s):

if len(s) >= 2:

return s[0:2]

else:

return s

� def firstTwo(s):

if len(s) >= 2:

return s[1:2]

else:

return s

� def firstTwo(s):

if len(s) >= 2:

return s[2:]

else:

return s

Please answer the following questions (Q6-Q10) by determining the cor-

rect order of the lines in the code. For example, if there are four lines in

the code and you think that the first line is d, the second line is b, the third

line is a, and the fourth line is c, you need to write the correct order of the

lines as d b a c. Note that the indentation is not relevant for these questions.

Q6. Determine the correct order of the following lines to construct a code that swaps

pairs of adjacent elements of the list referred by variable lst with an even number of

169

elements. For example, when pairs of adjacent elements of the list [1,2,3,4,5,6] are

swapped, the list will be [2,1,4,3,6,5]. Note that you don’t necessarily need all lines.

a. lst[i+1] = temp

b. lst = [1, 2, 3, 4, 5, 6]

c. for i in range(0,len(lst),1):

d. lst[i] = lst[i+1]

f. temp = lst[i]

g. for i in range(0,len(lst),2):

h. temp = lst[i+1]

The correct order of lines is:

Q7. Assume that we have an empty list referred by variable lst. Determine the correct

order of the following lines to construct a code that receives a sequence of words from

the user and fills up the list with distinct words in the sequence. Assume that user

enters a blank line to indicate the end of input. Note that you don’t necessarily need

all lines.

a. word = input()

b. lst.append(word)

c. if (word in lst) == False:

d. while word != "":

e. lst = []

f. for i in range(len(lst)):

g. lst = [""] * len(lst)

h. word = input()

i. lst[i] =input()

j. if word != lst:

The correct order of lines is:

Q8. Consider the class Rectangle defined as follows:

170

class Rectangle:

def __init__(self, height, width):

self.height = height

self.width = width

def get_height(self):

return self.height

def get_width(self):

return self.width

def magnify(self, ratio):

self.height = self.height * ratio

self.width = self.width * ratio

Determine the correct order of the following lines to construct the code that creates a

Rectangle object with the height of 10 and width of 20, magnifies the height and width

of the rectangle by a factor of three and prints in order the magnified height and width.

Note that you don’t necessarily need all lines.

a. my_box.magnify(3)

b. print(my_box.get_height())

c. my_box = Rectangle(20,10)

d. print(my_box.get_width())

e. my_box = Rectangle(10,20)

f. my_box.magnify(2)

g. Rectangle.magnify(3)

The correct order of lines is:

Q9. Assume that we have a two-dimensional list of integer called matrix that is defined

as follows:

matrix = [[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12]]

171

You can think of this matrix as a grid of numbers, arranged in 3 rows and 4 columns.

The outer list of the matrix contains one inner list for each row, and each inner list

contains the integers in one row.

Determine the correct order of the following lines to construct a code that prints the

sum of the elements in each row of the matrix, that is: 10 as the sum of the elements

in the first row, 26 as the sum of the elements in the second row, and 42 as the sum of

the elements in the third row. Note that you don’t necessarily need all lines.

a. row_total = 0

b. row_total = row_total + matrix[i][j]

c. print(row_total)

d. for j in range(len(matrix[0])):

e. for i in range(len(matrix)):

f. row_total = row_total + matrix[j][i]

The correct order of lines is:

Q10. Assume that we want to read a text file where each line in the file contains

two comma-separated integers. Determine the correct order of the following lines to

construct a code that opens up this file and prints out the sum of the two integers in

each row.

For example, if the text file contains the following two lines:

12,48 33,11

Then, the code prints

60 44

The code should handle all exceptions that might occur during reading a file. Note that

you don’t necessarily need all lines.

a. print(sum)

b. file = open(filename, "r")

172

c. print("Error reading the file. The program execution ends.")

d. sum = int(row[0]) + int(row[1])

e. row = row.split(’,’)

f. except OSError:

g. file.close()

h. for row in file:

i. try:

j. sum = int(row[0] + row[1])

The correct order of lines is:

B.3 PRE- AND POST-TEST IN USER STUDY 1

The pre-test is presented below. Questions 1–4 were paper-based. Questions 5–9 were

presented on the computer using the PCRS tool (described in Section 2.5). The post-

test was isomorphic to the pre-test: questions 1–4 presented the given lines in a different

order, questions 5–9 had different surface features.

Q1. Assume that we have two integer variables a and b and we want to set the value

of variable result based on the value of a and b. Determine the correct order of the

following lines to construct a code snippet that sets the variable result to 1 in either of

these two cases: when a is greater than 5 and b is greater than 10 or when both a and

b are less than 5. Otherwise, the result will be 2.

a.if ((a > 5 || b > 10) && (a < 5 || b < 5)) b. result = 2;

c. result = 1;

d.if ((a > 5 && b > 10) || (a < 5 && b < 5)) e. else

f. int result;

g.if ((a > 10 && b > 5) && (a <= 5 && b <= 5))

173

The correct order of lines is:

Q2. Body mass index (BMI) is a measure of body fat based on height and weight that

applies to adult men and women. BMI Categories are as follows: Underweight < 8.5

Normal weight = 18.5-24.9

Overweight = 25-29.9

Obesity = BMI of 30 or greater

Determine the correct order of the following lines to construct a code snippet that prints

the weight status for the given BMI value.

a. System.out.println("Overweight");

b. System.out.println("Normal");

c. else if (bmi < 30)

d. else if (bmi < 25)

e. if (bmi < 18.5)

f. System.out.println("Obese");

g. if (bmi > 18.5)

h. System.out.println("Underweight");

i. else

The correct order of lines is:

Q3. Determine the correct order of the following lines to construct a code snippet that

calculates the sum of every fourth integer starting from 5 up to including 18.

a.i = sum + i;

b.for (int i = 1; i < 18; i += 4)

c.int sum = 0;

d.sum = sum + i;

e.for (int i = 5; i < 19; i++)

174

f.sum = i;

g.for (int i = 5; i < 19; i+=4)

The correct order of lines is:

Q4. Determine the correct order of the following lines to construct a code snippet that

prints the following output:

**

*

a.for (int j = 5; j > i; j--) {

b.for (int j = 1; j <= 5-i+1; j++) {

c.}

d.for (int i = 1; i <= 5; i++) {

e.}

f.for (int i = 1; i < 5; i++) {

g.System.out.print ("*");

h.for (int j = 1; j <= 5-i; j++) {

i.System.out.println();

The correct order of lines is:

Q5. Given integer variables nuts and apples and a boolean variable isWeekend, write a

boolean expression to determine if the squirrels have a successful party. The squirrels

have a successful party if their party is on the weekend and they have more than either

(i) 50 nuts, or (ii) 50 apples to eat. Store the result of this expression in a boolean

variable called result.

175

Assume that the initial value of the variables nuts and apples is already set to an integer

and the initial value of variable isWeekend is already set to a boolean value.

E.g. 1: if the value of nuts is 60, the value of apples is 40, and the value of isWeekend

is false, the value of result will be false.

E.g. 2: if the value of nuts is 60, the value of apples is 40, and the value of isWeekend

is true, the value of result will be true.

E.g. 3: if the value of nuts is 30, the value of apples is 20, and the value of isWeekend

is true, the value of result will be false.

Q6. Given three integers a, b, and c, write a code to determine the sum of the three

integers. However, if integer a is above 6 or below 4, it does not count toward the sum.

Store the sum in an integer variable called sum.

Assume that the initial value of the variables a, b, and c is already set to an integer.

E.g. 1: if the value of a is 4, value of b is 1, and value of c is 2, the value of sum will

be 7.

E.g. 2: if the value of a is 7, value of b is 4, and value of c is 1, the value of sum will

be 5.

E.g. 3: if the value of a is 1, value of b is 3, and value of c is 7, the value of sum will be 10.

Q7. Given an integer variable age, write a code to determine the fare based on the

value of variable age. The fare is $2 for a child (no more than 11 years old), $3 for a

senior (at least 65 years old), or $5 for an adult. Store the fare in an integer variable

called fare.

Assume that the initial value of the variable age is already set to an integer value.

E.g. 1: if age=7, then fare=2.

E.g. 2: if age=65, then fare=3.

176

E.g. 3: if age=23, then fare=5.

Q8. Given an integer variable n, write a for loop to print every 5th integer in the range

from 5 to n (both inclusive).

Assume that the initial value of the variable n is already set to an integer.

E.g. 1: if the value of n is 10, the code prints: 5←↩10←↩

E.g. 2: if the value of n is 5, the code prints: 5←↩

E.g. 3: if the value of n is 20, the code prints: 5←↩10←↩15←↩20←↩

←↩ is the newline character.

Q9. Write a nested for loop to print the following triangle with 4 rows:

*

**

B.4 PRE- AND POST-TEST IN CLASSROOM STUDY 3

The pre-test is presented below. All questions were presented on the computer. Ques-

tions 1–5 were program comprehension question questions and the student had to write

the answer for each question in a text field. Questions 6–10 were presented using the

PCRS tool (described in Section 2.5). All questions in the post-test were similar to the

pre-test but had different surface features.

1. Consider the following code segment:

public class Tester {

177

public static void main(String[] args) {

int result = 9;

if (9 % 2 > 0)

result += 2;

}

}

What is the final value of result?

2. Consider the following code segment:

public class Tester {

public static void main(String[] args) {

int result = 0 ;

int n = 3;

while (n > 0) {

result += n;

n--;

}

}

}

What is the final value of result?

3. Consider the following code segment:

public class Tester {

public static void main(String[] args) {

178

int result = 0;

for (int i = 0 ; i < 5; i++) {

result = result + i;

}

}

}

What is the final value of result?

4. Consider the following code segment:

public class Tester {

public static void main(String[] args) {

int[] numbers = new int[10];

for (int i = 0; i < numbers.length; i++)

numbers[i] = i * i;

int result = numbers[4];

}

}

What is the final value of result?

5. Consider the following code segment:

public class Tester {

public static void main(String[] args) {

179

int[][] matrix = { {0, 2, 5, 0},

{1 ,2, 4, 3},

{0, 7, 2, 0},

{0, 0, 2, 9} };

int result = 5;

if (matrix[2][2] > 3) {

result++;

}

System.out.print(result);

}

}

What is the output?

Be careful of the space/newline in your answer.

6. Assume that the program has declared and initialized three integer variables named

a, b, and c. Write a boolean expression to determine whether all these three variables

have the same value. Store the result of this expression in the variable result.

E.g. 1: if a=5, b=5, and c=5, the value of result will be true.

E.g. 2: if a=4, b=4, and c=7, the value of result will be false.

E.g. 3: if a=3, b=9, and c=3, the value of result will be false.

7. Given an integer variable age, write a code to determine the fare based on the value

of variable age. The fare is $2 for a child (no more than 11 years old), $3 for a senior

(at least 65 years old), or $5 for an adult. Store the fare in an integer variable called fare.

Assume that the initial value of the variable age is already set to an integer value.

180

E.g. 1: if age=7, then fare=2.

E.g. 2: if age=65, then fare=3.

E.g. 3: if age=23, then fare=5.

8. Assume that the program has declared and initialized an array of five integers named

arr. Write a for loop to increment all values in the array arr by 1.

E.g. 1: if arr=1,2,3,4,5, the code will change it to arr=2,3,4,5,6.

E.g. 2: if arr=10,20,30,40,50, the code will change it to arr=11,21,31,41,51.

9. Write a nested for loop to print the following triangle with 4 rows:

*

**

10. Write a method called firstTwo that receives a string as its parameter and returns a

string made of the first two characters in the given string. If the given string is "Hello",

the method returns "He". If the length of the given string is shorter than 2, the method

returns whatever the given string is.

Hint: You can use the charAt(int index) or substring(int beginIndex, int endIndex)

method for getting the first two characters in the given string.

firstTwo("Hello") → "He"

firstTwo("abcdefg") → "ab"

firstTwo("ab") → "ab"

firstTwo("") → ""

181

APPENDIX C

SURVEYS

C.1 EXAMPLE EVALUATION SURVEY

The following items were in the survey used in Classroom Study 1 and 3 to evaluate

the value of PCEX examples. In the survey used in Classroom Study 2, some of these

items were slightly modified to point to Python instead of Java.

Part 1. Reasons for low/zero usage

• I preferred to use other resources and material to learn Java

• I was doing well in class without the system and did not need any extra help

• I did not have enough time to use the system

• The system was not introduced properly in class

• I didn’t think the system can help me to better master Java

• The user interface was too confusing to use

Part 2. Assessing the impact of examples

• LEARNING

– Working with the examples-challenges helped me learn Java

– The explanations in the examples-challenges did NOT help me to better un-

derstand the Java programming concepts

182

– Exploring similar examples-challenges helped me learn Java

– The examples-challenges did NOT help me in solving Java exercises in this class

• QUALITY

– The explanations in the examples-challenges were hard to understand

– The explanations in the examples-challenges were easy to follow

– The examples-challenges covered lecture materials reasonably well

– The codes in examples-challenges were too complicated to understand

• ENGAGEMENT

– I tried hard to understand the examples-challenges

– I only skim-read the examples-challenges

– I thought about how the examples-challenges related to problems I was trying

to solve

– My mind was often wandering to other topics when I was looking at the

examples-challenges

C.2 RECOMMENDATION EVALUATION SURVEY

The following items were in the survey used in Classroom Study 3 to evaluate students’

experience with the recommendations.

• Perceived recommendation quality

– I liked the learning materials recommended by the system

– The recommended learning materials fitted my needs

– The recommended learning materials were well chosen

– The recommended learning materials were relevant to my goal

– The system recommended too many bad learning materials

– I did not like any of the recommended learning materials

183

• System satisfaction

– I would recommend the system to others

– The system is useless

– The learning materials that the system recommends are very helpful for me

– The system recommendations help me have a better practice

– Using the system is a pleasant experience

– The system has no real benefit for me

184

APPENDIX D

VIDEOS

The following videos introduce the practice system that we used in Classroom Study 1

and Classroom Study 2. We named the system as PCLab.

JAVA: https://youtu.be/EGTkrTJ7YaM

Python: https://youtu.be/gv46knva1Lo

185

https://youtu.be/EGTkrTJ7YaM
https://youtu.be/gv46knva1Lo

BIBLIOGRAPHY

Leona S Aiken, Stephen G West, and Raymond R Reno. Multiple regression: Testing
and interpreting interactions. Sage, 1991.

Vincent Aleven, Elizabeth A McLaughlin, R Amos Glenn, and Kenneth R Koedinger.
Instruction based on adaptive learning technologies. Handbook of research on learning
and instruction. Routledge, 2016.

Lisa Anthony. Developing Handwriting-based Intelligent Tutors to Enhance Mathemat-
ics Learning. PhD thesis, Carnegie Mellon University Pittsburgh, PA, 2008.

Robert K Atkinson and Alexander Renkl. Interactive example-based learning envi-
ronments: Using interactive elements to encourage effective processing of worked
examples. Educational Psychology Review, 19(3):375–386, 2007.

Robert K Atkinson, Sharon J Derry, Alexander Renkl, and Donald Wortham. Learning
from examples: Instructional principles from the worked examples research. Review
of educational research, 70(2):181–214, 2000.

Meghan Bathgate and Christian Schunn. The psychological characteristics of experi-
ences that influence science motivation and content knowledge. International Journal
of Science Education, 39(17):2402–2432, 2017.

Paul Brna. Searching for examples with a programming techniques editor. CIT. Journal
of computing and information technology, 6(1):13–26, 1998.

Peter Brusilovsky. Explanatory visualization in an educational programming environ-
ment: connecting examples with general knowledge. In International Conference on
Human-Computer Interaction, pages 202–212. Springer, 1994.

Peter Brusilovsky and Colin Higgins. Preface to the special issue on automated as-
sessment of programming assignments. ACM Journal on Educational Resources in
Computing, 5(3):Article No. 1, 2005.

186

Peter Brusilovsky and Eva Millán. User models for adaptive hypermedia and adaptive
educational systems. In Peter Brusilovsky, Alfred Kobsa, and Wolfgang Neidl, editors,
The Adaptive Web: Methods and Strategies of Web Personalization, volume 4321 of
Lecture Notes in Computer Science, pages 3–53. Springer-Verlag, Berlin Heidelberg
New York, 2007.

Peter Brusilovsky and Christoph Peylo. Adaptive and intelligent web-based educational
systems. International Journal of Artificial Intelligence in Education (IJAIED), 13:
159–172, 2003.

Peter Brusilovsky and Michael V Yudelson. From webex to navex: Interactive access
to annotated program examples. Proceedings of the IEEE, 96(6):990–999, 2008.

Peter Brusilovsky, Jae-wook Ahn, Tibor Dumitriu, and Michael Yudelson. Adaptive
knowledge-based visualization for accessing educational examples. In Information
Visualization, 2006. IV 2006. Tenth International Conference on, pages 142–150.
IEEE, 2006.

Peter Brusilovsky, Michael Yudelson, and I-Han Hsiao. Problem solving examples as
first class objects in educational digital libraries: Three obstacles to overcome. Journal
of Educational Multimedia and Hypermedia, 18(3):267–288, 2009.

Kevin Buffardi and Stephen H. Edwards. Introducing codeworkout: An adaptive and
social learning environment (abstract only). In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, SIGCSE ’14, pages 724–724, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2605-6.

Michael D Byrne, Richard Catrambone, and John T Stasko. Evaluating animations as
student aids in learning computer algorithms. Computers & education, 33(4):253–278,
1999.

Michael Dwyer Byrne, Richard Catrambone, and John T Stasko. Do algorithm anima-
tions aid learning? Technical report, Georgia Institute of Technology, 1996.

Jennifer Campbell, Diane Horton, Michelle Craig, and Paul Gries. Evaluating an in-
verted cs1. In Proceedings of the 45th ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’14, pages 307–312, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2605-6.

Jennifer Campbell, Diane Horton, and Michelle Craig. Factors for success in online
cs1. In Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’16, pages 320–325, New York, NY, USA, 2016.
ACM. ISBN 978-1-4503-4231-5.

187

ShanaK Carpenter, NicholasJ Cepeda, Doug Rohrer, SeanH Kang, and Harold Pashler.
Using spacing to enhance diverse forms of learning: Review of recent research and
implications for instruction. Educational Psychology Review, 24(3):369–378, August
2012. ISSN 1040-726X.

Richard Catrambone. The subgoal learning model: Creating better examples so that
students can solve novel problems. Journal of Experimental Psychology: General, 127
(4):355, 1998.

Michelene TH Chi, Miriam Bassok, Matthew W Lewis, Peter Reimann, and Robert
Glaser. Self-explanations: How students study and use examples in learning to solve
problems. Cognitive science, 13(2):145–182, 1989.

Sandra L Christenson, Amy L Reschly, and Cathy Wylie. Handbook of research on
student engagement. Springer Science & Business Media, 2012.

Cristina Conati and Kurt Vanlehn. Toward computer-based support of meta-cognitive
skills: A computational framework to coach self-explanation. International Journal
of Artificial Intelligence in Education (IJAIED), 11:389–415, 2000.

Steve Cooper and Mehran Sahami. Reflections on stanford’s moocs. Commun. ACM,
56(2):28–30, February 2013. ISSN 0001-0782.

Albert T. Corbett and John R. Anderson. Knowledge tracing: Modeling the acquisition
of procedural knowledge. User Modeling and User-Adapted Interaction, 4(4):253–278,
1995.

Aleksandar Davidovic, James Warren, and Elena Trichina. Learning benefits of struc-
tural example-based adaptive tutoring systems. IEEE Transactions on Education, 46
(2):241–251, 2003.

Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. Codewrite:
Supporting student-driven practice of java. In Proceedings of the 42Nd ACM Technical
Symposium on Computer Science Education, SIGCSE ’11, pages 471–476, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0500-6.

Stephen H. Edwards and Manuel A. Perez-Quinones. Web-cat: Automatically grading
programming assignments. SIGCSE Bull., 40(3):328–328, June 2008. ISSN 0097-8418.

Barbara Ericson, Steven Moore, Briana Morrison, and Mark Guzdial. Usability and
usage of interactive features in an online ebook for cs teachers. In Proceedings of
the Workshop in Primary and Secondary Computing Education, WiPSCE ’15, pages
111–120, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3753-3.

188

Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. Solving parsons problems
versus fixing and writing code. In Proceedings of the 17th Koli Calling Conference on
Computing Education Research, pages 20–29. ACM, 2017.

Micaela Esteves and António Mendes. Oop-anim, a system to support learning of
basic object oriented programming concepts. In Proceedings of CompSysTech’2003-
International Conference on Computer Systems and Technologies. Sofia, Bulgaria,
2003.

Chris Evans and Nicola J Gibbons. The interactivity effect in multimedia learning.
Computers & Education, 49(4):1147–1160, 2007.

Katherine Wanjiru Getao. An environment to support the use of program examples
while learning to program in lisp. In Proceedings of the IFIP TC13 Third Intera-
tional Conference on Human-Computer Interaction, pages 1015–1016. North-Holland
Publishing Co., 1990.

Julio Guerra, Christian D Schunn, Susan Bull, Jordan Barria-Pineda, and Peter
Brusilovsky. Navigation support in complex open learner models: assessing visual
design alternatives. New Review of Hypermedia and Multimedia, pages 1–29, 2018.

Philip J. Guo. Online python tutor: Embeddable web-based program visualization for
CS education. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education, SIGCSE ’13, pages 579–584, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1868-6.

Steven R Hansen, N Hari Narayanan, and Dan Schrimpsher. Helping learners visualize
and comprehend algorithms. Interactive Multimedia Electronic Journal of Computer-
Enhanced Learning, 2(1):10, 2000.

Andrew Head, Elena L Glassman, Björn Hartmann, and Marti A Hearst. Interactive
extraction of examples from existing code. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, page 85. ACM, 2018.

Roya Hosseini and Peter Brusilovsky. Javaparser: A fine-grain concept indexing tool
for java problems. In The First Workshop on AI-supported Education for Computer
Science (AIEDCS 2013), pages 60–63. University of Pittsburgh, 2013.

Roya Hosseini and Peter Brusilovsky. A study of concept-based similarity approaches
for recommending program examples. New Review of Hypermedia and Multimedia,
23(3):161–188, 2017.

Roya Hosseini, I-Han Hsiao, Julio Guerra, and Peter Brusilovsky. What should i do
next? adaptive sequencing in the context of open social student modeling. In Design
for Teaching and Learning in a Networked World, pages 155–168. Springer, 2015.

189

Roya Hosseini, Teemu Sirkiä, Julio Guerra, Peter Brusilovsky, and Lauri Malmi. Ani-
mated examples as practice content in a java programming course. In Proceedings of
the 47th ACM Technical Symposium on Computing Science Education, pages 540–545.
ACM, 2016.

David Hovemeyer, Matthew Hertz, Paul Denny, Jaime Spacco, Andrei Papancea, John
Stamper, and Kelly Rivers. Cloudcoder: building a community for creating, assign-
ing, evaluating and sharing programming exercises. In Proceeding of the 44th ACM
technical symposium on Computer science education, pages 742–742. ACM, 2013.

I-H Hsiao, Sergey Sosnovsky, and Peter Brusilovsky. Guiding students to the right
questions: adaptive navigation support in an e-learning system for java programming.
Journal of Computer Assisted Learning, 26(4):270–283, 2010.

Yun Huang, Yanbo Xu, and Peter Brusilovsky. Doing more with less: Student modeling
and performance prediction with reduced content models. In International Conference
on User Modeling, Adaptation, and Personalization, pages 338–349. Springer, 2014.

Christopher D Hundhausen, Sarah A Douglas, and John T Stasko. A meta-study of
algorithm visualization effectiveness. Journal of Visual Languages & Computing, 13
(3):259–290, 2002.

Petri Ihantola and Ville Karavirta. Two-Dimensional Parson’s Puzzles: The Con-
cept, Tools, and First Observations . Journal of Information Technology Education:
Innovations in Practice, 10:1–14, 2011.

Slava Kalyuga and John Sweller. Rapid dynamic assessment of expertise to improve the
efficiency of adaptive e-learning. Educational Technology Research and Development,
53(3):83–93, 2005.

Slava Kalyuga, Paul Chandler, and John Sweller. Incorporating learner experience into
the design of multimedia instruction. Journal of educational psychology, 92(1):126,
2000.

Slava Kalyuga, Paul Chandler, Juhani Tuovinen, and John Sweller. When problem
solving is superior to studying worked examples. Journal of educational psychology,
93(3):579, 2001.

Slava Kalyuga, Paul Ayres, Paul Chandler, and John Sweller. The expertise reversal
effect. Educational psychologist, 38(1):23–31, 2003.

Robin H Kay and Liesel Knaack. Assessing learning, quality and engagement in learn-
ing objects: the learning object evaluation scale for students (loes-s). Educational
Technology Research and Development, 57(2):147–168, 2009.

190

Kandarp Khandwala and Philip J Guo. Codemotion: expanding the design space of
learner interactions with computer programming tutorial videos. In Proceedings of
the Fifth Annual ACM Conference on Learning at Scale, page 57. ACM, 2018.

Bart P Knijnenburg, Svetlin Bostandjiev, John O’Donovan, and Alfred Kobsa. In-
spectability and control in social recommenders. In Proceedings of the sixth ACM
conference on Recommender systems, pages 43–50. ACM, 2012a.

BP Knijnenburg, N Rao, and A Kobsa. Experimental materials used in the study
on inspectability and control in social recommender systems. Institute for Software
Research, University of California, Irvine, 2012b.

Andrea W Lawrence. Empirical studies of the value of algorithm animation in algorithm
understanding. PhD thesis, Georgia Institute of Technology, 1993.

Henry Lieberman. An example-based environment for beginning programmers. In
Artificial intelligence and education, pages 135–151. Ablex Publishing, Norwood, NJ,
1987.

M. C. Linn and M. J. Clancey. The case for case studies of programming problems.
Communications of the ACM, 35(3):121–132, 1992.

Tomasz D Loboda and Peter Brusilovsky. User-adaptive explanatory program visualiza-
tion: evaluation and insights from eye movements. User Modeling and User-Adapted
Interaction, 20(3):191–226, 2010.

Tomasz D Loboda, Julio Guerra, Roya Hosseini, and Peter Brusilovsky. Mastery grids:
An open source social educational progress visualization. In European Conference on
Technology Enhanced Learning, pages 235–248. Springer, 2014.

Yanjin Long and Vincent Aleven. Supporting studentsâĂŹ self-regulated learning with
an open learner model in a linear equation tutor. In International Conference on
Artificial Intelligence in Education, pages 219–228. Springer, 2013.

Michael Mayo and Antonija Mitrovic. Optimising its behaviour with bayesian networks
and decision theory. International Journal of Artificial Intelligence in Education, 12:
124–153, 2001.

Bruce M McLaren, Sung-Joo Lim, and Kenneth R Koedinger. When and how often
should worked examples be given to students? new results and a summary of the
current state of research. In Proceedings of the 30th annual conference of the cognitive
science society, pages 2176–2181, 2008.

Bruce M McLaren, Tamara van Gog, Craig Ganoe, David Yaron, and Michael Karabi-
nos. Exploring the assistance dilemma: Comparing instructional support in examples

191

and problems. In International Conference on Intelligent Tutoring Systems, pages
354–361. Springer, 2014.

Bruce M McLaren, Deanne M Adams, and Richard E Mayer. Delayed learning ef-
fects with erroneous examples: a study of learning decimals with a web-based tutor.
International Journal of Artificial Intelligence in Education, 25(4):520–542, 2015.

Antonija Mitrovic, Stellan Ohlsson, and Devon K Barrow. The effect of positive feed-
back in a constraint-based intelligent tutoring system. Computers & Education, 60
(1):264–272, 2013.

Youzou Miyadera, Kunimi Kurasawa, Shoichi Nakamura, Nobuyoshi Yonezawa, and
Setsuo Yokoyama. A real-time monitoring system for programming education using
a generator of program animation systems. JCP, 2(3):12–20, 2007.

Briana B Morrison, Lauren E Margulieux, Barbara Ericson, and Mark Guzdial. Sub-
goals help students solve parsons problems. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, pages 42–47. ACM, 2016.

Kasia Muldner and Cristina Conati. Evaluating a decision-theoretic approach to tai-
lored example selection. In IJCAI, pages 483–488, 2007.

Niko Myller. Automatic prediction question generation during program visualization.
In Proceedings of the Fourth Program Visualization Workshop, 2006.

Amir Shareghi Najar, Antonija Mitrovic, and Bruce M McLaren. Adaptive support
versus alternating worked examples and tutored problems: Which leads to better
learning? In User modeling, adaptation, and personalization, pages 171–182. Springer,
2014.

Amir Shareghi Najar, Antonija Mitrovic, and Bruce M McLaren. Learning with intel-
ligent tutors and worked examples: selecting learning activities adaptively leads to
better learning outcomes than a fixed curriculum. User Modeling and User-Adapted
Interaction, 26(5):459–491, 2016.

Thomas L Naps. Jhavé: Supporting algorithm visualization. IEEE Computer Graphics
and Applications, 25(5):49–55, 2005.

Thomas L Naps, James R Eagan, and Laura L Norton. Jhavé – an environment to
actively engage students in web-based algorithm visualizations. In ACM SIGCSE
Bulletin, volume 32, pages 109–113. ACM, 2000.

Andy Nguyen, Christopher Piech, Jonathan Huang, and Leonidas Guibas. Codewebs:
scalable homework search for massive open online programming courses. In Proceed-

192

ings of the 23rd international conference on World wide web, pages 491–502. ACM,
2014.

Timothy J Nokes-Malach, Kurt VanLehn, Daniel M Belenky, Max Lichtenstein, and
Gregory Cox. Coordinating principles and examples through analogy and self-
explanation. European Journal of Psychology of Education, 28(4):1237–1263, 2013.

Jum C Nunnally and Ira H Bernstein. Psychometric theory. 1978.

Fred GWC Paas and Jeroen JG Van Merriënboer. The efficiency of instructional con-
ditions: An approach to combine mental effort and performance measures. Human
factors, 35(4):737–743, 1993.

Fred GWC Paas and Jeroen JG Van Merriënboer. Variability of worked examples and
transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of
educational psychology, 86(1):122, 1994.

Jungkook Park, Yeong Hoon Park, Jinhan Kim, Jeongmin Cha, Suin Kim, and Alice
Oh. Elicast: embedding interactive exercises in instructional programming screen-
casts. In Proceedings of the Fifth Annual ACM Conference on Learning at Scale,
page 58. ACM, 2018.

Nick Parlante. codingbat.com. http://codingbat.com/about.html, 2017. Accessed
on Jan 21, 2018.

Dale Parsons and Patricia Haden. Parson’s programming puzzles: a fun and effective
learning tool for first programming courses. In Proceedings of the 8th Australasian
Conference on Computing Education-Volume 52, pages 157–163. Australian Com-
puter Society, Inc., 2006.

Philip I Pavlik Jr, Hao Cen, and Kenneth R Koedinger. Performance factors analysis–a
new alternative to knowledge tracing. Online Submission, 2009.

Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas Guibas. Autonomously
generating hints by inferring problem solving policies. In Proceedings of the Second
(2015) ACM Conference on Learning@ Scale, pages 195–204. ACM, 2015.

Peter L Pirolli and John R Anderson. The role of learning from examples in the
acquisition of recursive programming skills. Canadian Journal of Psychology/Revue
canadienne de psychologie, 39(2):240, 1985.

Thomas W Price, Rui Zhi, and Tiffany Barnes. Hint generation under uncertainty:
The effect of hint quality on help-seeking behavior. In International Conference on
Artificial Intelligence in Education, pages 311–322. Springer, 2017.

193

http://codingbat.com/about.html

Martina A Rau, Vincent Aleven, Nikol Rummel, and Stacie Rohrbach. Sense making
alone doesnâĂŹt do it: Fluency matters too! its support for robust learning with
multiple representations. In International Conference on Intelligent Tutoring Systems,
pages 174–184. Springer, 2012.

Johnmarshall Reeve. How students create motivationally supportive learning environ-
ments for themselves: The concept of agentic engagement. Journal of Educational
Psychology, 105(3):579, 2013.

Johnmarshall Reeve and Ching-Mei Tseng. Agency as a fourth aspect of studentsâĂŹ
engagement during learning activities. Contemporary Educational Psychology, 36(4):
257–267, 2011.

Alexander Renkl. Learning from worked-out examples: A study on individual differ-
ences. Cognitive science, 21(1):1–29, 1997.

Kelly Rivers. Automated Data-Driven Hint Generation for Learning Programming. PhD
thesis, Carnegie Mellon University, 2017.

Kelly Rivers and Kenneth R Koedinger. Data-driven hint generation in vast solution
spaces: a self-improving python programming tutor. International Journal of Artifi-
cial Intelligence in Education, 27(1):37–64, 2017.

Jorma Sajaniemi and Marja Kuittinen. Program animation based on the roles of vari-
ables. In Proceedings of the 2003 ACM symposium on Software visualization, pages
7–ff. ACM, 2003.

Ron JCM Salden, Vincent AWMM Aleven, Alexander Renkl, and Rolf Schwonke.
Worked examples and tutored problem solving: redundant or synergistic forms of
support? Topics in Cognitive Science, 1(1):203–213, 2009.

Ron JCM Salden, Kenneth R Koedinger, Alexander Renkl, Vincent Aleven, and
Bruce M McLaren. Accounting for beneficial effects of worked examples in tutored
problem solving. Educational Psychology Review, 22(4):379–392, 2010.

Rolf Schwonke, Jörg Wittwer, Vincent Aleven, RJCM Salden, Carmen Krieg, and
Alexander Renkl. Can tutored problem solving benefit from faded worked-out ex-
amples. In Proceedings of EuroCogSci, volume 7, pages 59–64, 2007.

Rolf Schwonke, Alexander Renkl, Carmen Krieg, Jörg Wittwer, Vincent Aleven, and
Ron Salden. The worked-example effect: Not an artefact of lousy control conditions.
Computers in Human Behavior, 25(2):258–266, 2009.

Andrew Sears and Rosalee Wolfe. Visual analysis: adding breadth to a computer
graphics course. In ACM SIGCSE Bulletin, volume 27, pages 195–198. ACM, 1995.

194

Rmi Sharrock, Ella Hamonic, Mathias Hiron, and Sebastien Carlier. Codecast: An
innovative technology to facilitate teaching and learning computer programming in a
c language online course. In Proceedings of the Fourth (2017) ACM Conference on
Learning @ Scale, pages 147–148. ACM, 2017. ISBN 978-1-4503-4450-0.

Teemu Sirkiä. A javascript library for visualizing program execution. In Proceedings
of the 13th Koli Calling International Conference on Computing Education Research,
pages 189–190. ACM, 2013.

Teemu Sirkiä and Lassi Haaranen. Improving online learning activity interoperability
with acos server. Software: Practice and Experience, pages 1657âĂŞ–1676, 2017.
ISSN 1097-024X. spe.2492.

Ellen A Skinner, Thomas A Kindermann, and Carrie J Furrer. A motivational perspec-
tive on engagement and disaffection: Conceptualization and assessment of children’s
behavioral and emotional participation in academic activities in the classroom. Edu-
cational and Psychological Measurement, 69(3):493–525, 2009.

Juha Sorva, Ville Karavirta, and Lauri Malmi. A review of generic program visualization
systems for introductory programming education. ACM Transactions on Computing
Education (TOCE), 13(4):15, 2013.

John Sweller and Graham A Cooper. The use of worked examples as a substitute for
problem solving in learning algebra. Cognition and instruction, 2(1):59–89, 1985.

John Sweller, Jeroen JG Van Merrienboer, and Fred GWC Paas. Cognitive architecture
and instructional design. Educational psychology review, 10(3):251–296, 1998.

John Gregory Trafton and Brian J Reiser. The contributions of studying examples
and solving problems to skill acquisition. In Proceedings of the Fifteenth Annual
Conference of the Cognitive Science Society, pages 1017–âĂŞ1022. ACM, 1993.

Kurt Vanlehn. The behavior of tutoring systems. International journal of artificial
intelligence in education, 16(3):227–265, 2006.

Christopher O Walker, Barbara A Greene, and Robert A Mansell. Identification with
academics, intrinsic/extrinsic motivation, and self-efficacy as predictors of cognitive
engagement. Learning and individual differences, 16(1):1–12, 2006.

Mark Ward and John Sweller. Structuring effective worked examples. Cognition and
instruction, 7(1):1–39, 1990.

Gerhard Weber. Individual selection of examples in an intelligent learning environment.
Journal of Interactive Learning Research, 7(1):3, 1996.

195

Gerhard Weber and Peter Brusilovsky. Elm-art: An adaptive versatile system for
web-based instruction. International Journal of Artificial Intelligence in Education
(IJAIED), 12:351–384, 2001.

Gerhard Weber and Antje Mollenberg. Elm-pe: A knowledge-based programming envi-
ronment for learning lisp. In Proceedings of ED-MEDIA 1994, pages 557–562. ERIC,
1994.

Jon Wetzel, Kurt VanLehn, Dillan Butler, Pradeep Chaudhari, Avaneesh Desai, Jingx-
ian Feng, Sachin Grover, Reid Joiner, Mackenzie Kong-Sivert, Vallabh Patade, et al.
The design and development of the dragoon intelligent tutoring system for model con-
struction: lessons learned. Interactive Learning Environments, 25(3):361–381, 2017.

Michael Yudelson and Peter Brusilovsky. Navex: Providing navigation support for
adaptive browsing of annotated code examples. In AIED, volume 5, pages 710–717,
2005.

Brad Vander Zanden, David Anderson, Curtis Taylor, Will Davis, and Michael W.
Berry. Codeassessor: An interactive, web-based tool for introductory programming.
J. Comput. Sci. Coll., 28(2):73–80, December 2012. ISSN 1937-4771.

Daniel Zingaro, Yuliya Cherenkova, Olessia Karpova, and Andrew Petersen. Facilitating
code-writing in pi classes. In Proceeding of the 44th ACM technical symposium on
Computer science education, pages 585–590. ACM, 2013.

196

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Adaptive approaches for supporting work with problem-solving examples
	2. Relationships between RQs, objectives, studies, and chapters
	3. System usage statistics in Classroom Study 1
	4. Summary of learning results for clusters of students in Classroom Study 1
	5. Overview of the metrics used to evaluate PCEX examples
	6. Summary of hypotheses and results of Classroom Study 2
	7. Engagement metrics statistics in Classroom Study 2
	8. Regression results for predicting performance metrics in Classroom Study 2
	9. Regression results for predicting post-test score in Classroom Study 2
	10. Regression results for predicting exam grade in Classroom Study 2
	11. Survey summary in Classroom Study 2
	12. Summary of hypotheses and results of User Study
	13. Descriptive statistics for example usage during the practice session
	14. Descriptive statistics related to faded examples in the Fading condition
	15. Problem-solving statistics in practice session
	16. Mixed model results for predicting performance in practice problems
	17. Problem-solving performance statistics in test problems
	18. Mixed model results of predicting performance in test problems
	19. Mixed model results of predicting post-test scores
	20. Summary of hypotheses and results of Classroom Study 3
	21. Usage summary statistics in Classroom Study 3
	22. Summary statistics for engagement on recommended examples
	23. Summary statistics for engagement on examples in the Experimental group
	24. Summary statistics for engagement on recommended problems
	25. Summary statistics for engagement on problems in the Experimental group
	26. Regression models for learning analysis
	27. Descriptive statistics for usage of reactive recommendations
	28. The survey items assessing the value of examples and recommendations
	29. Summary of hypotheses and results of the studies in this dissertation

	LIST OF FIGURES
	1. Categories of past work on programming examples
	2. Tasks defined in this dissertation
	3. A classification of past work personalizing work with program examples
	4. Key to example annotation in NaveEx
	5. The interface of Mastery Grids with recommendations
	6. A Java programming worked example in the PCEX activity
	7. A Java programming challenge in the PCEX activity
	8. A Python programming worked example in the PCEX activity
	9. A Python programming challenge in the PCEX activity
	10. An example of the PCRS problem in our practice system
	11. Mastery Grids interface
	12. Correlation between PCEX activity completion and line clicks on problems solved
	(a).
	(b).
	13. Percentage of practice for clusters of students in Classroom Study 1
	(a).
	(b).
	14. Distribution of answers for the survey items in Classroom Study 1
	15. An example in the default mode of Control group
	16. An example in the code-only mode of Control group
	17. An instance of the Parson's problems in the practice system
	18. WOE Group interaction for predicting submission earliness
	19. WOE Group interaction for predicting post-test score
	20. Plot of group ratings in survey constructs in Classroom Study 2
	21. A non-faded example in the user study
	22. A faded example in the user study
	23. Plot of faded steps by individual user
	24. Plot of number of faded steps vs. faded examples
	25. Problem Condition interaction for predicting practice performance
	(a).
	(b).
	26. Recommendations in the practice system interface
	27. Proactive recommendation flowchart
	28. Reactive recommendations in the practice system interface
	(a).
	(b).
	29. Recommended attempts Group interaction to predict midterm score
	30. Distribution of answers for the survey items in Classroom Study 3
	31. Plot of group ratings in survey constructs in Classroom Study 3
	32. Plot of followers' ratings in survey constructs in Classroom Study 3

	1.0 INTRODUCTION
	1.1 MOTIVATION
	1.2 OVERVIEW AND RESEARCH QUESTIONS
	1.2.1 Design and development of interactive program examples (PCEX)
	1.2.2 Adaptive fading in the PCEX examples
	1.2.3 Adaptive recommendation of PCEX examples and problems

	1.3 Dissertation tasks
	1.4 CONTRIBUTIONS
	1.5 THESIS ORGANIZATION

	2.0 BACKGROUND AND RELATED WORK
	2.1 WORKED EXAMPLES IN PROBLEM-SOLVING
	2.2 WORKED EXAMPLES IN PROGRAMMING
	2.3 ADAPTIVE LEARNING TECHNOLOGIES
	2.4 PERSONALIZING WORK WITH PROGRAM EXAMPLES
	2.4.1 Personalized access
	2.4.2 Problem-solving support
	2.4.3 Adaptive scaffolding

	2.5 PROGRAM CONSTRUCTION ASSESSMENT TOOLS
	2.6 INTEGRATED SYSTEMS

	3.0 TOOL DESIGN
	3.1 ITERATIVE DESIGN PROCESS
	3.2 TARGETED ASPECTS OF ENGAGEMENT
	3.3 PCEX: CHARACTERISTICS AND DESIGN

	4.0 AN OVERVIEW OF STUDIES
	4.1 CLASSROOM AND USER STUDIES
	4.1.1 Classroom Study 1
	4.1.2 Classroom Study 2
	4.1.3 User Study
	4.1.4 Classroom Study 3

	4.2 OVERVIEW OF COMMON METRICS AND INSTRUMENTS
	4.2.1 Engagement metrics
	4.2.2 Performance metrics
	4.2.3 Learning metrics
	4.2.4 Survey instruments
	4.2.4.1 Example evaluation survey
	4.2.4.2 Recommendation evaluation survey

	5.0 CLASSROOM STUDY 1: EXPLORATORY STUDY OF PCEX
	5.1 Research questions
	5.2 STUDY DESIGN
	5.3 Practice System
	5.4 COLLECTED DATA
	5.5 RESULTS
	5.5.1 Relationship between usage of PCEX and student's learning
	5.5.1.1 Correlation between usage of PCEX and learning gain
	5.5.1.2 Correlation between usage of PCEX and performance in coding exercises
	5.5.1.3 Correlation between usage of PCEX and course performance

	5.5.2 Correlation between usage of PCEX and student's learning over time
	5.5.2.1 Correlation analysis during the first and second half of the course
	5.5.2.2 Correlation analysis of the regular and exam preparation usage

	5.6 SURVEY ANALYSIS
	5.7 Summary and discussion

	6.0 CLASSROOM STUDY 2: CONTROLLED STUDY OF PCEX
	6.1 Research questions
	6.2 CONTROL GROUP INTERFACE
	6.3 THE STUDY
	6.3.1 Hypotheses
	6.3.2 Study design
	6.3.3 Study procedure
	6.3.4 Materials
	6.3.4.1 Practice Content
	6.3.4.2 Pre- and Post-Tests

	6.3.5 Metrics
	6.3.5.1 Engagement metrics
	6.3.5.2 Performance metrics
	6.3.5.3 Learning metrics

	6.4 RESULTS
	6.4.1 Students participation and collected data
	6.4.2 Engagement analysis
	6.4.3 Performance analysis
	6.4.4 Learning analysis
	6.4.5 Survey analysis

	6.5 Summary and discussion
	6.5.1 Summary
	6.5.1.1 Overall effects on engagement
	6.5.1.2 Overall effects on problem-solving performance
	6.5.1.3 Overall effects on learning outcomes
	6.5.1.4 Students' feedback

	6.5.2 Discussion

	7.0 USER STUDY: CONTROLLED STUDY OF ADAPTIVE FADING
	7.1 Research Questions
	7.2 Adaptive Fading Strategy
	7.3 Bayesian network student model
	7.4 THE STUDY
	7.4.1 Hypotheses
	7.4.2 Study design
	7.4.3 Participants and procedure
	7.4.4 Materials
	7.4.4.1 Practice content
	7.4.4.2 Pre- and post-tests

	7.4.5 Metrics

	7.5 RESULTS
	7.5.1 Overall practice
	7.5.2 Effects of adaptive fading on performance in practice problems
	7.5.3 Effects of adaptive fading on performance in test problems
	7.5.4 Effects of adaptive fading on learning

	7.6 Summary and discussion

	8.0 CLASSROOM STUDY 3: CONTROLLED STUDY OF ADAPTIVE RECOMMENDATION
	8.1 Research Questions
	8.2 Adaptive Recommendation strategy
	8.2.1 Proactive recommendation
	8.2.2 Reactive recommendation

	8.3 THE STUDY
	8.3.1 Hypotheses
	8.3.2 Study design
	8.3.3 Participants and procedure
	8.3.4 Materials
	8.3.4.1 Practice content
	8.3.4.2 Pre- and post-tests

	8.3.5 Metrics

	8.4 RESULTS
	8.4.1 Overall engagement analysis
	8.4.2 Persistence analysis
	8.4.3 Learning analysis
	8.4.3.1 Impact of the system on midterm score
	8.4.3.2 Impact of the system on post-test score

	8.4.4 Analysis of reactive recommendations
	8.4.5 Survey analysis

	8.5 Summary and discussion
	8.5.1 Summary
	8.5.1.1 Effects of adaptive proactive recommendations
	8.5.1.2 Effects of adaptive reactive recommendations

	8.5.2 Discussion

	9.0 SUMMARY, CONTRIBUTIONS, AND FUTURE WORK
	9.1 Interactive program construction examples
	9.2 Personalizing work with program examples
	9.2.1 Adaptive fading of steps in program examples
	9.2.2 Adaptive recommendation of program examples and problems

	9.3 Contributions
	9.4 Limitations and future work
	9.4.1 Example design
	9.4.2 Studies assessing examples and adaptive technologies
	9.4.3 Other directions

	9.5 Discussion

	APPENDIX A. PCEX MOCK-UPS
	APPENDIX B. PRE- AND POST-TESTS
	 B.1 PRE- AND POST-TEST IN CLASSROOM STUDY 1
	 B.2 PRE- AND POST-TEST IN CLASSROOM STUDY 2
	 B.3 PRE- AND POST-TEST IN USER STUDY 1
	 B.4 PRE- AND POST-TEST IN CLASSROOM STUDY 3

	APPENDIX C. SURVEYS
	 C.1 EXAMPLE EVALUATION SURVEY
	 C.2 RECOMMENDATION EVALUATION SURVEY

	APPENDIX D. VIDEOS
	BIBLIOGRAPHY

