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Abstract

A nonlinear control algorithm is proposed that greatly reduces settling time in precision instruments

with rolling element bearings. Reductions of 80.5–87.4% in settling time were achieved when settling to

within 3–100 nm of the commanded position. Final settling of such systems is typically impacted by the

nonlinearity in the pre-rolling friction regime, which manifests as a hysteretic stiffness. Consequently,

the integral term in the controller can take a long time to respond. In this work, the Nonlinear Integral

Action Settling Algorithm (NIASA) is presented. The nonlinear integral gain takes the form of a Dahl

friction model. Since the integral gain mimics hysteretic stiffness, the output of the integral control

term is instantaneously set to a large value after each direction change, greatly improving settling

response. A nearly first order error dynamic results, which has a user-definable time constant. Before

the algorithm can be implemented, the Coulomb friction and initial contact stiffness in the Dahl model

must be experimentally determined for the stage. A sensitivity study was performed on the initial contact

stiffness, which was found in other works to dictate stability of the algorithm [1, 2].

I. INTRODUCTION

Rapid point-to-point motion of a servo mechanism has obvious industrial applications. In

these systems, the objective is to move as quickly as possible from one location to the next

with no concern for the particular motion profile used. Many such mechanisms contain rolling

element bearings, given their low cost and generally good performance. As industrial processes
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Fig. 1. Comparison of an actual servo step response error with the prediction by a linear model for a 100 micrometer step.

begin to require nanometer tolerances, the settling time of a servo after a step motion has

significant impact on process throughput. For the large-amplitude servo motion, linear systems

theory works quite well to predict and achieve performance for servos with rolling contacts.

However, when nanometer precision is desired, the nonlinearity of pre-rolling friction tends to

dominate the system response and the conventional linear methods no longer provide an accurate

approximation of the system. An example of this phenomenon is illustrated through figures 1

and 2. In figure 1 a basic linear model appears to capture the majority of a servo’s response

to a 100 µm step input with a reasonable degree of accuracy. However, if figure 1 is scaled

to show only the final micrometer of settling, as shown in figure 2, it is clear that the linear

model does not describe the servo behavior throughout the entire settling process. Thus, nonlinear

friction must be considered if an accurate description of the entire servo settling process is to

be constructed.

Another accepted method of friction compensation is the friction observer[3, 4]. The friction

observer uses measured states of the system and passes them through a model of the friction

process to estimate the true friction process. This estimate is used to construct a signal to exactly
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Fig. 2. Comparison of an actual servo step response with the prediction by a linear model re-scaled to focus on the final
micrometer of settling.

cancel the frictional process, leaving only the inertial dynamics of the servo. Several studies

have shown the ability to improve servo tracking performance with use of friction observers

[3, 5, 6, 7, 8, 9, 10, 11, 12]. However, some of these same experimental studies have shown the

friction observer to offer little or no increase in point-to-point servo performance [5, 6]. It has

even been stated that it is possible that the friction observer can actually degrade point-to-point

performance in some cases[6].

For the point-to-point motion problem, the main issue with the friction observer is that most

analysis is based on the assumption that the true friction process can be perfectly captured by

the friction model. However, constructing a perfect model of the friction process that globally

describes a real servo mechanism is an impractical task. Differences between the modeled

friction process and the true friction process can lead to undesirable system characteristics,

such as, system instability and extended servo settling times[6]. Adaptive extensions to friction

observers have been developed [6, 13, 14]. However, these efforts are not particularly concerned

with the rate at which the model of the frictional process converges to the true process and
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it appears that the methods take at least several seconds to converge (much longer than the

settling process). Additionally, these efforts tend to focus on tracking sinusoids which, could be

considered repetitive in nature. From the authors’ experience, repetitive servo motion, on a time

scale of seconds to minutes, tends to cause the frictional characteristics of the servo to settle

into a somewhat predictable pattern. Thus, it is not surprising that an adaptive method would be

likely to perform well for these problems.

This work will present a nonlinear control method that is based on a Dahl friction model. It will

begin with an overview of pre-rolling friction and modeling in section II, followed by an analysis

of the settling process in Section III. Next, the Nonlinear Integral Action Settling Algorithm

(NIASA) will be presented in Section IV. Finally, simulation (Section V) and experimental

results (Section VI) are presented, followed by the Conclusions in Section VII.

II. PRE-ROLLING FRICTION

The classical Coulomb friction model approximates friction as

Fr = µFN sgn ẋ, (1)

where Fr is the force of friction, µ is the coefficient of kinetic friction, FN is the normal force at

the contact, and ẋ represents the relative velocity of the surfaces at the contact. When a velocity

reversal occurs, this model predicts that the force of friction will instantly change direction while

preserving the same magnitude. While this description is sufficient for large scale approximations,

on the sub-micrometer length scale, the force of friction has been observed to have a gradual

transition between opposing levels of Coulomb friction at velocity reversal[15]. The friction

dynamics that occur at this time are known as pre-rolling behavior. More advanced friction

models are required in this case.

The Dahl model is the simplest of the more advanced friction models, which are capable of

capturing pre-rolling behavior[15]. It is expressed in differential form as:

dFr
dx

= σ

(
1− Fr

FC
sgn ẋ

)i
, (2)

where σ is the initial contact stiffness, FC is the apparent level of Coulomb friction, and i is a

shape factor, typically set to i = 1. Figure 3 shows the response of this model to an example

displacement signal. As seen in figure 3, the response of the Dahl model does capture the general
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Fig. 3. Example of the type of response seen from Dahl’s friction model in terms of force versus displacement.

hysteretic stiffness. Given that the proposed method of control does not require a high fidelity

hysteresis model, it will be used to describe the force of friction in this work.

III. ANALYSIS OF THE SETTLING PROCESS

Before designing a control algorithm to address the servo settling problem, it is necessary

to study the forces acting on the system during settling. The simple equation of motion for a

controlled servo subject to friction is

mẍ+ Fr = u (t) , (3)

where m is the mass or inertial component, Fr is the friction process, and u (t) is the control

signal. This simplified equation assumes that the electrical dynamics of the servo and the

contribution of the viscous damping are negligible. For this work, all of these assumptions are

true and the only significant system dynamics are inertial and frictional. Since the input, u (t),

and the moving mass of the system, m, are known, and the acceleration, ẍ can be measured, it

is possible to separate the inertial and frictional components of the system response.
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For example, this analysis is performed on data gathered from an ALS-130-H linear stage made

by Aerotech Inc. Figure 4 shows a typical “move-and-settle” motion profile for a displacement

change of 5 mm. This work is concerned with the settling portion, after the displacement

command ends. In figure 5 the input force, the response from the inertial component, and the

response from the frictional component are all presented versus time. In figure 5, the vertical line

at 154 ms indicates the time when the commanded motion profile ends. The vertical line at 342

ms indicates the time when the servo has settled to the goal of ±3 nm of the commanded position.

When examining the data in figure 5 before the 154 ms mark, significant inertial response is

observed. This is expected because, during this time the servo is commanded to rapidly accelerate

and decelerate. Also, during the gross motion of the servo, the frictional response appears as a

nearly constant drag on the system. Although it does not have the ideal qualities of a theoretical

representation, (a constant frictional force while moving in one direction), it does resemble the

expected action of Coulomb friction. The time between 154 ms and 342 ms is the settling phase

of the step and settle process. An interesting observation from this phase is that the inertial

response of the system appears to be very small while the frictional response is dominant. This

leads to a key proposition: during servo settling, there will be a point where the system response

will be almost exclusively frictional and the inertial response of the servo will be insignificant.

For this servo study, the proposition seems to take effect as soon as the commanded motion

profile ends. For other servos or other motion profiles, this may not be the case, for example

motion trajectories with large instantaneous accelerations or systems with very low friction, but

as the servo settles, the proposition will eventually hold.

Continuing the study of the servo settling, the position error data from the step motion is

plotted versus the input force and force of friction in figure 6. The partial loop structure, seen

in figure 6, also suggests that the system response has characteristics that could be captured

by a parameterization of the Dahl model. In fact, other work by the authors show that this

behavior can be used to identify friction in servo mechanisms [1, 2]. In light of the previous

observation that friction can dominate the servo response, for now, let it be assumed that the

sufficient governing equation for the controlled plant during settling is

Fr = u (t) , (4)
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Fig. 4. This plot shows the commanded displacement, commanded velocity, and the commanded acceleration for a typical 5
mm move-and-settle operation for the servo.
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Fig. 6. This figure presents force versus displacement data from the settling portion of step motion shown in figure 5.

where Fr is a parameterization of the Dahl model and u (t) is the control signal. Although there

are cases for which this approximation will not be valid, it will be shown later that it is realistic

and useful.

IV. FORMULATING THE NIASA CONTROL LAW

In the following section, the proposed servo settling algorithm is detailed, followed by a

description of the resulting error dynamics equations and consideration of uncertainty in the

friction process.

A. Linear PI Control Formulation

The linear PID control law will be developed first. Its performance will be contrasted to the

proposed algorithm. As stated earlier, the approximate plant during final servo settling is simply

the frictional process (equation 4), which will be used for the initial control development. In the

regime that we are most interested in, the dynamics of the forces that relate to friction dwarf

those related to inertia, and thus the inertia is neglected. Once the massless approximation is
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used to derive the controller, an analysis that includes the inertial response of the servo will

follow.

Let the position error signal be defined as

e(t) = r(t)− x(t), (5)

where r(t) is the position reference. Since the reference signal is constant during the settling

process,

ė(t) = −ẋ(t). (6)

Integral control of the plant can be expressed as

Fr (x) = u (t) =

∫ t

0

kIe (t) dt, (7)

where kI is the integral gain. Most often the constant kI would appear before the integral but,

in the current case, is shown inside the integral for later purposes. To achieve a more convenient

form equation 7 can be differentiated with respect to time yielding,

dFr
dt

=
dFr
dx

dx

dt
= kIe. (8)

This gives the error dynamics equation of

dFr
dx

ė+ kIe = 0, (9)

or

ė = − kI
dFr

dx

e. (10)

Since kI > 0 and dFr

dx
always has the same sign as the direction of motion the approximate

system is stable but nonlinear. Extending the concept of integral control to PI control leads to

the error dynamics equation of (
dFr
dx

+ kP

)
ė+ kIe = 0, (11)

or

ė = − kI
dFr

dx
+ kP

e, (12)
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where kP is a proportional gain. An interesting observation from equation 12 is that if kP were

to become much larger than dFr

dx
, the contribution of the nonlinearity to the system response

will be minimized. This case is an example of linearizing a system with high gain feedback. In

practice, the gain kP is limited due to uncertainties in the plant and required levels of robustness

of the controller.

B. Nonlinear Control Algorithm

This section presents a practical method of producing a linearized response from the nonlinear

closed loop plant. Considering the case of PI control, suppose that kI is not a constant, instead,

it is defined by the function

kI(x) =
1

τd

(
dFr
dx

+ kP

)
, (13)

where τd is a design time constant, which controls the rate of decay for the error (theoretically a

first order error dynamic). This method will be referred to as the Nonlinear Integral Action

Settling Algorithm (NIASA). This nonlinear integral gain is instantaneously set to a large

value with each direction change, but asymptotically levels off after a short distance, similar

to the Dahl model in Figure 3. Although the NIASA is on all the time, it largely only affects

settling performance, which is characterized by multiple direction changes. Applying this result

to equation 12 leads to linear first order error dynamics of

ė = − 1

τd
e. (14)

The result seen in equation 14 is favorable from a theoretical perspective. However, there

are two important issues that need to be addressed. First is robustness; this result implies that

the model of the friction process exactly matches the true friction process. A more realistic

interpretation of the error dynamics in equation 14 would be

ė = − 1

τd

dF̂r

dx
+ kP

dFr

dx
+ kP

e. (15)

where dF̂r

dx
denotes the nominal differential model of the friction process. Second is the small

inertia assumption; the plant under consideration is still an approximation of the true plant and

the inertial response of the servo is not considered. It appears that the massless approximation is

valid under low acceleration conditions but, it is clear that it would not be valid under conditions
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with greater accelerations (perhaps ẍ ≥ Fr/10m in equation 3). A more accurate representation

of the servo error dynamics is

m
...
e + kDë+

(
dFr
dx

+ kP

)
ė+

1

τd

(
dF̂r
dx

+ kP

)
e = 0, (16)

where m is the mass or moment of inertia of the servo and kD is a derivative gain. The values

for kD and kP come from a conventional linear PID tuning of the servo.

Thus, considering equation 13 and using the approximation of equation 2 that will be covered

later, the proposed nonlinear PID control law is stated as

u (t) =
1

τd

∫ t

0

(
dF̂r
dx

+ kP

)
e (t) dt+ kP e (t) + kDė (t) , (17)

When considering control of the massless approximate plant, the control law is the same as

equation 17, except kD = 0.

C. Development of Error Dynamics Equations

To study the behavior of the proposed NIASA method a realistic test scenario is to be

constructed. This section aims to first, describe how the equations are to be set up to analyze

this problem. Then, the nature of the test and how it relates to the actual servo settling problem

are discussed.

1) Expressing the Friction Model in terms of Position Error: The Dahl model contains the

sign function which complicates analysis. To deal with this, the Dahl model, with i = 1, is

considered as two functions, one for motion in the positive direction

dFr
dx

(+)

= σ

(
1− Fr

FC

)
, (18)

and the other for motion in the negative direction

dFr
dx

(−)

= σ

(
1 +

Fr
FC

)
. (19)

Equations 18 and 19 can be separated and integrated to yield

Fr (x)
(+) = FC − (FC − F0) exp

(
− σ

FC
(x− x0)

)
, (20)
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and

Fr (x)
(−) = −FC + (FC + F0) exp

(
σ

FC
(x− x0)

)
, (21)

where F0 is the initial condition of the force of friction and x0 is the initial condition on

displacement. When simulating the frictional process, one switches between these two equations

based on the direction of motion. The initial conditions seen in equations 20 and 21 come from

the final states of the previous equation when a velocity reversal occurs. If the system has been

traveling in one direction for a sufficient amount of time, F0 would be the corresponding level

of Coulomb friction. If you did not exit the pre-rolling regime, (very small step), F0 would be

whatever value is predicted by the friction model. It is interesting to note that the NIASA method

does not require extremely accurate modeling of the friction state to achieve favorable results,

as will be discussed in more detail later in the paper. Equations 20 and 21 can be differentiated

with respect to x to yield

dFr
dx

(+)

= σ
FC − F0

FC
exp

(
− σ

FC
(x− x0)

)
, (22)

and
dFr
dx

(−)

= σ
FC + F0

FC
exp

(
σ

FC
(x− x0)

)
. (23)

Since e = r − x, the initial conditions can be expressed as

e0 = r0 − x0. (24)

Since it is desired to study servo behavior during settling, where the position reference signal is

no longer changing, let r = r0 =constant. Equations 20 through 23 can now be reexpressed in

terms of position error as

F (e)(+) = FC − (FC − F0) exp

(
− σ

FC
(−e+ e0)

)
, (25)

F (e)(−) = −FC + (FC + F0) exp

(
σ

FC
(−e+ e0)

)
, (26)

dFr
dx

(+)

= σ
FC − F0

FC
exp

(
− σ

FC
(−e+ e0)

)
, (27)
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and
dFr
dx

(−)

= σ
FC + F0

FC
exp

(
σ

FC
(−e+ e0)

)
. (28)

Thus, the friction model can be expressed in terms of position error alone.

2) Consideration of Uncertainty: One of the greatest difficulties in friction modeling and

compensation is that the friction model, no matter how complex, is never able to capture all of the

frictional behavior at all times. To study the effects of modeling error on the NIASA compensator

in the most relevant, yet easily presentable way, uncertainty of the initial contact stiffness

parameter, σ, will be considered since it was found to govern the stability of the algorithm [1, 2].

In experimental studies (while keeping operating conditions reasonably constant), variations of

nearly a factor of four in the initial contact stiffness parameter have been measured for a single

precision servo [2]. The variation in σ was observed while running the experiments for a number

of trials, holding most environmental variables reasonably constant. It is prohibitive to include

all the factors that can cause variations in friction. Even under relatively constant environmental

conditions, frictional parameters can be identified only within some range and thus the control

must be designed to operate effectively across this range of parametric variation.

Let a multiplicative uncertainty of the initial contact stiffness be considered as

σ∗ = σ (1 + δ) , (29)

where δ is an uncertainty parameter. The reader is referred to other references regarding experi-

mental methods to identify the friction parameters [1, 2]. In experimental observations using the

Aerotech ALS-130-H linear stage, the initial contact stiffness of the servo under test showed a

mean value near 8 N/µm with a minimum value of 4 N/µm and a maximum value of 16 N/µm.

If the nominal value of the initial contact stiffness is set to the observed mean value of 8 N/µm,

this leads to the parametric uncertainty being bounded as

−0.5 ≤ δ ≤ 1. (30)

Equations 25 through 28 are modified to become

F (e)(+) = FC − (FC − F0) exp

(
−σ (1 + δ)

FC
(−e+ e0)

)
, (31)
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F (e)(−) = −FC + (FC + F0) exp

(
σ (1 + δ)

FC
(−e+ e0)

)
, (32)

dFr
dx

(+)

= σ (1 + δ)
FC − F0

FC
exp

(
−σ (1 + δ)

FC
(−e+ e0)

)
, (33)

and
dFr
dx

(−)

= σ (1 + δ)
FC + F0

FC
exp

(
σ (1 + δ)

FC
(−e+ e0)

)
. (34)

3) Equations of Error Dynamics Considering Uncertainty: With the results of the previous

subsections, frictional dynamics of servo settling can now be expressed in terms of position error.

Also, a means to consider friction model error has been developed. These results can now be

used to study the error dynamics described by the massless approximation shown in equation 15

and the case considering mass shown in equation 16. Equations 15 and 16 contain the term dF̂r

dx

which refers to the nominal model of the friction process. In the context of this discussion, this

corresponds to the case where δ = 0. Thus, the error dynamics for the massless approximation

can be expressed as

ė = − 1

τd

σ FC−F̂0

FC
exp

(
− σ
FC

(−e+ e0)
)
+ kP

σ (1 + δ) FC−F0

FC
exp

(
−σ(1+δ)

FC
(−e+ e0)

)
+ kP

e, (35)

for motion in the positive direction and

ė = − 1

τd

σ FC+F̂0

FC
exp

(
σ
FC

(−e+ e0)
)
+ kP

σ (1 + δ) FC+F0

FC
exp

(
σ(1+δ)
FC

(−e+ e0)
)
+ kP

e, (36)

for motion in the negative direction. The initial force condition for the model of the friction

process, F̂0, has the hat because the model of the friction process may not have the same initial

force condition as the true friction process. It can be shown through a Lyapunov analysis that

the robust stability condition for the massless case is −1 < δ <∞ which is in agreement with

equation (30). Similarly, the error dynamics equation when considering mass and motion is in
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the positive direction is

m
...
e + kDë+

(
σ (1 + δ)

FC − F0

FC
exp

(
−σ (1 + δ)

FC
(−e+ e0)

)
+ kP

)
ė+

+
1

τd

(
σ
FC − F̂0

FC
exp

(
− σ

FC
(−e+ e0)

)
+ kP

)
e = 0,

(37)

and for motion in the negative direction is

m
...
e + kDë+

(
σ (1 + δ)

FC + F0

FC
exp

(
σ (1 + δ)

FC
(−e+ e0)

)
+ kP

)
ė+

+
1

τd

(
σ
FC + F̂0

FC
exp

(
σ

FC
(−e+ e0)

)
+ kP

)
e = 0.

(38)

With a pair of error dynamics equations developed for the massless approximation and an

approximation including the mass of the servo, it is now necessary to discuss switching between

the equations (at velocity reversal) in each pair and applying the proper initial conditions. To find

the new force initial condition, either equation 31 or equation 32 (depending on the direction

of motion before the velocity reversal) is solved using the original force initial condition, F0,

the original position error initial condition, e0, and the value of e is set to the position error

at the most recent velocity reversal. The resulting value of F (e) becomes the new force initial

condition. As previously mentioned, the modeled value of F̂0 may be different from F0 in the

true friction process. Thus, these parameters must be solved separately and using the proper

values for δ.

V. SIMULATION

In this section, we study the behavior of a servo system using the NIASA control law using

numerical simulation. The aim of this test is to simulate servo behavior in the final stage of

ultra-precision settling, since this is where the slowing of the settling process appears most

dramatic. The simulations will start from rest at a distance of 62.5 nm from the target location.

The parameters used in the simulation are chosen from the estimated physical parameters and

factory PID gains from an actual precision linear stage. Table I gives the parameters used in the

June 20, 2012 DRAFT



16

TABLE I
PARAMETERS USED IN THE SETTLING SIMULATIONS.

Parameter Value
m 1.5 kg
σ̂ 8 N/µm
FC 1 N
kP 0.8 N/µm
kD 8.50 ×10−4 Ns/µm
τd 4 ms
σ [4 N/µm, 16 N/µm]
δ [-0.5, 1]
e0 62.5 nm
ė0 0
ë0 0...
e0 0
F0 0 N
F̂0 0 N

simulations.

A. Simulation Results With and Without Mass

Simulations of the massless system (eqs. 35 and 36) and the system including mass (eqs. 37

and 38) were conducted in MATLAB, using a 4th order Runge-Kutta method. Time constants

of τd = 4 and 10 ms were simulated. The τd = 10 ms case provided little difference between

the case with and without the mass, so the more aggressive design time constant was chosen.

Figure 7 shows the results of simulating the massless approximation for δ = {−0.5, 0, 0.5, 1}.

Figure 8 shows the results of the simulation including the mass of the servo for the same values

of δ. The ideal response is also included in Figure 8 for comparison. Incidentally, the δ = 0

case in Figure 7 is identical to the ideal response. The most encouraging observation from

figures 7 and 8 is that all of the simulations appear to be converging to zero steady state error

in a similar amount of time in spite of the uncertainty of the initial contact stiffness parameter.

When comparing figures 7 and 8 it is apparent that the massless approximation does provide a

reasonable estimate of how the system will behave when mass is considered. This would suggest

that the concept of the NIASA compensator developed in the massless approximation translate

into a more realistic interpretation of servo motion which includes mass. The only significant
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Fig. 7. Settling results of the massless closed loop simulations of NIASA compensator for δ = {−0.5, 0, 0.5, 1} and τd = 4
ms.
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Fig. 8. Settling results of the closed loop simulations of the NIASA compensator including the mass of the servo for δ =
{−0.5, 0, 0.5, 1} and τd = 4 ms. (To be compared with the massless simulations shown in figure 7.)
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difference is seen in the case where δ = −0.5, the case where the actual initial contact stiffness is

50% less than the modeled initial contact stiffness. In this case, the massless simulation predicts

increased settling rate but, the simulation including mass shows significant ringing, which leads

to a decrease in settling rate. This ringing is due to a combination of increased inertial response

due to the aggressive design time constant, τd, and the over estimation of the initial contact

stiffness parameter. Since both of these parameters enter the error dynamics equations at nearly

the same point, their respective effects can be difficult to separate. This effect is analogous to a

reduction in damping seen in a second-order linear system, under PID control, when the integral

gain may be set too high.

The key concepts to be taken from examining these simulations are not really related to the

specific numerical values produced by the simulations. Rather, it has been shown that approxi-

mating a servo as only the frictional process is valid under certain circumstances. Control of this

nonlinear approximate plant can be formulated to yield a nearly linear response (equation 14),

even in the presence of parametric uncertainty. Finally, it is seen that utilizing the approximate

plant and the NIASA compensator appears to provide a method of quickly driving the servo to

zero steady state error even when the inertial dynamics are considered.

VI. EXPERIMENTAL RESULTS

The simulation results presented in the previous section are promising. A brief experimental

study of the proposed NIASA compensator was conducted on a ALS-130-H precision servo

by Aerotech, Inc. Figure 9 shows a picture of the precision servo stage which has 100 mm

of linear travel and an encoder resolution of 61 pm. Linear crossed roller bearings support the

carriage, which has a moving mass of 1.8 kg. The stage is driven by an NDrive ML Linear

Controller/Drive by Aerotech. This gives a servo sampling rate of 8 kHz. Equations 17, 27,

and 28 were used to implement the algorithm. Each trial consisted of 250 instances of 5 mm

steps, using the motion profile described in figure 4. Since the algorithm was designed to take

into account realistic conditions, the steps do not all start or stop in the same location. The stage

was simply commanded to move up and down the range of travel of the device. The first trial

was conducted with the factory tuned PID controller and the second was conducted using the

same PID tuning combined with the NIASA compensator. The factory tuning was judged as

acceptable by an experienced control system engineer and thus, provides a useful benchmark
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Fig. 9. Aerotech, Inc. ALS-130 Stage used for experimental demonstrations

for system performance. In interest of avoiding the undesirable oscillations seen in some of the

simulations with the more aggressive parameterization of the NIASA compensator, the slightly

less aggressive values of σ̂ = 4 N/µm and τd = 10 ms were used. The system was observed to

have a mean value of Coulomb friction of 0.62 N. Since FC doesn’t have to be exact, a value

of FC = 0.6 N was used in the algorithm [1, 2].

Figure 10 shows the mean settling times, to tolerances between ±3 nm and ±100 nm, for the

PID controller and the PID controller combined with the NIASA compensator. The dashed lines

indicate one standard deviation from the mean value. Across all settling tolerances, the addition

of the NIASA compensator is able to reduce the servo settling time by between 80.5% to 87.4%.

It is very encouraging that such significant improvement in servo settling performance can be

accomplished with the addition of this algorithm to the PID controller however, examination of

the position error signal is desirable to confirm the validity of the theory behind the NIASA

compensator. Figure 11 shows typical series of position error versus time, during settling, for

the PID, PID+NIASA, and a representation of ideal settling (equation 14), based on τd = 10 ms.

As seen in figure 11, the PID controller tends to over shoot the target location several times and
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Fig. 10. Experimental settling performance for the PID controller and the same PID controller combined with the NIASA
compensator.

spend a significant amount of time reversing direction to make another approach at the target

location. This waveform appears very similar to that seen in figure 2 as the consequences of

pre-rolling friction were being introduced. The time series for the PID+NIASA controller shows

significantly faster settling, as compared to the PID controller by itself. It also does not have the

issue with over shooting of the target location. Most interestingly, the PID controller combined

with the NIASA compensator appears to converge to the target location with a trajectory quite

similar to the ideal response that used the massless approximation.

VII. CONCLUSION

When considering rapid point-to-point motion, where nanometer level precision is required,

most conventional methods of friction compensation, (feedforward methods and friction ob-

servers), are not able to address the issues that pre-rolling friction causes in a way that makes

a useful impact on servo settling performance. Using the observation that the final phase of

servo settling tends to be dominated by pre-rolling friction, control for this approximate plant is

proposed in the form of the Nonlinear Integral Action Settling Algorithm (NIASA). The design
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Fig. 11. This plot compares the typical settling behavior after a 5 mm step motion using only PID control and the same PID
controller now combined with the NIASA compensator with τd =10 ms.

of the NIASA compensator is done with consideration that friction can be an uncertain process

(limiting the usefulness of feedforward and observer based control approaches). The simulations

done in this study show the NIASA compensator being able to drive the servo to zero steady

state error at similar rates even though there is significant difference between the modeled and

true frictional parameters. Also, similar results can be achieved when the mass of the servo is

considered or the servo is approximated as massless. Finally, an experimental study shows that

the NIASA compensator is able to offer increased servo settling performance, by between 80.5%

and 87.4%, and that the concepts developed in the massless approximation of the servo appear

to translate into actual practice.
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