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EVOKED PATTERNS OF OSCILLATORY ACTIVITY IN MEAN-FIELD

NEURONAL NETWORKS

Jason E. Pina, PhD

University of Pittsburgh, 2018

Oscillatory behaviors in populations of neurons are oberved in diverse contexts. In tasks

involving working memory, a form of short-term memory, oscillations in different frequency

bands have been shown to increase across varying spatial scales using recording methods

such as EEG (electroencephalogram) and MEG (magnetoencephalogram). Such oscillatory

activity has also been observed in the context of neural binding, where different features

of objects that are perceived or recalled are associated with one another. These sets of

data suggest that oscillatory dynamics may also play a key role in the maintenance and

manipulation of items in working memory.

Using similar recording techniques, including EEG and MEG, oscillatory neuronal ac-

tivity has also been seen to occur when certain images that cause aversion and headaches

in healthy human subjects or seizures in those with pattern-sensitive epilepsy are presented.

The images most likely to cause such responses are those with dominant spatial frequencies

near 3–5 cycles per degree, the same band of wavenumbers to which normal human vision

exhibits the greatest contrast sensitivity.

We model these oscillatory behaviors using mean-field, Wilson-Cowan-type neuronal net-

works. In the case of working memory and binding, we find that including the activity of

certain long-lasting excitatory synapses in addition to the usual inhibitory and shorter-term

excitatory synaptic activity allows for bistability between a low steady state and a high

oscillatory state. By coupling several such populations together, both in-phase and out-

of-phase oscillations arise, corresponding to distinct and bound items in working memory,
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respectively. We analyze the network’s dynamics and dependence on biophysically relevant

parameters using a combination of techniques, including numerical bifurcation analysis and

weak coupling theory. In the case of spatially resonant responses to static simtuli, we employ

Wilson-Cowan networks extended in one and two spatial dimensions. By placing the net-

works near Turing-Hopf bifurcations, we find they exhibit spatial resonances that compare

well with empirical results. Using simulations, numerical bifurcation analysis, and perturba-

tion theory, we characterize the observed dynamics and gain mathematical insight into the

mechanisms that lead to these dynamics.
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1.0 INTRODUCTION

1.1 MEAN-FIELD MODELS

The mathematical modeling of neuronal data began as early as 1907, when Lapicque modeled

data obtained by stimulating the nerve in a frog’s leg as a capacitor, thereby presaging the

integrate-and-fire model [1, 2, 3]. While much work continued in the same vein of capturing

the activity of single neurons, perhaps best highlighted by Hodgkin’s and Huxley’s seminal

biophysical model [4], the computational intractability of using such equations to capture

the dynamics of many interacting neurons drove efforts to find simple, averaged equations

that could do so.

In 1956, Beurle made perhaps the first foray into such mean-field models, introducing and

analyzing a spatially-extended neural field model composed of excitatory neurons [5]. Wilson

and Cowan followed up on this work by including inhibitory populations of neurons in non-

spatially extended [6] and spatially-extended [7] models, allowing for excitatory-inhibitory

dynamics. Using u, e to denote excitatory populations and indices, respectively, and v, i to

denote inhibitory populations and indices, respectively, these networks may be written as

τe
∂

∂t
u(x, t) = −u+ fe(Cee ∗ u− Cei ∗ v)

τi
∂

∂t
v(x, t) = −v + fi(Ce ∗ u− Cii ∗ v),

(1.1)

where ∗ denotes spatial convolution (f ∗ g(x, t) =
∫∞
−∞ f(x − x′, t) g(x′, t) dx′), and Cβ,α(x),

α, β ∈ {e, i}, are connectivity functions from population α to population β. We can rewrite

these functions to explicitly show the maximum connectivities and the normalized kernels:

Cβα(x) = aβαKβα(x), where
∫∞
−∞Kβα(x′)dx′ = 1. For simplicity, we generally suppose
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the kernels are determined by the presynaptic population, so that Kβα(x) = Kα(x), and are

generally chosen to be monotonically decaying with respect to distance. Two common kernel

choices are Gaussian, K(x) ∼ exp
(
−|x |2
σ2

)
, and exponential, K(x) ∼ exp

(
−|x |
σ

)
. In the case

that we are considering isolated populations of neurons (i.e., not spatially extended), we can

instead replace the convolutions by weight matrices that encode the connection strengths

between populations. If the network has, say, Ne excitatory populations and Ni inhibitory

populations, these weight matrices will have N2
e , N2

e , or Ne · Ni elements. The activation,

firing rate, or transfer functions fα(w) are generally taken to be sigmoidal, although other

nonlinear monotonic functions may be used as well to better fit the data or other spiking

neuronal models, as we do in Chap 2.

While work has continued to add further realism to mean-field models [8, 9, 10], Wilson-

Cowan-type equations have been profitably employed in the decades since their introduction

to model many different experimentally observed neuronal network phenomena, including

waves in cortex [11, 12], oscillating activity in seizures [13], working memory dynamics [14][15]

and visual hallucinations [16, 17, 18]. Thus, we use Wilson-Cowan-type mean-field equations

to capture oscillatory dynamics that may contribute to our understanding of working memory

and sensitivities to spatially periodic stimuli, as we describe below.

1.2 OSCILLATIONS IN WORKING MEMORY

Memory serves vital functions in animals. By forming stable internal representations of the

external world, animals can recognize, process, and learn from various types of patterns they

encounter. While long-term memory comprises a highly stable form of storage that forms

on long timescales through synaptic plasticity [19], animals also need a way to form stable

short-term representations of objects in order to perform real-time computations so that they

might appropriately interact with their environment. These items can either be ones that

have been perceived in a local spatiotemporal frame or else ones that they have accessed from

long-term memory. For example, a mouse might encounter a scent that activates circuits

corresponding to the neural correlates that represent a predator; this representation should
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then be active for real-time processing so that the mouse might move away from the source of

the scent. Perhaps the mouse encounters this scent in a novel environment, and must recall

whence she came to determine a safe route by which to retreat. By having a representation

of the most recent steps in her course active in short-term memory, she may rapidly choose

an appropriate escape path by simply doubling back. Thus, animals need a way to very

rapidly form, combine, change, and terminate internal representations of information linked

to objects both perceived and stored.

The form of memory that has been found to enable such dynamic representations and

real-time computations is known as working memory. By forming short-term instantiations

of relevant information and actively processing this information, working memory was hy-

pothesized within experimental cognitive psychology as a multi-component model to explain

humans’ ability to guide their actions based on combinations of perceived and remembered

items [20, 21, 22]. One fundamental limitation of working memory appears to be its capacity:

only a finite amount of information, usually quantified as ≈ 3− 5 items, can be held active

at once. Thus, working memory trades off the accessibility and processing speed of relevant

information for the quantity it can maintain.

While the processing of the information necessarily involves complex, difficult-to-trace

network processes, the substrate of the active memories need not be so complicated. Thus,

much of the research within neuroscience that has involved working memory has focused on

how these memories are encoded. In 1971, Fuster and Alexander produced the first seminal

work in this vein [23]. Rhesus monkeys performed a delayed response task involving a visual

cues. While the specific setup has changed over the years, the basic form of the experiment

has stayed the same: Monkeys are briefly provided a visual cue, which is then removed.

After a delay period (18s in the original study), the monkey is asked to recall the location of

the cue (e.g., by reaching towards the location of the cued object, or simply moving its eyes

to point to the remembered location). Fuster and Alexander reported neurons that fired at

higher rates during the delay period, but not before or afterwards. Numerous other studies

[24, 25, 26, 27] have since confirmed this basic fact: selected networks of neurons increase

their rate of firing during the short-term retention of information. How exactly this increased

activity persists over several seconds after the stimulus has been removed, however, is still
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not definitively known. The activation of glutamatergic (excitatory) NMDA (N -methyl-D-

aspartate) receptors may be key to the maintenance of working memory items [28]. These

receptors allow positively-charged ions to pass through if (1) the proper neurotransmitters

(glycine and glutamate) are bound and (2) the membrane is sufficiently depolarized, thus re-

leasing bound Mg2+ ions and allowing Na+, K+, and Ca2+ to flow across the channel. These

voltage- and ligand-gated receptors have slower activation and inactivation timescales, al-

lowing excitatory currents to persist for longer periods than if (excitatory) AMPA receptors

alone were present [19]. They have long been implicated in long-term memory, since they

allow the secondary messenger Ca2+ to pass through the membrane, driving synaptic plas-

ticity through LTP (long-term potentiation) [29]. However, Adler et al. found evidence that

links NMDA receptors to the maintenance of short-term memory as well [30]. Therefore,

computational spiking models of working memory have been devloped that, along with the

usual AMPA and GABA synapses, incorporate NMDA receptors as well [28, 29, 31]. These

models have shown that, indeed, such synapses can allow for active states to persist well

after the stimulus has been removed.

Even though an increase in firing rates of networks of neurons that persists for several

seconds following stimulus removal has been established as the neural correlate of working

memory, exactly how the information is encoded is still an open question, in part because

the variation in the rates of neurons is more complicated than a simple increase. Different

neurons have been been shown to increase, decrease, oscillate, or maintain their firing rates

during short-term retention, e.g. [25, 32, 26]. Other work has shown that populations

of neurons oscillate in their activities, including in LFP (local field potential), EEG, and

MEG recordings [26, 33, 34]. In particular, increases in frequencies in the gamma and alpha

ranges [33, 35] have been measured during delayed response working memory experiments.

These population-level oscillations may play a critical role in the coding, maintanence, and

processing of items in working memory. For example, Lisman and Idiart proposed that

theta-gamma cross-frequency coupling may allow multiple items to be stored based on their

relative phases, while also accounting for the finite capacity of working memory [36].

While the early working-memory experiments focused on the representation of elemen-

tary, possibly atomic, attributes such as location, in reality visual objects have multiple
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features associated with them, such as contours, colors, and orientation. Other, non-visual

attributes might include the temperature, sound, and scent that are associated with an ob-

ject. The same is true of more abstract objects as occur in language, so that values can be

attached to general variables (e.g., “the runner is fast”). How such attributes are assigned to

objects is known as “the neural binding problem” [37]. In 1981, von der Malsburg proposed

that the encoding of multiple features of an object might occur through neuronal synchrony

(see [38]; note, this was originally published in 1981 as an internal report for the Max Planck

Institute). This hypothesis was lent empirical credence in 1989, when the Singer lab found

evidence for synchronous oscillatory activity associated with the stimulus characteristics in

cat visual cortex [39, 40].

Together, this suggests that relative phase timings in the oscillatory activity of popula-

tions of neurons equipped with NMDA receptors might be responsible for the maintenance,

segregation, and conjunction of information held in short-term memory. In particular, the

phase information of such oscillatory ensemble dynamics is a natural candidate to distinguish

between bound (synchronous oscillations) and distinct (out-of-phase oscillations) items held

actively in working memory, while excitatory synapses that are slow to activate and slow to

decay can maintain the high activity after the stimulus has been shut off or removed. We

thus use a set of Wilson-Cowan-type equations to model the activities of AMPA, GABA,

and NMDA synapses that have oscillatory dynamics, and find that the NMDA components

allow for the persistence of high-activity states. This is instantiated as bistability between

a low baseline firing rate and a high, oscillatory firing rate, where the transition occurs as a

result of a pulse of excitatory current to a selected population.

Coupling several of these populations together to form a firing rate network allows

for competitive oscillatory dynamics, whereby different populations may be pairwise syn-

chronous or out-of-phase, corresponding to bound or distinct items in memory, respectively.

We find that up to 3 populations may oscillate out-of-phase with plausible model connectiv-

ities and parameter values, a result that is consistent with working memory capacity. The

formulation of the model allows us to better examine from a dynamical systems perspective

how these states arise as bifurcations of steady states and periodic orbits. In particular, we

look at the ranges of coupling strengths and synaptic timescales that allow for synchronous
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and out-of-phase attracting states. We also explore how varying patterns of selective stim-

uli can produce and switch between rich sets of dynamics that may be relevant to working

memory states and their transitions.

1.3 SENSITIVITIES TO STATIC, SPATIALLY PATTERNED STIMULI

In 1950, a 6 year old boy, recovering from an illness involving fever, began to experience

absence (petit mal) seizures, and occasional tonic-clonic (grand mal) seizures when he would

look at finely-striped patterns, such as corduroy or copper mesh [41]. This is the first

documented case of so-called “pattern-sensitive epilepsy” (PnSE). PnSE is a subset of pho-

tosensitive epilepsy, in which patients experience seizure due to patterns of light, especially

the rate at which it flashes [42]. While thought to be extraordinarily rare, PnSE was later

found to be quite prevalent among patients who already experienced seizures induced by light

flicker, with 11 of the 32 such patients in the study shown to exhibit epileptiform activity

when exposed to stationary patterns [43].

Soon after, the effects of different pattern characteristics were studied in some detail

[44]. The authors found that the luminance contrast and the spatial frequency in particular

had the greatest effects: The greater the contrast, the more likely a pattern was to produce

epileptiform activitiy, while frequencies between 3 and 5 cycles per degree (cpd) were most

likely to trigger such EEG readouts. They found this band of wavenumbers matched with

the most sensitive wavenumbers in contrast sensitivity tests in healthy subjects quite well,

where the sensitivity was measured as the inverse of the contrast necessary for subjects to

detect bars in periodic grating patterns [45][46].

Moreover, Wilkins found that, while showing these patterns to patients, family members

with no history of seizures reported distinct discomfort when viewing the same images [42].

Further study revealed that striped patterns in the same sensitive band as found for the

induction of seizures in those with PnSE were most likely to induce headaches, the feeling

of unpleasantness, and visual illusions. Illusions include the appearance of additional colors

and geometries (such as rhombuses) and the breakup of the lines to appear curvilinear or
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even as like chain links [42].

Such reactions to images extend to more complex images as well. Several examples are

given in Fernandez and Wilkins, including reactions to art work in a 1971 exhibition made in

the so-called Op Art style (Optical Art, generally highly geometric art made to induce optical

illusions such as the false perception of movement and flickering) that reportedly caused

guards to suffer headaches, and to art work displayed at a hospital in London that gave some

staff members migraines in 2005 [47]. By examining such complex images, including abstract

artwork and noisy images, Fernandez and Wilkins found that the subjective reporting of the

level of discomfort correlated strongly with the wavenumbers of the Fourier components.

Even with such complex stimuli, the dominance of modes within the same sensitive 3–5cpd

band of spatial frequencies predicted the level of discomfort experienced by subjects.

The pathological responses to these stimuli have been found to have oscillatory corre-

lates via MEG [48], motivating us to seek a simple model that exhibits oscillatory dynamics

when presented with a static, spatially periodic stimulus. By using a Wilson-Cowan neural

field network and adjusting system parameters such as the amount of recurrent excitation,

we may place the stimulus-free system near a so-called Turing-Hopf bifurcation, where the

uniform steady state is spontaneously lost to temporally and spatially periodic patterns with

wavenumber m∗. We study the model extended in both one and two spatial dimensions, em-

ploying simulations, numerical bifurcation analysis, and perturbation theory to characterize

the network behaviors.

Our results suggest that different parameter values involving, e.g., connectivity strengths,

could cause neuronal networks to exhibit a natural sensitivity to particular spatial frequen-

cies. The spatially-resonant behaviors observed in pattern-sensitive epilepsy and with aver-

sive images may then be explained within the framework of dynamical systems, as spatially

periodic stimuli with components near the resonant wavenumber push the system past a

symmetry-breaking bifurcation into a spatiotemporal pattern forming regime.
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1.4 OSCILLATIONS IN NEURONAL MODELS

To model the neuronal dynamics that we describe above, we wish to use parameters that

allow for oscillatory solutions. Indeed, many of the types of neuronal dynamics of interest

involve temporally or spatiotemporally complicated behaviors. When modeling this activity

in the context of dynamical systems, such oscillatory activity often arises as limit cycles or

bifurcations from limit cycles. While establishing the existence for periodic orbits in many

planar ODE systems is often feasible, even determining how many limit cycles exist in such

simple systems is an open problem (cf. Hilbert’s 16th problem), let alone in ODE systems of

3 or more variables. A number of analytical and numerical methods have been developed to

determine in certain circumstances whether a given system has stable limit cycles (see [49]

for a review). One method involves finding bifurcations in a given system that are known to

give rise to limit cycles, especially co-dimension 1 bifurcations (those that occur as a single

parameter in the network changes). The Hopf (or Andronov-Hopf) bifurcation is a common

co-dimension 1 bifurcation to use to this end. As this is the mechanism that underlies many

of the oscillations in this dissertation, we briefly describe the features of this bifurcation

below.

1.4.1 The Hopf bifurcation

In a Hopf bifurcation, stable or unstable limit cycles emerge from a fixed point as a system

parameter is varied. Generically, this occurs when a pair of complex-conjugate eigenvalues of

the linearized system cross the imaginary axis at nonzero imaginary values. That is, consider

the dynamical system

ẋ = f (x ; ζ), with x ∈ RN and ζ ∈ R, (1.2)

where ẋ denotes the time derivative of x , N ∈ N, f is smooth (at least C3), and ζ is

a parameter. The linearized system is then ẋ = J(ζ)x , where J is the Jacobian matrix,

J(ζ) = Dx f (x ; α)|x0 , where x 0 is the fixed point of Eq (1.2) (i.e., f (x 0; ζ) = 0). If J(ζ0)

admits purely imaginary eigenvalues ±λ1, 2 = ±i η0 6= 0, then, generically, the system Eq
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(1.2) will admit limit cycles that bifurcate from x0, ζ0 [50]. The bifurcating limit cycles

can be stable (supercritical Hopf) or unstable (subcritical Hopf). In the former case, small,

stable limit cycles bifurcate from the steady state. The amplitudes go to zero as ζ → ζ0

from the direction of the unstable steady state. In the latter case, the branch of limit cycles

may fold back, leading to (i) bifurcation of the steady state to a large limit cycle, and (ii)

a region of bistability between the steady state and a large limit cycle. We illustrate these

properties with a simple planar system that, as we will see, is in some sense the prototye for

Hopf bifurcations. The example and discussion closely follow [51], Sec 3.4.

Consider the system:

ẋ = a x− y + (b x+ c x3)(x2 + y2)

ẏ = x+ a y + (b y + c y3)(x2 + y2)
(1.3)

Since the Jacobian evaluated at the fixed point (0, 0) is

J(a) =

 a −1

1 a

 ,
the eigenvalues as a function of the parameter a are λ1,2(a) = −a

2
±
√

a2

4
− (a2 + 1), which

are purely imaginary at a = 0: λ1,2(0) = ±i. We can determine the behavior of the system

by transforming it into polar coordinates. We do so by letting z = x+ iy, finding that

ż = (a+ i)z + b z|z|2 +O(5), (1.4)

where O(5) indicates quintic terms in z and z. We note that these terms are 0 in the case that

c = 0; by making c negative, we ensure that solutions remain bounded. Below we discuss

this further. By rewriting z in polar coordinates, as z = r exp(iθ), and differentiating, we

find

ż = ṙ exp(iθ) + iθ̇ r exp(iθ). (1.5)

9



By setting Eq (1.4) equal to Eq (1.5), we obtain Eq (1.3) in polar coordinates (up to 3rd

order terms):

ṙ = a r + b r3

θ̇ = 1.
(1.6)

Since such a change of variables is always possible for Hopf bifurcations, Eq (1.6) rep-

resents their normal form. We see that there are two steady state r values: 0 and
√
−a
b

.

Differentiating the right-hand side of the r equation wrt r and evaluating at these fixed

points reveals that r = 0 is stable for a < 0 and unstable for a > 0, while r =
√
−a
b

exists

and is stable for a > 0, b < 0, and exists and is unstable for a < 0, b > 0. Hence, the

former corresponds to a supercritical Hopf bifurcation, and the latter to a subcritical Hopf

bifurcation. Both of these situations are shown in the bifurcation diagrams generated in

AUTO in Fig 1. In the subcritical case in Fig 1B, we see that, in addition to the unstable

limit cycles that the preceeding local bifurcation analysis revealed, there are stable limit

cycles that arise as a saddle-node bifurcation of limit cycles. Thus, as we noted above, there

is an interval of the parameter a wherein the system is bistable between the r = 0 fixed point

and large-amplitude limit cycles. Additionally, the r = 0 steady state bifurcates to large

limit cycles as a becomes positive, compared to the bifurcation to small limit cycles whose

amplitudes limit to zero in the supercitical case. The large limit cycles in the subcritical case

do not arise if we set c = 0. However, we have included the terms involving nonzero c in our

example since the large-amplitude limit cycles that bifurcate from the unstable limit cycles

at the saddle-node of periodic orbits are common in systems of Wilson-Cowan equations,

where the firing rate function helps keep solutions bounded.

1.4.2 Inhomogeneous oscillations

Suppose we have a spatially continuous neural field model given by Eq (1.1). If such a system

goes through a Hopf bifurcation from spatially uniform resting state, the oscillations that

arise can be either spatially homogeneous (i.e., bulk oscillations of the media) or inhomoge-

neous. If the latter, a particular wavenumber, m∗, will be dominant near the bifurcation, so

10



-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

a

x

Stable periodic orbits
Unstable periodic orbits
Stable steady state
Unstable steady state

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x

a

A) B)
0.8

Figure 1: Hopf bifurcations of Eq (1.3). As the parameter a increases from negative to

positive values, the steady state at (x, y) = (0, 0) destabilizes. It does so as a pair of

complex conjugate eigenvalues cross the imaginary axis. (A) Supercritical Hopf bifurcation.

In this case, b < 0, leading to stable limit cycles that emanate from the bifurcation point, as

can easily be seen by a linear stability analysis of the system in polar coordinates, Eq (1.6).

(B) Subcritical Hopf bifurcation. b > 0, leading to unstable limit cycles stemming from the

bifurcation point (again, as can be determined from Eq (1.6)). By letting c < 0 in Eq (1.3),

solutions remain bounded, and stable limit cycles bifurcate from the unstable limit cycles at

a saddle-node of periodic orbits, leading to bifurcation to large-amplitude limit cycles once

a becomes positive and to an interval of bistability between the steady state at (0, 0) and

large-amplitude limit cycles. This is commonly observed in subcritical Hopf bifurcations in

Wilson-Cowan networks.
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that the oscillatory activity will also display a spatial breakup into m∗ regions in the case

that Eq (1.1) is extended in one spatial dimension. To distinguish the two cases, the latter

(the bifurcation of a uniform steady state to a spatially inhomogeneous oscillatory state) is

often known as a Turing-Hopf bifurcation. We show how such dynamics arise and explore the

complex behaviors as applied to spatial resonances that appear in visual contexts (discussed

below in Sec 1.3) in Chap 3. We also explore how the unstable modes of the system interact

with a spatially periodic stimulus with an adjustable wavenumber. The behaviors available

to such a system are complicated; we thus introduce the ideas here in a simplified discrete

Wilson-Cowan network. We note that this example is chosen to illustrate the relevant dy-

namics; the parameters used do not match those in the model presented in Chap 3, but the

structure of the system is constructed analogously to the model we use later.

Consider the following 4-component Wilson-Cowan network:

u̇1 = −u1 + fe (aee ū1 − aei v̄1 + q s)

τ v̇1 = −v1 + fi ( aie ū1 − aii v̄1 + q r s)

u̇2 = −u2 + fe (aee ū2 − aei v̄2 + q s2)

τ v̇2 = −v2 + fi ( aie ū2 − aii v̄2 + q r s2) ,

(1.7)

where

ū1 = (1− σe)u1 + σe · u2
v̄1 = (1− σi)v1 + σi · v2
ū2 = (1− σe)u2 + σe · u1
v̄2 = (1− σi)v2 + σi · v1.

(1.8)

The firing rate functions are given by the sigmoids fe,i(w) = 1
1+exp(−w+θe,i) −

1
1+exp(θe,i)

.

s and s2 are the stimuli, where s ∈ {−1, 1}. This allows us to stimulate the network

with either a constant (s = 1) or alternating (s = −1) stimulus. The stimulus strength is

controlled by q and q r, where r, the ratio of the strength of the inhibitory stimulus to that

of the excitatory stimulus, remains fixed. The parameters of the network are τ = 4, σe =

0.015, σi = 0.25, aee = 20, aei = 16, aie = 20, aii = 7, θe = 0.2, θi = 0.3, r = 0.5.

Surprisingly, this minimum Wilson-Cowan network can demonstrate spatiotemporal pat-

tern formation (over discretized space). We note, similarly to the modes available to the

12



stimulus mentioned above, there are two symmetric oscillatory modes available to the net-

work: synchronous and alternating. With other parameters fixed and no stimulus applied

(q = 0), increasing aee beyond a certain critical level, a∗ee, causes the network to bifurcate

from the uniform steady state when aee < a∗ee (of (u1,2, v1,2) = (0, 0) ((i) in Fig 2) to

alternating oscillatory solutions when aee > a∗ee: u1 and u2 oscillate in antiphase with each

other ((ii) in Fig 2). Thus, this is a sort of discrete version of the Turing-Hopf bifurcation.

The network also destabilizes when a stimulus of this same alternating mode is applied;

i.e., by letting s = −1, thereby applying the stimulus [−q, q]T to the excitatory populations

(and [−r q, r q]T to the inhibitory populations). When we first turn the stimulus on (r

fixed, let |q| > 0), when aee < a∗ee, the uniform steady state, (i), is immediately lost to a

nonuniform steady state, (iii). Further increasing the stimulus results in a Hopf bifurcation of

the nonuniform state, leading to an asymmetric alternating oscillation, (iv). The curve (a) in

Fig 2, obtained by following the Hopf bifurcation in XPP-AUTO [16] in the two parameters

aee and q, is the stability boundary of the inhomogeneous oscillatory solution: below the

curve, we obtain stable steady-state dynamics; above the curve, we obtain spatiotemporal

pattern formation, with spatially and temporally periodic solutions. Since the bifurcation

that occurs with no stimulus (i.e., the bifurcation of the steady state, (b) in Fig 2) is the

only bifurcation wherein the spatially uniform steady state bifurcates to a spatiotemporal

patterns, this is the only analog of the Turing-Hopf bifurcation. The other spatiotemporal

patterns that form as the stability boundary, (a), is crossed with increasing q are simply

Hopf bifurcations that arise from the nonuniform steady states. We note that the symmetry

observed across the q axis occurs due to the periodic boundary conditions implicit in Eq

(1.8). Many of the essential behaviors that we will see in the continuous spatial mean-field

networks in Chap 3 are analogous to the behaviors we see in this simple network.

1.5 OUTLINE

We begin in Chap 2 by looking at oscillations in a working memory model. After reviewing

the relevant literature, we introduce the model and stimulation protocol we use to activate
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Figure 2: Bifurcations of Eq (1.7). Note that for the images (i)–(iv) that show the dynamics

of the network, the axes are all the same as those indicated in (ii). We first focus on the

stimulus-free network, so that q = 0, corresponding to the line (b). For aee < a∗ee, the

uniform steady state is stable (red color), as shown in (i). This state destabilizes at a∗ee, so

that for aee above this critical value, the network destabilizes to alternating oscillations, as

shown in (ii). This corresponds to a discrete analog of a Turing-Hopf bifurcation. If the

stimulus with the same alternating mode is turned on (delivering [q, −q]T to u1 and u2 and

[rq, −rq]T to v1 and v2), the uniform steady state immediately bifurcates to an alternating

steady state, (iii). If the amplitude q increases enough, this state is then lost through a

Hopf to alternating oscillations, (iv). Thus, the stability curve (a) divides steady state from

nonuniform oscillatory solutions.

14



selected populations. We then present the relevant synchronous and asynchronous oscillatory

dynamics we achieve, and analyze the dependence of these solutions on the parameters.

In Chap 3, we look at a model to capture the sensitivity to spatial patterns that people

can experience. After introducing the biological background, we explore how a neural field

model extended in one and two spatial dimensions can capture many of the relevant resonant

behaviors that have been found psychophysically. Finally, in the appendices, we cover some

of the more technical material, such as the working memory model derivation and the linear

stability calculation for determining the stability boundary at which spatiotemporal pattern

formation can occur.
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2.0 OSCILLATIONS IN WORKING MEMORY AND NEURAL BINDING:

A MECHANISM FOR MULTIPLE MEMORIES AND THEIR

INTERACTIONS

This chapter is based on [52].

2.1 INTRODUCTION

The neuronal substrate of working memory is thought to be persistent elevated firing rates of

neurons that have been found in numerous physiological and imaging studies across widely-

varying scales, from single neurons up to neuronal populations and networks [23, 28, 53, 26,

25, 54]. Moreover, for working memory to function properly these populations must be able to

be activated rapidly by external or internal input corresponding to aspects of memoranda,

that activation must be selective and stable, and the elevated firing rates must be able

to return to background levels when the information is no longer needed. Cognitive and

behavioral considerations further imply that mechanisms must exist for rapidly transitioning

between sequences of active memories, and that multiple (and possibly overlapping) selective

populations and networks can be simultaneously active. These factors apply both to the case

of neural binding, in which the activity of disparate neuronal populations or networks must

be combined and maintained (e.g., corresponding to different aspects of a particular item

in memory or working memory task), and for the case in which multiple different items are

simultaneously maintained in working memory. In this latter case, there are well established

approximate upper limits to the number of separate objects that can be simultaneously
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maintained. Indeed, one of the fundamental properties of working memory is that it has a

limited capacity, possibly limited to three to five objects [55, 20, 56, 57, 58].

Binding refers to how items encoded in distinct brain circuits or neural populations

can be combined for perception, decisions, and action, and can be partitioned to encompass

multiple situations [37]. These different binding types include feature binding, which involves

the association of different characteristics to an object and how we make and then unravel

these associations, and variable binding, which arises, for example, in language and other

symbolic thought (e.g., the binding of a variable name and its value). In every instance, some

form of synchronization of neural activity has been proposed as the underlying mechanism

(e.g., [38, 59, 60, 61, 62, 63, 37]). Binding is a key aspect in working memory, as most objects

we encounter, physical or symbolic, are multi-featured. There is also a limited capacity to

the number of features that may be represented for objects; however, it is unclear at present

exactly how this feature capacity relates to the aforementioned working memory capacity

[56, 64, 65].

In many studies, oscillatory dynamics have been identified with cognitive function in

general and, increasingly, with working memory in particular (e.g., [66, 67, 33]). While the

presence of different patterns of oscillations is well documented, the specific roles they play

are not well understood. Recent work has suggested, however, that oscillations in various

frequency bands and coupled or nested oscillations could play a fundamental role in the

functioning of different aspects of working memory [35, 54, 68, 69, 70]. Oscillatory dynamics

may also play a critical generic role in facilitating the range of dynamics and optimized

conditions required for working memory function as described above.

In the present work, the networks are capable of producing a range of oscillatory fre-

quencies implicated in working memory and consistent with these other studies. However,

we did not focus on particular frequency bands in terms of their implications for a working

memory code, but rather on the role they can play in facilitating the essential functions of

working memory. In particular, we examine the role oscillatory states can serve as an under-

lying mechanism to allow for multiple stable, active items in memory, to establish binding

via synchronous relationships, to transition between different active working memory states,

and to rapidly activate and terminate activity in those networks as required by the needs of
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cognition and thought. We show how oscillatory dynamics may facilitate these potentially

competing requirements, and identify and discuss critical network parameters involved in

achieving these dynamics. Indeed, although all of the network’s parameters play a part in

the allowed dynamics, we observed that different parameters played roles of varying impor-

tance to each of the states. We thus found it fruitful to first explore some of the features

and constraints of the asynchronous and the synchronous states individually, and then to see

how these attracting states naturally combine to form more complex activity involving both

synchronous and asynchronous oscillations that may represent multiple rich, multi-feature

memories. We found that the attracting synchronous and asynchronous states allowed for the

representation of bound and distinct items in memory, for multiple items to be bound or to

be maintained as distinct, representing different network capacities, and for rapid transitions

between the different states as is required during cognition.

2.2 METHODS

Oscillations during memory task delays have been seen in population-level activity, includ-

ing in local field potential recordings and human EEG traces [25, 26]. This motivates us

to model working memory oscillatory dynamics at the ensemble level, using Wilson-Cowan

type equations for the firing rates (or synaptic activities) of each local circuit that will com-

prise the model. Here, we provide the outline of the model. In Appendix A we develop

the model in greater detail, beginning with a quadratic integrate-and-fire network. Since

previous experimental and computational studies suggest NMDA receptors may be crucial

to the persistent elevated firing rates associated with proper working memory function in ex-

perimental and computational studies, we model the effect of NMDA receptors as a separate

component [29, 30, 71, 28, 31].

We note that many population models only include the excitatory and inhibitory dynam-

ical variables of the network, here denoted as u and v. Thus, the models generally appear

as coupled first-order equations,
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τe u
′ = −u+ fe(u, v)

τi v
′ = −v + fi(u, v),

where τe,i are the time constants of the excitatory and inhibitory components, respectively,

and fe,i are transfer functions describing the response of the network to the u and v variables,

and are often sigmoidal in shape.

The variables u, v are variously interpreted as the firing rates, “activities”, or synaptic

drives of the network [17, 72, 73, 74]. In Pinto et al. [73], a population model was developed

with the goal of making quantitative comparisons to data taken from rat whisker barrels

in the primary somatosensory cortex, and was found to match the general form of the

Wilson-Cowan equations, allowing for physical quantities to be explicitly assigned to the

equations’ variables. In particular, it was determined that u corresponds to the excitatory

synaptic drive, v corresponds to the inhibitory synaptic drive, and the transfer functions

fe,i correspond to the actual firing rate of the network. Thus, u and v may be called the

“activities” of the network and represent low-pass filters of the network firing rate [17]. This

formulation allows for the inclusion of other relevant synaptic activity that will then appear

as additional dynamical variables to the system. Here, for example, by including NMDA

receptors we end up with a third dynamical variable that we denote as n. Hence, Wilson-

Cowan networks are better understood as modeling the synaptic activities of the underlying

neurons, only indirectly representing the activities of the excitatory and inhibitory neurons

that comprise the medium. This is made explicit in our development from a QIF network

in Appendix A. The system of equations that result from this development are:

u′j = −uj + f(aee · ũj − aei · ṽj + aen · ñj − θe + sj(t))

τi · v′j = −vj + f(aie · uj − aii · vj + ain · nj − θi) (2.1)

τn · n′j = −nj + an · upj(1− nj),

with j ∈ {1, ..., N}, where N is the number of interconnected populations, or u-v-n triplets,

where each such triplet represents a tightly recurrently connected population of excitatory
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and inhibitory neurons with fast AMPA synapses (uj), a slow NMDA component of the

excitatory synapse (nj), and slow GABA synapses (vj). aγδ, for γ, δ ∈ {e, i, n}, give the

coupling strengths between different components of each population (these values do not

vary between the populations in the model). ũj, ṽj, and ñj represent coupled populations:

α̃j =

(
αj + cz

∑
k 6=j

αk

)(
1 + cz (N − 1)

)−1
, (2.2)

where α ∈ {u, v, n}, and cz represents the relevant coupling from population k to population

j: ce for NMDA (n) and AMPA (u) synapses and cei for the inhibitory (v) synapses. The

denominators ensure the excitation and inhibition remain bounded. Thus, ce and cei give

interpopulation coupling strengths, while aee, aei, aie, and aii give intrapopulation coupling

strengths. Fig 3 shows a schematic of the connectivities. The interpopulation excitatory

coupling ce represents overlap between populations. The mutual inhibition, cei, represents

the coupling strength from vj to uk (j 6= k), resulting in reciprocal inhibitory connections

between pairs of populations (e.g., populations 1 and 2 inhibit each other when cei has a

nonzero value). Thus, cei allows for competitive dynamics between populations, as would

the value of cie, the interpopulation coupling strength from uj to vk (j 6= k). However, we

found that both of these connections provide similar dynamics to the results described in Sec

2.3 (see, e.g., Table 1 in the weak coupling case in Appendix C); thus, we have set cie = 0

for simplicity.

We assume coupled populations reside in neighboring areas, so that delays need not be

considered, and that τn > τi > 1, where we have rescaled time so that the timescale is 1 for

the fast excitation. An input stimulus, sj(t), allows the system to be activated. This stimulus

is a square wave, for which we may adjust the amplitude, Aj, as well as the width, wj, and

onset time, t0j. The firing rate is given by f(x) =
√

x
1−exp(−β·x) . We have chosen this firing

rate since it gives an approximation of the firing rate of a noisy quadratic-integrate-and-fire

spiking neuron [72, Chap 10]. In Appendix A, we show an example simulation of the spiking

model and compare it to the one-population version of the Wilson-Cowan equations.

Since we do not explicitly model membrane potential or spiking, there is no voltage

dependence to the NMDA component; rather, it acts as a slow excitatory input. The NMDA
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Figure 3: Model connectivity. Left: One population as described in Eq (2.1). u is the fast ex-

citatory AMPA synaptic activity, v the inhibitory GABA activity, and n the slow excitatory

NMDA activity. Feedforward excitation to the AMPA synapses (u) triggers activity in the

system. Middle: An example network with N = 7 populations. The elements are coupled

in an all-to-all fashion as shown on the right. Right: Connectivity between two populations,

each with three components as shown in the left panel. The populations are connected with

excitatory (ce) and inhibitory (cei) coupling as described in Eq (2.2).
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component also saturates at 1, while the faster variables, u and v, are not constrained. The

parameters an and p in the NMDA equation allow us to adjust the average NMDA level

when that component is active; larger p also results in faster NMDA activation since u is

typically larger than 1 when activated. Note that the behavior is fairly insensitive to p; the

n− u null surface (where n′ = 0) is sigmoidal and p increases the gain of this sigmoid.

Unless otherwise specified, the parameters used are N = 5, τi = 12, τn = 144, ce = 0.001,

cei = 0.03, aee = 14, aei = 10, aen = 4, θe = 6, aie = 20, aii = 8, ain = 0.1, θi = 5, an = 2,

β = 1, p = 2. These parameters allow for tristability among three behaviors of interest: a

low nonzero steady state, a low-amplitude oscillation around this low steady state, and a

large-amplitude oscillation. In our model, “active populations” refer to populations that are

engaging in large-amplitude oscillations. Note that we vary N , τi, τn, ce, and cei to study

their effects below. In particular, we find that there are open sets of these parameters that

allow for the dynamics of interest, so that the precise values used are not critical to obtain

the results shown.

Our protocol for simulating working memory is to load a memorandum via a square wave

pulse stimulus (sj(t) in Eq (2.1)). Each stimulus is associated with the excitatory component

of a specific population, so that a particular population may be selected for a memorandum.

Multiple populations may be selected and provided stimuli either simultaneously or serially.

Varying each of the amplitude Aj, onset time t0j, and width wj may produce different

activation patterns, so that the observed activity is a direct result of the selected parameters

and sequence of feed-forward inputs.

Each stimulus corresponds to a feature of an item present in the environment, so that

persistent activation of a population selected by a stimulus corresponds to that feature’s

representation within the neuronal network, where as mentioned above we allow for some

overlap of excitatory populations, as represented by a nonzero ce value. We then study how

the system responds to patterns of stimuli, allowing their amplitudes, widths, and onset

times to vary. We are particularly interested in phase synchrony and asynchrony of the

large amplitude oscillations across the excitatory components of the populations. In our

model, synchrony corresponds to different features that are associated with one another

held active in working memory, while asynchrony corresponds to independent features held
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active. These behaviors correspond to binding and working memory capacity, respectively.

We further study the existence and stability of these states while varying key parameters

using XPP-AUTO [75].

However, since we obtain these network behaviors through a feedforward excitatory im-

pulse to the excitatory components, we are further interested in which states are in fact

accessible from some other given state. In systematically studying what patterns may be ob-

tained from other patterns following a selective stimulus, the combinatorics involved quickly

threaten to make the problem intractable. Thus, we limit our study to just two and three

active populations, which we will refer to as diads and triads, respectively. We begin with

either a diad or triad, and then use the protocol as described above, providing a single, selec-

tive stimulus of a chosen amplitude and width either to an active population or to an inactive

one, and allow the network to evolve for some time afterwards. The resultant pattern is then

determined to be accessible from the initial pattern. The outcome of stimulating the system

is phase-dependent, as is the case in many oscillatory systems. Since we are interested in

behaviors that may be more robust, we narrow our results to only include those that contain

multiple-millisecond intervals of time that produce the same resultant activity for a stimulus

of fixed width and amplitude. All of the included results may be obtained with a stimulus

of fixed width and amplitude over intervals no smaller than 6ms, consistent with intervals

associated with gamma frequency phase locking that some pyramidal neurons and interneu-

rons display, as described in Senior et al. [76] The authors found that these neurons locked

their firing to two phases within one gamma (30–80Hz) period. Thus, the smallest interval

of time that these neurons might be able to distinguish is 6–7ms. Additionally, synchroniza-

tion between neurons has been shown to occur within a time window of around 10ms [77].

For simplicity, we only consider a network with N = 5 when we explore the accessibility of

operations involving diads and triads.
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2.3 RESULTS

The model produces persistent elevated firing states (above baseline levels) in response to

inputs to selected populations in networks consisting of multiple populations, consistent with

what has been observed in neurophysiological studies (e.g., [25]). This persistent working

memory activation may occur either as steady-state or oscillatory firing rates, depending on

the value of the relative speed of the inhibitory synapses. For the case of oscillatory dynamics,

analogues of several critical features of working memory arise naturally and robustly, which,

in addition to the persistent elevated activity, include working memory capacity and binding.

In contrast, for the steady-state case, it is difficult to obtain multiple populations active at

once, and in the case of uniform connectivity, the activity would be indistinguishable (i.e.,

they would all be active with the same firing rate). An analysis and description of the

mechanisms underlying the oscillatory behavior of an isolated u− v − n triplet is presented

in Appendix B.

We found that our model allows for stable oscillatory states involving a single population

(SO: Single Oscillator) or multiple coupled populations. In the latter case, three basic types

of oscillations may occur: out-of-phase (OP), synchronous (S), and mixed phase (MP). By

OP, we mean that if there are k active populations, then each of the k occupy separate parts

of a cycle. For example, if k = 2, then the two populations oscillate a half cycle apart, and

if k = 3, each population oscillates a third of a cycle apart. In our model, OP populations

represent single-feature, distinct items in memory. S means all populations fire in-phase with

one another and represent bound items in memory, while MP means that some populations

are synchronized and some are out of phase, corresponding to bound and distinct items in

memory, respectively. For example, it could be the case with three populations that two are

synchronized while the third fires out of phase, corresponding to two distinct objects held in

memory: one with two features and one with a single feature.

Although all of the network’s parameters play a part in the allowed dynamics, we observed

that different parameters played roles of varying importance to each of the states. We thus

found it fruitful to first explore some of the features and constraints of the S and especially

the OP states individually, and then to see how these attracting states naturally combine to
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form more complex MP activity that may represent multiple rich, multi-feature memories.

Organization of results

In Sec 2.3.1 we look at OP oscillations in isolation. We look at both example simulations

(Sec 2.3.1.1) and some of the central results on constraints on the number of populations

that may oscillate OP (Sec 2.3.1.2).

In Sec 2.3.2, we turn our attention to S oscillations. Again, we examine example dynamics

(Sec 2.3.2.1) and limits on how many populations may oscillate synchronously (Sec 2.3.2.2).

In Sec 2.3.3, we see how OP and S oscillations may both occur and can lead to MP

oscillations, which are a central feature of the model. We look at example activities (Sec

2.3.3.1) and then try to gain insight into how we might attain the different oscillatory modes

by looking at two different simplifying assumptions. First we see how the coupling strengths

allow for the different states in the reduced case of just 2 coupled populations (Sec 2.3.3.2),

and then turn to the case of weak coupling (Sec 2.3.3.3) and examine the basins of attraction

for S, OP, and MP modes with just 3 populations.

Finally, in Sec 2.3.4, we examine the model in relation to biological and cognitive con-

siderations. We first focus on one of the main features of the model by exploring how

the network can rapidly form and transition between a rich variety of MP relationships in

the context of binding (Sec 2.3.4.1 and Sec 2.3.4.2). We then more carefully examine the

transitions the model network may make (Sec 2.3.4.3), and compare some of the frequency

relationships in the model to experimental results (Sec 2.3.4.4).

2.3.1 Out-of-phase oscillations and distinct memoranda

OP oscillations of the interacting populations in the network (Fig 4) display the fundamental

signature of working memory in the model. Each distinct memorandum being held active

is associated with a different phase, similar to what has been proposed in previous work

(e.g., [70, 36, 78, 79]). In contrast to some of this previous work, however, the present firing

rate networks are self-contained. That is, they do not explicitly receive any external signal

to organize their relative phase timings. Instead, mutual inhibition allows for competition

between the populations so that only one population (or group of synchronously firing pop-
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ulations as discussed in Sec 2.3.3.1) is active during any given portion of a cycle. Thus, for

a given cycle duration (determined by conditions discussed in detail in Sec 2.3.1.2 and Sec

2.3.3.2), there is a limit to the number of OP populations that the network may support. In

the model this corresponds to working memory capacity. We will also refer to this capacity

as the network capacity, as it is a fundamental property of the networked populations.
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Figure 4: OP dynamics for up to 3 active populations. For a network size of 5 populations

(N = 5), all combinatorial possibilities for up to 3 active OP populations may be realized.

Square waves in these and similar figures indicate the stimuli given to the population just

above the given wave, and the vertical dashed lines in each plot allow for phase comparisons

across different active populations. The first bar below each group of traces shows the interval

of starting times in which the same stimulus (fixed amplitude and width) will produce the

same result; the second bar shows the length of the period of the oscillation that is active

before the stimulus is applied (note: the period may change after the stimulus is applied); the

third bar in (B) is explained below. (A) The network starts at a nonzero, nonactive baseline

firing rate. The first stimulus selectively activates the first population, while the other

populations remain inactive with low firing rates. A second population is then activated; for

these parameters and stimulus strength, almost any stimulus onset time will induce the OP

state with 2 active populations, as the bars show. (B, C) Stimulating a third population with

a short stimulus induces the OP state with 3 active populations. Either activation ordering

may occur, depending on the phase the stimulus is presented; (B) and (C) show
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the two different orderings. The third, dashed, bar below the stimulus trace in (B) shows

the interval of onset times that induce the OP state with three active populations; the

first interval shows the onset times that produce (B) while the second interval shows the

onset times that produce (C). (D, E) Larger and wider stimuli may deactivate either of the

active populations, so that the network remains in the OP state but with different active

populations (WTS scenario). (F) Maintaining the amplitude of the stimulus from the WTS

case but increasing the stimulus width allows the third selected population to deactivate

both active populations and become the only active population (WTA scenario).

2.3.1.1 OP dynamics Depending on the timing and strength of the stimulus given

to each population, a selected population may either oscillate out-of-phase with currently

active populations in the network cycle, or it may compete with one or more populations,

quenching their activity while remaining active itself. More concretely, consider the case of

a 5-population network (N = 5) with a network capacity of 3 active OP populations. If no

input is given, all of the populations fire at low, but non-zero, rates. Selectively stimulating

first one of the populations, and at a later time a second population, allows for these two

populations to be simultaneously active, exhibiting OP oscillations as shown in Fig 4A. The

result of subsequently selectively stimulating a third population depends on the strength,

width, and onset time of the stimulus. Stimuli of sufficient width and amplitude can result in

a winner-take-all (WTA) scenario (Fig 4F), where in the 3-population-capacity network the

activation of the third population suppresses the first two populations sufficiently to become

the only active population. Weaker stimuli allow for a winner-take-some (WTS) scenario

(Fig 4D and 4E); in this case, the third population quenches one population (whose activity

returns to baseline level) and becomes persistently active, leaving two OP populations. Both

of these cases could represent selective forgetting due to interference. For example, they could

correspond to situations in which attention is shifted to one item at the expense of other

attended memoranda, effectively resulting in the forgetting of those items that had been
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held active in working memory.

If the stimulus is of moderate strength (that is, of sufficient amplitude and duration

to activate the population, but not sufficient to quench another active population), then,

depending on the onset time of the stimulus, the selected population may become interleaved

with the other active populations in the current cycle (Fig 4B and 4C). In this case, all

populations may fire OP, with the ordering of the newly activated population with respect

to the already-active populations within the cycle determined by the stimulus onset time

(e.g., Fig 4B vs Fig 4C).

2.3.1.2 OP oscillations and working memory capacity As mentioned above, for

any set of nontrivial parameters (e.g., cei ≥ ε > 0) there is a maximum number of OP

populations that may be active, resulting in a finite network capacity.

We note that a working memory capacity is entailed either by nonzero coupling (i.e.,

one of ce, cei, cie is positive), or by the temporal resolution of the network. That is, in a

biological network, we would not expect perfect synchronization to occur with any regularity;

rather, the detection of synchrony by the network would need to operate within certain

temporal bounds, so that oscillations that are within some threshold time measure of being

synchronous are in fact read out as synchronous. Indeed, the same is true numerically in our

model simulations, if for very narrow temporal bounds. In either case, there is a minimum

distance, say η > 0, that the excitatory peaks, e.g., may be from each other (in the first case,

the minimum distance may arise due to the attracting or repelling basins of the synchronous

state that result from nonzero coupling strengths, for example). Thus, if T is the period of

the network oscillation, the maximum working capacity would be T
η

, which is finite for any

fixed set of parameters.

Both the mutual inhibition, cei, and the timescales, τi and τn, are critical in determining

this capacity. We expect the value of cei to play a strong role in determining the network

capacity since the OP dynamics fundamentally arise from mutual inhibition between the

populations in the network (see Sec 2.2 and Sec 2.3.3.2). The effect the timescales have on

the capacity is somewhat more nuanced. The timescale of inhibition works differentially on

the excitatory populations, depending on their phases. Briefly, we find that, in particular,
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larger values of τi increase the time the excitatory populations spend near zero more than

the time they spend away from zero, providing a greater window of opportunity for other

populations to be active. We now look at this in greater detail.

We observe that there appear to be two qualitatively different features to the excita-

tory oscillation: (1) a pulse-like portion, where the activity rapidly increases and rapidly

decreases, which we will call the “active phase”; (2) a portion where the firing rate stays

very close to zero, which we will call the “quiescent phase”. Although the division between

these phases is necessarily arbitrary, a natural threshold choice is the low fixed point, u∗ (the

baseline firing rate). Thus, for some fixed j, the active phase of a given oscillation, Ta, is

defined as the interval of time such that uj > u∗, while the quiescent phase of an oscillation,

Tq, is the interval of time such that uj ≤ u∗. Thus, Ta is a measure of the width of the

pulse, while Tq is a measure of the time it spends near zero. Note that Ta + Tq = T , the

period of the oscillation. Ta is mostly determined by the rise time of the inhibition, which is

strongly affected by the excitatory population. In contrast, Tq is mostly determined by the

decay time of the inhibition. See Appendix B for more detail. Thus, while both Ta and Tq

increase as τi increases, we expect Tq
Ta

to increase as well. Indeed we find this to be the case;

for example, with our original parameters (including τi = 12) and one active population,

T ≈ 50ms, and Tq
Ta
≈ 28

22
≈ 1.3. If we increase the timescale of inhibition up to τi = 20,

T ≈ 76ms, and Tq
Ta
≈ 48

29
≈ 1.7. Thus, the ratio Tq

Ta
has increased by a factor of about 1.3. We

therefore might intuit that more populations can be active OP as τi increases, since more

pulses from other populations may “fit” between the pulses of an already-active population.

That is, since there is a proportionally larger interval of time the population spends near

zero than the interval of time it is active, there is greater opportunity for other populations

to be active during this quiescent phase. We also note that while it is important for τn to

be large enough so that the NMDA population may reactivate the excitatory population

(see Appendix B), it otherwise does not affect the period of the oscillation very much. For

example, with our original parameters (including τn = 144) and one active population, recall

that T ≈ 50ms; increasing τn to 240 slightly decreases the period to T ≈ 49ms. (We note

that it is not surprising for τn to have an inverse relationship with the period, since τn mostly
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controls the decay time of the NMDA; thus, n stays slightly higher for larger τn, resulting

in slightly faster activation times for u and v. Since τn has little effect on the decay time

of inhibition, which is mostly determined by the time constant τi, we see that increasing τn

may in fact decrease the period.)

We may follow the oscillatory solutions in AUTO to determine exactly how the network

capacity depends on the mutual inhibition and the system’s timescales. The OP states

are lost as folds of limit cycles or destabilize via torus or period-doubling bifurcations as τi

increases or decreases with τn fixed (Fig 5A illustrates this for the 3-OP state). In particular,

we found that for N = 5 or 10, the solutions were lost as folds of limit cycles as in Fig 5A,

while forN = 20 the oscillations sometimes first lost stability via the torus or period-doubling

bifurcations (see Fig 5D). For N = 5 or 10, the 1-OP state (i.e., just one active oscillating

population) is also lost as a fold of limit cycles (in τi), suggesting we may gain intuition

into why the M -OP states exist for certain τi and τn values for M > 1 by examining the

1-OP case in more detail, which we do at the end of Appendix B by examining how the

separation of timescales allows for the existence of these solutions (i.e., why the ratio τi
τn

cannot be too large or too small). While there are certain trends in the behaviors of the

solutions, we did not observe any significant changes in the dynamics near bifurcation. In

the case of the inhibition, as τi increases, the period increases (as discussed at the beginning

of this section), more than doubling (from 50 to 117 ms), and the maxima of the excitatory

populations increase by about 25%, while the minima of the NMDA populations decrease

by ≈ 33% (note that the NMDA generally peaks at or near saturation at 1, so this does

not tend to change as we adjust parameters) and the maxima of the inhibitory populations

decrease only very slightly, staying virtually constant (a change of ≈ 5%). We note that

not all of these behaviors (or those described below for the case of varying τn) are strictly

monotonic, but rather they indicate the trends. For example, the amplitude of the inhibition

increases very slightly with τi before it decreases; however, up to two significant figures it

remains at 6.8. If τi increases beyond the high fold, the solutions tend to change from M -OP

to (M − 1)-OP; e.g., 3-OP solutions are lost to 2-OP solutions. If τi decreases beyond the

low fold, we get slightly different behavior. In this case, the solutions tend to change from

M -OP to M -MP; i.e., one of the populations will synchronize with another one. In both
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cases, we see that the number of mutually OP groups decreases from M to M − 1.

For NMDA, as τn increases, the period decreases (as discussed at the beginning of this

section) from 77 to 63 ms, the maxima of the excitation and inhibition stay virtually constant

(changing by less than 1%) and the minima of the NMDA populations increase by ≈ 50%

(since, of course, τn increases). As we can see from Fig 5D, there is a fold of limit cycles (for

N = 5 and N = 10) for low τn; increasing τn does not appear to cause the loss of existence

or stability of the solutions. This is as expected, since in the limit τn → ∞, NMDA will

simply stay high (once activated) as it acts essentially as a parameter. Thus, as we explore in

more detail in Appendix B, the NMDA will always outlast the downstroke of the inhibition,

allowing the excitation to reactivate. If we decrease τn to below the fold, we again can lose

the M -OP state to the M -MP state, as one of the active populations will tend to synchronize

with another one.

By following the above bifurcations, we may partition τi − τn space based on how many

OP populations can be active for fixed cei (Fig 5B), or on the maximum number of OP

populations that may be active for different values of cei (Fig 5C). In Fig 5 we see that we

have open sets of τi and τn values that lie within physiological ranges where the network

capacity is 3, matching experimental ranges of a capacity of 3 – 5 items in working memory.

As we increase the number of populations, the capacity of the system remains more or less

the same (Fig 5D), suggesting the capacity is only weakly dependent on the network size.

2.3.2 Synchronous oscillations and binding

Different types of binding occur within the context of working memory. In all examples

of binding, temporal synchronization of firing may play a significant role as the underlying

mechanism. There are several different ways in which our model may achieve such synchrony

between different populations in the network.
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Figure 5: Stability of OP oscillations and working memory capacity. For fixed τn, there is a

window of τi values for which oscillations exist. We examine the existence and stability of

the active out-of-phase populations, corresponding to distinct, single-featured memoranda.

(A) Here, we look at the 3-OP state for a network of N = 5 populations, with τn fixed at

144 and the mutual inhibition cei fixed at 0.03. For τi too large or too small, the oscillations

are lost as folds of limit cycles (for larger N , they may also be lost through torus or period-

doubling bifurcations). (B) By following the fold points in (A) and keeping N fixed at 5,

we may examine the dependence of the oscillatory states on both timescales, τn and τi, for

different OP states. Thus, we see how the capacity of the system depends on the timescales.

Each curve is a curve of the limit points as shown in (A). Thus, the OP state with 2 active

populations exists stably above the blue curve, and the 3-OP state exists stably above the

black curve. (C) We may further examine how the capacity is affected by the strength of the

mutual inhibition, cei. Here, the 3-OP state exists above each curve for different cei values

as indicated. As the mutual inhibition increases, the minimum τn value that supports the

33



3-OP state within physiologically realistic synaptic timescales, but high enough to allow for

the WTA state. (D) If we fix cei = 0.03, we may further explore how the network size N

affects the 3-OP state. Overall, as N increases, the set of timescales that supports the 3-OP

state does not change very much, generally increasing slightly. The bifurcation structure for

N = 20 changes somewhat as well, so that the 3-OP state may destabilize through a torus

or period-doubling bifurcation for lower τi values as well.

2.3.2.1 S dynamics In Fig 6, we see three such possible paths based on the pattern

of inputs. Unsurprisingly, if two inactive populations, say populations 1 and 2 without loss

of generality, are stimulated with similar stimulus parameters (onset time, amplitude, and

duration), they will oscillate S (Fig 6A). If two populations are active OP, we may apply

a stimulus to either one so that they synchronize (Fig 6B). Finally, if population 1, for

example, is oscillating in isolation, population 2 may also synchronize with population 1

if given a small stimulus within a certain time window of the phase of population 1 (in

particular, close to when the excitatory component has an upstroke) (Fig 6C). The latter

two cases illustrate the attractive nature of S oscillations in the model, which we further

confirm through numerical continuation. We note there are other ways in which populations

may pairwise oscillate S in the network, some of which are explored in Sec 2.3.3 and Sec

2.3.4.

2.3.2.2 Maximum S populations We first observe from Eq (2.1) that if all N popu-

lations are active S in a given network, they oscillate as a single population with inhibition

given by aei. Thus, we might expect the maximum number of populations that can oscillate

synchronously to depend more on the intrapopulation parameters, such as aei. Indeed, this

solution is eventually lost as a fold of limit cycles as aei increases. However, the interpop-

ulation coupling values, such as cei, do affect the stability of this oscillating solution. We

have observed these solutions to be lost as branch points (with no stable alternate branch)
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Figure 6: S dynamics and capacity. (A) Simultaneous stimuli can cause the selected popula-

tions to exhibit S oscillations. (B) If two populations are pairwise OP, selectively stimulating

one can alter its relationship so that the two populations subsequently oscillate pairwise S.

(C) Sequential stimuli of the right timing may also cause the selected populations to dy-

namically bind and oscillate S. (D) Synchronous capacity as a function of τi and cei. For

M = 1, ..., N (here N = 5), the M -S solution is stable for all τi values between each respec-

tive pair of (same-colored) points. For example, the 5-S solution with cei = 0.03 is stable for

3.7 < τi < 36.4. The synchronous solutions are not stable outside of these intervals and are

lost to different solutions, as indicated in the text.
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or period doubling bifurcations. Although the types of bifurcation may change, the types

of changes the parameters cause match our expectations: As cei increases, the aei value at

which the solution destabilizes decreases. Increasing the ce value correspondingly increases

the aei value at which the bifurcation occurs. Furthermore, decreasing the number of active

populations increases the aei values at which the stable oscillations are lost, so that, for exam-

ple, with the same intrapopulation and interpopulation coupling strengths, 4 S populations

remain stable for higher aei values than 5 S populations do.

For other parameters, the behavior may be somewhat more complicated. For example,

consider the range of τi values that allows for the stable existence of M -S solutions for M ∈

{1, ... N} (of course the 1-S oscillation is just a single oscillator, SO). As we see in Fig 6D,

as M increases from 1 to 5 with cei fixed at 0.03 or 0.07, the interval of τi that allows for the

stable existence of the M -S oscillations narrows monotonically, resulting in a nest of intervals,

each of which is strictly contained in the interval below it. However, the result of increasing

cei from 0.03 to 0.07 varies somewhat on the number of synchronous oscillating populations.

The right boundary, corresponding to the largest τi that supports the synchronous solution,

increases with increasing cei, especially for fewer oscillating populations. The left boundary,

corresponding to the smallest τi that supports the synchronous solution, increases for larger

M (M = 4, 5) and decreases for smaller M (M = 1, 2, 3). As mentioned above, when

M = N , the whole network oscillates as a single group, as can be seen with the appropriate

substitutions in Eq (2.1); thus, while varying cei does change the stability of this oscillation,

as can be seen for M = 5 in Fig 6D, the other characteristics, such as the amplitudes and

period of oscillation, do not change at all. However, these can and do change for M < N ; in

particular, increasing cei tends to increase the amplitudes of the excitatory and inhibitory

populations. We explore these changes in dynamics and explore the changes we see in Fig 6D

in more detail in Appendix D.

2.3.3 Mixed-phase oscillations: synchronous and out-of-phase

We have seen above in Sec 2.3.1 and Sec 2.3.2 that the network allows for both S and

OP oscillatory states as attractors. When such states coexist in the network (i.e., at least
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two populations are pairwise OP and at least two populations are pairwise S), we say the

populations oscillate MP (mixed-phase). An important result in our current work is that

the model network can support a large number of attracting MP states, where the pairwise

OP populations correspond to distinct items in memory and the pairwise S populations

correspond to bound features of a memory.

Thus, multiple items in memory, each with multiple features, can be represented within

our framework. Indeed, we found a range of combinatorial arrangements and dynamics

emerge in the model network that are rich enough to map onto or underlie many of the

aspects of binding. We explore some of these dynamics below, and other examples that may

be relevant to feature and variable binding in Sec 2.3.4.1 and Sec 2.3.4.2.

2.3.3.1 MP dynamics When a quiescent or active population is stimulated, it may

oscillate pairwise OP or S with currently active populations. Here we see three ways whereby

we can obtain MP oscillations with a selective stimulus, so that a feature is added to an item

in memory.

In Fig 7A–C, there are initially 3 active OP populations (say populations 1–3). If popu-

lation 3, for example, receives a stimulus, then its timing may be readjusted to synchronize

with population 2. Alternatively, a quiescent population (say population 4) may be stim-

ulated. Since the capacity of the network is reached with 3 OP populations (or really, 3

groups of mutually OP populations; that is, populations within each group oscillate S and

populations in different groups oscillate mutually OP), in order for population 4 to remain

active, either at least one of populations 1–3 must be quenched or at least two of populations

1–4 must synchronize. In Fig 7A, activating population 4 with a somewhat weaker stimulus

quenches the activity of population 1 as might occur in forgetting, suggesting independently

of the numerical analysis in Sec 2.3.1.2 that the capacity of the network is indeed 3. Further

stimulating population 4 causes it to synchronize with population 2, in a similar way that

occurs in Fig 6C when sequential stimuli cause two populations to oscillate S. However, since

all of the populations are coupled to one another, more complicated effects may occur as

well. For example, in Fig 7C, once population 4 is stimulated, it also synchronizes with

population 2 as in Fig 7B; however, populations 1 and 3 are perturbed enough to synchro-
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nize as well. We note that the only differences between Fig 7B and Fig 7C are the onset

times of the stimulus to population 4. More generally, the stimulus parameters determine

which populations oscillate S and which do not. We also see that in both Fig 7B and Fig 7C

four populations are active following the stimulus. Thus, the number of active populations

depends in part on how many OP populations may be active (see Sec 2.3.1.2) and in part on

how many S populations may be active (see Sec 2.3.2.2). We consider additional exmaples

of MP states in Sec 2.3.4.1 and Sec 2.3.4.2.

2.3.3.2 Two populations: effects of coupling strengths Having seen that our

model supports both OP and S dynamics that naturally combine to allow for richer MP

dynamics, we look at the reduced case of two populations to distinguish how the interpopu-

lation coupling affects the existence of the OP and S states, as well as the case where only a

single oscillator (SO) is active. We note that the stable existence of the SO state is necessary

for WTA dynamics; however, the SO state may also stably exist with lower coupling values

that do not allow for WTA, and so it is not sufficient for WTA dynamics. The coupling

strengths are crucial in being able to maintain any of these oscillatory dynamics. We see

that in the coupling-strength space in Fig 8D, only the region ∗ supports all three oscillatory

states. Both SO (Fig 8B) and OP (Fig 8C) states exist stably in bounded sets, so that

if either ce or cei values become too large, the states will be lost. In contrast, there is no

indication that the S state only exists in a bounded region (Fig 8A). If cei values are large

enough with ce small, the S state may lose stability (to the right of (i) in Fig 8A). How-

ever, we see from Eq (2.2) that as ce →∞, each excitatory population only gets excitation

from the complementary population, so we expect synchrony to continue to stably exist for

arbitrarily large ce values. All three oscillatory states appear to exist stably when either ce

or cei is zero and as the other value approaches zero (i.e., along one of the axes near the

origin), suggesting that weak coupling is sufficient for these states to exist. In Appendix C,

we explore the attracting states in the weak coupling limit.

Although the general features described above for Fig 8 match our intuitions, some of

the particular features are unforeseen and may warrant further scrutiny. We now look more

carefully at the regions that the S, SO, and OP states stably exist in coupling-strength
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Figure 7: MP dynamics. (A) Stimulating an inactive population when the network is already

at capacity (3 OP populations here) may cause one of the active populations to become

quiescent, even without a strong stimulus. A subsequent stimulus produces similar behavior

as in Fig 6B, so that stimulating an active population may allow it to change its relationship

from pairwise OP with both other active populations to oscillate S with one of the two other

active populations, and OP with the second. (B – C) Stimulating a quiescent population can

cause various dynamic bindings and MP dynamics. For example, changing only the timing

of the stimulus can alter the resulting patterns of synchronization. In (B), the stimulated

population synchronizes with one of the three OP populations. (C) Adjusting the onset time

of the stimulus may result in additional interactions, so that the network transitions from 3

OP populations to 2 OP pairs, where both populations in each pair oscillate S.
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Figure 8: Stability as a function of coupling strengths for N = 2. The dashed line at

cei = 1 indicates the interpopulation and intrapopulation inhibition are the same. All of

the dynamics of interest exist stably when the interpopulation coupling is less than the

intrapopulation coupling (to the left of the dashed line), as desired. (A–C) Colored regions

indicate areas that the oscillatory states shown stably exist. Roman numerals refer to the

boundary curves of the regions as indicated. (A) The S state exists to the left of (i), which is

a curve of branch points of limit cycles (BPLCs). (B) The SO state exists to the left of (ii), a

curve of folds of limit cycles (FLCs) (these folds are the only ones in this diagram that arise

from a subcritical Hopf bifurcation) and to the right of (iii), another curve of FLCs. (C)

The OP state exists below (iv), a curve of FLCs, and (v), a curve of torus bifurcations, and

to the left of (vi), a curve of BPLCs. The line style for each curve is shown to the right of

each roman numeral for clarity. (D) All of the regions in (A–C) superimposed. (∗) indicates

the region of interest, where all three oscillating states (S, SO, and OP) exist stably.
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space in turn, describing the curves of bifurcations and the behavior of the oscillations with

changing coupling strengths.

The S state (Fig 8A) exists for all relevant coupling strengths. Neither the period nor the

amplitude of the oscillations change as ce and cei change. However, if cei increases beyond

(i), a curve of branch points of limit cycles (BPLCs), only the low and high steady states

are stable.

The SO state (Fig 8B) lies to the right of (iii), a curve of folds of limit cycles (FLCs). As

we can see in Fig 8D, the oscillatory states that are available for lower cei, to the left of (iii),

are either S or, for sufficiently small ce values, OP. The SO state is bounded on the right by

(ii). Curve (ii) is also a curve of FLCs; however, unlike the other such curves in Fig 8, these

folds arise from a subcritical Hopf bifurcation.

For fixed ce and increasing cei, the SO solutions show increases in the period (from 48 to

74 ms) and the maxima of both the excitatory (increasing by ≈ 20%) and inhibitory (≈ 40%)

oscillations. These changes continue until the SO state is lost to a high fixed point. As we

might expect from a subcritical Hopf (in particular, one that involves a fixed point away

from zero), this change happens rapidly, with no changes before bifurcation suggestive of the

loss of stability of the solution. For fixed cei and increasing ce, the SO solutions show slight

decreases in the period (from 53 to 51 ms) and the maxima of the excitatory and inhibitory

populations (both decrease by ≈ 12% or less).

We note that once cei increases beyond the subcritical Hopf bifurcation (curve (ii)), the

system displays steady state bistability between a down state and an up state with the same

inhibitory timescale as for the case of oscillations. However, a much larger input is required

to switch between active populations in this case. For example, suppose ce = 0.001 and

population 1 is active. If cei = 0.7 (“after” the Hopf, so that population 1 has a large-

amplitude oscillation), stimulating population 2 with a width of 50ms and an amplitude of 3

(arbitrary units) is sufficient to allow population 2 to become active and quench the activity

of population 1. However, if cei = 0.8 (“before” the Hopf, so that population 1 is in the up

state), a stimulus to population 2 with the same width requires an amplitude of greater than

36 in order for population 2 to activate, sending population 1 back to the down state. This

up state is only stable for smaller ce values; for larger ce the only stable state of the system
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is S activity. We see in Fig 8D that the S state exists to the right of (ii) for low ce values as

well.

The region of definition of the OP state is more complicated. It is defined by (iv), a curve

of FLCs, (v), a curve of torus bifurcations, and (vi), a curve of BPLCs. These curves do not

decrease in ce monotonically as cei increases. We see that that there is a small interval of ce

values around 0.06 where the OP state exists stably for small cei values, but is lost for higher

values (e.g., cei not quite 0.2). Surprisingly, once the OP state is lost here, we initially can

only get the S state. As cei increases further, we may also obtain the SO state. Perhaps the

most unanticipated feature of the OP region occurs near the local minimum of (iv). There

is a very small ce interval, near ce = 0.05, where the OP state is lost (to a region where

S and, for larger cei, SO both exist, as seen in Fig 8D) and then regained as cei increases,

before finally being lost again for large cei. We explore the behaviors of the OP state further

in Appendix D, including changes in the dynamics that occur with increasing ce or cei that

may lead to the bifurcations we observe.

2.3.3.3 Weak coupling Surprisingly, both S and OP oscillations are stable as the cou-

pling strengths ce and cei approach 0 with N = 2, as we saw above in Fig 8. Although

we have chosen coupling strengths that allow for stronger interactions between populations

(allowing for, e.g., WTA and WTS dynamics), we may gain some insight into our system by

examining the limit of weak coupling. In this case we first assume that the populations are

oscillating.

In Appendix C, we outline how we may use weak coupling theory to reduce our system

of N coupled populations from a (3 · N)-dimensional system to an (N − 1)-dimensional

system involving the phase differences. Briefly, we restrict our attention to weakly-coupled

oscillatory populations. Since each 3-dimensional population (involving u, v, and n variables)

is assumed to be on a limit cycle, its state can be referenced by its phase on that limit cycle,

θj, where j is the population index. We can further reduce the number of dimensions by one

by referencing each population’s phase relative to θ1, the first population’s phase. Thus, we

are left with phase differences ψj. Since ψ1 ≡ 0, we can examine the attractor structure of

three weakly-coupled populations in the plane.
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With just EI or IE coupling, we can obtain all three relevant states of interest (OP, S, and

MP). In Fig 9, we see the basins of attraction with only cei coupling (cf. Fig 2 in Horn and

Opher 1996 [80]). Adding EE to EI coupling (ce = 0.1 cei) predictably increases the basin of

attraction of the synchronous state. Based on the geometry we see in Fig 9, we might also

expect transitions between regions that share boundary curves to be easy to realize (e.g.,

the S and MP regions), and transitions between regions that only share isolated boundary

points (the S and OP regions) to be more difficult to realize, if even possible. In fact, we

found just such a correspondence when we more thoroughly examined accessible states (see

Sec 2.3.4.3).

2.3.4 Biological considerations and applications

In Sec 2.3.3, we showed that our model is able to support complex and stable oscillatory

modes that may be relevant to different scenarios in working memory. Here, we explore

further aspects of these oscillations that may be relevant to cognitive processes and empir-

ical findings in working memory tasks. For example, in working memory, rapid transitions

between activated states must occur in order to establish and adjust the relationships of

items that are being held in memory. Thus, we describe how the patterns of synchronization

that emerge from the model are rich enough to accommodate many aspects of the current

understanding of both feature and variable binding from a working memory standpoint. We

then examine in greater detail what transitions are in fact possible within the model. Finally,

we describe the frequency relationships that naturally emerge in the model and how these

compare to experimental findings of power spectra dynamics in large-scale recordings during

working memory tasks.

2.3.4.1 Feature binding Dynamic binding is required in working memory in order to

quickly associate and dissociate different elements together [81], such as different features

of an item in the environment. In the context of our model, this means that items must

be able to be both synchronized and desynchronized in response to different stimuli. We

have seen above in Fig 6 how synchronization may occur via either simultaneous (Fig 6A) or
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Figure 9: Basins of attraction for the case of weak EI coupling with 3 active populations.

When three populations are active (note, ψi is the phase of population i relative to θ1), OP,

S, and MP states all have open sets as basins of attraction, as we found in the full model.

These basins are defined by the stable manifolds of saddle points, as shown.
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sequential (Fig 6B and 6C) selective stimuli. Such synchronization allows different features

to bind together into one item in memory. In Fig 10, we see two situations in which the

patterns of synchrony change as the associations between different features change. For

example, if a red traffic light turns green (Fig 10A), red light can unbind from stoplight (and

indeed may become quiescent, as in this example), while green light then binds to stoplight

as the two associated neuronal populations synchronize. Alternatively, an observer may

perceive the static environment in a unified manner, so that the car at the red light and the

street, for example, are bound together (Fig 10B). Once the light turns green, the car begins

to move, so that car and street, for example, unbind and are represented as distinct items

in memory. Thus, attentional mechanisms or environmental changes may act to change the

patterns of synchronization, and thus of the binding of different items in working memory,

by stimulating either quiescent or already-active populations.

2.3.4.2 Variable binding The combinatorial dynamics emerging within the model are

rich enough to produce variable binding as is characteristic, for example, of language and

abstract reasoning within the context of working memory. Below, we illustrate some simple

examples from the model consistent with the most expected and widespread approaches

to variable binding and language (e.g., the SHRUTI inference network [82]). These utilize

temporal phase binding and represent simple predicate calculus rules. Consider the predicate

calculus rule

purchases(x, y) =⇒ owns(x, y),

where x and y represent variables in the above rule, and a Boolean query (for example,

as presented in Feldman [37]), such as “Does Tom (x) own a book (y)”. In most common

inference network models, for example, SHRUTI [83], separate clock phases are assigned to

the pairings of Tom with owns and book with owns. Tom here represents a variable agent

who could come to own something (a book, for example) through purchases. There are other

possibilities, of course, and they could all be linked or synchronized with the owns relation.

We note that while a mediator circuit is implicated in the SHRUTI inference network, here

the relevant association may occur in a single step as a result of synchronous firing due
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Figure 10: Feature binding examples. For simplicity, memoranda that may require several

different bound features are represented as a single oscillating population (e.g., a street). (A)

Feature binding can be achieved through the synchronous firing of the individual features as

in the left half of (A). A new input causes an unbinding and a new binding of an object with

a modified feature. For example, the initial binding might represent a red stoplight. The

light changes to green, causing the stoplight to bind with green light. (B) Feature binding

in which a new input (e.g., focus) results in the decoupling of a single memorandum (e.g.,

some background such as a street and stationary car). For example, the car is observed to

begin moving, and so is now perceived as a separate object from the street.

46



to temporal associations and the pattern of input, as shown in Fig 11. Once the query

mentioned above, “Does Tom (x) own a book (y),” is made, two populations become active

(shown in Fig 11 as the already-active populations): one for a node for owns (e.g., the

active population in line 1 of Fig 11A), and one for a node for Tom (as an agent node; e.g.,

the active population in line 2). The active populations of Tom and owns then become

associated and paired as a result of the activation of a node or population representing

purchases in working memory (active population in line 4 of Fig 11A). Then, over several

clock cycles “Tom owns a book” becomes established, or possibly instantly as here with the

activation of the purchases node (i.e., population). Additional populations could become

activated and linked via synchronization, such as “Tom purchases The Awakening” where

The Awakening would become synchronized with a book node. We note that, whereas Tom

requires two populations to be active in this example in order to form distinct bindings with

both purchases and owns, different, n : m locking ratios or aperiodic oscillatory dynamics

could allow for such unambiguous bindings while just one population is maintained active

for Tom, as we touch on at the end of Sec 2.4.

We can also consider how the combinatorics allowed through the present model’s dynam-

ics may apply in language by illustrating how they may facilitate the presence of grammars.

We note that the predicate-argument structure used above (e.g., owns(x, y)) fits well within

some dependency grammars. However, the model is agnostic to any particular type of gram-

mar, and we now consider an example as might be implemented within a phrase structure

grammar, illustrated in Fig 11B and 11C. The words are represented by the activation of

populations (presumably stored in the structure of networks in long-term memory) and be-

come synchronized with the appropriate activated nodes. For clarity, we have simplified the

example so that the nodes, and therefore the bindings of words to nodes, are not displayed.

For example, a determiner node is first activated and then bound to the, but in Fig 11B we

only show the activity of the population corresponding to the. A noun node is then activated,

which is bound to the variable woman. A verb node is activated next, which is bound to

writes. Finally a second noun node is activated and then bound to music. This results in

the binding of the determiner node and noun node of the subject into a determinate noun

phrase (displaying the phrase structure rule D + N→ DNP), and within a single clock cycle
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Figure 11: Variable binding and sentence construction examples. Specific sequential inputs

result in a cascade of bindings that emerge, following one another within a single clock

cycle. (A) A fragment of the working memory system demonstrating how an inference

emerges and is established in working memory. Here, the predicate calculus rule examined

is purchases(x, y) =⇒ owns(x, y) (from an example in Feldman [37]). After a query is

made (“Does Tom own The Awakening?”), a statement is provided, “Tom purchased The

Awakening”. This statement first activates a second instantiation of Tom, and then the verb

purchases(y), causing owns(y) and Tom to synchronize so that the inference is made. (B)

An illustration of that same combinatorial structure is shown as it could apply towards a

mechanistic realization of a phrase structure grammar. This could be based upon an already

established or innate structure in the cortex. Upon reading the sentence, the words are

sequentially input and the appropriate nodes are activated and bound in working memory,

forming a determinate noun phrase (DNP) and a verb phrase (VP). For clarity, bindings

between nodes and variables (i.e., words here) are not explicitly illustrated. (C) A final

binding occurs, as the components of the DNP receive selective and equal simultaneous

stimuli, binding all of the components together to form a sentence (S).
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the dynamic binding of the verb with the direct object to form a verb phrase (V + N →

VP). These states are activated sequentially within a single clock cycle, and thus could be

recognized as a grammatical sentence maintained in working memory based on the phrase

structure rule that a DNP followed by a VP produces a grammatical sentence S. Alterna-

tively, the sequential DNP and VP representations could be input with a subsequent final

synchronization of the DNP and VP taking place to produce S, and recognized as a gram-

matical sentence that is maintained in working memory, as illustrated in Fig 11C.

Ungrammatical sentences could be recognized when bindings occur that do not corre-

spond to valid production rules. We do not consider here the specific mechanism or details

by which the particular variables become bound, but rather show how they can dynami-

cally emerge within working memory representations. In principle this could arise via some

mapping and closeness of the associations in that cortical map, “hardwired” architectural

associations in long-term memory, or some combination.

2.3.4.3 Accessible operations We have shown that the dynamics of our model map

onto a number of working memory and binding examples. Indeed, it appears that the relevant

attractor patterns are exactly the combinatorial possibilities, limited by the network size and

the number of MP patterns available. Beyond ascertaining what states are available to the

network, we are further interested in how the network can transition from one pattern to

another. For example, in Fig 4B we see that if a third, inactive population is stimulated, the

network can transition from 2 OP populations to 3 OP populations. We will consider this

to be an operation available to the network; i.e., the operation of transitioning from 2 OP

populations to 3 OP populations by providing a stimulus of the right strength and timing

(see Sec 2.2 for further protocol detail). Different patterns may require a different number

of operations to attain from a given starting pattern. We refer to a transition that requires

n selective, sequential stimuli to instantiate as an nth-order operation. We may assess the

capabilities, and thus to some degree the plausibility, of the model more systematically by

delimiting the available operations. Determining whether a pattern is accessible through a

first-order or a higher-order operation may also allow for predictions to be made from the

model, such as the timings involved in certain cognitive processes. We restrict the number
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of active populations to either two (diads) or three (triads). Our parameter choices are as

above, so that WTA is always an accessible state. Thus, if we begin with a diad or triad,

the only resultant patterns of interest are also diads and triads.

Fig 12 shows what operations related to diads and triads are available to the network,

under the limitations described above and in Sec 2.2. In each gray circle, 1st-order operations

are displayed; we may determine available higher-order operations by stringing together

sequences of 1st-order operations. For example, we may transition from an OP diad to an S

triad as a 2nd-order operation by stimulating an inactive population so that the network first

transitions to an OP triad, and then stimulating an active population so that the network

then transitions to an S triad. In particular, examining Fig 12B and 12C reveals that the

network may transition from any diad or triad to any other (through transitions involving

only other diads and triads) using no higher than a 3rd-order operation (i.e., no more than

3 selective, sequential excitatory stimuli are required).

Since the stimulus is excitatory, the stimulated population will remain active. Thus, ev-

ery beginning pattern will have at least two resultant patterns that will not be accessible for

a given selected population that receives a stimulus (e.g., beginning with O and stimulating

population 1 will ensure that s23 and o23 are not accessible – see Fig 12A for a notation key).

By changing the population that receives the stimulus, other patterns become available in

a way that is obvious by inspecting Fig 12. For example, we see in Fig 12B that an MP

triad and OP diads and triads can transition to most of the remaining diads and triads:

Discounting order, there are 5 possible triads and 6 possible diads; disregarding which popu-

lation receives the stimulus, we see that both an MP and an OP triad can directly transition

to 6 of the 10 patterns that are different from themselves. By contrast, the S populations

have fewer populations accessible by 1st-order operations. This is in part an outcome of

maintaining a uniform connectivity. In order to differentially affect two S populations, one

of them must receive a stimulus, as any other population will affect the two S populations

symmetrically. So, for example, it is as expected that the only accessible patterns for 3 S

populations are the ones consisting of 3 MP populations where the selectively stimulated

population oscillates out-of-phase with the remaining two. The results for s12 as shown are

likewise entirely expected.
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Inactive Population Stimulated

Active Population Stimulated

Figure 12: Accessible diad and triad operations. (A) Using N = 5, a stimulus is given to each

of the activity patterns shown. For (B) and (C), the starting activity pattern is indicated in

the center of the gray circles. For (B), one of the already-active populations, population 1,

was stimulated, whereas an inactive population, population 3, was stimulated for (C). The

observed resultant activity patterns are indicated in smaller text around the circumference

of the gray circles.
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One of the patterns that is difficult to directly obtain from a diad or triad is an S

diad (e.g., s12). We were only able to obtain this pattern by stimulating one of the active

populations in an OP diad (e.g., o12). Thus, going from any other pattern to an S diad

requires at least a second order operation. For example, transitioning from an S triad to an

S diad is at least a third order operation: With the first stimulus the network may transition

to an MP triad, with the second the network may transition to an OP diad, and with the

third the network may finally transition to an S diad. We note that there may be multiple

paths that allow one pattern to evolve to another pattern. For example, an alternative route

from the S triad to diad would be through a WTA scenario: A strong first stimulus can

cause the selected population to quench the activity of the other populations, and a second

stimulus to a nonactive population could cause the network to transition to an S diad.

These results show that there are a number of options to get from one pattern to another

for two and three active populations, even with strong limitations on the network architecture

and the stimulus protocol. For the operations that take triads to triads (as shown in Fig 12B,

top), we note that the accessible operations are almost exactly what we would have predicted

from the weak coupling analysis. That is, as we mention in Sec 2.3.3.3, we expect transitions

between basins of attraction with boundaries given as curves in Fig 9 (i.e., between OP and

MP basins and between MP and S basins) to be easier to realize, and transitions between

basins of attraction with boundaries given as points (as in the unstable fixed points separating

OP and S basins) to be more difficult to realize. Indeed, we found it easy to transition

between OP and MP states and between S and MP states, and found it more difficult

to transition between OP and S states (note that we were unable to transition from S to

O within the constraints given in Sec 2.2, while there is only a very narrow 7ms window

that allows us to transition from O to S, just within our stated protocol). It may be of

interest in future work to loosen some of the above restrictions (for example, examining

heterogeneous networks or having the stimulus also drive the inhibitory components), and

to further quantify the level of difficulty for a particular transition (e.g., some transitions are

much less dependent on the stimulus parameters than others).
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2.3.4.4 Frequencies In constructing our model network, we chose parameters that were

biologically plausible and further found constraints on these parameters that allowed OP, S,

and MP modes and transitions between them that are relevant to working memory situations.

While we did not tune parameters in order to fit certain frequency bands that have been

found to be of potential relevance to working memory and binding, we indeed observed some

correspondence between these and the frequency relationships in the model network. For

example, if we have populations that oscillate OP, then as each population becomes active,

the oscillation frequency of the network as a whole (or, equivalently, of each individual

population) decreases, as illustrated in Fig 13. If the number of active OP populations

remains constant, the frequency of the network oscillations also decreases with increasing

network size. Thus, for example, if there are three active populations with OP dynamics,

each population oscillates at just over 15 Hz for a network with N = 3, and at approximately

13 Hz for a network with N = 20. We see in Fig 13 that if either N or the number of active

populations corresponding to distinct memoranda increases, the frequency of oscillations for

any individual population trends downward towards the alpha band.

Since we are considering OP dynamics, we also note that the period between successive

peaks in the case when, for example, three populations are active, is one third the overall

period of the network. We may refer to the associated measure as the “interpopulation pe-

riod/frequency”. As an example, let us consider a network size of N = 20 with three active

OP populations. As mentioned above, the network oscillation, and thus the oscillation of any

particular population, is 13 Hz. However, since three populations are active OP, the inter-

population frequency is 39 Hz. Depending on the distances between these active populations

of neurons and the spatial resolution of the measurement in an experimental setting, then,

increased activity near the alpha and/or gamma band may be detected. Greater numbers

of populations that oscillate S may cause increased power near the alpha spectrum, since

the interpopulation frequency would not increase. Increases in power in gamma frequencies

and in frequencies near alpha are both consistent with neurophysiological experiments that

have reported increases in gamma or alpha contributions with working memory tasks and

increasing working memory load [33, 84, 68, 35, 54, 85, 86, 87, 88]. In addition, increased

alpha-band oscillations have been reported to play an important role in mental processes
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Figure 13: Frequency of population oscillation for different network sizes N . We examine the

effect of increasing both system size and number of active OP populations on the oscillation

frequency. In both cases, the frequency decreases monotonically. The frequency of interest

may also be that based on the time between peaks of active populations (e.g., the time

between the peak firing rates of population 1 and population 2 in a given network). This

“interpopulation frequency” may be obtained by multiplying the given population by the

number of active populations. For example, the interpopulation frequency for a network size

of 20 when 2 populations are active would be approximately 30 Hz.
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related to attention and memory [92, 93, 94, 89, 90, 91].

2.4 DISCUSSION

We presented an oscillatory firing rate network model that can represent both distinct and

bound items in working memory. The oscillations provide a mechanism to separate or bind

these items by utilizing the phase information of the oscillations, resulting in groupings of

synchronous and asynchronous populations that represent multi-item, multi-feature memo-

ries. By framing our mean-field model within a dynamical systems context, we were able to

study how the oscillatory solutions arise as functions of key network parameters, such as the

coupling strengths and synaptic timescales. We were also able to rapidly simulate various

scenarios of interest, which allowed us to explore different oscillatory states and transitions

between them that may be relevant to working memory and binding.

Beginning with a spiking network, we derived a simple mean-field model. In addition to

the fast AMPA and slow GABA synapses that are normally modeled, we included slower

excitatory NMDA synapses, which have been implicated in the persistent activation of neu-

rons during information retention in working memory tasks. The NMDA synapses allow

for bistability in our model, so that only transient stimuli, applied to the excitatory com-

ponents, are required to trigger the active oscillatory states, consistent with experimental

findings and other modeling efforts that have employed NMDA. While others have examined

oscillatory models in working memory and binding [95, 96, 97, 36, 98, 99, 79, 100, 101, 102,

103, 106, 104, 15, 105, 80], to our knowledge none have employed NMDA as a mechanism for

bistability, used numerical continuation to define regions of parameter space that allow for

the oscillations of interest, or explored in detail the combinatorially rich oscillatory states

and transitions between them.

We found attracting states involving synchronous (S) and out-of-phase (OP) oscillations,

as well mixed-phase (MP) states where some populations oscillated S and others OP. Nu-

merical continuation defined regions in parameter space where they exist stably. The mutual

inhibition between populations (cei) both facilitated OP states through competition and also
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limited the number of populations that could oscillate. We found a wide range of biologically

plausible parameter values that allow three populations to oscillate mutually OP, in line with

the 3 – 5 item working memory capacity found across different modalities[37, 107, 55]. While

cei strongly affected the number of populations that could oscillate OP, it had only a weak

effect on the number of populations that could oscillate S. The model provides a natural

explanation for the capacity of working memory, apart from the system’s bifurcations dis-

cussed above in Sec 2.3.1, in that the excitatory coupling ce can greatly increase the basin of

attraction of synchronous states, as we show explicitly in the case of weak coupling. Thus,

two populations may only get so close before they will tend towards synchrony, implying

there may only be a finite number of OP populations. However, for ce too large, the network

is only attracted to a bulk oscillatory state. While synchrony is desirable in some binding

situations, too much synchrony can be pathological, so it is necessary to maintain low-level

excitatory connections between distinct populations.

We explored a number of different scenarios by adjusting the stimuli parameters. We

found by stimulating either inactive or active populations that the network could rapidly

transition between accessible oscillatory states. Thus, depending on the strength and timing

of the stimuli, populations could quickly synchronize, desynchronize, or become quiescent.

All of these operations are necessary for binding and cognitive processes within working

memory. We found many different sets of dynamics that are relevant to binding, and the

flexibility of the network lends itself to linguistic demands. Thus, our network may provide a

framework to realize certain ideas in grammars, sentence construction, and simple predicate

calculus. In particular, the attracting S, OP, and MP states and the response speeds to

selective stimuli allow our network to provide a versatile underlying skeleton to realize such

binding scenarios as outlined in a connectionist setting in, for example, Shastri et al. [82]

More generally, the oscillatory activity provides basic properties by which executive pro-

cesses can direct ongoing cognitive operations through the control of the contents of declar-

ative or procedural working memory. The dynamics meet the potentially opposing demands

of this control by providing a mechanism for quickly establishing and maintaining new struc-

tures or representations by both forming strong bindings that are resistant to interference

and retaining the ability to rapidly dissolve those bindings in order to update the contents of
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working memory, or remove content from working memory that is no longer relevant. Thus,

a primary result in this work is that binding via synchronization between populations that

represent working memory elements, the number of arrangements of which appears limited

only by the number of permutations of active populations, may be rapidly and stably formed

as well as dissolved to form new structures from other populations that represent elements

in long-term memory. However, while all arrangements of the active populations appear

possible, different numbers of operations (e.g., activations or deactivations) are necessary to

reach particular states from each other. This could be a factor involved in different lag times

in the performance of different types of working memory tasks, as observed in numerous

studies [108, 109, 62, 110, 111].

We note that in our model, working memory and binding depend on the onset time

or phase presentation of “stimuli”. However, these stimuli do not necessarily represent

direct stimuli, but rather could be inferred to be filtered through some control circuitry not

explicitly addressed in the present model. Nonetheless, our model does require precise phase

timing control of selective stimuli that can affect whether items are perceived as distinct or

bound. The existence of such precise timing control is essentially a prediction of the model.

However, there is some evidence that indicates such finely tuned temporal control is plausible.

As we mentioned in Sec 2.2, some pyramidal neurons and interneurons lock to two different

phases of a gamma oscillation, allowing as little as 6–7ms temporal resolution [76], and

synchronization between neurons has been shown to occur within a time window of around

10ms [77]. Even for direct external inputs in working memory and binding, it has been shown

that sequential inputs of stimuli, in conjunction with other stimulus characteristics (e.g.,

spatial characteristics), lead to increased misbinding if presented with a sufficiently short

duration. While the functioning of visual working memory has been shown to be independent

of the cortical spacing between memoranda [112, 113], studies of multidimensional perceptual

interaction have shown that presenting stimuli in short time windows results in different

perceptions and bindings. For example, the pitch and loudness of a 200ms tone is experienced

differently from a 50ms tone of the same pitch or loudness [114, 115]. Furthermore, a

significant amount of work has shown that binding and differentiation of distinct items in

memory depend in part on timings associated with the gamma band [33, 68, 70, 78, 77, 34].

57



These considerations make the existence of such short phase precision plausible.

Oscillatory models have been developed both in the context of working memory [95, 15,

97, 36] and of binding [98, 99, 79, 100], and models – often with an eye towards image pro-

cessing – have employed the distinction between bound and distinct objects as synchronous

or asynchronous oscillations [79, 100, 101, 102, 103, 106]. These models tend to be spiking

networks, appeal to cross-frequency coupling (e.g., theta-gamma codings), provide unrealis-

tic connections (e.g., delayed self-inhibition for excitatory elements), use delays or constant

inputs to produce persistent oscillatory activity, or employ structured architectures (e.g.,

using Hopfield networks, Hebbian rules, or pre-wired assemblies).

The line of work that is the closest to the present study also utilized Wilson-Cowan-type

networks [104, 15, 96, 105, 80]. By incorporating common inhibition, dynamic thresholds,

and sustained inputs, they could obtain asynchronous oscillations. The dynamic thresholds

(which could instead be interpreted as linear inhibitory neurons) induced oscillatory activity,

global (nonlinear) inhibition allowed for competitive dynamics that led to asynchronous

oscillations, and continuous inputs kept the selected populations active (or quiescent at or

near a low fixed point for negative-valued inputs). In Horn and Usher [15] and Horn and

Opher [105] in particular, correlated noise was added to the inputs to obtain synchronous

oscillations (uncorrelated noise resulted in asynchronous oscillations). In Horn and Opher

[80], an explanation that may be relevant to the network we consider was provided for the

limit to the number of active asynchronous populations in terms of the subharmonic solutions

that could be obtained by driving a single oscillator at greater frequencies. However, the

mechanisms our model employs for oscillatory dynamics, sustained activity, and competitive

asynchronous and synchronous oscillations are all distinct from this interesting series of

papers.

Indeed, our model differs in important aspects from all of the above-cited body of work.

We draw on evidence that implicates NMDA in the persistent activity in neurons associated

with working memory, incorporating simplified NMDA synapses to produce persistent acti-

vation [29, 30, 71, 28, 31]. Thus, transient inputs result in sustained activity, in line with

neurophysiological studies. Our network has strong local and weaker global inhibition and

excitation with simple uniform all-to-all connectivity that, importantly, allows any of the
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populations to be in- or out-of-phase with each other. Finally, we consider the ensemble

activity through a mean-field model that we develop from a spiking quadratic integrate-and-

fire network. On the one hand, this allows us to relate the mean-field dynamics to those of

the underlying spiking network. On the other hand, the mean-field model has the advantage

of being posed in a more mathematically tractable form than spiking models, allowing us

to analyze the dependence of states on different network parameters through numerical

continuation methods. The reduced computational requirements of the mean-field network

also free us to explore more of the model’s rich dynamical behaviors, and we have included

several examples of interesting and relevant working memory and binding activities.

Increased memory loads during working memory tasks have been associated with in-

creases in the spectral power in both gamma and the lower (e.g., alpha) frequency bands in,

for example, EEG and MEG recordings [33, 84, 68, 35, 54, 85, 86, 87, 88]. Neuronal networks

may select for (coherent) oscillatory signals in the gamma range in particular [116]. In our

model, the frequency of the oscillations depends both on system parameters and network-

level interactions. For most parameter values, the peak-to-peak period of oscillations within

a given working memory cycle corresponds to either gamma or beta band oscillations. As

more populations become active OP, however, while the overall peak-to-peak frequency re-

mains in the higher frequency bands (gamma or high beta) in a working memory cycle, the

peak-to-peak frequency of each separately active population firing within the cycle decreases

towards lower bands. As more populations become active S, they may increase the contri-

bution of either lower or higher frequencies. Thus, depending on the spatial distribution of

the populations active in the working memory cycle, either gamma power may increase or

else a “downshift” in measured frequencies (e.g., an increase in activity in low beta or near

the alpha band) may be expected with increasing working memory load.

We focused on the simplest cases of uniform all-to-all coupling and periodic oscillators,

allowing for clear network state classification. It would be interesting to explore more realistic

heterogeneous coupling, including distance-based. Preliminary results have shown interesting

phase relationships can develop, such as 2:1 frequency locking. Placing the oscillators into

parameter regimes that allow for quasiperiodic or chaotic regimes (as seen to exist in E-I

Wilson-Cowan networks in [117]) may also allow for even richer phase relationships as in the

59



spiking networks in Raffone and van Leeuwen [100]. For example, a population may be

in some sense partially synchronous with several other populations so that a feature (such

as a color) could be associated with several distinct objects that themselves oscillate asyn-

chronously.
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3.0 TEMPORALLY AND SPATIALLY OSCILLATORY NEURONAL

RESPONSES TO STATIC, SPATIALLY VARYING STIMULI

3.1 INTRODUCTION

Populations of neurons comprise excitable media that can support a rich variety of sponta-

neous and stimulus-induced spatiotemporal dynamics, including distributed oscillations of

various frequencies [67, 66], waves [11], and localized spatial structures [121]. Some par-

ticularly interesting types of responses that can occur are spatiotemporal resonances. For

example, certain spatially uniform, temporally-varying stimuli that oscillate in a narrow fre-

quency band can cause spatial structures in the neuronal responses that do not exist in the

stimuli, an illusion known as flicker phosphenes [122]. Conversely, there is evidence for spatial

resonances that can produce temporal structures in the neuronal respones that do not exist

in the stimuli when the static stimuli have dominant wavenumbers in a narrow frequency

band. The two major examples that have been known and studied for decades are pattern-

sensitive epilepsy (PnSE) and cases of so-called visual discomfort [123, 48, 47, 124, 42]. PnSE

is a subset of photosensitive epilepsy. The most common trigger of seizures for those who

suffer from photosensitive epilepsy involves diffuse flickering light; in PnSE, seizures may be

brought on by static images with spatial modes within a narrow spatial frequency of around

3–5 cycles per degree (cpd) [47]. Even individuals who do not experience seizures in response

to such images may still experience headaches, dizziness, illusions, general discomfort, and

other symptoms when shown such images [42]. Both of these phenomena have been shown

to correlate with increased neural oscillations, particularly in the gamma band in primary

visual cortex (V1) in humans [48]. The co-occurrence of discomfort in some individuals and

seizures in others to the same type of visual stimuli suggests a common underlying cause.
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Indeed, it has been known that even a normal, healthy response to stripes involves a reso-

nant response: humans have a much higher contrast sensitivity to stripes of around 3–5 cpd,

exhibiting a lower contrast detection threshold for such stimuli [45, 46]. Thus, all three of

these phenomena show almost exactly the same resonance patterns, as strikingly shown in

Fig 4 in [47].

Earlier work by Rule et al. [17] described and analyzed a neural field model that produces

spatiotemporally resonant behaviors to model flicker phosphenes. We use a similar neural

field approach in order to model the spatiotemporally resonant activity observed in the

above motivating examples. We set up a spatially-extended, two-population Wilson-Cowan

model to which we provide temporally static, spatially varying stimuli and study how the

network’s responses depend on the stimulus wavenumber and amplitude. We hypothesize

that the relevant parts of the brain, such as V1, may be somewhat near (and, indeed, nearer

in the case of PnSE patients) to a so-called Turing-Hopf bifurcation, a bifurcation in which a

homogeneous steady state can lose stability to spatially and temporally oscillatory patterns.

By poising the system near such a bifurcation, we find parameters such that the network

is sensitive to a narrow range of stimulus wavenumbers, exhibiting spatially heterogeneous

temporal patterns to these stimuli even with low applied amplitudes, as we would expect

in both PnSE and visual discomfort. Additionally, by increasing the excitability of the

network, we find that partial-field stimuli can trigger full-network oscillatory activity, akin

to the spread of a seizure in PnSE. Finally, we find that for the parameters that we use for our

study, the stimulus amplitudes must increase beyond some nonzero threshold value before the

network evolves into spatiotemporal patterns. For stimulus amplitudes below this threshold

value, the network only evolves to spatially heterogeneous steady states, regardless of the

stimulus wavenumber, whose spatial patterns mirror the applied stimulus pattern. However,

for a fixed stimulus amplitude below this threshold value, we find that when we sample

the maximum values of the excitatory populations in the stable steady state for different

wavenumbers, we find a similar resonance pattern as described above for spatiotemporal

pattern formation. In this case, the same wavenumbers that require the lowest stimulus

amplitudes to trigger spatiotemporal patterns are the same wavenumbers that correspond to

the largest maximum activity values of the excitatory populations. We hypothesize that this
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Figure 14: Connectivity diagram for Eq (3.1).

increase in the excitatory activity “before” the Hopf bifurcations occur underlies normal,

healthy contrast sensitivity. Thus, we provide a model that directly connects three of the

main types of spatiotemporal resonance that occur in neuronal networks.

3.1.1 Model

We use a two-population neural field model extended in space with periodic boundary con-

ditions, where the spatial variable x can be in R1 for the network on the ring or in R2 for

the network on the torus. A schematic showing the connectivity is shown in Fig 14. The

equations are:

τe u(x, t)t = −u+ fe(Jee ∗ u− Jie ∗ v + q S(x; k))

τi v(x, t)t = −v + fi(Jei ∗ u− Jii ∗ v + q r S(x; k))
(3.1)

where u and v are excitatory and inhibitory synaptic activities, respectively, and provide a

low-pass filter on the firing rate, τe and τi are the timescales associated with the excitatory

and inhibitory synapses, respectively, “∗” denotes spatial convolution, and Jβα = aβαKα for

α, β ∈ {e, i} and the aβα are the maximum connection strengths from α to β.

63



Ke,i =
1

2σe,i
√
π

exp

(
−|x|2

2σ2
e,i

)
is a gaussian kernel, S(x; k) is our stimulus, parameterized

by the wavenumber k and generally taking the form cos(2π k x
N

), where N is the number of

excitatory or inhbitory neuronal populations being modeled for the network on the ring, or

the square root of the number of excitatory or inhibitory populations in for the network on

the torus, q modulates the stimulus strength to both u and v, while r is fixed in our study

at 0.8 and represents the inhibitory-to-excitatory stimulus strength ratio. Letting

f(w) =
1

1 + exp(−4w)
,

the firing rate functions, fe,i can be either

fe,i(w) = f(w − θe,i) or (3.2)

fe,i(w) = f(w − θe,i)− f(−θe,i), (3.3)

where θe,i are the excitatory and inhibitory thresholds, respectively. The advantage of the

first formulation is that the activity variables u, v are always positive, resulting in values

that can be more directly interpreted physically. The advantage of the second formulation

is that it sets the steady state of our network, Eq (3.1), to (u, v) = (0, 0), facilitating further

calcualtions. In this formulation, we interpret (0,0) as the baseline firing rate, and a positive

or negative values of u or v as an increase or decrease from this baseline, respectively.

Importantly, we can easily go back and forth between these two systems using the a simple

change of variables. For this change of variables, how we choose the parameters, and the

parameter values used, see Sec 3.4.1. While most of the parameters will remain fixed, we

vary the values of aee, k, and q to see the effects on the network’s dynamics.

3.1.2 Outline

The organization of the chapter is as follows. First, we look at our model in two spatial

dimensions (i.e., the network is on the torus), approximating a sheet of cortex receiving

full-field visual stimuli. We examine both simple cosine stripes and more complex noisy
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images as stimuli. With both simple and complex stimuli, we find that our model demon-

strates spatiotemporal resonance, showing spatially heterogeneous oscillatory activity with

weak stimuli for some wave numbers, requiring stronger stimuli for others, and showing no

sustained oscillatory activity outside of a narrow band of wave numbers.

We then look at simpler modeling assumptions to gain insight into the network’s resonant

responses. First, we restrict our model to be extended in only one spatial dimension (i.e., the

network is on the ring), providing a more amenable formulation for further analysis. Using

the numerical tool XPP-AUTO [75], we can analyze the network’s dependence on various

parameters, defining the regions of instability as functions of, e.g., the recurrent excitation

and spatial frequency of the stimulus. In particular, using similar parameters as for the

network on the torus, we find the same qualitative responses as on the torus across different

stimulus spatial frequencies, demonstrating the utility of reducing our spatial dimensions.

We also study the behavior of the network in response to partial-network stimuli; that

is, to stimuli that only project to part of the network. We find parameter regimes that show

the spread of large-amplitude oscillatory activity, dynamics that may be highly relevant to

PnSE. We then study the network on the ring with stimuli involving the superposition of

two spatial modes, allowing for both a more realistic scenario and a still-tractable system to

analyze numerically.

Using a perturbation calculation, we can then compute the stability boundaries found

above (as a function of the network’s recurrent excitation, aee, and the stimulus amplitude, q,

for different stimulus wavenumbers k) near the onset of instability for small-amplitude stimuli

of different wave numbers, finding very good agreement with the numerically-computed

regions. These calculations lend further insight into the network’s responses to different

stimuli. We review the results and relate them to the relevant biological and psychophysical

findings in Sec 3.3, before finally detailing the protocols used to produce the results in Sec

3.4.
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3.2 RESULTS

The network extended in both two and one spatial dimensions with periodic boundary condi-

tions imposed (i.e., on a torus and the ring, respectively) displays a strong spatial resonance,

showing high sensitivity to stimuli with modes in a narrow band and low or no sensitivity

to modes outside of this band, consistent with experimental findings in contrast sensitivity,

PnSE, and visual discomfort.

The network on the torus and the ring both give rise to rich and interesting spatial and

spatiotemporal patterns that may be relevant to experimental setups that are able to attain

sufficient spatial resolution, as well as of mathematical interest. Complex patterns can form

and evolve as the result of the interplay of wavelike and more spatially-isolated oscillatory

activities. We thus describe the spatial and spatiotemporal patterns that we observe, but

we leave a more thorough analysis of such behaviors as future work.

3.2.1 Network on the torus

Having chosen our parameters as described above, we simulated our system using custom

CUDA C code on a desktop equipped with a GPU on the torus (square domain with periodic

boundary conditions) with 512x512 excitatory and 512x512 inhibitory populations (see Sec

3.4.3 and Appendix F).

3.2.1.1 Bifurcations on the torus We found that as we increased the recurrent ex-

citatory strength to above a critical value, a∗ee, the network spontaneously broke up into

spatially heterogeneous oscillatory activity, suggestive of a Turing-Hopf (TH) bifurcation.

This activity could evolve into alternating spots or stripes with wavelike motion along the

stripes; in either case, the wavenumber (counted as the number of areas of high — or equiv-

alently, low — activity along a fixed horizontal or vertical line across the domain) was

approximately 9, the critical wavenumber of the network through the calculation outlined

in Sec 3.4.1. As we mentioned in Sec 3.4.1, we decreased the recurrent excitatory strength

(aee) below this critical value (a∗ee) so that the system was not very close to such spontaneous
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pattern formation, as well as to ensure that the network would be more sensitive to stimuli

with nonzero wave numbers than to constant stimuli (see Sec 3.2.2.3).

Beginning with a simple cosine stimulus and varying the wavenumber, k, and the ampli-

tude, q, we simulated the network from uniform random initial conditions in the interval [0,

0.02] and found a contiguous region of m−k space for which the network exhibits spatiotem-

poral pattern formation, as we see in Fig 15A (see Sec 3.4.3 for a more detailed protocol).

This figure demonstrates a clear resonance: spatial stimuli with wavenumbers near 15, cor-

responding to around 3cpd (see Sec 3.4.2 for the conversion of simulation wavenumbers to

physical spatial dimensions), required the smallest amplitudes before the network bifurcated

into oscillations. For each k, there is a range of q values that allow for oscillatory activity

defined by the boundary curve (see Sec 3.4.3), as we would expect for Hopf bifurcations. In-

deed, we see in Sec 3.2.2.1 that for the model extended in one spatial dimension, oscillations

that result from increasing q for a fixed stimulus wavenumber k result from (Turing-) Hopf

bifurcations. Thus, we will refer to the bifurcations delineated by the boundary in Fig 15A

as Hopf bifurcations. We will use the notation q∗ to refer to the lowest observed q value for

which the network undergoes spatiotemporal pattern formation, corresponding to the first

Hopf bifurcation, and q∗ to refer to the highest such observed q value, corresponding to the

second Hopf bifurcation. We note that q∗ and q∗ are functions of k, but we suppress this

dependence in the notation when it is contextually clear for simplicity.

For k values for which the network undergoes Hopf bifurcations, the network evolves from

a low steady state for q < q∗, to spatiotemporal patterns for q∗ ≤ q ≤ q∗, to a high steady

state for q∗ < q. For q < q∗, the network evolves to a low-activity steady state with vertical

stripes that correspond to the stimulus. Similarly, for q∗ < q, the network is attracted to a

high-activity steady state that reflects the stimulus. For q∗ ≤ q ≤ q∗ — i.e., q values between

the Hopf bifurcations — the network can form complicated spatiotemporal patterns. Below,

we describe spatial and temporal aspects of these patterns that we observed.

3.2.1.2 Spatiotemporal patterns of simple stimuli on the torus Along with the

network’s temporally oscillatory activity, we observe spatial patterns beyond those directly

induced by the stimulus. In Fig 15A, we see an example spatiotemporal pattern that appears
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Figure 15: Bifurcations on the torus for cosine stimuli. (A) Left: We probe the dependence of

the network on characteristics of the stimulus by varying the wavenumber, k, and amplitude,

q, of a simple cosine-stripe stimulus and measuring the variance over an interval of time

after letting transients pass, averaged over all of the excitatory elements. The variance is a

measure of the oscillatory behavior of the network. Above a threshold (defined as 0.001; see

Sec 3.4.3.1), the network is defined to be in the spatiotemporal pattern regime. This defines

the boundary, shown in black. Right: An example of the types of spatiotemporal patterns

that can form. We see that spatial patterns form vertically down the stimulus stripes (which

are just vertical stripes). The resultant checker-like spots alternate temporally in a wavelike

pattern that travels horizontally across the medium. Note: for all simulations shown (in one

and two spatial dimensions), only the excitatory populaions (uj) are shown. (B) Since the

network is more sensitive to modes that require lower stimulus amplitudes to trigger pattern

formation, inverting the q values of the lower boundary in (A) provides a natural measure of

sensitivity. The resultant sensitivity curve highlights the resonance of the network to spatial

frequencies near k = 15, corresponding to ≈ 3cpd, the same resonant mode found for the

human visual system.
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periodic, or nearly so. Even though the stimulus only consists of vertical stripes (12 vertical

stripes, since k = 12), the excitatory populations exhibit not only the expected horizontal

spatial variation reflective of the horizontal variation of the stimulus, but also vertical spatial

variation along the stimulus stripes. Each vertical stripe breaks up into 6 spot-like, localized

regions of higher activity. These active regions oscillate in a wave-like pattern, such that

each group of vertically aligned active regions oscillate synchronously, or nearly so, and active

regions that are not vertically aligned oscillate in a sequential manner as the wavelike pattern

propagates in a horizontal direction. One half-period is shown, so that the pattern shown at

the end can be seen to be the “alternated” version of the pattern at the beginning; i.e., the

active regions from the t = 0 frame are inactive in the t = T/2 frame, and vice versa.

We observe such vertical spatial variation for all k and q values that trigger spatiotem-

poral pattern formation with this simple cosine-stripe stimulus. The patterns that form

may or may not alternate spatially along the horizontal dimension. The number of spatial

regions (which may appear either as spots or more as bulges) that form along the stripes

varied based on both k and q in a way that does not depend in an obvious way on either

parameter. We will refer to this number as mv, the vertical wavenumber such spots can be

seen in Fig 15A, right). Thus, based on the preceeding discussion, mv = 0 for q < q∗ and

q∗ < q

For example, keeping q fixed at 0.4 and letting k = 12, 16, 20, and 24, we found mv = 6,

4, 1–2 (some stripes showed one bulge, some two), and 1, respectively. For q fixed at 0.6

and k = 12, 16, and 20, mv = 6, 4, and 8, respectively. Fixing k also resulted in a number

of spatial regions along the stripes that did not vary monotonically with q. For example, for

k fixed at 12 and q = 0.4, 0.8, 1.2, and 1.4, mv = 6, 8, 6, and 1, respectively. However, for

any k, we observed that just before bifurcation to the high steady state, mv decreased to 1.

Thus, the transition from oscillatory activity to (high) stationary activity is also marked by

a transition from mv = 1 to mv = 0.

The spatiotemporal patterns that arise can vary from wavelike patterns, to spatially

periodic oscillations with no wavelike behavior, to complicated patterns that may involve

interactions of these two types of behaviors. Examples of wavelike and non-wavelike patterns

are seen above in the spontaneous case (i.e., aee > a∗ee, q = 0). Most of the stimulus-
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driven activity that occurs includes aspects of both of these wavelike and spatially-alternating

oscillations. For example, in Fig 15A (right panel), we see highly structured activity that

alternates along the stimulus stripes and appears to spread between the stimulus stripes.

Similarly, wavelike behavior can be more akin to that seen in the spontaneous case, where

waves seem to travel along the stripes. More complicated behaviors can occur as well that

are not obviously spatiotemporally periodic.

3.2.1.3 Resonance on the torus Since the network is most sensitive to wavenumbers

that require the smallest amplitude to trigger oscillations, we can invert this amplitude to

obtain a natural measure of the network’s sensitivity to different stimulus wave numbers.

That is, suppose the network bifurcates to spatiotemporal oscillations at spatial frequency k0

with amplitude q∗(k0). Then the network’s sensitivity to spatial frequency m0 is 1
q∗(k0)

. Thus,

inverting the lower boundary in Fig 15A provides the sensitivity curve of the network, shown

in Fig 15B. The network is very sensitive to wavenumbers near 15 (≈ 3cpd), and drops off

rapidly, showing no sensitivity to frequencies one octave above or below this value. We note

that this figure compares favorably with Fig 4 in [47], supporting the hypothesis that the

resonances they describe there arise as a result of spatially heterogeneous Hopf bifurcations

in the visual cortex. We also note that while m∗ = 9, the network was most sensitive to

wavenumbers near twice this value. We explore this in much greater detail when we turn to

the network on the ring.

3.2.1.4 Noisy stimuli Most stimuli are much more complex than simple cosines, and

in particular noisy images with larger amplitudes in spatial modes near 3–5cpd have been

shown to cause visual discomfort [47]. Here we look at the network’s responses to full-field

stimuli (images) (512× 512 elements) that were generated by filtering gaussian white noise

by low-pass filtering the noise and increasing the spatial components of wavevectors k with

wavenumbers |k|. We describe how we generate the stimuli in detail in Sec 3.4.3.1. Even

though these stimuli are quite complicated, the network’s responses are very similar to the

responses to simple cosine stimuli with the same modes, as we see in the bifurcation diagrams

in Fig 16. Note that we tested the network with two uncorrelated stimuli (Pearson correlation

70



coefficient < 0.001; see Sec 3.4.3.1) to ensure robustness of the network’s responses. As we

see by comparing Fig 16A and Fig 16B, the original random image that is then filtered to

have the dominant wavenumbers |k| has little impact on the network’s response. Indeed, even

though the network rapidly evolves to a high steady state with increasing q relative to the

cosine stimuli (note the upper bound for q in these diagrams is half of that in Fig 15A), the

general resonance pattern is left intact, so that the network responds strongly (i.e., oscillates

heterogeneously) to wave numbers near |k| = 5 and weakly or not at all to wavenumbers

outside of this band. Thus, the presence of additional, “weak” modes in the stimulus may

change the network dynamics, but does not change the network’s resonant response.

3.2.2 Network on the ring

While cortex is often approximated as a sheet, the facts that (i) the 1-D linearization cal-

culation correctly predicts the critical wave number for the 2-D system and (ii) that the

bifurcation diagrams for the simple striped cosine stimuli and those for the noisy stimuli

show the same qualitative behavior suggest that we can gain further understanding of our

system by studying the neural field model extended in only one spatial dimension with

periodic boundary conditions (i.e., on a ring domain).

Indeed, we find that when we use the same parameters as for the 2-D case (up to a

scale factor for the spatial kernels; see Sec 3.4.1), we obtain the same qualitative resonance

behavior. In fact, we found the neural field model extended in one spatial dimension on

a ring exhibits many of the same spatiotemporal behaviors that the network does on the

torus. Studying the network extended in just one spatial dimension is more numerically

and mathematically tractable, allowing us to use XPP-AUTO to further analyze the system

and to perform a perturbation analysis of the network near the onset of bifurcation, pro-

viding further insight into the network’s dynamics. We note that we have transformed the

coordinates so that the stimulus-free steady state is at 0 (see Sec 3.4.1) to simplify the cal-

culations. Thus, the firing rate is measured relative to baseline, so that positive or negative

values correspond to firing rates above or below baseline, respectively.
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Figure 16: Bifurcations on the torus for noisy stimuli. By filtering two uncorrelated

randomly-generated stimuli to have dominant modes from k = 0 to 30, as described in

Sec 3.4.3.1 and in Fig 26, we test the network’s resonance to much more complex stimuli

than the simple cosine stimuli shown in Fig 15 by measuring the variance of the network as

in the case for cosine stimuli. One seed stimulus is used in (A), and a different one is used

in (B). Even though the Pearson correlation coefficient between the two stimuli is less than

0.001, the network responds nearly identically, requiring nearly identical q for each mode

|k| to engage in oscillatory activity. The network shows nearly the same sensitivity to the

modes |k| for these randomly-generated images as it does for simple sinusoidal stimuli (cf.

Fig 26).
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3.2.2.1 Bifurcations on the ring The linearization calculation in Sec 3.4.1 predicts

the critical network parameters m∗ = 5 and a∗ee ≈ 7.3746 (using the “corrected” a∗ee value:

the value the trace crosses 0 for a whole wavenumber, in this case 5; the uncorrected a∗ee value,

the value for which the determinant exactly equals 0 at a possibly non-integer wavenumber,

was ≈7.3741). Thus, we expect the stimulus-free network to have a stable low steady state

(at (u, v) = (0, 0)) that will lose stability to spatiotemporal oscillations with a wavenumber

of 5 at the above a∗ee value.

By following the low steady state in AUTO, we find it loses stability at a Hopf bifurcation

at a∗ee ≈ 7.3746 (Fig 17A). In fact, for this set of parameters the analytically and numerically

computed values differ by less than 1× 10−10. We note that since the homogeneous network

loses stability to nonzero modes, this bifurcation is known as a Turing-Hopf bifurcation. Just

above this value (in particular, e.g., at aee = 7.367), we find a variety of stable spatiotemporal

patterns of different wave numbers to which the network evolves by beginning with either

random initial conditions or initial conditions given by cosines (e.g., 0.1 cos 2πlj/N for uj and

vj, j ∈ (1, ..., N)). Note, we use l to differentiate from both the stimulus wavenumber k and

the network wavenumber m. While we tried all of the permissible wavenumbers l ∈ P (see

Sec 3.2.2) with a range of amplitudes, the network only evolved to spatiotemporal patterns

with wavenumbers m = 3, 4, 5, and a sort of wave-like pattern involving a combination

of wavenumbers 2 and 3, described below. These are shown in Fig 17A. Note that the

wavenumber of the network, m, is measured by counting the number of high-activity (or

low-activity) regions there at any given time slice (horizontal slices in the images in Fig 17A).

Since the low steady state is lost to oscillatory activity at non-zero wavenumbers m, including

m∗ = 5, this Hopf bifurcation corresponds to a TH bifurcation, as expected from the system

linearization.

There are several patterns that occur with aee just above a∗ee that involve the critical

mode, m∗ = 5. First, we find two highly-structured stable low-amplitude patterns – (i)

and (ii) in Fig 18A. (i) looks like a checker board, with alternating rectangular regions of

high and low activity with central regions exhibiting the highest (or lowest) activity. (ii)

is a wave pattern with 5 (high-activity) stripes. We note the obvious similarities to the

two spontaneous patterns the network on the torus exhibits; however, we caution that even
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Figure 17: Bifurcations on the ring. The network, extended in one spatial dimension and

with periodic boundary conditions imposed, shows similar behaviors as for the network on

the torus. Using XPP-AUTO, we are able to precisely identify bifurcations. (A) Above

a critical value aee = a∗ee ≈ 7.37, the low steady state of the stimulus-free network is lost

to spatiotemporal patterns. The red line to the left of a∗ee indicates the steady state is

stable, while the black line to the right of a∗ee indicates the steady state is unstable. Various

patterns found for aee ' a∗ee are shown. Three patterns at the critical wavenumber 5 are

found (where we determine the wavenumber by counting the number of high or low regions

of activity for a given time, corresponding to horizontal slices in the figures shown): (i)

small-amplitude alternating checkerboard oscillations, (ii) small-amplitude waves, and (iii)

large-amplitude alternating oscillations. The other oscillatory solutions found were: (iv)

staggered oscillations that alternated between a wavenumber of 2 and 3, and alternating

oscillations with (v) wavenumber 3, and (vi) wavenumber 4. (B) Using a simple cosine

stimulus of wavenumber k, the steady states of the network are lost at Hopf bifurcations for

different values of q(k). (C) Different spatiotemporal patterns can form, depending on the

values of k, q. We see that the stimulus wavenumber, k, need not match the wavenumber

of the network pattern that forms, m. For constant stimuli (k = 0), either small-amplitude

checkerboard oscillations of wavenumber m = 5 or more fluid, wavelike large-amplitude

patterns can form; here, these vary between wavenumber m = 5 at the top of the figure to

m = 4 at the bottom. For k = 5, staggered oscillations with wavenumber m varying between

2 and 3. k = 6 stimuli can form non-alternating patterns with m = 6 (left) or alternating

patterns with m = 3 (right). k = 10 stimuli tend to form alternating oscillations with m = 5.
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though these and other spatiotemporal patterns shown in 2-D images from the network on

a ring look very similar to snapshots of the network on the torus, these images of course

include time. Small amplitude (e.g., 0.01 or 0.1) random initial conditions tended to initially

look like the small-amplitude checkers, eventually evolving to the small-amplitude waves. We

also find larger-amplitude oscillations: When given large (e.g., amplitude 1) cosine initial

conditions, the network evolved to the alternating oscillations shown in (iii). If we instead

provide random initial conditions distributed on a larger interval (e.g., [-1, 1]), we can get

(iv), a staggered, wave-like large-amplitude alternating oscillation that is more difficult to

classify. It appears like a slanted, wave-like alternating oscillation of m = 4 or 5; however,

counting across a particular slice of time as we have for the other patterns results in 2-3

regions of high activity. We believe this is characteristic of the critical wavenumber 5, for

reasons we explore below when we look at patterns induced when we turn on the spatial

stimulus. Hereafter, we refer to this pattern as the (m =)2/3 pattern. Thus, already we see

that the network exhibits tendencies to engage in wavelike, non-wavelike, and combinations

of wavelike and non-wavelike behaviors. The other patterns we find just above a∗ee are large-

amplitude alternating oscillations at m = 3 and 4.

We now study the patterns that form in the network for aee = 5.8 < a∗ee ≈ 7.4 by applying

a cosine stimulus with wavenumber k and amplitude q (see Sec 3.2.2). For most permissible

k (see Sec 3.2.2), the network displayed spatiotemporal patterns for q∗ ≤ q ≤ q∗ (we use

the same notation as in Sec 3.2.1.1, where it is explained in more detail). By following the

steady state in q with AUTO, we see that Hopf bifurcations give rise to the patterns, all with

nonzero modes m, as we see in Fig 17C. Thus, on the ring, q∗(k) and q∗(k) correspond to

Hopf bifurcations, lending support for our analogous classification of q∗ and q∗ on the torus

as Hopf bifurcations.

The network on the ring shows very similar spatiotemporal dynamics in the three different

stimulus amplitude regimes that the network on the torus does. For q < q∗, the low steady

state is stable, and we observe low contrast stripes with wavenumber k, corresponding to

the peaks and troughs of the stimulus. Similarly, for q > q∗, the high steady state is

stable, leading to high contrast stripes of wavenumber k. In-between the TH bifurcations

(q∗ ≤ q ≤ q∗), these steady states lose stability to oscillatory modes that depend on k.
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We sampled the spatiotemporal modes by beginning the network with random initial

conditions in a small interval of [wssj −0.01, wssj + 0.01] for w ∈ {u, v}, j ∈ {0, ..., N}, where

wssj is the steady state value computed for a particular k, q combination (and is unstable

in between the Hopf bifurcations). For example, the bifurcation diagrams in Fig 17B show

uss0 for k ∈ {0, 5, 10, 12} and q ∈ [0, 1]. The network then evolved to steady spatially

heterogeneous oscillatory modes, some of which are shown in Fig 17C. We find several

aspects of interest within this set of patterns. We note that these patterns are meant to

be representative but not exhaustive.

For a constant stimulus (k = 0, Fig 17C), we find the network can evolve into two

disparate types of patterns, one highly structured and one more amorphous and wave-like.

The low-amplitude, highly structured pattern appears nearly identical to (i). The large-

amplitude, amorphous pattern shows the proclivity of the network to engage in wave-like

behaviors as in (ii) and (iv). Note, too, the break up in the wave and the change in

wavenumber m from 5 initially (i.e., at the top of the figure) to 4 (at the bottom of the

figure, both of which are quite reminiscent of (iv). Of course both patterns are also very

similar to those we observed for k = 0 on the torus. We note also that driving the network

with a stimulus of wavenumber k = 0 results in the most dramatic examples in which k

and m differ. Otherwise, a k-stimulus tends to drive the network into patterns of either

m = k (Fig 17C, k = 6, left) or m = k/2 (Fig 17C, k = 6, right), depending both on

k and q. For example, all of the oscillatory patterns that we observed for stimuli with

k = 10 and different q were alternating oscillations of mode m = 5. In contrast, k = 6

stimuli could drive the network into either alternating or non-alternating oscillations. k = 5

stimuli drive the network into more complicated patterns; in particular, they look like the

alternating, staggered pattern m = 2/3 that we encountered above in (iv) (Fig 17A). Thus,

we hypothesize that this pattern (here and in iv) arises due to the tendency of the network

to engage in alternating oscillations and in wavelike patterns; since 5 is odd, the network

settles on a wavelike, staggered oscillatory pattern with wavenumbers of 2 or 3.

3.2.2.2 Resonance on the ring In Fig 17B, we can clearly see a similar resonant

behavior in the example bifurcation curves that are plotted. That is, we see an ordering
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q∗(10) < q∗(12) < q∗(5) < q∗(0). To visualize this resonance, we construct the network’s

sensitivity curve, S(k), in the same way as we did for the torus domain, by inverting the lower

Hopf values: S(k) = 1
q∗(k)

. In Fig 18A, we see a strong resonance near k = 10, corresponding

to ≈ 3cpd (see Sec 3.4.2). Indeed, the S(k) on the ring plotted in Fig 18A is qualitatively

similar to the S(k) on the torus plotted in Fig 15B, finally confirming the utility in using the

simplified ring network to better understand the dynamics of the full network on the torus.

As we mentioned in Sec 3.1, we hypothesize that the spatially-heterogeneous oscillatory

activity physiologically corresponds to neuronal activity related to PnSE and visual discom-

fort, and that higher neuronal activities correspond to contrast sensitivity. Fig 18B provides

the underlying connection between these two related resonances: the peak activities of the

populations at different k values (note that the excitatory population u0 is located at a peak

of the stimulus) appear to be directly related to S(k). Indeed, if we take the steady-state

values of u0 for different k at some q0 such that q0 < min
k∈P

q∗(k), where P is the set of permis-

sible k values, we observe a very similar resonance as that obtained with S(k). For the set

of parameters we are using, we have min
k∈P

q∗(k) ≈ 0.17. We therefore take q0 = 0.1, and let

C(k) be the steady state values of u0 when the network is given a stimulus with mode k and

amplitude q = 0.1 (see Fig 18B). Fig 18C shows C(k); apart from C(15), the relative values

match those of S(k) well, so that both curves show strong resonances near k = 10, and low

sensitivity 1-2 octaves away from this value, in agreement with our results on the torus and

with experimental results [47].

3.2.2.3 Local numerical stability analysis Since the network loses stability to small-

amplitude alternating and wavelike oscillations with m∗ = 5 at a∗ee as predicted by our

original linearization (see Sec 3.4.1), we expected that for aee near but below a∗ee the stimulus-

free network would be very sensitive to stimuli with k near 5, and less so for stimuli away

from 5. Based on this, we might (and initially did!) näively expect that if we placed the

stimulus-free network at a∗ee and turned on the stimulus, the steady state would destabilize

to m = 5 patterns for arbitrarily small q.

However, even for aee = 7, we see in Fig 19A that S(k) is very similar to that in Fig 18A

for aee = 5.8. Effectively, increasing aee narrows the band of sensitive k to just k = 10 = 2m∗
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Figure 18: Sensitivities of the network on the torus. (A) As with the network on the torus,

inverting q∗(k), the value of the low Hopf bifurcation found in Fig 17B, results in a very

similar resonance curve as for the torus domain. Note that the resonant frequency of 10

corresponds to a physical mode of ≈ 3cpd (see Sec 3.4.2). (B) The steady state values of

u0 driven with different stimulus modes k ∈ P . Note, this figure captures the same steady

state activity near the origin shown in Fig 17, rescaled to a semi-log plot and constrained to

a narrower range of q and u0 values, and made to include the steady state responses to all k

modes, with only three specific modes labeled for clarity. At q values lower than the lowest q∗

value of the network (≈ 0.17 = q∗(10)), the maximum steady state responses of the network

vary according to k. We sample the u0 values closest to q = 0.1, corresponding to the vertical

dashed line, and plot them in (C). The resulting curve in (C) is qualtitatively very similar to

(A). In our model, the sensitivity curve in (A), associated with temporal activity that does

not exist in the stationary stimulus, corresponds to the aberrant responses in seizures and

visual discomfort, while the sensitivity curve in (C), associated with measures of stationary

responses to stationary stimuli, corresponds to normal, healthy contrast sensitivity in human

vision.
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while relatively increasing the sensitivity of the network to k = 0 (we note that as aee increases

further, the sensitivity to k = 0 increases dramatically; we will see why this is the case below).

We also recall from our above observations (Fig 17C) that the network tends to engage in

alternating oscillations, so that for many (k, q) values, the network exhibits alternating

oscillations with wavenumber k/2. Thus, we might instead revise our expectation, so that

at a∗ee the steady state would be lost to m∗ oscillatory patterns for k = 2m∗ stimuli with

arbitrarily small q. We can examine this and the more general question of how the stability

of the steady state is affected by different k stimuli by probing the dependence of the TH

bifurcation of the homogeneous network on q for k = 10, and more generally for k ∈ P .

We do so by following the TH bifurcation of the homogeneous network (Fig 17A) in the

parameters aee and q for k ∈ P in AUTO.

Fig 19B shows the interesting and surprising results. Before examining these in more

detail, we first observe that the symmetries in the stability diagrams are not surprising, but

rather are as expected. For k 6= 0, the network’s dynamics should be equivalent up to a

shift in the coordinates of the neuronal populations due to homogeneity of the stimulus-

free network and the symmetry of the cosine stimulus k 6= 0 (i.e., changing the sign of q

is equivalent to a shift of the stimulus on the ring), as mentioned in Sec 3.2.2. Thus, for

such stimuli, the stability of the network should be independent of the sign of q, leading to

the reflective symmetries about the aee axis seen in the plots for k = 5 and 12, e.g.. Since

changing the sign of q for k = 0 stimuli is not equivalent to shifting the stimulus, but rather

causes the stimulus to be either excitatory or inhibitory for all of neuronal populations, we

expect positive and negative stimuli to have opposite effects on the stability of the network.

This observation directly leads to the odd symmetry about (q, aee) = (0, a∗ee) seen in the

k = 0 stability curve.

With k = 0, we encounter a basic classification of the stimuli based on their stability

curves: stimuli can be stabilizing, destabilizing, or both. Destabilizing stimuli the steady

state at a∗ee to become unstable (from being neutrally stable at (0, a∗ee) since the real parts

of the eigenvalues are 0) for arbitrarily small q (i.e., |q| → 0). For aee values close to but

below a∗ee, destabilizing stimuli require q that are very small but bounded away from 0 to

do so (|q| > ε(k, aee) > 0, where ε(k, aee) → 0 as aee ↑ a∗ee). In contrast, the steady state
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Figure 19: Local bifurcation structure. Bifurcations near a∗ee for different stimulus modes.

(A) Near a∗ee ≈ 7.37 (here aee = 7.3), the network sensitivity curve is similar to lower aee

values (cf. Fig 18A), with a more pronounced peak near k = 10. Therefore, even though

we have been using lower aee values, identifying the local bifurcation structure near a∗ee may

be of use in understanding the resonance observed at lower aee values. (B) We see several

qualitatively different bifurcation structures. Each curve partitions the area of the graph

shown (i.e., the partitions are only local) into an area where spatiotemporal patterns form

(above the curves) and an area where the steady state is stable and no stable oscillations

occur (below the curves). As expected, all of the bifurcation diagrams for k > 0 are even-

symmetric about q = 0 and that for k = 0 is odd- symmetric about q = 0, aee = a∗ee due to

the associated symmetries with respect to the amplitude q in the stimulus. The stimuli can

either destabilize the steady state at a∗ee when q is turned on as for k = 10 and 12, stabilize

it, as for k = 5, or both, as for k = 0 (which is stabilizing for negative q and stabilizing for

positive q).
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at (0, a∗ee) becomes stable with stabilizing stimuli for arbitrarily small |q|, while requiring

small |q| bounded away from 0 to stabilize the unstable steady state for aee greater than,

but arbitrarily close to, a∗ee.

In Fig 19B, we see that for the various k the dependence of the stability curves on q

appear to be either linear or q raised to an even power. In fact, in Sec 3.2.2.6 below, we will

see that the dependence are exactly either linear or quadratic for any k. We note that all of

the remaining k lead to stability curves that appear like those for k = 5 and 12. In fact, this

observation points out a surprising fact: there appears to be nothing special about driving

the network at k = m∗. Indeed, for the parameters we’ve used, k = m∗ stimuli are not even

destabilizing, but rather are stabilizing. Though this result is not general and can depend on

the network parameters, the quadratic dependence on q for k 6= 0, 2m∗ is a general result

(independent of the parameters chosen) that we find below in Sec 3.2.2.6. In contrast, we

find special roles for k = 0 and 2m∗: the stability curves for these are linear.

Together with the quadratic dependence for all other k, this means that regardless of

the k considered the network will always be most sensitive to k = 0 and k = 2m∗ stimuli

near a∗ee if these stimuli are at least in part stabilizing, as is the case here; we examine this

assumption further in Sec 3.2.2.6. Similarly, this suggests that if we lower aee sufficiently, the

network might still be sensitive to k = 2m∗ and perhaps other k with quadratic stabilizing

curves, while being less sensitive to k = 0. However, since we are only analyzing the local

stability near (0, a∗ee), this is purely suggestive. But we did find such results above by setting

aee = 5.8, so that this reasoning may provide some helpful intuition for the sensitivity curve

in Fig 18A.

3.2.2.4 Partial-field stimuli In experimental situations, stimuli only occupy a portion

of the visual field. We found that the network still exhibits similar resonance patterns when

we present stimuli on some of the populations, but not others. In particular, we studied

stimuli over a continuous interval of 39 populations (so a continuous interval of 21 populations

received no stimulus) (see Sec 3.2.2.4).

For lower aee values, the resultant spatiotemporal patterns did not spread, while for

higher values (but below a∗ee), the patterns could spread from the stimulus region to the
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stimulus-free region. However, the patterns in the two regions could be quite different from

each other. Such a distinction between types of dynamics (localized activity vs. spreading

activity) may underlie the distinction between experiencing discomfort vs. experiencing a

seizure due to an image [48].

We found that the network can display similar sensitivity to patterns in both cases. Since

in the case of spreading activity we were interested not in when oscillatory activity occurred,

but when it spread to the stimulus-free region, we tested for when large-amplitude oscilla-

tions occurred in the stimulus-free region by beginning with small random initial conditions

and observing the network’s behavior (see Sec 3.4.4.1 for further detail). This afforded us an

opportunity to test our using the destabilization of the network’s low steady state through

a Hopf bifurcation as our metric of the sensitivity to different stimuli. In general, we found

very good agreement between the two measures; that is, q values that caused the network

to engage in large-amplitude oscillatory activity in the stimulus-free region for a particu-

lar stimulus wavenumber k were very close to the q values at which the low steady-state

destabilized through a Hopf bifurcation, as seen in Fig 20A.

The presence of oscillatory activity in the stimulus-free region suggests the network is

multistable: depending on initial conditions, the network may evolve to different stable

dynamic states. In particular, the large-amplitude oscillatory states that emerge suggest

that there are several subcritical Hopf bifurcations, leading to multistability between the

low steady state and several different oscillatory modes. Indeed, we found that when we

turned off the stimulus (setting q to 0) after the large-amplitude oscillations had spread

to the stimulus-free region (see Sec 3.4.4.1 for details), the network continued to oscillate,

stabilizing at one of three patterns, regardless of the stimulus wavenumber k. The modes

that emerged were checker patterns with either m = 3, m = 4, or else the m = 2/3 pattern

(Fig 20B).

Going back to the full network, we found that all three of these patterns were stable for

higher aee values. We were able to follow the checker patterns with m =3, 4, and found that

indeed these corresponded to subcritical Hopf bifurcations in aee, as seen in Fig 20C. Which

pattern emerges after turning off the stimulus depends on m, q, and the time at which it is

turned off.
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Figure 20: Partial-field stimuli bifurcations. By setting aee to 7 and stimulating only 39 of

the 60 excitatory and inhibitory populations we test to see what q values are required for

each k for the patterns spread to the full network. (A) Simulations that begin with random

initial conditions (red curve) give a very similar sensitivity curve as found by determining

the q values of the Hopf bifurcations (blue curve). (B) The modes that grow in the stimulus-

free region (cf. Fig 21 and 22) tend to be m = 3, m = 4, and m = 2/3 (shown in (C)).

Following the regularly oscillating modes 3 and 4 shows why these modes appear: they arise

as subcritical Hopf bifurcations that persist into below the aee value used in the stimulus-free

network.
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For example, when k = 2 with a higher q = 1.5, the pattern that restults once the

stimulus is turned off depends on the extant network state. In Fig 21A, we see that with the

stimulus on, the network seems to transition through one pattern and stabilize at another.

When the stimulus is shut off during the first pattern, the network settles into the m = 4

state (Fig 21B, bottom), while when the stimulus is shut off during the second pattern, the

network settles into the m = 2/3 state (Fig 21B, top). More dramatic changes are possible as

well. For example, with k = 4 and q = 1, the time at which the stimulus is turned off (“phase

dependence”) determines whether or not the network maintains its activity (Fig 22B).

The stereotypical behavior we observed was that once the stimulus-free region engaged

in oscillatory activity, the network then continued oscillating in one of the three patterns

mentioned (m = 3, m = 4, or m = 4/5) once the stimulus was removed. Interestingly, as

for most of the wavenumbers presented, the network could even evolve into any of the three

patterns after stimulus removal for stimulus wavenumbers k = 3, 4, or 5, depending on q

(we did not observe a phase dependence). In contrast, for k = 10, the only resultant pattern

observed following stimulus removal was m = 2/3.

Some interesting nonstereotypical behaviors in addition to a dramatic phase dependence

were observed as well, generally at higher q values. For example, the application of the

stimulus could initially lead to either oscillatory or high steady-state activity only in the

stimulus region, but upon removal of the stimulus the network could then remain active with

large-amplitude oscillations (Fig 17B, right). Counterintuitively, the stimulus could instead

lead to large-amplitude oscillatory activity in the stimulus-free region, activity that would

then spread to the remainder of the network following stimulus removal (Fig 22A). Such

interesting examples show that the rich dependences of the resultant full-network pattern

(on, e.g., k, q, the number of populations covered and not covered by the stimulus, and

the time we set q = 0) and the complex driven dynamics result in a complicated setup to

explore, one that may warrant further systematic study.
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Figure 21: Typical dynamics for partial-field stimuli. Recall that k refers to the mode of the

stimulus, while m refers to the (spatial) mode of the network, which may be different from k.

(A) k = 4, q = 0.4, where the stimulus is applied everywhere except the indicated stimulus-

free region. After the pattern spreads to the stimulus-free region (top), the network then

evolves into an irregular full-field oscillatory pattern (B). If the stimulus is removed during

the transient pattern shown at the end of (A, top), the network evolves into one of the

two regular oscillatory patterns in (B) (top: m = 2/3; bottom: m = 3. If the stimulus

is removed during the stable patterns shown in (A, bottom), the network evolves into the

pattern shown in (B, top). (C) k = 4, q = 0.4, where the stimulus is applied everywhere

except the indicated stimulus-free region. The network evolves into the pattern shown on

top with the partial-field stimulus. After removing the stimulus, it is then attracted to the

m = 4 pattern, below.
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Figure 22: Atypical dynamics for partial-field stimuli. For (A, left) and (B), the stimulus is

applied everywhere except the indicated stimulus-free region. Again, recall that k refers to

the mode of the stimulus, while m refers to the (spatial) mode of the network, which may

be different from k. In particular, once the stimulus is removed, the stimulus mode k no

longer directly influences the network pattern. (A) k = 2, q = 0.4. Left: Even though the

stimulus is applied to the outside populations (i.e., the middle 21 populations are receiving

no stimulus), large-amplitude oscillations only form in the stimulus-free region. When the

stimulus is removed, the full network continues oscillating with either the m = 4 (middle)

or m = 2/3 (right) patterns. (B) k = 4, q = 1.0. Here, the pattern does not spread to the

stimulus-free region. Once the stimulus is removed, the full network dynamics can either die

down to a low steady state (left) or continue oscillating with m = 4 (right), depending on

the phase of the oscillation at which the stimulus is removed. There is only a 5ms difference

in times at which the stimulus is removed between the left and right plots.

86



3.2.2.5 Mixed-mode stimuli Naturally occurring stimuli are very rarely composed of

a single spatial frequency. This is even the case for most human-made objects and images.

A natural question that arises is: How do neuronal networks respond to multiple stimulus

modes? This is a broad question, and so we will narrow the question considerably. Indeed,

we have already encountered two situations in which we explored the interaction of different

modes. In Sec 3.2.1.4, we provided the network a stimulus that was the sum of hundreds of

wavevectors with one dominant mode, |k|and saw that the network can still respond to the

stimuli in a very similar way as for simple cosine stimuli of the same wavenumber |k|. In Sec

3.2.2.3, although we only provided a single stimulus, we saw a somewhat more interesting

interaction of modes near a∗ee. For example, the network is most sensitive to stimuli with

wavenumbers k that are twice the natural mode of the network (m∗), and in fact such stimuli

induce alternating oscillations with wavenumber k/2 = m∗.

As we describe in Sec 3.4.4.2, we limit ourselves here to the question of how a stimulus

with modes k1, k2 and amplitudes q1, q2 affect the network’s stability, where we let k1 ∈ P

and k2 = 2m∗ = 10 (see Eq 3.14 for the form of the stimulus). To see how the network

responds to the mixed-mode stimuli, first recall that earlier we found there is an associated

amplitude, q∗(k), at which the network exhibits a Hopf bifurcation for each wavenumber

k ∈ P , except for k = 15. In order to test how the sensitivity of the network changes as a

result of adding a second mode, we can follow the Hopf point of one mode as a function of the

amplitude of the second mode, restricting ourselves to positive amplitudes without loss of

generality due to the symmetry considerations discussed in Sec 3.2.2.3. That is, we expect

the network to destabilize through a Hopf bifurcation from the steady state for different

combinations of q1, q2. This stability boundary should trace out a closed curve in the q1-q2

quarter-plane, connecting (q1, q2) = (0, q∗(k2)) to (q1, q2) = (q∗(k1), 0). We will denote this

boundary by q∗(k1, k2) = 0, shown in Fig 23A as the black curves. The boundary curve

partitions the upper-right quadrant in the q1-q2 quarter-plane into two regions: an inner

region, the region closer to the origin, where the steady state is stable, and an outer region,

the region above and to the right of the boundary, where spatiotemporal patterns form.

These curves give us information about how two modes interact, and we will see that

the modes can either be facilitating or depressing relative to each other, by which we mean
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that if we increase the amplitude of one mode, the network might be more likely (facilitating

modes) or less likely (depressing modes) to exhibit spatiotemporal patterns. We can more

precisely classify these behaviors based on whether, beginning on the stability boundary

q∗(k1, k2) = 0, increasing q1 or q2 destabilizes (facilitating modes) or stabilizes (depressing

modes) the network.

To illustrate this, consider the 3 branches of the curve for k1 = 2 ((i)–(iii) in Fig 23A).

For the point shown on (i), we see that if we increase either q1 or q2, then we move from

a point of neutral stability on the boundary into the pattern-forming region. Thus, since

keeping the amplitude of either mode fixed and increasing the amplitude of the other mode

destabilizes the network, for any point along (i), k1 = 5 facilitates k2 = 10, and vice versa.

In contrast, consider the point on (ii). In this case, increasing q2 destabilizes the network,

whereas increasing q1 stabilizes the network, since the point moves into the steady-state

region. Hence, for any point along (ii), k2 = 10 facilitates k1 = 5, while k1 = 5 depresses

k2 = 10. Similarly, for the point on (iii), we see that increasing q1 destabilizes the network,

while increasing q2 stabilizes the network. Thus, for any point along (iii), k1 = 5 facilitates

k2 = 10, while k2 = 10 depresses k1 = 5.

From this example, we can draw several general conclusions. (1) Boundaries with neg-

ative derivatives (as in (i)) correspond to modes that are mutually facilitating : k1 and k2

facilitate each other; (2) boundaries with positive derivatives at all points (as in (iii) with

the possible exception of one point with zero derivative but positive second derivative (as

appears to occur at (0, q∗(k2)), the leftmost point of (ii), correspond to one mode that is

depressing and one mode that is facilitating (i.e., one mode depresses the second, while the

second mode facilitates the first); (3) there must be at least one part of the boundary where

k1 facilitates k2, and vice versa. This third point follows from the fact that we cannot have a

boundary curve that is a function of either q1 or q2 with derivative everywhere positive that

connects (0, q∗(k2)) to (q∗(k1), 0). The best we could have would be a boundary composed

of two branches with derivatives everywhere positive that come together in a cusp (consider,

for example, a boundary curve like that for k1 = 12, except where the left branch is concave

up).

The boundary for k1 = 5 in Fig 23A is similar to those for k1 = 3, 4, and 6. These
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boundaries are composed of a left branch wherein k2 = 10 facilitates k1 = 5 while k1 = 5

depresses k2 = 10, and a right branch wherein k2 = 10 and k1 = 5 mutually facilitate each

other. Thus, while k1 = 5 may either facilitate (for higher q1 values) or depress (for lower q1

values) the k2 = 10 mode, k2 = 10 facilitates k1 = 5 along the entirety of the boundary. We

note that these statements similarly hold true for k1 = 3, 4, and 6. These observations lead

to a fourth general conclusion: (4) Boundaries composed of one branch of positive derivative

almost everywhere and one branch of negative derivative almost everywhere correspond to

one mode that is everywhere facilitating and a second mode that is depressing along the

branch with positive derivative.

This same situation obtains for k1 = 12, with the roles of k1 and k2 reversed. That is,

k1 = 12 facilitates k2 = 10 along the entirety of the boundary, while k2 = 10 facilitates

k1 = 12 for higher q2 values (the upper branch in the plot), and depresses k1 = 12 for lower

q2 values (the lower branch in the plot).

Finally, we note that there is a way in which modes might interact in an even more

synergistic fashion. First, consider a case where two modes are interchangeable. Then, if we

are at a point along the boundary curve and increase, say, q1 by ∆(q1), we would expect that

we would need to decrease q2 by ∆(q1) in order to stay on the boundary curve. Or, more

generally, we would expect that we would need to decrease q2 by c ·Delta(q1) for some fixed

c > 0 for all points on the boundary curve. That is to say, we would expect the boundary

curve to lie along the line that connects (0, q∗(k2)) to (q∗(k1), 0). We will denote this line

as q2 = L(q1). Unsurprisingly, this is the exact situation we find when we let k1 = 10, as

we see in Fig 23A. However, this also suggests that there is a special region in the q1-q2

quarter-plane: That is, if the network destabilizes for (q1, q2) values that lie below L(q1),

this demonstrates that the network is more sensitive to the corresponding modes with these

amplitudes than to either pure mode (where the second amplitude is set to 0). Indeed, we

find that the entire stability boundary for k1 = 0 lies below L(q1). Hence, not only are

k1 = 0 and k2 = 10 mutually facilitating along the entire boundary, but mixing the two

modes results in a stimulus to which the network will exhibit greater sensitivity than to

either mode by itself.

We note that, while many of the specific results we describe can only be found by following
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the Hopf points in two parameters as we did, many of the general features are exactly what

we would expect based on previous results described above, while others are surprising. In

particular, since we found that the network was especially sensitive to k2 = 10, we expect

k2 = 10 to facilitate other modes. Indeed, we find this to be the case, with only the few

exceptions we enoutered earlier; i.e., on the right and lower branches of the boundaries for

k1 = 2 and 12, respectively, where k2 = 10 is depressing. Since we also found that the

network was nearly as sensitive to the k = 12 mode at aee = 5.8 Fig 18A and to the constant

mode near bifurcation Fig 19B, we might expect these modes to facilitate k = 10 for certain

(q1, q2) values. We find exactly this, though somewhat surprisingly these modes in fact

facilitate the k = 10 mode along the entirety of the boundary curves. In contrast, the modes

k1 = 2, 3, 4, 5, and 6 all have branches along which k1 depresses k2 = 10. While we might

nàıvely have expected these modes to depresses the k2 = 10 mode throughout the region of

interest, we saw that this cannot be the case. That is, the argument leading up the general

conclusion (4) above demonstrates that a mode cannot be purely depressing, whereas, as we

saw in the first and fourth general conclusions, (1) and (4) above, a mode may in fact be

purely facilitating.

The network’s oscillatory activities that arise with multiple stimuli can be quite inter-

esting as k1, k2, and m∗ all interact to produce the resultant patterns. We can see two such

patterns in Fig 23B. Overall, we see that, even in limiting the number of stimulus modes to

2, rich and interesting dynamics and network behaviors can arise. The setup is also simple

enough to allow us to numerically analyze the stability as a function of the stimulus am-

plitudes. It may be of further interest physiologically to study the interaction of additional

stimuli, at least through simulations. Such studies might allow us to come closer to making

more precise predictions about how neuronal populations might behave when exposed to

richer, more realistic stimuli.

3.2.2.6 Stability Analysis The bifurcation analysis above suggests that near a∗ee, a

small-amplitude stimulus q cos(2πkx/N) may either destabilize or stabilize the low steady

state. In order to gain some analytical insight into this question, we consider the original

system Eq (3.1) extended in one spatial dimension. We would like to know whether, near
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Figure 23: Stability curves for stimuli with two modes. (A) We examine the effect on the

pattern formation of the network by providing stimuli that are mixtures of one mode, k1 ∈ P ,

and the most sensitive mode, k2 = 10. Black curves are curves of Hopfs that correspond

to the stability boundary of the network, q∗(k1, k2) = 0. Points “inside” of these curves

(in the regions of the quarter-plane closer to the origin) correspond to stable steady states.

Points “outside” of these curves (in the regions of the quarter-plane above and to the right

of the curves) correspond to spatiotemporal pattern formation. As described fully in the

text, branches of a boundary curve with negative derivative correspond to where the two

modes k1 and k2 are mutually facilitating, while branches with positive slope correspond to

where one mode facilitates the second, while the second mode depresses the first. In the

case that k1 = 10, the two modes are interchangeable, so that increasing the amplitude of

one stimulus is equivalent to decreasing the amplitude of the second stimulus by a constant

times the increase of the first; thus, such boundary curves lie along the line connecting the

two Hopf points corresponding to stimuli of the respective pure modes. This line, L(q1), is

the red dashed line in the plots. Since the boundary curve for k1 = 12 lies below L(q1), the

network will be more sensitive to a stimulus with modes 0 and 10 than to a stimulus of either

mode by itself. We note that the modes can be significantly depressing relative to k = 10;

e.g., providing the modes 2 and 5 can more than double the amplitude of k = 10 required

to destabilize the steady state from ≈ 0.17 to above 0.35. (B) Example spatiotemporal

patterns found when k2 = 10 and k1 = 5 or 12 (cf. the patterns found with just one stimulus

in Fig 17).
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a∗ee, perturbing the network with a small-amplitude stimulus q cos(2πkx/N) will destabilize

the low steady state, potentially resulting in spatiotemporal patterns as we have studied

above. Therefore, we perform a perturbation calculation, using q as the small parameter

that we expand with. Here, we present an outline of this calculation; for more detail, please

see Appendix E.

We first solve for our nonhomogeneous steady state, (uss, vss), where, e.g., uss = q u0 +

q2 u1 by Taylor-expanding Eq (3.1) using Eq (3.3) about the homogeneous steady state (0,0)

and substituting it for (u, v). We then linearize around the nonhomogeneous steady state

(uss, vss), providing a linear set of ODEs:

Ωt = L0Ω + qL1Ω + q2L2Ω (3.4)

where Ω(x, t) = [ũ(x, t), ṽ(x, t)]T and the linear operators L1 and L2 contain terms involving

exp(±iµx), where µ = 2πk/N . We then look for separable solutions, Ω(x, t) = Z(x)eλt, and

expand both Z and λ in powers of q. Plugging this back into Eq 3.4 and collecting terms of

like powers of q provides a series of linear equations, as many as the number of powers of q

in our expansion.

The real parts of the λis determine the stability of the solutions; since we set our system

near a Hopf bifurcation, and the 0th order equation is our original linearization, Eq (3.10),

R(λ0) = 0. We therefore need to continue up to at least O(q), and as it turns out, O(q2).

Thus, our sequence of equations looks like
i∑

j=0

(λjI − Lj)Zi−j = 0 for i ∈ (0, 1, 2). We can

then apply the Fredholm alternative to the second and third equations to find λ1 and λ2 in

order to determine the stability of the system to small perturbations of the form cos(µx).

For O(q) and letting ω∗ = 2πm∗/N , the Fredholm alterntative solvability condition gives

λ1

1∫
0

cosω∗x cosω∗x dx = c

1∫
0

cosµx cos2 ω∗x dx, (3.5)

where c is a nonzero constant determined from the prior computations. The right hand side

is nonzero only when µ = 0 or 2ω∗; for other stimulus wavenumbers, λ1 = 0, so that we must

solve the O(q2) equation for λ2. These equations are similar to Eq 3.5, involving constants

multiplying integrals that evaluate to 1 or 0 (due to orthogonality). Thus, we can obtain
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information about the stability of the network in response to a cosine stimulus. Furthermore,

we can build on these results to find the local stability boundaries in the q − aee plane and

compare these analytical results to those found in Sec 3.2.2.3 through numerical bifurcation

methods.

To do so, we expand λ in q for small q, recalling that λ1 is nonzero for µ = 0 or 2ω∗:

λ = λ0 + λ1 q + λ2 q
2

Recall that R(λ) = 0 when aee = a∗ee, giving the curve:

R(λ)(aee, q) = 0 = α(aee − a∗ee) + β q + γ q2 (3.6)

where β, γ = R(λ1), R(λ2). Letting η = aee−a∗ee, we have from Eq 3.6 α = d
dη
R(λ)|0, which

we compute through the eigenvalue equation

A(η) Φ(η) = λ(η) Φ(η).

This provides the linear equation

(α Id− A′(0))Φ0 = (A(0)− λ0 Id)Φ′(0), (3.7)

where some of the previous variables we have used correspond to quantities here; i.e., λ0 =

λ(0), Φ0 = Φ(0). We may then apply the Fredholm alternative to Eq 3.7 in order to find α,

specifying the stability boundary curve in Eq 3.6. For more detail, please see Appendix E.

For small q, our theoretical curves match the numerical boundary curves very well (Fig 24).

This calculation shows that, indeed, we should always obtain linear curves in the q− aee
plane for k = 0 or 2m∗, and quadratic curves for all other k. Thus, near a∗ee, the network

counterintuitively will always be more sensitive to k = 0 and k = 2m∗ stimuli (as long as the

curve for k = 2m∗ is concave down) than to k = m∗, regardless of the concavity of the curve

at m∗. For most applications, the greater sensitivity to m∗ near a∗ee serves as a constraint:

As we see in, subjects do not appear in general to be sensitive to uniform (spatially and

temporally) light in comparison to patterns near 3–5cpd; thus, if we set aee low enough

(e.g., below the point of intersection of the quadratic and linear curves in the case that any
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Figure 24: Comparison of theoretical and numerical stability analyses. Performing a pertur-

bation calculation provides local stability curves (red dashed lines) near (q, aee) = (0, a∗ee)

that very closely match those computed numerically in Fig 19B for all k ∈ P . Note again

that the pattern forming regimes locally lie above each curve; below these curves the steady

state is stable. The calculation gives insight into the qualitative features previously observed;

in particular, the high sensitivity observed to stimuli with k = 0 and k = 2m∗ = 10 near

a∗ee come about due to the linear nature of these curves, as revealed through the calculation.

The larger sensitivity to k = 10 compared to k = 0 is also predicted, as the k = 10 line has

twice the slope of the k = 0 line. All other modes are shown to have locally quadratic curves

that can be either concave up, so that such modes stabilize the steady state above but near

a∗ee, or concave down, in which case the stimuli destabilize the steady state below but near

a∗ee. Surprisingly, with this set of parameters, k = m∗ = 5 is a stabilizing stimulus mode.
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quadratic curves are concave down), the network may be more sensitive to nonzero wave

numbers. Indeed, this was our intuition in setting aee = 5.8 (recall, a∗ee ≈ 7.37). However,

even though most cases of PnSE are linked to patterns with modes in the 3–5cpd range, there

are in fact rare cases where people have been documented to experience epileptic seizures

when exposed to constant bright light [127]. Our model provides an explanation for such

sensitivity .

3.3 DISCUSSION

Neuronal tissue can exhibit spatiotemporal resonances: either strong spatial responses to

a narrow band of stimulus temporal frequencies, or strong temporal responses to a narrow

band of stimulus spatial frequencies. Examples of the former include flicker phosphenes and

photosensitive epilepsy, and were modeled in Rule et al. using a neural field approach [17].

In this paper we tackle the latter resonance, using a neural field model to capture resonant

responses as observed in contrast sensitivity, pattern sensitive epilepsy, and visual discomfort

[47]. Additionally, our model may encompass the rare condition of pattern sensitive epilepsy

(PnSE) that occurs in response to bright, static, spatially uniform stimuli like constant

bright lights [127]. Using biologically plausible excitatory spatial profiles result in model

resonant modes that map directly onto the resonant modes psychophysically observed in the

above-mentioned cases: 3–5cpd.

In addition to resonant responses to simple full-field stimuli in neural field models with

periodic boundary conditions extended in one (i.e., on the ring) and two (i.e., on the torus)

spatial dimensions, we found the network on the torus showed similar sensitivity to noisy

stimuli with modes that were near the resonant wavenumbers found when simple cosine

stimuli were used. Even though the individual dynamical behaviors for similar stimulus

parameters (the dominant mode |k| and amplitude q) varied, the stability response was very

similar, matching experimental findings in [47].

We also studied partial-field and dual-mode stimuli in the network on the ring. By

making the network more excitable, as is believed to be the case in the brains of subjects
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with epilepsy, we found that partial-field stimuli could spread to the full network and show

very similar resonance as in a healthy brain. Thus, we hypothesize that visual discomfort

is associated with oscillatory activity, caused by spatially heterogeneous Hopf bifurcations,

that stays localized to the area of cortex to which the stimulus projects, while PnSE is

associated with such activity that further excites adjacent and other connected brain areas

due to an increased neuronal excitability. We further hypothesize that contrast sensitivity

is linked to these Hopf bifurcations, as the resonant modes excite the neuronal populations

more than the nonresonant modes do, leading to higher peak (but stationary) firing rates

before the Hopf bifurcations for the resonant modes.

We would be interested to see data of greater spatial resolution than is available thus far.

Such detailed spatiotemporal data might match or be at odds with the dynamics observed

in our model networks; either result would be welcome, leading to further work towards

unlocking the mechanisms of spatiotemporal neuronal resonances, potentially leading to

successful interventions of the less desirable consequences such as PnSE.

3.4 METHODS

3.4.1 Model considerations

To change the network Eq (3.1) from, e.g., using the firing rate formulation in Eq (3.2) to

using the formulation in Eq (3.3), we change coordinates by letting u(x, t) = ũ(x, t)+f(−θ̃e)

and similarly for v. After some algebra and letting

h(w) =
1

4
ln

(
aei

aeef(−w) + w − θe
− 1

)
g(w) = aief(−w)− aiif(−h(w)) + h(w)− θi,

(3.8)

we find that the new threshold θ̃e is given implicitly by setting g(w) = 0, while θ̃i = h(θ̃e).

For the network on the torus, we simulate the network using formulation (3.2), while

for the network on the ring, we use the formulation in (3.3) to facilitate our calculations.

For both networks, we use equivalent parameters for comparison purposes (when aee = 5.8),
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using Eq (3.8).

As noted in Sec 3.1, in experiments the occurrence of aberrant oscillatory neuronal

activity is dependent on the spatial frequency of the stimulus image. Thus we wish for a

range of input wave numbers to produce temporal oscillations and for the system to remain

quiescent when input wave numbers outside of this range are given. We thus take our

homogeneous system (i.e., that with no stimulus present) and set it near a so-called Turing-

Hopf bifurcation, so that the homogeneous steady state bifurcates to a branch of stable limit

cycles at a critical nonzero wave number, m∗. To do so, we linearize the system on the ring

and find parameters that allow for purely imaginary eigenvalues at a nonzero mode m, or

equivalently, for the trace of the linearized system to be zero with a positive determinant.

Our homogeneous system is:

τe ut(x, t) = −u+ fe(Jee ∗ u− Jei ∗ v)

τi vt(x, t) = −v + fi(Jie ∗ u− Jii ∗ v),

where fe,i(w) is given by Eq (3.3).

Our steady state solution is (u0, v0) = (0, 0). Linearizing thus provides

τe ūt(x, t) = −ū+ α1(Jee ∗ ū− Jei ∗ v̄)

τi v̄t(x, t) = −v̄ + β1(Jie ∗ ū− Jii ∗ v̄),
(3.9)

where α1 = f ′e(0) and β1 = f ′i(0). This is a linear autonomous system on a periodic domain,

so that we obtain solution forms:

ū(x, t) = ū0e
λteimx

v̄(x, t) = v̄0e
λteimx
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This allows us to significantly simplify Eq 3.9 by using Fourier transforms to rid ourselves

of the convolutions: e.g., Jee ∗ eimx = Ĵee(m) · eimx. We are then left with a simple 2 × 2

linear system, that, importantly, is parameterized by the wavenumber m:

λ

 ū

v̄

 = A

 ū

v̄


where A =

 −1+α1Ĵee(m)
τe

−α1Ĵie(m)
τe

β1Ĵei(m)
τi

−1−β1Ĵii(m)
τi

 (3.10)

for m ∈ Z. We now seek parameters to set the system near criticality by placing it by a Hopf

bifurcation, where the eigenvalues cross the imaginary axis. That is, we find aee, aie, aei,

aii, σe,i, and τe,i so that Det(A)>0, and Tr(A)=0 for some m∗ > 0 (or in practice Tr(A) ≥ 0

for a small interval [ml, mr]) and Tr(A)<0 for all other m >0. In particular, we fix all of

the parameters except aee and σe,i. Increasing aee tends to have the effect of translating

the trace curve upwards, so that we may adjust it until it hits the m axis (at which point

aee = a∗ee). The ratio σe
σi

tends to shift the peak of the determinant left or right, thereby

determining m∗. For the choice of parameters shown below for the ring domain (except for

the value of aee), the resultant disperison relation is shown in Fig 25. Note that m∗ ≈ 5 and

a∗ee ≈ 7.3741. However, since the network can only experience bifurcations at whole wave

numbers, we set m∗ = 5 and provide a correction to the value of a∗ee by increasing it until

the curve of the determinant passes through the m-axis arbitrarily close to m = 5. We will

see below in results that the corrected value of a∗ee ≈ 7.3746 matches that found numerically

beyond single float machine precision. We also note that, since we have set the network

up at a Hopf bifurcation at wavenumber m∗ = 5, the network will lose the stability of the

homogeneous rest state to oscillations at wavenumber 5 as aee increases beyond a∗ee, so that

at aee = a∗ee, the network is poised at a Turing-Hopf bifurcation.

Unless otherwise noted in the text or methods, we use the following parameters for both

networks (on the torus and on the ring):aee = 5.8, aei = aie = 10, aii = 8, τe = 3, τi = 6.6.

For the torus domain, we use σe = 8, σi = 16, θe = −1.07, θi = −0.3597, while for the ring

domain, we use σe = 1.75, σi = 3.5, θe = 0.518, θi = 0.311. We note that aee is well below

the critical value a∗ee found above; we explain the reasoning for this value in Sec 3.2.2.3.
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Figure 25: Dispersion relation for Eq (3.10). Since, for a 2 × 2 linear system as for A in

Eq (3.10) the eigenvalues are given by the trace, T , and the determinant, D, as −T/2 ±√
T 2/4−D, we can see the parameters have been chosen so that the system will have purely

imaginary eigenvalues for m = 5 and be stable for other m.

3.4.2 Physical dimensions

As mentioned above, the apparent band of sensitive wavenumbers as measured psychophysi-

cally in several contexts is ≈ 3 cycles per degree (cpd). To see if our network models provide

biologically plausible results, we use an approximation of the retinotopic map for foveal

vision to find the cpd that corresponds to a particular stimulus mode k [125]:

X(ε) ≈ 12 ln(1 +
ε

ε0
), (3.11)

where X(ε) corresponds to the cortical distance in mm as a function of the viewing angle

subtended between two points, ε, and ε0 is 1◦ (thus, ε/ε0 is simply dimensionless degrees).

For stripes that are 3cpd apart, ε/ε0 ≈ 0.33. Since σe = 8 for the network on the torus and

most of the area covered by the gaussian is within
√

2σe units of its peak, fixing the size of

the domain to be 52×52mm implies that the σe = 52mm/ 512√
28
≈ 1.15mm, matching empirical

measurements for the spatial profile of pyramidal cells in layers 2/3 [126]. We find below in
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results that the most sensitive stimulus mode is around k = 15, so that the cortical distance

between stripes is 52mm

15
≈ 3.47mm. Inverting Eq 3.11 above then provides the corresponding

cpd for k = 15: exp 52mm

15·12mm
− 1 ≈ 0.33 ≈ 3cpd. A similar calculation for the network on the

ring, fixing the length of the ring at 35mm and using σe = 1.75 implies that the physical

dimensions of σe are approximately 1.44mm, and the sensitive stimulus mode of k = 10 that

we find again corresponds to ≈ 0.33 ≈ 3cpd. Thus, biologically plausible spatial profiles

for the excitatory populations map the resonances that we find in the model networks very

closely to those found in psychophysical experiments.

3.4.3 Methods for the network on the torus

We simulated a network of 512× 512 excitatory and 512× 512 inhibitory populations with

periodic boundary conditions that evolve according to Eq (3.1) and (3.2). We found that by

performing the simulation on custom GPU code using CUDA C on an NVIDIA GTX970,

that we were able to run the simulations in real-time, changing the parameters on the fly to

observe the effects of, e.g., different coupling strengths, stimulus modes and amplitudes. In

fact, we found this code to be ≈ 3.5 times faster than the identical code written purely in

C. We used a simple Euler stepping scheme with ∆t = 0.1 (we found the dynamics to be

consistent with those found with ∆t as low as 0.01).

The simulations are fast enough to systematically test for different network behaviors

with different parameters; i.e., we are able to create an approximate bifurcation diagram by

running the network for a sufficiently long time and determining whether the network is still

oscillating or has died down towards a steady state. The parameters of interest were those

of the stimulus: the amplitude, q, and the mode, k.

We determine the state of the network (oscillatory or not) by measuring the variance of

the excitatory populations of the network (letting U(t) = [u0(t), ..., uN2(t)]T ) after some

transient time ttrans (letting t ≥ ttrans + 1ms to avoid terms that can be excessively large

near ttrans:
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Var(U(t)) =
1

N2

∑
j=1...N2

 1

t− ttrans

∑
t>ttrans

uj(t)
2 −

(
1

t

∑
t>ttrans

uj(t)

)2
 (3.12)

Of course, the averages in the continuous setting would instead involve integrals over the

time interval of interest. Plotting the variance as done in Sec 3.2.1.1 generally leads to very

visible differences between states that settle down towards a steady state and those that

continue oscillating if ttrans and t were large enough. To determine bounds that seemed to

work well for our purposes, we created an interactive bifurcation diagram that allowed us to

continue running the network from the last integration time step, so that we could determine

whether or not the network was still in a transient state. We found that a transient time of

about 16s and a recording time of about 1s allowed for robust determination of the network

state. We note that this “eyeball” metric worked well in part because the Hopf bifurcations

were subcritical, often leading to either large oscillations or none at all.

Using this method, we probed the sensitivity of the network by beginning with a simple

cosine stimulus that spatially varies horizontally, corresponding to vertical stripes (using x

as the abscissa and y as the ordinate, the stimulus to the excitatory population is simply

q cos 2πkx
N

). For each wave number k, we increased the amplitude, q, up to a value of 2. For

a contiguous set of (k, q) values, the steady state destabilized, resulting in spatially het-

erogeneous, temporally oscillatory patterns. We first simulated the network using a coarser

∆q, and then reduced ∆q near the onset of oscillatory activity to find the spatiotemporal

pattern formation boundaries as a function of k and q. To determine these lower bound-

ary boundaries of the q vs k bifurcation diagrams, we reduced ∆q to 0.05 and stipulated

a threshold variance so that for the network is defined to be in an oscillatory regime only

if Var(U(t)) ≥ Varthresh. Once again, though Varthresh is necessarily arbitrary, we found,

again by testing with the interactive bifurcation diagram, that a value of 0.001 corresponded

well with the existence or nonexistence of widespread oscillatory patterns. Of course, the

term “widespread” suggests the additional problem that Var(U(t)) is a global measure of the

network’s activity, since we are interested in whether the entire network might be thought

of as being in a pattern-forming regime. Thus, in some cases, especially when we project

noisy stimuli onto the network (discussed below), the variance might be globally low but
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locally high. As there exists no principled reason to make any particular value or spatial

constraints for Var, we found this heuristic “eyeball” method to be warranted and sufficient

for the present study.

3.4.3.1 Noisy stimuli methods We used the same method as outlined above to ex-

amine the network’s responses to noisy stimuli. We created the stimuli in MATLAB by first

creating 512× 512 stimuli of Gaussian white noise with variance 1, as seen in Fig 26A. We

then filtered the stimulus by first putting it in Fourier space (Fig 26B), where circles of radius

p pixels correspond to wavevectors k with wavenumber |k| = p. The angle from the center

to the pixel indicates the direction of the wavevector k. We note that since the network only

responds to stimuli with k < 30, the presence of high spatial frequencies tends to cause the

network to die down to a steady-state. Thus, we apply a low-pass filter in Fourier space by

using a circular logistic function (like the firing rate function): F (r) = 1
1+exp−g(r−r0) , and

used the gain g = 0.1. r0 defines the cutoff radius (i.e., wavenumber) of the filter (Fig 26B,

bottom). We used r0 = 70 to obtain our results below (note, the maximum wavenumber

of the system, ≈ 362, is found by dividing the the number of elements along the diagonal

of the stimulus by 2. We then increased the contribution of a particular wavevector k with

wavenumber |k| = p by multiplying all of the pixels that were p units away from the cen-

ter by a parameter A; we used A = 50 for the results below. We then renormalized the

Fourier transform to have the same energy as the original transform (and stimulus), and fi-

nally inverse-Fourier-transformed the stimulus and examined the power spectrum (Fig 26C).

Using the same random image as a seed, we applied this algorithm for all p ∈ {0, ..., 30},

forming a set of stimuli that we could then input to our system, adjusting the overall stimulus

q and the dominant mode |k| just as we did for the simple cosine stimulus.

We then generated a new set of stimuli for all p ∈ {0, ..., 30} from a newly-generated

random stimulus in order to check for repeatability in the network’s response to such random

images. In order to ensure that we would not obtain similar responses due to similarities

(i.e., correlations) in the random components of the stimuli, we generated a random stimulus

that had a very small (< 0.001) Pearson correlation coefficient with the original stimulus.

The Pearson correlation coefficient c(S, T ) of the two stimuli S, T was computed as
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Figure 26: Construction of noisy images with selected dominant modes. To test more com-

plex stimuli, random images were created and filtered to have dominant wavenumbers. (A)

Top: A random matrix with 512 × 512 was generated, with values sampled from N (0, 1).

Bottom: The radially-averaged power spectrum shows an even power distribution across the

different wavenumbers. (B) The image is transformed into (shifted) Fourier space (top), and

high frequencies are reduced by pointwise-multiplying the elements by a cirular logistic func-

tion (middle). Finally, elements that are a distance p from the center, which correspond to a

wavenumber of p, are multiplied by a chosen amount to increase their relative contributions

(bottom). (C) Top: The final image that is fed into the network, after normalizing it to have

the same energy as the original image in (A). Bottom: the radially-averaged power spectrum

of the transformed image shows the low-pass filter and increase in amplitude for the mode

7.
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c(S, T ) =
Cov(S, T)√

Var(S)Var(T )
=
〈(S −M(S))(T −M(T ))〉√

Var(S)Var(T )
, (3.13)

where M(S) is the mean of S and the averages indicated by the brackets are taken over all

of the elements of S and T . Thus, 0 ≤ c(S, T ) ≤ c(S, S) = 1 and c(S, T ) = 0 if S and T

are uncorrelated.

3.4.4 Methods for the network on the ring

While studying the network on a ring allows us to employ the bifurcation software AUTO,

we encounter some limitations. In particular, including too many populations make the

bifurcation computations too slow to be useful; thus, we limit N to be less than 100 (N

excitatory and N inhibitory populations, corresponding to 2N ODEs). Since we must limit

N to a lower number, the spatial discretization in simulations and bifurcations is a much

larger potential issue that could lead to spurious results. In particular, we need to ensure that

the network with stimulus of spatial period T0 is symmetric under shifts of the populations

by T0 populations. This condition corresponds to stipulating for k to evenly divide N . By

choosing N to be 60, we simultaneously allow for a computationally-feasible network size

and for a large number of permissible stimulus wavenumbers: P = {0, 1, 2, 3, 4, 5, 10, 12, 15}.

We do not include wavenumbers above 15 due to discretization effects that occur by making

k too large. In particular, for k = 20, the symmetry of the stimulus is lost: Since every third

population must receive the same stimulus when k = 20, one of these, say u0, will receive a

stimulus value of q, while u1 and u2 will receive a stimulus value of −q/2. For k ≥ 30, the

stimulus can no longer be reasonably approximated by a cosine: for k = 30, the excitatory

populations receive the values of ±q, while k = 60 is equivalent to k = 0.

3.4.4.1 Partial-field stimuli methods In order to test whether the network could

model the spread of excitatory activity often associated with epileptic seizures, we limited

the stimulus to project to only approximately 2/3 of the populations (39 excitatory and 39

inhibitory populations in a contiguous interval — in particular, populations 41–59 and 0–18;

thus, the stimulus-free region corresponds to the middle third of the figures as indicated).
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We then increased the excitability of the network by letting aee = 7 < a∗ee and found that

spatiotemporal patterns that formed in the populations to which the stimulus projected

(the stimulus region) could then spread to form spatiotemporal patterns in the populations

to which the stimulus did not project (the stimulus-free region). Moreover, these patterns

would often persist upon removal of the stimulus (i.e., setting q = 0 and letting the system

continue to evolve), as can occur in PnSE following the removal of the stimulus. Thus, the

patterns in which we are interested involve large-amplitude oscillations, so that we neglect

small-amplitude oscillations.

To systematically test the network’s behaviors for different stimulus modes k, we fixed a q

value and integrated the system forward for 2000ms from uniform random initial conditions

on the small interval [-0.01, 0.01]. Using a step size of ∆ q = 0.05, we then found the

smallest q(k) value that allowed for the pattern to spread, defined as the smallest q value

that exhibited spreading of activity into the stimulus-free region for at least 1 of 5 attempts

of integrating 2000ms with different random seeds. To determine if oscillatory activity of

the network would persist and to what mode it would evolve, we then removed the stimulus

by letting q = 0 and integrated forward (beginning from the final values of an integration

where the activity had spread to the stimulus-free region — except where noted in the text

in Sec 3.2.2.4 for another 2000ms and examined the network over the final few hundred

milliseconds.

We found that the network was very sensitive to constant stimuli (i.e., stimuli with

wavenumber 0), requiring a smaller amplitude q to induce oscillations than for nonzero

wavenumbers. Since such a high sensitivity to constant stimuli does not match most data

obtained on pattern-sensitive epilepsy or visual discomfort, this introduces an additional

constraint on our parameters. That is, aee must be sufficiently less than a∗ee so that (1)

the network is sensitive to a band of stimuli with nonzero wavenumbers; (2) the network

is relatively insensitive to stimuli of wavenumbers outside of this sensitive band, including

constant stimuli.

We note that the stimulus amplitude to the excitatory populations is q, and that to the

inhibitory populations is r q. Since we vary q in our investigations while maintaining r at a

fixed value, we will hereafter refer to q as the amplitude of the stimulus.
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3.4.4.2 Multiple stimuli methods Stimuli tend to be composed of multiple spatial

frequencies. To gain traction on how stimuli of different frequencies affect the network’s

stability, we examine how the network on the ring responds to just two stimuli of possibly

different amplitudes. Even this question is very broad; since P has 10 possible values there

are
(
10
2

)
= 45 possible combinations. Recall that the network is most sensitive to k = 2m∗

(=10 here). Since we are most interested in stimulus modes to which the network is especially

sensitive, we here study how the modes k1, for k1 ∈ P , and k2 = 2m∗ = 10 interact. Thus,

the stimulus that we provide is

q1 cos 2πk1x/N + q2 cos 2π10x/N (3.14)

To study how the interaction of stimuli of these two modes affect the network, we track

the stability of the steady state by following the Hopf bifurcation at q∗(kj) as a function of

q∗(k3−j) for j = 1, 2. For example, q∗(10) ≈ 0.18, and q∗(5) ≈ 0.71; we can then find the

curve of Hopfs q∗(5, 10) = 0 by following either q∗(5) as a function of q∗(10) or vice versa.

We can then determine how the addition of a stimulus of mode k1 affects one of k2, and vice

versa.
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4.0 CONCLUSION

Here we provide a brief review of the contents of this dissertation.

In Chap 1, we explored evidence of oscillations of populations of neurons in different

contexts: First, we looked at oscillatory activity that arises in scenarios involving work-

ing memory and neural binding; second, we saw evidence of spatially-resonant oscillatory

responses to static, spatially patterned stimuli that arose in situations spanning normal

contrast sensitivity, visual discomfort, and pattern-sensitive epilepsy.

Our overarching thesis is that such large-scale neuronal oscillatory activity can be ex-

plained within the framework of mean-field neuronal models, in particular through the mech-

anisms provided by Hopf and Turing-Hopf bifurcations. In Chap 1, we examined minimalistic

examples of dynamical systems in which these bifurcations arise. Moreover, since saddle-

node bifurcations of periodic orbits often coincide with subcritical Hopf bifurcations in neural

field networks, our simple Hopf example was constructed to keep solutions bounded, leading

to this secondary bifurcation that, importantly, gives rise to stable limit cycles.

In Chap 2 and Appendices A, B, C, and D, we introduced and explored the dynamics

that can occur in a neural field model that includes the activities of NMDA synapses. These

synapses take longer to activate and decay, possibly leading to the persistent activity seen

in delayed-response working-memory tasks. We derived a Wilson-Cowan-type model based

on simple models of AMPA, GABA, and NMDA synaptic activity and found biologically-

plausible parameter regimes that allowed for bistability between low and high states, both

steady-state and oscillatory.

When several populations were coupled together, the oscillatory activity allowed for much

richer dynamics that may be relevant to working memory. In particular, we found that the

extra information available in the phase of the oscillations allowed for a distinction in the

107



dynamics that can’t obtain in steady-state models. For example, two populations could

oscillate synchronously or asynchronously. With reasonable parameter values, we found that

up to three populations could oscillate out-of-phase with respect to each other, or several

more than that could oscillate in-phase with each other. The dynamics were otherwise

limited only combinatorically, so that several groups of populations oscillated in such a way

that populations within a group oscillated synchronously, while populations between groups

oscillated asynchronously. Such dynamics could correspond to bound and distinct items in

memory, respectively.

By following these oscillatory solutions with respect to important network parameters

such as the synaptic timescales and interpopulation coupling strengths, we showed that these

biophysically germane activities could be obtained with varying ranges of plausible parameter

values. We also looked at how the dynamics changed as these parameter values varied, and

found intuitive rationales for why bifurcations arose, indicating, e.g., why oscillations were

possible for some parameter regimes but not others. We gained insight by looking at the

network in the weak-coupling limit. For example, different dynamical states were more or less

accessible from other states in a way that depended directly on the length of the boundary

that separated the respective basins of attraction.

In Chap 3 and Appendices E and F, we looked at how we might model neuronal pop-

ulations that exhibit spatially resonant responses that arise in contrast sensitivity, visual

discomfort, and pattern-sensitive epilepsy to static stimuli with wavenumbers near 3–5 cy-

cles per degree (cpd). We proposed that so-called Turing-Hopf bifurcations could provide a

mechanism that leads to the loss of stationary activity to spatially and temporally varying

responses. By linearizing our spatially extended network, we found parameters that allowed

for a pair of purely imaginary nontrivial complex-conjugate eigenvalues to exist at a nonzero

wavenumber, m∗. By simulating the network, we recorded the network’s spontaneous and

stimulus-induced dynamics.

Since cortex can be approximated as a sheet of interacting neurons, we first simulated the

network on the torus; i.e., extended in two spatial dimensions with periodic boundary con-

ditions. To obtain enough data for these simulations to be of use required a way to rapidly

integrate such networks forward in time. Making use of developments in general-purpose
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GPU computing, we created code in CUDA C that could simulate networks composed of

512 × 512 excitatory and 512 × 512 inhibitory populations quickly enough to see dynamics

emerge in real time. The performance achieved was sufficient to compute bifurcation dia-

grams by sweeping over sets of parameter values, simulating the network for fixed values

and measuring the variance after transient dynamics had passed to determine the oscillatory

state of the network.

We found that spontaneous oscillations with wavenumbers near m∗ arose once the re-

current excitation (aee) crossed a threshold value (a∗ee). Striped stimuli consisting of simple

cosine functions resulted in spatial resonances that matched the psychophysically deter-

mined sensitive band of 3–5cpd at aee values below this threshold. Interestingly, the most

sensitive stimulus wavenumbers were near 2m∗. This resonance carried over to more com-

plex stimuli that were created by filtering noisy two-dimensional stimuli to exhibit a mix of

lower-frequency modes and one dominant mode whose contribution was amplified. These

stimuli looked like somewhat unstructured, noisy lattices. Such noisy images whose spatial

components in the 3–5cpd range were amplified had been found to be more aversive to hu-

man subjects than corresponding images without such amplification. Thus, we found a set

of behaviors in the network on the torus that matched motivating empirical results.

To better understand the behaviors we observed, we modeled the network on the ring

(i.e., extended in one spatial dimension with periodic boundary conditions), allowing us to

gain more mathematical traction on the system. In particular, this setting allowed us to

characterize the network behaviors based on the bifurcations that arose, using numerical

and analytical methods. XPP-AUTO allowed us to numerically compute bifurcation values,

showing that the network’s instabilities indeed arose as a result of Hopf and Turing-Hopf

bifurcations.

Following these bifurcations as functions of the recurrent excitation, aee, and the stimulus

amplitude, q, provided local stability curves and showed that near the onset of instability, at

(q, aee) = (0, a∗ee), the behavior of the network varied widely across stimulus modes. Stimuli

with modes 0 and 2m∗ were found to show the highest local sensitivities, exhibiting linear

stability curves near onset. This matched our findings in one and two spatial dimensions,

explaining in part why we had to decrease aee to sufficiently low values to better match
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empirical results that indicate that the visual cortex is less sensitive to constant inputs.

Stimuli with other spatial frequencies produced concave up or down stability curves. A

perturbation calculation near the onset of instability mathematically revealed why the 0

and 2m∗ stimulus modes produced linear stability curves while the other modes produced

quadratic stability curves. Moreover, the calculation provided plots that very closely matched

the numerically-computed graphs near the instability.

Since seizures are thought to occur by the spreading of local instabilities across neu-

ronal networks, we tested the responses of the network on the ring to partial-field stimuli.

We found that at higher levels of recurrent excitation that were still below threshold (i.e.,

aee < a∗ee), large-amplitude oscillatory activity that was triggered in the stimulus region

spread across the entire medium in a way that showed the same resonance pattern as for

the full-field stimuli. Once this activity had spread, the network oscillations generally per-

sisted following the removal of the stimulus. This lends support to proposed connective

threading between visual discomfort and pattern-sensitive epilepsy: If the neuronal network

is not very excitable, stimuli only cause local spatiotemporal activity, while if the network

is more excitable, this local activity around the neurons to which the stimulus projects can

spread across the network to regions that receive no such stimulus inputs. Since the network

continues to oscillate upon removal of the stimulus, this also demonstrates the network is

bistable or multistable, as has been proposed. Indeed, following spatiotemporal patterns

with wavenumbers near m∗ in AUTO that tended to match the persistent activity we ob-

served confirmed the existence of regions of multistability between a stable resting state and

large-amplitude spatiotemporally patterned activities that arose as subcritical Turing-Hopf

bifurcations.

Finally, since most real images are composed of many wavenumbers, we studied how the

network responded to such mixed-mode stimuli. As this is a multifaceted question that can

lead to a large variety of explorations, we narrowed our study to how different wavenumbers

impacted the stability of the network to the most sensitive stimulus wavenumber, 2m∗. Most

of the responses of the network to such mixed stimuli were as expected; e.g., increasing the

contribution of the 2m∗ mode to other modes generally made the network more sensitive,

while increasing the contribution of other modes to the 2m∗ mode generally made the network
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less sensitive. However, unexpected behaviors arose as well; for example, increasing the

contribution of the 2m∗ mode to stimuli with modes 2 and 12 could in fact decrease the

sensitivity of the network. Further study of such mixed-mode stimuli could reveal interesting

network dynamics that might be applicable to real-world contexts. For example, while the

sensitivities to stimuli with one dominant mode has been well documented, to our knowledge

sensitivities to stimuli with multiple dominant modes has not been explored. Guidelines that

preclude the appearance of images with dominant wavenumbers within the 3–5cpd range in

video and still images, for example, might be revisited to factor in other mixed-mode stimuli

as well.
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APPENDIX A

MEAN FIELD MODEL MOTIVATION AND SPIKING NETWORK

COMPARISON

Consider a population of N all-to-all coupled excitatory and inhibitory noisy quadratic

integrate-and-fire (QIF) neurons. For simplicity, we use the same number of excitatory

and inhibitory neurons. The network has the form:

dVe,j
dt

= Ie,j + σeξe,j(t) + V 2
e,j (A.1)

dVi,j
dt

= Ii,j + σiξi,j(t) + V 2
i,j,

where ξ are independent white noise processes and the drives include the synaptic interactions

and inputs, I0e,i(t). These inputs are given as:

Ie,j = I0e (t)− θe + aee
1

N

N∑
k=1

uk − aei
1

N

N∑
k=1

vk + aenh(Ve,j)
1

N

N∑
k=1

nk

Ii,j = I0i (t)− θi + aie
1

N

N∑
k=1

uk − aii
1

N

N∑
k=1

vk + ainh(Vi,j)
1

N

N∑
k=1

nk,

where the variables and parameters are as described in Sec 2.2. For the QIF model, when

V (t−) = +∞, it is reset to V (t+) = −∞. (In simulations, we replace ±∞ by ±100.) We use

current-based interactions rather than conductance-based as they are easier to reduce to a
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mean-field [118]. The NMDA current (subscripted n) has an additional voltage dependence

[120]:

h(V ) = 1/(1 + exp(−0.062(V − 60))[Mg]/3.57)

where [Mg] is the extracellular magnesium concentration (set to either 1 or 0 in this paper).

(We note that the voltage is shifted by +60, since our simple QIF model has a resting

potential at around 0 as opposed to -60.) The synaptic gating variables for AMPA (uj) and

GABA (vj) obey simple first-order dynamics:

τeu
′
j = −uj + ζ

∑
k

δ(t− tejk)

τiv
′
j = −vj + ζ

∑
k

δ(t− tijk)

where ζ is a constant that we will choose to match the simulations and te,ijk are the kth spikes

of the jth neuron. We use a simple first-order voltage-gated model of Golomb et al. [119] for

the NMDA synapses:

dnj
dt

= −nj/τn + an/(1 + exp(−(Ve,j − Vth)/Vshp))(1− nj) (A.2)

with τn = 144, Vth = 60, an = 7, Vshp = 5.

Since coupling is all-to-all, we let ū = (1/N)
∑

j uj, v̄ = (1/N)
∑

j vj, and

n̄ = (1/N)
∑

j nj. Thus, for the AMPA and GABA we get:

τeū
′ = −ū+ ζ(1/N)

∑
j,k

δ(t− tejk)

τiv̄
′ = −v̄ + ζ(1/N)

∑
j,k

δ(t− tijk).

We observe that in the limit as N gets large, the sums approach the mean firing rate of the

neurons in each population given the total inputs, Ie, Ii. For the NMDA, we obtain:

dn̄

dt
= −n̄/τn +

1

N

∑
j

an(1− nj)/(1 + exp(−(Ve,j − Vth)/Vshp))

At this point, we make one of our main approximations. Since function R(V ) = 1/(1 +

exp(−(V − Vth)/Vshp)) is close to 0 when the neuron is not firing, but grows rapidly when
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it is firing, we will approximate its average by the average excitatory activity, ū raised to a

power p > 1 to account for the threshold-like behavior and, thus, obtain the following:

dn̄

dt
= −n̄/τn + anC2ū

p(1− n̄)

with C2 chosen to match the amplitude of n̄ for the spiking model.

To obtain the firing rate, consider the mean first passage time for a noise driven QIF

model,

dV = (V 2 + I)dt+ σdW, V (0) = −∞,

where σ is the noise and I is the drive. The expected time T (I, σ) for V (t) to reach +∞

leads to the expected firing rate, ν(I, σ) = 1/T. For the zero noise case, ν =
√

[I]+/π, where

[I]+ is the positive part of I. With noise, this rate can be closely approximated by the

nonlinearity:

f(I) =
1

π

√
I/(1− exp(−βI)),

where β is chosen to best fit for a given σ [72].

With this approximation of the noisy firing rate, we get the approximate equations for

ū, v̄ :

τeū
′ = −ū+ ζf(Ie)

τiv̄
′ = −v̄ + ζf(Ii),

where

Ie = I0e (t)− θe + aeeū− aeiv̄ + aenn̄h̄(Ve)

Ii = I0i (t)− θi + aieū− aiiv̄ + ainn̄h̄(Vi),

where h̄(Ve) = (1/N)
∑
j

h(Ve,j), and similarly for h̄(Vi). We can write down the mean-field

formulation for the dynamics of ū, v̄, and n̄ much more easily if their dynamics only depend

on these variables, and not the voltages. We would therefore prefer to approximate the

functions h̄(Ve,i) by writing them in terms of ū, v̄, or n̄, if possible. If we plot h̄(Ve) against

ū, we see in Fig 27A that (1) h̄(Ve) does not vary much, taking on values from ≈ 0.05 to

≈ 0.2 (whereas h(Ve,j) ranges from nearly 0 when Ve,j resets to -100 all the way to nearly
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1 just before Ve,j reaches the spiking threshold value of +100) and (2) h̄(Ve) might be well

approximated to first order as an affine function of ū. In fact, due to (1), we might in fact

approximate h̄(Ve) to zeroth order; i.e., let h̄(Ve) be approximated by a constant, C1. In

Fig 27B, we see that the average value of h̄(Ve) is approximately 0.1, so we set C1 = 0.1

(red dashed line in Fig 27A and B). We note that since the timescales of the excitatory and

inhibitory membrane constants are both 1 in Eq A.1, h̄(Vi) exhibits the same dynamics that

h̄(Ve) does, so that we can use the same constant, C1, to approximate this function as well.

If we choose ζ = π, then, the equations for ū, v̄ are exactly the same as those that we have

analyzed throughout the paper. Putting all these parts together, we obtain the mean-field

model of the paper:

τeū
′ = −ū+ ζf(I0e (t) + aeeū− aeiv̄ + C1aenn̄− θe)

τiv̄
′ = −v̄ + ζf(I0i (t) + aieū− aiiv̄ + C1ainn̄− θi)

n̄′ = −n̄+ C2anτnū
p(1− n̄)

where the two constants, C1, C2 come from our approximations of the voltage dependences

in the NMDA synapses and currents.

Fig 28 shows a simulation of the spiking model with 200 excitatory and 200 inhibitory

cells and all parameters as in Chap 2 except as indicated in the text and figure caption in

this appendix. The shapes and amplitudes are quite close, although the frequency is faster in

the mean field than in the spiking model. We have shown in this appendix that we can find

a spiking model that will generate the same dynamics as our Wilson-Cowan type system.

Furthermore, we have given a heuristic (via two approximations) way to incorporate NMDA

into the mean field model that closely matches the dynamics of the spiking model on which

it is based.
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Figure 27: Average voltage activation function for NMDA receptors. During one oscillation

of the network, h̄(Ve) traces out a path with respect to ū in (A) that, to first order, can

be approximated as an affine function of ū. However, since the range of h̄(Ve) is only

≈ (0.05, 0.2), we choose here to approximate it to zeroth order as a constant, C1. In (B), we

see the average value of h̄(Ve) is ≈ 0.1, and so we set C1 = 0.1, indicated by the red dashed

line in both figures. Since the inhibitory voltages have the same membrane time constant

and show the same dynamics as the excitatory voltages, we can approximate h̄(Vi) with the

same value.
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Figure 28: Comparison of the spiking model with the mean field model. Left: The average

of uj, vj, nj for the full spiking model with [Mg] = 1mM , aen = 40, ain = 1, ζ = π, an = 7.

Stimulus is a 50ms pulse given at t = 50. Right: The mean field model with C1aen = 4,

C1ain = 0.1, C2anτn = 2.
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APPENDIX B

THE U, V, N SYSTEM

Here we examine the mechanisms by which persistent steady state and oscillatory behaviors

arise in our model when the excitatory neurons are excited by a brief input stimulus. The

NMDA dynamics ensure NMDA stays bounded within [0, 1] (given initial conditions in the

same interval). The null surface for NMDA is sigmoidal (n = an·up
1+an·up ), suggesting the

possibility of bistability between a low state and a high state. Indeed, the NMDA allows

for latch-like behavior of the system [29], so that low NMDA activity coincides with low

u and v values (or low average values in the oscillatory case), and high (average for the

oscillatory case) NMDA coincides with higher u and v values. Although Eq (2.1) in Chap

2 describes a three-dimensional system when N = 1, we may gain some intuition for the

observed dynamics by fixing n at a constant level (since it evolves slowly and changes little

compared to u and v) and examining the reduced u-v system. Thus, changing n in this

planar system is equivalent to changing θe,i in tandem in the original system. Foregoing the

stimulus, the reduced system is:

u′ = −u+ f(aee · u− aei · v + aen · n− θe)

τi · v′ = −v + f(aie · u− aii · v + ain · n− θi) (B.1)

We may now examine the nullclines in Eq (B.1). As we see in Fig 29, for low n (Fig 29A)

the v-nullcline intersects the left branch of the u nullcline, while for high n (Fig 29B), the
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v-nullcline intersects the middle branch of the u-nullcline. Thus, the low n case results in

a stable fixed point, and the high n case results in a fixed point at somewhat higher u and

v that may be stable or unstable, depending on τi. For low τi (e.g., τi = 1), this high

fixed point is stable; for higher τi, a stable oscillation emerges, as suggested in the example

trajectories in Fig 29B. We note that the “high” point in this case still corresponds to low

u and v values, though in the oscillatory case this can still lead to large maxima, as we see

in Fig 29B, e.g. The nullcline intersection can change based on parameter values, however.

Lowering aei to 8, e.g., results in a middle-branch intersection at much higher u and v values,

as suggested by Fig 30A. Therefore, depending on the values of the other parameters, varying

n (still as a parameter) can allow such a two-dimensional system to switch between low- and

high-activity states that can be either steady-state or oscillatory.

u (t)
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v
 (
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n = 0.15

u (t)
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v
 (

t)

0

1

3

5

7

n = 0.8A) B)

Excitatory (u) nullcline

Inhibitory (v) nullcline

Trajectories

Initial conditions

Figure 29: Nullclines and example trajectories for Eq (B.1). Parameter values are as given

in Sec 2.2. (A) For lower NMDA (n) values, the v-nullcline intercepts the left branch of the

u-nullcline, resulting in a stable fixed point. (B) For higher NMDA values, the v-nullcline

intercepts the middle branch of the u-nullcline; the fixed point is stable for low τi values

and unstable for larger τi values. Here, τi = 12, so that the fixed point is unstable and the

system has a stable limit cycle, as suggested by the example trajectories.

In the full three-dimensional system, we set up our u and v nullsurfaces so that their

low-n and high-n cross-sections intersect as the corresponding 2-dimensional nullclines do,

using the parameters given in Sec 2.2. As the NMDA nullsurface is sigmoidal, it can act as

a dynamic latch, so that once n is excited enough (via the s(t)→ u→ n path), the system
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Figure 30: Bifurcations and dynamics for one population for Eq (2.1) in Chap 2. (A) There

are open sets of parameters, such as aei, that allow for bistability between low states and high

states. (B) Increasing τi leads to a subcritical Hopf bifurcation of the high fixed point. In (C)

and (D), a stimulus of width 10ms and amplitude of 5 (au) is applied to the u populations

at t = 100ms, leading the circuit to evolve to high active states: a high fixed point in the

case of τi = 1 in (C) and large-amplitude oscillations in the case of τi = 10 in (D). Since

in both cases the circuit returns to the low steady state if the stimulus amplitude or width

are below threshold values, both cases display bistability between low rest states and high

active states.

is attracted to the high state. As we just mentioned above, the existence of bistability is,

of course, dependent on system parameters; for example, we see that two stable fixed points

exist for a range of aei values in Fig 30A. As τi increases, the high fixed point destabilizes and

a limit cycle is born via a subcritical Hopf bifurcation (Fig 30B). While this allowed us to

easily find parameters with which both a stable low fixed point and a stable high, oscillatory,

state coexist, we ended up using aei = 10, not 8 as in Fig 30B. For aei = 10, the oscillations

are lost as a fold of limit cycles as in Fig 30B as τi decreases, but there is no Hopf; rather,
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we end up with an isola of limit cycles as in Fig 5A in Chap 2. If τi decreases beyond the

left fold, only the low steady state stably exists.

We may gain further intuition for how the separation of timescales allows for oscillations.

Once the excitatory stimulus kicks the AMPA population sufficiently, the population begins

an excursion around phase space. In turn, it excites the inhibitory population, which then

chases the AMPA population, curtailing its growth. As the inhibitory timescale is slower

than that of the excitatory population (τi > τe = 1), the inhibition eventually wins out,

quenching the activity of the AMPA population, as we see in Fig 30D. This is why the

NMDA population is important: The NMDA is excited by the AMPA, but decays much

slower than the inhibition (τn > τi), allowing the NMDA to outlast the upstroke of the

inhibition. By doing so, the NMDA can then re-excite the AMPA population once the

inhibition is sufficiently low, producing the observed wavetrain in Fig 30D.

Thus, if τn is too small, the NMDA population will increase rapidly with AMPA, but will

then decay too quickly to maintain the activity of the AMPA population after the inhibitory

population has quenched it. Clearly the same problem will occur if τi is too large. Therefore,

the ratio τi
τn

must be small enough. However, if τi is too small, two possibilities emerge: (1)

the inhibition (v) decays too quickly to quench the excitatory population, in which case

activation will lead to a stable up state; (2) the inhibition activates very rapidly, quenching

the excitatory activity before it increases enough from its baseline levels, in which case no

activation occurs: only the low steady state is stable. For our parameter choices, decreasing

τi leads to (2), as we mentioned above. In either case, the initial phase space excursion that

occurs in the oscillatory case cannot take place at all. Instead, after receiving a stimulus the

excitation will either settle at the high fixed point in the case of (1) with a strong enough

stimulus (as we can see in Fig 30C), or else it will simply decay back to the low steady state.

Hence, we now have some intuition to understand the general shapes of the bifurcation curves

in Fig 5B, 5C, and 5D in Chap 2.
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APPENDIX C

WEAK COUPLING ANALYSIS

Using the parameters shown in Sec 2.2 in Chap 2 for a single local u− v− n circuit, we can

perform a weak coupling analysis (WCA) around the limit cycle solution that appears in the

up state. That is, since the coefficients that we use tend to be small compared to the self

coupling, the WCA can provide some insights into the possible patterns when M groups are

oscillating. The results should hold for any size network, since the “down” circuits contribute

very little to the interactions in the groups that are oscillating. To perform the WCA, we

first see that

f(aeeu+ aenn− aeiv − θe − εv̂) ≈ f(Ie)− ε f ′(Ie)v̂,

where Ie = aeeu+aenn−aeiv− θe, and with similar terms for other types of coupling. Recall

that in WCA, we reduce equations of the form

X ′i = F (Xi) + εGi(X1, . . . , XN), i = 1, . . . , N (C.1)

to a set of equations of the form:

θ′i = 1 +Hi(θ1 − θi, . . . , θN − θi).

To achieve this reduction, we assume there is a T−periodic limit cycle solution to the

uncoupled system (i.e., Eq (C.1) with ε set to 0), U ′ = F (U), and let Z(t) be the unique
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solution (adjoint solution) to Z ′ = −(DXF (U))T , with U ′(t)·Z(t) = 1. The phase interaction

functions Hi are defined as

Hi(φ1, . . . , φN) =
1

T

∫ T

0

Z(t) ·Gi(U(t+ φ1), . . . , U(t+ φN)) dt.

Since all coupling is summed up, we only need to compute the interaction with one other

circuit. Thus, we need to compute the adjoint solution and the basic limit cycle. Letting

(u(t), v(t), n(t)) be the basic limit cycle for the isolated population and (u∗(t), v∗(t), n∗(t))

be the corresponding adjoint solution, we compute the following four interaction functions:

Hee(φ) =
1

T

∫ T

0

u∗(t)f ′(Ie(t))[aeeu(t+ φ) + aenn(t+ φ)] dt

Hei(φ) = − 1

T

∫ T

0

u∗(t)f ′(Ie(t))aeiv(t+ φ) dt

Hie(φ) =
1

T

∫ T

0

v∗(t)f ′(Ii(t))[aieu(t+ φ) + ainn(t+ φ)] dt

Hii(φ) = − 1

T

∫ T

0

v∗(t)f ′(Ii(t))aiiv(t+ φ) dt.

Once we have the interaction functions, we can study the dynamics of the oscillators

when weakly coupled. We form the composite function:

H(φ) = ceeHee(φ) + ceiHei(φ) + cieHie(φ) + ciiHii(φ).

The coupled phase equations satisfy

θ′i =
∑
j 6=i

H(θj − θi),

where i varies from 1 to N active groups. To determine the locked patterns, we reduce the

dimension to N−1 by setting θ1 = 0 and subtracting θ′1 from the remaining N−1 equations:

ψ′i =
∑
j 6=i

H(ψj − ψi)−
∑
j>1

H(ψj).

Here, ψi represents the phase relative to θ1. Stable fixed points of this (N − 1) – dimen-

sional system correspond to the attracting dynamics of the weakly coupled system. Table

1 summarizes the attractors for up to 4 active groups when each of the individual coupling

terms are set to 1 and the rest are set to zero. We note that the behavior of EE coupling
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serves mainly to synchronize and that the EI and IE coupling have similar behavior. Small

amounts of EE coupling in addition to EI coupling (what we use in the full model) behave

like the EI coupling alone as long as the EE coupling is not too big. For example, with EI

coupling and three active groups, WCA predicts that there will be synchrony (S), a splay

state (L), and a clustered state (C) with two oscillators synchronized and the third out of

phase (see Fig 9 in Chap 2, where L is indicated as OP and C as MP). Since the coupling is

all-to-all and symmetric, all possible permutations of the attractors occur.

This analysis explains many of the interactions we see with active populations. We

remark that the analysis is only valid when the coupling is weak enough, but it still manages

to include many of the attractors that are seen when there are two or more active populations.

We finally note that for 5 or more active populations we only see various clustered states

and synchrony with weak coupling; we do not see any splay states. Thus, at least when the

coupling is weak, there is limited capacity in the network.
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Active EE EI IE II

2 S, A S, A S, A N

3 S S, L, C S, L, C C

4 S S, CS, C, L3 S, CS, C, L C

Table 1: Weak coupling summary of the dynamics for up to 4 active groups. The states are

synchronous (S), anti-phase (A), nonsynchronous (N), clustered (C), symmetric cluster (CS),

splay (L), and semi-splay (L3). By synchronous, we mean that all the oscillators fire together

in-phase; anti-phase means the two oscillators fire a half cycle apart; clustered means that two

groups of oscillators form that are synchronous within the group and out-of-phase between

groups; symmetric clusters mean that there are equal numbers in each group; nonsynchronous

means neither synchronous nor anti-phase; splay is the state: 0, 1/N, 2/N, . . . , (N−1)/N ;

semi-splay is a state where 2 oscillators are synchronized and the other two are out of phase

but not synchronized themselves. Thus, A, L, and N correspond to the out-of-phase (OP)

oscillations described in Chap 2 while C, CS, and L3 correspond to the mixed-phase (MP)

oscillations.
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APPENDIX D

CHANGE IN OP AND S DYNAMICS

WITH VARYING COUPLING STRENGTHS AND SYNAPTIC

TIMESCALES

OP solutions (N=2)

The OP state arises through competition that is facilitated by the mutual inhibition,

cei. For two populations P1 and P2, as we have here, each excitatory component, u1 and

u2, peaks twice during each oscillation; once at a large value (the large peak) and once at a

small value (the small peak) (see Fig 31). Henceforth we will refer to the population that

peaks at a large value as the primary population, and the one that peaks at a small value as

the secondary population. For example, suppose P1 is the primary population and P2 is the

secondary population as in the first half of the oscillation in, e.g., Fig 31B. The downstrokes

for both u1 from its large peak and u2 from its small peak are caused by the upstroke of v1.

Thus, u2 (and therefore P2, since our readout is the excitatory component) is kept inactive

by the competitive activity from v1.

What happens as the coupling strengths ce and cei change? Several characteristics may

become altered, including the maxima and minima that the various components achieve, the

period of the oscillation, and the relative phase timings of the components. However, since

the populations are coupled together only through the excitatory components, perhaps the

most important change is the increase in the amplitude of the small peak. Once the small

peak increases too much, the secondary population may no longer be suppressed, becoming
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Figure 31: Example traces of OP states for N = 2 and varying ce and cei. As ce and

cei increase, the small peak of the excitatory population becomes more pronounced. (A)

ce = 0, cei = 0.01. Here no small peak occurs. (B) ce = 0, cei = 0.54. The primary excitatory

population (top plot in blue at the beginning of the timecourse) begins to rise again after its

first large excursion from its baseline value, but the secondary inhibitory population (bottom

red plot at the start of the trace) comes on and is seen to stop the first population in its

tracks, so that only a small, secondary excursion occurs. (C) ce = 0.055, cei = 0.0855. The

presence of the excitatory coupling from nonzero ce pushes the small peak in such a way as to

be more coincident with the large peak of the alternate population; however, the inhibition

due to cei still suppresses it, again only allowing for a small excursion from baseline.
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ce Period Large u peak Small u peak vmax vmin nmin

0.00 92 10.0 0.05 7.5 0.15 0.59

0.05 89 9.3 0.64 6.8 0.17 0.60

Table 2: OP state changes with ce. An example of the changes to the OP state for N = 2

that occur as ce increases while cei remains fixed at 0.3.

active and perhaps synchronizing with the primary population. This is manifested as a

bifurcation (see Fig 8C in Chap 2). Indeed, in all of the cases we examined, if either ce or cei

increases beyond the bifurcation values, the network transitions to synchrony in numerical

simulations. We first look at varying ce and then the more complicated and somewhat

paradoxical picture of varying cei.

Fixed cei, varying ce

Fixing cei and increasing ce results in (1) slightly decreased period; (2) decreased large

peak; (3) increased small peak (Table 2). Suppose again that P1 is the primary population

and P2 is the secondary population, so that u1 > u2 in the interval of interest. We first

observe that as ce increases, u2 receives significantly more excitation, while u1 receives less

excitation. This is a direct result of the normalization we have used. In particular, from Eq

(2.2) in Chap 2 we see that for two populations,

ũ1 =
u1 + ce u2

1 + ce
.

Differentiating ũ1 with respect to ce shows that it monotonically decreases as ce increases if

u1 > u2, as we have assumed. As a result, u1’s maximum decreases, so that the width of

the pulse of u1 decreases, whereas the length of its quiescent phase experiences almost no

change. Thus, the small decrease in period is mostly due to the decrease in the amplitude
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cei Period Large u peak Small u peak vmax vmin nmin

0.00 49 9.2 N/A 6.3 0.39 0.77

0.54 114 10.4 0.64 8.2 0.14 0.53

Table 3: OP state changes with cei. An example of the main changes to the OP state for

N = 2 that occur as cei increases while ce remains fixed 0. Note that the value for the small

u peak indicates “not applicable” since the peak in the secondary excitatory component only

occurs for large enough cei and ce.

of the large peak. For nonzero cei, the increase in the maximum of u2 in turn further

excites v2, so that u1 experiences greater inhibition. Thus, in addition to the effect just now

described, increasing ce results in a lower maximum for u1 since v2 inhibits u1 more when cei

is nonzero. In either case, once the maximum of the secondary u becomes too large relative

to that of the primary u, the splay state is lost to synchrony.

Fixed ce, varying cei

As cei increases, we observe the following changes: (1) the peak of the large amplitude

changes, increasing monotonically until just before bifurcation; (2) the small peak changes,

generally increasing monotonically; (3) the period of the oscillation changes, increasing mono-

tonically until just before bifurcation; (4) the inhibition generally peaks at larger values and

decays to smaller values; (5) the NMDA generally decays to lower levels (Table 3). There

are some subtle differences when ce is low or high, and we discuss each in turn.

When ce is low or zero, the effects of increasing cei are straightforward. We again suppose

P1 is the primary population and P2 is the secondary population. For simplicity we will

focus on ce = 0. The excitatory component of the primary population, u1, cannot begin

its larger upstroke until ṽ1 is sufficiently low. Since v1 is very low before u1 begins its large

upstroke, v2 provides most of the inhibition that keeps u1 low before its large upstroke.
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However, we again look at the coupling term:

ṽ1 =
v1 + cei v2

1 + cei
, (D.1)

Differentiating with respect to cei, we see that ṽ1 increases (for fixed v1 and v2) with

increasing cei when v2 > v1. Thus, as cei increases, both v1 and v2 must decay to lower

values before releasing u1.

For identical reasons, u2 receives less inhibition at the beginning of the large upstroke of

u1 as cei increases. That is, ṽ2 decreases (for fixed v1 and v2) as cei increases when v2 > v1.

This leads to lower inhibition for u2 as it begins its small upstroke, allowing it to peak at a

higher value (we note that n2 has also decayed to a lower value, leading to less excitation

for u2; however, since aen is much smaller than aei, this effect is much smaller).

In summary, larger cei requires lower inhibitory component values in order for the exci-

tatory components to activate, leading to larger amplitudes of the small peak, a result that

eventually destabilizes the antiphase solution. In this scenario, it seems that the increases

in the period and the amplitude of the large peak are secondary effects.

We note that there is some competition between the effects of cei. On the one hand, larger

cei may allow a smaller amount of inhibition of one population to quench the activity of the

other; on the other hand, for reasons outlined in the above paragraph, larger cei can increase

the amplitudes of the smaller peaks. Thus, depending on, for example, the precise phase

timings of the various components of the two populations, larger cei could either quench or

enhance the activity of the secondary population.

When ce is larger, we observe exactly these competitive effects as cei increases. In par-

ticular, while the large peak increases monotonically until just before bifurcation, the small

peak first increases, then decreases, then increases again. This pattern leads directly to the

nonmonotonic behavior of curve (iv) in Fig 8C in Chap 2. That is, for some ce values, the

OP state is lost, regained, and lost again as folds of limit cycles with increasing cei. This

appears to be due directly to the nonmonotonic behavior of the small peak for the reasons

we described above. In particular, the cei values at which the amplitude of the small peak

begins to decrease converge to the minimum of curve (iv) in Fig 8C in Chap 2. We note that
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this competition that leads to the nonmonotonic curve depends on the particular parame-

ters. We have explored other parameter sets, e.g., with which this curve simply decreases

monotonically as cei increases.

Synchronous solutions, varying cei

In Fig 6D in Chap 2, we see a general tendency for increasing cei to increase the interval

of τi for which we obtain stable M -S solutions, where M ∈ {1, ..., N}. Here we provide

some heuristic reasoning for why this may be the case.

We first note that when M = N , as we described at the beginning of Sec 2.3.2.2, the

network oscillates as if there were only one population, although the cei value somewhat

changes the range of parameters that allows for this oscillation to exist stably. This is

expected, as any perturbation of one of the populations will mean it will feel inhibition from

the remaining M − 1 populations, and will provide inhibition to them as well. In particular

though, we note that as cei changes for this case, the behavior of the solutions do not change

at all; neither the period nor any of the amplitudes change with varying cei. This is not the

case for M 6= N .

For M < N , we begin to observe changes in the period, the amplitudes of the various

components, and the waveform of the solutions. Generally speaking, increasing cei both

increases the largest and decreases the smallest τi values that admit stable oscillations, as we

see in Fig 6D in Chap 2. While this is not strictly the case for M = 4 as the smaller τi limit

increases very slightly, it indicates the trend. We note that while the cases ofM = 2, ..., N−1

may be argued similarly to the case of M = 1, there are certain subtleties that somewhat

complicate the picture. Since, as we see in Fig 6D in Chap 2, the range of τi increases for

the 1-S oscillation in the same way as for M = 2 or 3 and nearly in the same way as for

M = 4, we will focus on the simplest case of M = 1.

As τi increases, the period lengthens and the maxima of the excitatory and inhibitory

solutions increase. As we explain in Appendix B, if τi is too large relative to τn, the NMDA

will not outlast the inhibition and the oscillations will cease. If τi is too small (and we

are not in a parameter regime that allows for a stable high steady state; see Appendix B)
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the inhibition activates very rapidly, quenching the excitatory activity before it increases

enough from its baseline levels, in which case no activation occurs: only the low steady state

is stable. The periods and amplitudes of the populations also change with cei as shown in

Fig 32. The amplitudes increase monotonically with cei (although perhaps by very little, as

we see in Fig 32 for τi = 39.8), while the periods may increase or decrease.

The stronger trend with increasing cei that we observe in Fig 6D in Chap 2 (where cei

increases from 0.03 to 0.07) is the increase in the upper τi limit. To see why this might occur,

consider M = 1, suppose that P1 is the active population, and note that the populations

that are inactive are not only at similarly low levels, but in fact are themselves oscillating

synchronously at low values. Therefore, the inhibition that u1 receives is given by Eq (2.2)

in Chap 2, which we specify for the case of ṽ1 here:

ṽ1 =

(
v1 + cei

N∑
k=2

vk

)(
1 + cei (N − 1)

)−1
,

which simplifies to

ṽ1 =
v1 + ceivj

1 + cei
,

where j can be anything in {2, ..., N} since, as we mentioned, {P2, ..., PN} are synchronous.

This, of course, is identical to Eq (D.1), and so the same analysis can be applied as was done

in that case. In particular, we note that since P1 is the only active population, u1 is always

(or nearly so) larger than uj, for j ∈ {2, ..., N}. Thus, following the above analysis (where

P1 is essentially always the primary population), ṽ1 decreases with increasing cei, so that

u1 receives less inhibition. This exactly explains the increase in the maxima of u1 with

increasing cei (and, since vj is excited by uj, the increase in the maximum of v1 as well).

More relevantly, u1 needs less excitation from n1 to maintain the large oscillations for larger

cei values, allowing the oscillations to remain stable for larger τi values, as we see in Fig 6D

in Chap 2.

The same explanation holds for low τi values. As cei increases, u1 receives less inhibition,

so that u1 can maintain its activity for smaller τi. For example, suppose cei = 0.03 and
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Figure 32: Example traces of one population oscillating with N = 5. In each row, cei is

fixed (and increases as we go from the top row to the bottom row), while τi increases from

left to right. As τi increases with cei fixed, the period and amplitude increase monotonically

and substantially, while as cei increases with τi fixed, the amplitudes increase monotonically,

but by much smaller amounts for the given range of cei values, while the periods show more

complicated behaviors. For τi = 3 (left 2 plots), the period increases monotonically with

cei, while for τi = 39.8 (right 2 plots), the period in fact decreases and then increases as cei

increases from 0.03 to 0.07. For both τi values, decreasing cei just a little bit below 0.03

results in the loss of the oscillations to the low steady state.
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τi = 2.9, the lower point for M = 1 in Fig 6D in Chap 2. As cei increases, u1 receives less

inhibition, so that v1 needs to activate even faster to prevent u1 from its large excursion

from baseline. Thus, τi must be lowered still further for cei = 0.07 before P1 will be unable

to remain active (down to τi = 2 in this example).
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APPENDIX E

LINEAR STABILITY ANALYSIS

OF THE WILSON-COWAN NETWORK EXTENDED IN ONE SPATIAL

DIMENSION

We will show explicitly how we determined the analytical stability curves shown in Fig 24 in

Chap 3. The calculations shown in this appendix were input into Mathematica to determine

the numerical values of the relevant variables, allowing us to make the plots in Fig 24.

E.1 DETERMINATION OF THE EIGENVALUES

E.1.1 The nonhomogeneous steady state

Letting m∗ be our critical wavenumber and N the number of neuronal populations, we set

ω∗ = 2πm∗

N
and µ = 2πk

N
. We’ll designate the eigenvalue of the linearization (Eq (3.10))

as λ0 = iζ0. Since we’ll be analyzing the behavior of our Wilson-Cowan network in one

spatial dimension when we turn on the stimulus, for this analysis we let the amplitude of

the stimulus, q, be a small parameter. Thus, we wish to perform a linear stability analysis

on the system given by

τe ut(x, t) = −u+ fe(Jee ∗ u− Jei ∗ v + q cosµx)

τi vt(x, t) = −v + fi(Jie ∗ u− Jii ∗ v + qr cosµx),
(E.1)

where our domain is [0, 1] and fe,i = f(x− θe,i)− f(−θe,i), so that our homogeneous (q = 0)

steady state is (0, 0).
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We use α1 = f ′(θe), α2 = f ′′(θe)/2, α3 = f ′′′(θe)/6 and β1 = f ′(θi), β2 = f ′′(θi)/2, β3 =

f ′′′(θi)/6. Expanding fe,i therefore gives

fe(x) = α1x+ α2x
2 + α3x

3 + ...

fi(x) = β1x+ β2x
2 + β3x

3 + ...
(E.2)

since fe,i(0) = 0.

Expanding the nonhomogeneous steady state provides

uss = u+ qu0 + q2u1 = qu0 + q2u1

vss = v + qv0 + q2v1 = qv0 + q2v1,
(E.3)

since (u, v) = (0, 0) is the homogeneous steady state. Since usst = vsst = 0, we expand (E.1)

to obtain

qu0 + q2u1 =qα1 [Jee ∗ u0 − Jei ∗ v0 + cosµx] +

q2
[
α1 (Jee ∗ u1 − Jei ∗ v1) + α2 (Jee ∗ u0 − Jei ∗ v0 + cosµx)2

]
,

(E.4)

and similarly for v. Therefore, our first terms are

u0 = α1 [Jee ∗ u0 − Jei ∗ v0 + cosµx]

v0 = β1 [Jie ∗ u0 − Jii ∗ v0 + r cosµx] .
(E.5)

As we are on a periodic domain and apply a cosine stimulus, we look for solutions

u0 = γ0 cosµx, v0 = η0 cosµx. (E.6)

While Eq (E.5) is not an algebraic system, we are in fact able to transform it into one by

observing how convolutions with sinusoidal functions can be simplified. Consider any kernel

function K(x) and let ξ = 2πl
L

. Then the convolution∫ ∞
−∞

K(y)
(
eiξ(x−y)

)
dy = eiξx

∫ ∞
−∞

K(y)e−iξydy = K̂(l) · eiξx,

where K̂(ξ) is the Fourier transform of K. If K(x) is even, then the same is true when we

convolve K against e−iξx:∫ ∞
−∞

K(y)
(
e−iξ(x−y)

)
dy =

∫ ∞
−e−iξx∞

K(y)eiξydy
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=

∫ ∞
−e−iξx∞

K(y)e−iξydy = K̂(l) · e−iξx,

where we’ve used the change of variables y ← −y in the second step. Finally, putting these

two identities together further provides the same type of identity when an even K(x) is

convolved against a cosine function:∫ ∞
−∞

K(y) cos ξx =
1

2

∫ ∞
−∞

K(y)
(
eiξ(y−x) + e−iξ(y−x)

)
=

∫ ∞
−∞

K(y)e−iξydy = K̂(l) · cos ξx dy.

Clearly, the same holds when convolving against a sine function. Summarizing, if we have

an even function K(x) and a periodic function P (x; ξ) = Aeiξx + Be−iξx with A, B ∈ C,

then

(K ∗ P )(x; ξ) =

∫ ∞
−∞

K(y)P (x− y; ξ)dy = K̂(l) · P (x; ξ). (E.7)

We’ll use this result extensively. For example, Jee ∗ γ0 cosµx = Ĵee(k) · γ0 cosµx, where

Ĵee(k) =
∫∞
−∞ Jee(y) · exp

(−2πik
N

y
)
dy. We also note that our Gaussian kernel remains a

Gaussian under a Fourier transformation:

aee
σe
√
π

∫ ∞
−∞

exp

(
−y2

σ2
e

)
· exp (−2πiky) dy = aee exp (−πkσe)2.

Thus, plugging (E.6) into (E.5) and using (E.7) provides our first perturbed terms

γ0 = α1

[
Ĵee(k)γ0 − Ĵei(k)η0 + 1

]
η0 = β1

[
Ĵie(k)γ0 − Ĵii(k)η0 + r

]
.

This gives  1− α1Ĵee(k) α1Ĵei(k)

−β1Ĵie(k) 1 + β1Ĵii(k)

 γ0

η0

 =

 α1

β1r

 ,
which we invert to obtain γ0 and η0.

136



We now find the O(q2) terms. From the O(q2) terms of (E.4) we obtain

u1 − α1Jee ∗ u1 + α1Jei ∗ v1 = α2 (Jee ∗ u0 − Jei ∗ v0 + cosµx)2 =
α2u

2
0

α2
1

ψ1 − β1Jie ∗ u1 + β1Jii ∗ v1 = β2 (Jie ∗ u0 − Jii ∗ v0 + r cosµx)2 =
β2v

2
0

β2
1

.

Applying (E.6) (and using cos2 x = 1
2
(1 + cos 2x)) to the RHS of the above system implies

that

u1 = γ1 + γ2 cos 2µx, v1 = η1 + η2 cos 2µx.

This provides

γ1 − α1Ĵee(0)γ1 + α1Ĵei(0)η1 =
α2

2α2
1

γ20

η1 − β1Ĵie(0)γ1 + β1Ĵii(0)η1 =
β2

2β2
1

η20

γ2 − α1Ĵee(2k)γ2 + α1Ĵei(2k)η2 =
α2

2α2
1

γ20

η2 − β1Ĵie(2k)γ2 + β1Ĵii(2k)η2 =
β2

2β2
1

η20.

Our cos 0x terms are given by

 1− α1Ĵee(0) α1Ĵei(0)

−β1Ĵie(0) 1 + β1Ĵii(0)

 γ1

η1

 =

 α2

2α2
1
γ20

β2
2β2

1
η20

 ,

and our cos 2µx terms are given by

 1− α1Ĵee(2k) α1Ĵei(2k)

−β1Ĵie(2k) 1 + β1Ĵii(2k)

 γ2

η2

 =

 α2

2α2
1
γ20

β2
2β2

1
η20

 .

Solving these two linear systems provides our coefficients.
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E.1.2 Linearization about the nonhomogenous steady state

We now prepare to linearize about our nonhomogenous steady state. If we let

Le(u, v) .. = Jee ∗ u− Jei ∗ v

Li(u, v) .. = Jie ∗ u− Jii ∗ v,

we have, from (E.1) and (E.2),

τe ut =− u+ α1 (Le(u, v) + q cosµx) + α2 (Le(u, v) + q cosµx)2

+ α3 (Le(u, v) + q cosµx)3

τi vt =− v + β1 (Le(u, v) + qr cosµx) + β2 (Le(u, v) + qr cosµx)2

+ β3 (Le(u, v) + qr cosµx)3 .

(E.8)

We perturb u and v so that u = uss+w, v = vss+y, where w and y are small, and rearrange

(E.8):

τe wt = −(uss + w) + α1 [Le(uss + w, vss + y) + q cosµx]

+ α2 [Le(uss + w, vss + y) + q cosµx]2

+ α3 [Le(uss + w, vss + y) + q cosµx]3

τi yt = −(vss + y) + β1 [Li(uss + w, vss + y) + qr cosµx]

+ β2 [Li(uss + w, vss + y) + qr cosµx]2

+ β3 [Li(uss + w, vss + y) + qr cosµx]3 .
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Each term in brackets is (Le(w, y) + [Le(uss, vss) + q cosµx]), which we can expand using the

binomial theorem to get

wt =���−uss − w +
((((

(((
((((

(((
α1 [Le(uss, vss) + q cosµx]

+α1Le(w, y) +
((((

((((
((((

((

α2 [Le(uss, vss) + q cosµx]2

((((
((((hhhhhhhh+α2 [Le(w, y)]2

+ 2α2 [Le(uss, vss) + q cosµx]Le(w, y)

+
((((

((((
((((

((

α3 [Le(uss, vss) + q cosµx]3

+ 3α3 [Le(uss, vss) + q cosµx]2 Le(w, y)

((((
((((

((((
(((

((((
(hhhhhhhhhhhhhhhhhhhh

+3α3 [Le(uss, vss) + q cosµx]Le(w, y)2

((((
((((hhhhhhhh+α3 [Le(w, y)]3

where the ((((( is due to uss’s construction and (((((hhhhh is due to our only looking up

to leading order in (w, y) since we are linearizing about the steady state.

The treatment of the yt equation is idential. For the w equation, we are left with

τe wt =− w + α1Le(w, y)

+ 2qα2 [Le(γ0 cosµx, η0 cosµx) + cosµx)]Le(w, y)

+ 2q2α2 [Le(γ1 + γ2 cos 2µx, η1 + η2 cos 2µx)]Le(w, y)

+ 3q2α3 [Le(γ0 cosµx, η0 cosµx) + cosµx)]2 Le(w, y),

or

τe wt =− w + α1Le(w, y))

+ q [ 2α2 cosµx
(
γ0 Ĵee(k)− η0 Ĵei(k) + 1

)]
Le(w, y)

+ q2 [ 2α2

{
γ1 Ĵee(0)− η1 Ĵei(0) + cos 2µx

(
γ2 Ĵee(2k)− η2 Ĵei(2k)

)}
+

3

2
α3 (1 + cos 2µx)

(
γ0 Ĵee(k)− η0 Ĵei(k) + 1

)2]
Le(w, y).
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Similarly, our yt equation is

τi yt =− y + β1Li(w, y))

+ q [ 2β2 cosµx
(
γ0 Ĵie(k)− η0 Ĵii(k) + r

)]
Li(w, y)

+ q2 [ 2β2

{
γ1 Ĵie(0)− η1 Ĵii(0) + cos 2µx

(
γ2 Ĵie(2k)− η2 Ĵii(2k)

)}
+

3

2
β3 (1 + cos 2µx)

(
γ0 Ĵie(k)− η0 Ĵii(k) + r

)2]
Li(w, y).

Letting

A .. = 2α2

(
γ0 Ĵee(k)− η0 Ĵei(k) + 1

)
B .. = 2β2

(
γ0 Ĵie(k)− η0 Ĵii(k) + r

)

C0
.. = 2α2

(
γ1 Ĵee(0)− η1 Ĵei(0)

)
+

3

2
α3

(
γ0 Ĵee(k)− η0 Ĵei(k) + 1

)2

C2
.. =2α2

(
γ2 Ĵee(2k)− η2 Ĵei(2k)

)
+

3

2
α3

(
γ0 Ĵee(k)− η0 Ĵei(k) + 1

)2

D0
.. = 2β2

(
γ1 Ĵie(0)− η1 Ĵii(0)

)
+

3

2
β3

(
γ0 Ĵie(k)− η0 Ĵii(k) + r

)2
,

D2
.. = 2β2

(
γ2 Ĵie(2k)− η2 Ĵii(2k)

)
+

3

2
β3

(
γ0 Ĵie(k)− η0 Ĵii(k) + r

)2
,

we have

τe wt = [−w + α1Le(w, y))]

+ qA cosµxLe(w, y)

+ q2 (C0 + C2 cos 2µx)Le(w, y)
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τi yt = [−y + β1Li(w, y))]

+ qB cosµxLi(w, y)

+ q2 (D0 +D2 cos 2µx)Li(w, y).

Letting Ω(x, t) =

 w(x, t)

y(x, t)

,  Le ← Le
τe

, and Li ← Li
τe

, we thereby obtain

Ω(x, t)t =


 −1+α1Jee∗

τe
−α1

τe
Jei∗

β1
τi
Jie∗ −1−β1Jii∗

τi

+ q cosµx

 A
τe
· Jee∗ − A

τe
· Jei∗

B
τi
Jie∗ −B

τi
Jii∗


+ q2

 C0

τe
· Jee∗ −C0

τe
· Jei∗

D0

τi
Jie∗ −D0

τi
Jii∗

+ cos 2ωx

 C2

τe
· Jee∗ −C2

τe
· Jei∗

D2

τi
Jie∗ −D2

τi
Jii∗

Ω,

which we denote as

Ωt = L0 Ω + q cosµx L1 Ω + q2
(
L0
2 + cos 2µx L2

2

)
Ω.

E.1.3 Expansion of terms in the stimulus amplitude

We make the ansatz Ω(x, t) = Z(x)eλt and expand the RHS terms, Z and λ, as power series

of q, giving us, up to O(q2)

(
λ0 + qλ1 + q2λ2

) (
Z0 + qZ1 + q2Z2

)
eλt

=
[
L0

(
Z0 + qZ1 + q2Z2

)
+ q cosµxL1

(
Z0 + qZ1 + q2Z2

)
+ q2

(
L0
2 + cos 2µxL2

2

) (
Z0 + qZ1 + q2Z2

)]
eλt.

(E.9)
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E.1.3.1 Zeroth-order terms I want a new line

Noting that Ω(x, t) e−λt = Z0(x) + qZ1(x) + q2Z2(x), we see that the 0th-order equation is

our original linearization:

O(q0) : λ0Z0 = L0 Z0. (E.10)

Therefore, the eigenfunctions Z0 are spanned by {eiω∗x, e−iω
∗x}, so that Eq (E.10) becomes

Φ0 = L̂0(m
∗)Φ0, (E.11)

where L̂0(m
∗) is our original linearization, λ0 is the eigenvalue we found earlier (λ0 = iζ0 6= 0),

and Φ0 =

 φ0,1

φ0,2

 ∈ C2 is the associated eigenvector.

E.1.3.2 First-order terms I want a new line

Our O(q) equation is

O(q) : λ1Z0 + λ0Z1 = L0 Z1 + cosµx L1 Z0

⇐⇒ (Λ0 − L0)Z1 = (−Λ1 + cosµx L1)Z0, (E.12)

where Λj = λj · Id2×2.

By the Fredholm alternative this has a solution iff

〈
(−Λ1 + cosµx L1)Z0, Z̃0

〉
= 0 ∀Z̃0 ∈ NS(Λ0 − L0)

∗. (E.13)

Since (Λ0 − L0)
∗ = λ̄0 − LT0 , the null space is spanned by Ψ0e

±iω∗x, where

Ψ0 =

 ψ0,1

ψ0,2

 ∈ C2.
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Hence, Ψ0 is the eigenvector of L̂T0 (m∗) associated with λ0 = − iζ0. We use the usual inner

product for complex vector-valued functions:〈
~a f(x), ~b g(x)

〉
=

∫
~b∗ ~a f(x)g∗(x) dx

=

∫ (
b1a1 + b2a2

)
f(x)g∗(x) dx,

where ~a, ~b ∈ C2 and f, g ∈ C0(C1,C1).

We rewrite the Fredholm condition, Eq (E.13), as

λ1

〈
Z0, Z̃0

〉
=
〈

cosµx L1Z0, Z̃0

〉
, (E.14)

and recall that Z̃0 is spanned by e±iω
∗x. Taking the first eigenfunction, eiω

∗x for Z̃0 implies

that the RHS of Eq (E.14) is only nonzero if cosµx eiω
∗x = e−iω

∗x or cosµx e−iω
∗x = e−iω

∗x.

These reduce to corresponding algebraic conditions:

±µ+ ω∗ = −ω∗ (E.15)

±µ− ω∗ = −ω∗. (E.16)

Clearly, condition (E.15) is only satisfied when µ = ∓2ω∗, while condition (E.16) is only

satisfied when µ = 0. Taking the second eigenfunction, e−iω
∗x, for Z̃0 provides similar

results. Thus, we can only get nonzero λ1 if µ = 0 or ±2ω∗. To calculate λ1 for such µ, we

rewrite cosµx in terms of complex exponentials and expand Z0 in terms of its eigenfunctions:

Z0 = aΦ0e
iω∗x + bΦ0e

−iω∗x.

For each µ value, we will consider each eigenfunction of LT0 in turn, first letting Z̃0 = Ψ0e
iω∗x,

and then Z̃0 = Ψ0e
−iω∗x, noting that this is equivalent to expanding Z̃0 in terms of its

eigenfunctions. Thus, we consider Eq (E.14), expanded as

λ1
(〈
aΦ0e

iω∗x, Ψ0e
±iω∗x

〉
+
〈
bΦ0e

−iω∗x, Ψ0e
±iω∗x

〉)
=

1

2

(〈
aL̂1(m

∗)Φ0

[
ei(ω

∗+µ)x + e−i(ω
∗−µ)x] , Ψ0e

±iω∗x
〉

+
〈
bL̂1(m

∗)Φ0

[
ei(µ−ω

∗)x + e−i(µ+ω
∗)x
]
, Ψ0e

±iω∗x
〉)

.
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For µ = ±2ω∗, Z̃0 = Ψ0e
im∗x gives us

λ1b 〈Φ0, Ψ0〉 =
1

2
a
〈
L̂1(m

∗)Φ0, Ψ0

〉
,

and Z̃0 = Ψ0e
−im∗x gives

λ1a 〈Φ0, Ψ0〉 =
1

2
b
〈
L̂1(m

∗)Φ0, Ψ0

〉
.

For µ = 0 and Z̃0 = Ψ0e
im∗x, we have

λ1b 〈Φ0, Ψ0〉 = b
〈
L̂1(m

∗)Φ0, Ψ0

〉
,

while for Z̃0 = Ψ0e
−im∗x, we instead obtain

λ1a 〈Φ0, Ψ0〉 = a
〈
L̂1(m

∗)Φ0, Ψ0

〉
.

Denoting the left inner product (which we note is now simply the scalar product in C2) as

I1 and the right inner product as I2, we have λ1 = I2
I1

for µ = 0, while for µ = 2ω∗ we have

2 equations that can be written as a 2× 2 eigenvalue problem:

λ1

 a

b

 =

 0 I2
2I1

I2
2I1

0

 a

b


Since this is a 2× 2 circulant matrix, the eigenvalues are given as the sum and difference of

the two distinct entries. In total, we have

λ1 =
I2
I1

for µ = 0 (E.17)

λ1 = ± I2
2I1

for µ = 2ω∗. (E.18)

Thus, it seems like there is some ambiguity in the stability for µ = 2ω∗. However, we can

make some sense of these results by recalling the stability curves in the q − aee plane in

Fig 19 of Chap 3, curves that we will derive near the onset of instability below in Sec E.2.

We observed in Sec 3.2.2.3 how the even and odd symmetries that arose are due to the odd

and even symmetries of the stimulus with respect to q. Additionally, in Sec E.2 below, we

will see that the stability curves for µ = 0 and 2ω∗ are locally linear due to the presence of

the O(q) eigenvalue terms that we have just found. Therefore, while the stability curve for
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µ = 0 will be a straight line that goes through (q, aee) = (0, a∗ee), that for µ = 2ω∗ must be

a nonsmooth V- or upside-down V-shaped curve with a local extremum at (0, a∗ee), as we see

in Fig 19B.

In fact, for µ = 2ω∗, we found curves corresponding to both signs for λ1. The upper

V-shaped branch is not shown in Fig 19B because it did not correspond to a loss of stability

of the steady state. It also corresponded to another Hopf curve, wherein the real parts of a

pair of complex-conjugate eigenvalues become positive for aee > a∗ee as q increased from 0.

However, when q = 0, the real parts of two pairs of complex-conjugate eigenvalues become

positive as aee increases from below to above a∗ee, resulting from the two modes that we

considered in the above calculation, ±ω∗. When the stimulus is turned on, the symmetry is

broken, so that the two pairs of eigenvalues cross the imaginary axis sequentially. That is, the

stimulus has selected which of the two modes, ±ω∗, will destabilize; positive q leads to one

mode, negative q leads to the opposite mode. Hence, the curves may be better understood

as two stability curves (lines) for the two different modes, ±ω∗, of opposite-signed slope. For

nonzero q values, as aee increases from below to above the upside-down V, the steady state is

lost as the real parts of one pair of eigenvalues become positve; as aee further increases from

below to above the upper V curve, the other mode destabilizes as the real parts of the other

pair of eigenvalues become positive. However, since the steady state has already destabilized,

the upper V curve does not correspond to the stability boundary of the network. Hence,

the stability boundary is always the upside-down V-shaped curve. We will observe similar

behaviors for the quadratic stability curve of µ = m∗ below.

E.1.3.3 Second-order terms I want a new line

We are now in position to move on to O(q2) terms for µ 6= 0, ±2ω∗ (since the stabilities

of these are obviously dominated by the O(q) eigenvalues). We will find that we need the

solution to Eq (E.12) after all. We may now take λ1 = 0, so that the RHS, written in terms

of the eigenfunctions of L0, is

1

2
L̂1(m

∗)Φ0

(
a ei(ω

∗+µ) + a ei(ω
∗−µ) + b e−i(ω

∗+µ) + b e−i(ω
∗−µ)) . (E.19)
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This defines the form of Z1, so that

Z1 = Φ1

(
a ei(ω

∗−µ) + b e−i(ω
∗−µ))

+Φ2

(
a ei(ω

∗+µ) + b e−i(ω
∗+µ)

)
,

(E.20)

where Φ1, Φ2 ∈ C2. Plugging this into the LHS of Eq (E.12) and equating it with Eq (E.19)

provides two linear systems that define Z1:

(
Λ0 − L̂0(m

∗ + k)
)

Φ1 = 1
2
L̂1(m

∗)Φ0(
Λ0 − L̂0(m

∗ − k)
)

Φ2 = 1
2
L̂1(m

∗)Φ0

(E.21)

We can now proceed to our O(q2) terms.

O(q2) : λ2Z0 + λ1Z1 + λ0Z2 = L0 Z2 + cosµx L1 Z1 +
(
L0
2 + cos 2µx L2

2

)
Z0

⇐⇒ (Λ0 − L0)Z2 = E,

where E .. =
(
−Λ2 +

(
L0
2 + cos 2µx L2

2

))
Z0 + cosµxL1 Z1,

since we can assume λ1 = 0. Again using Fredholm, this has a solution iff
〈
E, Z̃0

〉
= 0. We

proceed exactly as we did for the O(q) case by expanding Z0 as aeiω∗x + be−iω
∗x, rewriting

the cosine terms as exponentials, writing out Z1 using Eq (E.20) and (E.21), and treating Z̃0

sequentially as e±iω
∗x. After doing so, we obtain different sets of equations depending on µ.

We begin with the simpler case of general µ; i.e., µ 6= 0, ω∗, or 2ω∗. In this case, we obtain

λ2 〈Φ0, Ψ0〉 =
〈
L̂0
2(m

∗)Φ0, Ψ0

〉
+

1

2

〈
L̂1(m

∗ − k)Φ1, Ψ0

〉
+

1

2

〈
L̂1(m

∗ + k)Φ2, Ψ0

〉
.

Labeling the two new, rightmost inner products in order as I3 and I4 (recall,

I2 =
〈
L̂1(m

∗)Φ0,Ψ0

〉
and does not appear here) gives us

λ2 =
1

I1

(
I2 +

I3 + I4
2

)
for µ 6= 0, ω∗, 2ω∗. (E.22)
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For µ = m∗, we obtain the following two equations, where the first corresponds to Z̃0 = eiω
∗x

and the second to Z̃0 = e−iω
∗x:

λ2b 〈Φ0, Ψ0〉 = b
〈
L̂0
2(m

∗)Φ0, Ψ0

〉
+
a

2

〈
L̂2
2(m

∗)Φ0, Ψ0

〉
+
a+ b

2

〈
L̂1(0)Φ1, Ψ0

〉
+
b

2

〈
L̂1(2m

∗)Φ2, Ψ0

〉
λ2a 〈Φ0, Ψ0〉 = a

〈
L̂0
2(m

∗)Φ0, Ψ0

〉
+
b

2

〈
L̂2
2(m

∗)Φ0, Ψ0

〉
+
a+ b

2

〈
L̂1(0)Φ1, Ψ0

〉
+
a

2

〈
L̂1(2m

∗)Φ2, Ψ0

〉
.

We’ve encountered all but the third inner products already. Labeling the third one as I5, we

get the following 2× 2 eigenvalue problem:

I1λ2

 a

b

 =

 I2 + I3+I4
2

I3+I5
2

I3+I5
2

I2 + I3+I4
2

 a

b

 .
Once again, we have a circulant matrix whose eigenvalues λ2 are given by the addition and

subtraction of the entries. We designate these by whether we add (λ+2 ) or subtract (λ−2 ) the

entries:

λ+2 =
1

I1

(
I2 + I3 +

I4 + I5
2

)
(E.23)

λ−2 =
1

I1

(
I2 +

I4 − I5
2

)
. (E.24)

These eigenvalues, again arising from the two modes ±ω∗, will lead to quadratic curves in the

q− aee, as we will see below in Sec E.2. While they lack the symmetry of the two V-shaped

linear curves found for µ = 2ω∗, they are analogous, producing the same behaviors: The

lower curve defines the stability boundary so that, for nonzero q, as aee increases from below

to above the lower curve, the real parts of one pair of complex-conjugate eigenvalues become

positive, and as aee further increases to be above the upper quadratic curve, the real parts

of the second pair of complex-conjugate eigenvalues become positive. We now turn to the

stability curves discussed here and shown in Fig 19B, and see how we can use the eigenvalues

found in this section to analytically determine these curves near (q, aee) = (0, a∗ee).
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E.2 DETERMINATION OF THE STABILITY CURVES

In order to determine the Hopf curves (in particular the curves that determine the stability

of the steady state) in the q − aee plane, we first recall that we expanded λ as a function of

q:

λ = λ0 + λ1 q + λ2 q
2 for small q.

We know that λ0 is dependent on aee, and that R(λ) = 0 when aee = a∗ee, the critical aee

value when q = 0, so that

R(λ)(aee, q) = α(aee − a∗ee) + β q + δ q2, where β = R(λ1) and δ = R(λ2).

Letting R(λ) = 0 provides the critical curve in aee − q space:

(aee − a∗ee) + β q + δ q2 = 0. (E.25)

We note that we are only concerned with finding δ if β is 0, since otherwise the local behavior

will be dominated by the linear term. Letting ρ = aee − a∗ee, we have α = d
dρ
R(λ)|0. Letting

A(ρ) = L̂0(ρ;m∗) be the linearization about the critical wavenumber m∗ (when aee = a∗ee),

we have

A(ρ) =

 −1+α1(ρ+a∗ee)K̂e(m
∗)

τe
−α1

τe
Ĵie(m

∗)

β1
τi
Ĵei(m

∗) −1−β1Ĵii(m∗)
τi

 ,
where (ρ + a∗ee)K̂e(m

∗) = aeeK̂e(m
∗) = Ĵee(m

∗). Recall from our linearization, Eq (E.11),

that we have the following equations

A(0) Φ0 = iζ0 Φ0 = λ0 Φ0

A∗(0) Ψ = −iζ0 Ψ = λ0 Ψ.

More generally,

A(ρ) Φ(ρ) = λ(ρ) Φ(ρ).

Differentiating with respect to ρ, evaluating at 0, and keeping the real parts provides

A′(0) Φ0 + A(0) Φ′(0) = αΦ0 + λ0 Φ′(0)
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=⇒ (Λ0 − A(0)) Φ′(0) = (A′(0)− α Id) Φ0,

where some of the previous variables we have used correspond to quantities here; i.e., λ0 =

λ(0), Φ0 = Φ(0). By the Fredholm alternative this has a solution Φ′(0) iff

〈A′(0)− α Id) Φ0,Ψ〉 = 0

=⇒ α 〈Φ0,Ψ〉 = 〈A′(o) Φ0,Ψ〉

=⇒ α =
〈A′(0) Φ0,Ψ〉
〈Φ0,Ψ〉

,

where

A′(0) =

 α1Ĵee(m∗)
aee

0

0 0

 .
Therefore, we have all of the values necessary to determine the stability curve, Eq (E.25).

Plotting these for different µ on the graphs of those determined numerically with AUTO

shows very good agreement between numerical and theoretical curves (Fig 24).
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APPENDIX F

SPECIFIC GENERAL-PURPOSE GPU PROGRAMMING:

OUTLINE FOR SIMULATING SPATIALLY EXTENDED WILSON-COWAN

NETWORKS

F.1 BACKGROUND

Since the cortex is better approximated as a sheet of neurons rather than a line, we wanted

to explore how the network behaved when extended in two spatial dimensions. This ne-

cessitated using custom code, and we first turned to MATLAB since it allows for rapid

prototyping. However, the simulations were excruciatingly slow for networks of around

100×100 populations. Indeed, this led to misleading results: cases in which we thought we

saw instances of spatiotemporal pattern formation turned out to be transients that evolved

to steady states. Clearly, a framework allowing for more rapid simulations was necessary to

implement anything more than a few simple cherry-picked examples.

Throughout the years, high-performance computing has often been implemented in the

programming languages C and C++. These are compiled languages with vast libraries for

scientific computing, and are known to produce rapidly executed code. For speed in simula-

tions, they are hard to beat. Indeed, XPP-AUTO is written in C, as is the operating system

Linux, and the high-performance code of the open source finite element solver FEniCS, while

being accessible in both C++ and Python implementations, is written in C++ [128].

However, the landscape in high-performance computing has shifted over the past decade,

as GPUs (Graphical Processing Units) with many more processors than CPUs (Central
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Processing Units) have become available. While these processors are far simpler than those

found in modern CPUs, they often more than make up for this by allowing for massively

parallel computations. With the development of a hardware architecture — called CUDA

architecture — that facilitated access to all of the processing and memory elements of the

device, along with a software interface in which to access these resources, came the advent of

true GPGPUs: General-purpose GPUs. The language NVIDIA developed to go along with

their CUDA architecture is CUDA C; in fact there are now two languages, often referred to

as CUDA C/C++. (Note: NVIDIA now simply treats “CUDA” as a term to refer to its

GPU architecture and programming languages. Originally they used it as as an acronym for

Compute Unified Device Architecture.)

Since CUDA C seemed to require very little knowledge over and above C, we concluded

that if we went to the trouble to program our network in C, we might as well try out CUDA

C. We found (expectedly) massive gains in performance compared to our MATLAB code.

Instead of taking minutes to run 100×100 networks for hundreds of time steps, our CUDA

C code takes seconds to run 512 × 512 networks, or indeed even 1024 × 1024 networks. In

the end, to run the Wilson-Cowan network for a time period of thousands of milliseconds

takes minutes, allowing us to sweep through sets of parameters to characterize the network

dynamics. Of course, how well such code performs compared to an implementation done

purely in C will depend on the platform, including the particular CPU and GPU used. For

our setup, which included an NVIDIA GeForce GTX 970 GPU, we found that the CUDA C

implementation was ≈ 3.5 times faster than the C implementation, more than justifying the

small amount of additional education required. To that end, we turned to a clear and helpful

book, CUDA by Example [129]. This text clearly and methodically progresses from very

simple to fairly sophisticated examples, only assuming a knowledge of C. Additionally, the

authors provide freely available code on GitHub (https://github.com/CodedK/CUDA-by-

Example-source-code-for-the-book-s-examples-). Importantly, this includes graphics helper

classes with simple programmer-facing implementations. Thus, with only a few more lines

of code we can visualize simulations as they run in real time.

In this appendix, we will outline the procedures we used to produce these simulations.

As the code will be made available shortly for anyone to use, we will generally keep the
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discussion herein at a higher level, only including a simple example and some code snippets

when helpful. Our full code should be included as supplementary files to the forthcoming

paper that will be based on Chap 3.

As almost our entire CUDA and CUDA C knowledge base stems from the information in

CUDA by Example[129], we will generally avoid citing the text, with only some exceptions

to point the reader to specific useful infomation. We also note that the reader should refer

to [129] and NVIDIA’s documentation for instructions involving the installation of CUDA

C, how to compile “*.cu” files, and what is necessary for your system so that your code

cooperates well with OpenGL. Finally, I am not a programmer; in fact, I have only taken

two formal computer science courses, the last of which was early on in my undergraduate

career. The errors that are likely to exist in this brief exposition are my own. Please have

some grains of salt and your favorite search engine at the ready.

We first introduce the GPU hardware and programming distinctions that arise as a result

of this hardware as compared with traditional serial programming for a CPU. These software

distinctions are fundamental to programming for GPUs. To illustrate these differences and

the power of GPUs, we then explore the simple canonical example of parallel programming:

adding two vectors. In GPUs, no loops are required to do so, and we will see how this is

implemented. In doing so, we’ll gain the understanding necessary to implement many basic

routines that may be of interest to the scientific reader. We then look more at our specific

implementation: simulating neural field equations. An important aspect of speeding up per-

formance for such systems is using fast Fourier transforms to speed up the computation of

the convolutions that provide nonlocal coupling. We see how to do so, and then outline the

remainder of our implementation. We hope this appendix might help others who are inter-

ested in simulating large networks do so using the massively parallel capabilities represented

within the modern-day GPU.
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F.2 GPU HARDWARE AND CONSEQUENCES FOR SOFTWARE

GPUs are constructed differently from CPUs, and it is difficult to make meaningful, sim-

ple, quantitative performance comparisons. Generally speaking, (GP)GPUs are designed for

(general) parallel computations, with an architecture consisting of hundreds to thousands

of simple processing units known as ALUs, arithmetic logic units (known as “CUDA cores”

for NVIDIA GPUs or “stremaing processors” AMD GPUs). CUDA C was the first widely

available language written to easily and efficiently run code on both GPUs and CPUs. Since

(1) these represent two separate pieces of hardware with distinct processing units and mem-

ory, only connected through communication pipelines, and (2) a programming interface that

simplifies and automates the allocation of the hundreds of equivalent computing units would

greatly facilitate GPGPU programming, two main distinctions arise when programming in

CUDA C. These distinctions rely on whether we are talking about item in the purview of

the GPU or of the CPU. Since the GPU is secondary to the CPU and its associated memory,

the former are device items, whereas those for the CPU are host items. The first distinction

involves functions, and the second distinction involves memory.

F.2.1 A distinction of functions

Code that is intended to run on the GPU must somehow be distinguished from code intended

to run on the CPU. Thus, device functions are unambiguously marked as such. Device

functions that can be called from host functions are marked with the precursor global ,

whereas those that can only be called from other device functions are marked with the

precursor device . Additionally, although CUDA C does a remarkable job at keeping

the specific allocation of resources automated, we do have some choices in the resource

usage. That usage comes down to how we organize so-called threads. These are abstract

structures associated with processes that we consider to be run parallel to each other. So, for

example, we can determine how many threads we would like based on the number of parallel

computations we need. If we’re adding two vectors of length N , we’ll want N threads. These

are abstract in the sense that the programmer does not know, and has no control over, how
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these threads are distributed over the GPU’s ALUs.

Threads are further grouped into warps and blocks. Warps have more to do with how

CUDA executes at a low level, and with ways to address how variables are handled efficiently

in device memory. They are fixed groupings of threads: there is no programmer control

over how to organize threads with warps. See Sec 6.2.3 in [129] for more information.

In contrast, blocks form a programmer-adjustable way to organize threads. Blocks can

be broken up into 2-D grids, and threads into 3-D grids, so that each block is composed

of (blockDim.x)·(blockDim.y)·(blockDim.z) threads. The particular block and thread

structure used is in part preference, and in part, again, based on memory considerations.

In particular, all threads within a block can share memory. As a result, there are a limited

number of threads per block allowed, usually 512. Currently, our implementation of the

simulations of the 2-D Wilson-Cowan network does not make use of such shared memory

(see Sec 5.3 in [129] for more information). Instead, we simply use a two-dimensional block-

and-thread structure, wherein we have M blocks that each have N threads per block, forming

an M ×N reference grid. Note that, since we do not make use of shared memory, we could

just as easily have used M×N blocks with 1 thread per block. That is to say, the structure of

the grid of threads we choose need not reflect the underlying spatial structure of the system

being operated on.

Whatever structure we choose, the CUDA runtime needs to know what that structure is

when running a device function. Thus, when a device function is called, the structure must

be made explicit. For example, if we run the function device void kernel( float*

data ), we need to tell it how many blocks and threads to launch, and in what configuration.

This is done by specifying these in the function call using triple angular-bracket notation.

For example, to call the kernel with 5 blocks and 5 threads per block, we would write

kernel<<<5,5>>>(data). This is where the vastly different behavior of parallel code comes

into play. Instead of simply running the function kernel, 25 instantiations of the function

are run in parallel (or, should be thought to run in parallel; again, the exact execution is left

up to the CUDA runtime). Each copy of the function is indexed according to its position

within the 5×5 block-thread structure we chose. If data is an array with 25 elements, we

can map these indices to array indices so that each instantiation will perform an operation
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on a different element of data in parallel. We see a specific implementation below in Sec F.3.

Of course, in classical serial programming, we would instead run a loop through the array

elements to operate on all of them. This is the main conceptual difference between GPGPU

programming and classical serial programming. In essence, all of the rest are simply details.

F.2.2 A distinction of memory and variables

Recall, the CPU and GPU each have access to their own independent stores of memory. Yet,

variable values obtained through declarations and computations done in one environment

need to somehow pass to the other environment. For example, above, the device function

kernel operated on the array data. We see that, in some sense that we will explore soon,

data was declared within host code, since it is passed as an argument to kernel. Compu-

tations will be done on data within kernel, the results to which we will presumably want

access from the host side. For example, you may want to plot the results or save them to

the hard drive. However, variables that live on the device side cannot directly be accessed

to read or write on the host side. We will see how we can access them below. But the lesson

is that, in general, we simply have to keep track of host variables and device variables. We

note that the read restriction is one-way: device functions can read variables allocated in

host memory that are passed to them as arguments. They cannot, however, write to them.

We are now at a point where a simple example will help clarify these ideas and make explicit

how to handle device and host functions and variables.

F.3 A SIMPLE EXAMPLE

We now consider the prototypical, embarrassingly parallel problem of adding two vectors.

We follow Sec 4.2.1 in [129] closely.

#include<stdio.h>

// Constant, accessible by both device and host functions

#define N 5
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__global__ void add( int *v, int *u, int *w )

{

//thread index

i = blockIdx.x;

// This ensures we do not try to access memory locations outside of the vectors

if (i < N)

w[i] = u[i] + v[i];

}

int main(void)

{

// Declare vectors (pointers, equivalent to arrays)

int *host_u, *host_v, *host_w;

int *dev_u, *dev_v, *dev_w;

// Allocate host memory for the host vectors

host_u = (int *)malloc( N * sizeof(int) );

host_v = (int *)malloc( N * sizeof(int) );

host_w = (int *)malloc( N * sizeof(int) );

// Allocate device memory for the device vectors

cudaMalloc( (void **)&dev_u, N * sizeof(int) );

cudaMalloc( (void **)&dev_v, N * sizeof(int) );

cudaMalloc( (void **)&dev_w, N * sizeof(int) );

// Fill in host vectors, setting w to values different from the sum

for( i= 0; i < N; i++ )

{

host_u[i] = i;

host_v[i] = -i;

host_w[i] = i;

}

// Print w for later comparison:

printf( "Vector w is initialized to be [ " );

for( i = 0; i < N; i++ )

{

printf( "%d, ", host_w[i] );

}

printf( "]\n\n" );

// Copy these to device vectors u and v

cudaMemcpy( dev_u, host_u, N * sizeof(int), cudaMemCpyHostToDevice );

cudaMemcpy( dev_v, host_v, N * sizeof(int), cudaMemCpyHostToDevice );
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// Now we can add them

add<<<N,1>>>( dev_u, dev_v, dev_w );

// We want to read out the result, so copy device w to host

cudaMemcpy( host_w, dev_w, N * sizeof(int), cudaMemcpyDeviceToHost );

// We should get all 0s:

printf( "The resulting vector is w = [ " );

for( i = 0; i < N; i++ )

{

printf( "%d, ", host_w[i] );

}

printf( "]" );

// Free memory

free( host_u );

free( host_v );

free( host_w );

cudaFree( dev_u );

cudaFree( dev_v );

cudaFree( dev_w );

return 0;

}

This program is in some sense deceptively long. In particular, we note that 17 of the 31

lines of code are simply memory management. However, we’re using a variant of C, so we

would expect nothing different! Let’s tackle these memory lines by first walking through the

host function main.

F.3.1 Host side: Memory management and considerations

After we instantiate the variables, we allocate memory for them. malloc and cudaMalloc

both allow for dynamic arrays, so that we can input size in the command line, for instance.

The cudaMalloc lines in particular are somewhat intimidating. Note that for neither memory

allocation routine does the type matter; all that matters is that the right size is allocated,

ensured by the (last) argument. For malloc, the type is “fixed” ex post facto by typecasting

the returned value to the variable types int *. The cudaMalloc function allocates memory
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by accepting a pointer to the vector (e.g., &dev u). Since the type does not matter, only

the memory amount, the function only accepts void pointers. Of course, dev u itself is a

pointer, so we typecast it as a pointer to a pointer of type void: (void **)&dev u. Thus,

we see why above, in Sec F.2.2, the host side knew about the device variable data: it was

declared and allocated memory on the host side beforehand.

Additionally, although the device functions may manipulate the data passed to it, we

usually want them to have a chosen set of initial values. This can be done either on the host

side or device side. Here, we see the former method. We fill in the host variables, and then

copy them to the device variables. We could instead have initialized the values in the device

function before adding them, saving ourselves this trouble. However, the values may come

from external values that must be read in via host code, forcing us to implement a solution

like we do here. The worst this does, of course is add an extremely slight time and code

overhead.

Finally, we are in a position to take advantage of the GPU. A simple call to the device

function global void add is all that we need on the host side. The <<<5,1>>> notation

indicates we’d like 5 blocks with one thread each. We’ll go over the implementation of this

function in just a bit. The result of the computation is stored in dev w. Of course, we can’t

access device variables on the host side, so we must use cudaMemcpy in the reverse direction

to copy the values to the host vector host w. Now we can print the values (perhaps to a file if

desired) and finally free up the memory that was allocated to the host and device variables.

Now, let’s take a look at the device function add.

F.3.2 Device side: N instantiations

We can immediately identify the device function by the global precursor, indicating a

device function that can be called from host code. Of course, since it is called from the host

side, it can’t return any values, and so it is given the type of void. Its arguments are the 3

pointers (i.e., arrays; i.e., vectors). When this function is called, the block-thread structure

was specified as N blocks, 1 thread per block. Thus, N instantiations of add are created,

where each is indexed by its block and thread coordinates. Here we see that the block indices
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are given as blockIdx.x and blockIdx.y, while the thread indices are similarly given as

threadIdx.x, threadIdx.y, and threadIdx.z. Thus, the local variable i is set to 0 in the

first instantiation, and is set to N-1 (=4) in the last instantiation. Each instantiation has

the very simple task of assigning the sum of u[i] and v[i] to a third variable, w[i]. Of course,

if we had accidentally called for more threads than there were elements of the array, memory

values that don’t belong to dev w would be written to, with different potential unpleasant

results ensuing. To ensure we only write to memory locations that are indeed contained

with dev w, we add a simple check condition: proceed with the operation only if the index

is less than the size of the array. Somewhat embarrassingly, this simple example very nearly

covers the extent to which our simulation code employs the GPU, as the integration step is

just vector addition. The coupling of the populations is the only other aspect of the network

integration that will benefit from some GPU treatment, and to visualize we use the GPU

as well. Of course, there are many bells and whistles that we’ve added to make it more

functional, but nearly all of these are implemented on the host side.

F.4 NEURAL FIELD IMPLEMENTATION

To simulate neural field equations, we need to integrate excitatory and inhibitory populations

forward in time. At each time step, the amount of excitation and inhibition that each

population receives changes based on the values at the previous time step of the populations

to which it is coupled. Once these couplings are determined, at each time step we can

perform a standard integration routine, such as the Euler method, in a highly parallel routine

involving simple vector addition, like the example above. For neural fields, the coupling is

computed as convolutions of a kernel with the local populations. We will first examine how

we can perform this operation efficiently using the GPU, and then outline the steps that we

use to simulate the network.

159



F.4.1 Convolutions

Each population receives excitation and inhibition that is computed by convolving the chosen

kernel (e.g., Gaussian) with the respective populations. This involves N multiplications and

additions. Since there are N populations, this leads to an algorithm of O(N2) computational

complexity; i.e., ∼ N2 computational steps are required. Far fewer steps can be taken if we

instead use Fourier transforms (FTs) to compute this integral. The ability to do so is

encapsulated within the Convolution Theorem, which simply states that the convolution of

two functions is the inverse FT of the product of the FTs of the two functions. We show

this for the continuous case of two scalar-valued functions on R, f(x) and g(x). That is, we

want to show

f ∗ g(x) = F−1(F(f(x)) · F(g(x)).)

Since

f ∗ g(x) =

∞∫
−∞

f(y)g(x− y) dy,

applying the FT gives us

F(f ∗ g(x)) =

∞∫
−∞

e−iωx
∞∫

−∞

f(y)g(x− y) dy dx.

Letting z = x− y, we have

∞∫
−∞

e−iω(z+y)
∞∫

−∞

f(y)g(z) dy dz

,

so that we can separate the integrals, giving

∞∫
−∞

f(y)e−iωy dy ·
∞∫

−∞

g(y)e−iωy dy = F(f) · (F )(g).

Applying the inverse FT to both sides provides the result. The theorem also holds for discrete

functions and the discrete FT ([130], Sec 8.5-2). Why go through the trouble? Because of

the discrete fast Fourier transform (DFFT), which turns the computation from an O(N2)
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operation to an O(N log(N)) one when we use the DFFT. In CUDA, this is implemented

using the cuFFT API, and is modeled after the well-known FFTW implementation that is

used in languages such as C/C++. We note that, unless the data is padded with zeros, e.g.,

periodic boundary conditions are implicitly used.

When cuFFT is employed, planning phases are first developed to allow the algorithm to

perform efficiently on the given hardware:

cufftPlan2d( &FFTplanForward, N, N, CUFFT_R2C );

cufftPlan2d( &FFTplanReverse, N, N, CUFFT_C2R );

These plans, the first arguments, are computed once per simulation and then stored for future

steps. Since each convolution involves the FT of the kernel, we also need only compute it

once per simulation for each of the excitatory and the inhibitory kernels. For the this and

the remainder, we only show the steps for the data involving the excitatory populations:

cufftExecR2C( FFTplanForward, (cufftReal *)devKernE, (cufftComplex

*)devKernE_FFT );

At each time step, we then compute the FTs of the neuronal populations:

cufftExecR2C( FFTplanForward, (cufftReal *)devDataE, (cufftComplex

*)devDataE_FFT );

and compute the pointwise (complex) product of the FFTs in a simple device function,

storing the product back into the first argument:

fftproduct<<<BLOCKS,BLOCKSIZE>>>( devDataE_FFT, devKernE_FFT );

Finally, we inverse the transform, storing the convolved data in the last argument:

cufftExecC2R( FFTplanReverse, (cufftComplex *)devDataE_FFT, (cufftReal

*)devDataE_convolved );

The convolved data is then input into the Euler integration step. We show the relevant

part:

u = devDataE[i];

KE = devDataE_convolved[i];

KI = devDataI_convolved[i];

s = stimulus[i];
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devDataE[i] += dt * ( -U + f( beta * (aee*KE - aie*KI - the + q*s) / taue;

f is the firing rate function, defined as a device function.

F.4.2 Implementation outline

Having seen how the integration is performed, the remainder of the implementation is

straightforward. Since the time overhead is minimal, and the code overhead makes for less

streamlined code, steps that are implemented once are done on the host side. We outline

the steps here.

• Allocate memory for variables

This includes host and device arrays, such as the excitatory and inhibitory population

values, the stimulus pattern, the kernel arrays, and the FFTs and convolved data

• Initialize variables, including:

– Initial conditions for the excitatory and inhibitory populations (which might be

random or pulled from the final state of a previous run)

– The parameter values (the coupling strengths, timescales, etc.)

– The stimulus and kernels. For example, we might want a striped cosine stimulus

and gaussian kernels.

• Integrate (and animate)

At each time step, compute the next values of the excitatory and inhibitory popu-

lations by (1) computing the amount of excitation and inhibition received for each

population through the convolution steps outlined above, and (2) integrating for-

ward with, e.g., an Euler time step, also shown above. We wish to view the results,

so adjust the bitmap values based on the u and v values. These are output via the

graphics API provided in [129].

• Free memory

Take out the garbage. Memory leaks are annoying.
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F.4.3 Embellishments

That’s all there is to the basic implementation. However, to make a more useful version, there

are additional features we’d like to have. These can all be classified under interactivity, either

at the command line or during the simulation. The point is, we’d like to change parameters

without having to recompile the code every time, and we’d like to be able to get outputs

that we can port into other programs for further analysis and visualization. While there are

some exceptions, we implement these in ways that usually don’t involve addtional device

code. Here we provide an outline of the additional features our code provides.

• Parameter input

By declaring variables with preprocessor macros, we can define the parameters based

on inputs that come at runtime. By taking input at the command line, files can be

read in and parsed for these parameter values. Hence, we can easily allow the network

parameters to only be defined at runtime by reading in a separate parameters file.

• Initial conditions and stimulus inputs

Other files can be read in and parsed for values of interest. For example, instead

of beginning with random initial conditions, we may wish to start where a previous

simulation left off. Or we may wish to create stimuli in a different program (e.g.,

perhaps we already have images that we wish to test) and use them. These pos-

sibilities are simply done with slight modifications to the method used to take in

parameter values at the command line.

• Interactivity

The animation API provided by [129] was designed to take keyboard input so that it

could quit when, e.g., the Esc button was pressed. However, this effectively allowed

for keyboard interactivity. Though cumbersome, it is straightforward to tie key

values to different actions. Thus, e.g., the space bar can be programmed to cause

the simulation to pause, “l” can be programmed to list the current parameters, and

individual letters can be built into a dynamically allocated array to allow for various

functionalities, such as for the parameter values to be changed on the fly.

• Output
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In order to start a simulation from the final state of a previous simulation, we

obviously need to have first output that state. Additionally, we may need data

for later analysis and visualization. For example, we may wish to save images or

movies for later presentations or publication. By allowing for keyboard input and

incorporating command-line programs such as ffmpeg, we are able to save such data

at a keystroke. Full data for 2 arrays of 512×512 elements over any reasonable period

of time takes a significant amount of storage space. Thus, we have also allowed for

“virtual electrodes” to be positioned from an input file read at the command line,

defining locations at which we can take data over longer time periods while keeping

the file sizes low. In the near future, this feature will be more interactive, allowing

for dynamic adjustment of these positions. Finally, we can also dynamically save

the state of the system. The parameters and final state of the network are saved

in a user-named folder. Two shell scripts are added to the folder: one to start the

simulation with the given set of parameters and random initial conditions, and one

that instead uses the final state of the saved simulation to begin. The user also has

the option to write notes to a NOTES.txt file that opens in EMACS.

By providing the input and output features we’ve made available in our code, the explo-

ration of network dynamics for different sets of parameters is greatly facilitated. In particular,

we’ve written Python code that takes in the results of a two-parameter sweep and creates an

interactive bifurcation diagram. The variance of the network, averaged over spatial elements,

is shown, and clicking on any point on the plot runs the simulation, beginning from the last

state. Thus, by only saving the final state of the network and the computed variance, we can

rapidly “point-and-click” to examine the dynamics allowed by the network after transient

time periods. We will also provide a version of this code online.

We expect to implement more features in our code in the future, including additional

interactivity and a more user-friendly GUI. We also note that these methods can be easily

adapted for other, similar purposes. For example, spiking networks can be accommodated

in a stratightforward manner by changing the particular functional forms used and the

connectivity employed. That is, instead of convolutions, the couplings would be defined by

weight matrices; however, just as for convolutions, these can be computed in a separate
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function that is then fed into the integration step as we do here. CUDA has linear algebra

libraries to facilitate such computations; indeed, these are employed in the cuFFT library.

In the future, we may work to extend our code to such areas of application.
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