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Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology with no effective 

treatment except for lung transplantation. It is characterized by progressive lung fibrosis leading 

to respiratory failure. Outcomes are worse with comorbidities such as right ventricular systolic 

dysfunction (RVSD) and pulmonary hypertension (PH). Consequently, there is an urgent need 

for novel treatment approaches for IPF. This dissertation aims to (1) determine the strength of the 

association between hemodynamic indices of right ventricular function and survival in IPF, (2) 

evaluate the therapeutic potential of human bone-marrow derived mesenchymal stem cells 

(hMSCs) and their derived exosomes in regulating the right ventricular function in a mouse 

model of IPF, and (3) categorize the protein cargo of hMSCs. 

The analysis of the data from an IPF registry showed that the risk of death was 

significantly higher among subjects with PH in IPF compared to IPF alone (HR: 1.406; 95% CI: 

1.026-1.928). Similarly, the risk of mortality was significantly higher in subjects with RVSD 

compared to those without (HR: 2.523; 95% CI: 1.599-3.979). We concluded that PH and RVSD 

were strongly associated with survival and that right heart catheterization hemodynamic 
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assessments in IPF is crucial to identify patients at risk of worse outcomes who may be 

considered for clinical trials. 

In evaluating the potential beneficial effects of hMSC and their exosomes in fibrotic lung 

injuries, we found that the mean pulmonary arterial pressure was significantly increased in the 

BLM group when compared with controls (20.0±0.45 vs 16.1±0.43, mmHg). Also, there was a 

significant increase in right ventricular dysfunction (dP/dtmx-EDV) when comparing the BLM 

group with controls (45.5±2.52 vs 32.8±2.87, mmHg.s-1. ul-1) with an improvement in the RVD 

after administering hMSCs and exosomes. We concluded that hMSCs and their exosomes have 

the therapeutic potential to regulate the RV contractile function.  

Lastly, we performed a descriptive proteomic analysis to identify and categorize the 

protein components of the hMSC exosomes. We identified 845 proteins, 166 of them had 

enzymatic activities involved in proteolysis and oxidative stress regulation. Our conclusion was 

that the proteome of hMSC exosomes carry enzymatic proteins that could mediate their 

therapeutic effects.  
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1.0  INTRODUCTION 

1.1 EPIDEMIOLOGY OF IPF 

Idiopathic pulmonary fibrosis (IPF) is a debilitating and fatal disease of unknown etiology with 

no effective cure except for lung transplantation. It is characterized by progressive lung fibrosis 

leading to difficulties in breathing and a short median survival of 3-5 years 1. The estimated 

prevalence of IPF in the United States is between 28 to 63 cases per 100,000 persons with about 

50,000 annual incident cases 2, 3. Despite the unpredictable course of IPF, outcomes are worse 

with an associated right ventricular (RV) dysfunction (RVD) and pulmonary hypertension (PH) 4, 

5.Consequently, there is an urgent need for novel treatment options for IPF and its comorbidities. 

1.2 AIMS AND RATIONALE 

In this dissertation we tried to achieve three aims in three independent projects. Our first aim was 

to determine the strength of the association between hemodynamic indices of RVD and survival 

based on data from an IPF registry. For a rare disease such as IPF with a short median survival, a 

registry with structured data entry spanning several years will be a good resource to gather 

sufficient data to address this question. We hypothesized that patients with PH in IPF will have 

increased rates of RVD and poorer survival. In the second aim, we sought to evaluate the role of 
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hMSC and their derived exosomes in modulating the RV function in an experimental animal 

model of fibrotic lung injury. There is accumulating evidence on the beneficial effects of bone 

marrow-derived human mesenchymal stem cells and their secreted exosomes in fibrotic lung 

diseases and RV function 6-8. A greater impetus is therefore needed to rapidly translate this 

promising novel therapeutic strategy into clinical applications. In view of this, we sought in our 

second aim to evaluate the role of hMSC and their derived exosomes in modulating the RV 

function in an experimental animal model of fibrotic lung injury. We hypothesized that hMSCs 

exosomes exert their beneficial effects in part, by modulating RV contractility. Lastly, in our 

third aim, we sought to identify and categorize the protein components of hMSC exosomes by a 

qualitative proteomic analysis. We questioned if the observed beneficial effects of hMSC 

exosomes could be partly explained by the composition of their protein cargo. These three aims 

are conceptualized in the conceptual framework below. The biogenesis of EVs is key to 

understanding the subcellular origins of extracellular vesicles that may in part, explain the 

differences in the protein cargo of microvesicles, budding from the plasma membrane and 

exosomes that originate from mature intracellular endosomal multivesicular bodies. 

1.3 COMORBIDITIES ASSOCIATED WITH SURVIVAL IN IPF 

The correlation between RVD and survival has been widely reported based on studies conducted 

in patients with idiopathic pulmonary arterial hypertension (IPAH) 9, 10. Nonetheless, there is a 

critical difference in the definition of IPAH and pulmonary hypertension in IPF (PH in IPF). 

Therefore, motivated by the need to highlight these differences and harmonize the diagnosis and 

treatment of PH, a series of world symposia were held under the sponsorship of the World 
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Health Organization since 1973 to the latest in 2013 11, 12. The robust discussions during these 

symposia led to a clear definition and classification of PH. Consequently, PH in general, is 

defined as a hemodynamic and pathophysiological condition with an increase in mean 

pulmonary arterial pressure (mPAP) ≥25 mmHg at rest, assessed by right heart catheterization 

(RHC). Idiopathic pulmonary hypertension was classified as a group 1 PH, which is 

characterized by the presence of pre-capillary PH in the absence of other causes of pre-capillary 

PH. PH in IPF was classified as a group 3 precapillary PH due to lung diseases or hypoxia. To 

differentiate PH in IPF from the group 2 postcapillary PH due to left-sided heart disease, a 

second hemodynamic parameter in the diagnosis of PH in lung diseases was introduced. This 

was a pulmonary capillary wedge pressure (PCWP) ≤15 mmHg 12. Several studies comparing 

hemodynamic parameters and survival of patients with precapillary PH (group 1, IPAH and 

group 3, PH in IPF), suggest a direct correlation between pulmonary hypertension and poor 

survival 13-15. Put together, these studies suggest that treating PH alone may prolong survival in 

IPF. Nonetheless, the updated American Thoracic Society (ATS)/European Respiratory Society 

(ERS) clinical practice guidelines of 2015, maintained the 2011 guidelines against treating PH in 

IPF 16. They argued that the current vasoactive therapies for IPAH are more likely to worsen the 

already compromised gas exchange in IPF patients. Pulmonary functional tests (PFTs) are often 

conducted to assess disease progression based on lung volumes with forced vital capacity percent 

predicted (%FVC) and gas exchange with diffusion capacity for carbon monoxide percent 

predicted (%DLco) 17. Clinically significant reductions in FVC and DLco that correlate with 

increased mortality have been shown to be greater than 10% and 15%, respectively 18. Recently, 

Paterniti M. et al, studying the PFTs of placebo subjects in  the nintedanib-INPULSIS 1/2 and 

pirfenidone-CAPACITY 004/006, ASCEND clinical trials, found that subjects with less than 
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55% and 36% of %FVC and %DLco, respectively, had the highest risk of death 19. Collectively, 

the results from these clinical trials led to the approval of pirfenidone and nintedanib in the 

treatment of IPF, based on reductions in the decline of the % predicted FVC but with little or no 

improvements in mortality 19. Therefore, other factors that correlate strongly with mortality are 

needed for optimal patient management. 

1.3.1 Pulmonary hypertension in IPF 

Patients suffering from IPAH are reported to be dying mostly from the failing right ventricle 20. 

Until recently, the right ventricle was considered a bystander conduit for blood to the lungs but 

advances in studying PH have generated interest in understanding its adaptative role in 

pulmonary pressure overloads 21. Therefore, based on the accumulating evidence on the 

importance of the right ventricle in PH, the NHLBI working group on the molecular and cellular 

mechanisms of RV failure, published a 2006 report emphasizing the need to assess the RV 

function in relation to cardiopulmonary diseases, including PH in IPF 20. Consequently, Vonk 

Noordegraaf and others have proposed a progressive adaptation of the right ventricle, from RV 

hypertrophy (to maintain RV to pulmonary arterial coupling) to RV dilatation that results in 

uncoupling or overt RV failure 10, 22. These adaptational steps are reported to begin with an 

increased RV contractility and myocardial hypertrophy, followed by progressive contractile 

dysfunction due to maladaptive RV dilation 4, 23, 24. The failing RV is therefore, characterized by 

an initial increase in contractility followed by a progressive weakening in contractility as the RV 

afterload overcomes contractility 25, 26. Validated indicators of RVD are therefore, essential in 

assessing the transition from adaptive (increased RV contractility) to maladaptive (RV dilatation) 

RVD and in determining how they correlate with survival in IPF. 
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1.3.2 RVD in IPF 

Different hemodynamic indices of RVD and PH have been shown to have various prognostic 

values and strength of association with survival. Wauthy and associates, investigating RV-

pulmonary arterial uncoupling (failing RV) in large animal models, demonstrated that survival 

was strongly associated with RV systolic dysfunction (RVSD) than with elevated pulmonary 

artery pressures 27. These authors defined uncoupling as the inability of the RV to maintain a 

normal stroke volume with increased pulmonary pressure overload. This report indicates indices 

of RVSD might have better prognostic values than pulmonary pressures when appropriate 

modalities are used for its assessment.  

1.4 MOUSE MODEL OF IPF 

Currently, there is no effective treatment for IPF and the recently approved pirfenidone and 

nintedanib, at a prohibitive cost only help in slowing IPF progression. It is therefore, imperative 

to translate evidence-based findings from preclinical animal models into clinical applications that 

have the potential to treat IPF and improve survival. Animal models of IPF and its comorbidities 

are crucial in studying the pathogenesis of IPF and their response to treatment. Mouse bleomycin 

(BLM) pulmonary fibrosis model is an established model that has been useful in elucidating 

major aspects of our current knowledge on IPF. Bleomycin is a glycopeptide antibiotic produced 

from the bacteria, Streptomyces verticillus. It has traditionally been used as a cytotoxic agent in 

cancer chemotherapy based on its properties of inducing oxidative DNA breakage 28, 29. The 

initial histopathological lung injury associated with BLM, recapitulates human IPF with either 
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peribronchiolar or subpleural basal lesions depending on whether it was administered 

intratracheally or subcutaneously, respectively 30. BLM-induced fibrotic lung injury (BFLI) in 

rodent models has been shown to be associated with pulmonary hypertension (PH)30. Therefore, 

as in human IPF where the outcome is often complicated by right ventricular (RV) dysfunction 

(RVD) and PH 5, 15 , these comorbidities are likely to be present in animal models of BFLI. 

Using a mouse model of BFLI, Hemnes A et al, reported an improvement in pulmonary vascular 

remodeling and RV hypertrophy after administering sildenafil, a selective phosphodiesterase 

type 5 (PDE5) inhibitor 30. This study and others confirmed the use of the mouse BLM-induced 

model as an ideal model to study the beneficial effects of hMSCs in BFLI 31.  

1.5 THE THERAPEUTIC POTENTIAL OF HMSCS AND THEIR EXOSOMES  

Mesenchymal stem/stromal cells (MSCs) are multipotent cells that have the capacity for self-

renewal and differentiation into multiple lineages, including adipocytes, chondrocytes, and 

osteocytes 32. They were first discovered by Friedenstein and colleagues in the late 1960s as cells 

from the bone marrow which adhere to plastic with a fibroblastoid shape 33, 34. Since then, there 

has been a dramatic increase in the number of published articles on the therapeutic potential of 

hMSCs in different disease conditions, particularly in pulmonary fibrosis 35, 36. Though most of 

the over 10,000 reports from preclinical trials on their beneficial effects have been on bone 

marrow-derived MSCs, these cells have now been isolated from nearly every tissue, including 

fat, umbilical cord, placenta and embryonic stem cells 33, 37, 38. An updated review by Squillaro et 

al showed that since June 2015, there were 493 reported MSC-based clinical trials. Of these, 23 

(4.8%) involved lung diseases and 73 (14.8%) cardiovascular diseases 39. Unfortunately, these 
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published reports had major discrepancies in the definition and characterization of MSCs, 

prompting the International Society for Cellular Therapy (ISCT) in 2006, to propose minimal 

criteria for defining hMSCs: hMSCs must be plastic-adherent in culture; positive for CD105, 

CD90, CD73; negative for CD45, CD34, CD11b, HLA-DR surface markers and lastly, must 

differentiate into osteoblasts, adipocytes and chondroblasts 32. These minimal standards have led 

to improvements in the consistencies in the methods used to isolate and expand MSCs. 

Nonetheless, there is still the need for biomarkers that can quantitatively delineate high quality, 

therapeutic potent MSCs 40, 41. Recent animal studies have shown a correlation between the 

therapeutic potential of allogeneic hMSCs with the dose and timing of their transplantation 33, 42. 

Most of these studies have confirmed the efficacy of MSCs early during the inflammation phase 

and not after established FLI 33, 43. Unfortunately, due to the insidious nature of the onset of IPF, 

most patients present late in hospitals with established progressive lung fibrosis, thus questioning 

the translation potential of the observed pre-clinal benefits, during the acute inflammatory phase, 

to clinical trials on patients with established chronic lung fibrosis. Furthermore, the efficacy of 

these cells is also associated to the lack of homogeneity of the transplanted hMSCs. The 

heterogeneity of MSC populations during isolation and their expansion in culture has raised 

concerns among investigators because of the likelihood of variations in their therapeutic potency. 

Therefore, reproducible, standardized protocols for the isolation and expansion of clonal MSCs 

in culture are needed to produce homogeneous cell populations with predictable potency 43. To 

this end, biomarkers to predict the potency of MSCs from different donors will be necessary to 

translate their ameliorating effects from preclinical animal models into clinical applications 40, 41. 

However, the role of endogenous stem cells/progenitor cells in tissue repair and how they 

interact with exogenous injected MSCs is still not fully understood 33, 44. It will be crucial to 
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delineate the relative contributions of exogenous from endogenous stem cells in FLI repairs. 

Even though the mode of actions of MSCs remain poorly understood, the paracrine concept as a 

mechanism employed by MSCs to impart their beneficial effects is increasingly recognized, in 

part by their release of EVs 33, 45, 46. 

1.5.1 Human mesenchymal stem cell-released exosomes 

Mesenchymal stem cells release membrane-bound vesicles that encompass exosomes and 

microvesicles (MVs). Exosomes (30-100nm) originate from mature endosomal multi-vesicular 

bodies, while the larger MVs (0.1-1um) are formed by outward budding off the plasma 

membrane 47, 48. Recent studies have shown that these EVs carry cytoplasmic nucleic acids 

(mRNA, microRNA), membrane proteins and lipids that are specific to the parent cell type and 

are mediators of the change in differentiation state of recipient cells or their reprogramming 45, 49. 

Specifically, exosomes have been demonstrated to be enriched in microRNAs (miRs) and 

mRNAs, while MVs have little or no RNA, suggesting exosomes because of their endosomal 

origins might be better effectors of the beneficial MSC effects 46, 50. Other studies suggest a 

synergistic mode of action of these EVs to exert pleiotropic beneficial effects in tissue repair 45, 

especially in modulating the RV function. Therefore, innovative techniques will be needed to 

accurately evaluate the adaptive changes in the RV function as a result of the increasing 

pulmonary pressure overload and their response to hMSC exosomes treatment. 
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1.6 RIGHT HEART CATHETERIZATION AND INDICES OF RVD  

Right heart catheterization (RHC) and PV loop analysis remain the gold standard for defining 

changes in PH and assessing the hemodynamic load on the RV 4. Recent studies indicate the 

changes in RV function begin prior to the setting in of overt PH 26, 51. Furthermore, growing 

evidence suggest the RV adapts to increased afterload by increasing its wall thickness 

(hypertrophy) and contractility 4, 24. When these adaptive compensatory mechanisms are 

overwhelmed by the increasing pulmonary pressure overload, RVD ensues and progressively 

lead to uncoupling of the RV from the pulmonary vasculature. Uncoupling has been defined as 

‘the inability of the RV to maintain a normal stroke volume with increasing pressure overload’. 

Wauthy and associates investigating RV-pulmonary arterial uncoupling in large animal models, 

found that worse survival was strongly associated to RV systolic dysfunction (RVSD) and not to 

the elevated pulmonary artery pressures 27. Unlike PH with well validated and standardized 

indices for its assessment, there are no well standardized indices for assessing RVD. In an 

attempt to address the lack of standardized indictors for RVD, experts at  the Fifth World 

Symposium on Pulmonary Hypertension held in 2013, adopted a definition of RV failure 

secondary to PH as, “a complex clinical syndrome due to a suboptimal delivery of blood or 

elevated systemic venous pressure at rest or exercise as a consequence of elevated RV afterload” 

11.  
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1.7 THE POTENTIAL MECHANISTIC PATHWAYS OF HMSC EXOSOMES 

There is accumulating evidence on the beneficial effects of hMSCs in a wide range of diseases, 

including fibrotic lung diseases and their induced pulmonary hypertension and right ventricular 

dysfunction. However, the underlying mechanisms by which hMSCs impart their beneficial 

effects are still actively being investigated. The fact that few MSCs engraft at the site of injury 

led to a shift in the concept of the potential pathways used in their ameliorating effects; from 

engraftment and differentiation, to replace damaged resident cell types, to the release of 

paracrine effectors 33, 52. Insoluble extracellular vesicles are a major part of the hMSC paracrine 

secretome.  

Mesenchymal stem cells release membrane-bound EVs that encompass exosomes and 

microvesicles (MVs). Exosomes (30-100nm in diameter) originate from mature endosomal 

multi-vesicular bodies, while the larger MVs (0.1-1um in diameter) are formed from plasma 

membrane blebs 48, 53. Recent studies have shown that these EVs carry cytoplasmic nucleic acids 

(mRNA, microRNA), membrane lipids and proteins that are specific to their parent cell type and 

are potential mediators of changes in the differentiation state of recipient cells 45, 49. Specifically, 

exosomes have been demonstrated to be differentially enriched in microRNAs (miRs), while 

MVs have little or no miRs, suggesting exosomes may be better mediators of the beneficial MSC 

effects 46, 50. Other reports suggest a synergistic mode of action of these EV subtypes to optimize 

their pleiotropic beneficial effects in tissue repair 45.  

Recently, we showed that MSCs exert their beneficial actions in part, by shuttling miRs 

and proteins loaded in EVs to target cells leading to a change in their bioenergetic phenotype 45. 

Other investigators have shown that hMSC exosomes contribute to the ameliorating effects in 

myocardial infarction 54, pulmonary hypertension 55, 56, and pulmonary fibrosis 6, 37. Collectively, 
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these studies suggest a potential cross-talk between hMSC exosomes and target cells, such as 

endothelial cells, cardiomyocytes, and lung epithelial cells for tissue repair. A greater 

understanding of the molecular and cellular pathways in the pathogenesis of RV and pulmonary 

artery remodeling in fibrotic lung diseases will help in the development of novel therapeutic 

strategies. To this end, some investigators have proposed mechanistic pathways that involve the 

generation of excessive reactive oxygen species (ROS) as crucial in the pathogenesis of fibrotic 

lung disease 57 and right ventricular hypertrophy 58. Furthermore, others have postulated an 

increased expression of NADPH oxidase (NOX) and mitochondrial ROS production as key 

sources of ROS that correlate with progressive RV hypertrophy 59-61. These data suggest a 

deleterious effect of oxidative stress on the normal function of the right ventricle and pulmonary 

vasculature that has triggered interest in the development of mitochondria-based therapy, such as 

MitoQ, to treat cardiac hypertrophy 62. Importantly, oxidative stress is directly associated with an 

increase in misfolded proteins 63, which are toxic to cells as reported in a wide range of 

neurogenerative and age-related diseases such as IPF. The ATP-dependent proteolytic, 26S 

ubiquitin/proteasome system is crucial in recognizing and selectively degrading misfolded 

proteins 64, 65. Proteolytic enzymes are therefore needed to clear these misfolded intracellular and 

extracellular proteins. Proteasomes are an essential group of hydrolase proteolytic enzymes that 

have been found in hMSC exosomes. According to Lai et al, proteasomes played an important 

role in the clearing of misfolded proteins to mitigate ischemia/ reperfusion (I/R) injury 66. Taken 

together, these data indicate a pivotal role of proteasomes in the clearance of misfolded proteins 

with a potential proteolytic role in the extracellular matrix (ECM). Their proteolytic actions may 

have a synergistic effect with matrix metalloproteinases (MMP). The gelatinases (MMP2 and 

MMP9) are MMPs that have been shown to play an important role in ECM turnover and have 
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also been identified in MSC exosomes 67. However, despite our current understanding of the role 

of antioxidant and proteolytic enzymes in health and disease, the hMSC exosome proteome has 

not been investigated to specifically identify these potential paracrine effectors.  

 

 

Figure 1 A conceptual framework integrating the three aims 

. 
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2.0  HEMODYNAMIC CHARACTERISTICS OF SURVIVAL IN IPF: ANALYSIS FROM 

THE SIMMONS CENTER FOR INTERSTITIAL LUNG DISEASES REGISTRY  

2.1 INTRODUCTION 

Right ventricular dysfunction has been shown to directly correlate with worse survival in group 1 

IPAH4, 9. Most of the studies on IPAH used doppler echocardiography to assess the RV function. 

Though noninvasive and suitable for follow-up assessments of patients, echocardiographic 

techniques have shown limited accuracy in measuring RV function in advanced lung diseases5, 

15. Some reports have shown accuracy as low as 40% when compared with RHC measurements 

68. Furthermore, echocardiograms have the disadvantage that the parameters they measure are 

load-dependent and lack the ability to study the intrinsic properties of the right heart69. 

Notwithstanding, echocardiography has provided added insight into the adaptive changes in 

shape and size during right heart filling and output.  

 In 2013, Rivera-Lebron and colleagues used echocardiographic parameters, including 

tricuspid annular plane systolic excursion (TAPSE) as a measure of RV ejection fraction and RV 

outflow tract velocity-time integral (RVOT VTI) as a surrogate for stroke volume. They found 

that those with RVD in IPF had significantly lower TAPSE (1.8 cm vs 2.1 cm; P=0.01) 15. 

Similarly, D’Andrea et al, used another echocardiographic technique, speckle-tracking (2D 

strain) echocardiography (2D STE) to quantify RV regional deformation and RV contractile 
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impairment in 55 IPF patients. They found a significant reduction in global longitudinal strain of 

IPF patients when compared with controls ( −18.4 ± 6.1 vs −14.5 ± 6.3) 5. Furthermore, Ghio et 

al, studying 658 consecutive patients with congestive heart failure, showed that a TAPSE ≤14 

mm was more significantly associated with mortality than elevated pulmonary systolic pressure 

with preserved TAPSE. Put together, these echocardiographic studies reinforce the importance of 

TAPSE, a measure of RVD, as a strong prognosticator of survival. However, as earlier 

mentioned, echocardiography is fraught by limitations of delineating the endocardium for 

accurate evaluations of right-sided heart volumes. Thus, the need for invasive RHC and PV loop 

analysis (RHC-PV loop analysis).  

Though minimally invasive, RHC-PV loop analysis is the gold standard for assessing the 

hemodynamic functions of the right heart 51. PV loop analysis have become an essential tool in 

assessing disease progression and adaptation of the RV to the PH-induced increased RV 

afterload 22. It is therefore, imperative to employ RHC to comprehensively study the 

pathophysiology of the failing RV and pulmonary vasculature and determine their association 

with survival However, there are currently no well-established indices for assessing RVD in IPF. 

PV loops generate end-systolic PV relationship slopes (Ees) that have been demonstrated to be 

load-independent 70. Load-independent indices are crucial in assessing the intrinsic RV function 

void of the influence of load and heart rate 71. Also, the interaction of the RV pump and 

pulmonary vascular load, RV-to-pulmonary arterial (PA) coupling, provides a comprehensive 

evaluation of the right ventricle and pulmonary circulation as a functional unit. PV loop analysis 

also, enable assessment of the RV contractility, especially with the evidence that the RV pump 

muscle shortening (contractility) and mass (hypertrophy) are essential elements that contribute to 

optimal RV function 21. However, assessing the RV function in class 3 IPF-associated PH is 
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limited by the lack of well-established indices 72. Recently, Rivera-Lebron and colleagues 

employed transthoracic echocardiography with stroke volume index (SVI) ≤29ml/m² as the 

cutoff for assessing RVD in IPF patients with associated PH 15. More than a decade ago, van 

Wolferen and colleagues reported on the use of right ventricular systolic dysfunction (defined as 

low stroke volumes (≤25ml/m²) in predicting mortality in subjects with pulmonary arterial 

hypertension 9.Therefore, based on these reports we used a threshold level of (SVI≤25ml/m²) to 

assess the RV function in our IPF cohort. 

In this regard, an IPF registry will be an important resource for large epidemiological 

data on real-world characteristics and clinical management of IPF patients 73-75. In a recent 

publication from the Australian IPF registry evaluating baseline characteristics of IPF patients, 

forced vital capacity (FVC), diffusing capacity of the lung for carbon monoxide (DLco), 

composite physiological index (CPI) and GAP (gender, age, physiology) were found to be strong 

predictors of mortality 74. Similarly, in a report from the INSIGHTS-IPF registry from Germany, 

the mean FVC was 72±20% predicted and DLco was 35±15% predicted 75. Other regional or 

statewide registries such as the Swedish IPF-Registry have showed that the quality of life of IPF 

patients and their perception of the disease were quite poor 76. Collectively, these studies indicate 

IPF registries are an important source for data on the natural history of the disease, quality of life 

and clinical management of patients. 

Consequently, using hemodynamic data from the Simmons Center for interstitial lung 

diseases (ILDs) registry, we sought to use PV loop analysis to assess RV function and determine 

the strength of their association with survival in IPF patients. We hypothesized that IPF subjects 

with RVD will have worse survival when compared with those with PH in IPF and IPF alone.  
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2.2 METHODS 

2.2.1 IPF registry 

The Simmons Center for interstitial lung diseases (ILDs) registry at the University of Pittsburgh, 

was launched in October 2003 to document medical information from previously and newly 

diagnosed patients with ILDs, including IPF (ClinicalTrials.gov identifier #: NCT00258583). 

The center currently follows over 1400 patients with interstitial lung diseases, most with IPF. 

The center provides comprehensive state-of-the-art care for patients with interstitial lung 

diseases, opportunities for research on lung inflammation and fibrosis, and promotes the 

translation of scientific discoveries into novel therapies, such as stem cells and their derivatives. 

In 2008, the Simmons Center ILDs registry became a member of the Daniel and Joan Beren 

Pennsylvania-statewide IPF (PA-IPF) registry. The PA-IPF registry comprise five participating 

centers that include the University of Pittsburgh, University of Pennsylvania, Temple University, 

Penn State Hershey Medical Center, and Geisinger Health System. The data for this study came 

solely from the Simons Center registry, including doppler echocardiographic, demographic, 

pulmonary functional tests (PFTs) and right heart catheterization (RHC). Patients were 

determined to have IPF according to the 2002 ATS/ERS guidelines 77. These guidelines were 

later revised in 2011 1 and 2015 16. 

2.2.2 Data collection 

Approval for the study (Protocol 13080573) was obtained from the University of Pittsburgh 

Institutional Review Board. The registry was reviewed for patients diagnosed with IPF from 
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between June 1996 to June 2015 to collate deidentified demographic and hemodynamic data into 

electronic spreadsheets. Thereafter, the secondary raw data was cleansed, categorized and 

assigned analytical variable codes with assistance from the University of Pittsburgh Center for 

Research on Health Care Data Center. Patients diagnosed with other diffused interstitial lung 

diseases, who did not meet the 2002 guidelines for IPF were excluded from the study.  

2.2.3 Sample size and power analysis 

The sample size (308) is determined from the number of patients diagnosed with IPF with RHC-

derived hemodynamic data. However, we needed a power analysis to confirm an adequate 

sample size to detect a clinically meaningful difference in the survival probabilities between IPF 

alone and PH in IPF groups. The minimal sample size of 92 for 41 events (deaths) was 

determined to be adequate to detect a 30% difference in mortality between IPF alone and PH in 

IPF subjects. The log-rank test, assuming a chi-square distribution, was used to calculate the 

sample sizes 78 with the “power” command on a STATA software (Stata Corp., College Station; 

version 14.0). Null hypothesis H0: S1(t)=S2(t); Alternative H1: S1(t)≠S2(t); where S1(t)= survival 

probability in the IPF alone group, S2(t)= survival probability in the PH in IPF group. The effect 

size of 30% was consistent with mortality rates reported by Lettieri and colleagues who 

compared the risk of mortality in IPF patients with PH and those without PH 79. The sample size 

was calculated with a power (1-β) of 80%, a type II error (β) of 20% and a significance level of 

less than 0.05.  
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2.2.4 Statistical analysis 

All statistical analyses were performed using a STATA statistical software (Stata Corp., College 

Station; version 14.0). Summary statistics for demographic, pulmonary function tests, and 

hemodynamic characteristics were evaluated. The data were reported as mean ± SEM or as 

median where appropriate and ccategorical variables were summarized as percentages. 

Comparisons of groups were made using unpaired Student t-test, Chi X² or Wilcoxon’s rank-sum 

tests (see Table 1). 

For survival analyses, unadjusted survival functions of dichotomized continuous 

variables of PH in IPF (25< mPAP≥25) and SVI (25≤SVI>25) were estimated using Kaplan-

Meier curves with their log-rank test for statistical significance. Unadjusted and multivariable 

Cox proportional hazard analyses were performed, adjusting for key predictor variables (age, 

gender, heart rates and FVC% predicted). Other clinically meaningful variables were fitted one 

after the other in a model with the above key variables to evaluate the magnitude and 

significance of their association with mortality. A log-log plot was generated to test for the 

proportional hazard assumption. It is worth noting that the test of multicollinearity is inherent in 

the STATA software program. Associations between continuous variables were evaluated using 

Pearson’s correlation test and logistic regressions were performed to evaluate the strength of the 

association between dichotomous variables. The dichotomized predefined threshold values of 

mean pulmonary arterial pressure (mPAP) (≥25 and PCWP ≤15 mmHg) and stroke volume 

index (SVI) (≤25 ml/beat/m²) were evaluated for the presence of pulmonary hypertension or 

right ventricular systolic dysfunction, respectively. The p-value (< 0.05) and their 95% 

confidence intervals (CI) were assessed. for statistical significance. The 95% CI is not assessed 

for significance – it’s additional information. 
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2.2.5 Primary endpoint 

The primary endpoint was overall mortality, assessed by a Cox regression analysis and the 

secondary endpoint was prevalence. Other covariates evaluated were PVR (pulmonary vascular 

resistance), RVSP (right ventricular systolic pressure), and the predicted FVC% (forced vital 

capacity % predicted), FEV1% (forced expiratory volume in one second % predicted), DLco% 

(diffusion capacity for carbon monoxide % predicted) (Table 1). The proportion of missing data 

was small and did not affect our sample size calculations, thus allowing for a complete case 

analysis. Most of the missing data resulted from some subjects missing data points on either 

PFTs or RHC that could not be matched.  

2.3 RESULTS 

2.3.1 Study population 

We identified 880 patients with IPF in the review period from June 1996 to June 2015. Of these, 

308 (35%) had complete hemodynamic and PFTs data. Sixty five percent of the IPF patients that 

were not analyzed had a similar demographic distribution (age, race) with a slight reduction in 

the proportion of males (57% vs 67%) when compared with the analyzed data.  

2.3.2 Demographics 

The overall mean age of the analyzed IPF cohort was 68 years (range 31 to 94) and 67% male. 

The cohort was mostly white, with 836 (95%) followed by African Americans, 18 (2%) and 

others 26 (3%). The PH in IPF subjects comprised mostly older males when compared with IPF 
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only subjects (66 vs 64; p=0.05). The prevalence of PH and RVSD in IPF were 28.6% (88/308) 

and 12.3% (28/228), respectively (Table 1 & 2). 

 

Table 1. Characteristics of IPF patients with IPF alone and PH in IPF 
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2.3.3 Pulmonary functional tests 

There were no significant differences in the mean FVC %  and FEV1% predicted values between 

the PH in IPF and IPF only groups, confirming previous reports that lung volumes do not 

correlate well with patient outcomes 13. The DLCO % predicted was significantly lower in the 

PH in IPF group (30.5 vs 38.7, p= <0.001) (Table 1).  

 
Table 2 Characteristics of patients with RVSD and preserved RV function 
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2.3.4 Survival analysis 

The overall median survival was 3.7 years, and the 1-year and 5-year survival rates were 81.3% 

and 37.5%, respectively (Figure 1).  This showed a rapid decline (43.8%) in survival from one to 

five years after diagnosis. The assumption of constant proportional hazard was determined to be 

satisfactory from a parallel log-log graph. 

 

 
Figure 2 Overall survival curve with a decline from 1 (365.25) to 5 (1830) years following diagnosis 

 

In comparing the Kaplan-Meier survival estimates (Figure 2A), we found a significantly 

lower survival rate among PH in IPF subjects compared with IPF alone. Furthermore, the 

survival estimates were significantly lower in the PH-IPF group at one year (72.3 % vs 85.3%) 

and at five years (37.9% vs 49.6%) than in IPF alone. This suggest a worsening survival outcome 

attributable to PH in IPF. Looking at RV function, the Kaplan-Meier survival estimates of 

subjects with RVSD were significantly lower at one year (67.2% vs 83.7%) and at five years 

(16.8% vs 55.4%) compared to those without RVSD (Figure 2B). Interestingly, these rates were 

5% and 21% lower at one year and five years respectively, among RVSD subjects compared 
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with PH in IPF. This indicate outcomes are markedly worse in IPF patients with associated 

RVSD when compared with PH in IPF. 
 

 
Figure 3 KM survival estimates. (A) PH in IPF vs IPF alone (B) RVSD vs preserved RV function 
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2.3.5 Cox proportional hazard regression analysis. 

2.3.5.1 Unadjusted analysis 

To assess the impact of PH in IPF on survival outcomes, we performed an unadjusted Cox 

regression analysis with a dichotomized mPAP (mean pulmonary artery pressure) as a single 

covariate. The overall risk of mortality (hazard ratio) was significantly higher among subjects 

with PH in IPF compared to IPF alone (HR: 1.406; CI: 1.026-1.928, p= 0.034). More 

importantly, the risk of death was significantly higher in subjects with RVSD compared to those 

without. (HR: 2.523; 95% CI: 1.599-3.979, p= <0.001) (Table 2). Again, RVSD in IPF was 

associated a greater risk of death than PH in IPF. Interestingly, the significant different variables 

(mPAP, RVSP) are indicators of pulmonary vascular load (afterload) related to the 

cardiopulmonary functional unit. 
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Table 3 Cox proportional hazard for overall mortality in RVSD and PH in IPF 

 
 

2.3.5.2 Multivariable analysis 

We adjusted the unadjusted dichotomous mPAP and SVI with key predictor variables age, 

gender, heart rates and FVC% predicted, selected based on literature reports 18. The risk of 

mortality increased and remained significantly higher for PH in IPF subjects compared to IPF 

only subjects (HR: 1.769; 95% CI: 1.229-2.547, p= 0.002). Interestingly, the mortality risk 

remained significantly higher in subjects with RVSD compared to those with preserved RV 

function after adjusting for the key predictors (HR: 1.825; 95% CI: 1.003-3.321, p=0.049) (Table 

3). Consistent with the unadjusted results, RVSD showed a stronger associated with mortality. 

To assess the strength of the association between PH in IPF and RVSD, we performed 

logistic regressions with RVSD as the binary dependent variable and the mPAP as the 

dichotomized predictor variable. The likelihood of having RVSD was 3.38-fold (OR: 3.38; CI: 
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1.44-7.96; p=0.005) higher among those with elevated mPAP (>25mmHg) compared to those 

with normal pulmonary arterial pressures. Therefore, based on these findings, most patients with 

PH in IPF will eventually develop RVSD. 

To determine the association between mPAP and SVI, RVSP, PVR, we performed 

pairwise Pearson’s correlation tests. As expected, the correlation analysis between mPAP and 

SVI, showed a significant but mildly negative associated (r=-0.32, p=<0.001) (Figure 4). This 

indicates a worsening RV function as the mPAP (RV afterload) increases.  

 

 
Figure 4 Correlation plot of mPAP vs SVI 

 

There was also a strong correlation between mPAP and RVSP (r=92; p=<0.001) and 

between mPAP and PVR (r=0.75; p= <0.001). These variables, mPAP, RVSP and PVR are 

highly correlated, suggesting they are factors that measure the same underlying construct of a 

sick cardiopulmonary unit. 
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2.4 DISCUSSIONS 

In this study, we found that the overall median survival was 3.7 years, and the 1-year and 5-year 

survival rates were 81.3% and 37.5%, respectively. There was a 43.8% decline in survival in five 

years following diagnosis. Indicating more than half of the IPF patents died in five years. In 

recent reports, IPF patients have been regrouped as slow (with several years of decline in lung 

function leading to death) and rapid progressors (less than six months of symptoms before their 

first presentation)18. The IPF patients in our cohort appeared to have a spectrum in their 

progression, leaning towards a slow progression pattern. 

The Kaplan-Meier curves showed a significantly lower survival estimates in the PH-IPF 

patients when compared with IPF alone at one year (72.3 % vs 85.3%) and at five years (37.9% 

vs 49.6%). This suggest PH in IPF is associated with worse outcomes. Using RHC, Lettieri and 

colleagues in their evaluation of PH in IPF patients listed for lung transplantation found a one-

year survival of 72% compared to 94.5% in IPF alone. This gives a difference in survival 

between the two groups of 22.5% compared to 13% in our cohort 79. The higher difference in this 

study can be partly explained by the severity of the disease in a cohort made of patients listed for 

lung transplantation with advanced disease. Similarly, looking at patients with advanced lung 

disease awaiting lung transplant, Nathan and colleagues, performed serial RHC for PH in IPF at 

baseline (38.6%) and at the time of lung transplant (86.4%). They found that almost all the IPF 

patients developed PH late in the course of their disease 80. The significant difference between 

these studies and ours is that their IPF cohort came from referral centers where IPF patients are 

listed for lung transplantation, whereas our cohort is from a regional registry that has IPF patients 

with a spectrum of disease severity, which is more indicative of the real-world picture. 
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Conversely, survival estimates of subjects with RVSD were significantly lower at one 

year (67.2% vs 83.7%) and at five years (16.8% vs 55.4%) compared to those without RVSD. 

Interestingly, these rates were lower among RVSD subjects compared with PH in IPF at one-and 

five-year by 5% and 21%, respectively. This indicates outcomes are markedly worse in IPF 

patients with associated RVSD than among those with PH in IPF. 

In the multivariable Cox regression analysis, we found that the risk of mortality remained 

significantly higher for PH in IPF subjects compared to IPF alone (HR: 1.769; 95% CI: 1.229-

2.537) after adjusting for key covariates (age, sex, heart rate and FVC % predicted). 

Interestingly, the mortality risk remained significantly higher in subjects with RVSD compared 

to those with preserved RV function after adjusting for the same key covariates (HR: 1.825; 95% 

CI: 1.003-3.321). More importantly, RVSD showed a stronger association with mortality than 

PH in IPF. There is very limited data with the use of RHC to evaluate the RV function in IPF. 

Nonetheless, Rivera-Lebron et al, studying 135 IPF patients referred for lung transplantation by 

transthoracic doppler echocardiography, found that RVD was associated with doubling of the 

risk of death. The authors used RV outflow tract velocity time integral (RVOT VTI), as a 

surrogate of stroke volume and the right atrial to left atrial ratio to assess RVD. They also 

reported an 11% prevalence of RSD in their cohort of IPF patients evaluated for lung 

transplantation 15.  

Our correlation analyses revealed that the mPAP and SVI, showed a significant but 

mildly negative association (r=-0.32, p=<0.001). Furthermore, there was a strong correlation 

between mPAP and RVSP (r=92; p=<0.001) and between mPAP and PVR (r=75; p= <0.001). 

Interestingly, these variables (mPAP, RVSP, PVR) are all associated with the pulmonary 

vascular load or afterload. Several publications have reported that outcome in PH is more related 
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with the capacity of the RV to adapt to elevated afterload 5, 25. Recently, Corte et al, performed 

RHC on 66 patients with diffuse interstitial lung disease and showed that PVR was an 

independent predictor of mortality (OR, 1.3, P= <0.001) 81. 

Also, the results from this study showed that both PH and RSVD are prevalent in IPF. 

The prevalence of PH in IPF was 28.6%. Lettieri and colleagues reported a 31.6% 79 and Shorr et 

al  reported a 46.1% 82 prevalence of PH in IPF. These prevalence rates may have been 

overestimated since these studies were performed before the 2008 Dana Point conference on 

pulmonary hypertension that set two hemodynamic cutoff points (mPAP≥25mmHg and PCWP 

≤15mmHg at rest by RHC), for the diagnosis of pulmonary hypertension 12. Moreover, these 

studies were conducted in referral centers on the records of IPF patients listed for transplant with 

advanced disease. 

The prevalence of PH in IPF has also been evaluated from registries with a wide range of 

estimates. Lederer and collaborators found that 36% of IPF patients from the US United 

Networks for Organ Sharing (UNOS) database had PH in IPF 83. In a recent publication from the 

UNOS registry, Hayes and colleagues reported a 49% prevalence of PH in IPF following lung 

transplantation 84. Together, these studies indicate that PH in IPF is common and adversely affect 

outcomes. However, none of these studies assessed the impact of the right ventricular function 

on outcomes. 

Our results showed that 12.3% of the IPF patients in our cohort had RVSD. These 

findings are consistent with that of Rivera-Lebron and colleagues who assesses 

echocardiographic predictors of mortality in a cohort of IPF patients referred for lung 

transplantation. They found that in this cohort, the prevalence of moderate to severe RVD was 
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11% and an independent predictor of mortality measured by the ratio of the right atrial to left 

atrial diameter and RVOT VTI  15. 

Limitations. Our study has some limitations, such as the retrospective review from a 

single center registry. Though the data was from a single center, the Simmons Center for ILDs is 

a regional and member of PA-state wide IPF registry with subjects presenting with diverse 

disease severity spectrum and different demographic backgrounds. The diagnosis of IPF is 

ultimately one of exclusion, fact that some of the diagnosis of IPF were made before the 2002 

ATS/ERS criteria for diagnosing IPF. These probably lead to the  misdiagnosis of some IPF 

subjects. Also, the threshold levels in our analysis were predefined based on existing literature 

for both RVSD and PH in IPF. It is, however, possible that different threshold values might have 

yielded different results. We did not include in our analysis the different medications that the IPF 

patients were taking that might affect survival. Notwithstanding these limitations, the strength of 

our study is in the use of data generated by the gold standard RHC, in a registry with real-world 

characteristics to assess the RV function in an IPF-specific population.  
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3.0  THE THERAPEUTIC POTENTIAL OF MSC-DERIVED EXOSOMES IN FIBROTIC 

LUNG INJURY  

3.1 INTRODUCTION 

There is no effective treatment for IPF except for lung transplantation. The recently approved 

antifibrotic/anti-inflammatory medication, pirfenidone and the tyrosine kinase inhibitor, 

nintedanib, only help slow disease progression. Consequently, there is an urgent need for novel 

therapeutic approaches in IPF. It has been argued that IPF is a non-inflammatory condition 

because it is refractory to corticotherapy 1, 85. However, this theory overlooked the role played by 

immune cells in the wound-healing process that has been demonstrated in the pathogenesis of 

IPF86. This suggest that agents with anti-inflammatory properties can be effective therapies in 

IPF. Although the pathogenesis of IPF is not fully elucidated, its histopathologic pattern of usual 

interstitial pneumonia (UIP) is well known. UIP is characterized by areas of 

fibroblast/myofibroblast proliferation, deposition of extracellular matrix (ECM) and collagen, 

referred to as the fibroblastic foci, interspaced with normal lung tissue. This pattern suggests a 

progressive fibroproliferative process 85. Put together, novel therapeutic agents that demonstrate 

pleiotropic anti-inflammatory, antifibrotic and immunomodulatory effects hold promise as 

potential therapeutic options for IPF. There is growing evidence that indicates hMSCs and their 

derived exosomes possess these triple (antifibrotic, anti-inflammatory and immunomodulatory) 
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ameliorating effects in fibrotic lung disease6, 33. More importantly, hMSC exosomes have greater 

appeal as therapy for IPF than their parent MSCs because they are believed to be less toxic with 

a lower risk to immunologic rejection following allogeneic infusions52. Furthermore, hMSC-

derived exosomes have membranes that protect their macromolecular cargo and facilitate their 

storage and scalability. Also, there is a lower risk of inducing changes in chromosome numbers 

(aneuploidy), which is feasible with whole MSC infusions. Interestingly, exosomes are reported 

to have immune-privileged properties just as their parent cells with fewer ethical implications 52, 

53. These posited immune-privilege properties of hMSC exosomes make them prime candidates 

for therapy in fibrotic lung disease-induced RVD. However, there is limited data on the 

modulatory effects of hMSC exosomes on the RV function within the context of FLI-induced 

pulmonary vascular overload. Therefore, it will be biologically relevant to assess the modulatory 

effects of hMSCs and their derived exosomes on the RV function in a mouse model of FLI. 

Right heart catheterization (RHC) and PV loop analysis remain the gold standard for 

defining changes in PH and assessing the hemodynamic load on the RV 4. Nonetheless, it is 

important for PV loop analysis to be performed appropriately by skilled personnel and for the 

results to be reliable and accurate. In unskilled hands, measuring ventricular volumes using PV 

loop analysis can be very challenging. This is because volumes are estimated from the 

conductance of an electric field, generated by miniaturized electrodes in the catheters, which 

passes through blood and the myocardium. To calculate the absolute ventricular volume, the 

contribution of the myocardium to conductance (parallel conductance) has to be removed from 

the total conductance 87. To this end, two catheter-derived PV loop technologies are available; 

the traditional conductance catheter that requires in vivo calibration using a bolus of hypertonic 

saline to estimate the parallel conductance, and the new admittance catheter that instantaneously 
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corrects for the parallel conductance 88. In this study, we used the admittance catheter system 

because of its capability to generate instantaneous absolute volumes without the perilous in vivo 

calibrations linked with the conductance catheters. PV loop analysis with admittance catheters 

have the unique ability to evaluate PH, RV afterload, their interactions and gauge the response of 

the cardiopulmonary unit to novel therapeutics, including hMSC exosomes 4, 24. Importantly, PV 

loop analysis can assess the RV adaptation to the increased RV afterload 26. When these adaptive 

compensatory mechanisms are surmounted by the increasing pulmonary pressure overload, RVD 

ensues and progressively lead to uncoupling (RV failure) of the RV from the pulmonary 

vasculature. To highlight these compensatory changes, Kubba S. et al, reported that RV-PA 

coupling is a preserved when there is an adaptive increase in contractility (onset of RVD) to 

match increased RV afterload 25. This indicates that in compensated RVD, there is RV-PA 

coupling. Uncoupling ensues when RV contractility is not increased to overcome RV afterload, 

which correlates with pulmonary vascular resistance (PVR). There is therefore, a progressive 

transition to a decompensated RVD with uncoupling and overt RV failure. This interaction 

between the RV and pulmonary vasculature supports the notion of studying the RV and the 

pulmonary vasculature as an integral functional cardiopulmonary unit 51, 89.   

The RV contractility reserve is reported to be 5-fold higher than that of the LV, giving it 

a relatively longer period to adapt to the increased pulmonary vascular load before the onset of a 

decompensated RV failure 10. Spruijt et al, tested this concept of reactive contractility increase in 

patients with IPAH and showed that they already had maximally increased RV contractility at 

rest, indicating an early onset of RVD 26. Consequently, assessing indices of RV contractility 

using PV loop analysis can provide insights into the onset RVD 51, 89, 90. We therefore, sought to 

employ RHC and PV loop analysis to evaluate the RV adaptation to increased pulmonary 
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pressures associated with FLI, and assess their response to hMSC exosome treatment. We 

hypothesized that hMSCs exosomes exert their beneficial effects in part, by modulating RV 

contractility.   

3.2 MATERIALS AND METHODS 

3.2.1 Design 

This study was an in vivo experimental design aimed at recapitulating human IPF in a mouse 

model of bleomycin-induced fibrotic lung injury. Pressure-volume (P-V) loop analyses were 

performed to assess the RV function after fibrotic lung injury followed by transplantation of 

exogenous hMSCs and their derived exosomes. All animal protocols were approved by the 

University of Pittsburgh Institutional Animal Care and Use Committee (IACAUC). 

3.2.2 Isolation and Characterization of human MSC-derived exosomes 

Clinical grade bone marrow-derived hMSCs were obtained from  the NHLBI-sponsored 

Production Assistance for Cellular Therapies (PACT) program based at the University of 

Minnesota, MN 91. Exosomes (EXO-20) were isolated from these hMSCs as previously 

described by our group and others 45, 92. Briefly, hMSCs were cultured and expanded in T175 

cm2 flasks (ThermoFisher Scientific) to 80% confluency for the first passage, and then separated 

into three T175 flasks for the second passage to 80% confluency. Thereafter, the cells from three 

T175 flasks (on average 20*106 cells) were washed, detached, and seeded in a triple-layer flask 
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(ThermoFisher Scientific) with 400ml of exosome-depleted maintenance media. Every other 48 

hours, the conditioned media was collected and passed through multiple differential 

centrifugation (300g/10mins, 2000g/20mins, 10,000g /hour) followed by an ultracentrifugation 

step on a sucrose cushion (100,000g/2hours) 93.This process was repeated to have 8-10 

collections/isolates of exosomes from the same parent hMSC that was pooled for protein assay 

using a Micro BCATMProtein assay kit (ThermoFisher Scientific) and  their  size 

distribution/concentrations were evaluated by Nanosight Tracking Analysis on a NanoSight 

LM10 (Malvern, Westborough, MA). 

3.2.3 Mouse model of bleomycin-induced fibrotic lung injury 

Ten-12-weeks old female C57BL/6N mice (Charles River Laboratories, Wilmington, MA) were 

randomly assigned, to four experimental groups/conditions (Controls, bleomycin (BLM) only, 

BLM+hMSC, BLM+exosome]. Ear tag numbers were used to generate random numbers that 

were randomly assigned to the four experimental conditions. To induce fibrotic lung injury, 

twelve doses of 20U/kg of bleomycin (APP Pharmaceuticals, Schaumburg, IL) were 

administered subcutaneously in 100ul of normal saline every other day for a total of 240U/kg 29, 

94. Following established lung injury after the sixth dose of BLM, the first dose of 500,000 

human mesenchymal stem cells (25 x 106 MSCs/kg, body weight) and exosomes (50ug/kg, body 

weight) were injected intravenously by the jugular vein in 160ul of normal saline-vehicle. The 

control mice received the same volume of vehicle. A second dose of the same amount of hMSCs 

or exosomes was given intravenously by tail vein after the twelfth injection of BLM. The mice 

were monitored and anesthetized for PV loop analysis 7 days after the last dose of BLM for a 

total exposure period of 31 days.  
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3.2.4 Animal handling and pressure-volume loop measurements 

The mice were anesthetized with intraperitoneal urethane (ethyl carbamate) solution (1 mg/g, 

body weight) and intubated with a 1.3 mm cannula. The cannula was connected to a ventilator 

that was set at a tidal volume of 225ul with 200 breaths/min. An apical stab wound was 

established with a 20G needle to insert a 1.2 F admittance pressure-volume catheter (Transonic 

Systems Inc, Ithaca, NY) into the RV (Figure 1). The admittance catheter has features to 

instantly measure pressures and simultaneously determine absolute volumes by calibrating phase 

shifts of the generated electrical fields. These phase shifts are used to subtract the contribution of 

the ventricular wall (parallel conductance) to the overall volume signal 95, 96. After setting the 

instruments, PV loop analysis were performed at steady state and following caudal vena cava 

occlusion for load-dependent and load-independent values, respectively. The right ventricular 

pressure and volume readings were captured on an ADV500/ ADVantage system (Transonic 

Systems Inc, Ithaca, NY) with an integrated LabChart software (ADInstruments Inc., Colorado 

Springs, CO) for post-data acquisition analysis. 97.  

3.2.5 Pressure-volume loop analysis 

The P-V loops used in our analysis went through a quality control process by the P-V loop data 

analyst. For each experimental condition, at least 10 consecutive cardiac cycles free of 

arrhythmias were selected and recorded for further analysis. The selection was done consistently 

across the experimental dataset with and without caudal vena cava occlusion. Standard 

hemodynamic variables (heart rate, systolic and diastolic pressures), right ventricular function 

volumetric parameters (CO, EF, SV), Ees, and Ea were recorded from the hemodynamic data 
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(Table 4). Contractility was quantified from the slopes of the ESPVR (Ees), PRSW, and the 

dP/dtmx-end diastolic volume (dP/dtmx-EDV) relationships. Finally, right ventricular-vascular 

coupling efficiency was calculated as Ees/Ea ratio 70, 96, 98. 

3.2.6 Primary and secondary outcomes 

Our primary endpoint was RV contractility that was determine from the slopes of three indices 

(ESPVR (Ees), PRSW, and dP/dtmx-EDV relationship. The secondary endpoints were right 

ventricular systolic pressure, mean pulmonary arterial pressure (mPAP), pulmonary vascular 

resistance (PVR) and the right ventricular elastance-to-pulmonary artery elastance (Ees/Ea) ratio. 

3.2.7 Sample size and power calculations 

The level of significance (α) and power (1-β) were set a priori at 0.05 and 0.8, respectively. The 

power to detect a 0.5 change in the slope of the ESPVR (Ees) and its standard deviation (0.20), 

were obtained from the first study ever reported on the RV function in mice using P-V loop 

analysis 97. A G*Power statistical package 99 with its integrated ANOVA F-test, was used to 

determine a minimal sample size of 55 mice needed to detect a 0.5 change in the end-systolic 

elastance between the experimental conditions.  

3.2.8 Statistical analysis 

The data were summarized as the mean±SEM or median where appropriate, and dot plots to 

show the raw data. An ANOVA or a Kruskal–Wallis tests were used for three or more group 
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comparisons. Where necessary, a Tukey-Kramer or Dunn post-hoc multiple comparison tests 

were performed when the overall F-test was significant. A p-value of <0.05 was the statistically 

significant threshold and STATA statistical software (StataCorp, College Station, TX, Version 

15.0) was used for all analyses. The non-parametric Kruskal-Wallis test was used when the 

ANOVA assumptions were not met. 

3.3 RESULTS. 

Our findings showed that the average body weight of the BLM injured group was significantly 

lower when compared to controls (p <0.05;18.0 ± 0.33 vs 22.2± 0.40, g). The weight loss was 

significantly increased by administering human MSCs (18.0 ± 0.33 vs 21.5 ± 0.60, g) and EXO-

20 (18.0 ± 0.33 vs 20.1 ± 0.49, g). This indicated a beneficial effect on weight gain following the 

injection of both hMSCs and exosomes (Table 4).  
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Figure 5 Dot plots: Indices of RV contractility (A & B), afterload (C) and coupling efficiency (D). 

 

3.3.1 Cardiopulmonary hemodynamic data.  

Load-dependent measures of contractility (EF, SV) were slightly lowered by BLM injury (47 vs 

48, %; 21.6± 0.88 vs 23.8±1.57, ul), respectively. Moreover, BLM injury significantly reduced 

the CO (10.5±0.43 vs 12.2±0.98, ml/min), which is another index of load-dependent 

contractility, from baseline-controls (Figure 5). This reduction was significantly increased by 
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injecting hMSCs (18.8±2.69 vs 10.5±0.43, ml/min) and exosomes (17.2±2.59 vs 10.5±0.43, 

ml/min).  

 

 

Table 4 Hemodynamic characteristics and indices of pressure-volume relationships 
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3.3.2 Afterload 

Indices assessing RV afterload (mPAP, RVSP, PVR) showed a wide range in their response to 

an intervention with hMSCs and exosomes. As shown in Table 4, the mean pulmonary arterial 

pressure (mPAP) was significantly increased in the BLM injury group when compared with 

controls (20.0±0.45 vs 16.1±0.43, mmHg). The BLM-induced increase in pulmonary pressure 

was attenuated but insignificantly after administering hMSCs and exosomes. The same trend was 

observed in the RV systolic pressure (RVSP) when comparing the BLM injury group with 

controls (29.8±0.69 vs 23.9±0.66, mmHg) and following injections of hMSCs and exosomes 

(Table 4). However, the pulmonary vascular resistance (PVR), another metric of afterload, was 

significantly increased by BLM injury when compared with controls (1.7±0.08 vs 1.2±0.07, 

wood unit). The injection of hMSCs and exosomes significantly reduced the BLM-induced 

increase in afterload (1.7±0.08 vs 1.1±0.20; 1.7±0.08 vs 1.2±0.41, wood), respectively. 

Collectively, both hMSCs and exosomes had beneficial, but mostly nonsignificant, effects in 

reducing the RV afterload. This data indicates that the beneficial effects of hMSCs and exosomes 

on RV afterload in this study might have been insufficient because of its dose-dependent effect.  

3.3.3 Contractility 

All three load-independent measures of contractility, Ees, PRSW, and dP/dt-EDV increased but 

not significantly after BLM injury compared with controls by 24%, 17%, and 28%, respectively. 

However, only the increase in contractility comparing dP/dt_EDV in the BLM injury group with 

controls was statistically significant (45.5±2.52 vs 32.8±2.87, mmHg.s-1. ul-1). There was a 

marked but nonsignificant reduction in contractility following treatment with both hMSCs and 
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exosomes (Table 4). Similarly, as noted above with afterload, this suggested a potential dose-

dependent effect of hMSCs and exosomes on RV contractility. The P-V loops in Figure 6 

illustrate the changes in contractility under the different experimental conditions. The greater the 

steepness of the slope of the end-systolic pressure to volume relationship (ESPVR), the stronger 

the contractility. There is a stronger and possibly complete RV contraction when comparing the 

BLM group to controls (Figure 6). The contractility in the hMSC group was reversed towards 

that of the controls, indicating an improvement in RV contractile reserve.   

 

 

 

Figure 6 Slopes of the end-systolic pressure-volume relationships 
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3.3.4 Coupling efficiency 

The coupling efficiency, which is the optimal RV work to pump blood through the pulmonary 

artery with minimal energy consumption, is assessed by the Ees/Ea ratio. It showed a 

nonsignificant decrease comparing BLM injury to control groups (0.51 vs 0.53). There was a 

minor beneficial effect from injury after administering hMSCs and exosomes (Table 4 & Figure 

5). Overall, the coupling efficiency was determined to be suboptimal since all the ratios were 

above 0.5. This indicated that the coupling efficiency of the RV supply to the pulmonary 

vasculature demands was maintained despite the BLM-induced increase in the RV afterload. 

3.4 DISCUSSIONS 

The results showed that the RV afterload was significantly increased and accompanied by an 

adaptive increase in RV contractility from baseline. Furthermore, the intravenous injections of 

hMSCs and exosomes after an established fibrotic lung injury, showed beneficial effects on right 

ventricular contractility and afterload. Some of the insignificant beneficial effects could have 

been in part, due to the dose-dependent mode of action of both hMSCs and exosomes.  

Afterload. We found that BLM injury significantly increased RV afterload indices 

(RVSP, mPAP, PVR) that were reversed by hMSCs treatment. Similarly, lower improvements 

were observed after treatment with exosomes (Table 4). Consistent with our results, Tabima D. 

et al 97 using admittance-derived PV loop analysis, also found a significant (67.5%) increase in 

RVSP from controls following hypoxia-induced pulmonary hypertension (45±17 vs 27±3, 
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mmHg) 97. Evaluating sixty-six patients with diffuse parenchymal lung disease, Corte T et al 

found an elevated PVR (≥ 6.23 WU) as the strongest hemodynamic predictor of mortality, but 

RVSP and mPAP were not predictive of mortality 81. Even though these reports showed mixed 

findings relating RVSP and mPAP to outcomes, they all provide support for PVR as a strong 

predictor of mortality. 

Contractility. The RV supply (contractility) of blood flow assessed by a load-independent 

index of contractility (dP/dtmax.-EDV), was significantly higher among the BLM injury group 

when compared with controls. An adaptive increase in contractility has been reported as an early 

sign of RVSD 90. Recently, Guihaire et al and others, showed that an increased pulmonary 

hypertension was associated with a reduction in contractile reserve during exercise 26, 100, 101. 

These authors argue that subjects with PH already have maximally increased RV contractility at 

rest that could not adapt to the increased afterload during exercise. In our bleomycin model of 

fibrotic lung injury (FLI), we found a 28% increase in RV contractility (an early sign of adaptive 

RVSD), using the slope of the maximum pressure derivative to the end diastolic volume 

(dP/dtmax-EDV). This increase in contractility was attenuated by administering hMSCs and 

exosomes (Table 4). The increase in RV contractility as an early sign of RVD has been reported 

by other investigators in human subjects and animal models 26, 101. Tabima D. and colleagues, in 

a mouse model of hypoxia-induced pulmonary hypertension, found a 110% increase in 

contractility based on evaluating the dP/dtmax-EDV relationship 97. Yerebakan C. et al studying 

the RV adaptation to increased pressure overload in sheep, found a significant increase in RV 

contractility based on an increase in the maximal slope of systolic pressure increment (dP/dtmx, 

p=0.002)101.  Most recently, Spruijt et al evaluating patients with precapillary PH, determined 

that failure to compensate for the further increases in pulmonary pressure during exercise, led to 
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a poor RV contractility matching the increased RV pressure overload 26. Collectively, therefore, 

an increase in RV contractility is an early indicator of RVD. Of the indices routinely used to 

assess RV contractility (Ees, PRSW, dP/dtmax-EDV), dP/dtmax-EDV was reported as the most 

reliable load-independent measure of contractility 97 and thus, confirming our use of this index as 

a measure of RV contractility. 

Coupling efficiency. The ratio of ventricular elastance (Ees) to the effective arterial 

elastance (Ea), provides a quantitative assessment of how the RV ventricular systolic function 

adapts to increased RV afterload 22. In mice, a ratio greater than 0.5 shows that the ventricle is 

operating at optimal efficiency with minimal energy spent to overcome the RV afterload 102. Our 

findings showed an Ees/Ea ratio that was borderline greater than 0.5 in all experimental 

conditions. This suggest a preserved, suboptimal ventricular-arterial coupling efficiency and a 

state of compensated RVD. Wauthy et al, studying RV contractile function in different large 

animal species (dogs, goats, pigs), also reported a preserved optimal ventricular-arterial coupling 

despite an increase in pulmonary hypertension 27. Put together, a preserved ventricular to 

pulmonary vascular coupling does not preclude an underlying RVD because is reflection of an 

interaction between RV contractility (Ees) and RV afterload (Ea). 

Notwithstanding the potential beneficial effects of hMSC and their exosomes in fibrotic 

lung injury and cardiac remodeling, the contributions of resident tissue stem cells in the heart and 

lungs is still not fully understood 37, 103.It was recently reported that resident tissue MSCs may 

differentiate in a hierarchical fashion with increased specificity in tissue repair function 

according to the paracrine and autocrine cues in their microenvironment 104. A potential 

paracrine cue may come from the secreted exosomes of ex vivo transplanted hMSCs. Allogeneic 

hMSCs have been shown to ameliorate their bioenergetic properties by extruding mitochondria 
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to recipient cells through secreted extracellular vesicles 45, 105. Therefore, mitochondrial transfer 

between transplanted hMSC exosomes and resident cardiac and lung stem cells will be a 

potential mechanism through which stem cells (endogenous and exogenous) interact to repair 

damaged tissues. 

Limitations. In inexperienced hands, measuring cardiac volumes using an admittance 

catheter in mice is always  challenging due to the crescentic trapezoid shape of the right ventricle 

96. We employed the expertise of the personnel at the Vascular Medicine Institute at the 

University of Pittsburgh who have gained much experience in conducting PV loop analysis in 

mice over the years. The volumes from our P-V loop data were relatively higher than those 

previously reported in mice 97. This may have reduced the absolute values of some of the 

variables indexed by volume such as the dP/dtmax.-EDV, thus hindering effective comparisons 

with other studies. Despite this limitation, the trend and directions of our findings were 

comparable to previously published data. We did not use a dose escalation protocol for hMSCs 

and exosomes, which could have allowed us to draw clear conclusions on their dose-dependent 

effects.  
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4.0  A DESCCRIPTIVE PROTEOMIC ANALYSIS OF HMSC EXOSOMES: 

THERAPEUTIC IMPLICATIONS IN FIBROTIC LUNG DISEASES  

4.1 INTRODUCTION 

Human bone marrow-derived mesenchymal stem cells (hMSCs), which is the most studied of all 

hMSCs, hold promise as therapy for complex diseases such as fibrotic lung diseases 106, 107. 

There has been a shift in paradigm, from the previous postulate that transplanted MSCs engraft 

and differentiation into damaged resident cells to one based on MSCs releasing paracrine 

effectors52. The hMSC secreted paracrine factors (secretome) comprise soluble factors and 

insoluble extracellular vesicles (EVs)33. These EVs include nanosize exosomes (30-100 nm in 

diameter), which originate from the endosomal compartment, and microvesicles (MVs, 0.1 to 

1µm in diameter), which are formed from plasma membrane blebs 108. While MVs can be 

isolated from biofluids and cell culture supernatant at low centrifugation (10,000-12,000g), the 

isolation of exosomes requires ultracentrifugation at 100,000-120,000g 109. 

Human MSC exosomes have been demonstrated to protect mice from myocardial 

infarction, pulmonary arterial hypertension and bleomycin induced fibrotic lung disease 56, 110. 

Also, their use in clinical trials have been reported in other countries 39. Despite the excitement 

generated in the potential of hMSC exosomes to treat fibrotic lung diseases, however, the 

components of the hMSC exosome proteome that is responsible for their therapeutic effect are 
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still not well characterized. Identifying the unique protein components that confer the therapeutic 

effects of hMSCs will go a long way in filling the current knowledge gap in markers of hMSC 

therapeutic efficacy/potency. Biomarkers of MSC potency or efficacy are key to translating 

hMSC exosomes into reproducible and measurable clinical applications. Lee RH. and colleagues 

recently reported the expression of TSG6 as a biomarker to predict the efficacy of BM-MSCs 

prepared by standardized protocols. Surprisingly, they found that only one-third of their 

preparations expressing high levels of TSG6 produced beneficial effects in a mouse model of 

induced inflammatory cornea disease 40. Other investigators have suggested Twist 1 as predictive 

biomarkers of the proliferative potential of hMSCs. They correlated high proliferative capacity 

with therapeutic potency based on in vitro assays 111. Put together, adequate candidate 

biomarkers that are predictive of hMSC efficacy need to be identified and validated, in vivo in 

animal models. The assumption is that efficacious hMSCs will also release efficacious 

exosomes, but several studies have shown that exosomes are differentially enriched in miRs and 

mRNAs and potentially their protein load when compared with their parent cells 49. Therefore, 

protein components that can be identified and validated as adequate biomarkers directly from 

exosomes will be better predictors of hMSC efficacy. 

Recently, we showed that hMSCs exert their beneficial actions in part, by shuttling their 

extravesicular cargo (microRNA, proteins) to macrophages and, as a result, changed their 

immunomodulatory phenotype 45. This study and others 53 suggest a potential cross-talk between 

hMSC exosomes and target cells such as endothelial, cardiomyocytes, and lung epithelial cells 

for tissue repair following different types of injury. In recent years, the role of oxidative stress in 

tissue injury, including fibrotic lung disease, has caught the attention of several investigators 57, 

61. Most reports have shown an increased expression of NADPH oxidase (NOX) and 
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mitochondria as the main sources of ROS production that led to the development of pulmonary 

and RV remodeling 59, 60. These data suggest that excessive ROS production (oxidative stress) is 

deleterious to the normal interaction (coupling) of the RV to the pulmonary artery. Also, 

increased ROS generation has been shown to positively correlate with high levels of misfolded 

or damaged proteins  64, 65. If allowed to accumulate and not degraded by homeostatic pathways, 

these misfolded proteins will invariably induce the injury observed in cardiopulmonary 

remodeling 59. A key pathway in protein homeostasis is the ubiquitin/proteasome pathway 66, 112. 

Proteasomes are an essential group of hydrolase proteolytic enzymes that have also been 

identified in exosomes 66. According to these authors, proteasomes played a key role in clearing 

misfolded proteins to mitigate ischemia/ reperfusion (I/R) injury. Put together, these data indicate 

a pivotal role of proteasomes in the clearance of damaged proteins within cells. Their 

intracellular proteolytic effects may be augmented by the extracellular proteolytic effects of 

matrix metalloproteinases (MMPs) within the ECM. Specifically, the gelatinases (MMP2 and 

MMP9) are MMPs that play a critical role in ECM protein turnover 67. Therefore, a combined 

antioxidant and proteolytic turnover of damaged proteins may in part, explain the pleiotropic 

beneficial paracrine effects of hMSC-based therapies reported in complex fibrotic lung diseases 

such as IPF. To facilitate the translation of hMSc exosomes from preclinical to clinical trials, the 

protein components that confer their therapeutic potential must initially be identified using 

modalities that can reliably analyze their complex protein cargo (proteomics) within a short 

timeframe. This has been made possible since the mid-90s with the development of high-

performance liquid chromatography (HPLC) coupled to mass spectrometry (MS). The basic 

principles in proteomic analysis by MS initially involve loading microliters of a trypsin digested 

protein onto HPLC C (carbon)-18 columns. Analytes in solution are separated based on their 
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hydrophobicity and the eluted peptides are then transferred onto an electrospray ionization (ESI) 

device that is linked to a MS 113. The peptides are ionized and fragmented to generate tandem 

mass spectrometry (MS/MS) spectra that are searched against curated protein databases for 

protein identification. Proteomic analysis of various complex protein cargos generates huge high-

throughput data that need bioinformatic expertise and software for their analysis and further 

classification.  

One of the first publications on the proteome of the hMSC exosome was from Lai R. and 

colleagues in the Lim S. laboratory in Singapore. They used proteomic analysis to demonstrate 

that the predominant component of the hMSC exosome proteome was the 20S proteasome. The 

20S proteasome constitutes the catalytic core of the 26S proteasome that has been shown to have 

critical physiological and pathological implications in many diseases, including myocardial 

infarction and fibrotic lung diseases 65. Furthermore, Lai R. et al showed that the presence of 20S 

proteasome correlated with a significant reduction in extracellular oligomerized or folded 

proteins, thereby, prompting these investigators to postulate that 20S proteasome may synergize 

with other components of the hMSC exosome proteome to ameliorate tissue injury 66. Following 

this article, a proteomic analysis was conducted on hMSC-derived MVs to investigate their 

therapeutic cargo by Kim H. et al. These authors reported that the proteome of hMSC MVs was 

enriched in cell surface receptors, cell adhesion and signaling molecules that may be associated 

with their beneficiary effects 114. Put together, the findings of these early proteomic analysis of 

the hMSC exosome proteome, support the notion that hMSCs mediate their paracrine effects via 

exosomes that carry proteins with cell signaling and proteolytic properties. Most recently, 

Anderson J. et al, conducted a quantitative proteomic analysis of BM-MSC exosomes that 

revealed they possess modulatory properties in angiogenesis. These investigators further 
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demonstrated that the proteome of hMSC exosomes cultured under reduced oxygen, peripheral 

arterial disease-like, conditions (serum starved with a 1% oxygen tension) contained an enriched 

profile of angiogenic signaling proteins that induced angiogenesis via the nuclear factor kappa-

light chain enhancer of activated B-cells (NFkB) pathway 115. Similarly, Haraszti RA and 

colleagues in their report on a comprehensive proteomic analysis of EVs from different cell 

sources, including BM-MSC, found that the protein profiles of exosomes were more different 

from their cell of origin than from those of MVs. In addition, the exosome protein cargo was 

enriched in extracellular matrix and immune response proteins, whereas that of MVs was 

enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. These investigators 

concluded that MVs and exosomes have different protein content despite the overlap in their size 

range 116. To address the lack of markers for EV isolation and analysis, Kowal J. et al, conducted 

a quantitative proteomic analysis on four different fractions of EVs isolated from dendritic cells. 

Similarly, the findings by Haraszti et al, 2016, they concluded that mitochondria and 

proteasomes where mostly found in the 10,000 centrifugated pellet consistent with MVs, while 

extracellular matrix were specifically present in the 100,000 ultra-centrifugated pellet that was 

consistent with exosomes 117, 118. These recent proteomic analysis reports highlight the fact that 

the protein content of both types of EVs (MVs and exosomes) may confer specific aspects of the 

ameliorating effects of hMSC EVs. We postulate that this is possibly through the paracrine 

effects of unique protein candidates acting in synergistically with other protein components 

through multiple pathways.  One of the ways to test this hypothesis is through proteomic 

pathway analysis.  

Pathway analysis following proteomic analysis are conducted to have a better 

understanding of the potential intracellular pathways associated with protein components of the 
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hMSC exosome proteome that may impart their beneficial effects. Many of these proteins, 

specifically enzymatic proteins that catalyze these biochemical reactions have been curated in 

pathway databases. One of the most widely used pathway databases is the Kyoto Encyclopedia 

of Genes and Genomes (KEGG). KEGG is a collection of knowledgebase databases that links 

large-scale molecular datasets, including proteomic analysis, to high-level cellular and biological 

systemic functions 119. According to Kanehisa and colleagues, the KEGG PATHWAY database 

is key to the KEGG resource, containing annotated proteins classified with KEGG Annotation 

Analysis into sections, such as metabolism and cellular processes 120. Therefore, this pathway 

database will be crucial in identifying key enzymatic proteins and their biochemical pathways 

following proteomic analysis of the hMSC exosome proteome.  

Comprehensive (quantitative) proteomic analysis allows for absolute protein 

quantification that would be essential to compare the proteome of hMSC exosomes from 

different donors, however, previous knowledge on the protein composition (predefined peptides) 

is required for such an approach 121. Moreover, there is limited data in the literature on the 

components of hMSC exosome proteome. Consequently, there is the need for of an initial 

descriptive proteomics, to identify key protein components that could be relevant in a future 

comprehensive comparative proteomic analysis. We therefore, sought to initially investigate the 

hMSC exosome proteome by qualitative proteomic analysis for potential protein components. 

We hypothesized that hMSC exosome proteome will contain protein components with 

proteolytic and antioxidative activities.  
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4.2 MATERIALS AND METHODS 

4.2.1 Design 

This was a descriptive proteomic analysis to identify and categorize the protein components of 

hMSC exosome proteome. 

4.2.2 Source of human MSCs and exosome isolation 

Well characterized BM-MSCs were obtained from the NHLBI-sponsored Production Assistance 

for Cellular Therapies (PACT) program based at the University of Minnesota, MN 91, 122. 

Exosomes were isolated from these hMSCs as we and others have previously described 45, 92. 

Briefly, hMSCs were cultured and expanded in DMEM media containing 15% FBS, 2% human 

serum and 2mM Glutamax in a T175 flask (ThermoFisher) to 80% confluency for the first and 

second passages. After the second passage, hMSCs were plated in multilayered tissue culture 

flasks (Millipore Sigma) in 400ml of maintenance media with exosome-depleted FBS 

(ThermoFisher) for exosome isolation. The 48 hours conditioned media from a total of 20 X106 

hMSCs was collected and subjected to multiple differential ultracentrifugation steps as 

previously described 45, 93. 

4.2.3 Pooling and purification of exosomes  

The 8-10 isolates of crude exosomes from a single donor hMSCs, were pooled and purified over 

a 30% sucrose cushion in Tris/deuterium at 100,000g/ 2hrs as previously described by our group 
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and others 45, 93. The pellets of the pooled samples were resuspended in 100ul of PBS and 

aliquots were taken for proteomic analysis, protein assay using a Micro BCATMProtein assay kit 

(ThermoFisher), and Nanosight Tracking Analysis (NTA) with a NanoSight LM10 for size 

distribution profile and concentrations (Malvern, Westborough, MA). The quality of the 

exosomes used for this proteomic analysis was determined to be good (427x 106 P/ug) based on 

the ratio of particle count (particles/ml by NTA) to protein concentration (ug/ml, micro BCR 

protein assay) of ≥300 x 106 P/ug according to Webber and Clayton 93(Figure 7). 

 

 

Figure 7 .  hMSC exosome size distribution profile; mean size (90nm) 
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4.2.4 Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and in-gel digestion 

Protein extracts (100ug) from the pooled biological replicates of hMSCs exosomes were 

separated with a 1D sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) on 

a 10% BoltTM-Tris Plus gel (ThermoFisher) under denaturing conditions in MOPS (3-N-

Morpholinopropane Sulfonic acid) running buffer. Following staining in SimplyBlueTM 

SafeStain (ThermoFisher), eight- 1mm cubic protein bands were cut per lane and placed in clean 

1.5 ml Eppendorf tubes containing 100ul of double deionized H20. The samples were then 

transmitted to the Biomedical Mass Spectrometry Center at the University of Pittsburgh for in-

gel tryptic digestion followed by proteomic analysis. 

4.2.5 Liquid chromatography tandem mass spectrometry 

 The in-gel tryptic digestion produced peptide mixtures that were analyzed by a reverse phase 

nano-HPLC coupled to an LTQ XL linear ion trap mass spectrometer (ThermoFisher) as 

described previously by the Yates group at the University of Pittsburgh Biomedical Mass 

Spectrometry Center 123 who performed the analysis. Briefly, full scan high resolution mass 

spectra were recorded at a rate of 1 spectrum/ sec. using a 300 Da to 2000 Da scan range. One 

microliter of digested sample was loaded with an autosampler onto a capillary sample trap 

column (100μm inner diameter (i.d) x 2.5cm) and desalted on line for 3 min at 3μL/min with 

solvent A [100% HPLC grade water, 0.1 Macetic acid]. After 4 minutes, the flow rate was 

reduced to 1 μl/min and peptides were eluted into an in-house packed spray tip column (100 μm 

i.d, 190μm outer diameter (o.d) × 8 cm). Thereafter, peptides were analyzed on an LTQ XL 

linear ion trap using a 75 min gradient run. The gradient was delivered by an Agilent 1100 
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capillary pump with four distinct sections; 90% Solvent B, followed by equilibration 100% A at 

1μL/min from 60 to 75 min. 

4.2.6 Identification of peptides and proteins 

This was performed at the University of Pittsburgh Biomedical MS Center by very 

knowledgeable and skilled personnel in proteomic analysis as reported previously 123. Briefly, 

the liquid chromatography tandem mass spectrometry (LC-MS/MS) spectra were acquired by 

data-dependent acquisition using 2 m/z isolation width. Each MS/MS product ion spectra were 

linked to a corresponding precursor ion feature, and DTA files were created for all precursor-

linked MS/MS spectra from all raw data files. The DTA files were searched against Peptide 

Atlas database using the SEQUEST (Thermo Finnigan) search algorithms. Search parameters 

specified a tryptic enzyme cleavage at lysine or arginine, except when followed by a proline 

residue. A maximum of three missed cleavages were allowed within each peptide. Additional 

parameters included a precursor ion tolerance of ±80 parts per million (ppm), fragment ion 

tolerance of 0.5 Da, fixed alkylation of cysteine (+57.021 Da), variable oxidation of methionine 

(+15.9950 Da) and variable phosphorylation of serine, threonine, and tyrosine (+79.9660 Da). 

All other parameters were set to default SEQUEST values. Search result output files were 

submitted to a Prophets-based algorithm in Elucidator (Peptide Tellers) or Scaffold (Proteome 

Software) to create a statistical model for assigning cross-correlation values to peptide 

identifications. Filter settings were set to a predicted false discovery error rate of 0.005.  
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4.2.7 The Kyoto Encyclopedia of Genes and Genomes pathway analysis 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme database in the chemical 

information category was used to determine the protein enzyme composition of hMSCs and the 

chemical reactions they catalyze. KEEG is a collection of knowledgebase databases that link 

molecular datasets from high-throughput experiments, including proteomic analysis to high-level 

cellular and biological systemic functions 119. According to these authors, the KEGG 

PATHWAY database is the core of the KEGG resource with annotated proteins classified into 

sections such as metabolism and cellular processes. The quality of databases is key to their utility 

as reference database. Since 2015, an addendum category was included in the KEEG database 

making it possible to collect protein sequence data from published literature as oppose to just 

relying on imported genome sequence from RefSeq. The information derived from chemical 

information category, facilitates the conversion of enzyme sets to a KEGG number set, enabling 

interpretation of high level biological processes. 

4.2.8 Statistical analysis  

Statistical analysis of large-scale proteomic data involves simultaneous, multiple hypotheses 

testing that is associated with an increased number of false positives. Multiple testing correction 

procedures are therefore required to address this issue. Estimating and controlling for the false 

discovery rate (FDR) was used as a multiple testing correction method 121.  

The FDR method was first proposed by Benjamini and Hochberg 124 to correct for 

multiple testing errors. In this procedure, the individual uncorrected p-values were ranked from 

smallest to largest. The smallest or topmost p-value was ranked first, i=1, the next that follows is 
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second, i=2, etc. Afterwards, each individual p-value was compared to its calculated Benjamini-

Hochberg (BH) critical value:(i/m) Q; where ‘i’ is the rank, ‘m’ is the total number of multiple 

tests, and Q is the chosen FDR, in this case 0.005. The first largest p-value on the list that was 

less than the BH critical value was considered significant and all other p-values smaller than the 

largest p-value were also reported as significant. In proteomic analysis, the FDR is controlled for 

during the peptide identification and protein assembly phases. 

At the peptide identification phase, the SEQUEST search algorithm identifies each 

tandem mass spectrum that represents an individual peptide. The SEQUEST program then uses 

this information to search against a knowledgebase protein database for candidate peptide 

sequences that match the observed spectrum. These theoretical spectra, from the database, were 

matched to the observed mass spectrum by cross-correlation assessments, which is a measure of 

the similarity between two spectra. This process involved multiple hypotheses testing to generate 

a ranked list of peptide-spectra matches (PSMs) based on the cross-correlation scores with their 

corresponding uncorrected p-values. The p-value for a given target PSM cross-correlation score 

(s), was determined by calculating the percentage of decoy (from the decoy database) PSMs that 

received the same score or higher (≥s). The null model here is the lack of a match between target 

PSM and decoy PSM scores 125. 

At the protein assembly phase of the proteomic analysis, the tandem MS spectra are 

matched to the amino acid sequence of specific peptides whose patterns are used to determine 

their parent proteins. Annotated knowledgebase programs such as the KEGG database are then 

used to elicit their role in biological processes. The KEEGG pathway enrichment analysis 

identifies proteins from the input raw data lists that are enriched in a pathway associated with a 

phenotype. We tested the sample-level 126 null hypothesis that gene products (proteins) of a 
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pathway (first dataset) are no more associated to a phenotype than non-pathway (second dataset) 

proteins. A hypergeometric test was used to test  this hypothesis with their corresponding 

uncorrected p-values 127. The Benjamini-Hochberg procedure was then applied to adjusts these 

uncorrected p-values to control for FDRs as described above. 

4.3 RESULTS 

We identified a total of 845 proteins in our hMSC exosome sample. Using the KEGG pathway 

program, the identified proteins were mapped to specific biological pathways (Table 5). Proteins 

associated with arrhythmogenic RV cardiomyocytes, ECM receptor interactions and proteasomes 

made up the 5-topmost all protein groups. Out of these, 166 were enzymatic proteins of which 

proteasomes, glycolysis/gluconeogenesis, and pentose phosphate pathway proteins were among 

the 4-topmost biological processes. 
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Table 5 A. All 845 identified proteins; B. Main biological processes of the 166 identified enzymes 

 

 

The major enzyme groups were hydrolases (48.2%) followed by transferases (21.1%) and 

oxidoreductases (16.3%) (Table 6). 
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Table 6 Distribution of enzymes by class in hMSC exosome proteome 

 

 

Enzymes are known to regulate many biological processes such as cellular bioenergetics and 

extracellular matrix turnover. In assessing the enzymatic activities (Figure 8), 57% of the 

hydrolases acted on peptide bonds (proteinases) and 15% on acid anhydride bonds (ATPases). 

Most of the hydrolases comprised proteasomes (PSMA, PSMB), extracellular matrix 

metalloproteinases (MMP2, MMP14) and ATPase (ATP2B4) that have been reported to be 

associated with ECM turnover and cardiac remodeling 67. This suggest that hMSC exosome carry 

enzymatic proteins that could be transferred to target cells, including cardiopulmonary cells to 

change their phenotype for tissue repair. 

Of the transferases, 29% were phosphotransferases, 26% glycosyltransferases, and 18% 

acyltransferases. Moreover, key enzymes of the glycolytic pathway such as pyruvate kinase 

(PKM1) and phosphoglycerate kinase (PGK1) were also identified. This indicates that hMSC 

exosomes are vectors of enzymes that could be internalized by target cells to modulate their 

bioenergetics.  

With regards to the oxidoreductases, 26% were CH-OH donors such as malate dehydrogenase 

(MDH1), an important NADP generator, 19% peroxide acceptors, and almost half (40%) were 
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grouped as miscellaneous, which included lysyl oxidase (LOX) a crucial enzyme involved in 

cross-liking collagen fibrils to stabilize the ECM. Importantly, a peroxide acceptor, glutathione 

peroxidase 3 (GPX3) was identified in our hMSC exosome sample. Glutathione peroxidase 3 is 

important in protecting cells against oxidative stress damage. 

 

 

Figure 8 Distribution of enzymes by class in hMSC exosome proteome with their protein symbols 

 

Collectively, these enzymatic proteins have the potential to inhibit and scavenge 

excessive ROS generation (glutathione peroxidase and pentose phosphate pathway), regulate 

ECM turnover (proteasomes, matrix metalloproteinases, and lysyl oxidase), and modulate the 

bioenergetic phenotype of target cells through glycolysis (pyruvate kinase).   
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4.4 DISCUSSIONS  

In our descriptive proteomic analysis, we identified 845 distinct proteins and of these, 166 

(19.6%) were categorized as enzymes. Enzymes are proteins that are well known to catalyze 

biochemical reactions and have the potential to alter biological processes in cells. There is 

increasing evidence that a reasonable number of proteins in exosomes have enzymatic functions 

66.  

Our proteomic pathway analysis identified proteins that were associated with the 5-

topmost biological processes, which included arrhythmogenic RV cardiomyocytes, ECM 

receptor interactions and proteolytic proteasomes. Of the enzymatic groups identified, the 

hydrolases comprised proteasomes, extracellular matrix metalloproteinases, and ATPase that 

have implications in ECM turnover and cardiac remodeling 67. This data is consistent with 

reports by Lai R. et al, who found 857 proteins in the proteomic analysis of the hMSC exosome 

proteome and demonstrated that 20S proteasome was the 8th predominant protein component. 

Just as Lai R. et al, we found all seven alpha and beta subunits of the 20S proteasome in our 

proteomic data (Figure 3). The authors also detected an overrepresentation of all seven alpha 

(PSMA) and beta (PSMB) subunits of the 20S proteasome that confers the catalytic properties of 

the parent 26S proteasome in their proteome 66. Furthermore, they showed that the 20S 

proteasome subunit was responsible for the degradation of 90% of all intracellular oxidatively 

damaged proteins 66. The publication by Lai R. et al was specifically focused on the proteolytic 

potential of hMSC exosomes proteasomes, in the backdrop of a report that some alpha/beta 

hydrolase fold superfamily members lack enzymatic activities 128. Interestingly, proteasomes 

have been demonstrated to have extracellular proteolytic activities in an ATP/ ubiquitin-

independent manner in alveolar fluid of patients with inflammatory lung diseases 65. Proteasomes 
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may, therefore, play a pivotal role in clearing both intracellular and extracellular misfolded 

proteins 63, 65, which have widely been proven to mediate cell death and tissue dysfunction. Put 

together, hMSC exosomes carry protein mediators with proteolytic potential that could clear 

misfolded intracellular proteins and proteinaceous extracellular debris to mitigate cell death and 

inflammation. These extracellular proteolytic activities of proteasomes may be enhanced by 

traditional extracellular matrix (ECM) enzymes such as matrix metalloproteinases (MMPs). 

A major group of MMPs known to play a crucial role in ECM clearance are the 

gelatinases, MMP2 and MMP9 115, 129. In our hMSC exosome sample, we found MMP2 and its 

activator, membrane type-1 MMP (MMP14). In 2012, Kim Han-Soo and collaborators, showed 

that proteolysis was the fourth topmost biological process in the proteome of hMSC 

microvesicles 114. Other investigators working on the proteomic analysis of hMSC extracellular 

vesicles have demonstrated the enrichment of ECM pathway proteins in hMSC exosomes 116, 

117.Most recently, Anderson J. et al, conducted a quantitative proteomic analysis of human BM-

MSC exosomes and revealed their modulatory properties in angiogenesis. They further 

demonstrated that the proteome of hMSC exosomes contained an enriched profile of angiogenic 

signaling proteins that were capable of inducing angiogenesis 115. Taken together, hMSC 

exosomes contain proteasomes and angiogenic signaling molecules that are capable of mediating 

angiogenesis. These are key elements for any therapeutic agent that might be useful in mitigating 

RV and pulmonary remodeling. 

Similarly, in their report on a comprehensive proteomic analysis of EVs from different 

cell sources, including BM-MSC, Haraszti RA and colleagues found that the protein profiles of 

exosomes were more different from their parent cell than those of MVs. According to these 

investigators, the exosome protein cargo was enriched in extracellular matrix and immune 
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response proteins whereas, that of MVs were enriched in endoplasmic reticulum, mitochondrial 

proteins and proteasomes 116. Therefore, both types of EVs (MVs and exosomes) carry 

subcellular components with unique therapeutic potentials. Interestingly, Kowal J. et al, 

conducted a comparative quantitative proteomic analysis on four different fractions of EVs 

obtained from dendritic cells to evaluate potential markers for EV isolation and analysis 117. 

Surprisingly, they confirmed the findings by Haraszti et al, 2016, by demonstrating that 

mitochondria and proteasomes where mostly found in MVs, while extracellular matrix was 

specifically present in exosomes 117, 118. Collectively, these recent proteomic analyses 

demonstrate that both types of EVs carry protein components or subcellular organelles that can 

act synergistically to confer the most optimal therapeutic effects to repair damaged tissue. 

Potency in their therapeutic effects may also be augmented by acting in concert with other 

classes of enzymes such as oxidoreductases. 

The oxidoreductases malate dehydrogenase (MDH1) and glutathione peroxidase 3 

(GPX3), nicotinamide adenine dinucleotide phosphate (NADP+) and peroxide acceptors, were 

identified in our proteomic analysis. Importantly, the pentose phosphate pathway (PPP) was 

identified as one of the top four catalyzed biological processes. This indicates hMSC exosomes 

carry enzyme proteins that could modulate cellular oxidative stress. The PPP continuously 

generates reduced NADP+ (NADPH), which is an essential cofactor in antioxidant pathways 62. 

NADPH act as an electron donor to glutathione reductase in its catalytic reduction of glutathione 

(GSSG) to reduced glutathione (GSH), a crucial reaction in modulating oxidative stress. When 

more free radicals are generated than can be quenched, there is an ensuing oxidative stress that is 

deleterious to the mitochondria and the entire cell 130. Moreover, in a recent report from our 

group, we showed that hMSCs extracellular vesicles mediate the restoration of mitochondrial 
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function, a key source of cellular ROS, in targeted cells 45. This report was consistent with our 

previous publication that showed that TNF induced an increase in both phagocytic (NADPH 

oxidase-NOX) and mitochondrial ROS generation 131. Despite the dearth of data on hMSC 

exome proteome and their antioxidant potential, a recent article showed that the pentose 

phosphate pathway (PPP) was enriched in exosome isolated from ovarian cancer cell lines 132. 

These investigators asserted that PPP created a metabolic shift to glycolysis that may promote 

tumor metastasis but based on the several reported beneficial effects of hMSC exosomes in a 

wide range of diseases, we postulated that hMSC exosomes are most likely to modulate the 

antioxidant pathway through an increased generation of NADPH from the PPP. Collectively, 

these data highlight the potential role of hMSC exosomes as conveyors of antioxidant effectors. 

The reparative antioxidant potential of hMSC exosome can be enhanced synergistically by the 

presence in hMSC exosomes of proteolytic factors. Together, these data suggest that hMSC 

exosome have the potential to exert optimal pleiotropic therapeutic effects through the 

synergistic actions of various components of the hMSC exosome proteome, including 

modulating ECM turnover and oxidative stress as well as the proteolytic activities of 

proteasomes and MMPs to facilitate tissue repair and regeneration. 

Limitations. The current isolation and purification techniques are still insufficient to 

clearly distinguish between exosomes and MVs based on their physical and biochemical 

properties. Therefore, it is very likely that our hMSC exosome samples may contain some MVs. 

Despite this limitation, there is a growing number of investigators including our group, who 

postulate a complementary beneficial effect in the combined administration of exosomes and 

MVs for tissue repair.  
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We performed a descriptive, qualitative proteomic analysis that inherently, lacks the 

ability to provide relative or absolute quantification of the identified proteins. Nonetheless, 

descriptive proteomic analysis is critical to identifying key protein candidates that could be 

further analyzed by a comprehensive comparative proteomic analysis. 
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5.0  CONCLUSIONS 

The analysis of the data from our first project on the IPF registry, showed that pulmonary 

hypertension (PH) and right ventricular systolic dysfunction (RVSD) are prevalent and strongly 

associated with survival in IPF.RHC assessments of the RV function in IPF is an important 

modality i to identify patients that are at risk of worse outcomes who may be considered for to 

benefit from novel treatment options in clinical trials.  

Based on the results from our second project, we concluded that hMSCs and their derived 

exosomes have the therapeutic potential to improve RV adaptive contractility. Their modulatory 

effects on the RV function within the context of fibrotic lung disease may improve outcomes, 

judging from the demonstrated strong association between RV function and survival.  

Lastly in our third project, we concluded that the proteome of hMSC exosome carry enzymatic 

proteins that can mediate the therapeutic effects of stem cell-based therapies. Importantly, that 

the synergistic actions of their antioxidative, ECM turnover and proteolytic properties is a 

potential mechanism employed to enhance their therapeutic effects in a wide range of diseases, 

including fibrotic lung diseases.  
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6.0  FUTURE DIRECTIONS 

A large Pennsylvania-statewide IPF registry study will be required to validate our cutoff value 

for RVD, which should be evaluated as an important factor in the development of a composite 

score for predicting outcomes in IPF. 

In our second aim, a dose-escalation in vivo experimental design, over a longer exposure 

period will be necessary to investigate the dose-dependent effect of the efficacy of hMSCs and 

their derived exosomes. This will allow for the assessment of the transition from adaptive, 

compensated RV dysfunction to overt, maladaptive, decompensated RV failure.  

Our descriptive proteomic analysis findings have laid the foundation for a future comprehensive 

proteomic analysis study that will focus on the key catalytic proteins that were identified. 

Furthermore, it will be important to investigate the hMSC exosome proteome from multiple 

human donors to compared differentially expressed proteins. This has the potential to guide the 

bioengineering of enriched exosomes that could convey key protein components for targeted 

tissue repair, screening for biomarkers of hMSC exosome potency, and for advancing the 

understanding hMSC exosome pathobiology.  
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Appendix A 

Table 7  Meaning of acronyms and abbreviations 

Aconyms and abbreviations Full meaning
BFLI Bleomycin-induced fibrotic lung injury
FLI Fibrotic lung injury
CO Cardiac output
dP/dtmx-EDV Maximum systolic pressure derivative

dP/dtmx-EDV Maximum systolic pressure derivative to end-diastolic volume

Ea Pulmonary effective elastance

Ees End-systolic ventricular elastance
EDV End-diastolic volume
EF Ejection fraction
ESPVR End-systolic pressure volume relationship
hMSCs Human mesenchymal stem cells
MSCs Mesenchymal stem cells
mPAP Mean pulmonary arterial pressure
PV loop Pressure-Volume loop
PRSW stroke work
PVR Pulmonary vascular resistance
RVSP Right ventricular systolic pressure
RVD Right ventricular dysfunction
RVSD Right ventricular systolic dysfunction
SV Stroke volume
SVI Stroke volume index  
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