
Deep-Learning Inferencing with High-Performance Hardware Accelerators

by

Luke Edwin Kljucaric

B.S. Computer Engineering, University of Pittsburgh, 2016

Submitted to the Graduate Faculty of

the Department of Electrical and Computer Engineering

Swanson School of Engineering in partial fulfillment

of the requirement for the degree of

Master of Science in Electrical Engineering

University of Pittsburgh

2018

ii

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Luke Edwin Kljucaric

It was defended on

November 28, 2018

and approved by

Samuel Dickerson, Ph.D., Director and Assistant Professor
Department of Electrical and Computer Engineering

Jun Yang, Ph.D., Whiteford Professor
Department of Electrical and Computer Engineering

Thesis Advisor, Committee Chair: Alan D. George, Ph.D., Mickle Chair Professor of ECE
Department of Electrical and Computer Engineering

iii

Copyright © by Luke Edwin Kljucaric

2018

iv

Deep-Learning Inferencing with High-Performance Hardware Accelerators

Luke Kljucaric, M.S.

University of Pittsburgh, 2018

In order to improve their performance-per-watt capabilities over general-purpose

architectures, FPGAs are commonly employed to accelerate applications. With the exponential

growth of available data, machine-learning apps have generated greater interest in order to better

understand that data and increase autonomous processing. As FPGAs become more readily

available through cloud services like Amazon Web Services F1 platform, it is worth studying the

performance of accelerating machine-learning apps on FPGAs over traditional fixed-logic devices,

like CPUs and GPUs. FPGA frameworks for accelerating convolutional neural networks, which

are used in many machine-learning apps, have started emerging for accelerated-application

development. This thesis aims to compare the performance of these emerging frameworks on two

commonly-used convolutional neural networks, GoogLeNet and AlexNet. Specifically,

handwritten Chinese character recognition is benchmarked across multiple currently available

FPGA frameworks on Xilinx and Intel FPGAs and compared against multiple CPU and GPU

architectures featured on AWS, Google’s Cloud platform, the University of Pittsburgh’s Center

for Research Computing (CRC), and Intel’s vLab Academic Cluster. All NVIDIA GPUs have

proven to have the best performance over every other device in this study. The Zebra framework

available for Xilinx FPGAs showed to have an average 8.3× and 9.3× better performance and

efficiency, respectively, over the OpenVINO framework available for Intel FPGAs. Although the

Zebra framework on the Xilinx VU9P showed better efficiency than the Pascal-based GPUs, the

v

NVIDIA Tesla V100 proved to be the most efficient device at 125.9 and 47.2 images-per-second-

per-Watt for AlexNet and GoogLeNet, respectively. Although currently lacking, FPGA

frameworks and devices have the potential to compete with GPUs in terms of performance and

efficiency.

vi

Table of Contents

Preface ... xi

1.0 Introduction ... 1

2.0 Background .. 3

2.1 Machine-Learning Inference ..3

2.2 Deep Learning ..4

2.3 Caffe Machine-Learning Framework ..6

2.4 Cloud Computing Platforms ...6

2.5 Field-Programmable Gate Arrays (FPGAs) ...7

2.6 Xilinx Framework for Deep Neural Networks (xfDNN) ..8

2.7 Mipsology Zebra ..9

2.8 Graphics Processing Units (GPUs) ...9

2.9 NIVIDIA CUDA Deep Neural Network Library (cuDNN)10

2.10 NVIDIA Optimized Caffe (NVCaffe) ...11

2.11 Google Tensor Processing Unit (TPU) ...11

2.12 Many-core CPUs ..11

2.13 Processor Metrics ...12

2.14 Intel Open Programmable Acceleration Engine (OPAE) ..13

2.15 Intel Machine-Learning Software ..15

vii

2.16 Handwritten Chinese Character Recognition (HCCR)..16

2.17 Caffe-Accelerator Relationship ..16

3.0 Related Work ... 18

4.0 Methodology ... 20

4.1 Xilinx FPGA Acceleration ...21

4.2 Intel FPGA Acceleration ...21

4.3 Intel CPU Acceleration ..22

4.4 NVIDIA GPU Acceleration ...23

5.0 Results ... 24

5.1 Architecture Batch Scaling Performance ..25

5.2 Performance Comparisons ..30

5.3 Efficiency Comparisons ...35

6.0 Discussion ... 38

6.1 Device Performance ...38

6.2 Device Efficiency ..41

7.0 Conclusions... 44

8.0 Future Work .. 47

Appendix .. 48

Bibliography .. 50

viii

List of Tables

Table 1 Maximum FP16 OPS Performance of frameworks/Devices and Power Consumption .. 25

Table 2 Current Cost of Devices in USD$... 36

Table 3 CNN Performance Across GPU Devices with Varied Batch Sizes (Associated with Figure
7) ... 48

Table 4 CNN Performance Across CPU Devices with Varied Batch Sizes (Associated with Figure
8) ... 48

Table 5 CNN Performance Across CPU Devices with Varied Batch Sizes using Hyper-threading
(Associated with Figure 9) .. 49

Table 6 CNN Performance Across Intel Devices using OpenVINO with Varied Batch Sizes
(Associated with Figure 11) .. 49

ix

List of Figures

Figure 1 Dual Data-path Design of AlexNet [17] .. 5

Figure 2 Intel Acceleration Stack Featuring OPAE [33] ... 14

Figure 3 Caffe-Accelerator Relationship. Underlined Values Used in This Research. 17

Figure 4 Architectural Design of HCCR-AlexNet [11] Referred to as Alexnet in This Research
... 18

Figure 5 Architectural Design of HCCR-GoogLeNet [11] Referred to as GoogLeNet in This
Research .. 19

Figure 6 CNN Performance Across Xilinx FPGA Frameworks with Varied Batch Sizes 26

Figure 7 CNN Performance Across GPU Devices with Varied Batch Sizes (See Appendix for
Values) .. 27

Figure 8 CNN Performance Across CPU Devices with Varied Batch Sizes (See Appendix for
Values) .. 28

Figure 9 CNN Performance Across CPU Devices using Hyper-threading with Varied Batch Sizes
(See Appendix for Values).. 28

Figure 10 CNN Performance Across Intel OpenVINO Binaries with Varied Batch Sizes 29

Figure 11 CNN Performance Across Intel Devices using OpenVINO with Varied Batch Sizes (See
Appendix for Values) .. 30

Figure 12 Performance of Caffe-based Frameworks on Xilinx FPGA and OpenVINO on Intel
PAC FPGA.. 31

Figure 13 CNN Performance on Xeon Skylake CPU using Caffe and OpenVINO 32

x

Figure 14 CNN Performance on Xilinx FPGA Using Zebra and Tesla V100 GPU 33

Figure 15 CNN Performance on Xilinx FPGA Using Zebra and Xeon Skylake CPU 34

Figure 16 CNN Performance on Xeon Skylake CPU and Tesla V100 GPU 35

Figure 17 Efficiency Characteristics of CNNs Across All Devices and Frameworks................. 36

Figure 18 Cost-Efficiency Characteristics of CNNs Across All Devices and Frameworks 37

Figure 19 Energy Cost-Efficiency Characteristics of CNNs Across All Devices and Frameworks
... 37

xi

Preface

This research was supported by SHREC industry and agency members and by the IUCRC

Program of the National Science Foundation under Grant No. CNS-1738783.

I would like to thank many of those at the different cloud computing centers AWS, Google

Cloud, Pitt CRC, and Intel vLab. Without the hardware resources made available through various

research and trial programs, this research would not have been possible. Critical support for

software and device configuration was also provided by the different cloud platforms which helped

accelerate this research.

Additionally, I would like to thank Dr. Bryant Lam who helped guide this research focus.

It was his guidance that led to the exploration of CNNs on FPGAs. The HCCR application was

used because of his desire to focus on the CNN application towards optical character recognition

(OCR).

Finally, I would like to thank all of those in NSF SHREC who have helped support and

review this thesis. Specifically, I would like to thank my advisor, Dr. Alan George, who has spent

his valuable time reviewing and guiding this thesis as well.

1

1.0 Introduction

The explosive growth of available data for training machine-learning models has driven a

heavier focus on the development of artificial-intelligence apps. This growth in data requires faster,

more efficient, and more intelligent processing. Machine-learning apps are trained on a certain set

of data in order to process new, unclassified data autonomously. Image classification is one example

app in a broad range of machine-learning apps. The ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) is a competition where algorithms compete to classify images at a large scale

with high accuracy [1]. Object detection is another example of a machine-learning app in which a

computer attempts to extract specific objects from a scene. YOLO is a machine-learning model

used for real-time object detection to classify and predict bounding boxes around objects in one

execution step [2]. Convolutional neural networks (CNNs) have seen success winning ILSVRC

multiple years and are used in the latest YOLO 9000 algorithm [3] [4].

Machine-learning apps for image processing often use CNNs in their models. CNNs are

attractive for these types of applications because they require minimal preprocessing in comparison

to other methods in order to extract image features [5]. The goal of CNNs is to extract features from

the input images, which is necessary in order to have a common representation of images associated

with a class. An image feature is a measurable property of an image, such as outlines of shapes and

patterns among sets of images. The CNN is trained to recognize these features and associate the

same patterns to similar classes of images. The features should be unique between classes and

common within a class, so the CNN can make clear inferences. The parallel nature of CNNs,

consisting of convolutions and matrix multiplications, make it very amenable for GPU and FPGA

acceleration.

2

Traditional acceleration of CNNs on FPGAs has been done by implementing a specific

neural-network processor in hardware [6] [7] [8] [9]. This process can lead to lengthy design times

and limited flexibility when the model or application domain is changed. Frameworks for

accelerating CNNs on FPGAs for use with machine-learning frameworks, like Caffe and

TensorFlow, have been emerging to address these issues. The same apps that use GPUs for

acceleration can leverage these frameworks to use FPGAs instead, with limited configuration of the

FPGA required.

Limited research has been presented on studying these FPGA frameworks for accelerating

CNNs. It is important to understand the performance of these emerging frameworks to optimally

use FPGAs in machine-learning app acceleration. While other architectures, like GPUs, are also

popular for accelerating machine-learning apps, it is beneficial to compare these FPGA

frameworks’ performance against other architectures. Many different toolkits and frameworks exist

to leverage Intel devices in different ways. It is challenging, yet important, to be able to compare

different frameworks on different architectures.

In this thesis, we evaluate and compare current architectures and frameworks for CNN

acceleration on various FPGAs, GPUs, and CPUs with a case study in Chinese character

recognition. This evaluation will aid in the understanding of the relative performance, efficiency,

and cost-efficiency of many different acceleration platforms. As focus begins to shift from machine-

learning training to inferencing, it is important to understand the architectures and frameworks to

best accelerate machine-learning inferencing apps and when designing machine-learning-oriented

high-performance computing (HPC) systems.

3

2.0 Background

Many different concepts, tools, frameworks, and devices are used in this study to

understand the current HPC machine-learning inferencing domain. This section aims to explain all

the components necessary for the app acceleration on different architectures, frameworks, and

platforms.

2.1 Machine-Learning Inference

In common machine-learning apps, there are at least two distinct phases: training and

inferencing. Training a CNN involves determining weight values in a network. CNNs are comprised

of different layers that have certain weight values, which activate different neurons based on the

input to the neural network. The specific weight values for a CNN vary based on the application,

or input dataset. During a training phase, a set of labeled images is classified using a neural network.

Then, the actual output is compared to the expected output and this difference in outputs is known

as the loss. This loss is then passed to the backpropagation algorithm, which incrementally updates

the weights of the network to categorize the input data more appropriately. This process is repeated

many times until a minimum loss value is reached. At the same time, it is important to know when

to cease training. If the network is trained too long on the input data, the model could “overfit” the

training data; meaning, it may have high accuracy for the training data but have poor accuracy on

new or testing data. The reader is referred to [10] for more information on the backpropagation

algorithm.

4

With the trained network, inferencing can be performed on new data. An unknown image

is given to the CNN and the output neurons are activated based on the trained weights. The CNNs

in this study’s output neurons are all activated with certain probabilities [11]. The higher the

activation, the higher the probability that the specific image belongs to a certain class. The vast

majority of the lifespan of an image-classification app is spent in the inferencing stage, since

training CNNs is typically a one-time event. Thus, this thesis focuses on machine-learning

inferencing due to its prevalence and because backpropagation has no support on FPGAs with the

frameworks studied in this research at the time of this writing.

CNNs have typically been accelerated using GPU architectures because of the

embarrassingly-parallel nature of the computations [12]. GPUs are single-instruction, multiple-data

architectures designed to perform many of the same computations in parallel on different data at

the same time. This makes performing convolutions and matrix multiplications on this architecture

straightforward to parallelize. Studies have shown that FPGAs are capable of achieving better

performance-per-watt than GPUs for various applications [13]. FPGAs can potentially accelerate

CNNs with a similar datapath to GPUs, but they require much less power than what is seen on

today’s high-end GPUs.

2.2 Deep Learning

Deep learning is a specific type of application within the field of machine learning. What

defines machine learning as deep is the use of deep neural networks (DNNs), meaning the network

has multiple “hidden” layers with each layer’s output providing input to the next layer [14]. This

research uses two commonly-used deep CNNs (DCNNs) known as AlexNet and GoogLeNet.

5

AlexNet is a 7-layer CNN based on the LeNet design [15]. It was the one of the first CNNs

to use the rectified linear unit (ReLU), an unbounded activation function as opposed to sigmoid,

tanh, etc. The ReLU attempts to mimic the neuron activity in the human brain where strongly

activated neurons diminish the effects of surrounding neurons. This behavior typically allows for

better feature extraction and faster training times [16]. AlexNet, seen in Figure 1, was designed

with a dual data path specifically so that each data path could be trained using a separate GPU

[17].

Figure 1 Dual Data-path Design of AlexNet [17]

GoogLeNet is a 22-layer CNN based on work from LeCun and Krizhevsky [15] [17]. It

features the use of “inception” layers which attempt to process more image area while retaining

small image details by performing multiple convolutions of different sizes in one layer. This

inception feature attempts to reduce the total number of calculations per prediction for use with

smartphones [18].

6

2.3 Caffe Machine-Learning Framework

Caffe is an open-source framework for developing machine-learning apps. It was

developed by The University of California Berkeley Vision and Learning Center (BVLC). It

provides support for performing machine-learning training and inferencing on both CPUs and

GPUs. Caffe supports batched classification which allows for multiple images in one batch to be

classified in parallel, increasing the overall classification performance [19]. In this thesis, we use

Caffe instead of other machine-learning frameworks because the CNNs acceleration frameworks

for FPGAs currently only fully support Caffe models [20] [21] [22]. Limited support exists for

most other frameworks on FPGAs.

2.4 Cloud Computing Platforms

Amazon Web Services (AWS) and Google’s Cloud platform are commercial cloud-

computing platforms with many different exotic devices for on-demand usage. Expensive and

hard-to-obtain devices become readily available through AWS and Google Cloud.

Additionally, customers do not need to configure hardware or software environments in

order to properly use these devices. A range of machine images are available to use on these

platforms that come preconfigured with software and hardware environments. AWS provides

Xilinx FPGAs and NVIDIA GPUs, while Google Cloud provides a broader range of NVIDIA

GPU architectures than AWS, but it lacks FPGAs.

Other academic clusters such as The University of Pittsburgh Center for Research

Computing (CRC) and The Intel vLab Academic Cluster attempt to achieve a similar goal. While

7

not typically profit-oriented, these clusters allow exploration of hardware and software tools in a

shared computing environment. Users typically submit jobs to run in a shared resource cluster,

waiting for open hardware. This job submission methodology is in contrast to the commercial

clusters like AWS and Google Cloud where a user can access a specific machine on-demand.

Interactive sessions are common in both academic and commercial clusters; however, there may

be a wait to use open resources in an academic cluster.

The academic clusters often have accelerators not featured in commercial clusters because

of their specific research requirements. CRC features different Intel Xeon architectures with Omni-

path connections and InfiniBand networks as well as many different GPU architectures [23]. The

vLab cluster features Intel architectures not found on other clusters. These devices include high-

performance Intel Xeon Skylake CPUs, Intel Xeon Phi Knight’s Landing and Knight’s Mill many-

core CPUs, Xeon Broadwell plus FPGA (Arria 10) packages, as well as newer Intel Programmable

Acceleration Cards (PACs) that feature Arria 10 FPGAs.

2.5 Field-Programmable Gate Arrays (FPGAs)

Unlike fixed-logic devices like CPUs and GPUs, FPGAs are reconfigurable-logic devices.

FPGAs are capable of realizing dedicated data-paths that map to application functions, resulting

in more efficient processing compared to fixed-logic devices. These custom datapaths often give

FPGAs an advantage over fixed-logic devices in terms of performance-per-watt. Many different

datapaths can be instantiated onto the FPGA in parallel, which makes it amenable for accelerating

machine-learning apps that use CNNs. Although the data-paths on FPGAs are typically longer

than fixed-logic devices, the energy-efficiency comes from the parallelism in the design [13]. The

8

XCVU9P board, which features Xilinx’s 16-nm Ultrascale+ architecture, that is featured on AWS

is one of the newest FPGA boards Xilinx currently offers.

The resources on vLab feature two different acceleration models using FPGAs. In both

cases, they feature Intel’s 20-nm Arria 10 architecture. The first is a Xeon Broadwell plus Arria

10 package. It features a Xeon E5-2643 v4 CPU on the same package as an Arria 10 GX1150

FPGA (10AX115U) connected via Intel’s Ultra Path Interconnect. The second is the Intel PAC

which features an Arria 10 GX FPGA (10AX115N) connected to the system via PCIe x8.

2.6 Xilinx Framework for Deep Neural Networks (xfDNN)

The xfDNN v2 framework, also referred to as xDNN, aims to accelerate CNNs on Xilinx

FPGAs. The framework has support for custom neural networks, which has allowed for more

general usage of the framework [20]. Xilinx provides a compiler tool which maps layers of the

CNN being used in an application to xfDNN for proper acceleration. This compilation is one of

the few extra steps required for accelerating an application with xfDNN. The xfDNN framework

has multiple configuration profiles. The two main profiles are the 4×28×32 and 2×56×32

configurations. The difference between these configurations is the number of processing elements

(PE) being used. A processing element is the main computational unit of xfDNN. There are 4 and

2 processing elements in the 4×28×32 and 2×56×32 configurations, respectively. The differences

between the 28×32- and 56×32-labeled cores are the 56×32-labeled core can process higher

resolution images and process images at a lower latency, whereas the 28×32-labeled core is

designed for maximum throughput [24]. Caffe is used on the CPU side of the application which

9

then makes reference to xfDNN for FPGA acceleration. There is no source provided for xfDNN,

only a precompiled binary.

2.7 Mipsology Zebra

Zebra is also a closed-source framework for Xilinx FPGAs which was developed by

Mipsology. Mipsology claims that Zebra can take any existing Caffe application for CPUs and

GPUs and execute it using the Zebra runtime on Xilinx FPGAs [21]. This portability is an attractive

feature when trying to port existing applications to different device architectures quickly. Similar

to xfDNN, Zebra can be configured with a different number of “cores.” No documentation exists

for the usage or details of the cores, but the default is set to 6 cores. Additionally, like xfDNN, the

main application makes calls to the Caffe API which then references the Zebra framework.

2.8 Graphics Processing Units (GPUs)

GPUs have been used in machine-learning apps for their highly parallel nature. GPUs are

typically comprised of thousands of lightweight cores which allow for acceleration of massively-

parallel math operations, similar to those found in CNNs. Google Cloud provides access to many

of the different NVIDIA architectures such as Pascal and Volta. With Volta being a new

architecture, many production systems still employ Pascal-based GPUs, thus there is a demand to

see how FPGA frameworks for accelerating CNNs compare in performance to older Pascal-based

GPUs like the 16-nm Tesla P100. AWS, as well as Google Cloud, also provides access to

10

NVIDIA’s latest server-grade Tesla GPU known as the V100. The Volta architecture featured in

the 12-nm Tesla V100 was designed with machine-learning apps in mind. The convolutional layers

in CNNs are computed through matrix multiplication and accumulation operations. The Volta

architecture on the V100 contains over six hundred “Tensor cores” which perform four-by-four

half-precision matrix multiplication and full-precision accumulation in a single clock cycle. These

Tensor cores give the Volta architecture a significant advantage in machine-learning apps versus

previous GPU architectures [25].

2.9 NIVIDIA CUDA Deep Neural Network Library (cuDNN)

NVIDIA has developed its own framework for accelerating deep neural networks on

NVIDIA GPUs using CUDA known as cuDNN. The cuDNN 7.4 framework from NVIDA

accelerates machine-learning apps by taking advantage of the Tensor cores in the Volta

architecture. Through the University of Pittsburgh’s Center for Research Computing (CRC), the

NVIDIA GTX 1080 Ti, based on the 16-nm Pascal architecture, uses the cuDNN 6 framework due

to lack of support for cuDNN 7.X at CRC. Like the Xilinx-based FPGA frameworks, Caffe runs

on the CPU which then references cuDNN for GPU offloading and acceleration. Backpropagation,

certain activation functions, among other things are supported for GPU acceleration with cuDNN

where they are not supported by the FPGA frameworks [26].

11

2.10 NVIDIA Optimized Caffe (NVCaffe)

A fork of Caffe has been developed by NVIDIA known as NVCaffe. This version of Caffe

has all the functionality of Caffe which makes existing Caffe-based apps portable to it. NVIDIA

has optimized this version of Caffe to perform best on NVIDIA GPUs [27].

2.11 Google Tensor Processing Unit (TPU)

Google’s 28-nm TPU is an architecture specifically aimed at accelerating machine-leaning

apps built with the TensorFlow framework. This architecture, like Volta from NVIDIA, uses the

idea of making the matrix or “tensor” operations fast and efficient. A single Cloud TPU v3 Beta

has a maximum performance of 420 Teraflops [28], compared to the maximum tensor performance

of 125 Teraflops of NVIDIAs Tesla V100 [25].

2.12 Many-core CPUs

With the intention of being clusters-on-chip, it is important to include many-core CPUs in

this comparison to understand their performance in the machine-learning domain against other

HPC devices. Intel’s line of many-core CPUs, called Xeon Phi, are featured on vLab. There are

two different architectures, the 14-nm Knight’s Landing (KNL) 7250 and the 14-nm Knight’s Mill

(KNM) 7295 which feature 68 cores and 72 cores, respectively [29] [30]. The key changes from

KNL to KNM are the inclusion of three, machine-learning specific, operations. These include a

12

single-precision fused multiply accumulation, vector neural network, and a doubleword/quadword

vector population count [31].

 These CPUs also support hyper-threading up to 4 threads-per-core [29] [30]. This ability

makes many-core CPUs able to handle a thread count of 272 and 288 for KNL and KNM,

respectively. With such a high degree of parallelism, it is important to understand how this

architecture is able accelerate parallel matrix-operations.

The vLab cluster also features high-end Xeon Skylake CPUs. Specifically, vLab features

a dual-socket machine with two 14-nm Xeon Platinum 8180 processors with 28 cores each. Each

processor has the ability to support hyper-threading up-to 2 threads-per-core [32]. This hyper-

threading ability gives this machine the ability to support up to 112 threads at once, much higher

than traditional multi-core CPUs.

2.13 Processor Metrics

Calculating processor metrics is one way of evaluating different architectures at a glance.

Computation density (CD) is one such metric that determines the underlying computational

capacity of a device. CD measures the theoretical maximum amount of parallel operations-per-

cycle. This metric is calculated assuming 50% add and 50% multiply instructions. Specifically,

half-precision floating point CD is used to compare the Intel Xeon Phi processors to the rest of the

architectures in this study. CD is calculated by multiplying the core frequency times the sum of

the number of instructions of type i divided by the cycles-per-instruction (CPI) of instruction type

i, as seen in Equation 1.

13

𝐶𝐶𝐶𝐶 = ƒ × �
𝑵𝑵(𝒊𝒊)
𝑪𝑪𝑪𝑪𝑪𝑪(𝒊𝒊)

2.14 Intel Open Programmable Acceleration Engine (OPAE)

Intel provides and supports many tools that assist in optimally and efficiently using their

hardware. OPAE is one such framework that aids in better using Intel FPGAs. OPAE is intended

to create an abstraction layer between generation and architecture specific details of FPGAs and

user apps in order to quickly develop apps and allow for portability between devices [33]. The

relationship between OPAE and the rest of the Intel Acceleration Stack can be seen in Figure 2.

2-1

14

Figure 2 Intel Acceleration Stack Featuring OPAE [33]

OPAE can be configured differently based on the apps targeting the FPGA. It features

RTL-optimized and OpenCL-optimized configurations. The main goal of OPAE is to simplify

software acceleration on FPGAs by allowing developers to compile and synthesize their design

once targeting OPAE and have the ability to port the same design to multiple different FPGA

architectures that feature OPAE with minimal effort. OPAE also tries to take advantage of device

specific characteristics, such as unique memory interfaces, to take full advantage of devices while

still being portable with minimal overhead.

15

2.15 Intel Machine-Learning Software

Intel also develops different tools to optimally leverage their different devices and

architectures for machine-learning apps. The first is a fork of Caffe known as Intel-Optimized

Caffe or Caffe*. It is integrated with the Intel Math Kernel Library (MKL) optimized for Advanced

Vector Extensions instructions in the Intel Xeon and Xeon Phi processors. The MKL helps

accelerate CNN computations more efficiently than standard Caffe. It contains all the functionality

of Caffe so there is seamless portability of a Caffe-based app [34]. This framework only supports

Intel CPUs.

The OpenVINO toolkit from Intel provides another method for accelerating machine-

learning apps on Intel CPUs, GPUs, FPGAs, and other accelerators. It also supports heterogenous

computations of CNNs across different architectures. Similar to Caffe*, OpenVINO is integrated

with the Intel MKL. Although, OpenVINO does not support Caffe API calls, it does support the

use of Caffe models. A Caffe model is a file generated from Caffe after training that contains

network information like weight values and hyper-parameters. This Caffe model allows for the use

of the same networks across different accelerators. Existing Caffe-based apps are not portable to

this framework and must be rewritten to support OpenVINO-specific calls. Like xfDNN,

OpenVINO provides a model optimizer that takes the Caffe model as input and determines how

best to accelerate that model. The model optimizer output is provided to the OpenVINO inference

engine for acceleration. The inference engine for the FPGA uses OPAE for FPGA support and

programming. Similar to both xfDNN and Zebra, there are only precompiled binaries of the

OpenVINO FPGA plugin. Several binaries exist such as a generic, AlexNet, GoogLeNet, and other

network-specific variants. Each binary has two versions, one for FP11 and one for FP16 support.

For the generic version, the batch size is limited to 8 images. For the network-specific, or optimized

16

variants, the batch size is limited to 96 images. There is limited documentation on the specifics of

the different binaries [35].

2.16 Handwritten Chinese Character Recognition (HCCR)

In order to test the FPGA frameworks fully, the machine-learning app must be challenging

enough to require a deep network with many layers. The English alphabet, with only 26 characters,

is not a difficult enough task with 62 classes, counting lower-case, upper-case, and digits 0-9. The

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a competition in which neural

networks classify images from typically 200 categories. This competition poses as a standard

benchmark for stressing neural-network performance. There is a demand to understand the

performance of optical character recognition on FPGAs, so classifying Chinese characters from

thousands of different classes could potentially be as challenging as ILSVRC. Specifically, the

Institute of Automation of Chinese Academy of Sciences has a handwritten database of 7653

different Chinese characters [36]. Classifying images from 7653 distinct classes is a difficult task

that requires large neural networks in order to accurately extract distinct, relevant features from

the handwritten images.

2.17 Caffe-Accelerator Relationship

Many of the frameworks and devices serve similar roles in the acceleration of the HCCR

app. Figure 3 visualizes the relationship between Caffe, accelerators, frameworks, CNN models,

17

and data. The Caffe forks, such as NVCaffe and Intel Caffe*, can be substituted for Caffe on the

CPU in this relationship. OpenVINO is the only instance where the framework is the same for both

CPU and accelerator combination. In the case of Intel Caffe*, the Intel MKL is used for

accelerating the application on the CPU itself, so no offloading occurs.

Figure 3 Caffe-Accelerator Relationship. Underlined Values Used in This Research.

18

3.0 Related Work

Previous work has informed this research by exploring complex classification problems

such as handwritten Chinese character recognition. In order to fully understand the capabilities of

the frameworks in this study, it is important to stress them in many ways. While the developers of

the acceleration frameworks claim strong performance on well-known CNN models like AlexNet

and GoogLeNet, it is important to understand how these frameworks perform with custom CNNs.

This use of a custom CNN will help avoid any optimization to these networks that may not apply

with a custom CNN. Previous work has shown that AlexNet and a variant of GoogLeNet can be

used to perform high-performance, online, handwritten Chinese character recognition at high

accuracies [37] [11]. The architectures of the HCCR-AlexNet and HCCR-GoogLeNet can be seen

in Figure 4 and Figure 5, respectively. These DCNN models demand high-performance from the

frameworks which stress their capabilities. The custom variant of GoogLeNet was developed

because the full depth of GoogLeNet is not required for the HCCR application [11]. This variant

uses 14 layers as opposed to the 22 layers in the standard version.

Figure 4 Architectural Design of HCCR-AlexNet [11] Referred to as Alexnet in This Research

19

Figure 5 Architectural Design of HCCR-GoogLeNet [11] Referred to as GoogLeNet in This Research

 Other research has explored accelerating CNNs on Xilinx FPGAs in similar fashion. The

work done by [38] provides a framework for using FPGAs with Caffe; however, its performance

is significantly behind the CPU and GPU variant in the same study. The framework, performing

at 50 GOPS, also fails to outperform previous work in [6], which showcases an engine for

accelerating CNNs on FPGAs performing at 61.62 GOPS. The work in [6] lacks the compatibility

with Caffe apps and models, making it more challenging to use.

Additional research has been done with Catapult and Intel FPGAs [7]. The work showed

that the configurable framework was still lacking in performance compared to the NVIDIA Tesla

K40 platform based on the Kepler architecture; three generations before the Volta architecture in

this study.

20

4.0 Methodology

The main focus of this thesis is to benchmark existing frameworks for accelerating CNNs

on FPGAs, GPUs, and CPUs for a performance comparison of the architectures on machine-

learning apps. Two different versions of the same handwritten Chinese character recognition are

used. The first is a C++ app that loads bmp image files from a directory and uses the Caffe API to

classify the images in batched mode, evaluating a specific number of images at one execution step.

The second C++ app is similar to the first, except that it uses the OpenVINO API in order to

classify the batched images. In each case, the app is run using batch sizes of 1, 16, 32, 64, 128,

256, 512, 1024, and 2048 where applicable. For the OpenVINO results, batch sizes are limited so

batch sizes of 2, 4, 8, and 96 are also used in addition to 1, 16, 32, and 64. The app classifies

252,545 images which are a subset of the CASIA database. The app runs 50 iterations of

classifications on the entire dataset before averaging the resulting performance. Previous research

has been done on this application by [11] and [37]. They showed that variants of GoogLeNet and

AlexNet can be used to accurately classify handwritten Chinese characters. In order to fairly

evaluate the frameworks and platforms, 16-bit operations were used for inferencing using the same

handwritten database, CNNs, and pretrained models as the previous work. The OpenVINO toolkit

does not support 16-bit operations with the CPU plugin, resulting in the OpenVINO Xeon CPU

operations being 32-bit. Additionally, the GTX 1080 Ti upgrades FP16 operation to FP32, so the

results for this device also use 32-bit floating point precision [39].

21

4.1 Xilinx FPGA Acceleration

As mentioned previously, the Xilinx FPGA being used is the Xilinx Ultrascale+

(XCVU9P). Two frameworks, xfDNN and Zebra, will be evaluated on this device using the Caffe-

based app on AWS. The specific xfDNN version is using the 4×28 PEs, and Zebra is configured

using 6 soft cores. The Zebra configuration was not changed as documentation recommends it

remaining the same. First, the xfDNN compiler is run using both AlexNet and GoogLeNet, which

creates the resulting JSON files for proper network-specific acceleration on the xfDNN platform.

Next, the xfDNN quantizer is run to create additional JSON files that specify scaling factors for

the layers within each corresponding CNN to calculate the network using 16-bit operations. The

xfDNN binary is loaded onto the Xilinx FPGA on AWS. Then, Caffe-based app loads the xfDNN

library with the proper compiler and quantizer JSON files to accelerate inferencing on the xfDNN

platform. When running the same app using the Zebra framework, no additional compiler or

quantizer is required to generate additional files. Similar to xfDNN, the Zebra binary is loaded

onto the Xilinx FPGA on AWS. Additionally, like xfDNN, the Caffe-based app loads the Zebra

library and accelerates inferencing on the Zebra platform.

4.2 Intel FPGA Acceleration

The Intel FPGA studied is the PAC, which features and Arria 10 GX. The OpenVINO

toolkit is used on the Intel FPGA on vLab because Intel-based Caffe support does not exist for

Intel FPGAs. In order to run the OpenVINO-based app, the CNNs are given to the OpenVINO

model-optimizer application to create corresponding XML files for proper acceleration on target

22

device. For the Intel PAC, 16-bit operation model-optimizer files are created. In order to run the

OpenVINO-based app on the Intel PAC, the 16-bit generic or network-optimized version of the

OpenVINO binary is loaded onto the PAC on vLab. Finally, the OpenVINO-based app is run using

the network-specific model-optimizer XML files in heterogenous mode, accelerating the app on

the Intel PAC.

4.3 Intel CPU Acceleration

In order to compare the OpenVINO and Caffe results from different architectures, the

Caffe-based app will also be executed on the Xeon CPU in addition to the OpenVINO-based app.

From this comparison, we will be able to compare how the Caffe and OpenVINO frameworks

perform on the same architecture and application to infer how the performance of the other

architectures compare. For the Xeon CPU running the OpenVINO-based app, 32-bit operation

model-optimizer files are created using the OpenVINO model-optimizer since the OpenVINO

toolkit does not support 16-bit operations on the CPUs. To run the OpenVINO-based app on the

Xeon CPU, no additional steps are required like loading additional binaries, so the app is run in

CPU mode with the network-specific model-optimizer XML files. When running the Caffe-based

app, the Xeon CPU specifically uses the Intel Optimized Caffe* and the Intel MKL. The rest of

the CPUs in this case study, KNL and KNM provided by vLab, will only run the Caffe-based app

using the Intel Optimized Caffe* and the Intel MKL.

23

4.4 NVIDIA GPU Acceleration

The GPUs used in this case study, as mentioned previously, are the NVIDIA Tesla P100

provided by Google Cloud, NVIDIA Tesla V100 provided by AWS, and the GTX 1080 Ti

provided by CRC. All of these devices will run the Caffe-based app using NVCaffe and cuDNN.

No additional steps are required when using the GPU platforms such as the xfDNN compiler and

quantizer or the OpenVINO model-optimizer.

24

5.0 Results

The main metric of the study is performance in terms of images-per-second. Accuracy is

not focused on specifically in this study because the performance of the neural networks should be

similar no matter the network input; meaning, the network should expect to see similar

performance between two different images assuming similar resolutions. That said, this research

did observe the Top-1 accuracies for AlexNet and GoogLeNet to vary between 94-96% and 96-

97%, respectively, across the devices studied.

Table 1 shows the breakdown of xfDNN, NVIDIA Tesla V100, Tesla P100, GTX 1080 Ti,

Intel PAC, Xeon Skylake 8180, Xeon Phi KNL 7250, and Xeon Phi KNM 7295 performance in

terms of total operations-per-second. Similar metrics were not provided by Mipsology. Additional

information is included about another framework for accelerating CNNs on Micron boards

featuring Xilinx FPGAs known as Snowflake; however, hardware was not available to benchmark

[40].

25

Table 1 Maximum FP16 OPS Performance of frameworks/Devices and Power Consumption

Device Configuration
FP16 Giga-

operations-per-
second-per-core

Total
number of

cores

FP16 Giga-operations-
per-second

Device
Power
(W)

xfDNN v2 – 2 PE [24] 1702.4 2 3,404.8 75
xfDNN v2 – 4 PE [24] 896 4 3,584 75

Mipsology Zebra (2018)
[21] N/A 6 N/A 40

Tesla V100 [25] 195 640 (Tensor) 125,000 (Tensor) 300
Tesla P100 [41] 5.2 3,584 18,700 300

GTX 1080 Ti [39] 3.2 3,584 11,340 (upgrade FP32) 250
Snowflake – 512-510

[40] 0.37 512 191 24

Snowflake – 1k-511 [40] 0.5 1,024 512 48
Snowflake – 1k-852 [40] 0.5 1,024 512 150

Intel PAC [22] [42] N/A N/A 1,500 45
Xeon Skylake 8180 [32]

[43] 80 56 4,480 410

Xeon Phi KNL 7250
[29] 46.2 68 3,141 215

Xeon Phi KNM 7295
[30] 49.5 72 3,564 320

5.1 Architecture Batch Scaling Performance

 The first graph, Figure 6, shows the performance of GoogLeNet and AlexNet with the Caffe-

based app across the different FPGA frameworks with varied batch sizes. The xfDNN framework

fails to run with AlexNet because of memory access faults at every batch size. The error occurs

within xfDNN and, as it is a precompiled binary, the ability to fix such an error is limited. Besides

this error and the one specified with GoogLeNet on the Tesla P100, any missing data points in any

of the figures are from the devices running out of memory at that batch size or, in the case of

OpenVINO on the PAC FPGA, the batch size is limited.

26

Figure 6 CNN Performance Across Xilinx FPGA Frameworks with Varied Batch Sizes

 The next graph, Figure 7, shows the performance of GoogLeNet and AlexNet with the Caffe-

based app across different GPUs with varied batch sizes. As mentioned previously, a similar

memory error is seen with cuDNN and GoogLeNet on the P100, where cuDNN is also closed-

source; however, in this case, it happens at a batch size of 16, but a batch size of 1 executes until

completion.

27

Figure 7 CNN Performance Across GPU Devices with Varied Batch Sizes (See Appendix for Values)

 Figure 8 shows a similar comparison of the CPUs in the study performance of GoogLeNet

and AlexNet with the Caffe-based app at every batch size. Figure 9 shows the same comparison

as Figure 8; however, since the CPUs support hyper-threading, Caffe is using the maximum

number of supported threads on the CPU. The thread count is 128, 272, and 288 for the Xeon

Skylake, Xeon Phi KNL, and Xeon Phi KNM respectively.

28

Figure 8 CNN Performance Across CPU Devices with Varied Batch Sizes (See Appendix for Values)

Figure 9 CNN Performance Across CPU Devices using Hyper-threading with Varied Batch Sizes (See Appendix
for Values)

29

The next graph, Figure 10, shows the performance of GoogLeNet and AlexNet on the Intel

PAC FPGA with different OpenVINO binaries at every batch size up to 64 and including 96. Since

the generic FP16 binary is limited to a batch size of 8, batch sizes 2, 4, and 8 are also included for

comparison.

Figure 10 CNN Performance Across Intel OpenVINO Binaries with Varied Batch Sizes

 Figure 11 shows the comparison of the OpenVINO-based app on the Xeon Skylake and the

Intel PAC FPGA across every batch size. Only the optimized versions of the OpenVINO FPGA

binaries are included since the generic variant lacks in performance.

30

Figure 11 CNN Performance Across Intel Devices using OpenVINO with Varied Batch Sizes (See Appendix for
Values)

5.2 Performance Comparisons

Comparing the performance of the FPGA devices and frameworks, the maximum

performance of xfDNN, Zebra, and OpenVINO are shown in Figure 12. Both GoogLeNet and

Alexnet performance is shown with the frameworks’ and networks’ highest performing batch size.

31

Figure 12 Performance of Caffe-based Frameworks on Xilinx FPGA and OpenVINO on Intel PAC FPGA

The performance of both the Caffe-based and OpenVINO-based app on the Xeon Skylake

CPU can be seen in Figure 13. This comparison shows the maximum performance of each app

using hyper-threading or otherwise in the case of the Caffe-based app at the highest performing

batch size.

32

Figure 13 CNN Performance on Xeon Skylake CPU using Caffe and OpenVINO

Since the Mipsology Zebra framework has higher performance than what is seen with both

xfDNN and the PAC with OpenVINO, the performance of Zebra is compared to the GPUs using

the Caffe-based app. Figure 14 shows the maximum performance of GoogLeNet and AlexNet on

the FPGA using Zebra versus the maximum performance of GoogLeNet and AlexNet on the Tesla

V100 since the V100 shows the highest performance out of the GPU group.

33

Figure 14 CNN Performance on Xilinx FPGA Using Zebra and Tesla V100 GPU

Figure 15 shows the comparison of the maximum performance of the FPGA and CPU

groups. The Xeon Skylake is used from the CPU group and again, Zebra is used for the FPGA

group. Only the Caffe-based app results are included for the Skylake CPU since the OpenVINO-

based app also shows similar performance.

34

Figure 15 CNN Performance on Xilinx FPGA Using Zebra and Xeon Skylake CPU

The next comparison shows the maximum performance of CPU and GPU group with the

Caffe-based app in Figure 16. Again, the Xeon Skylake is used from the CPU group and the Tesla

V100 is used from the GPU group each at their highest performing batch size.

35

Figure 16 CNN Performance on Xeon Skylake CPU and Tesla V100 GPU

5.3 Efficiency Comparisons

Figure 17 shows the efficiency characteristics in terms of performance-per-Watt of each

network across varying frameworks and platforms. The total device power (TDP) for the devices

in the study can be found in Table 1. For the Zebra framework, documentation claims the

maximum power consumption is below 40W, where the TDP for the XCVU9P FPGA is around

65W [44]. As Xilinx gives no guarantee about power consumption, we use the TDP of the FPGA,

65W, for xfDNN. AWS does not provide access to FPGA power information. We use TDP to

compare each device because of the potential each device has to use peak power.

36

Figure 17 Efficiency Characteristics of CNNs Across All Devices and Frameworks

Table 2 shows the cost per device in the study. This cost is used to evaluate the cost-

efficiency and energy cost-efficiency of each device. The cost-efficiency of each device is in terms

of performance-per-thousand dollars. The energy cost-efficiency of each device is in terms of

performance-per-Watt-per-dollar. The cost-efficiency and energy cost-efficiency of each device

can be seen in Figure 18 and Figure 19, respectively.

Table 2 Current Cost of Devices in USD$

Device Cost (USD $)
Xilinx XCVU9P [45] 13,687.75

NVIDIA Tesla V100 [46] 10,664.00
NVIDIA Tesla P100 [46] 9,428.00

NVIDIA GTX 1080 Ti [39] 699.00
Intel Xeon Skylake 8180 [32] 10,009.00

Intel Xeon Phi KNL 7 [29] 2,436.00
Intel Xeon Phi KNM [47] 4,876.00

Intel PAC [48] 8,740.00

37

Figure 18 Cost-Efficiency Characteristics of CNNs Across All Devices and Frameworks

Figure 19 Energy Cost-Efficiency Characteristics of CNNs Across All Devices and Frameworks

38

6.0 Discussion

When comparing the neural networks, GoogLeNet and AlexNet, we can see that AlexNet

consistently achieves better performance than GoogLeNet. This higher performance of AlexNet is

because of the shorter latency AlexNet has from input to output layers having only 5 layers

compared to GoogLeNet’s 14 layers, allowing for faster image classification. Since AlexNet has

less layers than GoogLeNet, more on-board RAM can be used for the images being classified,

which allows for larger batch sizes. The smaller number of layers gives AlexNet higher

performance at the slightly lower accuracy. For this application, we’ve observed the average Top-

1 accuracies of AlexNet and GoogLeNet to be similar as 95.3% and 96.5%, respectively.

6.1 Device Performance

Comparing Xilinx FPGA frameworks, we can see that Mipsology Zebra outperforms

xfDNN across both neural networks. As Zebra also provides much more portability than xfDNN,

this feature gives a greater advantage to Zebra over xfDNN for accelerating machine-learning apps

on Xilinx FPGAs.

Looking at the results from the GPUs there are two main takeaways. First, the Tesla P100

and GTX 1080 Ti both outperform the Tesla V100 with a one-image batch size. It is not until a

batch size of 64 images is reached that we see the Tesla V100 start to outperform the other two

GPU devices. Second, we can see that the performance of the Tesla V100 quickly grows with an

39

increase in batch size, leveraging the parallelism of the Tensor cores. We can see that the parallel

nature of the GPU helps performance at much larger batch sizes.

For the CPU results, we have interesting findings. First, The Xeon device has a significant

performance advantage over the Xeon Phi devices, even though it features a smaller number of

cores. However, the cores of the Xeon devices operate at a maximum of 3.8GHz versus 1.6GHz

of both the KNL and KNM Xeon Phi devices [32] [29] [30]. Additionally, comparing the Xeon

Phi devices, KNL slightly outperforms KNM consistently between both CNNs and batch sizes. As

KNM is targeted at acceleration machine-learning apps, this result is concerning [49]. Although,

preliminary data shows that backward-pass timing, as opposed to forward-pass or inferencing, on

the KNM significantly outperforms KNL across CNNs and batch sizes. This data means that the

KNM devices shows much better performance in terms of CNN training than testing. Next, we

observed how hyper-threading affects app performance. In this case, again, the Xeon Skylake

device significantly outperforms both Xeon Phi devices. Between the two Xeon Phi devices, KNM

outperforms KNL in most batch sizes. KNM outperforms KNL when comparing the maximum

performance of each device in regard to hyper-threading. In terms of maximum performance

between single- and hyper-threaded apps, KNL still outperforms KNM. Another fact to note is that

at a batch size of 512 images, AlexNet on the KNL device using hyper-threading peaks in

performance but begins to degrade in performance at higher batch sizes. In all cases of the CPU

testing, the system did not run out of memory, but this out-of-memory error was a source of crashes

in the FPGA and GPU cases. The overall app time became very slow and thus we limited the batch

size to 2048 since no other framework or device achieved more.

For the Intel PAC FPGA results, we can see an advantage to using the network-specific

optimized OpenVINO binaries over the generic variant at every batch size and when comparing

40

maximum performance. The generic binary is limited to 8 images-per-batch which hurts overall

parallelism when trying to accelerate a custom CNN with OpenVINO. Next, we observe the Xeon

Skylake CPU’s performance with OpenVINO against the PAC FPGA. We can see the Xeon CPU

outperforms the PAC FPGA at every batch size and in terms of maximum performance. The

OpenVINO network-specific optimized binaries for the PAC FPGA are limited to a maximum

batch size of 96 images. This limit, again, hurts overall parallelism when trying to accelerate one

of these CNNs on the PAC FPGA.

In order to get an understanding of the performance characteristics of both Caffe and

OpenVINO, we compared the maximum performance of each framework on the Xeon Skylake

CPU. We can see from the results that both frameworks perform similarly. OpenVINO has a slight

performance advantage over Caffe when running GoogLeNet; however, Caffe has a more

significant performance advantage over OpenVINO when running AlexNet. From this

comparison, we can conclude that the framework implementations are similar enough to justify a

comparison of the PAC FPGA results with the other devices in the study. Observing that Zebra on

the FPGA outperforms OpenVINO on the Intel PAC FPGA by an average of 8.3×, we can see the

OpenVINO framework is not competitive when accelerating CNNs on FPGAs. This performance

gap could be due to the technology node disparity, 16-nm and 20-nm for the XVU9P and Intel

PAC respectively, and the limited batch sizes supported with OpenVINO.

Comparing the results of the Xilinx FPGA using Zebra and the Tesla V100 using cuDNN,

we see there is a large disparity in the performance between the Tesla V100 and the FPGA. Our

results indicate that the FPGA framework would need to consume less than 22W of power in order

to be more efficient in terms of performance-per-Watt. When comparing the performance of

individual cores of xfDNN and the Volta architecture, the xfDNN cores can achieve higher

41

theoretical performance. The main reason why the performance gap is so large is that xfDNN only

instantiates four cores on the FPGA whereas, the Volta architecture contains 80 streaming

multiprocessors, each with 8 Tensor cores.

When comparing the Zebra performance to the Xeon Skylake CPU, we can see that there

is less of a disparity between the two than what was observed with Zebra and the V100. However,

the Xeon device still significantly outperforms the Zebra framework. Naturally, this performance

of the Xeon device means we can expect the V100 to outperform the Xeon device, which is what

we observe in the next comparison. The V100 outperforms the Xeon device by an average factor

of 2.6×.

6.2 Device Efficiency

In terms of the efficiency of each device and framework, we can see the V100 significantly

outperforms every other device and framework, even at a large power package of 300W. This

efficiency at 300W shows how much higher the V100 performs compared to each of the other

devices and frameworks.

Interestingly, the FPGA using Zebra has similar to better performance-per-Watt

capabilities against both Pascal-based architectures, the Tesla P100 and GTX 1080 Ti. The large

performance disparity between the Pascal and Volta architectures is due to the inclusion of the

Tensor cores in the Volta architecture. The development of these frameworks for accelerating

CNNs on FPGAs is clearly relevant since they are capable in being more efficient than general-

purpose architectures that lack specific accelerators for this domain.

42

As we can see, the Intel products, including all Xeon and Xeon Phi CPUs, as well as the

PAC FPGA, perform the worst in terms of efficiency across Caffe, OpenVINO, and different

CNNs. These results are a magnitude less than the rest of the Xilinx and NVIDIA device results,

besides xfDNN, which perform at around the same efficiency as the Intel devices. The main reason

for this poor efficiency on the CPU side is the large power packages of the CPUs, similar to GPUs,

without the performance to match the GPUs. In the case of OpenVINO and the PAC FPGA, the

power package is one of the lowest in the study; however, the performance is not close to any of

the other devices and frameworks.

In terms then of cost-efficiency, or how much it costs for the performance observed, we

see some interesting results. First, by far, the GTX 1080 Ti has the best cost-efficiency. This result

is due to the fact that the GTX 1080 Ti has similar performance to the Tesla P100; however, it is

available for a fraction of the cost. It is the lowest cost device in the study and yet the third highest

in terms of performance. All GPUs in the study take up the top three spots in terms of cost-

efficiency, with the V100 being second place making it the most cost-efficient out of the server-

grade accelerators. Regarding the rest of the devices, the Zebra framework in combination with

the Xilinx FPGA has the next best performance, outperforming all of the Intel devices in cost-

efficiency. Intel OpenVINO on the PAC FPGA and the Xeon Phi KNM prove to be the lowest

cost-efficient devices in the study.

Another metric, energy cost-efficiency, is interesting to look at as well. This metric shows

how cost-effective the device’s efficiency is. In this case, the GTX 1080 Ti still has the highest

energy cost-efficiency of all of the devices, followed by the V100, and then closely by the P100 in

third. Interestingly, The Intel Xeon and Xeon Phi device perform much better in this category

especially the Xeon Phi KNL. However, they are still an order of magnitude below the V100 and

43

P100. Zebra on the Xilinx FPGA competes with the Intel CPUs, but still lags behind. Intel

OpenVINO on the PAC FPGA proves to be the worst device in terms of energy cost-efficiency,

significantly behind the other devices.

44

7.0 Conclusions

In this thesis, a machine-learning inferencing app was developed to leverage many different

HPC architectures and frameworks, designed to compare these technologies to one another. CNNs

such as AlexNet and a custom 14-layer version of GoogLeNet were used to classify handwritten

Chinese characters. The Caffe framework was used to leverage Xilinx FPGAs, NVIDIA GPUs,

and Intel Xeon and Xeon Phi CPUs. The Intel-platform agnostic OpenVINO framework was used

with Intel PAC FPGAs and additionally with Intel Xeon CPUs to gain an understanding of

OpenVINO versus Caffe performance.

It is clear that the Tensor cores significantly accelerate the performance of machine-

learning inference on NVIDIA GPUs. Without significant improvements in performance to FPGA

frameworks for accelerating CNNs, FPGAs may need to add additional hardware, similar to

Tensor cores, to be more competitive in the machine-learning domain. In fact, the next-generation

Xilinx architecture, known as Versal, is designed with new “AI engines” consisting of long

instruction word and single instruction, multiple data processing engines [50].

Intel devices and frameworks are also lacking in the machine-learning inferencing domain.

CPUs are the most general-purpose device in the study, posing significant overhead, especially in

terms of efficiency. It is challenging for CPUs to tailor to one domain as they serve all computing

domains. Being the worst in every category, the OpenVINO framework for PAC FPGAs needs

significant improvements in order to be competitive in this domain as well.

Surprisingly, the GTX 1080 Ti has the highest cost-efficiency and energy cost-efficiency

being the only consumer-grade product in this study. The significantly lower price allows the GTX

45

1080 Ti to be 9.15x more cost-efficient and 7.6× more energy cost-efficient than the highest server-

grade accelerator, the V100.

Some of these performance disparities may also be due to the technology node of each

device. The Volta architecture is the smallest at 12-nm. The worst performing architecture, the

Arria 10, is also the largest at 20-nm. This factor can have significant implications on performance

of the devices.

Overall, GPUs dominate performance, efficiency, cost-efficiency, and efficiency cost-

efficiency when accelerating CNNs with Caffe. The next most efficient devices, Xilinx FPGAs,

need significant work for accelerating machine-learning apps, especially since they currently

cannot perform training. Mipsology has mentioned that they do plan to support training in the

future [21]. The Tesla V100 has significantly better performance with both AlexNet and

GoogLeNet at 12.38× and 13.81×, respectively, over Zebra’s performance. Similarly, the Tesla

V100 has better efficiency with both AlexNet and GoogLeNet at 1.65× and 1.84×, respectively,

when compared to Zebra’s efficiency. Although the Versal architecture is not set to be released

until 2019, data from Xilinx shows Versal performing at 2× over the Tesla V100 using GoogLeNet

for machine-learning inference with maximum batch size [50]. This architecture, in combination

with the next release of xfDNN v3 and Zebra (December-2018), has potential to make FPGAs

more competitive with GPUs for machine-learning inference and significantly more efficient.

This thesis has provided insight on performance and efficiency characteristics of a

practical, deep-learning app across many different architectures and frameworks. The development

of these apps can be continually used as architectures and frameworks evolve to understand their

respective, relative performance. As focus shifts from machine-learning training to inferencing

46

acceleration, this research provides critical information to prepare app acceleration for the future

of the machine-learning domain.

47

8.0 Future Work

This research will continue to compare different architectures for accelerating machine-

learning apps. As new architectures and frameworks emerge it is important to understand their

relative performance, efficiency, and cost-efficiency in the machine-learning inferencing domain.

The authors of this research aim to include Google’s TPUs in the study. As no support

currently exists for Caffe on Google’s TPUs, the Caffe models will need to be converted into

models that are supported with TensorFlow, the only framework available on the TPUs [28]. As

FPGA frameworks begin to provide support for TensorFlow and its respective models, previously

studied architectures and frameworks will also be studied using the TensorFlow-based app as well.

Additionally, NVIDIA’s Deep Learning Accelerator (NVDLA) will be studied. The

NVDLA is an open-source accelerator targeted at Internet-of-Things (IoT) devices based on

NVIDIA’s Xavier architecture [51]. With portability in mind, NVDLA is designed to be used on

many different FPGA accelerators.

From here, an OpenCL-based framework for accelerating CNNs in planned to be

developed on both Xilinx and Intel FPGAs. This design is intended to start accelerating tensor

operations, similar to the Volta architecture, and develop additional functionality. It is intended to

be a scalable design to accelerate HPC machine-learning apps.

48

Appendix

Table 3 CNN Performance Across GPU Devices with Varied Batch Sizes (Associated with Figure 7)

GPU

Performance GTX 1080 Ti P100 V100

GoogLeNet Alexnet GoogLeNet Alexnet GoogLeNet Alexnet
1 365 641 211 490 181 474
16 3709 5533

6119 2498 5965

32 5239 8473

10655 4471 10362
64 6590 12854

10199 7174 17272

128 7307 14014

14609 10076 25324
256 7755 15184

18028 12789 30482

512 8054 16306

19810 14154 34980
1024

16691

21159

37664

2048

16273

21218

37763

Table 4 CNN Performance Across CPU Devices with Varied Batch Sizes (Associated with Figure 8)

CPU

Performnace Xeon Skylake Xeon Phi KNL Xeon Phi KNM
 GoogLeNet Alexnet GoogLeNet Alexnet GoogLeNet Alexnet
1 182 184 58 117 55 92
16 553 588 211 398 151 294
32 826 1035 353 739 242 460
64 1186 1822 520 1264 360 821
128 1372 2388 587 1409 406 946
256 1474 3172 602 1534 434 1024
512 1681 3455 658 1651 463 1135
1024 1694 4050 664 1691 471 1187
2048 1730 4358 689 1744 476 1246

49

Table 5 CNN Performance Across CPU Devices with Varied Batch Sizes using Hyper-threading (Associated

with Figure 9)

CPU Performnace

– Hyper-
threading

Xeon Skylake Xeon Phi KNL Xeon Phi KNM

GoogLeNet Alexnet GoogLeNet Alexnet GoogLeNet Alexnet
1 28 130 14 26 13 29
16 309 445 66 131 76 143
32 542 624 128 206 136 238
64 783 1140 223 329 210 381
128 1158 2220 362 758 347 645
256 1362 2933 454 1002 454 1001
512 1598 3736 542 1187 534 1267
1024 1697 4582 444 1193 542 1348
2048 1818 4794 368 1248 574 1388

Table 6 CNN Performance Across Intel Devices using OpenVINO with Varied Batch Sizes (Associated with
Figure 11)

OpenVINO PAC FPGA - CPU Intel Xeon Skylake CPU Intel PAC FPGA

GoogLeNet Alexnet GoogLeNet Alexnet
1 119 76 19 23
2 243 159 32 39
4 460 249 49 80
8 639 336 66 143
16 778 523 85 213
32 1115 606 101 281
64 1486 1033 105 362
96 1632 1324 111 411
128 1723 1580
256 1832 2695
512 1813 3382
1024 1768 3827
2048 1730 4066

50

Bibliography

[1] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, "ImageNet: A Large-Scale
Hierarchical Image Database," in IEEE Computer Vision and Pattern
Recognition (CVPR), 2009.

[2] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, "You Only Look Once: Unified, Real-
Time Object Detection," in IEEE Computer Vision and Pattern Recognition
(CVPR), 2016.

[3] Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg and Li Fei-Fei. (* = equal contribution), "ImageNet Large
Scale Visual Recognition Challenge," International Journal of Computer Vision,
vol. 115, no. 3, pp. 211-252, December 2015.

[4] Joseph Redmon, Ali Farhadi, "YOLO9000: Bigger, Faster, Stronger," arXiv, 25
December 2016.

[5] M. Egmont-Petersen, D. de Ridder, H. Handels, "Image processing with neural
networks - a review," Pattern Recognition, vol. 35, no. 10, pp. 2279-2301, 2002.

[6] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong,
"Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks," in ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), 2015.

[7] K. Ovtcharov, O. Ruwase, Et. Al, "Accelerating Deep Convolutional Neural Networks
Using Specialized Hardware," Microsoft, February 2015. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/accelerating-deep-
convolutional-neural-networks-using-specialized-hardware/ . [Accessed
November 2018].

[8] C. Farabet, C. Poulet, J. Y. Han and Y. LeCun, "CNP: An FPGA-based processor for
Convolutional Networks," International Conference on Field Programmable
Logic and Applications, September 2009.

[9] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun and E. Culurciello, "Hardware
accelerated convolutional neural networks for synthetic vision systems," in
IEEE International Symposium on Circuits and Systems, Paris, 2010.

[10] P. J. Werbos, "Backpropagation through time: what it does and how to do it," in IEEE,
1990.

51

[11]]

Zhuoyao Zhong, Lianwen Jin, Zecheng Xie, "High Performance Offline Handwritten
Chinese Character Recognition Using GoogLeNet and Directional Feature
Maps," in 13th International Conference on Document Analysis and
Recognition (ICDAR), 2015.

[12] Google, "Using GPUs for Training Models in the Cloud," 10 October 2018. [Online].
Available: https://cloud.google.com/ml-engine/docs/tensorflow/using-gpus.
[Accessed November 2018].

[13] J. Fowers, G. Brown, P. Cooke, G. Stitt, "A Performance and Energy Comparison of
FPGAs, GPUs, and Multicores for Sliding-Window Applications," in
ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(FPGA), 2012.

[14] L. Deng, D. Yu, "Deep Learning: Methods and Applications," Foundations and Trends
in Signal Processing, vol. 7, no. 33-34, pp. 1-99, 2014.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to
document recognition," in IEEE, 1998.

[16] Xavier Glorot, Antoine Bordes, Yoshua Bengio, "Deep Sparse Rectifier Neural
Networks," in Fourteenth International Conference on Artificial Intelligence
and Statistics (PMLR), 2011.

[17] Alex Krizhevsky, I. Sutskever, G. E. Hinton, "ImageNet Classification with Deep
Convolutional Neural Networks," Neural Information Processing Systems, vol.
25, no. 2, 2012.

[18] Christian Szegedy, Wei Liu, Et. Al, "Going Deeper With Convolutions," in IEEE
Computer Vision and Pattern Recognition (CVPR), 2015.

[19] Y. Jia, E. Shelhamer, Et. Al, "Caffe: Convolutional Architecture for Fast Feature
Embedding," in 22nd ACM international conference on Multimedia MM, 2014.

[20] Xilinx, "Adaptive Inference Acceleration," November 2018. [Online]. Available:
https://www.xilinx.com/applications/megatrends/machine-learning.html.
[Accessed November 2018].

[21] Mipsology, "Zebra," August 2017. [Online]. Available:
http://www.mipsology.com/zebra.html. [Accessed November 2018].

[22] Intel, "OpenVINO Whitepaper," November 2018. [Online]. Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/
wp/intel-vision-accelerator-design-with-FPGA-wp.pdf. [Accessed November
2018].

[23] U. o. Pittsburgh, "Center for Research Computing Resources," November 2018.
[Online]. Available: https://crc.pitt.edu/resources. [Accessed November 2018].

52

[24] Elliot Delaye, "Integrating AI into Your Accelerated Cloud Applications," 2018.

[25] NVIDIA, "NVIDIA TESLA V100 GPU ARCHITECTURE," August 2017. [Online].
Available: http://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf. [Accessed November 2018].

[26] NVIDIA, "NIVIDIA cuDNN," November 2018. [Online]. Available:
https://developer.nvidia.com/cudnn. [Accessed November 2018].

[27] NVIDIA, "NVCaffe," November 2018. [Online]. Available:
https://docs.nvidia.com/deeplearning/dgx/caffe-user-guide/index.html.
[Accessed November 2018].

[28] Google, "AI & Machine Learning Products," November 2018. [Online]. Available:
https://cloud.google.com/tpu/. [Accessed November 2018].

[29] Intel, "KNL Product Specifications," 2018 November. [Online]. Available:
https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-
1_40-GHz-68-core. [Accessed 2018 November].

[30] Intel, "KNM Processor Specification," November 2018. [Online]. Available:
https://ark.intel.com/products/128690/Intel-Xeon-Phi-Processor-7295-16GB-
1-5-GHz-72-Core-. [Accessed November 2018].

[31] Intel, "Intel Knight’s Mill Microarchitecture," November 2018. [Online]. Available:
https://en.wikichip.org/wiki/intel/microarchitectures/knights_mill.

[32] Intel, "Skylake Processor Specificaitons," November 2018. [Online]. Available:
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-
38-5M-Cache-2-50-GHz-. [Accessed November 2018].

[33] Intel, "FPGA Acceleration Stack - OPAE," November 2018. [Online]. Available:
https://01.org/sites/default/files/downloads/opae/open-programmable-
acceleration-engine-paper.pdf. [Accessed November 2018].

[34] Intel, "Intel Optimized Caffe*," November 2018. [Online]. Available:
https://software.intel.com/en-us/articles/training-and-deploying-deep-learning-
networks-with-caffe-optimized-for-intel-architecture. [Accessed November
2018].

[35] Intel, "OpenVINO," November 2018. [Online]. Available:
https://software.intel.com/en-us/articles/OpenVINO-InferEngine. [Accessed
November 2018].

[36] C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, "Online and Offline Handwritten Chinese
Character Recognition: Benchmarking on New Databases," Pattern
Recognition, vol. 46, no. 1, pp. 155-162, 2013.

53

[37] Songxuan Lai, Lianwen Jin, Weixin Yang, "Toward high-performance online HCCR:
A CNN approach with DropDistortion, path signature and spatial stochastic
max-pooling," Pattern Recognition Letters, vol. 89, February 2017.

[38] R. DiCecco, G. Lacey, Et. Al, "Caffeinated FPGAs: FPGA framework For
Convolutional Neural Networks," in International Conference on Field-
Programmable Technology (FPT), 2016.

[39] NVIDIA, "GEFORCE GTX 1080 Ti," August 2017. [Online]. Available:
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/ .
[Accessed November 2018].

[40] FWDNXT, "Snowflake," 2018. [Online]. Available: http://www.fwdnxt.com .
[Accessed November 2018].

[41] NVIDIA, "NVIDIA TESLA P100 ARCHITECTURE," August 2017. [Online].
Available: https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-
datasheet.pdf . [Accessed November 2018].

[42] Intel, "Intel PAC," 16 October 2018. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/documentation/hhf1
507759304946.html#vjb1508359354353. [Accessed November 2018].

[43] John L. Hennessy, David A. Patterson, Computer Architecture: A Quantitative
Approach, 6 ed., San Francisco, CA: Morgan Kaufmann, 2017.

[44] Xilinx, "Xilinx Power Estimator," November 2018. [Online]. Available:
https://www.xilinx.com/products/technology/power/xpe.html. [Accessed
November 2018].

[45] BittWare, "Xilinx FPGA Boards," 7 March 2018. [Online]. Available:
https://www.bittware.com/fpga/xilinx/boards/. [Accessed November 2018].

[46] Brett Newman, "NVIDIA Tesla V100 Price Analysis," Microway, 8 March 2018.
[Online]. Available: https://www.microway.com/hpc-tech-tips/nvidia-tesla-
v100-price-analysis/. [Accessed November 2018].

[47] CPU-WORLD, "Intel Xeon Phi 7250," 20 June 2016. [Online]. Available:
http://www.cpu-world.com/CPUs/Xeon_Phi/Intel-
Xeon%20Phi%207250.html. [Accessed 2018 November].

[48] Dell, "Intel Programmable Acceleration Card," November 2018. [Online]. Available:
https://www.dell.com/en-us/shop/intel-fpga-programmable-acceleration-card-
70w-full-height/apd/403-bbvz/storage-drives-media. [Accessed November
2018].

[49] Intel, "Knight's Mill: New Intel Processor for Machine Learning," 2017. [Online].
Available: https://www.hotchips.org/wp-
content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.40-

54

Processors-Pub/HC29.21.421-Knights-Mill-Bradford-Intel-APPROVED.pdf.
[Accessed November 2018].

[50] Xilinx, "Versal: The First Adaptive Compute Acceleration Platform (ACAP," 2
October 2018. [Online]. Available:
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-
acap.pdf. [Accessed November 2018].

[51] NVIDIA, "NVIDIA Deep Learning Accelerator (NVDLA)," 2018. [Online]. Available:
http://nvdla.org/. [Accessed November 2018].

	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	Table 1 Maximum FP16 OPS Performance of frameworks/Devices and Power Consumption
	Table 2 Current Cost of Devices in USD$
	Table 3 CNN Performance Across GPU Devices with Varied Batch Sizes (Associated with Figure 7)
	Table 4 CNN Performance Across CPU Devices with Varied Batch Sizes (Associated with Figure 8)
	Table 5 CNN Performance Across CPU Devices with Varied Batch Sizes using Hyper-threading (Associated with Figure 9)
	Table 6 CNN Performance Across Intel Devices using OpenVINO with Varied Batch Sizes (Associated with Figure 11)

	List of Figures
	Figure 1 Dual Data-path Design of AlexNet [17]
	Figure 2 Intel Acceleration Stack Featuring OPAE [33]
	Figure 3 Caffe-Accelerator Relationship. Underlined Values Used in This Research.
	Figure 4 Architectural Design of HCCR-AlexNet [11] Referred to as Alexnet in This Research
	Figure 5 Architectural Design of HCCR-GoogLeNet [11] Referred to as GoogLeNet in This Research
	Figure 6 CNN Performance Across Xilinx FPGA Frameworks with Varied Batch Sizes
	Figure 7 CNN Performance Across GPU Devices with Varied Batch Sizes (See Appendix for Values)
	Figure 8 CNN Performance Across CPU Devices with Varied Batch Sizes (See Appendix for Values)
	Figure 9 CNN Performance Across CPU Devices using Hyper-threading with Varied Batch Sizes (See Appendix for Values)
	Figure 10 CNN Performance Across Intel OpenVINO Binaries with Varied Batch Sizes
	Figure 11 CNN Performance Across Intel Devices using OpenVINO with Varied Batch Sizes (See Appendix for Values)
	Figure 12 Performance of Caffe-based Frameworks on Xilinx FPGA and OpenVINO on Intel PAC FPGA
	Figure 13 CNN Performance on Xeon Skylake CPU using Caffe and OpenVINO
	Figure 14 CNN Performance on Xilinx FPGA Using Zebra and Tesla V100 GPU
	Figure 15 CNN Performance on Xilinx FPGA Using Zebra and Xeon Skylake CPU
	Figure 16 CNN Performance on Xeon Skylake CPU and Tesla V100 GPU
	Figure 17 Efficiency Characteristics of CNNs Across All Devices and Frameworks
	Figure 18 Cost-Efficiency Characteristics of CNNs Across All Devices and Frameworks
	Figure 19 Energy Cost-Efficiency Characteristics of CNNs Across All Devices and Frameworks

	Preface
	1.0 Introduction
	2.0 Background
	2.1 Machine-Learning Inference
	2.2 Deep Learning
	2.3 Caffe Machine-Learning Framework
	2.4 Cloud Computing Platforms
	2.5 Field-Programmable Gate Arrays (FPGAs)
	2.6 Xilinx Framework for Deep Neural Networks (xfDNN)
	2.7 Mipsology Zebra
	2.8 Graphics Processing Units (GPUs)
	2.9 NIVIDIA CUDA Deep Neural Network Library (cuDNN)
	2.10 NVIDIA Optimized Caffe (NVCaffe)
	2.11 Google Tensor Processing Unit (TPU)
	2.12 Many-core CPUs
	2.13 Processor Metrics
	2.14 Intel Open Programmable Acceleration Engine (OPAE)
	2.15 Intel Machine-Learning Software
	2.16 Handwritten Chinese Character Recognition (HCCR)
	2.17 Caffe-Accelerator Relationship

	3.0 Related Work
	4.0 Methodology
	4.1 Xilinx FPGA Acceleration
	4.2 Intel FPGA Acceleration
	4.3 Intel CPU Acceleration
	4.4 NVIDIA GPU Acceleration

	5.0 Results
	5.1 Architecture Batch Scaling Performance
	5.2 Performance Comparisons
	5.3 Efficiency Comparisons

	6.0 Discussion
	6.1 Device Performance
	6.2 Device Efficiency

	7.0 Conclusions
	8.0 Future Work
	Appendix
	Bibliography

