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ABSTRACT 

This paper describes the results of a new approach devoted to the localization of ground 

borne acoustic sources. It is demonstrated that an array made of at least three unidirectional 

microphones can be exploited to detect the position of the source. Pulse features extracted either 

in the time domain or in the frequency domain are used to identify the direction of the incoming 

sound. This information is then fed into a semi-analytical algorithm aimed at identifying the 

source location. The novelty of the method presented here consists on the use of unidirectional 

microphones rather than omnidirectional microphones and on the ability to extract the sound 

direction by considering features like sound amplitude rather than the time of arrival. 

Experimental tests have been undertaken in a closed environment and have demonstrated the 

feasibility of the proposed approach. It is believed that this method may pave the road toward a 

new generation of reduced size sound detectors and localizers, and future work is described in 

the conclusions.  

 

Keywords: sound source localization; unidirectional microphones, polar directivity pattern, 

feature extraction.  
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I. INTRODUCTION 

Locating acoustic point sources using passive sensor arrays is of considerable interest in 

several fields of civil, mechanical, industrial, and biomedical engineering. Sound source 

localization (SSL), where there is no a priori knowledge of the sound source position, suits a 

variety of applications that span from teleconferencing tracking of speakers (Huang et al 2000) 

and human robot interaction (Kim et al 2004), to surveillance systems and air/ground objects 

recognition (Wilson et al 2002). The latter, for instance, is pivotal in military applications to 

enhance the patrol capability of troops and to identify and locate snipers. In conferencing 

scenarios, SSL can be used for directing a pan-tilt-zoom camera toward the speaker or the 

audience such that the viewing experience is more interesting and/or network bandwidth is used 

more efficiently (Rui et al 2005).   

The passive detection and tracking of targets that emit acoustical energy present several 

advantages over active sounding and radar systems. First, passive systems do not radiate a signal 

which can be used to indicate the presence and identity of the tracking station. Second, active 

detection systems are subjected to the reception of “false echoes” by virtue of multiple 

reflections. Finally, active tracking systems are more prone to counter measures.  

In the last two decades several methods for the passive localization of acoustic sources or the 

determination of the direction of a sound source were proposed (Olson 1946, Knapp and Carter 

1976, Wang and Kaveh 1985, Brandstein and Silvermant 1997, Benesty 2000, Bourennane and 

Bendjama 2002, Merimaa 2002, Reid and Milios 2003, Liu and Milios 2005). These methods are 

based on the use of single or multiple omnidirectional microphone arrays, linearly (Wang and 

Chu 1997, Kleban 2000), triangularly (Nakadai 2003), circularly (Birchfield and Gillmor 2001, 

Rui and Florencio 2003, Rui et al 2005), or sparsely (Bian et al 2005, Kobayashi et al 2008) 
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arranged. These approaches can be divided into three categories (Merimaa 2002, Bian et al 2005, 

Kwon et al 2007, Atmoko et al 2008): beamformer based locators; high-resolution spectral 

estimation based locators; and time-of-delay based locators. In the first category the source is 

localized by maximizing the output of a steerable beamformer (Elko et al 1994, Ikeda et al 

2007). The approach combines delay-and-sum beamforming with statistical analysis to trace the 

position of the acoustic source. The method is effective when the source is emitting continuously 

but it may suffer when concurrent sound sources are present. In the second category, 

beamforming-based techniques are combined with high resolution spectral analysis. The 

methods were mainly developed for narrowband signals (Brandstein and Silverman 1997). 

Extensions to wideband sounds were introduced by analyzing signal components at several 

subbands (Wang and Kaveh 1985). One of the limits of these approaches is the capability to 

distinguish concurrent sound sources. Bourennane and Bendjama (Bourennane and Bendjama 

2002) introduced an analysis based on higher order statistics to overcome this problem. The first 

two categories discussed above require a search over the potential directions of sound sources. 

The third category, instead, is based on time delay estimation (TDE) (Valin et al 2003, Liu and 

Milios 2005, Kwon et al 2007, Jin et al 2008, Kobayashi et al 2008, Lv and Zhang 2008). In the 

TDE the arrival time delay between signals detected by each pair of the microphones array is 

estimated. The delays are used to determine the direction of arrival of sound. Finally, the source 

location is obtained by intersecting the direction lines towards the source out of the multiple 

microphone arrays given their geometry and the relative directions of arrival. In order to measure 

the time delays techniques based on cross-correlation (Olson 1946, Atmoko et al 2008, Brutti et 

al 2008, Hu et al 2008), eigenvalue decomposition (Benesty 2000), least mean square (LMS) 

adaptive filters (Olson 1946) and crosspower-spectrum phase (Omologo and Svaizer 1994, Kim 
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et al 2008) were proposed. Knapp and Carter (Knapp and Carter 1976) pointed out that locators 

based on the arrival time difference present significant computational advantages compared to 

steered beamformers or high resolution spectral estimation methods.  

Researchers (Rui et al 2005, Ikeda et al 2007, Kim et al 2008) have proposed hybrid methods 

that combine two of the three aforementioned categories. One of the common limits associated 

with the arrangements proposed is the need of large spacing between the microphone elements 

and/or the requirement that acoustic sources need to stay farther from the microphones in order 

to retain accuracy. 

This paper presents the results of a passive scheme based on the use of unidirectional 

microphones for the identification of the position of the acoustic source with respect to the 

microphones’ center of mass. Sound direction is projected by exploiting the unidirectionality of 

certain features associated with the microphones output level. The incidence value estimated by 

each microphone is then fed into a semi-analytical algorithm aimed at identifying the source 

location. The objective of the paper is to demonstrate the feasibility of the proposed method to 

evaluate the position of a sound source with an array of at least three unidirectional microphones. 

The study is part of an ongoing effort to pave the road toward a new generation of sound 

detectors and localizers that can minimize the spacing between the microphone elements. The 

main elements of novelty introduced with this study are the exploitation of unidirectional 

microphones and the use of features that are not related to the time of arrival of the sound.  

The paper is structured as follows. The semi-analytical algorithm to extract the location of 

the sound source from an array of unidirectional microphones is presented in section 1. Section 2 

illustrates the signal processing algorithm that is combined with the semi-analytical approach. 

The experimental results of the initial tests are presented in section 3. Finally, conclusions and 
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directions for future research are presented in section 4. 

 

II. ANALYTICAL MODEL 

A. Unidirectional microphones 

Unidirectional microphones are sound transducers that possess a strong dependence on the 

incidence angle of the acoustic source. Directionality is achieved through a compact internal 

array microphone in a perforated housing. Such microphones are used in all those applications or 

circumstances that require rejection of noise, filtering of unwanted acoustic signals, or 

elimination of reverberation phenomena. The variation of the detected sound wave amplitude 

(microphone output level) with the direction of the wave propagation (angle of sound incidence) 

is described by the polar directivity pattern (PDP). Generally, the PDPs detect a plurality of 

amplitude values of a propagating wave approaching at different angles (Olson 1946). When the 

microphone’s sensitivity (output level) is not function of the incidence angle the microphone is 

called omnidirectional. Mathematically a plane PDP of an unidirectional microphone may be 

expressed as (Sessler and West 1975) 

     cos cosM K abs a b         (1) 

 
where M  is the microphone output level, a  and b  are frequency dependent constants based on 

the microphone’s design and the sound speed,   is the sound’s angle of incidence relative to the 

microphone axis. The constant K  depends on the sensitivity of each sensor composing the array 

microphone, frequency and speed of the incoming sound as well as microphone design 

parameters. Particularly Eq. (1) describes a microphone of order two, in which the incidence 

angle   is the argument of the second power of the cosine term. Figure 1 shows an example of a 

PDP expressed by Eq. (1) in polar coordinates for a case where a = 0.69 and b = -0.29. As 
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shown by Sessler and West (Sessler and West 1975), for low-frequency sounds these values 

provide the highest directivity to second order gradient unidirectional microphones. The PDP has 

been normalized with respect to the maximum value expected at along the microphone axis 

 =0°, by considering instead of K  a constant equal to ˆ / (0 )K K M  .  

 

B. Source location: semi-analytical formulation  

To describe the background hypothesis, let us consider an array of three unidirectional 

microphones A, B and C, of coordinates (xi, yi) (i = A, B, C), as in Fig. 2a. The origin O of the x-

y coordinate system corresponds to the center of mass of the triangle ABC. The angle i , 

between the reference y-axis and the i-th microphone axis, is introduced to univocally orient each 

microphone. For instance, in Fig. 2a 0A   , 120B     and 120C   . Let MA, MB, and MC be 

the normalized pulse features recorded by microphones A, B, and C, respectively, as a result of 

an emission from the acoustic source. These values were normalized with respect to their 

maximum values expected at i =0. By assuming that each microphone’s PDP satisfies Eq. (1) 

we obtain:   

   ˆ [ cos( )][ cos( )]A A AK abs a b M          (2a) 

   ˆ [ cos( )][ cos( )]B B BK abs a b M                  (2b) 

   ˆ [ cos( )][ cos( )]C C CK abs a b M                  (2c) 

 which can be generalized as: 

    ˆ [ cos( )][ cos( )]i i iK abs a b M       (i = A, B, C)    (3). 

In polar coordinates, the value Mi can be geometrically described as a circle of radius Mi.  

By solving numerically Eqs (2a), (2b), and (2c) for the unknown values of A , B , C , the 
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intersection between each of the microphone lobes and the relative circle are determined. These 

intersection points identify the possible directions of the incoming sound directions. However, 

these directions are not univocally determined. In fact, as the microphone i-th possesses four 

lobes, the normalized value Mi may identify up to eight incidence angles, i.e. eight intersections 

between the PDP and the circle.  

 For each angle, the algorithm calculates the equation of the semi-straight line having origin in 

the microphone coordinates (xi, yi) and orientation ,i j i  . In general, for the i-th microphone (i 

= A, B, C) the equation will be: 

  , ,tan( )i j i j i i iy x x y                               (4) 

where j = 2, 4 or 8.  

For instance, Fig. 2b presents the case where MA = 0.25. In this scenario the circle intersects 

two lobes identifying four potential directions ,A j  (j=1,2,3,4). Replacing these angles in Eq. (4) 

yields to the lines yA,1, …, yA,4 shown in Fig. 2b. Applying the same approach to microphones B 

and C, lines yB,j, and yC,j are determined. By intersecting all pairs (yk,j and yh,j k≠h, k,h = A, B, C) 

of direction lines, the position of the sound source is univocally identified by the common 

coordinate resulted from these intersections.   

 

III. EXPERIMENTAL SETUP 

A. Hardware/software 

The hardware/software system utilized to conduct the experimental program consisted of a 

portable National Instruments PXI unit running under LabView, a commercial speaker, and a 

unidirectional microphone model Audio-Technica AT815b (Audio-Technica 2008). The 

LabView program was designed to perform signal generation, acquisition, and storage. A 5-
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cycles Gaussian-windowed sinusoidal toneburst was sent to the speaker. This choice provides 

relatively short duration and small bandwidth. A frequency sweep between 500 Hz to 10 kHz at 

500 Hz steps was conducted. Thus, a total of 20 frequencies were considered. The sound 

detected by the microphone was digitized at 100 kHz sampling frequency. 

One microphone was used. In order to simulate the presence of three microphones, three tests 

were conducted using the same test protocol. Figure 3 shows the spatial and the in-plane location 

of the microphone in position A, B, and C during tests 1, 2, and 3, respectively. During each test 

the microphone was manually rotated by 10º. As such the propagating sound was detected from 

36 different incidence angles, prior to completing one revolution. Finally, in order to verify the 

repeatability of the setup, the procedure has been repeated ten times. Thus, a total of two 

hundreds (20x10) sound waveforms were recorded at a given microphone’s orientation. 

Table 1 summarizes the experimental protocol. The amount of data recorded by such 

protocol was next used to simulate the acquisition of a single toneburst by deploying three 

microphones simultaneously. 

Typical pulse waveforms acquired by microphone A (test #1) when the excited toneburst was 

equal to 500 Hz are shown in Figure 4. In particular, the pulses acquired during one half 

microphone revolution at 30º increment are presented. The expected decrease of the signal 

amplitude as the microphone is rotated away from the speaker is evident. 

 

B. Signal processing 

Prior to applying the semi-analytical formulation described in section 2.2, the digitized 

waveforms were pre-processed. The signal processing algorithm is schematized in the flow chart 

of Figure 5. Each signal was initially windowed in order to reject unwanted reflections or sound 
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components extraneous to the direct sound path. In order to retain the appropriate time window 

the expected time of arrival of the signal was considered. The sound’s time of flight was 

determined by cross-correlating the recorded signal with the excited toneburst. To add 

redundancy to the approach a second cross-correlation was carried out between the signal 

recorded for a certain angle   and the time waveform recorded at   = 0 degrees. In a practical 

application where neither the sound source at the origin nor the time waveform at  = 0 is 

available, other methods may be adapted. For instance, one of these methods may be related to 

the detection of the peak amplitude (max) and then consider the time of arrival as the moment 

that the signal amplitude passed a threshold set at the 10% of the max value.  

A typical time history and the corresponding fast Fourier transform of the 500 Hz signal 

recorded by microphone A at   = 0º before windowing are shown in Figs. 5a and 5b, 

respectively. It is possible to observe the partial distortion due to the reflections of the sound 

from the laboratory boundaries. Figure 5c shows the signal after windowing. The duration of the 

windowed time history was chosen in order to retain the same number (five) of generated cycles. 

As such the duration of the processed data was around 10% longer than the duration of the 

excited toneburst. By comparing the frequency domains in Fig. 5d and 5b it is clearly visible that 

the time window does not alter the overall frequency content of the signal. As such, the 

important information of the signals is retained.  

Once the recorded signal was windowed appropriately, six features from the time domain and 

three features from the frequency domain were considered. This step was conducted to 

investigate which signal’s features maximize the microphone’s unidirectionality. In the time 

domain the features of maximum absolute amplitude (max), peak to peak amplitude (ppk), 

variance (var), root mean square (RMS), K-factor (KF), and crest factor (CF) were selected. The 
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expression of the last four features is: 
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where N is the number of points of the windowed time history x(t) and   is mean of the 

signal. The maximum amplitude (max FFT), the root mean square (RMS FFT), and the area of 

the frequency domain were selected as well. As the frequency spectrum spans from zero to the 

Nyquist frequency, the interval for the computation of the frequency-domain based features 

include 1 kHz bandwidth centered at the toneburst frequency.  

 

C. Polar directivity patterns 

The selected features were calculated at each acquisition angle. This step resulted in the 

creation of the PDP relative to feature. Figure 7 shows the PDP associated with the time domain 

based features extracted from the 500 Hz sound. One of the main outcomes from this part of the 

study is that the shape of the polar pattern is dependent on the selected features. The features 

(max, ppk, RMS) directly related to the microphone output level are in good agreement to the 

PDP provided by the microphone’s manufacturer (Audio-Technica 2008). The differences are 

associated with the experimental setup that was not conducted in an anechoic chamber and with 

the test protocol in which the microphone was rotated manually at discrete steps of 10 degrees. 

Since the microphone was spun manually, small errors in the orientation (angle  ) might have 

occurred.  

The features of the variance and the K-factor show stronger unidirectionality. Not 

surprisingly the crest factor (CF) denotes instead the behavior typical of omnidirectional 

microphones. This is a mathematical artifact due to the definition of CF. As the polar pattern 
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associated with the max and the RMS are very similar, the ratio between such features is close to 

1 over the entire angle range. On the opposite side their product “penalized” the values closer to 

zero. As such the K-factor is strongly unidirectional.  

The differences observed among the selected features in the time domain for a 500 Hz pulse 

were also observed at the higher frequencies. As the method presented here is based on the 

microphone directionality, the CF was not further considered. In addition, because some features 

were qualitatively identical, only the max and the K-factor were retained.  

Figure 8 shows the PDP extracted from the frequency domain. As the shape of all patterns is 

very similar only the feature of the maximum value of the frequency spectrum (max FFT) is 

considered in this study.  

Figure 9a shows the experimental PDP associated with the maximum absolute amplitude of 

the time history (max) of the detected pulse at higher frequencies. As expected the shape of the 

PDP changes with the frequency and a higher number of lobes were expected. At frequencies 

above 2 kHz the agreement between the experimental data and the manufacturer’s specification 

degrades. This is mainly associated to the step-wise angle acquisition procedure described in 

Table 1. As the microphone’s normalized output level is more sensitive to small incidence angle 

variations, the acquisition taken every 10º results in lower resolution. The PDPs associated with 

the K-factor at frequencies 500 Hz, 1 kHz, and 5 kHz are shown in Fig. 9b.  

In order to apply the semi-analytical approach described in section 2, the equation of the 

experimentally obtained PDP needed to be derived. The experimental data of the extracted 

feature as a function of the incidence angle in Cartesian coordinate was plot. For instance, Fig. 

10a shows the experimental data associated with the maximum absolute of the time history 

(max) of the 500 Hz pulses. The data are the average of the ten acquisition made at each angle 
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step. In order to satisfy the symmetry along the 0º-180º direction, the experimental data in the 

range 0º-180º were also used in lieu of the experimental data acquired from 180º-360º. By using 

the MATLAB function fit and the Fourier polynomial type, the equation that best fit the 

experimental data was found and it is superimposed as continuous line in Fig. 10a. By comparing 

the value of the residual R2, the Fourier equation of order 7  





7

1

7

1
0 )sin()cos(),,(

n
n

n
n nbnaabafM        (5) 

was chosen. The empirical coefficients an and bn are summarized in Table 2.  

The experimental data and the fitting curve for the 5 kHz pulse processed in the time domain 

and for the 500 Hz and 5 kHz pulse processed with the maximum of the frequency domain (max 

FFT) are shown in Fig. 10b – Fig. 10d, respectively. As the frequency of the toneburst increased 

the interpolating function was less accurate. This is once more associated with the low resolution 

of the experimental protocol that resulted at the high frequencies. 

Figure 11 shows the experimental PDP and the “best fit” polar pattern for the feature of the 

max amplitude, max FFT, and K-factor for 500 Hz toneburst.  

 

IV. EXPERIMENTAL RESULTS 

 In the semi-analytical approach developed to localize the sound source position, Eq. (1) is 

now replaced by the equation of the fitting curve extracted from the experimental patterns. The 

formulation described in section II.B is used here to identify the location of the speaker. The 

approach is tested using the normalized features’ values of the absolute maximum and the K-

factor of the time history, and the maximum amplitude value of the Fourier transform (max 

FFT). The results from recording pulses at 500 Hz, 1000 Hz and 5000 Hz are presented. The 

microphone arrangements relative to three microphones array systems are discussed. Following 
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the angle notation introduced in Figs. 2 and 3, the arrangements are: 30º/0º/-30º, 60º/0º/-60º, and 

120º/0º/-120º, where the first angle is relative to microphone C, the second angle to microphone 

A, and the last angle to microphone B. 

Figures 12 shows the results for the 500 Hz toneburst detected by using the array 30º/0º/-30º 

and the max amplitude as a signal feature. The normalized values of the microphone output 

levels averaged over the ten acquisitions from detectors C, A, and B were equal to 0.711, 0.999, 

and 0.669, respectively. Such values are represented by the circles superimposed in the 

corresponding PDP of Fig. 12a. As each circle intersects the main lobe only, the normalized 

amplitudes identified two potential incidence angles ( ,i j i  ) per microphone, namely + 72º 

and -12° for microphone C, ± 2º for microphone A, and + 15º and – 75° for microphone B. The 

algorithm then traced the lines departing from the microphone coordinate along the direction of 

these potential incidence angles. The lines are indicated in Fig. 12b as yA,1 and yA,2, yB,1 and yB,2, 

and yC,1 and yC,2. The intersection points among the lines yA,j and yB,j, yA,j and yC,j, and yB,j and yC,j 

(with j=1, 2) were determined. These points are clustered into groups that are associated to the 

microphone pairs, namely A-B, A-C, and B-C. The numerical framework created for each point 

a circular area centered in the point of one array and radius equal to a chosen tolerance. If at least 

one point from each of the other groups lies within the circle, then the algorithm has found the 

sound source position with an approximation provided by the tolerance. The procedure is 

repeated for all the points found in the intersections. If more than one area (three-point solution) 

is found the algorithm selects the smallest area. The tolerance is necessary to take into account 

measurement errors due to the test protocol and experimental errors. The tolerance has to be 

large enough to include one intersection per microphone pair, but it has to be sufficiently small 

to avoid that false positive, i.e. mathematical solutions of the problem, are considered as physical 
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solutions. To improve the algorithm performance any solution lying within the area of the 

triangle ABC is rejected.  

The solution found by the algorithm for the case of 500 Hz with microphone arrangement 

equal to 30º/0º/-30º are represented by the three filled circles in Fig. 12b. The planar coordinates 

of these dots are x = -0.04 m y = 3.18 m for microphone pair A-B, x = -0.06 m, y = 3.74 m for 

microphone pair A-C, and x = -0.11 m y = 3.45 m for microphone pair B-C. The locations of 

these points are in good agreement with the true position of the speaker (x = 0.00 m, y = 3.15 m).  

Same approach and signal feature were used to examine the 500 Hz pulses recorded by the 

array configuration 120º/0º/-120º. The results are presented in Figure 13. As the feature’s values 

associated with the microphone at 120º, 0º and -120º were equal to 0.211, 0.999, and 0.258, 

respectively, each microphone identified two possible direction lines identified in Fig. 13a as yj,i 

(j=A, B, C; i=1, 2). Only the intersection between yB,2 and yC,2 was found. However in order to 

identify the position of the speaker the algorithm needs two other intersections: one between yA,i 

and yB,i  and one between yA,i and yC,i. For detector B, for instance, the “true” direction of the 

propagation sound was 135º (please see Fig. 3) with respect to the microphone’s zero axis. As 

such this solution would have been possible only if the circle of the feature value had intersected 

the secondary lobe of the polar pattern. 

The outcomes from Fig. 13 suggest that the equation of the PDP needs to be evaluated more 

accurately especially at those directions where small angle variations induce significant changes 

of the microphone output level.  

Figure 14 shows the location provided by the algorithm when the features of max amplitude, 

K-factor, and max FFT were applied to examine the pulses at 500 Hz, 1 kHz, 5 kHz recorded by 

microphone array at 30º/0º/-30º and 60º/0º/-60º.  
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Figure 14a compares the results of the max amplitude feature applied to the three different 

frequency pulses recorded by the microphone array 30º/0º/-30º. The triangles are obtained by 

connecting the points of intersection of the semi-lines yj,i. Ideally, such points should be identical 

and the triangle collapse into a single point. This point shall represent the location of the sound 

source. Figure 14a shows that as the pulse frequency increases the accuracy of the detecting 

system degrades. This is due to the precision of the experimental PDP. For instance, by 

observing the microphone directivity discussed in Fig. 9a, it is evident that the experimental 

pattern associated with max amplitude lacks needed to be determined with resolution higher than 

10º.  

Figure 14b compares the results obtained from the three different features applied to the 500 

Hz recorded by the microphone array 30º/0º/-30º. Although the max FFT provided a very small 

triangle the two features extracted from the time domain provided more accurate results when 

compared to the real position of the speaker represented with the filled circle.  

The same three features and pulse frequency were used to evaluate the performance of the 

microphone array 60º/0º/-60º. The results are presented in Fig. 14c. By comparing Fig. 14c with 

Fig. 14b it is evident that the identification of the source position is less accurate when angular 

position of the microphones increases. This may suggest that a larger number of acoustic 

detectors should be employed if a planar 360º detection strategy is desired.   

 

V. DISCUSSION AND CONCLUSIONS 

This paper presents the results of a novel scheme based on the use of unidirectional 

microphones to determine the planar position of an acoustic pulse source. Few statistical features 

extracted from the time and the frequency domains are exploited to calculate the experimental 
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polar directivity pattern of the microphone. Multiple arrangement scenarios where three 

microphones are oriented at a certain angle from each other are simulated. For each arrangement 

the location of the sound source is located by intersecting all possible sound directions identified 

through the polar pattern.  

Overall the results shown in Fig. 14 demonstrate that the array system 30º/0º/-30º provided 

the more accurate results, using either time or frequency domain-based features. The 

performance of the algorithm degrades when higher frequencies are considered. Moreover the 

outcomes of this study make obvious that the accuracy of the localization algorithm is related 

closely to the accuracy of the experimental polar pattern.  

The results presented in this paper also suggest that in order to accomplish the identification 

of the sound source location over a full 360º planar direction, an array of six microphones should 

be deployed. 

The study, that has demonstrated the feasibility of the proposed method as an efficient, 

inexpensive, and compact alternative to the current methods based on omnidirectional 

microphones and the estimation of the sound arrival time, is part of an ongoing effort to pave the 

road toward a new generation of sound detectors and localizers that can minimize the spacing 

between the microphone elements. The method shows computational advantages over the 

existing techniques and it may offer a suitable tool for further developments and field 

deployment. 

One of the potential limitations of the proposed method is related with the source’s signal 

strength. As the method is based on normalized values of signal features, in field applications it 

is impossible to establish whether the detected signal is intrinsically weak or it has been 

generated far away from the sound detectors. A feasible approach to overcome this problem is 
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normalizing the signal captured by the array of unidirectional microphones with the signal 

captured by one omnidirectional microphone. As such the three-point solution of features values 

is always comprised between 0 and 1.  

Future efforts will evaluate the capability of the proposed methodology to detect a sound 

source location in 3-D problems. 
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FIGURE CAPTIONS 

Figure 1. - Polar directivity pattern of a unidirectional second order gradient microphone. 

Figure 2 – (a) Directivity Patterns of the microphones' setting and localization of the source. (b) 

Angles found and corresponding lines of possible direction. 

Figure 3 – Schematic arrangement of the pilot study. (a) 3-D microphone placement; (b) planar 

view of the test setup with microphones oriented at 120º from each other. Dimensions are 

expressed in millimeters. Drawing not in scale. 

Figure 4 – Time waveforms detected at various angles of incidence between the microphone and 

the speaker. 

Figure 5 – Flowchart adopted for the experimental characterization of the microphone PDP. 

Figure 6 (a) Time domain recorded. (b) Recorded signal FFT. (c) Time domain windowed signal. 

(d) Windowed signal FFT. 

Figure 7 – Polar directivity pattern associated with the selected features from the time domain at 

500Hz. 

Figure 8 – Polar directivity pattern associated with the selected features from the frequency 

domain at 500Hz. 

Figure 9 – Polar directivity pattern associated with (a) the feature of the maximum amplitude of 

the signals and (b) the feature of the K-factor.  

Figure 10 – Experimental directivity pattern in Cartesian coordinates and curve fit (a) 500 Hz 

max amplitude; (b) 500 Hz max FFT; (c) 5000 Hz max amplitude; (d) 5000 Hz max FFT. 

Figure 11: Experimental polar directivity pattern associated with the features of max amplitude, 

max FFT, and K-factor of the 500 Hz propagating toneburst. 
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Figure 12 – Source localization by using the feature of the maximum amplitude of the 500 Hz 

tonebursts. (a) Microphone configuration (30°, -0°, -30°) and experimental polar directivity 

patterns. (b) Localization of the sound source. The coordinates of the axes are expressed in 

meters. 

Figure 13 – Source localization by using the feature of the maximum amplitude of the 500 Hz 

tonebursts. (a) Microphone configuration (120°, -0°, -120°) and experimental polar directivity 

patterns. (b) Localization of the sound source. The coordinates of the axes are expressed in 

meters. 

Figure 14 – Location of the sound source obtained by using: (a) the feature of the maximum 

amplitude of the time waveform and microphones oriented at 30º/0º/-30º; (b) various features 

from the 500 Hz signal recorded by the microphones oriented at 30º/0º/-30º; (c) various features 

from the 500 Hz signal recorded by the microphones oriented at 60º/0º/-60º. The solid circle 

identifies the location of the sound source. 
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Table 1 - Summary of the tests conducted in this study. 

 

 
 
 
 
 
 
 

 

Table 2 – Experimental coefficients of the polar directivity pattern of the unidirectional 
microphone used in this study. 

 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

est# 
Initial/End 

frequency (Hz) 
Frequency 

increment (Hz) 
Measurements 
per frequency 

Initial/End 
Angle (º) 

Angle 
increment (º) 

A 500 / 10,000 500 10 0 / 350 10 

B 500 / 10,000 500 10 0 / 350 10 

C 500 / 10,000 500 10 0 / 350 10 

n an bn 

0 0.3875  

1 0.3787 0.0002219 

2 0.2347 0.0002751 

3 0.04661 0.00008194 

4 -0.04718 -0.0001106 

5 -0.01263 -0.000037 

6 0.01534 0.00005394 

7 0.001065 0.000004368 




