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1 Abstract

2 The study analyzes a common set of features that is measureable foasic sound level meter (SLM), and
3 attempts to understand the quality of mutual information carried in substtes# features for the discrimination of
4 military blast and non-blast classifications. Further, it seeks to devetioiigm about how blast and non-blast feature
5 vectors are distributed in high dimensional space by using the orthogenaibid dimension reduction technique,
6 which allows visualization in 2-dimensional space. Lastly, the study implesrigrear and Gaussian radial basis
7 function (RBF) support vector machine (SVM) classifiers to determiealfiility of this feature set to separate the two
8 classes, as well as recursive feature elimination (SVM-RFE) to elimiratarkes that contain redundant information.
9 The analysis is based on over 120,000 human classified signals in aneshtataset from ERDC-CERL and the
10 University of Pittsburg. The accuracy of the linear and RBF SVM classifiee listed for each of the experiments in
11 the dataset, and the weights are given for the linear SVM classifier.

12 PACS numbers: 43.60.Bf, 43.60.Cg, 43.60.Np, 43.58.Gn
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| INTRODUCTION

Monitoring the impact of noise sources is a fundamental s&ityein environmental noise control engineering. De-
pending on the level of detail that is required for a givenl@ation, monitoring can involve recording an entire
pressure time series, or can simply involve recording afseetrics from a sound level meter (SLM). The advantages
of using SLMs is that they are less expensive and requiredats storage than recording equipment, in addition
to requiring minimal downstream processing of recorded.d# down side of using SLMs for noise assessment,
however, is that this type of monitoring typically requidesman listeners to verify or annotate the signals present
during data capture, specifically to ensure that the leveilsgomonitored are associated with the source of interest.
This is not a significant challenge for short data colleciona limited number of monitoring locations, however, it
quickly becomes an issue when the assessment duration dremwihmonitoring locations increases. As unattended
monitoring networks become increasingly attractive toribese control engineer, one may ask whether a decision
criteria could be developed based on the output of an SLM t¢addevhether a source of interest was present during
a given assessment period. If so, one could automate thetassessment to a large degree, allowing for real-time,
continuous noise monitoring which requires little humatetimention. This article discusses precisely this tas, th
classification of waveforms given only metrics recordaliiedypical SLM.

A specific application of noise monitoring for which this ptem is relevant is in monitoring blast noise produced
on military installations. Blast noise is typically assateid with the sound produced by large weapons and artillery,
and is characterized by high amplitude, low frequency gntirgt can retain significant amplitudes at long distances.
Military installations typically monitor these levels ihe surrounding community to inform their testing and tnadni
decisions and to limit disturbance of the residents liviegniy. For monitors running continously on an installggon
perimeter or in surrounding communities, a high volume dadae generated. Typically, the monitor is triggered
by an event exceeding a threshold level; therefore, thetgerday contain a large number of non-blast recordings,
most notably due to wind noise, nearby vehicles, physicalimdation of the microphone or the mounting structure,
or other loud amplitude sounds. As a result, it is useful teehan algorithm which can sift through the data and
reliably classify incoming signals, thus aiding in propetetmination of blast noise levels, assessment of the impac
of specific events, and the future analysis of recorded dtas

Several authors have previously approached the problefastfioise classification. Bucci and Vipperman (2007)
used an artificial neural network (ANN) to classify blastseivaveforms obtained from noise monitors. Their clas-
sifier was based on two time domain features, the crest f§ptak to RMS value) and the kurtosis (standardized
fourth moment of the waveform distribution), along with tfvequency domain features, the slope of the log power

spectral density (PSD) within the 0-100Hz bandwidth ofiest, and the residual error when a line of this slope is
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fit to the PSD. While the time domain metrics are generallyalated with impulsive signals, the frequency domain
metrics were used to appropriately classify non-blastene@urces such as wind and aircraft noise. These metrics
were calculated for a training set of 1000 signals (330 aryiimpulse, 670 non-impulse). They trained and tested the
radial basis function (RBF), self-organizing map (SOM)J amultilayer perceptron (MLP) ANN classifier structures,
as well as a linear least squares classifier for comparisbey Tound that, while the non-linear ANNs were able to
achieve 98.2-100% accuracy with all four metrics, the legatres classifier performed with 94.1% accuracy.

Rather than attempt to develop an optimal classifier fronigdesl metrics, the current study analyzes a more
common set of features measureable from a basic SLM. We patttenunderstand the quality of information carried
in subsets of these features, and how these contribute tigbiemination of blast and non-blast signals. Further, we
investigate the distribution of blast and non-blast featwectors in high dimensional space by using the Orthogonal
Centroid algorithm for dimension reduction (Kiet al, 2005), allowing data to be visualized in two dimensions for
ease of visualization and interpretation. Lastly, thisigtimplements linear and Gaussian RBF support vector machin
(SVM) classifiers (Cortes and Vapnik, 1995) using the SLMdeaset, and eliminates features containing redundant
information using recursive feature elimination (SVM-RHBuyonet al, 2002). The analysis is based on over
120,000 human classified signals in a combined dataset sf & non-blast waveforms from different locations,
different conditions, on different monitoring equipmerithe accuracy of the linear and RBF SVM classifiers are
examined for each of the experiments in the dataset, andefghtg describing the importance of each feature in the

discrimination are given for the linear SVM classifier.

I DATASETS

This study is comprised of data from six different locatiamseven separate data collections. The combined data set

contains 60,916 blast signals and 59,574 non-blast sigioala total of M/ = 120, 490 total human classified signals.

A ERDC Long Range Propagation Experiments (LRPE)

This dataset was obtained in a set of controlled experinweitiishe expressed purpose of understanding the variabilit
in blast noise levels as a function of distance from the so@iRonssest al, 2011). The experiments took place at

two locations in the United States at two times of year. Thst &kperimental location was in an arid desert climate
with minimal terrain features and vegetation. The otherltEsation was in a temperate climate, which was forested
and moderately hilly. The blast sources for these expetisnerre 1.25lb blocks of C4, detonated at twenty minute
intervals over 6-10 hour test periods. These test periods seattered at different times of day over the 2-3 week
duration of each experiment so as to sample a variety of wleggcal conditions at different times of day. At each

location, tests were carried out in the summer and the winterder to measure seasonal variation in received level.
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Blast waveforms were measured at a variety of distancediikm in three different directions from the source.
Blast waveforms were acquired with 1/2-inch diametdidrand Kjeer Type 4921 microphones mounted 1.5m from
the ground, and recorded on Rion DA-20 4-channel digitad datorders, which continuously ran over the course of
each test period. Using windows based on the expected tirmiodl for each blast at each monitoring location, over
28,000 waveforms were extracted and 19,720 were valid assiééd by human listeners as containing a blast or not.
The LRPE dataset includes 18,303 human classified blasdlsignd 1,417 non-blast signals. Absence of blasts from
the waveforms is due to meteorlogical conditions or high i@minoise environments. A more detailed description of
these experiments and the data cleaning procedures canrbdtsewere (Ronsst al,, 2011).

The data analyzed in this article include all waveforms @&eguat distances of 1km, 4km, 8km, 12km, and 16km
in each experiment. The non-blast signals contain a vaaktther noise sources: ground vehicles, aircraft, small

arms fire, wildlife, speech, and most notably, wind.

B East South Central (SERDP—-CERL)

This dataset was collected in support of a large human raegptnblast noise project (Valeng al, 2011). Data
collection took place in one location in the east south eénéigion of the United States over the course of 12 months.
The location’s geography features a temperate forest tdimad moderately hilly terrain. The test location was a
military installation where small and large arm trainingeises occurred daily.

The recorders were located both on the installation as afdatesmicrophone arrays, and off the installation
outside of local residents’ homes as single microphonespddte monitors were designed to record environmental
noise for 5 seconds given a stimulus that surpassed the 1@®dRrigger level, and included a 0.5 second pre-trigger
time. The on-installation trigger microphones were paf873—NR (PCB Piezotronics) 1/2-inch diameter micro-
phones, while all other microphones were part 377B11-E (P@Botronics) 1/2-inch microphones. On-installation
array microphones were placed cylindrically with quasietam elevation below 2.5 m and quasi-random angle. Off-
installation single microphones were placed at 2—3 m el@vatAll waveforms were recorded using HBM Liberty
data acquisition systems.

Blast sources were located on a closed set of designated fidimts over a~ 450 kn? area. Receivers were
approximately 0.5 — 20 km from the source, depending on thiecsoand receiver pair. Approximately 3 million
signals were recorded during the course of the data callectiowever, only 4,782 valid signals were classified by
human listeners. The SERDP-CERL dataset includes 4,432amgtassified blast signals and 349 non-blast signals.
Non-blast signals are composed other noise sources: windder, wildlife, human, electronic, ground vehicles,

aircraft, and small arms fire.
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C Aberdeen Proving Ground (APG1 & APG2)

This dataset was obtained in support of a complaint riskys{iykazaet al., 2008) conducted by the Construction
Engineering Research Laboratory (CERL) between 2006 a@8.2len unattended Norl21 data acquisition systems
where located near major firing points to help researchetiermée the source locations. The distance between
source(s) and the recorders typically ranged between 5@8rsnto 5 kilometers. Given that the experiment was
conducted over a two year time period, the waveforms wererded for a variety of blast producing noise sources
(e.g.,> 50 mm guns and various large explosives). Similar to thegore used in the ERDC LRPE, research
assistants listened to the recorded waveforms and notdtether the recorded event was a blast. In addition to
notating blast events, non-blast events or additionaingjatshable non-blast sounds that occurred at the same time
of blast events were notated. Non-blast signals are cordpaiser noise sources: wind, thunder, wildlife, human,
electronic, ground vehicles, aircraft, and small arms fire.

This dataset represents two separate data collections1 ARG APG2, where the SLM monitor locations were
the same for both experiments. The APG1 dataset contaifig Biman classified blasts and 19,120 non-blasts . The

APG2 dataset contains 22,081 human classified blasts a@83ton-blasts.

D New York (Fort Drum)

The Fort Drum dataset includes 6,211 human classified bigstls and 9,545 non-blast signals.

E SERDP-PITT

The University of Pittsburgh (Pitt) developed a high fidelibrary of recorded noise sources found around military
installations. Waveforms were identified and recorded geelt the time of the recording. Pitt worked with the Range
Control office at each base to identify locations and soun€esise. The library contains a total of 2,471 waveforms,
including 740 impulse (blast) and 1,731 non-impulse sigfaircraft, wind, vehicle noise, etc.).

This measurement setup was based upon a Larson Davis NMEm¥rbnmental Noise Monitoring System. The
primary microphone was replaced with a Bruel & Kjaer (B&K)98Linfrasonic microphone, which has a bandwidth
of 70 mHz to 20 kHz. The primary microphone was connected atdecto a Larson Davis (LD) 824 Sound Level
Meter (SLM). The LD 824 served as a field-portable microphpoeer supply that also logs Leq and Lpk value at
one second intervals (for subsequent data validation st&usce most of the energy of the sources to be measured
lies in the very low-frequency range (0-100 Hz) the weightod the input spectrum is set to flat (linear) weighting.
The AC output of the LD 824 SLM was connected to a Nationalrtmaents (NI) DAQCard-6036E data acquisition
card through a NI BNC-2110 input/output board. When weatteemjited, a second channel was recorded using a
LD 2540 microphone with a B&K 5935 power supply. The DAQCarakvinstalled into a Dell Latitude laptop with a
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Pentium IV processor. A Virtual Instrument (VI) was creaitetdabview 7.1 to capture waveform data. The VI enables
an automatic triggering/pre-triggering mode, where dagaracorded when the signal exceeds a specified threshold,
(used to automatically record impulse events that exceeasitaio Lpk value). Although the threshold can be set to
record at or above any desired Lpk level, it was typicallyuatid to just above ambient noise levels (typically 80-95
dB) in order to record as much data as possible. In the daectioh, a 0.1-0.25 second pre-trigger was coupled with
an additional 2 seconds of recorded data for each record.r&yriggering, the entire discrete event was able to be
recorded. A manual (continuous) triggering mode was alssipte, which was used to record longer or continuous
events such as wind, aircraft noise, traffic, and engineendsiring multiple successive trigger events, the autamati
mode also triggered nearly continuously. The data were kahgh 10 kHz.

Eleven (11) measurement trips were made to seven (7) losatidrips were conducted across all seasons and
weather conditions and also provided a wide variety in toggland vegetation. Table | summarizes the measurement
locations and the types of noise measured there.

Where present, measurements were conducted in the vicihjigramanent monitoring stations, in order to get
accurate representations of the signal that the monitpts tlassify. In addition, the barometric pressure, dates t

and weather conditions were recorded in the test log.

F North Carolina (MCBCL-PITT)

Data measurements made a Marine Corps Base Camp LejeuneGM)Gere performed by two prototype noise
monitoring systems called the Bearing Amplitude Measurgraad Analysis System (BAMAS) [Applied Physical
Sciences, 2009]. The electronics are composed of four RQ@i@lules, PC/104 ISA extension card, and rechargeable
Li-lon battery. The data acquisition board is capable of@arg 16 channels, with 16 bit resolution, at 200kHz. Four
array microphones and one high-quality ACO PACIFIC, INC Z8xondenser microphone with an ACO PACIFIC
4052 preamp (4-22k Hz) simultaneously recorded eventsadttive data from the ACO microphone that was used for
this study. The microphone is capable of measuring levets ag0 dB. All channels were sampled at 5 kHz and were
filtered by a 6th order low-pass Butterworth filter with a carfrequency of 2.5 kHz.

One prototype was installed near a distant existing noiseitaroand receives few blasts. The other was installed
near an observation point. The observation point is clogkeampact zone (as little as 0.5 km), but is distant from
the firing positions ( 10 km). This location makes the morstasceptible to operational noise (especially vehicles and
electronic noise) and small arms fire that more distant rmoiseitors wont receive. While the data arent as pure as the
SERDP-PITT library, they represent realistic measurementier typical conditions.

A person listened to each recorded waveform, plotted itgloith its spectrum, and looked at detected output

from the BAMAS array (could better see acoustic events,esincoherent (wind) noise was canceled by the array
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processing). Of the 9,168 useful waveforms, 3,741 werekasd the remaining 5,427 were not. The data were

processed to assess and compare operation of the algarithms

I METHODS

A Metric Calculations

The metrics analyzed in this manuscript include those defin¢éhe ANSI S1.4-1983 (Acoustical Society of Amer-
ica, 1983) specification for Sound Level Meters, along witgfiency weighting filters as specified in ANSI S1.42-
2001 (Acoustical Society of America, 2001). The completeo§enetrics are: Apeak, Cpeak, Zpeak, LAMAX fast,
LCMAX fast, LZMAX fast, LAMAX slow, LCMAX slow, LZMAX slow, A SEL, CSEL, ZSEL, ALEQ, CLEQ, and
ZLEQ. The time and frequency weighting filter definitions digethis study, as well as definitions of sound exposure,
sound exposure level, and equivalent-continuous soured é&g shown in Table II.

The frequency-weighting filters are implemented in MATLABIng frequency domain filtering techniques.

wln] = iFFT{H(f) - FFT {z[n]}} M

The input waveform was first zero paddedt6i(log: (length(2)))+1 tg avoid circular convolution artifacts. The com-
plex frequency respondé (/) was determined using MATLAB'feqs command, with the analog poles and zeros
given in Table Il. The resultant signal was then truncateth&ooriginal signal length with negligible effect on the
waveform.

The time-weighting filters are implemented using the indimibpulse resonse (lIR) filter

B(z o
H(z) = A((zi 1o (1—a)z7lla=—2_ 2)
yln] = a-x2[n] + (1 —a)-yln—1],y[0] = z[0] 3)
_ yln]
wn] = 101og; < pg ) ) 4)

wherezx[n] is the input signal and[n] is the time-weighted output signal. The impulse responskisfIR filter was
verified to be equivalent to the explicit defininition frombla Il. This method of time weighting is preferred over the
explicit form due to the great increase in computationatigfficy and for its accuracy to the specification that comes
as a result of not truncating the impulse response of the filte

The set of metrics described above were calculated for easlfarm in the datasets described in Sec. Il. Each

signal is therefore represented by a feature vecterR'® and a human classified value of ‘blast’ or ‘non-blast’.
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B Support Vector Machine classifier

The human classified datasets described in Sec. Il pravideuman classified waveforms, each represented by a
feature vectok; wherei = 1,..., M. Each waveform is marked by human listeners with a lapet {—1,+1},
wherey; = +1 corresponds to a ‘blast’ and = —1 corresponds to a ‘non-blast’. The set of blast points andbiast
points form distributions iR'® space. It is the goal of this manuscript to develop a decigiterwhich optimally
separates these two distributions. Support Vector Mash{B&Ms) are one way to specify this boundary, and can
be formulated for either linear boundaries or non-lineaurtmtaries by using non-linear kernels (Cortes and Vapnik,
1995).

SVMs attempt to optimally separate two distributions wittubdaryw”x + b = 0 by maximally extending
marginsw’x + b = £1 on either side of the boundary hyperplane such that all plaists satisfyw”x + b > 1 and
all non-blast points satisfw”x +b < —1. The problem can be stated as an optimization problem theitmzes the
distance between margins= ﬁ subject to the inequality constraints.

The classification rule used to determine the class of tést pas ultimately given by,

f(z) = wlz+b (5)
M

flz) = > ojyixi,z) +b (6)
=1

>0 z is classified as a blast
f(2) 7
<0 z is classified as a non-blast
whereq; is a constant obtained from the optimization procedure armhly non-zero for support vectors, afd
denotes the inner product. A finite cdstfor points crossing the boundary can be enforced duringraton, which
manifests as a limit on the value faf .

The SVM formulation can be modified to extend SVMs as nondir@assifiers. The inner product in Equation 6
can be considered a “similarity” function that is a high walhen vector,; andz are similar and approachesvhen
the two vectors are dissimilar. The inner product can bearegal by other kernel functiords (x;,z) = ¢(x;)¢(z) that
convey similarity. Two commonly used kernel functions aesatibed in Table Ill. Functiong(-) create separation
between two distributions by mapping each point to a higlmedsional space. For, example the RBF kernel maps
the data to an infinite dimensional space. As a result, it jgossible to represent mapped vecto(s;), ¢(z) in
software, however it is quite efficient to represent the ciowiion K (x;, z).

In this analysis, an SVM classifier with coSt = 10 is implemented using the linear and RB¥ £ 0.1) ker-
nels. The performance of these classifiers is evaluatedrinstef the jackknife cross validation accuracy as dis-

cussed in the next section. All data processing routineg witten in Python using the PyML moduléttp:
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/lpyml.sourceforge.net/ ), which is based on the libsvrttp://www.csie.ntu.edu.tw/ ~cjlin/

libsvm/ ) library.

C Data Jackknife Procedure

Due to the large size of the dataset, a jackknifing proceda® developed to mitigate classifier training time. The

SVM was trained from a subset of feature vectors that werdaieaty sampled from the dataset and tested on the
remaining feature vectors to assess classifier accuraay.clBissifier performance was evaluated by measuring the
mean and standard deviation of the accuracy &verandom samplings of the data to ensure the stability of that

statistic.

D Recursive Feature Elimination

Features which contribute little to the ability for the SV discriminate between classes can be eliminated in a
procedure termed Recursive Feature Elimination (SVM-R&tjyonet al,, 2002). This procdure can also provide a

means for feature ranking and selection. The algorithmredeely iterates through the following steps:
1. Train the linear SVM classifier to get optimal feature visgw;
2. Compute the ranking criterian? for each metric
3. Eliminate the feature with the smallest ranking criterio

This process was used to rank the features calculated inlBe&cwith respect to their ability to distinguish blasts
from non-blasts.

SVM-RFE feature ranking was executé@ times on jackknifed samplings 6000 training vectors. The proba-
bility of each feature lying within a given ranking(R) was calculated and the expected value of the EHR(R)]

was then used to determine a master ranking for all the fesitur

E Orthogonal Centroid algorithm for Dimension Reduction

In an effort to better understand which metrics best remtese impulsivity of the blast as well as how the blast
and non-blast points are distributed®i® space, dimension reduction was performed on the data. Tinevas to
represent the; € R'° vectors as)(x;) € R? vectors so that the distributions could be easily visudlize

For dimensionality reduction, the orthogonal centroidoathpm (Kim et al, 2005) was chosen for its propensity

to retain clustering information within the reduction®3. The algorithm requires the centroid (mean) for each the
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distributions,c; andc,,;,, wherecy, c,,;, arel5 x 1 dimensional vectors. Then

C[15><2] = [Cb[15>< 1] Cnb[15x 1]} ®)
Chsxz) = Qusx2Bpxg )
Xpx1 = Q[T2x15]x[15x1] (10)

Bracket notation is used in each variable’s subscript totiethe size of the vector/matrix for ease of interpretation
Equation 9 represents the rectanguldt matrix decomposition into orthonormal baglsand upper triangular matrix
R. Further, the boundary between the blast and non-blasectimR'® space defined by the linear SVM described

in Sec. B can also be represented in this rediR%®dpace

VAV[2x1] = Q§X15]W[15x1] (11)

WihoXpxy+b = 0 (12)
Inherent in the dimesion reduction is a loss of informationd @an associated classifier accuracy loss, however,

intuition is gained as a result of being able to visualizedht inR? space.

IV RESULTS

A Support Vector Machine classifier

The size of the jackknife sampling was varied frdiih — 10, 000 training vectors for the linear kernel and from
10 — 60, 245 for the RBF kernel, and classifiers based on each sample sizeavaluated frori0 random samplings.
The range of jackknife sizes for the linear kernel is limitka to the extended training time required as compared to
the RBF kernel.

The mean and standard deviation of the accuracy was trackdtesample size varied; these curves are shown
in Figure 1. These statistics were found to saturate neaceaurancy 0f91.2% + ST D for the linear classifier at a
sample size 01000. As a result, all analyses involving a linear kernel in thisdy are trained on a random sample
size of1000 or greater. The RBF classifier accuracy did not saturateygjsaikknife sample size due to the flexibility
of the non-linear boundary. The accuracy continued to aE®eas size of the training set increased, and achieved a
mean accuracy ¢f5.3% when the classifier was trained with half the dataset anddest the other half.

The SVM classifier accuracies for the linear and RBF kervelhen trained wittb000 feature vectors randomly

sampled from the entire dataset, are shown in Table IV. Gwercombined dataset, the linear classifier performed

10
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Figure 1: The mean and standard deviation of accuraciesvefagackknife sample sizes froff samplings. Note
that the the mean and standard deviation saturate abovéessizgs ofl 000 for the linear classifier #1.2% accuracy.
The mean and standard deviation do not saturate for the RBEBifier, and achievi#.3% accuracy when the jackknife
sample size is half the size of the entire dataset.

with 91.3% accuracy and the RBF classifier performed vii#i8%. Using this classifer, blasts from all experiments
except for Fort Drum were classified with greater ti88ff; accuracy with the linear classifier, while the Fort Drum
classifier accuracy wet2.8%. APG1, APG2, LRPE, MCBCL-PITT, SERDP-PITT, and SERDP-CHRU greater

than90% accuracy with the RBF classifier, while the Fort Drum expemitrwas classified witR6.5% accuracy.

B Orthogonal Centroid algorithm

The distributions of blast and non-blast feature vectorsefich experiment are shown in Figure 2 in the reduced-
dimension coordinate spa¢é;, i2), as described in Sec. E. The linear SVM bounderys trained on the full
dimensional data and projectedR8 using the same technique used to reduce the dimension opeath

For experiments APG1, APG2, SERDP-PITT, and SERDP-CERDbls and non-blast distributions are fairly
separable. The LRPE experiment shows a region where bladtsan-blasts overlap completely, as well as a region
where there are blasts but no non-blasts. The Fort Drum anBGLEPITT experiments show a high degree of overlap
between the two distributions.

The combined dataset shows two distinct sub-clustersmitté non-blast category that appears to be experiment

11
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Figure 2: The sampled and reduced dimension distributior{g 1, Z:3) coordinate space. of blasts and non-blasts
based on the orthogonal centroid algorithm for each datal$et reduced dimension linear SVM boundary is drawn

for reference.

dependent; the right non-blast cluster from the combin¢alsgh appears to be mostly composed of the non-blasts from
APG1, APG2, and SERDP-CERL experiments, while the left blaist cluster appears to be largely combosed of the
Fort Drum, LRPE, MCBCL-PITT, and SERDP-PITT experimenteeTwo non-blast sub-clusters are seperated by a
space that is not dominated by either category. The comlda&dfrom all experiments shows the two distributions
may not be efficiently separable using a linear boundaryrgeleluster of non-blast point lie on the wrong side of the
boundary. The non-linear RBF boundary is capable of bedtdaiing the two non-blast sub-clusters from the blast
distribution, however, this method risks overfitting the@adhy incorrectly classifying the space in between the two

non-blast sub-clusters.

C Feature Ranking and Selection

The features ranked by the SVM-RFE algorithm anre listeddeoof importance in Table V, along with the expected
rank value given the rank placement probabilities from 4héndependent jackknife rankings (see Sec. D). The

feature ranking probabilities are shown for each featufiéigiire 3. The feature set is ordered by ascending expected
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Figure 3: The probability that a feature is ranked at a givatkr Probabilities are calculated based4orsVM-RFE
rankings of jackknife samplings of siz®)00. Features are ordered by ascending expected rank valuaddfoto
right.

rank values from left to right. The expected rank values seebe clustered in groups; a high value range from ranks
1-3, a medium value range from ranks 4-8, and a low value rfrogeranks 9-15.

This ranking was tested by iteratively eliminating the tesggnifcant features and evaluating the resultant linadr a
RBF classifier accuracies over the combined-experimeasdat The result of this analysis is shown in Figure 4. The
mean squared difference between the RBF and linear SVMifidaissvas 2.5%. In general the RBF SVM classifier
is more accurate than the linear SVM classifier, howeverlecases converge as many features are eliminated. It
is important to note that the relatively low mean-squardiédince between the linear and RBF curves indicates that
the optimal SVM boundary is approximately linear. Therefdhe intuition gained by looking at the weight vector
of the linear classifier is justified.

A reasonable simplification of this classification problemmuld be to implement the SVM classifier using only a
few top-ranked features. This would trade classifier perforce for the convenience of a small feature set. In some
applications, this trade-off may be desirable. Table Vivehthe feature weightes for each of the top features, the
linear biash, and the resultant blast/no-blast classifier accuraog,positive rate (TPR), and false positive rate (FPR).
Figure 4 shows that it is not useful to include more than efghtures in the SVM, since doing so will not result in
better classifier performance. The weights in Table VI cand®sl to test a new signal feature veatasing equations
5and?7.

We can further analyze the feature weights from Table VI &wrevhich features “push” toward the blast or non-
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blast classifications based on their sign and magnituden Fedle VI we can see that, with the exception of Zpeak, the
negatively weighted features (those pushing towards ‘iest”) are all indicators of background level. The podtive

weighted features (those pushing toward “blast”) indidate max signal level using a fast time weighting. Thus,
signals that are most likely to be classified as blasts havgemeral, high max levels given a fast time weighting and

a low measured background level.

The effect of removing features on SVM accuracy
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Figure 4: The effect of removing least significant featuresfthe feature set on the linear and RBF SVM accuracy.
The mean squared difference between the RBF and linear S¥ssitiers was 2.5%. The feature removed at each
horizontal step is listed above is located above the alssciss

Table VI also shows that &%.6% accuracy classifier can be created using just two metritsithe approximately

equal weights

> 5.40 =z is classified as a blast
f(z)=LZMAX _fast(z) — LZM AX _slow(z) (13)

< 5.40 =z is classified as a non-blast

which has been normalized to unit feature weightings. Thissifier can be valued for its simplicity, however, it is

less effective than a classifier based on a larger feature set

V CONCLUSION

The datasets described in this article were obtained usiatiyvdifferent equipment in vastly different settings.eTh
compiled dataset of over 120,000 records provides an irmpesompendium with which to analyze, in detail, useful
features for discriminating blast signals from non-blaghals. As is common to many applications in machine

learning, the particular features that provide optimatdisination are not trivial to recognize. However, by reding
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these features to those obtainable from simple SLM recgsdimd reducing the dimensionality of the resultant feature
vectors, we were able to gain insight into how blasts andlrlasts are distributed in this high-dimensional feature
space, as well as how these distributions vary betweeneatatéSigure 2). Although the distributions contain some
differences per experiment, the cumulative dataset aoediairends that allowed a linear boundary created from the
entire dataset to be reasonably successful for each exgarivhen considered on its own. For at least one dataset,
the accuracy of the linear classifier exceeded 95%. A difteset of features would undoubtedly increase classifier
performace, for instance, adding in the kurtosis and cesbf will certainly improve accuracy. However, more
complex features require complete pressure time seriec@amgputational power that is not always available in a
given circumstance.

It is interesting to note that many of the metrics choseniggtudy contain redundant information; they are only
slightly different transformations of the original wavefts—some of which only amount to a marginally different
filtering in the frequency domain (e.g., C and Z filters), aothe which even show approximately linear correlations.
Nevertheless, the slight difference in information preddy each of these transformations serve to accentuate dif-
ferences between blasts and non-blasts enough so thatakofitire apparently redundant features degrades classifer
performance. This isillustrated in Table VI and Figure 4rtRermore, the SVM-RFE algorithm quantifies our general
intuition of how one would choose features to discrimindéstsignals from non-blasts. Metrics which provide infor-
mation about both the maximum level of a signal and its bamkgd level are useful discriminators of blast noise, and
frequency weightings that cause the least amount of digtoan the signal are to be preferred. The linear classifier
weights demonstrate the importance of each metric as itibates to a blast or non-blast classification.

The non-linear boundry created by the Gaussian RBF kern#iédSVM classifier is, however, capable of achiev-
ing a higher accuracy than the linear classifier, especvaliign the size of the training set is increased. Theloss of
interpretive value and simplicity, however, is significaftfield noise monitor could easily implement the RBF classi-
fier and acheive an accuracy greater thaj, but, again, the availability of computational power isitied in certain
applications. Where “on the go” type classifiers are desttel|inear weights provide a quick and simple alternative
with little degredation of results. In fact, if one is willjrto accept a classifier with 85% accuracy, Equation 13 pro-
vides a simple linear classifier for determining the presefsa blast from only the difference between the fast- and
slow-weighted maximum levels. Both linear and nonlineathods offer a concrete solution to blast noise classifica-
tion using sound level meters, but as is the case in any prolsl@ngineering, implementation is at the discretion of

the engineer.
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Table I: List of measurement sites visited for SERDP-PITiadallections.

Location Number of Visits | Types of Noise

MCBCL, NC 3 Tank, artillery, vehicle, mortars, wind noise, dummy
bombs, demolition charges, grenades, Bradley fire, |air-
craft

Fort Indiantown Gap, PA 2 Mortars, Howitzer, dummy bombs, canon strafe, vehicle
strikers

Fort Benning, GA 2 Tanks, demolition, Bradley fire, mortars, vehicle, airgraf
wind

Fort Hood, TX 1 Tanks, Palladin, Bradley, aircraft, mortars, artillerghi
cle, wind

Fort AP Hill, VA 1 Demolition, grenades, mines, mortars, artillery, airgraf
wind

Fort Riley, KS 1 Tanks, Bradley, demolition, aircraft, strong winds

Fort Carson, CO 1 Tanks, Bradley, demolition, mortars, aircraft, winds

Table II: Method definition for time weighting, frequency igbting, SE L, andLEQ.

Method Definition
Time weighting L.(t) = 10logq (% fti %e@dﬁ),

TFAST — 0.125[8], TSLOW — ].O[S]

Z frequency weighting No change to signal

A frequency weighting zerosis =4 x 2w -0
poles:s = 27

2 x —20.599,1 x —107.653, 1 x —737.862, 2 x —12194.217

K =175 x10°

C frequency weighting zerosis =2 x 2w -0
poles:s = 27

2 x —20.599, 2 x —12194.217
K =5.9123 x 10°

Sound Exposurely

E = fjf p2(t)dt

Sound Exposure Levef E'L

SEL = 10log,, (EE) Eo = pito, po = 20 x 1075 Pa,ty = 1 sec

Continuous-equivalent Level,EQ

LEQ = 10logy, (péET)
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Table 1lI: A list of commonly used Kernel machines, inclugithe linear, polynomial, and Gaussian Radial Basis
Function.

Kernel K(x;,z)
Linear b'e
Gaussian Radial Basis Function (RBF)—(/Ixi~==I*)

Table IV: The linear and RBF SVM accuracies for each expamningézen a training set 05000 feature vectors ran-
domly sampled from the entire dataset. Shown are the avaxageacies ovei0 jackknifed samplings of the training
set. Over the combined data set, the RBF kernel classifitompes2.5% better than the linear classifier.

Experiment ALL EXPS | APG1 | APG2 | Fort Drum | LRPE | MCBCL-PITT | SERDP-PITT| SERDP-CERL
Linear Accuracy (%) 91.3 94.8 | 92.2 82.8 91.0 90.3 92.4 94.7
RBF Accuracy (%) 93.8 96.3 | 95.5 86.5 92.9 93.3 92.9 95.3

Table V: The rank of each metric as obtained from the SVM-RIg&ri¢hm, as well as the expected rank based®@n
rankings of different jackknife datasets.

Rank | Metric Expected Rank
1 LZMAX slow | 2.00
2 LZMAX fast | 2.25
3 LCMAX fast | 2.85
4 CLEQ 4.28
5 Zpeak 5.62
6 ZLEQ 5.93
7 LAMAX slow | 6.60
8 ASEL 7.55
9 LCMAX slow | 10.03
10 | LAMAX fast | 10.82
11 | Apeak 12.03
12 | Cpeak 12.12
13 | ALEQ 12.35
14 | ZSEL 12.45
15 | CSEL 13.12

Table VI: The feature weighte when the top eight features are recursively selected franfiuthfeature set, as well

as the linear bias and the resultant blast/no-blast clessificuracy, true positive rate (TPR), and false positite ra
(FPR). Features that contribute more to a blast classiicatie shaded blue, features that contribute more to a non-
blast classification are shaded red. Note: These weightirggselative to each jackknife sampling and are subject to
vary for each random sampling.

b Accuracy| TPR FPR
1.1138 | 0.9119 | 0.9084| 0.0847
0.7095 || 0.9077 | 0.9098| 0.0944
0.0177 || 0.9076 | 0.9111| 0.0959
-2.3707 || 0.8988 | 0.9022| 0.1048
-3.7287| 0.8759 | 0.8617| 0.1095
-3.9100| 0.8557 | 0.8361| 0.1242
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