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Pole/Zero Design of Agonist/Antagonist Actuation
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Abstract—Objective: This brief analyzes the open-loop dynam-
ics of coupled (dedicated) and decoupled tendon tension control
methods in an agonist/antagonist (AA) actuator pair, a fun-
damental control unit used in orthopedic testbeds known as
joint motion simulators (JMSs). Methods: A linear mathematical
model of an AA actuator pair is derived. Transfer functions
from tendon tension control signal to tendon tension and joint
position are derived. Sources of key dynamics are explained.
Results: The system’s dynamic model shows that both the
dedicated and decoupled approaches have a low-frequency pole
pair, a low-frequency zero pair, and a mid-range zero pair.
A frequency domain identification of the flexion/extension axis of
an existing elbow JMS validates the locations of these dynamics.
The interaction between tendon tension control and joint position
is shown to be controllable in decoupled control, but not in
dedicated control. The bandwidth reduction due to the low-
frequency pole pair and low-frequency zero pair are shown
to be controllable in decoupled control, but not in dedicated
control. Conclusion: Decoupled control is superior to dedicated
control for AA actuator pairs in JMS designs because it reduces
actuator interaction and has a larger tension control bandwidth.
Significance: This analysis describes the sources of the dynamics
seen in the open-loop frequency response of both methods and
shows the superiority of the decoupled method in tension control
bandwidth and in lack of interactions with position control.

Index Terms—Agonist/antagonist (AA) actuation, decoupled
feedback control, force control, joint motion simulator (JMS),
tendon actuation.

I. INTRODUCTION

THE joints of the human body enable a person to move
and interact with their environment. Research on joint

function, injury, and repair is critical for maintaining and
extending a person’s quality of life. In vitro cadaveric testing
enables many methods impossible in vivo, such as invasive
instrumentation of tissues, application of multiple surgical
techniques to the same specimen, and testing of various states
of injury. While cadaveric joint testing removes the restrictions
of in vivo testing, the absence of the central nervous system
to actuate the muscles around the joint necessitates the devel-
opment of external means to move a joint in a way that will
yield meaningful data. One of these external means is the joint
motion simulator (JMS).
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JMSs are tendon actuated, computer controlled devices built
for research on cadaveric joints. A frame, pulley system,
tension and position sensors, motors, controller, and cadaveric
specimen comprise a typical JMS. The frame rigidly holds one
side of the specimen and supports the motors. A controller
drives motors generating forces applied to the exposed tendi-
nous insertions of the freely moving side of the specimen.
A pulley system, also mounted on the frame, guides cables
along physiologic lines of action while sensors measure tendon
tensions and joint positions. Tendon actuation generates joint
loading and motion that are as physiologic as possible and
computer control reduces the variability in testing compared to
manual actuation [1]. Tendon actuation and computer control
ensure that collected data represents in vivo joint behavior.
JMSs have been developed for many joints: elbows [2]–[4],
wrists/hands [5], [6], shoulders [7]–[11], feet/ankles [12]–[17],
and knees [18]–[22]. JMS experiments often entail tracking
prescribed joint angle profiles, applying prescribed tendon
tension profiles, or combinations of both.
The unidirectional nature of tendon actuation complicates

JMS control. Tendon slack may occur, creating three problems:
nonlinear behavior, lack of control in the slack direction, and
motion delayed until slack is removed. The choice of the
muscles simulated by the actuators can help prevent slack.
For each actuated muscle, the JMS can include another with an
opposing moment about the joint. The human body effectively
uses these agonist/antagonist (AA) pairings. Co-contraction in
AA pairs of simulated muscles prevents tendon slack. Even if
joint position and not joint loading is the primary purpose of
a JMS experiment, the control scheme can effectively include
positive cable tension to prevent tendon slack, which would
degrade joint position control.
Various control methods have been applied to JMSs to

manage tendon actuation and apply physiologic loading.
One common method dedicated one actuator per degree of
freedom (DOF) to control joint position and the remaining
actuators to control tendon tension [2]. This technique ensured
tension in the actuator responsible for joint position con-
trol allowing motion in both directions. Previous researchers
advanced this approach with one actuator dedicated to one
control task with load profiles determined from electromyo-
graphic (EMG) experiments [9], with libraries of human
subject data to manage specimen variation [23], or with logic
sets enabling motion in various planes [24].
Before its use in JMS control, dedicated actuator assignment

appeared in tendon-driven robotics for AA pairings [25]. Other
AA control approaches within robotics spread individual con-
trol responsibilities among multiple actuators controlling joint
position and stiffness [26] and joint torque and stiffness [27].
Advanced forms of this control method switched actuator
roles as necessary to minimize opposing actuator tension

1063-6536 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 1. Nonlinear elbow FE model with single AA actuator pair and antagonist load cell. In this simple elbow model, the triceps act as an antagonist and
the brachialis as an agonist.

while still controlling joint position [28]. The distribution of a
given control responsibility among multiple actuators reduced
interactions between control tasks.
As the existing approaches have shown, the responsibility

for the control of one kinematic DOF or one muscle’s tendon
tension may be either assigned to one dedicated actuator
or spread among multiple actuators. The first method, called
in this brief a dedicated control design, assigns one actuator to
one control responsibility at any given time. A dedicated actu-
ator has a single control responsibility. The second method,
denominated in this brief as a decoupled control design,
assigns a combination of actuators to a given responsibility
at any given time. The decoupled approach requires an actu-
ator to have multiple responsibilities although it shares each
responsibility with other actuators.
The frequency domain dynamics of tendon-actuated

AA systems expose their limitations and are therefore of
importance to JMS designers and users. A joint’s inertia and
tendon stiffness combine to form low-frequency dynamics
that limit JMS performance. Differences in the low-frequency
dynamics between the dedicated and decoupled approaches
provide the decoupled approach with a greater tension control
bandwidth and less interaction with position control. Addi-
tionally, the usual in-series placement of a load cell between
actuator and tendon creates higher frequency dynamics that
limit the range of accurate tendon tension measurement in
both methods of control.
The purpose of this brief is to describe these important

dynamics present in only the tendon tension control aspect of
AA JMS designs and to show that the proposed decoupled
approach, despite its added complexity, is superior to the
dedicated approach for JMS tendon tension control.

II. MATHEMATICAL MODELING OF

AGONIST/ANTAGONIST PAIRING

The Allegheny General Hospital (AGH) elbow JMS uses
the brachialis, biceps, pronator teres, and triceps to load the
joint and move an elbow through flexion/extension (FE) and
pronation/supination (PS) motions. The four muscles comprise
a minimum set needed to actuate both kinematic DOFs.
To clearly explain the dynamics of an AA actuator pair,

Fig. 2. Linear elbow FE model with single AA actuator pair.

this brief focuses on a single AA pair: the brachialis and triceps
used to control elbow FE.
The FE DOF (Fig. 1) is composed of cabling, the elbow

itself, a load cell which measures the antagonist tension,
springs and two velocity controlled motors connected to ball
screws that convert the motors’ rotary motion into linear
motion. Over the bandwidth of interest, the motors act as
ideal velocity sources so that actuator mass and stiffness are
excluded. The antagonist load cell stiffness and mass, however,
are included in the model to provide an antagonist tension
output and to explain the source of dynamics discussed later.
The load cell’s stiffness is several orders of magnitude higher
than all other stiffnesses in the system. The actual system also
includes an agonist load cell, which is excluded in the current
model, because it neither contributes any meaningful dynamics
nor generates a sensor signal of interest.
Linearization of the elbow JMS model produces a two

DOF spring-mass assembly (Fig. 2) governed by two differ-
ential equations as follows:
mEL ẍEL = −kANT(xLC+xEL)−kθ xEL+kAG(xAG−xEL) (1)

mLCẍLC = kLC(xANT − xLC) − kANT(xLC + xEL). (2)

Positions for the elbow, load cell, antagonist input, and agonist
input are represented by variables xEL, xLC, xANT, and xAG,
respectively. Tensions in the load cell and antagonist are
represented by variables fM and fA , respectively. Load cell
and elbow inertia are described by parameters mLC and mEL,
respectively. Stiffnesses for the load cell, antagonist actuator,
agonist actuator, and FE angle dependent moment arms are
described by kLC, kANT, kAG, and kθ , respectively. In the
underlying nonlinear system, changes in FE angle can also
change the tendons’ angles of attack varying net moments
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even if tendon tensions are unchanged; this effect yields
the moment arm stiffness during linearization. The frequency
domain analysis of this linear spring-mass model illustrates
the dynamics of the elbow JMS’s AA pairing.

A. Single Actuator Assignment
One approach to controlling a single DOF AA pair is termed

“dedicated actuator assignment” or “dedicated control.” Within
a pair of actuators, one actuator is responsible for tendon
tension control and the other actuator is responsible for joint
position control. In performing its designated task without con-
sideration of the other actuator’s task, each actuator generates
a disturbance to the other control task. From a tension control
perspective, the agonist actuator is unused (3), so that (1) can
be simplified to (4)

xAG = 0 (3)

mEL ẍEL = −kANT(xLC + xEL)−kθ xEL − kAGxEL. (4)

B. Dual Actuator Assignments

Another approach to controlling a single DOF AA pair
is termed “decoupled actuator assignment” or “decoupled
control.” Decoupled feedback control, a common multivariable
control technique [29], spreads the task of reducing a joint
position error or tendon tension error across both actuators.
Decoupled feedback control results in an agonist and antago-
nist that move in some proportion to each other in response
to joint position or tendon tension errors. Were it not for kθ ,
the AA actuators, xANT and xAG, could change joint position
without affecting tendon tension by simply moving together
maintaining a constant displacement from each other. With
kθ present, xAG’s motion must be the sum of two parts: one
part matching the motions of xANT and a second part balancing
the tension in kθ . For tendon tension control, the AA actuators
move apart from each other in an assigned proportion (5).
This movement maintains the net moment on the elbow,
preventing a change in motion, while increasing or decreasing
the antagonist tendon tension. Equation (5) simplifies (1)
into (6)

xAG = αxANT (5)

mEL ẍEL = −kANT(xLC + xEL) − kθ xEL
+ kAG(αxANT − xEL). (6)

The decoupling gain α is chosen through consideration of
the system’s stiffnesses and moment arms so that reduction in
tendon tension error is possible without negatively affecting
joint position control. A constant gain decouples tendon ten-
sion control from joint position at low frequencies where the
system’s gain is closely approximated by the system’s dc gain.
This gain is only a portion of a fully decoupled approach
that also decouples joint position control from tendon tension
control. With this constant gain, either the AA pair can be
decoupled around the value of the angle at which the system
is linearized or the decoupling gain can be chosen as a function
of elbow orientation.
Although both actuators are responsible for tension control

in the decoupled approach, designated agonist and antagonist

remain because the control loop still requires a measure of
tendon tension for closure. It is assumed here that the tension
in the antagonist closes the tension control loop. This tension
source can be switched as a function of system states to the
benefit of the system’s performance [30].

III. TRANSFER FUNCTIONS AND THEIR APPROXIMATIONS

The relevant transfer functions of the dedicated and of the
decoupled tension control approaches result from application
of Cramer’s Rule to the system’s transfer function matrix (7),
which also yields the characteristic equation (8)⎡
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The three transfer functions of interest are: 1) tension con-
trol signal UF to measured tension, FM (9); 2) tension control
signal UF to applied tension, FA (10); and 3) tension control
signal UF to antagonist insertion position, XEL (11)
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UF

= kLC
[
mLCs

2(mELs
2 + kANT + kAG + kθ

)
+ kANT

(
mELs

2 + (1+ α)kAG + kθ
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+ αkANT kAGmLCs

2]/(s�) (10)
XEL
UF

= [
αkAG

(
mLCs

2+kLC+kANT
)−kLCkANT

]
/(s�). (11)

The tension control signal originates from a tension controller
connected to a comparator outputting tension error. Dedicated
control can be viewed as a limiting case of decoupled control
in which the decoupling gain α in (5) is zero, thereby reducing
the necessary number of transfer functions.
All three transfer functions (9)–(11) share the same char-

acteristic equation and poles, assuming no pole-zero can-
cellations. JMS’s operate in frequency ranges below those
in which the load cell’s inertial effects become important.
This frequency restriction and a load cell’s high relative
stiffness (12) simplify (8) into (13) showing that the low-
frequency pole pair is approximated by the natural frequency
ωLFP (14) of a subsystem [Fig. 3(a)] of the AA pair

kLC � mLCs
2, kANT (12)

� ≈ kLC
(
mELs

2 + kANT + kAG + kθ

)
(13)

ωLFP =
√
kANT + kAG + kθ

mEL
. (14)
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Fig. 3. Subsystems whose natural frequencies describe the locations of the FE
AA pair’s dynamics of interest. (a) Low-frequency pole. (b) Low-frequency
zero. (c) Mid-range zero.

The tension control to measured tension (9) and from
tension control to applied tension (10) transfer functions
share the same zero pair which is located at the natural
frequency ωLFZ (15) of the subsystem containing the elbow
mass, moment arm stiffness, and the agonist stiffness scaled
by the decoupling gain plus one [Fig. 3(b)]. The approximate
location of the zero pair can be made evident from (9) by
simplifying the numerator to (16), because the antagonist
stiffness dominates the load cell’s inertial effects (17) at low
frequencies. Similarly, the zero pair can be made evident
from (10) by simplifying the numerator to (16) because the
load cell’s stiffness dominates, at low frequencies, the inertial
effects of the load cell as scaled by the decoupling gain and
the linearized agonist stiffness (18)

ωLFZ =
√

(α + 1)kAG + kθ

mEL
(15)

Num

(
FM
UF

)
,Num

(
FA
UF

)

≈ kLCkANT
(
mELs

2 + (1+ α)kAG + kθ

)
(16)

kANT � mLCs
2 (17)

kLC � αkAGmLCs
2. (18)

The transfer function from tension control to measured
tension has an additional zero pair in the frequency range
where the elbow’s inertial effects dominate the effects of the
system’s stiffnesses, not including the load cell stiffness (19).
Inequality (19) simplifies the numerator of (9) to (20), showing
that the zero pair’s location is approximated by the natural fre-
quency ωMRZ (21) of the subsystem containing the antagonist

TABLE I

SIMULATION PARAMETERS

stiffness and the load cell mass [Fig. 3(c)]

mELs
2 � kANT, kAG, kθ (19)

Num

(
FM
UF

)
≈ kLCmELs

2(mLCs
2 + kANT

)
(20)

ωMRZ =
√
kANT
mLC

. (21)

The numerator of the transfer function from tension control
signal UF to elbow position XEL (11) can be simplified, due
to the large load cell stiffness relative to the load cell’s inertia
at low frequencies and to the system’s other stiffnesses (22),
to (23). Equation (23) shows the potential for decoupling ten-
sion control from joint position over low frequencies through
the tuning of α

kLC � mLCs
2, kANT (22)

Num

(
XEL
UF

)
≈ kLC(αkAG − kANT). (23)

Simple, system parameter combinations approximate frequen-
cies of a low-frequency pole pair (14), low-frequency zero
pair (15), and mid-range zero pair (21) of both the dedicated
and decoupled systems.

IV. MODEL VALIDATION

The dedicated and decoupled models were demonstrated
and validated on the AGH elbow JMS [4]. The experimen-
tal frequency responses were found through a stepped-sine
identification applied to a mechanical elbow. The parameters
populating the model are listed in Table I. The mechanical
elbow’s inertia was determined through its swinging period
and its damping ratio was calculated through the log decrement
of its free response. The load cell mass and individual mus-
cle (actuator) stiffnesses were found through individual identi-
fication procedures with the insertion end of the tendon (cable)
connected to a rigid support instead of the elbow. Although
ideal decoupling was calculated to be 0.625, the decoupling
constant was set to 1.5. This exacerbated the effects of the low-
frequency pole and low-frequency zero, making the models’
match or mismatch more evident. The system was excited with
frequencies between 1 and 80 Hz.
A direct comparison of the experimental identification to

the theoretical values in the transfer function magnitude of
tension control to measured tension (Figs. 4 and 5) validated
the analysis. The frequencies (14, 15, and 21) of the pole and
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Fig. 4. Dedicated control tendon tension frequency response. The model
agrees well with the experimentally identified location of the poles and zeros,
but underestimates the amount of damping. The model did not include any
damping of the mid-range zero.

zeros were reproduced very well, although the experimental
system showed greater damping than predicted. In both cases
the greatest error in predication was at the low-frequency
zero, which the model underestimated in the dedicated case
by approximately 1.2 Hz (11.2%) and in the decoupled case
by approximately 1 Hz (6.9%).

V. DISCUSSION

This brief compared dedicated and decoupled actuator
assignment, two methods for performing tendon tension con-
trol and joint position control on an AA actuator pairing.
Three open-loop transfer functions arising in the comparison
of the two control methods of tendon tension were derived,
simulated, identified, and compared: first, tension control
signal to measured antagonist tension (9), second, tension
control signal to applied antagonist tension (10), and, third,
tension control signal to antagonist insertion position (11). The
last transfer function was proportional to elbow position and
indicated the amount of coupling between tension control and
elbow position. A frequency response analysis showed that
both methods have a low-frequency pole pair, a low-frequency
zero pair, and a mid-range zero pair. The load cell’s poles
were omitted from the analysis because their high frequency
precluded them from effecting system behavior.
The low-frequency pole pair appeared at the same frequency

in all three open-loop transfer functions for both dedicated
and decoupled control. Its frequency was dictated by the
elbow’s mass and the antagonist stiffness, agonist stiffness, and
moment arm stiffness. This restoring stiffness was a function

Fig. 5. Decoupled control tendon tension frequency response. Again,
the model agrees well with the experimentally identified location of the poles
and zeros, but underestimates the damping. The model did not include any
damping of the mid-range zero.

of elbow angle and depended on the operating point about
which linearization took place.
Theoretically, perfect decoupling would have completely

hidden this pole pair in the decoupled tension control equa-
tions because the agonist and antagonist would apply equal
moments to both sides of the elbow, varying the antagonist
tension without changing the elbow’s position. Uncertainty in
stiffnesses, moment arms, and a dependence on elbow posi-
tion made perfect decoupling unrealistic. However, the model
showed that even reasonably good decoupling would have
significantly reduced the pole pair’s effect by bringing the
low-frequency zero pair into closer proximity of the pole pair,
where their effects would offset extending the tension control
bandwidth by making the frequency response more like that of
the ideal velocity source connected to a stiffness alone (Fig. 6).
The low-frequency zero pair appeared in both the measured

and applied tension transfer functions for both the dedicated
and decoupled approaches. This zero pair was fundamentally
limiting because it appeared in the applied tendon tension
transfer function: the goal of tension control, to apply a
commanded tension, was diminished at these frequencies.
The low-frequency zero pair’s location depended on the

choice of dedicated or decoupled actuation. The decoupled
approach benefits were clear: the frequency at which this zero
pair appeared (15) was higher in the decoupled case than
in the dedicated case and the decoupled case could reduce
the effect of the zero pair on the frequency response as a
function of the quality of the decoupling. Thus, the decoupled
tension control had the potential for a greater bandwidth than
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Fig. 6. Tension control to applied tension for a decoupled system as a function
of different decoupling gains. For the given system, perfect decoupling of
tendon tension control from joint position occurs for a decoupling gain of
approximately 0.625. As decoupling gains approach this ideal value from
above, from below would be true as well, the effects of the low-frequency pole
offset the effects of the low-frequency zero. For reasonably good cancellation,
the tension control bandwidth is extended beyond that of the dedicated
controller.

dedicated control. Accurate tuning of the decoupling gain
could put the low-frequency pole pair and low-frequency zero
pair in close proximity, nearly canceling their effects and
extending the tension control bandwidth (Fig. 6).
In the dedicated control case, the low-frequency zero pair’s

location was approximated by the natural frequency of a
subsystem consisting of the elbow inertia, linearized agonist
stiffness, and linearized rotational stiffness (15 with α = 0).
When the antagonist actuator was driven at the subsystem’s
natural frequency, the ideal subsystem had zero impedance.
No supply of energy, beyond the small amount dissipated by
the damping, was needed to excite or maintain oscillations
at this frequency, meaning that no application of force to
the mass was needed. This absence of force because of the
subsystem’s zero impedance manifested itself as a zero in
the applied tension transfer function. The measured tension
transfer function had a similar zero. If no force transmission
through the agonist stiffness was needed to make the system
move with the actuator, then no force need be transmitted
through the load cell at that frequency either.
In the decoupled control case, the low-frequency zero

pair’s location was approximated by the natural frequency
of a subsystem composed of the elbow inertia, the linearized
agonist stiffness scaled by one plus the decoupling gain, and
the moment arm stiffness. A frequency difference of this zero
pair between the dedicated and decoupled control cases arose

because of motion of the agonist actuator in the decoupled
case. The same zero impedance argument explains why no
force was transmitted across the load cell or antagonist stiff-
ness in the undamped case: no force was necessary to keep the
subsystem moving in phase with the antagonist actuator when
the antagonist actuator was driven at the natural frequency of
the subsystem. Because the elbow mass and antagonist actua-
tor were in phase and the antagonist actuator and the agonist
actuator were controlled to be 180° out of phase, the agonist
actuator and the elbow mass were necessarily 180° out of
phase. Additionally, because the elbow mass and antagonist
actuator had the same motion magnitude and the antagonist
actuator and agonist actuator had motion magnitudes related
by the decoupling gain, the agonist actuator and elbow mass
also had magnitudes related by the decoupling gain, α. The
180° phase difference with a fixed magnitude relationship
between the agonist actuator and elbow mass effectively put a
node into the agonist stiffness, dividing it into two parts. The
part of the stiffness on the mass side of the node translated in
the same direction as the mass, while the part of the stiffness
on the actuator side translated in the same direction as the
actuator. This node acted to shorten the spring, increasing
the natural frequency of the system in Fig. 3(b) and thereby
moving the zero pair to higher frequency. The movement of
this node toward the agonist actuator as the decoupling gain
went to zero shows that the dedicated case is a limiting form
of the decoupled case.
Jacobsen et al. [25] applied the dedicated approach

described in this brief but did not describe the fre-
quency response or the origins of their system’s dynamics.
Potkonjak et al. [28] decoupled an AA system to remove
interactions, but focused more on the switching of AA roles
and closed loop performance than the origins of the open-loop
frequency response. Palli et al. [26] and Sardelletti et al. [27]
applied a decoupled approach in a robotics application. Both
authors included joint stiffness as one of the control tasks.
Joint stiffness is of interest in robotics where the robot’s
interaction with the environment is important, an issue so
far not considered with JMSs. In both robotics applications,
the frequency response was still not described.
The system dominated by low-frequency pole and zero pairs

also includes a mid-range zero pair that interferes with accu-
rate tension measurements. The mid-range zero pair appeared
at the natural frequency of the subsystem defined by the load
cell mass and the antagonist stiffness, the impedance of this
subsystem was zero and no force was needed across the load
cell’s stiffness to make it translate with the antagonist actuator.
The elbow mass no longer had an effect because its inertia
essentially made it a rigid support at this frequency. This zero
pair appeared in the measured tension transfer function only
and thus limited system performance because it manifested as
an error in tendon tension measurement. The applied tension
transfer function showed no mid-range zeros, so although no
tendon tension was measured, a force was applied to the elbow
at that zero pair’s frequency. Similar problems have arisen in
robotic force control problems. Eppinger and Seering [31] and
Colgate and Hogan [32] described instabilities arising from
the separation of force application and force measurement.
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Fig. 7. Joint position frequency response due to tension control as a function
of different decoupling gains. For the given system, perfect decoupling of
tendon tension control from joint position occurs for a decoupling gain of
approximately 0.625. As decoupling gains approach this ideal value from
above or below, the magnitude of joint motion due to tension control drops.

A similar problem arose in the current research because
the separation between the locations of tension measurement
and of the tension application. This separation created the
possibility of overcompensation by a controller functioning on
an underestimate (measured tension) of the applied tension.
The transfer functions from tension control signal to elbow

position showed that the decoupled controller’s low-frequency
gain was dictated by the decoupling gain (Fig. 7). As the
stiffness difference on either side of the mass increased,
the decoupling gain slowed the velocity input to a stiffer
side or sped up the velocity input to a more compliant side in
order to maintain the same force application to each side of the
elbow mass. The decoupled controller thereby prevented elbow
movement due to tension control action, which the dedicated
case could not do. Reduction of interaction in the dedicated
case was possible only through the increase of the agonist
stiffness. With higher agonist stiffness, changes in antagonist
tension due to tendon tension control caused less displacement
of the mass. This approach, however, is ineffective in cases
where AA roles switch throughout a trial [25], [28], [30].
The AA system can also be viewed as the combina-

tion of two serial elastic actuators (SEAs) as described by
Pratt and Williamson [33]. Pratt and Williamson’s SEAs pro-
vide more stable force control than a stiffer system, but come
with the drawback of larger actuator displacements. Similarly,
more antagonist compliance makes antagonist tension control
more stable, but also hinders elbow position control because
the elbow’s natural frequency drops and a given change

in force applied to the elbow requires a greater actuator
movement.
This brief studied open loop, tendon tension control dynam-

ics as a means to understand the fundamental limitations
encountered in JMS control. Joint position control was
included only insofar as position was disturbed by tendon ten-
sion control. Additional analysis of the two methods applied to
joint position control would make their benefits and drawbacks
clearer. Additionally, the system was only studied for FE at
one angle. Although testing at numerous angles in both FE and
PS would go further to validate the model, the quality of the
agreement between model and identification demonstrates the
model’s usefulness. A nonlinear approach or the inclusion of
additional dynamics, such as the drive and motor dynamics,
may add accuracy to the model’s behavior, but reduce clarity
in the sources of the dynamics.

VI. CONCLUSION

Through a comparison of open-loop dynamics, this brief
showed a decoupled approach to tendon tension control of
a joint motion simulator’s AA actuator pair was superior
to a dedicated approach. The decoupled approach controlled
tendon tension over a larger bandwidth and interacted less with
joint position control. The sources of the open-loop dynamics
were explained through models validated with the frequency
domain identification of an elbow JMS’s FE DOF.
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