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Abstract

conjunction with an additive uncertainty model
to determine the robust stability of the systems

Single and multivariable closed-loop systems
using adaptive piezoelectric sensoriactuators are
investigated to determine the robust stability
characteristics of the plants with respect to the
change in feedthrough in the plants. Simula-
tions are performed with an analytical simply-

supported plate piezostructure model with surface-
mounted piezoceramic bending sensoriactuators.

The structured singular value, (p), is used in
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with respect to uncertainty in the feedthrough
term. Multivariable plants are found to toler-
ate higher changes in feedthrough, since the off-
diagonal transfer paths are unaffected by these
errors.

Introduction

The potential for piezoceramic transducers
to simultaneously sense and actuate (sensori-
actuator) has been recognized for some time.!?
Any actuation voltage of the piezoceramic shows
up as an electrical feedthrough for the piezostruc-
ture since the piezoceramic electrically behaves
as a capacitor. To complicate matters, this



feedthrough response is at least two orders of
magnitude larger than the charge produced by
mechanical strains in the piezoceramic (for 1-D
or 2-D structures undergoing bending). Some
of the techniques that have been developed to
compensate this feedthrough response are hand-
tuned electrical networks,"? adaptive analog
plus digital hybrid methods,>* and observer-
based methods.®

The objective of this study is to determine
the robust stability characteristics of closed loop
structural systems with single or multiple piezo-
electric sensoriactuators, as error is introduced
into the feedthrough term of the piezoceramic
patches. The control system can be designed
for any nominal level of piezoelectric feedthrough
including no feedthrough (full compensation)
and full feedthrough (no compensation). Al-

though different control systems result, the closed

loop systems for each case will be identical since
the feedthrough is a feedforward portion that
can be separated from the feedback portion.
Much past effort has been dedicated to ensur-
ing that any drift in the feedthrough due to en-
vironmental effects of weak nonlinearities are
corrected.®>’ This study demonstrates that a
relatively large change in feedthrough can be
tolerated by the system and still remain stable.

Theory

Linear Piezoelectric Sensoriactuators

The linear governing equations of a piezo-
structure can be written in state space form as:

(1)
(2)

where the signals x and x are the state vector
and its derivative, respectively, u are the inputs
or applied voltages to the piezoelectric senso-
riactuators,® d is a vector of disturbance in-
puts(s), n is a sensor noise vector, y is the mea-
sured charge outputs of the piezoelectric senso-
riactuators. The matrix A is the dynamics ma-
trix which contains the information about the
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mass, stiffness and damping of the piezostruc-
ture, B is the input influence matrix for the
sensoriactuator voltages and Z is the input in-
fluence matrix for the exogenous disturbance
input(s), C and Y are the output influence ma-
trices for the states and sensor noise, respec-
tively, and D is feedthrough matrix, which is
ideally the zero matrix. Computation of the

A, B, C, and D matrices for a coupled piezostruc-

ture model can be found in the literature.® The
diagonal feedthrough matrix contains the ca-

pacitances of the individual piezoceramic patches

as diagonal elements

Coni 0 0
0 C 0
D - | , " (3)
0 0 Conn

where C), y is the capacitance of the N patch.
The diagonal nature of matrix D is consistent
with the physical constraint that an applied
voltage to one piezoelectric transducer cannot
directly cause an electrical response in any other
piezoelectric element. This matrix becomes the
zero matrix for piezoelectric sensoriactuators
having optimally compensated electrical feed-
through."? A method of adaptively rejecting
the feedthrough response using a blending of
analog and digital electronics has been previ-
ously presented.®* Nonidealities in the piezo-
electric devices such as hysteresis, leakage, and
lossy behavior*? can preclude ideal or optimal
compensation of the capacitive feedthrough ma-
trix, D, resulting in residual diagonal elements.
Since the feedthrough response is often orders
of magnitude above the mechanical response in
a piezoelectric sensoriactuator, a typical phase
error of a few tenths of a degree in the compen-
sation network can significantly impact the ac-
curacy of the compensation of the feedthrough.*

Positivity of Transfer Functions

For collocated structural control such as oc-
curs using piezoelectric sensoriactuators, the
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transfer function is positive real or minimum
phase, implying unconditional closed-loop sta-

bility of direct rate feedback (DRFB) control.!%

It is important to note that the collocated sen-

soriactuator piezostructure transfer function given

by equations (1) and (2) will be positive real
regardless of whether the feedthrough matrix
is compensated or not. Since the feedthrough
term, D, has no phase response and hence is
positive real, the superposition of two positive
real systems: (A, B,C) and (D) will also be
positive real. Thus, the stability guarantees
exist with or without compensation of the feed-
through term.'?

Feedthrough Effects

The matrix transfer function of a multi-input,

multi-output (MIMO) system can be computed
from the state space matrices as:

H(s) = C(I-A)'B+D (4)
Cadj(sI—A)B+D

H = 5

(5 R 5)

where ()~! represents the matrix inverse, adj(-)

is the matrix adjoint operator and |-| is the ma-
trix determinate. From equation (5) it is easy
to see that the zeros of the transfer function
are affected by the feedthrough term, D, while
the poles of the system are unaffected.

Uncertainty Model

Equations (2) and (4) show that the effect
of the of feedthrough matrix on system model
is to add or feed part of the input directly to
the system output. In addition, equation (3)
shows the diagonal nature of the feedthrough
matrix. It is apparent that the uncertainty in
the feedthrough model can be represented by
an additive block diagonal structure, A, as de-
picted in Figure 1. Note that the additive
uncertainty enters the plant through a feedfor-
ward path instead of the typical feedback path.

The exact form of A is:

§+0.16i 0 0
0 §+0.16i - 0
A = . . . (6)
0 0 5+ 0.18i

where ¢ represents a real uncertainty which can
vary on the interval [-1,1]. The term 0.16¢ rep-

resents a small complex portion between [—0.1¢, 0.17],

which more than adequately represents any pos-
sible phase errors in the feedthrough. At the
same time, the small complex part greatly im-
proves the numerical properties of the y anal-
ysis.'® Note that the u bound does not have a
closed form solution and hence involves an iter-
ative technique which produces and upper and
lower bound at each frequency.'® Slightly more
conservative results will be obtained by adding
the small complex portion. H, analysis would
produce yet more conservative results, since an
unstructured (non-diagonal), complex, uncer-
tainty is implicit. Clearly, more accurate ro-
bustness results can be obtained by structuring
the uncertainty to have good physical agree-
ment with the structure of the piezoelectric feed-
through that is being analyzed, as given by
equation (6).

Plant Model

A plain steel plate measuring 0.60 x 0.525 x
0.002 meters and having simple supports was
modeled.® The disturbance input was a shaker
arbitrarily located at normalized coordinates
{0.3501, 0.0960} and corresponding input in-
fluence vector, E, given by equation (1). The
control transducers where piezoelectric senso-
riactuators. The simulations used either SISO
control with PZT; listed in Table 1 below, or
4140 control with the complete array of patches
whose arbitrary center coordinates, which have
been normalized with respect to the plate di-
mensions, are listed in Table 1. The patches
have dimensions of 5.08 x 5.08 x 0.002 cm and
are given material properties consistent with



K

Figure 1: Structured Additive Uncertainty
Model Used For Robust Stability Analysis.

the PSI-5A lead zirconate titanate (PZT-5A)
material manufactured by Piezo Systems, Inc.
The output of each piezoelectric sensoriactua-
tor was low-pass filtered at 300 Hz with a 4-pole
Bessel filter, as would be done in practice. The
filter is required to roll off the piezostructure re-
sponse at higher frequencies, since the nature
of the coupling between the piezoelectrics and
structure creates a structural compliance that
increases with frequency.'* The inclusion of
the low-pass filter is significant, since it will be
shown in the results section that a slightly dif-
ferent p bound is achieved when the filters are
omitted.

Patch | x coordinate | y coordinate
PZT, 0.10 0.77
PZT, 0.82 0.41
PZT; 0.64 0.27
PZT, 0.23 0.20
Table 1: Normalized Center Locations of

PZT Control Sensoriactuators Included in the
Simply-Supported Plate Model.

Control Design

‘Hs control designs using weightings compa-
rable to linear quadratic Gaussian (LQG) con-
trol were computed for all cases.'®'% The pro-
cess and sensor noises are uncorrelated white
Gaussian processes. For simplicity, the pro-
cess noise excites every state of the plate model
and likewise the combination of every struc-
tural state creates the error variables in the
control objective. Unity process noise and er-
ror penalty magnitudes were chosen. The sen-
sor noise level was chosen at 1077 to be slightly
below the pertinent dynamics of the plant in
order to achieve good performance while at the
same time, creating good roll-off characteristics
in the controller. The control effort penalty
magnitude was chosen as 5e-6 for the MIMO
control system and 5e-7 for the SISO system.
An order of magnitude increase in control ef-
fort was required for the SISO system in order
to achieve performance that was comparable
to the MIMO system. A total of 40 modes (80
states) was used in the piezostructure model
and consequently the control system contained
96 states (80 structural states and 16 low-pass
filter states).

Uncertainty Analysis

For both the SISO and MIMO systems, the
LQG controller was designed, and then a model
containing the plant, controller, and uncertainty
paths depicted in Figure 1 was created. In lieu
of Figure 1, the reader may be more familiar
with the “M—A” structure, where M is simply
the closed-loop plant: M = G(I+ GK) ! Es-
timates of p based on M, and A (ua(M(jw))
were then calculated using the p-Analysis and
Synthesis toolbox in Matlab. The actual p
lies somewhere between the upper and lower
bounds that the toolbox returns for pa (M (jw)).
It is the inverse of the maximum g which then



forms the stability margin (SM).
1
max s (M(jw))

w

SM

(7)

As a comparison for the p calculations, the H,
bounds were also computed. Since Hy rep-
resents a more conservative analysis, a lower
stability margin is expected, and will provide
a measure of the advantage of structuring the
uncertainty to fit the problem.

Simulation Results

Open Loop System

Figure 2a and 2b depict the open loop sin-
gular value plots for the MIMO and SISO con-
trol plants, respectively. Two plants are repre-
sented in each figure. The solid lines represent
plants having full piezoelectric feedthrough and
the dotted lines represent plants with no feed-
through. As expected, the feedthrough raises
the plant response, particularly between the
resonance peaks where the feedthrough response
dominates the plant dynamics. In addition, the
less dominant plant resonances become hard to
distinguish if feedthrough is present (e.g. the
first mode at 200 rad/s).

Figure 3 shows the sensor response to the
process noise used in the LQG design for both
the SISO (dotted line) and MIMO (solid line)
cases. The constant LQG sensor noise level is
also shown in Figure 3 by the horizontal dot-
dash line. Note that the sensor noise exceeds
the response of the first mode for the SISO con-
trol plant, since the coupling to the low fre-
quency modes is poor for the given aperture of
the PZT transducers.'* Consequently, control
of that mode is not be expected.

Closed-Loop Results

Three singular value plots are shown in Fig-
ure 4 below. The thin solid line response of the
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Figure 2: RMS singular value plots for a)

MIMO and b) SISO control plants with and
without feedthrough.
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Figure 3: RMS singular value plots of sensor
response to process and sensor noises.

open loop error plant. The dotted lines are
for the SISO (thin line) and MIMO (thick line)
systems. The control systems are moderately
aggressive, producing results that are typical
of what could be expected in practice. The at-
tenuations of each mode are from no control (at
the first mode, 200 rad/s) to nearly 18 dB of
attenuation at 1,750 rad/s.
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Figure 4: RMS singular value plots of open and
closed loop responses for SISO and MIMO sys-

tems.

Stability Margins

As indicated previously, three separate sta-
bility margins were computed: the H,, bound
and the lower and upper p bounds. Figure 5 de-
picts plots of 2" (M(jw))upper, ta (M(50))iowers
and H_! for the SISO system. Since the in-
verse of pua(M(jw))upper i being plotted, it is
the minimum values in Figure 5 with respect to
frequency that will form the stability margin.
Also, note that these results represent physi-
cal units of Farads. Thus, the minimum value
in Figure 5 represents the capacitance error in
Farads that can be tolerated before instability
of the closed loop system results. As expected,
the Hs result is generally more conservative
in the prediction of the stability margin - some-
times by as much as an order of magnitude
when compared to the p results. The upper
and lower 1 bounds in Figure 5 are coalescent,
indicating that the actual p is known with rea-
sonable accuracy. The minimum value from
Figure 5 is 0.0215 pF which corresponds to a
21.5% error in the piezoceramic patch capaci-
tance of 0.1 uF. To give the reader an idea of
the magnitude of temperature change required
to create this error in capacitance, the varia-
tion in dielectric constant as a function of tem-
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Figure 5: Computed stability bounds for addi-
tive uncertainty for SISO system.

perature in the product catalog'” was studied.
For the PZT-5A material used, it would take a
temperature change of 65° C. In contrast, the
more sensitive PZT-5H material would only re-
quire a change of 21° C in temperature for this
change in capacitance to occur. However, for a
large group of applications, a 21.5% in uncom-
pensated capacitance would not be expected.
For the multivariable system using four piezo-

electric sensoriactuators, the stability margins
are higher. This is expected since the feed-
through matrix is only populated along the di-
agonal. Thus, the non-driving point paths are
unaffected by the capacitance and thus the per-
turbation in the capacitance. Figure 6 shows
the curves for i’ (M(jw)) upper pA (M (5w))iowers
and HZ' for the MIMO system. The minimum
value in Figure 6 is 0.114 upF, a value that is
114% of the original capacitance of each patch
and more than a factor of five increase from the
SISO case. Two other differences between the
SISO and MIMO cases can be noted when com-
paring Figures 5 and 6. Unlike the SISO case,
NZ] (M(jw))uppers :u: (M(jw))iower are not co-
alescent for the MIMO case. consequently, it
is not known with as much certainty where p
actually lies, but it will not exceed the upper
1 bound. Surprisingly, in the MIMO case, con-
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Figure 6: Computed stability bounds for addi-
tive uncertainty for MIMO system.
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Figure 7: Effect of sensor noise level, V', and

control effort penalty on minimum perturba-
tion for SISO and MIMO plants.

sideration of the perturbation’s structure and
real nature didn’t significantly improve the pre-
diction of stability margins over H,, analysis.
One would expect the stability margins to
decrease as the control effort penalty decreases.
In a similar manner, one would expect higher
stability margins to result from increasing the
sensor noise, but at the cost of reducing con-
trol performance typically. Indeed these trends
are demonstrated in Figure 7, adding a level of
confidence to the model and analysis.

Conclusions

A study was conducted in order to deter-
mine the sensitivity of piezoelectric sensoriac-
tuators to the amount of feedthrough error.
The structured singular value, p, provided an
excellent framework to analyze the effects. An
additive, mixed (real + complex), diagonal ma-
trix structure was chosen for the perturbation
model, since it physically agrees well with the
form of the piezoelectric feedthrough. The sys-
tem was a simply-supported plate structure hav-
ing either a single (SISO) or multiple (4140)
sensoriactuators used as collocated control trans-
ducers. An linear quadratic Gaussian control
system was developed and the additive uncer-
tainty model appended for the analysis.

It was found that SISO system could toler-
ate a capacitance error of 21.5% or 0.0215uFarads.
This would require a significant temperature
fluctuation (65°C) to create such a change due
to thermal drift. For most applications, this
would require physical damage to the trans-
ducer or the like. The MIMO system was found
to be much more robust, being able to tolerate
a 114% change in the original transducer ca-
pacitance of 0.1 pFarads. This is not surpris-
ing since the feedthrough and hence the un-
certainty only occur for the four driving point
paths. For the other 12 paths, there is no
feedthrough.
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