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Several screening studies identifying new catalysts for different reactions have been reported

over the past decade. Almost all of them employ Kohn-Sham density functional theory

(KS-DFT) and thermodynamic descriptors to screen for new catalysts. Though usually

considered reliable for descriptor-based analyses, KS-DFT calculations are computationally

expensive and intractable for use when screening across the full chemical space of all possible

alloy materials. In order to accelerate screening of catalysts, we employ a perturbation

theory model, ”Computational Alchemy” to approximate KS-DFT energies at a fraction of

the computational cost. In this thesis, we discuss about how computational alchemy and

machine learning can be used to reliably screen for efficient catalysts for a wide range of

electrochemical processes based on thermodynamic activity descriptors.

As a first step, we assess the promise of computational alchemy in predicting binding

energies thousands of times faster than DFT. We identify distinct cases where alchemy

performs significantly worse, indicating areas where modeling improvements are needed. We

find that alchemical estimates yield binding energies within 0.1 eV of DFT values for a wide

range of adsorbates. Largest errors (≈ 0.4 eV) were observed when Alchemy predicted BEs of

the adsorbates on alloys that were obtained by changing large number of atoms and to a large

change in nuclear charge. Using a Machine learning approach, the errors between Alchemy

and DFT were corrected. Our results suggest that computational alchemy with machine

learning is a very promising tool that warrants further consideration for high-throughput

screening of heterogeneous catalysts.
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1.0 ELECTROCHEMICAL CO2 REDUCTION

1.1 ABSTRACT

Electrochemical conversion of CO2 into usable hydrocarbons takes place via multiple proton

and electron transfer steps. Experiments from a variety of different research groups have

shown a wide range of compounds from organic molecules to metal oxides that are suitable

for catalyzing electrochemical reduction of CO2. We report that many of these results

can be rationalized using thermodynamic descriptors from quantum chemical calculations

that identify the electrochemical conditions at which catalysts participate in energetically

efficient proton and electron transfers. Our studies have shown thermodynamic Pourbaix

diagrams to be robust and useful tools to identify relevant intermediates in homogeneous

and heterogeneous CO2 reduction and understand how these catalysts facilitate energetically

efficient catalysis.

1.2 INTRODUCTION

Society’s continued consumption of fossil fuels results in increasing levels of CO2 in the

atmosphere, and the concentration of CO2 in Antarctica recently passed 400 ppm, a level

that has not been reached for four million years. Since CO2 is correlated with extreme

weather and global climate change, there have been efforts toward developing sources for

renewable and sustainable energy that would supplant fossil fuels. In particular, there is

great interest in converting CO2 into value-added chemicals and fuels such as formic acid,

CO, or methanol.[1, 2]
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Progress has been made in CO2 reductions to useful products based on chemical,[3]

thermal,[4] electrochemical,[5, 6, 7, 8], or photochemical means,[9, 10] or via combinations

of different approaches.[11, 12, 13] Electrochemical and photochemical processes operating

at room temperature show promise for scalability and favorable energetic efficiency, but

it remains challenging to design electro- and photocatalysts with low overpotentials and

high faradaic efficiencies for proton and electron transfers.[14, 15] Improved guidelines would

be helpful for understanding how to effectively and selectively control proton and electron

transfers within generalized proton coupled electron transfer (PCET) reactions.[16, 17, 18]

1.3 CHALLENGES WITH CO2 REDUCTION

CO2 reduction to fuels is a multi-step process that takes place by proton coupled electron

transfers. The reduction of CO2 to liquid fuels precursors (CO + H2, synthesis gas) or

directly to liquid fuels (such as methanol or methane) is thermodynamically feasible with

these reactions becoming increasingly favorable with an increasing number of proton-coupled

electrons transferred. The thermodynamic potentials for relevant reduction products are

shown in Figure 1.1. In order to obtain methanol and methane, 6H+/6e− and 8H+/8e−

is required to transfer to CO2. The other problem in CO2 reduction is the selectivity and

overpotentials. The energy of adding just an electron to CO2 in order to reduce it is too

high as seen by the more negative potential shown here. But, adding protons and electrons

simultaneously lowers the potentials at which CO2 reduction can be effected. However, the

potentials of different reduction reactions lie close to each other, making it harder to obtain

any of the products selectively. Also, CO2 reduction is further made difficult by the hydrogen

evolution reaction whose potential lies close to other CO2 reduction reactions as well.

Since performing these reactions near their thermodynamic potentials is challenging,

we are in need for versatile catalysts. By the use of catalysts, the energy barriers of CO2

activation can be minimized and subsequent proton and electron transfers can be facilitated.

An ideal catalyst would be one which selectively forms methanol or other products with C-C

bonds, which is both photo and electro active, and which is an efficient proton and electron

2



CO2 + e- —> CO2.-

CO2 + 2H+ + 2e- —> HCOOH

CO2 + 4H+ + 4e- —> HCHO + H2O

CO2 + 8H+ + 8e- —> CH4 + H2O

CO2 + 2H+ + 2e- —> CO + H2O

CO2 + 6H+ + 6e- —> CH3OH + H2O
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Figure 1.1: Thermodynamic potentials of converting CO2 into various products (V vs SCE)

transfer agent. Though there have been different catalytic systems that reduce CO2 into

fuels, aromatic nitrogen heterocycles have been shown to be promising candidates for CO2

reduction. Pyridine, ionic liquids and other nitrogen heterocycles reduce CO2 at low over

potentials with high faradaic efficiency. However, they require a surface for the process and

the role of surface in these systems have been widely discussed.
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1.4 THERMODYNAMIC DESCRIPTORS FOR MODELING CO2

REDUCTION

Our approach to identifying energetically efficient catalysts for CO2 reduction is modeling

proton coupled electron transfers using first-principles quantum chemistry. This usually in-

volves calculating different electrochemical reactivities of the catalyst molecules taking part

in CO2 reduction using DFT. The reactivites are based on the fundamental thermodynamic

energies of the proton and electron transfer to the catalyst and they serve as thermodynamic

descriptors of identifying promising catalysts. Thermodynamically consistent Hesss cycles

shown in Figure 1.2 were used to calculate the following descriptors: pKa, redox potentials

and hydricities. A pKa denotes the thermodynamic free energies of shuttling protons by a

catalyst, redox potential describes the thermodynamic potential to add or remove electrons

from a catalyst and a hydricity refers to the ability of a catalyst to efficiently shuttle hy-

drides (1H+/2e− product). More details about our calculation methodology are discussed in

Chapter 3.

1.4.1 Pourbaix diagrams for homogeneous catalysis

In addition to the thermodynamic descriptors, we use Pourbaix diagrams to identify catalysts

that would take part in energetically efficient in electrochemical CO2 reduction. Pourbaix

diagrams are thermodynamic phase diagrams that help predict the species involved in CO2

reduction by plotting out the thermodynamically relevant intermediates in an aqueous elec-

trochemical redox environment. Using a similar framework to calculating redox potentials

and hydricites, we plotted Pourbaix diagrams. Constructing a Pourbaix diagram for any

homogenous catalyst is a multi-step process.
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Figure 1.2: Thermochemical cycle and expressions used to calculate electrochemical energies.

”Reprinted with permission from [19]. Copyright 2018 American Chemical Society.”

Step 1: Map out all possible intermediate states that are obtained by adding upto m

number of protons and n number of electrons to the molecule. Figure 1.3 shows the map of

all possible proton coupled electron transfers upto 2H+ and 2e− to pyridine, which was shown

to be a energetically efficient CO2 reduction catalyst. We consider all possible protonation

sites for all degrees of protonation.

Step 2: We calculate electrochemical free energies of all the intermediate states shown in

5



Figure 1.3. Since pH and applied potential can vary in an real electrochemical experiment, we

derive thermodynamically consistent approximation to account for pH and potential effects

on the electrochemical free energy.

∆Grxn = Gint −Gref −m×GH+ − n×Ge− (1.1)

G = ESCF + H - TS + Gsolv (1.2)

GH+ = −272.3− kB × T ln 10× pH× 23.061 + 1.89 (1.3)

Ge− = −(U + 4.480)× 23.061 (1.4)

Gref, GH+ and Ge− are the free energies of reference state (pyridine), H+ and elec-

tron. ESCF is the energy of the system calculated by DFT, H and TS accounts for the

enthalpic and entropic contributions which are calculate by rigid rotor approximation. Gsolv

is the solvation energy of the molecule as calculated by continuum solvation models like

PCM/SMD/COSMO. pH and applied potential corrections are accounted for in the free

energies of H+ and electron.

Step 3: We then calculate the relative energies of all the intermediates (Figure 1.3)

with respect to the reference molecule as a function of pH and a potential of 0 V vs SCE

(Figure 1.4 a) We see that pyridinium is stable from a pH of 0 until 6.5 (which is the pKa of

pyridine) after which pyridine becomes stable. At an applied potential of -0.58 V vs SCE,

the energetics of all the intermediates get shifted downwards by an amount equal to the

the number of electrons transferred (Figure 1.4 b). Now, we find that a dihydropyridine

(2H+/2e−) becomes stable at lower pH. When the pH and the applied potential are varied

and the species with lowest electrochemical free energy difference is identified at each of the

conditions, we obtained a thermodynamic phase diagram known as the Pourbaix diagram

(Figure 1.4 c).

A molecular Pourbaix diagram shows distinct regions where different intermediate states

are stable. A vertical line in the Pourbaix diagram indicates conditions where there is efficient

proton shuttling between the two states. Similarly, a horizontal line indicates conditions

where electrons are efficiently shuttled between two states. Sloped lines indicate conditions

ideal for proton coupled electron transfer between any two states where the slope of the line

6



Figure 1.3: Possible intermediates during electroreduction of pyridine. ”Reproduced from

ref [20] with permission from The Royal Society of Chemistry.”

is the number of electrons transferred. The triple point in the Pourbaix diagram indicates

conditions where the molecule is an efficient proton, electron and hydride transfer agent.

Interestingly, the thermodynamic triple point from the pourbaix diagram helps identify the

species that might be involved in the reduction. The triple point also indicates the conditions

at which a molecule can be a better hydride transfer agent to CO2 for reduction.

In most of our work we considered catalysts in solution. Our approach actually considers

two Pourbaix diagrams. One for the molecular catalyst (here, a pyridine molecule) as well

as the Pourbaix diagram for CO2 reduction in water, where CO2 is actually found in water

7



Figure 1.4: Relative electrochemical energies referenced to the energy of Py at an SCE

potential of (a) 0 V and (b) -0.58 V vs. the SCE for pyridine species in solution at different

pH. (Dotted line denotes the calculated pKa for PyH+.) (c) Pourbaix diagram depicting

the most thermodynamically stable species on low HER overpotential electrodes (e.g. Pt)

at a given pH and electrode potential. ”Reproduced from ref [20] with permission from The

Royal Society of Chemistry.”

as carbonic acid. When the two Pourbaix diagrams are overlaid on the other, we find that

boundaries of the two Pourbaix diagrams are in close proximity to the other. The elec-

trochemical conditions where boundary lines fall close to each other are where the Sabatier

principle would be achieved. Another way to think of this is if the boundary of each Pourbaix

diagram represents the top of a volcano curve. Conditions where two Pourbaix diagrams

have boundaries close to each other are conditions were hydrogen catching and releasing (i.e.

shuttling) is most favored. In general, the location of triple point measures the driving force

for the reduced complex to donate a hydride to CO2. The more negative potential of the

triple point implies more driving force for the molecule to get reduced. If the triple point

lies close to formic acid curve, then the catalyst is suitable for CO2 reduction. Hence easier

transfer of hydride for CO2 reduction.
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1.4.2 Pourbaix diagrams for heterogeneous catalysis

Pourbaix diagrams for molecular catalysts were plotted by considering intermediate states

obtained by varying number of proton and electron transfers to the reference molecule. The

free energy of proton and electrons were calculated separately using Equations (1.3) and

(1.4) letting us look at states with unequal proton and electrons transfered. We follow

similar steps outlined above to develop Pourbaix diagrams for heterogeneous catalysts but

using a modified approach to modeling proton coupled electron transfers. In general, we

use a slab model with periodic boundary conditions (PBC) to represent solid state catalysts.

Adding a proton or a charged species to a catalyst under PBC represents a unphysical system

and modeling such a system with DFT will not be meaningful. We overcome this by adding

H atoms to the model system rather than adding a proton and an electron. But, using this

method restricts us to only states that are obtained by transfering equal number of protons

and electrons to the reference state. The electrochemical free energy of the intermediate

state is calculated using a similar expression as above but we neglect solvation.

∆Grxn = Gint −Gref −m×GH (1.5)

G = ESCF + H - TS (1.6)

Computational hydrogen electrode (CHE) model proposed by Norskov et al. is used [21]

to approximate the free energy of a proton and an electron at different applied potentials. The

CHE model is one of the most common computational techniques used to account for reaction

energies that scale with pH and potential effects in computational electrocatalysis. According

to the CHE model, the hydrogen evolution reaction (Equation 1.7) is in equilibrium at an

applied potential of 0 VSHE (for all pH values, all temperatures, and PH2 = 1 atm).

H+ + e− ⇀↽
1

2
H2 (1.7)

Based on the CHE, at zero potential relative to the Standard Hydrogen Electrode (SHE),

the chemical potential of 1
2
H2 is equivalent to the chemical potential of a proton and an
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electron:
1

2
µH2 = µH+ + µe− (1.8)

The chemical potential of protons and electrons can be then related to pH and applied

potential (E) as:

µH+ + µe− =
1

2
µH2 − 2.303 · kBT ln(10) · pH− E (1.9)

Detailed thermodynamic derivations for the catalysts that we studied are provided in their

respective chapters.

1.5 DISSERTATION OVERVIEW

Our group has specialized in the development of thermodynamic descriptors, specifically

Pourbaix diagrams to understand energetically efficient catalysis of CO2 electroreduction to

methanol. We have shown triple points in Pourbaix diagrams to be useful descriptors of

optimal thermodynamic activity in pyridine which have shown to be efficient CO2 reduction

catalyst. [20, 20, 19]. We also extended our Pourbaix diagram analysis to an extended

library of aromatic nitrogen heterocycles. [22] We hypothesize that inorganic complexes

and materials with a pyridine backbone could be potential candidates for CO2 reduction.

We have tested this hypothesis by carrying out a Pourbaix diagram analysis on ruthenium

inorganic complexes in Chapter 3 and graphene nanocarbon materials in Chapter 4. We

also tried to identify if tin oxide catalysts were suitable for CO2 reduction using Pourbaix

diagrams and proposed dopants to enhance their activity in Chapter 5.
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2.0 COMPUTATIONAL HIGH THROUGHPUT SEARCHES FOR

EFFICIENT CATALYSTS

Expensive and time consuming trial-and-errors experiments have been the traditional method

of finding the best catalyst for a reaction.[23, 24, 25, 26, 27] High-throughput (HT) cata-

lyst design using computational quantum chemistry can reduce the lab work and accelerate

the catalyst discovery process. Computational HT studies combine Kohn-Sham Density

Functional Theory (KS-DFT) and thermodynamic descriptors to rationally screen through

a large number of pure, bimetallic and trimetallic alloys and identify suitable candidates

that are efficient and stable under operating conditions of catalysis. Considerable successful

using these methods for discovery of new catalyst materials have been reported.[28, 29, 30]

One of the early studies in this field was by Greeley et al in which the high throughput

screening approach was outlined and was used to search for the best hydrogen evolution re-

action catalyst.[30] Nearly 700 bimetallic alloy electrocatalysts were screening using binding

energy and stability descriptors. An alloy of BiPt was found to be a stable catalyst with

predicted activity much better than pure Pt. The alloy was also synthesized experimen-

tally and it showed improved activity confirming theoretical predictions. Several HT studies

that followed made useful predictions of new and improved catalysts for experimentalists

highlighting the importance of HT approach in rational design of catalysts.

All computational HT screening studies performed so far have been able to screen through

only a limited number of bimetallic and ternary alloys. However, the chemical space of

possible alloy catalysts is large enough that it is impossible to screen through the entire

space using KS-DFT based HT studies. Combinatorially and theoretically speaking, one

could obtain more than 2.6 million hypothetical alloys using a larger 3× 3 surface unit cell

with up to 18 transmutations to different d-block elements from the same row as the host
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metal atoms in two top layers of the slab (see Figure 2.1). Calculating an adsorption energy

using DFT would require twice as much calculations as the number of alloys that would need

to be screened. A faster approach to obtain the adsorption energy on these alloys is needed

to accelerate the screening process.

3x3 - (111) surface Number of possible alloys: 2.6 million

Number of sites per layer: 9
Number of layers: 2
Number of transmutations: 18

Figure 2.1: Chemical space of alloy catalysts

In our research program, we propose Computational Alchemy, a perturbation theory

approach, as a tool to accelerate the traditional HT screening process. Using Alchemy,

we want to predict and design catalytically active sites at the fraction of a cost of KS-

DFT based screening. In a recently published work, we tested the accuracy of the method.

We benchmarked binding energy predictions of oxygen reduction reaction intermediates on

thousands of alloys of Pt, Pd, and Ni using alchemy against predictions from DFT. Far faster

alchemical estimates yielded binding energies within 0.1 eV of DFT values in many cases.

We also identified distinct cases where alchemy performed significantly worse, indicating

areas where modeling improvements were needed. Our initial results have suggested that

computational alchemy is a very promising tool that warranted further consideration for

high-throughput screening of heterogeneous catalysts. In this proposed research, we want

to develop Alchemy as a more robust tool for reliably screening through the chemical space

and make it useful for accelerated catalyst discovery.
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2.1 RATIONAL DESIGN OF ACTIVE SITES IN CATALYSTS

The ”holy grail” in heterogenous catalysis is identifying the optimal active site on a catalyst

surface for any given chemical reaction. In 1925, Hugh Stott Taylor proposed the idea of

active sites on a solid catalyst stating that ”there will be all extremes between the case in

which all the atoms in the surface are active and that in which relatively few are so active”.[31]

His formulation of active sites has led to extensive research focusing on identifying, modifying

and designing active sites for catalysis over the last century.[32, 33, 34]

Designing active sites of a catalyst requires a molecular level understanding of events

taking place on the surface of a heterogeneous catalyst. The events that could happen on

a surface include adsorption of the reactant molecules on the surface of the solid catalyst,

diffusion on the surface, breaking and forming of bonds to form product molecules, and

desorption from the surface. The picture gets much more complicated in an electrochemical

interface where there are electrons in the system. However, using simpler models that ap-

proximate a real catalyst surface, computational quantum chemistry has been able to provide

several useful insights into many surface reactions and guide the rational design of active

sites in catalysis.[35, 36, 33]

2.2 BREAKING SCALING RELATIONS

Electronic structure calculations have been instrumental in establishing trends in the pre-

dicted activity of transition metal surface catalysts.[37] Scaling relations[38], d-band model[39],

activity maps[40] are few of the useful tools that have advanced the understanding of het-

erogeneous catalysis. Scaling relations are correlations between bond energies of different

adsorbed species on a surface. Scaling relations reduce the number of parameters that de-

termine the rate of a catalytic reaction into a very few number of parameters known as

descriptors. Based on a large number of calculations of adsorption energy data, it has been

shown that scaling relations are much more general and they are able to describe all inter-

mediates for a number of reactions on transition metal surfaces. In addition to explaining
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trends and new catalyst design criteria, scaling relations have also defined limitations on

the performance of large classes of catalysts. There are several reactions in which scaling

relations have been able to identify limitations on the maximum rate possible on a catalyst,

N2 reduction[41], CO2 reduction[42] and ORR[43].

New design approaches need to be developed to identify catalysts that do not follow

scaling relations. In other words, we may need to find ways to stabilize one adsorbed state

without stabilizing others. Considerable progress has been made in this direction. Since

scaling relations are difficult to be broken when different reaction intermediates adsorb on

the same surface site, multisite functionalization or catalysts with several types of active

sites or local binding environments for different intermediates has been proposed. Alloying

and doping are promising avenues to test multisite functionalization.

Alloy catalysts have been studied as ways to improve rates of electrochemical reactions

even before scaling relations were identified and alloying was suggested as a way to enable

multisite functionalization.[44, 45, 46, 47, 48] We list a few of the recent studies that have

focused on bifunctional catalysts for several electrochemical processes. An experimental

study focused on electrocatalysts where monolayers of Pt were deposited on different late

transition metals (Au, Pd, Ir, Rh, or Ru) found that Pt supported on Pd ORR activity

showed a 20-fold increase in ORR activity. [49] Experiments have also predicted ternary alloy

electrocatalysts to have improved activities for ORR.[50, 51] Decomposition of ammonia

into hydrogen was predicted to be enhanced when the platinum surface was alloyed with

nickel.[52] Catalysts based on Au-Cd bifunctional alloys were explored using DFT and were

found to be thermodynamically more favorable for CO2 reduction to CO and methanol

relative to pure Au.[53] All of these experimental and computational studies have considered

relatively few material combinations. In order to accelerate the process and identify the best

active sites in alloyed catalysts, a rapid screening approach is required.
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2.3 HIGH THROUGHPUT SCREENING OF ALLOY CATALYSTS

Moderately large-scale combinatorial screening for alloy catalyst materials using density

functional theory (DFT) calculations have been able to identify active sites with two or

more elements.[28, 29, 30] They are based on a procedure in which a database of transition-

metal surface alloys are efficiently screened using catalytic activity descriptors and detailed

stability assessments. Using this procedure, alloy catalysts were evaluated for a fundamental

electrochemical reaction, the hydrogen evolution reaction (HER) using δGH and stability

descriptors.[30] The HT search resulted in a surface alloy of bismuth and platinum which

was experimentally synthesized and shown to have higher activity than pure Pt. In a sim-

ilar combinatorial screening for an ORR catalyst, nearly 750 bimetallic surface alloys were

screened and many candidates were found to be active for ORR. However, most of the iden-

tified candidates were thermodynamically unstable in acidic environments. After filtering

based on potential dependent stability tests, Pd or Pt alloyed with early transition metals

such as Sc or Y were predicted to be promising candidates.[29] Experiments also confirmed

that the activity of Pt3Sc and Pt3Y electrodes were enhanced by a factor of 1.5-1.8 and 6-10

when compared to pure Pt. Better alloy catalysts have also been screened for methanation

reaction using the same procedure.[54]

All HT screening studies use a similar screening process that involved multiple stages

as shown in Figure 2.2.[55, 56] The first step involves identifying all possible candidate

bimetallic surface catalysts combinatorially and calculating DFT data on each of the alloys.

Then, all these candidates were passed through a multistage filtering process. The first filter

was an activity descriptor, in which candidates were filtered based on DFT binding energy.

The second stage of screening was based on set of stability criteria. The final candidates

passing through the second stage warranted further experiments to confirm their activity

and stability.

In HT studies, the descriptors play a key role in reliably finding a catalyst with desired

properties. With robust thermodynamic descriptors, catalysts can be designed rationally

by searching through the chemical space for materials with descriptors close to the opti-

mum value that corresponds to the highest activity. A fundamental activity descriptor from
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Activity

Stability

Islanding
Figure 2.2: Procedure explaining the high-throughput screening process

DFT calculations that has been predictive of catalytic performance is adsorption energy.

The usefulness of adsorption energy as a descriptor arises from a fundamental principle in

heterogeneous catalysis, Sabatier principle. According to the Sabatier principle, an ideal

catalyst should bind the adsorbate with an intermediate strength in order for energetically

efficient catalysis to take place. It should bind neither too strong not to be able to desorb

the product nor too weak to the adsorbate not to be able to activate the reactant. Sabatier

principle can be best understood in the form of a volcano plot shown in Figure 2.3. By

plotting the bond strength of an adsorbate to a catalyst surface or adsorption energy against

activity, these plots help in the comparison of thermodynamics of a reaction between dif-

ferent catalysts. Volcano plots usually contain two slopes which meet at the top and the

slopes indicate conditions in which surface/adsorbate interaction are too strong (left) or

too weak(right). Thermodynamically, optimal candidates satisfying Sabatier’s principle are

found near the peak of the volcano.
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Figure 2.3: Volcano plot with overlaid Sabatier principle, [41]

Besides being active, alloy catalysts need to be stable under experimental conditions.

They should not decompose in high-potential and highly corrosive conditions observed in

electrochemical environments.[57] The stability of these alloy catalysts can be assessed by

identifying processes that would make an alloy catalyst unstable like segregation, islanding

and metal dissolution.[55, 56] Segregation is a process in which atoms from the inner layers

of an alloy dissociate to the outer surface or vice versa. Islanding is the formation of single-

component patches on the alloy surface caused by separation of alloy components within the

surface plane. Metal dissolutions refers to the process in which the alloy elements dissolves

into the electrolyte solution. All of these processes could be caused by inherent surface

thermodynamics of the alloys under consideration, or changes in the surface energies resulting

from adsorption. By calculating a free energy difference (stabilization free energy) between

the alloy and modified alloy, stability of an alloy catalyst can be evaluated. Alloy catalyst

is stable if it is energetically uphill to any process that would destabilize the catalyst.
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2.4 COMPUTATIONAL ALCHEMY

High throughput screening studies performed so far screened through a moderate number

of alloys (less than 1000). Combinatorially and theoretically, one could derive more than

2.6 million hypothetical alloys using a 3 × 3 surface unit cell with up to 18 transmutations

to different d-block elements from the same row as the host metal atoms in two top layers

of the slab. Screening through this large chemical space of alloys requires a faster way to

generate binding energy data of the alloys. We introduce Computational Alchemy as a tool

to accelerate the screening process by calculating the binding energy of alloys at a fraction

of the cost of a DFT calculation.

Computational alchemy itself is not a new method. Its early applications have been used

in biomolecular simulations to calculate protein ligand binding affinities [58, 59, 60]. An

approach similar to alchemy, linear combination of atomic potentials (LCAP) has been used

to screen through large libraries of molecules based on properties like molecular electronic

polarizability and hyperpolarizability using an inverse design approach.[61] Modified vari-

ants of LCAP like tight binding LCAP[62], gradient-directed Monte Carlo[63] and a hybrid

discrete-gradient LCAP[64] have also been developed to explore the molecular space. Alter-

natively, Alchemical Coupling was proposed as a more efficient way to explore the chemical

compound space (CCS) by alchemically coupling two isoelectronic molecules in CCS through

interpolation of their electron-nucleus potentials.[65, 66, 67, 68, 69] This method has been

successfully used to estimate bulk properties like formation energies, lattice constants, and

bulk moduli of ionic crystals[70] and 4d transition metals[71]. A variant of Alchemical Cou-

pling (refered to as Computational Alchemy in this thesis) has also been proposed where a

linear change in electrostatic potentials (alchemical derivatives) is used to estimate reaction

energetics on doped catalysts. Binding energies of oxygen intermediates on alloyed nanopar-

ticle catalysts[72] and water dissociation energetics on B-N doped graphene sheets have been

calculated[73] using this approach.
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2.5 DISSERTATION OVERVIEW

We hypothesize that if prior computational HT screening studies were able to identify promis-

ing alloy catalysts using activity and stability descriptors, Computational Alchemy should

also be able to predict new active sites in catalysts but faster. As a first step, we introduce

the methodology of Alchemy and show the effectiveness of Alchemy in calculating binding

energies of OHx intermediates in Chapter 6. We then extensively benchmark Alchemy for

BE predictions and improving Alchemical BE predictions using Machine learning in Chapter

7.
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3.0 ELECTROCHEMICAL CO2 REDUCTION USING INORGANIC

COMPLEXES

The content of this chapter is taken from Karthikeyan Saravanan, and John A. Keith, ”Stan-

dard redox potentials, pKas, and hydricities of inorganic complexes under electrochemical

conditions and implications for CO2 reduction”. Dalton Transactions, 2016, 45(39), 15336-

15341.

3.1 ABSTRACT

We use computational chemistry to systematically study the thermodynamic stabilities of

protonated and reduced intermediate states for [Ru(2,2′-bipyridine)3]
2+, [Ru(1,10-phen)3]

2+,

and [Ru(phen)2(pyrido[3′,4′:5,6]pyrazino[2,3-f][1,10]phenanthroline)]2+, in aqueous solutions.

Following our previous studies of aromatic N-heterocycle molecules, we report pKas, stan-

dard redox potentials, and hydricities as well as com- putationally derived Pourbaix diagrams

that show which states would be thermodynamically stable at different conditions of pH and

applied potential. Locations of added electrons within ligands and complexes after reductions

are also shown with electron density difference plots. As with other aromatic N-heterocycle

molecules implicated in CO2 reduction, we find that several of the boundary lines from the

Pourbaix diagrams are in close proximity to the thermodynamic redox potentials for CO2

electroreductions, making them thermodynamically appropriate for energetically efficient

hydrogen shuttling.
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3.2 INTRODUCTION

Ruthenium complexes such as [Ru(bpy)3]
2+ bpy = 2,2′-bipyridine (1) and [Ru(phen)3]

2+

phen = 1,10-phenanthroline (2) are used in various photo- and electrochemical reactions.[74]

MacDonnell and coworkers[75, 76, 77] recently reported photocatalytic reduction of CO2

into products such as methanol with low overpotentials and high selectivities. One of

their studies used 2 in aqueous electrolytes containing a weak acid, pyridinium (PyH+).

It was suggested that 2 provides electrons that enable PyH+ to participate in electro-

chemical reductions related to the PyH+ catalyzed processes reported by Bocarsly and

coworkers.[78, 79, 80] Another example by MacDonnells group demonstrated photochemical

and electrochemical reduction of 13CO2 into methanol using complexes having a modified

phenanthroline ligand that contained a pendant pyridyl functionality, [Ru(phen)2(ppy)]2+,

ppy = pyrido[3′,4′:5,6]pyrazino[2,3-f][1,10]phenanthroline (3).[76]

Both complexes result in similar products and therefore may make use of a similar mech-

anism, but the specific experimental conditions and outcomes of the systems using 2 and

3 are different. The system employing 3 had poor stability in water, so a mixed solvent

comprised of water and DMF was used that did not involve PyH+. The system using 3 was

found to be slightly superior as a methanol producing photocatalyst compared to the system

using 2 in terms of quantum yield. However, the TON for all products in the rst hour for 3

was found to be 27 on an electron basis while the TON for all products for the system using

2 and PyH+ was 154. While this implies that 3 is a less active catalyst, 3 was also found

to be more selective for methanol and generates more product in the rst hour on both an

absolute quantum yield and relative basis.

We are not aware of any computational studies on these processes. Before embarking on

complex reaction mechanism investigations, we carried out extensive atomistic thermody-

namics studies to identify protonated and reduced intermediates as we had previously done

for pyridine, imidazole, 1,3-dimethyl imidazolium, and phen, considering up to two proton

and two electron transfers.[19] Our earlier work presented Pourbaix diagrams that identi-

fied electrochemical conditions where molecular additives (here, aromatic N-heterocycles)

might function as multi-proton and multi-electron shuttles. We now do a similar analysis
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on a progression of aromatic N-heterocycle ligands (Figure 3.1 a - c) as well as complete

inorganic complexes involving these ligands (Figure 3.1 d - f) to better understand their

electrochemical reactivities in aqueous solution.

Figure 3.1: Ligands and Ru complexes modeled in Chapter 3

3.3 COMPUTATIONAL METHODS

All calculations employed Kohn-Sham density functional theory (KS-DFT) using the resolu-

tion of the identity (RI)-approximation[81, 82, 83] as implemented in the TURBOMOLE[84]

code. Nuclear coordinates were optimized at the B3LYP[85, 86]/def2-SV(P)[87] level of the-

ory. Hessian calculations confirmed that all optimized structures had only real vibrational

frequencies showing that all structures are minimum energies on the Born-Oppenheimer po-

tential energy surface. Single point electronic energies were then calculated on these struc-

tures using much larger def2-TZVPD basis sets.[88] COSMO[89] solvation implemented in

Turbomole and def2-SV(P) basis set were used to calculate the solvation energies for these

species in water. Note that our data will not be directly relatable to some of MacDonnell

and co-workers studies that used mixed solvents, but this is discussed in more detail below.
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Descriptions of calculation schemes to calculate pKas, standard redox potentials (SRPs),

and hydricities can be found in our earlier work.[19] A comparison of calculated and available

experimental data is reported in Table 3.1. In general, our calculated data from our models

are in reasonable agreement with experimental values in the literature.[90, 91, 92] The largest

errors in SRPs involve either a radical anion (bpy•− or phen•−), a dication with protons at

each N site on bpyH2+
2 and phenH2+

2 , or the reduction of 2. This represents a rough measure

of the expected accuracy of SRPs, pKas, and hydricities reported later in the text.

3.4 RESULTS AND DISCUSSION

Figure 3.2 are square-plots that report individual pKas, SRPs, and hydricities for interme-

diates starting from species shown in Figure 3.1. Figure 3.3 shows a subset of the thermody-

namic data in the form of overlaid Pourbaix diagrams. Section 1.4 provides an explanation

for how we generate Pourbaix diagrams using quantum chemistry data. We also attach

density difference illustrations that uniquely show the location of the LUMO orbital for the

lowest energy structure at a given number of proton and electron transfers in Appendix A

. The overlaid Pourbaix diagrams compare the stabilities of different protonated and elec-

trochemically reduced forms of the three ligands and complexes (colored regions with labels

in lower case) with the intermediates relevant in aqueous phase CO2 reduction (dotted lines

with labels in upper case). As an example for how to interpret this figure, Figure 3.3a

shows the Pourbaix diagram for bpy (colored region) overlaid with the Pourbaix diagram for

aqueous phase CO2 reduction (dotted lines). The borders of the colored regions correspond

to loci (paired values of pH and applied potential) where different protonated and reduced

states have the same chemical potential. Note that a pKa defines the pH where protonated

and deprotonated states have equal chemical potentials, so the pKa for bpy is shown by the

vertical dividing line at pH 3.9. At this pH and at applied potentials more negative than

-0.75 V vs. Ag/AgCl, our calculations show that it would be thermodynamically favorable

to form an electrochemically reduced state, bpyH2, as long as kinetic barriers permit it. At

pH 3.9 and E = -0.75 V, the calculated chemical potentials for bpy, bpyH+, and bpyH2 states
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Table 3.1: Benchmarking calculated thermodynamic descriptors with available experimental

data for inorganic complexes

SRPs
Experimental /

V vs Ag/AgCl

Calculated /

V vs Ag/AgCl

(signed error)

bpy + e− → bpy•− -2.32[81] -1.97 (0.35)

bpyH+ + e− → bpyH• -1.16[81] -1.10 (0.06)

bpyH2+
2 + e− → bpyH•+2 -0.69 [81] -0.41 (0.28)

bpy + 2H+ + 2e− → bpyH -0.83[81] -0.92 (-0.09)

phen + e− → phen•− -2.18[81] -1.91 (0.27)

phenH+ + e− → phenH• -1.04[81] -1.02 (0.02)

phenH2+
2 + e− → phenH•+2 -0.66[81] -0.37 (0.29)

Ru(bpy)2+3 + e− → Ru(bpy)•+3 -1.21[84] -1.37 (-0.16)

Ru(phen)2+3 + e− → Ru(phen)•+3 -1.15[82] -1.53 (-0.38)

pKas Experimental /
Calculated /

(signed error)

bpy + H+ → bpyH+ 4.4[81] 3.9(-0.5)

phen + H+ → phenH+ 4.9[81] 3.4(-1.5)

Hydricity
Experimental /

eV

Calculated /

eV

(signed error)

CO2 + H− → HCO−2 1.45[83] 1.40(-0.05)
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Figure 3.2: Square plots denoting calculated SRPs, pKas, and hydricities for a) ligands and

b) Ru complexes. The first and second digits in the labels following the ’/’ correspond to the

number of protons and electrons added to the initial species from Figure 3.1, respectively.

are all the same, and this represents an idealized electrochemical environment that would

support shuttling protons and electrons amongst the three different states. Since these dia-

grams are only a thermodynamic construct, it is not immediately apparent what proton and

electron transfer pathways might occur, or if such pathways would be kinetically allowed.

The diagrams nevertheless provide useful information about what species are metastable

at which electrochemical reaction conditions. When loci that represent electron transfers

between molecular states reside at potentials more negative than the loci representing CO2

reduction (or its expected form of H2CO3 in a buffered aqueous solution), this also signifies

an electrochemical environment that might create a reversible proton and electron shuttle

that would have sufficient driving force in turn to reduce CO2. Similar to what was found in

our previous study on other aromatic N-heterocycles, Pourbaix diagrams in Figure 3.3 show

loci that lie reasonably close to the SRPs for aqueous phase CO2 reduction. These data sig-

nify that these molecules may have a participating role in energetically efficient multi-proton

and multi-electron transfers at electrochemical conditions where dotted lines and boundaries

of colored regions are close. The degree that such mechanisms would occur in an appreciable

amount would be straightforwardly measured by looking for H/D isotopic scrambling.
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Figure 3.3: Pourbaix diagrams showing thermodynamically stable protonation and electro-

chemically reduced states for a) bpy, b) phen, c) ppy, d) 1 = rubpy2+, e) 2 = ruphen2+,

e) 3 = ruppy2+ overlaid on Pourbaix diagrams for CO2 reduction intermediates. Pourbaix

diagrams for the different ligands and complexes have lowercase labels that correspond to

different colored regions. Numbers following each label refer to the numbers of protons

and electrons relative to the initial ligand or complex. Pourbaix diagrams for the different

states of CO2 in aqueous solution have uppercase labels that correspond to different regions

separated by dotted lines. We posit that pH and applied potentials where dotted lines over-

lap with boundaries of colored regions denote electrochemical conditions where energetically

efficient proton and/or electron shuttling is thermodynamically feasible.
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Regarding electrochemical studies using 1 and 2, calculations show that except at highly

basic conditions (pH > 14), it is thermodynamically more favorable to reduce either complex

by adding two protons and two electrons to each complexs respective ligand than it is to carry

out a single 1e− reduction of either complex. While 2H+/2e− reductions of 1 and 2 have SRPs

that might be accessible under CO2 reduction conditions, experimental Pourbaix diagrams

for 1 and 2 typically show no indication of multi-proton and multi-electron transfers, so

it would be uncontroversial to assume that such processes are kinetically hindered under

most experimental conditions. Additionally, protonations of 1 and 2 are very energetically

unfavorable, as denoted by the very negative pKas in Figure 3.2. This raises some question

over the actual mechanisms for CO2 reduction involving 2 and PyH+. Technically, the SRP

for 2 is negative enough to reduce PyH+ into PyH• (SRP = -1.5 V) but such radicals are

highly unstable, and their self-termination rates in partially aqueous solvents are on the order

of 108 M−1 s−1.[93] Furthermore, while Colussi and coworkers demonstrated PyH• radicals

generated from 254 nm photolysis of Py can reduce CO2,[94] 2 exhibits MLCT absorptions

far lower in energy in the 400-500 nm region. Due to this discrepancy in wavelengths, it

seems more probable that 2 would participate in CO2 reduction in some manner of electron

transfer besides the formation of PyH• radicals. For these reasons we also suggest that future

mechanistic studies invoking the presence of PyH• radicals would ideally be supported with

spectroscopic evidence.

As with complexes 1 and 2, we find intermediates that result from 2H+/2e− reductions

of 3 would be metastable. However, the proton accepting ability as well as the 1e− SRP

are substantially less negative than those for 1 and 2. This is due to the fact that the

ppy ligand of 3 has accessible Brnsted base sites for protons and a significantly larger pi

system that can accommodate electrons. We believe that the reduction of 3 into a 2H+/2e−

intermediate might well have a lower barrier than that for 1 or 2. It follows that 3 may

then participate in energetically efficient shuttling of hydrogen atoms and protons (likely

between Ru(phen)2(ppy)+ and Ru(phen)2(ppy)H2+
2 ) at conditions where 4 < pH < 12 and

at potentials slightly more negative than the SRP for CO2 reduction. According to our

calculations, the pH would need to be greater than 9 for there to be enough of a driving force

to reduce bicarbonate into formate at potentials more negative than -0.7 V vs. Ag/AgCl.
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We also find that within a relatively small pH window of 12 < pH < 13.5, the cat-

alyst may also be shuttling single protons and electrons between Ru(phen)2(ppy)+ and

Ru(phen)2(ppy)H+. If this pathway were operational, it would be expected that 3 would

facilitate the reduction of the state that is conventionally attributed as a carbonate anion

into formate but at potentials more negative than -1.1 V vs. Ag/AgCl. Note that the ther-

modynamics for this hydrogen atom shuttling mechanism is still significantly more favorable

than the energetics required to generate PyH• radicals.

We now relate our calculated data to experiments using 3. We do not currently know the

absolute solvation energies of H+ or the absolute value of the standard hydrogen electrode

potentials in mixed solvents, so our studies modeling aqueous solvents may have only limited

connection to experiments carried out in mixed solvents. MacDonnell and co-workers[76] re-

port a reduction occurring at -0.57 V in mixed DMF:H2O solvents. Those authors assigned

this SRP to the 1e− reduction of Ru(phen)2(ppy)2+ into Ru(phen)2(ppy)+. We calculate this

SRP to be -0.27 V in water. If mixed solutions exhibited properties that could be interpolated

between DMF and water, then the SRPs in mixed solvents should be more negative than val-

ues in aqueous electrolytes, and therefore computational and experimental data would likely

be in agreement. However, we note that we found another SRP that is also relatively close to

this value, -0.70 V for the 2 H+/1 e− reduction of Ru(phen)2(ppy)+ into Ru(phen)2(ppy)H2+
2 .

This signifies that net 2H+/2 e− reductions of 3 into Ru(phen)2(ppy)H2+
2 may be thermo-

dynamically accessible under reaction conditions used by MacDonnell and co-workers. If

so, 3 may be participating in CO2 reduction mechanisms involving unexpected biomimetic

proton and hydride transfers as speculated by previous computational studies.[20, 20, 95, 96]

Quantifying SRPs in mixed solvents will be a focus of future work.
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3.5 CONCLUSION

We have carried out an extensive atomistic thermodynamics study of aromatic N-heterocycle

ligands and Ru complexes using first principles quantum chemistry. We have determined

pKas, SRPs, and hydricities for these molecules and inorganic complexes considering up to

two proton and two electron transfers to determine which states would be thermodynamically

stable under electrochemical CO2 reduction operating conditions. As found previously with

our other studies on aromatic N-heterocycles, the molecules and complexes modelled here

have several metastable states that include up to multiple proton and electron transfers.

These intermediate states in principle may open unexpected pathways for CO2 hydrogenation

such as biomimetic proton and hydride shuttling.

While the pKas and 1e− SRP for [Ru(bpy)3]
2+ and [Ru(phen)3]

2+ suggest high en-

ergy barriers for protonation and reduction of those complexes, it remains unclear how

[Ru(phen)3]
2+ would participate in CO2 reduction in light of the instability of PyH•radicals.

However, the Ru(phen)2(ppy)2+2 system used by MacDonnell and coworkers for CO2 reduc-

tion is a much more likely candidate for participating in CO2 reduction mechanisms involving

proton and electron shuttling. In this system, computational predictions indicate that proton

and hydride shuttling pathways are thermodynamically feasible and should be considered for

energetically efficient CO2 reduction processes involving Ru(phen)2(ppy)2+2 .
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4.0 NITROGEN-DOPED NANOCARBON MATERIALS UNDER

ELECTROREDUCTION OPERATING CONDITIONS AND

IMPLICATIONS FOR ELECTROCATALYSIS OF CO2

The content of this chapter is taken from Karthikeyan Saravanan, Eric Gottlieb, and John A.

Keith, ”Nitrogen-doped nanocarbon materials under electroreduction operating conditions

and implications for electrocatalysis of CO2.” Carbon, 2017, 111, 859-866.

4.1 ABSTRACT

We have used Kohn-Sham density functional theory with atomistic thermodynamics to iden-

tify various forms of N-doped graphene basal planes and nanoribbons that are thermodynam-

ically relevant for CO2 electroreductions. Using our computational results, we derive phase

diagrams for different nanocarbon structures, and we report which structures are suitable

for hydrogen transfers to CO2 with low over- potentials. With the incorporation of N atoms,

standard reduction potentials resulting in hydrogenated surfaces become less negative, and

this effectively opens pathways for hydrogen atom shuttling to CO2 with reversibly hydro-

genating nanocarbon catalysts. Of all morphologies considered, N-doped zigzag nanocarbon

edges are most favorable for energetically efficient CO2 electroreductions.
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4.2 INTRODUCTION

Catalysts are a cornerstone of modern society that enable large scale chemical and fuel pro-

duction. Active catalysts are non-reactive materials that bind to and release chemically

reacting intermediates, lowering activation barriers for desired products. Most catalysts to-

day are precious metals because they resist oxidation (i.e. they are noble) while having

s and d orbital states that can reversibly bind reaction intermediates.[97] However, pre-

cious metals are scarce and alternatives are required for more economical and sustainable

catalysis.[98, 99, 100, 101]

Recent research has demonstrated that carbonous materials are a promising avenue for

advanced catalysis. Historically, activated carbons have been used as supports for metal cata-

lysts because of their high surface area and electrical conductivity,[102, 103] but more recently

they are being considered as catalysts themselves. Producing so-called ’metal-free’ catalysts

requires a great deal of synthetic control.[104] Synthetic routes include nanostructuring, het-

eroatom doping, and other defect control.[105, 106, 107, 108, 109] Catalytic properties have

been reported to depend on a myriad of factors relating to their synthesis, including confine-

ment effects,[110, 111] material defects,[112, 113] and heteroatom dopants.[104] Additionally,

it is difficult to draw meaningful conclusions from experimental works alone due to metal

impurities.[114, 115]

Even with rapidly growing synthetic sophistication, the field of carbon as a catalyst is

still in relatively nascent stages. Factors that govern their catalytic performance are not well

understood, and thus it is challenging to rationally improve their performances. Quantum

chemical (QC) modeling can provide useful insights into why carbon catalysts might work

and how to improve them, but the majority of QC studies to date have focused on electronic

structures and material properties of nanoscale carbon morphologies such as zigzag edges,

armchair edges, and basal planes.[116, 117, 118, 119] To a lesser but still sizable degree, QC

studies have investigated catalytic reaction mechanisms on nanocarbons (e.g. the hydrogen

evolution reaction[120, 121], the oxygen reduction reaction[119, 116, 122]). To an even lesser

extent CO2 reduction has been investigated, where experiment and theory have been used

to identify specific active sites, and catalyst stabilities.[123, 124, 125, 126, 127]

31



Previous mechanistic studies on CO2 reduction have focused on individual reaction steps

involving CO2 binding at different nanocarbon sites.[128, 129] However, it is also possible

that a catalyst might undergo (electro-)chemical reactions itself under in operando condi-

tions, thus resulting in a modified catalyst. We[130, 131] and others[132] have proposed

that electrochemical 2H+/2e− reductions of pyridine molecules can form dihydropyridine

molecules that facilitate energetically efficient CO2 reduction processes originally reported

by Bocarsly and coworkers.[133, 78] A motivating factor for the current work is to determine

if knowledge about the electrochemical behavior of pyridine is also transferable to the design

of catalytically active N-doped nanocarbon materials.

The first step toward understanding catalytic reaction pathways is to quantify and un-

derstand reaction thermodynamics. The Sabatier Principle effectively states that an ideal

catalyst will bind reactants just strongly enough to activate them while also minimizing bar-

rier heights to form and release products. To understand reaction energetics of electrocat-

alytic reaction mechanisms, the computational hydrogen electrode model[134] is a common

starting point.

Another related approach is to use QC modeling to generate Pourbaix diagrams to deter-

mine which morphologies might evolve during electrochemical reductions and which struc-

tures might participate in energetically efficient hydrogenations. Pourbaix diagrams do not

provide kinetic information, but the insight into thermodynamics they provide is nevertheless

useful. In particular, boundaries between different phases shown by a Pourbaix diagrams

are loci of electrochemical conditions (pH and applied potential, E) where the chemical po-

tentials of the phases are the same. If the different morphologies represent different reaction

intermediates, the boundaries correspond to theoretically optimal conditions for energetically

efficient catalysis according to the Sabatier Principle. For instance, if the different states

were a hydrogenated surface and an unhydrogenated surface, the boundaries would denote

theoretically ideal pH and applied potentials where the surface would be an energetically

efficient hydrogen shuttling catalyst.

To understand which carbon morphologies are best suited as CO2 reduction catalysts, we

use QC calculations to generate Pourbaix diagrams that identify thermodynamically relevant

structures at reducing conditions. Our approach follows a similar spirit to previous work
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regarding aromatic N-heterocycles present in homogeneous solution.[20, 19] In these works,

we screened a variety of catalyst intermediate states using molecular Pourbaix diagrams

that identifed electrochemical conditions for energetically efficient catalytic reactions. In the

present work, we systematically explore the thermodynamic energies of different nanocarbon

structures with different degrees of nitrogen defects and coverages of H atoms.

4.3 THERMODYNAMIC DERIVATION

We used ab initio atomistic thermodynamics[135] and computational hydrogen electrode

model[134] to understand the thermodynamic stabilities of nanocarbon morphologies, graphene

basal planes (GBP) and graphene ribbons (GR), having different N and H concentrations.

We focused on a GR system with zigzag edges since this most closely resembles pyridine

analogs that relate to our previous work [131].

We will first present a derivation for computing approximate Gibbs free energies (G) for

graphene basal planes (GBP models) and then a modified derivation for graphene nanorib-

bons (GR models). To maintain a consistent energy scale for different nanocarbon morpholo-

gies, we use the energies of C in a graphene sheet, N as 1
2
N2, and H as 1

2
H2 as our reference

states. Thus, the chemical formula for a general GBP consisting of a 4 × 4 unit cell (32 C

atoms) with x N-doping atoms and y vacancy defects is then:

C32 +
x

2
N2− > C32−x-yNx + Cx+y (4.1)

G is related to the Helmholtz free energy (A), G = A+pV , but for solids, pV is negligible in

the free energy expression, leaving G ≈ A. G is then defined as G = E+Gvib, where E is the

electronic energy at zero temperature (here calculated using Kohn-Sham Density Functional

Theory, DFT) and Gvib, comprises of the zero-point energy and vibrational entropy terms of

the entire system obtained using the quantum mechanical harmonic oscillator approximation.

Gvib =
−h
2

∑
i

ωi + kBT
∑
i

ln

[
exp

(
hωi
kBT

)]
(4.2)
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The chemical potentials of C atoms (µC) is given by:

µC = gC (4.3)

where gC is the Gibbs free energy per atom of graphene (i.e. the cohesive energy). The

chemical potential of N atoms in the system (µN) is given by:

µN =
1

2

[
EDFT

N2
+ EZPE

N2
+ µ0

N2
(T, p0) + kBT ln

(
pN2

p0

)]
(4.4)

The free energy change for the general reaction shown in Eq (6.1) is then:

∆G = [G2 −G1 + (x+ y) · µC − x · µN] (4.5)

where G1 and G2 are the energy of pristine graphene sheet and the modified graphene sheet,

respectively. The chemical formula for electrochemically reducing a general GBP in an

aqueous environment containing a source of protons and electrons is:

C32 +
x

2
N2 +

z

2
H2 → C32−x-yNxHz + Cx+y (4.6)

with free energy change of:

∆G = [G3 −G1 + (x+ y) · µC − x · µN − z · µH] (4.7)

where z is the number of H atoms (each having a chemical potential of µH), and G3 is the free

energy of a reduced graphene with pyridinic vacancies. The standard reduction potential for

the above process is then:

Ered =
−∆G

nF
(4.8)

where F is Faraday’s constant and n is the number of electrons transferred. Based on the

computational hydrogen electrode model, at zero potential relative to the Standard Hydrogen

Electrode (SHE), the chemical potential of 1
2
H2 is equivalent to the chemical potential of a

proton and an electron:
1

2
µH2 = µH+ + µe− (4.9)
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The chemical potential of protons and electrons can be related to pH and applied potential

(E) as:

µH+ + µe− =
1

2
µH2 − 2.303 · kBT ln(10) · pH− E (4.10)

The final expression we derive for the free energy change for the electrochemical reduction

of a general GBP is

∆G = EDFT
3 − EDFT

1 + ∆Gvib − x
(

1

2
EN2 + ∆µN

)
+ (x+ y) · EC

− z
(

1

2
µH2 − 2.303 · kBT ln(10) · pH− E

)
(4.11)

where ∆Gvib = Gvib
3 − Gvib

1 . Following a similar approach, the electrochemical free energy

for reducing a N-doped graphene nanoribbon (GNR) is given as:

∆G = EDFT
GNR − EDFT

GR + ∆Gvib − x
(

1

2
EN2 + ∆µN

)
+ x · EC

− z
(

1

2
µH2 − 2.303 · kBT ln(10) · pH− E

)
(4.12)

where ∆Gvib = Gvib
GNR−Gvib

GR, and EDFT
GNR and EDFT

GR are the DFT energies of modified graphene

nanoribbon and pristine graphene nanoribbon.

4.4 COMPUTATIONAL METHODOLOGY

The electronic energies of all GBP and GR structures were calculated using spin polarized

Kohn-Sham density functional theory (DFT) as implemented in VASP, a plane wave based

DFT package.[136, 137] We used the PBE[138, 139] exchange-correlation functional and

projector augmented wave pseudopotentials[140, 141] to describe the valence electrons of

atoms in the system. We have performed convergence tests by varying the energy cutoff and

k points until the formation energy was converged up to 10 meV/Å2 in the case of GBP

and 10 meV/Å in the case of GR. Plane waves with an energy cutoff of 800 eV and 4x4x1

k-points were used for all calculations on the GBP systems while an energy cutoff of 500 eV

and 3x1x1 k-points were used for GR systems.
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All structures were relaxed using conjugate gradient iterative minimization until the

difference in energies between consecutive geometry steps was less than 10−6 eV. The con-

vergence of size of the unit cell was tested for the pristine GBP system, and we found the

formation energies did not change by more than 1 meV/Å2 for a 4× 4 unit cell. In the case

of the GR system, the width of the zigzag ribbon was changed until the formation energies

converged to less than 1 meV/Å. We found that a GR system with six zigzag lines across

the ribbon width lead to converged energetics. Chemical modifications to the ribbon were

made symmetrically to minimize dipoles. Future work focusing on reaction mechanisms will

explicitly consider the cumulative role of local solvation environments of these materials at

electrochemical interfaces.

4.5 RESULTS AND DISCUSSION

4.5.1 Basal planes

Using the computational hydrogen electrode model, we report the energetics for electro-

chemical reduction of various nanocarbon structures in terms of the energetics of different

hydrogenation steps at different applied potentials. In our GBP models, we consider the

reductions of both structures containing different numbers of doping N atoms (Figure 4.1)

and of common defect sites (Figure 4.2). We will first report energetics for different hydro-

genations and then use those data to report phase diagrams that show relative stabilities of

different N-doped carbon morphologies.

For the GBP systems, all structures were optimized without spin polarization, but we

determined magnetic moments on the optimized structures using spin polarized calculations,

and we found those contributions were negligible except for the GBP+1H system that opti-

mized to 1 µB. Our 4× 4 unit cell model can accommodate a large number of configurations

involving doped N atoms and H atoms that may arise from electrochemical reductions (see

Figure 4.1). The substitutional energy of the first N atom or the binding energy of the first

H atom is always the same due to the equivalence of binding sites on the GBP. We place
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Figure 4.1: Lowest energy basal plane structures found in this work, consisting of different

numbers of C (brown spheres), N (blue spheres), and H (yellow spheres) atoms. H and H*

labels denote atoms on the top and bottom faces of the basal plane, respectively. The x× y

unit cell is denoted by the black lines. The z direction has a 20 Å vacuum region.

the first N or H atom at the corner of the graphene unit cell. Starting from the GBP with

one H atom (the GBP+1H system, which is uphill in energy by 1.44 eV) the second H atom

preferentially binds one nearest neighbor away on the opposite side of the GBP at a site

analogous to the ortho site for a pyridine molecule. These results are the same as previous

computational studies by Boukhvalov et al.[142] who found that the energy of chemisorption

at this site was uphill 0.54 eV.
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The binding energy for the second H is even more uphill when it binds to the same

side as the first H atom. Binding the first H atom to the GBP system disrupts aromaticity

and results in a lattice distortion and a negative binding energy. One might assume that

the second H atom would then bind more strongly since an energy penalty for disrupting

aromaticity has already been paid by adding the first H atom. That is the case here, but

it is still energetically uphill to add a second H atom to the GBP system. The next most

favorable binding site is to a third nearest neighbor site (analogous to the para site for a

pyridine molecule), which is further uphill by +0.40 eV compared to the ortho site. For our

study we focus on lowest energy structures that would be relevant for thermodynamic phase

diagrams, but all calculated binding energies are reported in Table 4.1.

Table 4.1: Binding energies (BE) of H to basal planes (GBP), planes with N-doped defects

(P3N and P4N), and graphene ribbons (GR) with different concentration of N (positive

values indicate bound states).

System BE / eV

GBP+1H –1.44

GBP+2H/ortho –0.54

GBP+2H/para –0.93

P3N+1H 2.64

P3N+2H 1.29

P4N+1H 1.80

P4N+2H 1.70

GR+1H 0.54

GR+2H –0.05

GR+1N+1H –0.40

GR+1N+2H 0.07

GR+2N+1H –0.50

GR+2N+2H –0.03
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When the pristine graphene is doped with an N atom at the corner of the unit cell,

the second N atom in the unit cell preferentially substitutes away from the first N atom.

This indicates that GBPs energetically prefer lower nitrogen doping densities, which agrees

with previous studies.[143] Since doping an N atom into graphene results in an increased

magnetic moment at the adjacent carbon atoms, one might expect that these adjacent sites

would accommodate binding H atoms having an unpaired electron. Indeed, the first adsorbed

H atom on the singly and doubly nitrogenated graphene sheets will bind to sites adjacent

to an N atom. The second H-adsorption site on the singly nitrogenated graphene sheet

is four nearest neighbor atoms away, halfway between the two N atoms. The second H-

adsorption site on the doubly nitrogenated graphene sheet is ortho to the other N atom. The

proximity of adsorbed H atoms next to N atoms is potentially significant for catalysis, since

this indicates that frustrated Lewis base pair sites[144, 132] will exist on electrochemically

reduced nitrogenated graphene basal planes, similar to molecular dihydropyridine structures

reported by computational groups.[130, 131, 132] This structural motif is considered suitable

for energetically efficient hydrogenation pathways.

4.5.2 Defects

We also modeled the electrochemical reduction of two of the most common pyridinic defects

found for graphene, tri-pyridinic (P3N, with up to three added H atoms) and tetra-pyridinic

(P4N, with up to four added H atoms) vacancy defects.[145, 146, 147] A recent study reported

pyrrolic defects to be suitable for CO2 reduction into formic acid with a low overpotential,

but we find that the formation energy of this type of defect is significantly more uphill in

energy than the energies to form the P3N and P4N defect sites.[129] Since the defective

structures already incorporate N atoms, we did not study doping of additional N atoms to

these structures. In accordance with previous reports,[148] H atoms preferentially bind to

the N atoms within the pyridinic vacancy sites within the plane of the nanocarbon sheet.

The first H atom binds to an tetra-pyridinic N atom by 1.8 eV. H atoms will not bind to

other C atoms in this system (binding energies range from –1.3 to –0.8 eV). When one H

atom is already bound to an N atom, the same trend holds where the second H atom binds
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Figure 4.2: Basal plane structures with tri-pyridinic (P3N) and tetra-pyridinic (P4N) defects

considered in this work showing different numbers of C (brown spheres), N (blue spheres),

and H (yellow spheres) atoms. The x × y unit cell is denoted by the black lines. The z

direction has a 20 Å vacuum region.

much stronger to another N atom (1.7 eV). However, the presence of one H atom will allow

a second H atom to bind to other C atoms (binding energies range from 0.3 to 0.8 eV). The

positive binding energies for the tri-pyridinic and tetra-pyridinic defects are due to N-doped

defects, which possess electron lone pairs that can bind to protons and allow electrons to

enter the π-system of the GBP.

4.5.3 Graphene ribbons

All data on GR systems were relaxed with spin polarization, where the starting magnetic

moment on the system was 1 µB. The resulting spin moments for these systems always

resulted in zero except for the GR saturated with H atoms, which had a magnetic moment

of 1.3 µB. The presence of edge states in GR system makes their structural and electronic

properties different from GBP systems.[149] These edge states can be expected to cause

preferential doping of N and addition of H on the edges of the ribbons. Indeed, we observe
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Figure 4.3: Nanoribbon structures considered in this work with different numbers of C

(brown spheres), N (blue spheres), and H (yellow spheres) atoms. Only the top half of the

symmetric ribbon is shown. The periodicity of the unit cell in the z direction is denoted by

the dotted lines. H labels denote atoms on the top face of the nanoribbon. The x and y

directions have 15 Å and 20 Å of vacuum separation their periodic images

the first and second H atoms bind to the edges of the ribbons in our symmetric GR model,

and our data are in good agreement with previous studies.[150] Furthermore, when the GR

model is doped with N atoms, these preferentially substitute with C atoms at the edges of the

ribbons.[151] For N doping, the N atom substitution energies (per N atom added) are –0.7

eV, and 0.1 eV for the first and second N atoms respectively. After the first N substitution,

removing an H atom is uphill by 1.2 eV. However, after the second N substitution, removing

an H atom is energetically downhill -0.5 eV. Interestingly, when H atoms are added into the

nitrogenated GR models, frustrated Lewis pairs form at the edges.
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4.5.4 N2 chemical potential vs. electrochemical potential phase diagrams

We now illustrate the electrochemical stability of the GBP systems in an N2 environment

using phase diagrams obtained with atomistic thermodynamics. The phase diagrams for

the GBP system include the basal planes shown in Figure 4.1 and the defective sites in

Figure 4.2. Data needed to reproduce these figures are given in the Appendix B. The

free energies of these states were calculated as a function of the nitrogen concentration

(∆µN2) and applied potential, E. We note that these phase diagrams represent theoretical

thermodynamic stabilities of different structures, but in reality some structures may not be

observed due to high kinetic barriers. Determination of these barriers in the presence of local

solvation environments at electrochemical interfaces will be the subject of future work.
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Figure 4.4: ab initio atomistic thermodynamics phase diagrams for graphene basal planes

(GPB, left) and graphene ribbons (GR, right) under electrochemical environments with

nitrogen.

We find that the pristine GBP system is generally stable across large ranges of nitrogen

concentration and applied potential. However, when ∆µN2 changes to reflect increased N

content in tandem with more negative electrochemical potentials, structures involving the

reduced forms of the P4N defective sites are thermodynamically more stable than the pristine
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GBP system. More negative than ∆µN2 = –0.18 eV, the most thermodynamically stable

structure is either the reduced GBP structure with two H atoms or the P4N structure with

four H atoms, depending on the values of ∆µN2 and applied potential.

For the GR systems, N incorporation is energetically favorable when ∆µN2 is more pos-

itive than –0.2 eV. At ∆µN2 values more negative than –0.2 eV, a hydrogenated GR system

is more stable. At slightly negative applied potentials, the thermodynamically most stable

ribbon structure is the electrochemically reduced and nitrogenated GR system denoted as

GR+1N+2H. Note that in this system, the two H atoms bind to sites at the ribbon edges

that could be classified as frustrated Lewis pairs. At ∆µN2 values more negative than –

0.67 eV and at E values more negative than –0.6 V vs. SHE, the reduced GR+1H system

incorporates another H atom to form the GR+2H system. These results show that while

it is energetically easier to dope a GR with a N atom than doping a GBP, the GBP with

P4N defective sites can accommodate more N atoms and presumably even more with the

formation of graphene nitride compounds. We also observed that it is easier to reduce the

ribbons at all ranges of ∆µN2 when compared to basal planes. In summary, a potential of at

least –0.3 V vs SHE is required to reduce a GBP system (into the P4N+2H system) while a

less negative potential of –0.1 V is the lowest potential required to reduce the N doped GR

systems.

4.5.5 Pourbaix diagrams

We have shown Pourbaix diagrams to be useful descriptors for identifying participating

catalyst morphologies in CO2 reduction.[131] When one Pourbaix diagram for a reactant (say,

for CO2) is superimposed on a Pourbaix diagram for a molecular or an extended structure

catalyst, electrochemical conditions for low overpotentials are identified as the regions where

boundaries from different Pourbaix diagrams are proximal to one another. We calculated

Pourbaix diagrams for both graphene basal planes and graphene ribbons as a function of N

concentration, and they are shown in Figure 4.5. The left and right panels show Pourbaix

diagrams with increasing concentration of N in the GBP and GR models respectively. In

the case of the GBP model with no nitrogen present (Figure 4.5 a), the GBP system is the
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more stable structure until –0.7 V vs. SHE, at which point the thermodynamic driving force

favors a 2H+/2e− reduction process. In contrast, basal planes containing pyridinic defects

are much more susceptible to electroreduction. Here, the P3N defect and the P4N defect

would readily undergo 1H+/1e− and a 2H+/2e− reductions, respectively, at 0 V vs SHE.

The boundary lines in the Pourbaix diagrams of the GBP and P4N models are several volts

more negative than the standard redox potential needed to form formate from carbonic acid

(a stable form of CO2 in aqueous solution), indicating that reductions of the catalyst here

would bring significantly higher overpotentials if they were needed to drive CO2 reduction.

However, the boundary lines denoting the reduction of the P3N+1H state into the P3N+2H

state is relatively close to the boundary line for carbonic acid or bicarbonate reduction into

formic acid or formate, suggesting that these processes on these morphologies would have

lower overpotentials if coupled to CO2 reduction.

The Pourbaix diagrams for zigzag edges of GR systems are somewhat different from those

for the GBP systems. In the case of the undoped GR system, we see boundary lines that are

not well-suited for energetically efficient CO2 reduction. However, the 2H+/2e− reductions

involving the GR+1N state (the nanoribbon with 1/3 coverage of N) and GR+2N (the

nanoribbon with 2/3 coverage of N) into the GR+1N+2H and GR+2N+2H states are quite

closely aligned to be coupled to energetically efficient CO2 reduction. This indicates that

zigzag edges of N-doped nanocarbons are good candidates for efficient CO2 reduction via

H-shuttling mechanisms. Future work will focus on detailed reaction pathways for these

processes. In principle, similar analyses as what has been reported here can be used to

identify nanocarbon morphologies for energetically efficient catalysis.
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Figure 4.5: Pourbaix diagrams for basal plane structures (GBP (a)), tri-pyridinic defect (P3N

(b)), tetra-pyridinic defect (P4N (c)) and graphene ribbon structures (GR (d), GR+1N (e),

GR+2N (f)).
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4.6 CONCLUSIONS

We have used density functional theory with atomistic thermodynamics to determine the

energies of atomic scale N-doped nanocarbon morphologies under in operando electrochem-

ical conditions. We find that zigzag edges are in general more susceptible to electrochemical

reductions than graphene basal planes. However, tri-pyridinic defects have suitable thermo-

dynamic energies to undergo 2H+/2e− reductions at electrochemical operating conditions

with moderately negative applied potentials. Our results show that if nitrogen concentra-

tion of carbonous materials can be well controlled, the reduction potentials for the materials

should be tunable for energetically efficient catalysis. Of particular interest are the reduced

states of these materials that can form frustrated Lewis pairs that would be applicable for

energetically efficient (de)hydrogenation catalysis. Calculating reaction barriers under elec-

trochemical conditions and integrations with experiment will be a focus of future work.
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5.0 COMPUTATIONAL INVESTIGATION OF CO2

ELECTROREDUCTION ON TIN OXIDE AND PREDICTIONS OF

DOPANTS FOR IMPROVED CATALYSIS

The content of this chapter is taken from Karthikeyan Saravanan, Yasemin Basdogan, James

Dean, and John A. Keith. ”Computational investigation of CO2 electroreduction on tin oxide

and predictions of Ti, V, Nb and Zr dopants for improved catalysis.” Journal of Materials

Chemistry A, 2017, 5(23), 11756-11763.

5.1 ABSTRACT

We have used computational quantum chemistry and atomistic thermodynamics to identify

reaction intermediates for CO2 electroreduction on partially reduced tin oxide electrodes.

We find that a variety of different surface morphologies are thermodynamically accessible

under reducing potentials with adsorbed CO2, adsorbed H atoms, and O vacancy defects

that represent partially reduced states. Our work supports prior conclusions from exper-

imental findings that the active catalyst for this system is a hydroxylated and partially

reduced SnO2 surface that forms under operating conditions for CO2 reduction. Employing

thermodynamic descriptors and the computational hydrogen electrode model, we predict

that doping Sn electrodes with Ti, V, Nb, or Zr will result in lower overpotentials for CO2

reduction compared to undoped tin oxide.
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5.2 INTRODUCTION

Sn electrodes have received attention for CO2 reduction due to their relatively high catalytic

activity, low cost and low toxicity.[152, 153, 154, 155] Importantly, Sn electrodes have a high

overpotential for the hydrogen evolution reaction that make it suitable for selective CO2

reduction. As with most non-noble metal electrodes, Sn electrodes exhibit degradation and

corrosion. This normally deactivates non-noble metal electrodes,[156] but in the case of Sn,

this is an asset since the oxide layer is catalytically active for CO2 reduction. Kanan et

al. have reported how CO2 reduction efficiency depends on the presence of thin films of

tin oxide, and removing naturally formed oxide layers decreases the catalytic efficiency.[153]

Those authors suggested that formation of CO−2 is a key electrochemical step and that SnOx

plays a key role stabilizing this intermediate.

Experiments on CO2 reduction using tin oxide catalysts have shown that maintaining the

oxidation state of Sn is difficult at highly cathodic operating conditions, and the reduction

of tin oxide to Sn resulted in a decreased rate of formate production.[154, 155] Experiments

by Bocarsly and coworkers presented spectroscopic evidence of a thinning of the native oxide

layer at −1.4 V vs. Ag/AgCl.[152] They also showed that the thinning was reversible, and

the thickness of the oxide layer can be controlled by applying an external potential. Under

CO2 reduction conditions, vibrational frequencies of 1100 cm−1, 1385 cm−1 and 1500 cm−1

were observed, and these were attributed to a layer of carbonate (CO2−
3 ) forming during the

reaction rather than CO−2 intermediates.

In contrast to recent experimental work, very few computational studies have investigated

electrochemical CO2 reduction mechanisms on tin oxide and provided predictions for new and

improved catalysts. Ge and coworkers recently reported a computational study of reaction

energetics and barrier heights for CO2 reduction pathways on a Sn(211) surface with a single

monolayer of Sn oxide as a model system.[156] Those authors discussed how hydroxyl groups

can facilitate CO2 reduction by forming bicarbonate species that eventually form CO. While

this conclusion may in fact be true, previously mentioned XPS studies by Bocarsly have

indicated that much more oxide is present in these reactions than a single monolayer.[152]

Furthermore, the dominant product of CO2 reduction on SnO2 is formate and not CO.
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The present study uses computational quantum chemistry modeling to better understand

1) what is the surface morphology of tin oxide under CO2 reduction conditions, 2) what are

the key reaction intermediates, and 3) how are the energetics of these intermediates influ-

enced by modifying the electronic structure of the catalyst. To answer these questions we

used atomistic thermodynamics and Kohn-Sham density functional theory (DFT) to predict

the stability of various Sn oxide morphologies under different electrochemical operating con-

ditions. As with previous studies in our group,[157, 158, 159, 160] we use Pourbaix diagrams

to identify at what electrochemical conditions the catalyst would participate in proton and

electron transfers. Unlike our previous studies, the present work focuses on the nature of

the oxide surface under in operando conditions with different hydrogen coverages and con-

centrations of oxygen vacancy defects. After benchmarking our calculated data to available

literature values, we predict elemental dopants not yet experimentally tested that should

result in lower CO2 reduction overpotentials.

5.3 COMPUTATIONAL METHODOLOGY

5.3.1 Models

This study makes use of ab initio atomistic thermodynamics,[135] the computational hy-

drogen electrode (CHE) model,[21] and Pourbaix diagrams to better understand the nature

of the tin oxide catalyst under electrochemical operating conditions. This modeling study

assumes that the approximate free energy of any reaction intermediate on a surface can

be related to the energies of a reference slab structure and different adsorbates, the latter

of which are treated as chemical potentials that are functions of experimental temperature

and pressure. The free energy needed to form a generalized reaction intermediate (∆Grxn)

follows:

∆Grxn = Gint −Gslab −
∑

Ni × µi (5.1)

where Gint is a calculated absolute free energy of the intermediate state, Gslab is the calculated

absolute free energy of a reference SnO2 slab, and Ni and µi are the numbers and calculated
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chemical potentials of molecular species (i.e. O vacancy defects, H atoms, and/or CO2

molecules) that must be added or subtracted from the reference slab to create the generalized

intermediate state.

CO2 electroreduction on tin oxide electrodes will produce different products depending on

pH, applied potential, composition of the electrode and electrolyte. The pH and applied po-

tential were modeled using standard analytic expressions (see below). We note that modeling

solvation effects on surfaces is not trivial since 1) continuum solvation models under periodic

boundary conditions are not yet established to be quantitatively accurate[161, 162] and 2) wa-

ter structures on rutile oxides are more complex than those found on fcc metal surfaces,[163]

and studies using explicit water structures would likely need reactive dynamics.[164] In this

study solvation effects for a few key intermediate states were modeled using the continuum

solvation model VASPsol.[165] Our study has not accounted for co-adsorptions with ions

from the electrolyte, which cannot yet be ruled out to play key roles in these mechanisms.

Electrochemical conditions that lead to CO2 reduction can be expected to cause an

accumulation of H atoms on an oxide surface which may result in H2 evolution or the

reduction of the surface oxide. The relevant reactions at the cathode are then:

SnO2 + 2H+ + 2e− → SnO2−δ + H2O (5.2)

2H+ + 2e− → H2 (5.3)

CO2 + 2H+ + 2e− → HCOOH (or CO + H2O) (5.4)

where ’δ’ pertains to O vacancy defects formed in the stoichiometric SnO2 slab (see below),

and the standard redox potential for producing HCOOH via Eq. 6.4 is E = −0.61 V vs. the

Standard Hydrogen Electrode (SHE) at pH 7. The CHE model approximates the chemical

potential of a proton and an electron pair as one half of the chemical potential of a H2

molecule, with linear corrections for the applied potential versus the SHE (eUSHE) and the

pH of the system:

µH+ + µe− =
1

2
µH2 − eUSHE − 0.059× pH (5.5)
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The chemical potentials of O vacancy defects and CO2 are:

µOdefect
= µH2O − µH2 + 2× eUSHE + 2× 0.059× pH (5.6)

µH2O = GH2O + ∆µH2O (5.7)

µCO2 = GCO2 + ∆µCO2 (5.8)

Our complete reaction free energy expression accounting for pH and potential dependent

reaction thermodynamics on a generalized SnO2−δ surface is then:

∆Grxn = Gint −Gslab −NH ×
(

1

2
µH2 − eUSHE − 0.059× pH

)
−NCO2 × (GCO2 + ∆µCO2)

+Ndefect × (GH2O + ∆µH2O − µH2 + 2× eUSHE + 2× 0.059× pH)

(5.9)

Free energy terms in Eq. 5.9 were calculated as a sum of electronic energy calculated by

DFT as well as zero-point energies and vibrational entropic contributions from the harmonic

oscillator approximation. These vibrational energy contributions were obtained by partial

Hessian calculations for only adsorbate atoms. For the energies of gaseous molecules, we

use a similar approach but add corrections (i.e. +0.3 eV for CO2 and +0.1 eV for H2) that

were suggested by Vegge and co-workers to account for free energy corrections as well as

systematic errors in DFT calculations.[166] (See more discussion below.)
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5.3.2 Electronic structure calculations

To obtain phase diagrams, we modeled 58 different surface oxide structures representing

different configurations of O vacancy defects and CO2 and H adsorbates to find the lowest

energy state according to Eq. 5.9. We used the computationally efficient CP2K code[175]

for calculating electronic energies. We used the default double-ζ valence plus polarization

(DZVP) basis set optimized according to the Mol-Opt method.[176] CP2K models electronic

structure with a joint Gaussian and plane wave (GPW) formalism,[177] and the interaction of

the valence electrons with frozen atomic cores is described by Goedecker−Teter−Hutter norm

conserving, dual-space-type pseudopotentials.[178] A planewave expansion for the charge

density is employed with an energy cutoff of 400 Ry. This energy cutoff was chosen after

the cohesive energy of SnO2 was converged to within 0.005 eV. The Perdew-Burke-Ernzerhof

(PBE) functional[179] was used as the exchange correlation functional, and Grimme’s ”D3”

dispersion corrections have been included.[180] All geometries were relaxed using k-point

sampling unless otherwise noted (see below) using the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) minimization algorithm until the forces converged to 4.5× 10−4 Eh· Bohr−1.

Recent versions of CP2K (3.0 and later) are now implemented with k-point sampling for

the Brillouin zone. This functionality allows CP2K to use smaller unit cells and be directly

compared to other widely used codes that employ k-point sampling such as VASP.[181] Cal-

culated energy data with k-point sampling generally appeared to be more accurate than data

without; however, calculations with k-point sampling sometimes did not converge (see be-

low). Specifically, geometry optimizations of 10 out of our 58 calculated slab geometries did

not fully converge. In these cases, we used geometries optimized without k-point sampling

(i.e. Γ-point calculations) and then carried out single energy calculations with k-point sam-

pling on those geometries. The difference in relative energies of structures optimized with and

without k-point sampling was less than 0.1 eV for almost all cases. When k-point sampling

was used in partial Hessian calculations, many structures had multiple imaginary frequencies

even though geometries were first optimized with k-point sampling. When k-point sampling

was not used, only real frequencies were found for structures optimized without k-point

sampling.
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5.4 RESULTS AND DISCUSSION

5.4.1 CP2K Validation

To confirm that CP2K results would be suitable for predictions of electrocatalysis on SnO2,

we benchmarked data calculated from CP2K and VASP against available experimental data.

Our VASP calculations used the same PBE functional but the projector augmented wave

(PAW) method[182, 183] that we consider as being more accurate but more computationally

expensive than the CP2K calculations. More computational details are found in the ESI.

Table 1 shows that CP2K reasonably predicts cohesive energies, lattice constants, surface

energies, and bulk standard reduction potentials (calculation details for each value is found

in the ESI). We found Γ-point calculations problematic for calculations of standard reduction

potentials and O vacancy formation energies. For other quantities Γ-point calculations were

found to be reasonably accurate with our surface model. The only case where calculations

using k-point sampling were less accurate than Γ-point calculations was surface energies.

While CP2K surface energies appear somewhat problematic compared to VASP surface

energies, our study uses the same surface model, and errors are expected to largely cancel

when comparing relative energies from similar surfaces.

5.4.2 SnO2 surface calculations

The lowest energy facet of rutile SnO2 is the (110) surface, and as a first approxima-

tion we assume this is the most thermodynamically relevant facet under catalytic reaction

conditions.[184] We modeled this surface using a symmetric 2 × 2 surface unit cell with a

thickness of 4 layers (with the bottom two layers fixed to bulk atomic positions, Figure 5.1)

to accommodate one and two O vacancy defects at the surface as well as adsorbate cover-

ages as low as 1/4 ML. This surface contains four bridging oxygen atoms (Obr), four in-plane

oxygen atoms (Oip), and four under-coordinated Sn atoms (Sn5c).

Our calculations of adsorbate binding energies and defect formation energies showed that

the Obr sites were the preferred sites for binding CO2 and H adsorbates as well as forming O

vacancy defects. We modeled slabs with 0%, 25% and 50% surface O vacancy defect concen-
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Obr
OipSn5c Sn6c

Figure 5.1: The (110) surface of rutile tin oxide with tin atoms marked in purple and oxygen

atoms marked in red. Labels denote the catalytically active sites that were considered in

this study. H and CO2 adsorbates prefer binding to the Obr site.

trations to determine the sensitivity of energetics for an oxide that might become reduced

under in operando conditions. By removing neutral O atoms from the cell and maintaining

overall charge of zero, slabs containing O vacancy defects have Sn atoms in lower oxidation

states. Obr atoms were removed from the top layer of the surface since these were found to

be thermodynamically preferred. Our calculated vacancy formation energy to form 25% and

50% defects is 2.0 and 2.1 eV, respectively and agrees well with previous studies.[185, 174]

As stated above, we found that H atoms and CO2 molecules preferentially bind to the

Obr site (BEH=1.5 eV, BECO2 = 0.4 eV). The next most energetically favorable site for H

and CO2 is the Oip site (BEH=-0.1 eV, BECO2 = 0.3 eV). In general, adsorbates were found

to not bind to the Sn5c sites on slabs with O atom vacancy defects. As expected, surfaces

with O vacancy defects at the surface accommodated fewer H and CO2 adsorbates.

All electronic energies for the slabs with and without O vacancy defects were calculated

using Eq. 5.9. We selected configurations where intermediates had the strongest binding

energy since these reflect the most stable intermediates present on a surface. From these
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lowest energy states, we generated an electrochemical phase diagram (Figure 5.2a) that

depicts the stability of different intermediate structures as a function of the chemical potential

of water and the applied electrochemical potential. A change in µH2O reflects a change in

the thermodynamic potential required to create O vacancy defects from a SnO2 surface

and form water. Experimentally, this would be done by varying the partial pressure or the

concentration/activity of water in the electrolyte.

We found that all surfaces irrespective of the O vacancy defect concentrations are OH-

terminated across the range of applied potentials relevant for CO2 reduction. This is in

agreement with previous computational[156] and experimental studies.[152] Furthermore,

partially reduced SnO2 slabs with 25% O vacancy defects and OH-terminations are the most

thermodynamically relevant structures at ambient operational conditions (µH2O = 0 and at

negative potentials). Forming structures with two O vacancy defects (50% surface defects)

requires reduction of a hydroxylated 25% defect slab into a hydroxylated 50% defect slab,

and this was calculated to require a very negative potential (−2.3 V vs SHE at pH 0). This

indicates that the actual tin oxide surface is partially reduced at these potentials despite the

bulk standard redox potential being −0.53 V vs. SHE at pH 7. This is in agreement with

previous experimental observations.[152, 155]

We then generated an electrochemical phase diagram (Figure 5.2b) showing the stability

of different intermediates on a partially reduced SnO2 structure as a function of ∆µCO2

and potential. As mentioned in the Computational Details section, Vegge and co-workers

reported systematic errors in catalytic reaction steps for CO2 reduction, and they recommend

corrections to the absolute free energy of CO2.[166] After using these corrections, CO2 was

unbound by 0.33 eV, and it was unbound by even more when accounting for solvation

energies using the VASPsol continuum solvation model (see Table S3). This contrasts to

computational work by Liu and coworkers, whose calculations using continuum solvation

strengthened CO2 binding energies on rutile TiO2 (110) by as much as 0.4 eV.[186] Ge and

co-workers also reported that CO2 binds only very weakly to their tin oxide model.[156]

Our reported phase diagrams account for interactions of H adsorbates, O vacancies, and

CO2 adsorbates (including the correction for CO2 from Vegge et al).[166] Figure 5.2a is the

phase diagram at a fixed µCO2 = 0, while Figure 5.2b is the phase diagram at a fixed µH2O =

56



a) b)

Figure 5.2: Electrochemical phase diagram representing the stability of different states as a

function of chemical potential of a) water, µH2O and b) CO2, µCO2 , and applied potential at

pH 10. ∆µH2O represents thermodynamic driving force needed to reduce a SnO2 surface and

∆µCO2 denotes the thermodynamic driving force needed to get CO2 to bind to the surface

within our model.

0. These figures provide a qualitative map for what surface structures are stable on the tin

oxide surface under different electrochemical conditions. The most relevant surface structure

at CO2 reduction conditions (i.e. at ∆µH2O = 0, E ≤ −0.3 V and ∆µCO2 = +0.33 eV so that

CO2 is bound to the surface) has one O vacancy defect (at 25% surface concentration), one

CO2, and either three or four H adsorbates bound to the surface depending on the applied

potential.

We then used Pourbaix diagrams to identify relevant surface compositions under elec-

trochemical reaction conditions.[187, 188] Note that Pourbaix diagrams are thermodynamic

constructs, and they do not account for kinetic barriers that regulate product formation.

Nonetheless, our group has found that Pourbaix diagrams can be useful for identifying con-

ditions where two or more reaction intermediates have the same chemical potential,[19] since

this would identify a low overpotential process in terms of the Sabatier Principle. By super-
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a) b)

(I)

(II)

Figure 5.3: a) Experimental Pourbaix diagram of the Sn/SnO2 redox couple (blue dotted

line) overlaid on the Pourbaix diagram of CO2 in solution (black solid lines). Our calculated

bulk reduction potential (blue solid line separating colored regions) agrees well with the

experimental bulk redox potential. b) Calculated Pourbaix diagram (colored regions) of a

partially reduced SnO2 slab with 25% defects overlaid on the Pourbaix diagram of CO2 in

solution (black solid lines). A value of ∆µCO2 = +0.35 eV was chosen so that CO2 would

be bound to the surface. The calculated redox potential between the [3H/1CO2] and

[4H/1CO2] states is close to experimental potentials (denoted by solid stars) at which the

maximum faradaic efficiency of CO2 reduction to formate was experimentally observed. (I)

−0.90 V vs. SHE at pH 9.7,[155] (II) −1.2 V vs. SHE at pH 10.2.[154]

imposing the Pourbaix diagrams of aqueous phase CO2 reduction (involving bicarbonate and

carbonate species) and a molecular or extended material catalyst, we have shown that the

proximity of the boundaries between different Pourbaix diagrams identify electrochemical

conditions that would be appropriate for electrocatalysis with low overpotentials.

Interestingly, Lee et al. have identified potential/pH conditions at which formate is pro-

duced with a high faradaic efficiency while maintaining the phase stability of SnO2 nanocat-

alysts as given by the Pourbaix diagram for the bulk SnO2.[154] Figure 5.3a shows our
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calculated Pourbaix diagrams overlaid with the experimental Pourbaix diagram for CO2

intermediates in aqueous phase. The calculated Pourbaix diagram for bulk SnO2 is in rea-

sonable agreement with experiment, but electrocatalysis will occur on surfaces rather than

the bulk material. Figure 5.3b shows our calculated Pourbaix diagrams for our partially

reduced SnO2 surface model overlaid with the experimental Pourbaix diagrams for CO2

reduction. Linear sweep voltammograms reported by Lee and co-workers[154] show the

maximum faradaic currents for formate production occur at about −1.2 V vs. SHE at about

pH 10. Broekmann et al. make a similar measurement in the same electrolyte and see max-

imum faradaic currents at −0.9 V vs. SHE.[155] At pH 10, the boundary of our calculated

Pourbaix separating the partially reduced [3H/1CO2] and [4H/1CO2] states (i.e. interme-

diate states resulting in an H atom binding to CO2 is at E = −1.3 V, which is in reasonable

agreement with experiments by Lee, but less good agreement with data by Broekmann. At

present we cannot state if this result is coincidental or not since we are presently not con-

sidering barrier heights, and it is unclear what the actual pH at these interfaces would be.

Our key point is that our Pourbaix diagram analysis (Fig 5.3b) predicts that [3H/1CO2]

and [4H/1CO2] would be key states for energetically efficient CO2 reduction.

As stated in the introduction, experiments by Bocarsly et al. reported in situ spectro-

scopic evidence of species attributed as surface bound tin carbonates with peaks centered

at 1100 cm−1, 1385 cm−1 and 1500 cm−1. These frequencies are not present in different

[3H/1CO2] states, but calculated frequencies on the [4H/1CO2] states are in better agree-

ment with experiment. Figure 5.4 shows the two lowest energy configurations calculated

for the [4H/1CO2] state, which would be a transiently formed intermediate during CO2

reduction. Figure 5.4a shows a protonated carbonate species 1 that is bound via the Obr

site, and Figure 5.4b shows a protonated CO−2 species 2 that bridges between an O vacancy

defect and an undercoordinated Sn site. 1 was lower in energy than 2 by 0.1 eV, and this

energy difference remained the same when solvation was accounted for (Table S3). However,

the calculated vibrational frequencies of 1 were 1032 cm−1, 1224 cm−1 and 1375 cm−1, while

the calculated frequencies of 2 were 1128 cm−1, 1280 cm−1 and 1566 cm−1, where the last

frequency corresponds to a C=O stretch parallel to the surface of the oxide. Although 2

was found to be higher in energy, the vibrational frequencies for this state agree somewhat
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more with observed experiments. Note that our Pourbaix diagram analysis used 1 as the

[4H/1CO2] structure since this was the lowest energy structure (data that also agreed more

with the experimentally observed potentials for CO2 reduction).

Figure 5.4: Top and side views of possible surface bound tin carbonate [4H/1CO2] states

observed under reducing conditions (white atoms denote H, red atoms denote O, the brown

atom denotes C, and purple atoms denote Sn). a) shows a CO2H species bound on an Obr

site, b) shows a CO2H species bridging between an O vacancy defect and an undercoordinated

tin atom.

5.5 DOPANTS

Our calculated data reported thus far provide a better conceptual understanding of relevant

reaction intermediates. Having identified significant reaction intermediates that reasonably

represent overpotentials for CO2 reduction, we then considered how elemental doping would

influence the relative energetics of these intermediates to predict dopants that would result

in lower overpotentials. Following previous work by Carter et al.,[189] we inserted dopant

atoms in place of Sn atoms nearest to adsorbate binding sites and then determined how that

would affect the relative binding energies of the [3H/1CO2] and [4H/1CO2] structures

on the 25% O vacancy defect surface. A volcano plot showing the calculated overpotential
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Figure 5.5: Volcano plot showing calculated overpotential of dopants at the experimental

equilibrium potential (-0.79 V vs SHE) at pH 10.

of CO2 versus the relative binding energy of the two states is shown in Figure 5.5. Our

calculation procedure was as follows. We first identified the most stable site for a dopant

atom to substitute with either a six-coordinate Sn atom at the surface or Sn atom next to an

O vacancy defect. These sites were chosen because they are nearest to the adsorbates and

thus would have the greatest effect on adsorbate binding energy. The dopant concentration

was 3% with respect to the entire surface structure and 12.5% concentration with respect to

the surface layer. We assume that dopant atoms remain bound at the surface layer and will

not segregate. All doped slabs were geometrically relaxed to obtain binding energies.

Ti, V, Nb, Ta and Zr dopants were found to be most stable when in a six-coordinate

site, and thus these dopants were identified as being in the 4+ oxidation state. Cd, Co,

Pb, Sb and Zn were most stable next to an O vacancy defect and thus were nominally

identified as being in a lower oxidation state (either 2+ or some form of mixed oxidation

state). The effect of doping Ti, V, Zr, Nb, Cd, and Zn all resulted in an upward shift in

the Pourbaix diagram boundary separating the [3H/1CO2] and [4H/1CO2] states. This
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would mean these dopants should result in a lower overpotential than undoped tin oxide for

CO2 reduction. Indeed, alloys of Sn with Zn and Cd are already known to result in lower

overpotentials for CO2 reduction.[190, 191] Pb alloys are also known to experimentally result

in lower overpotentials,[192] but our calculated results using Pb dopants show these would

not significantly affect overpotentials for CO2 reduction compared to Sn. Interestingly, we

find that Ti, V and Zr have predicted overpotentials that are substantially less negative than

overpotentials than for pure SnO2. For this reason we propose that these dopants would

be strong candidates for future experimental investigations on energetically efficient CO2

reduction. We also find that Ta, Co, and Sb should be poorer dopants for CO2 reduction.

These computational predictions can also be experimentally verified.

5.6 CONCLUSIONS

We have carried out a first principles quantum chemistry investigation of CO2 reduction

on tin oxide electrodes. Using atomistic thermodynamics and the computational hydrogen

electrode model, we find that the most likely surface composition is a partially reduced SnO2

surface, which is in agreement with experimental observations. We also show a Pourbaix

diagram model that appears to reasonably predict the experimentally observed potentials

for maximum faradaic efficiencies for CO2 reduction, and we discuss likely surface-bound

intermediates that would account for the experimentally observed vibrational frequencies.

With this model, we have also investigated dopants that would result in lower overpotentials

for CO2 reduction. Of the six dopants we predict to be improve electrocatalysis, two (Cd

and Zn) have already been experimentally demonstrated as being effective, and four (Ti, V,

Nb, and Zr) have yet to be experimentally confirmed. This study reports a computational

model approach that can aid in the design of improved oxide electrocatalysts for CO2 and

other energetically efficient electrochemical processes for renewable energy.
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6.0 ALCHEMICAL PREDICTIONS FOR COMPUTATIONAL CATALYSIS:

POTENTIAL AND LIMITATIONS

The content of this chapter is taken from Karthikeyan Saravanan, John R. Kitchin, O.

Anatole von Lilienfeld, and John A. Keith. ”Alchemical Predictions for Computational

Catalysis: Potential and Limitations.” The Journal of Physical Chemistry Letters, 2017,

8(20), 5002-5007.

6.1 ABSTRACT

Kohn-Sham density functional theory (DFT) is the workhorse method for calculating adsor-

bate binding energies relevant for catalysis. Unfortunately, this method is too computation-

ally expensive to methodically and broadly search through catalyst candidate space. Here,

we assess the promise of computational alchemy, a perturbation theory approach that allows

for predictions of binding energies thousands of times faster than DFT. We first benchmark

the binding energy predictions of oxygen reduction reaction intermediates on alloys of Pt, Pd

and Ni using alchemy against predictions from DFT. Far faster alchemical estimates yield

binding energies within 0.1 eV of DFT values in many cases. We also identify distinct cases

where alchemy performs significantly worse, indicating areas where modeling improvements

are needed. Our results suggest that computational alchemy is a very promising tool that

warrants further consideration for high throughput screening of heterogeneous catalysts.
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6.2 INTRODUCTION

Advances in computational modeling and the need for better and less expensive catalysts has

created the rapidly growing field of computational catalysis.[193, 194, 195]. Despite steady

improvements in hardware and software, reliable quantum mechanics methods such as Kohn-

Sham Density Functional Theory (DFT) remain too computationally expensive to efficiently

divide and conquer through the massively large materials space of hypothetical alloys and

their salient binding sites. The present study tests the promise of computational alchemy

based on perturbation theory,[65, 66, 196] a method that, if sufficiently accurate, could be

used to drive the computational screening of millions of hypothetical catalysts which would

be prohibitive with DFT alone. We briefly summarize the computational alchemy method

and then evaluate its accuracy in an in silico case study of adsorbate binding energies relevant

to the oxygen reduction reaction (ORR).

Computational alchemy itself is not a new method. Its early applications have been used

for biomolecular simulations,[58, 59] but variants based on electrostatic perturbations have

more recently been used to predict properties of materials[71, 70, 197]. Such alchemy meth-

ods have been used to predict binding energies of molecular adsorbates on small nanoparticles

and graphene,[72, 198] but it remains an open question if this approach would be useful for

efficiently predicting binding energies of adsorbates on periodic metal surfaces that would

serve as descriptors for identifying better (electro-)catalysts.[199, 200]

6.3 COMPUTATIONAL ALCHEMY METHODOLGY

A typical binding energy (BE) calculation scheme using DFT involves a self-consistent energy

calculation on three different geometrically relaxed systems: a) the adsorbate at a particular

coverage and binding site of a substrate (ads), b) the substrate without the adsorbate (slab),

and c) the molecular absorbate alone (mol). The BE of the adsorbed state is calculated as,

BE = Eslab + nmol × Emol − Eads (6.1)
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where nmol is the number of adsorbed species on the surface that provides the adsorbate

coverage. Note that BEs are a 0 K analogue to the negative of the heat of adsorption and

thus always a positive value for a bound state.

Computational alchemy provides an efficient way to approximate the BE of an adsor-

bate on any hypothetical alloy surface as an energy difference to a reference BE. At best,

alchemy will reproduce the same BE as the QM reference, the latter which may or may

not adequately reflect an experimental result. These differences can be expressed in terms

of electrostatic potential differences upon transmuting atoms from the reference slab into a

hypothetical alloy. Mathematically, the transmutation can be carried out using a thermo-

dynamic integration (0 ≤ λ ≤ 1) between the reference and other alloy candidate materials,

and a Taylor expansion for the integration from the initial to the final states is [68, 201]

∆E|λ=1 = ∆E|λ=0 + ∂λ∆E
0 +

1

2
∂2λ∆E

0 + . . . (6.2)

A practical way to use computational alchemy in computational catalysis screening applica-

tions is to set ∆E|λ=0 as the BE for a reference system (e.g. the BE for an adsorbate on a

metal surface) and then solve for ∆E|λ=1 (i.e. the BE for the same adsorbate on an alloy

slab) using only first order derivatives ∂λ∆E
0. One can simplify this further when 1) the

geometry of a hypothetical alloy slab is minimally changed from the reference slab (i.e. when

atoms in the alloy slab have the same coordinates as the reference slab) and 2) the alloy can

be obtained by net isoelectronic transmutations of atoms (see below). In this case the first

order partial derivative is simply the alchemical derivative, often considered a reasonable

starting approximation,[198, 71] and the derivative of the energy with respect to a variation

in the nuclear charge distribution in the system, Eq. 6.3.

∂λ∆E
0 =

∑
I

∆µnI∂λNI (6.3)

In the alchemical derivative expressed in Eq. 6.3, ∂λNI is the difference in nuclear charge

with respect to λ, while ∆µnI is the alchemical potential difference evaluated for each atom

I at two different structures. Generally, this is Ra
I and Rb

I , but in BE approximations, it one

can use Rads
I and Rslab

I (Eq. 6.4).

∆µnI = µbn(Rb
I)− µan(Ra

I) = µads
n (Rads

I )− µslab
n (Rslab

I ) (6.4)
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The alchemical potentials used in Eq. 6.4 correspond to the electrostatic potentials printed

out at the end of a geometry optimization run in the widely used VASP program with

default settings.[136] Finally, the alchemical potential difference, ∆µnI , is an array of the

differences between the electrostatic potentials of the reference systems in the Eslab and Eads

calculations. Combining the approximations above, we can then rewrite Eq. 6.2 as Eq. 7.1

to express approximate binding energies using alchemy. A concise summary of how BEs

from alchemy are calculated using VASP is shown in Scheme 1.

BEalloy − BEref ≈ ∂λ∆E
0 = ∆BEalc (6.5)

Step 3: Create hypothetical alloys by making net 
isoelectronic transmutations of atoms in the reference 

slab state, and then define ∂λNI as an array of the 
changes in nuclear charge for each atom.

Step 1: Calculate a reference binding energy (BE) 
using geometrically relaxed structures from DFT.

BE = E(slab) + nmol × E(mol) − E(ads)  

reference
slab

hypothetical alloy
slab

Step 2: Define ΔμnI as an array of differences 
between the electrostatic potentials for each surface 

atom in the slab and ads reference states

Step 4: compute ∂λΔE0 as the dot product of ΔμnI  
and ∂λNI.  

ΔBEalc = ∂λΔE0

Figure 6.1: Steps involved in calculating BEs from Alchemy.

Eq. 7.1 defines the central assumption of our electrostatics-based alchemy in our study:

a linear change in the electrostatic potentials between a reference state and any hypothetical

alloy (having the same geometric coordinates as the reference slab) will be approximated

as the difference in adsorbate BEs between the reference and the hypothetical alloy (see

below). Note that the BEs approximated here are for chemisorbed species, but in princi-

ple alchemy can be used to approximate different forms of non-covalent binding[67, 201] by
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virtue of the Hellman-Feynman theorem.[202] Since the density enters the first order per-

turbation estimate, and since van der Waals energies are relative, these results are not too

surprising. Furthermore, we stress that this work defines errors with respect to BEs that

would be obtained from a specific QM reference (here, data using the PBE exchange corre-

lation functional,[138] and not experiment). While this may not always reflect actual BEs

observed from experiment, we note that it has been shown that alchemy predictions using a

higher-level reference such as hybrid-DFT can agree more with experimental data.[197]

Before discussing more details of the alchemy calculations, we briefly compare and con-

trast alchemy to two other models used to quickly estimate an adsorbate’s BE relative to a

chemically similar adsorbate’s BE (e.g. O* vs. OH* or CH* vs. CH2*) at the same binding

site: scaling relationship methods[203] and the d-band model[97]. Establishing scaling re-

lationships requires calculating a large enough number of DFT data points to give a linear

relationship between the two different adsorbates across a variety of different materials. In

contrast, computational alchemy can predict the BE of any adsorbate on any hypothetical

alloy with only three DFT calculations for Eslab, Eads, and Emol, all needed to determine

BEref . Post-processing the electrostatic output from these calculations with basic arithmetic

can be scripted to rapidly determine ∂λ∆E
0 and therefore a hypothetical BEalloy.

Likewise, the d-band model correlates BEs to the energy levels of projected d-states of

the complete electronic structure, and when shifts in d-band centers between a reference

and hypothetical alloys are known, binding energies can be approximated. In contrast, we

use alchemy to correlate BEs to changes in electrostatic potentials that reflect each system’s

complete electronic structure. In this way, we do not require knowing energy level shifts at all

since we take advantage of a straightforward and easy approximation for how electrostatic

potentials are affected within different isoelectronic transmutations (see below). Alchemy

and the d-band model are relatable, but a direct and formal comparison of alchemy with the

d-band model would be possible if one used alchemical derivatives to predict the projected

states from electronic structures, and that is out of the scope of the present work.

The isoelectronic transmutations used here by definition result in a zero net change in the

atomic number of a slab (
∑no. of atoms

n=1 ∆Z = 0). For example, an isoelectronic transmutation

of a reference slab containing 16 Pt atoms could be chosen to result in a new alloy slab with
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14 Pt atoms, one Ir atom (∆Z = −1), and one Au atom (∆Z = +1). This would reflect

one pair of Pt atoms being isoelectronically transmuted by |∆Z| = 1, but in general atoms

could be transmuted with |∆Z| = > 1 and/or more pairs of atoms could be transmuted to

estimate BEs on more hypothetical alloys.

6.4 COMPUTATIONAL METHODS

All electronic structure calculations in this study were performed with DFT using PBE[138]

as the exchange-correlation functional and projector augmented wave pseudopotentials as

implemented in VASP.[136] All systems except for the Pt3Ni skin alloy and hypothetical

alloys based on that structure were modeled using non spin polarized DFT calculations. An

energy cutoff of 350 eV and 8× 8× 1 k points were universally used for all the calculations.

Eslab, Eads, and Emol structures for BEref were relaxed using conjugate gradient iterative

minimization until the difference in energies between consecutive geometry steps was less

than 1 meV. Eslab, Eads, and Emol structures for BEalloy were calculated using single point

DFT calculations.

6.5 RESULTS AND DISCUSSION

Our BE calculations use an fcc (111) surface model consisting of four layers. Transmutations

are considered in two different classes of hypothetical alloys. The first class is a surface alloy,

where atoms on the top layer of a metal (Pt, Pd, or Ni) surface are transmuted by ∆Z = ±1.

Transmutations at the bottom layer of the slab were found to be screened by the second and

third layers of the slab and do not contribute significantly to the alchemical derivatives that

perturb BEs. Thus, isoelectronicity in the surface alloy models is maintained by transmuting

an atom in the top layer by ∆Z = ±1 and transmuting an atom in the bottom layer by

∆Z = ∓1. The second class is a M3Ni skin alloy (with M = Pt or Pd, and 50% of the atoms

in the second layer are Ni). Isoelectronicity in surface alloys is maintained by transmuting
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these Ni atoms by ∆Z = −6,−5,−4,−3,−2,−1,+1, or + 2 and transmuting corresponding

atoms in the bottom layer by different amounts. These alloys correspond to M3X skin alloys

where X are atoms spanning the first row of the d-block.
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Figure 6.2: Parity plots (in eV) comparing the accuracy of OOH*, O*, and OH* BEs

from alchemy on hypothetical alloys based on three different reference slabs: Pt(111) (left),

Pd(111) (middle), and Ni(111) (right). ∆BEalc is the alchemical change between the reference

and hypothetical alloy and is equal to ∂λ∆E
0 in Eq. 6.3 and ∆BEQM is equal to BEalloy−BEref

and calculated directly using DFT. Figures depict data for surface alloys (surf), and insets

depict data for skin alloys. The alloys were obtained by changing different number of surface

and skin atoms |∆Z| = 1. Mean absolute errors (MAE) are given in eV.

We stress again that all alchemical predictions of BEs for a given adsorbate and reference

slab require merely three QM optimizations for the ads, slab, and mol states. The compu-

tational overhead for any number of alchemy predictions on any hypothetical alloy (based

on the same adsorbate bound to an alloy based on the same reference slab) is negligible.

Using our scheme employed for benchmarking, up to 28 different hypothetical alloys can be

formed using a 2 × 2 surface unit cell with up to three transmutations of |∆Z| = 1 at the

top layer. Using alchemy, BEs for these 28 hypothetical alloys would be obtained with the

computational cost of one single BE from QM. Combinatorially and theoretically speaking,

one could use computational alchemy to generate BEs for more than 2.6 million hypothetical
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alloys using a 3 × 3 surface unit cell with up to 18 transmutations to different d-block ele-

ments from the same row as the host metal atoms in two top layers of the slab. Determining

all BEs for these alloys would only cost three QM geometry optimizations, but the accuracy

of alchemy needs first to be assessed.

To determine the accuracy of alchemy, we benchmarked the BEs for O*, OH*, and OOH*

intermediates on randomly selected hypothetical surface alloys relative to DFT single-point

binding energies, see Figure 7.3). Note that there are 360 data points in Figure 7.3. These

data points were obtained by carrying out 15 full geometry optimizations with QM (for three

different molecules, three different slabs, and 3×3 = 9 adsorbate-slab structures). To obtain

QM data shown on the x-axes of Figure 7.3, an additional 705 single point QM calculations

were required (for the remaining slab and adsorbate-slab structures) while the alchemy data

on the y-axis was obtained solving basic arithmetic using Python scripts and was effectively

instantaneous.

The lowest energy binding sites for O*, OH*, and OOH* intermediates on the reference

metal slabs were the fcc, bridge and fcc sites respectively. The hypothetical alloys considered

had different numbers of pairs of transmuting atoms and thus represented different alloy

compositions in surface and skin alloys, always with atom transmutations of |∆Z| = 1.

Overall, alchemy quite reasonably predicts BEs for all adsorbates on surface and skin alloys

with mean absolute errors of 0.06 – 0.24 eV for surface alloys and 0.02 – 0.12 eV for skin

alloys. The errors are significantly smaller on skin alloys because alchemical transmutations

at an adsorption site in the top layer of a surface alloy generally results in larger errors

than alchemical transmutations in a subsurface layer of a skin alloy. This can also be seen

from the electrostatic potential maps that are included in the supporting information, where

alchemical derivatives on surface atoms are much larger than for subsurface atoms.

We then focused on the sensitivity of alchemy errors at varying concentration of trans-

muting atoms (Figure 7.4). Errors in BEs calculated by alchemy systematically increase as

the number of transmuted atoms increases. As seen before however, overall errors are much

smaller for BEs on skin alloys when compared to surface alloys because alchemy errors are

highest when the transmuted atom is directly at an adsorbate binding site.
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Figure 6.3: Mean absolute errors in BE of the different ORR intermediates on alloys with

different number of pairs of transmuting atoms on the top layer in surface alloys (a) and

subsurface layer in skin alloys (b). Lines in each bar denote minimum and maximum errors.

Predictions from alchemy also strongly depend on the specific site where atoms are trans-

muted relative to where the adsorbate is bound. There are significant alchemical gradients

seen on atoms at the adsorption site due to the chemical bonding interactions (atoms with

red and blue gradients in the electrostatic potential maps shown in Figure S1). Figure 6.4

shows the mean absolute errors for BEs from alchemy based on which atoms are transmuted.

Errors are largest (0.1 eV or more) when atoms are transmuted at sites 2, 3 or 4 under the

O* intermediate or in skin alloys when site 6 is transmuted. Sites 2, 3 and 4 on a surface

alloy correspond to the sites where maximum negative alchemical gradients are observed on

a surface alloy, and they comprise the 3-fold fcc site on which O* is adsorbed. Site 6 in skin

alloys is especially sensitive because this site is found directly below the 3-fold site. Similarly,

when OH* binds to a 2-fold bridge site on Pt, large alchemical gradients are seen on sites 3

and 4 and transmutations on these atoms results in larger errors (0.1 eV) compared to sites

1 and 2 (0.04 eV).
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Figure 6.4: Mean absolute errors in BE associated with sites at which host atoms are trans-

muted. Lines in each bar denote minimum and maximum errors. Lowest binding energy sites

for O*, OH* and OOH* to the different host metals are fcc, bridge and fcc sites, respectively.

Finally, we test the accuracy of alchemy when transmutations involve large changes in

|∆Z| are made on a M3Ni skin alloy with the second layer containing 50% concentration

of Ni atoms. For example, the M3Ti alloy is obtained when both Ni atoms are transmuted

to Ti corresponding to a ∆Z = −6 per atom. To balance nuclear charge, we made various

different transmutions to the bottom layer including ∆Z = +6 on two atoms, or ∆Z = +4

on three atoms, or ∆Z = +3 on four atoms. Figure 6.5 shows the superset of alchemy errors

for Pt3X and Pd3X. Interestingly, alchemy predicts BEs of O* and OH* in quite reasonable

agreement with DFT on most M3X alloys with errors less than 0.2 eV with the exception

of transmutations resulting in M3Mn, M3Fe and M3Zn alloys. Errors between alchemy and

DFT are generally higher (>0.2 eV) for the BE of OOH across all M3X alloys.
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Figure 6.5: Mean absolute errors in BE associated with sites at which host atoms are changed

to solute atoms

The largest errors in alloys containing Fe and Mn appear to be related to spin polarization

in these slabs while errors in Zn alloys are more likely because Zn is not a transition metal.

We note that these shortcomings of alchemy may be related to known shortcomings of the

d-band model,[204] but again, a rigorous investigation of how these are related is out of

the scope of the present work. At present, it indicates that high throughput screening with

alchemy may need to address searches across different spin manifolds.
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6.6 CONCLUSION

In conclusion, we have investigated the promise of first order alchemical estimates as a means

to rapidly screen material catalysts. With minimal DFT calculations (i.e. those needed for a

single binding energy of an adsorbate), alchemy can often predict BEs on hypothetical alloys

within 0.1 eV of DFT energies with a few notable exceptions. For surface alloys involving

transmutations of |∆Z| = 1, errors are largest when atoms are transmuted at the adsorbate

site because this is where alchemical gradients are highest. For skin alloys when |∆Z| > 1,

alchemy has significant problems predicting BEs when the alloying component is Mn, Fe

and Zn. In future work we will give more details about different adsorbates, surface facets,

and practical ways to overcome alchemy errors to the QM reference to make this method

more reliable for computational screening of catalysts thousands of times more efficiently

than with DFT calculations.
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7.0 IMPROVING BE PREDICTIONS OF ALCHEMY USING MACHINE

LEARNING

7.1 INTRODUCTION

In the previous chapter, we introduced Alchemy as a rapid means to calculating binding en-

ergies of adsorbates on hypothetical alloy catalysts. We first benchmarked the performance

of Alchemy in calculating the binding energies of OHx intermediates on the most thermo-

dynamically stable facet of Pt, (111). We considered alloys that were obtained by changing

atoms on both the surface and sub surface to Ir or Au. We found that Alchemy can be

used to calculate BEs of most surface alloys within 0.1 eV except BE with the largest errors

were predicted for alloys where atoms were changed close to the binding site. Interestingly,

Alchemy predicted the BE of subsurface alloys with the least errors.

This chapter addresses the following questions. What are the limits of Alchemy per-

formance? What regions of chemical catalyst space does Alchemy work well? What are

the weaknesses of Alchemy and when can Alchemy not reliably used? What to do when

Alchemy fails? In order to answer these questions, performance of Alchemy is validated

for BE predictions of a wide range of intermediates relevant on hypothetical alloys of Plat-

inum in different surface terminations. We considered alloys of varying concentrations of

dopant beyond Ir/Au (|∆Z|=1) elements. We then identified cases where Alchemy failed in

predicting BEs and proposed methods to address the errors between Alchemy and DFT.
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7.2 EXTENSIVE VALIDATION OF ALCHEMY

In Section 6.3, BE of an alloy was approximated as the sum of BE of the reference state

calculated by DFT and a first-order correction calculated by Alchemy.

BEalloy = BEref + ∆BEalc (7.1)

BEalc = ∂λ∆E
0 (7.2)

In order to extensively benchmark the performance of Alchemy, we considered several

reference calculations. We chose a Pt host metal in (111), (100), (211) surface terminations

for the slab calculations and nine different adsorbates, OHx (O, OH, OH2, OOH), NHx

(N, NH, NH2, NH3) and CHx (C, CH, CH2, CH3) on each of those slabs for adsorbate

calculations. Additional slab and adsorbate geometry relaxations were run with various

surface unit cell sizes for each of the slabs and adsorbates to account for adsorbate coverage

effects. All of these reference calculations let us access a larger chemical space of alloy

catalysts. We enumerated a wide range of alloys by changing the number of atoms pairs

that were transmuted (NT = 1-4) and varying the dopant elements corresponding to |∆Z|

= 1(Pt→ Ir/Au) or |∆Z| = 2(Pt→ Os/Hg) or |∆Z| = 3(Pt→ Re/Tl).

7.2.1 Surface facets

In our prior chapter, we studied how Alchemy compares to DFT in predicting BEs of all

coverages of OHx intermediates on just a single facet (111) of different host metals Pt, Pd and

Ni. In this chapter, we calculate BEs of all the intermediates on various surface terminations

of just Pt. Different surface facets contain sites with varying catalytic activities due to

their different coordination numbers and local environment. We first report parity plots

comparing OHx BE predictions by Alchemy on alloys of Pt: (111), (100) and (211) facets

in Figure 7.1. Overall, BEs predicted by Alchemy are comparable to BE calculated by DFT

for alloys in all surface terminations. Interestingly, MAE is lower for BE on alloys with a

211 termination(0.1 eV) and (100) termination (0.2 eV) when compared to (111) alloys(0.4

eV). This can be attributed to smaller alchemical gradients in (211) and (100) surfaces when

compared to larger gradients on (111) surfaces.
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Figure 7.1: Parity plots comparing BE of all coverages of OHx on Pt alloys (111), (100) and

(211) calculated using Alchemy and DFT. Each data point is an alloy obtained by changing

NT = 1, 2, 3 and 4 number of Pt atoms to either Ir/Au(|∆Z|=+/-1) or Os/Hg(|∆Z|=+/-2)

or Re/Tl(|∆Z|=+/-3) on the top layer of the reference slab.

7.2.2 Adsorbate Coverage

A traditional approach in computational catalysis to account for varying concentrations of

reactant species is to model a surface with different number of adsorbate molecules. In the

context of DFT calculations, adsorbate coverage is expressed as a monolayer and is expressed

as the ration of the number of adsorbate molecules to the number of atoms on the surface

layer. In our previous study, we looked at a 1/4 ML of OHx intermediates on a Pt surface.

We extended our analysis to 1/3 ML, 1/4 ML and 1/9 ML coverages of OHx intermediates

on Pt surface (Figure 7.2). We find that errors from Alchemy increases as coverage increases

due to large alchemical gradients set up by a higher concentration of adsorbates. When the

adsorbate coverage increases, the number of molecules per surface atom increases resulting in

large alchemical derivatives on sites close to the adsorbate. When these sites are transmuted,

Alchemy predicts BEs that deviate with larger errors when compared to DFT.
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Figure 7.2: Parity plots comparing BE of adsorbates of OHx on Pt alloys (111) calculated

using Alchemy and DFT. Each data point is an alloy obtained by changing NT = 1, 2, 3 and 4

number of Pt atoms to either Ir/Au(|∆Z|=+/-1) or Os/Hg(|∆Z|=+/-2) or Re/Tl(|∆Z|=+/-

3) on the top layer of the reference slab.

7.2.3 Adsorbates

Finally, we tested performance of Alchemy on the BE of all NHx, CHx, OHx (x=0-4) adsor-

bates on an exhaustive set of alloys of Pt (111) surface. As mentioned above, these alloys

were obtained by enumeration based on the number of atoms that were transmuted(NT) and

varying magnitude of atomic number change(|∆Z|). In total, BE predictions for nearly 5500

such alloys are included. Figure 7.3 shows the parity plots grouped according to the central

atom. We find that character of binding energy errors between Alchemy and DFT change

based on the central atom in the adsorbates. The errors appear linear for OHx BEs, non

linear for CHx and NHx BEs. However, the character of binding energy error does not change

for different levels of hydrogenations. These trends are attributed to the binding nature of

the central atom of these adsorbates to the surface.
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Figure 7.3: Parity plots comparing BE of adsorbates (NHx, CHx, OHx) on Pt alloys (111)

calculated using Alchemy and DFT. Each data point is an alloy obtained by changing

NT = 1, 2, 3 and 4 number of Pt atoms to Ir/Au(|∆Z|=+/-1) or Os/Hg(|∆Z|=+/-2) or

Re/Tl(|∆Z|=+/-3) on the top layer of the reference slab.

7.3 BREAKING DOWN THE SOURCE OF ERRORS

We further analyzed the errors from the above parity plot in order to identify cases where

Alchemy breaks. The errors in BE of all adsorbates were bucketed into a group of categories

based on NT, |∆Z| and adsorbate coverage. At very low coverages (1/9 ML), the MAE of

predictions is always less than 0.1 eV for |∆Z| = 1 alloys regardless of the type of adsorbate.

Interestingly, the errors are still lower than 0.1 eV even when all surface atoms are trans-

muted to |∆Z| = 1 dopants. At moderate coverages (1/4 and 1/3 ML), Alchemy predicts

BE of alloys with small NT and |∆Z| with less errors when compared to alloys with large

NT and |∆Z|. The largest errors are seen for alloys when all surface atoms are changed to

a maximum |∆Z| (=3). The trends in BE errors can be explained as follows, the alchemical

correction to the reference BE is based on a linear change in the electrostatic potential.
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Figure 7.4: Error analysis plots

Changing NT and |∆Z| implies a large linear shift of the alchemical derivatives while

the DFT BE shows that BE does not change much when compared to the reference BE. As

explained in the previous section, we here see that MAE increases with adsorbate coverage

where the errors are the least for 1/9 ML of adsorbate coverage and the largest for 1/3 ML

coverage. Note that errors need to be compared by looking at similar |∆Z| and NT values.

7.4 IMPROVED ALCHEMICAL PREDICTIONS USING MACHINE

LEARNING

In Figure 7.3, we see that BE predicted by Alchemy for some alloys deviate from the parity

line. We also observed systematic trends in BE errors for different adsorbates and identified

where these errors come from in our detailed error analysis plot. We hypothesize that errors

will be systematic, and therefore straightforwardly addressed by machine learning to predict

the errors and improve the BE predictions from Alchemy. Machine learning uses statistical
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techniques to learn from the data provided and make useful predictions on unseen data.

Here, we use a dataset of all alloy surfaces to build machine learning models that predict the

errors. Our high-level workflow in calculating improvised BEs using Machine learning and

Alchemy is shown in Figure 7.5.

Alloy surface Fingerprinting Feature Vector ∆-ML model to 
 predict error

BE(alloy, alchemy/ML) = BE(alloy, alc) + Error(ML)

Figure 7.5: Machine learning workflow to obtain BE corrections to Alchemy

7.4.1 Machine learning in Catalysis

Before discussing more about how we use Machine learning for improving BE predictions, we

list prior research in this area. Applications of ML in chemistry range from small molecule

chemistry to materials science to protein behavior.[205, 206, 207, 208, 209, 210, 211] A few

relevant examples in materials informatics include formation energies predictions [212, 207],

accelerated screenings within individual bimetallics, accelerated nudged elastic band studies

of reaction kinetic using neural networks and study of disorder on intermetallic configu-

rations. Along these lines, ML models have also been developed to predict properties of

catalysts.[213, 214, 215]. A combined machine learning and descriptor-based kinetic anal-

ysis framework can rapidly screen bimetallic catalysts for CO2 reduction.[213] The input

features for this model included the size of an atom, electronegativity and density among a

few others.[214] A fully automated screening method based on ML and optimization tech-

niques helped screen through larger chemical space of intermetallic catalysts. [215] Using

this workflow, alloys of 31 different elements were screened and 131 candidate surfaces across

54 alloys were identified for CO2 reduction and 258 surfaces were screened across 102 alloys

for H2 evolution.
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7.4.2 Feature representation

Identifying relevant features are important for Machine learning models to correctly learn

the underlying patterns in data. Features are variables that provide more information about

the population in our dataset. To build models in our study, we choose the variables that we

have identified in our prior error analysis since they strongly correlate with the BE errors.

NT, |∆Z|, adsorbate coverage, type of adsorbate, active dopant (atom that was changed

on top layer) were included in the model building process. However, none of these features

describe the alloy structures. We needed a better feature representation to encode how the

atoms are configured in different alloys.

To address this, we developed a fingerprint representation that captures the chemical

structure of alloy surfaces. First, we consider a vector whose length is the number of atoms

per surface layer and elements of the vector representing sites on the surface layer of the

alloy. Each element in the vector is binary indicating if atom at that site was changed or not.

However, the length of the vector varies because different surface unit cells are included in

our dataset to account for varying coverage effects. In order to normalize the feature vector,

we set the length of the vector to the number of atoms on per surface layer of the largest

surface unit cell (9 atoms in the case of Pt(111) 3 x 3 unit cell) and encode the elements

accordingly. This is explained in Figure 7.6 where two atoms changed on the 2x2 surface unit

cell are indicated by 1 on the vector while 3 atoms changed on 3 x 3 surface unit cells are

changed to 1 at their respective sites. This fingerprint vector along with the active dopant

feature describes alloy composition of the surface.

7.4.3 Model training and evaluation

Our dataset comprises all surface alloys that were enumerated for our prior benchmarking

studies along with the DFT and Alchemy calculated binding energies of all intermediates on

each of those alloys. For each BE on a surface alloy, the feature vector was obtained using

the fingerprinting method described above and the error between the BEs was calculated.

There were two types of variables in the feature vector: continous and categorical. Values of

continuous variables are in a range of values while categorical variables have distinct values.
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Figure 7.6: Fingerprinting

We then trained machine learning models to learn the data and then predicted the BE

errors(target variable) for each surface alloy.

When building a model, it would not be meaningful to train and make predictions on

the same data. The model would always perform pretty well when predictions are made on

the data on which it was already trained upon. Our overall goal is to choose models with

the least prediction errors on unseen data. In order to achieve this, we split the dataset into

80% training data and 20% test dataset. We first train our models on the training data and

then make predictions on the test data. Mean absolute error was chosen as the performance

metric to score each model.

MAEtest =
1

n

n∑
i=1

(yi − f(xi)) (7.3)

A common problem in machine learning is underfitting and overfitting. Underfitting is

when the model performs poorly on both the training and test data. To avoid underfitting,

the modeling procedure need to be changed or other fingerprinting methods need to be

developed. A model is said to be overfit when the learning algorithm fits too close to the

training data that it impacts the performance of the model on new data. One of the ways to

avoid overfitting is to use a resampling technique like k-fold cross validation(CV). In k-fold
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CV, the training set is split into k smaller datasets. Each of these smaller datasets serves

as a test set once, while the remaining splits are used for training. For each of the k-folds,

a model is trained using k − 1 folds of training data and the resulting model is validated on

the remaining part of the data using MAE. The performance of the model as measured by

k-fold CV is the average of the all MAE values from the method.

7.4.4 Model Selection

We considered few different machine learning regression algorithms to predict an error cor-

rection to BE from Alchemy. We chose linear regression (with L1/L2 regularization), tree

based models (random forests, gradient boosted trees) and support vector machines as candi-

date models. We identified promising models by measuring the performance from a 10-fold

CV on the training data. We then optimized the hyperparameters for promising models

using a 10-fold CV on the training data. The set of parameters that resulted in the best

performance of the model were selected. Once the hyperparameters are selected, the model

is trained on all data in the training set. This model is then applied to the test data to make

predictions. The predicted error corrections are added to Alchemy calculated BE (last step

in Figure 7.5), and then MAE between BE from DFT and BE from ML-corrected Alchemy

are reported below. Note that the test data are not used in model selection and training.

7.4.5 Results

Using the methods described in previous sections, the best learning algorithms were trained

and identified to predict BE corrections of intermediates on the alloy catalysts. We trained

models individually on CHx, NHx and OHx datasets and benchmarked BE predictions from

ML-corrected Alchemy with BE calculated from DFT. Support vector machine with default

hyperparameters was found to be the model with the least prediction errors on the test

dataset. Figure 7.7 shows the parity plot comparing BE from ML-corrected Alchemy on just

the alloys in the test dataset and their respective DFT calculated BEs. We see that predicted

BEs are comparable to DFT calculated BE of all intermediates. The MAE of BE predictions

of CHx intermediates was 0.5 eV, with ML-corrections the MAE has dropped to 0.07 eV.
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Similary, the MAE of BE predictions of NHx on alloys reduced from 0.4 eV to 0.08 eV and

OHx went down from 0.3 eV to 0.1 eV. The machine learning model learns the non-linear

relationships in the data and predicts the corrections to BE calculated by Alchemy.
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Figure 7.7: Parity plots comparing BE of adsorbates (CHx, NHx, OHx) on Pt alloys (111)

calculated using ML corrected Alchemy and DFT-SP. Each data point is an alloy obtained

by changing NT number of Pt atoms to Ir/Au(Z=+/-1), Os/Hg(Z=+/-2), Re/Tl(Z=+/-3)

on the top layer of the reference slab.

Finally, we used a statistic scoring method to identify the importance of the different

variables in predicting the BE corrections and plotted a feature importance plot (Figure 7.8.

Errors in BE mainly depend on magnitude of |∆Z| followed by the number of atom pairs

that were transmuted NT as it was expected. Both of these terms are indicative of how big

an alchemical change is performed to obtain a new alloy. When |∆Z| and NT are large, a

large linear change in alchemical derivatives results in large errors. The other variables that

are predictive of BE errors are adsorbate coverage, the type of binding site and the type of

adsorbate.
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Figure 7.8: Feature importance plot

7.5 CONCLUSION

We have validated the performance of Alchemy on an extensive set of alloys that were enu-

merated by changing the number of transmuted atom pairs, the magnitude |∆Z| of dopant

atoms and the concentration of the adsorbate. Overall, Alchemy predicts BE comparable

to DFT for a range of adsorbates on alloys of different surface terminations. Errors in BE

prediction increases with increasing concentration of dopant atoms and large |∆Z| values.

The largest errors in BE ( 3 eV) from Alchemy were found for alloys obtained by changing

4 atoms on the surface to Re/Tl dopants. Error analysis plots help explain trends in BE

errors from the parity plots and suggest that BE corrections can help reduce the errors from

Alchemy. We then use machine learning models to predict corrections to BE calculated by

Alchemy. The new parity plots show that BE from ML-corrected Alchemy agree with BE

from DFT with the errors less than 0.1 eV.
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8.0 SUMMARY AND FUTURE WORK

8.1 THERMODYNAMIC POURBAIX DIAGRAMS FOR CO2 REDUCTION

In summary, design principles from our prior works led us to investigating pyridine based

inorganic complexes and N-doped carbon materials for CO2 reduction. We used atomistic

thermodynamics and Pourbaix diagrams to develop a thermodynamic understanding of how

different materials catalyze the process. Chapter 3 showed that Ru(phen)2(ppy)2+2 is a poten-

tial candidate for participating in CO2 reduction mechanisms as it was shown in experiments.

Proton and hydride shuttling pathways in these complexes were thermodynamically feasi-

ble and should be considered for energetically efficient CO2 reduction processes. Chapter 4

highlighted that reduction potentials for the materials should be tunable for energetically

efficient catalysis using nitrogen concentration of carbonous materials. Reduced states of

these materials can form frustrated Lewis pairs that would be applicable for energetically

efficient (de)hydrogenation catalysis. In Chapter 5, combined Pourbaix diagrams and atom-

istic phase diagrams showed a partially reduced SnO2 surface to take part in energetically

efficient CO2 reduction. With this model, we also identified dopants that would result in

lower overpotentials for CO2 reduction. Future work will focus on combining Pourbaix di-

agrams with kinetic studies to calculate electrochemical reaction barriers. This will likely

involve modeling the reactions in an explicit solvation environment.
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8.2 COMPUTATIONAL HIGH THROUGHPUT SCREENING USING

ALCHEMY

Chapter 6 showed the promise of using Computational Alchemy as a means to rapidly cal-

culate binding energies of OHx intermediates on hypothetical alloys. With minimal DFT

calculations, alchemy was able predict BEs on hypothetical alloys within 0.1 eV of DFT

energies. In Chapter 7, Alchemy was then able to predict BEs of OHx, CHx and NHx on

an exhaustive set of alloys but with larger errors. In order to correct those errors, Machine

learning was combined with Alchemy to learn error corrections. The resulting BEs from

ML-corrected Alchemy resulted in very low errors (less than 0.1 eV) when compared with

BE from DFT.

Our work so far in this thesis has just focused on calculating thermodynamic activity de-

scriptors (BE) of alloy catalysts using ML/Alchemy. As explained in 2, stability of catalysts

are important to identify promising catalysts. In order to develop a robust high throughput

screening tool for catalysts, future work will focus on developing Alchemy based schemes to

calculate stability descriptors. This will involve calculating free energies of processes (seg-

regation, islanding and metal dissolution) that are likely to destabilize an alloy catalyst.

We also need to develop composition dependent phase diagrams using Alchemy in order to

identify the lowest energy configuration for any given composition of dopant atoms in the

alloy.

In order to calculate reliable stabilization energies and phase diagrams from DFT, ge-

ometries of alloy slabs with and without an adsorbate need to be relaxed. However, Alchemy

restricts us to calculating energetics of alloy slabs only when they are fixed to the lattice of

reference slabs. This could be addressed by building machine learning models to predict the

relaxation energies of the alloy catalysts. The models can be built using similar strategies

described above. New fingerprinting methods need to be developed and more electronic

structure theory based feature need to be identified to account for the relaxation effects.

All of our discussion has so far been based on just thermodynamic descriptors. However,

accounting for kinetics is equally important in order to identify the rate limiting steps as-

sociated with each process. We hypothesize that if Alchemy was able to calculate binding
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energies, it will also be able to predict energy of a transition state and hence the activation

energy of a process on an alloy catalyst. Traditionally, transition state searches have involved

nudged elastic band calculations between the reactant and product states which are slab and

an adsorbate on slab calculations respectively. Transition state searches are computationally

too expensive that just sites with the lowest energy of binding an adsorbate to the slab is

chosen as the product state. However, in the case of alloy catalysts this would not be appli-

cable as the lowest energy binding site would be different on different alloys and therefore

the transition states would likely be different as well. In order to account for this, we need

to consider reference calculations with adsorbates on all possible sites of a slab, use Alchemy

to predict BE of adsorbate on all sites of an alloy and choose the lowest energy binding site

for each site. The respective transition state and the activation energy can be then later

be used in microkinetic models to predict the activity of alloy catalysts. Finally using a

workflow including alchemical schemes for thermodynamic, kinetic and stability descriptors

will let us reliably screen through the chemical space and help find promising catalysts.
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APPENDIX A

SUPPORTING INFORMATION FOR INORGANIC COMPLEXES
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Figure A1: Electron density difference plots of all the molecules considered in our study.

Isosurfaces in yellow indicate an increase in electron density and isosurfaces in blue indicate

decrease in electron density upon the subtraction of an electron. These plots show the

location of the LUMO orbital for each lowest energy structure.
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Table B1: Coefficients for boundary lines observed in the phase diagrams(Figure 4.4 a. and

4.4 b.) are listed here. m and c are the slope and y-intercept of the line equation, y = mx+c,

and range indicates the domain of values in which the line equation is valid. The coefficients

shown here were obtained by solving the free energy equation (Equation 4.11 for GBP and

4.12 for GR) at pH = 0.

Figure Species Slope (m) Intercept (c) Range

4 a

GBP/P4N+2H 2 -0.20 -0.19 <∆µN <0

GBP/GBP+2H 0 -0.68 -0.3 <∆µN <-0.19

P4N+2H/P4N+4H 0 -0.90 -0.19 <∆µN <0

GBP+2H/P4N+4H 2 -0.51 -0.29 <∆µN <-0.19

GBP+2H/P4N+2H 1 0
∆µN = -0.19

-0.9 <E <-0.68

4 b.

GR+1H/GR+2H 0 -0.59 -1.0 <∆µN <-0.66

GR+1N/GR+1N+2H 0 -0.09 -0.16 <∆µN <0

GR+1H/GR+1N -1 -0.25 -0.34 <∆µN <-0.16

GR+1H/GR+1N+2H 1 0.07 -0.66 <∆µN <-0.16

GR+2H/GR+1N+2H 1 0
∆µN = -0.66

-1.0 <E <-0.59
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Table B2: y intercept values for boundary lines observed in the Pourbaix diagrams(Figure

4.5 a-f.) are listed here. Slope, m, in Pourbaix diagrams is equal to the Nernstian constant

0.059 since every reduction is assumed to involve one H+ and electron. m and c are the slope

and y-intercept of the line equation, y = mx + c, and range of pH considered is between 0

and 14. Again, the y-intercept shown here were obtained by solving the free energy equation

(Equation 4.11 for GBP and 4.12 for GR) at ∆µN = 0

Figure Species Intercept (c)

5 a. GBP/GBP+2H -0.68

5 b.
P3N+1H/P3N+2H -0.26

P3N+2H/P3N+3H -1.28

5 c. P4N+2H/P4N+4H -0.90

5 d.
GR/GR+1H 0.36

GR+1H/GR+2H -0.59

5 e. GR1N/GR1N+2H -0.08

5 f. GR2N-1H/GR2N+1H -0.19
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