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This work presents a theoretical study of the sound transmission into a finite cylinder under 

coupled structural and acoustic vibration.  Particular attention of this study is focused on 

evaluating a dimensionless quantity, “noise reduction,” for characterizing noise transmission into 

a small cylindrical enclosure.  An analytical expression of the exterior sound pressure resulting 

from an oblique plane wave impinging upon the cylindrical shell is first presented, which is 

approximated from the exterior sound pressure for an infinite cylindrical structure. Next, the 

analytical solution of the interior sound pressure is computed using modal-interaction theory for 

the coupled structural acoustic system.  These results are then used to derive the analytical 

formula for the noise reduction (NR).  Finally, the model is used to predict and characterize the 

sound transmission into a ChamberCore cylindrical structure, and the results are compared with 

experimental data.  The effects of incidence angle and internal acoustic damping are also 

presented.
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I. INTRODUCTION 

Thin composite cylindrical structures play an important role in aerospace industry due to 

their lighter weight, higher strength, and larger stiffness when compared to their aluminum or 

steel counterparts.
1-5

   Unfortunately the noise transmission into such cylindrical enclosures is 

worse because of the light nature of composites.
1-4

  As part of a noise transmission study for 

composite structures, a theoretical model to characterize the noise transmission into finite thin-

wall cylindrical structures is developed.
1

The problem of sound transmission through infinite, homogeneous, isotropic thin 

cylindrical structures has been investigated in some detail by several researchers.  Tang et al.

studied an infinite cylindrical sandwich shell with honeycomb core.
 6,7

   A simplified analysis of 

sound transmission through a finite, closed cylindrical shell was first proposed by White,
8
 while 

the sound radiation into the acoustic cavity enclosed by a finite cylindrical shell with end plates 

was studied by Cheng.
9
  Tso and Hansen derived a coupling loss factor for a cylindrical/plate

structure using statistical energy analysis,
10

   their method, however, does not work well at low 

frequencies and further could not show the effects on sound transmission of the cavity 

resonances.   Koval first presented a mathematical “noise reduction” (NR) model to account for 

the effects of cavity resonances on sound transmission into a thin cylindrical shell.
11

  In his 

model, the axial modes of the cylindrical cavity are neglected, because both the cylindrical shell 

and the internal acoustic cavity are considered to be infinite in length.  Actually, both structural 

and acoustic axial modes of a finite cylindrical structure are experimentally found to be very 

important modes for noise control in low frequencies.
1,4,12

  Gardonio, Ferguson and Fahy 

presented an expression of NR to characterize unit amplitude external incident sound 
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transmission through a finite cylindrical shell.
13

  From the equation of definition it is seen that 

the NR is defined based on the one proposed by Koval.  However, the definition has some 

differences with Koval’s NR.  In Gardonio’s NR, the external sound pressure is considered to 

equate the incident, unit amplitude sound, and they ignore the effects of scattering sound from 

the cylindrical shell on the external sound field.  Estève and Johnson included axial acoustic 

modes in a cylindrical model that predicted the performance of passive control schemes through 

the prediction of acoustic potential energy.
14

This work presents a theoretical study of the sound transmission into a finite cylinder 

under coupled structural and acoustic vibration.  The proposed model includes internal acoustic 

axial modes.  Particular attention of this study is focused on evaluating a dimensionless quantity, 

“noise reduction,” for characterizing noise transmission into a small cylindrical enclosure.  The 

paper is arranged as the follows.  Section II presents the theoretical developments, which include 

analytical expressions of exterior and interior sound pressure for the finite cylindrical structure 

and the revisions to the definition of noise reduction.  In Section III a numerical simulation for 

characterizing noise transmission into a ChamberCore cylinder are performed, which is 

companied with a comparison of analytical and experimental results.  Some conclusions are 

given in the final section.

II. THEORY 

The physics of the problem under study is described as follows: (1) an incident sound 

wave impinges upon the surface of a finite, cylindrical structure causing vibration of the shell, 

(2) the shell vibration induces sound pressure fluctuations including scattering and radiation 

pressures, (3) the radiated pressure to the interior excites vibration of the air inside the cylinder, 

and (4) the noise of the interior cavity in turn interacts with the structure to affect the structural 
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vibration and creates the coupled vibration.  The purpose of this section is to find an analytical 

solution to describe the exterior and interior sound pressure of the cylinder under sound wave 

incident.

The calculation of exterior pressure over the outside shell is a near-field problem, which 

is difficult to analytically solve for a finite, elastic, cylindrical shell.
15

   In this study, the near-

field pressure of an infinite elastic cylindrical shell is used to approximate that of the finite one.  

The internal sound pressure field is solved by means of the coupled structural and acoustic 

vibration under the input of the solved external pressure using the modal-interaction method.
13,16-

18
   In order to simplify analysis, the impinging wave is selected to be an oblique plane wave, and 

time-dependant variables are assumed to be harmonic.  The solutions of external and internal 

pressures are presented in following several sections. 

A. Exterior Pressure of an Infinite Elastic Cylindrical Shell 

The specific problem studied is shown in Fig. 1. Consider an oblique plane wave 

impinging upon an infinite thin cylindrical shell approaching from the radial plane (φ =π). The 

density of the fluid and the speeds of sound are ρ1, c1 and ρ2, c2, in the external and internal 

media, respectively.  In the analysis of exterior pressure field, all waves will be assumed to have 

the same dependence on the axial coordinate z.

The incident plane sound wave can be represented as 

1 1( )
( , , ) x zj t k x k z

i ip x z t Pe
ω − −= ,   (1) 

where Pi is the amplitude of incident sound pressure, k1x and k1z are the x-component and z-

component of the wavenumber, respectively, and are computed from 
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1 1

1 1

cos

sin

x

z

k k

k k

θ
θ

=
=

,            (2) 

where k1=ω /c1 is the wavenumber in the external fluid medium, and θ is the incident angle.

The expansion of Eq. (1) into a cylindrical coordinate system gives
11,15,19

1( )

1

0

( , , ) ( ) ( )coszj t k z m

i i m m r

m

p x z t Pe j J k r mω ε φ
∞

−

=

= − ,   (3) 

where Jm is the Bessel function of the first kind of integer order m, k1r = k1x the radial component 

of the wavenumber, and mε  the Neumann factor given by 

1 ( 0)

2 ( 1)
m

m

m
ε

=
=

≥
.     (4) 

The total exterior sound pressure field of the infinite cylindrical structure can be written 

as

ext i sep p p= + ,   (5) 

where pext is the exterior pressure, pi the incident pressure, pse the scattered pressure by the elastic 

shell, which contains two parts: 

se s rep p p∞= + , (6) 

where ps∞ is the scattered pressure by a rigid-cylinder with infinite acoustic impedance, and pre is 

the pressure radiated by an elastic cylindrical shell.  The general result of sound radiation from a 

vibrating structure is presented in the next section. 

B. Radiation of a Vibrating Cylindrical Shell 

Assuming that an elastic cylindrical shell is vibrating with a surface-harmonic 

acceleration distribution ( , , , )w r a z tφ= , which can be expanded into a Fourier series as
11,15,19
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1

0

( , , , ) ( )cos( )zj k z

m

m

w r a z t e W t mφ φ
∞

−

=

= = , (7) 

where a is the radius of the midsurface, k1z the z-components of the wavenumber given by Eq. 

(2), and ( )mW t  the time dependent part of the acceleration.  Only the configuration in even φ is 

considered in Eq. (7).  If the φ axis cannot be oriented to be consistent with this configuration, 

then a sine series is required using the same procedure presented here. 

In a linear sound field without loss the pressure ( p) and the particle velocity ( u  ) satisfy 

wave equation
15

u
p

t
ρ ∂∇ = −

∂
. (8) 

The boundary condition where the fluid meets the structure is governed in the normal direction 

by

( , , , )
( , , , )

p r z t
w r a z t

r ar

φ ρ φ∂ = − =
=∂

, (9) 

where ( , , , )w r a z tφ= is the fluid particle acceleration of the boundary.  Note that the fluid 

particle vibration uses the same symbol as the shell vibration because it equates the shell 

vibration at structure-fluid boundaries.  In order to satisfy the boundary condition, the radiation 

pressure field is therefore expressed as the series
11,15

( ) ( )1 (2)

1

0

( , , , ) cos( )zjk z

r m m r

m

p r z t e P t H k r mφ φ
∞

−

=
= , (10) 

where (2)

mH  is a Hankel function of the second kind of m order.  Substituting Eqs. (10) and (7) 

into (9), the coefficients Pm(t) are solved from 

( )
( )

1

(2)

1 1

( )m
m

r m r

W t
P t

k H k a

ρ= −
′

, (11) 
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where ( )′  denotes the spatial derivative.  The radiation pressure field is thus found to be

( )
( )1 (2)1

1
(2)

01 1

( )
( , , , ) cos( )zj k z m

r m r

mr m r

W t
p r z t e H k r m

k H k a

ρφ φ
∞

−

=

= −
′

. (12) 

Because Wm(t) is time harmonic, the surface pressure obtained from Eq. (12) can be written in 

terms of modal specific acoustic impedance, zm, as
15

1

0

( , , , ) ( ) cos( )zjk z

r m m

m

p r a z t e W t z mφ φ
∞

−

=
= = , (13) 

where

( )
( ) m

m

jW t
W t

ω
= − , (14) 

( )
( )

(2)

1 1

(2)

1 1

m r

m

r m r

j H k a
z

k H k a

ωρ
= −

′
. (15) 

The scattered pressure from an infinite rigid and elastic cylindrical shell is solved in the 

next two sections using the results of Section B. 

C. Scattering from an Infinite Rigid Cylindrical Shell 

When the boundary is rigid and there is no loss of air, the resultant particle acceleration at 

the boundary must have a zero component along the normal direction to the boundary: 

 ( , , , ) ( , , , ) 0s iw r a z t w r a z tφ φ∞ = + = = , (16) 

where ( , , , )sw r a z tφ∞ = is the scatting fluid particle acceleration at boundary ( r = a ), which is 

equal to the normal rigid surface acceleration, and ( , , , )iw r a z tφ= the normal incident fluid 

particle acceleration at the boundary. This acceleration is given by wave equation (8) or 

boundary condition Eq. (9) 
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1

( , , , )1
( , , , ) i

i

r a

p r z t
w r a z t

r

φφ
ρ =

∂= = −
∂

. (17) 

Combining Eqs. (3), (16) and (17), the rigid surface acceleration is obtained as 

( )1 1
1

01

( , , , ) ( ) ( ) coszjk z mr
s i m m r

m

k
w r a z t P t e j J k a mφ ε φ

ρ

∞
−

∞
=

′= = − , (18) 

where mε is the Neumann factor given by Eq. (4). Comparing Eq. (18) with Eq. (7), the 

coefficient , ( )s mW t∞  is solved for: 

( )1
, 1

1

( ) ( ) ( )mr
s m i m m r

k
W t P t j J k aε

ρ∞
′= − . (19) 

Substituting Eq. (19) into Eq. (12), the scattered pressure from an infinite rigid cylindrical shell 

is obtained as 

( )1 (2)

1

0

( , , , ) ( ) ( ) cos( )zjk z m

s i m m m r

m

p r z t P t e j A H k r mφ ε φ
∞

−
∞

=

= − ,                      (20) 

where

( )
( )

1

(2)

1

m r

m

m r

J k a
A

H k a

′
= −

′
. (21) 

The resultant pressure on the cylindrical surface required by analyzing the scattering 

action of elastic cylindrical shells, is the sum of the incident and scattered waves of the rigid 

cylinder ( p = pi + ps∞ ).  Considering the following relation
1

(2) (2) 2
( ) ( ) ( ) ( )m m m mJ x H x J x H x j

xπ
′ ′− = − , (22) 

the pressure is calculated from 
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( )
1 1

(2)
01 1

2 ( ) 1
( , , , ) ( ) cos( )zjk z mi

m

mr m r

P t
p r a z t e j m

ak H k a
φ ε φ

π

∞
− +

=

= = −
′

. (23) 

D. Scattering from an Infinite Elastic Cylindrical Shell 

The normal response of the elastic cylindrical shell under the influence of ( p = pi + ps∞ )

can be expressed in terms of modal mechanical and acoustic impedance as
15

1

0

( )
( , , , ) cos( )zjk z m

m m m

P t
w r a z t e m

z Z
φ φ

∞
−

=

= =
+

, (24) 

where Pm(t) can be obtained from Eq. (23) as 

( )
1

(2)

1 1

2 ( )
( ) ( )mi

m m

r m r

P t
P t j

ak H k a
ε

π
+= −

′
, (25) 

and zm is the modal specific acoustic impedance, and can be obtained from Eq. (15),  Zm is the 

modal mechanical impedance, and can be determined from the Donnell-Mushtari equations with 

Flügge modifying constants
20

 under the absence of the fluid loading inside cylinder, which leads 

to the expression in the form
15

2 (1) 2 2 (2) 2

2 2

( ) ( )

( )

m mp s

m

c h
Z j

a m

ρ Ω − Ω Ω − Ω
=

Ω Ω −
, (26) 

where ρs is the volume density of the shell material, 2/ (1 )p pc E ρ µ= −  is the speed of sound 

propagating in the shell, a is the radius of midsurface, h is the thickness of the shell, / pa cωΩ =

is a dimensionless frequency parameter,  (1)

mΩ , and (2)

mΩ  are the resonance frequencies of a thin 

cylindrical shell without axial component of displacement, and they are defined as
15
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( )2
(1) 2 4 2 4 61

1 1 4
2

m m m m m mβ β βΩ = + + − + + − , (27) 

( )2
(2) 2 4 2 4 61

1 1 4
2

m m m m m mβ β βΩ = + + + + + − , (28) 

where β = h
2
/12a

2
 is a dimensionless constant. 

The coefficients of the surface-harmonic acceleration distribution can be obtained from 

Eq. (24): 

( )
( ) m

m

m m

j P t
W t

z Z

ω=
+

. (29) 

Substituting Eq. (29) into Eq. (12), the radiation pressure from the infinite elastic 

cylindrical shell is

( )1 (2)

1

0

( , , , ) ( ) ( ) cos( )zjk z m

re i m m m r

m

p r z t P t e j B H k a mφ ε φ
∞

−

=

= − , (30) 

where

( )
1

2
2 (2)

1 1

2

( )
m

r m m m r

B

ak z Z H k a

ρ ω

π
= −

′+
. (31) 

Finally, the external pressure for the infinite elastic cylindrical shell is computed from 

 ( , , , ) ( , , , ) ( , , , ) ( , , , )ext i s rep r z t p r z t p r z t p r z tφ φ φ φ∞= + + . (32) 

Substituting Eqs. (3), (20) and (30) into Eq. (32), yields 

( ) ( )1 (2)

1 1

0

( , , , ) ( ) ( ) cos( )zjk z m

ext i m m r m m r

m

p r z t P t e j J k a C H k a mφ ε φ
∞

−

=

= − + , (33) 

where m m mC A B= + , and Am and Bm are given by Eqs. (21) and (31), respectively.
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When the incident pressure is time harmonic, i.e. ( ) j t

i iP t Pe ω= , the external pressure over 

the infinite flexible cylindrical shell is 

( ) ( )1 (2)

1 1

0

( , , , ) ( ) cos( )zj t jk z m

ext i m m r m m r

m

p r a z t Pe j J k a C H k a mωφ ε φ
∞

−

=

= = − + , (34) 

where Pi is the magnitude of incident pressure.  This concludes the derivation for the external 

pressure field. 

E. Interior Pressure of a Finite Elastic Cylindrical Shell 

It is assumed that the end caps of the finite cylindrical structure are rigid, so that only the 

radial motion of the curved surface of the cylindrical structure excites the acoustic cavity (see 

Fig. 2).  The modal-interaction approach
13,16-18

 is used to calculate the sound pressure inside the 

cavity under the excitation of external pressure which is approximated by the one obtained from 

the infinite cylindrical shell [see Eq. (34)].  Only the normal motion of the cylindrical shell is 

considered to excite the cavity acoustics, and only the even φ configuration is considered.  Note 

that either odd [sin(mφ) modes] or even [cos(mφ) modes] can be chosen, since the φ=0°

direction is arbitrary.

For a simply supported cylindrical structure without axial constraint, the harmonic radial 

displacement of the shell, subject to external pressure excitation, is described as a linear 

combination of the in vacuo normal modes as 
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0 1

( , , , ) ( ) ( , )oq oq

o q

w r a z t W t zφ φ
∞ ∞

= =

= = Φ , (35) 

where o is the number of circumferential waves in the structural mode shapes, and q is the 

number of  longitudinal half-waves in the structural mode shapes. The in-vacuo structural normal 

mode shapes can be written as
21

( , ) cos( )sinoq z o q z
L

πφ φΦ = , (36) 

where L is the length of the finite cylindrical shell. The natural frequencies for simply-supported 

closed thin shells can be obtained from Leissa’s book.
21

The modal equation for the structure can then be derived by taking advantage of the 

orthogonal properties of the mode shapes as
16

2

,

, , 0

( )
( ) 2 ( ) ( ) ( ) ( )

oqs s s

oq oq oq oq oq oq lmn oq lmn

l m noq oq

p tS
W t W t W t P t Dξ ω ω

∞

=

+ + = +
Μ Μ

.    (37) 

In the right hand side of Eq. (37), the first term is the cavity fluid loading, and the second term is 

the external distributed input, where oqΜ  is modal mass of the structure, Doq,lmn is the 

dimensionless structural-acoustic coupling coefficient, poq(t) is the modal force from the external 

pressure field, Plmn(t) is the time-dependent portion of the interior pressure, l, m and n are the 

number of radial nodes, diametric nodes and longitudinal nodes in acoustic cavity mode shapes, 

respectively, and S=2πaL is the area of the midsurface of the cylindrical shell.  oqΜ , Doq,lmn , and 

poq(t)  are given by the following equations, respectively: 

2 ( , )oq s oq
S
m z dSφΜ = Φ , (38) 
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,

1
( , ) ( , , )oq lmn oq lmn

S
D z r a z dS

S
φ φ= Φ Ψ = , (39) 

 ( ) ( , , , ) ( , ) j t

oq ext oq i oq
S

p t p r a z t z dS Pe Eωφ φ= = Φ = , (40) 

where the structural mode shapes oqΦ  are given by Eq. (36), lmnΨ  are the acoustic mode shapes, 

which are defined by Eq. (46), and the pressure pext is given by Eq. (34).  For a uniform 

cylindrical shell with surface density ms, coefficients Moq, Doq,lmn, and Eop become: 

1
oq s

o

m Laπ
ε

Μ = , (41) 

( )
,

1 cos( ) 1 cos( )
,   (  and )

0,                                                                                otherwise

m lm

oq lmn m

aL q n q n
J k a o m q n

D S q n q n

π π
ε

− + − −+ = ≠
= + − ,                (42) 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 (2)

1 1

1 1 1 1(2)

1 1

1 1 1 1

( ) ,                                     

cos 1 cos 1 sin sin
( )

o

o r o o r 1z

z z z zo

oq o r o o r

z z z z

j aL J k a C H k a k = q
L

k L q k L q k L q k L q
E j aL J k a C H k a j

k L q k L q k L q k L q

ππ

π π π π
π

π π π π

+− +

− + + − − + −
= − + + + −

+ − + −
,

                                                                                                   otherwise

 (43) 

where oε  and mε  are the Neumann factor given by Eq. (4). 

If the cavity fluid loading is neglected, Eq. (37) becomes 

( ) 2 ( ) ( ) ( )
i oqs s s j t

oq oq oq oq oq oq

oq

PE
W t W t W t e ωξ ω ω+ + =

Μ
. (44) 

The effects on the noise transmission into the cylinder due to ignoring cavity fluid 

loading will be discussed in Section III through comparing analytical and experimental results.  

Next, the cylindrical cavity acoustic effects induced by the elastic shell vibration are studied.  
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The acoustic pressure in the cavity can be expressed as a linear combination of the rigid-wall 

acoustic cavity modes: 

, , 0

( , , , ) ( ) ( , , )lmn lmn

l m n

p r z t P t r zφ φ
∞

=

= Ψ .   (45) 

The cylindrical acoustic cavity mode shapes are
21

( )( , , ) cos( ) coslmn m lmr z J k r m n z
L

πφ φΨ = .    (46) 

Note that l, m, and n cannot be zero at the same time, because the static pressure mode (0, 0, 0) is 

not considered in this study. klm is solved from ( ) | 0lm lm r aJ k r =′ = , and the acoustic natural 

frequencies are obtained from 2 2

2 ( )f

lmn lmc k n
L

πω = + , where the superscript f  denotes “fluid”. 

Invoking the orthogonality condition for mode shapes and considering the damping term, 

the modal equation for the acoustic system is written as
16

2
2 2 2

,

0, 1

( ) 2 ( ) ( ) ( ) ( )f f f

lmn lmn lmn lmn lmn lmn oq oq lmn

o qlmn

c S
P t P t P t W t D

V

ρξ ω ω
∞

= =

+ + = − ,             (47) 

where lmnV  is the modal volume, and is calculated by 

2 ( , , )lmn lmn
V

V r z dVφ= Ψ , (48) 

where V is the acoustic cavity volume.  For a cylindrical cavity with length L and midsurface 

radius a, the modal volume is computed from 

( ) ( )

2

2
2

2 2

,                                                       0, [1, )
2

1 ,    otherwise

lmn

m lm m lm

m n lm

a L
l m n

V
a L m

J k a J k a
k a

π

π
ε ε

= = ∈ ∞

=
′ + −

.    (49) 
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Because all time-dependent variables are assumed to be time harmonic, the displacement 

and pressure are expressed as ( ) j t

oq oqW t W e ω=  and ( ) j t

lmn lmnP t P e ω= .  Solving Eqs. (44) and (47) 

for the modal pressure distribution Plmn(t), yields 

( )2
2

( )
( )

2

j t lmn
lmn i

f f f

lmn lmn lmn lmn

F
P t Pe

j V

ω ω

ω ξ ω ω ω
=

− + +
,                             (50) 

where

( ) ,2

2 2 2
0, 1

1 2

oq oq lmn

lmn
s so q
oq oqs

oq oq

E D
F c S

j

ω ρ
ω ω

ξ
ω ω

∞

= =

=

− + Μ

. (51) 

Substituting Eq. (50) into Eq. (45), the internal pressure field is 

2 2
, , 0

( )
( , , , ) ( , , )

2 ( )

j t lmn
int i lmnf f f

l m n lmn lmn lmn lmn

F
p r z t Pe r z

j V

ω ωφ φ
ω ξ ω ω ω

∞

=

= Ψ
− + +

. (52) 

The structural damping sξ and fluid medium damping fξ in Eq. (52) are determined by 

experimental modal identification.
 1

In order to derive an analytical solution for the noise reduction of the finite cylindrical 

structure, the modal pressure (Plmn) is re-expressed as:
1

( )( ) j t R I

lmn i lmn lmnP t Pe G jGω= + ,                                               (53) 
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where R

lmnG  and I

lmnG  are the real part and imaginary part of ( 2 2

( ) /[ 2 ( ) ]
f f f

lmn lmn lmn lmn lmn
F j Vω ω ξ ω ω ω− + + ), 

respectively.
1
   Then, the internal pressure field is re-written as: 

( )
, , 0

( , , , ) ( , , )j t R I

int i lmn lmn lmn

l m n

p r z t Pe G jG r zωφ φ
∞

=

= + Ψ . (54) 

Equations (34) and (54) are used in the calculation of noise reduction in the next section. 

F. Noise Reduction  

The definition of transmission loss (TL) for an infinite flat panel assumes that the 

transmitted sound is totally absorbed, and only inward-propagating waves exist.  However, the 

problem under consideration differs from the infinite flat panel, not only because of its finite 

dimension, but also because of the effects of internal acoustic cavity resonances in the closed 

cylindrical shell.  Hence, it is not possible to define a transmission loss as is done for flat panels.  

For measurement of the sound transmission through cylindrical shells, Holmer and Heymann
22

defined the sound power transmission coefficient to be equal to the ratio of power radiated per 

unit surface area of the shell to the power passing axially through a unit area of cross section.  In 

other references,
11, 13, 23-25

 researchers suggested using the noise reduction instead of calculating 

TL, which was equaled the ratio of the outer time- and surface-averaged mean-square pressure 

and inner time- and volume-averaged mean-square pressure.  In this study, the revised noise 

reduction for characterizing broadband sound transmission into a finite cylindrical structure is 

defined as the ratio of external time- and surface-averaged mean-square pressure over the 

internal time- and surface-averaged mean-square pressure, which is computed from  
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2

10 2

( , , , )
log

( , , , )

int

ext

p r z t
NR

p r z t

φ
φ

= − , (55) 

where 2 ( , , , )p r z tφ  is the mean-square pressure of p(r, φ, z, t) averaged over the midsuface area 

for a thin wall structure, S, and a time period, T.   It is defined as 

2 *1
( , , , ) ( , , , ) ( , , , )

S T
p r z t p r z t p r z t dtdS

S T
φ φ φ= ,   (56) 

where ( )
*
  denotes the complex conjugate.  For a cylindrical shell, the expression of dS in Eq. 

(56) is: dS = rdφdz, and the mean-square external pressure averaged over the midsurface area, S

and time period, T  is calculated from 

2 2( , , , ) ( )ext ip r z t Pφ ω= Π , (57) 

2
(2)

1 1

0

( ) ( ) ( )m m r m m r

m

J k a C H k aω ε
∞

=

Π = + .    (58) 

The mean-square internal pressure averaged over the midsurface area, S and time period, T is 

calculated from 

( ) ( ) ( )2 2
2 2 2

, , 0 0, , , 0

term 1 term 2

1
( , , , )

R I

int i lmn lmn lmn lmn omn
S

l m n o o l l m n

R R I I

lmn omn lmn omnp r z t P G G d dz
S

G G G G rφ φ
∞ ∞ ∞

= = ≠ =

= + Ψ + Ψ Ψ+ .

(59)

The integration of the “term 1” in Eq. (59) over the midsurface yields: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2
2

00 00

, , 0 1

2 2 2 2
2 2

0, 1, 0 1, 0, 0

( ) 2 ( )
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R I R I
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R I R I

lmn lmn m lm lmn lmn m lm

l m n l m nn m n

G G rd dz aL G G

aL G G J k a aL G G J k a

φ π

π π
ε ε ε

∞ ∞

= =

∞ ∞

= = = = = =

+ Ψ = +

+ + + +
.

(60)
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The integration of the “term 2 in Eq. (59) over the midsurface yields: 

( ) ( )
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.(61)

Substituting Eqs. (60) and (61) and S = 2πaL into (59), yields 

2 2( , , , ) ( )int ip r z t Pφ ω= Θ , (62) 

where
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.(63)

Substituting Eqs (57) and (62) into Eq. (55), the analytical formula for the calculation of 

noise reduction is obtained as 

10

( )
10 log

( )
NR

ω
ω

Π=
Θ

. (64) 

The NR into a cylindrical structure under a plane wave impinging with an incident angle, 

θ, is only a function of frequency since the time variable disappeared from the integrations (as 

does spatial dependence), and the amplitude of incident plane wave was also canceled during the 
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calculation of the internal and external mean-square pressure ratio.  Note that the noise reduction 

given by Eq. (64) is only used to characterize the noise transmission into a finite, thin, cylindrical 

enclosure with two rigid-ends, and also note that the equations are derived with the internal fluid 

loading ignored (assumed to be light) and with an oblique plane incident wave.   

The definition of NR proposed in this paper is more similar to TL than previous 

definitions and it is more amenable to comparing with experimental measurements.  While only 

the radiation is considered in the transmitted wave for the TL, in the NR, the transmitted sound 

includes both radiation and the scattered waves inside the acoustic cavity.  Note that transmission 

loss and noise reduction are dimensionless quantities that are typically expressed in decibels. 

III. NUMERICAL SIMULATION 

Numerical results from Eq. (64) have been generated for the ChamberCore composite 

cylindrical shell with radius a = 255 mm, effective thickness h = 20.1 mm, and length L = 760 

mm.  The physical parameters of the composite material have been homogenized and are: 

Young’s modulus E = 60 GPa, Poisson’s ratio µ = 0.3, effective density of the uniform shell is ρs

= 315 kg/m
3
.  The speed of sound and the density of air inside and outside the cylindrical shell 

are c1 = c2 = 346 m/s (at 75° F) and ρ1 = ρ 2 = 1.21 kg/m
3
.  The oblique incident plane wave is 

given by Eq. (1), where θ = 30°.  In order to simplify analysis, the acoustic damping ratio was set 

to the same value for all modes and obtained by averaging the measured results (0.28%).
1,12

   The 

structural damping ratio was also set to the same for all modes and obtained by averaging the 

identification results (4.64%).
1,12

   The maximum order of acoustic and structural modes is set to 

six per each index in the simulation for a total of 36 structural modes and 216 acoustic cavity 
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modes.  The analytical results for the first ten acoustic modes and natural frequencies of the 

cavity formed by the closed cylindrical structure are listed in Table I. 

Fig. 3 shows the curves of the noise reduction given by Eq. (64) at θ = 30°, with 

frequency range [0, 3,000] Hz and a logarithmic abscissa.  The first ten acoustic cavity 

resonances are also indicated in the figure as dashed vertical lines.  From Figure 3 it is observed 

that there are sharp dips at all cavity resonances, which is consistent with previous experimental 

studies.
1,3,4,12

  This phenomena can be explained by examining Eqs. (52) and (55).  From Eq. (52), 

there is a peak in the interior pressure-frequency curve at each acoustic cavity resonance 

frequency ( f

lmnω ), and these peaks become dips in the NR curve by the definition of NR in Eq. 

(55).  It is concluded that the cavity resonances significantly reduce the noise reduction 

capability of the finite cylindrical structure, dominating the NR at low frequencies and even 

causing amplification (negative NR, also see Fig. 3) at 398 Hz, 455 Hz, and 458 Hz.  From the 

figure it is also important to note that the pure longitudinal modes that were neglected in 

previous models, i.e. (001) at 228 Hz, (002) at 455 Hz, and (003) at 683 Hz, play a very 

important role in noise transmission of low frequencies.  The structural resonances do not play a 

significant role in the NR results of Fig. 3 since they are higher than 4,000 Hz.  Table II lists the 

predicted structural resonance frequencies.
21

Figure 4 shows the effects of varying the internal acoustic damping on the NR for θ = 30°.

The solid curve is the NR curve with general acoustic damping (0.0028), and the dashed curve is 

the NR curve with a ten-times increase in the general acoustic damping (0.028).   From Fig. 4 it 

is observed that when increasing internal acoustic damping ratios the noise reduction obtains 

significant broadband improvement.  Absorptive treatments would work well at providing 

increased damping at the higher frequencies, but would not at low frequencies.
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Fig. 5 shows the effects of the sound incidence angle, θ, on the NR.  The effects are more 

pronounced as the incidence angle approaches zero, i.e. normal to the cylindrical shell.  In the 

following, the mechanism of how the incident angle affects the noise reduction is discussed in 

detail based on the normal incident sound (θ = 0°) case.  From Eq. (2) it can be observed that the 

x-component of the wavenumber is k1x = ω /c, and the z-component is k1z = 0 when θ = 0°.  Eq. 

(43) is then simplifies to  

( ) ( )
( ) ( )

(2)1

(2)

( ) ,             (  = 0)

1
( ) 4 ,            (  = odd number)

0 ,                                                                 (  = even number) 

o
o o o

o
oq o o o

j aL J ka C H ka q

E j aL J ka C H ka q
q

q

π+− +

= − +
.   (65) 

From Eqs. (42) and (65) it is observed that when the acoustic cavity modes are purely 

axial (i.e. l = 0, m = 0, and n ≠ 0), the coupled structural and acoustic vibration loading in Eq. 

(51) also becomes zero at these modes (i.e. EoqDoq,lmn = 0), which will in turn cause the modal 

pressure, Eq. (51), to be zero [i.e. Flmn (ω) = 0] at these modes.  As a result, the purely axial 

cavity modes have no contribution to the internal pressure in Eq. (52) when the sound wave 

impinges normally upon the cylindrical shell.  As the incidence angle increases, the extent of the 

contribution of the purely axial acoustic modes to the internal modal pressure increases, which in 

turn impacts the value of the NR.  From inspecting Fig. 5, it is observed that the small incident 

angle creates a significant influence on the NR in the vicinity of the resonance frequencies of the 

purely axial acoustic cavity modes (001 mode at 228 Hz, 002 mode at 455 Hz, and 003 mode at 

683 Hz).

Figure 6 is a comparison of analytical (Fig. 6a) and measured (Fig. 6b) results for the 

noise transmission into the ChamberCore cylindrical structure.  As indication in the legends of 
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the figures, the analytical NR is calculated with a plane wave impinging at an incident angle, θ = 

30°, while the measured NR results are obtained in a approximately diffuse field.
1,3,4

  The first 

ten acoustic cavity resonances are also shown in Fig. 6 as dashed vertical lines.

The measured noise reduction is calculated by an in-situ method developed in previous 

studies.
1,3,4,12

   Firstly, the ChamberCore cylinder was installed in a diffuse sound field, and the 

autospectrum signals were measured over the outside and inside surface of the cylinder.  

Secondly, the noise reduction is computed by   

2

10 2

( )
10 log

( )

int

ext

p
NR

p

ω
ω

= − ,                                               (66) 

where 2 ( )extp ω< >  is the mean-square external pressure spectrum averaged over the outside shell 

surface, and 2 ( )intp ω< >  is the mean-square internal pressure spectrum averaged over the inside 

shell surface.    Note that because the shell is thin, both the internal and external areas are well 

approximated by the mid-surface area, S.

From Fig. 6 it is observed that the general trends of the measured and analytical NR

curves are very similar, while the absolute values of NR at low frequencies (smaller than 200 Hz) 

and high frequencies (larger than 1,500 Hz) has some discrepancy.  There are two main reasons 

for the difference between the experimental and analytical results.  First, the analytical NR was 

calculated for a plane wave with an incident angle of (θ = 30°), while the experimental results 

were measured in an approximately diffuse sound field.  Second, the effects of the internal fluid 

loading on the NR are present in the experimental results, while the effects are neglected in the 

analytical model in order to simplify the derivation.  The influence of the fluid loading on the NR

is complex, and includes the change of both internal and external sound fields by the coupled 
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acoustic and structural vibration.  The effects of internal fluid loading and different sound fields 

on the NR would make a nice topic for a future research endeavor. 

IV. CONCLUSIONS   

An extended model for the noise reduction for a finite uniform cylindrical shell was 

developed that includes axial structural-acoustic modes.  The exterior near-field pressure 

was approximated with that for an infinite elastic cylindrical shell.  The interior pressure 

distribution of a finite cylindrical structure was derived using a modal model.  Donnel-

Mushtari and Flügge’s theories were used for the structural analysis, and were coupled to 

the rigid-wall acoustic modes using a modal-interaction approach.  Analytical results were 

presented for a novel ChamberCore composite fairing and compared with experimentally 

obtained NR.  Both the experimental and numerical results show that the cavity resonances 

have a significant effect on the noise transmission into the finite cylindrical structure.  A 

parametric study found that higher internal acoustic damping provides improved broadband 

noise transmission reduction.  In particular, the axial modes, which were not considered in 

previous studies, were found to provide significant decrease in the NR as increase of the 

sound incident angle.  The mechanism of effects on the NR of the incident angle was also 

presented in detail. 
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TABLE I. First ten acoustic cavity modes and their natural frequencies. 

TABLE II. First six structural modes and their natural frequencies. 
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TABLE I. First ten acoustic cavity modes and their natural frequencies. 

Mode 

No.

Mode shape 

order

(l,m,n)

Analytical

frequency 

(Hz)

1 001 228 

2 010 398 

3 002 455 

4 011 458 

5 012 604 

6 020 660 

7 003 683 

8 021 698 

9 013 790 

10 022 801 
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TABLE II. First six structural modes and their natural frequencies. 

Mode 

No.

Mode shape 

order

(o,q)

Analytical

Frequency 

(Hz)

1 21 4,141 

2 31 4,410 

3 11 5,546 

4 41 5,577 

5 32 5,827 

6 42 6,336 
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FIG. 1. Geometry and incident wave of an infinite cylindrical structure. 

FIG. 2. Geometry and incident wave of a finite cylindrical structure. 

FIG. 3. Theoretical NR of a ChamberCore cylindrical fairing (θ = 30°).

FIG. 4. Effects of the acoustic damping on NR (θ = 30°).

FIG. 5. Effects of the incident angle on NR.

FIG. 6. Comparison of analytical (a) and measured (b) NR for a ChamberCore cylindrical fairing. 














	Article File #1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32

	g:/prod/ms_files/jasa/2004/10/08/00027602/01/27602_1_figure_0_1097233206.pdf
	g:/prod/ms_files/jasa/2004/10/08/00027602/01/27602_1_figure_0_1097233275.pdf
	g:/prod/ms_files/jasa/2004/10/08/00027602/01/27602_1_figure_0_1097233328.pdf
	FIG. 4. Effects of the acoustic damping on NR
	g:/prod/ms_files/jasa/2004/10/08/00027602/01/27602_1_figure_0_1097233424.pdf
	g:/prod/ms_files/jasa/2004/10/08/00027602/01/27602_1_figure_0_1097233473.pdf

