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In the command swallow condition, which is routinely employed during videofluoroscopic 

examination of swallowing, patients commonly are told to hold a bolus in their mouth until they 

are told to swallow. Both components of the command swallow, bolus hold and swallowing in 

response to a command, could influence the act of swallowing.  The focus of the current study was 

to examine the linguistic influences of the verbal command on swallowing. In fact, the language 

induced motor facilitation theory suggests the linguistic processes associated with the verbal 

command should facilitate the voluntary component of swallowing. 

 This study investigated whether language induced motor facilitation was evident under the 

command swallow condition as reflected in suprahyoid muscle activity measured by surface 

electromyography. During the experiment, 20 healthy young participants held a 5 ml liquid bolus 

in their mouth and swallowed the bolus after hearing 5 acoustic stimuli presented randomly: 

congruent action word (swallow), incongruent action word (cough), congruent pseudo-word 

(spallow), incongruent pseudo-word (pough), and non-verbal stimulus (1000 Hz pure-tone). 

Swallow latencies following the congruent action word were shorter than swallows 

following the non-verbal stimulus, indicating that suprahyoid muscle activity occurred earlier for
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following the word swallow than for the pure-tone.  Longer latencies for the pseudo-words than 

real words also supported the language induced motor facilitation theory, but it was not clear 

whether the observed differences were due to reduced linguistic facilitation or longer processing-

time associated with interference.  Stronger support for the theory captured by lexical directionality 

was not evident when the words swallow and cough were compared.  The facilitation effects of 

swallow-related action words may not have sufficient sensitivity and strength among effectors, 

and the incongruent word in the study may not have represented a true incongruent action against 

the act of swallowing.  There also was no facilitation effect on peak suprahyoid muscle activity 

amplitude. 

The evidence from this study advances our understanding of the links between language 

and movement for behaviors that are not entirely under voluntary control.  Linguistic inducement 

of swallowing could be useful as a swallow compensatory technique for patients with difficulty 

initiating oropharyngeal swallows including patients with Parkinson’s disease. 
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1.0  INTRODUCTION 

Swallowing is defined as the entire act of placing food in the mouth and transporting food through 

oral, pharyngeal, esophageal structures and into the stomach (Logemann, 1998).  It is a complex 

neuromuscular act that requires sensory and motor coordination and involves organized 

interactions of cortical, subcortical, brainstem and peripheral systems (Ertekin, 2003; Miller, 

2008b).  Any disruption of the neurophysiological pathways can result in swallow disorders or 

dysphagia (Robbins et al., 2008).  In the United States, more than 18 million adults are suffering 

from dysphagia (Robbins et al., 2008).  

Patients with dysphagia have a high risk of having dehydration, malnutrition, aspiration 

pneumonia, and reduction in quality of life (Harrison, Sessions, & Kies, 2014; Logemann, 1998). 

Aspiration pneumonia is associated with substantial morbidity and mortality with the highest case-

mortality rate during hospitalization among all pneumonia diagnoses (Baine, Yu, & Summe, 

2001).  The financial impact of dysphagia is $1.3 billion dollars a year in the United States (Hsu, 

Siroka, Smith, Holodniy, & Meduri, 2011).  To provide optimal swallow treatments to reduce such 

risks, carefully controlled swallowing studies are needed to enable the clinician to focus on the 

specific anatomical and physiological factors influencing swallow function.  It is essential for the 

clinician to observe the patient swallowing under the conditions in which he/she routinely 

swallows when eating and drinking.  
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Videofluoroscopic examination of swallowing (VFSS) is considered a gold standard for 

diagnosis and evaluation of swallowing.  It is widely used  in the United States (Langmore, 2003; 

Molfenter & Steele, 2011).  Typically during VFSS, the command swallow condition, in which a 

patient/participant holds a bolus while waiting for a verbal stimulus to initiate the swallow, is 

employed both for clinical and research purposes (Daniels, Schroeder, DeGeorge, Corey, & 

Rosenbek, 2007; Hiiemae & Palmer, 2003; Nagy et al., 2013).  Normative swallowing data are 

based on previous research that has employed the command swallow condition (Daniels et al., 

2007).  However, recent studies provide evidence that the command swallow condition may impact 

swallow physiology.  Based on the evidence, it has been debated whether to continue employing 

the command swallow condition during VFSS.  If swallow physiology under the command 

swallow condition is different from those of normal swallows, it is crucial to re-establish the 

normative data of swallowing without the command swallow condition.  To evaluate the use of 

the command swallow condition during the diagnosis and evaluation of swallowing, it is important 

to understand the impact of the command swallow condition on swallow physiology.  

This dissertation document first reviewed the normal swallowing mechanism and 

physiology, evaluation of swallowing, and what was known about the impact of the command 

swallow condition on swallow physiology and neurophysiology.  The following sections discussed 

the theoretical framework that supports the research questions. Then, the research questions, 

hypothesis, methods, data analysis, and results were summarized.  The document concluded with 

a discussion based on the findings, contribution to the literature, limitations of this dissertation 

document, and future directions. 
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2.0  SWALLOW MECHANISM 

2.1 SWALLOWING PHYSIOLOGY 

2.1.1 Phases of swallowing: liquid swallowing 

Traditionally, swallowing is divided into three or four sequential phases, such as (1) oral, (2) 

pharyngeal, and (3) esophageal phases (Dodds, 1989; Dodds, Stewart, & Logemann, 1990; 

Logemann, 1998).  The oral phase is further subdivided into two phases: (1) oral preparatory phase, 

and (2) oral or oral transport phase (Logemann, Rademaker, Pauloski, Ohmae, & Kahrilas, 1998; 

Matsuo & Palmer, 2008).  This four phase model was primarily developed based on the previous 

investigations of volitional liquid swallows (Hiiemae & Palmer, 1999), and it describes the 

physiology of volitional liquid swallows (Matsuo & Palmer, 2008). 

2.1.1.1 Oral preparatory phase  

 

After liquid is taken into the oral cavity, it is held on the tongue surface against the hard palate. 

Then, the liquid is mixed with saliva to form a cohesive mass that is referred to as a bolus, which 

has appropriate consistency and size for swallowing (Dodds, 1989; Dodds et al., 1990; Hiiemae & 

Palmer, 2003; Logemann, 1998).  The oral cavity is sealed anteriorly by the upper and lower lips, 
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posteriorly by the contact of the soft palate and the dorsum of the tongue, and laterally by the 

bilateral buccal and facial muscles to prevent the loss of portions of the liquid bolus (Dodds, 1989; 

Dodds et al., 1990; Hiiemae & Palmer, 2003; Logemann et al., 1998; Matsuo & Palmer, 2008; 

Shaw & Martino, 2013).  The oral preparatory phase is modulated primarily by voluntary control 

(Logemann, 2007). 

2.1.1.2 Oral phase of swallowing 

 

The oral phase of swallowing is initiated when the bolus is propelled between elevating and 

retracting the tongue and the palate posteriorly along the palate by the tongue (Dodds, 1989; Dodds 

et al., 1990; Hiiemae & Palmer, 2003; Logemann et al., 1998; Matsuo & Palmer, 2008; Shaw & 

Martino, 2013).  The phase ends when the pharyngeal swallow is triggered (Dodds, 1989; Dodds 

et al., 1990; Logemann, 1998).  The oral phase is modulated by voluntary control (Logemann, 

2007).  Duration and onset of swallow physiological parameters in the oral phase can vary 

depending on sensory information coming from the oropharynx, such as bolus volume, 

consistency, texture, and temperature, as well as motivation, hunger, and consciousness (Ertekin, 

2006; Logemann, 2007; Robbins et al., 2008).  

2.1.1.3 Pharyngeal phase of swallowing 

 

The next phase is the pharyngeal phase of swallowing.  It is initiated when the pharyngeal swallow 

is triggered (Dodds, 1989; Dodds et al., 1990; Logemann, 1998).  In healthy individuals, the 

pharyngeal swallow is triggered approximately when the bolus head passes any point between the 
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anterior faucial arches and the point where the base of the tongue crosses the ramus of the mandible 

(Logemann et al., 1998).  Once the pharyngeal swallow is triggered, sequential cascading 

neuromuscular events occur (Logemann et al., 1998).  The soft palate is elevated to contact the 

posterior and lateral pharyngeal walls to close off the nasopharynx (Logemann, 1998; Logemann 

et al., 1998; Matsuo & Palmer, 2008).  The hyoid and larynx are pulled superiorly and anteriorly 

by the supra-hyoid muscles and the larynx is shortened by the thyrohyoid muscles.  This anterior 

displacement of the hyolaryngeal complex contributes to the airway closure (Steele, Thrasher, & 

Popovic, 2007).  The airway is closed at three levels (i.e., inferiorly at the level of the true vocal 

folds, within the larynx with adduction of the false vocal folds, and superiorly through arytenoid 

cartilages tilting forward to contact the thickening of the epiglottic base together with the inversion 

of the epiglottis) (Logemann, 1998). The laryngeal closure is essential for safe swallowing, and 

particularly important for preventing foreign materials from entering into the airway (Kurosu & 

Logemann, 2010; Logemann, 1998).  The upper esophageal sphincter (UES) also is opened by as 

a result of the anterior displacement of the hyolaryngeal complex along with the relaxation of the 

cricopharyngeal muscle and intrabolus pressure (Kahrilas, 1997; Logemann, 1998; Matsuo & 

Palmer, 2008).  Finally, when the bolus tail reaches the tongue base, the space between the base 

of the tongue and posterior pharyngeal wall sequentially collapses from the top to bottom to propel 

the bolus downward (Logemann, 1998; Matsuo & Palmer, 2008).  

The pharyngeal phase contains both voluntary and involuntary/reflexive components 

(Shaw & Martino, 2013) that can be augmented volitionally when swallow compensations are 

deployed (Humbert & German, 2013).  Once the pharyngeal swallow is triggered, the pattern of 

the previously described cascade of events (i.e., velopharyngeal closure, hyoid elevation, laryngeal 

closure, and UES opening), cannot be altered (Ertekin, 2003).  However, the onset time and 
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duration of hyoid elevation, laryngeal closure, and UES opening, can vary depending on bolus 

characteristics, such as volume, temperature, consistency, and taste (Ding, Logemann, Larson, & 

Rademaker, 2003; Kahrilas & Logemann, 1993; Kurosu & Logemann, 2010; Logemann et al., 

1995; Mendell & Logemann, 2007; Robbins et al., 2008; Shaw & Martino, 2013).  In addition, the 

onset time and duration of hyoid elevation, laryngeal closure, and UES opening can be altered 

voluntarily by using swallow maneuvers, such as the supraglottic swallow, super-supraglottic 

swallow, and Mendelsohn maneuver (Kahrilas, Logemann, Krugler, & Flanagan, 1991; Ohmae, 

Logemann, Kaiser, Hanson, & Kahrilas, 1996).     

2.1.1.4 Esophageal phase of swallowing 

 

When the bolus enters the esophagus at the UES, the esophageal phase is initiated (Dodds, 1989; 

Dodds et al., 1990; Logemann, 1998).  When the bolus passes through the UES, the bolus is carried 

proximally to distally by a sequential peristaltic wave through the lower esophageal sphincter 

(Dodds, 1989; Dodds et al., 1990; Logemann, 1998).  The esophageal phase of swallowing is 

theorized to be under involuntary control (Logemann, 1998).  It is considered to be mainly under 

the somatic and autonomic nervous system control (Ertekin, 2003). 

2.1.2 Process model of feeding: solid food swallowing 

The process model of feeding was developed to describe the physiology of volitional solid food 

swallowing (Hiiemae & Palmer, 1999; Matsuo & Palmer, 2008; Palmer, Rudin, Lara, & Crompton, 

1992).  This model divides swallows into three stages: (1) oral stage, (2) pharyngeal stage, and (3) 
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esophageal stage (Hiiemae & Palmer, 1999; Matsuo & Palmer, 2008; Palmer et al., 1992).  The 

oral stage is further divided into (1) stage I transport, (2) food processing, and (3) stage II transport 

(Hiiemae & Palmer, 1999; Matsuo & Palmer, 2008; Palmer et al., 1992). Swallow physiology of 

both pharyngeal and esophageal stages is identical to those of liquid swallows (Matsuo & Palmer, 

2008).  

During the stage I transport, after the solid food is placed in the oral cavity, the food is 

moved posteriorly to the molar region by the tongue (Hiiemae & Palmer, 1999; Matsuo & Palmer, 

2008; Palmer et al., 1992).  Then, the solid food is masticated and mixed with saliva until it 

becomes suitable for swallowing during the food processing (Hiiemae & Palmer, 1999; Matsuo & 

Palmer, 2008; Palmer et al., 1992).  During the stage II transport, masticated food is placed on the 

tongue surface and propelled posteriorly (Hiiemae & Palmer, 1999; Matsuo & Palmer, 2008; 

Palmer et al., 1992).  Then, the masticated food is accumulated in the upper oropharynx and/or 

valleculae before it is propulsed to the pharynx and beyond (Hiiemae & Palmer, 1999; Matsuo & 

Palmer, 2008; Palmer et al., 1992). 

2.2 SWALLOWING MUSCULATURE 

More than 30 muscles in the oral cavity, larynx, pharynx, and esophagus are activated during 

swallowing (Shaw & Martino, 2013).  Most of the muscles involved in swallowing are striated 

muscles except the middle and distal esophagus, which are partially and completely smooth 

muscles (Shaw & Martino, 2013).  Muscles involved in swallowing are innervated by cranial 

nerves, V (Trigeminal), VII (Facial), IX (Glossopharyngeal), X (Vagus), XII (Hypoglossal), the 
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ansa cervicalis (C1-C3), and through the pharyngeal plexus by fibers from the cranial division of 

XI (Accessory) (Dodds et al., 1990; Logemann, 1998; Sessle & Henry, 1989; Shaw & Martino, 

2013).  

2.3 SWALLOWING NEUROPHYSIOLOGY 

Until the early 1980’s, swallowing was considered to be a purely reflexive act controlled primarily 

by the brainstem (Humbert et al., 2009; Robbins et al., 2008).  However, most contemporary 

researchers agree that swallowing involves the complex interaction of voluntary and involuntary 

neuronal networks, such as the cortical, subcortical, brainstem and peripheral nervous system 

(Humbert et al., 2009; Logemann, 1998; Malandraki & Robbins, 2013; Martin & Sessle, 1993; 

Shaw & Martino, 2013).  Yet, questions remain regarding the underlying neural mechanism(s) of 

swallowing (Humbert & German, 2013).  

2.3.1 Infratentorium  

Sensory information, such as temperature, touch, and pressure from sensory receptors and taste 

information from chemoreceptors in the oropharynx are sent to the cranial nerve V (Trigeminal), 

VII (Facial), IX (Glossopharyngeal), and X (Vagus) and transferred to various nuclei in the 

brainstem (Jean, 2001; Malandraki & Robbins, 2013).  This information then travels through 

various pontomedullary pathways with their summated input producing motor output through 

cranial nerve V (Trigeminal), VII (Facial), IX (Glossopharyngeal), X (Vagus), and XII 
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(Hypoglossal) and the ansa cervicalis (C1-C3) to the muscles involved in swallowing (Jean, 2001; 

Malandraki & Robbins, 2013).  

In the brainstem, the swallowing central pattern generator is believed to be located within 

the medulla oblongata (Jean, 2001; Malandraki & Robbins, 2013; Miller, 1993).  The swallowing 

central pattern generator contains two main groups of swallow-related neurons: the dorsal 

swallowing group within and around the nucleus and tractus solitarius in the dorsolateral medulla, 

and the ventral swallowing group above the nucleus ambiguus in the ventrolateral medulla (Jean, 

2001; Miller, 1993).  Both peripheral and supramedullary inputs travel to the dorsal swallowing 

group which contains generator neurons that generate the motor control of swallowing (Jean, 2001; 

Miller, 1993).  The dorsal swallowing group sends the motor signals to the ventral swallowing 

group, which contains switching neurons, and transmit the outputs from the dorsal swallowing 

group to motor neuron pools (Jean, 2001; Miller, 1993). 

2.3.2 Supratentorium  

Evidence from functional magnetic resonance imaging (fMRI) studies indicate that multiple 

bilateral cortical and subcortical areas are activated during swallowing (Babaei et al., 2010; Hamdy 

et al., 1999; Huckabee, Deecke, Cannito, Gould, & Mayr, 2003; Humbert et al., 2009; Humbert & 

Robbins, 2007; Humbert et al., 2010; Kawai et al., 2009; Kern, Jaradeh, Arndorfer, & Shaker, 

2001; Li et al., 2009; Malandraki, Sutton, Perlman, & Karampinos, 2010; Malandraki, Sutton, 

Perlman, Karampinos, & Conway, 2009; Martin, Goodyear, Gati, & Menon, 2001; Mosier, Liu, 

Maldjian, Shah, & Modi, 1999; Paine, Conway, Malandraki, & Sutton, 2011; Peck et al., 2010; 

Toogood et al., 2005; Zald, 1999).  The primary motor cortex, primary sensory cortex, insular 



10 

 

cortex, anterior cingulate gyrus, supplementary motor area, premotor area, internal capsule, 

thalamus, basal ganglia, putamen, globus pallidus, and cerebellum (i.e., infratentorial) are all 

reported to be activated during swallowing (Malandraki, Johnson, & Robbins, 2011).  Based on a 

systematic review, Humbert and Robbins (2007) indicated, among the previously reported 

structures involved in swallowing, the primary motor cortex, primary sensory cortex, insular 

cortex, and anterior cingulate cortex are consistently active during swallowing.  

The cerebral cortex is involved in the initiation and regulation of swallowing (Martin & 

Sessle, 1993).  However, since swallowing, speech, and respiration share some upper aerodigestive 

tract functions, it is difficult to tease out swallow specific activations and other non-swallow 

functions when interpreting neural signals on an fMRI image (Hamdy et al., 1999; Huckabee et 

al., 2003; Kern et al., 2001; Malandraki et al., 2011).  Several studies identified that larger neural 

activation areas represent swallow-related innervation, such as face, tongue, larynx and pharynx, 

rather than swallowing function itself (Huckabee et al., 2003; Kern et al., 2001; Malandraki et al., 

2011).  

2.3.3 Reciprocity of central control in swallowing 

Behavioral evidence indicates that swallowing behavior can be altered by bottom-up input (i.e., 

peripheral to cortical structures) (Humbert & German, 2013).  For example, swallowing behavior 

can be modulated by sensory information coming from the oropharynx, such as bolus volume, 

consistency, temperature, and taste (Ding et al., 2003; Kahrilas, 1997; Kahrilas & Logemann, 

1993; Logemann, 2007; 1984; Logemann et al., 1995; Robbins et al., 2008; Shaw & Martino, 

2013).  Swallowing behavior also can be altered by top-down input (i.e., cortical to peripheral 
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structures) (Humbert & German, 2013).  For example, employing volitional swallow maneuvers, 

such as supraglottic swallow, super-supraglottic swallow, and Mendelsohn maneuver, alters the 

onset time and duration of hyoid elevation, laryngeal closure, and UES opening (Kahrilas et al., 

1991; Logemann, 2007; Ohmae et al., 1996). 

2.3.4 Volitional swallow vs. spontaneous swallow 

Volitional swallow (i.e., voluntarily initiated swallow)  is initiated with a desire to swallow under 

a conscious and awake condition (Dodds, 1989; Hamdy et al., 1999; Huckabee et al., 2003; Kern 

et al., 2001; Martin et al., 2001; Mosier & Bereznaya, 2001; Palmer, Hiiemae, Matsuo, & 

Haishima, 2007; Satow et al., 2004; Suzuki et al., 2003).  Volitional swallow is often contrasted 

to the spontaneous or reflexive swallow that occurs in unconscious states or without intention. 

Some researchers use the term voluntary swallow or voluntarily induced swallow synonymously 

with the term volitional swallow (Ertekin, 2011; Ertekin et al., 2001; Li et al., 2009; Maeda et al., 

2004; Martin, Goodyear, Gati, & Menon, 2001; Toogood et al., 2005; Watanabe, Abe, Ishikawa, 

Yamada, & Yamane, 2004; Zald, 1999).  Moreover, some other researchers use the term 

“command swallow” to refer to the volitional swallow (Yamawaki, 2012).  In this case, the term 

command swallow is used to refer to any voluntarily initiated swallows regardless of the presence 

of an external swallow command presented prior to the initiation of swallowing.  Recent studies 

have indicated that there is a physiological difference between volitional swallows with and 

without the command swallow (Daniels et al., 2007; Nagy et al., 2013; Palmer et al., 2007). Thus, 

caution should be observed when interpreting command swallow data.  The physiological 
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differences between swallows with and without the command swallow were discussed later in this 

review.  

Spontaneous swallow, which is mostly saliva swallows, occurs subconsciously without a 

desire to swallow, such as during sleeping or between mealtimes (Dodds, 1989; Ertekin, 2011; 

Shaker et al., 1994).  It is considered a reflexive action for preventing saliva and/or a piece of bolus 

from entering the airway (Shaker et al., 1994).  Yet, recent fMRI studies have indicated the 

involvement of the cortex during spontaneous swallows (Martin et al., 2001).  Spontaneous 

swallow is initiated when the volume of salivary film reaches a critical amount (Ertekin, 2011).  

2.4 COORDINATION OF SWALLOWING AND RESPIRATION 

Respiration is defined as the process of exchanging oxygen from inhaled air and releasing carbon 

dioxide via exhalation (Martin-Harris, 2006).  A lack of the swallow-respiration coordination may 

cause aspiration and/or choking (Butler, Stuart, Pressman, Poage, & Roche, 2007).  As such, the 

coordination of swallowing and respiration is essential for safe swallowing (Logemann, 1998).  

There is no airflow through the trachea or larynx during the airway closure, which is referred to as 

the swallow apnea period or swallow cessation (Hiss, Strauss, Treole, Stuart, & Boutilier, 2004; 

Hiss, Treole, & Stuart, 2001; Martin-Harris, 2008; Martin-Harris et al., 2005). The swallow 

apnea/swallow cessation period predominantly occurs during the expiratory phase of respiration 

in healthy adults (Butler et al., 2007; Charbonneau, Lund, & McFarland, 2005; Logemann, 1998; 

Martin-Harris, 2008; Martin-Harris et al., 2005).  The pharyngeal swallow is predominantly 

initiated during the expiratory phase of respiration, and the swallow ends during the expiratory 
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phase (Butler et al., 2007; Charbonneau et al., 2005; Logemann, 1998; Martin-Harris, 2008; 

Martin-Harris et al., 2005).  The next commonly observed respiratory pattern is inspiration before 

the swallow and expiration after the swallow (Martin-Harris et al., 2005).  The expiration before 

the swallow and inspiration after the swallow pattern is rarely observed (Martin-Harris et al., 

2005).  This swallowing-respiration pattern is advantageous to protect the airway (Martin, 

Logemann, Shaker, & Dodds, 1994).  An exhalation after a swallow is helpful in clearing foreign 

materials that enter the airway (Martin et al., 1994).  During the expiratory phase of respiration, 

the true vocal folds are more mediatized at the onset of the pharyngeal swallow (Martin et al., 

1994).
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3.0  EVALUATION OF SWALLOWING 

There are several imaging and non-imaging studies for investigating swallow functions. Imaging 

studies include: videofluoroscopic examination of swallowing (VFSS), fiberoptic endoscopic 

evaluation of swallowing, ultrasound, and scintigraphy (Logemann, 1998).  Non-imaging studies 

utilize: electromyography, electroglottography, and pharyngeal manometry (Logemann, 1998).  

Among imaging studies, VFSS is widely used for evaluation and diagnosis of oropharyngeal 

dysphagia in the United States (da Silva, Lubianca Neto, & Santoro, 2010; Kelly, Drinnan, & 

Leslie, 2007; Kelly, Leslie, Beale, Payten, & Drinnan, 2006; Langmore, 2003).  

3.1 VIDEOFLUOROSCOPIC EXAMINATION OF SWALLOWING 

The videofluoroscopic examination of swallow (VFSS) also called the modified barium swallow 

study, was first introduced by Logemann and colleagues in the early 1980s (Dodds et al., 1990; 

Hartnick, Rudolph, Willging, & Holland, 2001; Langmore, 2003; Logemann, 1998; 1993).  The 

purposes of conducting VFSS are: (1) to identify abnormalities in swallow anatomy and 

physiology that are causing patients to have swallow symptom(s), and (2) to identify swallow 

treatment strategies (Langmore, 2003; Leder & Murray, 2008; Logemann, 1998; 1993).  
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The VFSS has several advantages.  VFSS allows visualizing all phases of swallowing, such 

as the oral preparatory, oral, pharyngeal, and esophageal phases (Langmore, 2003; Logemann, 

1998; 1993). During VFSS, it is possible to examine bolus flow throughout all phases (da Silva et 

al., 2010; Logemann et al., 1998), assess biomechanical function of the aerodigestive mechanism 

leading to abnormal bolus flow, and detect the presence, timing and severity of aspiration and 

laryngeal penetration before, during, and after the swallow (Logemann et al., 1998).  Moreover, 

the severity of penetration and aspiration is quantifiable on VFSS by using the penetration-

aspiration scale (Rosenbek, Robbins, Roecker, Coyle, & Wood, 1996), which is a validated 

measurement tool developed for VFSS (Nacci et al., 2008).  

However, VFSS involves radiation exposure (Bonilha et al., 2013; Kim, Choi, & Kim, 

2013; Langmore, Schatz, & Olsen, 1988; Logemann, 1993; Zammit-Maempel, Chapple, & Leslie, 

2007), although the amount of radiation doses is minimal during the procedure (Bonilha et al., 

2013; Zammit-Maempel et al., 2007).  Additionally, bedridden patients who are unable to be 

transported to a fluoroscopy suite (i.e., patients in ICU or on monitors) are not eligible for VFSS 

(da Silva et al., 2010; Langmore et al., 1988; Langmore, Schatz, & Olson, 1991; Logemann, 

Lazarus, Keeley, Sanchez, & Rademaker, 2000; Martin-Harris, Logemann, McMahon, Schleicher, 

& Sandidge, 2000; Nacci et al., 2008; Rugiu, 2007).  Patients are required to maintain sitting or 

semi-sitting positions during VFSS, which is not possible for every patient (Langmore et al., 1988; 

1991; Rugiu, 2007).  Patients who are not able to tolerate a small amount of aspiration are not 

eligible for VFSS (Langmore et al., 1988; 1991).  

In spite of these disadvantages, because of the dynamic visualization of all the phases of 

swallowing, VFSS has become a gold standard tool for the diagnosis and evaluation of swallowing 

(Bonilha et al., 2013; Kelly et al., 2006; Langmore et al., 1991; Zammit-Maempel et al., 2007).  
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3.2 FIBEROPTIC ENDOSCOPIC EVALUATION OF SWALLOWING 

Fiberoptic endoscopic evaluation of swallowing (FEES) was first formalized by Langmore and 

colleagues in 1988 (Langmore, 2003).  Langmore and colleagues have developed FEES for 

patients who were not eligible for VFSS (Langmore et al., 1988).  In fact, FEES is portable, thus, 

it can be performed as a bedside examination (Langmore et al., 1988; 1991; Nacci et al., 2008; 

Rugiu, 2007).  

 There are several advantages of FEES.  It does not involve radiation exposure (Hiss & 

Postma, 2003; Langmore et al., 1988; 1991; Logemann et al., 1998) and provides superior visual 

images of the larynx and hypopharynx, including the vocal folds (Langmore et al., 1988; 

Logemann, 1998).  The FEES also have been reported to have higher sensitivity on detecting 

aspiration, penetration and residue than VFSS (Hiss & Postma, 2003; Kelly et al., 2006; 2007; 

Langmore et al., 1991; Leder, Bayar, Sasaki, & Salem, 2007; Wu, Hsiao, Chen, Chang, & Lee, 

1997), although some other studies have reported that there was no difference between FEES and 

VFSS on detecting aspiration, penetration and residue (Leder & Murray, 2008; Rao, Brady, 

Chaudhuri, Donzelli, & Wesling, 2003). Furthermore, other studies have indicated that FEES 

overestimates both airway penetration-aspiration and post-swallow pharyngeal residue (Kelly et 

al., 2006; 2007). 

There also are disadvantages of FEES, namely it does not provide images of the oral phase 

of swallowing or function of the UES.  Since a scope is placed transnasally rendering the beginning 

of the field of endoscopic view posterior to the oral cavity (Langmore et al., 1988), it is not possible 

to investigate the oral phase of swallowing by FEES (Langmore et al., 1988).  Fiberoptic 

endoscopic evaluation of swallowing also does not visualize swallow events that occur during the 



17 

 

pharyngeal stage, also known as the “white-out” period, when the pharynx collapses after the 

pharyngeal swallow is triggered (Langmore et al., 1988; Logemann, 1998; Logemann et al., 1998; 

Nacci et al., 2008).  Logemann and colleagues (1998) indicated that the hyoid movement, airway 

entrance closure, the contact of the tongue base to the posterior pharyngeal wall, laryngeal 

elevation and UES opening are not visualized on FEES.  Given the lack of visualization during the 

white-out period, FEES does not allow the investigation of swallow functions during the 

pharyngeal swallow (Bonilha et al., 2013; Langmore et al., 1988; Logemann, 1998).  In addition, 

due to the placement of a scope, patients may experience discomfort, sensations of gagging or 

vomiting during the placement (Logemann et al., 1998; Nacci et al., 2008).  Finally, there are no 

standardized scales to quantify aspiration and penetration for FEES (Nacci et al., 2008) in spite of 

an attempt to validate the penetration-aspiration scale for FEES (Colodny, 2002). 

Fiberoptic endoscopic evaluation of swallowing also is considered a gold standard tool for 

diagnosis and evaluation of swallowing (da Silva et al., 2010; Hiss & Postma, 2003; Langmore, 

2003; Rugiu, 2007).  However, given the limitations described above, VFSS is employed when it 

is necessary to examine all the phases of swallowing and swallow physiology during the 

pharyngeal swallow (Bonilha et al., 2013; Logemann, 1998). 

3.3 SURFACE ELECTROMYOGRAPHY 

Surface electromyography (sEMG) is a non-imaging study, which is a widely used non-invasive 

technique to measure muscle electrical activity during swallowing (McKeown, Torpey, & Gehm, 
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2002).  The sEMG is considered to be a reliable procedure for investigating the muscles involved 

in swallowing (Ding et al., 2003).  

 Although sEMG does not provide any images of swallow process or the bolus during 

swallowing, it does provide the timing and relative amplitude of muscle contraction patterns during 

swallowing (Ding, Larson, Logemann, & Rademaker, 2002).  The sEMG does not provide 

information regarding the activity produced by specific muscles for swallowing.  However, it is 

known that the geniohyoid, mylohyoid and the anterior belly of the digastric muscle contribute to 

the submental sEMG signals obtained during swallowing (Crary, Carnaby-Mann, & Groher, 

2006).  It is also known that submental sEMG signals are correlated with hyoid elevation and 

laryngeal movement (Crary et al., 2006).  Therefore, sEMG has been accepted as an indirect 

measure of the duration of hyolaryngeal excursion that serves as a surrogate for the approximate 

duration of the pharyngeal swallow.  Furthermore, submental sEMG signals also is inferenced by 

the tongue movements (Huckabee & Steele, 2006; Steele & Huckabee, 2007).  

There are several advantages of employing sEMG to measure muscles for swallowing.   

Surface electromyography does not involve radiation exposure (Logemann, 1998).  It is relatively 

less expensive compared to VFSS (Ding et al., 2002).  The sEMG allows frequent recordings of 

swallow kinematics.  Unlike intramuscular electromyography that uses needle electrodes placed 

directly into specific muscles, sEMG signals can be obtained from an electrode patch that can be 

placed on the skin with an adhesive (Crary et al., 2006).  As such, the sEMG produces little or no 

discomfort (McKeown et al., 2002).  Given these advantages, sEMG has been employed to 

investigate participants’ reaction time measurements during swallowing (Brodsky, et al., 2012; 

Nakamura & Imaizumi, 2013). 



19 

 

4.0  COMMAND SWALLOW CONDITION 

4.1 WHAT IS THE COMMAND SWALLOW CONDITION? 

During VFSS the command swallow condition has been employed both for clinical and research 

purposes (Daniels et al., 2007; Palmer et al., 1992).  The command swallow condition is a 

controlled condition developed in research protocols that has been widely adopted and employed 

by clinicians (Daniels et al., 2007; Nagy et al., 2013; Palmer et al., 2007).  Under the command 

swallow condition, a patient/participant is asked to hold a liquid or solid bolus in the mouth, and 

wait to swallow the bolus until a verbal command, swallow, is given to the patient/participant 

(Hiiemae & Palmer, 2003).  More specifically, under the command swallow condition, a barium 

bolus is placed in the mouth of a patient or participant with a syringe or spoon by a speech language 

pathologist (SLP), and the patient/participant is instructed to hold the barium bolus on his/her 

tongue until a verbal stimulus after which he/she can swallow the bolus (Logemann, 1998; 1993).  

The swallow stimulus is uttered by an SLP during VFSS.  Although Daniels and colleagues 

(2007) and Reimers-Neils and colleagues (1994) have reported the exact instructions for the 

command swallow condition in their studies (Daniels et al., 2007; Reimers-Neils, Logemann, & 

Larson, 1994), there is not a standard set of instructions used by clinicians performing the VFSS. 

Anecdotally, the instruction below is given before the swallow examinations (Reimers-Neils et al., 

1994). 
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 I am going to place a small amount of food in your mouth. I want you to hold it in your 

mouth until I tell you to swallow.   

After the instruction is given, the verbal cue for the bolus hold, such as hold it, is given 

after a barium bolus is placed on a patient/participant’s tongue (Daniels et al., 2007).  Then the 

verbal stimulus is given after a radiologist or radiology technician turns on the radiation beam to 

start the swallow examination.  For this stimulus, an action word swallow is uttered by the 

examiner.  There are variations of the verbal stimulus among SLPs in the clinical settings.  

However, the impact of variations of the verbal stimulus has never been systematically 

investigated. 

Originally, the command swallow condition was designed for minimizing the amount of 

radiation exposure both for SLPs and patients/participants (Daniels et al., 2007; Logemann, 1998; 

1993; Nagy et al., 2013).  Under the command swallow condition, the radiation beam is turned off 

while a SLP places a barium bolus in a patient or participant’s mouth, and steps away from the 

radiation beam source.  The radiation beam is turned on right before the verbal stimulus is given, 

and turned off after the bolus is propelled down to the esophagus (Daniels et al., 2007; Nagy et al., 

2013).  Moreover, the command swallow condition is used to capture the whole swallow event 

during VFSS: in order to make sure each swallow is not initiated before turning on the radiation 

beam, a patient/participant needs to hold a bolus on the tongue until the verbal stimulus is given 

(Nagy et al., 2013).  The verbal stimulus is required to let a patient/participant know when to 

initiate swallowing (Logemann, 1993; Logemann, Pauloski, Rademaker, & Kahrilas, 2002).  
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4.2 THEORETICAL AND NEURAL PATHWAY FOR THE COMMAND SWALLOW 

CONDITION: DUAL STREAM MODEL 

 
There have been no prior studies that have explored the theoretical and/or neural mechanisms 

responsible for how the verbal stimulus, swallow, is processed during the command swallow 

condition.  However, the dual stream model for speech perception proposed by Hickok and his 

colleagues (2007) may explain possible mechanisms of the verbal stimulus processing with the 

command to swallow.   

The dual stream model for speech perception is based on the fact that acoustic speech input 

should be linked both to semantic representations and the motor speech system (Hickok, 2012; 

Hickok & Poeppel, 2007).  The model suggests that speech is processed concurrently on two time-

scales by two separate streams, the dorsal and ventral stream.  The ventral stream, which is 

bilaterally organized, is involved in processing auditory signals for comprehension.  The dorsal 

stream, which is left dominant, is involved in translating the auditory signals into articulatory 

presentation (Hickok, 2012; Hickok & Poeppel, 2004; 2007; Poeppel, Emmorey, Hickok, & 

Pylkkänen, 2012).  

More specifically, the acoustic speech signal is projected to the bilateral primary auditory 

cortex, which is Brodmann area 41 (BA41), secondary auditory cortex (BA42), and planum 

temporale for the spectrotemporal analysis.  The signal is further projected to the middle-posterior 

superior temporal sulcus for the phonological level processing.  The subsequent projections 

bifurcate into the ventral and dorsal steams.   
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In the ventral stream, the auditory signal is projected to the posterior middle temporal gyrus 

and posterior inferior temporal sulcus for lexical-semantic-grammatical processing.  During this 

process, the phonological information of the auditory signal is linked to the semantic information.  

The auditory signal is further projected to the anterior middle temporal gyrus and anterior inferior 

temporal sulcus that are proposed to work as the “combinational network”.  In the network, the 

linguistic information of the signal, such as phonological, semantic, lexical, and grammatical 

information is integrated to speech motor functions.  

In the dorsal stream, the auditory signal is projected to the parietal-temporal junction, 

which is called the area SPT.  The area is proposed to be the “sensorimotor interface”. During this 

process, the auditory signal is integrated into speech motor representations.  Other sensory inputs 

also enter the SPT.  Subsequently, the information is projected to the “articulatory network” which 

is located in the left posterior inferior frontal gyrus, premotor cortex, and anterior insula for speech 

production.  

Based on the dual stream model, it is postulated that the verbal stimuli in the command 

swallow condition is processed concurrently in the dorsal and ventral streams.  The auditory signal 

perhaps is projected to the “swallowing-related network” instead of the “articulatory network”.  

However, it is not clear whether the “swallowing-related network” is independent from the 

articulatory network.  As previously noted, it is difficult to tease out the swallow specific 

activations and speech specific functions when interpreting neural signal data (Hamdy et al., 1999; 

Huckabee et al., 2003; Kern et al., 2001; Malandraki et al., 2011).  
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4.3 IMPACT OF THE COMMAND SWALLOW CONDITION ON SWALLOW 

PHYSIOLOGY 

Normative swallowing data have been established based on the previous research that has 

employed the command swallow condition (Daniels et al., 2007; Hiiemae & Palmer, 1999).  

However, Hiiemae and colleagues (1999) have suggested that swallows under the command 

swallow condition do not represent natural swallowing behaviors in healthy individuals (Hiiemae 

& Palmer, 1999).  Indeed, there are two unnatural behaviors under the command swallow condition 

that are not observed under natural swallowing, which are (1) bolus hold: bolus is held in the mouth 

intentionally while the patient awaits a command to swallow, and (2) the verbal command itself: 

the patient processes the verbal stimulus, swallow, prior to the swallow initiation and then 

swallows in response to the stimulus (Hiiemae & Palmer, 2003).  Recent studies have begun to 

indicate evidence that the command swallow condition may influence some aspects of the swallow 

physiology.  

4.3.1  Impact of the bolus hold  

4.3.1.1 Alterations of bolus location 

 

Previous VFSS studies have focused on investigating the impact of the bolus hold, and indicated 

that the bolus hold under the command swallow condition induces patients/participants to position 

a bolus more anteriorly at swallow onset regardless of bolus consistency and volume (Daniels et 

al., 2007; Nagy et al., 2013; Palmer et al., 2007).  Table 1 displays the summary of the previous 
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studies. Table 2 displays the definitions of onset and duration measurements in the previous VFSS 

studies. 

Daniels et al. (2007) examined the effects of the command swallow condition during 5 ml 

liquid barium swallows in 12 healthy older participants.  The researchers reported, in the command 

swallow condition, a bolus was consistently moved on the tongue while participants were holding 

the bolus, and the bolus was located more posteriorly at the onset of oral transit than seen in the 

non-command swallow condition.  In the non-command swallow condition, the bolus remained at 

the anterior loading position at the onset of the oral transit, and the bolus was propelled to the back 

of the oral cavity and pharynx.  

In the same study, Daniels et al. (2007) also reported that the bolus head was located more 

superiorly in the oropharynx (i.e., superior or adjacent to the ramus of the mandible) at the swallow 

onset in the command swallow condition while the bolus head was more frequently located more 

inferiorly in the valleculae, the laryngeal surface of the epiglottis and pyriform sinuses in the non-

command swallow condition.  Furthermore, Nagy and colleagues (2013) reported, during 10 ml 

liquid bolus swallows in 20 healthy young participants, the bolus head was located above the 

pyriform sinuses at the swallow onset in the command swallow condition while the bolus head 

was more frequently located in the pyriform sinuses in the non-command swallow condition.  

In addition, Palmer et al. (2007) examined the bolus location during swallows of an 8-gram 

hard cookie in 8 healthy younger participants.  The researchers reported that the bolus head was 

more superiorly positioned at the swallow onset for the command swallow condition than for the 

non-command swallow condition.  In particular, the bolus head was located either in the oral 

cavity, upper oropharynx, or valleculae at the swallow onset in the command swallow condition 
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while the bolus head was either in the upper oropharynx or valleculae at the swallow onset in the 

non-command swallow condition. 

Previous studies concur with each other and indicate that the command swallow condition 

alters the bolus position at swallow onset. Regardless of the methodological differences among 

these studies (i.e., participant’s age, bolus consistency, and bolus volume), the bolus was more 

superiorly located in the command swallow condition than in the non-command swallow 

condition. 

Despite of the agreement with the data regarding the bolus locations, the previous studies 

have small sample sizes and a limited number of swallow trials.  Daniels et al. (2007) had 12 

participants and participants performed only two swallows for each condition.  In the Nagy et al. 

(2013), participants only swallowed once in the command swallow condition.  Palmer et al. (2007) 

had a total of 8 participants, but only 7 participants’ data were used for the statistical analysis.  

Participants swallowed once in each command swallow condition in their study.  Lof and Robbins 

(1990) investigated the test-retest variability during VFSS in healthy participants, and suggested 

that at least three repeated trials of swallows are needed in order to avoid variability and capture 

swallow nature during VFSS (Lof & Robbins, 1990).  The small sample size and limited number 

of swallow trials in the previous studies may have caused variability in the results.  As such, the 

results of previous studies may not represent the true nature swallows or impact of the bolus hold 

on bolus locations during liquid swallows.  
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Table 1 Summary of the previous studies investigating the effects of the command swallow condition 

Authors Subjects  Swallow 
tasks 

Swallow 
condition 

Measurements  Results 

Daniels 
et al. 
(2007) 

 

12 healthy 
older adults 

  
6females 
+6males 

 
Mean 
age=68.8±7
.7 yrs. 

 
Age 
range=56-
78 yrs. 

 

-5 ml 
 

-Liquid 
barium 

 
Swallow 
trials=2 

  
 

-WC 
-NC 

 
Randomize
d order 

 
 

1.Bolus location 
at: 
-OTT   
 -Swallow onset  

 
2. Duration: 
-OTT 
- STT 
- PTT 
- TSD 

 
3.PAS  

 

1. Bolus location: 
Bolus always moved in WC 
 
Posteriorly located at OTT in WC 
 
More anteriorly located at OTT in 
NC  
 
More superiorly located at 
swallow onset in WC 
 
More inferiorly located at 
swallow onset in NC 

 
2. Duration: 
Shorter OTT, STT, PTT, & TSD in 
WC 

 
3. PAS: 
No difference between WC and 
NC 

Nagy  
et al. 
(2013) 

20 healthy 
younger 
adults 

 
10females+
10males 

 
Mean 
age=31.5±5
.7 yrs. 

-10 ml 
  

-Liquid 
barium 

  
Swallow 
trials=3  

 

-WC  
- NC 

 
Order NOT 
randomized 

 

1.BLSO 
 

2.Duration: 
-STD 
- PTT 
-PRD 

 

1. BLSO: 
More superiorly located in WC 

 
2. Duration: 
Shorter trend for STD in WC 
  
Longer PTT and PRD in WC  

Palmer 
et al. 
(2007) 

8 healthy 
young 
adults 

 
4females+4
males 

 
Age 
range=21-
25 yr.  

 
Median 
age=23 yr. 

-8g 
 

-Solid 
food 
(cookie) 

 
Swallow 
trial=1  

 

- WC 
- NC 

 
Order not 
randomized 

 

1.Bolus location 
at: swallow onset 

 
 

2.Duration: 
- Stage I 
transport 
 -Processing 
- VAT 
- HTT 

 

1. Bolus location: 
More superiorly located at 
swallow onset in WC 

 
2. Duration: 
Shorter trend for the stage I 
transport and HTT in WC  
 
Longer processing in WC  
 
Shorter VAT in WC  

 

 
Note: yrs.= years; WC= command swallow condition; NC = non-command swallow condition; OTT = Oral transit 
time; STT = Stage transit time; PTT = Pharyngeal transit time; TSD = Total swallow duration; PAS = Penetration 
aspiration scale; BLSO = Bolus location at swallow onset; STD = Stage transition duration; PRD = Pharyngeal 
response duration; VAT = Vallecular aggregation time; HTT = Hypo-pharyngeal transit time. 
 



27 

 

Table 2  Definitions of onset and duration measurements in the previous studies investigating the effects of the 
command swallow condition 

 

Authors Bolus timing measure Time interval between: And: 

Daniels 
et al. 
(2007) 

Swallow onset Onset of the maximum hyoid elevation 
Oral transit time 
(OTT) 

Onset of the first bolus anterior 
or posterior movement  

Passing of the leading edge of the 
bolus at the posterior angle of the 
ramus of the mandible 

Stage transit 
duration (STD) 

Passing of the bolus head at 
the posterior angle of the 
ramus of the mandible  

Onset of the hyoid maximum 
superior movement 

Pharyngeal transit 
time (PTT) 

Passing of the leading edge of 
the bolus at the posterior angle 
of the ramus of the mandible 

Bolus tail passes through the UES  

Total swallow 
duration (TSD) 

Onset of the first bolus anterior 
or posterior movement  

Bolus tail passes through the UES  

Nagy et 
al. 
(2013) 

 

Swallow onset Onset of the antero-superior hyoid excursion 
Stage transition 
duration (STD) 

Passing of the bolus head at 
the posterior angle of the 
ramus of the mandible  

Onset of the antero-superior hyoid 
motion  

Pharyngeal transit 
time (PTT) 

Passing of the bolus head at 
the posterior angle of the 
ramus of the mandible  

Passage of the bolus tail through the 
UES 

Pharyngeal 
response duration 
(PRD) 

Onset of the antero-superior 
hyoid motion 

Passage of the bolus tail through the 
UES  

Palmer 
et al. 
(2007) 

Swallow onset Onset of rapid hyoid elevation 

Stage I transport Passing of food at the incisors  Onset of mastication 

Processing  Onset of chewing  Bolus reaches at the level of lower 
border of the mandible 

Vallecular 
aggregation time 
(VAT) 

Passing of the lower border of 
the mandible  

Passing of the bolus at the edge of 
the epiglottis 

Hypopharyngeal 
transit time (HTT) 

Passing of the edge of the 
epiglottis  

Passing of the trailing edge of the 
bolus through the UES  

 

4.3.1.2 Alterations of the swallow durations 

 

Previous studies also have indicated that differences in the location of the bolus due to the bolus 

hold leads to altered swallow durations.  However, there is no consensus as to exactly how the 

bolus hold alters the duration parameters.  
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Daniels et al. (2007) reported the duration of the oral transit time during 5 ml liquid barium 

swallows was significantly shorter in the command swallow condition than in the non-command 

swallow condition.  Since the bolus was more posteriorly located at the onset of the oral transit 

time in the command swallow condition, the bolus needs to travel a shorter distance to reach to the 

ramus of the mandible.  

Daniels et al. (2007) also reported shorter stage transit duration, pharyngeal transit time, 

and total swallowing duration in the command swallow condition during 5 ml swallows in older 

participants.  Nagy and colleagues (2013) reported shorter stage transit duration in the command 

swallow condition in the study with 10 ml bolus swallows in younger participants, but the 

difference did not meet statistical significance.   They also indicated longer pharyngeal transit time 

and pharyngeal response duration, in the command swallow condition in the same study, the results 

of which are opposite to the results reported by Daniels et al. (2007).  

Nagy et al. (2013) pointed out that there was large variability in all measurements in the 

study by Daniels and colleagues, which could be explained by the small sample size and swallow 

trial numbers in the study conducted by Daniels et al. (2007).  In fact, Molfenter and Steele (2012) 

conducted a systematic review of healthy swallow physiology and reported that stage transit 

duration was more variable than other duration parameters.  Nagy et al. (2013) also indicated 

several methodological differences that may have contributed to the disagreement between the two 

studies, such as participants’ age, bolus volume, and presence of the order randomization of the 

swallow conditions.  Daniels and colleagues (2007) examined swallows of 5 ml liquid boluses in 

older participants, whereas Nagy et al. (2013) tested 10 ml liquid swallows in younger participants.  

In addition, Nagy et al did not randomize the order of their swallow conditions.  However, it is 

unknown how age and bolus volume difference might have influenced the results in the within 
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subject design studies.  Furthermore, the results from the two studies are not consistent with 

literature that has indicated age effects on swallow durations.  Robbins, Hamilton, Lof, and 

Kempster (1992) reported that older individuals show longer swallow durations than younger 

individuals.  Molfenter and Steele (2012) reported that there was a trend toward longer stage transit 

duration and pharyngeal transit time in older participants.  Further studies are needed to clarify the 

reasons for the differences in findings between the studies. 

In addition, the swallow command condition in the Nagy et al. (2013) study was different 

from that used in Daniels et al. (2007).  In the study by Daniels et al, participants held a liquid 

bolus in their mouths, listened to the verbal stimulus to swallow and then swallowed the bolus.  In 

contrast, in the Nagy et al. (2013) study participants held a bolus in their mouth, listened to an 

individual counting from 1 to 5, listened to the verbal stimulus to swallow, and then swallowed 

the bolus.  The effects of the command swallow condition (e.g., differences in instructions, verbal 

stimulus, and duration of bolus hold) have never been systematically investigated.  The difference 

in the methods of deploying the command swallow condition in the previous studies may explain 

the contradictory findings of the two studies.  

 Furthermore, Palmer et al. (2007) indicated a longer processing time and shorter vallecular 

aggregation time in the command swallow condition than in the non-swallow condition in the 

previously described study with a hard cookie in eight healthy younger participants.  The 

researchers reported that the duration of the stage I transport and hypopharyngeal transit time were 

shorter in the command swallow condition, but these differences were not statistically significant.  

Palmer et al. postulated the longer processing time was due to the increase of the number of 

chewing cycles participants used in the command swallow condition.  However, they did not count 

the number of chewing cycles during the experiment, and their reasons for suspecting the increase 
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of chewing cycles are unknown.  Moreover, the same researchers also speculated that the shorter 

vallecular aggregation time was caused by the inhibition of the valleculae aggregation under the 

command swallow condition.  Yet, the bolus aggregation in the valleculae was observed in 3/7 

participants in the study.  The reasons for the short vallecular aggregation time are not clear.  The 

inconsistent results in the study by Palmer and colleagues may have been due to the small sample 

size and swallow trial number in the study.   

4.3.2  Alteration of palate-lingual contact duration 

 Nomura and colleagues (2011) examined the effect of the swallow condition on tongue 

movements in eight young male participants.  They reported that the duration of the palate-lingual 

contact, measured by an ultrasound, was shorter during 3 ml liquid swallows in the command 

swallow condition than in the non-command swallow condition (Nomura et al., 2011).  However, 

the sample size also was small in this study.  The authors speculated that the short palate-lingual 

contact was related to the hyoid elevation difference between the two conditions.  Yet, they did 

not measure the hyoid elevation in their study.  Further studies are needed to clarify the impact of 

the command swallow condition on the tongue movements including the palate-lingual contact.  

4.3.3 Possible impact on the oral-swallowing pattern  

Dodds et al. (1989) observed two types of oral-swallowing patterns.  One is the “tipper” type 

swallow: swallowing is initiated with the tongue tip against the incisors.  The bolus is in a supra-

lingual position with the tipper type swallow.  Another is the “dipper” type swallow: the bolus is 
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positioned in the anterior floor of mouth beneath the anterior part of the tongue at the swallow 

onset.  The tongue tip needs to dip beneath the bolus in order to elevate the bolus to the lingual 

surface before the posterior motion of the tongue in the dipper type swallows.  The tipper type 

swallow is most common, but both patterns are observed among healthy individuals.  The dipper 

type swallow is more prevalent in healthy individuals over 60 years.  

 It is conceivable that the command swallow condition may alter the dipper type swallows 

if participants who ordinarily are dippers are instructed to hold the bolus on the tongue.  In the 

previously described tongue movement study, Nomura and colleagues (2011) have examined the 

oral-swallowing pattern and reported that all of the eight healthy young male participants exhibited 

the tipper type swallow pattern both in the command swallow and non-command swallow 

condition.  Because there were no participants who showed the dipper type in the non-command 

condition, the study result does not indicate the impact of the command swallow condition on the 

oral-swallowing pattern.  Future studies with larger sample sizes that include participants with the 

dipper type swallow are needed to test whether the instruction of the command swallow condition 

inhibit the dipper type swallow.  

4.3.4  Inhibition of swallow onset  

Roubeau et al. (2008) compared the reaction time difference between swallowing with the 

command swallow condition and phonation (i.e., sustained phonation at constant voice pitch) 

following an acoustic stimulus.  They measured the duration between the acoustic stimulus (i.e., 

1000Hz pure-tone signal) and the onset of swallowing with electroglottogram. Electroglottogram 

is used to track the vocal fold movement as well as laryngeal elevation during swallowing (Ding 
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et al., 2002; Perlman & Grayhack, 1991).  They found that the duration was longer for swallowing 

than for phonation.  Based on these results, Roubeau et al. (2008) postulated that the longer 

duration in the swallowing condition was because the bolus hold may have induced inhibition of 

swallow onset: it was required to overcome the inhibition process to initiate the onset of 

swallowing, and overcoming the inhibition caused delay in initiating oropharyngeal swallow.  The 

postulation by Roubeau et al. has never been tested, and whether the bolus hold induces inhibition 

has remained an unanswered question. 

4.3.5 Alteration of hyoid kinematics 

Molfenter and Steele (2011) hypothesized that during the command condition, the hyoid is 

partially elevated before the onset of the swallow.  Because the hyoglossus muscle, which is one 

of the supra-hyoid muscles, arises from the hyoid and enters the side of the tongue (McFarland, 

2009), it is reasonable to hypothesize that elevating the tongue toward the palate to hold a bolus 

on the tongue causes earlier hyoid elevation.  However, the hypothesis by Molfenter and Steele 

has never been tested.  In the previous VFSS studies, the onset time of the hyoid elevation 

associated with swallowing was used to calculate some of the duration parameters (i.e., stage 

transit duration, pharyngeal response duration, and hypopharyngeal transit time).  Yet, the hyoid 

onset time for the bolus hold were not examined in the previous studies.  
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4.3.6 Impact on the coordination of swallowing and respiration  

The impacts of the command swallow condition on swallow-respiratory coordination have not 

been well documented.  Previously reported VFSS studies did not account for swallow-respiratory 

coordination.  However, there is some evidence that suggests the use of the command swallow 

condition may also alter the swallow-respiratory pattern during liquid swallows, although the 

altered pattern is not pathological.  

Uysal, Kızılay, Ünal, Güngör, and Ertekin (2013) observed that when the verbal stimulus 

was given during the inspiratory phase, the pharyngeal swallow was forced to be initiated during 

the inspiratory phase.  In their study, the verbal stimulus to swallow was unintentionally given 

both during the inspiratory or expiratory phase of respiration because they did not control for the 

swallow-respiratory pattern when they gave the verbal stimulus.  Perlman, Ettema, and Barkmeier 

(2000) also reported that the number of inspiration episodes preceding a swallow apnea or swallow 

cessation tend to be increased under the command swallow condition, although the respiratory 

pattern is not necessary pathological.  They speculated that the alteration of the swallow-

respiratory pattern could have been due to the bolus hold while waiting for the verbal stimulus. 

When pharyngeal swallow is initiated during the inspiratory phase, more suprahyoid 

muscle effort is produced (Sekikawa, Isoda, Iwamoto, Takahashi, & Inamizu, 2008).  Healthy 

individuals find it difficult to swallow during the inspiratory phase.  These respiratory patterns 

may impact the duration between the verbal stimulus onset and the hyoid elevation onset and/or 

the onset of oral transit.   Individuals may wait to initiate the oral transit until the onset of the 

expiratory phase. 
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4.3.7 Summary  

Previous VFSS studies have focused on investigating the impact of the bolus hold under the 

command swallow condition, and indicated that the bolus hold induces a more anterior location of 

the bolus at swallow onset regardless of bolus consistency and volume (Daniels et al., 2007; Nagy 

et al., 2013; Palmer et al., 2007).  The bolus hold also induces a more posterior bolus location at 

oral transit onset (Daniels et al., 2007).  These bolus location differences induce alteration of some 

of the swallow durations, such as oral transit time, stage transit duration, total swallow duration, 

pharyngeal transit time, pharyngeal response time, processing duration, and vallecular aggression 

time (Daniels et al., 2007; Nagy et al., 2013; Palmer et al., 2007).  Yet, there is no consensus as to 

the specifics of how the bolus hold alters the duration parameters.  Furthermore, alterations of 

palate-lingual contact duration, hyoid elevation, inhibition of the swallow onset, and swallow-

respiratory coordination pattern change have been reported under the command swallow condition.  

The impact of the bolus hold under the command swallow condition on swallow physiology has 

been evaluated, although it is not fully understood at this time.  

4.3.8 Impact of the verbal stimulus 

 Researchers investigating the effects of the command swallow condition have postulated that the 

verbal stimulus may impose greater volition, thus, may change some of the swallow dynamics 

(Daniels et al., 2007; Nagy et al., 2013).  Nevertheless, the previous VFSS studies investigating 

the command swallow condition did not account for the impact of the verbal stimulus.  None of 

the VFSS studies and other behavioral studies tested the effect of the verbal stimulus, independent 
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of the effect of the bolus hold.  To date, no studies have investigated the impact of the linguistic 

processing associated with the verbal stimulus on swallow physiology.  It is unknown whether 

processing and responding to the verbal stimulus impacts natural swallow dynamics.  However, 

several lines of evidence support examination of the role of verbal stimuli during the command 

swallow condition. In the next section, neural and behavioral evidence is addressed that may assist 

in examining the impact of verbal stimuli.   

4.3.9 Evidence that supports the feasibility of testing the impact of the verbal stimulus 

4.3.9.1 Alterations on swallow physiology that cannot be explained by the bolus hold 

 

There are some alterations in swallow physiology during the command swallow condition that 

cannot be explained by the bolus hold alone.  It has been reported that the onset of hyoid elevation 

at the swallow onset in relation to the timing when the bolus tail passes through upper esophageal 

sphincter is reported to be earlier (Daniels et al., 2007) and/or have an earlier trend (Nagy et al., 

2013) under the command swallow condition than the non-command swallow condition.  It is also 

reported that pharyngeal swallow is initiated when the bolus is at a higher location in the 

aerodigestive tract in the command swallow condition than in the non-command swallow 

condition (Nagy et al., 2013).  

Multiple factors such as bolus taste, temperature, volume, and swallow-respiratory 

coordination, contribute to the initiation of pharyngeal swallow.  The bolus location itself was not 

found to influence the triggering of pharyngeal swallow (Mendell & Logemann, 2007; Stephen, 

Taves, Smith, & Martin, 2005).  Thus, earlier hyoid onset and triggering of the pharyngeal swallow 
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in the command swallow condition cannot be explained solely by the anterior bolus location 

resulting from the bolus hold. 

4.3.9.2 Modulation by top-down input   

 

As described previously, swallowing is not a purely reflexive act controlled primarily by the 

brainstem (Humbert et al., 2009; Malandraki & Robbins, 2013; Martin et al., 2007; Shaw & 

Martino, 2013).  Swallowing involves more complex neuronal networks, such as cortical, 

subcortical, brainstem and peripheral nervous system (Humbert et al., 2009; Malandraki & 

Robbins, 2013; Martin et al., 2007; Shaw & Martino, 2013).  Importantly, some of the voluntary 

components of swallow behaviors can be modulated by top-down input, such as cortical to 

peripheral structures (Humbert, Lokhande, Christopherson, German, & Stone, 2012).  

4.3.9.3 Stimulus characteristics and differences in neural activation 

 

Neural evidence collected in prior studies suggests that neural activation patterns are different 

among swallows that are elicited by various stimuli (i.e., a tactile, light signal, and verbal stimuli) 

and swallows without stimuli.  Nagasaki, Hashizume, Tanimoto, and Kurisu (2007) have reported 

that more cortical areas are recruited for volitional swallows when a light signal is used to signal 

the participant to swallow, compared to volitional swallows without the light signal (self-initiated 

swallows).   The right temporal pole and medial and inferior frontal gyrus have been observed to 

be activated prior to the initiation of volitional swallows with the light signal, but not prior to the 

volitional swallows without the signal.  Nagasaki and colleagues postulated that these neural 
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activation differences may suggest differences in cognitive processing prior to the swallowing.  

The cognitive process difference may influence swallow physiology.         

Moreover, the neural activation observed prior to swallows elicited by a written, verbal 

stimulus (i.e., swallow in Japanese) has demonstrated left hemispheric dominance compared to 

swallows without the verbal stimulus (Nagasaki et al., 2004).  This cerebral activation asymmetry 

may suggest the involvement of language processing under the command swallow condition when 

the verbal stimulus is employed.      

In language research, based on the evidence of neuroimaging studies, such as structural 

and functional MRI, magnetoencephalography, transcranial magnetic stimulation, and 

electroencephalography, researchers have actively investigated the neural activation associated 

with language functions including language processing.  Neurophysiological and behavioral 

evidence in language research suggests the processing of the verbal stimulus under the command 

swallow condition may impact swallow physiology.  More specifically, two theories derived from 

the embodiment theories, which are (1) the language induced motor activity theory, and (2) 

language induced motor facilitation theory, may assist in examining the impact of processing the 

verbal stimulus. In the following sections, the language induced motor activity and language 

induced motor facilitation theories are reviewed. 
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4.4 LANGUAGE INDUCED MOTOR ACTIVITY: EMBODIED LANGUAGE 

PROCESSING 

The theories of embodiment, which have been investigated in cognitive neurosciences, philosophy, 

anthropology, and robotics (Jirak, Menz, Buccino, Borghi, & Binkofski, 2010), link low cognitive 

processes such as human sensorimotor behaviors, to higher cognitive functions such as human 

language processing.  In neuroscience, numerous studies have reported a link between language 

and movements (Rabahi, Fargier, Rifai Sarraj, Clouzeau, & Massarelli, 2013).  

4.5 LANGUAGE INDUCED MOTOR ACTIVATION THEORY: LINK BETWEEN 

LANGUAGE AND MOTOR CORTICAL AREAS 

The language induced motor activation theory indicates there is a neural link between action words 

that involve body parts, such as feet/legs, hands/arms, and articulators/face, and motor cortical 

areas that are involved in the execution of the actions (Buccino et al., 2005; Fargier, Ménoret, 

Boulenger, Nazir, & Paulignan, 2012;  Fischer & Zwaan, 2008; Hauk & Pulvermüller, 2004; Jirak 

et al., 2010; Meteyard, Cuadrado, Bahrami, & Vigliocco, 2012; Péran et al., 2010; Postle, 

McMahon, Ashton, Meredith, & de Zubicaray, 2008; Pulvermüller, 1999; 2005; 2013; 

Pulvermüller & Hauk, 2006; Pulvermüller, Hauk, Nikulin, & Ilmoniemi, 2005a; Pulvermüller, 

Härle, & Hummel, 2001; Pulvermüller, Shtyrov, & Ilmoniemi, 2005b; Tettamanti et al., 2005; 

Tomasino, Fink, Sparing, Dafotakis, & Weiss, 2008; Tomasino, Werner, Weiss, & Fink, 2007).  

Action words are defined as verbs that refer to physical movements by one’s own body, that are 
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perceived visually (Pulvermüller, 1999).  For example, there are action words that express the act 

of throwing (e.g., toss or fling), creation (e.g., assemble, or sculpt), and ingesting (e.g., eat, chew, 

dine, or swallow) (Kemmerer, 2006).  

The processing of action words that involve body parts, such as feet/legs, hands/arms, and 

articulators/face including ingesting words, activate motor cortical areas, such as the primary, 

supplementary motor, and premotor cortex, that are involved in the execution of actions (Buccino 

et al., 2005; Fargier, Ménoret, Boulenger, Nazir, & Paulignan, 2012a; Fischer & Zwaan, 2008; 

Hauk & Pulvermüller, 2004; Jirak et al., 2010; Meteyard et al., 2012; Péran et al., 2010; Postle et 

al., 2008; Pulvermüller, 2005; 2013; Pulvermüller et al., 2001; Pulvermüller & Hauk, 2006; 

Pulvermüller, Hauk, Nikulin, & Ilmoniemi, 2005a; Pulvermüller, Shtyrov, & Ilmoniemi, 2005b; 

Tettamanti et al., 2005; Tomasino et al., 2007; 2008).  Data from fMRI studies have suggested that 

a link between action words and  motor cortical areas is developed early in one’s life (James & 

Maouene, 2009), and the link persists in adulthood (Boulenger & Nazir, 2010).  James and 

colleagues (2009) indicated that the motor activation in response to action words which were hand 

and leg-related words, was observed in children aged between 4 and 5 years old (James & 

Maouene, 2009).  

4.5.1 Semantic somatotopy model: Somatotopical organization of the cortical activation 

by action words 

Neuroimaging studies indicate that action word processing activates motor cortical areas in a 

somatotopic way without the execution of the actions (Buccino et al., 2001; James & Maouene, 

2009; Jirak et al., 2010; Pulvermüller, 1999; 2005; Pulvermüller & Hauk, 2006; Pulvermüller, 
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Shtyrov, & Ilmoniemi, 2005b; Scorolli & Borghi, 2007; Tettamanti et al., 2005).  For example, 

Hauk and colleagues (2004) reported that during passive reading of action words related to arm, 

leg or face actions (e.g., pick, kick, or lick), activations of the premotor and primary motor cortex 

were observed.  The activation areas were overlapped and/or adjacent with the areas that are 

activated by actual fingers, foot, or tongue movements.  More specifically, arm-related action 

words activated bilateral middle frontal gyrus.  Leg-related action words activated right superior 

frontal gyrus, left precentral gyrus and postcentral gyrus, and left dorsomedial frontal region.  

Face-related action words were found to activate bilateral inferior frontal gyrus, respectively. 

4.5.2  Temporal aspects of the language induced motor activity  

Results from neurophysiological recording techniques with high temporal resolutions, such as 

electroencephalography and magnetoencephalography, indicate that action words lead to the 

somatotopic activation of the motor cortical areas quickly.  The cortical activation occurs 

approximately 200 ms after the written action word stimuli are presented (Boulenger et al., 2006; 

Hauk & Pulvermüller, 2004; Pulvermüller et al., 2001; Pulvermüller, Shtyrov, & Ilmoniemi, 

2005). 

In addition, Pulvermuller (2001, 2005) indicated that articulators-/face-related auditory and 

written action words (e.g., eat and chew) activated the motor cortical areas more quickly and 

stronger when the activation is compared to the motor cortical activation by a leg-related action 

word (e.g., kick).  This result may suggest the processing of the action word swallow, which has 

similar semantic meaning to eat, may induce a fast, strong cortical activation. 
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4.5.3 Types of action word stimuli  

The activation of the motor cortical areas elicited by action words can be observed during several 

types of word processing tasks, including during passive listening (Buccino et al., 2005; James & 

Maouene, 2009; Pulvermüller, Shtyrov, & Ilmoniemi, 2005b; Raposo, Moss, Stamatakis, & Tyler, 

2009; Tettamanti et al., 2005), silent reading (Boulenger, Hauk, & Pulvermüller, 2009; Hauk & 

Pulvermüller, 2004; Hauk, Johnsrude, & Pulvermüller, 2004; Kana, Blum, Ladden, & Ver Hoef, 

2012; Kemmerer, Castillo, Talavage, Patterson, & Wiley, 2008; Postle et al., 2008; Pulvermüller 

et al., 2001; Pulvermüller, Kherif, Hauk, Mohr, & Nimmo-Smith, 2009; Raposo et al., 2009; 

Tomasino et al., 2007; Willems, Hagoort, & Casasanto, 2010), action word picture naming 

(Saccuman et al., 2006), action word recalling (Oliveri et al., 2004), imagery of actions (Kosslyn, 

Ganis, & Thompson, 2001; Tomasino et al., 2007; Willems et al., 2010), and even observing 

actions by others (Aziz-Zadeh, Wilson, Rizzolatti, & Iacoboni, 2006; Hauk et al., 2004; Kana et 

al., 2012). 

The motor area activation that occurs after presentation of action word stimuli is not limited 

to single-word level stimuli.  Motor area activation has been reported during the processing of 

action words with literal meaning (Hauk et al., 2004; Hauk & Pulvermüller, 2004; James & 

Maouene, 2009; Kemmerer et al., 2008; Postle et al., 2008; Pulvermüller et al., 2001; 2009; 

Pulvermüller, Shtyrov, & Ilmoniemi, 2005b; Raposo et al., 2009; Willems et al., 2010), sentences 

that include action-related words with literal meanings (Kana et al., 2012; Raposo et al., 2009; 

Tettamanti et al., 2005), and sentences with action-related words that include idiomatic meanings 

(Boulenger et al., 2009; Boulenger & Nazir, 2010; Boulenger, Shtyrov, & Pulvermüller, 2012).   
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4.5.4 Theories explain the causes of the link between action words and motor cortical 

areas 

4.5.4.1 Hebbian theory of learning  

 

There has been no consensus on how the link between action words and the motor cortical areas 

has been established. Some researchers have hypothesized that the neural link between action 

words and the motor cortical areas is developed through Hebbian associative learning experiences 

(Fargier, Ménoret, Boulenger, Nazir, & Paulignan, 2012a; Pulvermüller, 1999; 2005; Pulvermüller 

et al., 2009). 

The acquisition of action words in childhood are often associated with the execution of 

actions (Fargier, Ménoret, Boulenger, Nazir, & Paulignan, 2012a.) and/or the contexts of the 

execution of actions (Fargier, Ménoret, Boulenger, Nazir, & Paulignan, 2012; Goldfield, 2000; 

Pulvermüller, 2005).  Language areas are activated as a result of the processing of action words 

understanding during action word acquisition.  Simultaneously, the motor cortical areas involved 

in actions are activated as a result of the execution of actions.  Thus, synaptic connections between 

neurons in both areas become stronger (Pulvermüller, 1999; 2005).  Furthermore, the simultaneous 

activations of neurons in the two areas lead to the generation of cell assemblies, and, thus, these 

neurons become linked (Pulvermüller, 1999; Pulvermüller et al., 2009; Pulvermüller, Shtyrov, & 

Ilmoniemi, 2005b).  Given the formation of the cell assemblies, whenever an individual perceives 

an action words, the motor cortical areas responsible for action execution of that action are 

activated simultaneously (Jirak et al., 2010; Pulvermüller, Shtyrov, & Ilmoniemi, 2005).  
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4.5.1.2 Motor imagery hypothesis 

 

It should be noted that some researchers disagree with the Hebbian learning theory and hypothesize 

that the motor cortical activation that occurs during the processing of action words is due to the 

mental simulation of the movements (i.e., motor imagery) associated with action words during the 

process of action word comprehension (Boulenger & Nazir, 2010; Postle et al., 2008; Tomasino 

et al., 2008; Zwaan & Taylor, 2006).  There is neural evidence indicating the motor imagery of 

finger-, foot- and tongue-related movements activate motor cortical areas, such as the 

supplementary motor area, premotor cortex, and primary motor cortex (Ehrsson, Geyer, & Naito, 

2003; Orr, Lacourse, Cohen, & Cramer, 2008; Scorolli & Borghi, 2007; Sharma, Pomeroy, & 

Baron, 2006).  Ehrsson and colleagues reported that motor imagery activates the primary motor 

cortex in a somatotopic manner (Ehrsson et al., 2003).  

However, Boulenger and Nazir (2010) pointed out that motor imagery occurs after 

language comprehension, and the earlier cortical activation by action words cannot be explained 

by motor imagery which occurs post-lexically.  Yet, it is still an open question whether the 

language induced motor activity is due to the mechanisms of the cell assemblies, motor imagery, 

or possibly both in some associated manner.  

4.5.5 Mirror neuron system  

4.5.5.1 Mirror neuron in monkeys  
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Researchers investigating the neurophysiological evidence of language induced motor activity 

have postulated that mirror neurons are responsible for the mediation of action words and motor 

cortical areas responsible for the action execution (Glenberg & Gallese, 2012; Jirak et al., 2010; 

Kemmerer, 2006; Liepelt, Dolk, & Prinz, 2012).  Mirror neurons are activated when individuals 

perform motor actions and when individuals observe motor actions performed by others (Fabbri-

Destro & Rizzolatti, 2008; Rizzolatti & Craighero, 2004).   

Originally, mirror neurons were found in the ventral premotor cortex (Area F5) bilaterally 

in monkeys (Bergen, Lau, Narayan, Stojanovic, & Wheeler, 2010; Cattaneo & Rizzolatti, 2009; 

Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; Kohler et al., 2002; Liepelt et al., 2012; Pulvermüller, 

Shtyrov, & Ilmoniemi, 2005b).  Mirror neurons are activated when monkeys perform object-

related actions by their hands and mouth, such as grasping, placing, holding, and breaking food 

(Gallese et al., 1996).  Mirror neurons also are activated when monkeys observe similar objects 

related to actions by another individual (e.g., another monkey or a human experimenter) (Gallese 

et al., 1996).  Ferrari, Gallese, Rizzolatti, and Fogassi (2003) and colleagues found the ingestive 

mouth mirror neurons that were activated particularly by performing or observing ingestive actions 

by the mouth.  

Mirror neurons in monkeys also are activated when monkeys hear action-related sounds, 

such as paper ripping and object breaking sounds, made by other individuals (Keysers et al., 2003; 

Kohler et al., 2002).  These specific mirror neurons are called audio-visual mirror neurons (Keysers 

et al., 2003; Kohler et al., 2002) and have been implicated in integrating sounds as well as  actions 

(Buccino et al., 2005; Jirak et al., 2010; Keysers et al., 2003; Kohler et al., 2002).  Hauk, Shtyrov, 

and Pulvermüller (2008) indicated the discovery of the audio-visual mirror neurons further support 

the existence of the neural link between action words and motor cortical areas in humans.  
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4.5.5.2 Mirror neurons in humans  

 

In humans, the area F5 in monkeys is equivalent to the pars opercularis of the inferior frontal gyrus 

(BA44) which is a part of Broca’s area (BA44 and 45) (Aziz-Zadeh et al., 2006; Buccino et al., 

2001; Cattaneo & Rizzolatti, 2009; Gallese et al., 1996; Iacoboni et al., 2005; Jirak et al., 2010; 

Liepelt et al., 2012; Nishitani, Schürmann, Amunts, & Hari, 2005; Pulvermüller, Shtyrov, & 

Ilmoniemi, 2005b; Rizzolatti et al., 1996).  Mirror neurons are found bilaterally in the ventral 

premotor cortex, inferior parietal lobule, posterior part of the inferior frontal gyrus, a part of which 

overlaps with the Broca’s area in humans (Aziz-Zadeh et al., 2006; Fabbri-Destro & Rizzolatti, 

2008; Iacoboni et al., 2005; Lametti & Mattar, 2006).  It has been suggested that mirror neurons 

in humans are activated during action word comprehension (Kemmerer, 2006; Liepelt et al., 2012; 

Pulvermüller, Shtyrov, & Ilmoniemi, 2005b; Tettamanti et al., 2005), action understanding 

(Rizzolatti & Craighero, 2004; Rizzolatti, Fogassi, & Gallese, 2002), action imagery (Kosslyn et 

al., 2001; Nyberg et al., 2001), and action imitation (Heiser, Iacoboni, Maeda, Marcus, & 

Mazziotta, 2003; Nishitani et al., 2005). 

 Tettamanti et al. (2005) indicated, during an action-related sentence comprehension task 

in their fMRI study, Broca’s area was the only region that was conjointly activated by foot/legs, 

hands/arms, and articulators/face words.  Given these results, they postulated that Broca’s area is 

particularly crucial for action word understanding.  In addition, Pulvermüller (2005) postulated 

that speech and action production areas overlap in Broca’s area, and that this overlap makes it 

possible for one to influence each other.  
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4.5.6  Language induced motor activation in swallowing  

The motor areas responsible for articulators-/face-related actions also are activated by auditory 

ingesting-action words, such as chew, munch, and swallow (Pulvermüller, Shtyrov, & Ilmoniemi, 

2005b; Tettamanti et al., 2005).  These findings indicated that articulators-/face-related action 

words (i.e., eat and chew) activated the motor cortical areas faster and stronger when the activation 

is compared to the motor cortical activation by a leg-related action word (i.e., kick).   

More specifically, Pulvermuller et al. (2005b) employed one of the ingesting action words 

eat in their megnetoencephlographic study, and indicated the inferior fronto-central area activation 

by silent listening of the word stimuli.  Tettamanti et al. (2005) used the action word swallow along 

with chew and munch as one of the articulators-/face-related word stimuli in their fMRI study.  The 

researchers reported that when healthy participants listened silently to sentences containing 

articulators-/face-related words including the word swallow activated the pars opercularis in the 

left inferior frontal gyrus more dorsally, rostrally, and ventrally.  The inferior frontal gyrus is 

known to be activated by the articulators-/face-related motor actions (Hauk et al., 2004).  However, 

all articulators-/face-related neural activation data were combined when the data were analyzed.  

Tettamanti and colleagues did not report the cortical activation pattern associated with the word 

swallow alone.  

In a related study, Kawai et al. (2009) had 12 healthy adults listen to human swallowing 

sounds independent of executing a swallow and found that the supplementary motor area (BA6, 

associated with swallowing) and the left primary auditory area (BA42) were activated.  In addition, 

the left primary auditory area (BA42) was activated.  Similarly, Barros-Loscertales et al. (2012) 
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reported that passive reading of taste-related words activated the primary and secondary gustatory 

cortices along with the language areas in 59 healthy adults.  More specifically, there were 

activations of the anterior insula, frontal operculum, and orbitofrontal gyrus, along with left 

inferior frontal gyri, posterior middle and superior temporal gyri.  These authors did not provide 

the details of the stimuli used in these studies, however, they indicated a possible neural link 

between swallow-related sounds and motor cortices, and taste-related words and gustatory 

cortices, respectively. 

There also is evidence suggesting that motor imagery of swallowing induces hemodynamic 

changes in the brain areas that are associated with the execution of liquid swallowing.  Kober and 

Wood (2014) examined hemodynamic changes in healthy adults with near-infrared spectroscopy 

and reported that both liquid swallowing and motor imagery of liquid swallowing without 

suprahyoid muscle activations resulted in hemodynamic changes in the premotor, supplementary 

motor, and pars opercularis (Kober & Wood, 2014).  As noted previously, some researchers have 

suggested that the link between actions words and motor cortical areas is due to motor imagery 

during the execution of actions associated with the words (Ehrsson et al., 2003; Orr et al., 2008; 

Scorolli & Borghi, 2007; Sharma et al., 2006).  If so, the study results of Kober and Wood (2014) 

may indirectly suggest that the motor cortical areas related to swallowing could be activated by 

the swallow verbal stimulus.  

4.5.7  Summary  

The language induced motor activation theory indicates there is a substantive neural link between 

action words that involve body parts, such as feet/legs, hands/arms, and articulators/face including 
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ingesting words, and the motor cortical areas that are involved in the execution of the actions.  The 

link between action words and the motor cortical areas develop early in childhood, possibly 

developed through the Hebbian associative learning experiences.  The link persists in adulthood.  

Researchers investigating language induced motor activation have postulated that mirror neurons 

are responsible for the neural link between action words and motor cortical areas responsible for 

the execution of the actions.  The previous studies also indicated the processing of the ingesting 

action words (i.e., eat, swallow, chew and munch), swallow-related sounds, and taste-related 

words, also activate motor cortical areas.  

Taken together, the evidence from the language induced motor activation suggests that 

there also is a neural link between the verbal stimulus, swallow, and motor cortical areas involved 

in swallowing.  Motor cortical areas involved in swallowing are activated during the processing of 

the verbal stimulus prior to the initiation of swallowing under the command swallow condition 

during videofluoroscopic examination of swallowing.  

4.6 LANGUAGE INDUCED MOTOR FACILITATION: FACILITATION EFFECTS 

OF ACTION WORDS ON MOTOR PERFORMANCE 

Language induced motor activity theory does not indicate whether the motor cortical area 

activation by action words has any impact on the peripheral systems.  There are no studies that 

have conducted concurrent neuroimaging and behavioral studies to investigate the impact of the 

processing of action words on actions described by action words.  However, the language induced 

motor facilitation theory, which is based on behavioral evidence, suggests the motor area activation 
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by action words (language induced motor activation) influences the control of some of the actions 

(Gentilucci, 2003).  Behavioral evidence indicates, depending on the temporal relationship 

between action words and actions described by the action words, the processing of action words 

induces both facilitation (language induced motor facilitation) and interference (language induced 

motor interference) effects on actions (Aravena et al., 2010; Boulenger et al., 2006; Buccino et al., 

2005; Dalla Volta, Gianelli, Campione, & Gentilucci, 2009; Frak, Nazir, Goyette, Cohen, & 

Jeannerod, 2010; Gentilucci, 2003; Nazir et al., 2008; Sato, Mengarelli, Riggio, Gallese, & 

Buccino, 2008; Scorolli & Borghi, 2007). 

4.6.1 Language induced motor facilitation  

Language induced motor facilitation theory indicates that presenting body-part-related action 

words such as hand- and foot-related action words (e.g., lift, grasp, place, and press), that (1) 

describe the subsequent actions, and (2) are presented prior to the initiation of the actions (e.g., 

pressing a button, and reaching and grasping an object) selectively facilitate the control of the 

subsequent actions (Aravena et al., 2010; Boulenger et al., 2006; Dalla Volta et al., 2009; Frak et 

al., 2010; Gentilucci, 2003).   

The facilitation effect by action words has been reported with several types of tasks, such 

as passive listening of action words (Aravena et al., 2010; Boulenger et al., 2006; Dalla Volta et 

al., 2009; Frak et al., 2010; Gentilucci, 2003) and silent and oral reading of the action words 

(Grossi, Maitra, & Rice, 2007; Scorolli & Borghi, 2007), although outcome measurements, (e.g., 

latency between the stimuli onset and the movement onset, movement peak amplitude and 

velocity, and movement duration) vary across studies.  
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For instance, Rabahi et al. (2013) reported that passive listening of the leg-related action 

word jump prior to the squat-vertical-jump resulted in increased jump height compared to that with 

passive listening of non-related action words (i.e., lick, pinch, and jump when presented in 

Chinese) to 16 healthy native English speakers who did not speak or understand Chinese (Rabahi 

et al., 2013).  In the study by Grossi et al. (2007), written action words reach, grasp, lift, place, 

and return were presented prior to the task of reaching, grasping, lifting, placing, and returning a 

bottle-shaped object in 28 healthy participants.  The participants’ reach movement duration was 

significantly shorter and the peak velocity of reaching was increased with the written action word 

reach than those without action words.  Boulenger et al. (2006) also have examined the effects of 

several types of written action words (i.e., hand-related, leg-related action, and mouth-related 

words) and nouns on the reaching and grasping of a cylindrical object in nine young adults.  The 

researchers indicated that a wrist acceleration peak, which indicated that the initiation of muscular 

contractions, occurred earlier for the condition in which written action words were presented prior 

to the movement than the condition in which written noun words were presented.  

4.6.2  Effector specific modulation 

Facilitation effects by action words are effector specific.  That is, presentation of arm/hand action 

words related to hand actions result in faster hand-related actions, whereas processing of foot-

related action words results in faster foot-related actions (Gentilucci, 2003; Grossi et al., 2007; 

Scorolli & Borghi, 2007).  For example, in the study by Scorolli and Borghi (2007), 40 healthy 

participants received both hand- and mouth-related action word sentences prior to the mouth-

related action performance (e.g., saying yes with a microphone).  When the written mouth-related 
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action sentences were presented prior to the mouth-related action, the response time for the action 

was faster than that when the hand-related action word sentences were presented.  In the same 

study, Scorolli and Borghi tested the effect of written hand- and foot-related action sentences on 

the foot-related action (e.g., pressing a pedal with one’s foot).  The participants pressed the pedal 

with their feet faster when the foot-related action word sentences were presented prior to the 

pressing action than that when hand-related action word sentences were presented. 

It is not clear, however, whether the facilitation effect by the action words have equally 

strong sensitivity among effectors (Rabahi et al., 2013).  It has been reported when hand-related 

action words or sentences, (e.g., reach), were presented prior to the sequential hand action (e.g., 

reach-lift-place action) the hand-related action word facilitates not only the action that is congruent 

to the action word, but also other hand movements which are part of the sequence of the hand 

action.  For example, in the previously described study by Grossi and colleagues (2007), the lift 

and place movements were influenced not only by the lift and place words, but also by the reach 

word: the movement duration was shorter and peak lift velocity was increased with written action 

words lift, place, and reach than those without any action words (Grossi et al., 2007).  In addition, 

Gentilucci (2003) presented hand-related written action words, place and lift, adjectives, high and 

lateral, and a pseudo-word in Italian, prior to the hand-related sequential action (i.e., (1) reach, (2) 

grasp a target object with the thumb and index finger, and (3) place the object on a table) in the 

study with 16 healthy participants.  Gentilucci reported that presenting adjectives and the pseudo-

word did not change any peak velocity, maximal finger aperture, and maximal height of wrist path 

during any of the three movements.  Likewise, presenting action words, place and lift, did not 

change any of the measurements during the grasping movement.  However, the peak velocity of 

finger aperture during the reach movement was increased when the word place was presented.  
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The peak velocity, vertical peak velocity and maximal height of the wrist path during the place 

movement also were increased with the presentation of the word lift.  To explain the discrepancy, 

Gentilucci has postulated that the facilitation effect for place and lift occurred on the previous 

motor acts.  That is, the effect occurred on the reach and place actions due to the consequence of 

urging the execution of the place and lift actions.    

The facilitation effect of action words on subsequent actions was observed when the action 

words were compared with nouns (Boulenger et al., 2006), non-related action words (e.g., leg-

/foot-related words on the reach and grasp movements) (Boulenger et al., 2006; Rabahi et al., 2013; 

Scorolli & Borghi, 2007), congruent action word in a foreign language (Rabahi et al., 2013), and 

without any words (Grossi et al., 2007).  The facilitation effect of action words on subsequent 

actions also were observed when the action words were compared with pseudo-words (Gentilucci, 

2003), which also activate the lexical networks via their phoneme and syllable features, without 

stored lexical representations (Cibelli, 2012; Hickok & Poeppel, 2007).  

In addition, language induced motor facilitation also was observed when the congruent 

action word was compared with an incongruent or contradicting action word (e.g., fall and stop on 

a jump movement) (Rabahi et al., 2013).  This result is consistent with the action sentence 

compatibility effect that is addressed in the following section.  It has been suggested that the slower 

responses with incongruent action sentences were due to the interference effect and/or inhibition 

during the incongruent sentence processing (Bergen, Narayan, & Feldman, 2003; Schaller, Weiss, 

& Müller, 2015).  
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4.7 ACTION SENTENCE COMPATIBILITY EFFECT 

The action sentence compatibility effect (ACE) relates to the interaction between a sentence 

direction and performance of an action such as moving toward vs. away or up vs. down 

(Borreggine & Kaschak, 2006; Glenberg & Kaschak, 2002).  Glenberg and Kaschak (2002) 

indicated that ACE provides strong behavioral evidence that indicates a link between linguistic 

processing and the motor systems.  

For instance, Borreggine and Kaschak (2006) asked healthy participants to listen to 

sentences that described actions occurring either toward the body or away from the body, and then 

judge whether each sentence made sense.  They reported that responses with moving a hand toward 

the body to press a keypad were faster when the sentences that described action toward the body 

(e.g., “Mark dealt the cards to you.”) (congruent condition) compared to the sentences that 

described action away from the body (e.g., “You dealt the cards to Mark.”) (incongruent 

condition).  Likewise, responses associated with moving a hand away from the body to press a 

keypad were faster when the sentences described action away from the body.   

It is unknown whether ACE is observed in sentence judgment tasks with swallow-related 

action words.  It also is unknown whether there is any directional relationship (e.g., toward vs. 

away, or congruent vs. incongruent) between swallow-related action words and any motor 

performance.  If there is no directional relationship between swallow-related action words and any 

motor performance, the interference effect may not be observed in swallowing.  
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4.8 THEORIES EXPLAIN THE CAUSES OF THE LANGUAGE INDUCED MOTOR 

FACILITATION 

Reasons for facilitation effects of actions performed by hand- and foot-related action words remain 

to be elucidated (Boulenger et al., 2006; Dalla Volta et al., 2009; Rueschemeyer, Lindemann, van 

Rooij, van Dam, & Bekkering, 2010).  However, there are a few theories that may explain the 

causes of language induced motor facilitation.  

4.8.1 Semantic priming during the processing of action words  

Researchers investigating language induced motor facilitation suggest that the facilitation effect is 

the result of the “semantic priming” by the processing of action words prior to the subsequent 

actions (Aravena et al., 2010; Borghi & Scorolli, 2009; Boulenger et al., 2006; Rueschemeyer et 

al., 2010).  Priming is defined as a behavioral change based on the previous stimuli (Stoykov & 

Madhavan, 2015).  Pulvermuller and Berthier (2008) suggested that motor behavior is easier to be 

elicited than that without action words because the motor system is automatically facilitated by the 

processing of action words prior to the execution of the motor behavior.  

4.8.2 Corticospinal excitability by motor imagery  

On the other hand, some researchers have suggested that facilitation effects are due to motor 

imagery, particularly kinesthetic imagery, imagery of kinesthetic sensation of actions, during the 
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process of action word understanding (Gianelli & Dalla Volta, 2014; Papeo, Vallesi, Isaja, & 

Rumiati, 2009).  

It has been reported that motor imagery of hand and leg movement without the execution 

of the movements results in increased corticospinal excitability (Bakker et al., 2008; Fadiga et al., 

1999).  For instance, Fadiga et al. (1998) have used transcranial magnetic stimulation during 

kinesthetic imagery of the flexing and extending the right forearm in healthy participants to test 

the effect of motor imagery.  Motor evoked potentials were recorded from the bicepts brachialis 

and opponens pollicis during the kinesthetic imagery task.  The bicepts brachialis is an agonist 

muscle for elbow flexion that is a task-related muscle.  The opponens pollicis is an intrinsic hand 

muscle that is a non-task-related muscle.  Fadiga and colleagues (1998) have reported that the 

kinesthetic imagery of the forearm movement resulted in increased bicepts brachialis motor 

evoked potentials but not in opponens pollicis.  

In addition, Bakker et al. (2008) have used transcranial magnetic stimulation over the 

primary motor cortex during kinesthetic imagery of foot dorsiflexion task in healthy participants.  

Motor evoked potentials were recorded from the foot muscles, the tibialis anterior as a task-related 

muscle and the first dorsal interosseous as non-task-related muscle, during the kinesthetic imagery.  

They found that kinesthetic imagery resulted in increased activity of the motor evoked potential 

areas both the tibialis anterior and first dorsal interosseus muscle, with the larger increase in the 

tibialis anterior muscle.  
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4.8.3 Difference between self-initiated and externally triggered movements 

There is abundant evidence indicating there are neural and behavioral differences between self-

initiated or internally triggered movements (i.e., actions that are not elicited by external stimuli) 

and externally triggered movements (i.e., actions that are elicited by external stimuli) such as a 

visual, tactile, and beep stimuli (Ballanger et al., 2006; Cunnington, Windischberger, Deecke, & 

Moser, 2002; Jahanshahi et al., 1995; Jenkins, Jahanshahi, Jueptner, Passingham, & Brooks, 2000; 

Obhi & Haggard, 2004; Yazawa et al., 1997).  Both the internally triggered and externally triggered 

movements involve activation of common neural areas for the organization and control of 

voluntary movements. However, the internally triggered movements are associated with earlier 

and stronger activation of the supplementary motor area, which is considered to be associated with 

motor preparation (Cunnington et al., 2002).   

Behavioral evidence indicates that the duration of hand movements (e.g., index finger press 

and a button press) is shorter when the movement is elicited by external stimuli than that observed 

in self-initiated movement (Ballanger et al., 2006; Obhi & Haggard, 2004).  For instance, 

Ballanger et al. (2006) conducted a button press movement study both with healthy participants 

and patients with Parkinson’s disease.  Patients performed a button-pressing task either in response 

to an external acoustic stimulus (i.e., a beep stimulus) or voluntarily without any stimulus.  Their 

results indicated that the interval between the onset of the hand release from a start position and 

the contacting of the button was shorter in the externally triggered condition than in the self-

initiated condition.  Obhi and Haggard (2004) examined electromyographic (EMG) activity 

recorded from the first dorsal interosseous muscle, a task-related muscle, during the index finger 

press of a metal lever with and without the presentation of a tactile stimulus.  They reported that 
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EMG activity duration following the tactile stimulus had shorter trend than that during the self-

initiated finger press movement in healthy participants.  Moreover, Obhi and Haggard have 

reported that, in the same study, the internally triggered movement resulted in significantly greater 

EMG activity in the first dorsal interosseous muscle than that of externally triggered movement. 

Taking the neural and behavioral evidence together, Obhi and Haggard have postulated the 

longer movement duration in the internally triggered condition was due to the earlier cortical 

activation in this condition while the greater EMG activity in the internally triggered movement 

was due to the greater preparatory processing of the condition (Obhi & Haggard, 2004).  

Studies that have tested the self-initiated and externally triggered movements did not 

employ any action word stimuli.  However, it is reasonable to question whether or not the observed 

neural differences between the self-initiated and externally triggered conditions also may account 

for the facilitation effects by action words on subsequent actions.  

4.9 IS THE LANGUAGE INDUCED MOTOR FACILITATION “LANGUAGE-

SPECIFIC”? 

 It is unknown whether the observed facilitation effects on the hand- and foot-related actions in the 

language induced motor facilitation are language-specific.  There have been no studies that 

employed non-verbal stimuli, such as a pure-tone, along with verbal stimuli.  

Rabahi et al. (2013) speculated that attention and/or intention also may play a role in 

language induced motor facilitation: giving action words prior to the actions make participants 
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have more attention and emotion toward the motor acts.  If attention plays a role, non-verbal stimuli 

may also facilitate subsequent actions.  

Because phonological, lexical, semantic, and grammatical processing is not necessary for 

non-verbal stimuli, non-verbal stimuli may produce shorter reaction time than that with action 

words.  It is essential to employ both verbal and non-verbal stimuli to test whether the observed 

facilitation effects in the language induced motor facilitation literature are language-specific. 

4.10 LANGUAGE INDUCED MOTOR FACILITATION IN SWALLOWING 

There have been no behavioral studies that have tested the effects of the auditory processing of the 

verbal stimulus, swallow, on swallow physiology.  However, there are few behavioral studies that 

reported the effects of auditory cues on swallow physiology more generally.  

4.10.1 Swallow-related auditory cues: Name of drinks  

Nakamura and Imaizumi (2013) employed sEMG to test the impact of swallow-related verbal cues 

presented auditory cues acoustically.  In their study, the names of the drinks (i.e., water, apple 

juice, and grass juice, in Japanese) were presented in a congruent manner prior to the initiation of 

swallows by 24 younger and older healthy participants.  Suprahyoid muscle activity was measured 

during the swallows of 5 ml of water, apple juice and grass juice.  The participants were instructed 

to listen to the drink names, imagine the flavor of the drink, hold the liquid bolus in their mouth 

for 5 to 7 seconds, and then swallow when they hear the verbal stimulus, swallow (in Japanese).  
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The researchers reported that the maximum suprahyoid muscle activity was stronger in swallows 

associated with drink names compared to swallows without the names, regardless of the participant 

ages.  Nakamura and Imaizumi postulated that the swallow-related drink names caused a priming 

effect and induced the anticipation of swallowing, and thus caused an enhancement of the 

suprahyoid muscle activity.       

However, they also reported significant latency differences (duration between the verbal 

stimulus onset and the peak suprahyoid muscle activity onset) between swallows with and without 

the drink names.  Nevertheless, the verbal stimulus was given both in the acoustic cue and non-

cue conditions.  According to the language induced motor facilitation theory, the processing of the 

verbal stimulus, swallow, given after the drink names should facilitate the latency both in the 

conditions.  It is feasible to have not difference between the two swallow conditions.  

4.10.2 External non-verbal auditory cue unrelated to swallowing 

Nonaka et al. (2009) used sEMG to examine suprahyoid muscle activity differences between saliva 

swallows when elicited with and without a 105 dB SPL acoustic cue.  The acoustic cue was not 

described except for presentation intensity level and was presented to ten healthy young male 

participants.  The researchers reported no difference in mean suprahyoid muscle activity between 

the two swallow conditions.  The lack of differences and the limited information about the acoustic 

cue used in this study makes it difficult to relate the results to any type of language impact on 

participant swallows.   

Regarding non-verbal acoustic stimuli, there is evidence that that an intense acoustic 

stimulus (e.g., >124 dB SPL, 1000 Hz tone) produces a reflexive startle response but can also elicit 
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faster voluntary actions when participants are ready to initiate a motor behavior (Alibiglou & 

MacKinnon, 2012; Carlsen, Maslovat, & Franks, 2012).  This facilitation effect is known as the 

startle reflex, and has been observed in healthy participants as well as patients with Parkinson’s 

Disease (Carlsen et al., 2012).  However, the acoustic stimulus used by Nonaka et al. (2009) may 

not have been sufficiently intense to produce the startle reflex.   

Furthermore, the experimental methodology employed in the study may explain why there 

was no suprahyoid muscle activity difference between the two swallow conditions. Participants 

were instructed to inhibit the oral lingual movement prior to the swallow onset, and then used a 

supraglottic swallow (SGS)-like maneuver regardless of the swallow condition.  More 

specifically, participants were instructed to hold their breath for four seconds prior to the swallow 

onset in both conditions. In the external sound cue condition, the sound cue was presented after 

the SGS-like breath-hold task.  The SGS, which is designed to produce airway closure at the true 

vocal fold level before and during the swallow (Logemann, 1998), alters some of the swallow 

physiology (Bodén, Hallgren, & Witt Hedström, 2006; Donzelli & Brady, 2004; Kasahara, 

Hanayama, Kodama, Aono, & Masakado, 2009; Ohmae et al., 1996).  Indeed, true vocal fold 

closure was achieved when healthy participants were instructed to have an easy breath-hold prior 

to the swallow onset (Donzelli & Brady, 2004).  This causes the earlier inhibition of respiration 

(Ertekin, 2006).  The hyoid starts to elevate when performing the breath-hold task prior to the 

swallow onset during SGS in healthy adults (Bülow, Olsson, & Ekberg, 1999; Ohmae et al., 1996).  

The earlier onset of the laryngeal elevation results in prolonged laryngeal elevation and UES 

opening during SGS (Bülow et al., 1999; Ohmae et al., 1996), although a recent study failed to 

meet the statistical significance regarding the longer UES opening (Bodén et al., 2006).   
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In addition, both superior and anterior displacement of the hyoid was significantly greater 

and longer during the SGS (Kasahara et al., 2009).  Nonaka et al. (2009) measured the suprahyoid 

muscle activity during the onset and end of the muscle electrical discharge.  Therefore, the 

suprahyoid muscles were perhaps activated and deactivated at the same time in the cue and non-

cue conditions.  Thus, there might have been no suprahyoid muscle activity difference between 

the two swallow conditions.  In fact, Nonaka et al. reported that, regardless of the swallow 

conditions, the onset of the suprahyoid muscle activation was earlier than any of other muscle 

activations, such as eye, tongue and face-related muscle activations in their study.  

4.11 LANGUAGE INDUCED MOTOR FACILITATION: SUMMARY 

The language induced motor facilitation theory suggests that the processing of foot-/leg- and hand-

/arm-related action words, which are (1) related to actions described by the action words, (2) 

presented prior to the actions, have facilitation effects on subsequent actions described by the 

action words, although it is unknown whether the facilitation is language-specific.  Taken together, 

the evidence from the language theory suggests the processing of the verbal stimulus that is a 

congruent action word prior to the initiation of swallowing under the command swallow condition 

may also facilitate some of the swallow physiological parameters that are under voluntary control. 

Nevertheless, the effects of the action word, swallow, on swallow physiology have never 

been investigated.  None of the previous studies that have tested the language induced motor 

facilitation have employed the action word, swallow.  In order to clarify whether giving the verbal 

stimulus under the command swallow condition imposes any artifacts on swallow physiology, it 
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is critical to investigate whether the language induced motor facilitation can be observed during 

swallowing.  

4.12 STIMULUS ONSET ASYNCHRONY: LANGUAGE INDUCED MOTOR 

INTERFERENCE 

Depending on the temporal relationship between the presentation of action words and motor tasks, 

the processing of action words can also interfere the subsequent actions (Boulenger et al., 2006).  

When hand- and foot-related auditory or written action words are presented concurrent or 50 to 

200 ms after the initiation of hand- and foot-related actions, interference effects on the hand- and 

foot-related actions were observed (Boulenger et al., 2006; Buccino et al., 2005; Frak et al., 2010; 

Nazir et al., 2008; Sato et al., 2008).  For instance, Buccino et al. (2005) reported that, in their 

study with healthy young participants, listening to sentences with hand- or foot- related action 

words, such as sew and cut, or kick and jump, while executing hand- and foot- related actions 

resulted in slower hand and foot reactions.  

Sato et al. (2008) postulated the interference effects by auditory and written concurrent 

action word stimuli on actions described by action word stimuli were due to the simultaneous 

competition for the motor system between action word processing and action execution.  Other 

researchers have suggested that language induced motor interference is due to the inhibition of the 

actions or can possibly planning of actions while simultaneously processing the action words 

(Boulenger et al., 2006; Dalla Volta et al., 2009).  However, reasons for language induced motor 

interference remain to be elucidated. 
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 Given the fact that actions word can facilitate or interfere with the subsequent actions 

depending on the temporal relationship between the presentation of action words (Boulenger et al., 

2006), stimulus onset asynchrony, the time interval between the onset of cues and actions, becomes 

an important factor for investigating language induced motor facilitation.  In order to avoid having 

influences by the effects of the language induced motor interference, the action words should be 

presented prior to the actions.  

4.13 FEASIBILITY OF APPLYING THE LANGUAGE INDUCED MOTOR 

FACILITATION IN SWALLOWING 

The language induced motor facilitation theory has only been tested in foot/leg, hand/arm actions.  

In this section, the feasibility of applying the language induced motor facilitation theory in 

swallowing was addressed. The majority of the previous studies investigating language induced 

motor facilitation and interference examined the reaction time of the hand-related actions, such as 

pressing a button, reaching and grasping an object, and reaching-grasping-lifting an object, or a 

foot-related actions, such as pressing a pedal or jumping (Aravena et al., 2010; Boulenger et al., 

2006; Buccino et al., 2005; Dalla Volta et al., 2009; Frak et al., 2010; Gentilucci, 2003; Nazir et 

al., 2008; Sato et al., 2008; Scorolli & Borghi, 2007).  Among the hand-related actions, the 

reaching and grasping of an object task has been frequently employed in the literature.  Thus, this 

section focused on the reaching and grasping (RG) movements.  

RG movement is considered to be a multi-segment motor action (Olivier, Hay, Bard, & 

Fleury, 2007; Rizzolatti, Cattaneo, Fabbri-Destro, & Rozzi, 2014).  The reaching movement 
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involves the transport of the hand, and change in position of the hand over time to reach the desired 

object (Olivier et al., 2007; van Vliet, Pelton, Hollands, Carey, & Wing, 2013).  Visual and 

proprioceptive information, such as distance and direction of an object, is used to plan and activate 

the reaching movement (van Vliet et al., 2013).  The grasping movement involves the pre-shaping, 

opening and closure of the hand (Olivier et al., 2007). Visual and proprioceptive information, such 

as size, shape, orientation, and estimated weight of an object, is used to guide the grasping 

movement appropriately (van Vliet et al., 2013).  Moreover, in order to complete the RG task, the 

coordination of these two movements is required (Olivier et al., 2007).  

There are several similarities between swallowing and the RG movements.  Table 3 

displays the summary of the comparison between swallowing and the RG movements.  For 

instance, both swallowing and the RG movement contain a series of motor actions (Olivier et al., 

2007; Rizzolatti et al., 2014; van Vliet et al., 2013).  Striated muscles are used for voluntary aspects 

of swallowing (i.e., swallow events prior to the triggering of pharyngeal swallow) (Shaw & 

Martino, 2013), and the RG movements (Taylor & Schwarz, 1955).  Coordinated muscle 

movements are required to complete both swallowing and the RG movements, although different 

types of sensory information are used to alter the movements (van Vliet et al., 2013).  Information 

of temperature, touch, pressure, and taste information including bolus characteristics from the 

oropharynx is used for swallowing (Miller, 2008a).  On the other hand, visual, proprioceptive 

information, and information of a weight of an object is used for the RG movements (Olivier et 

al., 2007; van Vliet et al., 2013).  

Moreover, the information of voluntary motor control for swallowing and the RG 

movement is carried by the pyramidal tracts, which are descending pathways that arise from the 

cerebral cortex and terminate either in the brainstem or spinal cord (Siegel & Sapru, 2010).  The 
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corticobulbar tract sends information of voluntary motor control from the cortex to the most of the 

muscles involved in swallowing (i.e., the geniohyoid and infrahyoid muscles receive information 

via the corticospinal tract) (Shaw & Martino, 2013).  The corticospinal tract sends information of 

voluntary motor control from the cortex to the muscles for the RG movements and the geniohyoid 

and infrahyoid muscles (Siegel & Sapru, 2010).  The corticobulbar and corticospinal tracts serve 

as upper motor neurons, and have similar descending trajectory except for the terminations of 

upper motor neurons.  The corticobulbar tract arise from the primary motor cortex and are directed 

to the cranial nerve motor nuclei in the brainstem (Siegel & Sapru, 2010). The corticospinal tract 

arises from the primary motor, primary somatosensory, supplemental motor, and premotor cortex, 

and descends through the spinal cord (Siegel & Sapru, 2010).  

Given these similarities between swallowing and the RG movement, it is feasible to apply 

the language induced motor facilitation that has been tested in the RG movements to swallowing.  
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Table 3. Summary of the comparison between swallowing and the RG movement 

 Swallowing Reaching-grasping movement 
Action type Series of motor action Series of motor action 
Sensory 
feedback 

Temperature, touch, pressure, and 
taste information  

Visual, proprioceptive information, 
and a weight of an object 

Muscles  Muscles of face, mastication, 
tongue, soft palate, pharyngeal, 
suprahyoid, larynx, infrahyoid, 
and upper esophagus  

Muscles of arm and hand, wrist, and 
fingers, shoulder, and torso 

Muscle types Striated muscles except the 
middle and distal esophagus  

Striated muscles  

Descending 
pathway  

Pyramidal tracts:  
Corticobulbar + Corticospinal 

Pyramidal tracts: Corticospinal  

Information 
carried  

Voluntary movements of the 
muscles for swallowing  

Voluntary movements of upper limbs 

Neuron type Upper motor neurons  Upper motor neurons  

Origin Primary motor cortex  
Branchial primarily 

Primary motor cortex, primary 
somatosensory cortex, supplemental 
motor area, and premotor area 

Termination 
of UMNs 

Motor nuclei in brainstem  Motor nuclei in the Spinal cord  

Projections 
 

-Corona radiata 
-Internal capsule 
-Cerebral peduncles 
-Pons 
-Motor nuclei in Medulla  

-Corona radiata 
-Internal capsule 
-Cerebral peduncles  
-Pons 
-Medulla  
-Spinal cord 

UMN Fiber 
type 

Pyramidal Pyramidal 

       Note: UMNs=upper motor neurons
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5.0  SUMMARY AND SPECIFIC AIMS 

5.1 SUMMARY 

Swallowing is a complex neuromuscular act that requires sensory and motor coordination (Ertekin, 

2006; Miller, 2008b).  It involves organized interactions between cortical, subcortical, brainstem, 

and peripheral systems (Ertekin, 2006; Miller, 2008b).  Any disruption in these neurophysiological 

pathways can result in swallow disorders or dysphagia (Robbins et al., 2008). Patients with 

dysphagia have a high risk of dehydration, malnutrition, aspiration pneumonia, and reduction in 

quality of life (Harrison et al., 2014; Logemann, 1998).  In order to provide optimal swallow 

treatments to reduce such risks, during swallow evaluations, it is essential to observe the patient 

swallowing under the conditions in which he/she routinely swallows.  

For diagnosis and evaluation of swallowing, VFSS is widely used in the U.S. (Langmore, 

2003).  During VFSS, the command swallow condition, in which a patient/participant holds a bolus 

in his/her mouth while waiting for a verbal stimulus, swallow, that indicates the timing to initiate 

the swallow, is commonly employed (Daniels et al., 2007; Nagy et al., 2013; Palmer et al., 2007).  

However, the command swallow condition imposes two unnatural conditions that are: (1) the bolus 

is held on the tongue intentionally while the patient awaits the verbal stimulus, and (2) the patient 

processes the verbal stimulus prior to the swallow initiation and then swallows in response to the 

stimulus (Hiiemae & Palmer, 2003).  
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Recent studies have indicated the bolus hold induces the anterior location of the bolus at 

swallow onset under the command swallow condition regardless of bolus consistency and volume 

(Daniels et al., 2007; Nagy et al., 2013; Palmer et al., 2007).  The alteration of some of the swallow 

durations, such as oral transit time, stage transit duration, total swallow duration, pharyngeal transit 

time, pharyngeal response time, processing duration, and vallecular aggression time, were also 

observed in the bolus hold (Daniels et al., 2007; Nagy et al., 2013; Palmer et al., 2007).   However, 

there is no consensus as to how the bolus hold alters the duration parameters.  Also, shorter palate-

lingual contact duration (Nomura et al., 2011), and inhibition of the swallow onset (Roubeau et 

al., 2008) due to the bolus hold have been reported.  However, the majority of studies had small 

sample sizes and swallow trial repetitions.  Study results may not represent the true nature of 

swallows or effects of the command swallow condition.  The effects of the bolus hold under the 

command swallow condition on swallow physiology are not fully understood.  

The impact of the processing of the verbal stimulus under the command swallow condition 

has never been investigated.  It is unknown whether or not and to what extent language processing 

impacts natural swallowing physiology.  

 There are several lines of evidence that may assist in examining the impact of the verbal 

stimulus.  Swallowing is not a purely reflexive act.  Voluntary components of swallowing can be 

modulated by verbal instructions (Humbert & German, 2013).  Neural activation prior to swallows 

elicited by a written verbal stimulus has left hemispheric dominance (Nagasaki et al., 2004).  This 

may suggest the involvement of language processing in the command swallow condition and 

supports applying theoretical approaches.  

The language induced motor activation theory indicates that there is a tight neural link 

between foot/leg-, hand/arm-, and articulator-/face-related action words and motor cortical areas 
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that are involved in the execution of the actions (Buccino et al., 2005; Fargier, Ménoret, Boulenger, 

Nazir, & Paulignan, 2012a; Fargier, Paulignan, Boulenger, Monaghan, Reboul, & Nazir, 2012b; 

Fischer & Zwaan, 2008; Hauk & Pulvermüller, 2004; Jirak et al., 2010; Meteyard et al., 2012; 

Péran et al., 2010; Postle et al., 2008; Pulvermüller, 1999; 2005; 2013; Pulvermüller et al., 2001; 

Pulvermüller & Hauk, 2006; Pulvermüller, Hauk, Nikulin, & Ilmoniemi, 2005a; Pulvermüller, 

Shtyrov, & Ilmoniemi, 2005b; Tettamanti et al., 2005; Tomasino et al., 2007; 2008).  Action word 

processing activates motor cortical areas in a somatotopic manner without the execution of the 

actions (Buccino et al., 2005; James & Maouene, 2009; Jirak et al., 2010; Pulvermüller, 1999; 

2005; Pulvermüller, Hauk, Nikulin, & Ilmoniemi, 2005a; Pulvermüller, Shtyrov, & Ilmoniemi, 

2005b; Tettamanti et al., 2005). 

The language induced motor facilitation theory suggests the processing foot/leg-, hand-

/arm-related words presented prior to the initiation of the related actions facilities the control of 

the subsequent actions (Aravena et al., 2010; Boulenger et al., 2006; Gentilucci, 2003).  Yet, it is 

unknown whether the observed facilitation effects are narrowly defined by linguistic and motor 

parameters, or more general.  

Taken together, these theories suggest that processing the verbal stimulus, swallow, under 

the command swallow condition alters some of the swallow events that are considered to be under 

voluntary control.  To clarify whether processing the verbal stimulus under the command swallow 

condition imposes any artifacts on swallow physiology, it would be useful to investigate whether 

the language induced motor facilitation effect can be observed during swallowing.  
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5.2 SPECIFIC AIMS 

The current study investigated whether the language induced motor facilitation effect is evident 

under the command swallow condition as reflected in the onset of suprahyoid muscle activity and 

duration of suprahyoid muscle activity relative to the verbal stimulus onset as measured from 

sEMG.  Differences in latency, peak amplitude, and duration were compared between conditions.   

The conditions included a congruent verbal stimulus (swallow), incongruent verbal stimulus 

(cough), congruent pseudo-word stimulus (spallow), incongruent pseudo-word stimulus (pough), 

as well as a non-verbal acoustic stimulus (1000 Hz speech-shaped pure-tone).  The specific aims 

are listed below. 

 

Specific aim 1: Determine if there was a significant difference on the delays between stimulus 

onset and the suprahyoid muscle activity onset (sEMG latency), the duration of suprahyoid muscle 

activity (sEMG duration), peak suprahyoid muscle activity amplitude (sEMG peak amplitude), 

and delays between stimulus onset and the peak suprahyoid muscle activity amplitude (sEMG 

latency) for swallows following the congruent action word like swallow and a non-verbal stimulus 

(1000 Hz pure-tone) after controlling for swallow-respiratory pattern at the stimulus onset.  

 

Specific aim 2: Determine if there was a significant difference in the sEMG latency, sEMG 

duration, sEMG peak amplitude, and sEMG peak latency in swallows following the congruent 

action word, swallow, and the congruent pseudo-word, spallow, after controlling for swallow-

respiratory pattern at the stimulus onset.  
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Specific aim 3: Determine if there was a significant difference in the sEMG latency, sEMG 

duration, sEMG peak amplitude, and sEMG peak latency in swallows following the word swallow 

as compared to the incongruent action word cough, after controlling for swallow-respiratory 

pattern at the stimulus onsets. 

 

Specific aim 4:  Determine if there was a significant difference in sEMG latency, sEMG duration, 

sEMG peak amplitude, and sEMG peak latency for swallows following the incongruent word 

cough and the incongruent pseudo-word pough after controlling for the swallow-respiratory 

pattern at stimulus onset. 

 

Specific aim 5: Determine whether there were sEMG latency pattern differences for the swallows 

produced after the five different stimuli (swallow, cough, spallow, pough, and 1000 Hz pure-tone) 

after controlling for the swallow-respiratory pattern at stimulus onset.  

5.3 HYPOTHESES 

Specific aim 1:  

H0: There was no significant difference in the sEMG latency, sEMG duration, sEMG peak 

amplitude, and sEMG peak latency for swallows following the congruent action word swallow and 

those following a non-verbal (1000 Hz pure-tone) stimulus.  
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H1: The sEMG latency, sEMG peak latency, and sEMG duration of swallows following the 

congruent action word swallow were significantly shorter than for a 1000 Hz pure-tone. The sEMG 

peak amplitude was greater for the word swallow than for a 1000 Hz pure-tone.   

Findings of this type suggest that swallowing is facilitated by the linguistic information in 

the swallow command and simply not a response to an acoustic stimulus.  

H2: The sEMG latency, sEMG peak latency, and sEMG duration of swallows following the 1000 

Hz pure-tone were significantly shorter than for the congruent action word.  The sEMG peak 

amplitude was greater for a 1000 Hz pure-tone stimulus than for the word swallow.   

Findings of this type suggest that a simple non-verbal stimulus requires less processing and 

activates a swallowing response more directly than a verbal command.  

 

Specific aim 2: 

H0: There was no significant difference in the sEMG latency, sEMG duration, sEMG peak 

amplitude, and sEMG peak latency for swallows following the congruent action word swallow as 

compared to the congruent pseudo-word spallow.  

H1: The sEMG latency, sEMG peak latency, and sEMG duration of swallows following the word 

swallow were significantly shorter than following the pseudo-word spallow.  The sEMG peak 

amplitude for swallows following the word swallow was greater than for the word spallow.   

Findings of this type are consistent with pseudo-words creating interference in language 

processing and is consistent with presence of language-induced motor facilitation. 
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Specific aim 3: 

H0: There was no significant difference in the sEMG latency, sEMG duration, sEMG peak 

amplitude, and sEMG peak latency for swallows following the congruent action word swallow and 

the incongruent action word cough.  

H1: The sEMG latency, sEMG peak latency, and sEMG duration of swallows following the word 

swallow were significantly shorter than for the word cough.  The sEMG peak amplitude for 

swallows following the word swallow was significantly greater than for the word cough.   

Findings of this type are consistent with the language induced motor facilitation theory in 

that semantic directionality influences the swallow response and suggests that command semantics 

can facilitate and interfere with the act of swallowing.   

 

Specific aim 4: 

H0: There was no significant difference on the sEMG latency, sEMG peak latency, and sEMG 

duration for swallows following the incongruent action word cough and the incongruent pseudo-

word pough.   

H1: The sEMG latency, sEMG peak latency, and sEMG duration of swallows following the word 

pough were shorter than for the word cough.  The sEMG peak amplitude of swallows following 

the word pough was greater than for those following the word cough.   

Findings of this type are consistent with pseudo-words creating interference on language 

tasks and that the interference extends beyond that created by an incongruent command.  This 

pattern is consistent with language influencing the motor act of swallowing, and therefore supports 

the language induced motor facilitation theory. 
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Specific aim 5: 

H0: There was no significant relative pattern for swallow latencies across the congruent action 

word swallow, non-verbal pure-tone, incongruent action word cough, congruent pseudo-word 

spallow, incongruent pseudo-word pough, and 1000 Hz pure-tone. 

H1: The sEMG latency of swallows following the congruent action word swallow was shorter than 

for the other four stimuli and there was a relative influence of interference across incongruent 

words and pseudo-words.  

Findings of this type are consistent with the language induced motor facilitation theory in 

that the congruent word swallow facilitates the motor act of swallowing, whereas incongruent and 

pseudo-words show signs of interference.  The 1000 Hz pure-tone does not have a facilitative 

effect because it is not verbal.   

H2: The sEMG latency of swallows following the 1000 Hz pure-tone was shorter than the five 

stimuli.  

Findings of this type suggest non-verbal stimuli produce shorter response times than that 

with verbal stimuli because linguistic processing is not necessary and the motor system is activated 

directly.
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6.0  METHODS 

6.1 EXPERIMENTAL DESIGN 

The study employed a repeated measures within subject design.  The dependent variables for the 

study were: (1) the delay between the onset of each stimulus and the onset of suprahyoid muscle 

activity as measured by sEMG (sEMG latency), (2) the duration of suprahyoid muscle activity as 

reflected in the duration between onset and offset of sEMG activity (sEMG duration), (3) the peak 

suprahyoid muscle activity amplitude as reflected in the sEMG maximum (sEMG peak amplitude), 

and (4) the delays between the onset of each stimulus and the sEMG peak latency (sEMG peak 

latency).  The independent variable for the study was the stimulus type (five levels).  

The swallow-respiratory coordination pattern (the expiratory phase, inspiratory phase, or zero 

flow) at stimulus onset was added into the mixed model as a random effect, along with the acoustic 

stimulus types which were fixed effects.  

6.1.1 Participant demographics, recruitment and screening  

Twenty monolingual, native speakers of American English with normal swallowing function were 

recruited from the University of Pittsburgh and surrounding area.  The demographic information 

of the participants is summarized in Table 4.  This study protocol was approved by the University 
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of Pittsburgh Institutional Review Board (Appendix A), and all participants provided oral and 

written informed consent prior to any study procedures.  The inclusion and exclusion criteria are 

summarized in Table 5.  They included known allergies or sensitivity to skin adhesive products 

used to secure surface electrodes, facial hair in the submandibular region (submental geniohyoid-

mylohyoid-anterior digastric region) that could interfere with adhesion of the electrodes used to 

record the sEMG (Brodsky et al., 2012), hearing  loss, and  vision loss.  Participants who had 

difficulty breathing from the nose due to the presence of nasal congestion or blockage also were 

excluded from the study.  In addition, participants who used any medications that could affect 

swallowing functions (Balzer, 2000) were excluded.  Table 6 lists medications that may induce 

swallowing difficulty.  

     The participants were first screened with a background questionnaire (Appendix B) 

followed by hearing and vision screens.  The hearing screening was applied to each ear separately 

using 500, 1000, 2000, and 4000 Hz pure-tones presented at 25 dB HL (ASHA, 2005).   Testing 

was done in a quiet laboratory space using a diagnostic audiometer (Beltone 120).  A vision 

screening was completed with the standard Snellen chart (Bailey & Lovie, 1980) administered 

under the binocular condition with/without correction to ensure that participants were able to see 

the visual stimuli used in the study.  The participants needed 20/20 vision for inclusion. 
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Table 4. Demographic information of the participants 

Variable   
Age (years) Mean ± SD 23.18 ± 4.6 

Range 18-35 
sex Male 10 

Female 10 
Race/ethnicity Asian 4 

African-
American 

1 

Caucasian 15 
 

Table 5. Summary of the inclusion and exclusion criteria of the study 

Inclusion Exclusion 
– Healthy adults 
– Age between 18 and 35 years 
– English is the first language 

 

– History of swallowing problems or of 
health issues that affect swallowing 

– Known allergies or sensitivity to skin 
adhesives 

– Facial hair in the submandibular region 
– History or presence of hearing loss 
– Visual acuity worse than 20/20  
– Presence of nasal congestion  
– Taking medications that may affect 

swallowing  
 

 
 

Table 6.  List of the medications that may induce swallow difficulty  

Type Name 
Medications with 
anticholinergic or anti-
muscarinic effect  

Benztropine mesylate 
Oxbutynin 
Propantheline 
Tolterodine 

Medications that cause 
xerostomia  

ACE inhibitors 
Antiarrythmic 
Antiemetics 
Antihistamines and decongestants 
Calcium channel blocker 
Diuretics 
Selective serotonin reuptake inhibitors 
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Antipsychotic/Neuroleptic 
medications 

Chlorpromazine 
Clozapine 
Fluphenazine 
Haloperidol 
Lithium 
Loxapine 
Olanzapine 
Quetiapine 
Risperidone 
Thithizene 
Trifluoperazine 

Medications depress the 
central nervous system 

Antiepilepitc drugs 
Benzodiazepines 
narcotics 
Skeletal muscle relaxants 

 

6.1.2 Sample size calculation  

The sample size was based on a power analysis conducted using PASS 14 (NCSS, Kaysville, Utah) 

and G*power to calculate the number of participants needed for multilevel modeling with a power 

of .80, an alpha offset at .05, a medium effect size of .50, repeated measurement of 20, alpha level 

of .05, and the variance (SD=663 ms) observed in the Brodsky et al. study (2012).   It was estimated 

that a total of 20 participants were needed for sufficient power to find differences among 

experimental conditions. 

Table 6. continued 
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6.2 STIMULI 

Six acoustic stimuli and two visual stimuli were used in the study.   The acoustic stimuli included 

the bolus hold instruction; “hold it”, which instructed participants to hold a bolus after they sipped 

water from a cup.  This was followed by one of five acoustic stimuli to signal the swallow.  The 

visual stimuli included the start cue to signal the beginning of each trial, and the sip cue to instruct 

the participants to sip water from a cup.  Both acoustic and visual stimuli were presented via 

SuperLab 5.0, a laboratory experiment administration software (Cedrus, Phoenix, AZ).  

6.2.1  Acoustic stimuli  

The five acoustic stimuli used to signal the command swallow included: (1) congruent action word, 

swallow, (2) incongruent action word, cough, (3) congruent pseudo-word, spallow, (4) incongruent 

pseudo-word, pough, and (5) a non-verbal, 1000 Hz pure-tone.   

Efforts were made to match the stimuli on acoustic and sublexical parameters.  The 

database from the Washington University English Lexicon project was used to generate the words 

(Balota et al., 2007).  The sublexical parameters used for selection are listed in Table 7 and the 

decision process follows.  

Table 7. Summary of each acoustic stimulus 

Acoustic  
stimuli 

Pronunciation Word-
frequency 

Word 
length 

Phoneme 
number 

Syllable 
number 

Morpheme 
number 

swallow sw"A.lo 8.066 7 5 2 1 
cough k"Of 7.703 5 3 1 1 

spallow sp"A.lo NA 7 5 2 NA 
pough p"Of NA 5 3 1 NA 

   Note: Word frequency was based on the log-transformed HAL (Hyperspace Analogue to Language) frequency 
   norms; Word length was the number of letters in the word (Balota et al., 2007); NA=Not applicable. 
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Congruent action word stimulus  

The word swallow was used as the congruent action word because it corresponds directly with the 

target action and is typically used clinically under the command swallow condition.  

 

Incongruent action word stimulus 

The incongruent word cough was selected because it was associated with a motor activity that 

propels materials or air in the opposite direction of swallow and has a similar word-frequency.   

There are physiological similarities between swallow and cough actions, although substances in 

the aerodigestive tract travel in the opposite direction during swallowing and coughing (Ludlow, 

2015).  Both swallowing and coughing are upper airway responses to stimulation and both involve 

laryngeal and respiratory system functions.  However, the function of swallowing is to propel 

liquid or solid boluses down to the esophagus, whereas, the function of cough is to expel substances 

from the trachea.  Swallowing actively suppresses respiration, closes the true vocal folds and 

laryngeal entrance so that liquid or solid boluses are not propelled to the airway.   Cough starts 

with an inspiration, closure of the false and true vocal folds, followed by forceful and rapid air 

expulsion in order to open the true vocal folds, and expel substances from the trachea.  

Syllable numbers and word-frequency can influence reaction time and movement duration 

and should be matched when possible (Abrams & Balota, 1991; Balota & Abrams, 1995; Bangert, 

Abrams, & Balota, 2012; Johns, Gruenenfelder, Pisoni, & Jones, 2012).  There were only a limited 

number of words that described an action incongruent to swallow (e.g., cough, spit, vomit, and 

gag).  The word vomit had the same syllable numbers and a similar word-frequency as swallow, 

but was not selected because it has strong negative emotional connotations that could impact the 
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results of the proposed study (Larsen, Mercer, & Balota, 2006).  The word cough was selected 

because it has a similar word-frequency as swallow and its directional connotation. 

 

Pseudo-word stimuli  

The pseudo-words were generated relative to the congruent action word swallow and the 

incongruent action word cough.  Each pseudo-word was created to match the length, consonant-

vowel structure, and phoneme numbers, and syllable number of the corresponding real word.  In 

order to form a closely matched pseudo-word for the congruent action word, the first consonant 

blends of the congruent action word cue were switched (i.e., /sw/ →/sp/).  Likewise, the first initial 

consonant of the incongruent action word cue (i.e., /c/→/p/) was switched to have a closely 

matched pseudo-word form for the incongruent action word. 

Because it was not possible to control the syllable numbers between the congruent and 

incongruent action words, both pseudo-word stimuli were used as a comparison condition.   

Specifically, statistical results of the pseudo-word conditions were compared to those of the 

congruent and incongruent conditions to determine whether the outcomes of the study were 

influenced by the syllable number difference between the congruent and incongruent action words.  

The possible outcomes were addressed in the data analysis section of this paper.  

 

Non-verbal stimuli  

The 1000 Hz pure-tone was selected based on a previous study that tested swallowing reaction 

times after the presentation of a 1000 Hz tone  (Roubeau et al., 2008).  It also was included to 

provide a non-verbal acoustic control.  The tone duration (600 ms), amplitude (average RMS) and 

envelope were matched to the congruent action word swallow.  
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6.2.2 Acoustic stimuli recording 

All the acoustic stimuli, including the bolus hold instruction, were produced by a native English 

male speaker.  The recordings were done in a sound-treated booth with a Shure 33-3043 

microphone (Shure, Niles, IL) routed out to a desktop computer.  The stimuli were recorded at 

44,100 Hz, 32 bit-rate with a digital audio editing program, Adobe Audition CS5.5 (Adobe system, 

San Jose, CA), and saved in a wav audio file format.  

During the recordings, the speaker repeated each of the words 10 times at a natural rate 

within the context of “1, 2, 3, target word” (i.e., “1, 2, 3, hold it”, “1, 2, 3, swallow”, “1, 2, 3, 

cough”, “1, 2, 3, spallow” and “1, 2, 3, pough”).  This context was used to control the speaking 

context and co-articulation.  The same talker also was asked to repeat each word 10 times in a 

slightly faster and slower speed than his normal conversational speech rate to help with later 

matching of stimulus durations.  From the recordings, a single sample of each word/phrase was 

selected based on clarity and naturalness.  These sound files were edited and matched for amplitude 

and duration.  The intelligibility of each stimulus was validated by 25 volunteers who correctly 

identified each stimulus across 40 presentations (Brodsky, 2006).  The detail of the validation 

procedure was described in the section below.  The non-verbal stimulus was extracted from a pre-

existing 10 sec, 1000 Hz pure-tone.  

6.2.3 Acoustic stimuli manipulation  

The four acoustic word stimuli (i.e., swallow, cough, spallow, and pough) were edited with Adobe 

Audition CS5.5.  The background noise during the recording was reduced from all the stimuli, and 
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a 50-ms silence was added at the beginning and end of each stimulus file to control timing.  Then 

the duration and amplitude of the incongruent and pseudo-words were matched to swallow so that 

the cues and sound files were of equal length.  The 1000 Hz pure-tone was constructed to match 

swallow.   An example of the congruent action word and the non-verbal stimulus are shown in 

Figure 1 and 2. 

 

 

Figure 1. An example of the congruent action word 

 

 
 

Figure 2. An example of the non-verbal 1000 Hz tone 

 Note: The x-axis (horizontal ruler) indicates time in seconds, and the y-axis (vertical ruler) indicates a 
software-based relative amplitude in dB, not dB SPL or HL.  Word amplitude was matched on average 
RMS rather than peak amplitude. 
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6.2.4 Acoustic stimuli intelligibility verification 

To verify the intelligibility of the verbal acoustic stimuli, the four words swallow, spallow, cough, 

and pough were presented to 25 volunteers in sound field at 65 dB SPL, as measured at the level 

of the pinna.  The volunteers were over 18 years of age, native English speakers, had normal 

hearing (per ASHA 2005), and naïve to the purposes of the study.  Each stimulus was presented 

10 times (40 words total), in random order.  After each word was presented, the volunteers 

indicated which of the four words they heard.  Twenty-four of the volunteers identified all the 

stimuli with 100% accuracy, and one volunteer correctly identified the stimuli with 98% accuracy.  

The latter listener selected cough for pough 1 out of 10 trials.  A priori criterion level of 70%  

correct was used  (Brodsky, 2006), so all of the stimuli were deemed intelligible.  

Prior to implementing the experiment, the directionality of the congruent and incongruent 

words was assessed in preliminary studies with procedures similar to those used by Borreggine 

and Kaschak (2006).  This ACE-related procedures required a manual response and did not verify 

directionality and failed to replicate previous studies by Kaschak and colleagues.  See Appendix 

C-F.   

6.2.5 Visual stimuli 

As previously noted, there were two visual stimuli used in the study – the start cue and the sip cue.  

The start cue consisted of a cross symbol in black 60-point Times New Roman font on a white 

background.  The start cue indicated the beginning of each swallow trial.  The sip cue was a colored 

photograph of a female person sipping from a cup.  The photograph (800 x 500 pixels) was on a 



85 

 

white background and signaled participants to sip water from a cup.  Both visual stimuli were 

presented on a computer monitor in front of the participants at approximately 74 cm. 

6.3 INSTRUMENTATION 

A Kay Digital Swallowing Workstation (Model 7200, KayPENTAX, Lincoln Park, NJ) and 

Swallowing Signals Laboratory (Model 7120, KayPENTAX, Lincoln Park, NJ) were used as a 

multi-functional system to simultaneously record sEMG, nasal airflow, and the acoustic stimuli.  

The Swallowing Signals Lab system had a custom external module with a PC interface card and 

five channels for specific transducers.  For the current study, one of the sEMG channels (sEMG1), 

the nasal channel, and an auxiliary channel (AUX1) were used.   

Submental sEMG signals were recorded in this study.  A 6-cm diameter adhesive patch 

with three-point electrodes (two recording electrodes and one reference) and a 10-mm edge-to-

edge inter-electrode distance was used (Dura Stick EMG electrodes, Part 42109: Chattanooga 

Group, Inc, Hixson, TN).  All of the sEMG signals were recorded at a 250 Hz sampling rate.  The 

raw signal was automatically band-pass filtered, integrated, rectified and digitally recorded by the 

Kay Digital Swallowing Workstation.  

Nasal airflow signals were recorded with a standard 210 cm nasal cannula straight tip 7’ 

with oxygen tubing (Unomedical Inc, McAllen, TX).  Nasal airflow signals also were recorded at 

a sampling rate of 250 Hz.   

The acoustic stimuli were presented via SuperLab 5.0 (Cedrus, Phoenix, AZ) experimental 

software installed on the notebook computer.  The acoustic stimuli were presented at 65 dB SPL 
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from two loudspeakers (Multi-media SL-80) placed to the sides of the computer monitor situated 

in front of the participants at a distance of approximately 74 cm.  The presentation level of the 

acoustic stimuli was calibrated at the level of each subject’s pinna with a portable sound level 

meter (Larson-Davis 824, Larson Davis, Depew, NY) using speech-shaped white noise with the 

an average RMS for the acoustic stimuli.  The computer monitor (Dell E2211HC: 21.5-inch 

display, 1920 x 1080 resolution) was connected to the notebook computer and used to present the 

visual stimuli (i.e., the instruction, start cue, and sip cue).  This overall configuration made it 

possible to simultaneously record sEMG signals, nasal airflow signals and acoustic stimuli, and to 

present both the acoustic and visual and stimuli during the experiment.  The notebook computer 

was used to record the onset time of each acoustic and visual stimulus during the experiment.  

Figure 3 displays the instrumentation configuration.       

 

 

Figure 3. Instrumentation configuration. 
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6.4 EXPERIMENTAL PROCEDURE 

6.4.1 Experimental configuration  

The experiment was conducted in a quiet laboratory space in the Department of Communication 

Science and Disorders in Forbes Tower at the University of Pittsburgh.  The participants sat in 

front of a table where the Kay Digital Swallowing Workstation, notebook computer, computer 

monitor, and loud speakers for the study were located.  Figure 4 displays the experimental 

configuration.   

 

 

Figure 4. Experimental configuration 
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6.4.2 Preparation procedure: Electrode and nasal cannula placement  

Prior to the experiment, the participant's submandibular area (submental geniohyoid-mylohyoid-

anterior digastric region) was prepared with isopropyl alcohol impregnated prep pads (Dynarex 

1113 Latex Free Sterile Alcohol Prep Pad, USA) to remove skin oil (Brodsky, 2006).  Electrode 

jell was placed on the electrode surface of a self-adhering patch that contained three electrodes.  

The adhering electrode patch was placed 1 cm posterior to the midline of the posterior surface of 

the mandible (i.e., roughly 1 cm posterior to the inferior mental processes).  Figure 5 displays 

sEMG electrode and nasal cannula placement.  A 100-cm lead wire was attached to the electrode 

patch, and connected to the Swallowing Signals Lab via the sEMG1 input channel.  The nasal 

cannula was placed into the nasal cavities of the participant.  The cannula was positioned at the 

nares entrance and was threaded behind the ears and connected to the Swallowing Signals Lab 

system via the nasal input channel.  

In order to test whether sEMG and nasal airflow signals were properly recorded by the Kay 

Digital Swallowing Workstation, participants were asked to perform spontaneous swallows of 

water from a cup.  This was done several times at their own pace and self-selected bolus volume.  

This integrity check was conducted prior to the administration of the main experiment.  
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Figure 5. sEMG electrode and nasal cannula placement 

6.4.3 Main experimental procedure 

Five swallow conditions were measured, including swallows following (1) the congruent action 

word, swallow, (2) the incongruent action word, cough, (3) the congruent pseudo-word, spallow, 

(4) the incongruent pseudo-word, pough, and (5) a 1000 Hz pure-tone.  The 5 stimuli were 

presented 20 times each in random order.  The 100 trials were presented in 4 blocks of 25 swallow 

trials with 5-minute break between the blocks.  

During the experiment, each participant was asked to sip 5 ml of water from a cup and hold 

the liquid in their mouth until he/she heard sound, and then swallow as soon as they heard the 

sounds.  The water was premeasured with a syringe by the investigator prior to each swallow block 

of trials.  The bolus volume was selected because it was clinically relevant, less likely to cause 

aspiration in healthy individuals (Martin-Harris et al., 2000), and used in the previous reaction 

time studies with sEMG in swallowing (Brodsky et al., 2012a; Brodsky et al., 2012c; Nakamura 
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& Imaizumi, 2013).  The bolus hold condition was included in the procedure to replicate the 

command swallow condition during videofluoroscopic examination of swallowing.   

After the physical preparations, the participants were seated comfortably in a chair facing the 

computer monitor and asked to read the following written instruction.  The instructions were 

presented on the computer monitor, in black 30-point, Times New Roman font on a white 

background: 

At the beginning of each trial, you’ll see a “+” in the middle of the screen.  This will be 

followed by a picture of a female sipping water from a cup.  When you see the picture, sip the 

water from the cup and hold the water in your mouth.  After you sip, you will hear the words 

“hold it”.   Please be very still while holding the water in your mouth.  Then, you will hear 

some words or sounds.  Drink the water in your mouth as soon as you hear the end of each 

word or sound.   After you are finished drinking, place the cup on the desk.  Are you ready? 

 
To begin each trial, a start cue was presented on the middle of the computer monitor for 

3000 ms, followed by the sip cue.  With the sip cue, participants sipped 5 ml of water from a 

medicine cup that was placed on the table in front of them.  The investigator placed the cup of 

water in front of the participants prior to each trial.  After the participants sipped the water, the 

bolus hold cue was presented.  It was presented after participants released the cup from their 

mouths after the sip.  The timing of the bolus hold cue was manually controlled by the investigator 

to ensure that participants sipped the water prior to the bolus hold cue.  The sip cue disappeared as 

soon as the bolus hold cue, “hold it”, was presented.  

After the bolus hold cue was presented, one of the five acoustic stimuli, swallow, cough, 

spallow, pough or 1000 Hz pure-tone, was presented.  The acoustic stimulus was randomly 
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presented within a 3000 to 5000 ms window following the bolus hold command so that participants 

were less able to anticipate when to initiate each swallow.  Prior research has indicated that 

language induced motor interference is evident when action words are presented concurrently or 

with a 50 to 200 ms delayed to the initiation of the related actions (Boulenger et al., 2006; Buccino 

et al., 2005; Nazir et al., 2008; Sato et al., 2008).  In this study, all of the swallow stimuli were 

given prior to the initiation of swallowing.  Figure 6 displays the flow chart of the procedure for 

each swallow trial. 

 

 

 

Figure 6. Flow chart of the procedure for each swallow trial 
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6.4.4 Stimulus preference self-report 

After the main experimental procedures were completed, the participants were asked their 

preference among the stimuli they heard during the experiment (i.e., “Do you have any preference 

among the words and sounds you heard?”).  When participants expressed preference for only one 

stimulus, they were asked what word(s) they liked the best and least.   

6.5 MEASUREMENTS 

Each swallow was detected by the increase in sEMG signals along with the presence of the 

respiratory secession identified on the nasal airflow signal and the observation of the laryngeal 

elevation by the investigator during the experiment (McFarland, Martin-Harris, Fortin, Humphries, 

Hill & Armeson, 2016).  Several measurements were made from the sEMG recording: sEMG 

latency, sEMG duration, sEMG peak amplitude, and sEMG peak amplitude.  The swallow-

respiratory pattern (i.e., inspiratory phase, expiratory phase, or zero flow) at stimulus onset and 

sEMG onset also were measured from the nasal airflow signals via the nasal cannula, which 

allowed for the detections for airflow direction and magnitude at the nares (Lee, Steele, & Chau, 

2011).  Each swallow-respiratory pattern was coded as: +1=expiratory phase, 0=zero flow, and−1= 

inspiratory phase. 

The sEMG latency was defined as the delay between stimulus onset and the suprahyoid 

muscle activity onset.  The sEMG duration was defined as the duration between onset and offset 

of sEMG activity.  The onset of the sEMG activity was defined as the point when the suprahyoid 
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activity value (µV) exceeded two standard deviation (SD) above the baseline mean activity.  The 

offset of sEMG activity was defined as the point when the suprahyoid activity returned to within 

2 SD of the baseline mean level (Crary & Baldwin, 1997).  It preceded any structural movement 

during swallow including hyoid elevation (Kim et al., 2015).   

The baseline sEMG activity was taken from the duration between the stimulus onset and 

just 1000 ms prior to the stimulus onset.  Originally, it was defined as the duration between the 

offset of the “hold it” bolus hold command and the onset of each acoustic cue for the swallow.  

However, due to sEMG activity associated with the bolus hold, the sEMG levels using the original 

baseline definition were found to be too high to capture the onset of the sEMG activity associated 

with oropharyngeal swallows, and thus, the measurement rules were revised.  

 The offset of sEMG was defined as the point when sEMG activity returned to within 2 SD 

of the baseline mean (Fujiwara, Fujiu-Kurachi, Hori, Maeda, & Ono, 2017).  The sEMG offset 

indicates the time when the hyoid returns to the resting position after the completion of swallowing.  

As indicated previously, the sEMG peak amplitude was defined as the highest amplitude point of 

the sEMG trace during swallowing (Crary et al., 2006) and indicates the maximum myoelectric 

activity during swallowing (Kim et al., 2015).  Figure 7 displays an example of the sEMG 

measurements and nasal airflow measurement (Details of the sEMG measurement rules, see 

Appendix G).   
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Figure 7. An example of the sEMG and nasal airflow measurements 

Note: a=sEMG peak amplitude; b= sEMG duration (duration between sEMG onset and sEMG offset); 
 c=sEMG latency (duration between cue onset and sEMG onset); d=swallow-respiratory pattern at 
 cue onset 

 
 

Stimulus onset, sEMG onset, sEMG offset, and the swallow-respiratory pattern at the 

stimulus onset were manually identified by the investigator through visual inspections on the 

acoustic, sEMG, and nasal airflow tracings.  The sEMG peak amplitude and onset of sEMG peak 

amplitude were automatically selected by the Swallowing Signals Lab System after entering the 

sEMG onset and sEMG offset information for each swallow.  

A total of 200 swallows (10% of the data) were randomly selected, and stimulus onset, 

sEMG onset, sEMG offset, sEMG peak amplitude, sEMG peak amplitude onset, and swallow-

respiratory pattern at stimulus onset were re-measured for intra-examiner and inter-examiner 

reliability to ensure a lack of measurement drift and accuracy respectively.  The investigator re-

measured the swallows for intra-examiner reliability and inter-examiner reliability was conducted 

with an automated signal analysis algorithm.  The same swallows that were selected for intra-

examiner reliability were used for the inter-rater reliability.  Inter- and intra-examiner agreement 

for stimulus onset and sEMG measurements were calculated using intraclass correlation 
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coefficients (ICC). The SPSS v. 25.0 statistical package (IBM Corporation, Armonk, NY) was 

used for the analyses.  The ICC both for the intra- and inter-rater reliability was 1.0 which indicates 

excellent agreement.  Inter- and intra-examiner agreement for nasal airflow signals were calculated 

using Cohen’s Kappa correlation. The Kappa for the intra-examiner reliability for the nasal airflow 

signals was .969, and .73 for the intra-examiner reliability, respectively. Both results indicated 

good to strong agreement.  Table 8 shows the reliability result for each variable. 

 
 

 
Table 8. Intra- and inter-examiner reliability results 

 
Variables Stimulus 

onset 
(ms) 

sEMG 
onset time 

(ms) 

sEMG 
offset time 

(ms) 

sEMG 
peak 

amplitude 
(µV) 

Nasal 
airflow at 
stimulus 

onset   
(-1,0,1) 

sEMG 
peak 
onset 
time 
(ms) 

 
Tests 

Intra-
rater 
reliability  

Mean 
difference 
between 1st 

and 2nd rating 

-0.2 1.5 2.2 0.1 NA 0 

ICC 1.0 1.0 1.0 1.0 NA 1.0 
Kappa NA NA NA NA 0.969 NA 

Inter-
rater 
reliability 

Mean 
difference 
between 1st 

and 2nd raters 

-134.8 -198.3 26.8 -254.3 NA 86.76 

ICC 1.0 1.0 1.0 0.994 NA 1.0 
Kappa NA NA NA NA 0.73 NA 
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6.6 OUTCOME MEASURES 

6.6.1  Independent variables  

There were three independent variables of interest in the study.  Stimulus type had five levels: (1) 

congruent action word, swallow, (2) incongruent action word, cough, (3) congruent pseudo-word, 

spallow, (4) incongruent pseudo-word, pough, and (5) 1000 Hz pure-tone.  Swallow-respiratory 

pattern at stimulus onset (inspiratory phase, expiratory phase, or zero flow) was of interest because 

it was a potential confounding factor.  The last variable was order of presentation over time (stimuli 

multiple exposures effect) as a possible confounding factor. 

6.6.2 Dependent variables 

The dependent variables for the study were: (1) The delays between stimulus onset and the 

suprahyoid muscle activity onset measured by sEMG (sEMG latency), (2) The duration of 

suprahyoid muscle activity (sEMG duration), (2) The peak suprahyoid muscle activity amplitude 

(sEMG peak amplitude), and (4) The delays between stimulus onset and the peak suprahyoid 

muscle activity amplitude measured by sEMG (sEMG peak latency). 
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7.0  DATA ANALYSIS 

7.1 STATISTICAL ANALYSIS OUTLINE 

Mixed effects models were used to test all the specific aims.  The stimulus type, which was the 

independent variable of the study, was added into the mixed models as fixed effects.  The swallow-

respiratory pattern at stimulus onset, swallow-respiratory pattern at sEMG onset, and order of 

swallows in each block also were added into the mixed effect model as a fixed effect.  The models 

included a random effect for intercept (i.e., each participant has a different intercept) for the sEMG 

measures. 

Mixed effects models were used because, unlike analysis of covariance, this type of statistic 

allowed for the inclusion of the swallow-respiratory pattern that was a categorical variable with 

random effects (i.e., the swallow-respiratory pattern may vary within a participant as a predictor) 

and treatment of the swallow-respiratory pattern as a covariate (Blozis & Traxler, 2007; Marinus 

& de Jong, 2010).  Furthermore, mixed effects models handled incomplete data, i.e., missing data, 

which was advantageous when assessing reaction time data (Blozis & Traxler, 2007; Marinus & 

de Jong, 2010).  
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7.2 POSSIBLE OUTCOMES FOR THE SPECIFIC AIM 5 

There were four possible outcomes for swallows following the four verbal stimuli.  The first two 

patterns support the language induced motor facilitation in swallowing.  Figures 8 through 11 

indicate the possible pattern differences.   The pure-tone outcomes were not considered in these 

patterns. 

7.2.1 Lexical effect without syllable number effect on swallows following action and 

pseudo words 

The first possible pattern (Figure 8) indicates a lexical effect without a syllable number effect on 

swallows following the action and pseudo-words.  In this pattern, the sEMG latency of swallows 

following the congruent action word swallow is statistically shorter than swallows following any 

other stimuli.  The sEMG latency of swallows following the incongruent action word cough is 

statistically longer than swallows following the word swallow and the incongruent pseudo-word 

spallow.  The sEMG latency of swallows following the congruent pseudo-word spallow is longer 

than those following the incongruent pseudo-word cue pough, but the difference may or may not 

be statistically significant.  This outcome pattern supports the language induced motor facilitation 

in swallowing.  
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Figure 8. Possible outcomes on sEMG latency that indicates the lexical effect with syllable number effect 

7.2.2 Lexical effect with syllable number effect on swallows following action words: 

cancellation effect 

A second possible pattern (Figure 9) indicates lexical and syllable number influence on swallows 

following the action words.  In this pattern, there are no differences on the sEMG latency between 

swallows following the word swallow, and those following cough, due to the cancellation effect 

between the lexical and syllable number effects.  On the other hand, the sEMG latency of swallows 

following the congruent pseudo-word spallow, is longer than swallows following the incongruent 

pseudo-word pough.  This outcome pattern also supports the language induced motor facilitation 

in swallowing.  
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Figure 9. Possible outcomes on sEMG latency that indicates the lexical effect with the syllable number 
effect. 

7.2.3 Syllable number effect without lexical effect   

A third possible pattern (Figure 10) includes a syllable number effect without a lexical effect.  In 

this pattern, the sEMG latency for swallows following the word swallow, as well as the pseudo-

word spallow, is longer than swallows following cough and the incongruent pseudo-word, pough.  

This outcome pattern is inconsistent with the language induced motor facilitation in swallowing.  

 
 
 

 

Figure 10. Possible outcomes on sEMG latency that indicates the syllable number effect without lexical 
effect. 
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7.2.4 No lexical effect or no syllable number effect  

The fourth possible pattern (Figure 11) shows no lexical effect or syllable number effect.  In this 

pattern, there is no difference on sEMG latency among swallows following any words.  This 

outcome pattern also rejects language induced motor facilitation in swallowing.  

 

 

Figure 11. Possible outcomes on sEMG latency that indicates no lexical effect or no syllable number effect
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8.0  RESULTS  

8.1 DATA CLEANING: IDENTIFICATION OF OUTLIERS 

Prior to statistical analysis, any swallows with sEMG activity onset occurring before the stimulus 

onset and swallows with errors related to the experimental procedures and equipment (e.g., 

electrode failure, computer operational errors, participants dropping a cup) were removed.  Then 

outliers, identified with a criterion of +/- 2 SD from the mean for each dependent variable (i.e., 

sEMG latency, sEMG duration, sEMG peak amplitude, and sEMG peak latency), were removed.  

Swallows with sEMG latencies shorter than 50 ms also were removed.  Outliers were identified 

for each dependent variable, resulting in 9% of the data (180/2000 swallows) being removed.  

8.2 SEMG LATENCY 

8.2.1 sEMG latency model building  

Once multilevel models were built, the assumption of normality was tested for sEMG latency.  

Normality of the residuals was visually inspected because a large number of the observed swallows 

in the study could overpower the formal tests for significance of normality, such as Shapiro-Wilk 
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test.  After removing 6 swallows with residuals below -3 SD and 9 swallows with residual above 

+3 SD (1805 swallows remaining), the assumption of normality, linearity and homoscedasticity 

were met.  A Shapiro-Wilk test indicated that normality in random intercepts was met, W=.926, 

p<.127.  

Multiple model comparisons were conducted to determine an optimally fitted final model 

for each dependent variable (Pinheiro & Bates, 1995).  Stata 15.0 statistical analysis package (Stata 

Corp, 2017) was used for all of these analyses.  Table 9 summarizes the fit statistics.   

The first step was to test the random intercept.  Intra-class correlation (ICC=.274) indicated 

that 27% of the variance in sEMG latency was due to between-person variation amongst 

participants.  A Likelihood Ratio (L-R) test with alpha set to p<.05 indicated that adding a random 

intercept for participants (i.e., level 2 random intercept) significantly improved model fit over the 

null model, χ2(1)=401.59, p=.02482x10-87.  Thus, a random intercept for participants was added 

to the model.  

After adding a random intercept, the order effect was tested by adding the block order (i.e., 

block 1-4) in the model.  A L-R test indicated that including block order did not significantly 

improve the model fit, χ2(1)=1.01, p=.314.  However, when the order of swallows within each 

block was added to the model, it appeared to have an effect in inducing decline in sEMG latency 

(B=-.004).  A L-R test indicated a significant improvement in the model upon accounting for order 

within blocks, χ2(1)=26.77, p=.02292x10-5.  Therefore, order within blocks was added to the 

model.  

Moreover, the influences of swallow-respiratory pattern at stimulus onset (nasal airflow at 

cue onset) as well as sEMG onset (nasal airflow at sEMG onset) were tested.  A L-R test indicated 
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a significant improvement in the model upon accounting for nasal airflow at sEMG onset, χ2(2) = 

9.62, p=.008.  Adding the nasal airflow at cue onset also significantly improved the model fit over 

the model with nasal airflow at sEMG onset, χ2(2)=6.47, p=.039.  However, there was a significant 

interaction between nasal airflow at cue onset and nasal airflow at sEMG onset, L-R χ2(4)=83.11, 

p=.03818x10-15. The sEMG latencies were shorter when the swallow-respiratory pattern at cue 

onset was matched to that at sEMG onset relative to those that were in zero-flow phase both at cue 

and sEMG onset (Mean Difference=-155.31, SE=31.78, z=-4.89, p=.0260x10-4 when nasal airflow 

at cue and sEMG onset were inspiratory; Mean Difference=-137 ms, SE=30.04, z=-4.56, 

p=.05.10x10-4 when nasal airflow at cue and sEMG onsets were expiratory).  Given these results, 

nasal airflow at cue onset, nasal airflow at sEMG onset, and the interaction between nasal airflow 

at cue onset and nasal airflow at sEMG onset were added to the model.  

Finally, stimulus type (i.e., congruent action word, incongruent action word, congruent 

pseudo-word, incongruent pseudo-word, and 1000 Hz pure-tone) was tested.  A L-R test indicated 

stimulus type had a significant overall improvement of the model fit, χ2(4)=155.59, p= .0129+10-

30.  Table 10 lists the complete tests results for sEMG latency.  

 

Table 9. Summary of the fit statistics 

#  Variable  χ2 df p-value 
1  Random intercept  401.59 1   .02482x10-87** 
2 Block # 1.01 1 .314 
3 Order within block   26.77 1  .02292x10-5** 
4 Nasal airflow at sEMG onset 9.62 1   .008** 
5 Nasal airflow at cue onset  6.47 1  .039* 
6 Nasal airflow at cue onset * nasal airflow at 

sEMG onset   
83.11 4  .03818x10-15** 

7 Cue 155.59 4   .0129x10-30** 



105 

 

Table 10. Results from final model for sEMG latency (in ms). 

Note: *=significant at p<0.5; **=significant at p<.01. 

Fixed Effects Coefficient Standard 
Error 

z p 95% confidence interval 
Lower Upper 

Cue: spallow vs. swallow 
(γ01) 

79.030 15.304 5.160 .024x10-5** 49.034 109.026 

Cue: cough vs.  swallow 
(γ02) 

11.515 15.355 .750 4.53 -18.580 41.610 

Cue: pough vs. swallow 
(γ03) 

107.823 15.254 7.070 .160x10-10** 77.926 137.720 

Cue: tone vs.  swallow 
(γ04) 

158.617 15.118 10.490 .094x10-26** 128.986 188.248 

Order within block (γ05) -3.334 .678 -4.920 .087x10-5** -4.663 -2.006 
Nasal airflow at sEMG 
onset:  inspiration vs. zero-
flow (γ06) 

25.044 23.077 1.090 .280 -20.186 70.275 

Nasal airflow at sEMG 
onset:  expiration vs. zero- 
flow (γ07) 

19.915 24.214 .820 .410 -27.543 67.373 

Nasal airflow at cue onset: 
inspiration vs. zero- flow 
(γ08) 

44.938 19.860 2.260 .240 6.014 83.862 

Nasal airflow at cue onset:  
expiration vs. zero- flow 
(γ09) 

87.736 17.776 4.940 .080x10-5** 52.895 122.577 

Nasal airflow at sEMG 
onset (inspiration) * Nasal 
airflow at cue onset 
(inspiration) (γ10) 

-154.641 32.916 -4.700 .026x10-4** -219.154 -90.128 

Nasal airflow at sEMG 
onset (inspiration) * Nasal 
airflow at cue onset 
(expiration) (γ11) 

22.807 34.244 .670 .505 -44.310 89.923 

Nasal airflow at sEMG 
onset (expiration) * Nasal 
airflow at cue onset 
(inspiration) (γ12) 

19.793 40.210 .490 .623 -59.017 98.602 

Nasal airflow at sEMG 
onset (expiration) * Nasal 
airflow at cue onset 
(expiration) (γ13) 

-137.034 30.035 -4.560 .051x10-4** -195.902 -78.166 

Grand mean γ00  517.816 32.203 16.08 .035x10-56** 454.7 580.932 
Random Effects  Estimate Standard 

Error 

  
95%  confidence interval 

intercept (u00)  15727.05 5124.40   8304.19 29784.98 

residual (εit)  41747.32 1397.42   39096.33 44578.06 
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The first and second levels of the model shown below were based on the above model 

fitting procedures.  The level 1 predictor was observation (i.e., swallow) while the level 2 predictor 

was participant.  The combined model contains both levels into one equation.  In the level 1 model, 

the β0𝑖𝑖 indicates the intercept that has random components.  The Β1-4 indicates the fixed effect for 

stimulus type.  The Β5 indicates the fixed effect for order within block.  The Β6-7 indicates the fixed 

effect for nasal airflow at cue onset.  The Β8-9 indicates the fixed effect for nasal airflow at sEMG 

onset, and the Β10-13 indicates the interaction terms for nasal airflow at cue onset and nasal airflow 

at sEMG onset.  The 𝜀𝜀𝑖𝑖t  indicates the level 1 residual error in the level 2 model, and 𝛾𝛾00 is the grand 

mean intercept.  The 𝑢𝑢0𝑖𝑖 is the random intercept for individual participants. 

Equation 1: Level 1 

sEMG latency𝑖𝑖t = β0𝑖𝑖 + β1-4 (cue) 𝑖𝑖t + β5 (order within block) 𝑖𝑖t + β6-7 (nasal airflow at cue onset) 𝑖𝑖t 

+ β8-9 (nasal airflow at sEMG onset) 𝑖𝑖t + β10-13 (nasal airflow at cue onset) 𝑖𝑖t * (nasal airflow at 

sEMG onset) 𝑖𝑖t + 𝜀𝜀𝑖𝑖t 

Equation 2: Level 2 

β0𝑖𝑖 = 𝛾𝛾00 + 𝑢𝑢0𝑖𝑖 

𝜀𝜀𝑖𝑖j ∼ N (0, σ2) 

𝑢𝑢0𝑖𝑖 ∼ N (0, σ2) 

 

Combined model: 
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sEMG latency𝑖𝑖t = (𝛾𝛾00 + 𝑢𝑢0𝑖𝑖) + β1-4 (cue) 𝑖𝑖t + β5 (order within block) 𝑖𝑖t + β6-7 (nasal airflow at cue 

onset) 𝑖𝑖t + β8-9 (nasal airflow at sEMG onset) 𝑖𝑖t + β10-13 (nasal airflow at cue onset) 𝑖𝑖t * (nasal 

airflow at sEMG onset) 𝑖𝑖t + 𝜀𝜀𝑖𝑖t 

8.2.2 sEMG latency stimulus type comparisons 

After the model was built, the data were added into the same multilevel mixed model to further 

examine the pattern difference for sEMG latency among cue levels.  Table 11 lists the complete 

model results for sEMG latency.  Table 12 summarizes the model-based means and standard 

errors, and 95% confidence intervals on sEMG latency for each cue.   The results relative to the 

specific aims follow. 

 

Table 11. Model results for sEMG latency among cues 

Cue  Coefficient Standard 
Error 

z p 95% confidence 
interval 

1 2 lower upper 
 

swallow  
spallow  79.030 15.304 5.160 .024x10-5** 49.034 109.026 
cough 11.515 15.355 .750 4.53 -18.580 41.610 

pough  107.823 15.254 7.070 .016x10-10** 77.926 137.720 
tone 158.617 15.118 10.490 .094x10-24** 128.986 188.248 

spallow cough -67.515 15.404 -4.380 .012x10-3** -97.707 -37.323 
pough  28.793 15.307 1.880 .06 -1.208 58.794 
tone 79.587 15.170 5.250 .016x10-5** 49.854 109.321 

cough pough  96.308 15.358 6.270 .036x10 -8** 66.206 126.410 
tone 147.102 15.201 9.680 .038x10-20** 117.308 176.896 

pough  tone 50.794 15.090 3.370 .076x10-2** 21.218 80.370 
       Note: **=significant at p<.01; *=significant at p<0.5. 
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Table 12. Predicted marginal mean, standard error, and 95% confidence intervals on sEMG latency for 
each cue. 

 

 Cue   Mean(ms) Standard 
Error   

95% confidence interval  
lower  upper  

swallow 485.822 30.047 426.931 544.712 
spallow 564.852 30.074 505.907 505.907 
cough 497.337 30.098 438.347 556.327 
pough 593.645 30.040 534.767 652.523 
tone 644.439 29.969 585.700 703.177 

 

8.2.3 sEMG latency results 

Specific aim 1: 

Specific aim 1 was to determine if there was a significant difference on sEMG latency for swallows 

following the congruent action word swallow and a non-verbal stimulus (1000 Hz pure-tone) after 

controlling for swallow-respiratory pattern.  The sEMG latency for swallows following swallow 

was significantly shorter than for swallows following the 1000 Hz pure-tone (B=158.617ms, 

SE=15.118, z=10.49, p=.094x10-24).  

                                  

Specific aim 2: 

Specific aim 2 was to test if there was a significant difference in sEMG latency in swallows 

following the congruent action word swallow, and the congruent pseudo-word spallow after 

controlling for swallow-respiratory pattern.  The sEMG latency for swallows following swallow 

was significantly shorter than for swallows following spallow (B=79.30, SE=15.304, z=5.16, 

p=.024x10-5).  
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Specific aim 3: 

Specific aim 3 was to determine if there was a significant difference on sEMG latency in swallows 

following the word swallow as compared to the incongruent action word cough, after controlling 

for swallow-respiratory pattern.  There was no statistical difference on sEMG latency between 

swallows following swallow and those following cough (B=11.515, SE=15.355, z=.75, p=.453).  

 

Specific aim 4: 

Specific aim 4 was to determine if there was a significant difference in sEMG latency for swallows 

following the incongruent word cough and the incongruent pseudo-word pough after controlling 

for the swallow-respiratory.  The sEMG latency for swallows following cough was significantly 

shorter than for swallows following pough (B=96.308, SE=15.358, z=6.27, p=.036x10 -8). 

 

Specific aim 5: 

Specific aim 5 was to test whether there were sEMG latency pattern differences for the swallows 

produced after the five different stimuli (swallow, cough, spallow, pough, and a 1000 Hz pure-

tone) after controlling for swallow-respiratory pattern at stimulus onset.  There were significant 

pattern differences among the five conditions.  The sEMG latencies for swallows following the 

1000 Hz pure-tone were significantly longer than those following all other stimuli (swallow, 

spallow, cough, and pough).  The sEMG latency for swallows following swallow was significantly 

shorter than for swallows following other stimuli except cough (i.e., spallow, pough, and 1000 Hz 

pure-tone).  The sEMG latency for swallows following spallow was significantly longer than for 

swallows following swallow and cough (B=67.515, SE=15.404, z=-4.38, p=.012x10-3).  There was 

no statistical difference on sEMG latency between swallows following spallow and those swallows 
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following pough (B=28.79, SE=15.307, z=1.88, p=.06). Figure 12 indicates the predictive marginal 

mean and standard error on sEMG latency for each cue. 

 

 

Figure 12. Predictive marginal mean and standard error on sEMG latency for each cue 

                            Note: *=significant at p<.05; **=significant at p<.01. 
 

8.3 SEMG DURATION 

8.3.1 sEMG duration model building 

Once multilevel models were built, the assumption of normality was tested for sEMG duration. 

Normality of the residuals was visually inspected.  After removing one swallow with a residual 

below -3 SD and 31 swallows with residuals above +3 SD (n=1788), the assumptions of normality 
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and linearity were met.  However, there was potential concern with heteroscedasticity, with greater 

spread in the upper range, implying that longer durations were being more poorly predicted than 

shorter durations.  Robust standard errors were incorporated into analysis to remediate this issue.  

Shapiro-Wilk test indicated that Normality in random intercepts was met, W=.926, p<.127.  

Table 13 summarizes the fit statistics. An intra-class correlation (ICC=.412) indicated that 

about 41% of the variance in sEMG duration was due to differences among individual participants.  

A L-R test indicated that adding a random intercept to account for variance explained by 

differences in sEMG duration among participants improved model fit over the null model, 

χ2(1)=728.34, p=.02057x10-158.  A L-R test indicated that accounting for blocking did not 

significantly improve the model: χ2(1)=3.34, p=.07, nor did order within the block, χ2(1) =.52, 

p=.471.  As a consequence, these variables were not added to the model.  There was no significant 

improvement by adding nasal airflow at sEMG onset, χ2(2) .65, p=.722 or nasal airflow at cue 

onset, LR χ2(2)=.82, p=.662.  A L-R test indicated cue had a significant overall effect on sEMG 

duration, χ2(4)=10.64, p=.031.  Table 14 lists the complete tests results for sEMG duration. 

Table 13. Summary of the fit statistics for sEMG duration 

#  Variable  χ2 df p-value 
1  Random intercept  728.34 1 .02057x10-158** 
2 Block # 3.34 1 .314 
3 Order within block   .52 1 .471 
4 Nasal airflow at sEMG onset .65 2 .722 
5 Nasal airflow at sEMG onset  .82 2 .662 
6 Cue 10.64 4    .031** 
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Table 14. Results from final model for sEMG duration (in ms). 

Fixed Effects Coefficient Robust 
standard 

error  

z p 95% confidential 
Interval  

sEMG duration: 
spallow vs. swallow 
(γ01) 

-96.830 45.817 -2.11 .035** -186.631 -7.030 

sEMG duration: cough 
vs.  swallow (γ02) 

14.291 57.196 .25 .803 
 

-97.811 126.392 

sEMG duration: pough 
vs. swallow (γ03) 

-114.619 57.055 -2.01 .045** -226.445 -2.792 

sEMG duration: tone 
vs.  swallow (γ04) 

-150.877 53.972 -2.8 .005** -256.660 -45.093 

Grand mean  γ00  1980.806 141.558 13.99 .017x10-42** 1703.357 2258.255 

Random Effects  Estimate Robust 
standard 

error  

  
95% confidential 

Interval 

intercept (u00)  344563.7 100072.7   195008.0 608816.8 
residual (εit)  491471.4 75106.1   364265.9 663098.3 

   Note: *=significant at p<0.5; **=significant at p<.01. 
 

 

The first and second levels of the model based on the above fitting procedures are listed 

below.  The Β0𝑖𝑖 indicates the intercept that has random components.  The β1-4 indicates the fixed 

effect for cue.  The 𝜀𝜀𝑖𝑖t indicates the level 1 residual error.  The 𝛾𝛾00 represents the grand mean 

intercept, and the 𝑢𝑢0𝑖𝑖 is the random intercept. 

Equation 1: Level 1 

sEMG duration 𝑖𝑖t = β0𝑖𝑖 + β1-4 (cue) 𝑖𝑖t + 𝜀𝜀𝑖𝑖t 

Equation 2: Level 2 

β0𝑖𝑖 = 𝛾𝛾00 + 𝑢𝑢0𝑖𝑖 
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𝜀𝜀𝑖𝑖j ∼ N (0, σ2) 

𝑢𝑢0𝑖𝑖 ∼ N (0, σ2) 

 

Combined model: 

sEMG duration𝑖𝑖t = (𝛾𝛾00 + 𝑢𝑢0𝑖𝑖) + β1-4 (cue) 𝑖𝑖t + 𝜀𝜀𝑖𝑖t 

8.3.2 sEMG duration: cue comparisons 

After the model was built, the data were added into the same multilevel mixed model to further 

examine the pattern difference on sEMG duration among the cue levels.  Table 15 lists the 

complete model results for sEMG duration.  Table 16 summarizes the model-based means and 

standard errors, and 95% confidence intervals on sEMG duration for each cue.  The results relative 

to the specific aims follow. 

 

Table 15. Model results for sEMG duration among cue 

Cue  Coefficient Robust 
Standard 

Error 

z p 95% confidence. 
Interval  

1 2 lower  upper  
swallow  spallow  -96.830 45.817 -2.110 .035** -186.631 -7.030 

cough 14.291 57.196 .250 .803 -97.811 126.392 
pough  -114.619 57.055 -2.010 .045** -226.445 -2.792 
tone -150.877 53.972 -2.800 .005** -256.660 -45.093 

spallow cough 111.121 46.844 2.370 .018* 19.308 202.934 
pough  -17.788 34.255 -.520 .604 -84.928 49.351 
Tone -54.046 40.355 -1.340 .180 -133.141 25.049 

cough pough  -128.909 40.412 -3.190 .0014** -208.115 -49.703 
Tone -165.167 52.311 -3.160 .0016** -267.694 -62.640 

pough  Tone -36.258 51.963 -.700 .485 -138.104 65.588 
        Note: *=significant at p<0.5; **=significant at p<.01. 
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Table 16. Predicted marginal mean, standard error, and 95% confidence intervals on sEMG duration for 
each cue 

 

Cue  Mean(ms) Robust 
standard  

error 

95% confidence interval 

lower upper 

swallow 1980.806 141.558 1703.357 2258.255 
spallow 1883.976 131.793 1625.666 2142.285 
cough 1995.097 154.506 1692.271 2297.922 
pough 1866.187 142.250 1587.382 2144.993 
tone 1829.929 124.914 1585.103 2074.756 

 

8.3.3 sEMG duration results  

Specific aim 1: 

Specific aim 1 was to determine if there was a significant difference on sEMG duration for 

swallows following the word swallow and the pure-tone.  The sEMG duration for swallows 

following swallow was significantly longer than for swallows following the pure-tone (B=-

150.877, Robust SE=55.972, z=-2.80, p=.005).  Figure 13 indicates the predictive marginal mean 

and standard error on sEMG duration for each cue. 

 

Specific aim 2: 

Specific aim 2 was to test if there was a significant difference in sEMG duration in swallows 

following the word swallow, and the congruent pseudo-word spallow.  The sEMG duration for 

swallows following swallow was significantly longer than for swallows following spallow (B=-

96.830, Robust SE=45.817, z=-2.11, p=.035).  
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Specific aim 3: 

Specific aim 3 was to determine if there was a significant difference on sEMG duration in swallows 

following the word swallow as compared to the incongruent action word cough.  There was no 

statistically significant difference on sEMG duration between swallows following swallow and 

swallows following cough (B=14.291, Robust SE=57.196, z=.25, p=.803).  

 

Specific aim 4: 

Specific aim 4 was to determine if there is a significant difference between sEMG duration for 

swallows following the word cough and the pseudo-word pough.  The sEMG duration for swallows 

following cough was significantly longer than for swallows following pough (B=-128.909, Robust 

SE=40.412, z=-3.19, p=.0014).  

 

 

Figure 13. Predictive marginal mean and standard error on sEMG duration for each cue 

                          Note:  *=significant at p<.05; **=significant at p<.01. 
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8.4 SEMG PEAK AMPLITUDE 

8.4.1 sEMG peak amplitude model building  

The assumption of normality was tested for sEMG peak amplitude after multilevel model building.  

After dropping one swallow with a residual below -3 SD and 26 swallows above +3SD (n=1793), 

the assumption of linearity as well as homoscedasticity were met.  Normality in random effects 

also was met, Shapiro-Wilk W=.922, p=.107.  

Table 17 summarizes the fit statistics. Intra-class correlation (ICC=.8427) indicated that 

about 84% of the variance in sEMG peak amplitude was due to differences among individual 

participants.  Adding a random intercept significantly improved the model over the model with 

fixed intercept alone, χ2(1)=2797.85, p=0.01x10-20. Adding block order also significantly 

improved model fit over the random intercept model, χ2(1)=6.42, p=.011. Order within blocks did 

not improve model fit, χ2(1) =.01, p=.937.  Thus, only block order was included in subsequent 

model fitting.  Nasal airflow at sEMG onset did not significantly improve model fit, χ2(2)=1.65, 

p=.438.  Also, there was no significant improvement on model fit by adding nasal airflow at cue 

onset, χ2(2) =.19, p=.910.   

For peak amplitude, cue had no significant overall effect, χ2(4)=3.25, p=.517.  Table 18 

lists the complete tests results for sEMG peak amplitude.  
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Table 17. Summary of the fit statistics for sEMG peak amplitude 

#  Variable  χ2 df p-value 
1  Random intercept  2797.85 1 0.01x10-20** 
2 Block # 6.42 1      .011* 
3 Order within block   .01 1       .937 
4 Nasal airflow at sEMG onset 1.65 2       .438 
5 Nasal airflow at cue onset  .19 2       .910 
6 Cue 3.25 4       .517 

 

Table 18. Results from final model for sEMG peak amplitude (µV) 

Fixed Effects  Coefficient Standard 
Error 

z p 95% confidential Interval  

Block (γ01) 788.13 195.557 4.030 .056x10-3** 405.84 1171.41 
sEMG peak 
amplitude: spallow  
vs. swallow (γ02) 

-127.35 694.90 -.180 .855 -1489.34 1234.64 

sEMG peak 
amplitude: cough 
vs.  swallow (γ03) 

605.49 699.45 .870 .387 
 

-765.41 1976.38 

sEMG peak 
amplitude: pough 
vs. swallow (γ04) 

682.94 692.94 .990 .324 
 

-675.21 2041.09 

sEMG peak 
amplitude: tone vs.  
swallow (γ05) 

-301.86 682.95 -.440 .685 
 

-1639.35 1035.64 

Grand mean (γ00 ) 51225.96 4835.71 10.590 .032x10-24** 41748.15 60703.77 
Random Effects  Estimate Standard 

Error 

  
95% confidential Interval 

intercept (u00)  .0458x10-6 0.145x10-6   .0246x10-6 .0852x10-6 
residual (εit)  .0855x10-5 .0287x10-4   .0801x10-5 .09.3x10-5 

Note: *=significant at p<0.5; **=significant at p<.01. 

 

Levels 1 and 2 models based on the above fitting procedures for sEMG peak amplitude are 

listed below.  In the level 1 model, β0𝑖𝑖 indicates the intercept that has a random component.  The 

β1 indicates the fixed effect for block order, the β2-5 represents the effects for cue, and 𝜀𝜀𝑖𝑖t indicates 

the level 1 residual error.  In the level 2 model, 𝛾𝛾00 is the grand mean intercept, and 𝑢𝑢0𝑖𝑖 is the 

variance components for random intercepts.   
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Equation 1: Level 1 

sEMG peak amplitude𝑖𝑖t = β0𝑖𝑖 + β1 (block) 𝑖𝑖t + β2-5 (cue) 𝑖𝑖t + 𝜀𝜀𝑖𝑖t 

Equation 2: Level 2 

β0𝑖𝑖 = 𝛾𝛾00 + 𝑢𝑢0𝑖𝑖 

𝜀𝜀𝑖𝑖j ∼ N (0, σ2) 

𝑢𝑢0𝑖𝑖 ∼ N (0, σ2) 

Combined model: 

sEMG peak amplitude𝑖𝑖t = (𝛾𝛾00 + 𝑢𝑢0𝑖𝑖) + β1 (block) 𝑖𝑖t + β2-5 (cue) 𝑖𝑖t + 𝜀𝜀𝑖𝑖t 

8.4.2 sEMG peak amplitude cue comparisons  

As previously noted, there were no significant effects for cue on sEMG peak amplitude.  Table 20 

summarizes the predictive marginal means and standard errors, and 95% confidence intervals on 

sEMG peak amplitude for each cue.  The results relative to the specific aims follow. 

 

Table 19. Predictive marginal means and standard errors, and 95% confidence intervals on sEMG peak 
amplitude for each cue 

 

Cue Marginal 
mean (µV) 

Standard 
Error 

95% Confidence 
interval 

lower upper 
swallow 53.209 4.811 43.780 62.638 
spallow 53.081 4.811 43.652 62.511 
cough 53.814 4.812 44.384 63.245 
pough 53.892 4.811 44.463 63.320 
tone 52.907 4.809 43.481 62.333 
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8.4.3 sEMG peak amplitude results 

Specific aim 1-4  

There were no statistically significant differences amongst cues for sEMG peak amplitude. Figure 

15 indicates the predictive marginal mean and standard error on sEMG peak amplitude for each 

cue. 

 

Figure 14. Predictive marginal mean and standard error on sEMG peak amplitude for each cue 
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8.5 SEMG PEAK LATENCY 

8.5.1 sEMG peak latency model building 

After multilevel model building, assumptions of normality, linearity, and homoscedasticity were 

tested for sEMG peak latency.  After removing two swallows with residuals below -3 SD and 15 

swallows above +3 SD (n=1785), all assumptions were met.  Random intercepts were normally 

distributed, Shapiro-Wilk W=.955, p=.456.  An intra-class correlation (ICC=.517) indicated that 

about 52% of the variance in sEMG peak latency was due to differences among participants. 

Adding a random intercept significantly improved the model, χ2(1)=620.31, p=.06402x10-135. 

Adding block order also significantly improved model fit over the random intercept model, 

χ2(1)=8.22, p=.004. Yet, order within blocks did not improve model fit, χ2(1) =.04, p=.838.  Thus, 

only block order was included in subsequent model fitting.  There also was no significant 

improvement on model fit by adding nasal airflow at sEMG onset, χ2(2)=.87, p=.646.  Nasal 

airflow at cue onset significantly improve model fit, χ2(2)=7.66, p=.022.  Thus, it was added to the 

model.  Stimulus type (cue) had a significant overall effect, χ2(4)=44.04, p=.06294x10-7.  Table 20 

summarizes the fit statistics.  Table 21 lists the complete tests results for sEMG peak latency.  The 

results relative to the specific aims follow. 
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Table 20. Summary of the fit statistics for sEMG peak latency 

#  Variable  χ2 df p-value 
1  Random intercept  620.31 1   .06402x10-135** 
2 Block # 8.22 1  .004* 
3 Order in block   .04 1 .838 
4 Nasal airflow at sEMG onset .87 2  .646 
5 Nasal airflow at cue onset  7.66 2    .022* 
6 Cue 44.04 4    .06402x10-135** 

 

Table 21. Results from final model for sEMG peak latency (in ms) 

Fixed Effects Coefficient Standard 
Error 

z p 95% confidential Interval  

sEMG peak latency: 
spallow vs. swallow  
(γ01) 

46.308 16.809 2.750 .006** 13.363 79.254 

sEMG peak latency: 
cough vs.  swallow 
(γ02) 

-10.354 16.861 -0.610 .539 -43.401 22.693 

sEMG peak latency: 
pough vs. swallow 
(γ03) 

52.396 16.768 3.120 .002** 19.532 85.260 

sEMG peak latency:  
tone vs.  swallow (γ04) 

109.530 16.582 6.610 .040x10-9** 77.030 142.029 

Block (γ05) 28.066 4.725 5.940 .029x10-7** 18.805 37.328 
Nasal airflow at cue 
onset: inspiration vs. 
zero- flow (γ06) 

-9.196 14.394 -0.640 .523 -37.408 19.016 

Nasal airflow at cue 
onset:  inspiration vs. 
zero- flow (γ07) 

17.409 13.550 1.280 .199 -9.149 43.967 

Grand mean  γ00  1219.660 54.548 22.360 .010x10-109** 1112.748 1326.571 

Random Effects  Estimate Standard 
Error 

  
95% confidential 

Interval 
intercept (u00)  53238.06 17010.07   28461.32 99583.93 

residual (εit)  49675.22 1672.18   46503.59 53063.15 
  Note: *=significant at p<0.5; **=significant at p<.01. 

 

The first and second levels of the model based on the above model fitting procedures are 

listed below.  In the level 1 model, the β0𝑖𝑖 indicates the intercept that has random component.  The 
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β 1-4 indicates the fixed effect for cue.  The β 5 indicates the fixed effect for block order.  The β 6-7 

indicates the fixed effect for nasal airflow at cue onset.  The 𝜀𝜀𝑖𝑖t indicates the level 1 residual error.  

In the level 2 model, the 𝛾𝛾00 is the grand mean intercept, and the 𝑢𝑢0𝑖𝑖 is the random intercept.   

Equation 1: Level 1 

sEMG peak latency 𝑖𝑖t = β0𝑖𝑖 + β1-4 (cue) 𝑖𝑖t + β5 (block) 𝑖𝑖t + β6-7 (nasal airflow at cue onset) 𝑖𝑖t + 𝜀𝜀𝑖𝑖t 

Equation 2: Level 2 

β0𝑖𝑖 = 𝛾𝛾00 + 𝑢𝑢0𝑖𝑖 

𝜀𝜀𝑖𝑖j ∼ N (0, σ2) 

𝑢𝑢0𝑖𝑖 ∼ N (0, σ2) 

 

Combined model: 

sEMG peak latency 𝑖𝑖t = (𝛾𝛾00 + 𝑢𝑢0𝑖𝑖) + β1-4 (cue) 𝑖𝑖t + β5 (block) 𝑖𝑖t + β6-7 (nasal airflow at cue onset) 𝑖𝑖t 

+ 𝜀𝜀𝑖𝑖t 

8.5.2  sEMG peak latency cue comparisons 

After the model was built, the data were added into the same multilevel mixed model to further 

test the sEMG peak latency differences among the cues.  Table 22 lists the complete model results.  

Table 23 summarizes the model-based means and standard errors, and 95% confidence intervals 

on sEMG peak latency for each cue.   The results relative to specific aims follow. 
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Table 22. Model results for sEMG peak latency among cue 

Cue Coefficient Standard 
Error 

z P 95% confidence Interval  
1 2 lower  upper  

swallow  spallow  46.308 16.809 2.750 .0059** 13.363 79.254 
cough -10.354 16.861 -.610 .539 -43.401 22.693 
pough  52.396 16.768 3.120 .002** 19.532 85.260 
tone 109.530 16.582 6.610 .040x10-9** 77.030 142.029 

spallow cough -56.662 16.851 -3.360 .00077** -89.689 -23.636 
pough  6.088 16.749 .360 .716 -26.739 38.915 
tone 63.221 16.549 3.820 .00013** 30.785 95.657 

cough pough  62.751 16.787 3.740 .00019** 29.848 95.653 
tone 119.884 16.605 7.220 .0520x10-11** 87.339 152.428 

pough  tone 57.133 16.498 3.460 .053x10-2** 24.797 89.469 
Note: *=significant at p<0.5; **=significant at p<.01.  

 

Table 23. Predictive marginal mean, standard error, and 95% confidence intervals on sEMG peak latency 
for cue 

 

Cue  
 

Marginal 
mean(ms)  

Standard 
Error   

95% Confidence interval 
lower upper 

swallow 1293.594 52.951 1189.813 1397.375 
spallow 1339.902 52.944 1236.133 1443.671 
cough 1283.240 52.960 1179.441 1387.039 
pough 1345.991 52.928 1242.254 1449.727 
tone 1403.124 52.868 1299.505 1506.743 

 

8.5.3 sEMG peak latency results 

Specific aim 1: 

Specific aim 1 was to determine if there was a significant difference on sEMG peak latency for 

swallows following the word swallow and a pure-tone after controlling for swallow-respiratory 

pattern.  The sEMG peak latency for swallows following swallow was significantly shorter than 
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for swallows following the pure-tone (B=109.53, SE=16.582, z=6.61, p=.040x10-9).  Figure 15 

indicates the predictive marginal mean and standard error on sEMG peak latency for each cue. 

 

Specific aim 2: 

Specific aim 2 was to test if there was a significant difference in sEMG peak latency in swallows 

following the word swallow and the pseudo-word spallow after controlling for swallow-respiratory 

pattern.  The sEMG peak latency for swallows following swallow was statistically shorter than for 

swallows following spallow, (B=46.308, SE=16.809, z=2.75, p=.0059).  

 

Specific aim 3: 

Specific aim 3 was to determine if there was a significant difference in sEMG peak latency between 

swallows following the word swallow as compared to the word cough after controlling for 

swallow-respiratory pattern.  There was no statistically significant difference on sEMG peak 

latency between swallows following swallow and those following cough (B=-10.354, Robust 

SE=16.861, z=-.61, p=.539).  

 

Specific aim 4: 

Specific aim 4 was to determine if there was a significant difference in sEMG peak latency for 

swallows following the word cough and the pseudo-word pough after controlling for swallow-

respiratory pattern.  The sEMG peak latency for swallows following cough was significantly 

shorter than for swallows following pough (B=62.751, SE=16.787, z=3.74, p=.00019). 
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Figure 15. Predictive marginal mean and standard error on sEMG peak latency for each cue 

                          Note: *=significant at p<0.5; **=significant at p<.01. 
 
 

8.6 SELF-REPORT STIMULI PREFERENCE  

All of the participants reported their preference among the stimuli.  One participant did not indicate 

the stimulus least preferred.  All the participants responded using sentences, such as “swallow was 

best to swallow” or “swallow was easiest to drink”.  Table 24 lists the sentences the participants 

used to report their preference.  The results indicated that 65% of the participants indicated they 

preferred to swallow after the stimulus swallow.  25% of the participants preferred to swallow after 

the pure-tone.  Five percent of the participants preferred to swallow after real words, and 5% had 
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no preference among the stimuli.  None of the participants reported that they preferred to swallow 

after they heard the incongruent word, cough, or pseudo-words.  Figure 16 indicates the swallow 

preference self-report results (prefer to swallow).  

 

Table 24. List of the sentences the participants used to report their preference 

Preferred stimuli Non-preferred stimuli 
“easy to swallow” “didn’t like…”  
“easier to swallow” “worst” 
“best to swallow” “harder to swallow” 
“better to swallow” “more difficult to swallow” 
“faster to swallow” “threw me out” 

 

 

                    

Figure 16. Self-report stimuli preference result (preferred stimuli presentation) 

 

On the other hand, 61% of the participants reported that they did not like to swallow after 

the incongruent stimulus, cough.  17% of the participants indicated swallowing after the non-

verbal stimulus was their least preferred condition.  11% of them reported they did not like to 
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swallow after they heard pough.   None of the participants indicated that they did not prefer to 

swallow after the stimulus swallow.   Figure 17 indicates the self-reported results for non-

preferred stimuli. 

 

                

Figure 17. Self-report stimuli preference results (non-preferred stimuli presentation) 

8.7 SECONDARY ANALYSIS   

8.7.1  Secondary analysis  

To further test the potential reasons for the sEMG duration results, the sEMG duration was divided 

into two parts – rise time and fall time.  Additional mixed effects models analyses were conducted 

on these two durations.  The rise time duration was defined as the duration between sEMG onset 

and sEMG peak amplitude onset (Huckabee & Steele, 2006).  The rise time duration is reported to 

be influenced by the tongue movements (Huckabee & Steele, 2006).  The sEMG peak amplitude 
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served as zero for both the rise and fall time measurements.  The fall time duration was defined as 

the duration between the sEMG peak amplitude onset and sEMG offset.  The onset of the sEMG 

peak amplitude is correlated with the hyoid elevation, and the onset of sEMG peak amplitude 

occurs slightly earlier than the onset of hyoid elevation (Crary, Carnaby, & Groher, 2006).  

Suprahyoid muscles activation is strongest at the start of the triggering of  the pharyngeal swallow 

(Nakahara, Murayama, Hayashida, & Igasaki, 2006).  Given the evidence from these studies, 

sEMG activation during the fall time is considered mostly reflexive, whereas the rise time is more 

volitional.  Figure 18 displays the rise and fall time of a sample sEMG waveform. 

 

 

Figure 18. Rise and fall time on a sample sEMG waveform 

   Note: a=sEMG latency, b=sEMG duration, c=sEMG peak amplitude, d= rise time, e=fall time 
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8.7.2 Rise time duration  

All assumptions were met for the rise time duration.  Normality in random effects also was met, 

Shapiro-Wilk W=.986, p=.986.  Based on the results of a likelihood Ratio test using Chi-square 

test with alpha set to 0.05, random intercept (χ2(1)=321.26, p=.07699x10-70), block order 

χ2(2)=12.45, p=.00013), order within block (χ2(2) =14.68, p=.002), nasal airflow at sEMG onset 

(χ2(2)=6.19, p=.045) and stimulus type (cue) (χ2(4)=14.58, p=.006) were added to the model. Nasal 

airflow at cue onset was not added to the model because it did not significantly improve model fit, 

χ2(2) = 14.58, p=.071.  After removing two swallow with residuals below -3 SD and 13 swallows 

above +3 SD, all assumptions were met.  Normality in the random effects also was met, Shapiro-

Wilk W= .986, p= .986.  Table 25 summarizes the fit statistics. Table 26 lists the complete tests 

results for rise time duration.  

 

Table 25. Summary of fit statistics for rise time duration 

#  Variable  χ2 df p-value 
1  Random intercept  321.26 1 .07699x10-70** 
2 Order within block  12.45 2  .002** 
3 Block  14.68 1  .00013** 
4 Nasal airflow at cue onset 5.29 2 .071 
5 Nasal airflow at sEMG onset  6.19 2   .045* 
6 Cue 14.58 4     .006** 

Note: *=significant at p<0.5; **=significant at p<.01. 
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Table 26. Test results for rise time duration 

Fixed Effects Coefficient Standard 
Error 

z p 95% confidential Interval  

Rise time: spallow  
vs. swallow (γ01) 

-37.401 17.470 -2.140 .032* -71.642 -3.161 

Rise time: cough vs.  
swallow (γ02) 

-19.697 17.571 -1.120 .262 -54.137 14.742 

Rise time: pough vs. 
swallow (γ03) 

-52.383 17.423 -3.010 .003** -86.531 -18.234 

Rise time: tone vs.  
swallow (γ04) 

-40.721 17.182 -2.370 .018* -74.398 -7.044 

Order within block 
(γ05) 

3.564 0.771 4.620 .038x10-4** 2.054 5.075 

Block (γ06) 31.574 4.911 6.430 .0130x10-8** 21.948 41.200 
Nasal airflow at cue 
onset: inspiration vs. 
zero- flow (γ06) 

49.489 16.653 2.970 .003** 16.849 82.129 

Nasal airflow at cue 
onset:  inspiration vs. 
zero- flow (γ07) 

29.550 14.552 2.030 .042* 1.028 58.072 

Grand mean  γ00  652.939 40.894 15.970 2.20+10-57** 572.789 733.089 

Random Effects  Estimate Standard 
Error 

  
95% confidential 

Interval 
intercept (u00)  25694.640 8504.417   3431.110 49155.640 

residual (εit)  109689.7 3656.302   102752.6 117095.2 
 

 

After the model was built, the data were added into the same multilevel mixed model to 

further to test for differences on rise time duration among the levels of stimulus type.  Table 27 

lists the complete model results.  Table 28 summarizes the model-based means and standard errors, 

and 95% confidence intervals on rise time duration for each stimulus type.  Results indicated that 

rise time duration for swallows following swallow was significantly longer than for swallows 

following other stimuli except cough after controlling for swallow-respiratory pattern at the sEMG 

onset.  These results indicated, in relation to the onset of sEMG peak amplitude, that the onset of 

sEMG activation started significantly earlier for swallows following swallow than swallows 
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following other stimuli except cough (i.e., spallow, pough, and pure-tone).  This pattern suggests 

the possibility that the longer sEMG duration for swallows following swallow than those following 

spallow, pough, and the pure-tone stimulus were due to the earlier sEMG activation in swallows 

following swallow.  Figure 19 indicates the predictive marginal mean and standard error on rise 

time duration for each cue.  

 

Table 27. Model results for rise time duration among cue 

cue  Coefficient Stranded 
Error  

z p 95% confidence 
Interval 

1 2 lower upper 

swallow spallow -37.401 17.470 -2.140 .032* -71.642 -3.161 
cough -19.697 17.571 -1.120 .262 -54.137 14.742 
pough -52.383 17.423 -3.010 .003** -86.531 -18.234 
tone -40.721 17.182 -2.370 .018* -74.398 -7.044 

spallow cough 17.704 17.528 1.010 .312 -16.650 52.058 
pough -14.982 17.377 -.860 .389 -49.039 19.076 
tone -3.320 17.144 -.190 .846 -36.922 30.283 

cough pough -32.685 17.495 -1.870 .062 -66.975 1.604 
tone -21.024 17.254 -1.220 .223 -54.840 12.793 

pough tone 11.662 17.098 .680 .495 -21.849 45.173 
 Note: *=significant at p<0.5; **=significant at p<.01. 

 
 

Table 28. Predictive marginal mean, standard error, and 95% confidence intervals on rise time duration for 
cue 

 

Cue Marginal 
mean (ms) 

Standard 
Error 

95% Confidence interval 

lower upper 

swallow 797.100 37.387 723.823 870.377 
spallow 759.698 37.366 686.463 832.934 
cough 777.402 37.416 704.067 850.737 
pough 744.717 37.342 671.528 817.906 
tone 756.379 37.232 683.405 829.353 
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Figure 19. Predictive marginal mean and standard error on rise time duration for each cue 

         Note: *=significant at p<0.5; **=significant at p<.01. 
 

8.7.3 Fall time analysis  

Random intercept (χ2(1)=630.57.76, p=.03757x10-137) and block (χ2(1) =14.99, p=.0001), and 

stimulus type (cue) (χ2(4) =5.43, p=.246) were added to the model based on the results of a 

Likelihood Ratio test using Chi-square test with alpha set to .05.  Table 29 summarizes the fit 

statistics for fall time duration.  There were no significant effects for stimulus type on fall time 

duration.  There was no statistical significance on any of the comparisons for fall time duration 

(Figure 20).  Table 30 lists the complete tests results for fall time duration.  Table 31 indicates 

predictive marginal mean and standard error on fall time duration for each stimulus type. 
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Table 29. Summary of the fit statistics for fall time duration 

#  Variable  χ2 df p-value 
1  Random intercept  630.57 1   .03757x10-137** 
2 Block   14.99 1     .0001**  
3 Order within block 0.32 1 .574 
4 Nasal airflow at cue onset  0.17 2 .919 
5 Nasal airflow at sEMG onset  0.15 2 .926 
6 Cue 5.43 4 .246 

 

 

Table 30. Tests results for fall time duration  

Fixed Effects Coefficient Standard 
Error  

z p 95% confidential interval 
lower upper 

Fulltime: spallow  vs. 
swallow (γ01) 

-28.803 44.385 -.650 .516 -115.795 58.190 

Fall time: cough vs.  
swallow (γ02) 

44.531 47.095 .950 .344 -47.775 136.836 

Fall time: pough vs. 
swallow (γ03) 

-42.378 52.466 -.810 .419 -145.209 60.453 

Fall time: tone vs.  
swallow (γ04) 

-98.198 53.312 -1.840 .065 -202.688 6.291 

Block  -44.474 34.790 -1.280 .201 -112.662 23.714 
Grand mean  γ00  1247.831 148.054 8.430 .035x10-15** 957.651 1538.011 
Random Effects  Estimate Standard 

Error 

  
95% confidential interval 

intercept (u00)  227768.2 63877.33   131454.2 394649.6 
residual (εit)  381920.2 71093.62   265169.4 550075.1 
Note: *=significant at p<0.5; **=significant at p<.01. 
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Table 31. Predictive marginal mean, standard error, and 95% confidence intervals on fall time duration for 

each cue 
 

Cue Marginal 
mean (mc) 

Standard 
Error 

95% Confidence interval 
lower upper 

swallow 1136.009 115.044 910.527 1361.492 
spallow 1107.207 112.441 886.826 1327.588 
cough 1180.540 119.395 946.531 1414.55 
pough 1093.631 126.116 846.449 1340.814 
tone 1037.811 96.497 848.681 1226.941 

 

 

 

Figure 20. Predictive marginal mean and standard error on fall time duration for each cue 



135 

 

8.8 SAMPLE SIZE JUSTIFICATION 

The number of participants needed for multilevel modeling was re-estimated using G*Power (Faul 

et al., 2009) using the parameters from the current study results.  With a significance level of 95%; 

power of .80, correlation amongst measures of .2232, 20 trials per condition, 5 conditions, and a 

medium effect (f=.25), a total of 15 participants were needed for sufficient power to find 

differences among experimental conditions.  Given the result, the actual sample size of 20 for the 

current study met the requirement given the power analysis.  Table 32 indicates the required sample 

size for each measure.  Furthermore, a total of 1500 swallows was needed for each stimulus 

condition.  After removing outliers, the number of observations in each stimulus condition still 

met the requirement for the power analysis. 

 

Table 32. Results of the Sample size re-estimation: Required sample size for each measurement base on the 
current study results 

 
 Parameters sEMG 

latency 
sEMG 

duration 
sEMG peak 
amplitude 

sEMG peak 
latency 

Significance  .05 .05 .05 .05 
Power .8 .8 .8 .8 
Correlation among measures  .2232 .3581 .8026 .3123 
Number of trials per condition 20 20 20 20 
Number of condition 5 5 5 5 
Effect size (medium) .25 .25 .25 .25 
Observed power .842 .92 1 .89 
Sample size 15 15 10 15 
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9.0  DISCUSSION 

During swallowing examinations with videofluoroscopy,  patients commonly are told to hold a 

bolus in their mouth until they are commanded to swallow (Daniels et al., 2007; Nagy et al., 2013; 

Palmer et al., 2007).  This procedure is referred to as the command swallow.  Both components of 

the command swallow, bolus hold and swallowing in response to a command, are rather unnatural 

(Hiiemae & Palmer, 1999) and could influence the act of swallowing.  The focus of the current 

study was to examine the linguistic influences of the verbal command on the act of swallowing.  

The bolus hold was included in the procedures but not manipulated. Table 33 summarized the 

findings of the study.  

Table 33. Summary of the findings 

  sEMG latency  sEMG duration sEMG peak 
amplitude 

sEMG peak 
latency 

SA 1: 
swallow vs. tone 

swallow < tone swallow > tone NS swallow < tone 

SA 2:  
swallow vs. spallow 

swallow < spallow swallow > 
spallow  

NS swallow < spallow 

SA 3:  
swallow vs. cough 

NS NS NS NS 

SA 4:  
cough vs. pough 

cough < pough cough > pough NS cough < pough 

SA 5:  
sEMG latency 

pattern differences  

swallow  < spallow, 
pough < tone;  
swallow, spallow, 
cough < tone;  
swallow, cough < 
spallow, pough 

      

Note: NS= not significant.  
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9.1 LANGUAGE INDUCED MOTOR FACILITATION IN SWALLOW DURATIONS 

9.1.1 Linguistic processing effect (Specific aim 1) 

The language induced motor activation theory argues for a neural link between foot/leg-, 

hand/arm-, and articulator-/face-related action words and motor cortical areas involved in the 

execution of their related actions. The language induced motor facilitation theory suggests that 

action words presented prior to the initiation of their related movement facilities their control.  As 

such, the lexical properties of the verbal command to swallow likely influence some swallow 

behaviors, especially those under voluntary control.  Also, according to the language induced 

motor facilitation theory, the word swallow should facilitate the swallow in contrast to the other 

words and the pure-tone used in the current study.   

In contrast to the language induced motor facilitation theory, the dual stream model 

suggests that non-verbal stimuli require less processing because they can bypass the linguistic 

system.  Therefore, non-verbal stimuli, like the pure-tone used in this study should activate a 

swallowing response more directly and quicker than a stimulus with linguistic content.   

The swallow-related sEMG comparisons between swallow and the pure-tone stimulus were 

used to compare the language induced motor facilitation theory and the dual stream model.   

The sEMG latency and sEMG peak latencies for swallows following the word swallow were 

significantly shorter than for swallows following the pure-tone.  Because the latency and peak 

latency shifts were not proportional, the word swallow also produced a longer sEMG duration than 

the pure-tone.  The effect was larger for sEMG latency than for the sEMG peak latency suggesting 

greater linguistic facilitation for swallow at the initial and more voluntary part of the swallow.  It 
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also should be noted that the sEMG latencies for swallows following the other words also were 

shorter, and the sEMG durations were longer, than for swallows following the pure-tone.  Figure 

21 shows a schematic that summarizes of the sEMG latencies, sEMG duration, and rise time 

duration results.  In total, these results demonstrated a linguistic influence on swallow-related 

sEMG and agree with the language induced motor facilitation theory rather than the dual stream 

model.   

 

 

Figure 21. Schematic summary of the findings 

 

The dual stream model suggests the acoustic signal is processed concurrently by two 

separate streams.  More specifically, the acoustic signal is first sent to auditory cortices for spectro-

temporal analysis and then projected to the middle-posterior superior temporal sulcus for 

phonological level processing.  After phonological analysis there is a bifurcation into the dorsal 

and ventral steams.  The dorsal steam has an auditory-motor integration function, whereby the 
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acoustic signal is sent to the parietal-temporal junction, and then in the case of the command 

swallowing, is integrated into a swallowing motor response.  In contrast, the ventral steam has an 

auditory-lexical integration function.  The signal is projected to posterior middle temporal gyrus 

and posterior inferior temporal sulcus for lexical-semantic-grammatical processing.  Then, the 

signal is further projected to the “combination network” in the anterior middle temporal gyrus and 

anterior inferior temporal sulcus to mix the linguistic information with the motor act of 

swallowing. Subsequently, the information from both streams is projected to the “swallowing-

related network” (Hicock & Poeppel, 2007).   

 Because phonological, lexical, semantic, and grammatical processing is not necessary for 

non-verbal stimuli, it was hypothesized that the pure-tone stimuli would be directed to the 

swallowing-related motor network after the spectro-temporal analysis. It was postulated that by 

bypassing the linguistic levels of processing, the pure-tone stimuli would produce shorter reaction 

times than the verbal stimuli.  As such, the longer sEMG latencies for swallows following the 

pure-tone signal than for the action words and pseudo-words did not correspond with the dual 

stream model.  These results suggested that the pure-tone signal may have projected to the middle-

posterior superior temporal sulcus for the phonological processing and then possibly projected to 

the dorsal stream.  

It is not clear why the pure-tone signals received phonological analysis. Possibly, dorsal 

stream involvement was necessary for the integration of the pure-tone signal with the swallow 

motor function – that the signal projects to the middle-posterior superior temporal sulcus and then 

was treated as a linguistic signal like the other stimuli. Delays occurred because during 

phonological and lexical processing there were no linguistic matches and extra processing 

occurred to rectify the error.    



140 

 

As previously noted, the dorsal stream mediates the mapping of the speech signal to speech 

motor representations (Hicock & Poeppel, 2007).  Evidence exists that the dorsal stream is 

involved in speech comprehension tasks as well as speech perception tasks (i.e., syllable 

discrimination tasks), which do not require lexical access (Hickok & Poeppel, 2007).  During the 

verbal and non-verbal discrimination tasks, the dorsal stream also is involved in the non-verbal 

stimuli (e.g., tones and wideband noise bursts) processing in heathy participants (Joanisse & Gati, 

2002; Zaehe, Geiser, Alter, Jancke, & Meyer, 2008).  Zaehe and colleagues (2008) hypothesized 

that the speech perception tasks engage the dorsal stream because it plays an important role in the 

speech–motor integration.  After the phonological processing was carried out in the current study, 

it is speculated that the non-verbal signal in the experiment also was projected to the dorsal stream 

to integrate the non-verbal signals to the swallowing motor functions.  

The non-verbal signal more likely was not projected to the ventral stream after the 

phonological processing because further lexical-semantic-grammatical processing was not 

required.  Using a one stream (dorsal stream) instead of two streams also may have caused delays 

because the motor plan and program for swallowing had to be constructed each time without 

benefit of linguistic facilitation from the ventral steam.  

9.1.2 Pseudo-word interference effect (Specific aim 2) 

The inclusion of pseudo-words allowed for further examination of the linguistic effect on 

swallowing.  The pseudo-words were created to interfere with the real words and are believed to 

activate the lexical networks via their phoneme and syllable features without stored lexical 

representations (Cibelli, 2012; Hickok & Poeppel, 2007).  As a result, they require more processing 
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time than for real words.  Pseudo-word interference has been found previously with action words.  

For example, Gentilucci (2003) reported that presenting adjectives and the pseudo-words did not 

differentially impact hand-related sequential actions (i.e., reach, grasp a target object with the 

thumb and index finger, and place the object on a table), but the peak velocity of finger aperture 

during the reach movement was increased when the congruent action word, rather than the pseudo-

words, were presented. 

Similarly, a pseudo-word effect was observed in the current study.  The sEMG latency and 

sEMG peak latency for swallows following the congruent action word, swallow, were significantly 

shorter than for swallows following the pseudo-words, spallow and pough.  As noted for the pure-

tone, this earlier activation resulted in longer sEMG duration for swallows following swallow than 

for the pseudo-words.  These results further support the language induced motor facilitation theory. 

9.1.3 Lexical directionality effect (Specific aim 3 and 4) 

It was hypothesized that the semantic differences in action directionality between swallow and 

cough (i.e., lexical directionality effect) would be reflected in the swallow sEMG – that cough 

would produce greater latencies than swallow.  However, no statistically significant differences 

were observed in sEMG latency, sEMG peak latency, and sEMG duration for swallows following 

the congruent and incongruent action words.  The semantic directionality of the two words did not 

appear to impact swallowing as measured by sEMG.    

These results did not correspond with Rabahi et al. (2013) who reported participants 

jumping higher after hearing the congruent action word jump than after the incongruent word fall.  

They also do not agree with the action sentence compatibility effect (ACE), where some 
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investigators have observed an interaction between semantic directionality of a sentence and 

movement facilitation and interference (Borreggine & Kaschak, 2006; Glenberg & Kaschak, 

2002).  Of note, however, were the results of the preliminary studies (Appendix C-F), which 

attempted to replicate the work of Kaschak and colleagues but did not show significant 

directionality effects.   

Although directionality did not appear to affect the sEMG associated with swallowing, the 

impact of other stimulus factors should be considered.  There are lexical and sublexical differences 

between swallow and cough that were not controlled.  As described in the methods section, it was 

difficult to select an incongruent word that had the same syllable number and word-frequency of 

swallow given the limited numbers of action words that describe an action incongruent with 

swallowing.  The word-frequency of cough is slightly lower (7.703) than swallow (8.066) and 

syllable number (1 vs. 2) obviously differed.  However, the impact of higher word-frequency 

would have been faciliatory and associated with shorter latencies, which did not occur.  So too, 

the limited number of syllables and phonemes in cough provides less information and should be 

less intelligible than swallow.  However, each acoustic cue was manipulated to have the same 

duration and average RMS intensity, which may had reduced any potential impact of syllable or 

phoneme number (also not controlled).  Other characteristics, such as lexical neighborhood density 

and phototactic complexity, were similar across the two words and likely had little or no influence 

(Storkel & Hoover, 2010).     

The word vomit would have been a better match for swallow than cough but it carries highly 

negative connotations that likely would have impacted the results.  A possible alternative would 

be to conduct the study in another language and/or culture.  For example, Japanese has several 
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words that carry the meaning of vomit. One polite form of vomit (i.e., Haite-kudasai/ “please 

vomit” in English) has the same syllable number as a swallow in polite form (i.e., Nonde-kudasai/ 

“please swallow” in English).  Conducting the study using the polite Japanese forms could allow 

for greater sublexical control. 

9.1.4 Pattern differences on sEMG latency (Specific aim 5) 

As indicated above, it was not possible to control the syllable numbers between the congruent and 

incongruent action words.  In order to determine whether the results of the study were influenced 

by these sublexical characteristics, pattern differences on sEMG latency among the four different 

word cues (swallow, spallow, cough, and pough) were examined.   

None of the predicted possible outcomes was observed.  Pattern 1 indicated a lexical 

directionality effect without the syllable number effect on swallows following the action words 

(swallow and cough) along with the syllable number effect on swallows following the pseudo-

words (spallow and pough).  The sEMG latencies for swallows following swallow were predicted 

to be shorter than swallows following the other words, and sEMG latency for swallows following 

cough was predicted to be longer than swallows following pough.  However, the study results did 

not match pattern 1.  The results for swallow and cough were similar with no lexical directionality 

effects.  There also was no syllable number effect in the pseudo-words conditions, and no 

statistically significant difference between swallows following spallow and pough.  

Outcome pattern 2 predicted no sEMG latency differences between swallows following 

swallow and those following cough due to a cancellation of influences by a lexical directionality 

effect and syllable number along with a syllable number effect on the pseudo-words.  However, 
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due to the lack of a syllable number effect in the pseudo-words conditions, this outcome was not 

observed.  

Pattern 3 predicated that sEMG latencies following swallow and spallow would be longer 

than swallows following cough and pough due to the syllable number effect without a lexical 

directionality effect.  The possible outcome 4 predicated there would be no difference in any 

conditions.  Both possible outcome 3 and 4 were not observed due to the presence of pseudo-words 

interference on sEMG latency between swallows following swallow and the pseudo-words.  

Among the word stimuli conditions, the language induced motor facilitation in swallowing was 

partially supported.   

Although the pure-tone cue was not included in the above patterns, the sEMG latency for 

swallows following the pure-tone were consistent with a link between language and motor 

systems, and supported the language induced motor facilitation model to some extent.  It was 

further supported by the interference observed by the pseudo-words but not by the lack of lexical 

directionality. 

9.2 LANGUAGE INDUCED MOTOR FACILITATION IN PEAK AMPLITUDE     

It was hypothesized that sEMG peak amplitude would be greater for swallows following swallow 

than the other cues.  However, there was no significant difference on sEMG peak amplitude among 

any stimulus type, which suggested that the influence of language was limited to timing and not 

amplitude or power of the swallowing in the current study.  



145 

 

These results did not correspond with those from the Nakamura and Imaizumi (2013) who 

used sEMG to investigate the impact of liquid names on swallowing.  They reported that sEMG 

peak amplitude was higher for swallows with the name of drinks compared to swallows without 

the names.  They postulated that the anticipation of swallowing induced by the name of the drinks 

caused an enhancement of the suprahyoid muscle activity.  Although the difference across studies 

may be due to the liquids used (water vs. apple juice and bitter grass juice), sEMG peak amplitude 

was a reliable measure with limited variability within and across sessions in a study conducted by 

Huckabee, Low, and McAuliffe (2012) using a thin liquid.  On the other hand, sEMG peak 

amplitude also is known to be altered by bolus taste (Ding et al., 2003; Leow, Huckabee, Sharma, 

& Tooley, 2007).  There could have an interaction between the naming of the drinks and the taste 

of the drinks in the Nakamura and Imaizumi (2013) study.  Further, the differences in experimental 

conditions could explain the discrepancy between their results and those of the current study.   

9.3 RISE AND FALL TIME DURAITON 

As a secondary analysis, the rise time (i.e., duration between sEMG onset and sEMG peak 

amplitude onset) and fall time (i.e., the duration between the sEMG peak amplitude onset and 

sEMG offset) duration were examined to better understand the sEMG duration results.  There were 

stimulus-type effects on the rise time duration, whereas none were observed for fall time duration.  

The rise time, which can be influenced by tongue movements, is under voluntary control, but the 

fall time typically occurs after the onset of hyoid elevation, and is mostly reflexive (Shaw & 

Martino, 2013).  Once the pharyngeal swallow is triggered, reflexive components of swallowing 
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can no longer be altered by top-down processing (Ertekin, 2003).  The rise time and fall time 

duration results corresponded to the swallow physiology in that swallowing is not a purely 

reflexive act, but it contains some voluntary components (Humbert et al., 2009; Malandraki & 

Robbins, 2013; Martin et al., 2007; Shaw & Martino, 2013), and some of the voluntary components 

of swallowing  can be modulated by top-down input from the cortex (Humbert et al., 2012).   

The rise time and fall time durations for the current study confirmed that some of the 

voluntary components, but not the reflexive components, of swallowing can be modulated by the 

verbal commands.  

9.4 SWALLOW PREFERENCE SELF-REPORT 

Although subjective and offline, the self-reported swallow preferences corresponded with the 

language induced motor facilitation theory to some extent.  Sixty-five percent of the participants 

preferred to swallow after they heard the congruent action word swallow and none of them reported 

not liking to swallow after they heard swallow.  Also, none of the participants reported a specific 

preference for the other words.  These results may reflect an advantage of using a congruent 

stimulus even though not entirely supported by the sEMG results.  Of note is that 25% of the 

participants indicated a preference for swallowing after the pure-tone.  This preference did not 

correspond with the language induced motor facilitation theory and was not reflected in the sEMG 

results.
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10.0  SIGNIFICANCE  

10.1 THEORETICAL SIGNIFICANCE 

No previous studies have tested the language induced motor facilitation theory using action words 

referring to ingestion, such as eat, chew and swallow.  Although the current study showed that the 

word swallow facilitated swallows, as reflected in the timing of sEMG activity, so did the word 

cough. These findings could mean that real words facilitate swallowing, or that real words more 

generally facilitate motor activity.  Another possibility is that swallow and cough are sufficiently 

related to the aerodigestive tract, such that they show similar levels of facilitated swallowing.   

Another contribution is that none of the previous studies tested the language induced motor 

facilitation theory by comparing verbal and simple acoustic stimuli.  It is unknown whether other 

actions and body parts, especially those under more voluntary control will show similar effects. 

10.2 CLINICAL SIGNIFICANCE 

There has been continued debate about whether the command swallow condition should be used 

during videofluoroscopic evaluation of swallowing disorders.  There was limited information 

about the impact of using a verbal command to elicit the swallow and the impact has not been 
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isolated from the effects of the bolus hold.  The current study indicated that verbal information can 

impact swallow physiology.  It also provided evidence that will contribute to a better understanding 

of the voluntary control of swallowing, as well as the relationships between language and motor 

systems.  The clinical utility of the information obtained in the study may depend on the purposes 

for using the command swallow and the type of patient being assessed.    However, clinicians 

should be aware that both components of the command swallow condition may alter swallow 

behaviors and not represent a patient’s swallowing skills under the conditions in which he/she 

routinely swallows.  

The study results do suggest potential clinical benefits of the command swallow condition.  

The sEMG onset is likely due to the tongue movement and occurred significantly earlier for 

swallows preceded by the word swallow. These results suggest that patients who show difficulty 

initiating oropharyngeal swallows, such as patients with Parkinson’s disease, may benefit from 

linguistic stimuli prior to the swallow initiation.  It would be reasonable to investigate the 

command swallow condition as a swallow compensatory technique for patients with dysphagia. 
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11.0  LIMITATIONS 

There are limitations to the study.  First, surface electromyography (sEMG) was employed for the 

study.  The study used sEMG rather than videofluoroscopy because of the need for multiple trials 

per condition and the risks associated with the radiation exposure.  Using sEMG also helped 

account for the variability associated with reaction time measures.  However, it was not possible 

to obtain detailed kinematic information of the oral preparatory phase and oral phase of swallowing 

from the sEMG signals.  The sEMG is more of an indirect measure of the swallow. 

As discussed previously, the stimulus selected for the incongruent word stimulus (cough) 

may not have functioned as a true incongruent stimulus.  There also were sublexical characteristics 

that were not controlled.  Furthermore, the participants’ weight was not controlled.  Although the 

variance associated with individual differences was statistically controlled, participants’ weight 

may have impacted the sEMG peak amplitude results.  

Lastly, data were obtained from young healthy participants, so results of the current study 

may not represent swallows by elderly participants and/or patients with dysphagia who need to 

undergo VFSS assessments.  The data also may have limited relevance to treatment approaches 

for dysphagia.
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12.0  FUTURE DIRECTIONS 

As a next step, it will be reasonable to investigate the command swallow condition as a swallow 

compensatory technique for patients with difficulty initiating oropharyngeal swallows, such as 

patients with Parkinson’s disease and age-matched elderly healthy participants.  

For this investigation, swallows without the verbal command to swallow (i.e., self-

initiated swallow behaviors) and swallows with the various verbal commands (i.e., externally 

triggered swallow behaviors) should be compared to further examine the role of language.  This 

investigation would be based on the theoretical lines of evidence in language induced motor 

facilitation including the current study results.  It also would be based on the neural and 

behavioral differences between the self-initiated and externally triggered stimuli, such as visual, 

tactile, and acoustic stimuli.  For example, previous research has shown that  external stimuli 

presented prior to the hand-related actions improves response times (Ballanger et al., 2006; 

Cunnington et al., 2002; Jahanshahi et al., 1995; Jenkins et al., 2000; Obhi & Haggard, 2004; 

Yazawa et al., 1997).  This type of study would have more ecological validity than the current 

study.   
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13.0  CONCLUSIONS 

The current study investigated whether language induced motor facilitation was evident in the 

motor act of swallowing under the voluntary control in young healthy participants.   Swallow 

latencies following the congruent action word were shorter than swallows following the non-

verbal stimulus indicating that suprahyoid muscle activity occurred earlier for swallows 

following the word swallow than for the pure-tone.   Longer latencies for the pseudo-words than 

for real words also supported the language induced motor facilitation theory. However, it was not 

clear whether the observed differences were due to reduced facilitation or longer processing time 

associated with interference.  Stronger support for the language induced motor facilitation theory 

by capturing effects of the lexical directionality effect created by the incongruent action word 

was not evidenced.  Nevertheless, the facilitation effects of swallow-related action words may 

not have equally strong sensitivity among effectors, and the incongruent word in the study may 

not have represented a true incongruent action against the act of swallowing.  There also was no 

facilitation effect on peak suprahyoid muscle activity amplitude. 

The evidence from this study advances our understanding of the links between language 

and movement for behaviors that are not entirely under voluntary control.   Linguistic 

inducement of swallowing as could be useful as a swallow compensatory technique for patients 

with difficulty initiating oropharyngeal swallows such as patients with Parkinson’s disease.   
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This study became the first step for investigating the clinical benefits of the command swallow 

condition for patients with dysphagia. 
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APPENDIX A 

IRB APPROVAL LETTER  
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APPENDIX B 

SCREENING QUESTIONARIE FORM 

What is your age today?         
      _____ years (If not between 18 and 35: ineligible) 
 
What is your gender? 

Male 
Female 
 

How tall are you? 
                  _____ cm    

 
Do you have hair covering the skin under your chin?       

Yes (ineligible) 
No  
 

Are you willing to shave your hair covering the skin under your chin before an 
    experiment? (This question is only for male participants) 

Yes  
No (ineligible) 

 
Do you have any difficulty swallowing food or liquids?                

Yes (ineligible) 
No 
 

Do you have any difficulty hearing?  
Yes (ineligible) 
No 
 

Do you have any nasal congestion?   
Yes (ineligible) 
No 
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Have you ever had a stroke, brain injury, or any diagnosis of neurological conditions 
such as Multiple sclerosis, Parkinson’s disease, myasthenia gravis, or ALS (Lou 
Gehrig’s disease)? 

Yes (ineligible) 
No 
 

Are you allergic to or have any skin sensitivity to adhesive tape, rubbing alcohol, or 
any product?         

Yes (ineligible) 
No 
 

Is English your only language? 
Yes  
No (ineligible) 

 
 
   Date________________   Time___________ Screened By (initials)__________ 
      Participant Initials_____________          Participant Number____________ 
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APPENDIX C 

ACOUSTIC STIMULI VALIDATION TASK  

C.1 OUTLINE  

Action sentence compatibility effect (ACE) refers to the interaction between a sentence directional 

content and movement direction, such as moving toward vs. away or up vs. down (Borreggine & 

Kaschak, 2006; Glenberg & Kaschak, 2002).  When making sensibility judgments about action 

sentences, interference has been observed when hand movements are incongruent with directions 

conveyed in the sentences (Borreggine & Kaschak, 2006; Glenberg & Kaschak, 2002).  Yet, it is 

unknown whether there is any directionality between swallow-related action words and motor 

performance.  If there is no directional relationship (e.g., toward vs. away, or congruent vs. 

incongruent) between swallow-related words and motor performance, the interference effect may 

not be observed in the sEMG main study.  Furthermore, if the ACE is observed in sensibility 

judgment tasks with swallow-related words but not in swallow performance, the facilitation and 

inference effects may be limited to specific types of tasks or motor systems.   
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To validate the directionality of the real words used for the main experiment, sensibility 

judgment tasks were administered prior to implementing the main sEMG experiment.  The purpose 

of the validation procedures was to test the directional relationship between swallow-related action 

words and a hand movement.  There were two sensibility judgment tasks: (1) a task with sentences 

with non-swallow-related action words, and (2) a task with swallow-related action words.  The 

intention of the first task was to replicate previous findings in the ACE literature, whereas the 

second task was to determine if directionality was inherent to words used in the main experiment.  

Two experiments were conducted: one with a five-key response keypad (Experiment 1) 

and another with a keyboard (Experiment 2).  The experiment 2 was administered because the 

experiment 1 failed to replicate the ACE.  The purpose of the experiment 2 was to determine if the 

lack of an ACE in the experiment 1 was a result of the mode of responding.  The experiment 2 

used the same response instrumentation as the original study by Borreggine and Kaschak (2006) 

and tested the directional relationship between swallow-related action words and a hand 

movement.  



158 

 

C.2 EXPERIMENT 1 

C.2.1 Methods 

C.2.1.1 Participants  

A power analysis was conducted using G*power (Faul, Erdfelder, Lang, & Buchener, 2011) to 

estimate the number of participants needed for a repeated measures within subject analysis of 

variance (ANOVA) with a power of .80 and alpha of .05.  A medium effect size, Cohen’s f =.25 

or η2 =.059 and the correlation among the repeated measures ρ =.5 were assumed to obtain the 

recommended statistical power of .80 level (Cohen, 1992).  Based on the power analysis, 24 

participants were recruited for the experiment 1.  They were aged 18 years or older with no 

screening or grouping for race or sex, were native speakers of American English, and had no 

hearing or vision losses.  Table 1 summarizes the demographic information of the participants.  

Their hearing was screened prior to the experiment based on the ASHA guidelines for audiologic 

screening, which have been described previously.  Their vison was screened with a standard 

Snellen chart and has been described previously.  
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Table1. Demographic information of the participants. 

Variable Experiment 1 
Age (years) Mean ± SD 27.42 ± 6.4 

Range 19-41 
Sex Male 6 

Female 18 
Race/ethnicity Asian 1 

African-
American 

2 

Caucasian 20 
Hispanic  1 

C.2.1.2 Materials  

Sentences from the Borreggine and Kaschak (2006) study were used for the replication portion of 

the experiment.  There was a total of 80 sentences: (1) 20 non-swallow-related sentences that 

indicate a toward direction, such as “Andy delivered the pizza to you”, (2) 20 non-swallow-related 

sentences that indicate an away direction, such as “You delivered the pizza to Andy”, and (3) 40 

filler sentences, such as “Al poured the horse to you” (Borreggine & Kaschak, 2006; Glenberg & 

Kaschak, 2002).  Also, 18 sentences (9 filler sentences) from the same study were used as practice 

sentences.  Five of the filler sentences contained the swallow-related action words (See Appendix 

D).  

For the sentence judgment task with swallow-related sentences, a total of 80 sentences were 

used.  There were: (1) 20 sentences with congruent swallow-related action words that indicated a 

toward direction, such as “You swallowed a glass of water”, (2) 20 sentences with incongruent 

swallow-related action words that indicated an away direction, such as “You coughed from a cold”, 

and (3) 40 filler sentences from the original study (See Appendix D).  The 40 swallow-related 

sentences were developed for the task.  The database from the Washington University English 
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Lexicon project (Balota et al., 2007) was used to generate the swallow-related action words.  Ten 

congruent and 10 incongruent swallow-related action words were selected from the database, and 

two sentences were generated for each action word.  

All sentence stimuli were produced by a young adult female native speaker of American 

English.  The sentences were recorded with a Shure 33-3043 microphone (Shure, Niles, IL) in a 

sound-treated booth and edited with a digital audio editing program (Adobe Audition CS5.5) and 

saved in a wav audio file format.  The amplitude of each sentence was matched to the original 

stimuli (i.e., average RMS for signal amplitude=-25dB).  The duration of sentences with the 

syllable number less than eight was set within one standard deviation (SD) of the average duration 

of American English speakers in ms  (Eberwein et al., 2007; Robb & Gillon, 2009).  The duration 

of sentences with the syllable number more than 9 was set within 2 SD of the average duration 

(See Appendix E).  A silent period of 20 ms was added before and after each sentence to avoid 

producing a click stimuli presentation.  

To verify the naturalness of the recorded sentences, four naïve adult native speakers of 

English with normal hearing rated the recorded stimuli.  During the naturalness rating task, each 

sentence was presented in the sound field at 65 dB SPL as measured at the level of the pinna of 

each listener.  The listeners were asked to rate each sentence for naturalness on a scale 1 to 5 (i.e., 

score 1= poor, score 3= good, and score 5=very good).  Any sentences rated lower than the score 

3 were re-edited or replaced, and then re-presented to the volunteers until all sentences were scored 

above the score 3.   
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C.2.1.3 Instrumentations  

All sentences were presented and controlled via SuperLab 5.0 experiment software (Cedrus, 

Phoenix, AZ) residing on a notebook computer (MacBook Air, 1.6 GHz processor, Intel Core i5).  

The sentences were presented at 65 dB SPL in the sound field as measured at the pinna.  A pair of 

loudspeakers (Multi-media SL-80) was placed on a desk in front of each participant.  A computer 

monitor (Dell E2211HC: 21.5-inch display; 1920 x 1080 resolution: Dell Inc, Round Rock, TX) 

was connected to the notebook computer to present the visual stimuli, and it was placed between 

the loud-speakers.  

A five-key response keypad (RB-540; Cedrus, Phoenix, AZ) was also connected to the 

notebook computer, and placed on the desk in front of participants.  Three of the five keys (i.e., 

yellow, red, and white keys) on the response keypad were used for the experiment.  The yellow 

key was situated away from the participant’s body, and the red key was situated near the  

participant’s body.  The participants pressed either the yellow or red key to make a “yes” response.  

The white key was situated in the middle of the keypad, and it was used as a home key.  Figure 1 

displays the five-key response keypad.  Figure 2 displays the experimental configuration.   

 

 

Figure 1. A five-key response keypad 
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Figure 2. Experiment 1 configuration  

C.2.1.4 Experimental procedure  

C.2.1.4.1 Key-press reaction time measurement  

 

Prior to the experiment, key-press reaction time (RT) was measured.  Key-press RT was defined 

as the onset of a visual stimulus (i.e., a red or yellow square) on the computer monitor and the 

onset of key press.  For this task, participants sat in front of the desk with the computer monitor 

and the response keypad.  At the beginning of each key press RT trial, a “+” followed by a 

white circle appeared on the computer monitor.  Participants were told to press and hold the 

white key after they saw the while circle.  After pressing the white key, a red or yellow square 

appeared on the monitor.   Participants were told to press a red key on the keypad as quickly and 

accurately as possible if they saw a red square.  Likewise, they were told to press the yellow key 



163 

 

if they saw the yellow square.  There were twenty trials (ten red key presses and ten yellow key 

presses), and the order of the visual stimuli was randomized. 

 

C.2.1.4.2 Main experiment  

 

During the experiment, participants sat comfortably in front of the desk with the computer monitor 

and the response keypad.  They were told that they would hear a series of sentences and their task 

was to decide if each sentence made sense.  To initiate the presentation of each sentence, the 

participants pressed the white key and held it down until they were ready to make a “yes” response.  

Prior to each sentence onset, either a yellow or red square appeared in the center of the computer 

screen.  Participants were told that when the yellow square appeared they needed to press the 

yellow key with the index finger of their dominant hand if they thought the sentence was sensible.  

Likewise, they should press the red key if a red square appeared on the screen.  If a sentence was 

not sensible, participants kept pressing the white key.  At the end of each trial, a “+” re-appeared 

on the computer screen to signal to the participants that they could remove their finger from the 

white key if they were pressing it.  The instructions were given at the beginning of the main 

experiment in black 30-point, Times New Roman font on a white background, shown on the 

computer monitor. 

There were four sentence-response conditions: (1) away sentence direction with away 

response direction condition (A-A condition), (2) away sentence direction with toward response 

direction condition (A-T condition), (3) toward sentence direction with away response direction 

condition (T-A condition), and (4) toward sentence direction with toward response direction 

condition (T-T condition) (Borreggine & Kaschak, 2006).  There were twenty sentences in each 
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condition.  A total of 240 sentences (i.e., 40 non-swallow sentences, 40 swallow sentences, and 40 

filler sentences; each sentence was presented twice during the experiment) were randomly 

presented in four blocks of 60 trials with a five-minutes break between the blocks.  The order of 

the task, condition, and sentences in each condition was randomized.  

Prior to the experiment, participants responded to practice sentences to become familiar 

with the procedures and make sure they were responding correctly.  Feedback was given only 

during the practice when errors occurred. Figure 3 displays the flow chart of the procedure for 

each swallow trial. 

 

 

Figure 3. Flow chart of the procedure for each trial 

 

C.2.1.4.3 Statistical analysis     

 

A 2 (sentence direction: toward vs. away) by 2 (response direction: toward vs. away) by 2 (sentence 

type: non-swallow vs. swallow) within subject ANOVA was performed on the reaction time (RT) 
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as a function of sentence direction and response direction.  The RT was defined as the duration 

between the sentence onset and the onset of keypad press in ms.  To adjust for the sentence length 

difference and the 20 ms silent period, both durations were subtracted from RT for each sentence.  

Because the primary focus of the experiment was the interaction effect (sentence direction 

x response direction), interaction results were the primary statistics of interest reported in the next 

section.  A paired sample t-test was performed for the key-press RT task.  

Prior to statistical analysis, any key press responses for non-sensible sentences, incorrect 

responses, and any RTs more than +/- 2 SD from the overall RT mean were eliminated.  In addition, 

one participant’s responses were eliminated because she stabilized the participant hand on the 

keypad that reduced hand movement. 

C.2.2 Results 

C.2.2.1 Key-press RT task 

   

Two participants did not complete the key press RT task.  Key-press RT was faster for pressing 

the red (toward) key (Mean=671.633, SE=17.07) than for pressing the yellow (away) key 

(Mean=707.45, SE=83.57) although the distance from the white home key to the red key was equal 

to that to the yellow key, t (19) =3.133, p=.005.  Figure 4 shows the means and standard errors of 

the key-press RT task.  
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Figure 4. Means and standard errors of the key-press RT task with a keypad. 

 

C. 2.2.2 Main experiment  

The means, standard errors, 95% confidence interval for all the sensibility judgment tasks were 

summarizes in Table 2.  Table 3 summarized the statistical analysis results.   
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Table 2. Means, standard error, 95% confidence interval for all the tests 

Experiment 
 

(Instrument)  

Key RT 
control 

Sentence 
type 

Sentence 
direction 

Response 
direction 

Mean 
(ms) 

Std. 
Error 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

1 
 
 

Keypad 

No key-
press RT 
controlled  

Non-
swallow  

toward toward 490.58 31.59 425.07 556.08 
away 500.07 32.30 433.07 567.06 

away toward 499.83 33.05 431.28 568.37 
away 494.42 33.49 424.97 563.86 

Swallow  toward toward 429.17 26.91 373.37 484.98 
away 438.95 28.35 380.16 497.75 

away toward 489.21 30.04 426.91 551.52 
away 495.69 28.85 435.87 555.51 

Key-press 
RT 

controlled  

Non-
swallow  

toward toward 490.58 31.59 425.07 556.08 
away 464.23 32.30 397.24 531.23 

away toward 499.83 33.05 431.28 568.37 
away 458.58 33.49 389.14 528.03 

Swallow  toward toward 429.17 26.91 373.37 484.98 
away 403.12 28.35 344.33 461.92 

away toward 489.21 30.04 426.91 551.52 
away 459.86 28.85 400.04 519.68 

2 
 

Keyboard 

No key-
press RT 
controlled  

Non-
swallow  

toward toward 636.65 38.54 556.93 716.38 
away 633.10 32.32 566.24 699.95 

away toward 612.83 35.16 540.10 685.56 
away 660.70 34.65 589.02 732.37 

Swallow  toward toward 611.86 32.91 543.79 679.93 
away 633.29 34.75 561.41 705.17 

away toward 624.77 35.31 551.72 697.82 
away 683.42 35.35 610.29 756.55 

Key-press 
RT 

controlled  

Non-
swallow  

toward toward 636.65 38.54 556.93 716.38 
away 618.44 32.32 551.58 685.29 

away toward 612.83 35.16 540.10 685.56 
away 646.04 34.65 574.36 717.71 

Swallow  toward toward 611.86 32.91 543.79 679.93 
away 618.63 34.75 546.75 690.51 

away toward 624.77 35.31 551.72 697.82 
away 668.76 35.35 595.63 741.89 
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Table 3. Summary of the statistical analysis results 

Experiment df F p η2 
1 1 .353 .529 .016 
2 1 2.48 .129 .097 

 

C. 2.2.2.1 Non-key-press RT controlled results  

 

There was no significant pattern difference on RT between sentence direction and response 

direction in the non-swallow-related sentence condition, F (1, 22) =.353; p=.529; η2=.016 (Figure 

5).  The ACE was not observed in the non-swallow-related sentence condition.  Experiment 1 

failed to replicate the Borreggine & Kaschak (2006) study.  

In the swallow-related sentence condition, there also was no significant pattern difference 

on RT between sentence direction and response direction (Figure 6).  The ACE also was not 

observed in the swallow-related sentence condition. 

 

 

Figure 5. Means and standard errors for the sensibility judgment task in non-swallow-related sentences.  
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Figure 6. Means and standard errors for the sensibility judgment task in swallow-related sentence 
condition.  

 

C. 2.2.2.2 Key-press RT controlled results 

Because there was a significant difference on key-press RT between the toward and away keys, 

the key-press RT was controlled in additional analyses.  To control for the key-press RT difference, 

the difference between the two keys were subtracted from the away response conditions.  

There was no significant pattern difference on RT between sentence direction and response 

direction in the non-swallow-related sentence condition after controlling for the key-press RT, F 

(1, 22) =.353; p=.529; η2=.016 (Figure 7).  There also was no significant pattern difference on RT 

between sentence direction and response direction in the swallow-related sentence condition 

(Figure 8).  
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Figure 7. Means and standard errors for the sensibility judgment task in non-swallow-related sentences 

after controlling for key-press RT  
 

 

Figure 8. Means and standard errors for the sensibility judgment task in non-swallow-related sentences 
after controlling for key-press RT. 
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C.3 EXPERIMENT 2 

C.3.1 Methods 

C.3.1.1 Participants  

A different group of 24 participants were recruited for the experiment 2.  They were young adult 

native speakers of English with normal vision and hearing.  Table 4 summarizes the demographic 

information of the participants in the experiment 2.  Screening procedures were the same as that 

for the experiment 1.  

 

Table 4. Demographic information of the participants in Experiment 2. 

 

Variable Experiment 2 
Age (years) Mean ± SD 30.21 ± 9.6 

Range 21-51 
Sex Male 4 

Female 20 
Race/ethnicity Asian 1 

African-
American 

0 

Caucasian 24 
Hispanic  0 

 

C.3.1.2 Materials  

The same materials used in the experiment 1 were used in the experiment 2. 
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C.3.1.3 Instrumentation   

Instead of a response keypad, a keyboard (Dell keyboard KB212-B) was used for the experiment 

2.  The keyboard was placed on the desk in front of participants at a 90-degree angle from the 

normal orientation (Borreggine & Kaschak, 2006).  Three keyboard buttons were used (i.e., Q, P, 

and Y keys).  The Q key was used as a yellow (away) key, and a yellow cover was placed on the 

top of the key.  Similarly, the P key with a red cover was uses as a red (toward) key, and the Y key 

with a white cover was used as a white home key.  The spatial location of the keys was identical 

to that in Experiment 1.  Figure 9 displays the experimental configuration. 

 

 

Figure 9.  Experiment 2 experimental configuration. 

C.3.1.4 Experimental procedure 

C.3.1.4.1 Key-press RT measurement  
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The same procedure used in the experiment 1 was used. 

 

C.3.1.4.2 Main experiment 

 

The same procedure for the experiment 1 was used in the experiment 2 except that a keyboard and 

counterbalanced sentence lists were used to replicate the Borreggine and Kaschak (2006) study as 

much as possible.  

Four counterbalanced sentence lists were created based on the criteria in the original 

Borreggine and Kaschak (2006) study: each list contained the four sentence-response conditions 

(A-A, A-T, T-T and T-A conditions).  A different set of ten sentences was randomly assigned into 

each condition.  There were 60 sentences in each list (i.e., 20 non-swallow sentences, 20 swallow 

sentences, and 20 filler sentences) (See Appendix D).  A participant was given only one 

counterbalanced list.  The order of the sentences in each list was randomized.  

 

C.3.1.4.3 Statistical analysis    

The same statistical analyses used in Experiment 1 were used in experiment 2.   

C.3.2 Results 

C.3.2.1 Key-press RT task 

 

Similar to the experiment 1 result, the key-press RT with a keyboard was faster for the red (toward) 

key (Mean=669.68, SE=21.41) than for pressing the yellow (away) key (Mean=684.34, 
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SE=20.17), t (23) =2.224, p=.036.  Figure 10 indicates the means and standard errors of the key-

press RT task result.  

 

 

Figure 10.  Means and standard errors of the key-press RT task with a keyboard. 

 

C.3.2.2 Main experiment  

 

C. 3.2.2.1 Non-key-press RT controlled results 

  

There was no significant pattern difference on RT between sentence direction and response 

direction in the non-swallow-related sentence condition, F (1, 23)=2.48; p=.129; η2=.097. The 

ACE was not observed in the non-swallow-related sentence condition (Figure 11).  The experiment 

2 also failed to replicate the Borreggine & Kaschak (2006) study.  

There was no significant pattern difference on RT between sentence direction and response 

direction in the swallow-related sentence condition (Figure 12).   The ACE also was not observed 

in the swallow-related sentence condition.  
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Figure 11.  Means and standard errors for the sensibility judgment task in non-swallow-related sentences 

 

 

 

Figure 12. Means and standard errors for the sensibility judgment task in swallow-related sentences. 

 

C. 3.2.2.2 Key-press RT controlled results 
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The key-press RT was controlled for in this analysis to further test whether the ACE was observed 

after controlling for the key-press RT. 

In the non-swallow-related sentence condition, there was no significant pattern difference 

on RT between sentence direction and response direction, F (1, 23) =2.48; p=.129; η2=.097 (Figure 

13).  These results reject the ACE in the non-swallow-related sentence condition.  There also was 

no significant pattern difference on RT between sentence direction and response direction in the 

swallow sentence condition, after controlling for the key-press RT (Figure 14).  

 
 

 
 

Figure13. Means and standard errors for the sensibility judgment task in non-swallow-related sentences 
after controlling for key-press RT.  
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Figure 14. Means and standard errors for the sensibility judgment task in swallow-related sentence 
condition after controlling for the key-press RT. 

C.4 DISCUSSION  

By employing the ACE paradigm, the acoustic stimuli validation task attempted to test whether 

there was a directional relationship between swallow-related action words and direction of hand 

movement.  Two sets of experiments were administered for the task.  The experiment 1 employed 

a five-key response keypad and the experiment 2 used a keyboard and stimuli counterbalanced 

lists.  

The ACE was not observed in the non-swallow-related sentence conditions in the 

experiment 1 with and without controlling for the key-press reaction time.  The experiment 1 failed 

to replicate the Borreggine and Kaschak (2006) study.  
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There were some experimental condition differences between the original study and the 

experiment 1.  A response keypad was used in the experiment 1, whereas a keyboard was used in 

the Borreggine and Kaschak (2006) study.  The distance between the white home key and the 

yellow/red key was shorter on the response keypad (approximately 1.5 cm) than on the keyboard 

(approximately 8.3 cm).  Pressing keys on the response keypad requires less hand/arm movement.  

Kaschak suggested that “the distance required for key-press response may influence the ACE study 

results” (Kaschak, personal communication, July 19, 2017).  Papesh also indicated that a small 

arm movement task may interfere with the ACE because it requires less cognitive demand on 

motor planning compared to a large arm movement task (Papesh, 2015).  

Another experimental condition difference was the sentence stimuli presentation method. 

The stimuli were fully randomized and presented in the experiment 1.  In the Borreggine and 

Kaschak (2006) study, a participant was assigned to one counterbalanced list that contained ¼ of 

the total number of the sentence stimuli.  It was possible that the stimuli overtime produced 

learning/exposure effect, which may have masked the ACE effect in the experiment 1.  

 Nevertheless, the experiment 2 with the keyboard and counterbalanced lists also failed to 

replicate the Borreggine and Kaschak (2006) study.  The ACE was not observed in any conditions.  

The sample size in the experiment 2 was smaller (n=24) than that of the original study (n=42).  

However, according to the sample size re-calculation by G*power (Faul, Erdfelder, Lang, & 

Buchener, 2011) with the effect size from the experiment 2 (i.e., η2 = 0.059; f=0.328) along with 

a power of .80, alpha of .05, and the correlation among the repeated measures ρ = .5 (required 

sample size was 10 for a repeated measures within subject ANOVA), there were enough 

participants in Experiment 2. 
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The Borreggine and Kaschak (2006) study was a replication and extension of the Glenberg 

and Kaschak (2002) study in which the ACE was first reported.  A number of studies have been 

able to replicate and extend the Glenberg and Kaschak (2002) study except a recent study by 

Papesh (2015) (De Scalzi, Rusted, & Oakhill, 2014; Kaschak & Borreggine, 2008; Papesh, 2015; 

Zwaan, van der Stoep, Guadalupe, & Bouwmeester, 2012).  The current results corresponded with 

data from Papesh (2015). 

Papesh (2015) conducted eight experiments with a larger sample size that were replications 

and extensions of the Glenberg and Kaschak (2002) study but failed to replicate the ACE. 

Regardless of the instruments (i.e., a keyboard or a mouse) or stimuli (i.e., same sentences from 

the Glenberg and Kaschak study or new sentences), the interaction between a sentence and 

movement direction was not observed in any of the eight experiments.  Papesh indicated the ACE 

was weak and elusive.  The researcher also speculated that publication bias impacted the current 

ACE literature.  Studies that failed to replicate the ACE likely remained unpublished, and the 

published ACE studies may represent a limited perspective.  The current study added additional 

evidence to the negative ACE studies. 

C.5 CONCLUSION 

 

The study was designed to validate the directionality of the real words used in the main sEMG 

experiment.  By employing the ACE paradigm, the directional relationship between non-swallow-

related action words as well as swallow-related action words and hand movement was tested.  
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However, the ACE was not observed in the non-swallow-related action or the swallow-related 

action word conditions.  Without replicating the ACE in the non-swallow-related action word 

condition, the directionality of swallow-related action words in the sEMG experiment remains 

unclear.  Further studies are needed to test the directional relationship between swallow-related 

action words and motor performance. 
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APPENDIX D 

ACOUSTIC STIMULI VALIDATIOAN TASK STIMULI  

Non-swallow-related sentences (Borreggine & Kaschak, 2006) 
Direction 

# Toward  # Away 
1 Alex forked over the cash to you. 1 You forked over the cash to Alex. 
2 Andy delivered the pizza to you.  2 You delivered the pizza to Andy. 
3 Helen awarded a medal to you. 3 You awarded a medal to Helen. 
4 Jack kicked the football to you. 4 You kicked the football to Jack. 
5 Vincent donated money to you. 5 You donated money to Vincent. 
6 Amber drove the car to you. 6 You drove the car to Amber. 
7 Mark dealt the cards to you. 7 You dealt the cards to Mark. 
8 Kelly dispensed the rations to you. 8 You dispensed the rations to Kelly. 
9 Jeff entrusted the key to you. 9 You entrusted the key to Jeff. 
10 Katie handed the puppy to you. 10 You handed the puppy to Katie. 
11 Christine bought you ice cream. 11 You bought Christine ice cream. 
12 Diane threw you the pen. 12 You threw Diane the pen. 
13 Joe kicked you the soccer ball. 13 You kicked Joe the soccer ball. 
14 Sally slid you the cafeteria tray. 14 You slid Sally the cafeteria tray. 
15 Courtney handed you the notebook. 15 You handed Courtney the notebook. 
16 Shawn shot you the rubber band. 16 You shot Shawn the rubber band. 
17 Mike rolled you the marble. 17 You rolled Mike the marble. 
18 Your dad poured you some water. 18 You poured your dad some water. 
19 Heather slipped you a note. 19 You slipped Heather a note. 
20 Paul hit you the baseball. 20 You hit Paul the baseball. 
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Filler sentences (Borreggine & Kaschak, 2006) 
# Toward  # Away 
1 Al poured the horse to you. 1 You bestowed the message Mike. 
2 Amber dealt you the tree. 2 You blew a lesson to Liz. 
3 Andrea heard you the chicken. 3 You confessed the tray to John. 
4 Brett saw you the bridge. 4 You devoted the song Jenni. 
5 Courtney snuggled you the water. 5 You dispensed ice-cream Sandra. 
6 Gabe grabbed you to the vase. 6 You drank the house to Joe. 
7 Hector played the cake to you. 7 You dreamt your dad a soccer ball. 
8 Jack thought you the ice cream. 8 You drove the land to China. 
9 Jeff swallowed the cash to you. 9 You forged the chair to George. 
10 Jim pretended the stew to you. 10 You gave the earing Susan. 
11 Joe sang the cared to you. 11 You lavished the responsibility Dan 
12 Katie ate the pizza to you. 12 You pitched the story Andy. 
13 Kelly hindered the rubber band to you. 13 You reduced the land to Tiana. 
14 Mark treated you the car. 14 You saw the cow the baseball. 
15 Paul followed you the puppy. 15 You sneezed baseball to Shawan. 
16 Sally ate you the teacup. 16 You sugared Alex the floor. 
17 Sally thought the marble to you. 17 You taught her time to Anna. 
18 Sam received cookies to you. 18 You told the kiss to Ian. 
19 Theresa smoked you the idea. 19 You transferred the change Steve. 
20 Tom slept the marble to you. 20 You wrote Dave to the pencil. 
Swallow-related sentences 
# Toward # Away 
1 You swallowed a glass of water.  1 You spit out a glass of water.  
2 You swallowed a piece of pasta. 2 You spit out a piece of pasta.  
3 You ate a slice of pizza. 3 You spewed up a cup of coffee. 
4 You ate a chunk of meat. 4 You spewed up a glass of juice. 
5 You ingested a medicine pill.  5 You gagged on a medicine pill.  
6 You ingested a small bone. 6 You gagged on a small bone.  
7 You inhaled the cigarette smoke.  7 You exhaled the cigarette smoke. 
8 You inhaled the stale air. 8 You exhaled the stale air. 
9 You slurped a bowl of soup.  9 You vomited up a bowl of soup. 
10 You slurped a bowl of noodles.  10 You vomited up a bowl of noodles. 
11 You drank a cup of coffee. 11 You coughed from a cold.   
12 You drank a glass of juice. 12 You coughed up the mucus.  
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13 You chugged a bottle of beer. 13 You blew out the candles on the cake.   
14 You chugged a glass of water. 14 You blew the dust off. 
15  You gulped a glass of milk.  15  You whistled for your dog. 
16 You gulped a bottle of soda. 16 You whistled an old song.  
17 You sipped a cup of green tea.  17 You sneezed from the pollen. 
18 You sipped a glass of champagne. 18 You sneezed in the library. 
19 You gobbled down a hotdog. 19 You threw up a hotdog.  
20 You gobbled down a sandwich. 20 You threw up a sandwich. 
Practice sentences (Borreggine & Kaschak, 2006) 
 # Sensible   # Non-sensible  
1 City highways are often busy. 1 Bread baked the oven. 
2 Flowers bloom in the springtime. 2 Cows pastured in the graze 
3 He graduated from college. 3 The basket gathered in the fruit. 
4 People usually sleep at night. 4 The food bought the people. 
5 The boy raced the dog. 5 The holiday fell off the door. 
6 The clerk rang up the items. 6 The home followed me cats. 
7 The English have tea time. 7 The shelves dusted the maid. 
8 The store opens at nine. 8 The wall hung on the picture. 
9 The weather is sunny today.  9 Walls adorned her posters. 
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APPENDIX E 

ACOUSTIC STIMULI VALIDATIOAN TASK STIMULI DURATION 

# Sentence type Average 
RMS  

File 
duration 

(sec) 

Sentence 
duration 

(sec) 

Syllable 
# 

Estimated average sentence duration by native American 
English speakers (sec) 

1SD- 1SD+ 1.5SD- 1.5SD+ 2SD- 2SD+ 
Non-swallow-related sentences  
1 Alex forked over the cash to you. -25.00 1.802 1.76 8 1.75 2.46 1.67 2.26 1.60 2.40 
2 Amber drove the car to you. -25.00 1.350 1.31 6 1.31 1.85 1.25 1.69 1.20 1.80 
3 Andy delivered the pizza to you.  -25.00 1.840 1.80 9 1.97 2.77 1.88 2.54 1.80 2.70 
4 Christine bought you ice cream. -25.00 1.557 1.52 6 1.31 1.85 1.25 1.69 1.20 1.80 
5 Courtney handed you the notebook. -25.00 1.795 1.76 8 1.75 2.46 1.67 2.26 1.60 2.40 
6 Diane threw you the pen. -25.00 1.354 1.31 6 1.31 1.85 1.25 1.69 1.20 1.80 
7 Heather slipped you a note. -25.00 1.494 1.45 6 1.31 1.85 1.25 1.69 1.20 1.80 
8 Helen awarded a medal to you.  -25.00 2.036 2.00 10 2.18 3.08 2.09 2.82 2.00 3.00 
9 Jeff entrusted the key to you. -25.00 1.628 1.59 7 1.53 2.15 1.46 1.98 1.40 2.10 
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10 Joe kicked you the soccer ball. -25.00 1.570 1.53 7 1.53 2.15 1.46 1.98 1.40 2.10 
11 Katie handed the puppy to you. -25.00 1.573 1.53 6 1.31 1.85 1.25 1.69 1.20 1.80 
12 Kelly dispensed the rations to you. -25.00 1.961 1.92 8 1.75 2.46 1.67 2.26 1.60 2.40 
13 Mark dealt the cards to you. -25.00 1.569 1.53 5 1.09 1.54 1.04 1.41 1.00 1.50 
14 Mike rolled you the marble. -25.00 1.369 1.33 6 1.31 1.85 1.25 1.69 1.20 1.80 
15 Paul hit you the baseball. -25.00 2.498 1.46 6 1.31 1.85 1.25 1.69 1.20 1.80 
16 Shawn shot you the rubber band.  -25.00 1.740 1.70 7 1.53 2.15 1.46 1.98 1.40 2.10 
17 Vincent donated money to you. -25.00 1.772 1.75 8 1.75 2.46 1.67 2.26 1.60 2.40 
18 You awarded a medal to Helen. -25.00 1.856 1.82 9 2.18 2.67 2.09 2.82 1.80 2.70 
19 You bought Christine ice cream.  -25.00 1.640 1.60 6 1.31 1.60 1.25 1.69 1.20 1.80 
20 You dealt the cards to Mark. -25.00 1.529 1.49 6 1.31 1.60 1.25 1.69 1.20 1.80 
21 You delivered the pizza to Andy. -25.00 2.040 2.00 10 2.18 2.67 2.09 2.82 2.00 3.00 
22 You dispensed the rations to Kelly. -25.00 2.007 1.97 9 1.97 2.40 1.88 2.54 1.80 2.70 
23 You donated money to Vincent.  -25.00 1.915 1.88 9 1.97 2.40 1.88 2.54 1.80 2.70 
24 You drove the car to Amber.  -25.00 1.597 1.56 7 1.53 1.87 1.46 1.98 1.40 2.10 
25 You entrusted the key to Jeff. -25.00 1.960 1.92 8 1.75 2.13 1.67 2.26 1.60 2.40 
26 You forked over the cash to Alex. -25.00 2.140 2.10 9 1.97 2.40 1.88 2.54 1.80 2.70 
27 You handed Courtney the notebook. -25.00 1.785 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
28 You handed the puppy to Katie.  -25.00 1.895 1.85 9 1.97 2.40 1.88 2.54 1.80 2.70 
29 You hit Paul the baseball. -25.00 1.624 1.58 6 1.31 1.60 1.25 1.69 1.20 1.80 
30 You kicked Joe the soccer ball. -25.00 1.620 1.58 7 1.53 1.87 1.46 1.98 1.40 2.10 
31 You kicked the football to Jack. -25.00 1.696 1.66 7 1.53 1.87 1.46 1.98 1.40 2.10 
32 You poured your dad some water. -25.00 1.855 1.82 7 1.53 1.87 1.46 1.98 1.40 2.10 
33 You rolled Mike the marble. -25.00 1.490 1.45 6 1.31 1.60 1.25 1.69 1.20 1.80 
34 You shot Shawn the rubber band. -25.00 1.740 1.70 7 1.53 1.87 1.46 1.98 1.40 2.10 
35 You slid Sally the cafeteria tray. -25.00 2.294 2.25 11 2.40 2.93 2.30 3.11 2.20 3.30 
36 You slipped Heather a note. -25.00 1.556 1.52 6 1.31 1.60 1.25 1.69 1.20 1.80 
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37 You threw Diane the pen.  -24.95 1.440 1.40 6 1.31 1.60 1.25 1.69 1.20 1.80 
38 Your dad poured you some water.  -25.00 1.590 1.55 7 1.53 2.15 1.46 1.98 1.40 2.10 
39 Sally slid you the cafeteria tray. -25.00 2.442 2.40 11 2.40 3.38 2.30 3.11 2.20 3.30 
40 Jack kicked the football to you.  -25.00 1.571 1.53 7 1.53 2.15 1.46 1.98 1.40 2.10 
Filler sentences   
1 Al poured the horse to you. -25.00 1.574 1.53 6 1.31 1.60 1.25 1.69 1.20 1.80 
2 Amber dealt you the tree. -25.00 1.380 1.34 6 1.31 1.60 1.25 1.69 1.20 1.80 
3 Andrea heard you the chicken. -25.00 1.785 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
4 Brett saw you the bridge. -25.00 1.371 1.33 5 1.09 1.33 1.04 1.41 1.00 1.50 
5 Courtney snuggled you the water. -25.00 1.854 1.81 8 1.75 2.13 1.67 2.26 1.60 2.40 
6 Gabe grabbed you to the vase.  -25.00 1.560 1.52 6 1.31 1.60 1.25 1.69 1.20 1.80 
7 Hector played the cake to you. -25.00 1.669 1.63 7 1.53 1.87 1.46 1.98 1.40 2.10 
8 Jack thought you the ice cream. -25.00 1.635 1.60 6 1.31 1.60 1.25 1.69 1.20 1.80 
9 Jeff swallowed the cash to you.  -25.00 1.674 1.63 7 1.53 1.87 1.46 1.98 1.40 2.10 

10 Jim pretended the stew to you. -25.00 1.884 1.84 8 1.75 2.13 1.67 2.26 1.60 2.40 
11 Joe sang the cared to you. -25.00 1.608 1.57 6 1.31 1.60 1.25 1.69 1.20 1.80 
12 Katie ate the pizza to you.  -25.00 1.792 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
13 Kelly hindered the rubber band to you. -25.00 2.175 2.14 10 2.18 2.67 2.09 2.82 2.00 3.00 
14 Mark treated you the car. -25.00 1.375 1.34 6 1.31 1.60 1.25 1.69 1.20 1.80 
15 Paul followed you the puppy.  -25.00 1.785 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
16 Sally ate you the teacup.  -25.00 1.902 1.86 7 1.53 1.87 1.46 1.98 1.40 2.10 
17 Sally thought the marble to you. -25.00 1.794 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
18 Sam received cookies to you. -25.00 1.796 1.76 7 1.53 1.87 1.46 1.98 1.40 2.10 
19 Theresa smoked you the idea. -25.00 1.920 1.88 9 1.97 2.40 1.88 2.54 1.80 2.70 
20 Tom slept the marble to you. -25.00 1.670 1.63 7 1.53 1.87 1.46 1.98 1.40 2.10 
1 You bestowed the message Mike. -25.00 1.824 1.78 7 1.53 1.87 1.46 1.98 1.40 2.10 
2 You blew a lesson to Liz. -25.00 1.673 1.63 7 1.53 1.87 1.46 1.98 1.40 2.10 
3 You confessed the tray to John. -25.00 1.867 1.83 7 1.53 1.87 1.46 1.98 1.40 2.10 
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4 You devoted the song Jenni. -25.00 1.792 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
5 You dispensed ice-cream Sandra. -25.00 1.886 1.85 7 1.53 1.87 1.46 1.98 1.40 2.10 
6 You drank the house to Joe.  -25.00 1.640 1.60 6 1.31 1.60 1.25 1.69 1.20 1.80 
7 You dreamt your dad a soccer ball.  -25.00 1.702 1.66 7 1.53 1.87 1.46 1.98 1.40 2.10 
8 You drove the land to China. -25.00 1.673 1.63 7 1.53 1.87 1.46 1.98 1.40 2.10 
9 You forged the chair to George. -25.00 1.726 1.69 6 1.31 1.60 1.25 1.69 1.20 1.80 

10 You gave the earing Susan. -25.00 1.666 1.63 7 1.53 1.87 1.46 1.98 1.40 2.10 
11 You lavished the responsibility Dan.  -25.00 2.236 2.20 11 2.40 2.93 2.30 3.11 2.20 3.30 
12 You pitched the story Andy. -25.00 1.568 1.53 7 1.53 1.87 1.46 1.98 1.40 2.10 
13 You reduced the land to Tiana. -25.00 1.984 1.94 8 1.75 2.13 1.67 2.26 1.60 2.40 
14 You saw the cow the baseball. -25.00 1.871 1.83 7 1.53 1.87 1.46 1.98 1.40 2.10 
15 You sneezed baseball to Shawan. -25.00 1.921 1.87 7 1.53 1.87 1.46 1.98 1.40 2.10 
16 You sugared Alex the floor. -25.00 1.607 1.57 7 1.53 1.87 1.46 1.98 1.40 2.10 
17 You taught her time to Anna. -25.00 1.640 1.60 7 1.53 1.87 1.46 1.98 1.40 2.10 
18 You told the kiss to Ian. -25.00 1.570 1.53 7 1.53 1.87 1.46 1.98 1.40 2.10 
19 You transferred the change Steve. -25.00 1.640 1.60 6 1.31 1.60 1.25 1.69 1.20 1.80 
20 You wrote Dave to the pencil. -25.00 1.566 1.53 7 1.53 1.87 1.46 1.98 1.40 2.10 
Swallow related sentences   
1 You ate a chunk of meat. -25.00 1.354 1.31 6 1.31 1.60 1.25 1.69 1.20 1.80 
2 You ate a slice of pizza.  -25.00 1.567 1.53 7 1.53 1.87 1.46 1.98 1.40 2.10 
3 You blew off the dust.  -25.00 1.327 1.29 5 1.09 1.33 1.04 1.41 1.00 1.50 
4 You blow out the candles on the cake.  -25.00 1.980 1.94 9 1.97 2.40 1.88 2.54 1.80 2.70 
5 You chugged a bottle of soda. -25.00 1.791 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
6 You chugged a glass of water. -25.00 1.592 1.55 7 1.53 1.87 1.46 1.98 1.40 2.10 
7 You coughed from a cold.   -25.00 1.336 1.33 5 1.09 1.33 1.04 1.41 1.00 1.50 
8 You coughed up the mucus.  -25.00 1.494 1.45 6 1.31 1.60 1.25 1.69 1.20 1.80 
9 You drank a cup of coffee.  -25.00 1.567 1.53 7 1.53 1.87 1.46 1.98 1.40 2.10 

10 You drank a glass of juice. -25.00 1.540 1.50 6 1.31 1.60 1.25 1.69 1.20 1.80 
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11 You exhaled the cigarette smoke.  -25.00 1.801 1.76 8 1.75 2.13 1.67 2.26 1.60 2.40 
12 You exhaled the stale air. -25.00 1.641 1.60 6 1.31 1.60 1.25 1.69 1.20 1.80 
13 You gagged on a medicine pill.  -25.00 1.786 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
14 You gagged on a small bone.  -25.00 1.548 1.51 6 1.31 1.60 1.25 1.69 1.20 1.80 
15 You gobbled down a hotdog.  -25.00 1.578 1.54 7 1.53 1.87 1.46 1.98 1.40 2.10 
16 You gobbled down a sandwich. -25.00 1.647 1.61 7 1.53 1.87 1.46 1.98 1.40 2.10 
17 You gulped a bottle of beer.  -25.00 1.569 1.53 7 1.53 1.87 1.46 1.98 1.40 2.10 
18 You gulped a glass of milk.  -25.00 1.591 1.55 6 1.31 1.60 1.25 1.69 1.20 1.80 
19 You ingested a medicine pill.  -25.00 1.845 1.81 9 1.97 2.40 1.88 2.54 1.80 2.70 
20 You ingested a small bone.  -25.00 1.698 1.66 7 1.53 1.87 1.46 1.98 1.40 2.10 
21 You inhaled the cigarette smoke.  -25.00 1.796 1.76 8 1.75 2.13 1.67 2.26 1.60 2.40 
22 You inhaled the stale air. -25.00 1.598 1.56 6 1.31 1.60 1.25 1.69 1.20 1.80 
23 You sipped a cup of green tea. -25.00 1.883 1.79 7 1.53 1.87 1.46 1.98 1.40 2.10 
24 You sipped a glass of champagne. -25.00 1.795 1.76 7 1.53 1.87 1.46 1.98 1.40 2.10 
25 You slurped a bowl of noodles.  -25.00 1.740 1.70 7 1.53 1.87 1.46 1.98 1.40 2.10 
26 You slurped a bowl of soup.  -25.00 1.637 1.60 6 1.31 1.60 1.25 1.69 1.20 1.80 
27 You sneezed from the pollen. -25.00 1.532 1.49 6 1.31 1.60 1.25 1.69 1.20 1.80 
28 You sneezed in the library. -25.00 1.585 1.55 7 1.53 1.87 1.46 1.98 1.40 2.10 
29 You spewed out a cup of coffee. -25.00 1.789 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
30 You spewed out a glass of juice. -25.00 1.815 1.78 7 1.53 1.87 1.46 1.98 1.40 2.10 
31 You spit out a glass of water.  -25.00 1.786 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
32 You spit out a piece of pasta.  -25.00 1.801 1.76 8 1.75 2.13 1.67 2.26 1.60 2.40 
33 You swallowed a glass of water.  -25.00 1.792 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
34 You swallowed a piece of pasta.  -25.00 1.778 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
35 You threw up a hotdog. -25.00 1.398 1.36 6 1.31 1.60 1.25 1.69 1.20 1.80 
36 You threw up a sandwich. -25.00 1.459 1.42 6 1.31 1.60 1.25 1.69 1.20 1.80 
37 You vomited up a bowl of noodles. -25.00 1.840 1.8 9 1.97 2.40 1.88 2.54 1.80 2.70 
38 You vomited up a bowl of soup. -25.00 1.800 1.76 8 1.75 2.13 1.67 2.26 1.60 2.40 
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39 You whistled an old song.  -25.00 1.367 1.33 6 1.31 1.60 1.25 1.69 1.20 1.80 
40 You whistled for your dog. -25.00 1.440 1.40 6 1.31 1.60 1.25 1.69 1.20 1.80 
Practice-sensible  
1 City highways are often busy. -25.00 1.920 1.88 9 1.97 2.40 1.88 2.54 1.80 2.70 
2 Flowers bloom in the springtime.  -25.00 1.776 1.73 7 1.53 1.87 1.46 1.98 1.40 2.10 
3 He graduated from college.  -25.00 1.794 1.75 8 1.75 2.13 1.67 2.26 1.60 2.40 
4 People usually sleep at night.  -25.00 1.838 1.80 8 1.75 2.13 1.67 2.26 1.60 2.40 
5 The boy raced the dog. -25.00 1.372 1.33 5 1.09 1.33 1.04 1.41 1.00 1.50 
6 The clerk rang up the items. -25.00 1.840 1.80 7 1.53 1.87 1.46 1.98 1.40 2.10 
7 The English have tea time. -25.00 1.501 1.46 6 1.31 1.60 1.25 1.69 1.20 1.80 
8 The store opens at nine. -25.00 1.370 1.33 5 1.09 1.33 1.04 1.41 1.00 1.50 
9 The weather is sunny today  -25.00 1.635 1.82 8 1.75 2.13 1.67 2.26 1.60 2.40 

Practice-non-sensible  
  

                
1 Bread baked the oven.  -25.00 1.271 1.23 5 1.09 1.33 1.04 1.41 1.00 1.50 
2 Cows pastured in the graze -25.00 1.626 1.59 6 1.31 1.60 1.25 1.69 1.20 1.80 
3 The basket gathered in the fruit.  -25.00 1.837 1.80 8 1.75 2.13 1.67 2.26 1.60 2.40 
4 The food bought the people.  -25.00 1.390 1.35 6 1.31 1.60 1.25 1.69 1.20 1.80 
5 The holiday fell off the door.  -25.00 1.923 1.81 9 1.97 2.40 1.88 2.54 1.80 2.70 
6 The home followed me cats.  -25.00 1.919 1.60 6 1.31 1.60 1.25 1.69 1.20 1.80 
7 The shelves dusted the maid. -25.00 1.638 1.60 6 1.31 1.60 1.25 1.69 1.20 1.80 
8 The wall hung on the picture  -25.00 1.566 1.53 7 1.53 1.87 1.46 1.98 1.40 2.10 
9 Walls adorned her posters. -25.00 1.641 1.60 6 1.31 1.60 1.25 1.69 1.20 1.80 
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APPENDIX F 

ACOUSTIC STIMULI VALIDATIOAN TASK STIMULI COUNTERBALANCE LIST 

F.1.1 List 1 

# Non-swallow-related sentences  Sentence direction  Response direction 
1 Alex forked over the cash to you. T T 
2 Andy delivered the pizza to you.  T T 
3 Helen awarded a medal to you. T T 
4 Jack kicked the football to you. T T 
5 Vincent donated money to you. T T 
6 Shawn shot you the rubber band. T A 
7 Mike rolled you the marble. T A 
8 Your dad poured you some water. T A 
9 Heather slipped you a note. T A 
10 Paul hit you the baseball. T A 
11 You bought Christine ice cream. A T 
12 You threw Diane the pen. A T 
13 You kicked Joe the soccer ball. A T 
14 You slid Sally the cafeteria tray. A T 
15 You handed Courtney the notebook. A T 
16 You drove the car to Amber. A A 
17 You dealt the cards to Mark. A A 
18 You dispensed the rations to Kelly. A A 
19 You entrusted the key to Jeff. A A 
20 You handed the puppy to Katie. A A 
  Filler sentences  Sentence direction  Response direction 
1 Al poured the horse to you. T T 
2 Amber dealt you the tree. T T 
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3 Andrea heard you the chicken. T T 
4 Brett saw you the bridge. T T 
5 Courtney snuggled you the water. T T 
6 Sally ate you the teacup. T A 
7 Sally thought the marble to you. T A 
8 Sam received cookies to you. T A 
9 Theresa smoked you the idea. T A 
10 Tom slept the marble to you. T A 
11 You lavished the responsibility Dan. A A 
12 You pitched the story Andy. A A 
13 You reduced the land to Tiana. A A 
14 You saw the cow the baseball. A A 
15 You sneezed baseball to Shawan. A A 
16 You drank the house to Joe. A T 
17 You dreamt your dad a soccer ball. A T 
18 You drove the land to China. A T 
19 You forged the chair to George. A T 
20 You gave the earing Susan. A T  

Swallow related sentences  Sentence direction  Response direction 
1 You swallowed a glass of water.  T T 
2 You swallowed a piece of pasta. T T 
3 You ate a slice of pizza. T T 
4 You ate a chunk of meat. T T 
5 You ingested a medicine pill.  T T 
6 You gulped a bottle of beer. T A 
7 You sip a cup of green tea.  T A 
8 You sipped a glass of champagne. T A 
9 You gobbled down hotdog. T A 
10 You gobbled down a sandwich. T A 
11 You coughed from a cold.   A T 
12 You coughed up the mucus.  A T 
13 You blew candles on the cake.   A T 
14 You blew the dust off. A T 
15  You whistled for your dog. A T 
16 You gagged on a small bone.  A A 
17 You exhaled the cigarette smoke. A A 
18 You exhaled the stale air. A A 
19 You vomited a bowl of soup. A A 
20 You vomited a bowl of noodles. A A 
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F.1.2 List 2 

# Non-swallow-related sentences  Sentence direction  Response direction 

1 Amber drove the car to you. T T 
2 Mark dealt the cards to you. T T 
3 Kelly dispensed the rations to you. T T 
4 Jeff entrusted the key to you. T T 
5 Katie handed the puppy to you. T T 
6 Alex forked over the cash to you. T A 
7 Andy delivered the pizza to you.  T A 
8 Helen awarded a medal to you. T A 
9 Jack kicked the football to you. T A 
10 Vincent donated money to you. T A 
11 You shot Shawn the rubber band. A T 
12 You rolled Mike the marble. A T 
13 You poured your dad some water. A T 
14 You slipped Heather a note. A T 
15 You hit Paul the baseball. A T 
16 You bought Christine ice cream. A A 
17 You threw Diane the pen. A A 
18 You kicked Joe the soccer ball. A A 
19 You slid Sally the cafeteria tray. A A 
20 You handed Courtney the notebook. A A 
# Filler sentences  Sentence direction  Response direction 
1 Gabe grabbed you to the vase. T T 
2 Hector played the cake to you. T T 
3 Jack thought you the ice cream. T T 
4 Jeff swallowed the cash to you. T T 
5 Jim pretended the stew to you. T T 
6 Al poured the horse to you. T A 
7 Amber dealt you the tree. T A 
8 Andrea heard you the chicken. T A 
9 Brett saw you the bridge. T A 
10 Courtney snuggled you the water. T A 
11 You sugared Alex the floor. A A 
12 You taught her time to Anna. A A 
13 You told the kiss to Ian. A A 
14 You transferred the change Steve. A A 
15 You wrote Dave to the pencil. A A 
16 You lavished the responsibility Dan. A T 
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17 You pitched the story Andy. A T 
18 You reduced the land to Tiana. A T 
19 You saw the cow the baseball. A T 
20 You sneezed baseball to Shawan. A T 
# Swallow related sentences  Sentence direction  Response direction 
1 You ingested a small bone. T T 
2 You inhaled the cigarette smoke.  T T 
3 You inhaled the stale air. T T 
4 You slurped a bowl of soup.  T T 
5 You slurped a bowl of noodles.  T T 
6 You swallowed a glass of water.  T A 
7 You swallowed a piece of pasta. T A 
8 You ate a slice of pizza. T A 
9 You ate a chunk of meat. T A 
10 You ingested a medicine pill.  T A 
11 You whistled an old song.  A T 
12 You sneezed from the pollen. A T 
13 You sneezed in the library. A T 
14 You threw up a hotdog. A T 
15 You threw up a sandwich. A T 
16 You coughed from a cold.   A A 
17 You coughed up the mucus.  A A 
18 You blew candles on the cake.   A A 
19 You blew the dust off. A A 
20  You whistled for your dog. A A 

F.1.3 List 3 

# Non-swallow-related sentences  Sentence direction  Response direction 
1 Christine bought you ice cream. T T 
2 Diane threw you the pen. T T 
3 Joe kicked you the soccer ball. T T 
4 Sally slid you the cafeteria tray. T T 
5 Courtney handed you the notebook. T T 
6 Amber drove the car to you. T A 
7 Mark dealt the cards to you. T A 
8 Kelly dispensed the rations to you. T A 
9 Jeff entrusted the key to you. T A 
10 Katie handed the puppy to you. T A 
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11 You forked over the cash to Alex. A T 
12 You delivered the pizza to Andy. A T 
13 You awarded a medal to Helen. A T 
14 You kicked the football to Jack. A T 
15 You donated money to Vincent. A T 
16 You shot Shawn the rubber band. A A 
17 You rolled Mike the marble. A A 
18 You poured your dad some water. A A 
19 You slipped Heather a note. A A 
20 You hit Paul the baseball. A A 
# Filler sentences  Sentence direction  Response direction 
1 Joe sang the cared to you. T T 
2 Katie ate the pizza to you. T T 
3 Kelly hindered the rubber band to you. T T 
4 Mark treated you the car. T T 
5 Paul followed you the puppy. T T 
6 Gabe grabbed you to the vase. T A 
7 Hector played the cake to you. T A 
8 Jack thought you the ice cream. T A 
9 Jeff swallowed the cash to you. T A 
10 Jim pretended the stew to you. T A 
11 You bestowed the message Mike. A A 
12 You blew a lesson to Liz. A A 
13 You confessed the tray to John. A A 
14 You devoted the song Jenni. A A 
15 You dispensed ice-cream Sandra. A A 
16 You sugared Alex the floor. A T 
17 You taught her time to Anna. A T 
18 You told the kiss to Ian. A T 
19 You transferred the change Steve. A T 
20 You wrote Dave to the pencil. A T 
# Swallow related sentences  Sentence direction  Response direction 
1 You drank a cup of coffee. T T 
2 You drank a glass of juice. T T 
3 You chugged a bottle of soda. T T 
4 You chugged a glass of water. T T 
5  You gulped a glass of milk.  T T 
6 You ingested a small bone. T A 
7 You inhaled the cigarette smoke.  T A 
8 You inhaled the stale air. T A 
9 You slurped a bowl of soup.  T A 
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10 You slurped a bowl of noodles.  T A 
11 You spit out a glass of water.  A T 
12 You spit out a piece of pasta.  A T 
13 You spewed a slice of pizza. A T 
14 You spewed up a chunk of meat.  A T 
15 You gagged on a medicine pill.  A T 
16 You whistled an old song.  A A 
17 You sneezed from the pollen. A A 
18 You sneezed in the library. A A 
19 You threw up a hotdog. A A 
20 You threw up a sandwich. A A 

F.1.4 List 4 

# Non-swallow-related sentences  Sentence direction  Response direction 
1 Shawn shot you the rubber band. T T 
2 Mike rolled you the marble. T T 
3 Your dad poured you some water. T T 
4 Heather slipped you a note. T T 
5 Paul hit you the baseball. T T 
6 Christine bought you ice cream. T A 
7 Diane threw you the pen. T A 
8 Joe kicked you the soccer ball. T A 
9 Sally slid you the cafeteria tray. T A 
10 Courtney handed you the notebook. T A 
11 You drove the car to Amber. A T 
12 You dealt the cards to Mark. A T 
13 You dispensed the rations to Kelly. A T 
14 You entrusted the key to Jeff. A T 
15 You handed the puppy to Katie. A T 
16 You forked over the cash to Alex. A A 
17 You delivered the pizza to Andy. A A 
18 You awarded a medal to Helen. A A 
19 You kicked the football to Jack. A A 
20 You donated money to Vincent. A A 
# Filler sentences  Sentence direction  Response direction 
1 Sally ate you the teacup. T T 
2 Sally thought the marble to you. T T 
3 Sam received cookies to you. T T 
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4 Theresa smoked you the idea. T T 
5 Tom slept the marble to you. T T 
6 Joe sang the cared to you. T A 
7 Katie ate the pizza to you. T A 
8 Kelly hindered the rubber band to you. T A 
9 Mark treated you the car. T A 
10 Paul followed you the puppy. T A 
11 You drank the house to Joe. A A 
12 You dreamt your dad a soccer ball. A A 
13 You drove the land to China. A A 
14 You forged the chair to George. A A 
15 You gave the earing Susan. A A 
16 You bestowed the message Mike. A T 
17 You blew a lesson to Liz. A T 
18 You confessed to tray to John. A T 
19 You devoted the song Jenni. A T 
20 You dispensed ice-cream Sandra. A T 
# Swallow related sentences  Sentence direction  Response direction 
1 You gulped a bottle of beer. T T 
2 You sipped a cup of green tea.  T T 
3 You sipped a glass of champagne. T T 
4 You gobbled down a hotdog. T T 
5 You gobbled down a sandwich. T T 
6 You drank a cup of coffee. T A 
7 You drank a glass of juice. T A 
8 You chugged a bottle of soda. T A 
9 You chugged a glass of water. T A 

10  You gulped a glass of milk.  T A 
11 You gagged on a small bone.  A T 
12 You exhaled the cigarette smoke. A T 
13 You exhaled the stale air. A T 
14 You vomited a bowl of soup. A T 
15 You vomited a bowl of noodles. A T 
16 You spit out a glass of water.  A A 
17 You spit out a piece of pasta.  A A 
18 You spewed a slice of pizza. A A 
19 You spewed up a chunk of meat.  A A 
20 You gagged on a medicine pill.  A A 



 197 

APPENDIX G 

SEMG ONSET MEASURE RULES  

G.1.1 sEMG wave form 

According to Vaiman & Eviatar (2009), sEMG signal for a swallow can be divided into the three 

sections which are: mild elevation of the line, rapid voltage line elevation, and rapid descent line.  

G.1.2  sEMG wave form type 

I. signal only without a mild elevation line  

II. signal with a mild elevation line  

III. signal with ripple(s) before a mild elevation and/or rapid voltage line elevation  

IV. signal with a mild descent line after the rapid voltage line elevation  

 
(Example of a signal without a mild elevation of the line) 
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(Examples of a signal with a mild elevation of the line) 

 
 
 
(Example of a signal with ripples) 

 

G.1.3 sEMG onset rules  

• Take the point where the sEMG signal goes 2 SD above the baseline mean amplitude. 

• Take the point where the signal goes above the baseline mean amplitude that leads to the 

continuous upward excursion on the signal. 

• If there is/are ripple(s) before the mild elevation and/or rapid voltage line elevation, do not 

include the ripples.  

• If the ripple(s) is/are above 2 SD baseline, include the ripples. 

• If there is a mild elevation of the line before a rapid voltage line elevation, take the mild 

elevation of the line as the onset of the leading events of swallowing (Martin, Logemann, 

Shaker, & Dodds, 1994). 

• Take the 2 SD point in the mild elevation event if sEMG goes below 2 SD between the mild 

elevation and the rapid line elevation.
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