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TRANSFER LEARNING FOR A MULTIMODAL HYBRID EEG-FTCD

BRAIN-COMPUTER INTERFACE

Elise Veronica Louise Dagois, M.S.

University of Pittsburgh, 2018

Transfer learning has been used to overcome the limitations of machine learning in Brain-

Computer Interface (BCI) applications. Transfer learning aims to provide higher perfor-

mance than no-transfer machine learning when only a limited number of training data is

available and can consequently reduce training and calibration requirements. BCI systems

are designed to provide communication and control tools for individuals with limited speech

and physical abilities (LSPA). Most noninvasive BCI systems are based on Electroencephalo-

gram (EEG) because of EEG 's cost effectiveness and portability. However, EEG signals

present low signal-to-noise ratio and nonstationarity due to background brain activity. Such

a behavior may decrease the global performance of the system. To overcome the disadvan-

tages of EEG signals, in our previous work, we developed two different multi-modal BCI

systems based on EEG and functional transcranial Doppler (fTCD), a cerebral flood veloc-

ity measure. These two multi-modal systems that combine EEG and fTCD signals aim to

reduce performance degradation obtained when EEG was the only BCI modality. One of

the systems is based on steady state evoked potentials and the other one is designed using

motor imagery paradigms. Our results have shown that such a hybrid system outperforms

EEG only BCIs. However, both systems require significant amount of training data for per-

sonalized design which could be tiresome for the target population. In this study, we extend

these systems by performing a new transfer learning algorithm and we demonstrate the cor-

responding algorithm on the three different binary classification tasks for both BCIs in order

to reduce the calibration requirements. Performing experiments with healthy participants,
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we collected EEG and fTCD data using both BCI systems. In order to apply transfer learn-

ing and to reduce the calibration requirements for BCIs, for each participant, we identify the

most informative datasets from the rest of the participants based on probabilistic similarities

between the class conditional distributions and increase the training set from this data. We

demonstrate that transfer learning reduces the calibration requirements up to %87.5 for BCI

systems. Also, through comparison between different classifiers LDA, QDA, and SVM, we

observe that QDA achieves the higher difference between transfer learning and no transfer

accuracy.

Keywords: Transfer Learning, Hybrid Brain Computer Interfaces, Electroencephalogram,

Functional Transcranial Doppler Ultrasound, Distance Measures, Machine Learning.
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1.0 INTRODUCTION

In recent years, transfer learning has been used extensively to develop classification tech-

niques that utilize previously acquired data to train a model that will work on unknown

datasets and to improve the generalization performance of classifiers. These methods mimic

human memory to generalize the acquired knowledge to perform various tasks [9]. Such

transfer learning methods have the capability to increase classification performance when

only a small dataset is available to train a classification model [32],[42]. Noninvasive brain

computer interface (BCI) design is one application domain that would benefit from such

transfer learning approaches [27].

Non invasive BCIs are designed to help individuals with neurological deficits or with Lim-

ited Speech and Physical Abilities (LSPA) to communicate with their caretakers [4] without

any surgical interventions. More specifically, such BCIs aim to help individuals with LSPA

by allowing them to type on a computer screen or control electronic devices such as prosthet-

ics limbs, wheelchairs or robotic agents using brain signals [10], [48], [11], [38]. BCI systems

work by translating neural activity generated by the brain into control signals. Therefore,

they require data generated voluntarily from brain activity to efficiently translate one in-

dividual’s intent [43], [19]. Electroencephalogram (EEG) is the most preferred modality

to build such BCIs due to its high temporal resolution, cost effectiveness and portability.

However, since EEG has low signal-to-noise ratio and demonstrates nonstationarities due

to background brain activities, systems built based only on EEG suffer from performance

degradations [39], [3]. Hybrid BCI systems are built to overcome the shortcomings of EEG-

only BCIs [1]. However the modalities commonly used to complement EEG for hybrid BCI

design such as electromyography (EMG) [12], [23] or functional near-infrared spectroscopy

(fNIRS) lack the speed and accuracy to be used for real-time BCI applications [25], [31].
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In our previous work, we have shown that functional transcranial Doppler (fTCD) that

measured blood flow in the brain due to different mental activities has temporal resolutions

comparable to EEG to complement EEG for hybrid BCI design and fTCD is robust to

nonstationarities due to background brain activities [21], [20]. Moreover we have shown that

such a hybrid BCI based on EEG and fTCD outperforms BCIs based on EEG and fTCD

only [21], [22]. BCI systems effectiveness depend on the quality of the signals returned by

the user. Therefore, the participant is asked to perform specific cognitive tasks to alter

brain signals and to produce detectable EEG and fTCD data [18]. Motor Imagery (MI)

process movement imagination and conscious mental activity to activate injured regions of

the brain and to return brain signals corresponding to a specific movement [35]. Often

utilized for rehabilitation, MI has been tested on participants with and without LSPA to

explore potential improvements of BCI systems [39], [2]. Systems based on motor imagery

BCIs have shown motor improvements for stroke rehabilitation [37]. In our previous study,

we developed a novel MI hybrid BCI system based on EEG and fTCD signals both recorded

in response to different cognitive tasks. We formulated 3 binary classification problems based

on imagery tasks including right arm MI versus baseline, left arm MI versus baseline, right

versus left arm MI [21]. From the results of the study, we demonstrated that the multimodal

BCI improves performance by about %5 compared to a single modal using EEG only and

by %20 compared to a similar model using fTCD only [21].

However, many studies have shown that BCIs using fTCD are more efficient when other

types of visual stimuli are utilized and as both tasks formulated are imagery tasks, fTCD is

not well adapted for MI hybrid BCI system. In order to overcome this issue that would de-

crease the performance and considering these observations from previous studies, we extend

this system to a novel BCI system based on visual presentations of EEG and fTCD. The

proposed hybrid system is based on two different paradigms including word generation (WG)

and mental rotation (MR) jointly presented to the BCI user [28]. It has been shown visual

representations such as presented letters and geometric shapes can alter blood velocity and

efficiently enables fTCD responses [29]. Based on this observation, the letter and the geo-

metric shape instruct the user to perform word generation (starting with the specific letter

presented on the screen) and mental rotation of the presented three dimensional geometric
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shape to induce changes in the blood flow in two different parts of the brain that are recorded

by fTCD. However, to induce changes in EEG we need to modify the representation of the

tasks. EEG is indeed not sensitive to such visual presentations as it cannot differentiate

these two tasks. Therefore, the EEG component of the hybrid BCI is based on steady state

visual evoked potentials (SSVEPs) that are recorded in response to flickering word genera-

tion and flickering mental rotation with two different frequencies [45], [8], [30], [24]. Previous

studies have demonstrated the efficiency of SSVEP BCIs to allow the mental communication

between an individual with LSPA and an external device. The user has to perform mental

tasks indicated by visual stimuli. The visual icons are flickering with different frequencies

and displayed on a screen.

In our previous work, in order to improve the hybrid BCI performance, we utilized a vi-

sual presentation paradigm to induce changes in EEG (based on SSVEP) and fTCD (based

on mental tasks) simultaneously [21]. Specifically, we expect that SSVEP based BCI will

achieve higher performance than the previously developed MI based BCI contributing to an

increase in the overall hybrid BCI performance [15]. In order to demonstrate these improve-

ments, we have performed BCI experiments with 11 healthy participants. Through these

experiments we have developed 3 different binary classifications including word generation

(WG) vs mental rotation (MR), MR vs baseline and WG vs baseline, and we have shown

that hybrid BCI increases the classification accuracy by %5 compared to BCI based on EEG

only for the same tasks [21]. Even though the hybrid system improves the performance

compared to a BCI based on EEG only, such a hybrid system requires long calibration data

(which causes fatigue especially in target population) to design user specific classifiers for

the BCI operation.

Contributions of this thesis: In this thesis, we extend our existing systems and we

propose to use a novel transfer learning approach to decrease the training requirements. We

perform the novel transfer learning method on both MI and SSVEP based BCI systems. In

order to apply transfer learning, we extract features using Regularized Discriminant Analy-

sis (RDA) from EEG and fTCD data for three different binary classification problems and

learn class conditional distributions using kernel density estimation (KDE) for these features.

Class conditional distributions are then used to probabilistically identify similarities among
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the data collected from multiple participants and to apply transfer learning. For probabilistic

similarities, we utilize various probabilistic measures including Kullback-Leibler divergence

(KL divergence), Bhattacharyya, and Hellinger distances. We use the RDA scores for transfer

learning and as the final features for the classification. We compare three different classi-

fiers: quadratic discriminant analysis (QDA), linear discriminant analysis (LDA), and linear

support vector machine (SVM). Using the data we collected from healthy participants, we

demonstrate that the transfer learning can reduce the training dataset by up to %87.5. Also

we show that QDA provides the highest difference between transfer learning and no transfer

for both systems.
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2.0 MOTOR IMAGERY BCI SYSTEM

MI is a process regularly used to restore physical and cognitive functions for individuals

with LSPA [36], [33]. Certain regions of the brain, specifically the motor cortex, and frontal

cortex which are activated due to physical movements are also activated by MI procedures.

Therefore, MI could be used to induce changes in EEG which eventually could be used for

BCI system design. Previous studies demonstrated that BCI systems based on MI could

be efficiently performed on participants with neural disorders and that they greatly improve

physical movements and rehabilitation. On the other hand, as also described above, in our

previous study we showed that MI also induces changes in fTCD [20], [21]. The aim of

this study is to extend our previous EEG and fTCD-based hybrid system with our novel

transfer learning algorithm. The purpose is to reduce calibration requirements and training

data to achieve higher or at least same performance than without transfer learning. In this

chapter, we introduce the experimental setup, and signal pre processing and transfer learning

methodology. The chapter also includes results and discussions.

2.1 METHOD

In this section, we introduce our experimental setup for MI BCI, pre-processing, and feature

extraction methods as well as the distance measures used to determine similarities between

datasets.
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2.1.1 Experiment Setup

We collected EEG signals using 16 electrodes placed over frontal, central and parietal lobes

at the positions Fp1, Fp2, F3, F4, Fz, Fc1, Fc2, Cz, P1, P2, C1, C2, Cp3, Cp4, P5, and P6

with the reference electrode placed over the left mastoid. The signals are amplified using a

g.tec EEG system with g. USBamp. Collected data are sent from the amplifiers to a laptop

via USB 2.0.

Two 2 MHz transducers of a SONARA TCD system were used to collect the fTCD data.

The transducers are positioned on the left and right sides of the transtemporal window

located above the zygomatic arch [26] [40]. The fTCD depth was set to the depth of the

mid-point of the middle cerebral arteries (50 mm) [26] as it delivers approximately %80 of

the brain with blood.

In this study, EEG and fTCD data are recording simultaneously from the participants

during visualization of the motor imagery tasks. The g.USBamp is used to record EEG sig-

nals and it includes 16 24-bit simultaneously sampled EEG channels. EEG data is recorded

on the experiment laptop through USB connection. To record fTCD signals, we used 2 MHz

SONARA TCD transducers. In our study EEG and fTCD are synchronized based on time

stamps. We are looking for the available time stamps from both modalities and we syn-

chronized the two signals based on these measures. The presentation software Psychtoolbox

included in the EEG system sends triggers to the EEG amplifier in order to segment the

EEG data. These triggers indicate the type of stimulus shown on the screen and record the

time stamp corresponding to each trigger. The same triggers are used to segment the fTCD

data based on software-generated time stamps available from the fTCD device.

The g.USBamp amplifier used during the experiment includes a 16 24-bit simultaneously

sampled channels. This device is equipped with an internal digital signal that process the

received signal by filtering and sampling rate up to 38.4 kHz. These data were digitized

using a sampling rate of 256 samples/s [21].

16-channel EEG and two-channels fTCD data were recorded simultaneously (under Uni-

versity of Pittsburgh approved IRB) from 10 healthy right-handed subjects with ages ranging

from 23 to 32 years old. Participants were seated at 1 m away from the computer and are
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Figure 2.1: Stimulus presentation for the hybrid BCI system. During one trial, the arrow

indicates the task the user has to mentally performs.

asked to keep their attention on the screen. During data acquisition, each participant is ob-

serving visual icons corresponding to right and left arm MI mental tasks as well as baseline.

In particular, as shown in Figure 2.1, left arrow represents left arm MI and right arrow rep-

resents right arm MI while the fixation cross in the middle represents the baseline. During

each trial of 10-s duration, a vertical red arrow selects randomly one of the 3 tasks and the

participant is instructed to mentally perform the task selected by the vertical arrow.

Each participant have signed a consent form and attended one data collection session

of 25-min duration. 150 trials are randomly presented per user in total. Assuming equal

probability, we approximately have 50 trials per task. Considering preparation and calibra-

tion time, the whole experiment lasts for approximately 1 hour and 15 minutes. From the

three imagery tasks presented during the experiment, we formulate three binary classifica-

tion problems for our MI BCI system including right arm MI vs left arm MI (RA vs LA),

right arm MI vs baseline (RA vs BL) and left arm MI vs baseline (LA vs BL).
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We decide to focus on three different binary classification problems instead of three class

classifications to demonstrate the feasibility of the transfer learning for this hybrid BCI

system. We show that we can achieve significant reduction in the required calibration data

for these binary classification problems. Also binary systems are more preferable in real-

time usage by the target population, individuals with LSPA. This is mainly because binary

selection systems have lower cognitive load.

2.1.2 Pre-processing and Features Extraction

Figure 2.2: Diagram showing features extraction and selection. The two feature vectors

are normalized using min max normalization and are concatenated into one single features

vector.

EEG and fTCD data of each trial were segmented. Features corresponding to each

trial included power spectrum raw values calculated using Welch method [46]. We return

the power spectral density estimate of the raw values of each channel independently using

Welch’s overlapped segment averaging estimator. Instead of considering the power spectrum

values over all frequency bins, the number of features is reduced by taking the average power

over a small range of frequencies. A specific window size in Hz is defined for EEG and

fTCD separately and the average power over this width was considered as one feature. More
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specifically, the average power over each consecutive 2 Hz of the EEG data was considered as

one feature while for the fTCD data, since it has a much higher bandwidth (2.5 kHz compared

to 40 Hz for EEG), the average power over each consecutive 50 Hz for the fTCD data was

considered as one feature. EEG and fTCD feature vectors were normalized separately across

trials using min-max normalization [17].

A single features vector (EEG and fTCD feature vectors of each trial) representing each

trial were obtained by concatenating the reduced power spectrums corresponding to the 16

EEG segments and to the 2 fTCD segments respectively as represented in Figure 2.2.

2.1.3 RDA Scores and Similarity Measures

To apply transfer learning across participants, similarity is measured between the dataset

under test and the other datasets collected from other individuals. Various distance measures

are used in this study to measure distance between two probability density functions P and Q

including KL divergence, Bhattacharyya, and Hellinger [7]. The equations of these distance

measures are respectively given by equations 2.1, 2.2 and 2.3.

dKL =
∑n

i=1 Pi ln
Pi

Qi
(2.1)

dB = − ln
∑n

i=1
√

PiQi (2.2)

dH = 2
√
1 −

∑n
i=1
√

PiQi (2.3)

with n the length of the probability density functions P and Q.

Instead of measuring similarity directly using EEG and fTCD concatenated feature vec-

tors, these feature vectors are reduced using RDA [14] [13] into scalar RDA scores. RDA is

a commonly used method to classify objects in low-dimension to one or several groups or

classes [14]. Class k are chosen such that the risk or expected loss induced by classifying

an element of the observations X as k is minimized. RDA is utilized to overcome problems

induced by small sample sizes such as ill-posed and poorly-posed problems. Ill-posed and

poorly-posed problems respectively define a situation where the number of parameters is
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greater than the sample size or comparable to the number of observations. In this case,

a new approach is defined to propose an alternative to linear and quadratic discriminant

analysis. Regularized function aims to solve those problems by regulating two new param-

eters and by introducing a bias variance tradeoff that improve estimations of parameters Σ

and µ [14], [6]. RDA is the extension of QDA [13]. The function used for RDA also called

discriminant score for the kth class is given by equation 2.4.

dk(x) = (X − X̄k)
T
Σ̂
−1
k (λ, γ)(X − X̄k) + log |Σ̂k(λ, γ)| − 2 log π(k) (2.4)

where λ is the degree of shrinkage, 0 ≤ λ ≤ 1 and γ is the regularization parameter,

0 ≤ γ ≤ 1 [13], X a set of measurements, π(k) unconditional prior probability of ob-

serving a class k member. dk(x) + 2 log π(k) corresponds to the discriminant function and

(X − X̄k)
T Σ̂−1k (λ, γ)(X − X̄k) is known as the Mahalanobis distance. Σ̂k is the regularized

covariance matrices of class k and is defined as shown in equation 2.5.

Σ̂k(λ, γ) = (1 − γ) ∗ Σ̂k(λ) + γ ∗
tr

[
Σ̂k(λ)

]
p

I (2.5)

The expression of Σ̂k(λ) is given in equation 2.6.

Σ̂k(λ) = (1 − λ)Σ̂k + λΣ̂ (2.6)

Σ̂ is the common class covariance matrix. Equation 2.4 leads to the following classification

rule

dk̂(X) = min
1≤k≤K

dk(X) (2.7)

As values of λ and γ are not known in advance, we have to estimate them. λ and

γ are positive values between 0 and 1. In this study, 10-fold cross-validation is used to

optimize the RDA parameters λ and γ within a range 0.1 to 1 with a step of 0.1 such that

the area under the receiver operating characteristic curve is maximized. The precision of

10−1 for the definition of the parameters is precise enough to return high accuracy while

it limits computation time of the process. This method is performed for the three binary

classifications defined for the motor imagery BCI system. Using the RDA scores of the trials

10



corresponding to each class, the conditional pdfs are estimated. Rbf kernel is used for KDE

and the kernel bandwidth is estimated based on Silverman’s rule of thumb.

Figure 2.3: Diagram representing the process to obtain the distance between the dataset of

one participant and the others.

The similarities between the pdf of the dataset under test and the pdfs of the other

datasets are computed. The method is shown in Figure 2.3. To avoid overfitting and to

maximize the accuracy, five datasets which are most similar to the dataset under test are

chosen for transfer learning and will be used to train the three different classifiers LDA, QDA

and SVM. In the results section, we compare the performances obtained from the classifiers

and for the different distance measures.

2.1.4 Classification

Three classification tasks per system were formulated as describe above to test the perfor-

mance of the hybrid BCI using the suggested transfer learning algorithm. Linear SVM, LDA,
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and QDA were used to perform the classification tasks and performance measures obtained

from each classifier were compared.

Support Vector Machine (SVM) is a supervised learning method used for classification

[16]. Like all supervised learning methods, it needs training data to give accurate predictions

and to build a decision model. SVM looks for the function that defines the optimal separating

hyperplane also called decision boundary. The decision boundary is an accurate division of

classes that maximizes the margin between the data. Different kernels can be utilized to

define the SVM function in case the classes are not linearly separable. For BCI applications

the basic linear SVM is usually defined as the best choice as BCI is intended to be used for

real time applications. Therefore, we specify a linear kernel function as a decision function.

Discriminant analysis is performed to assign objects to a specific class by minimizing

a discriminant function. Considering that each element comes from a multivariate normal

distribution, the discriminant function is derived from the probability for one object to belong

to a class also called posterior distribution. LDA is used when only one class covariance

matrices Σ is defined and is similar to all classes. LDA finds a one dimensional subspace to

find a linear separating plane. QDA is used when one covariance matrix per class is defined

and is a generalized use of LDA [14], [13]. This function is more adapted for a great diversity

of points. The surface separating the two classes is not linear but can be either parabola or

hyperbola [5].

Given a set of observations X, the equations of discriminant functions of QDA and LDA

classifiers are given in Table 2.1. LDA is obtained by setting Σk = Σ in QDA. The terms

log Σk and xTΣ−1x is left out of the equation as Σk is independent from the class. and it

does not affect the classification. µk and Σk denote the class k population mean vector and

covariance matrix [6].

2.2 TRANSFER LEARNING ALGORITHM

In this paper, we propose to use transfer learning to decrease the training requirements for

the MI hybrid BCI and for the SSVEP hybrid BCI system. The pseudocode of the proposed

12



Table 2.1: Table of classification models

Name Equation

QDA dk(x) = (X − µk)
TΣ−1k (X − µk) + log Σk − 2 log π(k)

LDA dk(x) = 2µT
kΣ
−1X − µT

kΣ
−1µk − 2 log π(k)

transfer learning approach algorithm is summarized in Algorithm 2.2.
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Traditional machine learning trains each set of observations independently from each

other and returns a classification for the corresponding labels. Transfer learning works

differently as it correlates the resulting labels of all sets of observations. Figure 2.4 shows

how the acquired information is used and transferred to train other related objects for transfer

learning and traditional machine learning algorithm. Indeed, negative transfer of knowledge,

which means transferring data that are not related to each other, affects the efficiency of

the system and can reduce the performance. Transfer learning algorithm users have to

decide what information can be transferred to classify one set of observations. However, the

number of dataset used to train another dataset under test is limited to avoid overfitting of

the classification system. Therefore, the system only consider useful information and reject

data that are not compatible with the classification.

First, we explore the exact quantity of information to transfer from one participant to

another. As transfer learning method identify the most related dataset to an individual data,

we determined the number of dataset from 1 to 5 to use that maximizes the performance. As

we want to avoid overfitting data that would affect negatively the accuracy, we have the select

only the datasets that present most related information and that would return the minimum

distance. Therefore, in this algorithm, for each participant, we identify five datasets from

the rest of the participants with the most similar EEG and fTCD characteristics for transfer

learning.

14



Figure 2.4: Process of transfer learning compared to traditional machine learning algorithm

adopted from [41].

More specifically, we utilize the KDEs of the class conditional distributions of the scores

obtained from the RDA projection of EEG and fTCD features. RDA returns one dimensional

vectors of scores per participant. Assuming that N number of trials are collected from each

participant, each participant’s data are separated into test set of size t trials and training set

of size N − t trials. Test and training sets are chosen to include approximately equal number

of trials for each class. Then, training dataset and corresponding KDE of RDA values are

used to identify five datasets (from the rest of the participants) that are most similar in

a probabilistic manner to the training set of each participant as specified in Section 2.1.3.

Considering different distance measures including Bhattacharyya and Hellinger distances and

KL divergence, we compute the similarity between class conditional distributions acquired

for one participant and the others'. Based on the results provided by the distance measure,

we return five datasets corresponding to the minimum distances. Each participant’s training

set is then augmented with these most similar datasets (identified from the rest of the

participants) for transfer learning.
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In order to analyze the effect of transfer learning for different training test sizes, t is

varied to take different values. Note that for the binary classification problems that are

defined above, we have N = 100. Accordingly t is varied from 10 to 90 resulting in minimum

training size of 10 samples (5 samples for each class).
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Algorithm 1 Pseudocode for the proposed transfer learning approach.

for each binary classification problem do

for each distance measure D do
Accuracy=(); Specificity=(); Sensitivity=();

for Ts = 1 : 10 // Segment length (s) do

for n = 1 : 10 // participants do
Ni = number of trials from class i, i = 1, 2;

N=N1+N2;

Estimate power spectrum features;

Get RDA scores si =
{
s1, ..., sNi

}
for class i;

Estimate Pn(si |xi) using KDE;

end

for n = 1 : 10 do
Get distance between Pn(si |xi) and Pm(si |xi) for m =

{
1, ..., 10

}
-
{
n
}
;

Select top similar 5 datasets to participant n;

T =
[
Tn

E,T
n
R,
]
;

Tn
E : testing trials for participant n;

Tn
R: training trials for participant n;

for Tn
E = 10 : 10 : 90 do

Train the classifier using
[
Tn

R,T
l
R

]
, l ⊂ m contains indexes corresponding to

top similar 5 datasets;

Test the model using Tn
E ;

Compute performance measures;

end

end

end

end

end

17



2.3 RESULTS AND DISCUSSION

In this part of the study, we discuss about the performance achieved for both systems with

and without transfer. We first explain our choice to utilize Bhattacharyya as a distance

measure instead of Hellinger distance or KL divergence. In the next sections we compare

the results given by the different classifiers SVM, LDA, and QDA for the MI hybrid BCI.

For the 3 binary classification problems, we first analyze the reduction in training size

requirements provided by three distance measures used for transfer learning (TL) compared

to no transfer learning (NT) as shown in Figure 2.5. In particular, we statistically compared

the accuracy vectors of TL with minimum training size and NT using bigger training set

sizes than TL. For TL with 10 trials, we performed one-sided Wilcoxon signed rank test

[47] between the accuracy vector of TL with 10 trials and NT accuracy vectors obtained at

training set sizes ranging from 20 to 90 trials. Same statistical comparison was applied for

the 3 distance measures.

Using Bhattacharyya distance, at training set size of 10, it was found that the perfor-

mance of TL is comparable with the performance of NT with 80 trials. In other words,

instead of calibrating the system with 80 trials in the NT case, same or higher performance

can be achieved when using TL and calibrating the system with 10 from the BCI user. This

reflects a reduction in the calibration requirements by %87.50.

Using both Hellinger and KL-divergence, the performance of TL at 10 trials was sta-

tistically comparable to the performance of NT with maximum of 50 training trials which

reflects a maximum possible reduction in calibration requirements by %80.00. Since Bhat-

tacharyya provides the best results for the reduction of training set requirements through

TL, in the remaining of this paper we present the classification performances for the three

binary classifications provided by this distance measures.

Considering the test set size, t = 90 trials and training size N − t = 10 trials, accuracy,

sensitivity and specificity of the classification (averaged across participants) for three different

classification methods are presented in Tables 2.2, 2.3, and 2.4 for RA vs. LA, RA vs. BL and

LA vs. BL classification problems, respectively. During transfer learning, we also optimize

the trial length for each participant and the classification results are presented for these
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Figure 2.5: Accuracy (averaged across participants) for MI BCI provided by KL divergence,

Bhattacharyya and Hellinger computed for the three binary classification problems through

transfer learning.

optimum trial lengths (between 1 and 10 seconds). We observe from Tables 2.2, 2.3 and

2.4 that all classification results achieved using transfer learning (with the augmentation of

the top 5 datasets identified as the most similar datasets) provide higher performance than

the case without transfer learning. For classification using LDA, accuracy reaches %78.67,

%76.11 and%77.11 for RA vs LA, RA vs BL and LA vs BL, respectively for transfer learning.

For QDA, %77.67, %74.89 and %76.78 and for SVM %79.33, %77.11 and %77 accuracy were

achieved for the same classification problems. It can be noted that SVM achieves higher

accuracy compared to QDA and LDA. However, in terms of the accuracy difference between

TL and NT, the highest difference is provided by QDA for which the classification is improved

by %11.11, %5.56, and %6.11 for RA vs LA, RA vs BL, and LA vs BL respectively compared

to %6.23, %2.11, and %2.89 for RA vs LA, RA vs BL, and LA vs BL respectively given by

LDA and %6.22, %2.44 and %2.11 given by SVM.

Considering Bhattacharyya as the distance measure to identify top 5 datasets for transfer

learning, Figure 2.6 presents the accuracy values (averaged across participants) for three
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Figure 2.6: Accuracy for MI BCI as a function of the number of trials in the training set for

each binary problem computed with and without transfer.

different classification problems as the training set size changes from 10 to 90 trials. Transfer

learning results are compared to the no transfer learning results for each binary classification

problem. Results are evaluated using QDA. This figure focuses on the influence of the

quantity of information available to train a classifier and effect of the training/calibration

data size on the classification accuracy with and without transfer learning. Overall the

accuracy values obtained by transfer learning are higher than the case without transfer.

Using this figure, we observe that when the training size drops even down to 20 corresponding

to t = 80 test data size, transfer learning provides between %5 to %7 improvement in the

accuracy.
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Table 2.2: Mean of accuracy among all participants and corresponding sensitivity and speci-

ficity for RA vs LA.

Performance

measures

LDA QDA SVM

NT TL NT TL NT TL

Accuracy 0.7244 0.7867 0.6656 0.7767 0.7311 0.7933

Specificity 0.8395 0.8191 0.8023 0.7723 0.8140 0.8532

Sensitivity 0.6191 0.7512 0.5404 0.7814 0.6553 0.7279

Table 2.3: Mean of accuracy among all participants and corresponding sensitivity and speci-

ficity for RA vs BL.

Performance

measures

LDA QDA SVM

NT TL NT TL NT TL

Accuracy 0.74 0.7611 0.6933 0.7489 0.7467 0.7711

Specificity 0.7725 0.7980 0.7075 0.7560 0.78 0.84

Sensitivity 0.7140 0.7150 0.6820 0.74 0.72 0.6850

Table 2.4: Mean of accuracy among all participants and corresponding sensitivity and speci-

ficity for LA vs BL.

Performance

measures

LDA QDA SVM

NT TL NT TL NT TL

Accuracy 0.7422 0.7711 0.7067 0.7678 0.7489 0.77

Specificity 0.7975 0.8060 0.65 0.7820 0.70 0.7520

Sensitivity 0.6980 0.7275 0.7520 0.75 0.7880 0.7925
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2.4 CONCLUSION

In this study, we extend our previous work on hybrid EEG-fTCD BCI employing motor

imagery mental tasks. In particular, we developed a transfer learning approach with the aim

of reducing the calibration requirements as well as improving the system performance. To

achieve such aim, EEG and fTCD data of each trial were projected into a scalar RDA score.

The scores corresponding to each class were used to learn class conditional distributions.

Several distance measures including Bhattacharyya, Hellinger distances and KL divergence

were used to identify similarities between class conditional distributions among the data

collected from multiple participants. Performance of the proposed approach was evaluated

using LDA, QDA, and SVM classifiers with RDA scores used as input features and compared

in the discussion section. Experimental results show that the training set size can be reduced

by up to %87.5 while achieving reasonable classification accuracy values. We demonstrate

that, for all classification problems, LDA classifier achieves the best performance. Consider-

ing improvement of performance using transfer learning, we show that QDA gives the highest

difference between no transfer and transfer. This system is designed using specific imagery

tasks obtained from motor imagery. As fTCD may not be well adapted for such system,

we designed another system based on different mental tasks and we expect this system to

achieve higher performance.
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3.0 SSVEP HYBRID BCI SYSTEM

As the motor imagery process limited the performance of our MI-based hybrid BCI system,

we developed a novel hybrid SSVEP and mental task-based hybrid BCI system [21]. This

multimodal system records EEG and fTCD signals in response to flickering visual stimuli

which also include instructions for mental rotation (MR) and word generation (WG). More-

over there is a fixation cross that represents the baseline. This new system has been developed

to extend the previous MI approach for BCI as it has been shown in previous studies that

SSVEP has higher BCI performance compared to MI-based paradigms [21]. Also changes

in fTCD are more significant when mental tasks are used instead of motor imagery. In this

chapter, we introduce a transfer learning approach for the SSVEP and mental task-based

hybrid BCI system. The first section provides in detail the process of data collection and the

visual stimuli presentation designed for the hybrid system. In the result section, we discuss

about global performance and compare accuracies obtained from the different classifiers and

distance measures.

3.1 METHOD

For the hybrid BCI based on steady state evoked potentials (SSVEPs), a total of 11 healthy

participants with 3 females and 8 males and ages ranging from 23 to 32 years old participated

to one experimental session under University of Pittsburgh approved IRB. No participants

presented any type of brain injury. In order to keep the participant focus on the experiment

the fTCD device was placed outside the participant’s field of view so that he would not be

distracted or influenced by the fTCD signals displayed on the device.
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As it has been shown in previous study that fTCD can successfully distinguish MR and

WG, we design the system based on MR and WG tasks. To design a high performance BCI

system, both EEG and fTCD need to differentiate MR and WG. Therefore, we modify the

tasks in order to induce SSVEPs in EEG. As shown in Figure 3.1, a flickering checkerboard

texture is included to the letter and geometric shape so that MR and WG tasks can be

differentiate from EEG. Some studies show that the flickering frequency has to be contained

in the range 7 to 60 Hz. It also has to be lower than 20 Hz [44], otherwise the SSVEPs

would be elicited with low amplitudes. Considering these observations, we decide to set the

flickering frequency to 7 and 17 Hz for WG and MR stimuli. During data collection, we

define different types of visual stimuli that are presented to the user including flickering MR,

flickering WG and baseline. The left side of the screen displays randomly selected capital

letters. This letter instructs the user to silently generate words starting with the same letter.

On the right side, different geometric shapes appears. The user is notified to mentally rotates

the corresponding pair of geometric shapes and to decide if they are mirrored or identical.

These shapes are obtained from a database of 3D cubic shapes [34]. A red vertical arrow

randomly selects the task to be performed as shown in Figure 3.1 and indicates that task for

a trial length of 10 s duration. The participant has to perform the task during the whole 10

s duration of the trial.

Each participant signed a form consent and attended one data collection session of 25-min

duration. A total of 150 trials are randomly presented per user. Assuming equal probability,

we approximately have 50 trials for each classification problems.

The same method of experimental setup and pre-processing introduced in Method Section

2.1 of Chapter 2 are used to collect the EEG and fTCD data and to obtain the corresponding

features. Feature vectors are normalized using min-max normalization. Moreover, an iden-

tical method using KDEs on RDA scores return the similar datasets and the N − t training

scores are concatenated to the individual under test. Classification performances are com-

puted through the three classifiers linear SVM, LDA and QDA and will be compared in the

results section of this chapter. Transfer learning algorithm shown in Algorithm 2.2 is used

to transfer the knowledge from the five most similar dataset to the dataset under test and

to determine the performance measures.
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Figure 3.1: Stimulus presentation for our flickering MR/WG hybrid BCI system. The arrow

indicates which mental task the user has to perform.

3.2 RESULTS AND DISCUSSION

For each participant, we first utilize KL divergence, and Bhattacharyya and Hellinger dis-

tances to identify the datasets to be used for transfer learning for that specific participant.

Through transfer learning (TL) we study the reduction in training size requirements com-

pared to no transfer learning case (NT) for the above mentioned three binary classification

problems and we return the corresponding performance measures. Accuracy averaged among

participants is shown in Figure 3.2. More specifically, we perform a one sided Wilcoxon rank

test [47] between accuracy obtained with TL with a minimum size of N − t = 10 training

trials and accuracy obtained with NT with a number a training trials in the range 20 to 90

trials. The same test is repeated for each size of NT. An identical statistical comparison is

applied for the different distance measures.

When TL is performed with 10 trials for both systems, the statistical test shows that the

performance for TL using Bhattacharyya distance is comparable to the performance for NT
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at a size of 80 trials. It means that instead of running the algorithm with 80 training trials

without transfer, the system gives higher or at least same performance when using only 10

training trials for TL. This reflects a reduction in the calibration requirements by %87.50.

Similar analysis shows that around 60 trials are needed for TL to obtain identical perfor-

mance as NT when KL divergence and Hellinger distance are used for dataset identification

for TL.

As Bhattacharyya provides the best results for the reduction of training set requirements

through TL, in the remaining of this paper we present the classification performances for

the three binary classifications provided through Bhattacharrya distance.

In this section, we first discuss about the performance measures obtained for the three

classifiers and for all classification problems in Tables 3.1, 3.2, and 3.3 with and without TL.

Considering the best classifier, we also show the improvement achieved by transfer learning

when the number of training trials is in a range N − t = 10 to N − t = 90 trials compared to

NT. Figure 3.3 presents the accuracy for all three classification problems using The results

are presented for an optimal trial length Ts chosen between 1 and 10 s and are averaged

among all participants.

Considering a test and a training size of t = 90 and N − t = 10 trials respectively,

performance measures including accuracy, specificity, and sensitivity for the three classifiers

are given in Tables 3.1, 3.2, and 3.3 with and without transfer learning for MR vs WG, MR

vs BL and WG vs BL.

From these tables, we observe that all TL classification results are higher than the NT

results for MR vs WG, MR vs BL, and WG vs BL classifications. Improvement achieved

is at least %2.66 for MR vs BL using SVm and goes up to %9.34 for MR vs BL using

QDA. LDA provides the best classification performance for MR vs BL and WG vs BL

classification problems with corresponding accuracies of %82.22 and %75.89 respectively.

On the other hand, QDA provides slightly higher performance compared to LDA and SVM

for the MR vs WG classification with %86.22 against %85.33 for LDA and %85.44. Finally,

when the difference between the TL and NT cases are considered, QDA provides the highest

improvement for all the classification problems with %7.22, %9.34 and %7.89 respectively

for MR vs WG, MR vs BL and WG vs BL while difference of performance is %5, %4.44 and
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Figure 3.2: Accuracy (averaged across participants) for SSVEP BCI provided by KL diver-

gence, Bhattacharyya and Hellinger computed for the three binary classification problems

through transfer learning.
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%3.89 using LDA and %3.66, %2.66 and %4 using SVM for the same tasks. Therefore, we

compare results obtained from TL and NT when QDA classifier is used as a classifier.

Figure 3.3 shows the accuracy (optimal accuracy averaged across individuals) obtained

for a number of training trials from 10 to 90 for MR vs WG, MR vs BL, and WG vs BL for TL

and NT cases. The results aim to show the influence of the quantity of information available

to train a classifier as well as the effect of the calibration data size on the classification

accuracy with and without transfer. For each size of training set, performance obtained with

TL is greater than without transfer for all classification problems.
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Figure 3.3: Accuracy for the SSVEP BCI as a function of the number of trials in the training

set for each binary problem with and without transfer.
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Table 3.1: Mean of accuracy among all participants and corresponding sensitivity and speci-

ficity for WG vs MR.

Performance

measures

LDA QDA SVM

NT TL NT TL NT TL

Accuracy 0.8033 0.8533 0.79 0.8622 0.8178 0.8544

Specificity 0.8698 0.8298 0.8419 0.8234 0.8930 0.8362

Sensitivity 0.7426 0.8791 0.7426 0.9047 0.7489 0.8744

Table 3.2: Mean of accuracy among all participants and corresponding sensitivity and speci-

ficity for MR vs BL.

Performance

measures

LDA QDA SVM

NT TL NT TL NT TL

Accuracy 0.7778 0.8222 0.7233 0.8167 0.7856 0.8122

Specificity 0.7750 0.8720 0.74 0.8580 0.7550 0.86

Sensitivity 0.78 0.76 0.71 0.7650 0.81 0.7525
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Table 3.3: Mean of accuracy among all participants and corresponding sensitivity and speci-

ficity for WG vs BL.

Performance

measures

LDA QDA SVM

NT TL NT TL NT TL

Accuracy 0.72 0.7589 0.66 0.7389 0.7111 0.7511

Specificity 0.6550 0.8120 0.50 0.7820 0.6175 0.8140

Sensitivity 0.7720 0.6925 0.7880 0.6850 0.7860 0.6725

3.3 CONCLUSION

With the aim of reducing the BCI calibration requirements, we developed a transfer learning

algorithm for our novel hybrid BCI system that exploits data acquired from EEG (based on

SSVEP) and fTCD (based on WG and MR) modalities simultaneously to infer user intent.

To measure similarity across subjects, for every individual, each trial was projected into a

scalar RDA score. These scores were used to estimate a class conditional distribution per

each mental task. Similarities between class conditional distributions were measured across

subjects using 3 different distance measures. It was found that the proposed transfer learning

approach not only reduces the calibration requirements but also improves performance of

all classifications problems including MR vs WG, MR vs BL, and WG vs BL. In particular,

we show that LDA obtained the highest possible performance compared to SVM and QDA.

In term of the difference between accuracy achieved using transfer learning and accuracy

obtained without transfer learning, the highest difference was provided by QDA. In terms of

calibration requirements, experimental results indicate that the size of the training set can

be reduced by up to %87.5 using Bhattacharyya distance as a similarity measure.
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4.0 CONCLUSIONS AND FUTURE DIRECTIONS

We developed a novel transfer learning approach that can be performed for two BCI systems

based and trained on different mental tasks with the purpose to reduce the calibration

requirements and to overcome the lack of available training data. Both systems are based

on two modalities and utilize data recorded from EEG and fTCD simultaneously. The first

system uses motor imagery tasks including right arm MI and left arm MI such that the

user can imagine performing identical movements and it has been shown that brain regions

corresponding to these movements enable and activate during the experiment. Multiple

studies have shown the efficiency of SSVEPs to design a BCI system and achieve higher

performance than MI based BCI. Therefore, we extend the MI based BCI and formulate two

different tasks including mental rotation and word generation. The tasks are modified with

adapted flickering frequency and checkerboard pattern so that both EEG and fTCD can

successfully distinguish the mental tasks. From our final results, it has been demonstrated

that transfer learning reduce calibration requirements by up to %87.5 for the two systems

and improves performance for the three classification problems formulated for each system.

Distance measure that determine similarity between datasets was selected by Wilcoxon rank

test. Using Bhattacharyya as a distance measure for both systems, we have shown that

instead of running the algorithm with 80 training trials without transfer learning, we achieve

higher or at least same performance with transfer of knowledge. Considering the choice of

classifier, LDA gives higher performance while QDA returns the highest difference between

transfer and no transfer for each classification problems. Therefore, to design a successful BCI

systems QDA is preferable for systems that present low performance and for which we want

to maximize the improvement using our novel algorithm. This work can be extend based on

one of our previous study that increased performance by exploring other analysis techniques
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for EEG and fTCD signals. The current work identifies the similarities and therefore uses

exploitation of the knowledge from the data. Our future work will combine exploitation

and exploration to improve the generalization properties of the proposed multimodal hybrid

system. We will also focus on three class classification.
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