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Mechanistic target of rapamycin (mTOR) complexes (C) 1 and 2 play important roles in 

determining the differentiation and function of immune cells. While suppression of mTORC1 

antagonizes dendritic cell (DC) maturation and suppresses graft rejection, the role of mTORC2 

in DC in determining host responses to transplanted tissue is undefined. Utilizing an innovative 

mouse model in which mTORC2 was deleted specifically in CD11c+ DC (TORC2DC-/-), we show 

that transplantation of minor histocompatibility (m-Ag) antigen (HY)-mismatched skin grafts 

from TORC2DC-/- donors into wild-type recipients results in accelerated rejection, characterized 

by enhanced CD8+ T cell responses in the graft and regional lymphoid tissue. Augmented CD8+ 

T cell responses were also observed in skin grafts from TORC2DC-/- B6 donors into major 

histocompatibility (MHC) mismatched BALB/c recipients, and in a delayed-type 

hypersensitivity model in which mTORC2 was absent in cutaneous DC. These responses could 

be ascribed to an increased T cell stimulatory phenotype of TORC2DC-/- and not to enhanced 

lymph node homing of the cells. These findings suggest mTORC2 in skin DC plays an important 

role in initiation of rejection and restrains effector CD8+ T cell responses. In addition, we 

describe a novel metabolic regulatory role of mTORC2 in DC, whereby mTORC2 restrains 

glycolytic bias and mitochondrial dysfunction by regulating mTORC1-driven metabolic 

function. These studies have implications for understanding the impact of conventional and new 

generation mTOR inhibitors that target mTORC2 in the multiple clinical contexts, including 

transplantation and cancer therapeutics. 

mTORC2 in Dendritic Cells Restrains T Cell Stimulatory Function in Transplantation 
and  mTORC1-regulated Metabolic Function 

 
Alicia Rose Watson, Ph.D. 

University of Pittsburgh, 2018
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1.0  Introduction 

1.1 Dendritic Cell (DC) Biology 

1.1.1 Function 

Dendritic cells (DC) are specialized immune cells that function as the bridge between innate and 

adaptive immunity. Arising from either myeloid or lymphoid progenitors in the bone marrow, 

DC reside in tissues and ingest pathogens, cellular debris, and intact cells. DC process and 

present the digested products as peptide antigens (Ag) to adaptive immune cells within lymphoid 

tissues. DC are critical professional Ag-presenting cells (APC) for adaptive T cell responses, as 

DC are the only cell type which can activate naïve T cells1.  

DC can instigate both inflammatory and regulatory adaptive responses. For example, DC 

presenting exogenous Ag in the context of bacterial infection will elicit inflammatory cluster of 

differentiation 4 (CD4)+ T helper (Th) and CD8+ cytotoxic T cell (CTL) responses which will 

ultimately clear the infection by destroying any cells which are displaying the cognate Ag of 

their T cell receptor (TCR). Conversely, DC can activate regulatory T cells (Treg) which serve to 

dampen inflammatory T cell responses following clearance of exogenous Ag, or DC presenting 

endogenous Ag processed from “self” can prevent T cell killing of self cells, as seen in various 

autoimmune disorders2. 
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1.1.2 Activation and maturation 

DC can be activated by many different danger signals, which fall under two categories: 

pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns 

(DAMPs). PAMPs and DAMPs will be recognized by various pattern recognition receptors 

(PRRs) on DC, and initiate their differentiation and maturation into immunogenic APCs3. 

PAMPs recognized by DC PRRs can come from bacteria, viruses, fungi, and protozoa, 

and can be nucleic acids, lipoproteins, glycoproteins, and membrane components. PRRs that 

recognize PAMPs include toll-like receptors (TLRs), retinoid acid-inducible gene 1 (RIG-1) 

receptors, and nucleotide-binding oligomerization domain (NOD)-like receptors. Activated PRRs 

will activate intracellular signaling cascades ultimately leading to the production of cytokines, 

chemokines/chemokine receptors, cell adhesion molecules, and co-stimulatory molecules which 

will allow the DC to migrate to lymphoid tissues and direct the adaptive immune response 

against the invading pathogen3. 

Unlike PAMPs, DAMPs are endogenously derived molecules, which can arise from 

tissues that are stressed or damaged in response to sterile traumas such as ischemic injury or 

cancer. DAMPS can be proteins such as high mobility box group 1 (HMGB1), cytoplasmic S100 

proteins, and heat shock proteins (HSPs), or non-proteins such as nucleic acids or adenosine 

triphosphate (ATP). DAMPs are recognized by DC via TLRs or the receptor for advanced 

glycation end products (RAGE). Following DAMP activation of DC, mitogen-activated protein 

kinases (MAPKs), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and 

the phosphoinositide 3 kinase/protein kinase B (PI3K/Akt) signaling pathways will become 

activated, all of which are potent mediators of inflammatory cell death/survival responses and 

will induce cytokine, chemokine, and co-stimulatory molecule expression similar to PAMPs3. 

Turnquistlab
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1.1.3 Antigen (Ag) acquisition, processing, and presentation 

DC activation leads to the upregulation of cell adhesion molecules and chemokine receptors 

which will allow the DC to migrate to lymphoid tissue, as well as co-stimulatory molecules and 

cytokines which will ultimately assist in shaping adaptive T cell responses. However, DC must 

also acquire, process, and present Ag peptide to T cells to initiate their activation.  

DC acquire exogenous cell-associated Ag via phagocytosis. This process involves the 

uptake of particulates within the cell membrane envelope, followed by a sequence of fusion and 

fission events between the plasma membrane and intracellular vesicles to form phagosomes, 

which will ultimately fuse with lysosomes, culminating in phagolysosome formation. This 

sequence of events occurs in progressively more acidic conditions with acidic pH-optimum 

cathepsin proteases, which will lead to digestion of the exogenous Ag4,5.  DC can also acquire 

soluble exogenous Ag via receptor-mediated endocytosis, such as mannose receptor-mediated 

endocytosis of mannosylated proteins6, which will be degraded similarly to phagocytosed Ag. 

Finally, DC can degrade endogenous Ag following translocation to the endoplasmic reticulum 

(ER) from the cytosol by the Transporter associated with Ag Processing (TAP) via proteolysis in 

the proteasome. The proteasome is a barrel-shaped structure consisting of a 20S core capped on 

each end by a 19S multi-subunit complex which has unfoldase activity to allow proteins to enter 

the barrel structure and be cleaved by the proteolytic β subunits of the 20S core7.    

Following Ag acquisition, DC will process Ag into peptide for presentation on major 

histocompatibility complexes (MHC, in mice; human leukocyte Ag [HLA], in humans). The 

traditional view of Ag presentation was that intracellularly synthesized Ag (such as from viruses, 

tumors, or “self”) were processed for MHC Class I (MHCI) presentation via proteasomes, while 

exogenous Ag was processed for MHC Class II (MHCII) presentation via lysosomes. However, 
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it is now appreciated that unlike other APC, DC also frequently “cross-present” Ag; i.e. 

exogenous Ag acquired by DC can be processed and loaded onto MHCI, and endogenous Ag can 

by processed and loaded onto MHCII. Cross-presented Ag can be acquired from apoptotic cells8, 

necrotic cells9, and live cells10. Ag cross-presentation is vital for instigating CTL responses 

against exogenous pathogens11.  

1.1.4 DC subsets 

Since Ralph Steinman first identified the population of stellate splenocytes he named “dendritic 

cells” in 197312, not only has the biological relevance of these cells been established, but many 

different subsets of DC have been identified. These subsets, while all sharing the ability to 

stimulate T cell activation, differ in their localization and immune function, and include classical 

DC (cDC), plasmacytoid DC (pDC), and monocyte-derived DC (moDC). 

cDC can reside in both lymphoid and non-lymphoid tissue (such as the skin), with 

lymphoid cDC characterized by CD8α expression13,14 and non-lymphoid cDC being 

characterized by CD103 expression15,16. Additionally, heterogeneous populations of CD11b+ 

cDC can reside in both lymphoid and non-lymphoid tissues, with CD11b+ cDC being the most 

abundant DC population in all lymphoid tissues except the thymus. Development of both CD8α+ 

and CD103+ cDC (but not CD11b+ cDC) is orchestrated by the transcription factors inhibitor of 

DNA binding 2 (Id2), nuclear factor interleukin 3 regulated (NFIL3), basic leucine zipper ATF-

like 3 transcription factor (BATF3), and interferon regulatory factor 8 (IRF8)17-21. Functionally, 

CD8α+ and CD103+ cDC are superior cross-presenters of exogenous Ag on MHCI to CD8+ T 

cells22,23. In addition, TLR stimulation of CD8α+ and CD103+ cDC induces production of the 

inflammatory cytokine active heterodimeric interleukin 12 (IL-12p70)24. Development of 
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CD11b+ cDC is regulated by the transcription factors Relb, neurogenic locus notch homolog 

protein 2 (NOTCH2), recombining binding protein suppressor of hairless (RBP-J), IRF4, and 

IRF825-29. The exact functions of the heterogeneous population of CD11b+ cDC have yet to be 

well defined, but they have been shown to induce more CD4+ T cell immune responses in 

comparison with CD8+ cDC30.  

pDC can be found in peripheral tissues and circulating blood, and their development is 

regulated by immunoglobulin transcription factor 2 (ITF-2), which suppresses Id2 expression 

necessary for cDC development31,32. Functionally, pDC are uniquely capable of rapidly 

producing copious amounts of type I interferons in response to viral infection33,34. 

moDC originate from monocyte progenitors generated from inflammation within 

lymphoid and non-lymphoid tissues35. Although similar phenotypically to cDC, moDC also 

express the monocyte markers CD64 and Fc-gamma receptor 1 (FcγR1). While monocytes have 

long been used to generate ex vivo DC from peripheral blood and bone marrow in the presence 

of IL-4 and granulocyte-macrophage-colony stimulating factor (GM-CSF)36, the in vivo 

equivalent of these cells is ill defined.  

DC can also be localized to specific organs, such as Langerhans cells (LC) and dermal 

DC within the skin. LC are a population of epidermis-restricted mononuclear phagocytes, which 

express langerin (CD207). LC express MHCII and are capable of stimulating T cells in a mixed 

leukocyte reaction (MLR), and were thought to be prototypical of tissue-resident DC which 

could migrate to draining lymph nodes (dLN) and prime naïve T cell responses37. However, gene 

expression profiling and cell lineage tracing point to LC being more closely related to tissue-

resident macrophages, as does the lack of direct evidence that LC can prime naïve T cell 

responses in vivo38-40. Dermal DC comprise of LC migrating to cutaneous dLN, as well as four 
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cDC populations: CD103+CD207+, CD103-CD207+, CD207-CD11b+, and CD103-CD207-

CD11b-41. While the exact function of each of these subsets is currently unknown, they do share 

similar function and gene expression to other CD11b+ cDCs, as well sharing efficient MHCII Ag 

presentation and a dependence on C-C chemokine receptor type 7 (CCR7)-mediated migration to 

cutaneous LN23,41,42.      

1.2 DC Activation of Adaptive Immune Responses 

1.2.1 Lymph node (LN) homing 

The key function of DC is to present Ag to T cells in order to elicit adaptive immune responses. 

DC constitutively acquire Ag and travel to peripheral lymphoid tissue via lymphatic vessels, 

where they can present “self” or “non-self” Ag to T cells, contributing to peripheral tolerance or 

instigating an inflammatory response, respectively43. Non-inflammatory DC will enter primary, 

secondary, and tertiary LN directly from non-lymphoid tissue; however, inflammatory DC will 

enter the primary LN proximal to the site of inflammation. The inflammatory DC are then 

positioned to interact with naïve T cells entering the LN from high endothelial venules (HEV) in 

the paracortical T cell zone. While the inflammatory DC do not migrate beyond the primary LN, 

the T cells they activate will divide and egress from primary to tertiary LN and beyond to the site 

of inflammation44. 

 Upon activation, DC undergo a number of changes, which program them to mobilize 

from the site of Ag uptake to the T cell zone of the dLN. In the skin, fibroblasts, keratinocytes, 

and DC will produce tissue necrosis factor α (TNFα) and IL-1 family cytokines, which are 
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essential in the reduction of E-cadherin expression. Abrogating E-cadherin dissociates LC from 

keratinocytes, and coincides with upregulation of the chemokine CCR745,46. TNFα also increases 

the expression of the CCR7 ligands CCL21-Ser (serine) and CCL21-Leu (leucine) in the 

lymphatic vessels. In addition, activated LC produce matrix metalloproteases (MMP), which 

degrade basement membranes and collagen, and permit LC to migrate through the epidermal 

basal membrane and the dermis, in conjunction with C-X-C motif chemokine ligand 12 

(CXCL12) and cognate CCR4 signaling47,48. Upon entering the LN, DC will localize to the 

subcapsular zone before migrating to the paracortical T cell zone44.  

1.2.2 T cell activation 

Once DC migrate into the T cell zone, they will present Ag to T cells, ultimately leading to T cell 

polarization and clonal expansion, such that each T cell is specific for the same MHC-Ag 

complex. This can be endogenously processed Ag presented on MHCI, exogenously processed 

Ag presented on MHCII, or cross-presented endogenous Ag on MHCII/exogenous Ag on MHCI. 

MHC-peptide presented by DC provides the first of three signals (Signal 1) required for T cell 

activation when it is bound by cognate T cell receptor (TCR), with TCRs on CD8+ T cells 

recognizing MHC1-Ag and TCRs on CD4+ T cells recognizing MHCII-Ag. MHC-Ag 

recognition occurs in the polymorphic α and β chains of the TCR, while the non-polymorphic 

CD3 complex of the TCR drives the signaling cascades required for activation2.  

 The second signal for T cell activation (Signal 2) is provided by co-stimulatory/inhibitory 

molecules on DC binding their respective ligands/receptors on the T cell. The T cell co-

stimulatory/inhibitory receptors can either be members of the immunoglobulin (Ig) superfamily, 

or the TNF receptor superfamily. One such interaction is the binding of constitutively expressed 
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CD28 (Ig superfamily) on T cells to the ligands CD86 and CD80 on the DC. This initiates a 

signaling cascade that will ultimately drive Akt activity and promote cell survival/inhibit cell 

death pathways within the T cell49. In addition to activating T cells, co-stimulatory signaling 

between T cells and DC will also further activate DC, such as CD40L on T cells engaging CD40 

on DC driving IL-12 cytokine production by DC50. This crosstalk will elicit cytokine production 

by DC necessary for the third signal of T cell activation (Signal 3), which is integral for T cell 

lineage polarization.  

1.2.3 T cell polarization 

Upon activation, CD4+ T cells differentiate into functionally distinct effector (Th) cell 

populations or Treg, which is dependent on the co-stimulatory/inhibitory Signal 2 and cytokine 

Signal 3 provided by DC; CD8+ T cells generally have less plasticity and will differentiate into 

CTLs or memory T cells. There are three major Th subsets: Th1, Th2, and Th17, although other 

subsets such as Th9, Th22, and T follicular helper cells (Tfh) have also been identified. Th cells 

play a central role in immune responses by helping B cells produce antibodies (Ab), inducing 

macrophage activity, and recruiting neutrophils51, basophils, and eosinophils to sites of 

inflammation/injury52.  

 Th1 polarization is initially induced by DC production of the cytokines IL-12, type I 

interferons (IFN) and IFNγ, with IFNγ also acting to inhibit Th2 cell proliferation53. 

Additionally, IFNγ also induces the activation of T-bet, the main regulator of Th1 

differentiation54. Functionally, Th1 cells mediate responses to intracellular pathogens, and have 

also been identified to induce some autoimmune diseases. The principally release the cytokines 

IFNγ and IL-252.  
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 While DC are not thought to produce the Th2 polarizing cytokine IL-455, there is 

evidence that DC presenting OX40-ligand and Jagged 1 promote Th2 polarization56. Conversely, 

CD103+ DC producing IL-12 have recently been shown to suppress Th2 responses57. It has also 

been postulated that Th2 is the “default” Th programming, occurring in the absence of Th1 and 

Th17 polarizing stimuli58. While the exact roles DC play in Th2 induction are not yet clear, it is 

known that IL-4 and IL-2 are essential cytokines in Th2 polarization, through the upregulation of 

the transcription factor GATA binding protein 3 (GATA3)59. Functionally, Th2 cells mount 

immune responses against extracellular pathogens such as helminthes, as well facilitate tissue 

repair by secreting IL-4 and IL-13, which are integral for the production of collagen I and III60. 

 Th17 polarization is driven by the cytokines transforming growth factor β (TGFβ), IL-6, 

IL-21, and IL-23, with TGFβ and IL-6 being responsible for initial polarization and IL-23 being 

crucial for robust Th17 responses. TGFβ and IL-21 act synergistically to induce expression of 

the transcription factor retinoic acid receptor-related orphan receptor γ-t (RORγt), which drives 

expression of the signature Th17 cytokine IL-1761. Functionally, Th17 cells mount immune 

responses against bacteria and fungi and recruit neutrophils via their IL-17 production, creating a 

general state of tissue inflammation62. Th17 cells are also thought to be critical to the 

development of autoimmunity61. 

Unlike effector Th cells and CTLs, Treg serve to suppress, rather than antagonize, 

immune responses. While thymic DC can contribute to Treg generating during T cell 

development to induce central tolerance against self Ag, they can also induce Treg in the 

periphery to control immune responses to non-self Ag. While many subsets of Treg have been 

identified, their generation by DC is largely mediated by IL1-, IL-27, TGFβ, indoleamine 2,3-

dioxygenase (IDO), retinoic acid, and vitamin D3. Forkhead box P3+ (Foxp3+) Treg are one of 
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the subpopulations of Treg that are critically important for maintaining immune tolerance and 

preventing autoimmunity63. Functionally, Treg can suppress immune responses by producing 

inhibitory cytokines such as IL-10 and TGFβ, cytolysis of effecter T cells, IL-2 cytokine 

deprivation of effector T cells, and suppressing DC maturation via cytotoxic T-lymphocyte 

antigen-4 (CTLA4) engagement of CD80/86 or lymphocyte-activated gene 3 (LAG3) 

engagement of MHCII64. 

1.3 Organ Transplantation 

1.3.1 Pharmacological immunosuppressants 

Organ transplantation is a life-saving procedure for patients with organ failure. Historically, there 

had been many unsuccessful attempts to transplant various organs from both other humans and 

animals to patients with organ failure, the first of which was xenotransplantation of goat and pig 

kidney into to patients performed by Mathieu Jaboulay in 190665. While Jaboulay did develop 

the basic vascular anastomosis technique that was critical for successful organ transplantation, he 

(nor anyone at the time) did not understand the importance of immune tolerance of transplanted 

organs. 

 There are now currently many pharmacological agents used in transplantation to both 

induce and maintain tolerance. These include: the calcineurin inhibitors (CNIs) cyclosporine and 

tacrolimus; the mechanistic target of rapamycin (mTOR) inhibitors rapamycin (RAPA, or 

sirolimus) and RAPAlogs such as everolimus; mycophenolic acid, a guanosine nucleotide 

synthesis inhibitor; and biological agents such as antibody (Ab)-based therapies like basiliximab 
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(anti-CD25) and alemtuzumab (anti-CD52), and fusion proteins like belatacept. These agents are 

usually given as a combination regimen, along with anti-inflammatory steroids 66.  

 CNIs inhibit T cell proliferation by preventing T cell activation. The rate-limiting step in 

T cell activation following TCR ligation is activity of the serine-threonine phosphatase 

calcineurin. Cyclosporine inhibits this phosphatase by complexing with cyclophilin. Tacrolimus 

inhibits calcineurin by complexing with the12 kDa FK506 binding protein (FKBP12). Generally, 

tacrolimus is a more potent immunosuppressant than cyclosporine67. 

 RAPA and RAPAlogs inhibit mTOR, a central nutrient-sensing kinase that regulates cell 

growth, proliferation, protein synthesis and ribogenesis. Therefore, RAPA is able to inhibit cell 

proliferation/activation responses such as T cell proliferation in response to IL-2. It is important 

to note that the effects of RAPA are not restricted to lymphocytes68. 

 MPA prevents the de novo synthesis of the guanosine nucleotide by inhibiting its 

requisite enzyme, inosine monophosphate dehydrogenase. This effectively blocks cell 

proliferation by preventing nucleotide synthesis. MPA is lymphocyte-specific, as lymphocytes 

are the only cell type to not have alternate guanosine synthesis pathways. MPA is not as potent 

an immunosuppressant as CNIs or RAPA69. 

Ab-based therapies are often used as induction therapies, i.e. perioperatively or 

prophylactically. While anti-thymocyte globulins (ATG) was commonly used in induction 

therapies, it has since fallen out in favor of monoclonal Abs that can target more specific 

lymphocyte populations. Basiliximab targets the IL-2 receptor (CD25), which is only expressed 

on activated T cells, while alemtuzumab specifically targets active, circulating T and B cells70. 

Contrary to Ab induction therapies, fusion proteins like belatacept are showing promise as 

maintenance immunosuppressants. Belatacept is composed of the Fc fragment of IgG1 and the T 
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cell co-inhibitory molecule extracellular domain of cytotoxic T-lymphocyte associated protein 4 

(CTLA-4), and acts to block T cell activation specifically71.          

1.3.2 Cell therapy in transplantation 

Another approach being developed to induce/maintain transplant tolerance is cell-based therapy. 

The basic principle of this approach is to administer cells with regulatory properties to transplant 

recipients in order to promote a regulatory host immune response. To date, clinical trials for cell 

therapy in transplantation have included administration of bone marrow hematopoietic stem 

cells, mesenchymal stem cells, and regulatory immune cells.  

While different transplant centers have varying specific protocols for hematopoietic stem 

cell therapy, generally bone marrow chimerism is achieved through a conditioning regimen of 

irradiation to deplete recipient lymphocytes followed by stem cell infusion. Post-transplant, 

pharmacological immunosuppressants are used and eventually the patient is weaned from these 

drugs. Groups at Stanford, Northwestern, and Massachusetts General Hospital have used this 

general regimen with varying amounts of success in terms of maintaining chimerism following 

both HLA-matched and mismatched kidney transplant72.  

Mesenchymal stem cells (isolated from adipose tissue, bone marrow, or umbilical cord) 

are not used to induce chimerism, but rather to function in vascular repair and inflammation 

reduction. These stem cells have been demonstrated to have immunomodulatory functions on T 

cells, B cells, DC, and natural killer cells, and have shown promise as either a replacement for 

anti-IL-2 induction therapy or as a way to minimize pharmacological immunosuppressant 

dosing73. 
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  As regulatory immune cells (such as Treg) are known to be important for restraining 

inflammatory immune responses, groups have also tried to expand the populations of these 

regulatory cells in order to shift recipient immunity to a more regulatory nature. For example, the 

ONE Study includes eight transplant centers from around the world (including the US) and will 

measure the effect of Treg administration to random patients on an identical immunosuppression 

protocol74.  

1.3.3 Limitations of current immunosuppressive regimens 

Current immunosuppressive regimens prevent acute rejection effectively, with around only 10-

15% of deceased donor kidney transplants rejecting within one year of transplantation75. 

However, these regimens do not effectively prevent chronic/long-term rejection—only 54% of 

transplanted kidneys are functional 10 years post-transplant76. With a shortage in suitable organs 

available for transplant (there are currently 75,000 active waiting list patients in the US77), there 

is a real need to improve the long-term efficacy of immunosuppressants in transplant.  

 In addition, there are also many adverse side effects ascribed to current 

immunosuppressants. Immunosuppression in general can increase the risk of infection 

(especially cytomegalovirus) and malignancy. CNIs can induce nephrotoxicity, neurotoxicity, 

and diabetes. MPA may cause gastric distress. While mTOR inhibitors have lower 

nephrotoxicity and incidence of diabetes than CNIs, they can impair wound healing, as well as 

cause fatal alveolar inflammation in the lungs. mTOR inhibitors are usually used as an 

alternative to CNIs in patients with renal failure or in patients that develop malignancies66.  
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1.4 mTOR Signaling in DC 

1.4.1 mTORC1 

mTOR complex 1 (mTORC1 or TORC1) is one of the complexes the serine-threonine kinase 

mTOR is known to function in. mTORC1 consists of mTOR, regulatory-associated protein of 

mTOR (Raptor), DEP domain-containing mTOR-interacting protein (Deptor), mammalian lethal 

with SEC13 protein 8 (mLST8), and proline-rich Akt substrate of 40kDa (PRAS40)78. 

Canonically, RAPA specifically inhibits mTORC1. 

1.4.1.1 Upstream activators mTORC1 activity is dependent on nutrient availability, in 

particular amino acids such as leucine. Nutrient availability acts in synch with growth factors 

such as insulin to induce intracellular signaling upstream of mTORC1. Specifically, growth 

factors will activate PI3K and its downstream target Akt. Akt will then phosphorylate 

tubersclerosis complex (TSC) 2. TSC2 is a guanosine triphosphate (GTP)-ase activating protein 

(GAP) homolog which when heterodimerized with TSC1 exerts GAP activity on Ras homolog 

enriched in brain (Rheb). These phosphorylation events inhibit the GAP activity of TSC1/2, thus 

allowing GTP-bound Rheb to activate mTORC1 through a currently unknown mechanism. In 

contrast, nutrient deprivation will inhibit mTORC1 activity. This can be attributed in part to the 

differential phosphorylation of TSC2 by AMP-activated protein kinase (AMPK) and glycogen 

synthase kinase 3 (GSK3). In this way, Akt and AMPK exert opposing effects on mTORC1 

activity79. 
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1.4.1.2 Regulation of cell growth Activated mTORC1 positively regulates cell growth by 

promoting anabolic protein synthesis and lipogenesis and inhibiting anabolic processes. 

mTORC1 positively regulates protein synthesis through its downstream effectors eukaryotic 

initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and p70 ribosomal S6 kinase 1 (S6K1), 

which increase messenger ribonucleic acid (mRNA) synthesis and cap-dependent translation. 

Also downstream of mTORC1 are sterol regulatory element binding protein 1 (SREBP1) and 

peroxisome proliferator-activated receptor-γ (PPARγ), transcription factors that positively 

regulate lipid homeostasis80.   

 

1.4.1.3 Regulation of immune function It is also now becoming appreciated that mTORC1 

integrates signals from the immune microenvironment to dictate DC maturation and function. As 

RAPA as been shown to inhibit macropinocytosis in APCs, it has been suggested that mTORC1 

may regulate Ag uptake by DC. Administration of RAPA to bone marrow-derived DC also 

inhibits their maturation, as marked by decreased expression of co-stimulatory molecules and 

decreased cytokine production. Monocyte-derived DC generated in the presence of RAPA also 

do not fully mature, and have regulatory properties correlated with their decreased overall 

cytokine production. Interestingly, both bone marrow-derived and peripheral DC stimulated with 

LPS in the presence of RAPA have enhanced IL-12 production as a result of increased GSK3 

activity. However, only peripheral DC have enhanced Th1/Th17 polarizing capacity in these 

conditions81. 

1.4.1.4 Regulation of metabolism Aside from its function in cell growth and 

immunomodulation, mTORC1 is also regarded as a master regulator of cell metabolism. 
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mTORC1 alters the physical interaction of PPARγ co-activator 1 (PGC1-α) and yin-yang 1 

(YY1), which together transcriptionally regulate both mitochondrial biogenesis and 

metabolism79. In DC specifically, it has recently been demonstrated that commitment to aerobic 

glycolysis upon TLR stimulation is dependent on the PI3K/mTORC1 signaling pathway driving 

the expression of inducible nitric oxide synthetase (iNOS) and hypoxia-inducible factor 1 (HIF-1 

α)82.  

1.4.2 mTORC2 

mTOR complex 2 (mTORC2 or TORC2) is the other complex the serine-threonine kinase 

mTOR is known to function in. mTORC2 consists of mTOR, rapamycin-insensitive companion 

of mTOR (Rictor), Deptor, protein observed with Rictor (Protor), mLST8, and mammalian 

stress-activated MAP kinase-interacting protein 1 (mSIN1). Canonically, mTORC2 is insensitive 

to RAPA83.  

1.4.2.1 Upstream activators and downstream targets To date, the upstream regulators of 

mTORC2 are not defined. Unlike mTORC1, Rheb is not an upstream activator of mTORC2. 

Furthermore, how or even if mTORC2 is regulated by extracellular cues is unknown. It has been 

demonstrated that insulin can activate mTORC2, but only if the complex contains two specific 

SIN isoforms84. There is also evidence that in human embryonic kidney (HEK) 293 T cells 

mTORC2 can be directly activated by phosphatidylinositol 3,4,5-trisphosphate 

(PtdIns(3,4,5)P3)85. In yeast, TORC2 has been shown to be regulated in part by cell membrane 

tension, and there have been some studies suggesting this may also be the case in mammalian 

cells, as cell stretching induces mTORC2-dependent phosphorylation of Akt on the Ser473 site. 
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However, this is controversial as in addition to cell membrane localization, mTORC2 has also 

been described as being localized to the mitochondrial membrane, the endoplasmic reticulum 

(ER), and the lysosome86. 

 Active mTORC2 is known to phosphorylate multiple protein kinase (PK) A, PKC, and 

PKG family kinases, including Akt, PKCα, and serum/glucocorticoid regulated kinase 1 (SGK1). 

However, elucidating the complete downstream effector pathways of mTORC2 has remained 

difficult, as these phosphorylation events don’t impact kinase activity so much as substrate 

specificity. Nonetheless, it has been demonstrated that deletion/knockdown of Rictor (which 

prevents mTORC2 assembly and this abolishes its activity) in DC may decrease phosphorylation 

of FOXO1 at the Ser256 site87 and GSK3β at the Ser9 site88. 

  

1.4.2.2 Regulation of immune function Unlike mTORC1, a specific pharmacological inhibitor 

of mTORC2 has not yet been identified. This, in conjunction with mTORC2 only having been 

identified in 2007, has lead to a paucity of knowledge regarding the specific biological functions 

of this complex. Using small interfering RNA (siRNA) against Rictor, Brown et al. showed 

mTORC2 negatively regulates inflammatory responses in DC87. More recently, our lab generated 

a transgenic mouse model in which Rictor is deleted specifically in CD11c+ cells (TORC2DC-/- 

mice) 89, and using this model we have made great advancements in understanding the 

immunological function of mTORC2 in DC. 

 TORC2DC-/- generated from bone marrow display decreased PD-L1 and increased CD86 

expression, indicating an enhanced inflammatory phenotype. TORC2DC-/- also produce more IL-

6, IL-12p70, IL-23, and TNFα inflammatory cytokines than wild-type (WT) DC after stimulation 

with lipopolysaccharide (LPS), a TLR4 agonist. In addition, TORC2DC-/- are more stimulatory 
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than WT DC, inducing more T cell proliferation, as well as enhanced Th1/Th17 inflammatory 

effector T cell polarization88. Finally, intratumoral injection of TORC2DC-/- has been 

demonstrated to delay B16 melanoma growth progression due to the enhanced ability of these 

DC to activate CD8+ T cell responses90. Taken together, mTORC2 clearly has a role in 

restraining inflammatory DC responses.   

1.4.3 Interplay between mTORC1 and mTORC2 

Given mTORC1 is downstream of Akt, and mTORC2 phosphorylates Akt at the Ser473 site, it 

would follow that mTORC2 could be a positive regulator of mTORC1 activity. However, this 

becomes more complex when taking into account that mTORC1 inhibits its own activity via a 

feedback loop mediated by S6K activity on insulin receptors and insulin receptor substrate 1 

(IRS-1) and insulin-dependent PI3K signaling may be an activating factor for mTORC2 as well. 

In addition, it has been reported that phosphorylation of Akt on Ser473 may not be required for 

phosphorylation of TSC2 by Akt, which would place mTORC1 activity outside of mTORC2 

regulation. Finally, it has been suggested that mTORC2 may not be the only kinase capable of 

phosphorylating Akt on Ser47384. As more is learned about the upstream activators and complete 

downstream signaling pathways of mTORC2, the nature/existence of crosstalk between the two 

mTOR complexes may become more clear.   
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1.5 Metabolic Regulation of Dendritic Cell Function 

1.5.1 Aerobic glycolysis 

Aerobic glycolysis, also known as Warburg metabolism, was first described as an 

unconventional metabolic process observed in cancer cells, whereby they would convert glucose 

to lactate in the presence of oxygen, as opposed to non-malignant cells in which glucose is 

converted into pyruvate and lactose conversion occurs in the absence of oxygen91. However, it is 

now appreciated that non-malignant cells may also utilize aerobic glycolysis; this observation in 

immune cells has lead to the development of a new field of scientific study, immunometabolism.  

 Like other cells, quiescent DC utilize oxidative phosphorylation (OXPHOS) to meet their 

relatively low bioenergetic demands. However, activation leads to changes in these bioenergetic 

and biosynthetic needs. Therefore, successful DC activation is underpinned by metabolic 

regulation. It is now appreciated that upon TLR ligation, DC increase their reliance on aerobic 

glycolysis92. The initial “switch” of this process occurs within minutes of TLR agonism, and is 

dependent on the TANK (TRAF family member-associated NF-kappa-B activator)-binding 

kinase 1 (TBK1)/Inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKε)/Akt pathway, 

which in turn increases the association of the glycolytic enzyme hexokinase-II (HK-II) to the 

mitochondria. Functionally, this glycolytic switch permits DC to utilize glucose as a carbon 

source to increase pyruvate production, as pyruvate is the end product of glycolysis. In turn, 

pyruvate is utilized in the citric acid cycle (also known as the Kreb’s cycle and the tricarboxylic 

acid [TCA] cycle), leading to an increase in spare respiratory capacity (SRC) as well as cytosolic 

acetyl-CoA. The ultimate consequence of this enhanced aerobic glycolysis/TCA cycle by DC 
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appears to be de novo fatty acid synthesis, which most likely is crucial in supporting 

Golgi/endoplasmic reticulum (ER) expansion to facilitate protein synthesis and export93,94.  

 Following the initial glycolytic switch, DC also “double-down” and commit to increased 

glycolytic metabolism; after 12 hours of stimulation through TLRs, DC almost exclusively use 

aerobic glycolysis metabolically. In bone marrow-derived DC (BMDC), this has been 

demonstrated to be a survival mechanism. Activation of the PI3K/mTORC1 signaling pathway 

following TLR ligation of DC promotes the expression of iNOS and HIF-1α. Nitric oxide (NO) 

produced by iNOS competes with oxygen along the electron transport chain (ETC), effectively 

inhibiting the cell from using oxidative OXPHOS to generate adenosine triphosphate (ATP). 

Meanwhile, HIF-1α promotes the expression of glucose transporters, which permit DC to 

increase glycolytic activity and thereby meet ATP demands82.  

1.5.2 Lipid metabolism 

DC utilize both catabolic and anabolic lipid metabolism in the form of fatty acid oxidation 

(FAO) and fatty acid synthesis (FAS), respectively. Quiescent DC utilize FAO to drive 

OXPHOS, with mitochondrial fatty acid β-oxidation being reduced upon DC activation92. Upon 

activation, DC will use FAS, which as described above is most likely critical for Golgi/ER 

expansion and subsequent protein synthesis and transport. FAS in TLR-stimulated DC also leads 

to increased lipid storage in the form of lipid droplets95. While in other cell types these neutral 

lipid stores can be used catabolically or anabolically, it is not yet clear what their function is in 

DC.    
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Figure 1. Overview of mitochondrial metabolism. 

The metabolic pathways involved in DC regulation are intertwined and have end products and intermediates that 

feed into other pathways. Outlined here are glycolysis (blue), the TCA (red), FAO (green), FAS (purple), and 

OXPHOS (orange). Acetyl-CoA from glycolysis feeds the TCA; citrate intermediate from the TCA leads to FAS. 

The long-chain fatty acids from FAS are broken down in FAO, which produces acetyl-CoA to feed the TCA. The 

co-enzymes NADH and FADH2 produced by the TCA and FAO act as electron donors for the ETC which creates an 

proton gradient across the mitochondrial membrane, powering ATP synthase (complex V) and driving OXPHOS.  
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1.5.3 Metabolic targeting in transplantation 

As more information is uncovered regarding the metabolic programs not just DC, but other 

immune cells utilize, metabolic targeting in a variety of disease states is being actively 

investigated. This approach is especially attractive as leukocytes have different metabolic 

profiles depending on their activation status; therefore, metabolic inhibitors may have cell 

specificity based on the bioenergetic demands of the target population. To date, there have been 

studies in which metabolic pathways were targeted in both bone marrow and solid organ 

transplantation96. 

 In the case of development of graft-versus-host disease (GVHD) following bone marrow 

transplant, high level Ag engagement by pathogenic donor T cells demands large amounts of 

ATP which these cells produce via FAO-mediated OXPHOS. Indeed, targeting FAO with the 

inhibitor etomoxir in a murine model of GVHD suppressed proliferation and induced apoptosis 

of pathogenic donor CD8+ T cells while not impacting normal graft reconstitution97. 

 In solid organ transplantation, donor-reactive lymphocytes are not persistently 

encountering donor Ag; therefore, their metabolic profile is characterized not by FAO but by 

enhanced aerobic glycolysis. However, as metabolic pathways feed into each other the future of 

metabolic inhibitor use in transplantation is most likely with a combination therapy. The 

glycolytic inhibitor 2-deoxyglucose (2-DG), in combination with the ETC complex I inhibitor 

metformin and the glutamine uptake/TCA cycle inhibitor 6-diazo-5-oxo-l-norleucine (DON), has 

been shown to effectively inhibit both CD4+ and CD8+ T cell proliferation and allograft rejection 

in mouse models of full-MHC mismatch heart and skin transplant. In addition, this therapy 

promoted Treg generation as Treg are more reliant on lipid metabolism98.   
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1.6 DC-Specific mTORC2 Knockout Mouse Model 

As no specific pharmacological inhibitor for mTORC2 has yet been identified, studies of this 

complex must either rely on siRNA knockdown of a mTORC2-specific protein vital for complex 

assembly (i.e. Rictor), or transgenic approaches such as gene knockout in the well-established 

Cre-lox system. Our lab has developed a C57/BL6 background transgenic mouse model in which 

the Rictor gene is selectively deleted in CD11c+ DC.  

 To generate these mice, we crossed Rictor loxP-flanked mice provided by Drs. Lee and 

Boothby of the University of Vanderbilt School of Medicine99 with B6.Cg-Tg(Itgax-cre)1-

1Reiz/J (CD11c-Cre) mice purchased from The Jackson Laboratory (Bar Harbor, ME). The 

CD11c-Cre mice harbor a bacterial artificial chromosome (BAC) transgene that expresses Cre 

recombinase in control of the CD11c promoter and enhancer regions within the BAC transgene. 

In this system, Cre recombination is detectable in 95% of CD11c+ DC residing in both lymphoid 

and non-lymphoid tissues, and about 50-80% of pDC100. The genotype of these mice (herein 

referred to as TORC2DC-/-) was confirmed by polymerase chain reaction (PCR) and confirmed by 

Western blot88. 

1.7 Murine Models of Transplantation 

1.7.1 Skin grafting 

Skin grafts are the oldest form of organ transplantation, having been recorded to have taken place 

since the 6th Century BCE by the ancient Hindu physician Sushruta in one of the first works on 
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surgery and medicine, the Sushruta Samhita. In fact, the forehead flap rhinoplasty he describes is 

still used by plastic surgeons today101. The mouse model of full-thickness skin grafting has been 

employed for almost 100 years, decades before Nobel-Prize winner George Snell identified 

“histocompatibility genes” in mice and Peter Medawar revealed the rules of acceptance by 

autologous skin grafts and rejection of heterologous skin grafts in mice and rabbits102-104. In this 

model, recipient T cells are activated by DC from the donor graft presenting self-Ag (direct 

pathway), recipient DC presenting donor Ag on self-MHC (indirect pathway), and recipient DC 

presenting intact donor MHC-Ag (semi-direct pathway)105. The donor skin can either be 

prepared from the tail of the donor or from lateral thoracic skin (herein referred to as full-

thickness skin grafts), with the latter providing a more robust model of rejection due to the 

higher density of LC and dermal DC present within this type of graft106. Graft failure can be 

monitored subjectively as the percentage of the graft that becomes necrotic and objectively by 

measuring graft shrinkage.    

1.7.1.1 Major histocompatibility (MHC) mismatch model Full MHC mismatch skin grafts in 

mice involves grafting skin from a mouse of one strain background onto that of a different strain 

background. For these studies, the MHC mismatch model employed utilized skin isolated from 

either wild-type control (herein referred to as Ctrl) or TORC2DC-/- mice with a C57BL/6 

background (herein referred to as B6) grafted onto mice with a BALB/c background. These 

strains are both MHC1 and MHCII disparate, with C57BL/6 mice being haplotype b and 

BALB/c mice being haplotype d.   

1.7.1.2 Minor histocompatibility Ag (m-Ag) mismatch models MHC-matched skin grafts that 

contain minor histocompatibility mismatches can also be used as a model of rejection. In this 



 25 

model, however, rejection takes longer and in some cases, depending on the m-Ag mismatch, 

may not reject. For these studies, one of the m-Ag mismatch model used was skin isolated from 

male Ctrl or TORC2DC-/- mice with a B6 background and grafted onto female mice with a B6 

background. Rejection in this model is mediated by the expression of male H-Y Ag on the donor 

skin, and is referred to herein as HY-mismatch107. This model allowed us to assess the function 

of mTORC2 in DC in direct Ag presentation. 

 The other mode of m-Ag mismatch utilized in these studies was skin from ovalbumin-

expressing mice on a B6 background onto either Ctrl or TORC2DC-/- mice with a B6 background. 

Rejection of this model is driven by the expression of chicken-derived ovalbumin on the donor 

skin108. This model allowed us to assess the function of mTORC2 in DC in indirect Ag 

presentation.   

1.7.2 Heterotopic heart transplantation 

Heterotopic heart transplantation (HHT) in mice is a vascularized model of rejection that is less 

robust than skin grafting but more challenging to perform. Unlike orthotopic heart 

transplantation in which the recipient heart is replaced, in HHT the recipient heart remains in 

place, with the transplanted heart being placed in a different location. The two most common 

types of HHT are the cervical and abdominal models. In the abdominal HHT model, the donor 

thoracic aorta is anastomosed end-to-side to the recipient infrarenal abdominal aorta, and the 

donor pulmonary artery is anastomosed to the recipient inferior vena cava. In the cervical HHT 

model, the donor thoracic aorta is anastomosed to the recipient common carotid artery, and the 

donor pulmonary artery is anastomosed to the recipient external jugular vein. Graft failure is 



 26 

monitored subjectively as a beating score; this is graded from 0-4, with 0 indicating the graft has 

stopped beating and 4 indicating the graft is beating strongly. 

 For these studies, we utilized the cervical HHT method, as this method is less invasive 

than the abdominal HHT procedure and the transplanted heart is more accessible in regards to 

monitoring beating strength109. The model used was the m-Ag HY-mismatch model, in which the 

donor heart was isolated from male Ctrl or TORC2DC-/- mice with a B6 background and grafted 

onto female mice with a B6 background.    



 27 

2.0  Statement of the Problem 

Currently in the United States, there are 75,000 total waiting list candidates for life-saving organ 

transplantation. However, from 2014-2015, only 2,577 of these surgeries were performed, with 

21 people dying every day due to an incredible shortage of transplantable organs. This shortage 

is exacerbated by the number of transplant recipients whose grafts fail due to chronic rejection 

and need to be replaced—for example, within 10 years only 54% of transplanted kidneys are still 

functioning, and annually over 20% of kidney transplants are re-transplantations. In order to 

increase the transplantable organ pool, there is clearly a critical need to improve 

immunosuppressive regimens of transplant recipients. In order to drive development of more 

effective immunosuppressants, a more detailed understanding of how the targets of current drugs 

mediate graft rejection/tolerance is necessary. 

One immunosuppressant currently used to prevent graft rejection is rapamycin. 

Rapamycin is an allosteric inhibitor of the mTOR, a nutrient sensor with serine-threonine kinase 

activity that regulates cell growth, metabolism, and proliferation, as well as immune cell 

function. mTOR is known to function in two discrete complexes: rapamycin-sensitive mTORC1 

and rapamycin-insensitive mTORC2. The function of mTORC1 in DC has been studied 

extensively using the immunosuppression pro-drug RAPA. RAPA inhibition of mTORC1 in DC 

prevents DC maturation, leading to decreased T effector cell proliferation and increased Treg 

differentiation. While little was known previously about the function of RAPA-insensitive 

mTORC2 in DC, we have shown recently that functional mTORC2 deletion specifically in DC 

leads to both an enhanced pro-inflammatory DC phenotype and Th1/Th17 allogeneic T cell 

polarization and proliferation. Additionally, intratumoral delivery of mTORC2-deficient DC 



 28 

delays melanoma progression in a CD8+ T cell-dependent manner. However, the mechanisms 

underlying these enhanced DC functions remains undefined. In addition, how selective targeting 

of mTORC2 impacts transplant outcome has not been investigated.  

 It is also now appreciated that metabolic programming, in part regulated by mTOR, is a 

key regulator of immune cell function; namely mTORC1 activity promotes aerobic glycolysis, 

which is necessary for T cell and DC activation and promotes cytokine/co-stimulatory molecule 

production and survival in these cells. Indeed, recent studies have employed glycolytic inhibitors 

to prevent effector T cell differentiation and prevent graft rejection in mouse models of skin and 

heart transplantation. However, the role mTORC2 may have in regulating DC metabolism has 

yet to be defined.      

Given the inflammatory phenotype of mTORC2-deficient DC, we hypothesized deletion 

of mTORC2 in DC would accelerate graft rejection and lead to enhanced recipient effector T cell 

responses. We also posited that the inflammatory phenotype of mTORC2-deficient DC may be 

the result of an altered metabolic program, wherein aerobic glycolysis was enhanced in these 

cells. To address these hypotheses, we utilized several different model of acute rejection in 

which TORC2DC-/- mice were used as graft donors or recipients. We also generated BMDC from 

these mice for metabolic analyses. The results of these studies demonstrate a clear role for 

mTORC2 in linking DC function and metabolism, and will have implications for understanding 

the impact of conventional and new generation mTOR inhibitors on immune cell function in the 

context of transplantation and other disorders.    
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3.0  mTORC2 Deficiency in Passenger DC Accelerates Graft

Rejection 

3.1 Introduction 

There is evidence that mTOR controls T helper (Th) Th cell differentiation through selective 

activation of signaling by mTORC1 and mTORC2110, that mTORC1 and mTORC2 selectively 

regulate CD8+ T cell differentiation111 and that mTORC2 controls CD8+ T cell memory 

differentiation112. While it has been reported that selective mTORC1 disruption in mouse 

peritoneal macrophages reduces inflammation113 and that mTORC1 deficiency in intestinal 

dendritic cells (DC) enhances CD86 expression and suppresses IL-10 production114, we have 

shown88 that deletion of mTORC2 in bone marrow (BM)-derived DC leads to an enhanced pro-

inflammatory phenotype. These DC lacking mTORC2 promote allogeneic Th1/Th17 polarization 

and proliferation in vitro, as well as augmented antigen (Ag)-specific Th1/Th17 responses in 

vivo88. However, how the absence of mTORC2 activity specifically in DC might impact their 

function, host T cell responses and graft survival in transplant recipients has not been 

investigated. 

 Here, we utilized mice in which Rictor, an essential component of mTORC283, was 

knocked out specifically in conventional CD11c+DC (TORC2DC-/-)89. To determine how deletion 

of mTORC2 in DC impacts direct Ag presentation and transplant outcome, we utilized a cervical 

HHT model and full-thickness skin transplant model in which donor tissue from either B6 male 

(M) Ctrl or TORC2DC-/- mice was transplanted to B6 female (F) mice. We also utilized a full 

MHC-mismatch skin transplant model, in which skin from either B6 Ctrl or TORC2DC-/- mice 
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was grafted onto BALB/c mice, to determine if donor Ag-specific T cell precursor frequency 

affected the impact of mTORC2 deletion in donor DC. In addition, we also investigated how 

mTORC2 deletion in DC impacts indirect Ag presentation and transplant outcome utilizing an 

established model of indirect Ag presentation-mediated acute rejection115 in which skin from 

global transgenic (tg) OVA-expressing B6 mice was grafted onto either B6 Ctrl or TORC2DC-/- 

mice. Here, we demonstrate that TORC2DC-/- donors, but not recipients, leads to accelerated graft 

failure and more severe rejection, characterized by enhanced CD8+ T cell activation and 

inflammatory cytokine production.  

3.2 Methods

3.2.1 Mice 

Male and female B6.CD11c-CreRictorf/f (herein referred to as TORC2DC-/-) mice were generated 

by crossing C57BL/6 (B6; H2b) mice in which Rictor was flanked by loxP restriction digest sites 

(generously provided by Drs Keunwook Lee and Mark Boothby, Vanderbilt University School 

of Medicine) with B6 mice expressing Cre recombinase on the CD11c promoter (CD11c-Cre; 

The Jackson Laboratory). The genetic background of crossed mice was verified by PCR 

genotyping; CD11c-Cre- littermates were used as negative controls. C57BL/6-Tg(CAG-

OVA)916Jen/J (herein referred to as OVA+) mice were generously provided by Drs. D. M. 

Rothstein and F. G. Lakkis (University of Pittsburgh). Female BALB/cByJ mice (herein referred 

to as BALB/c) were purchased from The Jackson Laboratory. All studies were performed 
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according to an Institutional Animal Care and Use Committee-approved protocol (16058226) 

and in accordance with National Institutes of Health (NIH) guidelines. 

 

3.2.2 Heterotopic heart transplantation and rejection grading 

Recipient mice were anesthetized with Ketamine/Xylazine. Fur was removed by shaving and the 

surgical area was sterilized with Betadine and 70% ethanol. The mice were covered with sterile 

gauze and placed in the supine position, with the head opposite the surgeon. The head was 

immobilized with a rubber band holding the upper incisor teeth of the animal to the operating 

board. A midline incision was made over the right side of the neck from the sternum to the lower 

mandible. The right external jugular vein (EJV) was dissected and mobilized. The right carotid 

artery (CA) was exposed and mobilized as far as possible, without causing transection of the 

sternomastoid muscle. The proximal portion of the CA and the EJV were then occluded with 

plastic microhemostat clamps. Both of the distal portions of the CA and EJV were ligated with 8-

0 silk. The vessels that were close to the distal ties were cut. Then the proximal ends were 

irrigated with heparinized normal saline (HNS). The right CA is then passed through a plastic 

cuff (outside diameter, 0.6 mm; inside diameter, 0.35-0.45 mm). By pulling the divided CA with 

forceps, the proximal end of the CA was everted over the cuff and fixed to it with a 

circumferential ligature of 9-0 silk.  The right EJV was passed through a plastic cuff (outside 

diameter, 0.80 mm; inside diameter 0.55-0.65mm). The edge of the EJV was pulled so that the 

proximal end of the vein is everted over the cuff. The edge of the vein was then fixed to the cuff, 

using a circumferential ligature of 9-0 silk. 
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Donor mice were anesthetized with Ketamine/Xylazine and the surgical area was 

sterilized Betadine and 70% ethanol. A midline abdominal incision was made, and HNS (0.5 ml) 

injected into the inferior vena cava (IVC). After 1 min, the IVC was ligated proximally with 8-0 

silk, a bilateral thoracotomy performed, and the anterior chest wall pulled in a cranial direction. 

The thymus was removed and the superior vena cava (SVC) of the intrathoracic space was 

transected and ligated with 8-0 silk. The aorta (A) was then isolated and irrigated with 0.2ml 

HNS. The A was then proximally transected. The pulmonary artery (PA) was freed from the 

surrounding tissue and transected as distally as possible. The PA was then proximally transected. 

Both the A and PA are protected carefully for later usage. The lungs, pulmonary vein, trachea and 

esophagus were then carefully dissected and ligated with 7-0 silk. The donor heart was harvested 

and placed in ice-cold Ringer’s lactate solution until transplantation. 

The A of the donor heart was covered over the end of the CA and fixed to the arterial cuff 

with a circular ligature of 9-0 silk. The donor PA was covered over the end of the EJV and fixed 

to the venous cuff with a circular ligature of 9-0 silk.  The clamp on the EJV was released, 

followed by release of the clamp on the CA. Within approximately 1 min, the donor’s heart 

develops a sinus rhythm, and the incision was closed with the 5-0 Vicryl absorbable sutures. 

 To minimize pain and distress, animals were given a first dose of Buprenex (0.05 mg/kg 

s.c.) at the end of surgery and then every 12h for the next 2 days. Graft survival was monitored 

by daily palpation and graded on a 0-4 scale. Rejection was defined as complete loss of palpable 

heart beating (score 0).  
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3.2.3 Skin grafting and rejection grading 

Skin transplantation was performed according to the technique described by Billingham et al116, 

with some modifications 117. Recipient mice were anesthetized using ketamine and xylazine. 

Full-thickness grafts from lateral thoracic skin, cut into circular pieces (~2.25 cm2 in area), were 

grafted onto the lumbar region of recipients using 6-0 sutures. The recipients were then wrapped 

in sterile bandages. To minimize pain and distress, animals were given a first dose of Buprenex 

(0.05 mg/kg s.c.) at the end of surgery and then every 12h for the next 2 days.  

Skin grafts were grossly assessed every day after the removal of bandages on post-

operative day (POD) 7, with graft failure defined as >80% loss of visible viable tissue. H&E-

stained slides of skin grafts were assessed at POD 14 for the presence of vacuolar/follicular 

damage, diskeratosis, lichenoid infiltrate/interface dermatitis, vasculitis and thrombi. Banff 

rejection scores were determined by a ‘blinded’ dermatopathologist and based on established 

criteria 118,119, with scores ranging from 0 (no rejection) to 4 (severe rejection).    

 

3.2.4 Immunohistochemistry and immunofluorescence 

For immunohistochemistry, skin grafts were harvested on either POD 7 or 14 and fixed for 24h 

in 4% v/v paraformaldehyde (PFA). H&E, CD3 (Abcam; Cambridge, MA; clone # ab16669), 

CD4 (Abcam; ab183685) and Alcian blue staining was performed by the research histology core 

of the McGowan Institute for Regenerative Medicine, University of Pittsburgh. Quantitative 

analysis of immunohistochemical staining was performed using the FIJI ImageJ IHC Toolbox 

plug-in (NIH). 
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 For immunofluorescence, skin grafts were resected on POD 7, fixed in 4% v/v PFA for 

24h and embedded in OCT. Slides were stained for CD8 (eBioscience; Waltham, MA clone# 53-

6.7; 14-0081-85) or Ly6G/C (eBioscience; RB6-8C5; 14-5931-81) and counterstained with 

DAPI. Images were recorded at the Center for Biological Imaging, University of Pittsburgh, 

using an Olympus Provis fluorescent microscope (Ly6G/C) or an Olympus Fluoview 1000 

confocal microscope (CD8). 

3.2.5 Mixed leukocyte reaction (MLR), skin-resident leukocyte isolation, and flow 

cytometry 

Cells were harvested from the draining axillary LN of skin graft recipient mice on POD 5 or 7 as 

indicated and T cells isolated via negative immunomagnetic bead selection. The T cells were 

either 1.) Analyzed via flow cytometry following surface staining with mAb against CD3 

(eBioscience clone# 17A2), CD4 (eBioscience RM4-5), CD8 (eBioscience 2.43), PD-1 

(eBioscience J105) and intracellular staining for Foxp3 (BioLegend; San Diego, CA FJK-16s), 

with data acquired using a Fortessa flow cytometer (BD Biosciences, San Jose, CA) and 

analyzed using FlowJo (Tree Star, Ashland, OR) or 2.) Labeled with carboxyfluorescein 

succinimidyl ester (CellTrace CFSE) according to the manufacturer’s instructions (Invitrogen; 

Carlsbad, CA) and co-cultured with functionally mature splenic DC (1:10 DC: T cell ratio) 

isolated via immunomagnetic bead selection from donor-matched mice (either male B6, female 

B6, or OVAtg as indicated) that had been injected i.p. with 10μg of fms-like tyrosine kinase 3 

ligand per day for 10 d prior to DC isolation120. After 3 days of culture, IFNγ, IL-2, IL-4, and 

Granzyme-B levels in supernatants were determined by via enzyme-linked immunosorbent assay 

(ELISA) as per the manufacturer’s instructions (BioLegend, eBioscience (Granzyme-B)). 
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Cells were isolated from the skin grafts of recipient mice on POD 7 via a collagenase 

digestion. Grafts were incubated in 1mL of digestion media (Iscove’s Modified Dulbecco’s 

Media (IMDM; ThermoFisher 12440079), 1mg/mL Collagenase D, 1mg/mL DNase. 10mg/mL 

Hyaluronidase, and 0.1% BSA) for 45m at 37°C in a 6-well plate. 10mM EDTA was then added 

to each sample, and incubated at room temperature for 5m. Tissues were then rinsed with cold 

PBS + 0.2% BSA + 2mM EDTA, and crushed in a 70μm cell strainer to isolate graft-resident 

cells. Cells were then preincubated with Mouse BD Fc Block purified anti-mouse CD16/CD32 

mAb (BD Biosciences; San Jose, CA; clone# 2.4G2) for 5m on ice preceding viability staining 

performed according to manufacturer’s instructions (Zombie Aqua Fixable Viability Kit 423101, 

BioLegend; San Diego, CA) and surface staining for CD45.2 (eBioscience; Waltham, MA; 

clone# 104), (CD3 (eBioscience 17A2), CD4 (eBioscience RM4-5), CD8 (eBioscience 2.43), 

and PD-1 (eBioscience J105). Data were acquired using a Fortessa flow cytometer (BD 

Biosciences, San Jose, CA) and analyzed using FlowJo (Tree Star, Ashland, OR). 

 

3.2.6 Statistical analyses 

Results are expressed as means ± 1SD. Significances of differences between groups were 

determined via either Log-rank test (survival curves), Student's ‘t’-test, or one-way ANOVA 

Tukey’s multiple comparisons test  (GraphPad Prism) as indicated with p < 0.05 considered 

significant. 

 



 36 

3.3 Results

3.3.1 TORC2DC-/- cervical HHT donors have decreased graft function over time and 

increased cell infiltrate as compared to Ctrl HHT donors 

To determine if DC-specific mTORC2 deletion in donor organ would accelerate rejection, we 

transplanted hearts from either B6 M Ctrl or M TORC2DC-/- into B6 F mice heterotopically and 

assessed graft survival by monitoring beating score and looking at cellular infiltration into the 

graft at post-operative day (POD) 100 (Figure 2). While none of the grafts failed within the 100 

day monitoring period, H&E staining of the grafts at POD100 revealed increased cell infiltrate in 

the TORC2DC-/- donor group. From these data, we determined DC-specific mTORC2 deficiency 

may impact transplant outcome, but a model in which there were more DC within the donor 

tissue may be more appropriate for addressing our hypothesis. 
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Figure 2. TORC2DC-/- cervical HHT donors have decreased graft function over time and increased cell 

infiltrate as compared to Ctrl HHT donors. 

Hearts from B6 Ctrl M or B6 TORC2DC-/- M were transplanted heterotopically into B6 F and monitored for 100 

days, then harvested for H&E staining. (A) Beating score of the transplanted hearts over 100 days, with 4 denoting 

strong beating and 0 denoting cessation of beating. (B) H&E staining of the heart grafts at POD 100. 

 

3.3.2 HY-mismatched skin grafts from TORC2DC-/- donors exhibit more severe rejection 

As skin contains a more robust population of resident DC, we next determined if donor DC-

specific mTORC2 deletion impacted the survival of full-thickness skin transplants. We grafted 

trunk skin from either WT control B6 males (Ctrl M) or TORC2DC-/- B6 males (TORC2DC-/- M) 
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onto WT B6 males or females (Ctrl F). Ctrl M→ Ctrl M grafts were maintained intact up 60 days 

after which the experiment was terminated, while TORC2DC-/- M→ Ctrl F grafts failed 

significantly more rapidly than Ctrl M→ Ctrl F grafts (median graft survival times [MST] of 

22.5 and 17 days, respectively; Figure 3A). Grafts from TORC2DC-/- M donors were reduced 

significantly in size at various times post-transplant compared with those from Ctrl M donors 

(Figure 3B). Inspection of the grafts at POD 14 showed evidence of necrosis in the TORC2DC-/- 

M→ Ctrl F grafts (Figure 3C). While prior to transplant, TORC2DC-/- donor skin showed no 

morphological differences in the epidermis, dermis or hair follicles compared with normal Ctrl 

skin (Figure 3D), Banff scoring at POD 14 showed more severe rejection in the TORC2DC-/- 

M→ Ctrl F compared with the Ctrl M→ Ctrl F grafts (Figure 3E), as evidenced by (1) vacuolar 

damage, (2) diskeratosis, (3) interface dermatitis, (4) acantholysis, (5) vasculitis, and (6) thrombi 

(Figure 3F). While there was some vacuolar damage and interface dermatitis in the Ctrl M→ 

Ctrl M grafts, both the Ctrl M→ Ctrl F (especially) and TORC2DC-/- → Ctrl F grafts exhibited 

more severe vacuolar damage, as well as diskeratosis. While the Ctrl M→ Ctrl F grafts showed 

evidence of vasculitis, the TORC2DC-/- M→ Ctrl F showed thrombi and acantholysis. The 

histological appearance of grafts at POD 7 indicating early pathological changes in TORC2DC-/- 

M → Ctrl F grafts are shown in Figure 4. 
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Figure 3. HY-mismatched skin grafts from TORC2DC-/- donors exhibit more severe rejection. 

Male (M) or female (F) wild-type B6 mice were transplanted with full-thickness skin grafts from either B6 WT 

control M (Ctrl M) or B6 TORC2DC-/- M male donors. (A) Graft survival over time, n=3-8 mice per group; Log-

rank test, *, p < 0.05. (B) Skin graft size as a percentage of original graft size over time, n=6-8 mice per group; 

Student’s t-test, *, p < 0.05. (C) Representative gross morphology of skin grafts at post-operative day (POD) 10 and 

POD 14. (D) Representative H&E staining of normal naïve (non-transplanted) WT Ctrl and TORC2DC-/- trunk 

skin. (E) Banff rejection scores of skin grafts at POD 14, n=4; one-way ANOVA Tukey’s multiple comparisons test, 

*, p < 0.05. (F) Representative H&E staining of skin grafts at POD 14 showing the epidermal-dermal junction (E-D) 

and deep dermal layer (DD). Arrowheads indicate (1) vacuolar damage, (2) pathological diskeratosis, (3) lichenoid 

infiltrate/interface dermatitis, (4) pemphigoid acantholysis, (5) vasculitis and (6) thrombosis. 
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Figure 4. HY-mismatched skin grafts from TORC2DC-/- donors exhibit vacuolar damage and diskeratosis at 

POD 7, and reduced CD3+ cell numbers and more severe collagen degradation at POD 14 compared to grafts 

from WT donors. 

(A) Representative H&E staining of skin grafts at POD 7 showing the epidermal-dermal junction (E-D) and deep 

dermal layer (DD). Arrowheads in upper right hand panel indicate (1) vacuolar damage and (2) pathological 

diskeratosis; n=4 mice per group. (B) Representative staining for CD3+ cells in skin grafts at POD 14; n=3 mice per 

group. (C) Numbers of CD3+ cells and mean values in each group. *, p < 0.05: Student’s ‘t’ test. (D) Representative 

Alcian blue staining of skin grafts at POD 14, showing marked collagen degradation in recipients of TORC2DC-/- 

grafts 
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3.3.3 HY-mismatched skin grafts from TORC2DC-/- donors elicit enhanced CD8+ T cell 

graft infiltration as compared to WT Ctrl donors 

To characterize the role of host immune cells in graft failure, we first used 

immunohistochemistry (IHC) to identify CD3+ cells (Figure 5A; quantified in Figure 5B) and 

immunofluorescence staining to identify CD8+ cells (Figure 5C; quantified in Figure 5D) in 

skin graft at POD 7. While there were minimal CD3+ or CD8+ cells in the Ctrl M→ Ctrl M 

grafts, their numbers were increased significantly in the Ctrl M→ Ctrl F grafts. While the mean 

CD3+ T cell infiltrate was also increased in the TORC2DC-/- M→ Ctrl F grafts compared to the 

Ctrl M→ Ctrl M grafts, this difference was not significantly different from Ctrl M→ Ctrl F 

grafts. However, there was a significantly more marked CD8+ cell infiltrate in the TORC2DC-/- 

M→ Ctrl F compared with Ctrl M→ Ctrl F grafts, consistent with their accelerated rejection. By 

POD 14, absolute numbers of T cells detected in the TORC2DC-/- grafts were lower than those in 

Ctrl M grafts, coinciding with more extensive tissue injury/collagen degradation in the former  

(Figure 4).  
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Figure 5. HY-mismatched skin grafts from TORC2DC-/- donors elicit enhanced CD8+ T cell infiltration 

compared with grafts from WT Ctrl donors. 

Quantitative analysis of T cell infiltration in skin grafts from WT Ctrl and TORC2DC-/- donors was performed on 

POD 7. (A) Representative immunohistochemical staining for CD3+ cell (arrowheads); n=4 mice per group. (B) 

Numbers of CD3+ cells per high power field (hpf) in skin grafts; n=4 mice per group; one-way ANOVA Tukey’s 

multiple comparisons test, *, p < 0.05; **, p<0.01. (C) Representative staining for CD8+ cells (arrowheads); n=4 

mice per group (D) Numbers of CD8+ cells per hpf in skin grafts; n=4 mice per group; one-way ANOVA Tukey’s 

multiple comparisons test, *, p < 0.05; **, p<0.01.  
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3.3.4 HY-mismatched skin grafts from TORC2DC-/- donors exhibit enhanced CD8+PD-1+ 

T cell infiltrate compared with grafts from WT donors 

To further investigate the host T cell infiltrate into the graft, we used a collagenase digestion to 

isolate cells from the graft for analysis via flow cytometry. After gating on live (Zombie-) 

CD45.2+CD3+ cells, we quantified the total numbers of CD4+ T effector cells (CD4+Foxp3-), 

CD8+ T cells, and Treg (CD4+Foxp3+) (Figure 6A). As seen via IHC, there were minimal graft-

infiltrating T cells within the Ctrl M→ Ctrl M grafts. Both Ctrl M→ Ctrl F grafts and TORC2DC-

/- M→ Ctrl F grafts exhibited significant increases in CD4+ and CD8+ graft infiltrating T effector 

cells as well as an augmented ratio of Teff : Treg; however, the TORC2DC-/- M donors showed an 

enriched CD8+ T cell infiltrate as compared to Ctrl M→ Ctrl F. We also assessed expression of 

PD-1 on graft-infiltrating CD8+ T cells (representative histograms Figure 6B, quantified in 

Figure 6C). There were minimal CD8+PD-1+ T cells within the Ctrl M→ Ctrl M grafts, with 

significant increases in both the Ctrl M→ Ctrl F and TORC2DC-/- M→ Ctrl F grafts; however, 

there was a significant increase in the number of CD8+PD-1+ T cells in the TORC2DC-/- M→ Ctrl 

F grafts as compared to Ctrl M→ Ctrl F grafts. We did not observe any differences in the 

expression of PD-1 on PD-1+ cells between any of the groups. 
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Figure 6. HY-mismatched skin grafts from TORC2DC-/- donors exhibit enhanced CD8+PD-1+ T cell infiltrate 

compared with grafts from WT donors. 

Cells were isolated from skin grafts on POD7 via a collagenase digestion and analyzed via flow cytometry. T cells 

were gated on live (Zombie-) CD45.2+CD3+ cells. (A) Total numbers of CD4+Foxp3-, CD8+, and CD4+Foxp3+ cells 

within the graft. (B) Representative histograms of CD8+PD-1+ T cells within the graft. (C) Quantification of 

CD8+PD-1+ T cells within the graft (left) and MFI of PD-1 on PD-1+ cells (right). n=4 mice per group; one-way 

ANOVA Tukey’s multiple comparisons test, *, p < 0.05; **, p<0.01, ***, p<0.001, ****, p<0.0001. 
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3.3.5 Skin grafts from TORC2DC-/- donors elicit enhanced CD8+ T effector cell responses 

in regional LN and augmented IFNγ and IL-2 production in response to donor Ag 

stimulation 

To investigate the function of host T cells in graft recipients, we isolated T cells from the 

draining axillary LN on POD 7 for quantitative and functional analysis (Figure 7A). While there 

were significantly more CD4+CD25-Foxp3- T effector (Teff) cells and an increased ratio of CD4+ 

Teff: Foxp3+ (Treg) cells in the Ctrl M→ Ctrl F and TORC2DC-/- M→ Ctrl F graft recipients than 

in the Ctrl M→ Ctrl M group, there was no significant difference between the former two 

groups. However, as observed within the graft itself, there was a significant increase in CD8+ T 

cell numbers within the draining LN of the TORC2DC-/- M→ Ctrl F recipients compared with the 

M→ Ctrl F recipients (Figure 7A; center panel).  

Cytokine production by draining LN T cells after 3 days stimulation by DC from Flt3L-

mobilized normal male donors was measured by ELISA. As shown in Figure 7B, T cells from 

Ctrl F recipients of TORC2DC-/- M grafts produced significantly more IFNγ than those from Ctrl 

F recipients of normal Ctrl M grafts. Moreover, while M→ Ctrl F T cells produced more IL-2 

than the M→ Ctrl M T cells, TORC2DC-/- M→ Ctrl F T cells produced greater levels of IL-2 than 

either of those groups. There were no differences, however, in the very low levels of IL-4 

production between the groups. 
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Figure 7. HY-mismatched skin grafts from TORC2DC-/- donors elicit enhanced numbers of CD8+ T cells in 

draining LNs and augmented IFNγ and IL-2 production in response to donor Ag stimulation. 

T cells were isolated from the axillary LNs of skin graft recipients on POD 7. n=8 mice per group; one-way 

ANOVA Tukey’s multiple comparisons test, *, p < 0.05; **, p<0.01, ***, p<0.001, ****, p<0.0001. (A) Numbers 

of CD4+CD25-Foxp3- T effector (Teff) cells CD8+ T cells and the ratio of Teff: Treg (CD4+CD25+Foxp3+) cells. (B) 

Isolated T cells were co-cultured with splenic DCs isolated from Flt3L-mobilized male mice for 3 d. Quantification 

of IFNγ, IL-2, and IL-4 present in the supernatant. n=4 mice per group; one-way ANOVA Tukey’s multiple 

comparisons test, *, p < 0.05; **, p<0.01, ***, p<0.001, ****, p<0.0001. 
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3.3.6 MHC-mismatched skin grafts from TORC2DC-/- donors do not exhibit significantly 

accelerated rejection but do show evidence of rejection earlier than grafts from Ctrl donors 

We next wanted to determine if mTORC2 deficiency in donor skin DC would also enhance 

rejection in a full MHC-mismatch model, in which the frequency of precursor donor-reactive T 

cells was higher. To this end, we grafted trunk skin from either WT BALB/c, WT control B6  

(Ctrl B6), or TORC2DC-/- B6 (TORC2DC-/- B6) mice onto BALB/c mice. BALB/c→ BALB/c 

grafts were maintained intact up 30 days after which the experiment was terminated, while 

TORC2DC-/- B6→ BALB/c grafts and Ctrl B6→ BALB/c grafts did not have significantly 

different graft survival (MST of 8.0 and 9.2 days, respectively; Figure 8A). Inspection of the 

grafts at POD 5 and POD 7 showed evidence of advanced necrosis in both the TORC2DC-/- B6→ 

BALB/c and Ctrl B6 → BALB/c grafts (Figure 8B). Banff scoring at POD 5 showed more 

severe rejection in the TORC2DC-/- B6→ BALB/c grafts compared with the Ctrl B6→ BALB/c 

grafts (Figure 8C), as evidenced by (1) vacuolar damage, (2) diskeratosis, (3) thrombosis, and 

(4) vasculitis (Figure 8D). While there was some thrombosis in the BALB/c→ BALB/c grafts, 

both the Ctrl B6→ BALB/c and TORC2DC-/- B6→ BALB/c grafts exhibited more severe 

thrombosis (with the most severe observed in the TORC2DC-/- B6→ BALB/c grafts). In addition, 

while only the Ctrl B6→ BALB/c grafts showed evidence of vacuolar damage, diskeratosis and 

vasculitis were only observed in the TORC2DC-/- B6→ BALB/c grafts. 



 48 

 

Figure 8. MHC-mismatched skin grafts from TORC2DC-/- donors do not exhibit significantly accelerated 

rejection but do show evidence of rejection earlier than grafts from Ctrl donors. 

Wild-type BALB/c mice were transplanted with full-thickness skin grafts from either B6 WT control (Ctrl B6) or 

TORC2DC-/- B6 donors. (A) Graft survival over time, n=3-6 mice per group; Log-rank test, *, p < 0.05. (B) 

Representative gross morphology of skin grafts at post-operative day (POD) 5 and POD 7. (C) Banff rejection 

scores of skin grafts at POD 5, n=4; one-way ANOVA Tukey’s multiple comparisons test, *, p < 0.05. (D) 

Representative H&E staining of skin grafts at POD 5 showing the epidermal-dermal junction (E-D) and deep dermal 

layer (DD). Arrowheads indicate (1) vacuolar damage, (2) pathological diskeratosis, (3) thrombosis, and (4) 

vasculitis. 
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3.3.7  MHC-mismatched skin grafts from TORC2DC-/- donors do not elicit enhanced 

CD8+ T cell infiltration compared with grafts from WT Ctrl donors 

To characterize the role of host immune cells in graft failure, we first used IHC to identify CD3+ 

cells (Figure 9A; quantified in Figure 9B) and immunofluorescence staining to identify CD8+ 

cells (Figure 9C; quantified in Figure 9D) in skin graft at POD 5. While there were minimal 

CD3+ or CD8+ cells in the BALB/c→ BALB/c grafts, their numbers were increased significantly 

in the Ctrl B6→ BALB/c grafts. While the mean CD3+ T cell infiltrate was also increased in the 

TORC2DC-/- B6→ BALB/c grafts compared to the BALB/c→ BALB/c grafts, this difference was 

not significantly different from Ctrl B6→ BALB/c grafts. However, there was a significantly 

more marked CD8+ cell infiltrate in the TORC2DC-/- B6→ BALB/c compared with Ctrl B6→ 

BALB/c grafts, consistent with their accelerated rejection. 
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Figure 9. MHC-mismatched skin grafts from TORC2DC-/- donors do not elicit enhanced CD8+ T cell 

infiltration compared with grafts from WT Ctrl donors. 

Quantitative analysis of T cell infiltration in skin grafts from WT Ctrl and TORC2DC-/- donors was performed on 

POD 5. (A) Representative immunohistochemical staining for CD3+ cell (arrowheads); n=4 mice per group. (B) 

Numbers of CD3+ cells per high power field (hpf) in skin grafts; n=4 mice per group; one-way ANOVA Tukey’s 

multiple comparisons test, *, p < 0.05; **, p<0.01. (C) Representative staining for CD8+ cells (arrowheads); n=4 

mice per group (D) Numbers of CD8+ cells per hpf in skin grafts; n=4 mice per group; one-way ANOVA Tukey’s 

multiple comparisons test, *, p < 0.05; **, p<0.01.  
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3.3.8 MHC-mismatched skin grafts from TORC2DC-/- donors elicit enhanced number of 

CD8+ and CD8+PD-1+ T cells in draining LN compared with grafts from WT donors 

To investigate the function of host T cells in graft recipients, we isolated T cells from the 

draining axillary LN on POD 5 for quantitative analysis. We observed a significant increase in 

the number of CD4+Foxp3- T cells (Teff) in both the Ctrl B6 and TORC2DC-/- B6 donor groups as 

compared to the BALB/c donor group; however this number was not significantly different 

between the Ctrl and TORC2DC-/- group (Figure 10A; left panel). Both the Ctrl B6 and 

TORC2DC-/- B6 donor groups also exhibited increased numbers of CD8+ T cells with the LN, 

while the TORC2DC-/- donor group had significantly more CD8+ T cells than the Ctrl B6 donor 

group (Figure 10A; center panel). We did not observe any differences between groups 

pertaining to the ratio of Teff:Treg (Figure 10A; right panel). We also assessed the number of 

PD-1+ CD8+ T cells within the LN of graft recipients (representative histograms Figure 10B, 

quantified in Figure 10C). While there were minimal CD8+PD-1+ cells in BALB/c and Ctrl B6 

donor group, we observed a significant increase in the number of CD8+PD-1+ cells within the LN 

of the TORC2DC-/- B6 donor group. We did not observe any difference in expression of PD-1 on 

PD-1+ cells between any of the groups. 
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Figure 10. MHC-mismatched skin grafts from TORC2DC-/- donors elicit enhanced number of CD8+ and 

CD8+PD-1+ T cells in draining LN compared with grafts from WT donors. 

T cells were isolated from the axillary LNs of skin graft recipients on POD 5. (A) Numbers of CD4+CD25-Foxp3- T 

effector (Teff) cells, CD8+ T cells, and the ratio of Teff: Treg (CD4+CD25+Foxp3+) cells.  (B) Representative 

histograms of CD8+PD-1+ T cells within the LN. (C) Quantification of CD8+PD-1+ T cells within the LN (left) and 

MFI of PD-1 on PD-1+ cells (right). n=4 mice per group; one-way ANOVA Tukey’s multiple comparisons test, *, p 

< 0.05; **, p<0.01, ***, p<0.001, ****, p<0.0001. 
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3.3.9 MHC-mismatched skin grafts from TORC2DC-/- donors elicit enhanced proliferation 

of CD8+ T cells in draining LNs and augmented IFNγ and Granzyme-B production in 

response to donor Ag 

To further investigate the function of host T cells in graft recipients, we isolated T cells from the 

draining axillary LN of graft recipients on POD 5 for functional analysis. T cells were labeled 

with the cell proliferation dye CFSE, and co-cultured with B6 splenic DC to assess their 

proliferation and cytokine production in response to donor Ag. While there were no significant 

differences in the percentage of proliferating (CFSElo) CD4+Foxp3- T cells between groups 

(Figure 11A; top panel), nor the division index of CD4+Foxp3- T cells (Figure 11A; bottom 

panel), we did observe significant increases in the percentage of proliferating CD8+ T cells in 

both the Ctrl B6 and TORC2DC-/- B6 donor groups as compared to the BALB/c donor group 

(Figure 11B; top panel). In addition, the CD8+ T cell division index was augmented 

significantly in the TORC2DC-/- B6 donor group as compared to both the BALB/c→ BALB/c and 

Ctrl B6→ BALB/c groups (Figure 11B, bottom panel, representative histograms Figure 11C). 

Furthermore, while both the Ctrl B6 and TORC2DC-/- B6 donor groups had significantly elevated 

IFNγ, IL-2, and Granzyme-B production as compared to the BALB/c donor group in response to 

B6 antigen, T cells isolated from the TORC2DC-/- donor group also produced significantly more 

IFNγ and Granzyme-B as compared to the Ctrl B6 donor group. 
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Figure 11. MHC-mismatched skin grafts from TORC2DC-/- donors elicit enhanced proliferation of CD8+ T 

cells in draining LNs and augmented IFNγ and IL-2 production in response to donor Ag (B6) stimulation. 

T cells were isolated from the axillary LNs of skin graft recipients on POD 5. Isolated T cells were labeled with the 

cell proliferation dye CFSE, and co-cultured with splenic DCs isolated from B6 mice for 3 d. (A) Proliferation of 

CD4+Foxp3- T cells as measured by cellular CFSE content (top, percent dividing; bottom, division index). (B) 

Proliferation of CD8+ T cells as measured by cellular CFSE content (top, percent dividing; bottom, division index). 

(C) Quantification of IFNγ, IL-2, and Granzyme-B within the supernatant. n=4 mice per group; one-way ANOVA 

Tukey’s multiple comparisons test, *, p < 0.05; **, p<0.01, ***, p<0.001, ****, p<0.0001. 
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3.3.10 Skin graft rejection is not affected in TORC2DC-/- recipients 

Having observed that mTORC2 deficiency in donor DC led to accelerated minor H Ag-

mismatched skin graft rejection, we next investigated whether, conversely, mTORC2 deficiency 

only in recipient DC might also affect graft rejection. To address this question, we grafted trunk 

skin from either B6 WT Ctrl mice (OVA-) or OVAtg mice (OVA+) onto syngeneic B6 WT Ctrl 

or TORC2DC-/- mice. While all OVA- → Ctrl grafts remained intact after 25 days, the MST for 

OVA+ → TORC2DC-/- and OVA+ → Ctrl grafts were 16.5 days and 18.5 days, respectively and 

did not differ significantly (Figure 12A). The OVA+ grafts were reduced slightly but 

significantly in size at days 21 and 23 post-transplant in TORC2DC-/- compared to Ctrl recipients 

(Figure 12B). Gross morphology of the grafts on POD 14 showed more extensive necrosis of 

both the OVA+ → Ctrl and OVA+ → TORC2DC-/- grafts compared to those from OVA- donor 

mice (Figure 12C). Banff rejection criteria confirmed similar levels of rejection in the OVA+ → 

TORC2DC-/- and OVA+ → Ctrl grafts at POD 14 (Figure 12D), as evidenced by (1) vacuolar 

damage, (2) diskeratosis, (3) interface dermatitis, and (4) vasculitis (Figure 12E). While some 

vacuolar damage was noted in the OVA- → Ctrl grafts, both the OVA+ → Ctrl and OVA+ → 

TORC2DC-/- grafts exhibited more severe vacuolar damage, as well as diskeratosis and vasculitis.  
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Figure 12. Skin graft rejection is not affected in TORC2DC-/- recipients. 

B6 WT Ctrl or B6 TORC2DC-/- mice received full-thickness skin grafts from either B6 OVA- or B6 OVA+ mice. (A) 

Graft survival over time; n=3-8 mice per group, Log-rank test.  (B) Size of skin grafts as a percentage of original 

size over time; n=3-8 mice per group Student’s t-test, *,  p < 0.05. (C) Representative gross morphology of skin 

grafts at POD 7 and 14. (D) Banff scores of skin grafts at POD 14; n=3 mice per group, Student’s t-test, *,  p < 0.05. 

(E) Representative H&E staining of skin grafts at POD 14 showing the epidermal-dermal junction (E-D; above) and 

deep dermal layer (DD; below). Arrowheads indicate (1) vacuolar damage, (2) pathological diskeratosis, (3) 

lichenoid infiltrate/interface dermatitis and (4) vasculitis. 
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3.3.11 OVAtg skin grafts in TORC2DC-/- recipients do not exhibit enhanced T cell 

infiltrates 

As with the skin transplants from TORC2DC-/- donors in WT recipients, we assessed the T cell 

response to OVAtg grafts in TORC2DC-/- recipients. Grafts were stained for CD3+ (Figure 13A; 

quantified in Figure 13B) and CD8+ cells (Figure 13C; quantified in Figure 13D) on POD 7 to 

characterize and quantify the T cell infiltrate. There were no differences in numbers of CD3+ or 

CD8+ cells between the OVA+ → Ctrl and OVA+ → TORC2DC-/- grafts. There were also no 

differences in numbers of CD3+, CD4+, CD8+, B220+ or Ly6G/C+ cells in secondary lymphoid 

tissue or in the Teff:Treg ratio or the low cytokine production by T cells between the groups 

(Figures 14 and 15). Thus, in contrast to transplants from TORC2DC-/- donors in WT recipients, 

grafts from WT donors to TORC2DC-/- recipients did not exhibit augmented T cell responses or 

increased tissue injury. 
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Figure 13. OVAtg skin grafts in TORC2DC-/- recipients do not elicit augmented T cell infiltration into the graft 

T cell infiltration was analyzed in skin grafts from WT and TORC2DC-/- donors on POD 7. (A) Representative 

staining for CD3+ cells (arrowheads); n=6 mice per group. (B) Numbers of CD3+ cells (red) per high power field 

(hpf); n=6 mice per group; NS = not significant; Student’s t-test. (C) Representative staining for CD8+ cells 

(arrowheads); n=6 mice per group. (D) Numbers of CD8+ cells; n=6 mice per group. Student’s t-test.  
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Figure 14. OVAtg skin grafts in TORC2DC-/- recipients do not enhance T cell numbers in the regional LNs 

and, in response to donor antigen, these T cells do not produce increased IL-2 or IL-4 compared to WT 

recipients 

On POD 7, T cells were isolated from the axillary LN of skin graft recipients. (A) Numbers of CD4+ T effector (Teff) 

cells (CD3+ CD4+ Foxp3-), CD8+ cells and the ratio of Teff:Treg (CD3+ CD4+ Foxp3+) cells. (B) Isolated T cells were 

co-cultured with splenic DC from OVAtg mice for 3 d and IL-2 and IL-4 levels in the culture supernatants 

determined by ELISA. n=4 mice per group. All differences between groups were not significant (Student’s ‘t’ test). 
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Figure 15. TORC2DC-/- B6 mice show no significant differences in immune cell populations compared with 

WT B6 Ctrl mice 

Splenocytes were harvested from naïve mice and assessed via flow cytometry. (A) Percentages of 

polymorphonuclear MDSCs (CD11b+ Ly6G+ Ly6Clo), monocytic MDSCs (CD11b+ Ly6G- Ly6Chi), CD3+ T cells, 

CD4+ T cells, CD8+ T cells and B cells (B220+). (B) Absolute numbers of cells from (A). n=3 mice per group. All 

differences between groups were not significant (Student’s ‘t’ test). 
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 3.4 Discussion 

We have reported previously88 that ex vivo-generated, conventional BM-derived myeloid DC 

lacking functional mTORC2 display an enhanced pro-inflammatory phenotype and can augment 

allogeneic Th1/Th17 polarization and proliferation in vitro, as well as Ag-specific Th1/Th17 

responses in vivo. We now show, using a non MHC-mismatched (M→F) transplant model in 

which rejection occurs in response to male HY Ag121, that TORC2DC-/- skin grafts undergo 

accelerated rejection, accompanied by enhanced CD8+ T cell responses. While it has been 

reported that conditional disruption of mTORC1 in DC dysregulates epidermal Langerhans cell 

(LC) homeostasis122 and that, based on inactivation of mTOR complexes specifically in the 

epidermis, both mTORC1 and mTORC2 in keratinocytes are integral components of skin 

morphogenesis123, conditional deletion of mTORC2 in DC does not impact skin morphogenesis. 

Moreover, in the present study, histological comparison of naïve trunk skin between TORC2DC-/- 

and WT B6 male skin did not reveal any morphological differences. Thus, inherent anatomic or 

skin-resident DC homeostatic abnormalities are unlikely to account for the accelerated 

failure/rejection of TORC2DC-/- grafts that we observed. 

Donor DC are required for direct priming of immune responses to Ags expressed by 

MHC-mismatched grafts. With MHC-matched, minor H Ag-mismatched grafts (such as donor 

male skin grafts in syngeneic female recipients), the intensity of the T cell response to directly-

presented Ags is reduced, while the indirect pathway of Ag recognition is also thought to be 

important107. However, conditional depletion of epidermal LC or conventional dermal DC in 
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male skin grafts prolongs graft survival but does not prevent their rejection in female 

recipients107 and delayed rejection is correlated with delayed expansion of HY Ag-specific CD8+ 

T cells. Therefore, the ability of interstitial donor mTORC2-/- DC in this study to elicit enriched 

CD8+ T cell responses not only highlights the importance of CD8+ T cells in graft rejection, but 

also mirrors our previous finding that intratumoral injection of syngeneic BM-derived mTORC2-

/- DC delays B16 melanoma growth in a CD8+ T cell-dependent manner90. Moreover, the 

increased incidence of CD8+PD-1+ T cells elicited by interstitial donor mTORC2-/- DC suggests 

these T cells are also more activated, as PD-1 expression has been used to identify tumor-

reactive CD8+ tumor-infiltrating T cells124,125. Although overexpression of PD-1 has been 

associated with T cell exhaustion126, we did not observe any significant differences in the 

intensity of PD-1 expression by graft-infiltrating CD8+ PD-1+ T cells.  

As we observed within the minor H Ag-mismatched grafts, elevated numbers of CD8+ T 

cells were also found in regional LN of TORC2DC-/- skin recipients. Moreover, TORC2DC-/- graft 

recipient T cells produced elevated levels of pro-inflammatory IFNγ and IL-2 in response to 

donor Ag stimulation. IFNγ is well-known to skew CD4+ T cell responses to a Th1 phenotype127 

and has also been implicated in direct control of CD8+ T cell expansion128.  

In addition to enhanced T cell infiltration, we also observed greater collagen degradation 

in the minor H Ag-mismatched TORC2DC-/- grafts. Collagen degradation is found in rejecting 

bilayered skin constructs grafted onto patients with chronic wound-healing defects129 and 

collagen type I formation is a positive indicator of graft survival in facial plastic and 

reconstructive surgery130. Thus, pronounced collagen degradation in the TORC2DC-/- skin grafts 

provides additional evidence of their enhanced rejection compared to WT grafts. 
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We also investigated whether DC-specific mTORC2 deficiency in donor grafts would 

accelerate rejection in a full-MHC mismatch model, in which the donor Ag-specific precursor T 

cell population is larger than that in a non-MHC mismatch, minor mismatch model. Although 

there was a trend for TORC2DC-/- B6 → BALB/c grafts to fail more rapidly than Ctrl B6 → 

BALB/c grafts, this was not statistically significant. However, draining LN of the TORC2DC-/- 

graft recipients contained more activated CD8+ T cells, based on their expression of PD-1. 

Moreover, when stimulated with donor Ag, CD8+ T cells from TORC2DC-/- graft recipients had a 

significantly higher division index, indicative of multiple divisions per cell. In addition, LN T 

cells from TORC2DC-/- graft recipients produced more IFNγ and GrB than Ctrl graft recipient T 

cells. As it has been demonstrated that CD8+ T cells are critical for the production of GrB in 

rejecting skin grafts131, this provides further evidence of the augmented ability of mTORC2-/- DC 

to stimulate CD8+ T cells in the context of skin transplantation.     

Defects in wound healing can cause graft displacement and loss of function132, while 

treatment of transplant recipients with the mTORC1 inhibitor rapamycin impairs wound healing 

via its lymphopenic properties133. However, we do not believe that impaired wound healing 

contributed to the accelerated rejection of TORC2DC-/- grafts as this effect has not been ascribed 

to mTORC2 inhibition. Additionally, since DC and T cells positively regulate wound healing134 

and since mTORC2-/- DC augment graft T cell infiltration, impaired wound healing is considered 

unlikely. 

 We also examined, conversely, the fate of WT skin grafts in TORC2DC-/- recipients. 

Donor-derived DC have long been regarded (via the direct pathway of allorecognition) as 

instigators of acute, MHC-mismatched allograft rejection, but are thought to be eliminated soon 

after transplant, while host DC have been implicated (via the indirect pathway) in 
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development/maintenance of chronic rejection. Recent evidence115 acquired using the tg OVA 

Ag skin transplant model suggests however that, by acquiring intact donor MHC class I Ag 

(semi-direct allorecognition) host DC may play an essential role in the instigation/regulation of 

acute rejection. Utilizing this OVAtg skin transplant model in which OVA functions as a minor 

H Ag108 to investigate whether mTORC2 deficiency in host DC that indirectly/semi-directly 

present donor Ag affects skin graft outcome, we did not observe any significant difference in 

graft rejection. OVA may not be captured efficiently by recipient APC that repopulate the 

graft108 with the result that absence of mTORC2 in host DC does not significantly affect graft 

survival. Pronounced CD8+ T cell infiltrates were observed in both WT Ctrl and TORC2DC-/- 

recipients of these minor H Ag-mismatched grafts at POD 7. When considered together with the 

data showing no differences in numbers of CD4+ Teff, CD8+ T cells or CD4+Treg at POD 7 

within regional LN, or differences in cytokine production following host T cell challenge with 

OVA+ DC, it appears that selective mTORC2 deficiency in recipient DC does not affect T cell-

mediated graft rejection in this model. 

 Based upon all of the data in Chapter 3, it is clear that mTORC2 deficiency in donor DC 

accelerates graft rejection and enhances recipient CD8+ T cell responses to donor Ag. However, 

while we have previously published on the pro-inflammatory phenotype and function of bone 

marrow-derived mTORC2-deficient DC, we had never conducted a parallel study of skin-

resident DC. Therefore, we next assessed if skin resident DC in TORC2DC-/- were more 

inflammatory than in Ctrl mice. 
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4.0  DC-Specific mTORC2 Deletion Augments Cell-Mediated 

Delayed Type Hypersensitivity (DTH) Responses 

4.1 Introduction

Contact hypersensitivity, also known as cell-mediated DTH and DTH type IV is a DC-

dependent, T cell-mediated response to haptens which occurs in two phases: the sensitization 

phase in which skin-resident DC capture haptens and migrate to the proximal LN and activate 

precursor T cells, and the elicitation phase in which re-exposure to the same hapten at a different 

site on the skin activates leads to rapid recruitment and activation of hapten-specific T cells and 

subsequent localized inflammatory response at the secondary site. This inflammatory response is 

mainly mediated by recruitment of cytotoxic CD8+ T cells to the site of elicitation135,136. 

One well-established and characterized model of cutaneous DTH-IV utilizes the hapten 

2,4-dinitrofluorobenzene (DNFB)137. To investigate if skin-resident DC in TORC2DC-/- mice 

were more inflammatory, we utilized DNFB for the sensitization/elicitation of a DTH response, 

then measured inflammation as an increase in ear thickness (the secondary hapten application 

site) following elicitation. We also quantified the numbers of CD8+ T cells and Ly6G/C+ 

inflammatory monocytes within the ear following elicitation.  
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4.2 Methods

4.2.1 Mice 

TORC2DC-/- mice (as described in section 3.2.1) were utilized for these experiments, and CD11c-

Cre- littermates were used as negative controls. All studies were performed according to an 

Institutional Animal Care and Use Committee-approved protocol in accordance with NIH 

guidelines. 

4.2.2 DTH assay 

Cutaneous DTH reactions to DNFB were induced and elicited (in ear pinnae) as described138 

with minor modifications139. On day 0, mice were sensitized on the abdomen with 1% DNFB 

(Sigma Aldrich 42085) mixed in a 1:4 ration of acetone and olive oil. On day 5, mice were 

elicited with 0.5% DNFB on the ear pinnae. 24, 48, and 72 hours post-elicitation, ear thickness 

was quantified using an electronic caliper (Mitutoya 700-118-20, Aurora, IL). Thickness of the 

non-elicited ear was used as the baseline. 

 

4.2.3 Immunohistochemistry and Immunofluorescence 

DNFB-challenged and control ear pinnae were obtained 72 hours post-challenge, flash-frozen 

and embedded in OCT compound. Cryostat sections (7μm) were fixed in 4% v/v PFA at room 

temperature for 1 hour. Sections were H&E stained or stained for CD8α (eBioscience; clone# 53-
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6.7) or Ly6G/C (eBioscience; RB6-8C5) and counterstained with DAPI. Images were recorded 

using an Olympus Provis fluorescent microscope (H&E, Ly6G/C) or an Olympus Fluoview 1000 

confocal microscope (CD8). 

4.2.4 Statistical analyses 

Results are expressed as means ± 1SD. Significances of differences between groups were 

determined via Student's ‘t’-test, with p < 0.05 considered significant. 

4.3 Results

4.3.1 TORC2DC-/- mice exhibit enhanced cutaneous DTH responses 

Utilizing a cell-mediated DTH model in which the skin was sensitized with DNFB, then 

challenged 5 days later with DNFB, TORC2DC-/- mice exhibited significant increases in responses 

compared with WT Ctrl animals (Figure 16A). These enhanced responses were accompanied by 

increases in epidermal thickness (Figure 16B) and significant increases in CD8+ T cell 

infiltration (Figure 16C, D). Moreover, significant increases in skin-infiltrating Ly6G/C+ cells 

(Figure 16E, F) were also observed in TORC2DC-/- mice. 
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Figure 16. TORC2DC-/- mice exhibit enhanced delayed-type hypersensitivity responses 

Female WT Ctrl or TORC2DC-/- mice were sensitized with DNFB on the skin of the abdomen on day 0, then 

challenged 5 days later with DNFB on the right ear pinna to elicit a DTH response. (A) Percent increase in pinna 

thickness of the elicited ear compared with the non-elicited ear 24, 48, and 72h post-challenge; Student’s t-test   *, 

p<0.05; **, p<0.01. (B) Representative H&E staining of non-elicited and DNFB-challenged ears, as indicated; 

images are representative of n=4-5 mice. Insets are higher power views of the areas highlighted. Vertical inverted 

arrows indicate thickness of the epidermal layer. (C) Numbers of CD8+ cells within the ear pinna 72h post-

challenge; n=3 high-powered fields (HPF) per mouse; 4-5 mice per group; Student’s t-test, *, p < 0.05. (D) 

Representative immunofluorescence (IF) DAPI (blue) and CD8 (red) staining (arrowheads) of non-elicited and 

challenged ears. (E) Numbers of Ly6G/C+ cells within the ear pinna 72h post-challenge; n=4-5 mice per group; 

Student’s t-test, **, p < 0.01. (F) Representative IF DAPI (blue) and Ly6G/C (green; arrowheads) staining of non-

elicited and challenged ears. Images on the far right are higher power views of the areas outlined by dotted lines in 

(F). 
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 4.4 Discussion

The enhanced cutaneous DTH responses we observed in TORC2DC-/- compared to Ctrl mice were 

characterized by increased CD8+ T cell and Ly6C/G+ myeloid cell infiltration, confirming that 

the absence of functional mTORC2 in skin-resident DC induced augmented cutaneous cell-

mediated immunity. The type of responses that we examined (T cell-mediated contact 

hypersensitivity) are dependent on epidermal immunomodulatory LC that express CD11c140, 

capture the sensitizing hapten and migrate to regional LN for direct presentation to CD8+ T cells 

(the predominant effectors of contact hypersensitivity141-143) and also on dermal DC144 that can 

also play essential roles in inducing immunity41,145. Since LC have also been shown to dampen 

murine contact hypersensitivity responses by tolerizing CD8+ T cells146,147, the augmented 

responses seen in TORC2DC-/- skin may be a consequence of reduction in their immunoregulatory 

function. However, if the skin-resident DC in TORC2DC-/- mice were more readily able to 

migrate from the hapten site to the proximal LN, this could also explain these results. Therefore, 

we next set out to investigate if TORC2DC-/- skin DC may have an altered migratory ability. 
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5.0  Cutaneous DC Deficient in mTORC2 Do Not Display Defects in 

Migration or Lymph Node Homing 

5.1 Introduction

Migration of LC from the epidermis to the dLN through afferent lymph following hapten 

exposure is crucial for the presentation of hapten Ag to T cells within the LN and there 

subsequent activation and inflammatory response. While not demonstrated in DC, other cell 

types in which TORC2 was inhibited or functionally deleted have displayed defects in their 

migratory capacity. In breast cancer cell lines, targeted knockdown of mTORC2 has been 

demonstrated to inhibit their migration148. In neutrophils, mTORC2 has been demonstrated to 

impact actin dynamics, and thereby promote chemotaxis through cell-rear contraction149. We 

therefore had to ascertain if deletion of mTORC2 in skin-resident DC would impact their 

migration to dLN, as this would impact their T cell stimulatory function.  

To assess the migratory capacity of skin-resident DC, we utilized FITC as a hapten 

applied to the ear pinnae of TORC2DC-/- and Ctrl mice, then analyzed the prevalence of FITC+ 

cDCs within the draining superficial and deep cervical LN via flow cytometry. In addition, we 

also analyzed the expression of CCR7, a critical chemokine receptor in DC LN homing. Finally, 

we assessed the expression of the co-stimulatory molecule CD86 and the co-inhibitory molecule 

PD-L1 by the migrating FITC+ cDC within the dLN. This would give insights not only into the 

migratory capacity of skin-resident DC, but also the phenotype of the migrating DC. 
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5.2 Methods 

5.2.1 Mice 

TORC2DC-/- mice (as described in section 3.2.1) were utilized for these experiments, and CD11c-

Cre- littermates were used as negative controls. All studies were performed according to an 

Institutional Animal Care and Use Committee-approved protocol in accordance with NIH 

guidelines. 

 

5.2.2 In vivo migration assay 

One percent v/v FITC (Sigma Aldrich; cat # F3651) in 1:1 acetone: dibutyl phthalate was applied 

to the dorsal surface of the ear pinna and 24 hours later, cells were isolated from the superficial 

and deep cervical LN. 

5.2.3 Flow cytometry 

Cells were stained with mAbs against CD11c (clone #N418), I-Ab (AF6-120.1), CCR7 (4B12), 

CD86 (GL-1) and B7-H1 (10F 9G2) (all BioLegend), then fixed with 2% v/v PFA. Flow data 

were acquired using a Fortessa flow cytometer (BD Biosciences, San Jose, CA) and analyzed 

using FlowJo (Tree Star, Ashland, OR). 
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5.2.4 Statistical analyses 

Results are expressed as means ± 1SD. Significances of differences between groups were 

determined via Student's ‘t’-test, with p < 0.05 considered significant. 

5.3 Results 

5.3.1 TORC2DC-/- mice do not exhibit alterations in skin DC migration, but display a more 

pro-stimulatory DC phenotype than WT Ctrl mice 

To investigate whether the augmented cutaneous cell-mediated inflammatory responses observed 

in TORC2DC-/- mice could be ascribed to altered DC phenotype and/or DC migratory capacity, 

we painted the ear pinnae of TORC2DC-/- or WT Ctrl mice with FITC. After 24h, cells in the 

draining superficial and deep cervical LN were isolated and migratory DC identified as FITC+. 

There were no significant differences between WT Ctrl and TORC2DC-/- mice in terms of total 

number of CD11c+ DC (Figure 17A), FITC+CD11c+I-Ab hi DC (Figure 17B), FITC expression 

by DC (Figure 17C) or CCR7 expression on FITC+ DC (Figure 17D). Taken together, these 

data indicate that mTORC2-/- DC did not differ in their migratory capacity compared with Ctrl 

DC. On the other hand, while co-stimulatory CD86 expression did not differ on migrating FITC+ 

DC between WT Ctrl and TORC2DC-/- mice (Figure 17E), co-inhibitory B7-H1 (PD-L1) 

expression was reduced significantly on the migrating mTORC2DC-/- compared to WT Ctrl DC 

(Figure 17F), suggesting enhanced T cell stimulatory potential of the LN-homing mTORC2-

deficient skin DC. 
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Figure 17. TORC2DC-/- mice do not exhibit enhanced skin DC migration to regional LN, but display reduced 

B7-H1 (PD-L1) expression on DC compared with WT control mice 

WT control (Ctrl) or TORC2DC-/- B6 mice were painted with FITC on the back of the ear pinna and cells were 

isolated from the cervical LNs after 24 h. (A) Numbers of (CD11c+IAb hi) DC in the LN. (B) Incidence and absolute 
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numbers of FITC+ cDCs (CD11c+ I-Ab hi). (C) Top, representative flow profiles and below, mean intensity (MFI) of 

FITC staining on FITC+ DC. (D) Top, representative flow profiles and below, mean fluorescence intensity (MFI) of 

CCR7 staining on FITC+ DC. (E) Top, representative flow profiles and below intensity (MFI) of CD86 staining on 

FITC+ DC. (F) Top, representative flow cytometry and below, intensity (MFI) of B7-H1 staining on FITC+ DC in 

LN. n=3-6 mice per group; Student’s t-test, *,  p < 0.05; **, p<0.01.  

5.4 Discussion 

Previous studies have implicated a role for mTORC2 in regulation of cell migration. Thus, breast 

cancer cells lacking mTORC2 function exhibit reduced migratory function148. Whether 

mTORC2 affects skin DC migration following hapten sensitization has not previously been 

examined. We therefore considered whether the enhanced cutaneous cell-mediated immune 

reactions that we observed in TORC2DC-/- mice might reflect altered migration of skin-resident 

TORC2DC-/- to secondary lymphoid tissue. However, we did not observe any significant 

differences in skin DC migration to regional LN between Ctrl and TORC2DC-/- mice, or in 

acquisition/expression of the sensitizing agent by migrating, hapten-expressing (FITC+) DC 

between Ctrl DC and TORC2DC-/- DC. There was also no significant difference in the expression 

by these DC of CCR7, a chemokine receptor that guides their migration to cognate ligands in 

secondary lymphoid tissue150. Taken together, these data suggest that the accelerated rejection of 

minor H Ag-mismatched TORC2DC-/- skin grafts and the enhanced cutaneous DTH responses in 

TORC2DC-/- mice are not due to significant alterations in DC migration to regional lymphoid 

tissue. Interestingly, however, migratory mTORC2-deficient DC displayed decreased cell surface 

B7-H1 (PD-L1) expression relative to unmodified costimulatory CD86 expression, indicative of 
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a more T cell stimulatory phenotype and providing further evidence that skin-resident DC that 

specifically lack mTORC2 are more immunostimulatory than Ctrl skin-resident DC. 
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6.0   mTORC2 Retrains mTORC1-REGULATED Metabolic Function  in DC 

 

6.1 Introduction

Recent studies have also linked mTOR function with metabolic programming in immune 

cells92,93,151-159. While naïve T cells have low bioenergetic demands, activated T cells must be able 

to grow and proliferate, as well as produce cytokines and effector molecules160. To rapidly increase 

their biosynthetic capacity, activated T cells undergo a switch in glucose metabolism from 

oxidative phosphorylation to aerobic glycolysis160,161. This metabolic reprogramming from 

quiescence allows T cells to use glucose as a carbon source in the form of lactate for many 

biosynthetic processes, including lipogenesis, nucleic acid synthesis, and amino acid synthesis162. 

As aerobic glycolysis only generates about 5% of the amount of ATP oxidative phosphorylation 

does, activated T cells upregulate expression of glucose transporters such as GLUT1 in order to 

sustain elevated glycolytic flux necessary to meet the ATP demands of the cell162,163.  

It has been demonstrated that DN4 thymocytes are reliant on the mTORC1/PI3K signaling 

axis to upregulate GLUT1 and meet the metabolic demands of development in the thymus164,165. 

There is also evidence to suggest that the mTORC1/PI3K signaling axis may play a minor role in 

the metabolic reprogramming of activated naïve T cells in the periphery160. In addition, while 

CD8+ cytotoxic T cells CTLs, Th1, and Th17 CD4+ T cells are supported by the aerobic glycolytic 

processes described above, there is evidence that CD8+ memory T cell and TReg development relies 

on fatty acid oxidation via mitochondrial oxidative phosphorylation166. The differential 

bioenergetics of memory T cells/TRegs and CTLs/Th cells has already been identified as an 
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immunosuppressive target in solid organ transplantation167. Taken together, there is a clear 

relationship between the function of mTOR and cellular metabolism, and this plays an important 

role in maintaining T cell phenotype and function after expansion in the context of transplantation. 

This begs the question of what role mTOR and bioenergetics play in modulating DC phenotype 

and function in the transplant setting. 

 Research by Edward and Erika Pearce has highlighted the metabolic phenotype of DCs 

upon activation via LPS stimulation of TLR4. Like T cells, quiescent DCs have relatively low 

metabolic needs, yet upon activation these demands greatly increase due to bioenergetic pressure 

to produce cytokines and upregulate co-stimulatory molecules (unlike T cells, DCs do not 

proliferate upon activation) 21,22. Also like T cells, activated DCs undergo a metabolic 

reprogramming to aerobic glycolysis to meet these new biosynthetic demands21,22. Commitment to 

glycolysis by BMDCs is dependent on the mTORC1/PI3K signaling axis driving expression of 

iNOS and the transcription factor hypoxia inducible factor 1 Hif-1α. Hif-1α induces increased 

glucose transporter expression, and NO from iNOS poisons the mitochondrial respiratory chain 

thereby biasing the cell towards glycolysis168.  

More recently, the Pearce group also identified an mTORC1/PI3K-independent 

mechanism by which DCs initially convert to aerobic glycolysis following activation93. This 

process is driven by mTORC1/PI3K-independent TBK1/IKKε phosphorylation and activation of 

Akt. While the role of mTORC1 was investigated in both initial switch and maintenance of 

aerobic glycolysis in DCs, to date no studies have been conducted assessing the role of mTORC2 

in these processes. As mTORC2 phosphorylates Akt at the hydrophobic S473 and enhances Akt 

activity, and there is possible interplay between mTORC1 and mTORC2 function169, elucidating 
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the function of mTORC2 in driving metabolic reprogramming in DCs can provide information 

on how mTORC1 and mTORC2 shape DC phenotype and function. 

To investigate the discrete role mTORC2 may play in regulating DC metabolism, we 

generated BMDC from TORC2DC-/- and Ctrl mice. We then measured the glycolytic activity and 

spare respiratory capacity of these cells via an extracellular flux assay. We also measured the 

glycolysis and OXPHOS-dependent ATP production of the DC. In addition, we utilized a gene 

expression panel and qPCR to identify the possible underlying signaling mechanisms by which 

mTORC2 could regulate DC metabolism. 

6.2 Methods

6.2.1 Mice 

TORC2DC-/- mice (as described in section 3.2.1) were utilized for these experiments, and CD11c-

Cre- littermates were used as negative controls. All studies were performed according to an 

Institutional Animal Care and Use Committee-approved protocol in accordance with NIH 

guidelines. 

 

6.2.2 Bone marrow-derived DC generation 

Femoral BM cells were harvested and cultured as described170 using mouse recombinant (r)GM-

CSF (1000 U/mL; R&D Systems, Minneapolis, MN; CAA26822). On day 6 of culture, DC were 



 79 

purified using anti-CD11c immunomagnetic beads (Miltenyi Biotec, Bergisch, Germany). Where 

indicated, the TLR4 ligand LPS (100 ng/mL; Salmonella minnesota R595; Alexis Biochemicals, 

San Diego, CA; ALX-581-008) was used to stimulate the DC for 16-18 h. 

 

6.2.3 Extracellular flux assay 

A Seahorse XFe96 Bioanalyzer (Agilent, Santa Clara, CA) was utilized to measure metabolic 

flux in real-time. DC were plated on Cell-Tak-coated Seahorse culture plates (100,000 cells/well) 

in assay media consisting of minimal, unbuffered DMEM supplemented with 1% v/v bovine 

serum albumin (BSA) and 25 mM glucose, 1mM pyruvate, and 2 mM glutamine. Basal 

extracellular acidification and oxygen consumption rates were taken for 30 min. Cells were 

stimulated with oligomycin (2 μM), the potent mitochondrial oxidative phosphorylation 

uncoupler carbonyl cyanide 4 p-(trifluoromethoxy) phenylhydrazone (FCCP) that disrupts ATP 

synthesis (1 μM), 2-deoxyglucose (10mM) and rotenone/antimycin A (0.5 μM) to obtain 

maximal respiratory and control values. Where indicated, DC were cultured with rapamycin 

(10ng/mL; LC Laboratories, Woburn, MA) for 18h after CD11c+ immunomagnetic bead 

selection on culture day 6. Where indicated, DC were stimulated with LPS (100 ng/mL) injected 

either into the extracellular flux system or added to cultures for 18h as indicated above. 
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6.2.4 ATP production assay 

ATP concentrations were determined using a luciferase-based ATP determination kit 

(ThermoFisher, Waltham, MA) as per the manufacturer’s instructions. Where indicated, DC 

were stimulated with LPS (100 ng/mL) for 1h. 

6.2.5 Mitochondrial staining and flow cytometry 

Mitochondrial mass and membrane potential were assessed using MitoTracker® Green FM 

(0.1μM, Cell Signaling Technology, Danvers, MA) and tetramethylrhodamine ethyl ester 

(TMRE; 0.05μM, ThermoFisher, Waltham, MA), respectively according to the manufacturer’s 

instructions.  

For assessment of cell viability, cells were stained with ZombieAqua dye (BioLegend, 

San Diego, CA) according to the manufacturer’s instructions. Data were acquired with a Fortessa 

flow cytometer (BD Biosciences, San Jose, CA) and analyzed using FlowJo (TreeStar, Ashland, 

OR). 

6.2.6 Golgi staining and confocal microscopy 

Cell suspensions were fixed for 1 hr in 2% paraformaldehyde then cytospun (ThermoFisher 

CytoSpin 4) onto charged slides (Superfrost/Plus, ThermoFisher, Pittsburgh, PA). Slides were 

stained with primary antibody directed against Trans Golgi Network 38  (rabbit anti-TGN38, 

Novus, Littleton, CO) rhodamine Phalloidin (F-actin, ThermoFisher) and 0.1% Hoechst’s dye 

(nuclei, ThermoFisher). Confocal images were obtained by the Center for Biological Imaging, 
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University of Pittsburgh, on an Nikon A1 Microscope using 100x objective and zoomed using 

1.24 Nyquist, Maximum intensity projections were constructed and analyzed using NIS 

Elements software. 

6.2.7 Transmission electron microscopy (TEM) 

Cell suspensions were fixed in 2.5% glutaraldehyde then immediately pelleted in a 1.5 ml 

microfuge tube at 300 x G. Pellets were then post-fixed in 1% OsO4, 1% K3Fe(CN)6 and 

dehydrated through a graded series of 30-100% ethanol, 100% propylene oxide, then infiltrated 

in 1:1 mixture of propylene oxide:Polybed 812 epoxy resin (Polysciences, Warrington, PA) for 1 

hr.  After several changes of 100% resin over 24 hrs, pellet was embedded in a final change of 

resin, cured at 37oC overnight, followed by additional hardening at 65oC for two more days. 

Ultrathin (70 nm) sections were collected on 200 mesh copper grids, stained with 2% uranyl 

acetate in 50% methanol for 10 minutes, followed by 1% lead citrate for 7 min. Sections were 

imaged using a JEOL JEM 1400 transmission electron microscope (Peabody, MA) at 80 kV 

fitted with a side mount AMT 2k digital camera (Advanced Microscopy Techniques, Danvers, 

MA). 

6.2.8 NanoString gene profiling 

Total RNA was extracted from bead-purified CD11c+ DC generated from bone marrow of Ctrl or 

TORC2DC-/- mice using an RNeasy Mini Kit (Qiagen, Hilden, Germany) as per the 

manufacturer’s instructions. NanoString analysis was performed using a Mouse Immunology 

Panel (NanoString Technologies, Seattle, WA) as has been previously described171.  
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 6.2.9 Quantitative PCR 

Total RNA was extracted from bead-purified CD11c+ DC generated from bone marrow of Ctrl or 

TORC2DC-/- mice using an RNeasy Mini Kit (Qiagen, Hilden, Germany) as per the 

manufacturer’s instructions. cDNA was amplified using Platinum Quantitative PCR SuperMix-

UDG (Invitrogen) in 10 μl volumes in quadruplicate with gene-specific primers and probed on 

the ABI Prism 7900HT Sequence Detection System (Applied Biosystems, Foster City, CA) 

according to the manufacturer’s instructions. Thermal cycling conditions were 50°C for 2 min 

then 95°C for 2 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min. Data were 

analyzed using the ΔΔCt method with expression normalized to the housekeeping gene, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 

6.2.10 Statistical analyses 

Results are expressed as mean ± 1SD. Significances of differences between groups were 

determined using Student's ‘t’-test or one-way ANOVA Tukey’s multiple comparisons test 

(GraphPad Prism) as indicated, with p < 0.05 considered significant. 
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6.3 Results

6.3.1 TORC2DC-/- have augmented glycolytic activity, glycolysis-dependent ATP 

production and viability compared to Ctrl DC 

To investigate the impact of TORC2 deletion on DC metabolic function, we assessed glycolysis 

via extracellular flux as measured by basal extracellular acidification rate (ECAR). Glycolysis 

was elevated significantly in both Ctrl DC and TORC2-/- DC following LPS stimulation 

(representative ECAR Figure 18A; quantified in Figure 18B). Interestingly, glycolytic function 

was also increased significantly in non-stimulated (ns) TORC2-/- DC compared to Ctrl DC, but 

not in LPS-stimulated TORC2-/- DC compared to Ctrl DC.  While there was no difference in 

ATP production between Ctrl DC and TORC2-/- DC following inhibition of OXPHOS with 

oligomycin, TORC2-/- DC displayed significantly decreased ATP production when glycolysis 

was inhibited with 2-deoxyglucose (2-DG) (Figure 18C; ns left panel; + LPS 1h right panel). 

TORC2-/- DC stimulated with LPS also had significantly higher viability than Ctrl DC stimulated 

with LPS (representative histogram Figure 18D; quantified in Figure 18E); however, the 

immediate glycolytic response to LPS stimulation was not significantly different between Ctrl 

DC and TORC2-/- DC (representative ECAR Figure 19A; quantified in Figure 19B).  
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Figure 18. TORC2DC-/- have augmented glycolytic activity, glycolysis-dependent ATP production, and 

viability as compared to Ctrl DC 

Bone marrow-derived DC were generated from WT Ctrl or TORC2DC-/- mice and analyzed using a Seahorse XFe96 

Bioanalyzer for metabolic flux in real-time over 150 min with oligomycin (1), FCCP (2), 2-DG (3) and 

rotenone/antimycin (4) injected at indicated times to obtain control values. DC were stimulated with LPS for 18h as 

indicated. (A) Representative extracellular acidification rate (ECAR). (B) Quantification of basal glycolysis prior to 

addition of oligomycin (1); n=10-11 mice; one-way ANOVA Tukey’s multiple comparisons test, *p<0.05, 

**p<0.01. (C) ATP production in non-stimulated DC (left panel) and DC stimulated with LPS for 1 h (right panel) 

as measured using an ATP determination kit as per manufacturer instructions; n=6 mice; Student’s t-test, *p < 0.05. 

(D) Representative histogram of Zombie viability dye staining. (E) Quantification of viability as percentage of live 

(Zombie-) cells; n=6 mice; one-way ANOVA Tukey’s multiple comparisons test, *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. 
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Figure 19. Quiescent non-stimulated TORC2DC-/- display augmented viability following LPS stimulation, but 

no difference in initial glycolytic function following stimulation as compared to Ctrl DC 

Bone marrow-derived DC were generated from Ctrl or TORC2DC-/- mice and stimulated with LPS for 18h as 

indicated. Cell viability was assessed as the percentage of Zombie- cells. (A) Representative histogram, quantified in 

(B); n=6 mice; one-way ANOVA Tukey’s multiple comparisons test, NS = not significant.  DC were generated 

from Ctrl or TORC2DC-/- mice and analyzed using a Seahorse XFe96 Bioanalyzer for metabolic flux in real-time over 

130 min with LPS injected where indicated; the glycolytic response was measured as the average ECAR post-LPS 

injection over a 100 min period. (B) Representative ECAR, quantified in (D); n=4 mice; Student’s t-test *p < 0.05.   

6.3.2 TORC2DC-/- have increased spare respiratory capacity (SRC), mitochondrial 

biomass and mitochondria that fail to depolarize following LPS stimulation 

SRC, calculated as the difference in oxygen consumption rate (OCR) measured via extracellular 

flux after addition of 2-DG (3) and prior to addition of FCCP (1)  (visualized as the shaded areas 

in Fig. 2A), was significantly elevated in non-stimulated TORC2-/- DC compared to Ctrl DC 

(representative OCR Figure 20A; quantified in Figure 20B). We next assessed how TORC2 

deletion in DC would influence mitochondrial phenotype. Mitochondrial mass, as determined by 

fluorescent mitochondrial labeling, decreased significantly in both Ctrl and TORC2-/- DC 

following LPS stimulation; in addition, non-stimulated TORC2-/- DC had significantly greater 
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mitochondrial mass as compared to non-stimulated Ctrl DC (representative histograms Figure 

20C; quantified in Figure 20D). Surprisingly, TORC2-/- DC mitochondria failed to depolarize 

following LPS stimulation (as opposed to Ctrl DC that did), as assessed via uptake of cationic 

TMRE fluorescent dye (representative histograms Figure 20E; quantified in Figure 20F). 

 

 

 

 

 

 

 

. 
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Figure 20. TORC2DC-/- have increased SRC, mitochondrial biomass, and mitochondria which fail to 

depolarize following LPS stimulation 

BMDC were generated from Ctrl or TORC2DC-/- mice, then stimulated with LPS for 18h as indicated. Bone marrow-

derived DC were analyzed using a Seahorse XFe96 Bioanalyzer for metabolic flux in real-time over 150 min with 

oligomycin (1), FCCP (2), 2-DG (3) and rotenone/antimycin (4) injected at indicated times to obtain control values. 

(A) Representative oxygen consumption rate (OCR) of non-stimulated Ctrl DC and TORC2DC-/-. (B) Quantification 

of spare respiratory capacity calculated as the difference in oxygen consumption rate (OCR) after addition of 2-DG 

(3) and OCR after the addition of oligomycin (1); n=16 mice; Student’s t-test, *p<0.05. (C) Representative flow 

cytometry histograms of Ctrl DC and TORC2DC-/- stained with MitoTracker Green. (D) Quantification of mean 

fluorescence intensity (MFI) of MitoTracker Green; n=6 mice. (E) Representative flow cytometry histograms of Ctrl 

DC and TORC2DC-/- stained with TMRE. (F) Quantification of MFI of TMRE; n=6 mice. (D) and (E): one-way 

ANOVA Tukey’s multiple comparisons test. *p < 0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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6.3.3 TORC2DC-/- display more compact Golgi stacks with less perinuclear localization as 

compared to Ctrl DC 

To determine if mTORC2 deficiency in DC impacted the localization, structure, and quantity of 

Golgi apparatus, we first immunostained DC with anti-TGN38 and assessed the location of the 

Golgi relative to the nuclei of the cell. In the Ctrl DC, Golgi was perinuclear, whereas in 

TORC2DC-/- the Golgi appeared more dispersed throughout the cell (Figure 21A, top panel). We 

next used TEM to assess the structure of the Golgi in DC. In Ctrl DC, the Golgi cisternae appear 

more dilated, and more Golgi is observed perinuclearly; in contrast, the Golgi in TORC2DC-/- 

appears more compact, and less Golgi is visible perinuclearly (Figure 21A, bottom panel). 

Finally, we quantified the MFI of TGN38 staining from 3-D stacks of confocal images taken of 

DC to assess the total Golgi content of the DC, and observed no differences in total Golgi 

content in Ctrl DC as compared to TORC2DC-/- (Figure 21B). 
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Figure 21. TORC2DC-/- display more compact Golgi stacks with less perinuclear localization as compared to 

Ctrl DC 

BMDC were generated from control (Ctrl) or TORC2DC-/- mice, and prepared for TEM and confocal microscopy. 

(A) Representative maximum intensity projection of DC immunostained for Golgi (green), F-actin (red), and nuclei 

(blue), with arrows marking perinuclear Golgi (top panel); representative TEM of DC with arrows marking Golgi, 

and N marking the cell nucleus (bottom panel). (B) Quantification of total MFI of Golgi stain per cell; each point 

represents values from one high powered field (HPF); n=5 mice and 4-5 HPFs per mouse; Student’s t-test, *p < 

0.05. 
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 6.3.4 Inhibition of mTORC1 activity in TORC2DC-/- leads to loss of their enhanced spare 

respiratory capacity and glycolysis 

To elucidate whether mTORC2 in DC had mTORC1-independent or mTORC1-dependent 

metabolic regulation, we incubated both Ctrl DC and TORC2-/- DC with RAPA (10ng/mL) for 

18h, then analyzed their SRC and glycolysis via extracellular flux as in Figure 1. Inhibition of 

mTORC1 in TORC2-/- DC abolished the increase in SRC (representative OCR Figure 22A; 

quantified in Figure 22B) and glycolysis (representative ECAR Figure 22C; quantified in 

Figure 22D) in non-stimulated cells as compared with Ctrl DC. Notably, administration of 

RAPA to non-stimulated Ctrl DC did not decrease their glycolytic activity. Inhibition of 

mTORC1 in both LPS-stimulated Ctrl DC and TORC2-/- DC significantly reduced their 

glycolytic activity (representative ECAR Figure 22E; quantified in Figure 22F). 
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Figure 22. Inhibition of mTORC1 in TORC2DC-/- leads to loss of their enhanced spare respiratory capacity 

and glycolysis 

BMDC were generated from Ctrl or TORC2DC-/- mice, then cultured with low-dose RAPA (10ng/mL) for 18h. DC 

were analyzed using a Seahorse XFe96 Bioanalyzer for metabolic flux in real-time over 150 min with oligomycin 

(1), FCCP (2), 2-DG (3) and rotenone/antimycin (4) injected at indicated times to obtain control values. (A) 

Representative OCR. (B) Quantification of SRC, calculated as the difference in OCR after addition of 2-DG (3) and 

prior to addition of FCCP (1); n=6 mice; Student’s t-test, *p<0.05. (C) Representative ECAR of non-stimulated DC. 

(D) Quantification of basal glycolysis in non-stimulated DC prior to addition of oligomycin (1); n=6-11 mice. (E) 

Representative ECAR of LPS-stimulated DC. (F) Quantification of basal glycolysis in LPS-stimulated DC prior to 

addition of oligomycin (1); n=6-11 mice. (D) and (F): one-way ANOVA Tukey’s multiple comparisons test, *p < 

0.05, **p < 0.01, ***p<0.001, ****p<0.0001. 
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 6.3.5 TORC2DC-/- exhibit a distinct gene expression profile from Ctrl DC  

To determine the mechanism by which TORC2DC-/- had enhanced mTORC1 metabolic activity, 

we performed a gene expression analysis to identify changes in expression of genes involved in 

mTORC1 signaling in TORC2DC-/-. We identified a total of 22 genes on a 378 gene panel with 

differential expression between Ctrl DC and TORC2DC-/-, as represented by the heat map in 

Figure 23A, of which 5 genes we identified as possible upstream mediators of mTORC1 activity 

(Figure 23B). We then performed qPCR to determine the relative expression of the downstream 

targets of mTORC1 Pparγ, Srebf1, and Yy1 in Ctrl DC and TORC2DC-/-. Both Pparγ and Srebf1 

are significantly more highly expressed in TORC2DC-/- as compared to Ctrl DC (Figure 23C).  
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Figure 23. TORC2DC-/- exhibit a distinct gene expression profile from Ctrl DC 

(A) Expression of 378 genes comprised from the NanoString Mouse Immunology Panel, shown as a heat 

map. Red indicates an increased gene expression and green indicates decreased gene expression as compared to Ctrl 

DC; n=2 mice in each group. (B) Selection highlighting five genes of interest from the panel in (A) which were 

significantly changed between Ctrl DC and TORC2DC-/-. (C) mRNA expression of Srebf1, Pparγ, and Yy1 in Ctrl 

DC and TORC2DC-/-, normalized to the housekeeping gene GAPDH, with Ctrl DC used as the referent control; n=5 

mice per group, Student’s t-test, *p < 0.05. 
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6.4 Discussion 

Earlier studies have demonstrated that while quiescent, immature DC have relatively low 

metabolic needs, these needs increase upon cell activation and maturation due to bioenergetic 

pressure to produce pro-inflammatory cytokines and upregulate co-stimulatory molecules92. The 

metabolic process that permits DC to meet these enhanced new metabolic demands occurs by a 

“switch” from oxidative phosphorylation to aerobic glycolysis. It has previously been reported 

that this initial “switch” towards increased glycolytic metabolism is not dependent on the mTOR 

signaling axis93; indeed, we did not observe any differences in glycolytic activity immediately 

following LPS stimulation beteen TORC2DC-/- and Ctrl DC. However, mTORC1 (but not 

mTORC2) has been described as essential for DC glycolytic commitment168. We observed that 

immature (non-stimulated) DC lacking functional mTORC2 had significantly increased 

glycolytic function as compared to immature Ctrl DC, but that this increase was not observed in 

the DC following stimulation with LPS. This finding, together with our previous observations 

showing enhanced expression of the co-stimulatory molecule CD86 together with decreased 

expression of the co-inhibitory molecule PD-L188 on immature TORC2DC-/-, suggests that 

immature TORC2DC-/- may have an intermediate maturity phenotype. This is further supported 

by the increased dependence that we observed of non-stimulated TORC2DC-/- on glycolysis for 

ATP production.  

There is evidence that, in addition to its importance for nascent protein production, 

glycolytic commitment by mature BMDC is critical for their survival168. Indeed, in conjunction 

with an increase in glycolytic acitivty, TORC2DC-/- also appeared to have limited protection from 

cell death following TLR4 agonism. The enhanced pro-inflammatory nature of TORC2DC-/- may 

also be attributed in part to this more robust viability. It has been reported that LPS can induce 
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programmed cell death in DC172, and that T cells can also trigger apoptosis in DC through Fas 

and perforin as a mechanism to self-limit T cell activation173,174. Therefore, the enhanced 

viability of TORC2DC-/- may allow them to produce cytokines and interact with T cells for an 

extended period of time. 

In addition to their augmented glycolytic activity, TORC2DC-/- also have increased SRC, 

in conjunction with increased mitochondrial biomass and mitochondria that fail to depolarize 

following LPS stimulation . Mitochondrial SRC has been described as the extra capacity of 

mitochondria to produce energy under circumstances of increased cell stress and is correlated 

positively with prolonged cell survival and function94. Given the enhanced viability of 

TORC2DC-/-, an increase in SRC corroborates our findings. As CD8+ memory T cells have been 

described as having enhanced SRC due to increased mitochondrial biomass94, that TORC2DC-/- 

also showed an increase in mitochondrial content compared with Ctrl DC also fits with our other 

findings. Strikingly, the mitochondrial membrane of TORC2DC-/- failed to depolarize following 

stimulation with LPS, which was surprising as LPS has been shown to collapse mitochondrial 

membrane potential (ΔΨm) in macrophages175. However, it has been reported that, in 

macrophages, that disproportionately utilize ATP generated via glycolysis as protection against 

cell death (as we observed in the TORC2DC-/-), high ΔΨm is maintained via reverse functioning of 

F(o)F(1)-ATP synthase and adenine nucleotide translocase175. 

As enhanced glycolytic activity has been described as a means by which activated DC 

augment lipogenesis for the increased production and transport of cytokines and co-stimulatory 

proteins93, we assessed whether TORC2DC-/- had variations in the localization, dilation, and 

amount of Golgi apparatus. The Golgi body, in conjunction with endoplasmic reticulum (ER), is 

an organelle critical for the processing and transport of proteins. Surprisingly, given the 
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enhanced glycolytic activity of TORC2DC-/-, we did not observe any increase in the overall Golgi 

content of the DC. However, we did observe that the Golgi of TORC2DC-/- were less dilated than 

in Ctrl DC, as well as less perinuclearly localized. Recent studies have favored a cisternal 

progenitor model of protein transport, whereby proteins are transported along tightly-compacted 

Golgi subcompartments. These subcompartments undergo fision and fusion events which allow 

stable protein transport to the membrane176. Thus, the tightly compacted Golgi cisternae and 

diffuse TGN localization may reflect enhanced protein transport by TORC2DC-/-. 

Given the mitochondrial dysregulation observed in TORC2DC-/-, we next investigated the 

mechanism underlying this change. Cells maintain mitochondrial homeostasis by controling both 

the number and quality of mitochondria via mitophagy177. Interestingly, mTORC1 is known to 

be an important regulator of the nuclear transcription of mitochondrial genes necessary for 

mitochondrial biogenesis through peroxisome-proliferator-activated receptor coactivator-1α 

(PGC-1α) and yin-yang 1(YY1)158. In addition, mTORC1 has been described to regulate 

mitochondrial activity via phosphorylation of mitochondrial membrane protein Bcl-XL178. 

mTORC1 has also been described to positively regulate glucose uptake179 and mitophagy180. As 

there is possible interplay between mTORC1 and mTORC2 through their interactions with Akt 

and TSC1/2, we assessed whether the mitochondrial dysregulation in TORC2-/- DC could be 

attributed to augmented mTORC1 activity. Indeed, inhibition of mTORC1 with rapamycin 

abolished the enhanced glycolytic function and SRC of TORC2DC-/-.  

While we and others have reported that the enhanced pro-inflammatory 

phenotype/function of DC lacking functional mTORC2 may be partially attributed to altered 

Forkhead box O1 (FoxO1)87 and GSK3β88 phosphorylation/nuclear translocation, and due to the 

inability of these DC to phosphorylate Akt on S47388 the degree to which these phosphorylations 
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are dampened in TORC2DC-/- are not consistent between these reports. In addition, alterations in 

these signaling mechanisms would not underlie the metabolic and mitochondrial dysregulation 

that we have observed in TORC2DC-/-. We therefore completed a gene expression analysis panel 

that covered 378 genes, and identified 5 genes of interest that were significantly differentially 

expressed between Ctrl DC and TORC2DC-/-. One set of these genes highlights a signaling 

pathway in which the integrin subunit Integrin alpha IIb (Itga2b), Protein tyrosine kinase (Ptk2, 

also known as focal adhesion kinase, FAK), and Hematopoietic cell signal transducer (Hcst, also 

known as PIK3 associated protein, PIK3AP) are upregulated in TORC2DC-/-. Integrin clustering 

has been demonstrated to mediate intracellular signaling via the catalytic kinase Ptk2 (FAK)181, 

which ultimately leads to activation of the PI3K/Akt/mTORC1 signaling pathway182. Another 

possible mechanism for upregulation of mTORC1 activity in TORC2DC-/- uncovered by the gene 

expression analysis panel is the upregulation of the IL-7 cytokine receptor and Janus kinase 1 

(JAK1) in TORC2DC-/-, as IL-7R/JAK1 signaling can activate the PI3K signaling pathway183. 

Downstream of mTORC1 signaling, we identified upregulation of two genes in 

TORC2DC-/- which are known to regulate metabolic function: Pparγ and Srebf1. Activation of 

both of these transcription factors downstream of mTORC1 leads to the expression of lipogenic 

genes184. It has been demonstrated that glycolysis in DC drives lipogenesis and subsequent 

Golgi/ER expansion upon DC activation93, and more recently that Pparγ signaling can also 

promote glycolysis in hematopoietic stem cells185. Interestingly, in yeast it has been described 

that loss of TORC2 function results in enhanced lipogenesis186. Taken together, our data suggest 

mTORC2 plays a role in transcriptional control of mTORC1-regulated metabolic processes 

(Figure 24). 
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Figure 24. Proposed signaling mechanism of mTORC1 regulation by mTORC2 

  

These findings describe a novel role for mTORC2 in the regulation of DC metabolism. 

DC lacking functional mTORC2 are more glycolytically active and have an increased 

dependence on glycolysis for ATP production. TORC2DC-/- also have abnormalities in 

mitochondrial regulation, characterized by enhanced mitochondrial biomass and mitochondria 

that fail to depolarize following DC activation. The metabolic phenotype of TORC2DC-/- is lost 

upon inhibition of mTORC1; in addition, we have identified several genes upstream of mTORC1 

and the transcription factors Pparγ and Srebf1 downstream of mTORC1 that are upregulated in 

TORC2DC-/-. These data strongly suggest mTORC2 functions to restrain mTORC1-driven 

anabolic metabolism in DC. 
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7.0  Final Discussion and Biomedical Relevance 

7.1 mTORC2 Restrains DC Function and mTORC1 Regulated

Metabolic Control 

The goal of these studies was to determine the function of mTORC2 in DC in regards to T cell 

stimulatory function in the context of transplantation, and if the enhanced inflammatory 

phenotype/function of TORC2DC-/- could be ascribed to an altered metabolic program in these 

cells. Although the role of mTORC1 in regulating DC immunometabolism and T cell stimulatory 

function in transplantation has been studied extensively using the potent mTORC1 inhibitor 

RAPA, there is a paucity of parallel studies examining the discrete role of mTORC2 in DC as 

there is not yet available an mTORC2-specific pharmacological inhibitor. A recent study by our 

group utilized an innovative mouse model in which Rictor, a scaffolding protein critical for 

mTORC2 assembly, is deleted specifically in CD11c+ DC demonstrated that TORC2DC-/- have an 

enhanced pro-inflammatory phenotype and allostimulatory function in vitro88. Therefore, these 

studies expanded upon our previous report and served to provide a more complete picture of how 

mTOR functions to link DC metabolism and immune function.    

We first demonstrate that when DC in heterotopic heart transplant donor tissue lack 

mTORC2, the beating function of these grafts is decreased and the cellular infiltrate increased as 

opposed to WT Ctrl heart donors. When TORC2DC-/- are used as skin graft donors in both minor 

Ag mismatch and full MHC mismatch mouse models, graft rejection is more severe and 

accompanied by enhanced CD8+ T cell responses and inflammatory cytokine production. These 

data complement a previous study in which TORC2DC-/- injection into B16 melanoma-bearing 
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mice delayed tumor progression in a CD8+ T cell-dependent fashion90. Surprisingly, mTORC2 

deletion in the DC of skin graft recipients did not impact graft survival or T cell infiltration into 

the graft, as recent evidence acquired using the tg OVA Ag skin transplant model suggests that 

host DC may play an essential role in regulating acute rejection by acquiring intact donor MHC 

class I Ag (semi-direct allorecognition)115. However, as graft-resident DC are quickly eliminated 

by host natural killer cells, it is possible that OVA may not be captured efficiently by recipient 

APC that repopulate the graft108 and consequently absence of mTORC2 in host DC does not 

significantly affect graft survival.  

It should be noted that defects in wound healing have been described to cause graft 

displacement and loss of function132, and treatment of transplant recipients with the mTORC1 

inhibitor Sirolimus impairs wound healing via its lymphopenic properties133. However, we do not 

believe impaired wound healing contributed to the accelerated rejection of TORC2DC-/- grafts, as 

impaired wound healing as not been ascribed to mTORC2 inhibition. Additionally, DC and T 

cells have been reported to positively regulate wound healing134; as TORC2DC-/- augment T cell 

graft infiltrate, impaired wound healing is not likely. Similarly, we did not observe differential 

LN homing of skin-resident TORC2DC-/-, but did observe a more inflammatory phenotype in 

migrating DC along with enhanced CD8+ T cell responses in a cell-mediated DTH assay in 

TORC2DC-/- mice. This strongly suggests the accelerated rejection observed in TORC2DC-/- donor 

grafts is a result of the augmented ability of these DC to activate CD8+ T cells; therefore, in DC 

mTORC2 functions to suppress T cell stimulatory function. 

Next, we sought to identify the mechanism by which mTORC2 suppressed DC function. 

It is now appreciated that metabolic regulation is integral in controlling DC function, and 

mTORC1 is a key regulator of immunometabolism. Namely, upon activation DC will increase 
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their dependence on aerobic glycolysis in order to enhance anabolic processes, and maintenance 

of this glycolytic phenotype is crucial for DC survival and dependent on mTORC182. However, a 

role for mTORC2 in DC metabolic regulation had not been defined. We therefore wanted to 

determine if the inflammatory phenotype and enhanced stimulatory function of TORC2DC-/- 

could be a result of an altered metabolic program in these cells.  

We observed that TORC2DC-/- displayed an enhanced glycolytic phenotype as compared 

to Ctrl DC, which correlated with an increased dependence on glycolysis for ATP production. In 

addition, following stimulation with LPS TORC2DC-/- were more resistant to cell death than Ctrl 

DC; this strengthened the glycolytic findings as glycolytic bias has been demonstrated to confer 

increased viability in DC82. TORC2DC-/- also displayed enhanced SRC as compared to Ctrl DC, 

which has also been correlated to increased cell survival as well as function in CD8+ T memory 

cells94. TORC2DC-/- appeared to have mitochondrial dysregulation, as they had increased 

mitochondrial biomass, as well as mitochondria that failed to significantly depolarize in response 

to LPS stimulation. Finally, TORC2DC-/- displayed differences in Golgi body structure and 

localization as compared to Ctrl DC, which follows previous studies in which glycolytic bias in 

DC was shown to enhance anabolic processes93. As there is evidence that mTORC2 and 

mTORC1 may have some overlap of signaling through their interactions with Akt and TSC1/2, 

and mTORC1 exerts control over mitochondrial number and function via a number of processes, 

including regulating the transcription of mitochondrial genes158 and mitophagy180, we wanted to 

test if deletion of mTORC2 increased mTORC1 activity. Indeed, TORC2DC-/- exposed to RAPA 

lost their enhanced glycolytic and SRC phenotype.  

An RNA sequencing analysis of TORC2DC-/- revealed two possible pathways by which 

mTORC2 could serve to restrain mTORC1 function, as in TORC2DC-/- displayed increased 
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expression of components integral for integrin clustering, as well as increased expression of IL-

7R and JAK1. Both integrin signaling and cytokine receptor signaling have been demonstrated to 

enhance mTORC1 activity182,183. As we also observed increased expression of Pparγ and Srebf1, 

two transcription factors downstream of mTORC1 which have been described to regulate 

mitochondria, as well as lipogenesis and glycolytic function (Pparγ)184,185, we postulate that in 

DC mTORC2 has a role as a metabolic regulator by suppressing activating signals upstream of 

mTORC1. In conclusion, mTORC2 negatively regulates DC inflammatory phenotype and T cell 

stimulatory function by suppressing mTORC1-dependent anabolic metabolism, which should be 

taken into consideration regarding the use of dual mTORC1/2 ATP-competitive inhibitors.  

   

7.2 mTORC2 Targeting in Transplantation and Cancer

Immunotherapy

Our lab has previously published that the dual mTORC1/2 inhibitor AZD8055 is a potent 

suppressor of T cell proliferation that prolongs survival of MHC-mismatched heterotopic heart 

allografts, as well as increases Treg infiltration into the graft and decreases IFNγ production by 

host T cells187. However, a follow-up study by our group comparing the efficacy of AZD and 

RAPA in prolonging heart allograft survival showed RAPA to be the superior 

immunosuppressant, in terms of graft survival time, prolonged Treg graft infiltration, and 

prolonged suppression of donor-specific immunoglobulin G (IgG)1 and IgG2c antibodies188. 

While this study concluded these results may in part reflect differential pharmacokinetics 

between AZD and RAPA, given the studies presented here that inhibition of mTORC2 enhances 
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DC T cell stimulatory function, dual mTOR inhibitors may not be promising as 

immunosuppressants in transplant recipients. as loss of mTORC2 function as a result of chronic 

exposure to RAPA in transplant recipients has been implicated in the development of insulin 

insensitivity and the development of diabetes mellitus  

Conversely, there are currently 29 active studies and 24 completed studies in which 

various cancers are being tested as indications for the use of dual mTORC1/2 inhibitors. While 

these second-generation mTOR inhibitors may more completely shut down the PI3K/mTOR 

pathway, which has been shown to be dysregulated in many types of tumors including renal cell 

carcinoma, breast cancer, and hepatocellular carcinoma189, they may also impact patient immune 

cell function. Tumors are notorious immune evaders, and a number of immunotherapies have 

been developed in order to circumvent this and permit the patient’s immune system to attack 

these foreign bodies, the most well-characterized of which are checkpoint blockade monoclonal 

antibodies such as Pembrolizumab (Keytruda; anti-programmed cell death protein 1 [PD-1])190. 

A recent study has demonstrated AZD2014 to enhance the efficacy of anti-PD-1 and anti-

CTLA4 in mouse models of colon carcinoma cell line subcutaneous injections191. Therefore, it is 

possible dual mTORC1/2 inhibitors could serve as an adjuvant to cancer immunotherapies to 

enhance anti-tumor immunity. However, as loss of mTORC2 function as a result of chronic 

exposure to RAPA in transplant recipients has been implicated in the development of insulin 

resistance and the development of diabetes mellitus-like symptoms192, long-term studies to 

identify dosing regimens may be crucial for the clinical application of checkpoint blockade/dual 

mTOR inhibitor combination therapies.      
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7.3 Future Directions 

Although the studies presented here, as well as previous studies conducted by our lab, indicate 

inhibition of mTORC2 may not be promising in terms of immunosuppression in the context of 

transplantation (or other contexts in which immune suppression is desirable, such as 

autoimmunity), it does follow that enhancing mTORC2 activity in DC may have pro-

immunosuppressive results. In addition, it has also been suggested that enhanced activation of 

mTORC2 may be protective against ischemia reperfusion injury by regulating apoptosis and 

autophagy, as well as macrophage infiltration193. While identification of upstream activators of 

mTORC2 activity has been elusive, recent studies have demonstrated a mechanism of mTORC2 

activation which is temporally and spatially regulated by phosphatidylinositol(3,4,5) 

trisphosphate (PtdIns(3,4,5)P3)85,194. The pleckstrin homology (PH) domain of Sin1, a protein 

unique to mTORC2, interacts with and inhibits the kinase domain of mTOR in mTORC2. 

PtdIns(3,4,5)P3 can associate with the Sin1 PH domain and release it from the mTOR kinase 

domain, thereby activating mTORC2. Of particular interest, mutations within the Sin1 PH 

domain have been identified in cancer patients with pathologically augmented mTORC2 

activity194. Therefore, agents which disrupt Sin1 PH or increase PtdIns(3,4,5)P3 could enhance 

mTORC2 activity and have potential as immunosuppresants.  However, it should be noted that 

regulation of both mTOR complexes is critical for the differentiation and function of T cells, and 

overexpression of mTORC2 may destabilize Treg195. 

 Another recent study has highlighted the importance of subcellular localization of 

mTORC2 in regards to its activity. Namely, mTORC2 was shown to localize to the cell 

membrane, mitochondria, and early/late endosomal vesicles, and this localization impacted the 

activation landscape of mTORC2. While mTORC2 localized to endosomal vesicles was 
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activated in a growth factor, PI3K, and PtdIns(3,4,5)P3-dependent fashion, mTORC2 localized to 

the cell membrane was activated independently of these components196. This suggests that in 

some subcellular contexts, mTORC2 activity may enhance mTORC1 activity, while in other 

subcellular locations mTORC2 may suppress mTORC1 (as observed in our studies), and agents 

impacting Sin1 or PtdIns(3,4,5)P3 to enhance mTORC2 activation may actually also enhance 

mTORC1 and be ineffective immunosuppressants. Therefore, further studies of how subcellular 

localization impacts the upstream activators of mTORC2 and the downstream targets of 

mTORC2 will be crucial in identifying appropriate pro-immunosuppressive drugable targets 

upstream of mTORC2.      
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Appendix 

 

 

• ΔΨm—Mitochondrial membrane potential 

• 2-DG—2-deoxyglucose 

• 4E-BP1—eIF4E –binding  protein 1 

• A—Aorta 

• Ab—Antibody 

• Ab—Antibody 

• Ag—Antigen 

• Akt—Protein kinase B 

• AMPK—AMP-activated protein kinase 

• APC—Antigen presenting cell 

• ATG—Anti-thymocyte globulin 

• ATP—Adenosine triphosphate 

• ATP—Adenosine trisphospate 

• BAC—Bacterial artificial chromosome 
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• BATF3—Basic leucine zipper ATF-like 3 transcription factor 

• BMDC—Bone marrow-derived DC 

• CA—Carotid artery 

• CCR—C-C chemokine receptor  

• CD—Cluster of differentiation 

• cDC—Classical dendritic cell 

• CNI—Calcineurin inhibitor 

• CTL—Cytotoxic T lymphocyte 

• CTLA-4—Cytotoxic T-lymphocyte associated protein 4  

• Ctrl—Wild-type control 

• CXCL—C-X-C motif chemokine ligand 

• DAMP—Damage-associated molecular pattern 

• DC—Dendritic cell 

• Deptor—DEP domain-containing mTOR-interacting protein 

• dLN—Draining lymph node 

• DNFB—2,4-dinitrofluorobenzene 

• DON—6-diazo-5-oxo-l-norleucine 

• DTH—Delayed-type hypersensitivity 

• ECAR—Extracellular acidification rate 

• eIF4E—Eukaryotic initiation factor 4E 

• EJV—External jugular vein 

• ER—Endoplasmic reticulum 

• ETC—Electron transport chain 
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• F—Female 

• FAK—Focal adhesion kinase 

• FAO—Fatty acid oxidation 

• FAS—Fatty acid synthesis 

• FcγR1—Fc-gamma receptor 1 

• FKBP12—12 kDa FK506 binding protein 

• Foxo1—Forkhead box O1 

• Foxp3—Forkhead box P3 

• GAP—GTPase activating protein 

• GAPDH—glyceraldehyde-3-phosphate dehydrogenase 

• GATA3—GATA binding protein 3 

• GM-CSF—Granulocyte-macrophage-colony stimulating factor 

• GSK3—Glycogen synthase kinase 3 

• GTP—Guanosine triphosphate 

• GVHD—Graft-versus-host disease 

• Hcst—Hematopoietic cell signal transducer 

• HEK—Human embryonic kidney 

• HEV—High endothelial venules 

• HHT—Heterotopic heart transplant 

• HIF-1α—Hypoxia-inducible factor 1 

• HK-II—Hexokinase II 

• HLA—Human leukocyte antigen 

• HMGB1—high mobility box group 1  
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• HNS—Heparinized normal saline 

• HSP—Heat shock protein 

• Id2—Inhibitor of DNA binding 2 

• IDO—indoleamine 2,3-dioxygenase 

• IFN—Interferon 

• IgG—Immunoglobulin G 

• IKKε—Inhibitor of nuclear factor kappa-B kinase subunit epsilon 

• iNOS—Inducible nitric oxide synthetase 

• IRF8—Interferon regulatory factor 8 

• IRS-1—Insulin receptor substrate 

• Itga2b—Integrin alpha IIb 

• IVC—Inferior vena cava 

• LAG3—Lymphocyte-activated gene 3 

• LC—Langerhans cells 

• Leu—Leucine 

• LPS—Lipopolysaccharide  

• M—Male 

• MAPK—Mitogen-activated protein kinase 

• MHC—Major histocompatibility complex 

• MHCI—Major histocompatibility complex class I 

• MHCII—Major histocompatibility complex class II 

• MLR—Mixed leukocyte reaction 

• mLST8—mammalian lethal with SEC13 protein 8 
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• MMP—Matrix metalloprotease 

• moDC—Monocyte-derived dendritic cell 

• mRNA—Messenger ribonucleic acid 

• mSIN1—mammalian stress-activated MAP kinase-interacting protein 1 

• MST—Mean survival time 

• mTOR—mechanistic target of rapamycin 

• mTORC—mTOR complex 

• NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells  

• NFIL3—Nuclear factor interleukin 3 regulated 

• NO—Nitric oxide 

• NOD—Nucleotide-binding oligomerization domain 

• NOTCH2—Neurogenic locus notch homolog protein 2 

• OXPHOS—Oxidative phosphorylation 

• PA—Pulmonary artery 

• PAMP—Pathogen-associated molecular pattern 

• PCR—Polymerase chain reaction 

• PD-1—Programmed cell death protein 1 

• pDC—Plasmacytoid dendritic cell 

• PGC-1α—peroxisome-proliferator-activated receptor coactivator-1α 

• PI3K—Phosphoinositide 3 kinase 

• PIK3AP—PI3K associated protein 

• POD—Post-operative day 

• PPARγ—Peroxisome proliferator-activated receptor-γ 
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• PRAS40—proline-rich Akt substrate of 40kDa 

• Protor—Protein observed with Rictor 

• PRR—Pattern recognition receptor 

• PtdIns(3,4,5)P3—phosphatidylinositol(3,4,5) trisphosphate 

• Ptk—Protein tyrosine kinase 

• RAGE—Receptor for advanced glycation end products 

• RAPA—Rapamycin 

• Raptor—regulatory-associated protein of mTOR 

• RBP-J—Recombining binding protein suppressor of hairless 

• Rheb—Ras homolog enriched in brain 

• Rictor—Rapamycin-insensitive companion of mTOR 

• RIG-1—Retinoid acid-inducible gene 1 

• RORγt – Retinoic acid receptor-related orphan receptor γ-t  

• S6K—p70 ribosomal S6 kinase 1 

• Ser—Serine 

• SGK1—Serum/glucocorticoid regulated kinase 1 

• siRNA—Small interfering RNA 

• SRC—Spare respiratory capacity 

• SRC—Spare respiratory Capacity 

• SREBP1/SREBF1—Sterol regulatory element binding protein 1 

• SVC—Superior vena cava 

• TANK—TRAF family member-associated NF-kappa-B activator 

• TAP—Transporter associated with antigen processing 
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• TBK1—TANK-binding kinase 1 

• TCA—Tricarboxylic acid 

• TCR—T cell receptor 

• TCR—T cell receptor 

• TEM—Transmission electron microscopy 

• Tfh—T follicular helper cells 

• TGFβ—Transforming growth factor β 

• Th—T helper 

• Th—T helper cell 

• TLR—Toll-like receptor 

• TNFα—Tissue necrosis factor α 

• Treg—Regulatory T cell 

• TSC—Tuberosclerosis complex 

• WT—Wild-type 

• YY1—Yin-yang 1 
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