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Proteomics is the wide – scale study of proteins, in which the proteome of an organism is 

studied. Proteomics experiments obtain both qualitative and quantitative information by using a 

combination of analytical techniques including liquid chromatography, ion mobility, and mass 

spectrometry (MS). In quantitative experiments, relative protein amounts are determined to gain 

a better understanding of biological problems related to disease-state, kinetic changes, and 

effects of pharmaceutical products. In many cases, multiple samples (e.g. 10s to 100s) are 

analyzed to obtain statistically – significant results, which requires ample time (on the order of 

several days to weeks). To reduce sample analysis time and potential experimental error, 

multiplexing strategies have been developed. Samples are labeled metabolically, enzymatically, 

or chemically during sample preparation, pooled together, and analyzed simultaneously in the 

mass spectrometer.  

In this body of work, multiplexing strategies have been applied to study aging and 

response to infection in C. elegans and the involvement of the periphery in Alzheimer’s disease. 

In addition, the development of analyzing multiplexed samples on Orbitrap MS platforms will be 

presented. These developments and applications contribute to science by providing insight to two 

conditions that affect the aging population.  

Development and Applications of Enhanced Multiplexing to Better Understand Aging, 

Infection, and Alzheimer’s Disease  

Christina Dee King, Ph.D. 

University of Pittsburgh, 2018
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1.0 INTRODUCTION 

(*please note, portions of this Chapter are based-off-of the following publications1-2: 1) “King, C.D; Singh, D.; Holden, K.; Govan, A.B.; Keith, 

S.A.; Ghazi, A., Robinson, R.A.S. Journal of Proteomics, 2018, 181: 92 – 103” and 2) “King, C.D.; Dudenhoeffer, J.D.; Gu, L.; Evans, A.R.; 

Robinson, R.A.S. J Vis Exp, 2017, 123. Doi: 10.3791/55406”) 

1.1 AGING AND IMMUNITY 

Immunonescence, the gradual decline of aging, is an inevitable process that results in 

several physiological changes, including alterations in the response from both the immediate 

(innate) and specialized (adaptive) immune responses. Within the body, changes related to 

decreases in neutrophil function,3 T cell receptor diversity,4 inflammatory cytokine production,5  

and other deficits accompany and actuate age-related immune failure. Middle-aged individuals 

exhibit defects in nearly every cell type and process required for both the innate and adaptive 

immune responses. These molecular defects also appear to be common to invertebrates.6 There is 

an increasing population of aging individuals, therefore studying the mechanisms that are 

involved in aging and infection is quite important.  

One result of a declined immune response includes a higher susceptibility of infection 

and infectious diseases from opportunistic pathogens. Some well-studied species include Gram-

positive (Streptococcus aureus, S. aureus) and Gram-negative (Pseudomonas aeruginosa, P. 
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aeruginosa) bacteria; S. aureus and P. aeruginosa are responsible for a significant number of 

hospital-acquired infections in immunocompromised patients.7 Specifically, infections from  P. 

aeruginosa can also result in sepsis, a systemic inflammatory response induced by an infection, 

which occurs more frequently in individuals with immunocompromised systems.7 The rapid 

evolution of P. aeruginosa and its growing antibiotic resistance makes investigations of the 

versatile strains important, especially with respect to immunosenescence.7 Better understanding 

the dynamics of host-pathogen interactions in this context could facilitate the development of 

either more effective antibiotics, or pharmaceutical enhancers of intrinsic immune function in 

high-risk patient groups. 

1.1.1 Studying Aging and Host-Response to Infection in Model Organisms 

In order to study aging, model organisms have been employed. Animal models provide a 

wealth of information in understanding the mechanisms involved in responding to infection. 

They are optimal systems for elucidating the molecular details of microbial pathogenesis and 

host immunity, and for accelerating the translation of discoveries into clinical outcomes. Models 

used to study host-response to infection include D. melanogaster (fruit fly), M. mulatta (Rhesus 

monkey), Rattus norevegicus (rat), M. musculus (mouse), and C. elegans (roundworm). In 

particular, the roundworm is an ideal model to use to study both aging and host-response to 

infection because it develops to adulthood within a few days, has large progeny (~100s), has a 

short lifespan of ~28 days, is transparent, and most importantly, its innate immune system is 

evolutionarily conserved.  
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C. elegans is subject to infection by various human bacterial pathogens8, many of which 

enact infectious processes that are quite comparable, at the cellular level, to their modes of 

pathogenesis in humans.9 The capacity of multiple P. aeruginosa strains to rapidly kill C. 

elegans populations through both biofilm-like-colonization mediated infections and via secreted 

exotoxins has been thoroughly characterized.10-12 Additionally, while lacking an adaptive 

immune system, the critical regulatory elements currently known to coordinate innate immunity 

in C. elegans are highly conserved in vertebrates, such as the p38 mitogen-activated protein 

kinase (MAPK), transforming growth factor (TGF)-β, and DAF-2 insulin/IGF1 signaling 

pathways.13-15 Furthermore, C. elegans’ infection-resistance mechanisms undergo 

immunosenescent decline with age in a manner dependent on deteriorating p38 MAPK 

function.16  

Currently, C. elegans’ response to infection has been characterized at genomic-, 

transcriptomic- and proteomic- levels by full-genome microarrays, RNA-sequencing, and 

proteomics analyses. These studies have shown that specific genes are either up- or down-

regulated at the transcriptional level in response to several pathogens, including P. aeruginosa,17-

18 D. coniospora,19-20 S. aureus, S. marcescens,19 and Y. pestis.21  Proteomics analyses have also 

identified both general and pathogen – specific responses from S. aureus,22 pathogenic E. coli,23 

P. aeruginosa,24-25 and others26; however, long term proteome changes following infection are 

unknown and no studies comparing proteomic alterations in young versus old animals facing 

pathogenic challenges have been reported.  
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1.1.2  Aging and Alzheimer’s Disease 

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that causes 

cognitive decline over 7-10 years.27 Symptoms include short-term memory loss and the inability 

to perform every-day tasks. As AD becomes more severe, an individual’s ability to take care of 

themself is impaired, therefore, requiring assistance from caregivers. AD is a top-ten cause of 

death in the United States that neither can be prevented nor has a cure. This condition affects 

women more frequently and cost the United States >~$200 billion to treat in 2017.27 

Comorbidities, including cardiovascular disease,28 hypertension,29 diabetes,30-32 and Down 

syndrome,33 increase the risk of developing AD, however, the largest risk factor is increasing 

age.27  

There are two types of AD that occur either early (early – onset AD) or later (late – onset 

AD) in life that result in cognitive decline. Early – onset AD is caused by mutations in amyloid 

precursor protein (APP-1), presenilin-1 (PS-1), and presenilin-2 (PS-2).34-36 The etiology of late 

– onset AD, however, is based on the formation and aggregation of amyloid-beta (Aβ) plaques.37 

AD begins to present as preclinical AD38 and develops into mild cognitive impairment (MCI)39-

40; the disorder then develops into prodromal AD41-42 and clinical AD.  Late – onset AD43 is 

prominent after 65 years of age whereas early – onset AD occurs between 30 – 50 years of age. 

Cognitive27 and neuroimaging44-48 tests, and sampling of cerebrospinal fluid (CSF) are most 

commonly performed to diagnose AD ante-mortem while classical hallmarks of AD, including 

the presence of senile Aβ plaques and neurofibrillary tangles (NFT), are identified post-mortem. 

To diagnose, treat, and potentially prevent AD, studies have been performed to identify 

biomarkers associated with AD pathology ante- and post-mortem. These analyses focus on 
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changes occurring during the course of AD in both animal models and in individuals with AD 

(e.g. plasma, CSF, and post-mortem brain tissues). The most well-known genetic marker, 

apolipoprotein E, is used to determine if there is an increased susceptibility to developing AD; 

individuals with the allele type 4 are more likely to have AD than people with alleles 2 or 3.49-51 

To understand the pathogenesis of AD, a host of studies related to the genome, transcriptome, 

and proteome of AD samples have been performed. However, most of these studies have focused 

on brain tissues and CSF and they have neglected to consider the contribution of peripheral 

tissues. Such studies are warranted in order to understand the relationships with abnormalities 

and to increase the opportunities for biomarker development and therapeutic target. Below is a 

general scope of proteomics as it is used one of the major tools that can be used to better 

understand disease. 

1.2 PROTEOMICS 

Proteomics is the large-scale study of proteins. Protein extracted from tissues, plasma, 

cells, or other bodily fluids are studied by using a combination of biological and analytical 

techniques, thus yielding information about the identity and quantity of proteins present. 

Statistical tests and bio-informatics analyses identify statistically – significant proteins, 

pathways, molecular functions, and cell compartments related to disease-state and progression, 

kinetics, post-translational modifications, and other types of changes related to the organism.  

Over the past twenty five years, proteomics has grown to being able to analyze proteins in a 

range of states, from their intact, native form, to proteolytically digested peptides. Advancements 
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in proteomics have been made possible by several contributing factors, including the 

development of soft ionization methods such as electrospray ionization (ESI)52 and matrix 

assisted laser desorption ionization (MALDI),53-54 improvements in sample preparation, and 

novel MS instrumentation.  

Currently, there are three broad sets of techniques (e.g. top-down, middle-down, or 

bottom-up) applied in proteomics. Top-down techniques analyze intact proteins to gain 

information about protein structure and protein-protein interactions. Bottom-up techniques, 

however, analyze peptide samples with MS and MS/MS and use protein-based software to obtain 

protein identifications. Specifically, the proteome database of the organism being studied is used 

to generate an in silico digest and theoretical MS/MS spectra are compared to experimentally 

obtained MS/MS spectra. Experimental spectra that are highly scored are assigned with the 

proper protein. Lastly, middle-down techniques use a combination of both top-down and bottom-

up methods to analyze proteins. In the work presented below, bottom-up proteomics has been 

especially helpful in answering biological inquiries.  

1.2.1 Bottom-up Proteomics 

Bottom-up proteomics takes information obtained about peptides and uses search 

algorithms to reference them to their respective proteins (Figure 1.1). First, protein is extracted 

from the source (e.g. cells, serum, plasma, blood, tissue, urine) and the protein concentration is 

determined by using a UV-Vis-based assay. To prevent protein modifications due to sample 

handling, protease inhibitors can be added to samples.  After protein concentration is determined, 

proteins are digested using proteolytic enzymes (e.g. trypsin, lys-C, glu-C, glu-N) to generate 
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peptides. Typically, trypsin is used for proteolytic digestion; this enzyme cleaves at the C-

terminus of lysine and arginine residues.  Depending on the type of analysis, different enzymes 

may be used to cleave at different amino acids. For instance, Lys-C only cleaves at lysine 

residues at the C-terminus, Glu-C cleaves at the C-terminus of glutamic acid and Glu-N cleaves 

at the N-terminus of glutamic acid. Peptides are then separated using reversed-phase high 

performance liquid chromatography (RP-HPLC). To reduce sample complexity, an orthogonal 

separation technique, which allows for greater depth in analyzing the proteome(s) of interest, can 

be performed prior to RP-HPLC analysis. Methods such as ion exchange (e.g. strong cation, 

strong anion, weak cation, and weak anion) and more recently, high pH reversed phase 

fractionation (h-pH) can be performed either on- or off-line to separate peptides by charge or 

hydrophobicity. Fractions generated are then separated by RP – HPLC and analyzed by mass 

spectrometry.  
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Figure 1.1 Bottom-up Proteomics Workflow. 
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As peptides are introduced into the mass spectrometer, they are ionized, selected, sorted 

by the mass analyzer, and detected. Peptides can be fragmented by several types of dissociation 

techniques, including collision – induced dissociation (CID), higher energy collision-induced 

dissociation (HCD), electronic capture dissociation,55 electronic – transfer dissociation,56 surface 

induced dissociation,57 photo dissociation, and electronic – transfer higher energy collision – 

induced dissociation.58 These dissociation techniques cause fragmentation at different bonds 

(Figure 1.2) along the peptide backbone using a range of energies. To fragment at the peptide 

bond (generating b and y ions), CID is applied with a range of normalized collision energies of 

20 – 35%. Inside the ion-trap, precursor ions of interest are excited by a resonance excitation RF 

voltage to gain kinetic energy. Ions collide with a neutral, buffering gas (e.g. helium), and 

convert kinetic energy into internal energy.59-60 Once ions gain enough internal energy, they 

dissociate into product ions and are detected. Another commonly used dissociation technique is 

HCD. This method is performed in a multipole collision cell in which a higher normalized 

collision energy of 50 – 60% is applied. Similar to CID, kinetic energy will be converted into 

internal energy, resulting in product ions. The advantage of this dissociation technique, however, 

is the ability to detect ions in the low-mass region, which may include ions that provide 

quantitative information. 
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Figure 1.2 Potential Fragmentation Positions of Peptides. 
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The data obtained from fragmentation spectra are analyzed using protein software, such 

as Proteome Discoverer (PD, ThermoFisher Scientific), Maxquant,61 or Skyline,62 to gain 

qualitative and quantitative information. Exported results from protein software are further 

analyzed by applying statistical tests (e.g. student t-test or one-way ANOVA) to identify 

statistically – significant proteins and bioinformatics tools are used to gain biological insight 

and/or implications of a given condition or disease. Bioinformatics tools compare the proteome 

of the organism being studied to a list of statistically – significant proteins added to the platform. 

If a significant difference of proteins related to specific gene ontology (GO) parameters (e.g. 

biological processes, molecular functions, or cell compartments) are present, then that specific 

GO term will be labeled as statistically – significant.  Bioinformatics analyses typically provide 

qualitative information about pathways that are dysregulated in disease. Quantitative proteomics 

techniques can be employed to learn more about proteins that change in a sample.  

1.2.2 Quantitative Proteomics 

  Label – free quantitative (LFQ) proteomics methods use chromatographic peak areas,63 

peptide spectral counts,64 peptide signal intensities,65-66 or a combination of peptide and spectral 

counts, and MS/MS spectra (i.e. normalized spectral index),67 gain quantitative information. 

Some benefits of using label – free methods includes increased flexibility of MS platforms for 

sample analysis, increased dynamic range, and higher proteome coverage.68 Challenges 

associated with LFQ are related to obtaining accurate quantification and sample-to-sample 

variability. Since each sample is being prepared individually, experimental error may vary 

differently across samples, thus contributing to inaccurate quantification.69  
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To reduce these limitations, techniques using stable isotopes from small molecular weight 

chemical groups can be applied to protein samples. Labeling can be performed with cells, entire 

organisms, proteins, and peptides. Protein amounts are determined by either absolute or relative 

quantification, and are based on the intensity of either the tagged intact peptide or peptide 

fragment.  

At the organism or cell level, heavy isotopes are incorporated into food and fed to cells, 

worms, mice, rats, etc.70-71 After several generations of the label being incorporated, the tagging 

efficiency should be ~99%. Once this efficiency is reached, samples can be prepared using 

bottom-up proteomics techniques and analyzed. Heavy nitrogen has been demonstrated to label 

samples prior to protein homogenization.70 These heavy nitrogen atoms result in all amino acids 

being labeled at the amide bond. This method is simple and straightforward, but as all nitrogen 

atoms are labeled, quickly determining the masses of labeled peptides can be challenging. Since 

the number of nitrogen atoms present in each peptide may differ, the corresponding mass shift 

between unlabeled and heavy-labeled peptides will not be consistent, thus complicating the 

process of searching for peak pairs. In addition, this method only allows two samples to be 

multiplexed at once. To address both of these issues, stable – isotope labeling by amino acids in 

cell culture/mammals (SILAC/SILAM) can be used.71-72 SILAC/SILAM starts with using cells 

or organisms, however heavy isotopes (e.g. 13C or 15N) only label specific residues (i.e. lysine, 

arginine, leucine, and proline) with 2H, 13C, or a combination of 15N and 13C. Because labeling 

occurs at specific residues, mass shifts are more predictable. To multiplex more samples (e.g. 18 

samples), NeuCode SILAC mass tags can be incorporated.73-74 In these tags, mass differences 

resulting from neutron-binding energy variation in stable isotopes are encoded into amino 

acids.73  The major limitation of using metabolic labeling methods would be the condition of the 
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sample. If the sample(s) are not cells or rodents, then this method cannot be used. To chemically-

label protein or peptide samples already extracted, other labeling methods can be applied. 

Protein samples arising from any origin can be labeled at either the protein or peptide 

level by using either isotopic or isobaric tagging strategies. Similar to SILAC, isotopic labeling 

methods use chemical groups that include heavy isotopes. These methods typically label the N-

terminus of peptides and lysine residues. Common labeling methods include acetylation75 and 

dimethylation.76 These methods allow between three and five samples to be analyzed at once, 

with mass shifts of at least two Da. The major challenge with isotopic labeling includes the 

potential issue with isotopic clusters between light and heavy pairs overlapping in the precursor 

scan. To circumvent this issue, heavy isotope tags with a larger mass difference (e.g. >6 Da) than 

the light tags can be used.  

Another chemical labeling strategy that can be applied is isobaric tagging. This method 

uses a chemical reagent tag that consists of a mass reporter group, a normalizing group, and a 

reactive group. Common isobaric tagging reagents include Tandem Mass Tags (TMT)77, Isobaric 

Tag for Relative and Absolute Quantification (iTRAQ)78, and N,N-Dimethyl Leucine (DiLeu)79, 

and are available commercially (TMT and iTRAQ) or may be synthesized in the laboratory 

(DiLeu). In an isobaric tagging experiment, the N-terminus of peptides and lysine residues react 

with the reactive group (e.g. N-hydroxysuccinimide) via a carbonyl attack, leaving the mass 

reporter and normalizing group attached to peptides (Figure 1.3).  
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Figure 1.3 TMT Chemical Reaction. 

 

 

 

 

 

Figure 1.4 TMT6-plex Labeling Strategy. 
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Several samples are multiplexed by performing this reaction with different variants of the 

isobaric tag (Figure 1.4). In Figure 1.4, six samples are chemically-tagged (individually) by 

using six versions of the isobaric tagging reagent. After the reactions are completed and 

quenched, tagged peptides are combined into one sample and subjected to LC – MS/MS analysis.    

A peptide present in several samples (e.g. 6 – 11) will have the same mass, therefore they 

will elute at the same time. Once a peptide is fragmented by HCD, reporter ion intensities 

corresponding to that peptide will be detected, thus providing relative quantitative information 

for that peptide. Current isobaric tagging reagents allow for 1 – 12 samples to be analyzed at 

once. If more than 12 samples need to be analyzed at once, enhanced-multiplexing methods can 

be applied.  

Both isotopic labeling and isobaric tagging strategies have several advantages. For 

example, sample throughput increases directly in proportion to the number of samples that can 

be multiplexed.  Less experimental error is achieved as after the tags are introduced, therefore, 

all samples are subject to the same experimental errors in sample preparation. There are also 

practical advantages of reducing MS analysis time, labor, and costs. While there are many 

benefits to multiplexing, there are a few challenges as well. For example, inefficient labeling of 

proteins or peptides can complicate MS spectra and data analysis and lead to inaccurate relative 

protein quantitation. Some labeling reactions are pH and buffer specific76-77, 80 and if the reaction 

conditions are incorrect, undesirable side products may be produced77 and reduce the labeling 

efficiency. Other labeling methods require several iterations to achieve high labeling 

efficiencies71-72 which lengthens sample preparation time. To ensure that both peptides within a 

pair (or multiplets) are selected for MS analysis, peptide co-elution is necessary. Depending on 

the types of heavy isotope atoms used, isotopically – labeled pairs (or triplets) can be resolved in 
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the LC separation.81 This issue has been addressed by incorporating tags with fewer atoms of 2H 

and more atoms of 18O, 13C, and/or 15N. 29, 75, 81-82   Due to the fact that every peptide will appear 

as a doublet or triplet in the precursor m/z spectra, spectral complexity is increased. This may be 

problematic if one peak in the multiplet is selected more frequently for fragmentation as only 

information for that sample is obtained. Lastly, reagent costs for multiplexing can vary from a 

few dollars to >$500 per experiment. Furthermore, isobaric tagging reagents mostly require the 

use of high-resolution instruments to distinguish between reporter ions.   

1.3 ENHANCED MULTIPLEXING TECHNIQUES 

Multiplexing with isotopic and/or isobaric tagging strategies allow for many samples to 

be analyzed at once, however limitations are present. If more than 12 samples need to be 

analyzed, enhanced-multiplexing tagging methods can be employed.73-74, 80, 83-88 One strategy 

used in our laboratory is combined precursor isotopic labeling and isobaric tagging (cPILOT). 

1.3.1 Combined Precursor Isotopic Labeling and Isobaric Tagging (cPILOT) 

Our laboratory developed cPILOT, which labels the N-terminus of peptides with heavy 

isotopes and lysine residues with isobaric tags.83 Initially, this method was applied to study the 

post-translational modification (PTM) 3-nitrotyrosine (3NT) in which N-termini and lysine 

residues were blocked with light and heavy acetyl groups. 3NT modified peptides were then 

reduced to 3-aminotyrosine (3AT) and tagged with either TMT or iTRAQ to be isobarically 
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tagged. cPILOT was shown to selectively label the N-terminus and lysine residues and was able 

to identify and quantify peptides; however, issues with co-isolation and quantitation were evident 

due to the use of a 2H3 acetylation heavy tag and missing reporter ion information. In order to 

maximize the number of peptides that are quantified and have signal in reporter ion channels and 

broaden the types of analyses that can be studied, different sample preparation strategies and data 

acquisition methods were developed. 

The first change made was related to the isotopic labeling strategy used. This labeling 

method was changed to dimethylation (Figure 1.5). This reaction was performed at low pH (pH 

~2.5-3), to selectively label the N-terminus of peptides. In addition, using dimethylation reduced 

co-isolation between peptide pairs. To improve quantification, MS3 acquisition with a top-ion or 

selective-y1-ion method was employed. This helped reduce reporter ion interference and improve 

quantitative accuracy of cPILOT.80 Changes made in cPILOT reactions and data acquisition 

were applied to study the brain proteome of an Alzheimer’s disease mouse model (APP/PS-1) 

and showed that cPILOT successfully labeled peptides with high efficiencies (i.e. 98%) and 

quantified reporter ions better by MS3.   
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Figure 1.5 Example Peptide after cPILOT Labeling. 
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To study cysteine, the amino acid selective approach cysteine cPILOT (cyscPILOT) was 

developed.85 As cysteine containing peptides are low (~14%) in abundance, sample preparation 

included cysteine enrichment. Labeling by cPILOT was adjusted by performing on-resin 

dimethylation and using iodo-TMT tagging reagents. Results showed that labeling with 

cyscPILOT was successful and that changes in the liver proteomes of APP/PS-1 mice were able 

to be detected.  With the techniques learned from cyscPILOT, OxcyscPILOT89-90 was developed. 

This method uses similar methodology as cyscPILOT, but was altered to select specific oxidative 

cysteine modifications. To prepare S-nitrosylated samples, free thiols were blocked, SNO-

containing peptides were enriched, and on-resin labeling by cPILOT was performed. This 

method was used to study SNO modifications in APP/PS-1 brain samples and showed that 1) 

OxcyscPILOT successfully enriched SNO containing peptides and 2) endogenous SNO levels in 

AD were able to be quantified.  

cPILOT has also been employed to study liver tissues84 and more recently, brain, heart, 

and liver tissues (Chapter 4) from 14-month-old APP/PS-1 mice. In the study of the liver 

proteome, samples from AD and WT mice were labeled by cPILOT and analyzed by using a 

two-tiered data-dependent acquisition (DDA) method. This method was employed to increase 

overall peptide identifications and to identify and quantify a wider dynamic range of peptides.  

The development and improvements of cPILOT labeling and analysis methods show the 

versatility and flexibility of using this method. Recently, cPILOT multiplexing capabilities have 

been increased to 24 samples by using DiLeu 12-plex.91 DiLeu tags can be synthesized in the 

laboratory, therefore using these tags can dramatically decrease sample preparation costs. This 

and further innovations of this enhanced strategy will enable larger sample multiplexing (i.e. >24 

samples). 



 

 20 

 

1.4 OVERVIEW OF DISSERTATION 

 

This body of work is a compilation of projects that employ quantitative proteomics 

techniques to study aging, infection, and Alzheimer’s disease in both worm and mouse models, 

along with post-mortem human tissues. Host – response of young- and aging-adult 

Caenorhabditis elegans (C. elegans) exposed to the opportunistic pathogen Pseudomonas 

aeruginosa strain PA01 are studied (Chapter 2), providing novel insights into the relationship 

between age and immunosenescence in metazoans. Improvements in Orbitrap instrumentation 

are applied to same C. elegans samples (Chapter 3) to better understand the Elite MS and gain 

additional information about the effects of aging on the molecular mechanisms involved in 

response to pathogen exposure. To study larger sample-cohorts (e.g. 36 samples), the enhanced 

multiplexing strategy combined precursor labeling and isobaric tagging (cPILOT) is applied. 

This technique is especially helpful when studying multiple tissues and biological replicates in 

models of disease, such as Alzheimer’s disease. Specifically, cPILOT optimization on an 

Orbitrap Lumos platform and its application to brain, heart, and liver proteomes of an 

Alzheimer’s disease mouse model (Chapter 4) and human post-mortem (Chapter 5) tissues are 

studied. Lastly, future directions are discussed (Chapter 6). 
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2.0 PROTEOMICS ANALYSIS OF VIRULENCE-RELATED FACTORS IN YOUNG 

AND AGING C. ELEGANS EXPOSED TO PSEUDOMONAS AERUGINOSA PA01- 

PART 1* 

(*please note, contents of this Chapter are based off of the following publication: “King, C.D; Singh, D.; Holden, K.; Govan, A.B.; Keith, S.A.; 

Ghazi, A., Robinson, R.A.S. Journal of Proteomics, 2018, https://doi.org/10.1016/j.jprot.2018.04.006”) 1 

2.1 INTRODUCTION 

 Aging is characterized by the progressive accumulation of a variety of physiological 

impairments. One of the more challenging and early age-associated declines is 

immunosenescence- the gradual deterioration of the immune system with increasing age. 

Conserved across a wide evolutionary scale, immunosenescence contributes substantially to the 

increased morbidity and mortality of elderly populations.92-93 Starting in middle age, both 

vertebrates and invertebrates exhibit defects in nearly every cell type and process required for 

immune capability. Given the rapidly aging global population,94 there is an urgency to 

understand the cellular and molecular mechanisms underlying immunosenescence. 

The major consequence of immunosenescence is an increased susceptibility to infectious 

diseases, including those caused by opportunistic pathogens.95 The Gram-negative bacterium 

https://doi.org/10.1016/j.jprot.2018.04.006
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Pseudomonas aeruginosa is a well-known pathogen responsible for a significant number of 

hospital-acquired infections96 especially in individuals suffering from cystic fibrosis,97 cancer,98 

AIDS,99-100 or other immune-suppressing illnesses. This is partly due to the microbe’s propensity 

for colonizing inserted medical care devices.101 P. aeruginosa infection is accompanied by 

biofilm formation and exotoxin secretion, and can result in sepsis- a potentially fatal systemic 

inflammatory response. The rapid evolution of P. aeruginosa and its growing antibiotic 

resistance makes investigations of the versatile strains important, especially with respect to 

immunosenescence. Better understanding the molecular dynamics of host-pathogen interactions 

in this context could facilitate the development of more effective antibiotics, or pharmaceutical 

enhancers of intrinsic immune function in high-risk patient groups. 

The nematode Caenorhabditis elegans102 is subject to infection by various human 

bacterial pathogens, many of which enact infectious processes that are quite comparable, at the 

cellular level, to their modes of pathogenesis in humans.8 Indeed, the capacity of multiple P. 

aeruginosa strains to rapidly kill C. elegans populations through both biofilm-like-colonization 

mediated infections and via secreted exotoxins has been described extensively.9-11 Additionally, 

while lacking an adaptive immune system, the critical regulatory elements known to coordinate 

innate immunity in C. elegans are highly conserved in vertebrates, such as the p38 mitogen-

activated protein kinase (MAPK), transforming growth factor (TGF)-β, and DAF-2 insulin/IGF1 

signaling pathways.12-14 Further, C. elegans’ infection-resistance mechanisms undergo 

immunosenescent decline with age in a manner dependent on deteriorating p38 MAPK 

function.15 Collectively, the ability to recapitulate infection phenotypes for numerous 

microorganisms, efficient and inexpensive culture methods, and relative ease of performing 
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genetic manipulations have made the worm an ideal model for examination of innate immune 

responses to pathogen. 

Given the fully sequenced and curated C. elegans genome,102 the worm offers a unique 

capacity for large-scale explorations of molecular factors either induced or repressed by 

infection. Full-genome microarrays and RNA-sequencing have been implemented to survey 

genes that are either up- or down-regulated at the transcriptional level in response to P. 

aeruginosa, Drechmeria coniospora, Staphylococcus aureus, Serratia marcescens, and Yersinia 

pestis and others.9, 14, 18-21, 103 These efforts have provided considerable insight into common 

pathogen-specific immune events. However, despite recent technical advances in performing 

proteomics analysis with C. elegans,104-107 to-date studies profiling protein-level expression 

changes in pathogen-challenged worms have been limited22-26, 107-109 and studies comparing the 

proteomic alterations observed in Day 1 vs. Day 5 animals facing pathogenic challenges have 

been not been reported. 

In the present study, we employed two independent quantitative proteomics approaches, 

Tandem Mass Tag (TMT6) isobaric tagging and reductive dimethylation chemical labeling to 

profile the protein-level changes experienced by Day 1 and Day 5 C. elegans exposed to 

pathogenic P. aeruginosa strain PA01 (henceforth labeled ‘P. aeruginosa PA01’) relative to C. 

elegans fed on the laboratory diet of Escherichia coli strain OP50 (henceforth labeled ‘E. coli 

OP50’). Overall, we identified 55 unique proteins that exhibited significantly altered levels in 

Day 1 or Day 5 worms upon pathogen exposure of which ten were identified at both ages. The 

proteins common between Day 1 and Day 5 worms’ response to pathogen included cytoskeletal 

proteins involved in locomotion as well as enrichment of reproductive functions. In Day 5 

worms in particular, proteins representing multiple stress-response pathways were elevated. In 
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accordance with our proteomic predictions, we observed that PA01 exposure increased protein 

carbonylation suggesting sustained oxidative stress after pathogen exposure. Additionally, we 

evaluated the lifespan of mutants for the protein, UNC-60, whose levels were altered by both age 

and pathogen exposure and found that mutants of unc-60 have reduced lifespan. Overall, our data 

provide novel insights into the cellular responses mounted by metazoans when exposed to the 

clinically relevant pathogen P. aeruginosa, and into the molecular changes that occur at the 

intersection of aging and immunity. 

2.2 EXPERIMENTAL PROCEDURES 

2.2.1 Nematode and Bacterial Culture 

C. elegans N2 Bristol wild type worms were maintained via standard laboratory 

techniques on nematode growth medium (NGM) plates seeded with Escherichia coli OP50, the 

normal laboratory diet.110 P. aeruginosa PA01–seeded pathogenicity–assay plates were 

generated as described previously for P. aeruginosa PA14 ″slow killing″ (SK) assays.111 Briefly, 

~5 mL liquid LB was inoculated from an individual PA01 colony and grown 8 – 16 h at 37 oC 

with shaking. Approximately 75 μL liquid culture was then seeded to SK plates,111-112 which 

were kept at room temperature for at least two days until the bacteria had formed a thick, 

contiguous lawn. 



 

 25 

 

2.2.2 Pathogenicity Assays 

Synchronized C. elegans populations of wild-type strain, N2, were obtained by isolating 

eggs via sodium hypochlorite treatment and allowing hatching overnight in M9 buffer (0.09 M 

NaCl, 0.04 M Na2HPO4, 0.02 M KH2PO4) at 20 oC.113 The resultant L1 larvae were then 

transferred to standard E. coli OP50–seeded NGM plates and incubated at 20 oC until Day 1 

adulthood. In order to evaluate pathogen resistance in Day 1 animals, one subset of worms were 

transferred to P. aeruginosa PA01–seeded SK plates on Day 1 of adulthood (~48 h post-L1 

incubation), while the control group remained on E. coli OP50–seeded NGM plates for the 

duration of the assay. Experimental and control subpopulations consisted of 60-100 individuals 

evenly distributed over five plates (15 – 20 worms/plate). To examine the pathogen resistance of 

Day 5 worms, synchronized populations were maintained on E. coli OP50–seeded NGM plates 

until Day 5 of adulthood before being distributed to P. aeruginosa PA01 plates or control E. coli 

OP50 plates, as was done for Day 1 animals. All worms were transferred to fresh plates every 

other day through the reproductive span to avoid both overcrowding and confusion between the 

study population and its progeny. Assay plates were incubated at 20 oC and scored for survival 

daily. Worms were considered dead upon failure to respond to repeated prodding with a platinum 

wire pick. Data reflecting worms that crawled off the media, exploded, bagged, or became 

contaminated were censored. The resulting survival data were used to generate Kaplan Meier 

curves with OASIS (Online Application of Survival Analysis),114 and P values were calculated 

via log rank (Mantel Cox method) test with the same software.114 Lifespan assays of the unc-60 

mutant strains, CB77 {unc-60(e677)}, ON19 {unc-60(su158)} and N2 controls were conducted 

similarly at 20 oC. 
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2.2.3 Sample Preparation for Proteomics Analysis 

Sodium hypochlorite-mediated, L1–synchronized N2 worm populations were obtained in 

large numbers and reared to early adulthood on E. coli OP50–seeded NGM at 20 oC, (~80,000 – 

100,000 total worms). To examine the proteome of Day 1 adults challenged with P. aeruginosa, 

one group of ~20,000 worms was transferred to P. aeruginosa PA01–seeded SK plates (or 

control E. coli OP50–seeded NGM plates) on Day 1 of adulthood and maintained at 20 oC for 18 

h before harvesting. For Day 5 pathogen-exposure studies, worms were transferred to E. coli 

OP50–seeded NGM plates as described above, and maintained on the same food until Day 5 of 

adulthood (transferring to fresh plates every other day to avoid progeny contamination). On Day 

5, half the worms were transferred to P. aeruginosa PA01–seeded SK plates (the other control 

half to E. coli OP50–seeded NGM plates) and maintained at 20 oC for 18 h before harvesting 

both groups. Parents were separated from eggs and progeny during transfers by serially washing 

adults off the plates with M9 and then allowing the adults to settle by gravity. At their respective 

time points, worms were floated off plates with M9 buffer110 and washed two times to remove 

extraneous bacteria and obtain sample pellets. Two independent biological replicates were 

collected for the proteomic studies from each age group and bacterial exposure. 

2.2.4 Protein Extraction 

Worms were harvested, washed with M9 buffer to remove bacteria, and centrifuged to 

obtain a pellet. Pellets were re-suspended in Reassembly (RAB) buffer (0.1 M MES, 1 mM 

EGTA, 0.1 mM EDTA, 0.5 mM MgSO4, 0.75 M NaCl, 0.02 M NaF) with Roche Complete 
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Protease Inhibitor (Roche Applied Science). Protein homogenate was sonicated for 10 s, 

followed by 50 s on ice, incubated for 10 min on ice and centrifuged at 14000 g. The amount of 

protein was determined by BCA assay (Thermo Scientific). A pooled sample (Sample #5) 

containing equimolar ratios of Day 1 E. coli OP50 (Sample #1) and P. aeruginosa PA01 (Sample 

#2) and Day 5 E. coli OP50 (Sample #3) and P. aeruginosa PA01 (Sample #4) samples, was also 

prepared. 

2.2.5 Protein Digestion 

Protein was purified using acetone precipitation and quantified by BCA assay. Protein 

(~80 – 100 µg) was denatured with an extraction buffer (0.2 M Tris, 8 M urea, 10 mM CaCl2, pH 

8.0), reduced with 1:40 molar excess of dithiothreitol (DTT) for 2 h at 37 oC, and then alkylated 

with 1:80 molar excess of iodoacetamide (IAM) for 2 h on ice. The alkylation reaction was 

quenched by adding 1:40 molar excess of cysteine and the mixture was incubated at room 

temperature for 30 min. Tris buffer (0.2 M Tris, 10 mM CaCl2, pH 8.0) was added to dilute the 

urea concentration to 2 M. Each sample was incubated with bovine TPCK-treated trypsin 

(Sigma–Aldrich) at 50:1 substrate/enzyme ratio for 24 h at 37 ºC. 

2.2.6 TMT Labeling 

Digested samples were desalted with an HLB cartridge and dried by centrifugal 

evaporation. Each sample was labeled with a TMT6-plex reagent following the manufacturer’s 

protocol (Thermo Scientific). TMT6 reagents were equilibrated to room temperature, solubilized 
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with 41 µL of acetonitrile, and transferred to peptide samples reconstituted in triethylammonium 

bicarbonate (TEAB) buffer. After 1 h of incubation (~25 oC), the reaction was quenched using 

5% hydroxylamine. Equimolar amounts of samples were combined such that reagents that 

generate reporter ions at m/z 126:127:128:129:130 correspond to D1 OP50, D1 PA01, D5 OP50, 

D5 PA01, and the pooled sample, respectively. 

2.2.7 Dimethylation Labeling 

Peptides (~50 μg) were reconstituted in 100 mM TEAB buffer (pH 8.5).  The following 

solutions were added to E. coli OP50 samples for light (-CH3)2 labeling and to P. aeruginosa 

PA01 samples for heavy (-13C2H3)2 labeling: 4% formaldehyde (16 μL) and 0.6 M sodium 

cyanoborohydride (16 μL) (Sigma–Aldrich) or 4% 13C, D2 – formaldehyde (16 μL) and 0.6 M 

sodium cyanoborodeuteride (16 μL) (Sigma–Aldrich), respectively. Samples were vortexed for 

10 min, quenched with 1% ammonia, and acidified with 5% formic acid. Samples were then 

desalted with an HLB cartridge, dried by centrifugal evaporation, and stored in the – 80 oC 

freezer until further analysis. 

2.2.8 Strong Cation Exchange (SCX) Fractionation 

SCX fractionation was performed on a PolySulfoethyl A 100 mm x 2.1 mm, 5µm, 200 Å 

column (The Nest Group, Inc.) with buffers as follows: mobile phase A was 5 mM 

monopotassium phosphate (25% v/v acetonitrile, pH 3.0), and mobile phase B was 5 mM 

monopotassium phosphate, 350 mM potassium chloride (25% v/v acetonitrile, pH 3.0). Dried 
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TMT6– labeled samples were re-suspended in 200 µL of mobile phase A and injected onto the 

column. The gradient was as follows: 0 – 5 min, 0% B; 5 – 45 min, 0 – 40% B; 45 – 90 min, 40 – 

80% B; 90 – 100 min, 80 – 100% B; 100 – 110 min, 100% B; 110 – 121 min, 0% B. Eluent was 

collected every minute and combined into 20 fractions. Each fraction was desalted using Supel-

Tips C18 micropipette tips (Sigma – Aldrich). Fractions were solubilized in 50 µL and filtered 

with a 0.45 μm filter (Thermo Fisher Scientific).   

2.2.9 LC – MS Analyses 

Online desalting and reversed-phase chromatography was performed with a Nano liquid 

chromatography (LC) system equipped with an autosampler (Eksigent). Mobile phases A and B 

used for reversed phase (RP)-LC separation of peptides were 3% (v/v) acetonitrile with 0.1% 

formic acid and 100% acetonitrile with 0.1% formic acid, respectively. SCX fractions (10 μL) 

were loaded onto a trapping column (100 µm i.d. x 2 cm), which was packed in house with C18 

(3 µm, 200 Å) stationary phase material (Michrom Bioresource Inc,) at 3 μL/min in 3% mobile 

phase B for 3 min. After desalting, the sample was loaded onto an analytical column (75 µm i.d. 

x 13.2 cm) which was packed in-house with C18 (3 µm, 100 Å) stationary phase material 

(Michrom Bioresource Inc). The gradient was as follows: 0 – 7 min, 10% mobile phase B; 7 – 67 

min, 10 – 30% B; 67 – 75 min, 30 – 60% B; 75 – 77 min, 60 – 90% B; 77 – 82 min, 90% B; 82 – 

83 min, 90 – 10% B; 83 – 95 min, 10% B. The LC eluent was analyzed with positive mode 

nanoflow electrospray using a LTQ Orbitrap Velos mass spectrometer (Thermo Fisher 

Scientific). Data-dependent acquisition parameters were as follows: the MS survey scan in the 

Orbitrap (300 – 1800 m/z) was 60000 resolution; the top seven most intense peaks were isolated 
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and fragmented with collision-induced dissociation (CID) in the LTQ (normalized collision 

energy of 35%). Directly after each MS/MS scan, the most intense fragment ion over the m/z 

range 200 – 1545 was selected for higher-energy collisional dissociation (HCD) triple staged 

mass spectrometry (MS3). The fragment isolation width was set to 4 m/z, the MS3 AGC was 3 x 

105, the normalized collision energy was 60%, the resolution was 7500 and the maximum ion 

time was 250 ms. HCD spectra were recorded in the Orbitrap. Each fraction was subject to 

duplicate injections.  

Dimethylated samples were analyzed by LC – MS/MS. Similar mobile phases, trapping 

and analytical column settings, and instrument settings were used to perform the analysis, except 

the analytical gradient was: 0 – 5 min, 10% mobile phase B; 5 – 40 min, 5 – 40% B; 40 – 90 min, 

15 – 25% B; 90 – 115 min, 25 – 30% B; 115 – 130 min, 30 – 60% B; 130 – 135 min, 60 – 80% 

B; 135 – 145 min, 80% B; 145 – 150 min, 80 – 10% B; 150 – 180 min, 10% B.  Data-dependent 

acquisition parameters: MS survey scan in the Orbitrap (300 – 1800 m/z) with 60000 resolution; 

the top fifteen most intense peaks were isolated and fragmented with CID in the LTQ 

(normalized collision energy of 35%). Each fraction was also subjected to duplicate injections 

(technical replicates). 

2.2.10 Data Analyses 

RAW files were analyzed with PD 1.4 software (Thermo Scientific). Spectra were used 

to obtain sequence information against the Uniprot C. elegans database (11/26/2013, 25673 

sequences). SEQUEST search parameters were as follows: two maximum trypsin miscleavages, 

precursor mass tolerance of 10 ppm, fragment mass tolerance of 0.8 Da; static modifications 
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were TMT six-plex/+229.163 Da (N-terminus, Lys) and carbamidomethyl modification/+57.021 

Da (Cys); dynamic modification was oxidation modification/+15.995 Da (Met). Decoy database 

searching was employed to generate medium (p<0.05) and high (p<0.01) confidence peptide 

lists. All the peptides with medium and high confidence were used to identify and quantify 

proteins. To filter peptides, the following parameters were applied:  peptide confidence level of 

medium or high, peptide rank of 1, and peptide deviation of 10 ppm. Peptides with a PSM 

(peptide to spectral match) count of 1 (per technical replicate) were not considered for analysis. 

The reporter ions (i.e. m/z 126 – 130) were identified with the following parameters:  most 

confident centroid and 20 ppm for reporter ion mass tolerance. Furthermore, reporter ion values 

were normalized 126/130, 127/130, 128/130, and 129/130 and final ratio reporting given as 

127/126 and 129/128. Proteins belonging to multiple isoforms were grouped into a single 

accession number and final ratios were reported.  

A power analysis was performed using protein ratios from TMT6-plex data to generate an 

appropriate fold-change cutoff. Coefficient of variation (CV) values were calculated as 

previously explained for reporter ion ratios of proteins quantified in both biological replicates.115 

The mean CV value from both biological replicates was calculated and used as the total 

biological variation, Sb, (i.e. 0.36). The technical variation, St, was calculated for proteins 

quantified in at least one technical replicate of each biological replicate, and was 0.22. The 

power of the test and the significance level was set to 0.8 and 0.05, respectively. Filter criteria 

were applied to generate a list of proteins showing differential levels as follows: 1) proteins 

identified and quantified in at least one technical replicate and both biological replicates, 2) CV 

values ≤ 0.36, and 3) fold-change cutoff ≥ 1.4 or ≤ 0.72.   



 

 32 

 

Data from the dimethylation experiment was treated by applying the following criteria: 1) 

proteins identified and quantified in both technical replicates and 2) fold-change cutoff 

dependent on p <0.05 such that ≥ 1.4 or ≤ 0.70. 

2.2.11  Measurement of Protein Carbonylation Levels  

Immunoblot assays were performed using one biological cohort of Day 1 and Day 5 C. 

elegans to measure oxidative stress in C. elegans exposed to P. aeruginosa PA01. Protein 

carbonylation (PCO) measurement was performed using Dot/Slot blot. Protein from samples 1 – 

4 (5 µL) were dissolved in 1× PBS, 12% SDS and derivatized with 20 mM 2,4-

dinitrophenylhydrazine (DNPH) for 20 min. The reactions were quenched using neutralization 

buffer and the samples were diluted using 1× PBS buffer to have a concentration of 1 ng/µL. 

Nitrocellulose membrane and filter paper (2) were briefly soaked in PBS buffer and the Dot/Slot 

blot apparatus was assembled. The membrane was rinsed with 200 µL of PBS, protein samples 

(250 ng) were loaded onto the Dot/Slot blot apparatus, and then the membrane was rinsed an 

additional time. The membrane was removed and samples were incubated in blocking buffer (3% 

w/v BSA in wash blot) for 90 min (room temperature). Primary antibody (anti – 2,4-

dinitrophenyl) was added with a dilution of 1:2000 and left to incubate overnight (4 oC). The 

following day, the membrane was brought up to room temperature for 30 min, then washed 4 

times with wash blot (5 min intervals). Secondary antibody (anti-rabbit IgG alkaline 

phosphatase) was added with the dilution factor 1:5000 with 20 mL wash blot and the membrane 

was incubated for 60 min (room temperature). The membrane was rinsed in wash blot (3 times, 5 

min intervals) and developed using 5-bromo-4-chloro-3-indolyl phosphate (BCIP)/nitro blue 
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tetrazolium (NBT). The solution was allowed to incubate till blue spots appeared. Results were 

analyzed using Scion Image software. Six technical replicates were performed. 

2.3 RESULTS 

2.3.1 C. elegans Resilience to P. aeruginosa PA01 Declines with Increasing Age 

The reliability of our proteomics data first depended on a bona fide bacterial infectivity 

and pathogenicity C. elegans model. This confirmatory step was particularly critical given the 

non-traditional solid – SK – media platform required to generate large cohorts of C. elegans. 

Hence, we performed standard pathogenicity assays to assess the lethality of P. aeruginosa PA01 

on wild-type C. elegans and to directly compare the survivals of Day 1- and Day 5 animals 

challenged with this pathogen. Similar to P. aeruginosa PA1415, P. aeruginosa PA01 exposure 

resulted in a dramatic decrease in the lifespan of both age groups in comparison with E. coli 

OP50 controls (Figure 2.1).  
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Figure 2.1 Survival Curves of Exposed and Control C. elegans. The lifespans of Day 1 (D1) and Day 5 

(D5) adult control and exposed D1 and D5 C. elegans were compared to survival on the standard laboratory diet of 

E. coli OP50. N2 (E. coli OP50) D1 OP50 (green; m= 18.7 ± 0.4, n= 39/44), D1 PA01 (blue; m= 11.2 ± 0.6, n= 

41/49, P vs. N2 <0.001), N2, D5 OP50 orange; m= 21.9 ± 0.7, n= 36/46) D5 PA01 (yellow; m= 11.7 ± 0.7, n= 

37/46, P vs. N2 <0.0001). 
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C. elegans reared on E. coli OP50 and transferred to P. aeruginosa PA01 – seeded SK 

plates on Day 1 of adulthood had a mean lifespan of 11.2 ± 0.6 days vs. mean lifespan of 18.7 ± 

0.4 on E. coli OP50 while those transferred as Day 5 adults perished after 11.7 ± 0.7 days, vs. 

mean lifespan of 21.9 ± 0.7 on E. coli OP50. Upon pathogen exposure, Day 5 adults began to 

perish within 24 h while Day 1 adults maintained 100% survival for several days. Both Day 1 

and Day 5 adults’ survival were reduced in the presence of pathogen. In an independent trial, a 

29% reduction in the survival of Day 5 adults exposed to pathogen was observed (Appendix A 

Table A2.1). These data confirmed that P. aeruginosa PA01, similar to the PA14 strain of the 

same pathogen15, reduces C. elegans’ survival and the detrimental effects are stronger in Day 5 

adults than Day 1. It also shows that both Day 1 and Day 5 had initial differences in survivability 

upon exposure to pathogen. Therefore, proteome changes identified in this work are likely 

reflective of genuine C. elegans infection responses. 

2.3.2 Mapping the C. elegans Proteome upon P. aeruginosa PA01 Exposure 

In a recent report, Vigneshkumar et al. used two-dimensional difference in gel 

electrophoresis (2D-DIGE) to identify 19 proteins whose levels are altered upon PA01 infection 

in Day 1 worms.25  However, little is known about genome-level proteome changes that occur in 

worms following infection with bacterial pathogens, especially with respect to the influence of 

aging. To systematically address this, we applied a proteomics workflow that takes advantage of 

isobaric tagging to simultaneously assess changes in the C. elegans proteome upon exposure to 

P. aeruginosa PA01 in Day 1 of adulthood vs. Day 5 of adulthood worms (Figure 2.2, Full Mass 

Spectrum). Four cohorts of C. elegans (~20,000 worms/sample) were bred, exposed to P. 
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aeruginosa PA01 at Day 1 or Day 5 and harvested 18 hours after P. aeruginosa PA01 exposure. 

This time-point was selected because it allowed a suitable exposure time to the pathogen to 

establish an infection-related proteome and, as is evident from the lifespan curves in Fig. 1, was 

a stage before large-scale death commenced. This ensured that the proteome responses measured 

were likely to be primarily related to immune responses and not mortality processes (e.g., 

apoptosis, degradation, etc.), and to give insight into immediate host responses to pathogen. As 

shown in Figure 2.2, proteins from each of the groups including a pooled sample were tryptically 

digested. Peptides were tagged with TMT6 reagents and analyzed by LC – MS/MS and MS3 as 

follows: Day 1 C. elegans fed on E. coli OP50 (m/z 126), Day 1 C. elegans exposed to P. 

aeruginosa PA01 (m/z 127), Day 5 C. elegans fed on E. coli OP50 (m/z 128), Day 5 C. elegans 

exposed to P. aeruginosa PA01 (m/z 129), and the pooled sample (m/z 130). MS3 was employed 

to help minimize ratio compression associated with reporter ion signals.80, 116-117 Biological and 

technical replication helped ensure we were observing reproducible changes.  

Example data from the proteomics workflow is shown in Figure 2.2. The peptide, 

N(TMT6)ANADIQQWK(TMT6) belongs to the myosin-4 protein and the MS and MS/MS 

spectra contain signal from samples for each of the four groups. After MS3 of the b4 fragment ion 

at m/z 601.49 is performed, reporter ions that track the sample origin for each group are detected. 

For this particular peptide, its relative abundance is higher in C. elegans exposed to P. 

aeruginosa PA01 relative to controls at both ages (i.e., D1 PA01/D1 OP50 = 3.12 and D5 

PA01/D5 OP50 = 1.34). In addition, it’s clear that myosin-4 has higher levels overall in Day 5 C. 

elegans in comparison to Day 1 C. elegans.  
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Figure 2.2 Proteomics Experiments and Mass Spectra of C. elegans Exposed to P. aeruginosa PA01.a) Proteomics 

workflow used to analyze C. elegans exposed to P. aeruginosa PA01. Representative b) MS, c) MS/MS and, d) MS3 

spectra from TMT6 labeled peptides is shown. The peptide sequence N(TMT6)ANADIQQWK(TMT6) belongs to 

myosin-4 and was selected at m/z 766.439 (SCX fraction 8, tr = 29.46 min), isolated, and fragmented. The fragments 

produced CID-MS/MS spectra. Next, the b4 ion at m/z 601.490 was isolated, selected, and fragmented, generating 

HCD-MS3 spectra.  A zoom – in at low m/z of this spectra is shown, displaying reporter ions for this fragment. An 

example mass spectrum from a pooled sample of light (m/z 648.856) and heavy (m/z 656.900) e) dimethylated 

labeled D1 OP50 and D1 PA01 samples, respectively, at tr =62.48 is also shown. The peptide pair corresponds to 

N(dimethyl)TSLFTNLESTK(dimethyl) of myosin-4. 
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The spectra in Figure 2.2 are representative of the entire dataset, whereby ~1.6 x 106 

MS/MS spectra were acquired. These spectra led to the identification of 897 unique proteins 

(4248 peptides) using the conservative criteria of Peptide to Spectral Match (PSM) ≥2 combined 

from any two technical replicates (Appendix A Table A2.2). With less conservative filters 

(PSM>1 across the 4 technical replicates), 1015 unique proteins were identified (Appendix A 

Tables A2.2 and A2.3).  

2.3.3 Dimethylation Labeling Verifies TMT6-based Identification of Proteins Whose Levels are 

Altered in PA01 Infection  

We employed reductive dimethylation as a complementary means to measure protein 

expression (Figure 2.3)118 such that in a single analysis (see Experimental) Samples 1 vs. 2 (D1 

OP50 vs. D1 PA01) or Samples 3 vs. 4 (D5 OP50 vs. D5 PA01) were compared. Protein samples 

from one of the biological cohorts were analyzed according to the workflow shown in Figure 2.3.  
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Figure 2.3  Proteomics Workflow using Dimethylation Labeling. 



 

 40 

 

Figure 2.2 provides a sample MS spectrum of a dimethylated peptide pair with the light 

peak at m/z 648.856 and the heavy peak at m/z 656.900. These peaks have the sequence 

N(dimethyl)TSLFTNLESTK(dimethyl) and belong to myosin-4. Similar to the TMT6 data, this 

protein was expressed at higher levels (D1 PA01/D1 OP50 = 1.86 ± 0.00) after P. aeruginosa 

PA01 exposure compared to E. coli OP50 controls in Day 1 C. elegans. The combined 

dimethylation experiments resulted in the identification of 3125 peptides and 662 proteins 

(Appendix A Tables A2.4 and A2.5). Overall, from both TMT6 and dimethylation datasets, 1206 

unique C. elegans proteins were identified and 462 proteins were common (Figure 2.4a).   

 We compared the list of proteins with differential levels identified through TMT6 

labeling (Table 2.1) with those found to exhibit differential levels through the dimethylation 

approach. Eighteen proteins were common between these groups and their PA01/OP50 ratios are 

shown in Figure 3b. Overall, 13 of the 18 proteins (Figure 2.4b) shared similar changes between 

the two techniques (i.e., <25% coefficient of variation), enhancing our confidence in the list of 

proteins that showed differential levels (Table 2.1).   
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Figure 2.4 Comparisons of Proteins from TMT6 and Dimethylated-Labeled Peptides. a) Venn diagram of proteins 

identified in TMT6 and dimethylation experiments and b) histogram plot of proteins exhibiting differential levels in 

both TMT6 and dimethylation experiments. Error bars represent standard error from the mean of the fold change. 

 

a) 

b) 
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2.3.4 Major Biological Pathways Influenced in C. elegans Proteome after Exposure to P. 

aeruginosa PA01 

We performed two gene ontology searches on the list of proteins with differential levels 

in Day 1 and Day 5 adult C. elegans using the STRING database platform (Figures 2.5 and 

2.6).119 Overall, the proteins whose levels changed in response to pathogen (independent of age) 

included many cytoskeletal and structural proteins mediating myofibril assembly as well as those 

involved in biological processes such as reproduction, locomotion, stress response, metabolism, 

protein translation, and development (Table 2.1, Appendix A Table A2.6).  

In Day 1 C. elegans in particular, significant association was observed with the biological 

process (Appendix A Table A2.7) generation of precursor metabolites and energy (P <0.05) 

whereas, in Day 5 C. elegans the most significant associations (Appendix A Table A2.8) were 

with protein folding and stress response, including the unfolded protein response (UPR) and 

endoplasmic reticulum stress response (UPRER). As C. elegans age, increased protein 

aggregation occurs and their ability to maintain protein homeostasis declines,107 and these 

observations correspond with our findings.  
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Figure 2.5 Interactions of Statistically – Significant proteins in D1 C. elegans Exposed to P. aeruginosa PA01. 
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Figure 2.6 Interactions of Statistically – Significant proteins in D5 C. elegans Exposed to P. aeruginosa PA01. 
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Table 2.1 Proteins Whose Levels are Altered in C. elegans upon P. aeruginosa PA01 Exposure 
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2.3.5 PA01 Exposure Elevated Protein Carbonylation in C. elegans  

Protein carbonyls are products of metal-catalyzed oxidation of amino acids that are 

irreversible, unlike reversible oxidative changes that can be transient. Hence, levels of protein 

carbonylation (PCO) are an indirect but reliable and permanent marker of oxidative stress. 

Additionally, PCO increases with age in worms as in many other species.120 Many pathogens, 

including P. aeruginosa, causes increased oxidative stress upon infection. But, whether these 

stress-responses are similarly affected in animals of different ages is not clear. To examine the 

permanent, oxidative consequences of PA01 infection in Day 1 and Day 5 C. elegans, we 

measured PCO levels in our samples using immunoblot assays (Figure 2.7). Relative to Day 1 C. 

elegans fed OP50, oxidized PCO levels in Day 1 C. elegans after pathogen exposure increases 

by 16% (P < 0.05). We observed, as previously noted, that aging caused higher PCO levels. In 

Day 5 C. elegans fed OP50 compared to Day 1 C. elegans, PCO levels were higher by 15% (P < 

0.05). However, pathogen exposure in Day 5 C. elegans did not result in any further increase in 

PCO levels. Thus, pathogen infection appears to enhance oxidative damage to the animals’ 

proteome that is also exhibited by age, and is not further exacerbated upon infection of older 

worms. 
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Figure 2.7 Comparisons of Protein Carbonylation (PCO) Levels in Day 1 and Day 5 Adult C. elegans Exposed to P. 

aeruginosa PA01 and Aged – Matched Controls. 
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2.3.6 unc-60 Mutants Have Reduced Lifespan 

In our analyses, one protein, UNC-60, exhibited differential levels both as a result of 

pathogen exposure as well as a function of age (Table 2.1, Appendix Table A2.9). UNC-60 

expression decreased with pathogen exposure in Day 1 C. elegans (0.54 ± 0.02 on comparing 

Day 1 OP50 vs. Day 1 PA01) whereas, in Day 5 adults its level was elevated upon pathogen 

exposure (1.50 ± 0.53). With age, UNC-60 expression increased substantially on E. coli OP50 

(2.85 ± 0.98 in Day 5 vs. Day 1 adults) and even more dramatically upon PA01 exposure (7.33 ± 

2.02 in Day 5 adults on PA01 vs. Day 1 adults on PA01). 

UNC-60 is an actin-polymerizing factor, cofilin, that is critical for numerous 

developmental steps as well as for normal locomotion in adults.121 Importantly, UNC-60 is 

required for C. elegans to avoid pathogenic bacteria. UNC-60 knockdown hastens mobility 

decline in aging animals and limits pathogen avoidance.122-123 Our data suggested that UNC-60 

confers locomotory ability under normal aging conditions, whereas, upon pathogen exposure, its 

levels may be elevated to facilitate avoidance behavior. We tested this by measuring the lifespan 

of two unc-60 mutant strains, CB677 {unc-60(e677)} and ON19 {unc-60(su158)}. Both mutants 

exhibited severe whole-body paralysis and sickness121 and were significantly shorter-lived 

compared to wild-type controls. CB677 exhibited a mean lifespan of 7.0 ± 0.1 days, whereas, for 

ON19 lived for 7.3 ± 0.2, as compared to the 18.6 ± 0.2 days mean lifespan of the control 

population (Figure 2.8, Appendix Table A2.9).  
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Figure 2.8 Survival Curves of Day 1 Adult unc-60 Mutants and Control C. elegans. Mean lifespans of two loss-of-

function unc-60 mutants compared to wild-type, N2, C. elegans grown on standard laboratory diet of E. coli OP50 

throughout their lives were measured at 20oC. (blue; m= 18.9 ± 0.1, n= 80/116), ON19 {unc-60(su158)} (green; m= 

5.9 ± 0.1, n= 38/43, P vs. N2 <0.0001), CB677 {unc-60(e677)} (yellow; m= 7.8 ± 0.1, n= 104/119, P vs. N2 

<0.0001). Data from additional trials are in Appendix Table A2.9. 
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The dramatic 60% lifespan reduction seen on normal food itself precluded survival 

analysis upon pathogen exposure. These observations are in keeping with our proteomics data 

and other reports that indicate that mutations in unc-60 reduce the lifespan of WT adult C. 

elegans. 

2.3.7 Comparing C. elegans Host Response when Exposed to P. aeruginosa PA01 and Other 

Pathogens 

Several reports have examined the gene- and –protein-expression changes in C. elegans 

as a result of infection by a variety of pathogens.9, 14, 18, 20-23, 109 These efforts have primarily 

focused on such changes at the transcriptional level. Proteomics has been used to investigate 

host-pathogen response for the Gram-positive human pathogen Staphylococcus aureus (S. 

aureus), a pathogenic Escherichia strain, E. coli LF8222-23 and recently, P. aeruginosa PA01.25, 

103 Transcriptomic studies have also been performed on the canonical pathogenic P. aeruginosa 

strain PA14, a human clinical isolate.14, 18 We anticipated that there would have been higher 

overlap of our changes with those from the other P. aeruginosa PA01 study which examined 

exposure at time intervals such as 12, 24, and 48 hours in Day 1 adult C. elegans.24  
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Figure 2.9 Comparison of Differentially – Expressed genes/proteins from this Study to other Pathogenicity Studies. 

The bar graph shows the number of shared proteins/transcripts present at differential levels from P. aeruginosa 

PA01 and other pathogens. The quadrants represent categories of proteins with, a) higher levels in P. aeruginosa 

PA01 exposed C. elegans as well as the other pathogen(s), b) lower levels in P. aeruginosa PA01 and in the other 

pathogen(s), c) lower levels in P. aeruginosa PA01 in our study and higher levels in the other pathogen(s), d) and 

higher levels in P. aeruginosa PA01 while lower in the other pathogen(s). 
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Two proteins (i.e. disorganized muscle protein and receptor of activated protein c kinase 

1) had consistent direction of change between both studies and showed higher differential levels 

(Figure 2.9a), whereas three proteins (i.e. elongation factor 2, fatty-acid binding protein homolog 

6, and pud 1.1) had an opposite direction of change (Figure 2.9d). Interestingly, the study with 

the highest degree of overlap was with gene-expression changes reported when C. elegans was 

exposed to S. aureus22 (P < 4.89 x 10-20). We next compared our list of proteins exhibiting 

differential levels in our study with the proteins identified in other proteomic analyses of C. 

elegans exposed to various types of pathogens (i.e. Gram-negative or Gram-positive bacteria or 

fungi) (Figure 2.9) 9, 14, 20-23, 25, 109 We found that eighteen proteins whose levels were elevated 

after pathogen exposure in our study (Figure 2.9a) and six whose levels were diminished (Figure 

2.9b), were also found to exhibit similar changes in one or more of the other studies. Only three 

proteins’ levels were reduced upon PA01 exposure in our study but showed higher levels upon 

pathogen attack in other reports (Figure 2.9c). These results are promising and suggested that 

some responses to infection are not pathogen specific. The highest degree of overlap (i.e. 27 

unique proteins) occurred however, for proteins elevated in the presence of PA01 in our study 

but lowered levels in the presence of other pathogens (Figure 2.9d). For example, 11 proteins had 

higher levels after P. aeruginosa PA01 exposure in our study but were reduced upon S. aureus 

infection22 suggesting that worms mount pathogen-specific responses that may involve up- or 

down-regulation of the same protein dependent upon the pathogen involved. These comparisons 

substantiated the presence of both general and pathogen-specific responses in the C. elegans 

adult proteome. 
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2.4 DISCUSSION 

Previously, we have demonstrated that age influences the acute response to infection in 

elderly individuals suffering from community-acquired pneumonia that eventually develop 

severe sepsis.115 The human proteome has dynamic changes in response to these infections and 

the changes are age-related, mostly involving mechanisms related to lipid metabolism, 

inflammation, and acute-phase response.115 Despite the considerable differences in size, number 

of cells, and inherent complexity of the immune system, C. elegans has become a valuable model 

to study host-response to pathogens, especially to understand changes in innate immunity.124-126 

P. aeruginosa PA01 is a slow killing, Gram-negative bacterial strain implicated in human 

infections such as sepsis and pneumonia.127 Our proteomic studies measure the influence of 

aging on C. elegans exposed to P. aeruginosa strain PA01 using shotgun quantitative proteomics 

techniques. We aged C. elegans to Day 1 or day 5 in adulthood, exposed them to pathogen, and 

then harvested C. elegans at 18 hours. The time-point of 18 h was selected to maximize 

observance of changes related to infection.  Minimal media was used to introduce P. aeruginosa 

PA01 to C. elegans; this “slow-killing” assay leads to the accumulation of pathogen in the 

intestine through quorum sensing.128-130 Hydrogen cyanide is released from P. aeruginosa PA01, 

paralyzes C. elegans, and leads to lethal toxicity.128, 131 Herein, survivorship of C. elegans fed on 

NGM containing P. aeruginosa PA01 was significantly lower (i.e., LT50 = ~7-10 days compared 

to 18-20 days) than control C. elegans fed on E. coli OP50 media which is generally consistent 

with other studies.17, 132 However, worms in our study survived longer on P. aeruginosa PA01 

compared to previous reports.17, 132 These differences in survivability could be directly related to 

the upkeep of C. elegans; for instance, we plated C. elegans to fresh media containing pathogen 
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every other day. Initial mortality of C. elegans exposed to P. aeruginosa PA01 differs by several 

days for Day 1 and Day 5 C. elegans. Day 1 C. elegans have a lag time of several days prior to 

large percentages of the population dying whereas Day 5 C. elegans began to die more 

immediately upon P. aeruginosa PA01 exposure. This substantiates previous evidences that age 

diminishes C. elegans’ ability to effectively fight off the pathogen attack. However, after this 

period pathogen exposure does not have a long-term effect on the aging of C. elegans, as in our 

experiments Day 1 and Day 5 C. elegans exposed to P. aeruginosa PA01 have similar lifespans. 

This is likely due to differences in the innate response of young C. elegans. 

2.4.1 Pathogen-induced Proteomic Changes in Day 1 and Day 5 Adults are Overlapping but 

Distinct 

As C. elegans age, several proteomic and physiological changes occur, including 

structural disintegration,107 protein aggregation,107 and immunosenescence. In order to determine 

how aging influences the response to infection, we exposed Day 1 and Day 5 adult C. elegans to 

P. aeruginosa PA01 for 18 hours and examined their proteomes. We observed that there are 

general responses to infection that are not age-specific however, a few biological pathways are 

unique to a given age (Figure 2.10).   

The proteome of Day 1 C. elegans exposed to P. aeruginosa PA01 is notably enriched 

for developmental and reproduction functions (Appendix A Table A2.7). This is intuitive as Day 

1 C. elegans are completing larval stage 4 development and commencing egg laying. 

Cytoskeletal proteins and locomotion were significantly represented in both Day 1 and Day 5 C. 

elegans after pathogen exposure. At Day 5, worms are actively mobile and our data underscores 
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the importance of pathogen-avoidance behavior for immunological defense in worms during 

both young and middle-ages.  

In Day 5 C. elegans, protein folding/unfolding and stress response pathways such as UPR 

and UPRER were significantly enriched along with metabolic functions. Upon pathogen 

exposure, Day 5 adult C. elegans elicit an elevated stress response to infection that is not 

observed in C. elegans on OP50. Specifically, we observe elevated levels of heat shock proteins 

(HSPs) after PA01 exposure. HSPs are chaperones that assist in protein folding,133 removal of 

improperly folded proteins,134 and stress response. Activation of HSPs after pathogen exposure 

and in aging is evolutionarily conserved, including in worms135 and is known to occur in other 

stressful conditions such as oxidative stress136-137 and after the onset of inflammatory diseases.138-

140 The combination of proteins being produced in response to stress and that are involved in 

metabolism, show a concerted effort from Day 5 C. elegans to counter the effects of pathogen – 

exposure and elicit an immune response.  
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Figure 2.10 Scheme of Day 1 and Day 5 C. elegans’ Response to P. aeruginosa PA01 Exposure.  Day 1 (black) and 

Day 5 (orange) C. elegans were exposed to P. aeruginosa PA01, resulting in general and age-specific changes. Day 

1 adult C. elegans (grey arrows) had an increase in the generation of metabolic precursors and energy while Day 5 

adult C. elegans (green arrows) had significant changes related to protein metabolism and protein folding/unfolding. 

Both age groups had changes related to development, reproduction, locomotion, and structure. The loss of actin-

polymerizing protein, UNC-60, reduces C. elegans lifespan and antioxidants MSRA-1 and PRDX-3 reduce 

increased levels of ROS. 
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2.4.2 Mutations in unc-60 Reduce Lifespan 

Both myofiber structural integrity as well as locomotive ability decline with aging in 

worms as in humans.141 Interestingly, one proteins whose levels were altered by both age and 

pathogen exposure, though oppositely, was the cytoskeletal protein, UNC-60. UNC-60 is an 

actin-binding structural protein that mediates actin filament depolarization and is expressed in 

two, tissue-specific isoforms. Since UNC-60 was present at differential levels in both Day 1 and 

Day 5 aged C. elegans exposed to P. aeruginosa PA01 (see Results section above), we were 

interested in how the loss-of-function and protein expression of unc-60 may alter C. elegans’ 

lifespan. Survival curves of mutants CB677 {unc-60(e677)} and ON19 {unc-60(su158)} 

unveiled significant decreases in C. elegans’ lifespan, in comparison to the lifespan of control C. 

elegans. Interestingly, the lifespans of both mutants were similar, even though ON19 is 

considered to be the more severe mutant.121 Since UNC-60 is necessary for proper actin 

assembly in myofibrils,121, 142 the absence of this protein decreases C. elegans’ mobility and 

ability to obtain food, thus causing a premature death. Indeed, the mutants exhibited such a 

dramatic lifespan shortening under normal conditions that it precluded examining their survival 

in the presence of PA01. It can be inferred that upon pathogen exposure, similar or even more 

severe results would be yielded, as C. elegans would be unable to avoid the pathogen. 

2.4.3 P. aeruginosa PA01 Exposure Causes Elevated Carbonylation of Worm Proteome 

The presence of reactive oxygen and nitrogen species, and hence oxidative stress, is 

known to increase in aging organisms.143 Antioxidants are critical in immune response as they 
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help protect against toxic species elicited from defense mechanisms and from the pathogen 

directly.144-145 In this study, antioxidant proteins peroxiredoxin-3 (PRDX-3) and methionine 

sulfoxide reductase 1 (MSRA-1) were elevated in Day 5 C. elegans exposed to P. aeruginosa 

PA01 and between Day 1 and Day 5 C. elegans, respectively. Elevation of PRDX-3 suggests 

activation of antioxidant pathways in response to oxidative stress (Table 2.1, Figure 2.8). 

MSRA-1 levels have been shown to decrease with aging in wild-type C. elegans146, however, our 

results show higher levels of this protein after pathogen exposure (Table 2.1). This change is 

supportive of an environment where C. elegans is warding off reactive oxygen and nitrogen 

species through an increased antioxidant response. Elevated levels of protein carbonyls (an 

indirect marker of oxidative stress) in Day 1 C. elegans upon pathogen exposure were observed 

in this study, very much consistent with the idea that ROS/RNS increases due to P. aeruginosa 

PA01.  

Inflammatory processes, antimicrobial activity, and innate immune responses to toxins 

lead to excess production of reactive oxygen and nitrogen species. However, in Day 5 C. elegans 

the exposure to pathogen did not result in any enhanced levels of oxidative stress. This 

observation suggests that by Day 5, worms were already experience increased oxidative stress 

which is not further exacerbated by PA01 infection (Figure 2.11).  

2.5 CONCLUSIONS 

This study provides new and significant insights into how the proteome of C. elegans 

changes upon P. aeruginosa PA01 exposure at different adult ages. Pathogen exposure results in 
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significant alterations in metabolism, development, reproduction, stress response, protein 

folding/unfolding, and locomotion pathways. Many of these pathway changes are not unique to 

P. aeruginosa PA01 and are observed at the transcript or protein level when C. elegans are 

exposed to other Gram-negative and Gram-positive pathogens. However, we were able to 

observe a number of proteins that appear to have P. aeruginosa PA01-pathogen specific changes. 

Additionally, it is clear that the specific pathways that are activated in the proteome in response 

to pathogen depend on the age of the worms. Day 1 C. elegans have general alterations and do 

not have the confounding effects of aging that can limit their response to the pathogen. Initial 

survivability of Day 1 C. elegans is maintained for a longer period compared to Day 5 C. elegans 

prior to death after P. aeruginosa PA01 exposure. It will be very interesting to determine if these 

and other virulence-related factors identified in our study can be modulated to extend 

survivability of aged C. elegans after pathogen exposure. 
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3.0 PROTEOMICS ANALYSIS OF VIRULENCE-RELATED FACTORS IN YOUNG 

AND AGING C. ELEGANS EXPOSED TO PSEUDOMONAS AERUGINOSA PA01- 

PART 2* 

(*please note, contents of this Chapter are related to the following publication: “King, C.D; Singh, D.; Holden, K.; Govan, A.B.; Keith, S.A.; 

Ghazi, A., Robinson, R.A.S. Data in Brief, 2016)147 

3.1 INTRODUCTION 

In Chapter 2, young and aging C. elegans were exposed to an opportunistic pathogen, P. 

aeruginosa PA01 to understand how aging influenced the response of C. elegans to infection. 

These experiments were performed on an LTQ Orbitrap Velos mass spectrometer, which offered 

high resolution, fast scan rates, and improved fragmentation spectra compared to other state-of-

the-art MS instruments.148 However, only ~1,000 proteins were identified with the use of this 

instrument in our proteomics platform. The LTQ Orbitrap Velos was upgraded to an Orbitrap 

Elite mass spectrometer and C. elegans samples were re-analyzed in order to take advantage of 

instrumental improvements. The Elite was improved from the LTQ Orbitrap Velos by including 

a neutral blocker, enhanced fourier transform (eFT) technology, and a smaller size Orbitrap. 

These improvements increased the resolution of the instrument to 240,000 and reduced scanning 
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speeds to 250 ms (Orbitrap) and ~100 ms (ion trap).  Samples were prepared in a similar fashion 

as in Chapter 2, except only one biological cohort was applied. Protein from young and aging C. 

elegans exposed to P. aeruginosa PA01 and aged-matched controls were digested using trypsin. 

Peptides were labeled with TMT6-plex isobaric reagents and fractionated off-line with SCX. 

Fractions were analyzed by LC – MS/MS and MS3 and RAW files were searched using PD.  

3.2 EXPERIMENTAL PROCEDURES 

3.2.1 Protein Digestion 

Protein was purified using acetone precipitation and the amount of protein was re-

determined with BCA assay. Protein (~80 – 100 µg) was denatured with an extraction buffer (0.2 

M Tris, 8 M urea, 10 mM CaCl2, pH 8.0), reduced with 1:40 molar excess of dithiothreitol 

(DTT) for 2 h at 37 oC, and then alkylated with 1:80 molar excess of iodoacetamide (IAM) for   

2 h on ice. The alkylation reaction was quenched by adding 1:40 molar excess of cysteine and 

the mixture was incubated at room temperature for 30 min. Tris buffer (0.2 M Tris, 10 mM 

CaCl2, pH 8.0) was added to dilute the urea concentration to 2 M. Each sample was incubated 

with bovine TPCK-treated trypsin (Sigma–Aldrich) at 50:1 substrate/enzyme ratio for 24 h at 37 

ºC.  
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3.2.2 TMT Labeling 

Digested samples were desalted with an HLB cartridge and dried by centrifugal 

evaporation. Each sample was labeled with a TMT6-plex reagent following the manufacturer’s 

protocol (Thermo Scientific). TMT6 reagents were equilibrated to room temperature, solubilized 

with 41 µL of acetonitrile, and transferred to peptide samples reconstituted in triethylammonium 

bicarbonate (TEAB) buffer. After 1 h of incubation (~25 oC), the reaction was quenched using 

5% hydroxylamine. Equimolar amounts of samples were combined such that reagents that 

generate reporter ions at m/z 126:127:128:129:130 correspond to D1 OP50, D1 PA01, D5 OP50, 

D5 PA01, and the pooled sample, respectively. 

3.2.3 Offline SCX Fractionation 

SCX fractionation was performed on a PolySulfoethyl A 100 mm x 2.1 mm, 5µm, 200 Å 

column (The Nest Group, Inc.) with buffers as follows: mobile phase A was 5 mM 

monopotassium phosphate (25% v/v acetonitrile, pH 3.0), and mobile phase B was 5 mM 

monopotassium phosphate, 350 mM potassium chloride (25% v/v acetonitrile, pH 3.0). Dried 

TMT6– labeled samples were re-suspended in 200 µL of mobile phase A and injected onto the 

column. The gradient was as follows: 0 – 5 min, 0% B; 5 – 45 min, 0 – 40% B; 45 – 90 min, 40 – 

80% B; 90 – 100 min, 80 – 100% B; 100 – 110 min, 100% B; 110 – 121 min, 0% B. Eluent was 

collected every minute and combined into 20 fractions. Each fraction was desalted using Supel-

Tips C18 micropipette tips (Sigma – Aldrich). Fractions were solubilized in 50 µL and filtered 

with a 0.45 μm filter (Thermo Fisher Scientific).   
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3.2.4 LC – MS Analyses 

Online desalting and reversed-phase chromatography was performed with a Nano liquid 

chromatography (LC) system equipped with an autosampler (Eksigent). Mobile phases A and B 

used for reversed phase (RP)-LC separation of peptides were 3% (v/v) acetonitrile with 0.1% 

formic acid and 100% acetonitrile with 0.1% formic acid, respectively. SCX fractions (10 μL) 

were loaded onto a trapping column (100 µm i.d. x 2 cm), which was packed in house with C18 

200 Å stationary phase material (Michrom Bioresource Inc,) at 3 μL/min in 3% mobile phase B 

for 3 min. After desalting, the sample was loaded onto an analytical column (75 µm i.d. x 13.2 

cm) which was packed in-house with C18 100 Å 3 µm stationary phase material (Michrom 

Bioresource Inc). The gradient was as follows: 0 – 7 min, 10% mobile phase B; 7 – 67 min, 10 – 

30% B; 67 – 75 min, 30 – 60% B; 75 – 77 min, 60 – 90% B; 77 – 82 min, 90% B; 82 – 83 min, 

90 – 10% B; 83 – 95 min, 10% B. The LC eluent was analyzed with positive mode nanoflow 

electrospray using a LTQ Orbitrap Elite mass spectrometer (Thermo Fisher Scientific). Data-

dependent acquisition parameters were as follows: the MS survey scan in the Orbitrap (300 – 

1800 m/z) was 120,000 resolution; the top seven most intense peaks were isolated and 

fragmented with collision-induced dissociation (CID) in the LTQ (normalized collision energy of 

35%). Directly after each tandem MS/MS scan, the most intense fragment ion over the m/z range 

200 – 1545 was selected for higher-energy collisional dissociation (HCD) triple staged mass 

spectrometry (MS3). The fragment isolation width was set to 4 m/z, the MS3 AGC was 3 x 105, 

the normalized collision energy was 60%, the resolution was 7,500 and the maximum ion time 

was 250 ms. HCD spectra were recorded in the Orbitrap. Each fraction was subject to duplicate 

injections.  
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3.2.5 Data Analyses 

RAW files were analyzed with PD 2.1 software (Thermo Scientific) and searched against 

the Uniprot C. elegans database (25,673 sequences). SEQUEST search parameters were as 

follows: two maximum trypsin mis-cleavages, precursor mass tolerance of 10 ppm, fragment 

mass tolerance of 0.8 Da; static modifications were TMT six-plex/+229.163 Da (N-terminus, 

Lys) and carbamidomethyl modification/+57.021 Da (Cys); dynamic modification was oxidation 

modification/+15.995 Da (Met). Decoy database searching was employed to generate medium 

(p<0.05) and high (p<0.01) confidence peptide lists. All the peptides with medium and high 

confidence were used to identify and quantify proteins. To filter peptides, the following 

parameters were applied:  peptide confidence level of medium or high, peptide rank of 1, and 

peptide deviation of 10 ppm. Peptides with a PSM (peptide to spectral match) count of 1 were 

not considered for analysis. The reporter ions (i.e. m/z 126 – 130) were identified with the 

following parameters:  most confident centroid and 20 ppm for reporter ion mass tolerance. 

Furthermore, reporter ion values were normalized 126/130, 127/130, 128/130, and 129/130 and 

final ratio reporting given as 127/126 and 129/128. Proteins belonging to multiple isoforms were 

grouped into a single accession number and final ratios were reported. 

3.3 RESULTS AND DISCUSSION 

In this experiment, C. elegans samples from one biological cohort were analyzed using 

quantitative proteomic techniques to obtain more information about aging and infection. 
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Previously obtained samples (Figure 3.1) were digested using trypsin, labeled using TMT6-plex 

and analyzed using LC – MS/MS and MS3. To obtain MS information, an Orbitrap Elite MS was 

used instead of applying an Orbitrap Velos.  
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Figure 3.1 Experimental Workflow of Young and Aging C. elegans Exposed to P. aeruginosa PA01. 

 

 

 

 

Figure 3.2 a) Protein and b) Peptide Overlap across Orbitrap Velos and Orbitrap Elite Platforms. 

a) b) 
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From this analysis, 12215 PSMS, corresponding to 2589 unique peptides (Appendix B 

Table B3.1) and 836 proteins were identified. This number was reduced to 661 proteins when a 

PSM filter of >1 is applied (Appendix B Table B3.2). Between both datasets, 412 proteins and 

1233 peptides were shared across instruments (Figure 3.2); this corresponds to ~40 and 60% of 

proteins and 29% and 47% of peptides in the Orbitrap Velos and Elite, respectively.  

In terms of protein quantification, 416 proteins (i.e. 62%) were quantified in all ratio 

groups (i.e. 126/130, 127/130, 128/130, and 129/130). In comparison, using a stringent filter (≥2 

PSMs per technical replicate) in the Orbitrap Velos data-set (N=897 proteins), 288 proteins 

(~32%) were quantified. A dramatic increase (~100%) of proteins were quantified between the 

two instruments. Since one biological cohort was used in the Elite data-set, proteins were not 

analyzed for statistical – significance; however, general trends about quantified proteins were 

made.  

Among proteins only identified from the Elite (i.e. 249), 134 (i.e. 54%) were also 

quantified across all ratio groups. Using established fold-change values of >1.4 and <0.7 

(Chapter 2), quantified proteins that met this criteria were involved in similar biological 

processes (Appendix B Tables B3.3 – B3.5) as proteins differentially – expressed in Chapter 2. 

Processes related to development, translation, metabolism, reproduction, and cell organization 

were identified in both young- (D1) and aging (D5) adult C. elegans exposed to P. aeruginosa 

PA01 at lower levels (D1 C. elegans) or at higher and lower levels (D5 C. elegans). 

Interestingly, proteins related to translation and cell-redox homeostasis were quantified at lower 

levels in both D1 and D5 C. elegans and at higher levels in D5 C. elegans, respectively. Within 

proteins identified across both data-sets (i.e. 412), 123 (i.e. 30%) were also quantified. Protein 

levels were similar (CV < 0.33) for 51 (i.e. 41%) and 74 (i.e. 60%) proteins in D1 and D5 C. 
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elegans and 28 proteins differentially – expressed in Chapter 2 (i.e. 51%), were also quantified in 

Elite data-set (Appendix B Table B3.6). This list of proteins included those involved in heat-

shock response, protein folding, and metabolism. 

Overall, results from data acquired on the Elite MS showed a decrease in proteins 

identified but an increase in the number of proteins quantified. Decreases in protein 

identifications are related to analyzing one biological cohort and experimental error. Since one 

biological cohort was analyzed, it was expected that the overlap between proteins identified 

and/or quantified across instruments would be lower. In addition, inefficient sample loading may 

have also contributed to decreased protein identifications. An increase of quantified proteins in 

the Elite, however, is due to improved instrumental parameters. Faster scan rates and higher 

sensitivity on the Elite allows more duty cycles to be performed, thus obtaining more 

quantitative spectra. In addition, the overlap between proteins identified across both instruments 

shows the ability to reproduce similar datasets across different Orbitrap instruments while the 

identification of proteins specific to the Elite displays instrument variability.  

3.4 CONCLUSIONS 

The Elite has many advantages of other Orbitrap hybrid instruments and lower resolution 

systems including its faster scan rate, higher resolution and improved ion optics.  Though usage 

of this instrument did not increase protein identifications, it provided insight about novel and 

similar proteins identified previously in Chapter 2. It also highlighted the potential benefits of 

using this instrument for future applications. Addressing issues related to low biological replicate 
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sampling and experimental error will improve peptide and protein identifications and 

quantifications in future experiments. 
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4.0 EVALUATING cPILOT PERFORMANCE OF ORBITRAP INSTRUMENTS TO 

STUDY THE PERIPHERAL PROTEOME OF ALZHEIMER’S DISEASE 

4.1 INTRODUCTION 

Alzheimer’s disease (AD) is both a neurodegenerative and metabolic disease, 

characterized by the main pathogenic hallmarks such as senile plaques and the deposition of 

amyloid beta (Aβ) plaques and neurofibrillary tangles composed of hyperphosphorylated tau. 

Other features of this disease include metabolic dysfunction,149 insulin resistance,150-151 and 

lower cerebral glucose metabolism.152 While AD affects the brain, it also has implications in 

peripheral organs. For example, cardiovascular disease28, 153-155 is a major risk factor for AD, as 

well as others such as type-2 diabetes, hypertension, obesity and high cholesterol. These 

comorbidities suggest that peripheral organs may contribute to disease pathogenesis, therefore a 

comparative analysis of heart tissues, to others implicated in AD pathogenesis (e.g. brain and 

liver) may give insight into how these tissues contribute to AD pathogenesis. Specifically, 

performing an analysis of brain, heart, and liver tissues from 14-month-old amyloid precursor 

protein/presenilin 1 mice (APP/PS-1) would be beneficial. APP/PS-1, hereafter is referred to as 

(AD) mice, are a double transgenic strain with mutant APPswe and PS1de9 genes.156 This model 

presents many aspects of AD, including the formation and aggregation of amyloid-beta plaques 

and cognitive decline.157 This model has been used broadly in proteomics to gain insight into the 



 

 71 

 

pathogenesis of AD 84, 158-160 and our laboratory has initial studies in peripheral tissues such as 

the liver.2 

Multiplexing becomes an effective approach to study the proteome across tissues. This 

technique is used within quantitative proteomics to increase sample throughput by analyzing 

several samples simultaneously in a single MS analysis.  Multiplexing can occur at the protein or 

peptide level and may be executed by metabolic, enzymatic, or chemical reactions. These 

reactions incorporate unique fluorescent tags161-162 or heavy isotopes into proteins or peptides 

from multiple samples, which are pooled and detected by flow cytometry or mass spectrometry.  

The two major groups of techniques used to multiplex in MS are isotopic labeling and isobaric 

tagging. Isotopic labeling allows up to five samples to be analyzed simultaneously in cells71 with 

stable isotopic labeling with amino acids in cell culture (SILAC) or in mammals with stable 

isotopic labeling with amino acids in mammals (SILAM).72 Other techniques incorporate heavy 

isotopes into proteins with isotope protein coded labels (IPCL)163 or 18O exchange,164 or in 

peptides with acetylation165 or dimethylation.71 Isobaric tagging chemically labels proteins or 

peptides with a tag that, upon fragmentation, provides a unique reporter ion at lower m/z values, 

with an intensity corresponding to the protein concentration. Tandem mass tags (TMT),77 

isobaric tag for relative and absolute quantitation (iTRAQ),166 and N,N-Dimethyl Leucine 

(DiLeu)79 tags can analyze as little as two or four samples, or up to as many as 11- 12- and 21-

plex analyses.167-168 Using these multiplexing strategies has provided insight into disease-state 

pathology,84 drug-target studies, and kinetics-based experiments.   

Our laboratory83 and others74, 86, 88, 91 have pushed the limits of multiplexing with 

enhanced multiplexing approaches. Combined precursor isotopic labeling and isobaric tagging 

(cPILOT) uses amine-based chemistry to chemically label N-termini of primary amines and 
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lysine residues of peptides.83 The flexibility of this method can be adapted to study oxidative 

post-translational modifications such as 3-nitrotyrosine, S-nitrosylation, and cysteine-containing 

peptides.85, 89 In order to maximize the number of quantified peptides and broaden the types of 

analyses that can be studied, different sample preparation strategies and data acquisition methods 

were developed on the LTQ Orbitrap Velos MS instrument. Gas-phase fractionation, two-tiered 

DDA in MS acquisition, and MS3 fragmentation were employed to increase the number of 

dimethylated pairs and reporter ion channels detected and accurately quantified.116  However, 

there are some limitations of conducting a cPILOT analysis on an Orbitrap Velos MS. A major 

challenge is obtaining quantitative information for large numbers of dimethylated pairs and for 

detecting signal for all reporter ion channels used. One strategy to improve this was to use 

selective y1-fragmentation80 of MS/MS fragments for MS3. Another strategy is to increase the 

MS/MS and MS3 signal by using newer Orbitrap Tribrid instruments169-170 (Orbitrap Fusion and 

Orbitrap Fusion Lumos) for MS3 quantification.80 These instruments provide multi-notch MS3 

called synchronous precursor selection (SPS), which allows for multiple MS/MS fragment ions 

to be selected and fragmented, significantly increasing the reporter ion signal.171 Multi-notch 

MS3 increases the number of quantifiable peptides and overall information available about 

relative protein changes across different samples.   

In addition to SPS, the Fusion Lumos has several functions that should improve cPILOT-

analysis including faster scan rates, top speed or top N data dependent acquisition options, and  

targeted mass analysis. The goal here was to evaluate and optimize MS acquisition parameters 

for cPILOT on a Fusion Lumos and compare data for the same samples on the Orbitrap Velos to 

Fusion Lumos instruments. Optimized data analysis parameters for cPILOT-labeled peptides on 

this platform was developed for a system-wide proteomics analysis of AD. Specifically, LC 
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gradient time, m/z isolation window, dynamic exclusion time, targeted analyses nodes, and SPS-

n were tested on fractionated and unfractionated samples. An optimized method was applied an 

AD mouse model to study disease pathogenesis across the brain and periphery (i.e. liver and 

heart). Protein from six biological replicates of tissues of wild-type (WT) and AD mice were 

extracted and peptides were labeled by a cPILOT approach. Since there was a total of 36 samples 

(i.e. six biological replicates, two genotypes and three tissue types), three batches of 12-plex 

cPILOT experiments were performed. Each batch was separated by offline strong cation 

exchange (SCX) and online reversed-phase fractionation prior to MS analysis. Samples were ran 

on the Orbitrap Velos or Fusion Lumos as follows: 1) peptides not subjected to offline 

fractionation and separated with RPLC coupled to the Fusion Lumos, 2) peptides fractionated by 

SCX and separated with RPLC coupled to the Fusion Lumos and 3) peptides fractionated by 

SCX and separated with RPLC coupled to the Orbitrap Velos. Findings from these experiments, 

including the outcome of parameter testing is discussed. These studies provide insight into the 

benefits and challenges of using different Orbitrap instruments for cPILOT analysis. More 

importantly, these studies lay the foundation for using enhanced multiplexing to understand 

changes in the peripheral and brain proteomes in AD.   
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4.2 EXPERIMENTAL PROCEDURES 

4.2.1 Animal Husbandry and Ethical Statement 

APP/PS-1 male mice (B6.Cg-Tg(APPswe, PSEN1dE9)85Dbo/Mmjax, stock no. 005864, 

genetic background:C57BL/6J) and heterozygous controls were purchased from Jackson 

Laboratory and housed in the Division of Laboratory Animal Resources at the University of 

Pittsburgh. All animal protocols were approved by the Institutional Animal Care and Use 

Committee at the University of Pittsburgh. Mice were fed standard Purina rodent laboratory 

chow ad libitum and kept in a 12 h light/dark cycle. Brain, heart, and liver tissues were harvested 

from 14-month-old APP/PS-1, referred to as (N = 6) and WT (N = 6) mice and stored at −80 oC.  

4.2.2 Tissue Homogenization, Protein Extraction, and Digestion 

Brain, heart, and liver tissues (i.e. 60 – 80 mg) were homogenized (1× PBS w/ 8M urea) 

with a mechanical homogenizer (MP Biomedicals, LLC) to generate tissue lysates. To extract 

protein, samples were centrifuged (13,000 rpm, 4 oC, 15 min) and supernatant was collected. 

Protein concentration was determined using BCA assay. Protein from brain, heart, and liver 

tissues (~100 µg) was reduced (DTT 1:40 mol ratio), alkylated (IAA 1:80 mol ratio), quenched 

(L-cysteine 1:40 mol ratio), and digested with trypsin (1:50 mol ratio) for 24 h. Peptides were 

desalted using a HLB cartridge (Waters) and dried down using centrifugal evaporation.  



 

 75 

 

4.2.3  cPILOT Labeling 

Peptides (~50 µg) were dissolved in 1% acetic acid (0.25 µg.µL-1). Formaldehyde 

/deuterated formaldehyde (Sigma Aldrich, 8 µL) and sodium cyanoborohydride/-deuteride 

(Sigma Aldrich, 8 µL) are added to either label peptides with light [(-CH3)2] or heavy [(-13CD3)2] 

dimethyl groups, respectively. Peptides were reacted at room temperature for 10 min with 

shaking. To quench the reactions, of 1% ammonia (16 µL) was added for 5 min. Dimethylated 

peptides were re-acidified with 5% formic acid and light and heavy samples, were pooled (Table 

4.1), desalted, and dried down by centrifugal evaporation. Desalted dimethylated peptides were 

dissolved in 100 mM triethyl ammonium bicarbonate (TEAB) buffer and TMT6-plex reagents 

were prepared according to the manufacturer’s protocol. TMT6 -plex reagents were added to 

peptides and reacted at room temperature for 1 h with shaking. cPILOT labeled peptides were 

quenched with 5% (w/v) hydroxylamine-hydrochloride for 15 min and re-acidified with formic 

acid. Peptides were then pooled together into a single sample, concentrated, desalted, and dried 

down an additional time by centrifugal evaporation. Two portions of cPILOT labeled peptides 

were subjected to SCX fractionation while one portion was dissolved in 0.1% formic acid for 

instrument analysis (Figure 4.1).   
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Table 4.1 Experimental Scheme of cPILOT 

TMT6-plex tag 126 (WT) 127 (AD) 128 (WT) 129 (AD) 130 (WT) 131 (AD)
Light DM-Batch 1 Brain  Brain  Heart Heart  Liver  Liver
Heavy DM-Batch 1  Heart Heart  Liver  Liver Brain Brain
Light DM-Batch 2 Liver Liver Heart Heart Brain Brain
Heavy DM-Batch 2 Brain Brain Liver Liver Heart Heart
Light DM-Batch 3 Heart Heart Brain Brain Liver Liver
Heavy DM-Batch 3 Heart Heart Brain Brain Liver Liver  
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4.2.4 Offline SCX Fractionation 

Peptides labeled by cPILOT were fractionated according to the manufacturer’s protocol 

(Protea Biosciences). Briefly, peptides (600 µg) were dissolved in buffer A and loaded onto a 

pre-activated spin column. Peptides were eluted from the spin column in 8 intervals (room 

temperature, 6 min, 4000 × g) with increasing ammonium formate solutions (i.e. 20, 40, 60, 80, 

100, 150, 250, and 500 mM). Fractionated peptides were dried down by centrifugal evaporation 

and dissolved in 0.1% formic acid.   

4.2.5 Liquid Chromatography and Mass Spectrometry Analyses 

Peptides were analyzed using three platforms. 1) Online desalting and reversed-phase 

liquid chromatography (RP-LC) was performed with a nano-UHPLC system equipped with an 

autosampler (Dionex, ThermoFisher Scientific). Mobile phases A and B used for separation were 

(v/v) 0.1% formic acid and 100% ACN with 0.1% formic acid, respectively. Peptides (250 ng) 

were loaded onto a commercial (Thermo Fisher Scientific) trapping column (75 µm x 2 cm) 

containing C18 (3 µm, 100 Å) at 2 µL.min-1 in 0.1% formic acid for 10 min. After desalting, the 

sample was loaded onto an analytical column (100 µm i.d. x 23 cm), which was packed in-house 

with C18 (2.5 µm, 150 Å, Waters).    Four gradients were used as follow:  

a) 0 – 10 min, 10% mobile phase B; 10 – 67 min, 10 – 30% B; 67 – 75 min, 30 – 60% B; 

75 – 77 min, 60 – 90% B; 77 – 82 min, 90% B; 82 – 83 min, 90 – 10% B; 83 – 105 min, 10% B. 
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b) 0 – 10 min, 10% mobile phase B; 10 – 30 min, 10 – 15% B; 30 – 75 min, 15 – 30% B  

75 – 88 min, 30 – 60% B; 88 – 92 min, 60 – 90% B; 92 – 99 min, 90% B; 99 – 100 min, 90 – 

10% B; 100 – 120 min, 10% B. 

c) 0 – 10 min, 10% mobile phase B; 10 – 30 min, 10 – 15% B; 30 – 100 min, 15 – 30% B  

100 – 118 min, 30 – 60% B; 118 – 123 min, 60 – 90% B; 123 – 129 min, 90% B; 129 – 130 min, 

90 – 10% B; 130– 150 min, 10% B. 

Standard data-dependent acquisition parameters were as follows: the MS survey scan in 

the Orbitrap (375 – 1500 m/z) was 120,000 resolution; the most intense peaks with 3s (Top 

Speed) were isolated (0.7 m/z) and fragmented with collision-induced dissociation (CID) in the 

ion trap with an NCE of 35%, AGC of 1 x 104, dynamic exclusion of 20 s, ppm mass tolerance 

of 10, maximum IT of 100 ms. Directly after each MS/MS scan, the four most intense fragment 

ions (over varying m/z ranges) were selected for an additional fragmentation (i.e. MS3) event by 

HCD and analyzed in the OT (scan range: 100 – 400 m/z, isolation width: 2 m/z, AGC: 5 x 104, 

NCE: 55%, resolution: 60,000, maximum IT: 118 ms).  Other parameters such as precursor 

selection range, precursor ion exclusion, and isobaric tag loss exclusion were set as default.  

Targeted inclusion and exclusion tests were performed using the following nodes: 

targeted mass, targeted mass difference, targeted isotopic ratio, and targeted mass trigger. In both 

targeted mass, and targeted mass trigger nodes, a list including m/z, z, m, and retention time 

(targeted mass only) are imported into a list. In targeted mass difference, a mass difference of 

8.0444 Da (Heavy DM – Light DM) and 7.0381 Da (Dimethyl 7-Light DM) were listed, the 

partner intensity range relative to the most intense precursor was set to 70 – 100 %, a subsequent 

scan was performed on both ions in the pair and the charge state for ions in the pair had to be 
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similar. For targeted isotopic ratio, similar parameters were added, with the distinction that the 

predicted isotopic range was set to 70 – 100%.  

Parameters including precursor isolation width (experiment 1), dynamic exclusion 

(experiment 3), targeted analyses (experiment 4), and SPS selection (experiment 5) were tested 

and varied as such: Experiment 1, 0.7, 2, or 2.5 m/z; Experiment 3, 0, 10, or 20 s; Experiment 4, 

targeted mass, targeted mass difference, targeted isotopic ratio, and targeted mass trigger; 

Experiment 5,SPS-n of 4, 6, 8 or 10.  

(2) Peptides were loaded onto the same commercial trap column as (1). Separation 

occurred on the same in-house analytical column, but the gradient was adjusted to 1b (see 

above). An optimized MS data acquisition method was applied.  Standard data-dependent 

acquisition parameters were as follows: the MS survey scan in the OT (375 – 1500 m/z) was 

120,000 resolution; the most intense peaks with 3s (Top Speed) were isolated (2m/z) and 

fragmented with CID in the ion trap with an NCE of 35%, AGC of 1 x 104, dynamic exclusion of 

20 s, ppm mass tolerance of 10, maximum IT of 100 ms. Peptide pairs were targeted by using the 

targeted mass difference node. Directly after each MS/MS scan, the ten most intense fragment 

ions (over varying m/z ranges) were selected for an additional fragmentation (i.e. MS3) event by 

HCD and analyzed in the OT (scan range: 100 – 400 m/z, isolation width: 2 m/z, AGC: 5 x 104, 

NCE: 55%, resolution: 60,000, maximum IT: 118 ms).  Other parameters such as precursor 

selection range, precursor ion exclusion, and isobaric tag loss exclusion were set as default.  

(3) Online desalting and RP-LC was performed with a nano-HPLC system equipped with 

an autosampler (Eksigent). Mobile phases A and B used for RP-LC separation of peptides were 

3% (v/v) acetonitrile with 0.1% formic acid and 100% acetonitrile with 0.1% formic acid, 

respectively. SCX fractions (6 μL) were loaded onto a trapping column (100 µm i.d. x 2 cm), 
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which was packed in house with C18 (3 µm, 200 Å) stationary phase material (Michrom 

Bioresource Inc,) at 3 μL/min in 3% mobile phase B for 3 min. After desalting, the sample was 

loaded onto an analytical column (75 µm i.d. x 13.2 cm) which was packed in-house with C18 (3 

µm, 100 Å) stationary phase material (Michrom Bioresource Inc). The LC eluent was analyzed 

with positive mode nanoflow electrospray using a LTQ Orbitrap Velos mass spectrometer 

(Thermo Fisher Scientific). Peptides were loaded onto an in-house trap column (2 cm, 5 µm, 200 

Å) for 3 min (3 µL/min) and separated on an in-house analytical column (75 µm, 13.2 cm) with 

C18 ( 5 µm, 100 Å). The gradient is as follows: 0 – 7 min, 10% mobile phase B; 7 – 27 min, 10 – 

15% B; 27 – 102 min, 15 – 20% B; 102 – 122 min, 20 – 30% B; 122 – 132 min, 30 – 60% B; 

133 – 137 min, 60 – 80% B; 137 – 150 min, 80% B, 150 – 180, 10% B.  Separated peptides were 

detected using a previously described method84 on a LTQ Orbitrap Velos. Briefly, data-

dependent acquisition parameters were as follows: the MS survey scan in the OT (300 – 1800 

m/z) was 60,000 resolution; the top 1 – 7 and top 8 – 14 most intense peaks were isolated and 

fragmented with CID in the LTQ with an NCE of 35%. Directly after each MS/MS scan, the 

most intense fragment ion (over 200 – 1545 m/z) was selected for an additional fragmentation 

(i.e. MS3) by HCD (isolation width: 4 m/z, AGC: 3 x 105, NCE: 60%, resolution: 7500, 

maximum IT: 250 ms). Each fraction was subject to triplicate injections.  

4.2.6 Data Analysis 

Raw files were analyzed with PD v. 2.1 and 2.2 software (Thermo Scientific). Spectra 

were used to obtain sequence information against the Uniprot M. musculus database (01/19/2018, 

53035 sequences). SEQUEST HT search parameters were as follows: two maximum trypsin 
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miscleavages, precursor mass tolerance of 15 ppm, fragment mass tolerance of 1 Da; static 

modifications were either Dimethyl/+28.031 or 36.028/35.070 Da (N-terminus) and 

carbamidomethyl (Cys) /+57.021 Da; dynamic modifications were TMT six-plex/+229.163 Da 

(Lys) and oxidation (Met) /+15.995 Da. Decoy database searching was employed to generate 

medium (p<0.05) confidence peptide lists. All peptides with medium confidence were used to 

identify and quantify proteins. To filter peptides, the following parameters were applied:  

peptides with a peptide to spectral match (PSM) >1 across biological replicates, peptide 

confidence level of medium, peptide rank of 1, peptide deviation of 10 ppm, and S/N ≥10. The 

reporter ions (i.e. m/z 126 – 131) were identified with the following parameters:  most confident 

centroid and 30 ppm for reporter ion mass tolerance. Furthermore, reporter ion values were 

normalized using internal reference scaling.172  

To identify statistically-significant proteins, a one-way ANOVA was performed in 

Perseus software.173 Proteins with a fold-change of >1.2 or <0.83 were further used for 

bioinformatics analyses in ingenuity pathway analysis (IPA).   

4.3 RESULTS 

Here, we were interested in determining protein changes across WT and AD mice in 

multiple tissues in a single experiment. In addition, because of the advantages of enhanced 

multiplexing offered by cPILOT, insight about changes across biological replicates were also 

identified. The use of TMT reagents in the cPILOT approach requires sample prefractionation 

and/or MS data acquisition methods that provide optimal protein coverage and protein 
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quantification. As with isobaric tagging strategies, cPILOT also becomes limited in the number 

of proteins that can be quantified compared to the total number of proteins identified. The 

additional steps of sample tagging and clean-up as well as necessary MS3 steps for accurate 

protein quantification116, require longer instrument duty cycles. Thus, less peptides are sampled 

and less proteins are quantified. Previously, cPILOT has been utilized on Orbitrap Velos 

instruments and only recently has the approach been demonstrated on an Orbitrap Fusion Lumos 

instrument.91 Due to the improvements in scan rates, sensitivity, fragmentation and detection 

flexibility, and SPS, the Fusion Lumos dramatically increases the performance of our cPILOT 

strategy. Below, we describe efforts to systematically test the performance of the Fusion Lumos 

to study Alzheimer’s disease system-wide in a mouse model (Figure 4.1).  
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Figure 4.1 Experimental Workflow of AD and WT Brain, Heart, and Liver Tissues. Protein (100 µg) was extracted 

from brain, heart, and liver tissues from 14-month old AD and WT mice and digested using trypsin. Peptides 

generated from protein digestion were labeled via cPILOT, pooled, and separated by off-line strong cation exchange 

(SCX) fractionation and reversed-phase HPLC. Fractions were analyzed on either an LTQ Orbitrap Velos or an 

Orbitrap Fusion Lumos. Samples not subjected to fractionation were directly separated by reversed-phase HPLC and 

analyzed on an Orbitrap Fusion Lumos. One sample (not subjected to fractionation) from were used to test the LC 

gradient time, precursor m/z isolation window width, dynamic exclusion, targeted analyses methods, and SPS-N 

ions. 
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Specifically, extracted protein from brain, heart, and liver tissues from 14-month old WT 

(N=6) and AD (N=6) mice was digested with trypsin. To accommodate all tissues and biological 

replicates, three pooled sample batches were generated (i.e., Batches 1 – 3). Peptides were 

labeled by using a global cPILOT approach in which peptides are light- or heavy- dimethylated 

at low buffer pH and then tagged with TMT at high buffer pH. After this dual labeling strategy, 

peptides were subjected to different analyses methods. Briefly, a portion of Batch 1 peptides 

were not fractionated and analyzed directly by LC – MS/MS and MS3 on the Fusion Lumos. 

Batch 1-3 peptides were fractionated by SCX and analyzed using either the Fusion Lumos or 

Orbitrap Velos.  

Several experimental parameters were evaluated in each analysis method and included 

those prior to MS introduction and others related to MS acquisition (Figure 4.1). Experiment 1 

tested the effects of increasing the LC gradient from 105 to 150 min and Experiment 2 tested 

different precursor isolation widths from 0.7 to 2.5 m/z.  Experiment 3 tested various dynamic 

exclusion times of 0, 10, and 20 s. Experiment 4 tested different “targeted” acquisition methods 

in the Fusion Lumos, which enable dimethylated pairs to be selectively isolated for MS/MS and 

further MS3 steps.  Lastly, Experiment 5 evaluated SPS in which the number of MS/MS fragment 

ions varied from 4 – 10. 

  An initial demonstration that cPILOT successfully worked in this application of 

multiple tissues in WT and AD mice is shown in Figure 4.2. 
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Figure 4.2 Comparison of Reporter Ion Spectra from a) and c) Light and b) and d) Heavy Peptides Labeled by 

cPILOT Acquired on a) and b) an Orbitrap Fusion Lumos or c)and d) a LTQ Orbitrap Velos MS Platforms.  

Reporter ions (e.g. 126 – 131) corresponding to peptides N(dimethyl)FVFSLVDAMNGK(TMT6) and 

N(dimethyl)VNVPVIGGHAGK(TMT6) were detected on the Orbitrap Fusion Lumos and LTQ Orbitrap Velos, 

respectively. Light and heavy dimethylated peptides were detected in both phenotypes and all tissue-types and 

correspond to Krebs cycle protein malate dehydrogenase. Notably, reporter ion intensities from the Fusion Lumos is 

~5 to 6× greater than corresponding intensities from the Orbitrap Velos. 
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 Two peptides that belong to malate dehydrogenase are shown and based on the MS/MS 

data (not shown) these peptides were dimethylated on the N-terminal amines and TMT6-plex 

tagged on the lysine residues. The MS3 spectra for N(dimethyl)VNVPVIGGHAGK(TMT3) for 

light (Figure 4.2a) and heavy (Figure 4.2b) dimethylated pairs have reporter ions detected in 

channels m/z 126-131. For this example peptide, the reporter ion signals show that there is no 

difference in protein level between WT and AD mice for any of the tissues. The enhanced 

multiplexing afforded by cPILOT allows a quick assessment of the consistency of changes in 

WT and AD, as well as in the three tissues from multiple biological replicates. The changes for 

this peptide observed in one biological replicate (Figure 4.2a) are consistent in other replicates 

(Figure 4.2b and data not shown). However, a noticeable difference in signal across tissues is 

apparent, as malate dehydrogenase has higher levels in heart compared to brain and liver, and in 

brain compared to liver tissues. This trend is similar for other peptides detected for this protein as 

shown in Figures 2.4c and 4.2d. It is also apparent that the reporter ion signals are higher from 

the Fusion Lumos data compared to that from the Orbitrap Velos data.  

4.3.1 Evaluation of LC Gradients and Precursor Isolation Windows (Experiments 1 and 2) 

It is expected that increasing the LC gradient would improve the number of proteins 

identified as greater numbers of MS/MS spectra are possible with increased data acquisition 

time. From analysis method 1, samples were injected multiple times to test LC gradient times of 

105, 120, and 150.  Upon increasing the gradient, there was an increase of protein (Figure 4.3a) 

and PSMs (Figure 4.3b) identifications generated from both light and heavy dimethylated 

peptides. For example, the average number of proteins identified at 105 min (across different 
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precursor isolation windows) was 863 proteins from light dimethylated peptides which increased 

to 937, and 1106 with gradients of 120 and 150 min respectively (Figure 4.3a). 
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Figure 4.3 Comparison of a) Protein and b) Peptide Identification, and c) Quantified Spectra at 105, 120, and 150 

min. Light and heavy dimethylated peptides from a sample not pre-fractionated were identified with increasing LC 

gradient times of 105, 120, and 150 min and widening precursor m/z isolation widths of 0.7, 2.0, and 2.5. a) Protein 

group, b) unique peptide, and PSM IDs increase with gradient time yet decrease with widening the isolation 

window. Conversely, widening the isolation window increases the number of c) quantified spectra. 

a) 

b) 

c) 
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This is a 1.3x increase in identifications obtained by increasing the LC gradient by 45 

minutes and is consistent for both light and heavy dimethylated peptides. Higher protein 

identifications is a direct result of higher numbers of PSMs and peptides being obtained (Figure 

4.3b).  PSMs and peptides increased by ~400 – 1800 and ~200 – 1200 respectively, as the 

gradient time increased. The impact of gradient on average numbers of spectra that were 

quantified also increases by 1.5x from 105 min to 150 min. We anticipate that extended gradient 

times would allow more spectra to be quantified and hence proteins identified however, there are 

major considerations with regards to total instrument time. If the experimental design includes 

multiple batches, sample pre-fractionation, and technical replicates then gradient times that are 

shorter will be generally preferred. For the remainder of parameter testing Experiments 2-5, we 

continued with a 150 min gradient time in order to optimize numbers of spectra, peptides, and 

proteins detected.  

For cPILOT analyses it is most critical that both peaks in a light and heavy dimethylated 

pair are isolated at the precursor stage for MS/MS and subsequent MS3. This it to accommodate 

detecting reporter ion signals from all samples present in a batch. The considerations for 

changing the isolation window are that interfering species can be co-isolated from the precursor 

MS spectra if the window is too large whereas lower signal intensities for precursors are carried 

forward into MS/MS if the isolation window is too small. Previously, we evaluated isolation 

window widths for yeasts with DiLeu91 and determined that 0.7 m/z is appropriate. Here, on the 

Fusion Lumos we changed the precursor isolation window from m/z 0.7 to 2.0 and 2.5. The goal 

is to minimize co-isolation of precursors but primarily the co-isolation of light and heavy 

dimethylated peptides while also optimizing the number of pairs selected. Most peptides for this 

dataset haves charge state of 2 (48%) and 3 (43%). Peptides with a charge state of 1 are rejected 
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in the data acquisition method and those with higher charge states are observed infrequently (9% 

for charge state 4-7) in this experiment. Thus, isolation windows of m/z 2.5 or less are likely 

most appropriate for peptides with a charge state of 2, and will need to be even less to 

accommodate peptides with a charge state of 3. The isolation window in these experiments is 

also impacted by the fact that heavy dimethylated peptides have a peak that shows up 7 Da from 

the light dimethylated peak and is often isolated as the precursor peak in the heavy cluster. 

Increasing isolation windows from m/z 0.7 to 2.0 with a gradient time of 150 min resulted in a 

13-16% decrease of 1212 and 804 proteins to 1054 and 690 proteins from light and heavy 

dimethylated peptides, respectively (Figure 4.3a). Peptides and PSMs followed the same trend 

with increasing isolation windows (Figure 4.3b). On the other hand, the number of quantified 

spectra increased from 57337 to 59517 (Figure 4.3c) which is likely a result of wider windows 

leading to more ion signal at the AGC level; such that the instrument duty cycle is a bit faster in 

this scenario.  However it is apparent that even with greater quantified spectra the number of 

identified peptides and PSMs decreases by 25% from isolation windows of m/z 0.7 to 2.0.  

It is expected that increasing the LC gradient would improve the number of proteins 

identified as greater numbers of MS/MS spectra are possible with increased data acquisition 

time. From analysis method 1, samples were injected multiple times to test LC gradient times of 

105, 120, and 150.  Upon increasing the gradient, there was an increase of protein (Figure 4.3a) 

and PSM (Figure 4.3b) identifications generated from both light and heavy dimethylated 

peptides. For example, the average number of proteins identified at 105 min (across different 

precursor isolation windows) was 863 proteins from light dimethylated peptides which increased 

to 937, and 1106 with gradients of 120 and 150 min respectively (Figure 4.3a). This is a 1.3x 

increase in identifications obtained by increasing the LC gradient by 45 minutes and is consistent 
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for both light and heavy dimethylated peptides. Higher protein identifications is a direct result of 

higher numbers of PSMs and peptides being obtained (Figure 4.3b).  PSMs and peptides 

increased by ~400 – 1800 and ~200 – 1200 respectively, as the gradient time increased. The 

impact of gradient on average numbers of spectra that were quantified also increases by 1.5x 

from 105 min to 150 min. We anticipate that extended gradient times would allow more spectra 

to be quantified and hence proteins identified however, there are major considerations with 

regards to total instrument time. If the experimental design includes multiple batches, sample 

pre-fractionation, and technical replicates then gradient times that are shorter will be generally 

preferred. For the remainder of parameter testing Experiments 2-5, we continued with a 150 min 

gradient time in order to optimize numbers of spectra, peptides, and proteins detected.  

For cPILOT analyses it is most critical that both peaks in a light and heavy dimethylated 

pair are isolated at the precursor stage for MS/MS and subsequent MS3. This it to accommodate 

detecting reporter ion signals from all samples present in a batch. The considerations for 

changing the isolation window are that interfering species can be co-isolated from the precursor 

MS spectra if the window is too large whereas lower signal intensities for precursors are carried 

forward into MS/MS if the isolation window is too small. Here, on the Fusion Lumos we 

changed the precursor isolation window from m/z 0.7 to 2.0 and 2.5. The goal is to minimize co-

isolation of precursors but primarily the co-isolation of light and heavy dimethylated peptides 

while also optimizing the number of pairs selected. Most peptides for this dataset haves charge 

state of 2 (48%) and 3 (43%). Peptides with a charge state of 1 are rejected in the data acquisition 

method and those with higher charge states (e.g. 4 – 7) are observed infrequently (9%) in this 

experiment. Thus, isolation windows of m/z 2.5 or less are likely most appropriate for peptides 

with a charge state of 2, and will need to be even less to accommodate peptides with a charge 
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state of 3. The isolation window in these experiments is also impacted by the fact that heavy 

dimethylated peptides have a peak that shows up 7 Da from the light dimethylated peak and is 

often isolated as the precursor peak in the heavy cluster. Increasing isolation windows from m/z 

0.7 to 2.0 with a gradient time of 150 min resulted in a 13-16% decrease of 1212 and 804 

proteins to 1054 and 690 proteins from light and heavy dimethylated peptides, respectively 

(Figure 4.3a). PSMs followed the same trend with increasing isolation windows (Figure 4.3b). 

On the other hand, the number of quantified spectra increased from 57337 to 59517 (Figure 4.3c) 

which is likely a result of wider windows leading to more ion signal at the AGC level; such that 

the instrument duty cycle is a bit faster in this scenario.  However it is apparent that even with 

greater quantified spectra the number of identified peptides and PSMs decreases by 25% from 

isolation windows of m/z 0.7 to 2.0.  

4.3.2 Dynamic Exclusion (Experiment 3) 

Next we conducted an experiment that tested the effects of dynamic exclusion on the 

number of peptides and proteins identified (Figure 4.4).  Precursor isolation width was set to m/z 

2.0 and the dynamic exclusion varied from 0 to 10 and 20 s. To assess the quality of the proteins 

that were identified, we evaluated proteins with low, medium, and high confidence as determined 

from PD. Proteins identified considering only light dimethylated peptides came from a larger 

percentage (36 to 69%) of low confidence proteins as the dynamic exclusion went from 20 s to 0 

s, whereas the percentage of high confidence peptides decreased from 53% to 22%, respectively.  
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Figure 4.4 Effects of Dynamic Exclusion Times 0, 10, 20 s on Protein Identifications from a) Light and b) Heavy 

Dimethylated Peptides. Dynamic exclusion times of 0, 10, and 20s was tested to identify if this parameter was 

necessary. An increase of exclusion time resulted in a decrease of protein identifications, yet an increase (~30%) in 

high-confident proteins (false discovery rate <1%). 

 

 

 

 

 

 

 

 

 

 

a) 

b) 
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The same trend was observed for proteins identified from heavy dimethylated peptides 

although the number of total proteins identified was generally lower. Removing dynamic 

exclusion results in over sampling of the same high abundance peptides and more sporadic 

sampling of low abundance peptides, leading to higher numbers of low confidence proteins.  

4.3.3 Targeted Mass Analyses (Experiment 4) 

The above experiments were all conducted with Top Speed (3s) DDA, which is an 

untargeted method. The Fusion Lumos includes targeted inclusion/exclusion nodes are helpful to 

increase the number of dimethylated pairs quantified by removing time spent on R-terminal 

peptides. Among the targeted mass nodes available: targeted mass trigger, targeted mass 

difference, targeted isotopic ratio, and targeted mass (inclusion and exclusion) methods were 

tested (Figure 4.5, Table 4.2).  

Both targeted mass difference and isotopic ratio searched for pairs based on mass 

difference or peptide ratios, whereas the other targeted methods used a list of target m/z, z, M, 

and/or retention times with specified information. Dimethylated PSMs (not shown), had similar 

identifications across the first four methods (i.e. 6599 – 7403 PSMs and 1002 – 1106 proteins) 

whereas a substantial decrease was present in the targeted mass inclusion run (4855 PSMs and 

492 protein groups). Among heavy dimethylated peptides (Figure 4.5d), the targeted mass 

difference method identified 8059 PSMs. The other tests, however, identified ~2-4× (1941 – 

4265 PSMs) less PSMs (Table 4.2). 
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Figure 4.5 Comparison of a) and b) Protein and c) and d) Peptide Identifications of Light and b) Heavy 

Dimethylated Peptides using Targeted Analyses Methods. 

a) 

b) 

c) 

d) 
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Table 4.2 Effects of Targeted Analyses on the Number of PSMs Quantified (Experiment 4). 

Targeted Test
Light Heavy Light Heavy Light Heavy Light Heavy

Targeted Mass Trigger 7378 4265 3159 (42.8) 1725 (40.4) 4079 (55.3) 2440 (57.2) 3985 (97.7) 2375 (97.3)
Targeted Mass Difference 7403 8059 3172 (42.8) 3454 (42.8) 4048 (54.7) 4384 (54.4) 3957 (97.7) 4263 (97.2)
Targeted Isotopic Ratio 7078 3890 3061 (43.2) 1577 (43.2) 3878 (54.8) 2228 (54.8) 3795 (97.9) 2169 (97.4)
Targeted Mass (Exclusion) 6599 3498 2536 (38.4) 1199 (34.3) 3934 (59.6) 2197 (59.6) 3854 (98.0) 2146 (97.7)
Targeted Mass (Inclusion) 1744 1941 47 (2.7) 113 (5.8) 1695 (97.2) 1825 (94.0) 1676 (98.9) 1810 (99.2)
a The number of PSMs and percentage ending with arginine. bThe number of PSMs and percentage ending with lysine. cThe number and 
percentage of lysine ending peptides that are labeled with TMT-6plex.  

PSMs ID R (%)a K(%)b TMT-K(%)c
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In terms of protein quantification, a range of 67-85% of proteins were quantified in at 

least one channel. This percentage decreased to a range of 62-78% when considering proteins 

quantified in all six channels. Over 50% of PSMs identified (Table 4.2) contained lysine and ~ 

97-99% of those peptides were labeled with TMT. Table 4.2 also shows that the targeted mass 

inclusion method was most effective at spending the least amount instrument time on R-

terminated peptides, otherwise increasing the selectivity of the approach.  

Experiment 4 provided insight into which targeted analyses would be helpful in selecting 

dimethylated peptide pairs during MS acquisition. It was confirmed that targeted mass and 

targeted mass trigger tests inefficiently increased the quantity of peptide pairs since a) targeted 

mass inclusion only selected K-terminating peptides on the inclusion list, b) targeted mass 

exclusion did not remove all R-terminated peptides, and c) targeted mass trigger worked 

similarly to a and b. Though b) only selected K-terminated peptides, it would not be ideal for 

global analyses as only selected a fraction of the peptide m/z values on the list.  Conversely, 

targeted mass difference and targeted mass isotopic ratio tests were expected to identify and 

quantify similar amounts of proteins, and thus an increase of dimethylated pairs. However, 

targeted mass difference identified more light and heavy PSMs combined (15,462) than targeted 

isotopic ratio (10,966) and greater percentages (70 and 81% vs. 59 and 77%) of light and heavy 

dimethylated pairs, respectively. Based on these data, the best method for conducting targeted 

cPILOT experiments for enhancing dimethylated pairs appears to be with targeted mass 

difference. 



 

 98 

 

4.3.4 Synchronous Precursor Selection (Experiment 5) 

Multi-notch MS3 uses between 2 – 20 fragment ions for quantification, thus increasing 

the signal present in reporter ion channels in comparison to single-notch MS3. In experiment 5, a 

range of 4-10 SPS ions were tested, resulting in similar amounts of proteins being identified and 

quantified in at least one channel (Table 4.3).  

Proteins were considered quantified if the S/N ≥10 for a given reporter ion channel and 

the minimal signal above the set threshold. Among proteins quantified in six channels, the largest 

increase (65 – 72%) was present with SPS-10. In terms of peptide quantification (not shown), 

similar percentages of peptides containing lysine at the C-terminus (~55%) of which ~97-98% 

were labeled with TMT. While SPS-4 generated the largest number of MS/MS (116,113) and 

more importantly, quantified spectra (59713) compared to SPS-10, SPS-10 had the greatest 

number of proteins with data in six channels and was selected for further experiments. 
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Table 4.3 Effects of SPS Parameters on the Number of Protein IDs (Experiment 5). 

SPS-Nb MS/MS Spectra Quan. Spectra
Light Heavy Light Heavy Light Heavy Light/Heavy Light/Heavy

4 1051 748 725 (69) 540 (72) 682 (65) 501 (67) 116113 59713
6 1042 722 729 (70) 517 (72) 707 (68) 492 (68) 116017 59528
8 1077 735 760 (71) 532 (72) 733 (68) 513 (70) 113097 57995

10 1056 702 770 (73) 514 (73) 756 (72) 509 (73) 113266 58131

Protein Groups Proteinsc: 1 Channel (%) Proteinsd: 6 Channels (%)

a Isolation window 2 m/z. b The number of fragment ions used to for synchrous precursor selection (SPS). c The number and 
percentage of proteins quantified in at least one reporter ion channel.  cThe number and percentage of proteins quantified in all 
reporter (i.e. 126 - 131) ion channels.  
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4.3.5 Comparisons of Samples Analyzed by Velos and Fusion Lumos Instrumentation 

Unfractionated and fractionated samples were compared to identify how differences in 

Orbitrap instrumentation may affect protein identification and quantification. Across three 

cPILOT 12-plex batches and three different sample analyses methods, over >600,000 PSMs 

(Table 4.4) corresponding to >22,000 unique peptides and 6074 protein groups (Figure 4.6) were 

identified (Appendix C Tables C4.1 – C4.8).  

Sample fractionation dramatically increased the number of peptides and proteins 

identified on the Orbitrap Velos (Appendix C Tables C4.1 and C4.2) and Fusion Lumos 

(Appendix C Tables C4.3 and C4.4), compared to un-fractionated samples on the Fusion Lumos 

(Figures 4.6a and 4.6b, Appendix C Tables C4.5 and C4.6). Similarities in protein identifications 

(Figure 4.6a) range from 19 – 65% with the least overlap occurring between unfractionated and 

fractionated datasets from different instruments. However, each approach still observed unique 

proteins. Peptides shared similar behavior across approaches (Figure 4.6b). Overall, 910 proteins 

were identified in all approaches. Among all 6074 identified proteins, 70% were identified with 

>2 PSMs (Figure 4.7). Interestingly, a criterion of excluding single PSMs was reconsidered 

based on the data shown. An observation of six reporter ions shows that the peptide was still 

present in six different samples. Some vital information may be diagnosed with this criterion. As 

the number of PSMs increase from 11 – 100, 101 – 1001, and so forth, the number of proteins 

identified decreases.  Among proteins identified by 1 PSM (Figure 4.7c insert), most were 

quantified in either none or all six reporter ion channels.  
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Table 4.4 Effects of SCX Fractionation on the Number of Proteins and PSMs Identified. 

SPS-Na Protein Groupsb Proteinsc (%) PSMS ID Rd Ke TMT-Kf

Batch 1-3, 8 Fractions, Velos 1 2199 142 (14) 374951 133759 (35.7) 236177 (63.0) 234114 (99.1)
Batch 1-3, 0 Fractions, Lumos 10 1848 334 (26) 44620 17851 (40.0) 25959 (58.2) 25498 (98.2)
Batch 1-3, 8 Fractions, Lumos 10 4968 1012 (28) 223286 87840 (39.3) 129797 (58.0) 127791 (98.0)
a The number of fragment ions used to for synchrous precursor selection (SPS). b The number of proteins identified with more than 1 PSM. cThe 
number and percentage of proteins quantified in all reporter (i.e. 126 - 131) ion channels across all experimental groups.  dThe number and 
percentage of peptides ending with arginine a.  eThe number and percentage of peptides ending with lysine. fThe number and percentage of 
lysine ending peptides labeled with TMT-6plex.  
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Figure 4.6 Identification of a) Protein and b) Peptide Groups Identified Across Three MS Experiments. a) Proteins 

identified from 8-fractions on the Orbitrap Velos (N=2199) were compared to proteins identified from 8-fractions on 

the Fusion Lumos (N=4968) and non-fractionated on the Fusion Lumos (N=1848). Across all three experiments, 

6074 proteins were identified, with 910 proteins (~15%) being present in all groups. This total number corresponds 

to b) 22,584 unique peptides being identified. 

b) a) 
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Figure 4.7 Distribution of PSMs within Identified Proteins. Proteins were identified from a range of 1 - >10000 

PSMs per protein. Zoomed-in views of proteins identified from 1 PSM (top right) or 11 – 100 PSMs (bottom right), 

shows that most proteins identified by one 1 PSM were quantified in either 0 or 6 channels and that most proteins 

identified by 11 – 100 PSMs were quantified in at least two instrumental methods. 
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 Generally, K-terminated peptides were selected ~58 – 63% (Table 4.4) for MS analysis 

across analysis methods and these peptides had a TMT6 –plex labeling efficiency of 98% (Table 

4.4). To compare reporter ion intensities across MS platforms, protein intensities shared across 

fractionated datasets (Figure 4.8) were compared. Proteins quantified in both fractionated 

datasets (N=846), had higher intensities of ~1 order of magnitude from the Fusion Lumos. This 

increase in reporter ion intensity is due to SPS and higher sensitivity for quantification. 
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Figure 4.8 Correlation of Reporter-Ion Intensities from Proteins Present in Both Fractionated Datasets. After 

performing data normalization and statistics, reporter ion intensities corresponding proteins quantified were 

compared across fractionated datasets (N=846). Protein intensities increased by ~10× (see zoomed-in region) upon 

quantification by the Fusion Lumos. The reduction of the number of proteins quantified in both datasets is due to the 

number of proteins quantified from the Orbitrap Velos. 
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4.3.6 Differentially – Expressed Proteins in AD Brain, Heart, and Liver Tissues 

System-wide changes in AD were evaluated in brain, heart, and liver proteins from WT 

and AD mice (Figure 4.9). Data used for statistical analysis was acquired from the Fusion 

Lumos. Eighty-five (N=39 brain, N=14 heart, and N=32 liver) varied significantly between AD 

and WT samples (p<0.05) with eight proteins varying substantially (p<0.001) in the brain or 

liver (Figures 4.9a and 4.9c). The most notable changes occurred in Apolipoprotein E in the 

brain (p=6.14E-6) and proteolytic protein MCG15081 (p=9.67E-5) in the liver.  

Proteins that had both a p<0.05 and a fold-change of >1.2 or <0.83 (N=23, Table 4.5- 

bolded) were further analyzed with Ingenuity Pathway Analysis (IPA). Canonical pathways 

related to cell signaling were significant among brain proteins (Figure 4.10a), where pathways 

related to biosynthesis, degradation, and fatty acid oxidation were identified among liver proteins 

(Figure 4.10b). As expected, the molecular function lipid metabolism was also identified in both 

the brain and liver. Molecular functions related lipid and nucleic metabolism were identified in 

the heart. 
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Figure 4.9 Volcano plots of Brain, Heart, and Liver Proteins as a Function of Disease. Normalized and filtered 

proteins were compared using a one-way-ANOVA. Proteins with a p <0.05 are present above the horizontal line 

(black) and correspond to a) brain, b) heart, and c) liver tissues. 
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Table 4.5 Differentially – Expressed Proteins in the Brain, Heart, and/or Liver.  

Accession Protein Description (short) AD/WT Brain p-value brain AD/WT Heart p-value heart AD/WT Liver p-value liver
Q792Y8 MCG15081 1.08 ± 0.13 7.70E-02 1.07 ± 0.16 2.90E-01 1.20 ± 0.089 9.67E-05
A0A075B5P6 Ig mu chain C region (Fragment) 1.00 ± 0.27 9.90E-01 0.89 ± 0.26 2.40E-01 0.82 ± 0.35 9.99E-02
A2AEG6 Glycoprotein m6b, isoform CRA_g 0.80 ± 0.33 9.73E-02 0.92 ± 0.24 - 0.96 ± 0.24 -
A2AWI7 Endophilin-B2 0.99 ± 0.25 7.50E-01 0.94 ± 0.36 - 1.21 ± 0.27 2.94E-01
B0QZN5 Vesicle-associated membrane protein 2 0.80 ± 0.34 8.75E-02 0.90 ± 0.19 - 0.97 ± 0.22 -
B1ATI0 Aldehyde dehydrogenase 1.07 ± 0.11 4.60E-01 1.02 ± 0.27 - 1.22 ± 0.24 1.89E-02
B9EKP8 Sorbin and SH3 domain-containing protein 2 0.83 ± 0.24 1.24E-01 0.97 ± 0.21 6.50E-01 1.13 ± 0.12 -
E9Q0H6 Fatty acid-binding protein, brain 1.46 ± 0.61 5.44E-03 1.02 ± 0.26 8.70E-01 0.98 ± 0.049 8.40E-01
E9Q827 cAMP-regulated phosphoprotein 19 0.82 ± 0.44 2.24E-01 1.03 ± 0.12 8.00E-01 1.08 ± 0.055 6.00E-01

E9QN63
Arf-GAP with SH3 domain, ANK repeat and PH domain-
containing protein 1 0.83 ± 0.25 1.02E-01 0.86 ± 0.21 - 1.09 ± 0.093 -

O08532
Voltage-dependent calcium channel subunit alpha-
2/delta-1 0.81 ± 0.29 1.81E-01 1.04 ± 0.43 8.30E-01 0.98 ± 0.19 -

O08715 A-kinase anchor protein 1, mitochondrial 1.24 ± 0.32 1.36E-01 0.88 ± 0.14 8.90E-02 1.22 ± 0.084 3.59E-04

O35381
Acidic leucine-rich nuclear phosphoprotein 32 family 
member A 1.07 ± 0.29 4.50E-01 1.22 ± 0.29 5.66E-02 1.04 ± 0.076 2.60E-01

O88935 Synapsin-1 0.81 ± 0.31 9.65E-02 0.99 ± 0.19 - 1.01 ± 0.087 9.40E-01
P01831 Thy-1 membrane glycoprotein 0.68 ± 0.39 4.59E-02 0.96 ± 0.069 - 1.02 ± 0.083 -
P06330 Ig heavy chain V region AC38 205.12 1.24 ± 0.57 - 0.63 ± 0.18 1.66E-02 0.70 ± 0.20 4.46E-02
P06801 NADP-dependent malic enzyme 1.10 ± 0.21 4.10E-01 1.07 ± 0.18 3.90E-01 1.42 ± 0.31 1.28E-03
P08226 Apolipoprotein E 2.10 ± 0.38 6.14E-06 1.02 ± 0.12 9.10E-01 1.13 ± 0.079 6.80E-02
P11404 Fatty acid-binding protein, heart 1.02 ± 0.22 - 1.23 ± 0.46 8.01E-02 0.97 ± 0.28 -
P14211 Calreticulin 1.11 ± 0.027 2.14E-02 1.06 ± 0.11 4.70E-01 0.96 ± 0.046 1.90E-01
P16015 Carbonic anhydrase 3 1.07 ± 0.20 - 1.01 ± 0.17 9.40E-01 1.28 ± 0.27 7.80E-04
P18242 Cathepsin D 1.24 ± 0.093 9.72E-04 1.01 ± 0.086 7.90E-01 0.99 ± 0.097 9.10E-01
P26041 Moesin 1.26 ± 0.29 6.22E-02 1.02 ± 0.075 8.80E-01 1.00 ± 0.093 9.70E-01
P34022 Ran-specific GTPase-activating protein 1.07 ± 0.21 4.80E-01 1.21± 0.25 2.27E-01 1.00 ± 0.17 -
P35802 Neuronal membrane glycoprotein M6-a 0.73 ± 0.32 7.02E-02 1.13 ± 0.18 - 1.00 ± 0.12 -
P35980 60S ribosomal protein L18 0.75 ± 0.19 4.82E-02 1.04 ± 0.20 8.60E-01 0.82 ± 0.24 1.20E-01
P43006 Excitatory amino acid transporter 2 0.82 ± 0.56 2.98E-01 0.99 ± 0.16 - 1.04 ± 0.18 -

P46978
Dolichyl-diphosphooligosaccharide--protein 
glycosyltransferase subunit STT3A 1.15 ± 0.19 2.80E-01 1.25 ± 0.41 1.38E-01 1.00 ± 0.18 9.30E-01

P48036 Annexin A5 1.29 ± 0.60 1.67E-01 1.03 ± 0.086 7.30E-01 1.09 ± 0.12 1.70E-01
P52196 Thiosulfate sulfurtransferase 1.22 ± 0.60 1.57E-01 1.07 ± 0.12 6.50E-01 1.03 ± 0.18 5.10E-01
P54822 Adenylosuccinate lyase 1.20 ± 0.60 1.45E-01 1.02 ± 0.22 8.80E-01 1.00 ± 0.098 9.90E-01
P56382 ATP synthase subunit epsilon, mitochondrial 1.24 ± 0.28 1.74E-01 0.91 ± 0.26 - 1.04 ± 0.21 -
P57759 Endoplasmic reticulum resident protein 29 1.32 ± 0.47 2.32E-02 1.08 ± 0.054 4.50E-01 0.98 ± 0.11 7.20E-01
P61027 Ras-related protein Rab-10 0.95 ± 0.28 6.00E-01 1.10 ± 0.27 - 1.26 ± 0.37 7.36E-02
P62281 40S ribosomal protein S11 0.80 ± 0.26 9.67E-02 0.95 ± 0.28 - 1.07 ± 0.25 5.10E-01
P63037 DnaJ homolog subfamily A member 1 0.98 ± 0.22 8.30E-01 1.21 ± 0.20 1.89E-01 1.04 ± 0.13 6.50E-01
P84091 AP-2 complex subunit mu 0.82 ± 0.31 8.00E-02 1.03 ± 0.18 - 0.99 ± 0.051 8.40E-01
Q06890 Clusterin 1.61 ± 0.81 1.79E-02 0.92 ± 0.20 3.60E-01 0.93 ± 0.075 4.40E-01
Q62277 Synaptophysin 0.80 ± 0.34 1.10E-01 1.05 ± 0.15 - 1.04 ± 0.10 -
Q64176 Carboxylesterase 1E 1.24 ± 0.094 - 0.90 ± 0.24 - 1.22 ± 0.10 1.50E-01
Q6AXD2 Abi2 protein 0.71 ± 0.33 5.67E-02 0.96 ± 0.55 - 1.09 ± 0.20 -
Q6P6I8 Signal-regulatory protein alpha 0.76 ± 0.35 1.57E-01 1.34 ± 0.69 - 1.04 ± 0.093 -
Q71KT5 Delta(14)-sterol reductase 0.99 ± 0.22 - 1.09 ± 0.22 - 1.20 ± 0.27 3.65E-02

Q8BG32 26S proteasome non-ATPase regulatory subunit 11 0.97 ± 0.19 7.10E-01 1.25 ± 0.40 4.88E-02 0.97± 0.074 4.40E-01
Q8CAA7 Glucose 1,6-bisphosphate synthase 0.83 ± 0.32 1.31E-01 1.17 ± 0.28 - 0.95 ± 0.14 -
Q8CBB6 Histone H2B OS 1.18 ± 0.89 - 1.21 ± 0.46 2.08E-01 1.03 ± 0.16 8.40E-01
Q8VCH0 3-ketoacyl-CoA thiolase B, peroxisomal 1.05 ± 0.18 - 0.99 ± 0.13 9.40E-01 1.35 ± 0.26 2.80E-04
Q8VIJ6 Splicing factor, proline- and glutamine-rich 1.12 ± 0.30 2.90E-01 1.25 ± 0.20 1.87E-01 1.01 ± 0.094 9.00E-01
Q91X83 S-adenosylmethionine synthase isoform type-1 0.92 ± 0.25 - 1.20 ± 0.27 - 1.23 ± 0.35 1.25E-02
Q920E5 Farnesyl pyrophosphate synthase 1.20 ± 0.23 2.10E-01 0.99 ± 0.22 - 1.28 ± 0.53 3.66E-02
Q923D2 Flavin reductase (NADPH) 1.21 ± 0.34 1.49E-01 1.05 ± 0.18 6.70E-01 1.05 ± 0.077 1.60E-01
Q99J39 Malonyl-CoA decarboxylase, mitochondrial 1.05 ± 0.16 6.80E-01 1.27 ± 0.45 5.72E-02 0.99 ± 0.23 8.90E-01
Q99LB6 Methionine adenosyltransferase 2 subunit beta 1.06 ± 0.19 4.30E-01 1.22 ± 0.20 1.89E-01 1.09 ± 0.22 3.60E-01
Q99N87 28S ribosomal protein S5, mitochondrial 0.80 ± 0.16 7.32E-02 1.21 ± 0.24 2.31E-02 1.08 ± 0.12 2.60E-01
Q99PL6 UBX domain-containing protein 6 0.96 ± 0.14 6.40E-01 1.02 ± 0.12 9.10E-01 1.20 ± 0.19 2.18E-01
Q9CQI6 Coactosin-like protein 1.28 ± 0.37 1.95E-02 0.90 ± 0.13 - 1.08 ± 0.17 4.30E-01
Q9CRD0 OCIA domain-containing protein 1 0.73 ± 0.23 2.62E-02 0.98 ± 0.40 - 0.73 ± 0.20 9.70E-02
Q9CXS4 Centromere protein V 1.07 ± 0.11 3.70E-01 1.23 ± 0.34 1.69E-01 0.98 ± 0.17 7.70E-01
Q9CYT6 Adenylyl cyclase-associated protein 2 0.83 ± 0.38 1.90E-01 1.03 ± 0.12 7.50E-01 1.00 ± 0.10 -
Q9CZ44 NSFL1 cofactor p47 1.13 ± 0.34 1.60E-01 1.20 ± 0.28 2.49E-01 1.20 ± 0.18 1.09E-01
Q9D0F9 Phosphoglucomutase-1 1.25 ± 0.40 7.34E-02 1.00 ± 0.055 9.90E-01 1.08 ± 0.067 1.40E-01
Q9DAW9 Calponin-3 1.26 ± 0.43 4.43E-02 1.20 ± 0.27 - 1.06 ± 0.39 5.90E-01
Q9QYB8 Beta-adducin 0.81 ± 0.37 1.88E-01 1.27 ± 0.27 - 0.96 ± 0.12 8.10E-01
Q9Z1Q5 Chloride intracellular channel protein 1 1.29 ± 0.34 2.10E-02 1.05 ± 0.069 5.50E-01 1.02 ± 0.087 8.20E-01
Q9Z2Q6 Septin-5 0.81 ± 0.37 1.29E-01 1.00 ± 0.25 9.90E-01 1.00 ± 0.098 -
V9GX76 Unconventional myosin-VI 1.20 ± 0.26 6.12E-02 0.93 ± 0.16 - 1.04 ± 0.19 7.70E-01
Differentially - expressed proteins have p<0.05 and AD/WT of >1.20 or <0.83 brain, heart, and liver tissues and are in bold.  
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Figure 4.10 Canonical Pathways of Statistically-Significant Proteins in a) Brain and b) Liver Tissues.  Pathways 

related to cell signaling, metabolism, and cell development were identified by IPA in the a) brain and b) liver. 

a) 

b) 
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4.4 DISCUSSION 

The most biological information is gained from cPILOT experiments when quantitative 

information is obtained from all samples. To achieve this goal, high labeling efficiencies are 

necessary, both light and heavy dimethylated pairs must both be selected for tandem MS 

analysis, and selected peptides must generate reporter ion intensities above the minimum 

threshold. On the Orbitrap Velos platform, quantitative information was gained from all samples 

by 1) implementing offline SCX fractionation, 2) applying a two-tiered DDA method to select 

both high- and low abundant peptides and 3) using longer LC gradients and MS3 quantification. 

The tradeoffs of this two-tiered DDA approach are, increased sample and data analysis times and 

due to single-notch MS3, missing reporter ion channels. The Fusion Lumos dramatically 

improved the performance of the cPILOT analysis and increased the number quantified 

dimethylated peptide pairs.  

4.4.1 cPILOT Method Optimization Experiments (Fusion Lumos) 

To modify cPILOT analysis for the Fusion Lumos, the LC gradient time, precursor 

isolation window, dynamic exclusion time, targeted analyses, and SPS-N were varied. These 

experiments identified and quantified similar amounts of proteins without SCX fractionation, in 

comparison to the Orbitrap Velos. This was due to a number of factors, including the improved 

analytical separation of peptides, increased scanning speed of both the Orbitrap and ion trap 

mass analyzers and the improved resolution of identified peptides. Fractionated peptides were 

analyzed on both the Orbitrap Velos and Fusion Lumos to have a more direct instrument 
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comparison. Between these two datasets, the Fusion Lumos generated more proteins and 

peptides identifications.  Overall, targeted mass difference and SPS-N parameters were most 

critical for improving the effectiveness of cPILOT analysis on the Fusion Lumos. The targeted 

mass difference function specifies the number of precursors within a group by the difference in 

mass, thus selecting one peak within the peptide pair or both peptides in the pair. This function 

increased the number of light and heavy dimethylated pairs overlap to ~70 – 80% across all 

sample channels, thus increasing the percentage of proteins which have quantitative information. 

In addition, the use of SPS-MS3 improved the percentage of proteins quantified in all channels 

by ~20%, in comparison to the Orbitrap Velos thus improving the ability to quantify less 

abundant proteins.  

Challenges related to analyzing cPILOT on the Fusion Lumos were related to the 

selection of peptide pairs and quantifying low abundant peptides. Light dimethylated peptides 

were selected for isolation and fragmentation more frequently than heavy dimethylated peptides. 

This is problematic as not fragmenting both peaks in a pair reduces the amount of information 

that can be learned. In addition, lower abundance proteins have more missing reporter ion 

channels or low S/N reporter ions. Overall, it was extremely worthwhile to evaluate different 

instrumental parameter methods for cPILOT. This gave the foundation of the AD study herein 

where proteome changes across tissues types and disease were investigated. 

4.4.2 AD Pathogenesis from Brain, Heart, and Liver Tissues 

cPILOT was applied to AD brain, heart, and liver tissues to understand the contribution 

of the periphery to AD pathogenesis. Canonical pathways identified (Figure 4.10), including 
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clathrin-mediated endocytosis signaling (Figure 4.10a) and cholesterol biosynthesis (Figure 

4.10b) are known to occur in AD.174-176 Differentially – expressed proteins apolipoprotein E and 

clusterin, proteins well-known in AD brain pathogenesis,177-178 were higher in expression in the 

brain in this study. In the liver, mostly metabolic proteins, including aldehyde dehydrogenase, 3-

ketoacyl-CoA thiolase-B, peroxisomal, and NADP-dependent malic enzyme were higher in AD 

mice compared to WT. These proteins are involved in glycolysis/gluconeogenesis and the Krebs 

cycle and may contribute to dysregulated metabolism identified in AD.179-180 In the heart, 28s 

ribosomal protein S5, mitochondrial, and 26S proteasome non-ATPase regulatory subunit 11 are 

related to protein synthesis and folding were higher in AD mice. Immunoglobulin protein, Ig 

heavy chain V region AC38 205.12, was lower in AD mice in both heart and liver tissues, and 

may be involved in eliciting an immune response.181 Proteins related to electron transport and 

metabolism were at higher levels in the heart which has been related to mitochondrial 

dysfunction.182 In addition, proteins related to metabolism, protein folding, peptide synthesis, and 

oxidative stress were higher in the in the brain and liver of AD mice compared to WT. 

Across tissues, quantified proteins (Figure 4.11) in both WT and AD were mostly present 

in all tissues.  MA plots of quantified tissues show that proteins across tissues have a wide range 

of changes (Figure 4.12) with ratios >4-fold. Interestingly, brain vs. liver proteins (in both WT 

and AD) have the widest range of change, though it expected that these tissues would behave in a 

similar fashion. 
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Figure 4.11 Comparison of Quantified Brain, Heart, and Liver Proteins.  

 

 

 

 

Figure 4.12 MA plots of Quantified Brain, Heart, and Liver Proteins. 
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4.5 CONCLUSIONS 

These experiments have provided insight into 1) cPILOT performance on two Orbitrap 

instruments and 2) understanding the peripheral proteome of AD. Successful cPILOT analysis on 

the Fusion Lumos was achieved by using longer LC gradients, targeted mass difference, a wider 

precursor isolation window, and increase of SPS ions to identify more dimethylated peptide pairs 

and to increase the percentage of quantified data. With both the Orbitrap Velos and Fusion 

Lumos capable of cPILOT analysis, this multiplexing strategy is versatile and can be applied to a 

host of Orbitrap MS platforms and experimental studies. As a function of disease, an increase of 

metabolic processes, including carbohydrate, lipid, and peptide metabolism occurs across tissues, 

with the most prominent changes occurring in the brain and liver. Though there was minimal 

overlap in the number of statistically – significant proteins across tissues, the similarity of 

molecular functions may indicate that AD pathogenesis occurs similarly across these tissues, but 

with different mechanisms. 
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5.0 PROTEOMICS ANALYSIS OF HUMAN POSTMORTEM TISSUES IN 

ALZHEIMER’S DISEASE 

5.1 INTRODUCTION 

 Alzheimer’s disease (AD) is a neurodegenerative disorder that results in cognitive 

decline. Classical hallmarks of this disease include the deposit of amyloid beta (Aβ) plaques and 

neurofibrillary tangles. It is also a metabolic disorder that causes lower cerebral glucose 

metabolism,183-185 dysregulated lipid metabolism,149, 186-187 and increased insulin resistance.188-190  

These changes are well-defined in the brain, but are also present in the periphery. Altered 

metabolic processes in skin fibroblasts191 and mitochondrial dysfunction in lymphocytes192 

suggests that the periphery may be involved in AD pathogenesis.  One peripheral tissue that has 

been implicated in AD is the liver. This tissue is responsible for protein synthesis, detoxification, 

and metabolizing molecules. It is also responsible for degrading and clearing Aβ peptides.193-195 

The proteomics analysis of liver tissues from amyloid precursor protein/presenilin-1 (APP/PS-1) 

mice in our laboratory,84 identified changes related to carbohydrate and fatty – acid metabolism, 

transcription and translation, and redox signaling. These pathways highlight that AD is a 

metabolic disorder.  Another tissue that may be involved in AD pathogenesis is the heart. This 

organ is a part of the circulatory system and pumps blood, which provides oxygen and nutrients 

to tissues. Cardiovascular disease (CVD) risk factors, including hypercholesterolemia, 



 

 116 

 

hypertension, diabetes, obesity, and smoking are also risk-factors in AD.154 Pre-clinical markers 

of CVD (e.g. intima media thickness,196 carotid plaques,196-197 lacunae,198-199 and white matter 

lesions200-201)  are also more prevalent in AD. One hypothesis is that CVD risk factors cause 

brain hypoperfusion, which results in cognitive decline and increases the chances of developing 

AD.202 Generally though, the molecular mechanisms of how the heart may contribute to AD 

pathogenesis are still poorly understood.28, 203-205   

Proteomics analyses of peripheral cells and tissues have been performed on ante-/post-

mortem samples from humans and model organisms. Plasma,206 cerebrospinal fluid,207 and blood 

derived lymphocytes192 have been studied, identifying inflammatory and metabolic proteins 

related to AD progression.  Post-mortem proteomics analyses of tissues have been performed 

using brain regions (e.g. hippocampus,208 cortical samples,209 olfactory bulb,210 prefrontal 

cortex,211 and temporal neocortex212), and result in changes related to immune response, 

metabolism, and apoptosis.  Proteomics analyses of peripheral tissues in AD have been limited to 

mouse models. In these studies, splenocytes213 and liver84 samples were studied in 14-month-old 

APP/PS-1 mice, resulting in changes in glucose metabolism, electron transport, and oxidative 

phosphorylation. Most recently, a multi-tissue analysis was performed, comparing brain, heart, 

and liver tissues from this model (Chapter 4). APP/PS-1 is a human double transgenic mouse 

model which develops amyloid-beta plaques and has cognitive decline with increasing age.156 

Here, we designed a translational study to obtain a more direct understanding of how the 

periphery may be involved in AD pathogenesis. Brain (superior frontal gyrus), heart, and liver 

tissues from AD (Braak stages IV and V) and cognitively normal (CN) controls were analyzed 

using quantitative proteomics techniques. The SFG is a part of the frontal lobe and is responsible 

for higher cognitive function, working memory, and impulse responses.214-215  
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Combined precursor isotopic labeling and isobaric tagging (cPILOT), an enhanced 

multiplexing strategy has been implemented.80, 83, 91 This method allows up to 24 samples to be 

analyzed simultaneously91, thus increasing sample throughput while decreasing instrumental 

analysis time. Similarities and differences across both disease-state and tissue-type have been 

directly compared within one experiment. Results from these experiments provide insight into 

understanding how the periphery contributes to late – onset AD, thus revealing similarities and 

differences across these tissues response to disease. 

5.2 EXPERIMENTAL PROCEDURES 

5.2.1 Tissue Harvesting and Ethical Statement 

Frozen human brain (superior frontal gyrus), heart, and liver tissues were collected post-

mortem from 3 AD patients and 3 cognitively normal control subjects (Table 1). The AD cases 

were neuropathologically diagnosed as CERAD-NP definite AD, Braak stages IV and V. All 

samples were obtained from Banner Sun Health Research Institute (Sun city, AZ). Samples were 

collected 3-5 hours post-mortem, frozen, and stored at -80 oC prior to sample handling. The 

collection of brain, heart, and liver tissues and the conducted research had been approved by the 

Institutional Review Board at Vanderbilt University. 
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Table 5.1 AD and CN Subject Clinical and Neuropathological Data. 

patient case gender race age Braak stage
1 control male Caucasian 79 II
2 control male Caucasian 74 I
3 control male Caucasian 87 III
4 AD male Caucasian 77 IV
5 AD male Caucasian 87 V
6 AD male Caucasian 73 IV  
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5.2.2 Tissue Homogenization, Protein Extraction, and Digestion 

Brain, heart, and liver tissues were homogenized with a mechanical homogenizer 

(Fastprep 24) to generate tissue lysates. To extract protein, samples were centrifuged (13,000 

rpm, 4 oC, 15 min) and supernatant were collected. Protein concentration was determined using 

BCA assay. Protein from brain, heart, and liver tissues (~100 µg) was reduced (DTT 1:40 mol 

ratio), alkylated (IAA 1:80 mol ratio), quenched (L-cysteine 1:40 mol ratio), and digested with 

trypsin/lys-c (1:100 mol ratio) for 8 h. Peptides were desalted using a HLB cartridge and dried 

down using centrifugal evaporation. Prior to labeling by cPILOT, peptide concentration was 

determined by using BCA assay.  

5.2.3 cPILOT Labeling 

Peptides (~50 µg) were dissolved in 1% acetic acid (0.25 µg.µL-1). Formaldehyde 

/deuterated formaldehyde (Sigma Aldrich, 8 µL) and sodium cyanoborohydride/-deuteride 

(Sigma Aldrich, 8 µL) are added to either label peptides with light [(-CH3)2] or heavy [(-13CD3)2] 

dimethyl groups, respectively. Peptides were reacted at room temperature for 10 min with 

shaking. To quench the reactions, of 1% ammonia (16 µL) was added for 5 min. Dimethylated 

peptides were re-acidified with 5% formic acid and light and heavy samples, were pooled (Table 

5.2), desalted, and dried down by centrifugal evaporation. Desalted dimethylated peptides were 

dissolved in 100 mM triethyl ammonium bicarbonate (TEAB) buffer and TMT6-plex reagents 

were prepared according to the manufacturer’s protocol. TMT11-plex reagents were added to 

peptides (Table 5.2) and reacted at room temperature for 1 h with shaking. Peptides labeled by 
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cPILOT were quenched with 5% (w/v) hydroxylamine-hydrochloride for 15 min and re-acidified 

with formic acid. Peptides were then pooled together into a single sample, concentrated, 

desalted, and dried down an additional time by centrifugal evaporation.  

Table 5.2 Experimental Scheme of cPILOT 

TMT11-plex tag 126 127n 127c 128n 128c 129n 129c 130n 130c 131n 131c
Light DM  Pool 1 CN Liver 1 AD Liver 1 CN Liver 2 AD Heart 2 CN Heart 3 AD Heart 3 CN Brain 1 AD Brain 1 CN Brain 2 Pool 2
Heavy DM  Pool 1 CN Heart 1 AD Heart 1 CN Heart 2 AD Liver 2 CN Liver 3 AD Liver 3 AD Brain 2 CN Brain 3 AD Brain 3 Pool 2  

 

 

 

5.2.4 Offline SCX Fractionation 

Peptides were fractionated according to the manufacturer’s protocol (Protea Biosciences). 

Briefly, peptides (600 µg) were dissolved in buffer A and loaded onto a pre-activated spin 

column. Peptides were eluted off the spin column in 8 intervals (room temperature, 6 min, 4000 

× g) with increasing ammonium formate solutions (i.e. 20 mM, 40 mM, 60 mM, 80 mM, 100 

mM, 150 mM, 250 mM, and 500 mM). Fractionated peptides were dried down by centrifugal 

evaporation and dissolved in 0.1% formic acid.   

5.2.5 Liquid Chromatography and Mass Spectrometry Analyses 

Online desalting and reversed-phase chromatography was performed with a nano-

UHPLC system equipped with an autosampler (Dionex, ThermoFisher Scientific). Mobile phases 

A and B used for separation were (v/v) 0.1% formic acid and 100% ACN with 0.1% formic acid, 
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respectively. Peptides (250 ng) were loaded onto a trapping column (100 µm i.d. x 2 cm), which 

was packed in house with C18 (3 µm, 200 Å) stationary phase material (Michrom Bioresource 

Inc,) at 3 μL*min-1 in 2% ACN with 0.1% FA for 7 min. After desalting, the sample was loaded 

onto an analytical column (100 µm i.d. x 25 cm), which was packed in-house with C18 (2.5 µm, 

150 Å, Waters).   The gradient was as follows: 0 – 10 min, 10% mobile phase B; 10 – 30 min, 10 

– 15% B; 30 – 75 min, 15 – 30% B  75 – 88 min, 30 – 60% B; 88 – 92 min, 60 – 90% B; 92 – 99 

min, 90% B; 99 – 100 min, 90 – 10% B; 100 – 120 min, 10% B. 

Standard data-dependent acquisition parameters were as follows: the MS survey scan in 

the OT (375 – 1500 m/z) was 120,000 resolution; the most intense peaks with 3s (Top Speed) 

were isolated (2 m/z) and fragmented with collision-induced dissociation (CID) in the ion trap 

with an NCE of 35%, AGC of 1 x 104, dynamic exclusion of 20 s, ppm mass tolerance of 10, 

maximum IT of 100 ms. Peptide pairs were targeted by using the targeted mass difference node. 

Two precursors were listed for the targeted group. In addition, a mass difference of 8.0444 Da 

(Heavy DM – Light DM) and 7.0381 Da (Dimethyl 7 – Light DM) were listed, the partner 

intensity range relative to the most intense precursor was set to 70 – 100 %, a subsequent scan 

was performed on both ions in the pair, and the charge state for ions in the pair had to be the 

similar. Directly after each MS/MS scan, the ten most intense fragment ions (over varying m/z 

ranges) were selected for an additional fragmentation (i.e. MS3) event by HCD and analyzed in 

the OT (scan range: 100 – 400 m/z, isolation width: 2 m/z, AGC: 5 x 104, NCE: 55%, resolution: 

60,000, maximum IT: 118 ms).  Other parameters such as precursor selection range, precursor 

ion exclusion, and isobaric tag loss exclusion were set as default. Each fraction was subject to 

triplicate injections.  
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5.2.6 Data Analysis  

Raw files were analyzed with PD v. 2.2 software (Thermo Scientific). Spectra were used 

to obtain sequence information against the Uniprot H. Sapiens database (06/27/18, 20319 

sequences). SEQUEST HT search parameters were as follows: two maximum trypsin 

miscleavages, precursor mass tolerance of 15 ppm, fragment mass tolerance of 1 Da; static 

modifications were either light or heavy/dimethyl 7Da Dimethyl/+28.031 or 36.028/35.070 Da 

(N-terminus) and carbamidomethyl modification/+57.021 Da (Cys); dynamic modifications were 

TMT eleven-plex/+229.163 Da (Lys) and oxidation modification/+15.995 Da (Met). Decoy 

database searching was employed to generate medium (p<0.05) confidence peptide lists. All 

peptides with medium confidence were used to identify and quantify proteins. To filter peptides, 

the following parameters were applied:  peptides with a PSM (peptide to spectral match) >1 

across biological replicates, peptide confidence level of medium, peptide rank of 1, peptide 

deviation of 10 ppm, and S/N ≥10. The reporter ions (i.e. m/z 126 – 131) were identified with the 

following parameters:  most confident centroid and 30 ppm for reporter ion mass tolerance. 

Furthermore, reporter ion values were normalized using internal reference scaling. Proteins with 

only N=3 biological replicates were used for normalization.   

To identify statistically-significant proteins, a one-way ANOVA was performed in 

Perseus software. Proteins with a p-value <0.05 and a fold-change of >1.2 or <0.83 were further 

used for bioinformatics analyses. Statistically – significant proteins were searched against 

databases in ingenuity pathway analysis (IPA) to identify significant-pathways.  
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5.3 RESULTS 

Here, we designed a quantitative proteomics experiment (Figure 5.1) to better understand 

molecular mechanisms in the heart and liver that may contribute to AD progression. These 

tissues were compared to the brain, which is well-studied in AD, to understand similarities and 

differences across brain and peripheral tissues in AD.  Protein from brain, heart, and liver post-

mortem tissues and cognitively normal controls (N=3) were extracted and digested using 

trypsin/lys-c. Peptides from eighteen samples and four pooled samples were labeled (Table 5.2) 

at the N-terminus with light or heavy dimethylated groups and at lysine residues with TMT11-

plex (cPILOT). Labeled peptides were then pre-fractionated using SCX and analyzed by LC – 

MS/MS and MS3. 

This analysis identified 136,084 PSMs corresponding to 14,892 unique peptides and 3085 

proteins (Appendix D Tables D5.1 and D5.2). Proteins quantified (Figure 5.2a) in all tissues 

(2082, 67%) had a tremendous overlap (~99%) in brain (N=2095), heart (N=2091), and liver 

(N=2091) tissues. A marginal overlap of quantified proteins was present among brain and liver 

(N=7), heart and liver (N=1) and heart and brain (N=6). In addition, a minimal portion of 

proteins were only quantified in one tissue-type, suggesting that most proteins were present 

across all tissues.  
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Figure 5.1 Experimental Workflow of Human Post-Mortem AD and CN Brain, Heart, and Liver Tissues. 
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Figure 5.2 Protein Quantification of Brain, Heart, and Liver Tissues a) across all and b) each Biological Replicate.  

Proteins identified (N=3085) were quantified in most tissues (N=2082), with a slight increase in the brain (N=2095). 

In addition, >60% of proteins were quantified in all biological replicates. 

 

 

a) 

b) 
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Quantified proteins had a TMT-reporter intensity above the minimal threshold in either 

CN or AD tissue. Among quantified proteins, >60% were quantified in all biological replicates 

(Figure 5.2b) whereas 15 – 20% were quantified in one biological replicate. This range is not 

specific to one tissue type or genotype, as higher percentages of proteins quantified in one 

biological replicate is present in both AD and CN from all tissues.  

5.3.1 Hierarchical Clustering Patterns of Quantified Brain, Heart, and Liver Tissues 

Quantified proteins across CN and AD brain, heart, and liver tissues (N=3 biological 

replicates) were visualized to identify similar and different clustering patterns across tissue and 

disease state. With a stringent filter applied (average coefficient of variation <0.33 across all 

tissues), quantified proteins that met this criteria (N=147) were clustered (Figure 5.3).  CN and 

AD tissues clustered together (i.e. CN and AD brain, CN and AD heart, and CN and AD liver), 

highlighting potential differences across tissues. In the top region (Figure 5.3, zoom-in top), 

proteins are at higher levels in the heart and liver, whereas they are at lower levels in the brain. 

CN and AD levels in the region also had similar changes across these tissues. Example proteins 

in this region that follow this trend include metabolic proteins aldehyde dehydrogenase and 

isocitrate dehydrogenase (NADP), mitochondrial. In the middle region (Figure 5.3, zoom-in not 

shown), proteins were present at slightly higher levels in the heart, while at lower levels in the 

brain and liver. This region includes several proteins involved in electron transport, including 

cytochrome c oxidase, subunit 7c and cytochrome b-c1 complex subunit 1. Lastly, in the bottom 

region (Figure 5.3, zoom-in bottom), proteins in the brain are at higher levels while proteins in 
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both the heart and liver are at lower levels. Proteins that follow this trend include syntaxin 

binding protein-1 (STXBP-1) and tubulin alpha 1A chain.  

In both brain (Figure 5.4a) and heart (Figure 5.4b) tissues, protein distributions are 

similar, with comparable numbers of proteins changing at both higher and lower levels in AD. In 

the liver (Figure 5.4c), however, there was a larger percentage of proteins that changed at lower 

levels in AD compared to CN. 
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Figure 5.3 Hierarchical Clustering Across CN and AD Brain, Heart, and Liver Tissues. Proteins quantified with a 

CV<0.33 across all samples (N=147) were clustered using Clustvis216 and input with ln transformed values.   
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Figure 5.4 Volcano Plots of Brain, Heart, and Liver Tissues. Protein distributions across a) brain, b) heart, c) liver 

tissues. Volcano plots display proteins with a fold change of >1.2 or <0.83 and a p value <0.05 (horizontal lines) 

were statistically – significant. 
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  Among proteins that had a significant fold-change as a function of disease (AD/CN >1.2 

or < 0.83), some interesting trends were present. In the brain, few proteins met this criteria, 

whereas in the heart and liver, many proteins were expressed at lower or higher levels. Tissue 

samples, per biological replicate, originated from the same person, therefore a system-wide 

analysis of these tissues could be profiled. Selected proteins differentially – expressed in AD 

compared to CN (in at least one tissue) were compared across tissues (Figure 5.5). Both cAMP-

dependent protein kinase type II-beta regulatory subunit (CAAP-1, Figure 5.5a) and syntaxin-

binding protein 1 (STXBP-1, Figure 5.5b) were quantified at higher levels in the brain and at 

lower levels in both the heart and liver. In both proteins, AD levels compared to CN were lower 

in the brain (CAAP-1: 0.88 ± 0.64, STXBP-1: 0.81± 0.054) while higher in the heart (CAAP-1: 

1.96 ± 0.94, STXBP-1: 1.27 ± 0.69). In the liver, these proteins were at either higher (1.47 ± 

0.88) or lower (0.79 ± 0.29) levels.  In hemoglobin protein beta (HBB, Figure 5.5c), proteins 

were at higher levels in the brain (1.24 ± 0.23) while at lower levels in the liver (0.77 ± 0.21); in 

the heart, proteins levels were more abundant than in the liver, but at similar levels in AD 

compared to CN (1.08 ± 0.38). Lastly, in both cytochrome b-c1 complex subunit 1, 

mitochondrial (Figure 5.5d) and thioredoxin-related transmembrane protein 4 (Figure 5.5e), 

Protein levels in AD compared to CN were lower in both the brain (UQCRC1: 0.82 ± 0.17, 

TMX-4: 0.77 ± 0.34) and liver (UQCRC1: 0.79 ± 0.24, TMX-4: 0.68 ± 0.088. However, AD 

levels in the heart were at either lower (UQCRC1 0.71 ± 0.034) or higher (1.35 ± 0.19) levels.  
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Figure 5.5 Trends of Statistically – Significant Proteins in Brain, Heart, and Liver Tissues. Whisker plots of 

statistically – significant proteins (p<0.05) involved in apoptosis, electron transport, and other processes are 

compared. 

 

 

a) b) 

c) 

d) e) 
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Table 5.3 Differentially – Expressed Proteins in the Brain, Heart, and/or Liver. 

Accession Protein Description (short) AD/CN Brain p-value brain AD/CN Heart p-value heart AD/CN Liver p-value liver
P61981 14-3-3 protein gamma 0.98 ± 0.065 0.84 1.28 ± 0.20 0.038 0.85 ± 0.20 0.61
Q6NVY1 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial 0.99 ± 0.060 0.97 1.46 ± 1.4 0.50 0.78 ± 0.089 0.020
P25398 40S ribosomal protein S12 0.95 ± 0.11 0.71 0.99 ± 0.41 0.96 0.73 ± 0.050 0.039
P08708 40S ribosomal protein S17 1.20 ± 0.39 0.38 1.07 ± 0.59 0.78 0.70 ± 0.054 0.010
P23396 40S ribosomal protein S3 0.97 ± 0.15 0.79 1.16 ± 0.74 0.76 0.78 ± 0.060 0.013
P18124 60S ribosomal protein L7 1.02 ± 0.51 0.95 1.13 ± 0.78 0.78 0.69 ± 0.054 0.035
Q02952 A-kinase anchor protein 12 1.16 ± 0.019 0.46 1.11 ± 0.41 0.56 0.78 ± 0.15 0.042
P02763 Alpha-1-acid glycoprotein 1 0.85 ± 0.67 0.66 0.90 ± 0.14 0.76 0.77 ± 0.064 0.019
P01009 Alpha-1-antitrypsin 0.83 ± 0.35 0.67 1.32 ± 0.56 0.49 0.54 ± 0.082 0.0015
P63010 AP-2 complex subunit beta 0.78 ± 0.25 0.24 1.14 ± 0.49 0.51 0.78 ± 0.16 0.048
O14617 AP-3 complex subunit delta-1 0.96 ± 0.21 0.82 0.91 ± 0.029 0.64 0.71 ± 0.069 0.022
O00571 ATP-dependent RNA helicase DDX3X 0.90 ± 0.12 0.30 1.67 ± 0.39 0.0062 0.52 ± 0.38 0.21
P02730 Band 3 anion transport protein 0.72 ± 0.33 0.28 1.26 ± 0.16 0.033 1.31 ± 0.35 0.22
O75531 Barrier-to-autointegration factor 0.69 ± 0.34 0.36 1.04 ± 0.68 0.92 0.63 ± 0.22 0.038
P35613 Basigin 0.93 ± 0.15 0.46 0.83 ± 0.24 0.26 0.73 ± 0.14 0.028
P19022 Cadherin-2 0.62 ± 0.18 0.21 1.35 ± 0.44 0.12 0.60 ± 0.18 0.020
O75746 Calcium-binding mitochondrial carrier protein Aralar1 1.10 ± 0.16 0.24 0.73 ± 0.14 0.048 0.56 ± 0.46 0.42
Q9HB71 Calcyclin-binding protein 0.83 ± 0.32 0.46 1.01 ± 0.33 0.98 0.66 ± 0.16 0.019
P31323 cAMP-dependent protein kinase type II-beta regulatory subunit 0.81 ± 0.25 0.22 1.56 ± 0.16 0.010 0.82 ± 0.19 0.16
P00918 Carbonic anhydrase 2 1.33 ± 0.20 0.022 1.13 ± 0.12 0.54 1.25 ± 0.47 0.25
Q9H8G2 Caspase activity and apoptosis inhibitor 1 0.88 ± 0.64 0.80 1.96 ± 0.94 0.031 1.47 ± 0.88 0.48
P35221 Catenin alpha-1 0.89 ± 0.23 0.68 1.36 ± 0.78 0.29 0.76 ± 0.087 0.030
Q8N126 Cell adhesion molecule 3 0.82 ± 0.11 0.021 1.14 ± 3.0 0.85 0.42 ± 0.86 0.19
Q00610 Clathrin heavy chain 1 0.83 ± 0.16 0.10 1.14 ± 0.55 0.56 0.76 ± 0.16 0.045
P53618 Coatomer subunit beta 0.88 ± 0.30 0.66 1.03 ± 0.38 0.86 0.70 ± 0.092 0.042
P10643 Complement component C7 0.90 ± 0.58 0.69 0.92 ± 0.50 0.78 0.57 ± 0.034 0.0061
P31930 Cytochrome b-c1 complex subunit 1, mitochondrial 0.82 ± 0.17 0.11 0.71 ± 0.034 0.00012 0.77 ± 0.24 0.14
P14927 Cytochrome b-c1 complex subunit 7 0.85 ± 0.20 0.17 0.76 ± 0.11 0.020 0.63 ± 0.14 0.05
P09669 Cytochrome c oxidase subunit 6C 0.95 ± 0.094 0.45 0.79 ± 0.25 0.18 0.50 ± 0.066 0.032
P14406 Cytochrome c oxidase subunit 7A2, mitochondrial 0.99 ± 0.36 0.96 0.76 ± 0.17 0.17 0.66 ± 0.052 0.0024
P15954 Cytochrome c oxidase subunit 7C, mitochondrial 0.86 ± 0.21 0.31 0.51 ± 0.092 0.0094 0.70 ± 0.21 0.23
P07585 Decorin 0.94 ± 0.63 0.87 1.70 ± 0.41 0.0075 1.38 ± 0.97 0.49
Q9UI17 Dimethylglycine dehydrogenase, mitochondrial 1.36 ± 1.5 0.61 1.08 ± 1.0 0.82 0.62 ± 0.086 0.013
P11532 Dystrophin OS 0.60 ± 0.20 0.27 1.18 ± 0.80 0.67 0.68 ± 0.21 0.046
Q15075 Early endosome antigen 1 1.25 ± 0.64 0.51 1.15 ± 0.68 0.75 0.45 ± 0.18 0.043
Q6UWR7 Ectonucleotide pyrophosphatase/phosphodiesterase family member 1.09 ± 0.29 0.70 0.78 ± 0.015 0.14 0.69 ± 0.12 0.033
Q9BY44 Eukaryotic translation initiation factor 2A 0.96 ± 0.37 0.81 0.99 ± 0.79 0.97 0.61 ± 0.11 0.0066
Q16658 Fascin 0.91 ± 0.24 0.50 1.33 ± 0.66 0.35 0.79 ± 0.059 0.0051
P30043 Flavin reductase (NADPH) 1.18 ± 0.37 0.23 1.20 ± 0.14 0.034 1.18 ± 0.11 0.50
P56470 Galectin-4 1.88 ± 0.24 0.029 1.39 ± 1.6 0.51 1.04 ± 0.92 0.92
Q9UEY8 Gamma-adducin 1.04 ± 0.21 0.81 0.98 ± 0.40 0.91 0.67 ± 0.061 0.0046
P68871 Hemoglobin subunit beta 1.24 ± 0.23 0.23 1.08 ± 0.38 0.58 1.49 ± 0.21 0.049
Q5SSJ5 Heterochromatin protein 1-binding protein 3 1.03 ± 0.24 0.81 0.95 ± 0.33 0.78 0.73 ± 0.10 0.010
Q99729 Heterogeneous nuclear ribonucleoprotein A/B 1.02 ± 0.61 0.94 0.96 ± 0.36 0.85 0.72 ± 0.085 0.034
O60506 Heterogeneous nuclear ribonucleoprotein Q 0.93 ± 0.11 0.59 0.87 ± 0.58 0.60 0.71 ± 0.12 0.034
Q9UJM8 Hydroxyacid oxidase 1 1.48 ± 1.9 0.45 0.98 ± 1.1 0.96 0.66 ± 0.15 0.028
A0A0C4DH68 Immunoglobulin kappa variable 2-24 0.74 ± 0.43 0.41 0.57 ± 0.25 0.08 0.46 ± 0.16 0.0053
Q14894 Ketimine reductase mu-crystallin 1.07 ± 0.49 0.73 0.58 ± 0.38 0.29 0.65 ± 0.084 0.0012
Q6P1M0 Long-chain fatty acid transport protein 4 0.90 ± 0.14 0.50 1.33 ± 1.3 0.39 0.68 ± 0.12 0.017
Q15046 Lysine--tRNA ligase 1.17 ± 0.49 0.38 0.99 ± 0.37 0.96 0.67 ± 0.14 0.020
P11279 Lysosome-associated membrane glycoprotein 1 1.12 ± 0.12 0.14 1.01 ± 0.35 0.95 0.77 ± 0.15 0.040
P40926 Malate dehydrogenase, mitochondrial 0.95 ± 0.024 0.25 0.94 ± 0.28 0.68 0.73 ± 0.15 0.031
P55157 Microsomal triglyceride transfer protein large subunit 1.37 ± 1.17 0.46 1.22 ± 1.6 0.74 0.79 ± 0.014 0.044
P27816 Microtubule-associated protein 4 0.97 ± 0.21 0.77 1.15 ± 0.38 0.34 0.67 ± 0.11 0.019
Q9UPY8 Microtubule-associated protein RP/EB family member 3 0.89 ± 0.49 0.59 0.54 ± 0.094 0.034 0.48 ± 0.40 0.09
Q02978 Mitochondrial 2-oxoglutarate/malate carrier protein 0.90 ± 0.066 0.26 0.67 ± 0.064 0.013 1.11 ± 0.13 0.68
Q9Y276 Mitochondrial chaperone BCS1 0.98 ± 0.33 0.89 0.96 ± 0.64 0.89 0.71 ± 0.087 0.0059
Q9NXA8 NAD-dependent protein deacylase sirtuin-5, mitochondrial 0.81 ± 0.31 0.59 0.99 ± 0.72 0.99 0.60 ± 0.12 0.032
Q6PIU2 Neutral cholesterol ester hydrolase 1 0.88 ± 0.19 0.23 1.20 ± 0.092 0.0064 0.71 ± 0.25 0.20
Q0ZGT2 Nexilin 1.13 ± 0.60 0.68 0.87 ± 0.16 0.31 0.71 ± 0.21 0.046
P06748 Nucleophosmin 0.89 ± 0.26 0.66 1.57 ± 0.37 0.035 0.69 ± 0.31 0.29
P40855 Peroxisomal biogenesis factor 19 1.01 ± 0.21 0.94 1.10 ± 0.69 0.78 0.71 ± 0.087 0.0094
Q9UPV7 PHD finger protein 24 0.66 ± 0.23 0.23 1.39 ± 1.9 0.63 0.61 ± 0.19 0.042
O15212 Prefoldin subunit 6 1.20 ± 0.46 0.48 1.62 ± 0.60 0.019 0.77 ± 0.16 0.38
P07237 Protein disulfide-isomerase 1.31 ± 1.3 0.65 1.07 ± 0.063 0.83 0.60 ± 0.063 0.031
Q15084 Protein disulfide-isomerase A6 0.91 ± 0.46 0.73 0.96 ± 0.42 0.82 0.63 ± 0.0090 0.021
Q15404 Ras suppressor protein 1 0.89 ± 0.21 0.43 1.32 ± 0.35 0.09 0.69 ± 0.16 0.015
Q9H0U4 Ras-related protein Rab-1B 0.75 ± 0.11 0.030 1.12 ± 0.47 0.65 0.69 ± 0.22 0.075
Q00266 S-adenosylmethionine synthase isoform type-1 1.78 ± 2.5 0.51 1.07 ± 1.0 0.92 0.65 ± 0.14 0.0067
P67775 Serine/threonine-protein phosphatase 2A catalytic subunit alpha 1.01 ± 0.13 0.94 0.73 ± 0.070 0.025 0.84 ± 0.075 0.35
Q13813 Spectrin alpha chain, non-erythrocytic 1 0.86 ± 0.23 0.34 1.19 ± 0.44 0.42 0.70 ± 0.17 0.032
Q01082 Spectrin beta chain, non-erythrocytic 1 0.84 ± 0.19 0.27 1.05 ± 0.27 0.70 0.72 ± 0.11 0.0080
P63208 S-phase kinase-associated protein 1 0.91 ± 0.13 0.20 1.00 ± 0.36 0.98 0.68 ± 0.15 0.022
Q9GZT3 SRA stem-loop-interacting RNA-binding protein, mitochondrial 0.69 ± 0.17 0.27 1.09 ± 0.60 0.72 0.55 ± 0.13 0.012
Q9UJZ1 Stomatin-like protein 2, mitochondrial 1.05 ± 0.34 0.77 0.79 ± 0.082 0.048 1.18 ± 0.23 0.56
P08247 Synaptophysin 0.85 ± 0.14 0.50 1.90 ± 0.62 0.016 0.69 ± 0.40 0.31
P61764 Syntaxin-binding protein 1 0.81 ± 0.054 0.014 1.27 ± 0.69 0.36 0.79 ± 0.29 0.24
Q9Y490 Talin-1 1.06 ± 0.46 0.75 1.00 ± 0.34 1.0 0.73 ± 0.091 0.013
Q9H1E5 Thioredoxin-related transmembrane protein 4 0.77 ± 0.34 0.26 1.35 ± 0.19 0.048 0.68 ± 0.088 0.0050
Q92544 Transmembrane 9 superfamily member 4 0.99 ± 0.41 0.97 1.43 ± 1.0 0.30 0.67 ± 0.12 0.013
P49755 Transmembrane emp24 domain-containing protein 10 1.05 ± 0.46 0.82 1.40 ± 0.73 0.25 0.63 ± 0.089 0.019
Q92973 Transportin-1 1.00 ± 0.13 0.98 1.00 ± 0.32 0.99 0.78 ± 0.13 0.028
P61088 Ubiquitin-conjugating enzyme E2 N 1.01 ± 0.14 0.85 1.02 ± 0.18 0.83 0.83 ± 0.067 0.028
P61960 Ubiquitin-fold modifier 1 0.85 ± 0.19 0.48 1.19 ± 1.4 0.75 0.75 ± 0.081 0.048
Q9Y4I1 Unconventional myosin-Va 0.68 ± 0.42 0.33 1.06 ± 0.53 0.75 0.66 ± 0.23 0.046
P54289 Voltage-dependent calcium channel subunit alpha-2/delta-1 0.86 ± 0.20 0.29 1.07 ± 0.88 0.83 0.61 ± 0.066 0.0058
O75083 WD repeat-containing protein 1 0.89 ± 0.13 0.47 1.02 ± 0.44 0.95 0.75 ± 0.17 0.048
*Differentially - expressed proteins have p<0.05 and AD/WT of >1.20 or <0.83 brain, heart, and liver tissues and are in bold.  
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5.3.2 Canonical pathways Associated with Differentially – Expressed Proteins 

Differentially – expressed proteins (p value <0.05 and AD/CN >1.2 or <0.83) in the brain 

(N=5), heart (N=20), and liver (N=62) were searched in IPA to identify significant canonical 

pathways, molecular functions, and cellular components. As there were few significant brain 

proteins, no pathways were identified, however, molecular functions related to the cell signaling 

and interaction, assembly and organization, and survival and death were identified. In the heart 

(Figure 5.6), the most significant pathways were related to oxidative phosphorylation and 

mitochondrial dysfunction whereas in the liver (Figure 5.7) pathways related to elongation factor 

2 signaling and unfolded protein response were identified. Significant molecular functions across 

these tissues were related to cell function and protein synthesis, with specific functions related to 

molecular transport in the heart and RNA damage and repair in the liver. With a relaxed filter 

(i.e. AD/CN >1.2 or <0.83 only), the pathway mitochondrial dysfunction and molecular function 

protein synthesis was significant across all tissues. Proteins in the heart and liver, furthermore, 

had an increase of similar molecular functions, including those related to cell assembly and 

organization and molecular transport. In addition, this relaxed filter identified 18 proteins related 

to Alzheimer’s disease at higher (e.g. Synaptophysin, STXBP-1, and CAAP-1) or lower (e.g. 

superoxide dismutase [Mn], mitochondrial, alpha-1 antichymotrypsin, and vacuolar protein 

sortin-associated protein 35: VPS-35) levels in the heart. In the brain, proteins related to 

amyloidosis (N=12) were at higher (e.g. gelsolin and microtubule-associated protein 2) or lower 

(e.g. STXBP-1) levels and in the liver (N=25), proteins (e.g. eukaryotic translation initiation 

factor 2A, VPS-35, and signal transducer and activator of transcription 3) associated with the 

same disease (N=25) were mainly at lower levels. 
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Figure 5.6 Canonical Pathways of Statistically – Significant Heart Proteins. 

 

Heart 
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Figure 5.7 Canonical Pathways of Statistically – Significant Liver Proteins. 

 

 

Liver 
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5.4 DISCUSSION 

Recently, we studied AD pathogenesis in brain, heart, and liver tissues in a 14-month-old 

APP/PS-1 mouse model (Chapter 4), in which changes related to energy metabolism were 

identified across tissues. Biological processes identified from brain and liver proteins overlapped 

with pathways related to carbohydrate and lipid metabolism, whereas heart proteins were related 

to protein translation. While that study provided some insight into the contribution of liver and 

heart peripheral tissues to AD progression, limitations were evident. The APP/PS-1 mouse model 

is based on early-onset AD, therefore, it does not directly correlate to changes occurring in late-

onset AD.  This model includes the presence of Aβ plaques, however, it does not have the 

presence of neurofibrillary tangles. To bridge this gap in understanding, postmortem human 

brain (superior frontal gyrus), heart, and liver tissues from AD (N=3, Braak stages IV and V) and 

cognitively normal (CN) controls (N=3) were analyzed using quantitative proteomics. Tissue 

samples were each from one person, therefore system-wide changes were able to be followed 

within each individual and across biological replicates. Using cPILOT allowed all samples to be 

uniquely labeled and subsequently analyzed simultaneously. This reduced potential experimental 

error and analysis time while increasing sample throughput. In addition, a single analysis allows 

for direct comparison of all tissues within one experimental analysis therefore, changes occurring 

across disease state and tissue-type can be compared.  

Factors to take into consideration during sample preparation are related to tissue 

homogenization and protein concentration. Different homogenization times were necessary to 

extract protein from tissues. Since the heart is a muscular organ, it require additional intervals to 

fully homogenize. Once samples were homogenized, protein was diluted to perform a protein 
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concentration assay. As the tissues varied in concentration, dilutions were adjusted in order to 

successfully determine protein amounts. 

5.4.1 Protein Clustering Across Brain, Heart, and Liver Tissues 

Proteins that were quantified in all biological replicates and that had an average 

CV<0.33, were compared to determine similarities across both disease-state and tissue-type. A 

few notable trends were present across AD and CN tissues, including regions where 1) brain 

proteins were at lower levels than both the liver and heart (Figure 5.3, zoom-in top), 2) heart 

proteins were present at higher levels than both the brain and liver (Figure 5.3, middle region), 

and 3) brain proteins were present at higher levels in comparison to both the liver and heart 

(Figure 5.3, zoom-in bottom). In the top region, all biological processes were related to 

metabolism, specifically, catabolic processes involved in glycolysis, the Krebs cycle, amino acid, 

lipid, and alcohol metabolism. Interestingly proteins involved in translation and protein folding 

were also grouped together. Ribosomal and other translational proteins are known to decrease in 

the brain as a function of AD progression and proteins in this group behave similarly.217-218 

Conversely, these levels increased in the heart after disease which may imply that AD 

progression does not affect the ability of the heart to synthesize proteins. Similar to the top 

region, proteins in the middle region (not shown) were also mainly involved in metabolism with 

an increase of proteins related to electron transport. Several electron transport proteins (i.e. 

cytochrome c and cytochrome b) are differentially – expressed in the heart, which has not been 

previously reported in AD. Dysfunctions in this part of energy metabolism are related to 

mitochondrial dysfunction.182, 219 In the bottom region, however, biological processes were 
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mostly related to transport, localization, and cell function. Transport proteins clathrin heavy 

chain 1 (CLTC) and vacuolar protein sorting-associated protein-35 (VPS-35) are involved in 

transporting type-1 transmembrane proteins (e.g. APP and β-site APP cleaving enzyme, BACE) 

between the cell surface, endosome and trans-golgi network, and are critical to maintaining 

normal cell function.174 VPS-35, specifically, is present in the brain at high levels in cognitively 

normal individuals while declining during AD progression; in this study, VPS-35 was present at 

levels two times higher in both the heart and the liver of AD, but at slight lower levels in the 

brain.  

5.4.2 Differentially – Expressed Post-Mortem Brain and Peripheral Tissues 

In this experiment, samples from the superior frontal gyrus were kindly provided (Banner 

Sun Health Research Institute), to benchmark changes as a function of disease to heart and liver 

tissues. In AD, differentially – expressed proteins were related to several types of cellular 

molecular functions. Rab 1 and syntaxin binding protein 1 are involved in protein transport174, 220-

221 and binding and changed significantly at higher levels in AD.  The lack of significant proteins 

from brain tissues may indicate minor AD pathology in this region during Braak stage IV. SFG 

has not been reported to change drastically in AD.222 However, as this region is involved in 

executive functions, conditions such as frontal temporal dementia (FTD) or frontal variant AD 

(fvAD) may have elicited a more profound response.223-225   

In the heart, several proteins related to oxidative phosphorylation, mitochondrial 

dysfunction, and cell signaling were differentially – expressed. Cytochrome proteins, which are 

involved in electron transport, were significant at lower levels in AD. Complications in the 
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electron transport chain are hypothesized to contribute cardiovascular disease226 and in AD, it 

may contribute to disease pathogenesis by causing an increase of mitochondrial dysfunction. 

Transport proteins in the solute carrier family (e.g. SLC4A-1, SLC25A-12, SLC25A-11) 

changed significantly at higher (SLC4A-1) or lower (SLC25A-12 and SLC25A-11) levels. As 

protein transport is necessary for protein function and has been noted to be dysregulated in AD, 

they may contribute to mitochondrial dysfunction.174 Lastly, proteins involved in apoptosis and 

immunity, including CAAP-1, dead-box helicase, nucleophosmin, and serine/threonine-protein 

phosphatase 2A catalytic subunit alpha were differentially – expressed in AD. Dysregulated 

apoptosis has been implicated in AD.227 Overall, the identification of significant proteins CAAP-

1 and Synaptophysin-1 was especially interesting, as these proteins have been implicated 

previously in AD pathogenesis.228-230   

Differentially – expressed liver proteins were related to signaling and unfolded protein 

response. Some proteins in these pathways included clathrin-related transport proteins alpha-1-

acid glycoprotein 1 (ORM-1), alpha-1-antitrypsin (SERPIN-A1), AP-2 complex subunit beta 

(AP-2B), and CLTC-1, which were at lower levels in AD. Clathrin-mediated endocytosis is 

involved in transporting transmembrane proteins to and from the endosome and dysregulation 

has been implicated in AD.174 Proteins involved in translation or protein folding were also 

significant at lower levels in liver tissues. As protein synthesis and folding is known to be 

dysregulated in AD brain pathology, these changes in the liver may be evident of similar patterns 

present across these tissues. 

Across tissues, significant changes were most evident in comparisons of brain vs. heart 

and brain vs. liver. In both AD and CN tissues, differentially – expressed proteins were mostly 

involved in transport and localization. In comparison, few proteins changed significantly in liver 
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vs. heart and were involved in electron transport, carbohydrate metabolism, transport, and 

protein translation. The lack of significant changes between liver and heart tissues may note 

similarities between the behavior of these tissues in both AD and healthy states. 

5.5 CONCLUSIONS 

A comparative analysis across brain, heart, and liver tissues was performed to understand 

how peripheral liver and heart tissues are involved in AD pathogenesis. In the heart, a decrease 

of electron transport activity along with an increase of protein binding and apoptosis occurs. In 

the liver, a decrease of many pathways including translation, protein folding, and transport were 

present. Though few differentially – expressed proteins overlapped across the tissues, there were 

similarities in the pathways. A similar trend was also seen in Chapter 4, which analyzed a 

mouse model of AD. In that dataset, most proteins were also only significant in one tissue. When 

comparing statistically – significant proteins across both organisms, there was minimal overlap. 

Among the 354 proteins that were quantified in both datasets, several proteins had similar fold-

change values in AD compared to WT (mouse) or CN (human), however, the number of 

differentially – expressed proteins varied. This resulted in statistically – significant proteins only 

being present in one organism type. In the future, a larger batch of samples will be tested to gain 

more information about changes in the periphery and validate the findings herein.   
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6.0 SUMMARY AND FUTURE DIRECTIONS 

6.1 SUMMARY 

Here, multiplexing techniques have been employed across several organisms to 

understand aging, infection and Alzheimer’s disease (AD). In each analysis, multiplexing was 

used to analyze several samples simultaneously, thus improving sample throughput by reducing 

sample analysis time and potential experimental error. In Chapter 2, multiplexing efforts 

allowed for the direct comparison of young and aging adult Caenorhabditis elegans (C. elegans) 

exposed to the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa strain PA01).  

Each population had unique and shared responses to infection including pathways related to 

metabolism, development, locomotion and structure. In addition, both C. elegans exposed to P. 

aeruginosa PA01 and aging C. elegans presented higher levels of oxidative stress. To assess the 

performance of a higher performing instrument, C. elegans samples were ran on an Orbitrap 

Elite mass spectrometer in Chapter 3. Less proteins and peptides were identified from the more 

advanced instrument (i.e. the Elite) thus leading us to propose that a combination of factors that 

were not in reference of the instrument, including limited sample and experimental error, may 

have contributed to a decrease of C. elegans proteins identified. In order to analyze >12 samples, 

a different multiplexing technique, combined precursor isotopic labeling and isobaric tagging  

(cPILOT) was employed in Chapter 4, to understand brain, heart, and liver proteomes from 
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amyloid precursor protein/presenilin-1 (APP/PS-1) mice. With using both Orbitrap Velos and 

Fusion Lumos MS platforms, changes heavily involved in metabolism were identified across 

tissues as a function of disease. In addition, an optimized method to analyze cPILOT samples 

was developed on the Fusion Lumos, which was also applied in Chapter 5. In this chapter, a 

similar analysis was performed as in Chapter 4. Peripheral (i.e. heart and liver) and brain 

proteomes of AD and cognitively normal (CN) post-mortem tissues were analyzed by using 

cPILOT. Interestingly, changes related to transport, protein translation and folding, apoptosis and 

immunity, and metabolism were found to be significant, highlighting ways the periphery may be 

involved in AD pathogenesis.  

Overall, findings from this work highlight the usage of multiplexing and its applications 

to infection and disease-related biological problems.  

6.2 FUTURE DIRECTIONS 

Future analyses of cPILOT include studying oxidative modifications. In Chapter 2, one 

of the most defined changes of young- and aging adult C. elegans exposed to pathogen was the 

presence of oxidative stress. Oxidative stress is accompanied by oxidative modifications to 

proteins, which can impair structure and ultimately protein function. To understand oxidative 

modifications in C. elegans, an in vivo oxidation model was applied. Fast photochemical 

oxidation of proteins (FPOP) is a hydroxyl radical foot printing method that uses a pulsed laser 

for the photolysis of hydrogen peroxide.231 This technique irreversibly modifies amino acids and 

can cross cell membranes. Recently, FPOP has been demonstrated to label cells in vivo (IC-
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FPOP/IV-FPOP), successfully modifying most (i.e. 16) amino acids.232-233 In this application, C. 

elegans are labeled by IV-FPOP and is compared to control and C. elegans oxidized by hydrogen 

peroxide (control oxidation). This application requires testing three factors (i.e. FPOP, control 

oxidation, control) such that an experiment containing three biological replicates and two 

technical replicates increases the total number of samples for analysis to eighteen. Currently, 

samples are analyzed individually, which requires extensive sample preparation and analysis 

time. To increase the throughput of this experiment, C. elegans samples labeled by IV-FPOP can 

be further labeled by cPILOT.  

A preliminary proof-of-concept study has been employed to tests the combination of 

cPILOT and FPOP. Similar to experiments in Chapters 4 and 5, protein was extracted from C. 

elegans homogenate and digested with trypsin. Peptides were labeled by light- or heavy 

dimethylation at the N-terminus and TMT10-plex tags at lysine residues. A pooled sample was 

fractionated by SCX and analyzed by LC – MS/MS and MS3 on an Orbitrap Fusion Lumos. Raw 

data generated was searched in PD and results were analyzed manually to calculate FPOP 

oxidations. Preliminary data identified over >180,000 PSMs, corresponding to 2682 proteins 

(Table 6.1). Most lysine terminated light- and heavy-dimethylated peptides were labeled by TMT 

(i.e. 98%) and >60% of proteins (i.e. 67 and 65%) were quantified in all channels. Additionally, 

560 proteins had oxidative modifications, of which 484 proteins (i.e. 86%) were also quantified 

by cPILOT.  
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Table 6.1 Protein and Peptide Results of a FPOP-cPILOT Experiment. 

Protein Groups
Protein Groups      

(10 channels, %)a PSMs ID R (%)b K (%)c TMT-K (%)d

Light DM 2334 1553 (66.5%) 88528 18322 (20.7) 69393 (78.4) 67811 (97.7)
Heavy DM 2193 1426 (65.0%) 92077 17652 (19.2) 73398 (79.7) 71726 (97.7)
a The number and percentage of proteins quantified across all reporter ion channels (i.e. 126-131).  bThe number and 
percentage of peptides ending with arginine.  cThe number and percentage of peptides ending with lysine. dThe number and 
percentage of lysine ending peptides labeled with TMT10-plex.  
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Aspects of this experiment to take into consideration are related to data analysis. As 

samples are labeled by both FPOP and cPILOT, search parameters have to be adjusted for both 

sets of modifications. Proteins labeled by FPOP can have several types of oxidative 

modifications, including carbonylation (+14 Da), oxidation (+16), dioxidation (+32), and 

trioxidation (+47)232; peptides labeled by cPILOT are modified at the N-terminus by light or 

heavy dimethylation (+28.032 or +36.036/35.070) and at lysine residues by TMT10-plex 

(+229.163). This results in extended search times (i.e. 12 – 24 h). In order to search efficiently, 

both sets of parameters were combined into several nodes, thus reducing searching time to (9 – 

16 h).  

Overall, this proof-of-concept experiment showed that IV-FPOP samples could 

successfully be labeled by cPILOT. This is advantageous as it allows proteome-wide structural 

biology to be conducted in this model organism in a high-throughput manner. Future applications 

(Figure 6.1) include labeling young-adult C. elegans exposed to pathogen and wild-type controls 

with IV-FPOP and multiplexing with cPILOT. As an additional factor (i.e. disease-state) could 

be added to this experiment and the minimal number of samples could double to 36. This will 

require at least two cPILOT batches or a 36-plex cPILOT platform. The gain in experimental 

throughput will be accompanied by an increase in the complexity of sample preparation and data 

analysis. It will be imperative to handle samples properly and perform labeling of cPILOT 

samples in intervals to ensure similar labeling times. Once data is searched in PD, result files can 

be merged into one dataset and data can be analyzed (i.e. data normalization, statistical tests, and 

bioinformatics analyses). This application and others of cPILOT will show the versatility of this 

multiplexing strategy and its ability to address a wide variety of biological problems.  Moreover, 
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such an experiment will allow us to better understand the impact of oxidative stress upon 

exposure to P. aeruginosa PA01 infection to C. elegans. 
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Figure 6.1 Proposed Experimental Workflow of Labeling C. elegans with in vivo FPOP and cPILOT. 
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Appendix A Table A2.1 Pathogenicity Assays 

Day 1 (Biological Replicate 1)
Bacteria Mean ±SE n P-value (vs. OP50)
E. coli  OP50 18.5 0.3 65/71 N/A
P. aeruginosa  PA01 14.4 0.2 80/84 <0.0001

Day 1 (Biological Replicate 2)
Bacteria Mean ±SE n P-value (vs. OP50)
E. coli  OP50 18.7 0.42 39/44 N/A
P. aeruginosa  PA01 11.2 0.58 41/49 0

Day 5 (Biological Replicate 1)
Bacteria Mean ±SE n P-value (vs. OP50)
E. coli  OP50 18.6 0.2 97/108 N/A
P. aeruginosa  PA01 10.4 0.08 90/90 <0.0001

Day 5 (Biological Replicate 2)
Bacteria Mean ±SE n P-value (vs. OP50)
E. coli  OP50 21.9 0.65 36/46 N/A
P. aeruginosa  PA01 11.7 0.67 37/46 0  



 

 151 

 

APPENDIX B  

Appendix B Table B3.1 Peptides Identified in C. elegans upon P. aeruginosa PA01 Exposure 

by TMT6 on an Orbitrap Elite Platform……………………………………………...Attached File 

Appendix B Table B3.2 Proteins Identified in C. elegans upon P. aeruginosa PA01 Exposure 

by TMT6 on an Orbitrap Elite Platform………………………………………………Attached File 

Appendix B Table B3.3 Biological Processes (GO) of Proteins Quantified at Lower Levels in 

Day 1 Adult C. elegans upon P. aeruginosa PA01 Exposure………………………..Attached File  

Appendix B Table B3.4 Biological Processes (GO) of Proteins Quantified at Higher Levels in 

Day 5 Adult C. elegans upon P. aeruginosa PA01 Exposure………………………..Attached File 

Appendix B Table B3.5 Biological Processes (GO) of Proteins Quantified at Lower Levels in 

Day 5 Adult C. elegans upon P. aeruginosa PA01 Exposure………………………..Attached File  

Appendix B Table B3.6 Proteins Quantified in Day 1 and Day 5 Adult C. elegans upon P. 

aeruginosa PA01 Exposure (Velos and Elite)……………………………………….Attached File 

 



 

 152 

 

APPENDIX C 

Appendix C Table C4.1 Peptides Identified from Brain, Heart, and Liver Tissues (Batches 1 – 

3, 8 Fractions, Orbitrap Velos)……………………………………………………….Attached File  

Appendix C Table C4.2 Proteins Identified from Brain, Heart, and Liver Tissues (Batches 1 – 3, 

8 Fractions, Orbitrap Velos)………………………………………………………….Attached File  

Appendix C Table C4.3 Peptides Identified from Brain, Heart, and Liver Tissues (Batches 1 – 

3, 8 Fractions, Fusion Lumos)………………………………………………………..Attached File  

Appendix C Table C4.4 Proteins Identified from Brain, Heart, and Liver Tissues (Batches 1 – 3, 

8 Fractions, Fusion Lumos)…………………………………………………………..Attached File 

Appendix C Table C4.5 Peptides Identified from Brain, Heart, and Liver Tissues (Batches 1 – 

3, 0 Fractions, Fusion Lumos)………………………………………………………..Attached File  

Appendix C Table C4.6 Proteins Identified from Brain, Heart, and Liver Tissues (Batches 1 – 3, 

0 Fractions, Fusion Lumos)…………………………………………………………..Attached File  

Appendix C Table C4.7 Peptides Identified from Brain, Heart, and Liver Tissues (Batches 1 – 

3, Combined Experiments)…………………………………………………………...Attached File 

Appendix C Table C4.8 Proteins Identified from Brain, Heart, and Liver Tissues (Batches 1 – 3, 

Combined Experiments)……………………………………………………………...Attached File  

 



 

 153 

 

APPENDIX D  

Appendix D Table D5.1 Peptides Identified from Brain, Heart, and Liver Tissues...Attached File  

Appendix D Table D5.2 Proteins Identified from Brain, Heart, and Liver Tissues...Attached File  



 

 154 

 

REFERENCES 

1. King, C. D.; Singh, D.; Holden, K.; Govan, A. B.; Keith, S. A.; Ghazi, A.; Robinson, R. 

A. S., Proteomic Identification of Virulence-Related Factors in Young and Aging C. elegans 

Infected with Pseudomonas aeruginosa. Journal of Proteomics 2018, 181, 92-103. 

2. King, C. D.; Dudenhoeffer, J. D.; Gu, L.; Evans, A. R.; Robinson, R. A. S., Enhanced 

Sample Multiplexing of Tissues using Combined Precursor Isotopic Labeling and Isobaric 

Tagging (cPILOT). Journal of Visualized Experiments 2017,  (123), 10.3791/55406. 

3. Shaw, A. C.; Goldstein, D. R.; Montgomery, R. R., Age-dependent Dysregulation of 

Innate Immunity. Nature Reviews. Immunology 2013, 13 (12), 875-887. 

4. Jagger, A.; Shimojima, Y.; Goronzy, J. J.; Weyand, C. M., Regulatory T Cells and the 

Immune Aging Process: A Mini-Review. Gerontology 2014, 60 (2), 130-137. 

5. Panda, A.; Qian, F.; Mohanty, S.; van Duin, D.; Newman, F. K.; Zhang, L.; Chen, S.; 

Towle, V.; Belshe, R. B.; Fikrig, E.; Allore, H. G.; Montgomery, R. R.; Shaw, A. C., Age-

Associated Decrease in TLR Function in Primary Human Dendritic Cells Predicts Influenza 

Vaccine Response. The Journal of Immunology 2010, 184 (5), 2518-2527. 

6. Fulop, T.; Le Page, A.; Fortin, C.; Witkowski, J. M.; Dupuis, G.; Larbi, A., Cellular 

Signaling in the Aging Immune System. Current Opinion in Immunology 2014, 29, 105-111. 



 

 155 

 

7. Hauser, A. R. a. R., J., Severe Infections caused by Pseudomonas aeruginosa: 

Perspectives on Critical Care Infectious Disease. Kluwer Academic Publishers: Norwell, MA, 

2003. 

8. Powell, J. R.; Ausubel, F. M., Models of Caenorhabditis elegans Infection by Bacterial 

and Fungal Pathogens. In Innate Immunity, Ewbank, J.; Vivier, E., Eds. Humana Press: 2008; 

Vol. 415, pp 403-427. 

9. Irazoqui, J. E.; Troemel, E. R.; Feinbaum, R. L.; Luhachack, L. G.; Cezairliyan, B. O.; 

Ausubel, F. M., Distinct Pathogenesis and Host Responses during Infection of C. elegans by P. 

aeruginosa and S. aureus. PLoS Pathog 2010, 6, e1000982. 

10. Tan, M.-W.; Rahme, L. G.; Sternberg, J. A.; Tompkins, R. G.; Ausubel, F. M., 

Pseudomonas aeruginosa Killing of Caenorhabditis elegans used to Identify P. aeruginosa 

Virulence Factors. Proceedings of the National Academy of Sciences 1999, 96 (5), 2408-2413. 

11. Tan, M.-W.; Ausubel, F. M., Caenorhabditis elegans: a Model Genetic Host to Study 

Pseudomonas aeruginosa Pathogenesis. Current Opinion in Microbiology 2000, 3 (1), 29-34. 

12. Mallo, G. V.; Kurz, C. L.; Couillault, C.; Pujol, N.; Granjeaud, S.; Kohara, Y.; Ewbank, 

J. J., Inducible Antibacterial Defense System in C. elegans. Current Biology 2002, 12 (14), 1209-

1214. 

13. Murphy, C. T.; McCarroll, S. A.; Bargmann, C. I.; Fraser, A.; Kamath, R. S.; Ahringer, 

J.; Li, H.; Kenyon, C., Genes that Act Downstream of DAF-16 to Influence the Lifespan of 

Caenorhabditis elegans. Nature 2003, 424 (6946), 277-283. 

14. Troemel, E. R.; Chu, S. W.; Reinke, V.; Lee, S. S.; Ausubel, F. M.; Kim, D. H., p38 

MAPK Regulates Expression of Immune Response Genes and Contributes to Longevity in C. 

elegans PLOS Genetics 2006, 2 (11), e183. 



 

 156 

 

15. Youngman, M. J.; Rogers, Z. N.; Kim, D. H., A Decline in p38 MAPK Signaling 

Underlies Immunosenescence in Caenorhabditis elegans. PLOS Genetics 2011, 7 (5), e1002082. 

16. Schulenburg, H.; Kurz, C. L.; Ewbank, J. J., Evolution of the Innate Immune System: 

The Worm Perspective. Immunol Rev 2004, 198, 36-58. 

17. Tan, M. W.; Mahajan-Miklos, S.; Ausubel, F. M., Killing of Caenorhabditis elegans by 

Pseudomonas aeruginosa used to Model Mammalian Bacterial Pathogenesis. Proceedings of the 

National Academy of Sciences of the United States of America 1999, 96 (2), 715-20. 

18. Shapira, M.; Hamlin, B. J.; Rong, J.; Chen, K.; Ronen, M.; Tan, M.-W., A Conserved 

Role for a GATA Transcription Factor in Regulating Epithelial Innate Immune Responses. 

Proceedings of the National Academy of Sciences 2006, 103 (38), 14086-14091. 

19. Engelmann, I.; Griffon, A.; Tichit, L.; Montañana-Sanchis, F.; Wang, G.; Reinke, V.; 

Waterston, R. H.; Hillier, L. W.; Ewbank, J. J., A Comprehensive Analysis of Gene Expression 

Changes Provoked by Bacterial and Fungal Infection in C. elegans. PLoS ONE 2011, 6 (5), 

e19055. 

20. Pujol, N.; Zugasti, O.; Wong, D.; Couillault, C.; Kurz, C. L.; Schulenburg, H.; Ewbank, 

J. J., Anti-Fungal Innate Immunity in C. elegans Is Enhanced by Evolutionary Diversification of 

Antimicrobial Peptides. PLoS Pathog 2008, 4 (7), e1000105. 

21. Bolz, D. D., Tenor, J.L., Aballay, A., A Conserved PMK-1/p38 MAPK is Required in 

Caenorhabditis elegans Tissue-Specific Immune Response to Yersinia pestis Infection. Journal 

of Biological Chemistry 2010, 285 (14), 10832-10840. 

22. Bogaerts, A.; Beets, I.; Temmerman, L.; Schoofs, L.; Verleyen, P., Proteome Changes of 

Caenorhabditis elegans upon a Staphylococcus aureus Infection. Biol Direct 2010, 5, 11. 



 

 157 

 

23. Simonsen, K. T.; Møller-Jensen, J.; Kristensen, A. R.; Andersen, J. S.; Riddle, D. L.; 

Kallipolitis, B. H., Quantitative Proteomics Identifies Ferritin in the Innate Immune Response of 

C. elegans. Virulence 2011, 2 (2), 120-130. 

24. Durai, S.; Singh, N.; Kundu, S.; Balamurugan, K., Proteomic Investigation of Vibrio 

alginolyticus Challenged Caenorhabditis elegans Revealed Regulation of Cellular Homeostasis 

Proteins and their Role in Supporting Innate Immune System. PROTEOMICS 2014, 14 (15), 

1820-1832. 

25. Vigneshkumar, B.; Durai, S.; Kundu, S.; Balamurugan, K., Proteome Analysis Reveals 

Translational Inhibition of Caenorhabditis elegans Enhances Susceptibility to Pseudomonas 

aeruginosa PAO1 Pathogenesis. Journal of Proteomics 2016. 

26. Treitz, C.; Cassidy, L.; Höckendorf, A.; Leippe, M.; Tholey, A., Quantitative Proteome 

Analysis of Caenorhabditis elegans upon Exposure to Nematicidal Bacillus thuringiensis. 

Journal of Proteomics 2015, 113 (0), 337-350. 

27. Association, A. s., 2018 Alzheimer's Disease Facts and Figures. Alzheimer's & Dementia 

2018, 14 (3), 367-429. 

28. Stampfer, M. J., Cardiovascular Disease and Alzheimer's Disease: Common Links. 

Journal of Internal Medicine 2006, 260 (3), 211-223. 

29. Skoog, I.; Nilsson, L.; Persson, G.; Lernfelt, B.; Landahl, S.; Palmertz, B.; Andreasson, 

L. A.; Odén, A.; Svanborg, A., 15-year Longitudinal Study of Blood Pressure and Dementia. The 

Lancet 1996, 347 (9009), 1141-1145. 

30. Baglietto-Vargas, D.; Shi, J.; Yaeger, D. M.; Ager, R.; LaFerla, F. M., Diabetes and 

Alzheimer’s Disease Crosstalk. Neuroscience & Biobehavioral Reviews 2016, 64, 272-287. 



 

 158 

 

31. Valente, T.; Gella, A.; Fernàndez-Busquets, X.; Unzeta, M.; Durany, N., 

Immunohistochemical Analysis of Human Brain Suggests Pathological Synergism of 

Alzheimer's Disease and Diabetes Mellitus. Neurobiology of Disease 2010, 37 (1), 67-76. 

32. Bomfim, T. R.; Forny-Germano, L.; Sathler, L. B.; Brito-Moreira, J.; Houzel, J.-C.; 

Decker, H.; Silverman, M. A.; Kazi, H.; Melo, H. M.; McClean, P. L.; Holscher, C.; Arnold, S. 

E.; Talbot, K.; Klein, W. L.; Munoz, D. P.; Ferreira, S. T.; De Felice, F. G., An Anti-Diabetes 

Agent Protects the Mouse Brain from Defective Insulin Signaling caused by Alzheimer’s 

Disease–Associated Aβ Oligomers. The Journal of Clinical Investigation 2012, 122 (4), 1339-

1353. 

33. Zigman, W. B., Atypical Aging in Down Syndrome. Developmental Disabilities 

Research Reviews 2013, 18 (1), 51-67. 

34. Mendez, M. F., Early-Onset Alzheimer Disease. Neurologic clinics 2017, 35 (2), 263-

281. 

35. Williamson, J.; Goldman, J.; Marder, K. S., Genetic Aspects of Alzheimer Disease. The 

neurologist 2009, 15 (2), 80-86. 

36. Thordardottir, S.; Kinhult Ståhlbom, A.; Almkvist, O.; Thonberg, H.; Eriksdotter, M.; 

Zetterberg, H.; Blennow, K.; Graff, C., The Effects of Different Familial Alzheimer's Disease 

Mutations on APP Processing in vivo. Alzheimer's research & therapy 2017, 9 (1), 9. 

37. Balin, B. J.; Hudson, A. P., Etiology and Pathogenesis of Late-Onset Alzheimer’s 

Disease. Current Allergy and Asthma Reports 2014, 14 (3), 417. 

38. Sperling, R. A.; Aisen, P. S.; Beckett, L. A.; Bennett, D. A.; Craft, S.; Fagan, A. M.; 

Iwatsubo, T.; Jack, C. R.; Kaye, J.; Montine, T. J.; Park, D. C.; Reiman, E. M.; Rowe, C. C.; 

Siemers, E.; Stern, Y.; Yaffe, K.; Carrillo, M. C.; Thies, B.; Morrison-Bogorad, M.; Wagster, M. 



 

 159 

 

V.; Phelps, C. H., Toward Defining the Preclinical Stages of Alzheimer’s Disease: 

Recommendations from the National Institute on Aging-Alzheimer's Association Workgroups on 

Diagnostic Guidelines for Alzheimer's Disease. Alzheimer's & Dementia 2011, 7 (3), 280-292. 

39. Petersen, R. C.; Smith, G. E.; Waring, S. C.; Ivnik, R. J.; Tangalos, E. G.; Kokmen, E., 

Mild Cognitive Impairment: Clinical Characterization and Outcome. Archives of Neurology 

1999, 56 (3), 303-308. 

40. Petersen, R. C., Mild Cognitive Impairment. Continuum 2016, 22 (2 ), 404-418. 

41. Albert, M. S.; DeKosky, S. T.; Dickson, D.; Dubois, B.; Feldman, H. H.; Fox, N. C.; 

Gamst, A.; Holtzman, D. M.; Jagust, W. J.; Petersen, R. C.; Snyder, P. J.; Carrillo, M. C.; Thies, 

B.; Phelps, C. H., The Diagnosis of Mild Cognitive Impairment due to Alzheimer's Disease: 

Recommendations from the National Institute on Aging-Alzheimer's Association Workgroups on 

Diagnostic Guidelines for Alzheimer's Disease. Alzheimer's & Dementia 2011, 7 (3), 270-279. 

42. Mura, T.; Proust-Lima, C.; Jacqmin-Gadda, H.; Akbaraly, T. N.; Touchon, J.; Dubois, B.; 

Berr, C., Measuring Cognitive Change in Subjects with Prodromal Alzheimer's Disease. Journal 

of neurology, neurosurgery, and psychiatry 2014, 85 (4), 363-370. 

43. Terry, R. D. a.; Davies, P., Dementia of the Alzheimer Type. Annual Review of 

Neuroscience 1980, 3 (1), 77-95. 

44. Rathore, S.; Habes, M.; Iftikhar, M. A.; Shacklett, A.; Davatzikos, C., A Review on 

Neuroimaging-Based Classification Studies and Associated Feature Extraction Methods for 

Alzheimer's Disease and its Prodromal Stages. NeuroImage 2017, 155, 530-548. 

45. Vemuri, P.; Jack, C. R., Jr., Role of Structural MRI in Alzheimer's Disease. Alzheimer's 

research & therapy 2010, 2 (4), 23. 



 

 160 

 

46. Wang, K.; Liang, M.; Wang, L.; Tian, L.; Zhang, X.; Li, K.; Jiang, T., Altered Functional 

Connectivity in Early Alzheimer's Disease: A Resting-State fMRI Study. Human Brain Mapping 

2007, 28 (10), 967-978. 

47. Mosconi, L.; Tsui, W. H.; Herholz, K.; Pupi, A.; Drzezga, A.; Lucignani, G.; Reiman, E. 

M.; Holthoff, V.; Kalbe, E.; Sorbi, S.; Diehl-Schmid, J.; Perneczky, R.; Clerici, F.; Caselli, R.; 

Beuthien-Baumann, B.; Kurz, A.; Minoshima, S.; de Leon, M. J., Multicenter Standardized 18F-

FDG PET Diagnosis of Mild Cognitive Impairment, Alzheimer's Disease, and Other Dementias. 

Journal of Nuclear Medicine 2008, 49 (3), 390-398. 

48. Mosconi, L.; Tsui, W.-H.; De Santi, S.; Li, J.; Rusinek, H.; Convit, A.; Li, Y.; Boppana, 

M.; de Leon, M. J., Reduced Hippocampal Metabolism in MCI and AD. Automated FDG-PET 

image analysis 2005, 64 (11), 1860-1867. 

49. Chartier-Hariln, M.-C.; Parfitt, M.; Legrain, S.; Pérez-Tur, J.; Brousseau, T.; Evans, A.; 

Berr, C.; Vldal, O.; Roques, P.; Gourlet, V.; Fruchart, J.-C.; Delacourte, A.; Rossor, M.; 

Amouyel, P., Apolipoprotein E, ɛ4 Allele as a Major Risk Factor for Sporadic Early and Late-

Onset forms of Alzheimer's Disease: Analysis of the 19q13.2 Chromosomal Region. Human 

Molecular Genetics 1994, 3 (4), 569-574. 

50. Farrer, L. A.; Cupples, L.; Haines, J. L.; et al., Effects of Age, Sex, and Ethnicity on the 

Association between Apolipoprotein E Genotype and Alzheimer Disease: A Meta-Analysis. 

JAMA 1997, 278 (16), 1349-1356. 

51. Liu, C.-C.; Liu, C.-C.; Kanekiyo, T.; Xu, H.; Bu, G., Apolipoprotein E and Alzheimer 

Disease: Risk, Mechanisms and Therapy. Nature reviews. Neurology 2013, 9 (2), 106-118. 

52. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray 

Ionization–Principles and Practice. Mass Spectrometry Reviews 1990, 9 (1), 37-70. 



 

 161 

 

53. Koichi, T.; Hiroaki, W.; Yutaka, I.; Satoshi, A.; Yoshikazu, Y.; Tamio, Y.; T., M., 

Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time‐of‐Flight M ass 

Spectrometry. Rapid Communications in Mass Spectrometry 1988, 2 (8), 151-153. 

54. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T., Matrix-Assisted Laser 

Desorption/Ionization Mass Spectrometry of Biopolymers. Analytical Chemistry 1991, 63 (24), 

1193A-1203A. 

55. Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, 

M. A.; Carpenter, B. K.; McLafferty, F. W., Electron Capture Dissociation for Structural 

Characterization of Multiply Charged Protein Cations. Analytical Chemistry 2000, 72 (3), 563-

573. 

56. Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F., Peptide and 

Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proceedings 

of the National Academy of Sciences of the United States of America 2004, 101 (26), 9528. 

57. Dongré, A. R.; Somogyi, Á.; Wysocki, V. H., Surface‐induced D issociation: A n 

Effective Tool to Probe Structure, Energetics and Fragmentation Mechanisms of Protonated 

Peptides. Journal of Mass Spectrometry 1996, 31 (4), 339-350. 

58. Yu, Q.; Shi, X.; Feng, Y.; Kent, K. C.; Li, L., Improving Data Quality and Preserving 

HCD-Generated Reporter Ions with EThcD for Isobaric Tag-Based Quantitative Proteomics and 

Proteome-Wide PTM Studies. Analytica Chimica Acta 2017, 968, 40-49. 

59. Cooks, R. G., Special Feature: Historical. Collision-Induced Dissociation: Readings and 

Commentary. Journal of Mass Spectrometry 1995, 30 (9), 1215-1221. 

60. Mitchell-Wells, J.; McLuckey, S. A., Collision‐Induced D issociation (C ID ) of Peptides 

and Proteins. In Methods in Enzymology, Academic Press: 2005; Vol. 402, pp 148-185. 



 

 162 

 

61. Cox, J.; Mann, M., MaxQuant Enables High Peptide Identification rates, individualized 

p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology 

2008, 26, 1367. 

62. MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.; Finney, G. L.; Frewen, B.; 

Kern, R.; Tabb, D. L.; Liebler, D. C.; MacCoss, M. J., Skyline: an Open Source Document 

Editor for Creating and Analyzing Targeted Proteomics Experiments. Bioinformatics (Oxford, 

England) 2010, 26 (7), 966-968. 

63. Chelius, D.; Bondarenko, P. V., Quantitative Profiling of Proteins in Complex Mixtures 

Using Liquid Chromatography and Mass Spectrometry. Journal of Proteome Research 2002, 1 

(4), 317-323. 

64. Liu, H.; Sadygov, R. G.; Yates, J. R., A Model for Random Sampling and Estimation of 

Relative Protein Abundance in Shotgun Proteomics. Analytical Chemistry 2004, 76 (14), 4193-

4201. 

65. Wang, W.; Zhou, H.; Lin, H.; Roy, S.; Shaler, T. A.; Hill, L. R.; Norton, S.; Kumar, P.; 

Anderle, M.; Becker, C. H., Quantification of Proteins and Metabolites by Mass Spectrometry 

without Isotopic Labeling or Spiked Standards. Analytical Chemistry 2003, 75 (18), 4818-4826. 

66. Wiener, M. C.; Sachs, J. R.; Deyanova, E. G.; Yates, N. A., Differential Mass 

Spectrometry:  A Label-Free LC−MS Method for Finding Significant Differences in Complex 

Peptide and Protein Mixtures. Analytical Chemistry 2004, 76 (20), 6085-6096. 

67. Griffin, N. M.; Yu, J.; Long, F.; Oh, P.; Shore, S.; Li, Y.; Koziol, J. A.; Schnitzer, J. E., 

Label-free, Normalized Quantification of Complex Mass Spectrometry Data for Proteomic 

Analysis. Nature Biotechnology 2009, 28, 83. 



 

 163 

 

68. Megger, D. A.; Bracht, T.; Meyer, H. E.; Sitek, B., Label-free Quantification in Clinical 

Proteomics. Biochimica et Biophysica Acta (BBA)- Proteins and Proteomics 2013, 1834 (8), 

1581-1590. 

69. Li, Z.; Adams, R. M.; Chourey, K.; Hurst, G. B.; Hettich, R. L.; Pan, C., Systematic 

Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative 

Proteomics on LTQ Orbitrap Velos. Journal of Proteome Research 2012, 11 (3), 1582-1590. 

70. Langen, H. F., M.; Evers, S.; Wipf, B.; Berndt, P., In From Genome to Proteome, 3rd 

Siena 2D Electrophoresis Meeting, Wiley-VCH: Weinheim, Germany, Siena, 1998. 

71. Ong, S.-E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; 

Mann, M., Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and 

Accurate Approach to Expression Proteomics. Molecular & Cellular Proteomics 2002, 1 (5), 

376-386. 

72. Wu, C. C.; MacCoss, M. J.; Howell, K. E.; Matthews, D. E.; Yates, J. R., Metabolic 

Labeling of Mammalian Organisms with Stable Isotopes for Quantitative Proteomic Analysis. 

Analytical Chemistry 2004, 76 (17), 4951-4959. 

73. Hebert, A. S.; Merrill, A. E.; Bailey, D. J.; Still, A. J.; Westphall, M. S.; Strieter, E. R.; 

Pagliarini, D. J.; Coon, J. J., Neutron-Encoded Mass Signatures for Multiplexed Proteome 

Quantification. Nature Methods 2013, 10 (4), 332-334. 

74. Merrill, A. E.; Hebert, A. S.; MacGilvray, M. E.; Rose, C. M.; Bailey, D. J.; Bradley, J. 

C.; Wood, W. W.; El Masri, M.; Westphall, M. S.; Gasch, A. P.; Coon, J. J., NeuCode Labels for 

Relative Protein Quantification. Molecular & Cellular Proteomics 2014, 13 (9), 2503-2512. 

75. Zhang, R.; Sioma, C. S.; Wang, S.; Regnier, F. E., Fractionation of Isotopically Labeled 

Peptides in Quantitative Proteomics. Analytical Chemistry 2001, 73 (21), 5142-5149. 



 

 164 

 

76. Koehler, C. J.; Arntzen, M. Ø.; de Souza, G. A.; Thiede, B., An Approach for Triplex-

Isobaric Peptide Termini Labeling (Triplex-IPTL). Analytical Chemistry 2013, 85 (4), 2478-

2485. 

77. Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; 

Hamon, C., Tandem Mass Tags:  A Novel Quantification Strategy for Comparative Analysis of 

Complex Protein Mixtures by MS/MS. Analytical Chemistry 2003, 75 (8), 1895-1904. 

78. Ross, P. L.; Huang, Y. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; 

Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-

Jones, M.; He, F.; Jacobson, A.; Pappin, D. J., Multiplexed Protein Quantitation in 

Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents. Molecular & 

Cellular Proteomics 2004, 3 (12), 1154-1169. 

79. Xiang, F.; Ye, H.; Chen, R.; Fu, Q.; Li, L., N,N-Dimethyl Leucines as Novel Isobaric 

Tandem Mass Tags for Quantitative Proteomics and Peptidomics. Analytical Chemistry 2010, 82 

(7), 2817-2825. 

80. Evans, A. R.; Robinson, R. A. S., Global Combined Precursor Isotopic Labeling and 

Isobaric Tagging (cPILOT) Approach with Selective MS3 Acquisition. PROTEOMICS 2013, 13 

(22), 3267-3272. 

81. Goshe, M. B.; Smith, R. D., Stable Isotope-Coded Proteomic Mass Spectrometry. 

Current Opinion in Biotechnology 2003, 14 (1), 101-109. 

82. Filer, C. N., Isotopic Fractionation of Organic Compounds in Chromatography. Journal 

of Labelled Compounds and Radiopharmaceuticals 1999, 42 (2), 169-197. 



 

 165 

 

83. Robinson, R. A. S.; Evans, A. R., Enhanced Sample Multiplexing for Nitrotyrosine-

Modified Proteins Using Combined Precursor Isotopic Labeling and Isobaric Tagging. 

Analytical Chemistry 2012, 84 (11), 4677-4686. 

84. Evans, A. R.; Gu, L.; Guerrero, R.; Robinson, R. A. S., Global cPILOT Analysis of the 

APP/PS-1 Mouse Liver Proteome. PROTEOMICS – Clinical Applications 2015, 9 (9-10), 872-

884. 

85. Gu, L.; Evans, A. R.; Robinson, R. A. S., Sample Multiplexing with Cysteine-Selective 

Approaches: cysDML and cPILOT. Journal of The American Society for Mass Spectrometry 

2015, 26 (4), 615-630. 

86. Dephoure, N.; Gygi, S. P., Hyperplexing: A Method for Higher-Order Multiplexed 

Quantitative Proteomics Provides a Map of the Dynamic Response to Rapamycin in Yeast. 

Science Signaling 2012, 5 (217), rs2-rs2. 

87. Braun, C. R.; Bird, G. H.; Wühr, M.; Erickson, B. K.; Rad, R.; Walensky, L. D.; Gygi, S. 

P.; Haas, W., Generation of Multiple Reporter Ions from a Single Isobaric Reagent Increases 

Multiplexing Capacity for Quantitative Proteomics. Analytical Chemistry 2015, 87 (19), 9855-

9863. 

88. Everley, R. A.; Kunz, R. C.; McAllister, F. E.; Gygi, S. P., Increasing Throughput in 

Targeted Proteomics Assays: 54-Plex Quantitation in a Single Mass Spectrometry Run. 

Analytical Chemistry 2013, 85 (11), 5340-5346. 

89. Gu, L.; Robinson, R. A. S., High-Throughput Endogenous Measurement of S-

Nitrosylation in Alzheimer's Disease using Oxidized Cysteine-Selective cPILOT. Analyst 2016, 

141 (12), 3904-3915. 



 

 166 

 

90. Gu, L.; Robinson, R. A. S., Proteomic Approaches to Quantify Cysteine Reversible 

Modifications in Aging and Neurodegenerative Diseases. Proteomics. Clinical applications 

2016, 10 (12), 1159-1177. 

91. Frost, D. C.; Rust, C. J.; Robinson, R. A. S.; Li, L., Increased N,N-Dimethyl Leucine 

Isobaric Tag Multiplexing by a Combined Precursor Isotopic Labeling and Isobaric Tagging 

Approach. Analytical Chemistry 2018, 90 (18), 10664-10669. 

92. Shanley, D. P.; Aw, D.; Manley, N. R.; Palmer, D. B., An evolutionary perspective on the 

mechanisms of immunosenescence. Trends in Immunology 2009, 30 (7), 374-381. 

93. Poland, G. A.; Ovsyannikova, I. G.; Kennedy, R. B.; Lambert, N. D.; Kirkland, J. L., A 

Systems Biology Approach to the Effect of Aging, Immunosenescence and Vaccine Response. 

Current Opinion in Immunology 2014, 29, 62-68. 

94. West, L. A.; Cole, S.; Goodkind, D.; He, W., 65+ in the United States: 2010. In Current 

Population Reports, Bureau, U. S. C., Ed. U.S. Government Printing Office, 2014; pp 23-212. 

95. Larbi, A.; Rymkiewicz, P.; Vasudev, A.; Low, I.; Shadan, N. B.; Mustafah, S.; 

Ayyadhury, S.; Fulop, T., The Immune System in the Elderly: a Fair Fight against Diseases? 

Aging Health 2013, 9 (1), 35-47. 

96. Lyczak, J. B.; Cannon, C. L.; Pier, G. B., Establishment of Pseudomonas aeruginosa 

Infection: Lessons from a Versatile Opportunist. Microbes and Infection 2000, 2 (9), 1051-1060. 

97. Govan, J. R.; Deretic, V., Microbial Pathogenesis in Cystic Fibrosis: Mucoid 

Pseudomonas aeruginosa and Burkholderia cepacia. Microbiological Reviews 1996, 60 (3), 539-

574. 



 

 167 

 

98. Bendig, J. W.; Kyle, P. W.; Giangrande, P. L.; Samson, D. M.; Azadian, B. S., Two 

Neutropenic Patients with Multiple Resistant Pseudomonas aeruginosa Septicaemia Treated 

with Ciprofloxacin. Journal of the Royal Society of Medicine 1987, 80 (5), 316-317. 

99. Franzetti, F.; Cernuschi, M.; Esposito, R.; Moroni, M., Pseudomonas Infections in 

Patients with AIDS and AIDS-Related Complex. Journal of Internal Medicine 1992, 231 (4), 

437-443. 

100. Marcia, K.; Atmar, R. L.; Richard, J. H.; Daniel, M. M., Life-Threatening Pseudomonas 

aeruginosa Infections in Patients with Human Immunodeficiency Virus Infection. Clinical 

Infectious Diseases 1992, 14 (2), 403-411. 

101. Guggenbichler, J. P.; Assadian, O.; Boeswald, M.; Kramer, A., Incidence and Clinical 

Implication of Nosocomial Infections Associated with Implantable Biomaterials - Catheters, 

Ventilator-Associated Pneumonia, Urinary Tract Infections. GMS Krankenhaushygiene 

interdisziplinar 2011, 6 (1), Doc18-Doc18. 

102. Consortium, T. C. e. S., Genome Sequence of the Nematode C. elegans: A Platform for 

Investigating Biology. Science 1998, 282 (5396), 2012-2018. 

103. Tjahjono, E.; Kirienko, N. V., A Conserved Mitochondrial Surveillance Pathway is 

Required for Defense against Pseudomonas aeruginosa. PLOS Genetics 2017, 13 (6), e1006876. 

104. Krijgsveld, J.; Ketting, R. F.; Mahmoudi, T.; Johansen, J.; Artal-Sanz, M.; Verrijzer, C. 

P.; Plasterk, R. H. A.; Heck, A. J. R., Metabolic Labeling of C. elegans and D. melanogaster for 

Quantitative Proteomics. Nature Biotechnology 2003, 21 (8), 927-931. 

105. Gouw, J. W.; Tops, B. B. J.; Mortensen, P.; Heck, A. J. R.; Krijgsveld, J., Optimizing 

Identification and Quantitation of 15N-Labeled Proteins in Comparative Proteomics. Analytical 

Chemistry 2008, 80 (20), 7796-7803. 



 

 168 

 

106. Frewen, B. E.; Merrihew, G. E.; Wu, C. C.; Noble, W. S.; MacCoss, M. J., Analysis of 

Peptide MS/MS Spectra from Large-Scale Proteomics Experiments Using Spectrum Libraries. 

Analytical Chemistry 2006, 78 (16), 5678-5684. 

107. Walther, Dirk M.; Kasturi, P.; Zheng, M.; Pinkert, S.; Vecchi, G.; Ciryam, P.; Morimoto, 

Richard I.; Dobson, Christopher M.; Vendruscolo, M.; Mann, M.; Hartl, F. U., Widespread 

Proteome Remodeling and Aggregation in Aging C. elegans. Cell 161 (4), 919-932. 

108. Bogaerts, A.; Temmerman, L.; Boerjan, B.; Husson, S. J.; Schoofs, L.; Verleyen, P., A 

Differential Proteomics Study of Caenorhabditis elegans Infected with Aeromonas hydrophila. 

Developmental & Comparative Immunology 2010, 34 (6), 690-698. 

109. Dai, L.-L.; Gao, J.-X.; Zou, C.-G.; Ma, Y.-C.; Zhang, K.-Q., mir-233 Modulates the 

Unfolded Protein Response in C. elegans during Pseudomonas aeruginosa Infection. PLoS 

Pathog 2015, 11 (1), e1004606. 

110. Brenner, S., The Genetics of Caenorhabditis elegans. Genetics 1974, 77, 71 - 94. 

111. Mahajan-Miklos, S.; Tan, M. W.; Rahme, L. G.; Ausubel, F. M., Molecular Mechanisms 

of Bacterial Virulence Elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans 

Pathogenesis Model. Cell 1999, 96 (1), 47-56. 

112. Keith, S. A.; Amrit, F. R. G.; Ratnappan, R.; Ghazi, A., The C. elegans Healthspan and 

Stress-Resistance Assay Toolkit. Methods 2014, 68 (3), 476-486. 

113. Amrit, F. R. G.; Ratnappan, R.; Keith, S. A.; Ghazi, A., The C. elegans Lifespan Assay 

Toolkit. Methods 2014, 68 (3), 465-475. 

114. Yang, J.-S.; Nam, H.-J.; Seo, M.; Han, S. K.; Choi, Y.; Nam, H. G.; Lee, S.-J.; Kim, S., 

OASIS: Online Application for the Survival Analysis of Lifespan Assays Performed in Aging 

Research. PLoS ONE 2011, 6 (8), e23525. 



 

 169 

 

115. Cao, Z.; Yende, S.; Kellum, J. A.; Angus, D. C.; Robinson, R. A., Proteomics Reveals 

Age-Related Differences in the Host Immune Response to Sepsis. Journal of Proteome Research 

2014, 13 (2), 422-32. 

116. Ting, L.; Rad, R.; Gygi, S. P.; Haas, W., MS3 Eliminates Ratio Distortion in Isobaric 

Multiplexed Quantitative Proteomics. Nature Methods 2011, 8 (11), 937-940. 

117. Wenger, C. D.; Lee, M. V.; Hebert, A. S.; McAlister, G. C.; Phanstiel, D. H.; Westphall, 

M. S.; Coon, J. J., Gas-Phase Purification Enables Accurate, Multiplexed Proteome 

Quantification with Isobaric Tagging. Nature Methods 2011, 8 (11), 933-935. 

118. Lau, H.-T.; Suh, H. W.; Golkowski, M.; Ong, S.-E., Comparing SILAC- and Stable 

Isotope Dimethyl-Labeling Approaches for Quantitative Proteomics. Journal of Proteome 

Research 2014, 13 (9), 4164-4174. 

119. Szklarczyk, D.; Morris, J. H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, 

A.; Doncheva, N. T.; Roth, A.; Bork, P.; Jensen, L. J.; von Mering, C., The STRING Database in 

2017: Quality-Controlled Protein–Protein Association Networks, made Broadly Accessible. 

Nucleic Acids Research 2017, 45 (D1), D362-D368. 

120. Goudeau, J.; Aguilaniu, H., Carbonylated Proteins are Eliminated during Reproduction in 

C. elegans. Aging Cell 2010, 9 (6), 991-1003. 

121. Ono, K.; Parast, M.; Alberico, C.; Benian, G. M.; Ono, S., Specific Requirement for Two 

ADF/Cofilin Isoforms in Distinct Actin-Dependent Processes in Caenorhabditis elegans. 

Journal of Cell Science 2003, 116 (10), 2073-2085. 

122. Kashyap, L.; Perera, S.; Fisher, A. L., Identification of Novel Genes Involved in 

Sarcopenia Through RNAi Screening in Caenorhabditis elegans. The Journals of Gerontology: 

Series A 2012, 67A (1), 56-65. 



 

 170 

 

123. Melo, Justine A.; Ruvkun, G., Inactivation of Conserved C. elegans Genes Engages 

Pathogen- and Xenobiotic-Associated Defenses. Cell 2012, 149 (2), 452-466. 

124. Sifri, C. D.; Begun, J.; Ausubel, F. M., The Worm has Turned--Microbial Virulence 

Modeled in Caenorhabditis elegans. Trends Microbiol 2005, 13 (3), 119-27. 

125. Marsh, K. E. M., R. C., Caenorhabditis elegans, a Model Organism for Investigating 

Immunity. Applied and Enviromental Microbiology 2012, 78 (7), 2075 - 2081. 

126. Gruber, J.; Chen, C.-B.; Fong, S.; Ng, L. F.; Teo, E.; Halliwell, B., Caenorhabditis 

elegans: What We Can and Cannot Learn from Aging Worms. Antioxidants & Redox Signaling 

2014. 

127. Hauser, A. R. R., J., Severe Infections caused by Pseudomonas Aeruginosa. Kluwer 

Academic Publishers: Norwell, MA, 2003. 

128. Gallagher, L. A.; Manoil, C., Pseudomonas aeruginosa PAO1 Kills Caenorhabditis 

elegans by Cyanide Poisoning. Journal of Bacteriology 2001, 183 (21), 6207-14. 

129. Pessi, G.; Haas, D., Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes 

hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR 

inPseudomonas aeruginosa. Journal of Bacteriology 2000, 182 (24), 6940-6949. 

130. Whiteley, M.; Lee, K. M.; Greenberg, E. P., Identification of Genes Controlled by 

Quorum Sensing in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences 

1999, 96 (24), 13904-13909. 

131. Darby, C.; Cosma, C. L.; Thomas, J. H.; Manoil, C., Lethal Paralysis of Caenorhabditis 

elegans by Pseudomonas aeruginosa Proceedings of the National Academy of Sciences 1999, 96 

(26), 15202 - 15207. 



 

 171 

 

132. Vigneshkumar, B.; Pandian, S. K.; Balamurugan, K., Regulation of Caenorhabditis 

elegans and Pseudomonas aeruginosa Machinery during Interactions. Arch Microbiol 2012, 194 

(4), 229-42. 

133. Gething, M.-J.; Sambrook, J., Protein Folding in the Cell. Nature 1992, 355 (6355), 33-

45. 

134. Parsell, D. A.; Lindquist, S., The Function of Heat-Shock Proteins in Stress Tolerance: 

Degradation and Reactivation of Damaged Proteins. Annual Review of Genetics 1993, 27 (1), 

437-496. 

135. Morley, J. F.; Morimoto, R. I., Regulation of Longevity in Caenorhabditis elegans by 

Heat Shock Factor and Molecular Chaperones. Molecular Biology of the Cell 2004, 15 (2), 657-

664. 

136. Srivastava, P., Roles of Heat-Shock Proteins in Innate and Adaptive Immunity. Nature 

Reviews Immunology 2002, 2 (3), 185-194. 

137. Stewart, G. R.; Young, D. B., Heat-Shock Proteins and the Host–Pathogen Interaction 

during Bacterial Infection. Current Opinion in Immunology 2004, 16 (4), 506-510. 

138. Njemini, R.; Lambert, M.; Demanet, C.; Kooijman, R.; Mets, T., Basal and Infection-

Induced Levels of Heat Shock Proteins in Human Aging. Biogerontology 2007, 8 (3), 353-364. 

139. Njemini, R.; Lambert, M.; Demanet, C.; Vanden Abeele, M.; Vandebosch, S.; Mets, T., 

The Induction of Heat Shock Protein 70 in Peripheral Mononuclear Blood Cells in Elderly 

Patients: a Role for Inflammatory Markers. Human Immunology 2003, 64 (6), 575-585. 

140. Njemini, R.; Lambert, M.; Demanet, C.; Mets, T., Elevated Serum Heat-Shock Protein 70 

Levels in Patients with Acute Infection: Use of an Optimized Enzyme-Linked Immunosorbent 

Assay. Scandinavian Journal of Immunology 2003, 58 (6), 664-669. 



 

 172 

 

141. Herndon, L. A.; Schmeissner, P. J.; Dudaronek, J. M.; Brown, P. A.; Listner, K. M.; 

Sakano, Y.; Paupard, M. C.; Hall, D. H.; Driscoll, M., Stochastic and Genetic Gactors Influence 

Tissue-Specific Decline in Ageing C. elegans. Nature 2002, 419 (6909), 808-814. 

142. Ono, S.; Baillie, D. L.; Benian, G. M., UNC-60B, an ADF/Cofilin Family Protein, Is 

Required for Proper Assembly of Actin into Myofibrils in Caenorhabditis elegans Body Wall 

Muscle. The Journal of Cell Biology 1999, 145 (3), 491-502. 

143. Levine, R. L.; Stadtman, E. R., Oxidative Modification of Proteins during Aging. 

Experimental Gerontology 2001, 36 (9), 1495-1502. 

144. Portal-Celhay, C.; Bradley, E.; Blaser, M., Control of Intestinal Bacterial Proliferation in 

Regulation of Lifespan in Caenorhabditis elegans. BMC Microbiology 2012, 12 (1), 49. 

145. Chávez, V.; Mohri-Shiomi, A.; Maadani, A.; Vega, L. A.; Garsin, D. A., Oxidative Stress 

Enzymes Are Required for DAF-16-Mediated Immunity Due to Generation of Reactive Oxygen 

Species by Caenorhabditis elegans. Genetics 2007, 176 (3), 1567-1577. 

146. Minniti, A. N.; Cataldo, R.; Trigo, C.; Vasquez, L.; Mujica, P.; Leighton, F.; Inestrosa, N. 

C.; Aldunate, R., Methionine Sulfoxide Reductase A Expression is Regulated by the DAF-

16/FOXO Pathway in Caenorhabditis elegans. Aging Cell 2009, 8 (6), 690-705. 

147. King, C. D.; Singh, D.; Holden, K.; Govan, A. B.; Keith, S.; Ghazi, A.; Robinson, R. A. 

S., Dataset of Proteomics Analysis of Aging C. elegans Exposed to Pseudomonas aeruginosa 

Strain PA01. Data in brief 2017, 11, 245-251. 

148. Olsen, J. V.; Schwartz, J. C.; Griep-Raming, J.; Nielsen, M. L.; Damoc, E.; Denisov, E.; 

Lange, O.; Remes, P.; Taylor, D.; Splendore, M.; Wouters, E. R.; Senko, M.; Makarov, A.; 

Mann, M.; Horning, S., A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High 

Sequencing Speed. Molecular & Cellular Proteomics 2009, 8 (12), 2759-2769. 



 

 173 

 

149. de la Monte, S. M.; Tong, M., Brain Metabolic Dysfunction at the Core of Alzheimer's 

Disease. Biochemical pharmacology 2014, 88 (4), 548-559. 

150. Steen, E.; Terry, B. M.; Rivera, E. J.; Cannon, J. L.; Neely, T. R.; Tavares, R.; Xu, X. J.; 

Wands, J. R.; de la Monte, S. M., Impaired Insulin and Insulin-Like Growth Factor Expression 

and Signaling Mechanisms in Alzheimer's Disease--is this Type 3 Diabetes? Journal of 

Alzheimer's Disease 2005, 7 (1), 63-80. 

151. Talbot, K.; Wang, H.-Y.; Kazi, H.; Han, L.-Y.; Bakshi, K. P.; Stucky, A.; Fuino, R. L.; 

Kawaguchi, K. R.; Samoyedny, A. J.; Wilson, R. S.; Arvanitakis, Z.; Schneider, J. A.; Wolf, B. 

A.; Bennett, D. A.; Trojanowski, J. Q.; Arnold, S. E., Demonstrated Brain Insulin Resistance in 

Alzheimer's Disease Patients is Associated with IGF-1 Resistance, IRS-1 Dysregulation, and 

Cognitive Decline. The Journal of Clinical Investigation 2012, 122 (4), 1316-1338. 

152. Furst, A. J.; Rabinovici, G. D.; Rostomian, A. H.; Steed, T.; Alkalay, A.; Racine, C.; 

Miller, B. L.; Jagust, W. J., Cognition, Glucose Metabolism and Amyloid Burden in Alzheimer's 

Disease. Neurobiology of Aging 2012, 33 (2), 215-225. 

153. Valenti, R.; Pantoni, L.; Markus, H. S., Treatment of Vascular Risk Factors in Patients 

with a Diagnosis of Alzheimer’s Disease: a Systematic Review. BMC Medicine 2014, 12 (1), 

160. 

154. de Bruijn, R. F.; Ikram, M. A., Cardiovascular Risk Factors and Future Risk of 

Alzheimer’s Disease. BMC Medicine 2014, 12 (1), 130. 

155. Attems, J.; Jellinger, K. A., The Overlap between Vascular Disease and Alzheimer’s 

Disease - Lessons from Pathology. BMC Medicine 2014, 12 (1), 206. 

156. Savonenko, A.; Xu, G. M.; Melnikova, T.; Morton, J. L.; Gonzales, V.; Wong, M. P. F.; 

Price, D. L.; Tang, F.; Markowska, A. L.; Borchelt, D. R., Episodic-Like Memory Deficits in the 



 

 174 

 

APPswe/PS1dE9 Mouse Model of Alzheimer's Disease: Relationships to β-amyloid Deposition 

and Neurotransmitter Abnormalities. Neurobiology of Disease 2005, 18 (3), 602-617. 

157. Reaume, A. G.; Howland, D. S.; Trusko, S. P.; Savage, M. J.; Lang, D. M.; Greenberg, B. 

D.; Siman, R.; Scott, R. W., Enhanced Amyloidogenic Processing of the β-Amyloid Precursor 

Protein in Gene-targeted Mice Bearing the Swedish Familial Alzheimer's Disease Mutations and 

a “Humanized” Aβ Sequence. Journal of Biological Chemistry 1996, 271 (38), 23380-23388. 

158. Sultana, R.; Robinson, R. A. S.; Di Domenico, F.; Abdul, H. M.; Clair, D. K. S.; 

Markesbery, W. R.; Cai, J.; Pierce, W. M.; Butterfield, D. A., Proteomic Identification of 

Specifically Carbonylated Brain Proteins in APPNLh/APPNLh×PS-1P264L/PS-1P264L Human 

Double Mutant Knock-in Mice Model of Alzheimer Disease as a Gunction of Age. Journal of 

Proteomics 2011, 74 (11), 2430-2440. 

159. Kempf, S. J.; Metaxas, A.; Ibáñez-Vea, M.; Darvesh, S.; Finsen, B.; Larsen, M. R., An 

Integrated Proteomics Approach Shows Synaptic Plasticity Changes in an APP/PS1 Alzheimer's 

Mouse Model. Oncotarget 2016, 7 (23), 33627-33648. 

160. Völgyi, K.; Badics, K.; Sialana, F. J.; Gulyássy, P.; Udvari, E. B.; Kis, V.; Drahos, L.; 

Lubec, G.; Kékesi, K. A.; Juhász, G., Early Presymptomatic Changes in the Proteome of 

Mitochondria-Associated Membrane in the APP/PS1 Mouse Model of Alzheimer’s Disease. 

Molecular Neurobiology 2018, 55 (10), 7839-7857. 

161. LaBaer, J.; Ramachandran, N., Protein Microarrays as Tools for Functional Proteomics. 

Current Opinion in Chemical Biology 2005, 9 (1), 14-19. 

162. Ünlü, M.; Morgan, M. E.; Minden, J. S., Difference Gel Electrophoresis. A Single Gel 

Method for Detecting Changes in Protein Extracts. ELECTROPHORESIS 1997, 18 (11), 2071-

2077. 



 

 175 

 

163. Kellermann, J., ICPL—Isotope-Coded Protein Label. In 2D PAGE: Sample Preparation 

and Fractionation, Posch, A., Ed. Humana Press: Totowa, NJ, 2008; pp 113-123. 

164. Yao, X.; Freas, A.; Ramirez, J.; Demirev, P. A.; Fenselau, C., Proteolytic 18O Labeling 

for Comparative Proteomics:  Model Studies with Two Serotypes of Adenovirus. Analytical 

Chemistry 2001, 73 (13), 2836-2842. 

165. Ghesquiere, B.; Goethals, M.; Van Damme, J.; Staes, A.; Timmerman, E.; 

Vandekerckhove, J.; Gevaert, K., Improved Tandem Mass Spectrometric Characterization of 3-

nitrotyrosine Sites in Peptides. Rapid Communications in Mass Spectrometry 2006, 20 (19), 

2885-93. 

166. Wiese, S.; Reidegeld, K. A.; Meyer, H. E.; Warscheid, B., Protein Labeling by iTRAQ: A 

New Tool for Quantitative Mass Spectrometry in Proteome Research. PROTEOMICS 2007, 7 

(3), 340-350. 

167. McAlister, G. C.; Huttlin, E. L.; Haas, W.; Ting, L.; Jedrychowski, M. P.; Rogers, J. C.; 

Kuhn, K.; Pike, I.; Grothe, R. A.; Blethrow, J. D.; Gygi, S. P., Increasing the Multiplexing 

Capacity of TMTs Using Reporter Ion Isotopologues with Isobaric Masses. Analytical Chemistry 

2012, 84 (17), 7469-7478. 

168. Frost, D. C.; Greer, T.; Li, L., High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for 

Quantitative Proteomics. Analytical Chemistry 2015, 87 (3), 1646-1654. 

169. Senko, M. W.; Remes, P. M.; Canterbury, J. D.; Mathur, R.; Song, Q.; Eliuk, S. M.; 

Mullen, C.; Earley, L.; Hardman, M.; Blethrow, J. D.; Bui, H.; Specht, A.; Lange, O.; Denisov, 

E.; Makarov, A.; Horning, S.; Zabrouskov, V., Novel Parallelized Quadrupole/Linear Ion 

Trap/Orbitrap Tribrid Mass Spectrometer Improving Proteome Coverage and Peptide 

Identification Rates. Analytical Chemistry 2013, 85 (24), 11710-11714. 



 

 176 

 

170. Eliuk, S.; Makarov, A., Evolution of Orbitrap Mass Spectrometry Instrumentation. 

Annual Review of Analytical Chemistry 2015, 8 (1), 61-80. 

171. McAlister, G. C.; Nusinow, D. P.; Jedrychowski, M. P.; Wühr, M.; Huttlin, E. L.; 

Erickson, B. K.; Rad, R.; Haas, W.; Gygi, S. P., MultiNotch MS3 Enables Accurate, Sensitive, 

and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes. 

Analytical Chemistry 2014, 86 (14), 7150-7158. 

172. Plubell, D. L.; Wilmarth, P. A.; Zhao, Y.; Fenton, A. M.; Minnier, J.; Reddy, A. P.; 

Klimek, J.; Yang, X.; David, L. L.; Pamir, N., Extended Multiplexing of Tandem Mass Tags 

(TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse 

Epididymal Adipose Tissue. Molecular & Cellular Proteomics 2017, 16 (5), 873-890. 

173. Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M. Y.; Geiger, T.; Mann, M.; 

Cox, J., The Perseus Computational Platform for Comprehensive Analysis of (Prote)omics Data. 

Nature Methods 2016, 13, 731. 

174. Suzuki, T.; Araki, Y.; Yamamoto, T.; Nakaya, T., Trafficking of Alzheimer's Disease–

Related Membrane Proteins and Its Participation in Disease Pathogenesis. The Journal of 

Biochemistry 2006, 139 (6), 949-955. 

175. Di Paolo, G.; Kim, T.-W., Linking Lipids to Alzheimer's Disease: Cholesterol and 

Beyond. Nature Reviews Neuroscience 2011, 12 (5), 284-296. 

176. Martins, I. J.; Berger, T.; Sharman, M. J.; Verdile, G.; Fuller, S. J.; Martins, R. N., 

Cholesterol Metabolism and Transport in the Pathogenesis of Alzheimer’s Disease. Journal of 

Neurochemistry 2009, 111 (6), 1275-1308. 

177. Mahley, R. W., Apolipoprotein E: from Cardiovascular Disease to Neurodegenerative 

Disorders. Journal of Molecular Medicine 2016, 94 (7), 739-746. 



 

 177 

 

178. Poirier, J.; Bertrand, P.; Poirier, J.; Kogan, S.; Gauthier, S.; Poirier, J.; Gauthier, S.; 

Davignon, J.; Bouthillier, D.; Davignon, J., Apolipoprotein E Polymorphism and Alzheimer's 

Disease. The Lancet 1993, 342 (8873), 697-699. 

179. Kamino, K.; Nagasaka, K.; Imagawa, M.; Yamamoto, H.; Yoneda, H.; Ueki, A.; 

Kitamura, S.; Namekata, K.; Miki, T.; Ohta, S., Deficiency in Mitochondrial Aldehyde 

Dehydrogenase Increases the Risk for Late-Onset Alzheimer's Disease in the Japanese 

Population. Biochemical and Biophysical Research Communications 2000, 273 (1), 192-196. 

180. Grünblatt, E.; Riederer, P., Aldehyde Dehydrogenase (ALDH) in Alzheimer’s and 

Parkinson’s Disease. Journal of Neural Transmission 2016, 123 (2), 83-90. 

181. Taguchi, H.; Planque, S.; Sapparapu, G.; Boivin, S.; Hara, M.; Nishiyama, Y.; Paul, S., 

Exceptional Amyloid Beta Peptide Hydrolyzing Activity of Nonphysiological Immunoglobulin 

Variable Domain Scaffolds. The Journal of biological chemistry 2008, 283 (52), 36724-36733. 

182. Cadonic, C.; Sabbir, M. G.; Albensi, B. C., Mechanisms of Mitochondrial Dysfunction in 

Alzheimer’s Disease. Molecular Neurobiology 2016, 53 (9), 6078-6090. 

183. Chen, Z.; Zhong, C., Decoding Alzheimer's Disease from Perturbed Cerebral Glucose 

Metabolism: Implications for Diagnostic and Therapeutic Strategies. Progress in Neurobiology 

2013, 108, 21-43. 

184. Calsolaro, V.; Edison, P., Alterations in Glucose Metabolism in Alzheimer's Disease. 

Recent Patents on Endocrine, Metabolic & Immune Drug Discovery 2016, 10 (1), 31-39. 

185. Cisternas, P.; Inestrosa, N. C., Brain Glucose Metabolism: Role of Wnt Signaling in the 

Metabolic Impairment in Alzheimer’s Disease. Neuroscience & Biobehavioral Reviews 2017, 

80, 316-328. 



 

 178 

 

186. Grimm, M. O. W.; Rothhaar, T. L.; Hartmann, T., The Role of APP Proteolytic 

Processing in Lipid Metabolism. Experimental Brain Research 2012, 217 (3), 365-375. 

187. Chan, R. B.; Oliveira, T. G.; Cortes, E. P.; Honig, L. S.; Duff, K. E.; Small, S. A.; Wenk, 

M. R.; Shui, G.; Di Paolo, G., Comparative Lipidomic Analysis of Mouse and Human Brain with 

Alzheimer Disease. The Journal of biological chemistry 2012, 287 (4), 2678-2688. 

188. Steculorum, S. M.; Solas, M.; Brüning, J. C., The Paradox of Neuronal Insulin Action 

and Resistance in the Development of Aging-Associated Diseases. Alzheimer's & Dementia 

2014, 10 (1, Supplement), S3-S11. 

189. Neth, B. J.; Craft, S., Insulin Resistance and Alzheimer's Disease: Bioenergetic Linkages. 

Frontiers in aging neuroscience 2017, 9, 345-345. 

190. Diehl, T.; Mullins, R.; Kapogiannis, D., Insulin Resistance in Alzheimer's Disease. 

Translational Research 2017, 183, 26-40. 

191. Morris, J. K.; Honea, R. A.; Vidoni, E. D.; Swerdlow, R. H.; Burns, J. M., Is Alzheimer's 

Disease a Systemic Disease? Biochimica et biophysica acta 2014, 1842 (9), 1340-1349. 

192. Tramutola, A.; Abate, G.; Lanzillotta, C.; Triani, F.; Barone, E.; Iavarone, F.; 

Vincenzoni, F.; Castagnola, M.; Marziano, M.; Memo, M.; Garrafa, E.; Butterfield, D. A.; 

Perluigi, M.; Di Domenico, F.; Uberti, D., Protein Nitration profile of CD3+ Lymphocytes from 

Alzheimer Disease Patients: Novel Hints on Immunosenescence and Biomarker Detection. Free 

Radical Biology and Medicine 2018, 129, 430-439. 

193. Tamaki, C.; Ohtsuki, S.; Iwatsubo, T.; Hashimoto, T.; Yamada, K.; Yabuki, C.; Terasaki, 

T., Major Involvement of Low-Density Lipoprotein Receptor-Related Protein 1 in the Clearance 

of Plasma Free Amyloid β-Peptide by the Liver. Pharmaceutical Research 2006, 23 (7), 1407-

1416. 



 

 179 

 

194. Sagare, A.; Deane, R.; Bell, R. D.; Johnson, B.; Hamm, K.; Pendu, R.; Marky, A.; 

Lenting, P. J.; Wu, Z.; Zarcone, T.; Goate, A.; Mayo, K.; Perlmutter, D.; Coma, M.; Zhong, Z.; 

Zlokovic, B. V., Clearance of Amyloid-Beta by Circulating Lipoprotein Receptors. Nature 

medicine 2007, 13 (9), 1029-1031. 

195. Maarouf, C. L.; Walker, J. E.; Sue, L. I.; Dugger, B. N.; Beach, T. G.; Serrano, G. E., 

Impaired Hepatic Amyloid-Beta Degradation in Alzheimer’s Disease. PLoS ONE 2018, 13 (9), 

e0203659. 

196. Wendell, C. R.; Waldstein, S. R.; Ferrucci, L.; O'Brien, R. J.; Strait, J. B.; Zonderman, A. 

B., Carotid Atherosclerosis and Prospective Risk of Dementia. Stroke 2012, 43 (12), 3319-3324. 

197. Silvestrini, M.; Gobbi, B.; Pasqualetti, P.; Bartolini, M.; Baruffaldi, R.; Lanciotti, C.; 

Cerqua, R.; Altamura, C.; Provinciali, L.; Vernieri, F., Carotid Atherosclerosis and Cognitive 

Decline in Patients with Alzheimer's Disease. Neurobiology of Aging 2009, 30 (8), 1177-1183. 

198. Vermeer, S. E.; Prins, N. D.; den Heijer, T.; Hofman, A.; Koudstaal, P. J.; Breteler, M. 

M. B., Silent Brain Infarcts and the Risk of Dementia and Cognitive Decline. New England 

Journal of Medicine 2003, 348 (13), 1215-1222. 

199. Troncoso, J. C.; Zonderman, A. B.; Resnick, S. M.; Crain, B.; Pletnikova, O.; O'Brien, R. 

J., Effect of Infarcts on Dementia in the Baltimore Longitudinal Study of Aging. Annals of 

neurology 2008, 64 (2), 168-176. 

200. Prins, N. D.; van Dijk, E. J.; den Heijer, T., Cerebral White Matter Lesions and the Risk 

of Dementia. Archives of Neurology 2004, 61 (10), 1531-1534. 

201. Inaba, M.; White, L.; Bell, C.; Chen, R.; Petrovitch, H.; Launer, L.; Abbott, R. D.; Ross, 

G. W.; Masaki, K., White Matter Lesions on Brain Magnetic Resonance Imaging Scan and 5-



 

 180 

 

year Cognitive Decline: the Honolulu-Asia Aging study. Journal of the American Geriatrics 

Society 2011, 59 (8), 1484-1489. 

202. de la Torre, J. C., Cardiovascular Risk Factors Promote Brain Hypoperfusion Leading to 

Cognitive Decline and Dementia. Cardiovascular psychiatry and neurology 2012, 2012, 367516-

367516. 

203. Epstein, N. U.; Xie, H.; Ruland, S. D.; Pandey, D. K., Vascular Risk Factors and 

Cardiovascular Outcomes in the Alzheimer’s Disease Neuroimaging Initiative. American 

Journal of Alzheimer's Disease & Other Dementias 2012, 27 (4), 275-279. 

204. Liu, G.; Yao, L.; Liu, J.; Jiang, Y.; Ma, G.; Chen, Z.; Zhao, B.; Li, K., Cardiovascular 

Disease Contributes to Alzheimer's Disease: Evidence from Large-Scale Genome-Wide 

Association Studies. Neurobiology of Aging 2014, 35 (4), 786-792. 

205. Rosano, C.; Newman, A. B., Cardiovascular Disease and Risk of Alzheimer's Disease. 

Neurological Research 2006, 28 (6), 612-620. 

206. Liao, P.-C.; Yu, L.; Kuo, C.-C.; Lin, C.; Kuo, Y.-M., Proteomics Analysis of Plasma for 

Potential Biomarkers in the Diagnosis of Alzheimer's Disease. PROTEOMICS – Clinical 

Applications 2007, 1 (5), 506-512. 

207. Dayon, L.; Núñez Galindo, A.; Wojcik, J.; Cominetti, O.; Corthésy, J.; Oikonomidi, A.; 

Henry, H.; Kussmann, M.; Migliavacca, E.; Severin, I.; Bowman, G. L.; Popp, J., Alzheimer 

Disease Pathology and the Cerebrospinal Fluid Proteome. Alzheimer's research & therapy 2018, 

10 (1), 66. 

208. Begcevic, I.; Kosanam, H.; Martínez-Morillo, E.; Dimitromanolakis, A.; Diamandis, P.; 

Kuzmanov, U.; Hazrati, L.-N.; Diamandis, E. P., Semiquantitative Proteomic Analysis of Human 



 

 181 

 

Hippocampal Tissues from Alzheimer's Disease and Age-Matched Control Brains. Clinical 

proteomics 2013, 10 (1), 5. 

209. Andreev, V. P.; Petyuk, V. A.; Brewer, H. M.; Karpievitch, Y. V.; Xie, F.; Clarke, J.; 

Camp, D.; Smith, R. D.; Lieberman, A. P.; Albin, R. L.; Nawaz, Z.; El Hokayem, J.; Myers, A. 

J., Label-Free Quantitative LC-MS Proteomics of Alzheimer's Disease and Normally Aged 

Human Brains. Journal of Proteome Research 2012, 11 (6), 3053-3067. 

210. Lachén-Montes, M.; González-Morales, A.; Zelaya, M. V.; Pérez-Valderrama, E.; Ausín, 

K.; Ferrer, I.; Fernández-Irigoyen, J.; Santamaría, E., Olfactory Bulb Neuroproteomics Reveals a 

Chronological Perturbation of Survival Routes and a Disruption of Prohibitin Complex during 

Alzheimer's Disease Progression. Scientific reports 2017, 7 (1), 9115. 

211. Garranzo-Asensio, M.; San Segundo-Acosta, P.; Martínez-Useros, J.; Montero-Calle, A.; 

Fernández-Aceñero, M. J.; Häggmark-Månberg, A.; Pelaez-Garcia, A.; Villalba, M.; Rabano, A.; 

Nilsson, P.; Barderas, R., Identification of Prefrontal Cortex Protein Alterations in Alzheimer's 

Disease. Oncotarget 2018, 9 (13), 10847-10867. 

212. Musunuri, S.; Wetterhall, M.; Ingelsson, M.; Lannfelt, L.; Artemenko, K.; Bergquist, J.; 

Kultima, K.; Shevchenko, G., Quantification of the Brain Proteome in Alzheimer’s Disease 

Using Multiplexed Mass Spectrometry. Journal of Proteome Research 2014, 13 (4), 2056-2068. 

213. Cao, Z.; Robinson, R. A. S., Proteome Characterization of Splenocytes from an Aβpp/ps-

1 Alzheimer's Disease Model. PROTEOMICS 2014, 14 (2-3), 291-297. 

214. Boisgueheneuc, F. d.; Levy, R.; Volle, E.; Seassau, M.; Duffau, H.; Kinkingnehun, S.; 

Samson, Y.; Zhang, S.; Dubois, B., Functions of the left superior frontal gyrus in humans: a 

lesion study. Brain 2006, 129 (12), 3315-3328. 



 

 182 

 

215. Hu, S.; Ide, J. S.; Zhang, S.; Li, C.-S. R., The Right Superior Frontal Gyrus and 

Individual Variation in Proactive Control of Impulsive Response. The Journal of Neuroscience 

2016, 36 (50), 12688-12696. 

216. Metsalu, T.; Vilo, J., ClustVis: a Web Tool for Visualizing Clustering of Multivariate 

Data using Principal Component Analysis and Heatmap. Nucleic Acids Research 2015, 43 (W1), 

W566-W570. 

217. Ding, Q.; Markesbery, W. R.; Chen, Q.; Li, F.; Keller, J. N., Ribosome Dysfunction Is an 

Early Event in Alzheimer's Disease. The Journal of Neuroscience 2005, 25 (40), 9171-9175. 

218. Hernández-Ortega, K.; Garcia-Esparcia, P.; Gil, L.; Lucas, J. J.; Ferrer, I., Altered 

Machinery of Protein Synthesis in Alzheimer's: From the Nucleolus to the Ribosome. Brain 

Pathology 2016, 26 (5), 593-605. 

219. Silva, D. F.; Selfridge, J. E.; Lu, J.; E, L.; Cardoso, S. M.; Swerdlow, R. H., 

Mitochondrial Abnormalities in Alzheimer's Disease: Possible Targets for Therapeutic 

Intervention. Advances in pharmacology (San Diego, Calif.) 2012, 64, 83-126. 

220. Novick, P.; Zerial, M., The Diversity of Rab Proteins in Vesicle Transport. Current 

Opinion in Cell Biology 1997, 9 (4), 496-504. 

221. Jiang, S.; Li, Y.; Zhang, X.; Bu, G.; Xu, H.; Zhang, Y.-w., Trafficking Regulation of 

Proteins in Alzheimer's Disease. Molecular neurodegeneration 2014, 9, 6. 

222. Adriaanse, S. M.; Binnewijzend, M. A. A.; Ossenkoppele, R.; Tijms, B. M.; van der 

Flier, W. M.; Koene, T.; Smits, L. L.; Wink, A. M.; Scheltens, P.; van Berckel, B. N. M.; 

Barkhof, F., Widespread disruption of functional brain organization in early-onset Alzheimer’s 

disease. PLoS ONE 2014, 9 (7), e102995. 



 

 183 

 

223. Senanarong, V.; Cummings, J. L.; Fairbanks, L.; Mega, M.; Masterman, D. M.; 

O’Connor, S. M.; Strickland, T. L., Agitation in Alzheimer’s Disease Is a Manifestation of 

Frontal Lobe Dysfunction. Dementia and Geriatric Cognitive Disorders 2004, 17 (1-2), 14-20. 

224. Johnson, J. K.; Head, E.; Kim, R.; Starr, A.; Cotman, C. W., Clinical and Pathological 

Evidence for a Frontal Variant of Alzheimer Disease. Archives of Neurology 1999, 56 (10), 

1233-1239. 

225. Woodward, M.; Jacova, C.; Black, S. E.; Kertesz, A.; Mackenzie, I. R.; Feldman, H., 

Differentiating the Frontal Variant of Alzheimer's Disease. International Journal of Geriatric 

Psychiatry 2010, 25 (7), 732-738. 

226. Casademont, J.; Miró, Ò., Electron Transport Chain Defects in Heart Failure. Heart 

Failure Reviews 2002, 7 (2), 131-139. 

227. Roth, K. A., Caspases, Apoptosis, and Alzheimer Disease: Causation, Correlation, and 

Confusion. Journal of Neuropathology & Experimental Neurology 2001, 60 (9), 829-838. 

228. Tampellini, D.; Capetillo-Zarate, E.; Dumont, M.; Huang, Z.; Yu, F.; Lin, M. T.; Gouras, 

G. K., Effects of Synaptic Modulation on Beta-Amyloid, Synaptophysin, and Memory 

Performance in Alzheimer's Disease Transgenic Mice. The Journal of Neuroscience 2010, 30 

(43), 14299-14304. 

229. Rohn, T. T.; Head, E., Caspases as Therapeutic Targets in Alzheimer's Disease: Is it 

Time to "Cut" to the Chase? International journal of clinical and experimental pathology 2008, 

2 (2), 108-118. 

230. Bredesen, D. E., Neurodegeneration in Alzheimer's Disease: Caspases and Synaptic 

Element Interdependence. Molecular neurodegeneration 2009, 4, 27-27. 



 

 184 

 

231. Hambly, D. M.; Gross, M. L., Laser Flash Photolysis of Hydrogen Peroxide to Oxidize 

Protein Solvent-Accessible Residues on the Microsecond Timescale. Journal of The American 

Society for Mass Spectrometry 2005, 16 (12), 2057-2063. 

232. Espino, J. A.; Mali, V. S.; Jones, L. M., In Cell Footprinting Coupled with Mass 

Spectrometry for the Structural Analysis of Proteins in Live Cells. Analytical Chemistry 2015, 87 

(15), 7971-7978. 

233. Rinas, A.; Mali, V. S.; Espino, J. A.; Jones, L. M., Development of a Microflow System 

for In-Cell Footprinting Coupled with Mass Spectrometry. Analytical Chemistry 2016, 88 (20), 

10052-10058. 

 


	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	1.0 Introduction
	1.1 Aging and Immunity
	1.1.1 Studying Aging and Host-Response to Infection in Model Organisms
	1.1.2  Aging and Alzheimer’s Disease

	1.2 Proteomics
	1.2.1 Bottom-up Proteomics
	1.2.2 Quantitative Proteomics

	1.3 Enhanced Multiplexing Techniques
	1.3.1 Combined Precursor Isotopic Labeling and Isobaric Tagging (cPILOT)

	1.4 Overview of Dissertation

	2.0 Proteomics Analysis of Virulence-Related Factors in Young and Aging C. elegans Exposed to Pseudomonas aeruginosa PA01- Part 1*
	2.1 Introduction
	2.2 Experimental Procedures
	2.2.1 Nematode and Bacterial Culture
	2.2.2 Pathogenicity Assays
	2.2.3 Sample Preparation for Proteomics Analysis
	2.2.4 Protein Extraction
	2.2.5 Protein Digestion
	2.2.6 TMT Labeling
	2.2.7 Dimethylation Labeling
	2.2.8 Strong Cation Exchange (SCX) Fractionation
	2.2.9 LC – MS Analyses
	2.2.10 Data Analyses
	2.2.11  Measurement of Protein Carbonylation Levels

	2.3 Results
	2.3.1 C. elegans Resilience to P. aeruginosa PA01 Declines with Increasing Age
	2.3.2 Mapping the C. elegans Proteome upon P. aeruginosa PA01 Exposure
	2.3.3 Dimethylation Labeling Verifies TMT6-based Identification of Proteins Whose Levels are Altered in PA01 Infection
	2.3.4 Major Biological Pathways Influenced in C. elegans Proteome after Exposure to P. aeruginosa PA01
	2.3.5 PA01 Exposure Elevated Protein Carbonylation in C. elegans
	2.3.6 unc-60 Mutants Have Reduced Lifespan
	2.3.7 Comparing C. elegans Host Response when Exposed to P. aeruginosa PA01 and Other Pathogens

	2.4 Discussion
	2.4.1 Pathogen-induced Proteomic Changes in Day 1 and Day 5 Adults are Overlapping but Distinct
	2.4.2 Mutations in unc-60 Reduce Lifespan
	2.4.3 P. aeruginosa PA01 Exposure Causes Elevated Carbonylation of Worm Proteome

	2.5 Conclusions

	3.0 Proteomics Analysis of Virulence-Related Factors in Young and Aging C. elegans Exposed to Pseudomonas aeruginosa PA01- Part 2*
	3.1 Introduction
	3.2 Experimental Procedures
	3.2.1 Protein Digestion
	3.2.2 TMT Labeling
	3.2.3 Offline SCX Fractionation
	3.2.4 LC – MS Analyses
	3.2.5 Data Analyses

	3.3 REsults and discussion
	3.4 conclusions

	4.0 Evaluating cPILOT Performance of Orbitrap Instruments to Study the Peripheral Proteome of Alzheimer’s Disease
	4.1 Introduction
	4.2 Experimental Procedures
	4.2.1 Animal Husbandry and Ethical Statement
	4.2.2 Tissue Homogenization, Protein Extraction, and Digestion
	4.2.3  cPILOT Labeling
	4.2.4 Offline SCX Fractionation
	4.2.5 Liquid Chromatography and Mass Spectrometry Analyses
	4.2.6 Data Analysis

	4.3 Results
	4.3.1 Evaluation of LC Gradients and Precursor Isolation Windows (Experiments 1 and 2)
	4.3.2 Dynamic Exclusion (Experiment 3)
	4.3.3 Targeted Mass Analyses (Experiment 4)
	4.3.4 Synchronous Precursor Selection (Experiment 5)
	4.3.5 Comparisons of Samples Analyzed by Velos and Fusion Lumos Instrumentation
	4.3.6 Differentially – Expressed Proteins in AD Brain, Heart, and Liver Tissues

	4.4 Discussion
	4.4.1 cPILOT Method Optimization Experiments (Fusion Lumos)
	4.4.2 AD Pathogenesis from Brain, Heart, and Liver Tissues

	4.5 Conclusions

	5.0 Proteomics Analysis of Human Postmortem Tissues in Alzheimer’s Disease
	5.1 Introduction
	5.2 Experimental Procedures
	5.2.1 Tissue Harvesting and Ethical Statement
	5.2.2 Tissue Homogenization, Protein Extraction, and Digestion
	5.2.3 cPILOT Labeling
	5.2.4 Offline SCX Fractionation
	5.2.5 Liquid Chromatography and Mass Spectrometry Analyses
	5.2.6 Data Analysis

	5.3 Results
	5.3.1 Hierarchical Clustering Patterns of Quantified Brain, Heart, and Liver Tissues
	5.3.2 Canonical pathways Associated with Differentially – Expressed Proteins

	5.4 Discussion
	5.4.1 Protein Clustering Across Brain, Heart, and Liver Tissues
	5.4.2 Differentially – Expressed Post-Mortem Brain and Peripheral Tissues

	5.5 Conclusions

	6.0 Summary and Future Directions
	6.1 Summary
	6.2 Future Directions

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References



