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FLYING CAPACITOR MULTILEVEL FLYBACK CONVERTER 
 
 

Santino Fiorello Graziani, M.S. 
 
 

University of Pittsburgh, 2018 
 
 
 
 
 
 

This work presents the development of a Flying Capacitor Multilevel Flyback Converter 

(FCMFC) that provides easily scalable peak output voltage for pulsed power. Based on a 

combination of the flyback and flying capacitor multilevel (FCML) boost converter topologies, 

the FCMFC achieves faster slew rates and peak power than previous pulsed power converters. 

The new converter improves on the conversion ratio of the flyback converter by a multiple of the 

number of switched-diode-capacitor (SDC) cells. It distributes the high voltage gain across the 

SDCs, lowering device stresses and reducing the required magnetic component size compared to 

existing architectures. This makes FCMFC very attractive for DC-DC steady-state boosting 

applications. To further this point the converter is analyzed in steady-state continuous conduction 

mode (CCM) for component sizes and stresses. An FCMFC was developed to boost a 10V input 

into 1000V output with half of the devices needed as compared to an existing FCML topology in 

the literature. Another was developed for pulsed power to produce 36kV pulses at 8kV/µs, with a 
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50% decrease in the magnetic component size compared to an existing architecture from the 

literature. 
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1.0 INTRODUCTION 
 
 
 
 
Demand has increased for small and robust power conversion electronics with the modernization 

of the electric power grid. These devices are required to boost the low output voltage of 

photovoltaic systems as well as wind energy harvesting systems [1]. This trend is not limited to 

the energy sector. Countless systems rely on power electronic devices in industries including but 

not limited to: medical, sanitation, auto, defense, and space exploration. 

Power conversion electronics used in pulsed power applications require fast output rise 

times to provide quick bursts of power to their loads. Pulsed power originated for military 

weaponry, nuclear fusion, and x-ray technology, where medium voltage pulses, providing energy 

in the mega-joule range, are required [2], [3]. Since then, pulsed power converters have been 

adapted for various industrial applications including food processing, medical treatment, water 

treatment, engine ignition, ion implantation, and more [4]. Designing from the experience with 

high-voltage-pulsed-power applications, to these lower voltage industrial applications has led to 

a shift from the utilization of gas and liquid spark gaps to semiconductors for handling the power 

transfer [2], [5]. The load types mentioned are repetitive in nature and require an increase in the 

repetition rate of the power pulse, which was not demanded by the early, “single shot” 

applications. To meet these increasing demands, converters must be designed such that they 

produce rapid power pulses, while minimizing component stress during operation. Many of the 

past limitations of the former designs were due to semiconductor power ratings [6]. 
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One such power electronic based system was developed for water treatment using pulsed 

electric fields [4]. This topology utilized capacitor-diode voltage multipliers in conjunction with 

buck and buck-boost topologies to produce 1.5kVpk/1kHz pulses. Another design took advantage 

of series flyback converters to generate 20.8kVpk/1kHz power pulses. These converters 

implemented multilevel topologies to minimize device stresses and maximize overall converter 

efficiency. Modern pulsed power conversion exhibits a trend towards more efficient, cost 

effective, and power dense systems using solid state switches [6]. These types of innovations are 

leading to a wider adaptation of power electronics in the realm of pulsed power and it follows 

that more robust semiconductor devices will be required. As an example, a pulse generator using 

a SiC switch to achieve 77kV pulses with a rise time of 18.7ns has been realized [7]. 

A novel topology has been developed in this work and utilizes flyback converters and 

switch-capacitor-voltage stages (SDC) to maximize voltage output and slew rate (dv/dt). The 

flying capacitor multilevel flyback converter (FCMFC) can have M flyback converters in series 

at the output, with each flyback having N voltage stages (N-1 SDC stages). Each flyback 

transformer has a turns ratio of n. The most basic pulsed power FCMFC, a 2x3 (MxN), is shown 

in Figure 3.1 with a single SDC stage outlined in red. 

The Flying Capacitor Multilevel Flyback Converter (FCMFC) improves on several 

existing pulsed power topologies. A buck-boost converter concept discussed in [8] implemented 

multiple output stages to allow for power flow control. As presented in [9], connection of 

multiple output stages of flyback converters have been used to achieve higher peak voltages and 

rise times. The hardware implementation of two series flyback converters realized a 4.02kV 

pulse with a rise time of 608V/μs [9]. Another design combined Marx Generators in parallel for 
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high voltage pulses with variable pulse widths [10]. A flyback transformer was used in [11] to 

charge a resonant capacitor circuit for rapid charging of a Pulse Forming Network. 

Power density is more critical in DC-DC applications [1], [2], [12] where multiple 

magnetic components associated with the design would pose volumetric concerns. This work 

characterizes a single level (M=1) FCMFC for DC-DC steady-state CCM operation. Section 3.2 

and 3.3 will define all the voltage gain and switching stress benefits in detail. Section 3.4 will 

explain the significant decrease in inductor size as a result of the SDC stages. Next, Section 3.5 

will enhance the analysis in the pulsed power area for DCM operation. Energy balance principles 

are used to analytically predict an equation used to shape a power pulse based upon this design. 

The voltage gain benefits outweigh the drawbacks of increased device footprint for pulsed power 

and thus multi-flyback (M > 1) FCMFCs should be considered for future designs as a result of 

this work. The work continues to prove the derived characteristic equations with simulation 

results in PLEXIM, a MATLAB Simulink toolbox. The work concludes with promising results 

for both types of operation. 
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2.0 DEVICE DESIGN REALIZATION 
 
 
 
 
This section will lay out how the constituent topologies within FCMFC came about and justify 

their addition to the proposed topology. The FCMFC implements flying capacitors on the output 

of a flyback converter while also using multiple of these modified flyback converters in series. 
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2.1 FLYING CAPACITOR MODIFICATIONS 
 
 

Flying capacitors in the form of SDC stages allow for the FCMFC gain to be distributed. 
 
The inspiration for this comes from the converter presented in [1] and shown in Figure 2.1. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2.1: 7-Level FCML Boost Topology 
 
 
 
 

The flying capacitor multilevel (FCML) boost converter employs switched-diode- 

capacitor (SDC) stages to achieve greater than 10:1 conversion at above 95% efficiency. A  

single SDC stage is outline in red. The cascaded SDC output stages decrease capacitor and 

switch stress and reduce inductor volume, making this an attractive topology. 

The FCML converter, typically used in buck, boost, and inverter applications, is realized 

by cascading multiple output stages of the conventional boost converter. The addition of five 

SDC stages (i.e. flying capacitors C1 to C5) minimizes the gain that each stage is responsible for 
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by a factor of five. In steady-state operation, the flying capacitors naturally balance voltage by 

(k*Vout) / (N-1), where k is the stage of interest and N is the number of converter levels [13], 

[14]. Dividing the stress amongst multiple stages of the electronic system lowers the required 

component voltage ratings and requisite volume [15]. 

Each SDC in Figure 2.1 is charged by the inductor energy coupled with the energy of the 

previous stage. Alternating between charging the inductor from the source, and sequenced 

discharging of the inductor to the SDC stages, the output achieves the same conversion ratio as a 

typical boost converter with minimized inductor and capacitor volume and improved efficiency. 

With switches S1-S6 ON, the inductor will charge. Then S1 will turn OFF and L releases its 

energy to the first stage through D1 and S2-S6 to ground. The inductor recharges and then 

releases its energy to charge C2 by allowing current to flow through S1, C1, D2 and then thru S3- 

S6 to ground. L will charge again with all switches ON and this process repeats charging all of 

the stages with the energy of the inductor and previous stage capacitor. 

 
 
 
 

  

(2.1) 

  
(2.2) 

 
 
 

The period for the system, TFCML, is N-1 times that of a typical boost converter, if 

switched at the same rate, and the inductor will experience a frequency of (N-1)fFCML. This will 

decrease the required inductor size as shown by (2.1), if TFCML is set to be equal to TBOOST. 

Minimizing the magnetic component requirement is vital to pulsed power applications. It can be 
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shown that the conversion ratio, (2.2), does not change from that of a typical 2-level boost 

converter. The proposed topology in Section 3.0 will have an augmented voltage conversion 

ratio by adding flying capacitors to the circuit structure. 
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2.2 SERIES FLYBACK CONFIGURATION 
 
 

For the series and parallel connected flyback converters, as shown in Figure 2.2 and 

Figure 2.3, multiple flyback converters are configured in order to achieve steep output pulses. In 

the series case, the transformer is only connected across a single capacitor whereas the parallel 

configuration has the transformer connected across the entire output voltage [9]. Series 

configured input switches must withstand their individual reflected voltage from the secondary 

side of the transformer whereas parallel configured switches must withstand the entire reflected 

output voltage, adding constraints to the design of a parallel configuration. Lower OFF stress of 

the FETs makes the series connection more attractive for pulsed power. 
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Figure 2.2: Series Connected Flyback Converters 
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Figure 2.3: Parallel Connected Flyback Converters 
 
 
 
 
 

The series connected flyback cycles similar to a flyback converter where the magnetizing 

inductor of the transformer charges for DT and then discharges for the remainder of the 

switching period. Both input switches are fed with the same PWM signal. To achieve fast pulse 

outputs, the energy storage components must be small; in the μH and nF ranges. The output 

capacitors are charged independently by their respective transformer. It follows that the available 

output voltage will be doubled as well as the voltage rise time across the load due to the series 

connection, maximizing both pulse power capabilities. With this, the series connecting of  

flyback converters is the most useful for pulsed power, with low load capacitance [9]. 



11  

 
 
 
 
 

3.0 FLYING CAPACITOR MULTILEVEL FLYBACK CONVERTER 
 
 
 
 
This section presents the derived operation and characteristics of the FCMFC for the N level 

case. The FCMFC combines two existing designs, the flyback and flying capacitor multilevel 

(FCML) converters, taking advantage of benefits provided by each to achieve improved peak 

output voltage and slew rate. The FCML structure, typically an appendage of buck, boost, and 

inverter applications, is realized by cascading multiple output stages of the base converter [7]. 

The addition of SDC stages (i.e. flying capacitors) creates more operational states and thus 

distributes the gain across the stages by a factor of (N - 1) stages. In steady-state operation, the 

flying capacitors naturally balance voltage by (kVout) / (N - 1), where k is the stage of interest and 

N is the number of converter levels [12]. Dividing the stress amongst multiple stages of the 

electronic system lowers the required component voltage ratings and requisite volume [1]. 
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3.1 TOPOLOGY DESIGN AND LAYOUT 
 
 

The novel topology that has been developed utilizes flyback converters and switch- 

capacitor-voltage stages (SDC) to maximize voltage output and slew rate (dv/dt). The flying 

capacitor multilevel flyback converter (FCMFC) can have M flyback converters in series at the 

output, with each flyback having N voltage stages (N-1 SDC stages). Each flyback transformer 

has a turns ratio of n. The most basic pulsed power FCMFC, a 2x3 (MxN), is shown in Figure 3.1 

with a single SDC stage outlined in red. This MxN layout can be optimized in terms of gain, 

stress, and power density for a given application. The follow section will analyze FCMFC to 

acquire the considerations for the design process. 
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Figure 3.1: Lowest Order FCMFC with a single SDC stage outlined in red 
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3.2 STEADY-STATE ANALYSIS AND OPERATION IN CONTINUOUS 

CONDUCTION MODE 

 

This analysis is done assuming a device operating in continuous conduction mode 

(CCM). This implies that the inductor will maintain an average current high enough so that it 

does not go to zero during its discharge cycles. To illustrate steady state behavior, the converter 

states are shown in Figure 3.2, 

Figure 3.3, and Figure 3.4 for the N = 3 case. A summary of the states is shown in Table 

1, with corresponding switching waveforms presented in Figure 3.5. 

In state 1 (Figure 3.2), the magnetizing inductance of the transformer, Lm, is charged for a 

duration of DT, with S ON. In state 2 ( 

Figure 3.3), S and S1 turn OFF allowing C1 to be charged by Lm through D1. S1 stays 

OFF for state 3 (Fig. 2) when S comes back ON to charge Lm again. Finally, in state 4 (Figure 

3.4), S and S2 are OFF with S1 ON, allowing the output capacitor to be charged with the energy 

from both Lm and C1. Thus the inductive storage is complemented by the capacitive storage of 

the SDC stage to achieve greater energy transfer when charging the output. Note in Figure 3.2, 

that either S1 or S2 is OFF to prevent short circuiting the voltage source through the transformer 

secondary side. Both are shown OFF because no secondary current flows in either case; thus the 

operation of the converter is the same in both states 1 and 3. This is further illustrated by Table 1 

and Figure 3.5. 
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Figure 3.2: States 1 and 3 of FCMFC Operation: Charging Lm 
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Figure 3.3: State 2 of FCMFC Operation: Charging C1 
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Figure 3.4: State 4 of FCMFC Operation: Charging CO 
 

Table 1: Operating Modes of FCMFC (N = 3) 
 

 S S1 S2 Operation 
State 1 1 1 0 Charge Lm 
State 2 0 0 1 Charge C1 
State 3 1 0 1 Charge Lm 
State 4 0 1 0 Charge Co 
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Figure 3.5: Switching Diagram FCMFC (N = 3) 
 
 
 
 

Performing a volt-second balance on the magnetizing inductor yields the voltage 

conversion ratio for the FCMFC (3.1); the native conversion ratio of the typical flyback 

converter with a multiplier of (N-1). This gain equation relates output voltage, V, to input 

voltage, Vin, where n is the turns ratio of the transformer. Further detail for this derivation is 

provided in Appendix A. This implies that each SDC stage, N, will increase the voltage gain that 

the converter can achieve for a given duty cycle, D. Sizing the inductor with (3.2), in terms of 

peak-to-peak inductor current ripple ∆IL, is the same as a typical flyback converter, but the ripple 

frequency of the inductor is equal to (N-1)fFCMFC, decreasing the required inductor size. 

 

(3.1) 



17  

  - + 
 

C1 + 
Co 

- 

L 
O 
A 
D 

 

(3.2) 

 
 
 
 
 

Figure 3.6 further illustrates the flying capacitor energy multiplication effect. IL /n is the 

magnetizing inductor current reflected through the flyback transformer to the secondary side,  

that is now being supplemented by the flying capacitor when charging the output stage. For 

higher N-level FCMFC converters this would work similarly; building up to the output with extra 

charging cycles where every capacitor is charged by Lm and the flying capacitor preceding the 

capacitor being charged. 

 
 

VC1 

 
 

+ 

IL/n V 

- 
 
 
 

Figure 3.6: Output Charging Circuit of FCMFC 
 
 
 
 

Figure 3.7 plots the available gain, (3.1), for the FCMFC for varying N levels. This 

details the gain that various N level FCMFCs can achieve for a given duty ratio, with turns ratio 

n = 1. The advantage is very significant for D > 0.9 with an N = 11 level converter reaching 190 

times the gain for D = 0.95. The minimum range of duty ratio starts at D = 0.7 because FCMFC 

requires that D > (N-1)/(N-2) for CCM operation [7]. The gain for a boost converter is also shown 

for comparison between FCMFC and the flying capacitor topology in [1]. 
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Figure 3.7: Available Gain for FCMFC 
 
 
 
 
 

Performing a capacitor-charge-balance on the output capacitor yields the inductor current 

(3.3), where R is the load resistance. The current will increase by a factor of (N-1) stages. From 

ripple current analysis the required inductance equation (3.2) can be found in terms of input 

voltage, duty cycle, device frequency, and current ripple. Sizing the inductor with (3.2) is the 

same as a typical flyback converter, but similar to the FCML converter, the ripple frequency of 

the inductor is equal to (N-1)fFCMFC, decreasing the required inductor size for the same device 

frequency. The flying capacitor voltage ripple, ∆VC, and output capacitor voltage ripple, ∆V, 

which are derived as (3.4) and (3.5) respectively. They are dependent on the switching 

frequency, fFCMFC, because they switch one time for every output cycle. 
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(3.5) 



20  

3.3 SWITCHING STRESS IN CCM 
 
 

From Figure 3.1, the switch, S, blocking voltage will be equal to the input voltage and the 

secondary side voltage reflected back to the primary. The RMS current through the switch will 

equal the inductor current, (3.3), multiplied by the square root of the duty cycle. Therefore, the 

input switch stress of a flyback converter can be defined by (3.6), the switch blocking voltage 

multiplied by the RMS current that the switch conducts. Similarly, the FCMFC input switching 

stress can be defined as (3.7) where the secondary reflected portion of the blocking voltage is 

reduced by a factor of the SDC output stages. 

 
 

(3.6) 

 
(3.7) 

  
 

(3.8) 

 
 

If D is held constant when comparing (3.6) to (3.7), the gain would vary between the 

FCMFC and the flyback, and the input switch stresses will be the same for the flyback and 

FCMFC. This is because the input voltage on the FCMFC can be decreased by N-1 to get the 

same output voltage as the flyback. This is not helpful for applications where input voltage is 

fixed; therefore it is more useful to compare input switch stress between the flyback and FCMFC 

at the same voltage gain, allowing the duty cycle to vary independently. The duty cycles were 
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replaced in (3.6) and (3.7) by solving for D using (3.1). Dividing (3.7) by (3.6) yields (3.8), 

where relative stress can be seen varying with gain required by a particular application 

(SFCMFC/SFLYBACK = β). This leads to a cumbersome ratio between the input switch stress of 

FCMFC and the flyback converter. This equation represents the input switch stress of FCMFC 

normalized to that of the standard flyback converter. 

Equation (3.8) is plotted in Figure 3.8 for N values from 2 to 11, with 2 being a standard 

flyback. For lower gain values there is a peak in the relative stress on each switch and 

exponentially decays quickly as the gain increases to suitable application levels. The stress 

curves all reach a steady-state value converging to a stress of (N-1) times that of the flyback 

converter. The stress increases could prove too much for higher order N converters but are worth 

forgoing at lower N due to significant gain increases (Figure 3.7) of the FCMFC. Note that these 

results assume no advanced control techniques other than natural PWM behavior with constant 

duty cycle. 
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Figure 3.8: FCMFC Input Switch Stress Normalized to Flyback 
 
 
 
 
 

Figure 3.9 is a plot of the derived switch utilization (3.9) for the FCMFC for various N 

cases. This is a ratio of converter load power and total switching stress to show what percent of 

the switch stress is being used to transfer power to the output. This is a predictor of switching 

losses and semiconductor footprint. The load power is D’VI/n and the total switching stress is the 

sum of the input switch, S, stress and the stress of the (N-1) output switches. The standard 

utilization function for a flyback converter, (3.10), is plotted as well; as a check for the derived N 

level equation. The two match exactly for the N = 2 case as expected. The switch utilization 

function for a flyback is poor, with a max of 0.385 at D = 0.33. It’s apparent that adding SDC 

stages decreases the overall switch utilization, however, the intended/useful duty cycles for pulse 
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power applications are higher in magnitude (>0.9) where the curves are in steep decline. In this 

zone, the utilization function for the flyback is within 5% of the FCMFC relations. Thus the 

FCMFC does not suffer significant loss in utilization with added stages. It is also apparent that 

the FCMFC will operate at a lower duty cycle than the flyback for a given applications or  

voltage gain so the utilization would be higher. 

 
 
 
 

 

 
 
 
 

Figure 3.9: FCMFC Switch Utilization for FCMFC Converters 
 
 

  
(3.9) 

  
(3.10) 



24  

 
 

Adding more switches into the design will add more to the total switching stress but 

switches are rated and selected individually. Derived in (3.11) is the individual switch stress for 

secondary side switches, the RMS current times the blocking voltage. Adding SDC stages 

decreases the stress experienced by each individual switch. This behavior can be seen in Figure 

3.10. Note that there is a diminishing return on this benefit where the individual switch stress 

reduction decreases as N increases. Equation (3.12) is dependent upon D’ but not on N. From 

Figure 3.7, for higher values of N, the gain is increased by an (N-1) factor. Therefore, for the 

same gain, a lower duty cycle is required meaning D’ will increase in magnitude making the 

switch stress, (3.11), decrease. 
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Figure 3.10: FCMFC Secondary Side Individual Switch Stress (P = 1kW, n = 10) 
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3.4 INDUCTOR DESIGN 
 
 

Normalizing the inductance to the N = 2 standard flyback is useful to see how the 

required inductor size decreases with increased stages; this is shown by (3.12) and plotted in 

Figure 3.11 with n = 1. This ratio of inductor size is found using (3.2) and replacing D with its 

equivalent expression based upon (3.1). As the gain approaches infinity, the inductance 

approaches a horizontal asymptote at 1/(N-1). Each stage added to the converter will decrease the 

required size of the inductor for a given amount of current ripple. This is due in part to the 

increased frequency the inductor is switched at in order to charge the (N-1) output stages, the 

right half of (3.12); the converters are held to the same output frequency now and not switching 

frequency. Also the multiplication effect on the gain contributes to decreasing the required 

inductor size, the left half of the ratio. Adding one flying capacitor cuts the required inductance 

in half, a significant improvement in terms of power density [16]. Also note that for higher turns 

ratios, the curves will approach their asymptotes more slowly, another advantageous finding. 

 

 
(3.12) 
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Inductance Required by FCMFC normalized to two-level flyback converter. 
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Figure 3.11: Required Magnetizing Inductance Normalized to Flyback Design 
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3.5 PULSED POWER OPERATION AND ANALYSIS IN DISCONTINUOUS 

CONDUCTION MODE 

 

The charging modes for CCM shown in Figure 3.2, 
 

Figure 3.3, and Figure 3.4 for a single flyback FCMFC, are the same for DCM mode, 

with the only difference being that the inductor fully discharges when expelling its energy to the 

secondary side capacitors. The magnetizing inductor current can be calculated as, 

 
(3.13) 

 
 
where Lm is the magnetizing inductance and Ts is the switching period. The peak current equates 

to a peak inductor energy that is completely discharged into the flying capacitor, (3.14). The 

inductor will charge again and then release all of its energy into the next flying capacitor. This 

energy will be bolstered by that of the first flying capacitor as shown in Figure 3.4, (3.15). For 

the general case of N-1 capacitors, the inductor energy will be passed to the output N-1 times, 

building up the voltage incrementally across the flying capacitors. Solving (3.15) and 

generalizing for the (N-1) level case, yields an equation for the output voltage pulse peak for a 

single FCMFC (3.17), with all capacitors equal in size. 

  
(3.14) 

= (3.15) 
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(3.16) 

 
 

Multiple flybacks, as inFigure 3.1, of an FCMFC will function independently, where the 

magnetizing inductor of the transformer charges for DT and then discharges for the remainder of 

the switching period. All input switches are fed with the same PWM signal for synchronization. 

The output capacitors are charged independently by their respective transformer magnetizing 

inductance. It follows that the available output voltage will be increased by a factor of the 

number of flybacks that are connected in series across the load, M. The voltage rise time will 

also increase by this factor, maximizing both pulsed power characteristics. Appending (3.16) 

with this M factor, and also inserting the expression for the peak magnetizing current, (3.13), 

yields a comprehensive equation to shape voltage pulses of the FCMFC listed as (3.17). 

 

 
(3.17) 

 
 

Flying capacitors increase gain by a root factor, , and connecting M flybacks in 

series has additional voltage gain benefit. To achieve fast pulse outputs, the energy storage 

components must be small; in the μH and nF ranges. 

The rate of voltage rise, or slew rate, across a single output capacitor is proportional to 

the current through it, (3.18). The current, Im, is provided by the magnetizing inductance, 

assuming high load resistance, Figure 3.4. With M flybacks connected at the output, there are M 

voltage rises added together across the load allowing for a total slew rate defined by (3.19). 
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(3.18) 

 

 

 
(3.19) 

 
 

(3.18) is the rate of voltage rise for an individual output capacitor while (3.19) represents 

the slew rate across the load, which is the summation of all (M) the output capacitors voltages. 
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4.0 RESULTS AND DISCUSSION 
 
 
 
 
The nature of this work brings about two types of results. Because it is a new topology with new 

characteristic equations there are results that prove the equations through multiple device 

iterations. This is mainly proving the benefits of adding the switching (SDC) stages at the output. 

The second type of result is used to prove the merit of this converter topology. Existing devices 

in the literature have been benchmarked and the FCMFC is optimized to perform at or above the 

levels of the devices in the literature. FCMFC performs at the levels of existing structures while 

utilizing fewer devices in its design. 
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4.1 DC-DC STEADY-STATE RESULTS 
 
 

4.1.1 Proving the Newly Found Conversion Ratio 
 
 

To validate the derived converter behavior, steady-state DC-DC implementations of the 

FCMFC were developed in Simulink/PLECS. Table 2 shows the component values and shows 

the steady state voltage output for three different cases: N = 2, 3, and 4. The average voltage and 

ripple values were compared to the expected values from the derived equations and are shown in 

Table III. For the same set of electrical parameters, the results show that the FCMFC scales the 

output by a multiple of its SDC stages, when compared to the standard flyback converter 

conversion ratio - (3) with N = 2. Notice that the output frequency is decreased by the same 

multiple because of the added charging states. This is because the switching frequency (fs) was 

held constant, and no the device frequency (fFCMFC). With a fixed capacitance for all flying 

capacitors, the output ripple scales with the output voltage, as reflected in Table 3. Similar to the 

flyback converter, the voltage ripple can be decreased for a fixed capacitance by increasing 

fFCMFC, as shown in (3.5). 

 
 

Table 2: Steady-State DC-DC Step-Up FCMFC Converter Parameters 
 

Capacitors LM Vin fs D R n 
0.825μF 152μH 10V 72kHz 0.15 250Ω 10 
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Figure 4.1: FCMFC Steady-State DC-DC Step-Up Results 
 
 
 

Table 3: Output Voltage Average and Ripple Values for Various FCMFC Converter Architectures 
 

N-1 V Expected (3) ΔV Expected (7) 
1 17.55 17.65 0.177 0.178 
2 35.03 35.29 2.71 2.73 
3 52.44 52.94 7.57 7.66 
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4.1.2 Optimizing to 7-Level FCML 

 
 

The topology design of [1] is derived from a boost converter that is adapted with flying 

capacitors to increase efficiency and power density. It is a 7-level converter consisting of six 

SDC cells controlled with PWM and shown in Figure 2.1. The input voltage was 100V with an 

output of 1000V resulting in a gain of 10. Using the same device frequency of 72kHz, and 

passive component sizes, the FCMFC can be adapted to this application using (3.1) with a D = 

0.769. This results in a 4-level (N = 4) converter consisting of three SDCs; similar to Figure 3.2 

but with one additional SDC stage. 

The turns ratio is kept at 1 to more directly compare the benefit of the flying capacitors 

between the boost FCML converter and the proposed FCMFC. Both of the converters were 

simulated in PLECS to compare their natural performance with static PWM. Simulation results 

are shown in Table 4 and Figure 4.2. 

 
 
 
 

Table 4: DC-DC Boosting Simulation Results 
 

Converter Vavg Vripple 
FCML Boost [1] 994.5 V 12.4 V 

FCMFC 994.5 V 12.8 V 
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Figure 4.2: DC-DC Boosting Simulation Results 
 
 
 
 

The FCMFC is yields the same average DC voltage output as the FCML boost. The 

ripple of the FCMFC is only 0.4V higher than that of the FCML boost, a negligible difference. 

This comparison is to show that the FCMFC can perform similarly to an existing topology in the 

literature with 2 less switches, and half of the diodes, and capacitors required on the output stage, 

as shown in Table 5. Note that the voltage gain could be increased significantly if the turns ratio 

was greater than 1. 

 
 
 

Table 5: DC-DC Boosting Required Components 
 

Converter Switches Diodes Capacitors 
FCML Boost [1] 6 6 6 

FCMFC 4 3 3 
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4.2 PULSED POWER RESULTS 
 
 

4.2.1 Preliminary Pulsed Power Results 
 
 

As presented previously, the benefits of flying capacitor topologies and combining 

converters in series offer significant advantages to warrant their combination for pulsed power. 

Figure 3.1 shows the proposed FCMFC in a series configuration for pulsed power applications. 

DCM operation is used here due to the pulse nature of the output voltage required. This also 

allows for maximum energy transfer because the inductor current reaches zero when discharging 

into flying capacitors. Both the upper and lower converters within the structure function in 

unison to provide high voltage peaks to the load. There are also diodes added to the phase leg of 

the secondary side of the transformer to prevent reverse current while charging the magnetizing 

inductor. Similar to the single FCMFC, this series configuration was simulated in PLECS to 

demonstrate operation. The converter was sized to match that of the case in [9] and parameters 

are shown in Table 6. The converter is defined by the number of voltage levels, N, for a given 

FCMFC, and by the number of series connected converters, M. This makes for MxN possible 

configurations. A 3x2 configuration is shown in Figure 3.1. 

 
 
 

Table 6: Component Values for FCMFC (3x2) 
 

Capacitors LM Ll Vin fs D R 
2.35μF 152μH 1.6μH 17V 1kHz 0.15 20kΩ 
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The simulation produces 10kV pulses with a 1201V/μs rise time. These results were 

compared to those obtained from single level (M = 1) FCMFC configurations and the series 

flyback converter from [9], as shown in Table V. 

 
 
 

Table 7: Simulation Results for Variations of Pulsed Power Topologies 
 

Description Vlevels 
(N) 

Series 
(M) Pulse Voltage dv/dt 

Series Flyback Stacked (2x2) [9] 2 2 7.0Kv 816V/μs 

SERIES FCMFC (3x2) 3 2 10Kv 1201V/μs 

FCMFC (3x1) 3 1 5.5Kv 618V/μs 

FCMFC (4x1) 4 1 6.7Kv 705V/μs 

 
 

        

        

 
 

 
 

   
 

    

    
  

 
 

 

 
 

 

   
 

 
 

 

Figure 4.3: FCMFC (3x2) Pulsed Power Waveforms 
 
 
 
 

Comparing the series FCMFC (row 2) to the series flyback (row 1), it can be seen that for 

a converter of similar architecture, the FCMFC achieves 43% higher output voltage and 47% 

faster slew rate. Additionally, the (4x1) FCMFC achieves 96% of the peak voltage and 86% of 

the slew rate, while the (3x1) FCMFC reaches 79% and 76%, respectively, compared to the 
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series flyback stacked case. Figure 4.3 shows the 10kV pulse and also the voltage levels on the 

two flying capacitors. It can therefore be seen that for an equivalent converter size, the series 

FCMFC drastically outperforms the series flyback configuration. Additionally, if size is the chief 

concern, the single level FCMFC can be used to achieve similar performance to the series 

flyback with significantly reduced converter mass and volume. The FCMFC can be further 

scaled to the requisite pulsed-power application through increasing the SDC capacitance when 

allowed by the application or by adding additional SDC stages. 

 

4.2.2 Optimizing to 10-level Series Flyback Converter 
 
 

A hardware implementation consisting of 10 flyback converters connected in series at the 

output achieved a 20.8kV pulse with 8kV/μs rise time [9]. This converter was simulated in 

PLECS for comparison to the FCMFC. Both converters were constrained by the specifications of 

the hardware implementation: D = 0.10, fs = 1kHz, Vin = 10V, and the same passive components. 

Using (3.17) the FCMFC can be optimized to produce the same voltage peak with M = 5 and N = 

5, five series flybacks, each with 4 SDC stages, as shown in Figure 4.4, with results in Table 8 

The voltage pulses are shown in Figure 4.5. The FCMFC is able to achieve a 1kV higher 

pulse and only 700V/μs slower slew rate. It can achieve these results while having half of the 

flybacks of the 10-level from the literature. This also results in the FCMFC drawing half of the 

source current, lowering the stress on the input voltage source. Note that the FCMFC will have a 

repetition rate that is (N-1) times slower than its counterpart. This is because the switching 

frequencies are forced to be the same for the comparison. The switching frequency could be 

increased along with altering component sizes to achieve a 1 kHz repetition rate at the same 

pulse performance. 
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Figure 4.4: 5x5 FCMFC for Pulsed Power 
 

Table 8: Pulsed Power Simulation Results 
 

Converter Voltage Peak Slew Rate (dv/dt) 
Flyback [4] 35kV 8.7kV/μs 

FCMFC 36kV 8.0kV/μs 
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5.0 CONCLUSIONS AND FUTURE WORK 
 
 
 
 
The contribution of this work is a new power electronic converter topology referred to as the 

FCMFC that utilizes both the flyback converter architecture for isolation and SDC stages 

associated with the flying capacitor multilevel converter. The FCMFC achieves a voltage 

conversion ratio scaled by (N-1) DC-DC steady-state (CCM) operation, as compared to the 

standard flyback topology. Specifically, adding flying capacitors to the flyback converter 

architecture increases the available gain by a multiple of the capacitors added, for the same 

operating parameters. The gain benefits are also seen for pulsed power (DCM) operation. Adding 

the SDC stage to a series FCMFC yielded a 3kV increase in voltage pulse peak with a 385V/μs 

rise time net change compared to the latest series structures in the literature. Results also show 

that for steady state operation, the system gain of the FCMFC can be doubled or tripled by 

adding one or two flying capacitors. For both applications the switching stresses will decrease by 

distributing the net gain across multiple SDC stages with magnetic reduction benefits. 

The FCMFC is a new topology that shows great promise for DC-DC boosting and pulsed 

power applications. This topology benefits from lower magnetic component size with increased 

available gain, making it viable for high power density applications. The gain can be doubled for 

half of the required magnetic components as per equations (3.1) and (3.12). The converter is able 

to perform within the same application space, steady-state boosting, as an existing topology with 

half of the SDC stages. For pulsed power the FCMFC outperforms an existing structure in peak 
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voltage pulse while only requiring half of the flyback converters. It does this by adding three 

SDC stages at the output. The FCMFC can do this with half of the current load on the input 

power source with no increase in stress on the input switches of the constituent converters. 

The logical next step for this research is to design and build a version of the FCMFC. This 

will require the development of a control scheme that is aimed at a specific application. Some 

concerns for the control are voltage balancing of the capacitor stages and these are outlined in 

Appendix B. 

Another interesting route that can be explored is using the FCMFC in CCM operation for 

pulsed power. This idea is further explored in Appendix C. 
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APPENDIX A 
 
 
 
 

DUTY RATIO DERIVATION THROUGH INDUCTOR VOLT-SECOND BALANCE 
 
 
 
 
This is a detailed derivation of equation 3.1. The input switch is the main switch in the flyback 

topology and thus must be the primary driver when deriving equations. Using other switches 

results in a loss of information and thus incorrect equations. The secondary side switches are 

added to the flyback structure and are there to cycle the flying capacitors correctly. The volt- 

second balance of the inductor using TFCMFC for the general (N - 1) level case is as follows: 

 
 

 
 

 
 

 

 
(3.1) 
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APPENDIX B 
 
 
 
 

N = 5 CASE TO ILLUSTRATE CHARGING STATES 
 
 
 
 
For the N = 5 case, the converter’s state waveforms are presented in Figure 5.1. Here it can be 

seen that the capacitor ripple values match those predicted by (3.5). Figure 5.2 shows the four 

capacitor charging states which correspond to their respective time interval in Figure 5.1. Note 

that IL /n is the magnetizing inductor current, reflected through the flyback transformer to the 

secondary side. Also note that the intermediate state of charging the magnetizing inductor is not 

considered here. In between every capacitor charging state the inductor will be charged again 

using the input voltage source, as per the CCM steady-state operation described previously. This 

appendix is concerned with the SDC stage voltages at steady-state and how they affect inductor 

current. 
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Figure 5.1: Stage Voltages and Inductor Current; N = 5 Case 
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By analyzing the charging stages of the FCMFC, the inductor balance and reset can be 

shown. During the charging of C1, shown in Figure 5.2a, only C1 is seen by the transformer. 

During the next interval, shown in Figure 5.2b, the inductor charges C2 with the assistance of 

C1. Comparing the slope of IL from state (a) to state (b), it can be seen that the effective change 

in capacitance has been seen by the inductor. These two states reset the inductor, balancing IL. 

For a typical two stage converter, such as the flyback, charging the inductor increases the current 

which must then be equally decreased on the discharge cycle in order to maintain magnetizing 

current stability. By adding three stages, the converter adds six more charging states (three more 

to charge the inductor and three more to charge the added stages). In pulsed power applications, 

effects of the IL oscillations will not be critical; conversely, in steady-state DC-DC applications 

harmonics could damage the converter load. The ramifications of this behavior will be important 

when a hardware implementation of this device will be designed. A control scheme will force 

stage balancing as desired by the application. 



47  

 
 
 
 
 

APPENDIX C 
 
 
 
 

AVAILABLE ENERGY FOR POWER PULSE IN CCM 
 
 
 
 
The power pulse is typically described in terms of the energy that it provides [8, 9]. This 

appendix derives a plot to illustrate how the FCMFC increases available pulse energy as a 

function of the number of SDC stages. Some pulsed power converters operate in CCM mode and 

use an output switch the deliver the power pulse [4]. This is advantageous for FCMFC because 

the voltage gain benefit of SDC stage is greater in CCM than in DCM: (N-1) vs  

respectively (as per 3.1 and 3.17). With this it makes sense to do a CCM analysis where output 

energy is the focus. 

 

 

 
(B.1) 
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Equation (B.1) is the available output power of the FCMFC; using this leads to (B.2) and 

(B.3), energy available in the inductor and output capacitor for various cases. B.2 specifically 

can be used to design a pulsed power converter where a certain energy pulse is required. Figure 

5.3 is a plot for varying N level FCMFCs of how much energy will be available for a power 

pulse. A dashed red line is overlaid to make a proper comparison between levels. This line shows 

the operating points that a converter would be at because of the increased voltage gain provided 

by the added SDC stages. There is an exponential increase in available energy for adding SDC 

stages. This makes a CCM FCMFC attractive for pulsed power conversion. 

 
 
 

 

Figure 5.3: Energy Available for Power Pulse of FCMFC 
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