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Segregation, or the separation/stratification of particles with differing properties, can lead to 

significant handling problems, product non-uniformity, and even complete batches being 

discarded at huge financial loss in multiple industries.  Thus, one could argue that segregation is 

one of the most important factors in industrial processing of granular materials. There has been a 

tremendous focus in recent years on granular segregation problems and much has been learned 

about the mechanisms driving those phenomena. Segregation model development holds promise 

for translation of academic research into industrial practice; however, experimental validation of 

dynamic models is extremely difficult and typical segregation models are not inherently built with 

scale-up in mind. One unique aspect of our work is that we overcome these experimental 

limitations by exploiting a novel framework for segregation testing based on establishing an 

“equilibrium” between mixing and segregation in free surface granular flows in order to alter the 

steady-state distribution of particles.  By achieving this balance between the rate of segregation 

and the perturbation rate, we combine the model expressions that we are interested in testing with 

dramatically simplified experiments to ultimately deduce the segregation rate and validate the 

expressions.  Moreover, by exploring a novel view of the interplay between granular rheology and 

segregation, we have introduced a new way of structuring segregation rate models that make them 

inherently more scalable and accurate for industrial use than any models previously reported.  

QUANTITATIVE PREDICTION OF SEGREGATION AT PROCESS SCALE 

Siying Liu, PhD 

University of Pittsburgh, 2018
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Types of segregation properties studied in this research include density, size, wet and shape. Our 

results suggest that one can prescribe (or design) industrial operating conditions that will lead to 

dramatically lower segregation extents. 
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1.0  INTRODUCTION 

 A granular material is an assembly of a large number of discrete solid components.  They 

are ubiquitous in day-to-day life and are second only to water as the world’s most handled 

industrial material 1.  In the chemical industry, more than 30% of products are formed as granular 

particles 2.  Segregation, or un-mixing, of granular particles is a commonly observed, but usually 

undesired phenomenon in a variety of industry processes. When particles differ in almost any 

mechanical property (size, shape, density & angle of repose etc.), segregate can happen; which can 

manifest as pattern formation, layering or complete separation of the materials3–6.  This non-

homogeneity can cause dramatic revenue loss and product failure in industries such as 

pharmaceuticals, ceramics, and agriculture, to name but a few.  Segregation is unique to solid 

material and has no direct analogy in fluids. And contrary to fluid mixing, a higher agitation rate 

may cause more severe segregation rather than better mixing. However, despite been routinely 

observed, there is little fundamental understanding of the processes/parameters that impact 

segregation.    

 Two issues that make the study of segregation daunting are (1) the difficulty in measuring 

segregation rate in an experimental or industry setting and (2) the lack of validated scale-up 

capable models.  Furthermore, the particle bulk properties e.g., stress, strain, voidage etc. (all of 

those are necessary in a theoretical description of a granular flow) are extremely difficult to 

measure.  While there have been advances in non-invasive experimental methods7 which allow 

measuring valuable information such as particle positions, velocity profiles and particle 
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orientation, those methods are typically expensive and have a big uncertainty involved.  In contrast 

with the mixing of fluids, there is no accepted set of governing equations for solids mixing.  This 

lack of a universal mathematical description is a big hindrance to the understanding of solid 

mixing/segregation.  On the contrary, significant inroads have been made recently in uncovering 

an understanding of granular rheology with the so-called μ(I) model 8,9.  One goal of this research 

is to develop unique insight into particle segregation problems and build dramatically more 

accurate as well as inherently scalable models that are valid for industrial use by exploiting the 

connection between segregation and flow rheology. 

 While a global theory of segregation is lacking, the interactions of individual particles are 

well understood, both experimentally and theoretically.  Thus, the discrete element method (DEM) 

is a popular choice used to study particle segregation.  DEM captures the motion of every particle 

in a large system using the techniques of molecular dynamics simulation and Newton’s law of 

motion.  In DEM simulation, particle properties such as size, density and shape can be directly 

specified, thus make segregation easier to study.  Details such as particle velocity, position and 

concentration profiles for each component in a mixture can be obtained at each time step.  

Compared with experiments, DEM simulation allows more information to be more easily extracted 

and the subsequent data tends to be easier to analyze.  Therefore, a large part of the work presented 

in the following chapters is carried out using DEM while validating experiments are performed 

when possible.   

 The object of the present work is to examine the segregation phenomena and investigate 

ways to control it with the main focus on density and size segregation while shape and cohesive 

segregation are touched.  By using intruder-based studies, we developed theories to predict and 

control segregation rates. 
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Half of the work focuses on a tumbler and the other half focuses on a shearing cell.  

Tumblers are hollow devices which are partially filled with granular material and rotated.  This 

class of device is widely used in industry for mixing of materials as well as other applications such 

as coating and drying.  Shearing cells are not typically used in industry but provide one of the 

cleanest ways to build theory-based models because all of the operational parameters are 

controllable and their effects are easy to separate.  In simulation, a shearing cell is constructed by 

two periodic plates while in experiments, an annular cell is used to mimic the simulated 

environment.  

The dissertation is organized as follows.  Chapter 2 reviews relevant background materials.  

Previous works in granular mixing, particle rheology and a review of segregating and segregation 

mechanisms are presented.  Finally, a discussion of the simulation methodology, namely the 

particle dynamics (DEM) technique are included. Chapter 3 covers results of our proposed 

framework which we show can be used to validate different size/density segregation models.  

Chapter 4 presents a new rheology-based density segregation model which uncovered a dramatic, 

never-before-reported regime transition in the rate of density-based segregation that could have a 

profound impact on the processing of granular materials in industrial practice.  Chapter 5 validate 

the proposed model using experiments.  Chapter 6 deals with size segregation and shows our effort 

to connect rheology with size segregation mechanics.  Chapter 7 extends our proposed density 

segregation model to cohesive particles and shows that cohesive particles also obey the save 

rheology-segregation relations.  Chapter 8 proposes a characteristic size ratio which is able to 

convert cylindrical particles into spherical particles and thus deal shape segregation using the same 

manner as size segregation
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2.0  BACKGROUND 

Granular materials are widely used in industries such as cement, fertilizers, 

pharmaceuticals, construction, mining and agricultural.  These materials are often multi-

component and exhibit difference in size, density, shape, and roughness.  In fact, even “pure” 

materials almost invariable exhibit a non-trivial size distribution. As a result, these materials 

typically segregate, or de-mix during the processing process.  Moreover, even previously well-

mixed particles will segregation as they are transported from one place to another through methods 

like chute or conveyor.  Segregation is also a nature phenomenon, commonly studied in geological 

flows or snow avalanche. In the industry material processing phase, many equipment; such as 

vibrators10, heaps11,12, and rotating drums13,14 can all cause segregation and thus revenue loss.  

Granular segregation problems have been a popular topic for a while. The focus includes 

density-driven 15–17 to size -dependent 18–21 and even multi-model segregation22–25. Although much 

have been learned about the mechanisms driving these phenomena, there has been little to no effort 

devoted toward scaling those models with respect to flow regime.   In this section, we review 

previous work on segregation modeling and experimentation that is relevant to the proposed work.  

We begin with a discussion of the modeling of segregation dynamics based on differences in 

density and size, including a generic framework for how this type of model is often built.  A critical 

point to make in this section is that no previous study has observed a behavior change in 
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segregation rate with changing granular flow rheology.  Next, we discuss the computational tool 

that will be used for a large portion of this work, the Discrete Element Method (DEM). 

2.1 SEGREGATION: DENSITY AND SIZE 

The vast majority of existing studies of segregation rates have focused on binary combinations 

of particles that differ in either density or size (or both).  In general, these studies take a continuum 

viewpoint of the flowing granular material and aim to write theoretical expressions that can be 

solved for either the steady state or dynamic concentration of one of the species in the mixture. 

As an example, if we define a certain type particle in a flow as Ψ and its fraction of the total 

particles as c, the variation of Ψ in a quasi 2D flowing layer is then governed by a convective 

diffusion equation as:  

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐷𝐷𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐽𝐽𝑠𝑠)  (2-1) 

where the diffusion and segregation are neglected in the flow direction x.  The first term on the 

right-hand side is the diffusion flux with D being the diffusion coefficient, while Js represents the 

segregation flux.  This approach allows us to choose the segregation flux model and after 

coupling with existing theories, we can solve for a concentration profile of particles across the 

flowing layer.  In the following paragraphs, we discuss existing models of segregation velocity 

Vs which is commonly used to calculate segregation flux as Js=VsΨtolc. 
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2.1.1 Density-driven Segregation 

 Density segregation is often thought to arise due to an effective “buoyant force” 

experienced by the particles 16,17.  In the buoyance approach, particles maybe considered as 

immersed in a medium of surrounding particles; thus, heavier particles “sink” down while lighter 

particles “float” up.  An early model proposed the segregation velocity took the form 

 𝑉𝑉𝑉𝑉 = −𝐾𝐾(𝜌𝜌1−< 𝜌𝜌 >) = −𝐾𝐾𝑠𝑠(1 − 𝜌𝜌)  (2-2) 

where <ρ> is the averaged particle density, ρ1 is the density of the light particles, ρ  is the 

density ratio between light and heavy particles and K are constants 

2.1.2 Size-driven Segregation 

In contrast to the density segregation, which has a commonly accepted theory, size segregation 

has adapted a more diverse range of approaches with many depending on the flow “regime” – i.e., 

dense verses dilute.  One common approach for dilute flow adopt the kinetic theory-based 

approach 26.   They suggested that size segregation is due to granular thermal diffusion.  However, 

recent work by Fan and Hill 27 showed that kinetic theory based  on binary collisions predicted the 

opposite segregation direction from experimentally observed trends in dense phase flow. 

In works mainly focus on dense phase, several papers have proposed models using percolation 

argument 18,28,29.  In short, percolation (Figure 2.1) can be explained by the fact that small particles 

consistently have a higher chance to drop in a void than bigger particles.  Thus, small particles 

move downward by dropping into the voids, and consequently, the large particles travel upwards.  

While the details of size segregation models differ, a typical model can be written as 30 
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 𝑉𝑉𝑉𝑉 = [𝐾𝐾𝑖𝑖 + (1 − 𝑐𝑐)𝐾𝐾𝑐𝑐](1− 𝑐𝑐)(1 − 𝑑𝑑)  (2-3) 

Where K are concentration-dependent components that can be complex functions depends 

on parameters such as granular temperature, local void fraction, coefficient of restitution etc.  To 

make model fitting easier, Ks are usually considered as a constant. c is particle ratio as mentioned 

before and d  is the particle size ratio. 

 

 

Figure 2.1: Size segregation mechanism: percolation 

2.2 GRANULAR SYSTEM RHOLOGY 

 When particles are large enough (d > 250 μm), particles interactions are dominated by 

contacting with neighbors while molecular level forces can be neglected.  Still, dry granular 

material flows are not easy to describe.  Granular materials can behave like a solid (in a sand pile), 

a liquid (poured from a silo) or a gas (when strongly agitated) depending on the flow velocity31.  

It is a common practice to divide the flow into three regimes8.  First, a quasi-static regime where 

particles have long duration contacts with their neighbors and can be described using soil plasticity 

models.  Secondly, a gaseous regime where particles are far apart one from another and can be 

considered as in analogy to kinetic theory of gases.  In between those two regimes is the dense 
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flow regime which up to recently no constitutive equations or framework can describe.  MiDi 8 is 

the first using a single dimensionless number I to describe granular system rheology.  The inertia 

number I describes the relative importance of inertia and confining stresses and is defined as 

 
dI

P /
γ

=
ρ

  (2-4) 

The inertia number can also be interpreted in terms of the relevant time scales controlling 

particle motion as shown in Error! Reference source not found..  Considering the motion of one 

particle during a simple shear, the particle first follows the medium deformation and the mean time 

it needs to move from one stable position to the next is 1
st

−= γ .  During the movement, the particle 

eventually reaches an unstable position when passing though the crest over particles just below. 

Due to the confining pressure acts upon the particle, it is pushed down in the crest.  The time of 

falling (tf) of a particle with density ρ and dimeter d can be estimated by free falling equation as 

ft d / P /= ρ  .  The inertia number I is the ratio between tf and ts.  In the quasi-static regime, I is 

seen as 0→  and in the kinetic regime, I is on the other extreme.  The dense regime lays in the 

range of I in between. 
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Figure 2.2: Sketch of the motion of a particle during a simple shear under a confining 

pressure32 

 

 

Inertia number can be used to provide a relevant framework to describe dense granular 

flows.  In Figure 2.3. (a) shows the ratio of shear stress over normal stress as a function of I, (b) 

shows the volume fraction as a function of I and (c) shows the shape of friction law used in 

rheology theory as a function of I.  Those relations between inertia number and granular rheology 

provide a constitutive law that could be useful to describe and character complex granulation 

configurations.  
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Figure 2.3: Inertia number relations with granular flow rheology33 

2.3 SIMULATIONS 

The computational tool that will be used for this work is the Particle Dynamics Method.  In 

this technique, the bulk flow of the material is captured via simultaneous integration of the 

interaction forces between individual pairs of particles 34,35.  While these forces typically include 

only contact forces and gravity, additional particle interaction force (such as surface adhesion36 

and liquid-bridge37) can be easily added 38.  In this section, we review some technical particle-level 

theory of this method. 
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Figure 2.4: Schematic of a simple DEM force model 

2.3.1 Equations of Motion 

 In DEM simulation, bulk flow of the granular materials is captured via simultaneous 

integration of the interaction collision forces.  Newton’s equations of motion (Eq. (2-5) & (2-6)) 

are used to calculate each particle’s trajectory. 

Linear Motion: 

 𝑚𝑚𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑚𝑚𝑚𝑚 + 𝐹𝐹𝑛𝑛 + 𝐹𝐹𝑡𝑡  (2-5) 

Angular Motion: 

 𝐼𝐼 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹⃗𝐹𝑡𝑡 × 𝑅𝑅�⃗   (2-6) 

where m, v, t, I, w, R, Ft and Fn are the particle mass, velocity, time step, moment of inertia, 

angular velocity, particle radius, normal force and tangential force acting on a particle. 
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2.3.2 Force Models 

 The force models are integral to DEM simulation.  Forces acted upon particles include 

external forces (gravity, compress pressure) and contact forces – normal repulsion and tangential 

friction.  Figure 2.4 shows a simple force model accounting for the contact mechanics which 

includes a spring, a dashpot and a slider configuration 34.  

2.3.2.1 Normal Forces 

The normal force is modeled as an elastic-plastic material after the work of Thornton 39.  The 

deformation of the particles α is computed as the “overlap” so that nv dtα = , where vn is the 

velocity on the normal direction and dt is the time-step.  The value of α is positive during loading 

and negative during unloading.  At the initial stages of the loading, the normal force, Fn is purely 

elastic and is given by 

 𝐹𝐹𝑛𝑛𝑁𝑁 = 𝐹𝐹𝑛𝑛𝑁𝑁−1 + 𝑘𝑘𝑛𝑛𝛼𝛼  (2-7) 

where kn, which equals to 2aE*, is the normal force constant based on the Hertz theory. E* is the 

representative Young’s Modulus and a is the radius of the contact area.  In Eq.(2-7), N and N-1 

are current and previous time-step respectively. 

 Once the normal force exceeds a yield force, Fy, a modified version of the contact force-

displacement relationship based on Wu40 is used.  The normal force constant kn of further 

loading is given by YR *π  where Y is the yield stress and R* is the effective particle radius and 

the deformation of the particle α equals to 2 2 2Y R / 4E*π . 

 If cohesive force is taken into consider, once particles are contacted, both the capillary 

force Fc and the viscosity force on the normal direction Fvn are calculated using equations below: 
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 𝐹𝐹𝑐𝑐 = −𝜋𝜋𝜋𝜋𝜋𝜋 ∗ (𝑒𝑒𝑒𝑒𝑒𝑒(𝐴𝐴𝐴𝐴 + 𝐵𝐵) + 𝐶𝐶)  (2-8) 

 𝐹𝐹𝑣𝑣𝑣𝑣 = −6𝜋𝜋𝜋𝜋𝜋𝜋𝑣𝑣𝑛𝑛𝑅𝑅/𝑆𝑆  (2-9) 

 In the equations, S is the separation distance between the pair of particles, A, B and C are 

constants depend on the liquid bridge’s volume.  μ is the interstitial fluid’s viscosity, R is the 

particle radius and vn is the relative normal velocity of the pair of spheres. 

2.3.2.2 Tangential Forces 

 We used tangential forces derived by Walton and Braun41.   For each time-step, the new 

tangential force acting at the particle-particle contact point, Ft is given as: 

 𝐹𝐹𝑡𝑡𝑁𝑁 = 𝐹𝐹𝑡𝑡𝑁𝑁−1 − 𝑘𝑘𝑡𝑡𝛥𝛥𝛥𝛥  (2-10) 

where Ft
N-1 is the old tangential force and tk s∆  is the incremental change in the tangential force 

during the present time-step due to relative particle motion42. When Ft is smaller than friction force 

caused by Fn, based on Thornton43, the frictional stiffness kt will equal to 8G*a, where G* is the 

shear modulus and a is the radius of the contact area. 

 In case of cohesive, a viscosity force (Fvt) on the tangential direction is added as seen in 

Eq.(2-11). 

𝐹𝐹𝑣𝑣𝑣𝑣 = −( 8
15
𝑙𝑙𝑙𝑙 𝑅𝑅

𝑆𝑆
+ 0.9588)6𝜋𝜋𝜋𝜋𝜋𝜋𝑣𝑣𝑡𝑡      (2-11) 

All the notations are same as in the normal force section except vt which is the relative tangential 

velocity of the pair of spheres 
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3.0  VALIDATING SEGREGATION RATE MODELS 

The content of this chapter is taken from Liu, S. and McCarthy, J. J. (2017), Validating granular 

segregation rate models. AIChE J., 63: 3756-3763. doi:10.1002/aic.15770 

3.1 INTRODUCTION 

 It is well known that when processing two different types of particles in a solid handling 

device, segregation often arises due to differences in particle properties 44 and that, in practice, 

even an ostensibly “pure" material may segregate because of non-trivial size distribution 30. In a 

horizontal drum - a proptype mixing device - the segregation based on density differences will 

force the less dense particles to the periphery and the denser particles to the inner core, while the 

segregation based on size differences will (typically) move larger particles to the periphery and 

smaller particles to in inner core 45 (although the opposite trend can be obtained under certain 

conditions 46). In some industries, segregation phenomena can create problems in maintaining 

uniform product quality and ultimately cause revenue loss. 

 A partially filled rotating tumbler is one common way of mixing particles. In a tumbler, 

the major component of the velocity is parallel to the surface and there is a boundary between the 

continuous flow regime (liquid-like flowing particles) and the fixed bed regimes (solid like) 47. 

Makse 48 stated that it is plausible to describe a rotating tumbler system by only its surface 

https://doi.org/10.1002/aic.15770
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properties, thus, only the properties of the particles that compose the flowing layer particles are 

studied in this paper. In the flow regime examined in this work, percolation is often the dominant 

mechanism of free surface segregation such that the larger (lighter) particles rise to the top while 

the smaller (denser) particles sink to the bottom49.  In a rotating tumbler, the reversible process 

between mixing and segregation eventually balances and the particle distribution becomes 

invariant with time (i.e., the system reaches a statistical steady state). Shi et al. 50 have shown 

that by   periodically and ultimately reduces the extent of segregation. They suggested that, by 

reducing the extent of segregation, the ultimate balance between mixing and segregation (at 

steady state) is altered. When the flow is perturbed at a high frequency (above a critical value of 

the forcing frequency), segregation can be effectively eliminated. The relation between flow 

perturbation rate and extent of segregation is reconfirmed in this work, while at the same time we 

exploit this changing balance between mixing and segregation as a means of testing segregation 

models. 

Although the mechanisms of segregation in shear flow are well understood and several 

continuum rate models hold promise for scale-up, accurate experimental validation of dynamic 

models remains extremely difficult. In this work, focusing on binary systems, we aim to use a 

framework established from previous work in our group 30,51,52 - and alluded to in the previous 

paragraph - as a means to validate different rate models. We focus exclusively on the rolling 

regime of a tumbler. Several different size and density models will be used to predict the critical 

value of the forcing frequency (and its dependence on material and process parameters). Then 

relationship between the extent of segregation and the rate of perturbation will be studied at 

steady state both simulative and experimentally for a variety of conditions. By controlling the 
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periodic flow perturbations rate (tumbler rotation rate), particles sizes and density ratios we can 

evaluate how well competing models predict the critical value of the forcing frequency. 

3.2 THEORY 

3.2.1 Framework 

 The central idea of the segregation testing framework set forth here is that, while 

perturbing a flow at a rate significantly higher/lower than the critical forcing frequency will lead 

to almost complete mixing/segregation, choosing a perturbation frequency that is close to the 

critical value will lead to a ``unique'' steady state degree of mixedness. Thus, one can measure 

the resulting steady-state distribution of particles in order to evaluate the accuracy of a 

segregation models' prediction of the critical frequency (and how it varies with material and 

process parameters). In essence, this idea makes an analogy between the competition between 

the mixing and segregation behavior with the competition between a forward and backward 

reaction. That is, if one were to measure (or calculate) two of the three reaction components -- 

forward reaction rate, backward rate, equilibrium distribution -- the third would be determined. 

Here, we use the “equilibrium” segregation extent coupled with the known forcing frequency to 

assess the (third component) a segregation rate model. Specifically, we use an axially-located 

baffle to perturb the surface flow within a tumbler-type mixer at a predetermined frequency f 

(that is directly related to the tumbler rotation rate as discussed below).  

 In order to identify the critical perturbation frequency52 one needs to recognize that 

segregation takes a finite time, st  , for segregation to occur.  As discussed previously 51 a 
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reasonable choice of the characteristic segregation time may then be written as s
s

dt
v

= , where d 

is the particle diameter and sv  is the segregation velocity taken from the segregation model to be 

tested. Following this procedure, the critical frequency can be expressed as   

 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1
𝑡𝑡𝑠𝑠

= 𝑣𝑣𝑠𝑠
𝑑𝑑

  (3-1) 

 When using an axially-baffled tumbler as our means of flow perturbation we note that 

the flowing layer is interrupted and the segregation orientation changes once per half revolution.  

If we set the effective forcing frequency as the inverse of the mean residence time in the layer lt

53, we obtain the effective forcing frequency within the tumbler as  

 𝑓𝑓 = 1
𝑡𝑡𝑙𝑙

= √𝜔𝜔𝜔𝜔
2𝜋𝜋

  (3-2) 

where ω  is the rotation rate (rad/s) and γ  is the shear rate in the flowing layer.  The shear rate in 

a tumbler mixer has been reported by Ottino et al.53 as 

 𝛾𝛾 = 𝑀𝑀 ∗ [𝑔𝑔∗𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃−𝜃𝜃𝑠𝑠)
𝑑𝑑∗𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑠𝑠)

]0.5  (3-3) 

where M is a constant, θ  is the dynamic angle of repose and sθ  is the static angle of repose.  

Chou et al.54 fitted experimental results with Eq.(3-3) and concluded that a constant value 

M=1.36, and we use this value throughout the paper.  

 It should be noted that, in Eq.(3-3), the estimated effective forcing frequency is derived 

from the non-baffled tumbler case; thus, the value of f  is a lower bound of the real value since 

the flowing layer should be effectively truncated by the baffle, hence the material will visit the 



 18 

flowing layer more frequently in the baffled case.  Combining Eq.(3-2) and Eq.(3-2), we obtain a 

ratio between the effective forcing frequency and the critical forcing frequency as shown below  

 𝑓𝑓
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑑𝑑√𝜔𝜔𝜔𝜔
2𝜋𝜋𝑣𝑣𝑠𝑠

  (3-4) 

 The mode of employment of Eq. (3-4) is as follows. We expect that the segregation extent of the 

system will decrease monotonically as the perturbation frequency, f, increases from small values. 

At some point, as 
crit

f
f

 reaches/exceeds unity, we expect that the mixing/segregation balance will 

have shifted enough that we may expect a well-mixed system.  Eq. (3-4) can be made analytic 

with respect to material properties and process parameters by incorporating a theoretical model 

for the segregation velocity sv . Thus, all models to be tested within our framework will dictate 

this form in each case examined. 

3.2.2 Density Segregation 

3.2.2.1 Buoyant Model 

 Consider equal-sized particles of different densities in the flowing layer of a tumbler.  

The simultaneous rising and sinking of lower density and higher density particles, respectively, 

causes segregation.  Vargas et al.52 proposed a density model based on the assumption that the 

driving force for segregation is a particle buoyant force6.  Assuming the segregation velocity is 

proportional to the buoyant force, the segregation velocity of the heavy particle will take the 

form: 

 𝑣𝑣𝑠𝑠 = 𝐾𝐾𝑠𝑠(1 − 𝜌̄𝜌)  (3-5) 
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where ρ  is the density ratio between light and heavy particles, and sK  is the characteristic 

segregation velocity depending on the local void fraction and granular temperature52.  According 

to previous work16 the dimensionless Peclet number Pe can be defined as segregation

diffusion

v
v

 and is 

approximately equal to 1 for the material and process parameter space examined here.  Thus, 

sK R 1
D

≈ .  According to Savage55, the diffusivity in a sheared layer D can be written as  

 𝐷𝐷 ∝ 𝑑𝑑2𝛾𝛾.  (3-6) 

Incorporating the buoyant density segregation model described here into the segregation 

framework Eq.(3-4) leads to: 

 𝑓𝑓
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝜁𝜁𝑑𝑑�
𝜔𝜔
𝛾𝛾
∗ 1

(1−𝜌̄𝜌)
  (3-7) 

where, due to current theoretical uncertainty, dζ  is treated as a fitting parameter, but is expected 

to be of order 1. 

3.2.2.2 Drag Model 

 The drag force on a segregating particle may be expected to impact the segregation rate, 

however this is not accounted for within the simple buoyant model outlined above. To account for 

this, Tripathi et al.17 presented a density segregation model which includes the drag force.  They 

started with a force balance on a particle as 

    0 = 𝐹𝐹_𝑤𝑤 − 𝐹𝐹_𝑏𝑏 + 𝐹𝐹_𝑑𝑑               (3-8) 
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where dF  is the drag force through the bed, wF  is the gravitational component in the segregation 

direction and bF  is the buoyancy force exerted on the particle by the granular medium (toward the 

surface or away from the segregation direction). The drag force dF  on the particle of diameter d is 

given by a modified Stokes law, d sF B dv= πη  where sv  is the sinking/segregation velocity, η is 

the viscosity caused by the surrounding granular medium and B is treated as a fitting parameter.  

To mimic the simplest case of density segregation, the behavior of a heavy particle in a medium 

of light particles ( Lm  ) is analyzed17 ; to sum everything up, the above equation can be rewritten as 

 𝑣𝑣𝑠𝑠 = −𝑚𝑚𝐻𝐻𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃−𝑚𝑚𝐿𝐿𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

  (3-9) 

Combining Eq. (3-9) with Eq. (3-4)and simplifying the combined equation yields                                                              

 𝑓𝑓
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 3𝐵𝐵
2𝜋𝜋𝜋𝜋𝜋𝜋

𝜂𝜂√𝜔𝜔𝜔𝜔
𝜌𝜌𝐻𝐻(1−𝜌̄𝜌)𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

  (3-10) 

The viscosity term η can be further defined as
τ

η =
γ

, where τ  is the shear stress which Tripathi et 

al.56 suggests may be written as: 

 𝜏𝜏 = 𝑃𝑃 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃) = 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) 𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃)  (3-11) 

 In Eq.(3-11), P is the pressure within the surface flow (and is calculated based on 

equations from Chou et al 54 and avgρ  is the average density of the whole system. Combining 

these equations yields 

 𝑓𝑓
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 3𝐵𝐵(1+𝜌̄𝜌)
4𝜋𝜋(1−𝜌̄𝜌)�

𝜔𝜔
𝛾𝛾
∗ 𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃)  (3-12) 
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3.2.3 Size Segregation 

3.2.3.1 Linear Model 

 In the rolling regime of a tumbler mixer (dense flow), it is a well-known phenomenon 

that, under gravity, small particles sink through shear-generated voids while large particles rise 

to the top.  Below is phenomenological size segregation model proposed by Hajra et al.30.  In this 

model, the segregation velocity is assumed to be proportional to the particle size ratio and the 

average particle diameter. 

 𝑣𝑣𝑠𝑠 = −𝐾𝐾(𝑑𝑑1 − ⟨𝑑𝑑⟩)  (3-13) 

In this expression, 1 1 2 2

1 2

d dd φ + φ
〈 〉 =

φ + φ
 is the mass-averaged particle size, d is the diameter of the 

particles and φ  is the mass concentration of particles. For an equal-mass binary system, φ  is 

equal to 0.5. Subscript 1 refers to variables for the smaller particle, while 2 refers to larger 

particles.  K has been assumed to be a constant which has both an intrinsic and a concentration-

dependent component ( TK  and SK  respectively)30. Expanding d〈 〉  and simplifying Eq.(3-13) 

yields  

 s 1v K ( d d )φ= −   (3-14) 

where Kφ  is a constant at fixed total concentration and the size ratio 1 2d d / d .=  Using the 

model outlined above, the characteristic segregation time can be written as  

 𝑡𝑡𝑠𝑠 = 𝑑𝑑1
𝐾𝐾𝜙𝜙(1−𝑑̄𝑑)

  (3-15) 
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where 1d  is the radius of the small particles. Defining the diffusion time Dt  as 2
1d / D  , we again 

take the Peclet number to approximately equal to 130 so that 1Pe d K / D 1φ= ≈  . Combining the 

above equation with the diffusivity Equation (Eq.(3-6)), st  can be written as s
1t

(1 d )
∝
γ −

 .  

Thus, we can rewrite Eq.(3-4) for the size segregation as 

 𝑓𝑓
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝜁𝜁𝑠𝑠�
𝜔𝜔
𝛾𝛾

1
(1−𝑑̄𝑑)

  (3-16) 

where sζ  is treated as a fitting parameter. 

3.2.3.2 Natural Log Model 

 Schlick  et al. 21derived a new size segregation model based on DEM simulation of a 

quasi-2D bounded heap flow.  Similar to the linear model, this model also states that the 

segregation velocity is approximated as a linear function of the shear rate and the concentration 

of the other particles as: 

 𝑣𝑣𝑠𝑠 = −𝑆𝑆𝑆𝑆(1 − 𝜙𝜙1)  (3-17) 

Here S is the segregation length scale depending on the particle size and particle size ratio and 

1φ  is the mass fraction of large particles.  A simulation correlation for S was suggested21  as 

 𝑆𝑆(𝑑𝑑1,𝑑𝑑2) = 0.26𝑑𝑑1𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑2
𝑑𝑑1

)  (3-18) 

After combining Eq.(3-17) with Eq.(3-4) and rearranging, we obtain 

 𝑓𝑓
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 1
4𝜋𝜋∗0.26∗(1−𝜙𝜙1)�

𝜔𝜔
𝛾𝛾

1
(𝑙𝑙𝑙𝑙𝑙𝑙(1/𝑑̄𝑑))

  (3-19) 
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 We should note that, in order to avoid spontaneous percolation of fines through the bed 

we have limited our size ratios to values that are reasonably close to unity.  Thus, the functional 

form of Eq.(3-16) and Eq.(3-19) are largely the same to first order. 

3.3 MEASUREMENT 

3.3.1 Experiment 

 All models suggest that both the particle material property ratios (ρ  or d  )and the 

rotation rate (ω  ) of the tumbler can impact the steady-state segregation of a single-baffled 

tumbler.  Thus, to test our theory, the particle properties and rotation rate of the tumbler were 

controlled, and the extent of segregation at steady state was analyzed.  The experiments were 

carried out in a half-filled glass tumbler of diameter 15 cm and length 1.5 cm.  The tumbler has 

an axially-located baffle.    

 For the density portion, the experiments were conducted using 1:1 volume ratio 

combination of two types of 3 mm beads picked from cellulose acetate (1240 3kg / m ), steel 

(7900 3kg / m )or glass (2500 3kg / m ).  Later, the glass used in this experiment was etched using 

5 wt% HF acid to increase the surface roughness and mixed with steel again for an extra set of 

experiment.  Three density ratios d =  0.15, 0.31 and 0.5 were tested.   
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For the size portion, cellulose acetate balls of 4 different sizes with diameters 2, 3, 4 and 5 mm 

were used.  Each size of ball has a different color.  Four size ratios d =  0.4, 0.5, 0.66 and 0.75 

were tested.   

 For all experiments, the tumbler was rotated around the horizontal axis with a chosen 

constant rotation rate (ω  = 3-18 RPM.) using a computer-controlled stepper motor.  In the 

flowing layer, the local surface angle and the local layer thickness are known for varying with 

the local flow properties57.  Thus, the particle static angle of repose sθ  and dynamic angle of 

repose θ  were measured using at the center of corresponding non-baffled tumbler case.  The 

dynamic angle of repose θ  was measured when the system reached steady state and the static 

angle of repose sθ  was measured when the non-baffled tumbler stopped rotating. 

 Images of the rotating tumbler were taken with a Nikon D200 digital camera once the 

segregation patterns became time invariant (after more than 5 rotations).  A halogen light is used 

to increase brightness while taking pictures.  For the size experiment, different particles were 

distinguished by their colors.  For the density experiments, the reflective spots' position of each 

particle and the spots' intensity were used to distinguish different types of particles.  Figure 3.1 

shows the experimental results of steel/glass (dyed as red) particles system at steady state.  The 

steady states of pictures were analyzed using a software called ImageJ.  The picture analysis 

procedure followed the procedure described by Vargas et al \cite{Vargas:2008la}. The intensity 

of segregation (Eq.(3-20)) was used in order to quantitatively determine the degree of mixing.  In 

Eq.(3-20)), c< >  is the average concentration of the whole system and iC  is the local 

concentration after separating the whole system into N uniformly distributed boxes. For equal 

total volume binary system, the IS ranges from 0 to 0.5.  A low value of IS indicates a well-
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mixed system.  Four pictures were analyzed and their average IS value was used at each 

condition. 

 

 

Figure 3.1: Density ratio ρ =  0.31 experiment results at different rotation speeds  
(a) 6 RPM (b) 9 RPM  (c) 12 RPM 

 

 𝐼𝐼𝐼𝐼 = � 1
𝑁𝑁−1

∑ (𝐶𝐶𝑖𝑖−< 𝐶𝐶 >)2𝑁𝑁
𝑖𝑖=1 �

1/2
  (3-20) 

3.3.2 Simulation 

For each experimental condition, the corresponding simulation was done using the discrete 

element method (DEM)58.  Figure 3.2 shows three DEM simulation trials for steel/glass system 

(ρ =  0.31).  For each curve, the average IS of the flat portion (shown as the dot lines) of the 

curve were used as the steady state IS value, which was later fitted into segregation models. 
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Figure 3.2: Density ratio ρ =  0.31 IS vs. time for three rotation rates 

 In the DEM method, the bulk flow of the material is captured via simultaneous 

integration of the interaction forces between individual pairs of particles34,35.  In this section, we 

review the details of the model employed in this paper. A thorough description of both the 

normal interaction laws and the tangential models can be found elsewhere. 

3.3.2.1 Normal Forces 

 The normal force is modeled as an elastic-plastic material after the work of 

Thornton59,60.  The deformation of the particles α  is mimicked via a computational "overlap" so 

that nv dtα = , where nv  is the velocity on the normal direction and dt  is the time-step. In the 

above equation, α  is positive for loading and negative for unloading. At the initial stages of 

loading, the normal force, nF  , is purely elastic and is given by  

 𝐹𝐹𝑛𝑛𝑁𝑁 = 𝐹𝐹𝑛𝑛𝑁𝑁−1 + 𝑘𝑘𝑛𝑛 ∗ 𝛼𝛼  (3-21) 
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where nk  , which equals to *2aE , is the normal force constant from the Hertz theory61.  In the 

above equation, a is the radius of the contact area and *E  is the representative Young's Modulus.  

In Eq.(3-21), N 1
nF −  is the old normal force and N

nF  is the normal force at the current time-step. 

 Once the normal force exceeds a yield fore, yF , a modified version of the contact force-

displacement relationship based on Wu40 is used.  The normal force constant nk  of further loading 

is given by *YRπ  and the deformation of the particles α   equals to 
2 2

*2

Y R
4E
π

 , where Y is the yield 

stress and *R  is the effective particle radius. 

3.3.2.2 Tangential Forces 

 Walton and Braun derived the tangential (frictional) force41. For each time-step, the 

new tangential force acting at a particle-particle contact, tF , is given as: 

 𝐹𝐹𝑡𝑡𝑁𝑁 = 𝐹𝐹𝑡𝑡𝑁𝑁−1 − 𝑘𝑘𝑡𝑡𝛥𝛥𝛥𝛥  (3-22) 

where N 1
tF −  is the old tangential force and tk s∆  is the incremental change in the tangential force 

during the present time-step due to relative particle motion; i.e., s∆  is the displacement during 

the present time-step; its expression is adapted from a vector form given by Walton42.  When tF  

is smaller than f nFµ  where µ  is the coefficient of sliding friction, based on Thornton43 the 

frictional stiffness tk  equals to *8G a , where *G  is the shear modulus and a is the radius of the 

contact area.   
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Although the simulated particle sizes and densities were matched to their corresponding 

experiments, there are still two differences between simulation and experimental conditions worth 

mentioning. First, the experiment used a quasi-2D tumbler but the simulation used periodic 

boundary conditions. The existence of the glass walls in the experiments caused some 

inconsistencies between experiment and simulation results.  Second, pictures taken from the 

experiments only contain 2-D information while 3-D information were obtained from simulation.  

Thus, for simulations, much more data is available and the standard deviation of IS is therefore 

significantly smaller in simulated trials. 

3.4 RESULTS 

 In this section we examine segregation results of experiments and simulations in a half-

filed baffled tumbler, for both density and size binary system.  Different models are fitted in the 

framework and compared with each other.  A quantitative value is needed to distinguish between 

the subtleties of different models.  Since our theoretical framework predicts that when the critf / f  

increases, the IS value will initially decrease and eventually reach a steady state, an ideal fit will 

be a monotonic decreasing function.  Thus, Spearman's correlation sr∣∣ was used to quantitatively 

determine which theory fits the framework better.  The closer a model's sr∣∣ value is to 1, the 

better the fitting is; and therefore, the more accurately we expect the model to capture segregation 

dynamics as a function of materials and process parameters. 
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3.4.1 Density Segregation 

 Three density ratios (ρ =  0.15, 0.5 & 0.31) were tested in a rotating tumbler at 

controlled rotating rate.  For 0.31ρ = , experiments have two sets of data.  One set of data 

presents smooth glass beads vs. steel and another set presents HF treated rough glass beads vs. 

steel.  The effect of rough surface is hard to mimic in simulation so only one set of 0.31ρ =  data 

is presented for density simulation. Figure 3.3 shows the plot of IS as a function of f / fcrit  for 

the buoyant density model while Figure 3.4 shows the fitting for drag model. By comparing 

Figure 3.3 with Figure 3.4,it can be seen that the HF treated 0.31ρ =  date set does not fit very 

well with other sets of data for buoyant model while it has a reasonable fit for drag model.  This 

is expected since by changing the surface roughness of the beads, we changed the drag force, 

which is considered a variable in the drag model but not buoyant model. Moreover, the drag 

model overall has a higher sr∣∣ value for both simulation and experiment. Thus, we can conclude 

that the variance of drag force has a noticeable impact on the segregation velocity of same size 

but different density particles.    

 Both models show the trend that while critf / f  increases, the IS value decreases as 

expected.  In other words, the system is mixed better when the flowing layer is perturbed more 

frequently.  The experiments and simulations both show that higher density ratio ρ  

corresponding to lower IS value (better mixing) at same rotating rate.  This is because the similar 

the properties of tested particles are, the better the system is able to mix.  And if two sets of 

particles have identical mechanical properties (same density in our case), no segregation will 

occur since the system is mono-dispersed. 
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 The fitting parameter dζ  in Eq. (3-7)is set equal to 3 and the fitting parameter c in Eq. 

(3-10) is set to equal to 7.5 to make sure the IS value tends to flatten when the critf / f  value 

reaches unity for both models.  The analyzed IS values show a reasonable degree of agreement 

between simulations (3-D flow) and experiments (2-D flow) which means our simulation does a 

good job to mimic the real phenomenon.  However, it should be noted that although the 

simulated particle sizes and densities were matched to their corresponding experiments, there are 

still two differences between simulation and experimental conditions.  First, the experiment used 

a quasi-2D tumbler but the simulation used periodic boundary conditions. The existence of the 

glass walls in the experiments caused some inconsistencies between experiment and simulation 

results.  Since the wall friction tends to prevent mixing, the IS value of experiments is slightly 

higher than the simulation. Also, based on the lower sr∣∣ value, the fitting for the experiments is 

worse.  Orpe et al.57 mentioned that the effect of wall friction influence the dynamic surface 

angle.  In agreement with their statement, our simulation results, which don't include wall 

friction, have smaller angles (dynamic & static) than the experiment results.  For the drag model, 

since viscosity η is proportional to the dynamic angle, the critf / f  value of the simulation is 

always smaller than the corresponding sets of experiments' values.  Buoyant model is not 

sensitive to the angle differences so both experiment and simulation have same critf / f  scales. 

Another difference between the experiments and simulation conditions is that pictures taken 

from the experiments only contain 2-D information while 3-D information were obtained from 

simulation.  Thus, for simulations, much more data is available and the error bars of IS is 

therefore significantly smaller in Figure 3.3 and Figure 3.4. 
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Figure 3.3:Fitted density buoyancy model. Experimental (a) and simulation (b) fitting 
of density segregating in a tumbler mixer while varying both density ratios ρ  and rotation 
rate ω  .  Different colors denote different density ratios.  ``HF" denotes trials where glass 
beads were roughened via etching. 
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Figure 3.4: Fitted density drag model. Experimental (a) and simulation (b) fitting of 
density segregating in a tumbler mixer while varying both density ratios and rotation rate.  
Different colors denote different density ratios.  ``HF" denotes trials where glass beads were 
roughened via etching. 
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3.4.2 Size Segregation 

 Four sets of experiments with varying particle size ratio were conducted.  One set of 

experiments used acetate beads of 4 mm along with 2 mm ( d =  0.5).  The second set of 

experiments used beads of 4 mm along with 3 mm ( d  =0.75).  The third set of experiments is 

with beads of 3 mm along with beads of 2 mm ( d  =0.67).  The last set of experiments used 

beads of 5mm along with beads of 2mm ( d  =0.4). The fitting parameter sζ  in Eq. (3-17)is set to 

equal to 1. 

 Figure 3.5 presents the IS versus the critf / f  value for linear model where the value of 

critf  is assumed to be linear related to the size ratio; while Figure 3.6 shows results for log model 

where critf  is calculated as a log function of the size ratio. Same as observed in the density 

segregation, the IS value decreases while the critf / f  increasing and larger size ratio sets have 

lower IS value because of similar particle properties.  For both experiment models, when the 

critf / f  value is larger than 1, the IS reaches a steady value around 0.2.  For simulation models, 

while it is less obvious, the IS value is reaching a steady value when critf / f  is larger than 1.  

Same as the density results, this agrees with our theory which states that when the value of 

critf / f  is around or larger than 1, the baffle is perturbing the surface flow in the tumbler at a 

speed faster than the time st  required for particles to segregate; thus, the system is seen as well-

mixed so the IS value ceases to decrease even though the critf / f  continuous to increase. Same 

as the density result, the experiments IS value is higher than simulation result, however, it is 
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more obvious for size results because wall friction has more significant influence on lighter and 

smaller particles used in size experiment. 

  Although the log model fits slightly better (insignificantly higher sr∣∣ value), those 

two models basically show the same trend. This is because within the size range we tested (0.4-

0.75), the log function has a similar shape comparing with the linear function.  In order to show 

the difference between those two functions more dramatically, a wider size range needs to be 

used.  However, when the size ratio is too small, segregation will happen spontaneously and 

become independent of the rotation rate, and when the size ratio is too large, segregation will not 

be significant enough to be measured.   
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Figure 3.5: Fitted size linear model. Figure (a) shows experimental results while (b) 
shows simulation results. Both size ratio and rotation rate are variables. Each point presents 
one distinctive condition. Different colors denote different size ratios. 
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Figure 3.6: Fitted size log model. Figure (a) shows experimental results while (b) 
shows simulation results. Both size ratio and rotation rate are variables. Each point presents 
one distinctive condition. Different colors denote different size ratios. 

3.5 CONCLUSION 

 A range of experiments and DEM simulations were carried out to study the surface 

flow in a quasi-2D rotating tumbler.  Experiments were performed for a wide range of rotational 

speeds, particle densities, and particle sizes.  The corresponding DEM simulations were run to 

compare results.  The steady state situations of both experiments and simulations were analyzed 
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using computational methods to analyze the IS value.  For each condition, the corresponding 

parameters are plugged in different segregation velocity models. Based on the results, we have 

clearly established our framework as a sensitive semi-quantitative test of the validity of 

segregation rate models. 

 Our results show that for these two densities segregation models tested, the drag model 

fit in the framework better than the buoyant models; which indicates that drag force play an 

important role in density segregation.  However, the IS value was reaching a constant value 

while critf / f  value was still small.  Further researches are necessary to find the right fitting 

parameters to fit in our experimental setting.  For size segregation, the difference between 

models is less because of the similarity of those two models at the size range we tested.  Both 

models are quite accurate based on our results.  Our results show some inconsistency between 

experiment and simulation data.  An improved experiment device or a new way to analyze 

segregation will be needed to overcome the experimental error caused by the existence of the 

physical glass wall.  

  This framework can experimentally validate existing and new kinetic models of 

segregation.  It can also be used to predict or control the mixing extent of particle systems via 

manipulation of parameters such as rotation rate and particle ratio. And thus, contribute to an 

improved understanding of the segregation and mixing of granular materials.
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4.0  A TRANSPORT ANALOGY FOR SEGREGATION AND GRANULAR 

RHEOLOGY 

The content of this chapter is taken from Liu, S. & McCarthy, J. J. Transport analogy for 

segregation and granular rheology. Phys. Rev. E 96, 020901 (2017). 

 

 Segregation62 is a costly phenomenon that has garnered research for decades 38,63,64. In 

contrast, the study of dense phase granular rheology has only recently gained traction, but 

significant inroads have been made65–69. Despite these parallel strides, only a tenuous connection 

has been proposed70 between these two seemingly disparate topics and work focusing on 

building a formal analogy is lacking, despite the synergistic advantages that analogies have 

afforded71 in a variety of fields72,73.  

 It is generally accepted16,17 that the scaling of gravity driven density segregation is 

proportional to the density difference between species as well as to the local value of the shear 

rate within the flow (although segregation in the absence of gravity has been shown to be more 

complex74,75). This simple phenomenological scaling results in just three relevant dimensionless 

groups for segregation velocity, s s pv v / ( gd )=  , shear rate, pd / gγ = γ  , and density, 

h l/ρ = ρ ρ , where g is the acceleration due to gravity and pd  is the particle diameter; however, it 

does not account for the impact of varying boundary conditions (specifically, confining pressure 

P), thus it does not readily allow direct coupling between granular flow rheology and the 
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segregation rate. In this Rapid Communication, we examine a simplified “ideal solution” 

segregating flow whereby isolated dense intruders segregate as a function of a host of rheological 

variables. By explicitly accounting for the confining pressure, we make a more direct connection 

between rheology and segregation. In this way, we not only shed light on how rheological-

segregation coupling may be modeled, but also uncover a direct analogy between measurements 

of rheological variables and the resulting segregation rate. 

 A recent survey of density-based segregation models76 found that a successful 

phenomenological model for the density-driven segregation velocity has been set forth by 

Tripathi and Khakhar17. They begin with a force balance on a single dense particle in a medium 

of light particles to get 

 0 =  𝐹𝐹𝑤𝑤  −  𝐹𝐹𝑏𝑏  +  𝐹𝐹𝑑𝑑  (4-1) 

where wF  is the weight of the dense particle, bF  is the buoyant force, and dF  is the particle drag 

force.  Taking the particle drag force to have a Stokesian form, they assume 

 𝐹𝐹𝑑𝑑 = 𝛽𝛽𝛽𝛽𝛽𝛽𝑑𝑑𝑝𝑝𝑣𝑣𝑠𝑠  (4-2) 

where η is the particle medium viscosity, pd  is the particle diameter, β  is a constant, and sv  is 

the segregation velocity.  Assuming that the drag force and net particle weight are in balance, 

after simplification, yields an expression for sv  which may be written as  

 𝑣𝑣𝑠𝑠 = 𝑔𝑔𝑑𝑑𝑝𝑝2(𝜌𝜌ℎ−𝜌𝜌𝑙𝑙)
6𝛽𝛽𝛽𝛽

  (4-3) 
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where g is the acceleration due to gravity and iρ  is the density of the heavy (h) and light (l) 

particles, respectively.  In order to recover the previously mentioned traditional scaling, one 

assumes that the stress τ  within the granular flow is shear rate independent so that we can write 

 𝜂𝜂 = 𝜏𝜏
𝛾̇𝛾
∝ 1

𝛾̇𝛾
  (4-4) 

 Based on the above equations, we recover that (1) sv  is proportional to the shear rate γ  

and (2) at a constant shear rate the segregation velocity sv  should scale as h l( )ρ −ρ .  

 To test these predicted scaling relations, yet at the same time allow for the variation of 

flow boundary conditions, we employ the discrete element method (DEM) to examine a wall-

driven periodic plane shear cell.  The details of the model can be found in a previous paper from 

our group58.  Table I shows the material properties that were used in the simulations reported 

here.  

Table 4.1: Material properties used in the simulations 

 

 

 A schematic of the simulated three-dimensional (3D) plane shear flow system is shown 

in Figure 4.1. Periodic boundaries are used in both the x and z directions.  In most trials, the 

majority of the particles have the same (light) density of 3kg/ml 1300ρ = , material properties 
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that roughly match cellulose acetate, and an average radius of 4.5 mm with a 10% particle size 

distribution to prevent crystallization. In some cases, we examine the impact of varying particle 

diameter over a range from pd  = 6.0 - 18 mm in 3.0 mm increments. For all simulations eight 

uniform heavy intruders (which have the same radius as the light particles, but with varying 

heavy density hρ ) are randomly placed in the system.  Three different hρ   values are used (2700, 

3900, and 7900 3kg/m ), along with corresponding material properties that roughly match glass, 

‘’heavy glass'', and stainless steel, respectively.  The top and bottom walls (shown as black in  

Figure 4.1 are roughened with particles and the top wall is given varying masses in order to 

examine the effect of confining pressure (P). Alternatively, several trials were run at a constant 

volume fraction (i.e., fixed height h) where we measured the time average of the pressure at the 

top wall (rather than prescribing the confining pressure). Shearing velocity is varied from 0.1 to 

4.0 m/s (0.1, 0.5, 1, 2, 3, and 4 m/s) while the bottom wall remains static.  To obtain a nearly 

homogeneous shear flow, fins made of wall particles are attached to both the top and bottom 

walls, and in most simulations we employ a modified gravitational field whereby (net) 

gravitational forces act only on the heavy intruders (similar to the approach of 77). The particle 

bed is deep enough (15 particle diameters) that the segregating intruders reach a steady 

segregation velocity under all examined conditions. In a small number of simulations full gravity 

effects are included, however, due to shear localization in these cases we perform all calculations 

based on the local value of the shear rate (and only measure the segregation velocity while in the 

sheared region).  
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Figure 4.1: Schematic of the simulated plane shear geometry.  The 3D flow is periodic 

in both the streamwise (x) and transverse (z) directions. Blue (dark) particles are heavy 
intruders while yellow (light) particles are lower density particles. We employ either constant 
pressure or constant volume boundary conditions. 

 
 

 In Figure 4.2 we show the dimensionless segregation velocity obtained for the average 

of the heavy intruders for three different density ratios under a range of boundary conditions 

(confining pressures versus fixed volumes and our modified gravity field versus full gravity), 

particle diameters, and shear rates. In Figure 4.2 (a), which shows the variation of sv   with 

dimensionless shear rate ( γ  ), we note that there are roughly three groups of curves, 

corresponding to each of the three density ratios; however, it is clear that there are a number of 

issues with this naive scaling. First, there is a systematic variation in the value of sv  for differing 

boundary conditions, whereby higher pressures and/or the constant volume cases result in a 

routinely smaller value of the segregation velocity. Second, when varying the particle diameter, 
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we notice a qualitatively different shape to the scatter plot (it does not appear to pass through the 

origin, for example). Finally, when including the full effects of gravity, our segregation velocity 

values are uniformly lower than for the corresponding shear rates in modified gravity cases and 

ultimately the segregation rate saturates at dramatically larger values of the dimensionless shear 

rate.  
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Figure 4.2: Segregation velocity under varying conditions of shear rate, density ratio, 

particle diameter, and boundary conditions. Differing colors represent boundary conditions 
[constant pressures: 78 Pa, -- red (dark gray); 117 Pa, blue (solid light gray); 156 Pa, green 
(open light gray); constant volume, solid circles; full gravity effects, dotted and crossed 
circles] while shape represents the density ratio (circle, 2ρ = ; triangle, 3ρ = ; square, 6ρ =

).  While most particles are 9.0 mm in diameter, the thick-walled open circles represent a 
range from 6.0 - 18.0 mm. (a) The dimensionless segregation velocities are plotted vs the 
shear rate made dimensionless with pg / d .  The inset shows packing fraction as a function 

of I . (b) In this panel we have replotted the sv   as a function of inertia number (I). Note that 
the varying boundary conditions all collapse onto individual curves corresponding to 
different density ratios. In all figures, error bars on the data are smaller than the symbol 
sizes chosen. 
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 In order to fix these issues with the scaling, and as a first step toward connecting 

segregation to granular rheology, in Figure 4.2 (b) we instead plot sv   against a different 

dimensionless shear rate, that of the inertia number (I). The inertia number8, given as 

pI d
P
ρ

= γ , is the final, relevant independent dimensionless group governing this problem, it 

relates the timescale of shearing to the timescale of consolidation, and has been a staple of 

constitutive model development in recent years 68,69,78,79. We note that I is a better independent 

variable for correlating changes in segregation velocity as the scatter from pressure (and constant 

volume) variation is now eliminated in the higher density ratio (triangle and square) trials. 

Moreover, the low-density ratio (circle) case now collapses results not only for varying boundary 

conditions, but also for varying particle diameters and for both full and modified gravity cases 

(note that the modified gravity case uses the measured average bed pressure and the local shear 

rate in the calculation of I). Using the inertia number allows us to capture a clear observation that 

the segregation rate saturates [Figure 4.2 (b)] at a specific value of I in much the same way that 

the effective friction ( effµ  ) is seen to saturate (at high Inertia numbers) in eff ( I )µ   rheology 8,9. 

Also, we note that, while our sv  results now collapse onto three curves regardless of particle size 

and boundary condition, the relevant scaling for the density ratio is not captured in this plot. This 

scaling is examined next. 
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Figure 4.3: Variation of dimensionless segregation velocity with varying density at 

fixed values of the inertia number (upright triangle: I=0.1193, diamond I=0.2350, square: 
I=0.4563, inverted triangle: I=0.8627). The inset shows the traditional scaling of the 
segregation rate with the dimensionless density difference. Note that, in contrast to previous 
studies, we find a power law relationship with exponents that range from 0.6 to 0.75. In 
contrast, when we plot the segregation velocity vs our proposed density scaling, we obtain 
straight lines. 
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Figure 4.4: Traditional scaled segregation velocity under varying conditions of shear 

rate, density ratio, particle diameter, and boundary conditions. Differing colors represent 
boundary conditions [constant pressures 78 Pa, red (dark gray); 117 Pa, blue (solid light 
gray); 156 Pa, green (hollow light gray); constant volume, solid circles; full gravity effects, 
dotted and crossed circles] while shape represents the density ratio (circle, 2ρ = ; triangle, 

3ρ = ; square, 6ρ =  ). While most particles are 9.0 mm in diameter, the thick-walled open 
circles represent a range from 6.0 to 18.0 mm. The dimensionless segregation velocities are 
plotted vs the shear rate made dimensionless with pg / d . The magnitude of the 

segregation velocity is scaled by the traditional density scaling [that is, ( h l/ 1ρ ρ −  )]. Note 
that, particularly in the saturated rate region, it is clear that this scaling does not collapse 
the data. 
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 Turning to the impact of the density ratio, one can note that using the traditional density 

scaling suggested from Eq.(4-3) ( h l/ 1ρ ρ −  ), fails to collapse the data [that is, the plot in Figure 

4.3(inset) does not lead to a straight line and Figure 4.4 does not collapse, especially on the 

saturated regime]. If we relax the assumption that all segregating flows operate in the rate-

independent regime and instead develop a scaling relation for the local viscosity near a 

segregating particle, we can recast Eq.(4-3) and not only recover the proper density relationship 

(Figure 4.3, motivated below), but also establish a direct analogy between granular flow 

rheology and the segregation velocity.  

 We start by choosing a characteristic stress scale in the neighborhood of the heavy 

intruder(s) as the quantity char h p~ gdτ ρ . If we similarly take the local shear rate to be related to a 

characteristic collisional velocity collv   (to be identified later), divided by the particle diameter 

we obtain 

 𝜂𝜂~ 𝜌𝜌ℎ𝑔𝑔𝑑𝑑𝑝𝑝
𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑑𝑑𝑝𝑝

  (4-5) 

 For a heavy intruder, a density dependence of the collisional velocity collv   arises due to 

the fact that the intruder must undergo repeated collisions with the lighter ``background'' 

particles. By performing a conservation of energy balance around a colliding particle 80, we 

obtain a post collision characteristic velocity given as 
1/ 2

h
coll o

l

v ~ v
 ρ
 ρ 

 where ov  may be thought 

of as the pre collisional characteristic velocity.  Combining these expressions, we can write an 

equation for the viscosity near a heavy intruder particle that is segregating within a granular fluid 

as 
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 𝜂𝜂~ 𝜌𝜌ℎ𝑔𝑔𝑑𝑑𝑝𝑝2

𝑣𝑣𝑜𝑜�
𝜌𝜌ℎ
𝜌𝜌𝑙𝑙
�
1/2  (4-6) 

This simple model suggests a modification of the density scaling from what is traditionally used 

whereby 

 𝑣𝑣𝑠𝑠~ 𝑣𝑣𝑜𝑜(𝜌̄𝜌−1)
�𝜌̄𝜌

.  (4-7)

  

 As a direct test of this scaling, we plot the measured segregation velocity as a function 

of this density scaling for fixed values of the inertia number (see Figure 4.3). Note that each set 

of results examined lies on a straight line whose slope is a function of the inertia number chosen 

and that all curves correctly pass through the origin. 

 In order to more fully realize the form of Eq. (4-7), we finally examine the 

characteristic (pre) collisional velocity ov . Obviously, in the absence of interactions with 

neighboring particles, the characteristic velocity of a falling intruder would scale as pd g  

(motivating the choice of dimensionless scaling thus far used). If we argue that the relevant 

velocity is actually a “frustrated free fall” whereby the characteristic velocity varies from this 

scaling value solely due to interactions with neighboring particles, we can write that the number 

of interactions with neighbors per unit time is captured by the product of the coordination 

number z and the shear rate, zγ  That is, the quantity zγ  may be thought of as the inverse of the 

time between interparticle interactions (note that z has been shown to be a function of the inertia 

number69,78 so that, at higher inertia numbers, the time between interactions increases). We note 

that, in our results, the average coordination number per particle decreases from a finite static 

value via a power law of the form az ~ I −  -similar to what was discussed by DaCruz et al.67 
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However, as seen in Figure 4.5(a), we find two regimes where a 1 / 3=  and 1 for I values below 

and above 0.5, respectively. We note that this transition point is coincident with the saturation 

location of both the effective friction coefficient, effµ , and the segregation velocity. Finally, if 

we limit the effective number of neighbor interactions to those that occur faster than the 

consolidation time-scale, 1/ 2
c p lt d ( / P )= ρ , we obtain a choice of ov   that is given by 

  

 𝑣𝑣𝑜𝑜~(�𝑑𝑑𝑝𝑝𝑔𝑔)𝑧𝑧𝛾̇𝛾𝑡𝑡𝑐𝑐 = (�𝑑𝑑𝑝𝑝𝑔𝑔)𝑧𝑧𝑧𝑧  (4-8) 

 One way to interpret our scaling in Eq.(4-8) is that the maximum time between 

collisions is the consolidation time. Thus, in the limit of large I, we obtain free-fall scaling 

during the full extent of the consolidation time. At the other extreme, where the time between 

collisions is small, the ``frustrated-free fall'' velocity can become quite small. Combining 

Eq.(4-7) with Eq.(4-8) and recovering the constants from previous equations yields an expression 

for the dimensionless segregation velocity as 

 𝑣̄𝑣𝑠𝑠 = 𝑣𝑣𝑠𝑠
�𝑑𝑑𝑝𝑝𝑔𝑔

= 𝑧𝑧(𝜌̄𝜌−1)
6𝛽𝛽�𝜌̄𝜌

𝐼𝐼  (4-9) 

 Thus, by using our scaling, and determining a relationship between the collision 

frequency and inertia number (I), we yield a closed form equation for segregation velocity that 

includes only a single parameter β   that captures the drag force felt on a segregating particle [as 

well as an O(1)   correction to our collision velocity scaling argument]. Figure 4.5(b) shows the 

relationship between segregation velocity (scaled with our density relation) and I for all 

simulation conditions studied and includes a line corresponding to Eq.(4-9) with 1β =  (which, 

in a fluid system, would imply that form drag is small compared to frictional drag). 
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Figure 4.5: Rheology and segregation in a sheared cell system under varying 
conditions of shear rate, density ratio, particle diameter and boundary conditions (symbols 
explained in Figure 4.2). (a) shows how the effective friction coefficient changes with the 
inertia number. The inset shows the variation of the coordination number with I. Note that 
both rheological quantities display a regime change near a value of I = 0.5. (b) shows the 
dimensionless segregation velocity rescaled with our proposed density scaling [Eq.(4-7)] and 
plotted against I. Note that all results fall on a master curve regardless of gravitational 
condition, boundary condition, or other process parameters. The included line represents 
the model proposed in Eq. (4-9).  The inset shows the packing fraction as a function of I. 

 



 52 

 It is interesting to note that the location of the segregation velocity (and effµ & z ) 

transition corresponds to the value of I where the solid packing fraction decreases below a value 

of roughly 0.52φ ≈  [Figure 4.2(a) inset]. This value of the packing fraction is characteristic of a 

simple cubic lattice of equal sized spheres. While the rheological transition from linear eff ( I )µ  

to saturated effµ  has been reported at varying values of I in the literature8,67,69, examining these 

transitions in light of this packing fraction observation one notes that a simple cubic solids' 

fraction criterion would identify this critical I value irrespective of whether the system is 2D65,81 

or 3D69. Regardless of the origin of this transition, here we show that recasting our data in light 

of the inertia number collapses our results onto a single master curve for a wide variety of 

process variables, boundary conditions, and gravitational conditions and allows us to recognize - 

and predict the location of - a regime where the segregation rate saturates. This observation could 

have significant industrial importance as it could enable the rationale design of industrial 

processing methods that could lead to dramatically reduced segregation extents since operating 

in the ``saturated'' regime (i.e., at high I values) will enable more rapid processing to reduce the 

ultimate degree of segregation observed. Moreover, this work highlights that density-based 

segregation is not only coupled to the underlying flow rheology in shearing geometries, but that a 

true analogy exists whereby determination of the relationship between the coordination number 

(z) and I can lead directly to a quantitative expression for the segregation velocity (and likely 

vice versa).
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5.0  PARTICLE DENSITY SEGREGATION IN GRANULAR SHEAR FLOW: 

MODELING AND EXPERIMENT 

 Granular particles have long been known to segregate when they possess different 

properties such as density, size and shape; but the physics of this phenomenon is complicated 

and not fully understood even now.  Segregation in shear flow is especially important as it is 

common in multiple industrial processes.  While there are a handful of studies that focus on 

density segregation within dense shear flows17,32,52, there is to date no fundamental 

understanding of segregation's density dependence and pressure dependence. In our previous 

computational study76, we tried to tackle this problem by connecting density-based segregation 

with granular rheology.  Here, we perform experiments similar to our simulation setting in an 

attempt to physically back up our proposed theory and computational results. 

 In our previous work, we examined density segregation behavior within a simulated 

"ideal flow condition " (plane shear cell) and made a connection between segregation velocity sv  

and flow rheology by introducing the inertia number I 8, given as pI d / P= γ ρ .  In the 

definition of inertia number equation, γ  is the shear rate, pd  is the particle diameter, ρ  is the 

particle density and P  is the confining pressure of the system.  Our proposed dimensionless 

segregation velocity model is shown as in Eq.(5-1).  In this equation, sv    is the dimensionless 

form of the segregation velocity, β  is a fitting parameter, g  is the acceleration due to gravity, z  
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is the particle coordination number, ρ  is the density ratio between the heavy hρ  and light lρ  

particles and I  is the inertia number based on the granular flow properties.  The coordination 

number z   is not a directly measurable parameter under most experimental conditions, but we 

noted that, based on our simulation, z  had a direct correlation with I  similar to what has been 

found by others work67.  The average coordination number per particle has two regimes and 

under both regimes it decreases with the inertia number via a power law of the form az I −∝  with 

a 1 / 3=  and 1  for I  value below and above 0.5, respectively. 

 𝑣̄𝑣𝑠𝑠 = 𝑣𝑣𝑠𝑠
�𝑑𝑑𝑝𝑝𝑔𝑔

= 𝑧𝑧(𝜌̄𝜌−1)
𝛽𝛽�𝜌̄𝜌

𝐼𝐼  (5-1) 

 This new model is based on two conclusions which are contrary to the conventional 

wisdom within the literature. (1) We found that sv  is not linearly proportional to the shear rate γ  

as generally accepted17,82,83.  Instead, sv  is linked to the inertia number I , which partially 

depends on γ .  Moreover, sv  will reach a constant value once I  reaches a critical value.  (2) 

Under the same I , sv  scales with the density ratio ρ  as
1ρ −
ρ

, rather than the more intuitive 

( 1)ρ −  .  It should be noted that one possible rationale for at least a portion of these 

discrepancies is that our study involved only heavy intruders (i.e., a vanishingly small 

concentration), rather than a more balanced binary mixture. 

 To test our simulation/theory, we have performed experiments trying to mimic, as 

closely as possible, our simulated conditions.  We constructed an experimental annular Couette 

cell as shown in Figure 5.1 with a vertically movable bottom plate.  Particles are confined 

between two cylindrical rings and between the top and bottom plates.  The radius of the inner 
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steel ring of the annulus is 25.35 mm and the radius of the outside glass ring is 59.45 mm.  Both 

top and bottom plates are made of steel to dissipate static charge.  Four fins are attached to both 

plates to prevent particle slipping. A computer controlled ClearPath motor is used to run the 

experiments under four different rotation rates (10, 20, 30 & 40 RPM).  A Sony Digital Still 

Camera DSC-RX10M3 is used to obtain two types of videos.  (a) 240 fps high frame videos.  

The high frame videos are taken and later analyzed in PIVLab to capture the flow direction 

velocity (u ) profiles.  (b) normal videos.  Those videos are later cut into images using 15 fps 

setting to manually trace heavier tracer particle's (steel) segregation behavior.  The majority of 

the particles (either glass or acetate) inside the system have a diameter of 3 mm while a trace 

amount ( ~ 10% ) of differently sized particles (either 2.38 or 3.175 mm) with similar density are 

added into the media to prevent crystallization.  Steel particles are always used as the tracer 

particles and thus in this experiment, we test sv  under two different density ratio sets ( 2.8ρ =  

and 5.9ρ = ).   The properties of the three types of particles used in this experiment are shown in 

Table 5.1.  A strong magnet is used to attract steel tracer particles towards the glass surface in 

order to more easily capture the segregation behavior and to reset the experimental conditions.   

Since the magnet is only used outside of the video recording zone, we believe this action does 

not impact the measurable segregation velocity.  Before each trial of experiment, the experiment 

cell is always rotated and running upside down since we found that flows to be much easier to 

shear from the bottom than from the top.  Two different experimental configurations were run.  

Under the constant pressure (CP) configuration, the top aluminum bar is allowed to move and a 

constant pressure is applied toward the particle media with a pressure around 2300 Pa.  Under 

the constant volume (CV) configuration, the top aluminum bar is lifted off the particle surface 

just slightly and secured to prevent movement.  A comparison of the segregation velocity under 
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those two conditions can show how sv  varies with parameters other than shear rate and thus, 

shows the direct impact of pressure/inertia number on density segregation. 

 

Figure 5.1：Experimental apparatus set up.  Photograph are taken with 3mm tracer 
steel particles within an acetate particle medium 

 

 

Table 5.1:Material Information used in the Experiments 
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 The measured average horizontal velocity (u ) as a function of height ( H ) for glass 

media particles is shown in Figure 5.2.  In most cases, only part of the bed is able to be shared 

and only velocity at the shear-able portion of bed is shown in the figure.  The acetate horizontal 

velocity profile is not shown because it looks almost exactly the same as the glass case.  All 

velocity profiles have close to an exponential function shape so an exponential trend line is 

calculated for each condition and then the shear rate γ , which is one of the actual controlling 

parameters driving segregation, is calculated based on the local slope of this trend line.   
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Figure 5.2：Measured glass velocity profile u as a function of cell height(H) for both 
constant pressure (CP) and constant volume (CV) conditions. H equals to zero represent the 
bottom of the cell 
 

 

 The measured global solid volume fraction gφ  is roughly equal to 0.59 under the 

constant pressure configuration and 0.58 under the constant pressure configurations.  Although 

the global solid volume fraction does not vary dramatically under different configurations, the 

local solid volume fraction lφ , which varies with cell height (H), can be much more sensitive.  

There is no simple method to measure lφ  but Figure 5.3 shows indirectly how lφ  varies.  As the 

figure shows, lower H  value has higher sv .  This can be explained by higher shearing rate near 

the bottom plate but it can also be explained by a lower lφ .  Furthermore, at the same H  value 

(and roughly the same γ ), sv  is in generally higher under the CV configurations compared with 

the CP configurations.  In this case, lower lφ , (not γ ), is more likely to be the reason for higher 

sv .  Since we know φ  is related to I  directly67,76, Figure 5.3 can be seen as the first evidence 

showing that sv  depends on I . 
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Figure 5.3： Measured dimensionless segregation velocity sv  as a function of cell 
height(H) for both constant pressure (CP) and constant volume (CV) configuration and for 
both acetate and glass bulk particle systems. H equals to zero represent the bottom of the 
cell. The legend used is same as in Figure 5.5. Only several error bars are present to simplify 
the plot but actually each data point have the same standard deviation 
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 Although the initial confining pressure of the system is measurable, we don't really 

have a method to calculate the dynamic pressure inside the system while the bottom plate is 

rotating. Under different rotation rates, the actual pressure applied on the particles is likely to be 

different.  Since pressure is one of the parameters within the inertia number, we need a way to 

quantify it.  Two assumptions are made in order to calculate the pressure.  Based on our 

proposed theory, sv  is proportional to z* I  and while sv  is at the increasing regime, z  is 

proportional to 1/ 3I − .  Thus, if we assume this correlation is correct, Sv  should be proportional to 

2 / 3I  in the segregation velocity increasing regime.  Furthermore, we can assume that the pressure 

within the system is a constant under the assumption that the hydrostatic pressure is negligible 

comparing to the dynamic pressure caused by shearing.  Based on those two assumptions, when 

we plot sv  as a function of 2 / 3γ , the slope ( k ) of the increase part of the plot should be 

proportional to the pressure.  Thus, the slope 2k C * P∝ , where C is a scaling parameter.  In this 

way, although the exact value of pressure is still unknown, we are able to qualitatively compare 

pressure under different configurations.  We followed this logic to calculate 2C * P  but because 

of limited data sets and the influence of hydrostatic pressure, a big uncertainty is involved.  

Figure 5.4 shows the pressure scale ( 2C * P ) under each rotation rate. 
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Figure 5.4: The scaled pressure C2∗P for glass constant pressure (GP), constant 
volume (GV) cases and acetate constant pressure (AP), constant volume (AV) cases under 
each rotation rate (10, 20, 30 & 40 RPM). 
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  Figure 5.5 shows how the segregation velocity changes with inertia number for both 

acetate and glass conditions.  As the figure shows, both sv  reaches the saturated regime once I  is 

big enough.  Only several error bars are shown in figures because all data points have the same 

error scale.  The error comes from the fact that a pixel is the smallest unit for length 

measurement and when measuring particle's travel distance, the potential error is usually around 

2 pixels.  One 3 mm particle has the length of around 45 pixels.  Since the experimental 

configuration is not exactly same as our previous simulation and the real-life flow condition is 

more complicated than a simplified simulated flow, we are not certain that sv  should become 

saturated when I  reach 0.5.  Here we used the fitting parameter C  to adjust the scale of I  so Sv  

becomes saturated at C* I 0.5≈  solely for the purpose of easier comparison with our simulated 

results. Figure 5.5.(a) in general has a higher sv  than Figure 5.5.(b).  This is no surprise since the 

density ratio ρ  for steel in acetate is much higher than steel in glass.  The value of sv  is in 

general smaller compared to our simulation result, but this can simply cause by differing particle 

properties.  Figure 5.5 supports our earlier conclusion that sv  is not linearly increasing with 

shear rate and that sv  will saturate at high inertia number. 
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Figure 5.5: The dimensionless segregation velocity sv  as a function of scaled inertia 
number (C ∗I). Plot (a) represents both acetate constant pressure and constant volume 
conditions and plot (b) represents glass constant pressure and constant volume conditions. 
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 In order to test the second conclusion, we scaled the sv  for steel in glass cases (GP & 

GV) with the proposed density ratio ( 1) /ρ − ρ  to the steel in acetate case level.  In other 

words, we multiply the sv  value in Figure 5.5.(b) by 1.87. If our previous proposed conclusion is 

correct, the two different curves should collapse together, especially at the saturated regime.  

This is mostly true as shown in Figure 5.6.  Thus, Figure 5.6 also supports that our proposed 

segregation density dependence. 

 

 

Figure 5.6: The re-scaled dimensionless segregation velocity sv  as a function of 
scaled inertia number (C ∗ I). The legends are same as in Figure 5.5. 
 

 These experiments help to strength our theory that density-based segregation is directly 

related to the flow rheology and particle density segregation has a saturated regime.  The saturated 

behavior of segregation could have significant industrial impact since it could potentially be used 

to redesign mixing devices to dramatically decrease the segregation extent of a process.
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6.0  A RHEOLOGY PERSPECTIVE OF SHEAR INDUCED SIZE SEGREGATION 

6.1 INTRODUCTION 

Dry granular materials are ubiquitous in day to day life and are second only to water as 

the world's most handled industrial material68.  When random mixtures of granular material of 

different properties -- such as size or density -- are handling in the presence of a gravitational 

field, segregation can occur.  Segregation is usually undesirable and can result in unstable 

product quality and/or cause handling and processing difficulties.  Size segregation is 

particularly important due to its ubiquity within industrial contexts, thus this mode of segregation 

poses a costly problem to industrial practitioners.  

For size segregation, it is generally believed that there are two dominant mechanisms 

leading to the ultimate behavior observed.  First, inter-particle percolation is a void-filling 

mechanism similar to the concept of "random fluctuating sieve" that tends to result in smaller 

particles moving in the direction of gravity while, secondly, squeeze expulsion is the process by 

which individual particles are squeezed out of one layer due to an imbalance of contact 

forces84,85. This paper will focus on the net result of these processes where shear-induced dilation 

causes small particles to move though the voids between bigger particles under the influence of 

gravity.  Cook and Bridgwater86 argued that statistical mechanics can be used to explain 

percolation since small particles are statistically more likely to fall down into voids than are 
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bigger particles. Here we adopt this formalism and integrate their ideas with recent work on the 

impact of granular rheology on (density) segregation76. 

  There have been several binary particle size models that have tried to predict particle 

concentration changes using a continuum model approach and some have been quite 

successful28,87,88; however, the accuracy of these models is highly dependent on both the choice 

of the size segregation model embedded within the method as well as the choice of model 

parameters used.  While many previous researchers have examined size segregation under 

varying conditions77,89–91, the fundamental equations governing the percolation process is still 

unclear. Thus, a study performed within one geometry may not be successfully extended to other 

geometries and a model that works under one range of shearing conditions may not fit other 

conditions.  Recently, the study of the relationship between segregation and flow rheology has 

begun to gain traction70,92. Nevertheless, and despite the fact that studies show that segregation is 

influenced by volume fraction, stress and local friction coefficient, etc. at present no direct 

connections between rheology and size segregation has been articulated within the literature.  

 In the current work, we focus on size segregation in a well-defined and controllable 

system, that of a simple sheared cell with vanishing concentration of segregating material, in 

order to build a fundamental size segregation model.  We combine our previous findings related 

to the impact of flow rheology on density segregation with a probability function (similar to the 

approach of Cook and Bridgwater86) in order to build a new model which is able to accurately 

capture/predict segregation results under a wide variety of operational conditions.  
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6.2 MATERIAL AND METHODS 

 

Figure 6.1; Schematic of the simulated plane shear geometry. The 3D flow is periodic 
in both the stream-wise (x) and transverse (z) directions. Yellow (light) particles are big bulk 
particles and blue (dark) particles are small intruders. The size ratio in the picture is 0.67. 
Constant pressure boundary condition is employed. 
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 For this study, we used the similar approach as for our density study76.  We employ the 

discrete element method (DEM) to examine a wall-driving periodic plane shear cell.  The details 

of the DEM model can be found in a previous paper from our group58,93. In all of our trials, 

particles have the property that roughly match cellulose acetate (shown in Table 1).  In most 

trials, the majority of the particles have the same average diameter (9 mm) with a 20% particle 

size distribution to prevent crystallization.  In some cases, particle diameter of 3 and 6 mm were 

examined in order to check the scalability of our theory.  For all simulations, eight uniform small 

intruder (which have the same density as all other particles, but with varying smaller diameter) 

were randomly placed in the system.  Five different size ratios were tested (0.35, 0.4, 0.5, 0.67 

and 0.75). For the majority of figures in this paper we show only 3 size ratios, for simplicity; 

however, when comparing theory with measurement, all 5 size ratios are used.  The top and 

bottom walls of the shearing cell are roughed with immobilized particles and the top wall is 

given varying masses in order to examine the effect of confining pressure P.  The pressure ranges 

from 78 to 3120 Pa.  The shear rate is varied from 7.6 to 60 1/s while the bottom wall remains 

static.  To obtain a nearly homogeneous shear flow, in most cases, only the small tracer particles 

were subject to gravitational forces in a similar fashion to the work of Khola77.  While it is 

expected that doing this will cause the equivalent of both size and density segregation, we have 

found that the measured size segregation values under this approximation are comparable with a 

handful of full gravity simulations that we have run.  Thus, in accord with the general consensus 

in the literature, we find that the impact of the (small) density segregation is negligible relative to 

that of size segregation under the conditions examined here.   
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Table 6.1: DEM Material Properties 

 

6.3 SIMULATION RESULTS 

 In our simulations, we measure the segregation velocity by calculating the vertical 

distance that the smaller particles travel during a period of time. First, the dimensionless form of 

the segregation velocity sV / gd  is plot as a function of dimensionless shear rate γ  in order to 

check whether the widely used linear shear rate scaling21,94 is observed under the conditions 

examined here .  The results shown in Figure 6.2 illustrate that, despite testing three different 

methods of rescaling the shear rate -- i.e., 
dg
γ

, 
d
T
γ

, and I d
P
ρ

= γ  - sV is not seen to linearly 

depend on shear rate over our range of shearing values.  In addition, it is clear that none of the 

tested scaling yield a recognizable trend in the data.  

 In related work on density segregation76, our group has found that there is a sharp transition 

in segregation behavior as a function of the Inertia number ( I ). While the plot in Figure 6.2.c is 

not able to collapse data, for a single value of larger particle and intruder size ratio there is some 

indication of a similar transition behavior when I  reaches 0.5 (e.g., observe the triangle results). 
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Figure 6.2: Dimensionless segregation velocity as a function of three forms of 
dimensionless shear rate.  (a) the shearing velocity is dimensionless by dividing √gd. (b) the 
shearing velocity is dimensionless by dividing the square root of granular temperature √T. 
(c) the dimensionless shearing velocity is represented by the inertia number. Star symbol 
represents d = 3mm and P = 77.9Pa. Diamond symbols represent d = 6mm and P ranges from 
77.9 to 701.1pa. For 9 mm particles, P range from 77.9 to 1558 Pa were tested. Circle 
represent size ratio r 0.5= , square for r 0.67=  and triangle for r 0.75= . For each 
condition, lower transparency means higher pressure. 

 

While traditional methods to plot the data were not able to show a clear trend, we are able 

to collapse all of the data (Figure 6.3).  In Figure 6.3.a , three distinct curves show three different 

size ratios, but a clear trend is seen for all imposed pressures, shear rates, and bulk particle sizes 

(3, 6, and 9 mm).  The fact that I * T  is able to capture the impact of all of these variables is 

strong evidence that both local velocity fluctuations and flow rheology need to be considered for 

dense phase size segregation.  Moreover, in Figure 6.3.b, the data can be further collapsed (for all 

size ratios examined) by dividing the x axis by the projected area ratio of the particles ( 2r ).  This 

shows that instead of size ratio, the projected area is likely to be one of the control parameters for 

size segregation. 
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Figure 6.3: (a) Dimensionless segregation velocity as a function of inertia number 
multiplies by square root of granular temperature. (b) Dimensionless segregation velocity as a 
function of inertia number multiplies by square root of granular temperature and the inverse of 
size ratio square.  Star symbol represents d = 3mm and P = 77.9Pa. Diamond symbols 
represent d = 6mm and P ranges from 77.9 to 701.1pa. For 9 mm particles, P range from 
77.9 to 1558 Pa were tested. Circle represent size ratio r 0.5= , square for r 0.67=  and 
triangle for r 0.75= . For each condition, lower transparency means higher pressure. 
 

6.4 RESULTS 

6.4.1 Granular Temperature T 

 In a shearing system, inter-particle collisions induce random particle velocities which 

are similar to the kinetic temperature of molecules.  The magnitude of this velocity fluctuation is 

called the granular temperature T which is defined as: 

 𝑇𝑇 = 1
3

| < 𝑢𝑢2 > +< 𝑣𝑣2 > +< 𝑤𝑤2 > |  (6-1) 

where u,v,w  are particle velocities on each direction.   
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 Granular temperature, unlike in a molecular system, is a by-product of the flow and 

thus depends on the fluid mechanics95.  GDR MiDi8 reported the following scaling law for T 

under shearing cell configuration: 

 𝑇𝑇 ∝ 𝑑𝑑𝛾̇𝛾�𝑃𝑃
𝜌𝜌
  (6-2) 

 Based on the equation, T depends on both the shear rate γ  and the confining pressure 

P .  We had a similar observation from our simulation; but the exact relation we got is different.  

Figure 6.4.(a) inserted shows our simulated result for granular temperate T as a function of shear 

rate γ .  Since the majority of particles have the bigger diameter, the granular temperature T is 

measured based on the big particles; so, it only changes with bulk particle diameter not size ratio 

r .  Based on our result, we found that instead of a linear relationship, the granular temperature 

actually has a power dependence of the shear rate γ : 1.5T K∝ γ .  As shown in Figure 6.4.(a), in 

the log-log plot, all lines have a slope of approximately 1.5.  After comparing the value of 

constant K under different pressures and particle diameters, we propose a new granular 

temperature scaling law in a shearing cell as shown below: 
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Figure 6.4:  (a) Log-log scaled plot of granular temperature (m2/s2) as a function of 
shear rate (m/s) for size ratio ( r 0.5= ). The insert shows the same plot in linear scale. (b) 
Dimensionless granular temperature as a function of inverted inertia number ( 1I − ).  The 
insert shows a broader range of 1I −  while the big picture focus on I bigger than 0.1.  Star 
symbol represents d 3mm=  and P 77.9Pa= . Diamond symbols represent d 6mm=  and P 
ranges from 77.9  to 701.1pa .  For 9 mm particles, P range from 77.9 to 1558 Pa were tested.  
Circle represent size ratio r 0.5= , square for r 0.67=  and triangle for r 0.75= .  For each 
condition, lower transparency means higher pressure. 
 

 𝑇𝑇 ∝ (𝑑𝑑𝛾̇𝛾)3/2(𝑃𝑃
𝜌𝜌

)1/4  (6-3) 

 This equation is able to capture the varies of value K pretty well under different 

pressure P and particle diameter d .  Eq.(6-3) can be rearranged into a dimensionless form as  

 𝑇𝑇
(𝑑𝑑𝛾̇𝛾))2

∝ 1
𝐼𝐼
  (6-4) 

where I is the inertia number defined as I d
P
ρ

= γ 8. 

 As shown in Figure 6.4. (b), this dimensionless form works reasonably well for inertia 

number bigger than 0.1; but a different behavior was observed for T under smaller inertia 
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number (Figure 2.1(b) insert).  A potential reason for this is flow mechanism changing caused by 

regime transition from intermediate flow regime to the quasi-static regime at low inertia number 

as mentioned in GDR MiDi8.  

6.4.2 Coordination Number Z 

 The coordination number Z is measured from the DEM simulation based on how many 

particles are contacting with the target particles at a time step. The measured Z is an averaged 

value over a period of time.  Figure 6.5 plots the coordination number Z as a function of inertial 

number I for the bulk particles (9mm) and small tracer particles under each size ratio. Same as 

our previous founding and some other researches, Z vs. I has a power law behavior 

( aZ ~ I − )67,69,76 and based on our simulation, there are two regimes where a ≈  0.3 and 1 for I 

values below and above 0.5 respectively.   

 We observed that at the same Inertia Number, Z value depends lightly on pressure 

(higher Z at higher P) which has not being reported before and the reason maybe that the higher 

granular temperature under higher pressure causes more random movement.  However, this 

dependence is much smaller comparing to the impact of size ratio r  so it isn't considered when 

fitting the data.   

 In general, the smaller the particle is, the smaller the value of Z is.  To easily observe 

the impact of particle size, we also plotted the scaled Z in Figure 6.5; which is calculated as 

2
scaled

1Z Z * ( )
r

= . As it is shown in the figure, scaled Z overlaps with the big particle Z values. 

This means that Z is proportional to 2r .  This makes sense since the number of contacts should 

be proportional to the sphere surface area (Area 2~ r ) 
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Figure 6.5: Coordination Number (Z) as a function of Inertia number (I). The hollow 
circle represents coordination number for bulk particles. For tracer particles, each different 
shape means one size ratio.  Circle represent size ratio r 0.5= , square for r 0.67=  and 
triangle for r 0.75= . For each condition, lower transparency means higher pressure. The 
colored dashed lines represent scaled coordination number scaledZ . Data for coordination 

number can be fitted in to two power equations. 2 0.295Z( I 0.5 ) (1 / r ) * I −<= ∝  and 
2 1.164Z( I 0.5 ) (1 / r ) * I −> ∝ . The power law transition is indicated by a dotted line. 

 

 

 

6.4.3 A segregation Model and Comparison with Simulation Results 

 In our model, we consider size segregation as a process which has two phases. The 

expansion/dilation phase and the segregation/percolation phase. For the expansion phase, we 

adopt an idea similar to that of Cooke and Bridgwater86. The core concept of this statistical 
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argument is that we assume each bulk particle to be constrained within a cubic space. In order for 

segregation/percolation to even present as a possibility, this space must expand sufficiently to 

allow passage. In our approach, however, instead of assuming that the dimensionless expansion 

size necessary to satisfy this constraint is the diameter ratio of small to large particles s br / r , we 

instead assume that it is controlled by the projected area ratio 2
s b( r / r ) . Thus, we assume that if 

the gap area in the box is greater than some critical value 2R* , the small particle would be able 

to progress though the gaps.  Logically, 2 2
sR* ~ ( r ) . Thus, the probability that the expansion is 

sufficient to allow a small particle of radius sr  to be able to pass though gaps with a distance gR  

is  

 𝑃𝑃(𝑅𝑅𝑔𝑔2 > 𝑅𝑅 ∗2) = 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑅𝑅 ∗/𝑅𝑅)2))~𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑟𝑟𝑠𝑠/𝑅𝑅)2))  (6-5) 

 The actual gap size, gR , that is present within a bed can be calculated based on the solid 

volume fraction φ .  Using arguments set forth originally by Bagnold (and recapitulated by 

Hunt96), the dimensionless mean radial separation distance between particles (λ ) can be related 

to the solid volume fraction φ  via  

 𝜆𝜆 = [(𝜙𝜙0/𝜙𝜙)1/3 − 1]  (6-6) 

where 0φ  is the maximum possible concentration. In this work, 0φ  is treated as equal to 0.74 

(i.e., that of mono disperse close-packing) since the majority of our particles have the same size. 

Note that the mean radial separation distance λ  is generally smaller than the actual hole diameter 

(Figure 6.6), as the structure of the bed (and hence the hole geometry) constantly changes during 

flow. As there is no easy way to measure the hole size, as a first approximation, we use a fixed 
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constant C   that it taken to be larger than 1 in order to relate λ  to the hole size.  In this work, C  

has been fit to have a value of 2.7.  After considering both the influence of changing of hole size 

and the probability to fall through a hole, the percolation probability can be written as a function 

of the solid volume fraction in the way shown below and plotted in Figure 6.7 

 𝑃𝑃(𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑒𝑒𝑒𝑒𝑒𝑒(−( 𝑟̄𝑟
(𝐶𝐶∗𝜙𝜙0/𝜙𝜙)1/3−1

)2)) ⋅ (1
𝜆𝜆
)2  (6-7)  

 

 

Figure 6.6:  Two potential relationships between the particle mean radial separation 
distance λ and the actual hole size.  The view is from above the shearing cell and each black 
circle represents one particle. The dotted line cycle represents the potential hole within the 
layer where upper layer particle can fall into. Since there are infinity ways particles can form 
holes within a layer, only the two simplest cases are presented here. The hole diameter 
a 2( 1) 1= λ + −  and b ( 1) / 3= λ + . 
 

 As alluded to above, we argue that segregation requires more than simply creation of a 

properly sized hole. Thus, the actual probability of a small particle falling into (or segregating) 

into a particular gap cannot be predicted using Eq.(6-5).  Instead, we need to take into 

consideration the fact that the small particle must ``explore'' the space above the hole and form 

an estimate of the rate at which this will occur.  
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 Using an argument similar to that set forth in Liu76, we think of the segregation 

velocity, sv , as undergoing a ‘’frustrated free fall’’ whereby drag forces between the segregating 

particle and its neighbors limit the rate at which a segregating particle may percolate through the 

bed. In contrast to the case of density segregation, where a particle may essentially create its own 

``hole'' do to gravitational force differences, in size segregation the particles must both encounter 

and traverse a hole in order for segregation to progress. In analogy to density segregation, the 

characteristic segregation velocity is that of free fall (i.e., dg ) where the falling distance d  is 

taken to be the distance between granular layers (here given by the larger particle diameter). We 

further take the ratio of the consolidation time ( 1/ 2d [ / P ]ρ ) to the average inter-particle 

interaction time (i.e., the inverse of the particle interaction rate, which has been shown to be 

captured by Zγ , where Z  is the coordination number and γ  is the shear rate) to indicate fraction 

of time available for free-fall. Lastly, in accord with the observations of Campbell97 with regard 

to the importance of granular temperature in size segregation, we further limit the free-fall to the 

effective rate at which a particle can explore its neighboring space. This latter effect is quantified 

via the ratio of the average fluctuational speed ( T ) relative to the interlayer collision rate ( dγ ). 

Consolidating these effects, we argue that a proper characteristic velocity for size-based 

segregation can we written as 

 𝑣𝑣𝑠𝑠~�𝑑𝑑𝑑𝑑𝑍𝑍𝑍𝑍𝑍𝑍�𝜌𝜌
𝑃𝑃
√𝑇𝑇
𝑑𝑑𝑑𝑑

~�𝑑𝑑𝑑𝑑𝑍𝑍𝑍𝑍𝑇̄𝑇  (6-8) 

where T  is the granular temperature made dimensionless with 2( d )γ . 

 Combining this expression (Eq.(6-8)) with the probability of percolating though 

(Eq.(6-7)), we can write the actual measurable dimensionless segregation velocity sV  as  
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 𝑉𝑉𝑉𝑉 = 𝑣𝑣𝑠𝑠
�𝑑𝑑𝑑𝑑

= 𝐴𝐴 ⋅ (1
𝜆𝜆
)2 ⋅ 𝑍𝑍 ⋅ �𝑇̄𝑇 ⋅ 𝐼𝐼 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒(−( 1

(𝐶𝐶⋅𝑟̄𝑟⋅𝜙𝜙0/𝜙𝜙)1/3−1
)2))  (6-9) 

where A is a fitting parameter that accounts for the deviation of granular drag from Stoke's law 

taken to have a value of 2.6 in our case. 

 

 

Figure 6.7: Probability for small particle to fall into holes as a function of inertia 
number. Circle represent size ratio r   = 0.5, square for r  = 0.67 and triangle for r  = 0.75. 
For each condition P range from 77.9 to 1558 Pa were tested.  Data points have lower 
transparency means higher pressure. 
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 In Figure 6.8, we compared our proposed theory with the measured segregation 

velocity from simulation.  Most points are able to fit into the y x=  diagonal line, thus the 

agreement between our theory and measured segregation velocity is remarkable. 

 Under all parameters, only P( exp )   and Z  have a size ratio dependence and both of 

them depend on the project area 2
s b( r / r ) .  This means that project area 2

s b( r / r ) , instead of the 

size ratio s b( r / r ) , is the size parameter impacting size segregation velocity; which conflicts 

with several previous researches stated86,98. 

 In Figure 6.8, we compared our proposed theory with the measured segregation 

velocity from simulation.  Most points are able to fit into the y x=  diagonal line, thus the 

agreement between our theory and measured segregation velocity is remarkable. 

 Under all parameters, only P( exp )  and Z  have a size ratio dependence and both of 

them depend on the project area 2
s b( r / r ) .  This means that project area 2

s b( r / r ) , instead of the 

size ratio s b( r / r ) , is the size parameter impacting size segregation velocity; which conflicts 

with several previous researches stated86,98.  
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Figure 6.8: Measured dimensionless segregation velocity result versus proposed 
segregation velocity model. The dotted diagonal line represents y = x so points fall on the line 
means good fit between theory and measured value. Star symbol represents d = 3mm and P 
=77.9Pa. Diamond symbols represent d = 6mm and P ranges from 77.9 to 701.1pa. For 9 mm 
particles, P range from 77.9 to 1558 Pa were tested. Circle represent size ratio r  = 0.5, 
square for r  = 0.67 and triangle for r  = 0.75. For each condition, lower transparency 
means higher pressure. 

6.5 CONCLUSION 

It is well known that for a given solids concentration, the probability of finding a hole that 

small particles can fall into is larger than the probability of finding a hole that a large particle can 

fall into. Hence, there is a tendency for particles to segregation with small particles at the bottom. 

However, none of the existed models is able to fitted into our simulated results very well.  In this 

work, steady state DEM shear cell simulation was used to generate segregation velocity for tracer 



 82 

small particles in a medium of big particles.  The simulation was performed over a range of particle 

size ratio, shear rate and pressure.  Based on the simulation results and our previous researches in 

density segregation, we proposed a new size segregation model which combined flow rheology 

with kinetic sieving mechanism.  This model is able to predict our simulated size segregation much 

better than existed models.  Other than that, two important observation from our new theory and 

simulated results are: first, size segregation is not linearly dependent on shear rate.  It also has a 

mild dependence on pressure which is usually ignored.  Secondly, size segregation is influenced 

by the project area ratio of particles instead of just particle diameter ratio.  The results of this work 

can help improve understanding of the influence of flow rheology to size segregation and help 

make better size models in the future.  The next step of this work will be exploring size segregation 

for binary mixing and also size segregation under time dependence unsteady flows.
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7.0  COHESIVE PARTICLE SEGREGATION AND GRANULAR RHEOLOGY 

7.1 INTRODUCTION 

 Granular materials many commonly used in various industries, such as chemical, food 

and pharmaceutical.  In operations, such as flotation, coating and granulation, instead of 

processing as dry materials, granular particles are frequently processed by adding a liquid phase.  

This has a significant effect on particle flow because when liquid exists between two contacting 

particles, a liquid bridge will be formed58.  The cohesive capillary force caused by the liquid 

bridge can be much larger than the particle weight and thus leads to different flow behavior than 

dry particle processes.  These flow modifications may be manifested as particle agglomeration 

and reduced segregation99,100.  The fundamental impact of cohesion on particle flow behavior is 

lacking despite recent advances45,99,101. Because the economic impact of particle processing is 

significant102, a deeper understanding of the effects of cohesive particles is needed. 

  While studies focusing on cohesive granular particles are scarce, in contrast, the study 

of dense phase granular rheology has gained traction recently8,57,66.  Several papers have studied 

the connection between rheology and segregation56,76 and the rheological behavior of cohesive 

granular  materials103; however, no study, to our knowledge, has focused on how flow rheology 

is related to wet particle segregation. 
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  In this paper, we focus on the segregation behavior of wet granular particles inside a 

shear cell.  We show how flow rheology influences wet particle segregation and compare the 

results with dry particle segregation. 

7.2 SIMULATION 

7.2.1 Simulation set up and measurement method 

 In this work, we use a similar approach to that used in our previous study76. A discrete 

element method (DEM) code build in our lab was used to examine a wall-driving periodic plane 

shear cell.  A schematic of the simulated 3D plane shear flow system is shown in Figure 7.1.  

Periodic boundaries were used in both the x and z directions.  In the simulation, the majority of 

the particles had the same (light) density and had material property of acetate.  Eight uniform 

heavy intruders, which had the properties of glass, were randomly placed in the system.  The 

material properties used for the simulation are shown in Table 7.1.  For the majority of cases, the 

density ratio between heavy and light particles (ρ ) was set to be 2 but in several cases, to study 

the impact of density, the heavy tracer particles' density was increased to 3900 3kg / m  and thus 

ρ  was equal to 3.   

 In order to obtain a nearly homogeneous shear flow (linear shear), fins made of wall 

particles were glued to both top and bottom walls, and a modified gravity force was applied only 

to the heavy tracer particles.  Four different particle sizes (2,3,4 and 6 mm), with a 20 % particle 

size distribution to prevent crystallization, were tested.  The reason we examine several 
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background particle sizes is to test the impact of changes in the granular bond number ( gBo ) on 

the flow behavior.  The Granular Bond number58, which is commonly used to quantify the 

impact of adhesive binary interactions on mixing (Eq.(7-1)), increases when the size of the 

particles decreases; and for gBo  number smaller than 0.5, the wet force is usually seen as having 

no impact on flow behavior58.  

 𝐵𝐵𝑜𝑜𝑔𝑔 = 𝐹𝐹𝑐𝑐
𝑊𝑊

= 2𝜋𝜋𝜋𝜋𝜋𝜋
4
3𝜋𝜋𝑅𝑅

3𝜌𝜌𝜌𝜌
= 3𝛾𝛾

2𝑅𝑅2𝜌𝜌𝜌𝜌
  (7-1) 

 In the above equation, cF  is the maximum capillary force and W is the weight of the 

tracer particle.  In this work, water is used as the liquid phase and thus the surface tension γ  is 

set equal to 0.072 N / m .  The shear rate range of this simulation is between 16 to 125 1s−   and the 

pressure is within the range of 17 to 160 pa.  By doing so, the so called inertia number8, which is 

defined below, has a range of values between 0.1 and 1.4.  

 𝐼𝐼 = 𝛾̇𝛾𝑑𝑑𝑝𝑝�
𝜌𝜌
𝑃𝑃
  (7-2) 

In Eq.(7-2), γ  is the shear rate, P is the confining pressure, which depends on the wall mass, and 

pd  is the particle diameter. 

 In the simulation, the shear rate γ  was calculated based on both the moving wall 

velocity and the distance between walls. The intruder particles' segregation velocity was 

calculated based on the slope of the average particle’s movement plot as a function of time.  
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Figure 7.1:  Schematic of the simulated plane shear geometry. The 3D flow is periodic 
in both the streamwise (x) and transverse (z) directions. Red (dark color) particles are heavy 
intruders and blue (light color) particles are lighter density particles. While the blue/light 
particles do not experience a gravitational force, the net force (self-weight minus an effective 
buoyant force) acts on the red/heavy intruders. 

 

7.2.2 Simulation method 

 In the DEM code, the bulk flow of the material is captured via simultaneous integration 

of the interaction forces between individual pairs of particles34,35.  When two wet particles 

contact each other, the liquid on their surface will form a liquid bridge and generate a cohesive 

and viscous force.  In the sections below, we briefly review the model employed in this paper. A 
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thorough description of the contact mechanics and particle dynamics can be found in previous 

papers from our group101,104.  

 

Table 7.1:  Material properties used in the simulations 

 

7.2.2.1 Normal Forces 

 The normal force is modeled as an elastic-plastic material using a similar method to 

that described in Thornton etc. 59,60.  The deformation of the particles α  is mimicked via a 

computational "overlap" so that nv dt∆α =  represents the incremented changes in the overlap, 

where nv  is the velocity in the normal direction and dt  is the time-step. ∆α  is positive for 

loading and negative for unloading. At the initial stages of loading, the normal force, nF , is 

purely elastic and is given by  

 𝐹𝐹𝑛𝑛𝑁𝑁 = 𝐹𝐹𝑛𝑛𝑁𝑁−1 + 𝑘𝑘𝑛𝑛 ∗ ∆𝛼𝛼  (7-3) 

where nk , which equals to *2aE , is the normal force constant from the Hertz theory61.  In the 

above equation, a is the radius of the contact area and *E  is the representative Young's Modulus.  

In Eq.(7-3), N 1
nF −  is the old normal force and N

nF  is the normal force at the current time-step. 



 88 

 Once the normal force exceeds a yield fore, yF , a modified version of the contact force-

displacement relationship based on Wu40 is used.  The normal force constant nk  of further 

loading is given by *YRπ  and the deformation of the particles α  equals to
2 2

*2

Y R
4E
π

, where Y is 

the yield stress and *R  is the effective particle radius. 

 Once particles are in contact, the liquid on the particle surface will form a pendula 

bridge and both the capillary force cF  and the viscosity force on the normal direction vnF  are 

calculated using equations below. 

 𝐹𝐹𝑐𝑐 = −𝜋𝜋𝜋𝜋𝜋𝜋 ∗ (𝑒𝑒𝑒𝑒𝑒𝑒(𝐴𝐴 ∗ 𝑆𝑆 + 𝐵𝐵) + 𝐶𝐶)  (7-4) 

 𝐹𝐹𝑣𝑣𝑣𝑣 = −6𝜋𝜋𝜋𝜋𝜋𝜋𝑣𝑣𝑛𝑛𝑅𝑅/𝑆𝑆  (7-5) 

 In the equations, S is the separation distance between the pair of particles, A, B and C 

are constants depend on a liquid bridge's volume, µ  is the interstitial fluid's viscosity and R is the 

particle radius. 

7.2.2.2 Tangential Forces 

 Walton and Braun derived the tangential (frictional) force41. For each time-step, the 

new tangential force acting at a particle-particle contact, tF , is given as: 

 𝐹𝐹𝑡𝑡𝑁𝑁 = 𝐹𝐹𝑡𝑡𝑁𝑁−1 − 𝑘𝑘𝑡𝑡𝛥𝛥𝛥𝛥  (7-6) 

where N 1
tF −  is the old tangential force and tk s∆  is the incremental change in the tangential force 

during the present time-step due to relative particle motion; i.e., s∆  is the displacement during 
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the present time-step; its expression is adapted from a vector form given by Walton42.  When tF  

is smaller than the sliding friction force ( f nFµ ), the frictional stiffness tk  equals to *8G a , where 

*G  is the shear modulus and a  is the radius of the contact area43. 

 Wet contact results in an additional viscosity force ( vtF ) in the tangential direction with 

a similar manner to that of the normal direction (Eq.(7-7)).  However, instead of nv , this 

viscosity force depends on the relative tangential velocity of the spheres tv .  

 𝐹𝐹𝑣𝑣𝑣𝑣 = −6( 8
15
𝑙𝑙𝑙𝑙 𝑅𝑅

𝑆𝑆
+ 0.9588)𝜋𝜋𝜋𝜋𝜋𝜋𝑣𝑣𝑡𝑡  (7-7) 

7.3 RESULTS 

7.3.1 Dry granular flows 

 Dry granular flow has been frequently studied in recent years8,57,67,76,81.  Based on 

dimensional analysis, a simple rheological theory (represented by Inertia number (Eq.(7-2))has 

been proposed and shown to be able to correctly predict many dense phase granular behaviors65.  

Our previous study found that this rheological theory can also lead to unique insights into 

particle segregation problems76.  

 As shown in Figure 7.2, we found that when we plot the dimensionless segregation 

velocity ( s sV V / gd= ) as a function of inertia number ( I ), two regimes: a close to linearly 

increasing regime and a saturated regime.  The inertia value separated those two regimes are 
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always around 0.5, which corresponds roughly to a solids fraction of 𝜙𝜙~0.52.  This is a strong 

evidence that flow rheology and dry granular particle segregation are related. 

 

 

 

Figure 7.2: The dimensionless segregation velocity of dry granular material as a 
function of inertia number in a sheared cell system for ρ  = 2. The inserted sub-figure shows 
the linear relation between solid volume fraction and inertia number 

 

 Tripathi and Khakhar proposed that density segregation can be presented by a force 

balance equation: w b d0 F F F= − + , in which wF  is the gravity force, bF  is the buoyancy force and 

dF  is the drag force17.  Based on this force balance equation and an argument that the local shear 

rate around the tracer particles depends on both the coordination number and the global shear 

rate, we derived a new density segregation model in term of rheological parameters and the 

coordination number ( z ) as shown in equation below: 
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 𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑠𝑠
�𝑑𝑑𝑝𝑝𝑔𝑔

= 𝑧𝑧(𝜌̄𝜌−1)
𝛽𝛽�𝜌̄𝜌

𝐼𝐼  (7-8) 

 In this equation, β  is a fitting parameter and g is the gravitational acceleration.  Since 

under high inertia number, the coordination number is proportional to 1I −  as shown in Figure 7.3, 

the rate of segregation reaches a saturated value after this critical I value.   

 

 
Figure 7.3: Coordination number as a function of Inertia number for dry granular 

material. The inserted figure shows the same plot in a log-log scale. 
 

7.3.2 Wet granular flows 

 There is anecdotal evidence that wetting can slow down or even prevent segregation to 

happen; thus, one might expect that the segregation velocity for wet particles is slower than dry 

particles under the same condition, and at the same time, that the impact of wetting is larger for 
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smaller particles (bigger granular bond number gBo ).  Surprisingly, when we plot the 

dimensionless segregation velocity as a function of inertia number (Figure 7.4) for wet granular 

materials, we find that for all four different diameter cases tested, the data was able to collapse 

with the reference dry granular data sets.  This indicates that under the same rheological 

condition, the wet granular flow has the exact same segregation behavior as the dry granular 

flow; which is contrary to conventional wisdom.  Figure 7.4 also suggests that wet segregation 

has the same mechanism as dry segregation.    

 

 

 

Figure 7.4:  Dimensionless wet segregation velocity as a function of inertia number 
for particle diameter 6mm (Bog = 0.45), 4mm (Bog = 1.02), 3mm (Bog = 1.81) and 2mm (Bog 
= 4.08). Dry segregation is also plotted as a reference. 

 

 



 93 

 When we plot the solid volume fraction as a function of inertia number (Figure 7.5.(a)), 

we find that, although the relationship is still linear, the solid volume fraction for larger granular 

bond number cases are always smaller.  In a similar vein, Figure 7.5.(b) shows that under the 

same inertia number, higher granular bond number conditions always have higher coordination 

number, 𝑧𝑧.  This observation means that our previously proposed dry granular segregation model 

(Eq.(7-8)) won't work for wet granular flows without adjustment, but it also portends the 

required modification.  

 

 

Figure 7.5: (a) Solid volume fraction as a function of inertia number for wet cases and 
the reference dry case. (b) Coordination number as a function of inertia number for wet 
cases and the reference dry case. Four wet cases, particle diameter 6mm (Bog = 0.45), 4m m 
(Bog = 1.02), 3mm (Bog = 1.81) and 2mm (Bog = 4.08) are shown in figures. 
 

 To modify our segregation model, we treat the forces caused by wetting conditions as a 

drag force and write a new force balance equation for density segregation in wet granular flow as 

w b d dw0 F F F F− −= − .  In this equation, dwF  is the drag force caused by wetting. Taking both 

drag forces to have a Stokesian form, they both can be written as d p sF d v= βπη , where β  is a 
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fitting parameter.  Thus, if we rearrange the equation and use the same argument as our dry flow 

theory, the segregation velocity model can be written as  

 𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑠𝑠
�𝑑𝑑𝑝𝑝𝑔𝑔

= 𝑧𝑧(𝜌̄𝜌−1)
(𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑+𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤)�𝜌̄𝜌

𝐼𝐼  (7-9) 

 In above equation, both dryβ  and wetβ  are fitting parameters.  Eq. (7-9) can explain why 

wet segregation vs. rheology figure has the same shape as dry segregation.  

 In order to further explain the behavior, we see in Figure 7.4, we need to look at the 

problem from another angle.  In our previously proposed dry segregation theory, we stated that 

particle collision energy can be transferred to kinetic energy and thus, the higher the interparticle 

interaction rate (i.e., 𝑍𝑍𝛾𝛾), the faster a particle may segregate.  However, under wet conditions, 

not all contacts can be viewed as collisions.  The cohesive forces between particles will actually 

attract particles together and decrease particles' kinetic energy.  Thus, in order to calculate the 

effective interaction rate, we propose an adjusted coordination number ( adjz ) as shown below: 

 𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑠𝑠
�𝑑𝑑𝑝𝑝𝑔𝑔

= 𝑧𝑧(𝜌̄𝜌−1)
(𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑+𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤)�𝜌̄𝜌

𝐼𝐼  (7-10) 

 In this equation, cF  is the capillary force, which can be seen as equal to pdπγ 45, zF  is 

the collision force, which should be proportional to the confining pressure and thus, can be seen 

as equal to 2
pd P / 4απ .  Here α  is a fitting parameter with a value of 10.  In Figure 7.6, we 

present the adjusted coordination number for wet conditions compared with the coordination for 

the dry case.  As can be seen, the adjusted coordination numbers collapse with the dry 

coordination number for every granular bond number.  In another word, under the same inertia 

number, the adjusted coordination number for different wet conditions will always have the same 
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value as the dry reference case.  However, this can be seen more as a flow regime constraint as 

opposed to a modeling failure.  Thus, after switching the parameter for z  to adjz , our previous 

proposed segregation model (Eq.(7-8)) can be used to predict wet segregation velocity as well.  

 One thing worth pointing out is that based on our simulation, if the value of c

z

F
F

 is 

bigger than ~ 0.2 , the simulation will have trouble keeping the shearing profile linear because of 

the strong attraction force between particles.  As a result, if the value of c

z

F
F

 is bigger than ~ 0.2  

both the adjusted coordination number ( adjz ) and dimensionless segregation velocity ( sv )  will 

not collapse with the dry case.  Thus, the ratio c

z

F
F

 can be used as an indicator of when wet 

flow/segregation behaves dramatically different from dry. 
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Figure 7.6: Adjusted coordination number (Eq. 6) as a function of inertia number for 
four different diameter wet conditions (6mm, 4mm, 3mm and 2mm) and the reference dry 
condition. 
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8.0  AN EXPERIMENTAL STUDY OF CYLINDRICAL PARTICLE’S EFFECTIVE 

SIZE IN A ROTATING TUMBLER 

8.1 INTRODUCTION 

 A granular system is a collection of individual solid particles.  The overall granular 

behavior is controlled by the contact forces between the individual particles within the system.  

Particle segregation, one of the unique problems existed in granular systems, is the process of 

spontaneous separation when particles with different properties particles (size, density, shape, 

surface property etc.) are combined and agitated.  While there is a wealth of research in a variety 

of different flow vessels devoted to studying size segregation27,77,91,92 and density 

segregation17,52,93, and there is a relatively new trend of studying the underlying physics of 

granular flows66,105,106, shape segregation has received relatively spare attention until fairly 

recently107.  This is due, in part, to the fact that the physics for irregularly shaped particles in 

dense flows are more complicated and particle shape-based simulations are harder to perform 

than those with idealized spherical particles.  Despite the fact that there are only a few studies 

that investigate shape segregation, the phenomenon is industrially common.  For example, 

pharmaceutical tablets, coal and food grain processing all involve non-spherical particles and it is 

known that particle shape has a significant impact on the flow behavior in these industries.  
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          A number of recent studies have investigated the behavior differences between the flow of 

spherical and non-spherical particles.  Cleary108  found that in a simple shear flow non-circular 

particles have a higher granular temperature and lower solid fraction than corresponding 

spherical particles due to particle spin.  Yamane et al.109 found that non spherical particles have a 

higher maximum velocity and thinner active layer than spherical particles in a rotating cylinder.  

Mandal et al.110 studied the effect of particle aspect ratio on the rheology of the flow in a rotating 

cylinder and found that the dynamic angle of repose and apparent viscosity increases with 

particle aspect ratio while velocity and shear profile are comparably similar between no spherical 

and spherical particles.  Rasouli et al.111 used the multiple radioactive particle tracking (RPT) 

technique to compare the flow behavior of cylindrical and spherical particles inside a rotating 

drum.  They studied the general velocity profile of cylindrical particles and proposed an effective 

particle size model for cylindrical particles.  This model represents one of several that we test in 

this study. 

          The rotating drum or tumbler partially filled with granular material has been a common 

experimental geometry to study granular surface flows21,93.  Increasing the rotational speed of the 

tumbler has been known to change flow regimes (slipping to rolling to centrifuging) 112,113.  In 

industrial operations, the rolling regime, in which a shallow layer of particles flows within the 

active layer (free surface flow) and the remaining material rotates as a solid (passive layer), plays 

an important role in a wide range of processes such as mixing, coating and drying.  

            In this work, we take an initial step towards building an understanding of how shape 

segregation works by studying the behavior of cylindrical particles within a medium of spherical 

particles in a quasi-2D rotating tumbler operating in the rolling regime. 
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8.2 EXPERIMENT 

Our experiment setup is shown in Figure 8.1. The quasi-2D tumbler has a radius of 0.13 m 

and depth of 26.3 mm.  Experiments are run with the device half-filled with spheres as well as 30 

tracer cylinders, which represents a negligible number fraction inside the system and are initially 

set on top of the free surface.  The tracer particles were dyed using red ink to make them more 

distinguishable.  All particles have properties of steel ( 37900kg / mρ =  ).  Three different sizes of 

steel balls are used (3, 4.5 and 6.35 mm) and multiple type of cylinders/disks which have different 

lengths and diameters are tested. We define disks as cylinders whose diameters are bigger than 

their lengths.  The shape properties of cylinders used in this experiment are given in  

 

Table 8.1 in which #7 and #8 are considered as disks while the rest are a more traditional 

elongated shape of cylinder.  All the particles we use in this study are also shown in Figure 8.2.  

To compare with size segregation, which is well studied and usually tested using different sizes of 

sphere particles, we also run several trials of experiments using spheres as tracer particles. Those 

experiments are set as reference and were compared with cylinder results later. 
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Figure 8.1: (a) Experimental Results for #7 tracer disks (as shown in Table 4.1) inside 
6.35 mm spheres at 1.7 RPM.  (b) Analyzed results for the same experiment condition.  Each 
blue dot indicates a tagged tracer particles’ position and the red dot is used to indicate the 
center of the tumbler  
 

 

 

Table 8.1: Cylinder Shape Factors 
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Figure 8.2: All particles used in the study 

 

 A computer-controlled stepper motor is used to control the rotation rate of the tumbler.  

Experiments are carried out for five different rotating rate (ω  =1.7, 3.5, 5.2, 7.0 and 8.6 RPM) 

and the flow resulted in the rolling regime under each condition.  Images of the rotating tumbler 

are taken with a Nikon D200 digital camera once the flow becomes steady. A halogen light is 

used to increase brightness while taking pictures.  The steady state pictures are analyzed using 

image analysis software (GIMP).  For each experimental condition, the position of the tracer 

particles was tagged for each picture (which is taken no more frequently than once per 1/4 

rotation) until 100 tracer particles' positions are recorded.  An analyzed picture is shown in 

Figure 8.1.b.  The tracer particles' average distance to the tumbler center and the distance 

variance are calculated for each experimental condition.  Generally speaking, the shorter the 

average distance to the center, the higher the tending of the material to exhibit inward 
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segregation.  Additionally, the higher the variance, the more mixed the system is.  This method 

of qualifying segregation is similar to that used by Felix et al. for their size segregation study114.  

 Later, in order to examine the impact of the side walls, we performed a set of experiments 

with disks in spheres in a 3-D cylinder.  The cylinder has a diameter of 15 cm and length of 8 cm.  

The experiment was carried out at the rotation rate of 3 RPM.  We took pictures from the top of 

the cylinder to observe the disks' behavior while in the free surface flow without the influence of 

wall effect. 

8.3 RESULTS AND DISCUSSION 

 There are multiply ways to quantitatively represent a cylinder as a comparably sized 

sphere.  In this section, we summarize the most commonly used methods and categorize them 

into three classes (1-D, 2-D and 3-D) and present a new way to quantify a cylinder's behavior 

when they are among spheres.  We quantify the efficacy of those definitions by comparing the 

cylindrical particles' average distance to the center (Dc) of the tumbler to the location that we 

obtain using differing sized spheres as tracer particles.  If our results are able to collapse onto a 

single curve, we consider the method able to correctly predict a cylinder particle's effective size.  

In the paragraphs below, we discuss the three classes of category, one by one. 

 We define methods in the 1-D class as those that use a one-dimensional length scale to 

predict the cylinders' size behavior.  Two types of 1-D methods are shown here.  "1-D short" 

uses the shortest length of the cylinder (either the diameter or the length depending on the shape) 

to predict the cylinder's effective size, while "1-D average" uses the average value between the 

length and diameter of the cylinder, i.e., (1-D Average ( Length Diameter ) / 2= +  ).  In Figure 8.3 
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(a) and (b), we show the 1-D short results for the lowest (1.7) and highest (8.6) RPM that we 

tested.  Although the exact values are different, both cases show the same trend.  The majority of 

the cylinder results are able to align with the size segregation sphere results (shown as stars) 

while disks (shown as hexagons) are closer to the tumbler edge than expected.  This suggests 

that, when quantifying using the 1-D short method, disks predicted effective sphere sizes are 

smaller than they should be.  Nevertheless, it is worth pointing out that when comparing sub 

figure (a) with (b), figure (a)'s data is more scattered.  When the x axis has the same value, a 

higher aspect ratio ( Length / Diameter ) cylinder has a higher Dc value in Figure 8.3.(a) but not 

in Figure 8.3.(b).  This can be understood due to the fact that cylindrical particles tend to spin 

within the flow at a lower RPM (broader particle orientation probability distribution), thus, they 

exhibit a larger effective size than the case when the majority of particles align with the flow (as 

they do at higher RPM). 

 Despite the differences, Figures (a) and (b), in general, display the same trend.  Thus, 

for the remainder of this paper we only show the average Dc value for all 5 of the RPMs that we 

tested.  In this way, we can reduce the impact of experimental noise/error on our comparison. 

The R-squared values of all cylinders ( 2
cR ) and disks data points ( 2

cR ) to the reference (shown as 

stars) are calculated and show for each method. 

 Figure 8.3. (c) shows the average results for 1-D short. It shows the same trend as sub 

figure (a) and (b).  We determine the Dc value for small spheres in big spheres mixture and 

display it as the star symbol at x axis value equals to 1.  For any distance to center (Dc) value 

smaller than the pure mixed case (i.e., for smaller sphere tracers), we consider as inward 

segregation and they are indicated as the shaded region of the figure. 
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 Figure 8.3. (d) shows the 1-D average results.  As shown in the figure, for this measure, 

disks (hexagons) size are correctly predicted (collapse with the reference curve shown by stars); 

however, all cylinder values are lower than the reference values.  This means that when using 1-

D average method to calculate the effective particle size, the calculated scale is bigger than the 

cylinder's actual effective size. 
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Figure 8.3: Average distance to the center vs. area scale ratio between tracers 
(cylinders) and the bulk materials (sphere). (a) shows the 1-D short plot under 1.7 RPM, (b) 
shows the 1-D short plot under 8.6 RPM, (c) shows the 1-D short plot for the average results 
for all five RPM and (d) shows the average 1-D Average results. In every figure, circle(red) 
represents 3 mm sphere, square(blue) for 4.5 mm sphere, diamond(purple) for 6.35 mm 
spheres, hexagons for tracer disk results and stars for sphere-sphere size segregation results. 
Each different fill means one-cylinder type. For disks (shown as hexagons), top filled is for 
#7 in table 1 and bottom filled for #8. For cylinders (shown in different shapes depends on 
the spheres media), #1 is top filled, #2 is bottom filled, #3 is right part filled, #4 is left part 
filled, #5 is an empty symbol and #6 has a dot inside the symbol 
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 We also plot the results in 2-D area scales.  The sphere's 2-D area scale is its projected 

area, but for cylinders, there are two ways to describe its projected area.  If the majority of the 

cylinders are oriented in the flow direction, the proper area scale would be their largest projected 

area, thus lA length* diameter= .  On the other hand, if the majority of cylinders are freely 

rotating within the flow, it will exhibit a different projected area than the typical long area.  In 

Figure 8.4, we show how we define particle's effective rotating length.  

 

 

Figure 8.4: Defined shape parameters in both cylinder and disk particles. 

 

The average length ( L ) of a spinning cylinder can be described as 

 𝐿̄𝐿 = ∫ [𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⋅𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ⋅𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)]𝑑𝑑𝑑𝑑𝜋𝜋/2
0

𝜋𝜋/2
= 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝜋𝜋/2
  (7-11) 

Therefore, the spinning area scale can be written as sA L* D= .  The lay-down plot is shown in 

Figure 8.5.(a) and the spinning plot is shown in Figure 8.5.(b).  As both figures show, the 

cylinder data sets are consistently lower than the sphere data set; but the difference is more 

obvious when using the spinning area to quantify the shape of the cylinders.  As in Figure 
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8.3.(d), a lower than reference value means that by using the area to quantify the cylinders' 

behavior, the calculated value is bigger than the actual cylinder's effective sphere size.  Although 

the cylinder results are lower than expected, Figure 8.5.(a) shows that the 2D lay-down method 

reasonably predicts the disks (hexagon) effective sphere size. 

 Figure 8.5.(c) shows the 3-D volume method, in which the volume of the cylinder is 

compared with the volume of spheres directly.  As the figure shows, by treat cylinders as the 

same volume spheres, the size effect of cylinders is overly exaggerated. 
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Figure 8.5: Average distance to the center vs. Area ratio between tracers (cylinders) 
and the bulk materials (sphere).  (a) shows the 2-D lay down plot (b) shows the 2-D spinning 
plot and (c) shows the 3-D volume plot. In every figure, circle(red) represents 3 mm sphere, 
square(blue) for 4.5 mm sphere, diamond(purple) for 6.35 mm spheres, hexagons for tracer 
disk results and stars for sphere-sphere size segregation results. Each different fill means 
one-cylinder type. For disks (shown as hexagons), top filled is for #7 in table 1 and bottom 
filled for #8. For cylinders (shown in different shapes depends on the spheres media), #1 is 
top filled, #2 is bottom filled, #3 is right part filled, #4 is left part filled, #5 is an empty symbol 
and #6 has a dot inside the symbol 
 

 Of all the methods we tested to calculate the effective particle sizes, 1-D short is the 

best at predicting an elongated cylinder's effective size, while 2-D lay-down is better at predict 

the disk's effective size.  This suggests that disks and elongated cylinders behave differently in 

an active flow and thus, when researching cylindrical particles' flow behavior, most researchers 

focus on aspect ratios bigger than 1 to avoid the inconsistency issue107,110.  In this work, in an 

attempt to solve this problem, we propose a new method which is able to predict the effective 

size for both disks and elongated cylinders, which we call the 2-D flowing-area method.  We 

argue that if the majority of cylinders become oriented in the flow, the number of collisions the 

tracer cylinder particles are going to have is proportional to its edge area ( 2* ( Diameter / 2 )π  ).  

Disks, on the other hand, behave differently.  As shown in Figure 8.1 and Figure 8.6, based on 

our experiments, tracer disk particles are more likely to roll down the free surface vertically 
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rather than lay flat and align with the flow.  To make this finding more convincing, we analyzed 

44 pictures taken from the top of the 3-D cylinder and we found that statistically, the chance of 

seeing a tracer particle rolling down the free surface is 70 % higher than seeing it lying flat above 

the flow.  At the same time, once disks segregated into the flow vertically, they would likely stay 

in that orientation within the flow due to steric constraints that prohibit further reorientation.  As 

a result, the effective flowing area for disks has the shape of a rectangle 

( fA Diameter* length= ).   

 For both cylinders and disks, this flowing area can be compared with the bulk particles' 

surface area directly to predict an effective particle size.   As Figure 8.7 shows, by using flowing 

area to indicate cylinders/disks' effective size, we are able to collapse all the shape results with 

the reference data set very well.  Thus, we can say that the flowing area is a more accurate and 

general way to calculate the effective particle sizes for elongated cylinders/disks than the other 

methods mentioned earlier. 
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Figure 8.6: Experimental results for #7 tracer disks (as shown in Table 1) with 4.5 
mm bulk spheres inside a 3-D cylinder container running at 3 RPM. 
 

 This flowing area argument is similar to the effective projected area proposed by Guo 

et al.115.   Our previous density and size segregation studies have also indicated that the number 

of collisions is one of the most important factors in determining the segregation velocity76,116.  

Moreover, based on our size study, in the case of spherical particles, the number of collisions (or 

the so-called coordination number in our case) is proportional to the particle's surface area. Thus, 

it makes sense that the average tracer particle's distance to center, which itself is a function of the 

segregation velocity, depends on the flowing surface area of that cylinder/disk.  
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Figure 8.7: Average distance to the center vs. flowing area ratio between tracers 
(cylinders) and the bulk materials (sphere). Circle(red) represents 3 mm sphere, 
square(blue) for 4.5 mm sphere, diamond(purple) for 6.35 mm spheres, hexagons for tracer 
disk results and stars for sphere-sphere size segregation results. Each different fill means 
one-cylinder type. For disks (shown as hexagons), top filled is for #7 in table 1 and bottom 
filled for #8. For cylinders (shown in different shapes depends on the spheres media), #1 is 
top filled, #2 is bottom filled, #3 is right part filled, #4 is left part filled, #5 is an empty symbol 
and #6 has a dot inside the symbol 

8.4 CONCLUSION 

 A range of experiments were carried out to study tracer cylindrical particles' 

segregation behavior within spheres in a quasi-two-dimension rotating tumbler.  Experiments 

were performed for a range of rotational speeds.  Three different sizes of spheres are used to mix 
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with 30 tracer cylindrical particles.  Both the impact of length and diameter of tracer cylinders 

were studied.  The steady state situations of experiments were analyzed using image analysis 

software and the tracer particles' distance to the center of the tumbler is calculated.   

  Our results show that the common methods used to predict cylinder/disk's effective size 

cannot capture the whole shape segregation picture for cylinders of varying aspect ratio.  They 

either focus on an elongated cylinder's size effect and cannot correctly predict disk's effective 

size or vice versa.  We proposed a new area scale which takes into consideration the fact that the 

flowing area of a particle is the actual parameter that determines the number of contacts a 

particle has with its surrounding media and thus influences its segregation velocity.  This method 

is able to correctly predict both elongated cylinder and disk's effective size when compared with 

our experimental results.  With the correct particle effective size calculated, shape segregation 

can be treated as a type of size segregation, which has a more developed segregation theory, and 

thus segregation velocity can be calculated easily. 

  In this study, only cylinders inside a media of spheres are considered.  Zhao et al.107 has 

shown that when cylinders have different length but same diameter are mixed together, the 2-D 

lay down is the correct method to predict the segregation behavior.  It is possible that this is 

caused by the fact that cylinder flow is more complex than sphere flow which is more 

homogeneous.  Further study is needed to generate a universal rule which applies to broader 

types of situations. 



 113 

 

1. Henann, D. L. & Kamrin, K. A predictive, size-dependent continuum model for dense 
granular flows. Proc. Natl. Acad. Sci. U. S. A. 110, 6730–5 (2013). 

2. Shamlou, P. A. Handling of bulk solids : theory and practice. (Butterworths, 1988). 

3. Hill, K. M., Khakhar, D. V, Gilchrist, J. F., McCarthy, J. J. & Ottino, J. M. Segregation-
Driven Organization in Chaotic Granular Flows. PNAS 96, 11701–11706 (1999). 

4. Conway, S. L., Shinbrot, T. & Glasser, B. J. A Taylor vortex analogy in granular flows. 
Nature 431, 433–437 (2004). 

5. Pouliquen, O., Delour, J. & Savage, S. B. Fingering in Granular Flows. Nature 386, 816–
817 (1997). 

6. Khakhar, D. V, Orpe, A. V & Hajra, S. K. Segregation of granular materials in rotating 
cylinders. Phys. A-Statistical Mech. Its Appl. 318, 129–136 (2003). 

7. Rasouli, M., Dubé, O., Bertrand, F. & Chaouki, J. Investigating the dynamics of cylindrical 
particles in a rotating drum using multiple radioactive particle tracking. AIChE J. 62, 2622–
2634 (2016). 

8. Midi, G. D. R. On dense granular flows. Eur. Phys. J. E. Soft Matter 14, 341–65 (2004). 

9. Gray, J. M. N. T. & Edwards, A. N. A depth-averaged µ(I)-rheology for shallow granular 
free-surface flows. J. Fluid Mech 755, 503–534 (2014). 

10. Knight, J. B., Jaeger, H. M. & Nagel, S. R. Vibration-Induced Size Separation in Granular 
Media: The Convection Connection. Phys. Rev. Lett. 70, 3728–3730 (1993). 

11. Gray, J. & Hutter, K. Pattern formation in granular avalanches. Contin. Mech. Thermodyn. 
9, 341–345 (1997). 

12. Samadani, A. & Kudrolli, A. Segregation Transitions in Wet Granular Matter. Phys. Rev. 
Lett. 85, 5102–5105 (2000). 

BIBLIOGRAPHY 



 114 

13. Zik, O., Levine, D., Lipson, S. G., Shtrikman, S. & Stavans, J. Rotationally Induced 
Segregation of Granular Materials. Phys. Rev. Lett. 73, 644–647 (1994). 

14. Hill, K. M., Caprihan, A. & Kakalios, J. Bulk segregation in rotated granular material 
measured by magnetic resonance imaging. Phys. Rev. Lett. 78, 50–53 (1997). 

15. Fan, Y. & Hill, K. M. Shear-induced segregation of particles by material density. Phys. Rev. 
E 92, 022211 (2015). 

16. Khakhar, D. V, McCarthy, J. J., Ottino, J. M. & Shinbrot, T. Transverse Flow and Mixing 
of Granular Materials in a Rotating Cylinder. Phys. Fluids 9, 3600–3614 (1997). 

17. Tripathi, A. & Khakhar, D. V. Density difference-driven segregation in a dense granular 
flow. J. Fluid Mech. 717, 643–669 (2013). 

18. Savage, S. B. & Lun, C. K. K. Particle Size Segregation in inclined chute flow of 
cohesionless granular solids. J. Fluid Mech. 189, 311–335 (1988). 

19. Dolgunin, V. Segregation modeling of particle rapid gravity flow. Powder Technol. 83, 95–
103 (1995). 

20. Fan, Y. & Hill, K. M. Phase Transitions in Shear-Induced Segregation of Granular 
Materials. Phys. Rev. Lett. 106, 218301 (2011). 

21. Schlick, C. P., Fan, Y., Umbanhowar, P. B., Ottino, J. M. & Lueptow, R. M. Granular 
segregation in circular tumblers: theoretical model and scaling laws. J. Fluid Mech. 765, 
632–652 (2015). 

22. Gray, J. M. N. T. & Ancey, C. Multi-component particle-size segregation in shallow 
granular avalanches. J. Fluid Mech. 678, 535–588 (2011). 

23. Chew, J., Parker, D. & Hrenya, C. Elutriation and species segregation characteristics of 
polydisperse mixtures of Group B particles in a dilute CFB riser. AIChE J. 59, (2013). 

24. Pereira, G. G. & Cleary, P. W. Radial segregation of multi-component granular media in a 
rotating tumbler. Granul. Matter (2013). doi:10.1007/s10035-013-0448-2 

25. Remy, B., Khinast, J. G. & Glasser, B. J. Polydisperse granular flows in a bladed mixer: 
Experiments and simulations of cohesionless spheres. Chem. Eng. Sci. 66, 1811–1824 
(2011). 

26. Willits, J. T., Arnarson, B. O. & Values, M. Kinetic theory of a binary mixture of nearly 
elastic disks. Phys. Fluids 11, 3116–3122 (1999). 

27. Fan, Y. & Hill, K. M. Shear-driven segregation of dense granular mixtures in a split-bottom 
cell. Phys. Rev. E 81, 041303-- (2010). 

 



 115 

28. Gray, J. M. N. . & Thornton, A. R. A theory for particle size segregation in shallow granular 
free-surface flows. Proc. R. Soc. A Math. Phys. Eng. Sci. 461, 1447–1473 (2005). 

29. Oda, M. A mechanical and statistical model of granular material. Soils Found. 14, 13–27 
(1974). 

30. Hajra, S. K., Shi, D. & McCarthy, J. J. Granular mixing and segregation in zigzag chute 
flow. Phys. Rev. E 86, 061318 (2012). 

31. Jaeger, H. M. & Behringer, S. R. N. R. P. Granular Solids, Liquids and Gases. Rev. Mod. 
Phys. 68, 1259–1273 (1996). 

32. Cassar, C., Nicolas, M. & Pouliquen, O. Submarine granular flows down inclined planes. 
Phys. Fluids 17, 103301 (2005). 

33. Pouliquen, O. & Forterre, Y. A non-local rheology for dense granular flows. Philos. Trans. 
A. Math. Phys. Eng. Sci. 367, 5091–5107 (2009). 

34. Cundall, P. A. & Strack, O. D. L. A Discrete Numerical Model for Granular Assemblies. 
Geotechnique 29, 47–65 (1979). 

35. Walton, O. Application of Molecular Dynamics to Macroscopic Particles. Int. J. Eng. Sci. 
22, 1097–1107 (1984). 

36. Thornton, C., Yin, K. K. & Adams, M. J. Numerical Simulation of the Impact Fracture and 
Fragmentation of Agglomerates. J. Phys. D. Appl. Phys. 29, 424–435 (1996). 

37. Jain, K., Shi, D. & McCarthy, J. J. Discrete Characterization of Cohesion in Gas-Solid 
Flows. Powder Technol. 146(1), 160–167 (2004). 

38. Williams, J. C. The Segregation of Powders and Granular Materials. Fuel Soc. J. 14, 29–35 
(1963). 

39. McCarthy, J. J., Shinbrot, T., Metcalfe, G., Wolf, J. E. & Ottino, J. M. Mixing of Granular 
Materials in Slowly Rotated Containers. AIChE J. 42, 3351–3363 (1996). 

40. Chuan-yu wu, Long-yuan Li, C. T. rebound behaviour of sphere for plastic impact. Int. J. 
Impact Eng. (2003). 

41. Walton, O. R. & Braun, R. L. Viscosity, Granular-Temperature, and Stress Calculations for 
Shearing Assemblies of Inelastic, Frictional Disks. J. Rheol. 30, 949–980 (1986). 

42. Walton, O. R. Numerical Simulation of Inclined Chute Flows of Monodisperse, Inelastic, 
Frictional Spheres. Mech. Mat. 16, 239–247 (1993). 

43. Thornton, C. & Yin, K. K. Impact of elastic spheres with and without adhesion. Powder 
Technol. 65, 153–166 (1991). 

 



 116 

44. Williams, J. The segregation of particulate materials. A review. Powder Technol. 15, 245–
251 (1976). 

45. Li, H. & McCarthy, J. J. Cohesive particle mixing and segregation under shearLi, H., & 
McCarthy, J. J. (2006). Cohesive particle mixing and segregation under shear. Powder 
Technology, 164(1), 58–64. http://doi.org/DOI 10.1016/j.powtec.2005.12.018. Powder 
Technol. 164, 58–64 (2006). 

46. Thomas, N. Reverse and intermediate segregation of large beads in dry granular media. 
Phys. Rev. E 62, 961–974 (2000). 

47. Khakhar, D. V. Rheology and mixing of granular materials. Macromol. Mater. Eng. 296, 
278–289 (2011). 

48. Makse, H. A. Continuous Avalanche Segregation of Granular Mixtures in Thin Rotating 
Drums. Phys. Rev. Lett. 83, 3186–3189 (1999). 

49. McCarthy, J. J. Turning the corner in segregation. Powder Technol. 192, 137–142 (2009). 

50. Shi, D., Abatan, A. A., Vargas, W. L. & McCarthy, J. J. Eliminating segregation in free-
surface flows of particles. Phys. Rev. Lett. 99, 148001 (2007). 

51. Bhattacharya, T. & McCarthy, J. Chute flow as a means of segregation characterization. 
Powder Technol. 256, 126–139 (2014). 

52. Vargas, W. L., Hajra, S. K., Shi, D. & McCarthy, J. J. Suppressing the segregation of 
granular mixtures in rotating tumblers. AIChE J. 54, 3124–3132 (2008). 

53. Khakhar, D. V & Ottino, J. M. Scaling of Granular Flow Processes: from Surface Flows to 
Design Rules. AIChE J. 48(10), 2157–2166 (2002). 

54. Chou, H. Ter & Lee, C. F. Cross-sectional and axial flow characteristics of dry granular 
material in rotating drums. Granul. Matter 11, 13–32 (2009). 

55. Savage, S. B. Disorder, diffusion and structure formation in granular flow. in Disorder and 
Granuar Media (eds. Bideau, D. & Hansen, A.) 255–285 (Elsevier Science, 1993). 

56. Tripathi, A. & Khakhar, D. V. Rheology of binary granular mixtures in the dense flow 
regime. Phys. Fluids 23, (2011). 

57. Orpe, A. V & Khakhar, D. V. Rheology of surface granular flows. J. Fluid Mech. 571, 1–
32 (2007). 

58. Nase, S. T., Vargas, W. L., Abatan, A. a. & McCarthy, J. J. J. Discrete characterization tools 
for cohesive granular material. Powder Technol. 116, 214–223 (2001). 

59. Thornton, C. Coefficient of restitution for collinear collisions of elasti-perfectly plastic 
spheres. J. Appl. Mech. 64, 383–386 (1997). 



 117 

60. Thornton, C. & Ning, Z. A theoretical model for the stick/bounce behavior of adhesive, 
elastic-plastic spheres. Powder Technol. 99, 154–162 (1998). 

61. Johnson, K. L. Contact Mechanics. (Cambridge University Press, 1987). 

62. Ottino, J. M. & Lueptow, R. M. On Mixing and Demixing. 319, 912–913 (2008). 

63. Brown, R. L. The Fundamental Principles of Segregation. Inst. Fuel October, 15–19 
(1939). 

64. Ottino, J. M. & Khakhar, D. V. Mixing and segregation of granular materials. Annu. Rev. 
Fluid Mech. 32, 55–91 (2000). 

65. GDR Midi. On dense granular flows. Eur. Phys. J. E 14, 314–365 (2004). 

66. Pouliquen, O., Jop, P. & Forterre, Y. A constitutive law for dense granular flows. Nature 
441, 727–730 (2006). 

67. Da Cruz, F., Emam, S., Prochnow, M., Roux, J. N. & Chevoir, F. Rheophysics of dense 
granular materials: Discrete simulation of plane shear flows. Phys. Rev. E - Stat. Nonlinear, 
Soft Matter Phys. 72, 1–17 (2005). 

68. Henann, D. L. & Kamrin, K. A predictive, size-dependent continuum model for dense 
granular flows. Proc. Natl. Acad. Sci. U. S. A. 110, 6730–5 (2013). 

69. Hurley, R. C. & Andrade, J. E. Friction in inertial granular flows: competition between 
dilation and grain-scale dissipation rates. Granul. Matter 17, 287–295 (2015). 

70. Guillard, F., Forterre, Y. & Pouliquen, O. Scaling laws for segregation forces in dense 
sheared granular flows. J. Fluid Mech 807, (2017). 

71. Jaeger, H., Nagel, S. & Behringer, R. The Physics of Granular Materials. Phys. Today 49, 
32–38 (1996). 

72. Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. Jamming by shear. Nature 480, 355–
358 (2011). 

73. Peters, I. R., Majumdar, S. & Jaeger, H. M. Direct observation of dynamic shear jamming 
in dense suspensions. Nature 532, 214–217 (2016). 

74. Louge, M., Jenkins, J., Xu, H. & Arnarson, B. Granular Segregation in Collisional Shearing 
Flows. Mech. a New … (2002). 

75. Fan, Y. & Hill, K. M. Shear-induced segregation of particles by material density. Phys. Rev. 
E 92, 022211 (2015). 

76. Liu, S. & McCarthy, J. J. Transport analogy for segregation and granular rheology. Phys. 
Rev. E 96, 020901 (2017). 



 118 

77. Khola, N. & Wassgren, C. Correlations for shear-induced percolation segregation in 
granular shear flows. Powder Technol. 288, 441–452 (2016). 

78. DeGiuli, E., McElwaine, J. N. & Wyart, M. Phase diagram for inertial granular flows. Phys. 
Rev. E 94, 012904 (2016). 

79. Azéma, E. & Radjaï, F. Internal Structure of Inertial Granular Flows. Phys. Rev. Lett. 112, 
078001 (2014). 

80. de Bruyn, J. R. & Walsh,  a M. Penetration of spheres into loose granular media. Can. J. 
Phys. 82, 439–446 (2004). 

81. Jop, P., Forterre, Y. Y., Pouliquen, O., Jop, P. & Forterre, Y. Y. A constitutive law for dense 
granular flows. Nature 441, 727–730 (2006). 

82. Khakhar, D. V, McCarthy, J. J., Ottino, J. M. & Shinbrot, T. Radial segregation of granular 
mixtures in rotating cylinders. Phys. Fluids 9, 3600–3614 (1997). 

83. Xiao, H., Lueptow, R. M., Umbanhowar, P. B. & Ottino, J. M. Modeling density segregation 
in flowing bidisperse granular materials. 

84. Nelson, M. A., Miller, R. L., Streveler, R. A., Olds, B. M. & Geist, M. R. Using concept 
inventories for formative assessment of conceptual learning: A case study from engineering. 
in Annual Conference of the American Educational Research Association 

85. Savage, S. B. & Lun, C. K. K. Particle size segregation in inclined chute flow of dry 
cohesionless granular solids. J. Fluid Mech. 189, 311 (1988). 

86. Cooke, M. H. & Bridgwater, J. Interparticle Percolation: a Statistical Mechanical 
Interpretation. Ind. Eng. Chem. Fundam 18, (1979). 

87. Gajjar, P. & Gray, J. ~M. ~N. ~T. Asymmetric flux models for particle-size segregation in 
granular avalanches. J. Fluid Mech. 757, 297–329 (2014). 

88. Gray, J. M. N. T. & Ancey, C. Particle-size and -density segregation in granular free-surface 
flows. J. Fluid Mech 779, 622–668 (2017). 

89. Fan, Y. & Hill, K. M. Theory for shear-induced segregation of dense granular mixtures. 
New J. Phys. 13, 095009 (2011). 

90. Gray, J. M. N. T., Gajjar, P. & Kokelaar, P. Particle-size segregation in dense granular 
avalanches. Comptes Rendus Phys. 16, 73–85 (2015). 

91. May, L. B. H., Golick, L. A., Phillips, K. C., Shearer, M. & Daniels, K. E. Shear-driven size 
segregation of granular materials: Modeling and experiment. Phys. Rev. E 81, 051301 
(2010). 

 



 119 

92. van der Vaart, K. et al. Underlying Asymmetry within Particle Size Segregation. Phys. Rev. 
Lett. 114, 238001 (2015). 

93. Liu, S. & McCarthy, J. J. Validating granular segregation rate models. AIChE J. 63, 3756–
3763 (2017). 

94. Tunuguntla, D. R., Bokhove, O. & Thornton,  a. R. A mixture theory for size and density 
segregation in shallow granular free-surface flows. J. Fluid Mech. 749, 99–112 (2014). 

95. Campbell, C. S. RAPID GRANULAR FLOWS. Annu. Rev. Fluid Meeh 22, 57–92 (1990). 

96. HUNT, M. L., ZENIT, R., CAMPBELL, C. S. & BRENNEN, C. E. Revisiting the 1954 
suspension experiments of R. A. Bagnold. J. Fluid Mech. 452, 1–24 (2002). 

97. Campbell, C. S. Stress-controlled elastic granular shear flows. J. Fluid Mech. 539, 273–297 
(2005). 

98. S. B. SAVAGE AND C. K. K. LUN. Particle size segregation in inclined chute flow of dry 
cohesionless granular solids. J. Fluid Mech 189, 311–335 (1988). 

99. Liu, P. Y., Yang, R. Y. & Yu, A. B. Dynamics of wet particles in rotating drums: Effect of 
liquid surface tension. Phys. Fluids 23, 013304 (2011). 

100. Shi, D. & McCarthy, J. J. Numerical simulation of liquid transfer between particles. Powder 
Technol. 184, 64–75 (2008). 

101. Figueroa, I., Li, H. & McCarthy, J. J. Predicting the impact of adhesive forces on particle 
mixing and segregation. Powder Technol. 195, 203–212 (2009). 

102. Liu, L. X., Litster, J. D., Iveson, S. M. & Ennis, B. J. Coalescence of deformable granules 
in wet granulation processes. AIChE J. 46, 529–539 (2000). 

103. Rognon, P. G., Roux, J.-N., Wolf, D., Naaïm, M. & Chevoir, F. Rheophysics of cohesive 
granular materials. Europhys. Lett. 74, 644–650 (2006). 

104. Shi, D. Advanced Simulation of Particle Processing: The Roles of Cohesion, Mass and Heat 
Transfer in Gas-Solid Flows. (2008). 

105. Campbell, C. Granular material flows -- An overview. Powder Technol. 162, 208–229 
(2006). 

106. Koval, G., Roux, J.-N., Corfdir, A. & Chevoir, F. Annular shear of cohesionless granular 
materials: From the inertial to quasistatic regime. Phys. Rev. E 79, 021306 (2009). 

107. Zhao, Y., Xiao, H., Umbanhowar, P. B. & Lueptow, R. M. Simulation and modeling of 
segregating rods in quasi-2D bounded heap flow. AIChE J. (2017). doi:10.1002/aic.16035 

108. Cleary, P. W. The effect of particle shape on simple shear flows. Powder Technol. 179, 
144–163 (2008). 



 120 

109. Yamane, K., Nakagawa, M., Altobelli, S. A., Tanaka, T. & Tsuji, Y. Steady particulate 
flows in a horizontal rotating cylinder. 
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter
/pdfcover_test/L-37/522021942/x01/AIP-
PT/PoF_ArticleDL_051717/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141
774c75?x (1998). doi:10.1063/1.869858 

110. Mandal, S. & Khakhar, D. V. An experimental study of the flow of nonspherical grains in 
a rotating cylinder. AIChE J. 63, 4307–4315 (2017). 

111. Majid Rasouli, Olivier Dube, Francois Bertrand,  and J. C. Investigating the dynamics of 
Cylindrical Particles in a rotating drum using multiple radioactive particle tracking. AIChE 
J. (2016). doi:10.1002/aic 

112. Mellmann, J. The transverse motion of solids in rotating cylinders—forms of motion and 
transition behavior. Powder Technol. 118, 251–270 (2001). 

113. Henein, H., Brimacombe, J. & Watkinson, A. Experimental study of transverse bed motion 
in rotary kilns. Metall. Mater. Trans. B 14, 191–205 (1983). 

114. Félix, G. & Thomas, N. Evidence of two effects in the size segregation process in dry 
granular media. Phys. Rev. E 70, 051307 (2004). 

115. Guo, Y. et al. A numerical study of granular shear flows of rod-like particles using the 
discrete element method. J. Fluid Mech. 713, 1–26 (2012). 

116. Liu, S. & Mccarthy, J. J. A Rheology Perspective of Shear Induced Size Segregation. 1–13 
(2018). 

 


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 4.1: Material properties used in the simulations 40
	Table 6.1: DEM Material Properties 69
	Table 7.1:  Material properties used in the simulations 87
	Table 8.1: Cylinder Shape Factors 100

	LIST OF FIGURES
	Figure 2.1: Size segregation mechanism: percolation 7
	Figure 2.2: Sketch of the motion of a particle during a simple shear under a confining pressure32 9
	Figure 2.3: Inertia number relations with granular flow rheology33 10
	Figure 2.4: Schematic of a simple DEM force model 11
	Figure 3.1: Density ratio  0.31 experiment results at different rotation speeds 25
	Figure 3.2: Density ratio  0.31 IS vs. time for three rotation rates 26
	Figure 3.3:Fitted density buoyancy model. Experimental (a) and simulation (b) fitting of density segregating in a tumbler mixer while varying both density ratios  and rotation rate  .  Different colors denote different density ratios.  ``HF" denotes trials where glass beads were roughened via etching. 31
	Figure 3.4: Fitted density drag model. Experimental (a) and simulation (b) fitting of density segregating in a tumbler mixer while varying both density ratios and rotation rate.  Different colors denote different density ratios.  ``HF" denotes trials where glass beads were roughened via etching. 32
	Figure 3.5: Fitted size linear model. Figure (a) shows experimental results while (b) shows simulation results. Both size ratio and rotation rate are variables. Each point presents one distinctive condition. Different colors denote different size ratios. 35
	Figure 3.6: Fitted size log model. Figure (a) shows experimental results while (b) shows simulation results. Both size ratio and rotation rate are variables. Each point presents one distinctive condition. Different colors denote different size ratios. 36
	Figure 4.1: Schematic of the simulated plane shear geometry.  The 3D flow is periodic in both the streamwise (x) and transverse (z) directions. Blue (dark) particles are heavy intruders while yellow (light) particles are lower density particles. We employ either constant pressure or constant volume boundary conditions. 42
	Figure 4.2: Segregation velocity under varying conditions of shear rate, density ratio, particle diameter, and boundary conditions. Differing colors represent boundary conditions [constant pressures: 78 Pa, -- red (dark gray); 117 Pa, blue (solid light gray); 156 Pa, green (open light gray); constant volume, solid circles; full gravity effects, dotted and crossed circles] while shape represents the density ratio (circle, ; triangle, ; square, ).  While most particles are 9.0 mm in diameter, the thick-walled open circles represent a range from 6.0 - 18.0 mm. (a) The dimensionless segregation velocities are plotted vs the shear rate made dimensionless with   The inset shows packing fraction as a function of . (b) In this panel we have replotted the   as a function of inertia number (I). Note that the varying boundary conditions all collapse onto individual curves corresponding to different density ratios. In all figures, error bars on the data are smaller than the symbol sizes chosen. 44
	Figure 4.3: Variation of dimensionless segregation velocity with varying density at fixed values of the inertia number (upright triangle: I=0.1193, diamond I=0.2350, square: I=0.4563, inverted triangle: I=0.8627). The inset shows the traditional scaling of the segregation rate with the dimensionless density difference. Note that, in contrast to previous studies, we find a power law relationship with exponents that range from 0.6 to 0.75. In contrast, when we plot the segregation velocity vs our proposed density scaling, we obtain straight lines. 46
	Figure 4.4: Traditional scaled segregation velocity under varying conditions of shear rate, density ratio, particle diameter, and boundary conditions. Differing colors represent boundary conditions [constant pressures 78 Pa, red (dark gray); 117 Pa, blue (solid light gray); 156 Pa, green (hollow light gray); constant volume, solid circles; full gravity effects, dotted and crossed circles] while shape represents the density ratio (circle, ; triangle, ; square,  ). While most particles are 9.0 mm in diameter, the thick-walled open circles represent a range from 6.0 to 18.0 mm. The dimensionless segregation velocities are plotted vs the shear rate made dimensionless with . The magnitude of the segregation velocity is scaled by the traditional density scaling [that is, ( )]. Note that, particularly in the saturated rate region, it is clear that this scaling does not collapse the data. 47
	Figure 4.5: Rheology and segregation in a sheared cell system under varying conditions of shear rate, density ratio, particle diameter and boundary conditions (symbols explained in Figure 4.2). (a) shows how the effective friction coefficient changes with the inertia number. The inset shows the variation of the coordination number with I. Note that both rheological quantities display a regime change near a value of I = 0.5. (b) shows the dimensionless segregation velocity rescaled with our proposed density scaling [Eq.] and plotted against I. Note that all results fall on a master curve regardless of gravitational condition, boundary condition, or other process parameters. The included line represents the model proposed in Eq. .  The inset shows the packing fraction as a function of I. 51
	Figure 5.1：Experimental apparatus set up.  Photograph are taken with 3mm tracer steel particles within an acetate particle medium 56
	Figure 5.2：Measured glass velocity proﬁle u as a function of cell height(H) for both constant pressure (CP) and constant volume (CV) conditions. H equals to zero represent the bottom of the cell 58
	Figure 5.3： Measured dimensionless segregation velocity  as a function of cell height(H) for both constant pressure (CP) and constant volume (CV) configuration and for both acetate and glass bulk particle systems. H equals to zero represent the bottom of the cell. The legend used is same as in Figure 5.5. Only several error bars are present to simplify the plot but actually each data point have the same standard deviation 60
	Figure 5.4: The scaled pressure C2∗P for glass constant pressure (GP), constant volume (GV) cases and acetate constant pressure (AP), constant volume (AV) cases under each rotation rate (10, 20, 30 & 40 RPM). 62
	Figure 5.5: The dimensionless segregation velocity  as a function of scaled inertia number (C ∗I). Plot (a) represents both acetate constant pressure and constant volume conditions and plot (b) represents glass constant pressure and constant volume conditions. 64
	Figure 5.6: The re-scaled dimensionless segregation velocity  as a function of scaled inertia number (C ∗ I). The legends are same as in Figure 5.5. 65
	Figure 6.1; Schematic of the simulated plane shear geometry. The 3D ﬂow is periodic in both the stream-wise (x) and transverse (z) directions. Yellow (light) particles are big bulk particles and blue (dark) particles are small intruders. The size ratio in the picture is 0.67. Constant pressure boundary condition is employed. 68
	Figure 6.2: Dimensionless segregation velocity as a function of three forms of dimensionless shear rate.  (a) the shearing velocity is dimensionless by dividing √gd. (b) the shearing velocity is dimensionless by dividing the square root of granular temperature √T. (c) the dimensionless shearing velocity is represented by the inertia number. Star symbol represents d = 3mm and P = 77.9Pa. Diamond symbols represent d = 6mm and P ranges from 77.9 to 701.1pa. For 9 mm particles, P range from 77.9 to 1558 Pa were tested. Circle represent size ratio , square for  and triangle for . For each condition, lower transparency means higher pressure. 71
	Figure 6.3: (a) Dimensionless segregation velocity as a function of inertia number multiplies by square root of granular temperature. (b) Dimensionless segregation velocity as a function of inertia number multiplies by square root of granular temperature and the inverse of size ratio square.  Star symbol represents d = 3mm and P = 77.9Pa. Diamond symbols represent d = 6mm and P ranges from 77.9 to 701.1pa. For 9 mm particles, P range from 77.9 to 1558 Pa were tested. Circle represent size ratio , square for  and triangle for . For each condition, lower transparency means higher pressure. 72
	Figure 6.4:  (a) Log-log scaled plot of granular temperature (m2/s2) as a function of shear rate (m/s) for size ratio (). The insert shows the same plot in linear scale. (b) Dimensionless granular temperature as a function of inverted inertia number ().  The insert shows a broader range of  while the big picture focus on I bigger than 0.1.  Star symbol represents  and . Diamond symbols represent  and P ranges from  to .  For 9 mm particles, P range from 77.9 to 1558 Pa were tested.  Circle represent size ratio , square for  and triangle for .  For each condition, lower transparency means higher pressure. 74
	Figure 6.5: Coordination Number (Z) as a function of Inertia number (I). The hollow circle represents coordination number for bulk particles. For tracer particles, each diﬀerent shape means one size ratio.  Circle represent size ratio , square for  and triangle for . For each condition, lower transparency means higher pressure. The colored dashed lines represent scaled coordination number. Data for coordination number can be ﬁtted in to two power equations.  and . The power law transition is indicated by a dotted line. 76
	Figure 6.6:  Two potential relationships between the particle mean radial separation distance λ and the actual hole size.  The view is from above the shearing cell and each black circle represents one particle. The dotted line cycle represents the potential hole within the layer where upper layer particle can fall into. Since there are inﬁnity ways particles can form holes within a layer, only the two simplest cases are presented here. The hole diameter  and . 78
	Figure 6.7: Probability for small particle to fall into holes as a function of inertia number. Circle represent size ratio   = 0.5, square for  = 0.67 and triangle for  = 0.75. For each condition P range from 77.9 to 1558 Pa were tested.  Data points have lower transparency means higher pressure. 80
	Figure 6.8: Measured dimensionless segregation velocity result versus proposed segregation velocity model. The dotted diagonal line represents y = x so points fall on the line means good ﬁt between theory and measured value. Star symbol represents d = 3mm and P =77.9Pa. Diamond symbols represent d = 6mm and P ranges from 77.9 to 701.1pa. For 9 mm particles, P range from 77.9 to 1558 Pa were tested. Circle represent size ratio  = 0.5, square for  = 0.67 and triangle for  = 0.75. For each condition, lower transparency means higher pressure. 82
	Figure 7.1:  Schematic of the simulated plane shear geometry. The 3D ﬂow is periodic in both the streamwise (x) and transverse (z) directions. Red (dark color) particles are heavy intruders and blue (light color) particles are lighter density particles. While the blue/light particles do not experience a gravitational force, the net force (self-weight minus an eﬀective buoyant force) acts on the red/heavy intruders. 87
	Figure 7.2: The dimensionless segregation velocity of dry granular material as a function of inertia number in a sheared cell system for  = 2. The inserted sub-ﬁgure shows the linear relation between solid volume fraction and inertia number 91
	Figure 7.3: Coordination number as a function of Inertia number for dry granular material. The inserted ﬁgure shows the same plot in a log-log scale. 92
	Figure 7.4:  Dimensionless wet segregation velocity as a function of inertia number for particle diameter 6mm (Bog = 0.45), 4mm (Bog = 1.02), 3mm (Bog = 1.81) and 2mm (Bog = 4.08). Dry segregation is also plotted as a reference. 93
	Figure 7.5: (a) Solid volume fraction as a function of inertia number for wet cases and the reference dry case. (b) Coordination number as a function of inertia number for wet cases and the reference dry case. Four wet cases, particle diameter 6mm (Bog = 0.45), 4m m (Bog = 1.02), 3mm (Bog = 1.81) and 2mm (Bog = 4.08) are shown in ﬁgures. 94
	Figure 7.6: Adjusted coordination number (Eq. 6) as a function of inertia number for four diﬀerent diameter wet conditions (6mm, 4mm, 3mm and 2mm) and the reference dry condition. 97
	Figure 8.1: (a) Experimental Results for #7 tracer disks (as shown in Table 4.1) inside 6.35 mm spheres at 1.7 RPM.  (b) Analyzed results for the same experiment condition.  Each blue dot indicates a tagged tracer particles’ position and the red dot is used to indicate the center of the tumbler 101
	Figure 8.2: All particles used in the study 102
	Figure 8.3: Average distance to the center vs. area scale ratio between tracers (cylinders) and the bulk materials (sphere). (a) shows the 1-D short plot under 1.7 RPM, (b) shows the 1-D short plot under 8.6 RPM, (c) shows the 1-D short plot for the average results for all ﬁve RPM and (d) shows the average 1-D Average results. In every ﬁgure, circle(red) represents 3 mm sphere, square(blue) for 4.5 mm sphere, diamond(purple) for 6.35 mm spheres, hexagons for tracer disk results and stars for sphere-sphere size segregation results. Each diﬀerent ﬁll means one-cylinder type. For disks (shown as hexagons), top ﬁlled is for #7 in table 1 and bottom ﬁlled for #8. For cylinders (shown in diﬀerent shapes depends on the spheres media), #1 is top ﬁlled, #2 is bottom ﬁlled, #3 is right part ﬁlled, #4 is left part ﬁlled, #5 is an empty symbol and #6 has a dot inside the symbol 106
	Figure 8.4: Deﬁned shape parameters in both cylinder and disk particles. 107
	Figure 8.5: Average distance to the center vs. Area ratio between tracers (cylinders) and the bulk materials (sphere).  (a) shows the 2-D lay down plot (b) shows the 2-D spinning plot and (c) shows the 3-D volume plot. In every ﬁgure, circle(red) represents 3 mm sphere, square(blue) for 4.5 mm sphere, diamond(purple) for 6.35 mm spheres, hexagons for tracer disk results and stars for sphere-sphere size segregation results. Each diﬀerent ﬁll means one-cylinder type. For disks (shown as hexagons), top ﬁlled is for #7 in table 1 and bottom ﬁlled for #8. For cylinders (shown in diﬀerent shapes depends on the spheres media), #1 is top ﬁlled, #2 is bottom ﬁlled, #3 is right part ﬁlled, #4 is left part ﬁlled, #5 is an empty symbol and #6 has a dot inside the symbol 109
	Figure 8.6: Experimental results for #7 tracer disks (as shown in Table 1) with 4.5 mm bulk spheres inside a 3-D cylinder container running at 3 RPM. 111
	Figure 8.7: Average distance to the center vs. ﬂowing area ratio between tracers (cylinders) and the bulk materials (sphere). Circle(red) represents 3 mm sphere, square(blue) for 4.5 mm sphere, diamond(purple) for 6.35 mm spheres, hexagons for tracer disk results and stars for sphere-sphere size segregation results. Each diﬀerent ﬁll means one-cylinder type. For disks (shown as hexagons), top ﬁlled is for #7 in table 1 and bottom ﬁlled for #8. For cylinders (shown in diﬀerent shapes depends on the spheres media), #1 is top ﬁlled, #2 is bottom ﬁlled, #3 is right part ﬁlled, #4 is left part ﬁlled, #5 is an empty symbol and #6 has a dot inside the symbol 112
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