
 

  

Title Page 

LOCAL ESTROGEN PRODUCTION IN THE BRAIN AND ITS REGULATION UNDER 
PATHOLOGICAL CONDITIONS 

 
 
 
 
 
 
 

by 
 

Junyi Li 
 

Master of Science, University of Pittsburgh, 2015 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 
 

School of Pharmacy in partial fulfillment 
  

of the requirements for the degree of 
 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 

2018



 ii 

Committee Membership Page 

UNIVERSITY OF PITTSBURGH 
 

SCHOOL OF PHARMACY 
 
 
 
 
 
 
 
 
 

This thesis/dissertation was presented 
 

by 
 
 

Junyi Li 
 
 

It was defended on 
 

June 27, 2018 
 

and approved by 
 

Samuel M. Poloyac, PharmD, PhD, Professor, Pharmaceutical Science 
 

Xiaochao Ma,PhD., Associate Professor, Pharmaceutical Sciences 
 

M. Beth Minnigh, Assistant Professor, Pharmaceutical Sciences 
 

Catherine M. Bender, PhD, RN, FAAN, Professor, Nursing 
 

Dissertation Director: Robert B. Gibbs, PhD, Professor, Pharmaceutical Science 
  



 iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by Junyi Li 
 

2018  
 
 
 

 



 iv 

Abstract 

LOCAL ESTROGEN PRODUCTION IN THE BRAIN AND ITS REGULATION UNDER 
PATHOLOGICAL CONDITIONS 

 
Junyi Li, PhD 

 
University of Pittsburgh, 2018 

 

Estrogens have important roles in regulating brain structure and function. Estrogens are 

produced by conversion of androgens via the enzyme aromatase (ARO). ARO is expressed in 

specific regions of the brain, and recent studies suggest that local estrogen may have a greater 

impact on neuronal survival and plasticity than systemic one. In this dissertation study, I 

developed UPLC-MS/MS based assays to measure ARO activity and estradiol (E2) in the rat 

brain tissues. I also detected the E2 levels in the brain and compared with that in the serum in 

rats given different E2 and testosterone treatments. Moreover, I tested the effect of manipulating 

cholinergic systems and the effect of traumatic brain injury (TBI) on the expression of different 

isoforms of ARO and estrogen receptors (ER) in different brain regions. Results demonstrate that 

1) the microsomal-based assay to detect ARO activity is highly sensitive, specific and reliable. 

By applying this method, I demonstrated a correlation between ARO activity and its long-form 

mRNA, and that their distribution was in accord with previous studies; 2) that E2 levels in brain 

regions with ARO are higher than that in serum in ovariectomized rats treated with different 

doses of estradiol benzoate and testosterone propionate. Letrozole (an ARO inhibitor) treatment 

reversed the differences between brain and serum estradiol levels, demonstrating that the 

differences were due to local estradiol production. Moreover, male rats had substantial levels of 

E2 in specific regions of the brain even though levels in the systemic circulation were not 

detectable; 3) Selective cholinergic lesions in the medial septum and daily cholinesterase 

inhibitor (ChEIs) injections, did not regulate ARO and ERs in the cortex and hippocampus; 4) In 



 v 

the cortex, there was a significant increase of long-form ARO in females and a significant 

increase of ER alpha in both sexes, indicating an induction of estrogen signaling in the cortex 

after CCI. In the hippocampus, the long-form ARO expression was significantly decreased in 

both sexes with an increase of ER beta in males after CCI. Overall, this dissertation provides 

novel methods and important information about brain estrogen production within the field of 

neuroendocrinology. 
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1.0 Introduction 

1.1 Effects of systemic estrogen on brain function and behavior  

Estrogens are present in both in females and males. Estrogens play important roles in 

maintaining the physical health of many organs, such as the gonads, heart, bone, breasts, and 

brain. Estrogens are mainly generated in the gonads for systemic circulation, but they can also be 

produced locally. There are three major types of endogenous estrogens, namely estrone, estriol, 

and estradiol (E2), with E2 being the most potent and prevalent in humans. Since puberty, 

estrogen levels fluctuate during the menstrual cycle and peak at approximate age of 35. Later on, 

estrogen levels decrease during menopause and become very low during post-menopausal years 

(Elmlinger et al., 2002). Interestingly, although significantly lower than that in females, males 

also have substantial amounts of estrogens which have important physiological roles in males. In 

fact, studies suggested that during the perinatal period, in which systemic E2 circulation is absent, 

local estrogen production in the brain is higher in males than in females, which in turn 

masculinize the male brain (Gladue and Clemens, 1980b; Konkle and McCarthy, 2011; Roselli 

and Klosterman, 1998). 

In addition to the regulation of sexual dimorphisms in the brain during development and 

to affect sexual behavior in adults, estrogens also are associated with mood regulation. 

Specifically, changes in estrogen levels are linked to premenstrual syndrome, postmenopausal 

dysphoric disorder, and postpartum depression (Bebbington et al., 1981; Bloch et al., 2003; 
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Rubinow and Schmidt, 1995). Clinical studies report that depression and anxiety symptoms can 

be reduced after estrogen levels are stabilized or restored (Bebbington et al., 2003; Jenkins, 

1987). Several studies illustrate that E2 has beneficial effects on performance on cognitive tests 

in rodents as well as primates including humans (Bimonte and Denenberg, 1999; Daniel et al., 

1997; Frye et al., 2007; Gresack and Frick, 2006; Luine et al., 2003; Sherwin and Henry, 2008). 

Moreover, estrogen is suggested to prevent the progression of neurodegenerative diseases such 

as Parkinson’s disease and Alzheimer’s disease (AD) and to exert neuroprotective effects. 

Studies have illustrated that estrogens influence the synthesis, release, and metabolism of 

dopamine and modulate dopamine receptor expression and function (Shulman, 2002). Several 

papers also report that estrogens increase cerebral blood flow (Greene, 2000; Maki and Resnick, 

2001) and reduce atrophy in the hippocampus and cortex associated with aging and AD (Hua et 

al., 2007; Kramer and Erickson, 2007). Although most studies have reported beneficial effects of 

estrogen on the brain, debate has persisted due to the diversity of study designs. Moreover, 

estrogens are not currently used in the treatment of brain diseases due to the severe side effects 

reported for hormone replacement therapy. 

1.2 Estrogen production and elimination 

Estrogens are derived from cholesterol, which is converted in the mitochondria to 7α-

hydroxy pregnenolone, and transferred to smooth endoplasmic reticulum, where it is converted 

to dehydroepiandrosterone and ultimately androstenedione. Androstenedione, a substance with 

weak androgenic activity, serves predominantly as a precursor for more potent androgens such as 

testosterone as well as estrogens. Androstenedione crosses the basal membrane into the 
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surrounding granulosa cells, where it is immediately converted to estrone or to testosterone and 

subsequently to E2 in an additional step. The conversion of androstenedione to testosterone is 

catalyzed by 17β-hydroxysteroid dehydrogenase (17β-HSD), whereas aromatase (ARO) 

catalyzes the conversion of androstenedione and testosterone into estrone and E2, respectively. 

Estrogens are metabolized via hydroxylation by cytochrome P450s such as CYP1A1 and 

CYP3A4 and via conjugation by estrogen sulfotransferases (sulfation) and UDP-

glucuronosyltransferases (glucuronidation). In addition, E2 is dehydrogenated by 17β-HSD into 

the much less potent estrone.  

1.3 Classes of Estrogen receptors 

E2 executes regulatory functions in the brain by binding to its receptors. Three estrogen receptors 

(ERs) that mediate estrogenic functions have been reported. ER alpha and ER beta are nuclear receptors, 

and they mainly regulate gene transcription upon activation (Manavathi and Kumar, 2006; McEwen, 

2002). Recently, ER alpha and ER beta also were found to be membrane-associated and to mediate rapid 

effects of estrogen signaling. GPR30 is a recently identified membrane-associated ER. Activation of these 

membrane receptors will trigger rapid second-messenger cascades (Brailoiu et al., 2007; Coleman and 

Smith, 2001; Fu and Simoncini, 2008; Funakoshi et al., 2006; Moriarty et al., 2006). The distribution of 

ERs varies among brain regions. In particular, ER alpha is distributed broadly, including the hippocampus, 

hypothalamus, amygdala, and brain stem nuclei. Conversely, the distribution of ER beta is relatively 

restricted and is found in particulare abundance in the hippocampus and some hypothalamic nuclei 

(Gillies and McArthur, 2010). GPR30 exists both intracellularly and on the plasma membrane, and it 

promotes rapid estrogen signaling in a variety of cell types. In the rat brain, GPR30 exists in many brain 

regions, including the cortex, hippocampus, and hypothalamus (Brailoiu et al., 2007; Hazell et al., 2009). 
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Studies by our group and others illustrated the important roles of GPR30 in mediating the effects of 

estrogen in the brain (Hammond and Gibbs, 2011; Hammond et al., 2012).  

 

1.4 Sources of brain estrogen 

Estrogen in the brain is primarily produced through two sources. Historically, estrogen 

synthesis has been believed to be restricted to the gonads. After release from the ovaries, partial 

estrogen binds to sex hormone-binding globulin, corticosteroid-binding globulin, and albumin in 

the peripheral circulation (Hammond, 2016; Pasquali et al., 1997). Only the free portion of E2 

(~5% in the adult) crosses the blood–brain barrier via transmembrane diffusion through a non-

saturable, bidirectional process, permitting its brain level to rapidly reach pseudo-equilibrium 

with the blood levels (Banks, 2012). Meanwhile, no efflux transporter has been reported to 

extrude E2 (Tsuji et al., 1992).  

In 1971, ARO, the primary enzyme for E2 production, was discovered in the brain by 

Zoltan Petro and Frederick Naftolin (Weisz and Gibbs, 1974). Subsequently, all enzymes 

necessary for estrogen synthesis have been found in the central nervous system, indicating the 

possibility of local estrogen production (Rossetti et al., 2016). In fact, in postmenopausal women, 

and men, E2 is mainly produced extragonadally. Because of the difficulty of directly measuring 

E2 levels in tissue, the levels of the rate-limiting enzyme ARO are often utilized used to imply 

the level of local estrogen production.  

ARO irreversibly converts androgens (both androstenedione and testosterone) into 

estrogens (estrone and E2) (Biegon et al., 2012). It was initially discovered in the hypothalamus, 
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which is important for regulating sexual dimorphism and behavior (Roselli and Resko, 1991; 

Roselli et al., 1998). ARO mRNA expression and activity have since been observed in many 

brain regions, with the highest levels detected in the preoptic area, medial amygdala, and bed 

nucleus of the stria terminalis, followed by hippocampus, cortex, and other brain regions  (Li et 

al., 2016a; Roselli et al., 1997; Tabatadze et al., 2014). As a cytoplasmic cytochrome P450, ARO 

is mainly found in microsomes, whereas several papers using immunohistochemistry also 

detected ARO immunoreactivity in the presynaptic axon vesicles of the vertebrate brain 

(Balthazart and Ball, 2006). In addition, ARO was reported to be co-localized in brain regions 

that contain ERs, indicating the possibility of local estrogenic effects in the brain (Balthazart and 

Ball, 1998). 

1.5 Local estrogen production: functions and regulations 

1.5.1  ARO participates in behavior regulation 

As mentioned previously, brain ARO has attracted increasing attention due to its 

essential roles in sexual differentiation and dimorphism. In fact, during the perinatal period, in 

which systemic E2 circulation is absent, ARO activity was transiently higher in the brain, and the 

circulating levels of testosterone and androstenedione were higher in males than in females, 

indicating that males are exposed to higher local estrogen levels during this period (Lephart, 

1996). E2 and testosterone levels gradually decline after birth, reaching low levels in the 

hippocampus and frontal cortex in adulthood. ARO activity also declines after birth, but its levels 

remain substantial in the hypothalamic neurons and several regions in the limbic ring (olfactory 
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bulbs, hippocampus, hypothalamus, amygdala) (Konkle and McCarthy, 2011). The 

hypothalamus and preoptic area have particular importance in the regulation of sexual behavior, 

and ARO activity is higher in these regions than in others. Studies have revealed that the 

aromatization of testosterone to E2 in the hypothalamus contributes to luteinizing hormone-

negative feedback regulation in male humans, non-human primates, sheep, and mice (Couse and 

Korach, 1999; Hayes et al., 2000; Roselli and Resko, 2001; Sharma et al., 1999). Moreover, 

treatment with E2 or testosterone, but not dihydrotestosterone, a non-aromatizable metabolite of 

testosterone, can completely restore sexual behaviors in adult castrated male rats (Baum and 

Vreeburg, 1973; McDonald et al., 1970; Putnam et al., 2003; Putnam et al., 2005). In fact, many 

male-typical sexual behaviors, such as sexual partner preference and copulatory behaviors, result 

from the organizational and activational effects of locally synthesized E2 (Gladue and Clemens, 

1980a; Gladue and Clemens, 1980b; Roselli and Resko, 1993). 

In addition to studies exploring the important roles of ARO in regulating sex 

differentiation in the brain, ARO has also been suggested to regulate emotional and cognitive 

functions. In prior research, ARO knockout (ArKO) ovariectomized (OVX) female mice 

exhibited increased depression-like behavior compared with wild-type OVX female mice in the 

forced swim test (Dalla et al., 2004). Moreover, specific deletion of ARO in the medial amygdala 

also increased aggression in both males and females (Unger et al., 2015). ARO inhibition also 

induced depression-like symptoms in women with breast cancer (Gallicchio et al., 2012). 

Meanwhile, the effects of ARO on cognitive functions are more controversial and appear to be 

sex-specific. Some clinical and preclinical studies revealed the beneficial effects of ARO. 

Implantation of E2 and testosterone into castrated male songbirds led to significant 

improvements in learning ability in a spatial learning task, whereas dihydrotestosterone had no 



 7 

effect (Moradpour et al., 2006; Oberlander et al., 2004). One clinical study of healthy elderly 

men revealed that ARO inhibition prevented the improvement in verbal memory induced by 

testosterone (Cherrier et al., 2005). Another study of postmenopausal women with breast cancer 

illustrated that 3 months of anastrozole, an ARO inhibitor treatment resulted in worsened verbal 

and visual learning (Bender et al., 2007). On the contrary, other studies found that ARO had no 

beneficial effects on, or conversely impaired, cognition. Two randomized controlled trials 

conducted by International Breast Intervention Study II and the Tamoxifen and Exemestane 

(ARO inihibitor) Adjuvant Multinational study found no significant effects of anastrozole and 

exemestane on the performance of cognitive tasks in postmenopausal women with breast cancer 

(Jenkins et al., 2008; Schilder et al., 2010). One preclinical study observed that the systemic 

administration of letrozole (2.5 kg/ml) facilitated working memory acquisition in male rats 

(Alejandre-Gomez et al., 2007). These conflicting results may due to differences in the models, 

treatment dose, and treatment interval, as E2 exerts dose-, time-, and region-specific effects on 

cognition. 

1.5.2  ARO regulates neuroplasticity and neuroprotection 

Despite the complex effects of ARO on behavior, at the molecular level, ARO regulates 

plasticity in different brain regions, which may account for its divergent effects on behavior. 

Indirect evidence indicates that both testosterone propionate and dehydroepiandrosterone 

increase the density of spine synapses in pyramidal neurons in the CA1 area of the hippocampus 

of OVX adult female rats. This effect can be completely blocked by letrozole, a powerful non-

steroidal ARO inhibitor (Leranth et al., 2004). In addition, ARO inhibition reduced axon 

outgrowth in neonatal hippocampal cell cultures (von Schassen et al., 2006). Systemic letrozole 
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administration also reduced the spin synapse density in the basolateral nucleus of the amygdala 

and abolished long-term potentiation in acute brain slices of adult females but not males (Bender 

et al., 2017). Evidence has also revealed that active ARO is expressed by radial glial cells, one of 

the neural progenitor cell types in several species including rodents and birds (Alvarez-Buylla et 

al., 1990; Malatesta et al., 2000; Noctor et al., 2001), and by intermediate progenitor cells during 

cortical neurogenesis in vitro. The same finding was also noted in adult teleost and zebra finch 

brains (Forlano et al., 2001; Menuet et al., 2003; Pellegrini et al., 2005; Peterson et al., 2004). 

These findings suggest that brain ARO plays a role in regulating neuronal plasticity.  

Under pathological conditions, ARO plays important roles in neuroprotection, possibly 

by increasing E2 production at the site of injury (Roselli, 2007). Prior research indicated that 

ARO expression can be induced in astrocytes, which do not express ARO under physiological 

conditions, in different disease models, such as models of brain injury (Peterson et al., 2007), 

experimental stroke (Carswell et al., 2005), global ischemia-reperfusion, spontaneous 

hypertension (Pietranera et al., 2011), and neuroinflammation (Duncan and Saldanha, 2011). 

Moreover, ArKO models or animals treated with ARO inhibitors display increased neuronal loss 

after excitotoxic injuries and increased tissue damage after ischemia for both males and females 

(Azcoitia et al., 2001a; Garcia-Segura et al., 2003; Veiga et al., 2005). Interestingly, the 

induction of ARO expression was also accompanied by the upregulation of other steroidogenic 

molecules, such as steroidogenic acute regulatory protein and cytochrome P450 side chain 

cleavage (Lavaque et al., 2006a), which are involved in the first step of steroidogenesis (Lavaque 

et al., 2006b; Sierra, 2004). In addition, in various experimental models, the neurodegenerative 

effect of ARO deficiency was counterbalanced by E2 administration (Azcoitia et al., 2001b; 

McCullough et al., 2003; Saldanha et al., 2009a; Sierra et al., 2003), indicating that the 
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neuroprotective effect of ARO is due to the production of E2 rather than reduction of E2 

precursors. ARO also participates in neurogenesis after brain injury, as indicated by decreased 

cell proliferation and apoptosis in letrozole-treated hippocampal cultures (Fester et al., 2006). A 

recent in vivo study illustrated that ArKO mice have reduced stroke-induced neurogenesis (Li et 

al., 2011), in accordance with the results in zebra finch (Peterson et al., 2007; Walters et al., 

2011).  

Several studies also suggest that changes in brain ARO levels are relevant to AD. Carbo 

et al. identified a single-nucleotide polymorphism (SNP) in CYP19 that was associated with an 

earlier onset of AD (Corbo et al., 2009). Additionally, a SNP in the ARO gene was linked to a 60% 

increased risk of AD (Iivonen et al., 2004). Another group found that two haplotype blocks in 

CYP19 increased the risk of AD by 2-fold in APOE4 carriers (Huang and Poduslo, 2006). In 

addition, decreased ARO expression was reported in the hippocampus of patients with AD 

(Ishunina et al., 2007b). Inducing ARO and local E2 production protects hippocampal neurons 

against beta amyloid toxicity (Cui et al., 2011). This evidence suggests that ARO is important for 

protecting brain function and preventing neurodegeneration. 

1.5.3  Regulation of ARO mRNA expression and activity 

The regulation of ARO in the brain has been studied in both mammals and birds, and 

different mechanisms have been suggested. Typically, brain ARO can be regulated through two 

mechanisms. One mechanism involves the regulation of CYP19A1, the gene encoding ARO. It is 

located on the long arm of chromosome 9, and it spans 2863 bp in length. The coding region 

spans bp 613–2124 and contains nine exons (2–10). Upstream of the coding region are several 

alternative 5′-untranslated first exons resulting from the use of different promoters that are 
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tissue-specific (Azcoitia et al., 2011). The If promoter was found specifically to regulate the 

brain production of ARO, and certain substances, such as progesterone and the glucocorticoid 

dexamethasone, regulate brain ARO expression by binding to this promoter (Brooks et al., 2012; 

Yilmaz et al., 2011). A number of studies have demonstrated regulation of the If promoter by 

gonadal steroids including E2 and testosterone (Abdelgadir et al., 1994) (Iivonen et al., 2006) 

(Negri-Cesi et al., 2001b; Roselli et al., 1997), but the regulatory effect of gonadal hormones 

appears region-specific. In fact, one study illustrated that ARO in hypothalamic neurons was 

gonadectomy-sensitive, whereas that in the “limbic ring” including the amygdala and 

hippocampus was unresponsive to steroids (Jakab et al., 1993), suggesting at least two 

populations of ARO-positive cells in the brain. Using a highly sensitive ribonuclease protection 

assay, Roselli and co-workers identified two ARO fragments of different lengths in rat brain 

regions. The 430-nucleotide fragment was associated with enzyme activity in the brain, whereas 

the function of the shorter 300-nucleotide fragment was unknown and apparently region-specific 

(Roselli et al., 1997). A primer pair that specifically detects long-form ARO was also developed 

by Tabatadze, and by applying this primer pair, we identified a correlation between the 

distribution of long-form ARO mRNA expression and ARO activity across different brain 

regions (Li et al., 2016a; Tabatadze et al., 2014). Different brain regions have different 

distributions of these two ARO isoforms, making studies of ARO more complex.  

Regarding the regulation of ARO gene transcription and translation, studies performed 

by Balthazart and co-workers demonstrated that ARO activity can be regulated rapidly. Using 

neural tissue from male Japanese quail, research uncovered that Mg2+, Ca2+, and ATP in 

hypothalamic homogenates and exposure to high Ca2+ levels following K+-induced 

depolarization in the brain can rapidly downregulate local ARO activity. This was achieved by 
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increasing the intercellular Ca2+ concentration to enhance ARO phosphorylation (Balthazart et 

al., 2001a; Balthazart et al., 2001b; Balthazart et al., 2005; Balthazart et al., 2003a). Several 

neurotransmitters, such as glutamate and catecholamines (including dopamine and 

norepinephrine), were proposed to regulate ARO activity in the same manner as they regulate 

adenylyl cyclase activity and cyclic AMP concentrations (Balthazart et al., 2006). In addition, 

this rapid non-genomic regulation was a reversible process that may occur at presynaptic 

terminals, leading to the hypothesis that estrogens can function as neuromodulators or 

neurotransmitters (Balthazart and Ball, 2006).  

Although many studies explored the regulation of ARO mRNA expression and activity, 

some questions remain. One question is the discordance between the distribution of ARO protein 

expression detected by immunohistochemistry and ARO activity in the brain, especially in 

mammals. For example, several studies reported substantial staining of ARO in the cortex region, 

whereas ARO activity was hardly detected (Azcoitia et al., 2003; Li et al., 2016a; Roselli et al., 

1997; Tabatadze et al., 2014; Zhang et al., 2014). Moreover, using DNA sequencing, one study 

found that cortical ARO mRNA did not contain the If promoter and ovarian-specific exon II, and 

the translation starting sequence “ATG” was not found in this mRNA type, indicating that ARO 

mRNA in cortical regions was not translatable (Yamada-Mouri et al., 1997). This discordance 

called into question the specificity of ARO antibodies. However, whether the findings are related 

to the quality of the antibody or other possible explanation requires further investigation. 
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1.6 Overview of the thesis 

We have investigated the levels and sources of E2 in different brain regions and explored 

the regulation of ARO and ERs under different pathological conditions. Several major themes 

emerged. 1) We developed and validated a microsome-based assay for measuring ARO activity 

using a UPLC-MS/MS method. We then applied this method to detect the distribution of ARO 

activity and correlated this finding with its mRNA expression in different brain regions. This 

provided a sensitive, selective, and reliable method for detecting ARO activity in the rat brain. 2) 

E2 levels in serum and different regions of the brain were measured and compared in (a) OVX 

rats treated with E2, testosterone, or vehicle and (b) male rats. This enabled a characterization of 

the relationship between systemic E2 levels and E2 levels in specific brain regions and 

comparisons of levels between females and males. Systemic and brain levels of testosterone were 

measured and compared in OVX rats treated with testosterone and gonadally intact males. This 

enabled direct comparisons of brain E2 levels between males and females relative to known 

concentrations of its precursor testosterone. In addition, the effects of an ARO inhibitor 

(letrozole) on local E2 levels in the brain of hormone-treated male and female rats were 

measured to confirm that the elevated E2 levels detected in the brain are, in fact, due to ARO 

activity. 3) The effects of selective cholinergic lesions in the medial septum and daily 

cholinesterase inhibitor injection on ARO and ERs in the brain were examined. This permitted 

clarification regarding whether the cholinergic system mediates the effects of E2 on cognition 

through the regulation of local estrogen production and ERs. 4) We detected changes in the 

mRNA expression of ARO and ERs in the hippocampus and cortex after traumatic brain injury. 

This pilot study provided preliminary information to hypothesize the neuroprotective role of 
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local estrogen production after brain injury. These themes will be described in greater detail in 

the following chapters. 
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2.0 Development of a Microsomal Incubation Assay for Detection of ARO Activity in the 

Brain 

This chapter is reprinted with permission of the Journal of Steroid Biochemistry and 

Molecular Biology. All rights reserved. Copyright © 2016 The Journal of Steroid Biochemistry 

and Molecular Biology. 

2.1 Introduction 

As mentioned in the introduction section, many studies show that estrogens can have 

beneficial effects on brain function and cognition in rats and mice, as well as in non-human 

primates and humans (Bimonte and Denenberg, 1999; Daniel et al., 1997; Frye et al., 2007; 

Gresack and Frick, 2006; Luine et al., 2003; Sherwin and Henry, 2008). Most of these studies 

have evaluated the effects of systemic estrogen treatments, assuming that brain levels of estradiol 

and estrone mirror levels in the systemic circulation.  The brain, however, contains all of the 

enzymes necessary to synthesize estradiol locally, and recent studies suggest that local estrogen 

synthesis may have a far greater impact on neuronal function than systemic estrogen 

administration (De Nicola et al., 2012; Saldanha et al., 2009b).  

Aromatase (CYP19A1; ARO) is the last step Cytochrome P450 enzyme responsible for 

the production of estradiol from testosterone, and estrone from androstenedione (Biegon et al., 
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2012). Several methods have been used to measure ARO activity. In clinical or in vivo studies, 

where substrate concentrations are not under strict control and in which formation rate cannot be 

measured directly, a metabolic ratio of 17beta-estradiol to testosterone is often used to indicate 

ARO activity. When studied in vitro, a more direct method of evaluating product formation is 

preferred.  One commonly used method for measuring ARO activity in tissues is the tritiated 

water assay developed by Roselli and co-workers (Roselli et al., 1984). It has been used to detect 

ARO activity in ovarian, placental, avian brain and mammalian brain. The assay is relatively 

straight forward and simple to apply, however, it has limitations with respect to reproducibility 

and sensitivity. This poses challenges for measuring the very low levels of ARO activity in brain. 

The purpose of the current study was to develop a highly sensitive microsomal assay for 

measuring ARO activity and to show that this method can be used to measure activity in discrete 

regions of the brain in relation to expression of the long-form of CYP19A1. 

 

2.2 Materials and methods 

35 Young female gonadally-intact Sprague-Dawley rats were purchased from Hilltop 

Laboratories, Inc. Rats were individually housed for two weeks in our facility on a 12 hour: 12 

hour light/dark schedule with unrestricted access to food and water.  On the day of dissection, 

animals were anesthetized using a mixture of 0.6 mg xylazine and 3mg ketamine.  Brains were 

removed and tissues from the hippocampus, frontal cortex, preoptic area, and amygdala were 

collected. Tissues were stored at -80ºC until use. 
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2.2.1  Microsomal incubation assay 

2.2.1.1 Microsomal extraction 

Brain tissues were collected.  Tissues from the same brain region (50-250 mg) were 

pooled, homogenized in 50 mM Tris buffer (pH 7.4) containing 150 mM KCl, 0.1 mM 

dithiothreitol (Fluka, USA), 1 mM EDTA and 20% glycerol (Fisher), and mixed with 0.113 mM 

butylated hydroxytoluene (BHT) and 0.100 mM phenylmethylsulfonylflouride (PMSF) at 4ºC. 

Samples were centrifuged at 20,000g for 33 min at 4ºC. The supernatant was collected and 

centrifuged at 140,000g to obtain a microsomal pellet. Microsomal pellets were then dissolved in 

200 µl 0.02 M Tris buffer containing 0.25 M sucrose. For this experiment, hippocampi were 

pooled from two rats, amygdala from three rats, and preoptic area from three rats to generate one 

data point for each brain region. Protein levels were determined by Bio-rad protein assay (Bio-

Rad Laboratories, Inc). Microsomes were stored at -80ºC until used.  

2.2.1.2 Microsomal incubation assay  

To measure ARO activity, 100-200 µg microsomes prepared from different brain regions 

were incubated with testosterone, and the amount of estradiol produced was measured by LC-

MS/MS. Microsomes were added to the microsomal incubation buffer, which is a sodium 

phosphate buffer pH 7.4 containing 5.0 mM MgCl2. Testosterone was added to each sample tube 

to a final concentration of 400 nM. To start the reaction, 50 µl of 0.02 M Nicotinamide adenine 

dinucleotide phosphate (NADPH) was added to each tube, vortexed for 5 sec and incubated at 

37ºC. After 30 min, the reaction was stopped by rapid cooling on wet ice. The total volume of 

the reaction was 1.0 ml.  
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2.2.1.3 Estradiol extraction and derivatization 

Estradiol was collected from the sample by liquid-liquid extraction using 3ml n-Butyl 

chloride and then derivatized with dansyl chloride. Samples were first spiked with internal 

standard 25µl 2,4,16,16,17-d5-17 beta-estradiol (1 ng/ml in methanol ). 3 ml n-Butyl chloride 

was then added and vortexed for 1 min. The tubes were then centrifuged at 4,770 xg at room 

temperature (RT) for 10 min and the organic layer was transferred to salinized culture tubes and 

dried down under a soft steam of nitrogen at 37ºC for 20 min. Residues were derivatized in 0.1 

ml buffered dansyl chloride solution (a 1:1 mix of acetonitrile: water, pH 10.5), heated at 60ºC 

for 3 min, and then transferred to glass vials for LC-MS/MS analysis. 

2.2.1.4 Estradiol detection 

We used a modified version of a UPLC-MS/MS method described by Nelson et al. 

(Nelson et al., 2004).  Liquid chromatography was performed using an Acquity ultra 

performance LC autosampler (Waters, Milford, MA). Analytes were separated on a UPLC BEH 

C-18, 1.7 µm (2.1 x 150 mm) reverse-phase column (Waters, Milford, MA). Column 

temperature was maintained at 55ºC. Mobile phases, delivered at a flow rate of 0.3 ml/min, 

consisted of (A) acetonitrile and (B) 0.1% formic acid in water, at an initial mixture of 50:50 A 

and B. Mobile phase B was maintained at 50% for 1 min and then increased to 85% in a linear 

gradient over 3 min, where it remained for 1 min. This was followed by a linear return to initial 

conditions over 1.5 min. Total run time per sample was 6.5 min and all injection volumes were 

7.5 µl.  

Mass spectrometric analysis of analyte formation was performed using a TSQ Quantum 

Ultra (Thermo Fisher Scientific, San Jose, CA) triple quadrupole mass spectrometer coupled 

with heated electrospray ionization source (HESI) operated in positive selective reaction 
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monitoring (SRM) mode with unit resolutions at both Q1 and Q3 set at 0.70 full width at half 

maximum. Quantification by SRM analysis of estradiol was performed by monitoring the m/z 

transitions. The retention time for estradiol was 5.64 min for native estradiol and 5.62 min for the 

deuterated internal standard. Parameters were optimized to obtain the highest [M-H]- ion 

abundance and were as follows: capillary temperature, 350ºC, vaporizer temperature, 355ºC, 

spray voltage, 4000 kV, and a source collision-induced dissociation set at 0 V. Sheath gas and 

auxiliary gas were set at 20 and 34 respectively.  Scan time was set at 0.01 s and collision gas 

pressure was set at 1.5 mTorr. Analytical data was acquired and analyzed using Xcalibur 

software version 2.0.6 (Thermo Finnigan, San Jose, CA). 

2.2.1.5 Aromatase activity calculation  

Calibration curves were prepared and extracted along with unknowns. Ideally calibration 

curves would be prepared in a matrix of inactivated microsomes; however, repeated preparation 

of large amounts of microsomes from brain is costly in both time and rats.  We therefore tested 

the potential of 2-hydroxypropyl-β-cyclodextrin (HPCD) (Alorich, USA) to be used as an 

alternative matrix for the preparation of standards and quality control (QC) samples. Specifically, 

we compared the analytic recovery from the microsomal matrix versus HPCD and showed there 

is no difference in the ability to extract and detect estradiol from these two matrices (see Results 

section for details). Based on these results, subsequent standard curves were prepared using 

HPCD as the matrix.  

An estradiol standard curve within concentrations ranging from 2.5 pg/ml to 200 pg/ml 

was prepared in a matrix of 0.2% HPCD, extracted and derivatized at the same time as the 

microsomal samples. A stock solution of estradiol was prepared in methanol to achieve a series 
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of working solutions at 1 µg/ml, 10 ng/ml and 1 ng/ml concentrations. Calibration standards and 

QC samples were prepared from separate stock solutions by spiking appropriate amounts into 0.2% 

HPCD. Calibrators contained estradiol at concentrations of 2.5, 5, 10, 25, 37.5, 50, 100, 200 

pg/ml, QCs were 3 pg/ml, 30 pg/ml and 50 pg/ml at a volume of 500 µl. The concentration of 

estradiol pg/ml in the unknowns was determined by measuring the ratio of E2 to internal 

standard area under the peak, then interpolating from the standard curve and adjusting for 

differences in volume of the unknowns vs. the standards. The ARO activity is presented as pmol 

estradiol/h/mg microsome. Negative controls included samples that received no microsome or no 

NADPH. Diluted microsomes from ovarian tissue (10 µg) were used as a positive control.  

2.2.2  q –RT-PCR 

2.2.2.1 mRNA isolation and reverse transcription 

All tissue collection was carried out under RNase-free conditions and different brain 

regions: hippocampus, frontal cortex, amygdala and preoptic area were dissected as described 

above. Tissue samples were sonicated in 1.0 ml Trizol (Invitrogen, Inc.) at 4ºC. The homogenate 

was mixed with 250 µl chloroform and centrifuged at 12,000xg.  The supernatant was collected 

and an equal volume of isopropyl alcohol was added to precipitate the nucleic acids. Nucleic 

acids were centrifuged at 12,000xg in 4ºC, and the pellet was dissolved in DEPC water for 10 

min at 42ºC. DNA residues were then digested by adding DNAse (10 U/µl) and incubating at 

37ºC for 30 min. The remaining RNA was re-extracted with phenol-chloroform and precipitated 

with sodium acetate and ETOH. The concentration of RNA was determined by 

spectrophotometry using a Nanodrop 2000 (Thermo Scientific). mRNA was then reverse 
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transcribed to cDNA using the SuperScript III kit (Invitrogen, Inc.) as per manufacturer’s 

recommendations. RNase H was used to denature any residual mRNA.  

2.2.2.2 q-RT-PCR Method 

2.0 µl of cDNA, 10 µl of SYBR Green, and 1.2 µl primer pair was pipetted into each well 

of a 96 plate (0.1 ml/well). The primer pairs used for detection of total CYP19A1 were:  (F) 5’-

CGTCATGTTGCTTCTCATCG-3’ and (R) 5’-TACCGCAGGCTCTCGTTAAT-3’. The primer 

pairs used for long-form CYP19A1 were: (F) 5’-CTCCTCCTGATTCGGAATTGT-3’ and (R) 

5’-TCTGCCATGGGAAATGAGAG-3’. GAPDH was used as the control gene:  (F) 5’-

TGCCACTCAGAAGACTGTGG-3’ and (R) 5’-GGATGCAGGGATGATGTTCT-3’.  The 

cDNA product amplified using the total CYP19A1 primers is 150 bp in length and is located in 

the coding region of the CYP19A1 gene within exons 8 and 9. The cDNA product amplified 

using the long-form CYP19A1 primers is 90 bp in length and contains portions of exons 2 and 3. 

This primer has been described by Tabatadze et al. (Tabatadze et al., 2014) and targets only the 

long-form CYP19A1. The cDNA product produced using the GAPDH primers is 85bp in length 

and is located on exon 6 of the GAPDH gene. These primer pairs were validated by Genbank 

primer-BLAST.  

PCR was conducted using the 7500 Sequence Detection System (ABI), with an initial 

step at 50ºC for 2 min，95ºC for 10 min and 15 s, then 40 cycles of 60ºC for 1 min. At the end 

of the amplification, samples were set to 95ºC for 15 s, 60ºC for 30 s,  and 95ºC for 15 s to 

obtain the melt curve.  Data were analyzed using Sequence Detection System (SDS) software 

(ABI, Inc.), and results were obtained as Ct (threshold cycle number) values. The sample and 

reference data points were normalized to the geometric mean of GAPDH (ΔCT). Relative gene 
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expression was normalized to the amygdala, and was determined using the 2–ΔΔ(CT) method, 

whereΔΔCT =ΔCT (other brain regions) –ΔCT (amygdala) (Pfaffl, 2001). Expression was 

normalized to the amygdala for ease of comparison and because the amygdala consistently 

contained the highest amounts of CYP19A1 gene expression among the regions analyzed. The 

efficiencies for the primers were as follows: total CYP19A1: 2.53, long-form CYP19A1: 2.57, 

GAPDH: 2.56. The product size was validated by agarose gel electrophoresis and the linear 

detection range of each primer pair was validated by amplifying serial dilutions of cDNA and 

plotting cycle number vs. dilution. 

2.2.3  UPLC-MS/MS method validation  

Calibration and linearity: Validation of the estradiol assay was performed by using 8 

standard concentrations of estradiol prepared in a 2 ml volume. The amount of estradiol in the 

standards ranged from 2.5 to 200 pg/ml. Three separate duplicate standard curves were prepared 

and analyzed over three consecutive days. Curves were calculated based on the peak area ratios 

between estradiol to the internal standard. Calibration curves were generated by weighted (1/Y) 

linear regression. 

Precision and accuracy: Precision and accuracy of the method was determined by the 

analysis of QC samples. Estradiol was spiked into 0.2% HPCD to yield low and high QCs, 

corresponding to 20 and 80 pg/ml, respectively. Six samples at each level were analyzed for two 

days, followed by 12 replicates of each on the final day of validation. The lower limit of 

detection (LLOD) was determined by the minimum value with a signal-to-noise (S/N) ratio of ≥ 

1000:1. The lower limit of quantitation (LLOQ) was determined by the minimum value with 
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accuracy and precision within ±15% deviation of the nominal value. Accuracy was determined 

as the relative deviation in the calculated value (E) of a standard from that of its true value (T) 

expressed as a percentage. This accuracy, or relative standard error (RE %), was calculated using 

the equation RE %= (E−T)/T×100. Precision was evaluated and expressed as relative standard 

deviation (RSD %) of the mean concentrations (M) using the equation RSD % = SD/M×100. 

The criteria for acceptability of data included accuracy and precision within ±15% deviation of 

the nominal value.  

2.2.4  Validation of the Microsomal Incubation Method 

To validate the assay, the effects of varying microsomal concentration, incubation time, 

substrate concentration, inter- and intra-day precision and accuracy, and specificity were 

evaluated.  

Reproducibility: The reproducibility of the method was determined using replicates (N=6) 

of diluted ovarian samples (10 µg microsome per reaction). Intra-day precision was determined 

by analyzing six replicates in one day, and inter-day precision was calculated by analyzing six 

replicates over three consecutive days. The CV was used for characterizing precision.  

ARO activity as a function of microsomal concentration: To determine the amount of 

microsome needed to reliably measure differences in ARO activity, a serial dilution curve of 

microsomal mix derived from several different brain regions (hippocampus, amygdala, 

hypothalamus, thalamus and septum) was prepared. A range of 75– 600 µg of microsomes were 

used per reaction. The amount of estradiol produced during 30 min incubation with testosterone 

(400 nmol/L) was measured by LC-MS/MS, and the relationship between ARO activity and 

microsomal concentration was determined.  
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ARO activity as a function of incubation time: Microsomal mix (as above) were 

incubated with 400 nmol/L testosterone for 10, 20, 30, 40, 50, 60, and 90 min and the amount of 

estradiol produced was measured by LC-MS/MS. Estradiol production was then normalized to 1 

mg microsomes plotted as a function of incubation time, and analyzed for formation rate using 

PRISM (GraphPad Software, La Jolla, CA). 

ARO activity as a function of substrate concentration: Microsomes (300 µg) from three 

brain regions: hippocampus, amygdala and preoptic area were prepared separately and incubated 

with different amounts of testosterone to determine the amount of substrate necessary to produce 

saturating conditions. Testosterone concentrations included 12.5, 25, 50, 100, 200, 400 and 800 

nmol/L. After 30 min incubation, estradiol production was measured and ARO activity was 

calculated.  

Inhibition of ARO activity with an ARO inhibitor: As a negative control, 0 nM, 50 nM or 

100 nM anastrozole, an ARO inhibitor, was added to hippocampal and ovarian microsomal 

samples.  These samples were pre-incubated at 37ºC for 10 min without NADPH, after which 

NADPH was added to start the reaction.  ARO activity was measured after 30 min incubation.  

2.2.5  Data analysis 

Descriptive statistics (mean, SD, CV) were calculated using Microsoft Excel. Data were 

first transformed using an Eadie-Hofstee plot to visualize the potential for multiple binding sites 

or cooperativity. Hill plots were used to further evaluate the enzyme kinetics. Enzyme kinetic 

parameter values for maximal velocities (Vmax) and Michaelis-Menten constants (Km) for each 

brain region were determined by non-weighted non-linear regression analysis (Win-Nonlin) 

using PRISM. Initial parameter estimates used for non-linear regression analyses in a one-
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enzyme model consisted of the observed Vmax and Km values from the substrate saturation 

experiments (Bolcato et al., 2003). The R2 for goodness of fit for different brain regions were: 

hippocampus: 0.96; amygdala: 0.99; and preoptic area 0.93. 

2.2.6  Correlations between CYP19A1 total and long form mRNA and ARO activity 

Distribution of ARO activity in different brain regions and its correlation with relative 

levels of CYP19A1 mRNA: ARO activity, total and long-form CYP19A1 mRNA were detected 

for different brain regions: hippocampus, frontal cortex, amygdala and preoptic area in the 

ovariectomized (OVX) rats (n= 5 for mRNA detection, n= 12 for activity detection). Relative 

levels of CYP19A1 mRNA were reported as 2-ΔΔCt normalized to amygdala. ARO activity also 

was normalized to the amygdala. Data were normalized to the amygdala for ease of comparison, 

and because levels of CYP19A1 mRNA and ARO activity were highest in the amygdala.  

2.3 Results 

2.3.1  Validation of UPLC-MS/MS method for quantitation of estradiol 

Extraction recovery: Table 1 compares estradiol extraction and detection using 

inactivated microsomes vs. HPCD as the two matrices. Estradiol calibration curves were 

prepared in brain microsomes (200 µg/ml) that were boiled to inactivated CYP enzymes, and 

diluted in potassium phosphate and Tris-sucrose buffer. Calibrators contained estradiol at 

concentrations of 2.5, 5, 10, 25, 50, 100 and 200 pg/ml. Estradiol QC samples were prepared in 
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0.2% HPCD at 3 and 30 pg/ml.  Both the calibration curve and QCs were repeated three times on 

three different days. Values of QCs were calculated using the microsomal calibration curve. All 

calculated QC values fell within 10% RE using calibration curves prepared in microsomes 

(Table 1). This shows that the extraction and detection of estradiol from HPCD is the same as 

from the microsomal matrix.  Hence HPCD was used as the matrix for all calibration curves. 

 

Table 1: Evaluation of microsomes vs. HPCD as a matrix for the extraction and detection 

of estradiol. 

  Target 
Concentration 

Observed 
Concentration % RSD % RE 

 Added (mean±SD)   
  (pg/ml, N=3) (pg/ml, N=3)     

Quality controls     
in 0.2% HPCD     

Estradiol 3 3.08±0.25 8.16% 2.49% 

 30 29.20±0.61 2.17% -6.01% 
Standards     

in Microsome Matrix     
Estradiol blank Undetectable   

 2.5 2.47±0.26 10.47% -1.09% 

 5 4.75±0.17 3.66% -4.99% 

 10 10.30±0.24 2.38% 3.01% 

 25 24.64±1.02 4.14% -1.43% 

 50 51.32±3.71 7.24% 2.63% 

 100 102.48±6.44 6.29% 2.48% 
  200 197.47±9.64 4.88% -1.27% 

 

Estradiol calibration standards were prepared in in boiled brain microsomes (200 µg/ml) 

in potassium phosphate and Tris-sucrose buffer. QCs were prepared in 0.2% HPCD. 
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Linearity, precision and accuracy: Linear calibration curves were obtained for estradiol 

over the range of 2.5-200 pg/ml. The mean regression equations(±SD) were as follows： 

          Estradiol:  Y= [0.008 (±0.002)]X +0.035 (±0.017) 

The mean correlation coefficient (R2) was >0.998. The lower limit of quantification 

(LOQ) was 2.5pg/ml and was demonstrated to be reproducible (%RSD<15%). The intra- and 

inter-run precision and accuracy were within ±15% for estradiol (Table 2).   

 

Table 2: Intra-day and inter-day accuracy and precision for the detection of estradiol in 

0.2% HPCD solution. 

  Amount estradiol Observed estradiol % RSD % RE 

 Added (mean±SD)   
  (pg/ml, N=3) (pg/ml, N=3)     

Intra-assay reproducibility     
Quality controls     

Estradiol 3 3.05±0.19 6.10  1.63 

 20 20.7±1.30 6.30  3.50  

 80 80.1±4.31 5.38  0.13  
Inter-day reproducibility     

Quality controls     
Estradiol 3 3.13±0.23 7.42  4.49  

 20 20.8±1.53 7.37  4.00  

 80 84.0±4.89 5.83  5.00  
Standards     
Estradiol 2.5 2.44±0.24 9.95  -2.40 

 5 4.97±0.46 9.30  -0.52 

 7.5 7.28±0.41 5.63  -2.90 

 10 8.93±1.27 14.20  -10.70 

 25 27.9±2.22 7.96  11.60 

 50 51.3±3.72 7.25  2.60 

 100 90±8.12 9.03  -10.00 
  200 202±6.38 3.23  1.00 
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2.3.2  Validation of microsomal incubation assay 

Reproducibility: Table 3 shows the accuracy and reproducibility of the MIB assay. ARO 

activity in the same ovarian microsomes was detected using six repeats per day for three 

independent days. The inter-day and intra-day CVs were below 10%, indicating that the method 

has sufficient reproducibility.  

 

Table 3: Inter-day and intra-day accuracy and precision for the detection of estradiol in 

ovarian microsomes. 

Individual Days (pmol/h.mg microsome) Mean SD CV 
Day1 2.70 2.46 2.63 2.72 2.57 2.55 2.604 0.101 3.88% 
Day2 2.38 2.41 2.44 2.48 2.54 2.37 2.438 0.065 2.67% 
Day3 2.37 2.69 2.52 2.69 2.80 2.72 2.631 0.157 5.97% 

 

Microsomal concentration curves: Figure 1 (A) summarizes estradiol production as a 

function of microsomal concentration. A linear relationship was observed for concentrations 

ranging from 75 to 600 µg/reaction with an R2 of 0.99, indicating that this method is able to 

accurately measure differences in ARO activity within this range. This curve was repeated with 

different microsomal samples and a similar result. 

Incubation time curve: Figure 1 (B) summarizes the relationship between estradiol 

production and time of incubation for periods ranging from 15 to 90 min.  Result shows two 

linear phases for estradiol production during the 90 min reaction. The rate of the reaction was 

higher during the first 30 min with a value of 0.33 pmol/ h/mg microsome. After 30 min, the rate 

of the reaction decreased to 0.09 pmol/h/mg microsome, which suggests that enzyme activity had 

decreased. An incubation time of 30 min was used in all future studies. This same experiment 
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was repeated using a pool of hippocampal microsomes extracted from older animals.  Again, two 

linear phases were observed with an inflection point at 30 minutes (not shown). Rates were 0.135 

pmol/mg microsome during the first 30 min and 0.029 pmol/mg microsome during the next 60 

min.     

Substrate concentration curve: Figures 1C-1E show the relationship between estradiol 

production and substrate concentration. Eadie-Hofstee plots showed linearity with R2 =0.94, 0.96 

and 0.84 for hippocampus, amygdala and preoptic area respectively. This indicates that the 

reaction involves only one binding site. Data were then analyzed using Michaelis-Menten plots. 

For all regions in which activity was detected, the reaction saturated at a testosterone 

concentration of 400 nmol/L. Since our goal was to develop a method for comparing total 

enzyme activity in discrete tissue samples, subsequent experiments were conducted using 

saturating levels of testosterone (400 nmol/L) so that the functional enzyme expression, rather 

than substrate, is the limiting factor. Based on the Michaelis-Menten curves, we calculated that 

for hippocampus: Vmax = 0.57 pmol estradiol/h/mg microsome and the Km = 48.58 nmol/L; for 

amygdala: Vmax = 1.69 pmol estradiol/h/mg microsome and the Km = 48.4 nmol/L; and for 

preoptic are: Vmax = 0.96 pmol estradiol/h/mg microsome and the Km = 44.31 nmol/L. 
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Figure 1: Optimization of MIB assay parameters.  A) Graph showing a linear relationship 

between microsomal concentration and estradiol production (pmol/h).  B) Plot showing that two 

linear phases of ARO activity were observed as a function of reaction time. C-E: Substrate 

saturation curves for C) hippocampus, D) amygdala and E) preoptic area. All curves were 

repeated twice. 
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Ability to inhibit ARO activity with anastrozole: Figures 2A and 2B show the effects of 

the ARO inhibitor anastrozole on estradiol production. Anastrozole is a well-characterized and 

highly selective aromatase inhibitor that is used in the treatment of breast cancer. Anastrozole 

inhibited estradiol production in hippocampal microsomes by approximately 80% at 50 nM, and 

nearly 100% at 100 nM. Estradiol produced by ovarian microsomes was decreased by 80% after 

treating with 100 nM anastrozole. This provides additional evidence that estradiol production 

detected in the brain by this assay is due to ARO activity since it is inhibited by a selective ARO 

antagonist.    

         

Figure 2: Effect of different concentrations of anastrozole on aromatase activity in 

ovarian and hippocampal microsomes. 

 

2.3.3   Correlation between CYP19A1 Total and long form mRNA and ARO activity 

Distribution of ARO in different brain regions: Table 4 shows the distribution of long-

form CYP19A1 mRNA expression and ARO activity in different brain regions. Relative levels 

of CYP19A1 mRNA and activity were highest in the amygdala, followed by the preoptic area 
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and then the hippocampus. Despite the fact that total CYP19A1 mRNA in frontal cortex was 

similar to that in the hippocampus, the levels of long-form of the mRNA were approximately 

1200 times lower and ARO activity in this region was below the limit of detection. 

 

Table 4: Distribution of Total ARO mRNA, Long-form ARO mRNA expression and 

ARO activity in the different brain regions. 

Regions Total  ARO mRNA  Long form ARO 
mRNA  ARO activity  

HPC 17 16 31 
FC 9 2-8 0 

AMG 100 100 100 
POA 38 34 62 

 

HPC: hippocampus, FC: frontal cortex, AMG: amygdala and POA: preoptic area. Both 

the ARO mRNA expressions and activity were normalized to the values in the Amygdala. 

Values represent % of Amygdala. 

2.4 Discussion 

Our goal was to develop a new reliable and sensitive assay for measuring ARO activity in 

discrete regions of the mammalian brain.  Here we show that by isolating microsomes from 

discrete brain tissues and measuring conversion of testosterone to estradiol by UPLC-MS/MS, 

we can measure ARO activity at rates substantially less than 1 pmol/h/mg microsome during a 

30 min incubation.  This translates to the ability to measure ARO activity in as little as 50 – 150 

mg of rat brain tissue (depending on the brain region). Sensitivity may be increased by using 

longer incubation times; however, our data show that the rate of product formation decreases 
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after 30 min, which would make measurements less reflective of total functional enzyme activity 

and potentially co-factor/substrate limited. Controls show that measurements are reproducible 

with a CV below 10%, that activity is linearly correlated with microsomal concentration and 

with incubation time up to 30 min, and that a testosterone concentration of 400 nmol/L is 

sufficient to achieve saturating conditions. In addition, matrix effects were not significant and 

product formation was blocked by a selective ARO inhibitor, suggesting that product formation 

is due solely to ARO activity. Based on these results, we conclude that the microsomal 

incubation (MIB) assay is sensitive and reliable, and enables us to measure ARO activity in 

small amounts of brain tissue. 

For application, we showed that the regional distribution of ARO activity in the brain 

correlated with CYP19A1 mRNA expression detected by q-RT-PCR.  In the frontal cortex, we 

detected significant quantities of total CYP19A1 mRNA, however, the long-form CYP19A1 

mRNA was very low and the ARO activity was below the limit of detection. This is in accord 

with a previous study showing that only the long form CYP19A1 mRNA is associated with ARO 

activity (Roselli et al., 1997). In addition, our results are in agreement with previous reports 

showing that the highest ARO activity in the brain is in the amygdala, followed by the preoptic 

area and hippocampus (Roselli and Resko, 1991; Roselli et al., 1998; Sierra et al., 2003; 

Tabatadze et al., 2014; Takahashi et al., 2006). These results add confidence that the MIB assay 

accurately measures ARO activity and that activity corresponds with the functional CYP19A1 

mRNA expression.  
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2.4.1  Comparison between Tritiated water assay and MIB assay 

As mentioned above, a popular method for measuring ARO activity in tissues has been 

the tritiated water assay. This assay relies on the conversion of tritiated androstendione to estrone 

resulting in the production of 3H2O.  Tritiated androstenedione is then removed by passage 

through a hydrophobic column, and ARO activity is determined by measuring the rate of 3H2O 

production. This method has been used effectively to measure ARO activity in ovarian and 

placental tissues, as well as in avian and mammalian brain. Studies have shown that this method 

is quantitative and reproducible, particularly when ARO is relatively abundant.  Our experience, 

however, is that the method is not able to reliably detect and quantify ARO activity in small 

pieces of rat brain tissue where ARO activity is relatively low.  In such cases, many tissues need 

to be pooled (Roselli and Resko, 1993), incubation times can be very long (many hours) (Dean et 

al., 2012; Konkle and McCarthy, 2011) which raises concerns about the accuracy of the activity 

measure.  Also, this assay methodology has added variability in the efficiency of the separation 

of the tritiated androstenedione from the 3H2O. Instability of the substrate, which needs to be re-

purified periodically (Roselli and Resko, 1991), also can add to variability and reduce sensitivity. 

Hence different labs have reported difficulty detecting and quantifying ARO activity in regions 

of the mammalian brain using the tritiated water assay.   

In contrast, the MIB assay takes advantage of very sensitive UPLC-MS/MS methods to 

measure directly the conversion of testosterone to estradiol. Also, by focusing on the microsomal 

fraction, enzyme activity is concentrated and potential contamination by endogenous estradiol is 

reduced. In our hands, this method is more sensitive and reliable than the tritiated water assay for 

detecting and quantifying ARO activity in adult mammalian brain tissues.  
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Direct comparisons of kinetic parameters obtained using the two methods show 

differences, but these differences may be explained by methodological details.  Using the MIB 

method, Vmax and Km values for the amygdala and preoptic area were amygdala: Vmax= 1.69 pmol 

estradiol/h/mg microsome and the Km= 48.4 nmol/L; preoptic are: Vmax= 0.96 pmol 

estradiol/h/mg microsome and the Km= 44.31 nmol/L. In comparison, values reported by Roselli 

et al. using the tritiated water assay are, Amygdala: Vmax= 79.4 fmol/h/mg protein; Km = 30 

nmol/L, Preoptic area: Vmax= 62.5 fmol/h/mg protein, Km= 20nmol/L, (Roselli et al., 1984). 

Several factors may contribute to these differences. Firstly, the tritiated water assay is based on 

the conversion of adrostendione to estrone, whereas our method is based on the conversion of 

testosterone to estradiol. It is possible that ARO has different affinities and conversion efficacies 

for the two substrates. Secondly, values from the tritiated water assay are based on total protein 

concentration of the tissue homogenate, whereas values from the MIB assay are based on mg 

microsome. Thirdly, our values are based on a reaction time no greater than 30 min, whereas the 

studies by Roselli used a reaction time of 60 min. Our studies suggest that formation rate 

decreases after 30 min. These differences likely account for the differences in kinetic parameters 

obtained using the two assays. 

 A potential limitation of the MIB assay is that by focusing on the microsomal fraction, it 

is possible that ARO in other parts of the cell remains undetected.  Two studies have reported 

immunohistochemical evidence for the presence of ARO in axon vesicles and dendrites 

(Balthazart and Ball, 2006; Peterson et al., 2005). Isolation of microsome excludes the detection 

of aromatase in axon and dendrites. Hence while the majority of ARO activity is associated with 

microsomes, it is possible that a small portion of the total ARO activity in cells is excluded from 

the microsomal fraction.   
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2.5 Summary 

In summary, we have developed and validated a new microsomal incubation method that 

can sensitively and reliably detect ARO activity in rat brain tissues. As the importance of ARO 

in neuroplasticity and neuroprotection in the non-reproductive regions becomes increasingly 

recognized, the MIB assay will be a valuable tool for studying the role of ARO in the context of 

normal brain physiology and response to injury and disease. 
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3.0 Detection of Estradiol in Rat Brain Tissues: Contribution of Local Versus Systemic 

Production 

3.1 Introduction 

Since the discovery of ARO in the brain, the effect of local estrogen production on brain 

structure and function has received increasing attention. This raises important questions about 

the contributions of local vs systemic sources of estrogens to the brain, and about levels of E2 

present in specific regions of the mammalian brain under different physiological and 

pathological conditions, particularly in females where ovariectomized (OVX) animals and E2 

treatments are commonly used to model loss of ovarian function and E2 replacement.  

In this study, we focused on measuring E2 levels in both brain and serum in OVX rats 

treated with different doses of estradiol benzoate (EB), using a novel and recently validated 

UPLC-MS/MS method (Li et al., 2016a). Results confirmed significantly higher levels of E2 in 

brain regions known to contain ARO activity than in serum, both in OVX controls and in rats 

treated with physiological doses of EB.  Additional studies measured levels of E2 and T achieved 

in females treated with testosterone propionate (TP) for comparison with males, and also tested 

the ability to eliminate the differences between serum and brain levels of E2 by treating with the 

ARO inhibitor letrozole. Collectively the results provide a detailed analysis of brain region-

specific E2 concentrations in OVX, E2-, and T-treated rats and demonstrate the degree to which 

these concentrations are ARO–dependent.    
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3.2 Materials and methods 

3.2.1  Animals and Treatments 

All experiments were conducted in accordance with the NIH Guide for Care and Use of 

Animals and were approved by the Institutional Animal Care and Use Committee of the 

University of Pittsburgh. 

66 Young female ovariectomized (OVX, ~250g) and sixteen gonadally intact male 

(~300g) Sprague-Dawley rats (3 months old) were purchased from Harlan Sprague Dawley, Inc. 

Rats were individually housed for at least two weeks in our facility on a 12 hour:12 hour 

light/dark schedule with unrestricted access to food and water prior to use. Three experiments 

were conducted (Fig. 3). In the first experiment, we compared the E2 levels in the brain and 

serum of OVX rats after treating with different doses of estradiol benzoate (EB).  Females were 

divided into 4 groups, one group received daily sc injections of vehicle (sesame oil) and another 

three groups received different dose of EB (1.0, 2.5, or 5.0 µg/day, Sigma- Aldrich, Inc.). 

Injections were administered for 2 days. 20-24 h after the last injection, rats were anesthetized 

with a mixture of 6mg Xylazine: 30mg Ketamine, decapitated and the brain tissues and serum 

collected for analysis. In the second experiment, we characterized levels of E2 detected in the 

brain of OVX rats treated with T and compared this in levels detected in gonadally intact rats. 

OVX rats were treated with either vehicle (sesame oil) or testosterone propionate (TP, 0.5mg/day, 

Sigma- Aldrich, Inc.). Male rats received vehicle treatment.  Brain tissues and serum from 

another set of OVX controls, OVX TP- treated females, and gonadally intact males (N=4 for 

each group) with the same treatment were collected to measure T levels. After 2 days, animals 

were euthanized and decapitated as in experiment 1. In the third experiment, we tested the degree 
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to which brain ARO activity contributes to the E2 levels detected in the brain. OVX female and 

gonadally intact male rats received daily injections of letrozole (4mg/kg, Sigma- Aldrich, 

dissolved in 10% Dimethyl sulfoxide (DMSO), 20% 2-hydroxypropyl-β-cyclodextrin (HPCD) 

for 7 days. On the last two days of treatment, OVX rats received either vehicle, 1µg EB, 2.5µg 

EB, or 0.5mg TP).  Males received sesame oil. 20-24 hs after the last treatment rats were killed, 

trunk blood was collected, serum was harvested, and brains were processed for analysis. 

 

Figure 3:  Flow diagram showing the experimental design. OVX: ovariectomized, HPC: 

hippocampus, AMG: amygdala, POA: preoptic area, CTX: frontal cortex and CBL: cerebellum.  

 

The following brain regions were dissected and snap frozen on dry ice: frontal cortex 

(CTX), preoptic area (POA), hippocampus (HPC), amygdala (AMG), and cerebellum (CBL). 

Specifically, brains were sliced into 2 mm coronal slabs using a standard rat brain matrix (ASI, 

Inc.).  POA (~ 50mg) corresponding to plates 18 through 25 of atlas of Paxinos and Watson 

(George Paxinos, 1997) was dissected by making a horizontal cut beneath the anterior 

commissure and a vertical cut through the olfactory tubercles on each side of the third ventricle. 

AMG (~80mg) corresponding to plates 25 to 33 was dissected by cutting from the optic tract 
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horizontally through the rhinal fissure, and then dissecting amygdala apart from surrounding 

cortex. CTX (~150mg) included tissues from frontal cortex areas 1-3. HPC (~180mg) from each 

side and cerebellum(~250mg) were collected whole. Serum also was collected and stored for 

analysis of circulating hormone levels. All tissues were stored at -80˚C until use. 

3.2.2  Estradiol and Testosterone detection 

UPLC-MS/MS was used to quantify E2 in the serum and brain tissue homogenates. Brain 

tissue was homogenized in potassium phosphate buffer (0.12M, pH 7.4) containing 4.0 mM 

MgCl2, 4.0 mM Tris and 50 mM sucrose (100 mg tissue/ml).  E2 was then measured in 

homogenates and serum as recently described (Li et al., 2016a). Briefly, samples were spiked 

with internal standard 25µl 2,4,16,16,17-d5-17 beta-estradiol (1 ng/ml in methanol, LC-grade). 

3-4 ml n-Butyl chloride (Sigma-Aldrich, Inc.) was added and samples were vortexed for 1 min. 

Samples were then centrifuged at 4,770 x g at room temperature (RT) for 10 min, and the 

organic layer was transferred to salinized culture tubes and dried under a stream of nitrogen at 

37ºC for 20 min. Residues were derivatized in 0.1 ml buffered dansyl chloride solution (0.5 

mg/ml, a 1:1 mix of acetonitrile: water, pH 10.5, LC grade, Sigma-Aldrich, Inc.) in salinized 

tubes and heated to 60ºC for 3 min. Samples were centrifuged again for 1 min at 490 x g, and the 

supernatant (~0.1ml) was transferred into glass vials for UPLC-MS/MS analysis with an 

injection volume of 7.5 μl. Calibration curves were prepared at concentrations of 0.009, 0.018, 

0.036, 0.09, 0.18, 0.36 and 0.72 pmol/ml and quality controls (QCs) at 0.01 and 0.10 pmol/ml in 

a matrix of 0.2% 2-hydroxypropyl-β-cyclodextrin (HPCD).  Studies demonstrating the validity 

of using HPCD as the matrix for the standards and QCs were conducted and are described below. 
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Calibration curves and QCs were extracted and derivatized at the same time as the tissue and 

serum samples. E2 was then detected using UPLC-MS/MS as described above in section 2.2.3. 

Testosterone (T) levels in serum and brain homogenates were quantified by a 

modification of the method described by Cawood (Cawood et al., 2005) and using UPLC-

MS/MS similar to the E2 detection method described above. Briefly, samples were spiked with 

0.25 ng/ml D3-testosterone (Sigma-Aldrich, Inc.) as the internal standard and then extracted with 

3 ml n-butyl chloride. After centrifugation and evaporation, the residue was reconstituted in 

methanol and water (80 μl : 20 μl, LC grade), centrifuged again for 1 min at 490 x g and the 

supernatant was transferred into glass vials for UPLC-MS/MS analysis. T was eluted from the 

same column as E2, with a methanol: water (0.1% formic acid and 2 mM ammonium acetate) 

gradient from 50 to 85% methanol. Transitions used for analysis were 289 97 for T and 292  

97 for the deuterated T.  The ratio of area under the peak between T and deuterated T was 

quantified and used to determine levels of T pmol/mL by comparison with standards ranging 

from 0.035 pmol/ml – 55 pmol/ml. The limit of detectability for this assay was 0.035 pmol/ml. 

The inter-day precision, accuracy and stability were within acceptable limits. 

3.2.3  Validation of E2 detection in the brain tissue 

Extraction recovery of brain tissue homogenate:  Ideally, calibration curves would be 

prepared in a matrix of brain tissue; however, repeated preparation of brain tissue homogenate is 

costly in both time and rats. Previously we showed that HPCD is an acceptable matrix for 

comparing E2 levels in standards with E2 levels in microsomes and serum (Crago et al., 2015; Li 

et al., 2016a). We, therefore, tested HPCD as a matrix for comparing standards with brain 

homogenates. Whole rat brains were homogenized in buffer as above. 0.5 ml of tissue 
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homogenate was added to each tube.  Samples were spiked with known concentrations of E2 for 

comparison with standards prepared at equivalent concentrations. E2 was then extracted and 

measured along with the calibration curve and QCs were prepared in the 0.2% HPCD. Both 

curves were repeated 3 times on three different days, and the mean concentrations (M) and the 

standard deviation (SD) were calculated. Accuracy is reported as a relative standard error 

(RE %), calculated as RE %= (E − R)/R×100, where E= calculated value and R= real value. 

Precision was evaluated and expressed as relative standard deviation (RSD %) of the mean 

concentrations using the equation RSD % = SD/M×100.   

E2 level as a function of tissue volume: As part of our validation procedure, we tested the 

relationship between the amount of tissue homogenate used and the amount of E2 detected.  

Ideally, we should see a linear relationship between the amount of tissue homogenate and 

quantity of E2 detected, indicating that unknown factors in the homogenate were not interfering 

with E2 detection. A serial dilution curve of brain tissue homogenate was prepared. A volume 

range of 0.5 – 3 ml tissue homogenate was used per reaction. The amount of E2 was measured, 

and the relationship between E2 level and amount of tissue used was determined.  

3.2.4  Statistical analyses 

Data in Fig. 4,6,7 are presented as mean ± s.e.m. For experiment 1, effects of different 

EB doses on E2 levels in the different brain regions and serum were analyzed by two-way 

ANOVA using location (e.g., brain region, serum) as a within subject factor and dose as a 

between-subject factor.  Non-linear least-squares regression (Hill equation: Y = Bmax*X/(Kd + 

X) was used to analyze the relationship between serum and brain E2 levels in rats treated with 

different doses of EB. This equation has been used as a general non-linear model for describing 
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data with a sigmoidal distribution (Goutelle et al., 2008). For experiment 2, comparisons of E2 

among OVX, TP-treated OVX and gonadally intact male rats were analyzed by two-way 

ANOVA with location as a within-subject factor and treatment as a between-subject factor. T 

levels among these three groups were analyzed in the same way. For experiment 3, the effect of 

OVX, 1 µg and 2.5 µg EB in combination with letrozole on the levels of E2 in both brain and 

serum were analyzed by three-way ANOVA, with location (e.g., brain region, serum) as a 

within-subject factor, and dose of EB and letrozole treatments as two between-subject factors. 

The effect of TP treatment in comparison with males, as well as the effect of letrozole on E2 

levels in the different brain regions and serum was likewise analyzed by three-way ANOVA. 

Statistically significant interactions were followed by simple effects analyses using Post-hoc 

Tukey tests. All statistical analyses were done using JMP (Pro12), with significance defined as p 

<0.05. 

3.3 Results 

3.3.1  Estradiol method validation 

Extraction recovery: Table 5 compares estradiol (E2) extraction and detection using brain 

tissue homogenate vs. HPCD as the two matrices. E2 calibration curves were prepared in brain 

tissue homogenates (1mg tissue/ 10 µl potassium phosphate and Tris-sucrose buffer) as well as 

0.2% HPCD. Calibrators contained E2 at concentrations of 0.009, 0.018, 0.036, 0.09, 0.18, 0.36 

and 0.72 pmol/ml. Results show that RE% and RSD% were within 15% for all concentrations 

evaluated. These data indicate that the assay is accurate and reproducible and that extraction 
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from HPCD did not differ significantly when compared with extraction from brain tissue 

homogenate. Therefore, HPCD was used as the matrix for all subsequent calibration curves. 

 

Table 5: Evaluation of brain tissue homogenate vs. HPCD as a matrix for the extraction 

and detection of E2. 

 

E2 level as a function of tissue volume: Fig. 4 shows the relationship between quantity of 

tissue homogenate and E2 level detection. A linear relationship was observed for tissue 

homogenate volume ranging from 500 – 3000 μl with an R2 of 0.99.  This curve was repeated 

with different tissue homogenates with similar results. These results indicate that the method can 

accurately measure differences in E2 level across a wide range of concentrations and tissue 

volumes.  

Amount E2
Added (pg/ml)

HPCD
(pg/ml,N=3) %RE %RSD

Tissue
homogenate
(pg/ml, N=3)

%RE %RSD

2.5 2.41±0.08 -3.55194 3.28 2.44±0.28 -2.33 11.49
5 5.53±0.69 10.60543 12.63 4.98±0.33 -0.46 6.68
10 9.91±0.62 -0.90148 6.21 10.85±0.50 8.51 4.59
25 24.56±0.89 -1.76722 3.61 24.67±0.58 -1.31 2.36
50 48.50±2.20 -3.00227 4.54 50.07±4.02 0.15 8.02
100 99.39±1.61 -0.60787 1.62 98.52±2.75 -1.15 2.78
200 202.51±2.30 1.255401 1.14 197.30±6.73 -1.35 3.41

Estradiol
(E2)
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Figure 4: Plot illustrating linear detection of E2 as a function of volume of whole brain 

homogenate. Each point represents a measurement of sample pooled from three animals brain 

tissue. 

 

3.3.2  Serum levels of estradiol 

Serum levels of E2 in OVX controls were undetectable.  Mean serum levels ± s.e.m. in 

rats from experiment 1 treated with 1.0, 2.5 and 5.0 µg estradiol benzoate (EB) were 0.076 ± 

0.008, 0.168 ± 0.016 and 0.576 ± 0.089 pmol/ml. Serum E2 levels in TP treated OVX rats as 

well as serum E2 levels in male rats from experiment 2 were very low and in most samples were 

undetectable. In experiment 3, mean serum levels of E2 in OVX rats treated letrozole in addition 

to 1.0 and 2.5 µg EB were 0.079 ± 0.016, 0.176 ± 0.033, which were not significantly different 

from levels detected in non-letrozole treated rats (p=0.32). 
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3.3.3  Comparison of estradiol levels in select brain regions vs. serum after different dose of 

estradiol benzoate treatment 

Fig. 5A illustrates the dissection of each brain region according to the atlas of Paxinos 

and Watson (George Paxinos, 1997). Fig. 5B summarizes the effects of different doses of EB on 

E2 levels detected in each brain region as well as in serum in OVX rats. Two-way ANOVA 

revealed a significant effect of treatment (F[3,138]=64.32, P<0.001), a significant effect of 

location (F[5,138]=46.75, p<0.001), and a significant treatment x location interaction (F[15, 

138]=15.19, p<0.001). Post-hoc analyses revealed significant differences among different doses 

of EB treatments. E2 levels in EB treated rats were significantly higher than E2 levels in OVX 

rats. In addition, E2 levels significantly increased as a function of dose (OVX<1µg EB<2.5µg 

EB <5µg EB).   Post-hoc analyses by brain region revealed that E2 levels in the HPC, AMG and 

POA were significantly higher than in serum in OVX rats treated with 1 µg or 2.5 µg EB. Note 

that in each of these brain regions significant levels of E2 were detected in OVX controls, and 

these levels were comparable to serum levels detected in rats treated with 1.0 µg E2. In contrast, 

E2 levels in the CTX and CBL of OVX controls were undetectable.  In addition, levels of E2 

detected in these brain regions in rats treated with 1.0 or 2.5 µg EB did not differ significantly 

from the levels detected in serum.  

In rats that were treated with 5 μg EB, serum concentrations of E2 were well above the 

normal physiological range(>0.3 pmol/ml) (Butcher et al., 1974). Under this condition, E2 levels 

in all brain regions were lower than in serum. Moreover, E2 levels were similar across brain 
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regions (0.35 - 0.5 pmol/ml), in contrast to the differences observed when systemic E2 was in the 

physiological range.  

 

 

Figure 5: A) Illustrations of each brain region dissection (shown in yellow) corresponding 

to plates from Paxinos and Watson (1986). B) Comparison of E2 levels in the different brain 

regions and serum after different doses of EB treatment. Each bar represents the mean 

concentration of E2 ± s.e.m. # indicates significant difference (p<0.05) in E2 detected in rats 

treated with different doses of EB treatment compared with OVX animal.$ indicates significantly 

higher (p<0.05) levels of E2 compared with 1µg EB treatment group. & indicates significantly 
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higher (p<0.05) levels of E2 compared with 2.5µg EB treatment group. * indicates significant 

difference (p < 0.05) in E2 level in the brain region compared to serum under each EB treatment. 

N=12 for OVX: N=5 for each EB treatment. 

 

Further analysis used a non-linear least squares regression to characterize the relationship 

between E2 levels in the serum and brain in the HPC, AMG, POA, CTX and CBL (Fig 6). In all 

brain regions, local levels of E2 increased in association with increasing levels of E2 in the 

serum, provided serum levels were within the physiological range.  In the HPC, AMG and CTX, 

local levels appeared to approach a plateau as serum levels extended beyond 0.2 pmol/ml (Fig 

6A, B & D). This also was apparent in the POA where brain E2 levels peaked at serum levels of 

approximately 0.2 pmol/mL and then decreased as serum levels further increased. Also note that 

in the HPC, AMG and POA, the Y-intercept was greater than zero indicative of local E2 

production (Fig 6A, B & C). For CTX and CBL, the Y-intercept was 0, consistent with no local 

E2 production (Fig 6D & E).   
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Figure 6: Correlations between E2 levels in serum vs brain in the different brain regions. 

Each data point represents data from one animal. Non-linear least-squares regression (Hill 

equation) was used to analyze the relationship between serum E2 and brain E2 levels in each 

region of the brain.  

 

In summary, these results show that administering different doses of EB to OVX rats 

significantly increases E2 levels in the brain but that the proportional increase is greatly reduced 

or even reversed (i.e., POA) in some regions when systemic levels are well above the 

physiological range. Moreover, in the HPC, AMG and POA, the E2 levels were higher than that 

in the serum whereas in the CTX and CBL, brain levels were comparable to that in the serum. 

This is consistent with the local E2 production that has been described in specific brain regions. 
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3.3.4  Estradiol and testosterone levels in select brain regions vs. serum in OVX rats treated 

with testosterone-propionate in comparison with gonadally intact males 

Testosterone (T) levels were measured in a separate set of OVX rats treated with 

testosterone-propionate (TP) and in gonadally intact male rats (Table 6). Two-way ANOVA 

showed a significant effect of treatment (F[2,54]=11.69, p=0.0024), a significant effect of 

location (F[5,54]=16.46, p<0.001), and a significant treatment*location interaction 

(F[10,54]=6.07, p<0.001). Post-hoc analyses showed that T levels in TP-treated OVX and 

gonadally intact male rats were not significantly different from each other, but were significantly 

higher than in OVX controls.  In addition, serum levels of T in the TP-treated OVX group were 

significantly higher than levels detected in the brain regardless of brain region. In males, serum 

levels of T also were consistently higher then levels in the brain.  This did not reach statistical 

significance, however, as the variance in serum T levels in gonadally intact males was quite high.  

Also, T levels across different brain regions in males did not differ significantly (p=0.059).  

 

Table 6: Testosterone levels in the serum and in different brain regions in OVX, 

0.5mgTP-treated OVX, and gonadally intact male rats.  

  T level (pmol/ml) 
 OVX 0.5mg TP

* Male
* 

Serum 0.25 ± 0.04 16.92 ±  0.78
# 13.01 ± 4.53 

HPC 0.25 ± 0.07 9.27 ± 0.78 8.86 ± 2.70 
AMG 0.33 ± 0.07 8.39 ± 0.87 7.40 ± 2.23 
POA 0.34 ± 0.06 7.95 ± 0.44 8.23 ± 2.30 
CTX 0.18 ± 0.01 11.01 ± 0.85 8.53 ± 2.65 
CBL 0.18 ± 0.03 10.05 ± 1.20 7.66 ± 2.07 
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Values indicate the mean concentration of T ± s.e.m. * indicates significantly higher 

levels in TP-treated OVX and in males compared to the OVX controls.  # indicates significantly 

higher T levels in serum compared to brain regions. N=4 for each group. 

 

E2 levels in the TP-treated OVX rats, OVX controls, and vehicle-treated males are shown 

in Fig 7. Two-way ANOVA revealed a significant effect of treatment (F[2, 210]=36.52, p<0.001, 

a significant effect of location (F[5, 210]=116.17, p<0.001), and a significant treatment*location 

interaction (F[10,210]=35.40, p<0.001). Post-hoc analyses show that in the POA, AMG, and 

HPC, E2 levels were significantly higher than levels in the serum for all three groups. In males, 

E2 levels were detectable in the POA, AMG, and HPC even though levels were undetectable in 

serum. Moreover, male rats had significantly higher levels of E2 in the AMG (p=0.002) and 

POA (p<0.001) than TP-treated OVX rats. E2 levels in the AMG and POA of male rats also 

were similar to E2 levels in the AMG and POA of OVX rats treated with 2.5μg/day EB (compare 

Fig 5B with Fig 7). In contrast to levels in the POA and AMG, E2 levels in the HPC of TP 

treated OVX females and gonadally intact males were similar to E2 levels in the HPC of OVX 

controls. The E2 levels in CTX and CBL of TP treated OVX and male rats were similar to that in 

the serum and there was no statistically significant difference among these groups (Fig 7). 
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Figure 7: Effect of TP on E2 levels in the different brain regions vs serum and 

comparison with males.* indicates significant difference (p < 0.05) in E2 level in the brain 

region relative to serum. # indicates that E2 levels in males were significantly higher (p<0.05) 

than in TP treated OVX rats and OVX controls. N=12 for OVX; N=10 for 0.5mg TP; N=6 for 

Male. 

 

In summary, these results show that administering TP to OVX rats significantly increased 

T levels both systemically and in the brain of OVX rats. However, the increases in T did not 

result in significantly elevated levels of E2 in the brain compared with vehicle-treated OVX 

controls. In comparison, males had significantly higher E2 levels in the AMG and POA 

compared with TP-treated rats and OVX controls. This is consistent with higher levels of ARO 

activity in the brains of males than females.  
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3.3.5  Effects of letrozole  

3.3.5.1 Effects of letrozole on E2 levels detected in EB treated rats  

Treatment with letrozole was used to test whether differences in E2 levels in brain vs 

serum were due to local ARO activity.  Effects of letrozole on E2 levels detected in the brain and 

serum of OVX rats treated with EB are summarized in Fig. 8. Three-way ANOVA revealed a 

significant effect of EB treatment (F[2,198]= 206.60, p<0.001), a significant effect of letrozole 

(F[1,198]=61.74, p<0.001), and a significant effect of location (F[5,198]=80.00, p<0.001) . The 

analysis also revealed significant interactions of EB*letrozole (F[2,198]=7.74, p=0.0017), 

EB*location (F[10,198]=19.68, p<0.001), letrozole*location (F[5, 198])=17.76, P<0.001) and 

EB*letrozole*location (F[10,198]=4.13, P<0.001). Post-hoc analyses showed that letrozole 

significantly reduced the differences between brain and serum E2 levels in the HPC, AMG and 

POA.  Direct comparisons with non-letrozole-treated rats showed significant reductions in the 

HPC of OVX rats (p=0.012) and rats treated with 1.0 (p<0.01) and 2.5 (p<0.05) µg EB.  

Letrozole also significantly reduced E2 levels in the AMG of OVX rats (p=0.015) and in rats 

treated with 1.0 µg EB (p<0.05) (Fig 8A&B), and in the POA of rats treated with 2.5µg EB 

(p<0.02, Fig 8C). Letrozole also appeared to lower E2 levels in the POA of OVX, 1µg EB-

treated rats, however this difference did not reach statistical significance, possibly due to the high 

variability at such low levels of detection.  

Comparisons among different brain regions and serum showed that in OVX rats, the 

differences between brain and serum levels of E2 that were detected in the HPC, AMG and POA 

of non-letrozole treated rats were no longer apparent in letrozole-treated rats. There were three 

exceptions. One was the AMG where rats treated with 1µg EB + letrozole still had higher levels 

of E2 than in serum though lower than in rats that did not receive letrozole (p=0.036, Fig 8B). 
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The others were in the POA of rats treated with both 1.0 µg and 2.5 µg EB + letrozole where E2 

levels were reduced in letrozole-treated rats compared to non-letrozole-treated rats, but were still 

higher than levels in serum (p=0.047, p=0.007, respectively, Fig 8C). 

 

Figure 8: Comparison of E2 levels in brain vs. serum after different dose of E2 and 

letrozole in A) HPC, B) AMG, C) POA, D) CTX and E) CBL. * indicates significant difference 

p < 0.05 between brain and serum levels. # indicates significant difference p<0.05 in brain levels 

between letrozole and non-letrozole treated groups. N=12 for OVX; N=6 for OVX+ L: N=5 for 

EB treatment without L; N=5 for EB treatment with L. 
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These data show that letrozole significantly reversed the differences between brain and 

serum E2 levels in OVX and EB treated rats, suggesting that the higher E2 levels in the HPC, 

AMG and POA are due to local ARO activity. 

3.3.5.2 Effects of letrozole on E2 levels detected in TP-treated OVX and male rats 

Effects of letrozole on E2 levels detected in the brain and serum of male rats as well as 

OVX rats treated with TP are summarized in Fig. 9. Three-way ANOVA revealed a significant 

effect of TP (F[2, 234]=18.62, p<0.001), a significant effect of letrozole (F[1, 234]=64.23, 

p<0.001), and a significant effect of location (F[5, 234]=57.75, p<0.001). The analysis also 

revealed significant interactions between TP*letrozole (F[2,234]=14.81, p<0.001), TP*location 

(F[10, 234]=18.60, p<0.001), letrozole*location (F[5, 32.81])=17.76, P<0.001), and 

TP*letrozole*location (F(10,234)=13.67, p<0.001). In TP-treated OVX and gonadally intact 

male rats, letrozole reduced levels of E2 in the AMG and POA such that they were no longer 

different from levels in serum (Fig 9B &C). This was not the case, however, in the HPC where 

letrozole treatment did not appear to reduce E2 levels in TP-treated females, but did reduce E2 

levels in gonadally intact males (Fig. 9A). No significant effect of letrozole on E2 levels was 

detected in the CTX or CBL (Fig 9D &E). 
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Figure 9: Comparison of E2 levels in brain vs. serum in the A) HPC, B) AMG, C) POA, 

D) CTX and E) CBL of OVX females, TP-treated females, and gonadally intact males treated 

with Letrozole. *indicates significant difference p<0.05 between brain and serum levels. # 

indicates significant difference p<0.05 in brain levels between letrozole and non-letrozole treated 

groups. N=12 for OVX; N=6 for OVX+ L; N=10 for 0.5mg TP; N=5 for TP+L; N= 6 for Males; 

N=6 for Male +L. 

 

These results show that letrozole significantly decreased E2 levels in the HPC, AMG and 

POA in both TP-treated OVX and male rats, suggesting that the higher E2 levels in these regions 

are due to local ARO activity.  
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3.4 Discussion 

One objective of this study was to investigate the relationship between circulating levels 

of E2 and levels in specific regions of the brain in adult OVX rats treated with different doses of 

EB, and to identify the contribution of local versus systemic sources of E2 in specific brain 

regions. Using a sensitive UPLC-MS/MS method, we showed that in the HPC, AMG and POA, 

which are brain regions known to contain significant levels of ARO activity (Li et al., 2016a), 

the levels of E2 significantly exceeded those present in the circulation.  Moreover, letrozole 

treatment significantly reduced the E2 levels in these regions, indicating that the differences 

between brain and serum E2 levels are due, at least in part, to local E2 synthesis. We also 

showed significant levels of E2 in these same brain regions in male rats, confirming that local E2 

synthesis plays an important role in determining E2 levels in the brain in both sexes. 

Notably, we showed that E2 levels in the HPC, AMG and POA were significantly higher 

than in serum in OVX rats where circulating levels of E2 were undetectable, and also in rats 

treated with 1.0 and 2.5 µg EB. Note that levels detected in the HPC, AMG and POA of OVX-

untreated rats were similar to serum levels detected in rats treated with 1µg EB.  This is 

consistent with other reports showing higher levels of E2 in the brain than in the circulation in 

gonadally intact rats, in regions with significant ARO activity (Kato et al., 2013). In the HPC 

levels of E2 detected in rats treated with 1.0 or 2.5µg EB were comparable to values obtained by 

adding levels of E2 in the circulation with levels produced in the brain of OVX controls.  This 

suggests that in the HPC the levels achieved reflect the simple addition of local production with 

systemic levels.  In the AMG and POA, levels of E2 detected in rats treated with 1.0 and 2.5µg 

EB were even higher, suggesting that E2 treatment may actually increase local production in 
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these regions. In brain regions with relatively little ARO activity, local E2 levels were 

comparable to levels detected in the circulation. 

Collectively, these data demonstrate that local E2 levels are brain region specific, and in 

some regions remain significantly elevated even following OVX when circulating levels are 

undetectable. The distribution of local E2 production is in agreement with the distribution of 

ARO activity in the brain reported in previous reports (Roselli and Resko, 1991; Roselli et al., 

1998). Moreover, our results show that levels of E2 in the brain correlate with circulating levels 

provided those levels are within the physiological range (<0.2 pmol/ml).  This is consistent with 

an earlier study showing that variations in systemic E2 levels during the estrous cycle correspond 

to varying levels of E2 in the brain (Kato et al., 2013). 

Unexpectedly, we found that in some regions of the brain, the increases in E2 levels 

appeared to plateau as systemic E2 levels increased well above the physiological range (>0.3 

pmol/ml).  This suggests that in response to very high circulating levels of E2, local mechanisms 

are activated that prevent levels in specific regions of the brain from becoming too high.  Also, 

under conditions of high circulating E2, local E2 production did not appear to add significantly 

to local levels.  Studies show that ARO activity can be regulated by phosphorylation, with 

increased phosphorylation associated with reduced activity ((Balthazart et al., 2001a; Balthazart 

et al., 2001b; Balthazart et al., 2005; Balthazart et al., 2003a). It is possible that 

supraphysiological levels of E2 result in phosphorylation of local ARO in the brain, thus 

reducing enzyme activity and local E2 production (Cornil et al., 2006; Fester et al., 2016). This 

could be a mechanism for local regulation of ARO activity and needs to be investigated. 

Consequently, there may be a variety of mechanisms at play that serve to limit local levels of E2 

in specific regions of the brain, particularly when circulating levels are very high. This requires 
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further study. This result also may help to explain why high (i.e., supraphysiological) doses of 

E2 can have lesser or even negative effects on brain endpoints compared with lower doses.  For 

example, the results may help explain why lower doses of E2 produce a dose-related increase in 

ChAT immunoreactivity in the basal forebrain whereas high doses do not (Gibbs, 1997), or why 

low doses of E2 induce dendritic spine formation (Phan et al., 2012), while high doses do not 

(Kretz et al., 2004). Several studies indicate that local estrogen production has a significant 

impact on dendritic spines in the HPC (Bender et al., 2017; Leranth et al., 2004; von Schassen et 

al., 2006). These results highlight the importance of understanding the relationship between local 

and systemic E2 levels when interpreting effects of E2 in specific regions of the brain.  

3.4.1  Effects of Letrozole   

 We hypothesized that the elevated E2 levels detected in the brain of OVX rats with low 

or physiological levels of circulating E2 were due to local E2 production.  Alternatively, elevated 

levels could be due to sequestration of circulating E2 by binding to local estrogen receptors.  To 

differentiate between these possibilities, we tested the ability to reduce or eliminate the 

differences between brain and serum levels of E2 by administering letrozole, a selective ARO 

inhibitor. Results show that E2 levels in brain regions with ARO activity were decreased 

significantly by letrozole treatment, whereas letrozole had little effect on E2 levels in brain 

regions which lack ARO. This indicates that, in these regions, the higher levels of E2 in the brain 

relative to serum are due, at least in part, to local estrogen production by ARO.  

Three minor exceptions were the AMG of rats treated with 1µg EB + letrozole and the 

POA of rats treated with 1.0 and 2.5 µg EB + letrozole, where levels of E2 were still higher in 

the brain than in the serum though lower than in rats that did not receive letrozole. In these cases, 
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some residual E2 bound to a high density of estrogen receptors may contribute in part to elevated 

levels of E2 detected in these regions. 

3.4.2  Effects of T on local E2 production in the brain 

Another objective of this study was to test whether systemic administration of TP to 

OVX females would result in local E2 levels in specific regions of the brain comparable to levels 

seen in the brains of males.  Assays confirmed that circulating levels of T in the TP-treated 

females were comparable to levels detected in the males.   Using a separate set of rats we also 

confirmed that brain levels of T in TP-treated females are significantly elevated.  In the AMG 

and POA, levels of E2 in TP-treated females were higher than in OVX controls, however these 

differences did not reach statistical significance. Moreover, there was no significant increase in 

E2 in the HPC of TP-treated females. The lack of effect of TP treatment was surprising given 

that significant levels of ARO activity have been detected in each of these regions (Li et al., 

2016a; Roselli and Resko, 1993).  The negative result was not due to a failure to provide 

adequate levels of T to the brain, as the levels of T in the brains of TP-treated females was 

comparable to the levels detected in males. It also is not likely that the ARO enzyme was 

saturated, as our previous studies indicate that microsomal ARO activity in these areas saturates 

at much higher levels of T (> 400 nmol/L, (Li et al., 2016a)). It is possible that the saturation 

concentration of T for the ARO enzyme in vivo is significantly different from that in vitro; 

however, there is no evidence that this is the case. A more likely explanation is that the increased 

levels of E2 are small relative to the high variability at the low end of the detectable range, thus 

making it difficult for the differences observed in the AMG and POA to reach statistical 

significance.  
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The E2 levels in these same brain regions in males were much higher than observed in 

the TP-treated females. This is consistent with the higher levels of ARO mRNA and activity that 

have been reported in these brain regions in males (Roselli et al., 1985; Tabatadze et al., 2014) 

and in accord with a study done in zebra finch showing significantly higher E2 levels in males 

(35pg/ml) than in females (10 pg/ml) during the subadult stage (Chao et al., 2015). In the current 

study, E2 levels in the HPC of males were similar to levels in the OVX and TP-treated females.  

This suggests that in this brain region, ARO activity may be similar between males and OVX 

females. Moreover, letrozole treatment eliminated the increased levels of E2 detected in brain vs. 

serum in both TP-treated females and gonadally intact males. This indicates that the higher levels 

of E2 were due to local E2 production in each of these cases.  

As mentioned above, although ARO activity is interpreted to indicate the capability for 

local E2 production, actual E2 levels in the brain are less well studied. Konkle et al. (Konkle and 

McCarthy, 2011) reported E2 levels of 0.10, 0.50 and 5.0 pg/mg protein in the HPC, CTX and 

hypothalamus and 1.5 and 5 pg/mg protein for T in these three regions of intact young adult rat 

brain using LC-MS/MS methods. If we assume that 1g of tissue contains 100mg protein, then the 

concentrations of E2 and T reported by Konkle are similar to the concentrations reported here. 

However, significant differences in study design must also be considered: 1) here we used OVX 

rats as our model which eliminated native ovarian sources of E2 and other hormones. This may 

account for the slightly lower E2 levels detected in our study, 2) we detected a higher level of E2 

in the HPC than in the CTX, which is opposite to that reported by Konkle et al (Konkle and 

McCarthy, 2011). This may due to differences in tissue dissection and local variances in ARO 

activity. 3) there were no sex differences in E2 levels and T levels measured in rats at 60 days of 

age in the prior study, whereas we detected significantly higher levels of E2 in intact male rats 
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compared to OVX female rats. This difference may due to the absence of systemic E2 input in 

the OVX female rats in our study.  

Kato et al. (Kato et al., 2013) also measured E2 and T levels in the hippocampus and 

serum of intact males, normal cycling females and OVX Wistar rats (10 weeks old) using HPLC-

MS/MS method. The serum E2 levels in both sexes measured in our study are similar to that 

reported in Kato’s study. Moreover, the T levels of male rats measured in our study also matched 

with the results shown by Kato, demonstrating a lower T levels in the HPC than in serum (Hojo 

et al., 2004). However, the E2 levels measured in the HPC of males (~8 nM) and females (pro-

estrous stage: ~4nM) were higher than levels measured in our study. Moreover, we did not see 

higher E2 levels in the HPC of males than in the HPC of OVX females. This may due to the 

different animal models or to differences in specific LC-MS/MS methods.  

Other studies applied different methodologies and animal models to explore this question. 

Munetsuna et al (Munetsuna et al., 2009) reported approximately 19.0 fmol/mg protein E2 and 

43.7 fmol/mg protein T in the hippocampal slice culture from 10 d-old male rats precultured in 

serum after 24h using radioimmunoassay.  This also is similar to the levels of E2 and T reported 

in our study.   

Studies also show that E2 levels in the brain can vary as a function of age or in 

association with different pathological conditions. For example, Konkle et al. (Konkle and 

McCarthy, 2011) reported much higher levels of E2 (5~50 pg/mg protein varying by brain region) 

and T (60~400 pg/mg) in prenatal rats than in adults. Several studies have reported induction of 

ARO following brain injury (Peterson et al., 2007), experimental stroke (Carswell et al., 2005), 

global ischemia-reperfusion, hypertension (Pietranera et al., 2011), and neuroinflammation 

(Duncan and Saldanha, 2011). Studies also have reported significant induction of ARO in 
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astrocytes following brain injury (Peterson et al., 2007; Peterson et al., 2001; Pietranera et al., 

2011) as well as an increase in ARO activity (Pedersen et al., 2017), consistent with induction of 

local E2 production. Sato et al. (Sato and Woolley, 2016) showed induction of E2 synthesis in 

the hippocampus of young adult rats after seizure in both males and females using hippocampal 

microdialysis followed by E2 measurement using enzyme immunoassay (EIA) methods. Further 

studies are needed to analyze the E2 levels in the brain under different physiological and 

pathological conditions as well as sex differences in response to injury.  

3.4.3  Implications and Limitations 

3.4.3.1 Functional Implications 

The findings presented here, showing differences in E2 levels in specific regions of the 

brain under different treatment conditions, may have important functional and behavioral 

implications. Increasingly studies are showing that local estrogen production has an important 

impact on local neuronal function and behavior.  The preoptic area plays a critical role in sex 

dimorphism and sex behavior regulation. In particular, accumulated evidence shows that 

estrogens of local and systemic origin cooperate to regulate the induction of the preovulatory 

(Gonadotropin-releasing hormone) GnRH/ luteinizing hormone (LH) surge and regulate 

receptivity and sexual motivation in females (Cornil, 2018; de Bournonville et al., 2016; 

Rissman, 1991; Terasawa and Kenealy, 2012). Aromatization of T to E2 in this region 

contributes to LH-negative feedback regulation in males (Hayes et al., 2000; Roselli and Resko, 

2001; Sharma et al., 1999) and regulates male-typical sex behaviors (Gladue and Clemens, 1980a; 

Gladue and Clemens, 1980b; Roselli and Resko, 1993). Treatment with E2 or T, but not 

dihydrotestosterone, a non-aromatizable metabolite of T, has been shown to restore sex 
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behaviors in adult castrated male rats (Baum and Vreeburg, 1973; McDonald et al., 1970; 

Putnam et al., 2003; Putnam et al., 2005).  

The hippocampus plays a critical role in learning and memory consolidation.  As 

mentioned above, studies show significant effects of local estrogen production on synaptic 

plasticity and maintenance of long term potentiation (LTP) in the hippocampus of female, but 

not male animals (Fester and Rune, 2015; Vierk et al., 2014). Fewer studies have explored the 

effect of E2 on memory in male rodents and there were discrepant effects of E2 on the spatial 

memory and nonspatial tasks (reviewed by (Frick et al., 2015)). Work by Oberlander et al. and 

Bailey et al. (Bailey et al., 2013; Bailey et al., 2017; Oberlander et al., 2004) suggests an 

important role for local estrogen production on acquisition of spatial memory in song birds, and 

other evidence suggests that local E2 production may work through ERα signaling to impact 

memory after cessation of ovarian function in rats (Daniel et al., 2015). 

The amygdala plays a critical role in fear and anxiety, and in social recognition behaviors.  

In prior research, ARO knockout (ArKO) in OVX female mice exhibited increased depression-

like behavior compared with wild-type OVX female mice in the forced swim test (Dalla et al., 

2004). Specific deletion of ARO in the medial amygdala also has been associated with increased 

aggression in both males and females (Unger et al., 2015).  We recently showed that treating 

with cholinesterase inhibitors can significantly increase ARO activity in the amygdala (Li et al., 

2018).  These findings could have important implications for fear and anxiety-related behaviors, 

as well as for risk of anxiety-related disorders.  

Further studies on the behavioral consequences of the local contribution of ARO to E2 

levels in these regions both in the normal adult brain, following estrogen treatments, during 

critical periods of development and aging, and under pathological conditions is a high priority. 
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3.4.3.2 Limitations 

One limitation of this study is that ARO expression and activity was not measured in the 

same rats where E2 levels were detected; however, other studies including one recent study 

conducted in our laboratory have reported regional differences in ARO expression and activity in 

brain (Balthazart et al., 2003b; Li et al., 2016a; Roselli et al., 1997).  Nevertheless, potential 

effects of hormone treatments on brain ARO expression and activity were not evaluated and 

cannot be excluded. Several studies have reported effects of hormone treatment (primarily 

androgens) on ARO activity in brain. Androgens, such as T and dihydrotestosterone have been 

shown to bind to the ARO promoter and regulate its transcription and stability in sex-specific 

and region-specific ways (Abdelgadir et al., 1994; Negri-Cesi et al., 2001a; Roselli et al., 1997). 

In contrast, the effect of estrogen regulation of ARO mRNA expression and activity are more 

complex and may be region- sex- and species dependent (Roselli et al., 1997; Zhao et al., 2007；

Abdelgadir, 1994 #93；Roselli, 1993 #637). More studies regarding the effects of different 

doses and durations of E2 treatment, estrous cycle regulation of ARO expression and activity 

need to be evaluated. 

Another limitation of this study is the lack of information of pharmacokinetics (PK) and 

pharmacodynamics (PD) information of EB and TP in the rats. EB is an estradiol ester and a 

prodrug of E2, which can be cleavage by esterase into estradiol not only in liver, but also in the 

blood and in tissue (Kuhl, 2005). After Intramuscular injection, the half-life of EB is 

approximately 2 days in humans. TP is a prodrug of T, with a half-life of approximately 0.8 days 

in humans (Behre et al., 1999). There is little published regarding the PK of EB and TP in rats, 

which may be different from humans (Plowchalk and Teeguarden, 2002). As a small lipophilic 

molecule, E2 can rapidly diffuse across the blood brain barrier through a non-saturable, 
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bidirectional process (Banks, 2012). However, a big portion of E2 (~95%) in the plasma is bound 

to albumin (Plowchalk and Teeguarden, 2002), which will decrease the rate of E2 penetrate into 

the brain tissue. According to the principles of PK, a time period of 5 half-lives is sufficient for a 

drug to achieve pseudo-equilibrium between plasma and tissues, when the concentration in the 

tissue is more stable and parallels that in the plasma. For our study, we used a time point of 2 

days after treatment, which may not be at the pseudo-equilibrium stage. It is possible that the E2 

levels are still fluctuating between plasma and brain and may influence our detection. The final 

amount of E2 in the brain is decided by its affinity to tissue vs plasma binding protein.   With 

letrozole treatment or in the brain regions without ARO activity (such as CTX and CBL), the 

levels of E2 in the brain regions were similar to the levels in the serum, This indicates that E2 

may have similar binding affinity to tissue and the binding protein in the plasma, Further studies, 

such as PBPK modeling, that consider the characteristics of the chemicals and physical 

conditions may be helpful to explore how and how much of systemic E2 can get into the brain. 

Moreover, the elimination of E2 can also be different between brain and circulation, which may 

also influence E2 levels in the brain.   One future direction would be to measure the PK of E2 in 

both plasma and brain to better characterize their relationships with time. This would also be 

helpful in interpreting the pharmacodynamics effects of E2 in the brain.  
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4.0 Effect of Cholinergic Lesions and Cholinesterase Inhibitors on Aromatase and Estrogen 

Receptor Expression in Different Regions of the Rat Brain 

This chapter is reprinted with permission of the journal Neuroscience. All rights reserved. 

Copyright © 2018 Neuroscience. 

4.1 Introduction 

The goal of this study was to explore potential effects of cholinergic manipulation on 

aromatase (ARO) activity and estrogen receptor (ERs) expression in different regions of the 

brain. Estrogens have been shown to have beneficial effects on learning, memory, and attention 

in multiple species including rats, mice, non-human primates, and in humans (Bimonte and 

Denenberg, 1999; Daniel et al., 1997; Frye et al., 2007; Gresack and Frick, 2006; Luine et al., 

2003; Sherwin and Henry, 2008).  Effects often are limited to females and are task specific.  In 

rodents, estrogens (primarily estradiol (E2)) have been shown to enhance performance on a 

variety of spatial navigation tasks (Daniel et al., 1997; Fader et al., 1998; Gibbs and Johnson, 

2008), and to enhance working memory (Bimonte and Denenberg, 1999; Bohacek and Daniel, 

2007; Daniel et al., 2006), as well as novel object and object placement recognition (Fernandez 

et al., 2008; Frye et al., 2007; Luine et al., 2003).  In humans beneficial effects have been 

observed on short-term and long-term verbal memory and logical reasoning (Krug et al., 2006; 
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Sherwin, 1988). Estrogens also have been shown to enhance synapse formation, connectivity, 

and NMDA receptor expression in the hippocampus, with corresponding effects on synaptic 

transmission and long-term potentiation (Jelks et al., 2007; McEwen et al., 2001; Mendez et al., 

2011).  These effects are thought to underlie some of the effects of estrogens on cognitive 

performance.   

We and others also have demonstrated that cholinergic projections from the medial 

septum (MS) to the hippocampus are significantly affected by estrogens and that these 

projections can play an essential role in enabling estrogen-mediated effects on cognitive 

performance.  For example, ovariectomy reduces and E2 treatment increases choline 

acetyltransferase (ChAT) mRNA in the MS and nucleus basalis magnocellularis (NBM), with 

corresponding effects on ChAT activity (Gibbs, 1996; Gibbs, 1997; Gibbs and Pfaff, 1992; 

Gibbs et al., 1994; Luine, 1985), high affinity choline uptake and acetylcholine (ACh) release in 

the frontal cortex and hippocampus (Gabor et al., 2003; Gibbs, 2000; Gibbs et al., 1997).    E2 

treatment has been shown to mitigate effects of scopolamine ( a nonspecific antimuscarinic) on 

T-maze alternation in rats (Fader et al., 1998), and likewise to mitigate effects of both 

scopolamine and mecamillamine(a non-selective antagonist of the nicotinic receptor) on 

cognitive performance in post-menopausal women (Dumas et al., 2006).   Notably, selective 

removal of cholinergic projections to the hippocampus prevents estrogen-mediated enhancement 

of a delayed-matching-to-position (DMP) spatial navigation task (Gibbs and Johnson, 2007; 

Johnson et al., 2002). Similar cholinergic lesions also have been shown to block estrogen-

mediated increases in synaptic spines on CA1 neurons in the hippocampus (Lam and Leranth, 

2003).  More recent studies suggest that loss of ERs also contribute to loss of estrogen effects on 

cognitive function with age (Bean et al., 2014; Black et al., 2016; Foster, 2012), and that 
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increasing ERα expression can enhance cognitive performance (Foster et al., 2008).  We have 

shown that beneficial effects of E2 on DMP acquisition can be restored by treating older rats and 

rats with partial cholinergic lesions with selective cholinesterase inhibitors (ChEIs) (Gibbs et al., 

2011a; Gibbs et al., 2011b; Gibbs et al., 2009). Whether levels of ERs also were affected was not 

explored.  

Collectively the findings demonstrate important interactions between basal forebrain 

cholinergic projections and estrogen effects on performance that impact brain aging and 

cognition.  To date there has been little study of whether cholinergic projections significantly 

influence estrogen signaling, ER expression, or perhaps even local estrogen production, in the 

brain.  

In this study, we proceeded to explore whether selective cholinergic lesions, as well as 

treatment with cholinesterase inhibitors, have effects on ARO expression, ARO activity, and ER 

expression in different regions of the brain. 

  

4.2 Experimental Procedures 

4.2.1  Animals 

Ninety-four ovariectomized (OVX, 270-350g, 3 months old) Sprague-Dawley female rats 

were purchased from Harlan Sprague Dawley Inc. Rats were individually housed for two weeks 

in our facility on a 12 hour:12 hour light/dark schedule with unrestricted access to food and 
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water. All procedures were carried out in accordance with PHS policies and with the approval of 

the University of Pittsburgh’s Institutional Animal Care and Use Committee.  

In the first experiment, forty-six rats were used to test the effect of selective lesions of 

cholinergic neurons in the medial septum (MS) on aromatase (ARO) mRNA, activity and 

estrogen receptors (ERs) mRNA in the hippocampus and frontal cortex. Rats received intraseptal 

injections of 192IgG-Saporin (SAP) or vehicle as described below.  Two weeks later, rats were 

anesthetized with an overdose of ketamine (3 mg) and xylazine (0.6 mg). Brains were removed; 

hippocampal and frontal cortex tissues were collected and stored at -80ºC until use. Of the 46 

rats, tissues from 20 rats (10/grp) were analyzed for relative levels of ARO and ER mRNAs 

using qRT-PCR methods described below. Tissues from the other 26 rats were analyzed for 

ARO activity (13 rats/grp) in microsomes using a recently validated and highly sensitive UPLC-

MS/MS assay (Li et al., 2016b).  Immunohistochemical detection of ChAT–positive cells in the 

MS also was performed to confirm the loss of cholinergic neurons. 

In the second experiment, a total of 48 rats were treated intraperitoneally with 3 mg/kg 

donepezil, 5 mg/kg galantamine or saline (as control) injected once daily for 7 days. Donepezil 

and galantamine are cholinesterase inhibitors (ChEIs) approved for the treatment of memory 

decline associated with Alzheimer’s disease. Following treatment rats were anesthetized and 

brain tissues were dissected as above.  In addition to collecting hippocampus and frontal cortex, 

tissues from the amygdala and preoptic area (POA) also were dissected and analyzed. Tissues 

from 12 rats (4 rats/grp) were analyzed for relative levels of ARO and ER mRNAs using qRT-

PCR methods. Tissues from 36 rats (12 rats/grp) were analyzed for ARO activity.   
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4.2.2  Cholinergic lesions 

Rats were anesthetized and placed on a standard stereotaxic apparatus. The skull was 

exposed and a hole was drilled at midline 0.3mm rostral to Bregma. A 28ga stainless steel 

cannula was lowered -5.6mm from dura into the medial septum. 2.0µl of 192IgG-SAP (0.2 

mg/ml; Advanced Targeting Systems, Inc.) was injected at a rate of 0.2µl /min. Previous studies 

have shown that these injections cause a selective loss of cholinergic cells in the basal forebrain 

with little non-selective damage to GABAergic neurons and no damage to cholinergic neurons in 

the NBM (Baxter et al., 1995; Johnson et al., 2002; Schliebs et al., 1996).This is also 

accompanied by decreased activity of choline acetyltransferase (ChAT) and by reduced high-

affinity uptake of [3H]choline into cholinergic nerve terminals in the hippocampus, but not the 

frontal cortex (Rossner et al., 1995b). Controls received intraseptal infusions of saline.  The skin 

was sutured and rats were placed onto a heating pad during recovery. Following surgery, rats 

received ketofen (Fort Dodge, Inc.,3.0 mg/kg, i.p.) once per day for three days to relieve pain. 

After 14 days of recovery, rats were dissected and the hippocampus and frontal cortex were 

collected and analyzed. In addition, tissues containing the MS were fixed by immersion in 4% 

paraformaldehyde in 50mM phosphate buffered saline (PBS, pH7.2) at 4˚C overnight. These 

tissues were then transferred to 20% sucrose in PBS at 4 °C for several days prior to sectioning 

and immunostaining.  

4.2.3  ChAT assay 

ChAT activity in the hippocampus and frontal cortex were measured as previously 

described (Gibbs and Johnson, 2007). Briefly, 30mg tissues were sonicated in 300µl sonication 
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buffer (10mg tissue/mL) which contains 10mM EDTA and 0.5% Triton X-100. Samples were 

run in triplicate. 10µl of substrate solution, which contains 0.25mM [3H] acetyl-CoA (50,000-

60,000 dpm/tube) was added to each reaction tube. 5µl aliquots of sample in sonication buffer 

were added to the tubes and incubated for 30 min at 37℃. The reaction was terminated with 4 

mL sodium phosphate buffer (10mM) at 4℃. The production of [3H] acetylcholine was detected 

by adding scintillation LSC-cocktail (Packard Instruments, Meriden, CT) and counting cpm in 

the organic phase using an LKB beta-counter. ChAT activity was calculated for each sample as 

pmol acetylcholine manufactured/h/µg protein.   

4.2.4  ChAT Immunohistochemistry (IHC) 

To further confirm the loss of cholinergic neurons, 40 µm coronal sections through the 

MS (corresponding to plates 14–21 of The Rat Brain in Stereotaxic atlas (1986), separated from 

vertical and horizontal limbs of the diagonal band (vDB and hDB) by Medulam and co-

workers(Mesulam et al., 1983)) were cut and stained for ChAT immunoreactivity (IR) as 

previously described(Johnson et al., 2002). Briefly, sections were placed in a solution containing 

primary antibody against ChAT (goat anti-ChAT 1:3500, EMD Millipore AB144P) for three 

days at 4℃. Sections were then rinsed with PBS and incubated with a biotinylated secondary 

antibody (horse anti-goat 1:220, Vector Laboratories, Inc.) for 1 hour at room temperature. 

Sections were then placed in an avidin/biotinyl-peroxidase solution (ABC Elite kit, Vector 

Laboratories, Inc.) for 1 h and then stained with a solution of 3-3’-diaminobenzidine, H2O2, and 

NiCl2. Sections were then rinsed with PBS, mounted onto glass slides, dehydrated, cover slipped 

and examined with a Leitz photomicroscope (Leica, Inc.). 
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4.2.5  qRT-PCR 

The detailed method for qRT-PCR has been descripted in the Section 2.2.2. The primer 

pairs for ERs were ：ERα: (F) 5’ -TCCGGCACATGAGTAACAAA-3’  and (F) 5” -

TGAAGACGATGAGCATCCAG-3’. ERβ: (F) 5’-AAAGTAGCCGGAAGCTGACA-3’; 

(R) 5 ’ -ACTGCTGCTGGGAGGAGATA-3 ’  GPR30 (F) 5 ’ -

AGGAGGCCTGCTTCTGCTTT-3’; (R) 5’-ATAGCACAGGCCGATGATGG-3’. GAPDH 

was used as the control gene. The relative gene expression was normalized to sham animal left 

hemisphere using the 2–ΔΔCt method. 

4.2.6  Microsomal incubation assay 

The detailed method for Microsomal incubation assay has been described in section 2.2.1. 

4.2.7  Statistical analyses 

In experiment 1, differences between the 192IgG-SAP-treated and the control group were 

analyzed by t-test. In experiment 2, effects of ChEI treatments were analyzed by one-way 

ANOVA followed by Tukey’s post-hoc test. All statistical analyses were done using JMP 

(Pro12), with significance defined as p<0.05. 



 73 

4.3 Results 

4.3.1  Effects of septal cholinergic lesions 

4.3.1.1 Verification of the lesions 

Lesions were evaluated by confirming loss of ChAT-positive cells in the septum, and by 

loss of ChAT activity in the hippocampus. Immunostaining confirmed that septal infusions of 

192IgG-SAP eliminated most (>80%) of ChAT-IR cells in the MS (Figure10A and B). ChAT 

activity in the hippocampus also was significantly decreased (>80%) in 192IgG-SAP-treated rats 

relative to controls (t9=6.15, P<0.001; Figure C). In contrast, ChAT activity in the frontal cortex 

was not significantly affected (t9=0.52, P=0.62). This demonstrates a loss of cholinergic input to 

the hippocampus, but not the frontal cortex, consistent with previous reports (Gibbs et al., 2011b) 

(Gibbs and Johnson, 2007).  
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Figure 10: Effect of 192IgG- SAP-induced cholinergic lesions on ChAT 

immunoreactivity by immunohistochemistry (IHC) in the medial septum of rats treated with (A) 

Saline and (B) 192IgG- SAP as well as on (C) ChAT activity detection in the hippocampus and 

frontal cortex by radioactive assay. Two weeks following intracerebroventricular injection of 

0.4µg 192IgG-SAP treatment, the number of positive ChAT stained cholinergic neurons was 

significantly decreased in the medial septum. No significant change of ChAT activity was 

measured in frontal cortex tissue while hippocampal tissue shows significant reduction in activity. 

In all panels, rostral is toward the top and midline extends top to bottom through the middle of 

the panel. Scale bar =0.1mm. * indicates the p ≤0.05 compared to control group. Animal number: 

N=23 for each group. 

 

4.3.1.2 Effects of septal cholinergic lesions on ARO and ER mRNA levels and on ARO 

activity 

Effects of cholinergic lesions on relative levels of ARO mRNA are summarized in 

Figures 11A and B. Levels of AROT mRNA were slightly higher (27.0%) and levels of AROL 

were slightly lower (18.1%) in the hippocampus of 192IgG-SAP-treated rats vs. controls; 

however, these differences were not statistically significant. Likewise, there was no significant 

difference in ARO activity detected in the hippocampus of 192IgG-SAP-treated rats vs. controls 

(Figure 11C). The frontal cortex, which was included as a negative control, also showed no 

significant effects of treatment on relative levels of total ARO mRNAs. As previously reported, 

levels of ARO mRNA were extremely low in the frontal cortex and ARO activity was not 

detected in this region (Li et al., 2016b).  
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Figure 11: Effect of cholinergic lesion in the medial septum on (A) AROT mRNA, (B) 

AROL mRNA expression and (C) ARO activity in the hippocampus. No significant change was 

found in region-specific ARO mRNA and activity. Bars in (A) and (B) indicate the mean ratio of 

ARO mRNA relative to OVX controls ± s.e.m., after normalizing to GAPDH. Bars in (C) 

indicate the estradiol production (pmol/h.mg microsome) ± s.e.m, which represents the ARO 

activity. In the study of ARO mRNA, animal number: N= 10 for each group. For ARO activity 

study, animal number: N=13 for each group. 

 

Relative levels of ER mRNAs detected in the hippocampus are summarized in Figure 12.  

No significant effects on the relative levels of ERα, ERß, or GPR30 were detected in 192IgG-

SAP-treated rats vs. controls. 
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Figure 12: Effect of cholinergic lesions on ER alpha, ER beta and GPR30 expression in 

response to saline or 192IgG-SAP infusions. Bars represent ratio of ER mRNA levels that were 

normalized to control GAPDH mRNA ± s.e.m. Animal number: N=10 for each group. 

 

Collectively these findings indicate no significant effects of selective cholinergic 

denervation on ARO or ER expression in the hippocampus. 

 

4.3.2  Effect of ChEIs on ARO and ER mRNAs and on ARO activity 

Effects of ChEIs on ARO mRNA and ARO activity are summarized in Figure 13. As 

previously reported, highest expression of both AROT and AROL was detected in the amygdala, 

followed by preoptic area, then hippocampus (Figures 13A & B) (Li et al., 2016b). Relative 

levels of ARO activity mirrored the relative levels of AROL mRNA expression in these regions. 

Levels of AROT and AROL mRNA in the frontal cortex were extremely low and no ARO 

activity was detected in this region.  
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Figure 13: Effect of donepezil (3 mg/kg, daily injection for 7 days) and galantamine 

(5mg/kg/day for 7 days) on (A) AROT mRNA, (B) AROL mRNA expression and (C) ARO 

activity in hippocampus, frontal cortex, amygdala and preoptic regions. Bars in (A) and (B) 

indicate the mean ratio of total, long form ARO mRNA relative to Amygdala saline treatment 

controls ± s.e.m. after normalizing to GAPDH. Bars in (C) indicate the mean ARO activity ± 

s.e.m. * indicates the p ≤0.05 compared to control group. In the study of ARO mRNA, animal 

number: N=4 for each group. For ARO activity study, animal number: N=12 for each group. 

 

No significant effects of donepezil or galantamine treatments were observed on relative 

levels of ARO mRNA in any of the brain regions examined. In the amygdala, mRNAs coding for 

both total and long form ARO showed slight increases in expression in galantamine (~30 ± 13 %) 

treated rats, but this increase was not statistically significant. Slightly larger increases in AROT 

mRNA were observed in the POA following treatment with galantamine (93  ± 17 %), and in 
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AROL following treatment with donepezil (55 ± 6 %).  These changes also were not statistically 

significant although the effect on AROL in the POA following donepezil treatment was close to 

significance (p=0.07). 

With respect to ARO activity, no significant effects of ChEI treatments were detected in 

the hippocampus, preoptic area or frontal cortex (Figure 13C). In contrast, ARO activity in the 

amygdala was 45 ± 0.7 % greater in rats treated with galantamine, relative to controls (p<0.01). 

Effects of ChEI treatments on levels of ERα, ERß, or GPR30 mRNAs were also detected in the 

four brain regions (Figure 14).Although we saw an increase of ERα  (56 ± 9%,p= 0.41) with 

donepezile and 50 ± 14% (p=0.33) decrease of GPR30 with galantamine treatment in the HPC, 

none of them reach statistical significant. Similarly, there were no significant effects of ChEIs 

treatment on ERα, ERß, or GPR30 mRNAs in any other brain regions. 
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Figure 14: Effect of donepezil and galantamine on ER mRNA expression in (A) 

hippocampus, (B) frontal cortex, (C) amygdala and (D) preoptic area. Bars indicate the mean 

ratio of estrogen receptor mRNA relative to saline treatment ± s.e.m. after normalizing to 

GAPDH. Animal number:N=4 for each group. 

4.4 Discussion 

4.4.1  Cholinergic lesions 

Our goal was to explore the role of cholinergic projections in regulating ARO mRNA, 

ARO activity, and the expression of ER mRNAs in specific regions of the rat brain. In the first 

experiment, we tested the effect of selectively removing cholinergic afferents to the 

hippocampus. Results show that removal of over 80% of the cholinergic afferents had no 

significant effect on relative levels of AROT, AROL mRNAs or ARO activity. This indicates that 

cholinergic inputs to the hippocampus do not play a significant role in regulating ARO and 

therefore are not likely to affect local estrogen production in this region. Likewise, loss of 

cholinergic inputs had no significant effect on relative levels of ERα, ERß, or GPR30 mRNAs 

in the hippocampus.  This indicates that cholinergic inputs also do not play a significant role in 

regulating ER expression in this brain region. Collectively, these data suggest that cholinergic 

influences on estrogen effects in the hippocampus (e.g., spine density, NMDAR expression, 

synaptic plasticity) are not mediated by effects on either local estrogen production or by effects 

on ER expression.   
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The frontal cortex, which was used as a negative control, also showed no change in ARO 

or ER expression.  As previously reported (Li et al., 2016b), levels of AROL in the frontal cortex 

were very low which is consistent with the inability to detect ARO activity in this region. Our 

findings show no induction of ARO activity in the frontal cortex as a result of the surgery. In 

addition, there was not any change in the levels of ARO or ER mRNAs in response to 

cholinergic denervation of the hippocampus.  This shows that the surgical procedures associated 

with the intracranial injections of 192IgG-SAP or saline were not sufficient to significantly alter 

ARO or ER expression in the frontal cortex. 

The fact that relative levels of ARO mRNA and activity in the hippocampus were not 

affected by the cholinergic lesions was unexpected.  These lesions are robust, and our analysis of 

ChAT immunostaining and ChAT activity confirm that >80% of the cholinergic inputs to the 

hippocampus had been lost. Other studies have shown that ARO expression and activity 

increases in the brain in response to other types of injury such as trauma and stroke (Carswell et 

al., 2005; Duncan and Saldanha, 2011; Peterson et al., 2007; Pietranera et al., 2011), primarily 

due to induction of ARO in reactive astrocytes.  192IgG-SAP lesions have been shown to induce 

a strong activation of microglia and a moderate astrocytic reaction in the hippocampus (Rossner 

et al., 1995a; Rossner et al., 1995b), but in this case no significant effect on ARO was detected.  

This suggests that elevated ARO is not a universal response to brain injury, but rather is injury-, 

and perhaps brain region-specific. It may be that only lesions that produce a strong astrocytic 

reaction result in upregulation of ARO.  It is also possible that the cholinergic lesions resulted in 

a reduction in ARO in neurons and an increase in ARO in astrocytes, resulting in no net change; 

however, this has not been observed in response to other lesions.  Whether active astrocytes that 
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are present in the hippocampus following cholinergic lesions express ARO was not investigated 

and will need to be explored. 

4.4.2  Cholinesterase inhibitors 

In the second experiment, we tested the effect of two ChEIs, donepezil and galantamine, 

on ARO expression and activity in four regions of the brain. Donepezil is a piperidine-based 

mixed, non-competitive reversible inhibitor of acetylcholinesterase.  It has an in vitro IC50 of 

approximately 6.7nM and an in vivo ID50 of approximately 2.6mg (6.8µMol)/kg brain tissue 

(Sugimoto et al., 2002). Galantamine is a less potent ChEI than donepezil (Bores et al., 1996), 

but unlike donepezil has been shown to act as an allosteric enhancer at nicotinic acetylcholine 

receptors (Samochocki et al., 2003; Schilstrom et al., 2007). Doses in the range of 1.5-5.0 mg/kg 

in rats have been reported to produce optimal brain concentrations for the allosteric potentiating 

ligand effect of galantamine (Geerts et al., 2005). Previously we showed that daily injections of 

these ChEIs at the same doses used in the current study were able to enhance estrogen effects on 

acquisition of a delay matching-to-position T-maze task in aged rats (Gibbs et al., 2011a; Gibbs 

et al., 2009), and in young adult rats with partial cholinergic lesions (Gibbs et al., 2011b). 

In the current study, daily injections of donepezil or galantamine had no significant 

effects on ARO expression or activity in the hippocampus, frontal cortex, or POA of OVX rats. 

This suggests that the systemic up-regulation of cholinergic activity does not affect local 

estrogen production in these regions. Likewise, ChEI treatment had no significant effect on 

relative levels of ER mRNA in any of the regions examined.  We conclude, therefore, that any 

ability of cholinergic inputs to alter estrogen effects in these regions is not mediated by effects on 

local estrogen production or ER expression.  
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One exception to these results was the amygdala where ARO activity was significantly 

increased in rats treated with galantamine, but not donepezil, despite the fact that relative levels 

of ARO mRNA were not significantly affected. The amygdala is a central structure in limbic 

circuitry, which plays an important role in regulating emotional expression, emotional 

experience, emotional memory, and fear (Gallagher and Chiba, 1996; Pessoa, 2010). It receives 

cholinergic afferents from basal forebrain cholinergic neurons. These inputs play an important 

role in regulating plasticity and coordinating different memory systems leading to the selection 

of appropriate behavioral strategies in conditioned-fear behaviors (Calandreau et al., 2006; Jiang 

et al., 2016; Nagai et al., 1982).  Both muscarinic and nicotinic acetylcholine receptors are 

located in the amygdala (Muller et al., 2013; Pidoplichko et al., 2013). Human and animal 

studies show that exposure to nicotine can increase the rate of depression and anxiety in 

adolescent females (Biegon et al., 2012). ARO also is highly expressed in this region and studies 

have shown that ARO in the amygdala can influence aggression and mood in both males and 

females (Li et al., 2016b; Unger et al., 2015).  ARO also has been shown to influence synaptic 

plasticity in the basolateral amygdala in females, but not in males (Bender et al., 2017). 

Moreover, studies by Balthazart and co-workers have shown that ARO activity can be regulated 

by phosphorylation in response to changes in intracellular calcium (Balthazart et al., 2001a; 

Balthazart et al., 2005).  Hence the allosteric potentiation of nicotinic receptors by galantamine 

might account for the increase in ARO activity detected in the amygdala, in the absence of any 

effect on the levels of ARO mRNA. Further studies may apply different concentrations of 

galantamine or a selective nicotinic receptors agonist or antagonist to study the effect on ARO 

activity and perhaps, the effect on local estradiol production in the amygdala and its influence on 

behaviors. 
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Collectively, these results show that increasing cholinergic activity by treating with 

ChEIs has no significant effect on ARO or ER expression in several brain regions, including the 

hippocampus where cholinergic inputs have been shown to influence estrogen effects on synaptic 

plasticity and cognitive performance. One exception was the amygdala where galantamine 

increased ARO activity, possibly affecting synaptic plasticity in the basolateral amygdala with 

corresponding effects on fear-related behaviors. 

4.4.3  Relevance to cognitive decline associated with aging and neurodegenerative disease 

This study is the first to systematically evaluate the effects of hippocampal cholinergic 

denervation, and daily treatment with cholinesterase inhibitors (ChEIs), on ARO and ERs in 

different regions of the brain.  Though many of the results are negative, these findings are 

important given the evidence for decreased central cholinergic function with aging and in 

neurodegenerative diseases like Alzheimer’s disease and Parkinson’s disease (Bohnen and Albin, 

2011; Ferreira-Vieira et al., 2016; Mufson et al., 2008), as well as the frequent use of ChEIs in 

elderly individuals with memory impairment. Studies have shown a loss of ER and ER function 

with age (Foster, 2012), possibly due to methylation of the receptors and degradation by 

ubiquitin-proteasomal pathway (Pinzone et al., 2004; Tschugguel et al., 2003).  There also is 

evidence for an association between ARO expression/polymorphism and risk for AD (Hiltunen 

et al., 2006).  Decreased ARO expression has been reported in the hippocampus of AD patients 

(Ishunina et al., 2007a). Iivonen reported that a single SNP in the ARO gene was associated with 

a 60% increase in AD risk (Iivonen et al., 2004). Baker reported that ApoE4 carriers with SNPs 

in the ARO gene had a two-fold increased risk of AD (Baker et al., 2006). Given the evidence 

that ARO and ERs play a role in cognitive decline associated with aging and AD, and given the 
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frequent use of ChEIs in treating elderly patients with memory impairment, it is significant that 

we report relatively little acute effect of cholinergic manipulations on ARO or ER expression in 

several brain regions including the hippocampus.  

4.5 Conclusions 

Collectively, we showed that manipulating the cholinergic system by selectively 

destroying cholinergic projections to the hippocampus, or by treating with cholinesterase 

inhibitors, had little effect on ARO and ER expression in many regions of the rat brain. 

Galantamine increased ARO activity in the amygdala, possibly due to allosteric potentiation of 

nicotinic acetylcholine receptors. This raises the possibility that increasing cholinergic activity 

may increase local estrogen production in the amygdala and thereby affect amygdala function. 

To our knowledge, this is the first report of an effect of ChEI treatment on ARO activity in the 

brain.  The clinical significance will require further examination. 
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5.0 TBI Influences the Expression of Aromatase and Estrogen Receptors in the Rat Brain 

5.1 Introduction 

Traumatic brain injury (TBI) occurs when an external force traumatically injures the 

brain. It is a major cause of death and disability worldwide, with annual incidence rate of 1.7 

million in the USA and 10 million worldwide. It is not only the simple process of physical 

structural damage, but also secondary injury processes, which involve cell apoptosis and necrosis, 

inflammatory activity, oxidative stress and change of neurotransmitter release profile, that 

happen days to weeks after the event (Davis, 2000; Giza and Hovda, 2014; McAllister, 2011; 

McIntosh et al., 1996; Werner and Engelhard, 2007). Consequences after TBI can be long-lasting, 

with effects on motor ability, cognitive functions and emotional problems. Interestingly, there 

are reports showing the difference of recovery outcomes between females and males after TBI, 

with several well controlled animal studies and clinical studies showing less mortality, better 

functional outcomes, and histological improvement in females (Berry et al., 2009; Bramlett and 

Dietrich, 2001; O'Connor et al., 2003; Wagner et al., 2011; Wagner et al., 2004). One possible 

explanation for the sex difference may be the gonadal steroids and specifically estrogens. 

As shown in Chapter 3, estrogens in the brain come from both the systemic circulation 

and local production in females, whereas it mainly comes from local production in males. 

Previous studies showed that estrogens have a neuroprotective effect after TBI. Specifically, E2 

has been shown to reduce cortical contusion volumes, apoptosis, blood-brain barrier permeability, 
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edema, levels of pro-inflammatory cytokines, increase cerebral perfusion pressure(CPP), and 

improve neurological scores and mortality after brain injury (Bramlett and Dietrich; O'Connor et 

al.; Roof and Hall, 2000b; Sarkaki et al.; Shahrokhi et al.; Soustiel et al.). Recently, increasing 

literature reports also illustrate that local estrogens have neuroprotective effects against 

neurotoxicity, stresses, and inflammatory response. Studies showed that the expression and 

activity of aromatase (ARO) were significantly induced in the brain of both rodents and birds 

after brain injury (Arevalo et al., 2015). Moreover, the induction of ARO was not only in 

neurons, but also in the astrocytes, which do not contain ARO under physiological conditions 

(Garcia-Segura et al., 1999; Peterson et al., 2004). Inhibition of brain ARO increased excitotoxic 

neuronal death in the hippocampus of male rats and worsened gliosis and neuronal degeneration 

in songbirds (Azcoitia et al., 2001b; Wynne et al., 2008). In addition, inflammatory response 

without physical structural damage was reported to induce aromatase expression in astrocytes in 

a timeline following the induction of IL-6 and IL-1β in the songbirds (Duncan and Saldanha, 

2011). Most of these studies, however, used male animals to develop the injury model. Little 

study has explored the expression of ARO and levels of E2 in TBI models and whether there are 

sexual dimorphisms. 

Estrogens in the brain have neuroprotective effects via binding to estrogen receptors 

(ERs): ER alpha, ER beta, and GPR30 (Brailoiu et al., 2007; Funakoshi et al., 2006; Moriarty et 

al., 2006; Toran-Allerand, 2004). ERs are expressed in both neurons and glial cells (Dhandapani 

and Brann, 2007; Garcia-Ovejero et al., 2005) and can be induced in cell culture of male rat brain 

tissues after brain injury (Garcia-Ovejero et al., 2002). All three receptors were shown to mediate 

the neuroprotective function of estrogens through different mechanistic pathways and in a 
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region-specific manner (De Marinis et al., 2013; Ghisletti et al., 2005; Tang et al., 2014; Yang et 

al., 2010). 

In order to study the heterogeneous nature of TBI, different TBI models in rat have been 

developed. There are four types of TBI models that are widely used cortical impact injury (CCI) 

(Dixon et al., 1991), weight drop impact acceleration injury (Marmarou et al., 1994), fluid 

percussion injury (FPI) (Dixon et al., 1987), and blast injury (Leung et al., 2008). The CCI model 

uses a pneumatic or electromagnetic impact device to drive a rapid impactor onto the exposed 

intact dura, and mimic cortical tissue loss, acute subdural hematoma, axonal injury, concussion, 

blood brain barrier (BBB) dysfunction and even coma. The mechanical factors, such as time, 

velocity and depth of the impact can be well controlled in this model. Compared with other 

models, it is highly reproducible and is easy to control the severity of the injury (reviewed by 

Xiong, et.al (Xiong et al., 2013)).  

In this project, we hypothesized that TBI influences local estrogen production and the 

expression of ERs, which may impact neuronal survival and functional recovery and may 

account for sex differences in response to TBI. Here we report a pilot study evaluating the 

expression of ERs and ARO in the cortex (CTX) and hippocampus (HPC) of male and female 

rats 2 days following controlled cortical impact injury (CCI). Preliminary data reveal a 

substantial increase in ER alpha mRNA in the injured cortex in both males and females, an 

increase in long-form ARO (AROL) mRNA in the cortex of females but not males, and a 

substantial decrease in total ARO (AROT) mRNA in the cortex of both males and females.  In 

the hippocampus there were no changes in ER alpha mRNA levels, an increase in ER beta 

mRNA in males but not females, and decreases in both AROT and AROL in both males and 
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females. These results suggest significant effects of TBI on estrogen production and signaling in 

the cortex and hippocampus, as well as sex differences in these effects.   

5.2 Materials and methods 

5.2.1  Animals 

10 young female and 10 young male gonadally-intact Sprague-Dawley rats were housed 

in standard steel-wire mesh cages and maintained in a temperature (21 ± 1°C) and light 

controlled (on 7:00 a.m. to 7:00 p.m.) environment with free access to food and water. Both 

female and male rats were divided into two groups. One group was subjected to a right 

hemisphere controlled cortical impact. Another group received sham injury. Two days after the 

injury, rats were anesthetized with Fatal-Plus (Henry Schein Animal Health, Columbus, OH 0.25 

mL, intraperitoneally) and brain tissue from cortex (CTX), hippocampus (HPC), amygdala 

(AMG) and preoptic area (POA) were collected and stored in -80℃ until use. 

5.2.2  Controlled cortical impact injury 

The controlled cortical impact (CCI) model is a widely used TBI animal model, which is 

accurate, easy to control and produces traumatic brain injures similar to those seen in 

human(Romine et al., 2014). The procedure of CCI has been described in previous papers 

(Dixon et al., 1991; Kline et al., 2001, 2008, 2010, 2012; Bondi et al., 2014a,b). Briefly, 

isoflurane anesthesia was induced and maintained using a 2:1N2O/O2 gas mix at concentrations 
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of 4% and 2%, respectively. Rats were subsequently intubated endotracheally, placed on 

mechanical ventilation for anesthesia maintenance, and secured in a stereotaxic frame. A heating 

pad was used to maintain core temperature at 37 ℃, which was measured with a rectal probe 

throughout surgery. Using aseptic procedures, a craniectomy (6-mm in diameter) was performed 

in the right hemisphere with a dental drill. A TBI was then produced by impacting the exposed 

right parietal cortex to a depth of 2.8 mm tissue deformation at 4 m/sec to produce a brain injury 

of moderate severity. Immediately after the CCI, anesthesia is discontinued and the incision is 

promptly sutured. Sham rats undergo similar surgical procedures, but are not subjected to the 

impact.  

5.2.3  q-RT-PCR  

The procedure for detection of AROT, AROL and ERs has been described in sections 

2.2.2 and 4.2.5. The primer pairs used for detection of IL-1β were ： (F) 5’-

CCTTGTGCAAGTGTCTGAAG-3'，(R) 5'-GGGCTTGG AAGCAATCCTTA-3'; The primer 

pairs used for detection of TNF-α were: (F) 5'-AGCCCTGGTATGAGCCCATGTA-3', (R) 5'-

CCGGACTCCGTGATGTCTAAGT-3'. GAPDH was used as the control gene. The relative gene 

expression was normalized to sham animal left hemisphere using the 2–ΔΔCt method. 

5.2.4  Statistical analysis 

In this experiement, the effect of TBI on ARO and ER expression were analyzed by one-

way ANOVA followed by Tukey’s post-hoc test. For the analysis of inflammatory markers, 

three-way ANOVA was applied with injury side and gender as between factors and brain region 
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as a within factor. All statistical analyses were done using JMP (Pro12), with significance 

defined as p<0.05. 

5.3 Results 

5.3.1  Effect of TBI on ARO mRNA expression in two sexes. 

Effects of TBI on relative levels of ARO mRNA are summarized in Figure 15 for males 

and Figure 16 for females. In males, TBI significantly decreased the levels of AROT (0.56 ± 0.08 

fold) with no change of the expression of AROL in the CTX. In the HPC, the levels of both 

AROT (0.48 ± 0.11 fold) and AROL (0.39 ± 0.16 fold) were decreased with TBI injury, with 

AROT showing a statistical significant decrease (p<0.05), whereas the p-value for AROL was not 

quitesignificant (p=0.08). In females, the levels of AROT also were decreased (0.45 ± 0.15 fold), 

whereas the levels of AROL were significantly increased (2.23 ± 0.47 fold) in the CTX after TBI 

on the injury side. TBI also significantly decreased the expression of both the AROT (0.38 ± 0.10 

fold) and AROL (0.60 ±0.16 fold) mRNAs in the HPC of females. No significant effect of TBI 

was observed on relative levels of ARO mRNA in the AMG or POA of either sex. 
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Figure 15: Effect of TBI on Total ARO and Long form ARO expression in the different 

brain regions of male rats. Bars represent fold change of ARO mRNA levels that were 

normalized to sham left side GAPDH mRNA ± s.e.m. * indicates significant difference between 

TBI right side and sham left side (p ≤ 0.05). 
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Figure 16: Effect of TBI on Total ARO and Long form ARO expression in the different 

brain regions of female rats. 

 

5.3.2  Effect of TBI on ER mRNA expression in males and females. 

Relative levels of ER mRNAs detected in the CTX and HPC of both sexes are 

summarized in Figure 17. TBI caused a significant induction of ER alpha expression in the CTX 

of both males (2.5 ± 0.3 fold) and females (1.6 ± 0.2 fold) compared to sham controls. In the 

HPC of TBI rats, a significant increase in the expression of ER beta was detected on the injury 

side compared to the non-injury side in males (1.87 ± 0.14 fold), with no change in females. No 

significant effects of TBI on relative levels of GPR30 were detected in any region of the brain in 

males or females. 
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Figure 17: Effect of TBI on ER alpha, ER beta and GPR 30 in the CTX and HPC of male 

(A and B) and female (C and D) rats. Bars represent fold change of ERs mRNA levels that were 

normalized to sham left side GAPDH mRNA ± s.e.m. * indicates significant difference between 

TBI right side and sham left side or TBI left side as indicated in the figure (p ≤ 0.05). 

 

5.3.3  Effect of TBI on IL-1ß and TNF- α mRNAs in male and female rat brain. 

Effects of TBI on relative levels of IL-1β and TNF-α mRNAs in both males and females 

are summarized in Figure 18. TBI injury significantly induced the expression of the two 

inflammatory markers in CTX and HPC in both sexes. Specifically, TBI caused a 33 ± 4.8 and 

34 ± 5.9 fold increase of IL-1β in the CTX and HPC, respectively of male rats (Figure 18A and 
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B). Accordingly, the expression of TNF-α increased approximately 8 ± 1.7 fold and 4.7 ± 0.9 

fold in these two brain regions in male rats. In females, the induction of IL-1β in the CTX (23.6 

± 4.5 fold) after TBI was less, whereas the increase of IL-1β in the HPC (44.4 ± 6.6 fold) was 

higher, than in males (Figure 18C and D). Statistical analysis showed a significant difference 

between regions (CTX < HPC, p=0.01), but no significant difference between sexes. In addition, 

the TBI injury showed a higher induction of TNF-α in the CTX (11 ± 1 fold) and HPC (9 ± 1 

fold) in females. Statistical analysis showed a significantly higher level of TNF-α mRNA in the 

hippocampus in females. There were slight increases in the two markers in the TBI non-injury 

side for all regions in both sexes, but none were statistically significant. 

 

Figure 18: Alteration of IL-1beta and TNF-alpha in the CTX and HPC after TBI of male 

(A and B) and female (C and D) rats. Bars represent fold change of IL-1beta and TNF-alpha 
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mRNA levels that were normalized to sham left side GAPDH mRNA ± s.e.m. * indicates 

significant difference between TBI right side and other side or treatment (p ≤ 0.05). 

 

5.4 Discussion 

Our goal was to explore the altered expression of ARO and ER mRNAs in the brain in 

response to a moderately severe traumatic brain injury (TBI). We showed that in the cortex, the 

expression of AROT was significantly decreased in both males and females, whereas the AROL 

mRNA was increased in females but not males. As shown in our previous studies, the expression 

of AROL is correlated with ARO activity; this result indicates that ARO activity likely increases 

in female rats after TBI, whereas no change occurs in males. Moreover, the down-regulation of 

AROT was accompanied by either no-change or an increase in AROL, suggesting that the 

decreased AROT mRNA level is due to a decrease in ARO short form, which has no known 

function. In the hippocampus, both the AROT and AROL were decreased in males and females, 

indicating that there may be a reduction in local estrogen production in this region. Further 

studies are needed to characterize the ARO activity and E2 level change in the brain after TBI. 

A substantial increase in ER alpha mRNA in the injured cortex in both males and females, 

indicates that there may be an enhancement of estrogen signaling in cortex through ER alpha 

after TBI. In the hippocampus there were no changes in ER alpha mRNA levels, but an increase 

in ER beta mRNA in males but not females. This demonstrates that after TBI, the expressions of 

ERs are induced in a region-specific and sex-specific manner.  
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The roles that ERs play to mediate the neuroprotective functions of estrogens have been 

studied for decades. Three major pathways were discussed previously: 1) Activation of 

extracellular signal-regulated kinases 1(ERK1), ERK2 and PI3K to inhibit the pro-apoptotic Jun 

amino-terminal kinase (JNK) signals (Tang et al., 2014; Yang et al., 2010; Zhao and Brinton, 

2007). 2) Upregulation of the expression of anti-apoptotic BCL-2 family members, such as BCL-

X and BCL-W and down-regulation of the expression of pro-apoptotic BCL-2 families, such as 

BAD and BIM (Garcia-Segura et al., 1998; Yao et al., 2007). 3) Phosphorylation and inhibition 

of glycogen synthase kinase 3 beta (GSK3beta) and reduction in Tal phosphorylation and 

regulation of the activity of lymphocytes (Cardona-Gomez et al., 2004; D'Astous et al., 2006; 

Mendez and Garcia-Segura, 2006). Except for the common pathways, ER alpha also has been 

shown to have anti-inflammatory effects by blocking the activation and translocation of NF-kB 

to the cell nucleus (Ghisletti et al., 2005). ER beta has been shown to have anti-inflammatory 

effects by altering inflammasome activity and upregulating neuroglobin to protect neurons from 

hypoxia, glucose deprivation, oxidative stress and beta-amyloid (De Marinis et al., 2013). 

Different ERs were induced in the different brain regions of TBI animals. This indicates that the 

estrogen signaling was enhanced after the injury, which may contribute to neuroprotective 

effects of E2. 

We also measured the alteration of inflammatory response after TBI in the cortex and 

hippocampus of both sexes. Two inflammatory markers: IL-1β and TNF-α were measured as 

these markers were prevalent in use to indicate the inflammation status in brain injury 

(Feuerstein et al., 1994; Longhi et al., 2013; Murray et al., 2015) and response to estrogen 

treatment (Johnson et al., 2006; Loram et al., 2012; Smith et al., 2011). Our results showed that 

both IL-1β and TNF-α mRNA expression were increased on the TBI injury side in both females 
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and males, indicating that there is an induction of inflammatory reaction after TBI. Interestingly, 

we also showed significantly higher levels of IL-1β mRNA in the HPC than CTX of females, but 

not males. Moreover, the level of TNF-α mRNA in the HPC of females was significantly higher 

than in males. These results suggest that the inflammatory reaction in the HPC of females was 

higher than that in other regions or in males. Along with the effects on ARO and ER mRNA 

expression, these results suggest that the induction of estrogen signaling may contribute to 

reduced inflammation after TBI. This result is in accord with our hypothesis that estrogen 

signaling plays a neuroprotective role in response to TBI.  

In addition, studies showed that TBI would induce microglia activation after injury. 

Microglia serves as the main source of active immune defense in the CNS (Filiano et al., 2015). 

It has been shown that following TBI, microglia migrate to the site of injury and remove cellular 

and molecular debris (Faden et al., 2016). Activation of microglia also triggers the release of pro-

inflammatory cytokines, reactive oxygen species (ROS), nitrogen species and excitatory 

neurotransmitters (Kreutzberg, 1996). Notably, cytokines have been shown to down-regulate the 

expression of cytochrome P-450 enzymes in hepatocytes (Abdel-Razzak et al., 1993). Both the 

mRNA levels and activities of CYPs (CYP1A2, CYP2C, CYP2E1, CYP3A) in hepatocyte 

primary cultures were decreased by more than 40% after 3 days treatment with IL-1β and TNF-α. 

In the brain, intracerebral injection of IL-1β and TNF-α was shown to induce astrogliosis in 

neonatal rats (Cai et al., 2004). Local induction of IL-1β and IL-6 by phytohemagglutinin (PHA, 

an inflammatory agent), was shown to induce ARO expression in astrocytes of song birds 

(Duncan and Saldanha, 2011). Although there was only few study done in the brain to test the 

effect of cytokines on brain CYP expression and activation, it is possible that the release of 

cytokines from microglia after TBI will influence the expression of ARO. Moreover, different 
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degrees of inflammatory responses may cause different degrees in the effects on ARO and ER 

expression in males and females. These potential causal relationships need further study. 

5.4.1  Sex differences in recovery after TBI 

The sex differences in outcomes after TBI have been studied in both humans and animals. 

However, the results are very complex and it is hard to conclude which sex has better recovery. 

A study in rats using the Marmarou impact-acceleration head injury model showed a better 

survival and recovery of cortical blood flow in females than males (Roof and Hall, 2000a). 

Diffuse TBI induced in adult males and females showed no difference in mortality between the 

sexes, but a better motor and cognitive outcome in females (O'Connor et al., 2003). Whereas in a 

fluid percussion injury model study, E2 injection significantly improved the recovery of free 

magnesium concentration and motor function in males, but not in female rats. Moreover, the 

mortality in females was significantly worse than that in males (Emerson et al., 1993). Similar to 

animal studies, the conclusions of sex effects on TBI outcomes in humans are controversial 

(Farace and Alves, 2000; Slewa-Younan et al., 2004). The inconsistency of sex effects on TBI 

recovery may be due to the different models, degree of the injury and outcome measurements.   

Using the same CCI model as in our experiments, Wagner et al. showed better motor 

function in females than in males, but no sex difference on the cognitive function tested by 

Morris water maze (Wagner et al., 2004). Our results suggest a potentially higher induction of E2 

signaling in the cortex (including motor cortex), whereas less E2 signaling in the hippocampus (a 

region important for cognition) of female rats. This is in the same trend as the result shown by 

Wagner et al., indicating that estrogens may contribute to sex differences in recovery after CCI.  
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5.4.2  Significance  

The neuroprotective effects of estrogens after TBI have been studied for decades 

(Bramlett and Dietrich; O'Connor et al.; Roof and Hall, 2000b; Sarkaki et al.; Shahrokhi et al.; 

Soustiel et al.).  Most studies have investigated the effects of systemic treatment with estrogens 

or with selective ER agonists and antagonists.  Although systemic estrogen treatment was shown 

to be neuroprotective, there I much concern about adverse side effects. In addition to some 

common side effects, such as headaches, nausea, weight gain etc., estrogen replacement 

treatment (ERT) also increases the risk of stroke and specific cancers. Our primary interest, 

however, is in the therapeutic potential of local endogenous estrogen production. This is 

particularly important to menopausal women or men, as the main source of brain estrogen is 

from local production. Moreover, we would like to measure directly the level of E2 in the brain 

and explore its correlation with injury outcomes instead of using the circulating E2 level or ARO 

activity as indicators. This may help us better understand the effect of estrogen on the injury 

between sexes and provide us an alternative to ERT for the beneficial effect on brain disease. 

5.4.3  Future direction 

In this pilot experiment, we chose two days after TBI as our sample collection time point, 

as prior studies showed that the inflammation response would reach its peak approximately 2 

days post-injury (Lagraoui et al., 2012). Our results were in accordance with other reports and 

showed a huge induction of IL-1β and TNF-α in response to the TBI injury. Studies also have 

shown that the up-regulated inflammatory response was sustained for 21 days following the 

injury and later returned to baseline (Lagraoui et al., 2012). Whether the expression of ARO and 



 100 

ER also changes with time or maintains a sustained level following injury is unknown.  It will be 

important to characterize the effect and to correlate with neuroprotective effects of local E2. This 

will require characterizing changes in inflammatory markers, ARO and ER expression at 

different time  points after injury.  

Although we showed alterations of ARO and ER mRNA levels after TBI, further 

experiments are needed to explore physiological significance of the results. Firstly, we showed a 

down-regulation of AROT in the CTX of both sexes, an up-regulation of AROL in the cortex of 

females and decrease of AROL in the HPC of both sexes. Whether these changes influence ARO 

activity and local estradiol production need to be tested. Moreover, the signaling of E2 mediated 

through ER needs to be further explored by measuring the ER protein levels, receptor-ligand 

binding affinities and functional ativation. The contribution of ERs in different brain regions to 

neuroprotective effects also needs to be further studied using selective ER agonists and 

antagonists. 

We hypothesize that TBI influences the local estrogen production and the expression of 

ERs, which may impact inflammatory response, neuronal survival and functional recovery and 

may account for sex differences in response to TBI. In order to test the neuroprotective effects of 

local estradiol production, manipulations to down-regulate ARO or up-regulate E2 levels 

specifically in the brain need to be performed, along with effects on inflammation, cell-apoptosis, 

oxidative stress, etc. and motor, cognitive, and mental behaviors. In order to down-regulate ARO 

in the brain, a selective ARO inhibitor can be injected intracerebrally. Currently there is no way 

to pharmacologically up-regulate ARO in the brain. Such a tool would be very valuable for 

investigating the potential neuroprotective role of local estrogen production following brain 

injury. Recently, a prodrug 10beta,17beta-dihydroxyestra-1,4-dien-3-one (DHED), which was 
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reported to be converted by a short-chain NADPH-dependent dehydrogenase/reductase 

specifically expressed in the brain and to selectively deliver estradiol to the brain, has been 

described (Prokai et al., 2015). This may provide a novel tool and potential clinical approach in 

the treatment of estrogen-responsive brain disorders without producing elevated levels of E2 

systemically. 

  We also showed sex differences in the expression of ARO, ERs and inflammatory 

markers. This may account for the variations of recovery outcomes between males and females. 

However, what accounts for the sex dimorphism: genomic or hormonal factors are still unknown. 

Moreover, what the mechanisms are for E2 signaling to influence the outcomes differently 

between sexes need to be further studied. 
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6.0 SUMMARY AND PERSPECTIVES 

6.1 Key Research Findings 

The purpose of this research was to investigate the production of local estradiol and the 

expression of estrogen receptor mRNAs in different brain regions, and to characterize their 

regulation up or down under different pathological conditions. In order to quantify the low levels 

of aromatase (ARO) activity in the adult rat brain, a microsomal based assay was developed and 

validated with high sensitivity, specificity and reliability. Using this method we demonstrated a 

correlation between ARO activity and its long form mRNA, and verified that their distribution is 

in accord with previous studies. 

In addition to the measurement of the ARO enzyme, which is the final step in the 

conversion of testosterone to estradiol (E2), we also developed and validated a UPLC-MS/MS 

method to directly measure E2 levels in different regions of rat brain. In this study, we showed 

that E2 levels in brain regions with ARO are higher than that in serum in OVX rats treated with 

different doses of estradiol benzoate and testosterone propionate. Letrozole treatment eliminated 

the differences between brain and serum E2 levels, demonstrating that the differences were due 

to local E2 production. Moreover, we also showed that male rats have substantial levels of E2 in 

specific regions of the brain even though levels in the systemic circulation were barely detectable. 

This study, to our knowledge, is the first systematic study which characterizes the relationship 
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between circulating levels of E2 in relation to levels in specific regions of the adult mammalian 

brain. 

In Chapter 4, we utilized the ARO assay that was developed in Chapter 2 to investigate 

the effect of manipulating the basal forebrain cholinergic system on levels of ARO and the 

expression of estrogen receptors in OVX rats. By using the two strategies, selective cholinergic 

lesions in the medial septum and daily injections of cholinesterase inhibitors (ChEIs), to 

manipulate the cholinergic system, our results showed that neither up-regulating or down-

regulating the cholinergic system regulates ARO or ERs in the cortex and hippocampus. To our 

knowledge, this is the first report looking at cholinergic effects on ARO and ERs in these regions. 

We showed that galantamine did significantly increase ARO activity in the amygdala, which 

may suggest that cholinergic input regulates the function of the amygdala by the regulation of 

local estrogen production. 

In Chapter 5, we explored the effects of traumatic brain injury (TBI) on ARO and ER 

expression and compared that between males and females. In the cortex, we saw a significant 

increase of AROL in females and a significant increase in ER alpha in both sexes, indicating an 

induction of estrogen signaling in the cortex after TBI. In the hippocampus, the AROL 

expression was significantly decreased in both sexes with an increase in ER beta mRNA in males. 

These results demonstrated that TBI changes ARO and ER expression in a region- and sex-

specific manner, which indicates a change of local estrogen production and its signaling after 

TBI. These may impact neuronal survival and functional recovery, and contribute to sex 

differences in effects of TBI. 

 

 



 104 

6.2 Clinical Significance and future directions 

Our goal was to study the role and regulation of local estrogen production in the brain. 

This knowledge combined with the prior knowledge of systemic estrogen treatment provides us 

with a better understanding of the effects of estrogen on brain function, and hopefully help us 

develop novel and effective hormonal therapeutic strategies for brain diseases. Although 

estrogens have shown beneficial effects in many preclinical studies, so far no hormone 

replacement treatment is used clinically to treat brain disease. One gap is that in several clinical 

studies treatment groups showed non-positive effects compared to placebo groups as mentioned 

in Chapter 1. Note the patients in these clinical trials were mostly postmenopausal older women 

or breast cancer patients treated with ARO inhibitors, whereas in many preclinical studies young 

adult female or male animals were usually used as models. Better animal models to mimic the 

characteristic of clinical patients are needed to explore the role of E2 in the brain. Moreover, 

direct measurement of brain or CSF E2 levels rather than systemic levels as indicators in 

preclinical studies may be a better way to depute the relationship between E2 and outcomes.  

 Another main concern is the side effects of estrogen replacement therapy (ERT). In 

addition to some common side effects, such as headaches, nausea, weight gain etc., estrogen 

replacement treatment (ERT) also increases the risk of stroke and cancers. In 2002, a large study 

published by Women’s Health Initiative (WHI), which involved more than 16,000 healthy 

women, showed that the combination of estrogen and progestin increased the risk of breast 

cancer, heart disease, stroke, and blood clots. Although the study concluded that using estrogen 

alone has no increasing risk of breast cancer or heart disease, it did appear to increase the risk of 

stroke.  
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Because of the previous disadvantages of systemic hormonal replacement treatment, 

studying the way to manipulate local estrogen production in the brain may provide a much safer 

and efficient way to achieve the beneficial effect of estrogen in brain disease, particularly for 

psychiatric disorders, such as autism spectrum disorders, attention-deficit/hyperactivity disorder, 

anxiety, depression, and Alzheimer’s Disease (Cantwell, 1996; Mielke et al., 2014; Ramtekkar et 

al., 2010; Werling and Geschwind, 2013), which are sexually dimorphic in prevalence, Moreover, 

research in the roles of systemic and local E2 in female and male will help in determining 

whether the sex is significant factor in decision making for clinical study design. 
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