
A MACHINE LEARNING APPROACH TO THE

OPTIMAL EXECUTION PROBLEM

by

Quinn Adam Donahoe

B.S. Mathematics, Pennsylvania State University, 2012

B.S. Economics, Pennsylvania State University, 2012

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2018

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Quinn Adam Donahoe

It was defended on

September 5th 2018

and approved by

Song Yao, Associate Professor (Mathematics)

Michael J. Neilan, Associate Professor (Mathematics)

John M. Chadam, Professor (Mathematics)

Chad J. Zutter, Associate Professor (Business Administration)

Dissertation Director: Song Yao, Associate Professor (Mathematics)

ii

ABSTRACT

A MACHINE LEARNING APPROACH TO THE OPTIMAL EXECUTION

PROBLEM

Quinn Adam Donahoe, PhD

University of Pittsburgh, 2018

The Optimal Execution Problem has, for over a decade been of interest in financial math-

ematics. Solving the problem has, from the mathematics perspective involved using the

dynamic programming principle in order to obtain a Hamilton-Jacobi-Bellman PDE to solve

for the ideal trading curve. Taking the extended framework of Almgren’s 2012 paper on

the optimal execution problem with stochastic volatility and liquidity, we begin a statisti-

cal learning approach realizing parameters via real market data. From this point, learning

algorithms are applied to find optimal trading curves in both limit order and market order

strategic environments. We compare these trading curves with trading curves obtained from

the classical approach.

iii

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 The Limit Order Book Model . 1

1.2 The Classical Optimal Execution Problem 3

2.0 BACKROUND . 7

2.1 Artifical Neural Networks (ANN) . 7

2.1.1 Motivation . 7

2.1.2 Feed-Forward Sequential Neural Networks with Back-propogation . . . 9

2.1.3 Gradient Descent Back-Propogation 12

2.1.4 Modernization of the Neural Network for our Model 14

2.2 Reinforcement Learning . 18

2.2.1 An overview of Reinfocement Learning 18

2.2.2 Policy Evaluation . 21

2.3 Logistic Regression . 24

2.3.1 ROC Curve . 25

3.0 OPTIMAL EXECUTION FOR MARKET ORDERS IN LIT MARKETS 27

3.1 The Initial Data Driven Approach . 27

3.2 The Classification Learning Problem . 28

3.3 Neural Network Model For Optimal Execution 33

3.3.1 Reinforcement Learning Algorithm for Optimal Execution 33

4.0 HAWKES PROCESS APPROACH FOR MARKET ORDERS IN LIT

MARKETS . 36

4.1 Limit Order Book Model and Parameter Realizations 36

iv

4.1.1 Hawkes Process Model for Microstructure Noise 38

4.1.2 Maximum Likelihood Estimation . 41

4.1.3 Simulation of the Hawkes Process . 43

4.2 The Neural Network model for locating ideal trade times 45

4.3 The Reinforcement Learning Algorithm . 50

4.3.1 Using Trading Data to calculate the State/Action - State/Reward Tran-

sition Matrix . 54

4.3.2 Forward to the Optimal Trading Curve 58

4.4 The Complete Algorithm . 59

5.0 THE LIMIT ORDER MODEL . 61

5.1 The Traditional Limit Order Model . 62

5.2 A Logistic Regression Model for the Probability of Execution Function . . . 63

5.3 Structure of the Algorithm . 66

5.3.1 Building the Training Data . 66

5.4 Completing the Optimal Execution Problem for Limit Orders 68

6.0 COMPUTATIONAL SIMULATIONS . 71

6.1 Simulations for the Hawkes Approach . 71

6.1.1 Building the TAQ based LOB data 71

6.1.2 Building the Neural Network Training Data from TAQ 73

6.1.3 Using 4.1.1 to make ‘Price Sim’ and Building the Neural Network Train-

ing Variables 4.2 . 76

6.1.4 Training The Neural Network . 78

6.1.5 The Reinforcement Learning Algorithm Implementation 82

6.1.6 Running the Complete Trading Algorithm 83

6.1.7 Comparison with the HJB approach 84

6.1.7.1 The HJB Model for Optimal Execution of Market Orders with

Temporary Impact . 86

6.1.8 A comparison of our model and the HJB Model 88

6.1.9 Comparison With a More Advanced HJB Model 88

6.2 Simulations for the Limit Order Model . 93

v

6.2.1 An Adequate model for comparison 93

6.2.2 Algorithm 6 for the case of constant re-evaluation of outstanding orders 96

6.2.3 A comparison of the two models . 97

7.0 CONCLUSIONS . 100

7.1 Summary of Results . 100

7.2 Future Work . 100

8.0 BIBLIOGRAPHY . 102

vi

LIST OF TABLES

4.1 Input parameters and desired output for the artificial neural network model to

predict optimal trading times. 47

6.1 This table represents trades for the stock ‘MCD’ on January 3rd, 2011. Due

to preservation of data integrity, the true values for these times have been

changed from their true values, and this figure is given only with the intent to

show the reader the structure of the data. 72

6.2 This table represents trades for the stock ‘MCD’ on January 3rd, 2011. Due

to preservation of data integrity, the true values for these times have been

changed from their true values, and this figure is given only with the intent to

show the reader the structure of the data. 73

6.3 The this raw training data is gleaned from the initial TAQ data. 74

6.4 The initial calculations of the variables desired for neural network training in

4.2. 76

6.5 Progression of a Neural Network Model for MCD data Trade Tick classification 81

6.6 Progression of a Neural Network Model for MCD data Trade Tick classification 82

6.7 Tuning of the reinforcement learning parameters giving different results for . 83

6.8 The Neural Network Reinforcement Trading Algorithm applied to MCD on

3/7/2011 data. 85

vii

LIST OF FIGURES

2.1 The Two different ROC curves are plotted here. The lines represent the ratio

of false positives to true positives when the threshold varies. 26

3.1 The TradeTicks are labeled on the graph above as blue dots. 31

3.2 A glimpse of the statistics for the initial data driven approach. 32

3.3 A neural network structure for the initial data driven approach. 32

6.1 Distributions of neural network variables as given in 6.1.3. 79

6.2 Distributions of neural network variables as given in 6.1.3. 80

6.3 This curve shows the difference betweeen the two strategies on a day where

there is considerable market risk. Here, α = 100k, and k = 10−4 89

6.4 The inventory and price of each execution model. Here, α = 100k, and k =

10−4 for both HJB models. 94

6.5 The ROC curve for the probability function logistic regression method. 97

6.6 A comparison of the two models on 60 seconnds of MCD data. For the HJB

Model, λ = 158, T = 60, k = 100, α = .001, and N = 1000. 99

viii

LIST OF ALGORITHMS

1 The Adam optimization Algorithm . 18

2 Iterative Policy Evaluation . 23

3 Policy Iteration . 24

4 Thinning Hawkes Simulation Algorithm (Ogata) via [1]. 45

5 Complete Optimal Execution for Market Orders 61

6 Optimal Limit Order Placement Algorithm 71

ix

1.0 INTRODUCTION

A good introduction to the problem can be found in both [2] and [3]. We gather information

from both sources in our introduction of the problem and the limit order book model.

The optimal execution problem consists of a trader whose portfolio position at time zero

contains q0 shares of a single stock. The goal of the problem is to unwind this portfolio by a

given finite time T . By unwind, we mean that if q0 > 0, the traders wishes to sell q0 shares

by time T and if q0 < 0, he wishes to buy q0 shares by time T .

Of course, there is a very easy way to accomplish this with a single market order. For

instance, if q0 < 0, the trader could, at any time t ∈ [0, T] place a market buy order for q0

shares. Assuming enough liquidity for the stock on the exchange, this order would execute.

This simple approach to the problem is fine when q0 and T are both relatively small.

It is in cases where |q0| is large that we begin to run into significant problems with this

method. In order to see why, we examine the limit order book.

1.1 THE LIMIT ORDER BOOK MODEL

We consider a market in which limit orders and market orders are placed. A market

order is an order to buy or sell at the current best price that the market is offering. For

example, a trader can place a market order to buy or sell 200 shares of compnay XYZ. This

order enters the market, and will execute at the best price for the trader; the lowest price for

which 200 shares of XYZ are available. A market order gives the trader a high probability

that the desired purchase or sale will take place, but it does not necessarily secure a good

price for the trader.

1

A limit order is different in that it secures a desirable price for the trader, but it does

not guarantee that the desired purchase or sale will occur. If the trader wished to obtain 200

shares of the company XYZ via a limit order, he would have to specify not only the number

of shares he wished to purchase but also the “limit price” of the order. This price designates

the maximum amount that the trader is willing to spend on the shares. This order does not

execute until a sufficient opposite side order enters the market. If our trader placed a limit

order to purchase 200 shares of XYZ at a price point of 52 dollars, then he would need to

wait until a suitable market sell order entered the market to lift his limit order and execute

the trade.

When limit orders arrive in an exchange, they are executed on a first in first out basis.

So if our trader places a limit order for 200 shares of XYZ at 52$, there is a good chance

that there is quite a bit of volume of limit buy orders at that price point as well. So, even

if the current best bid price for XYZ is 52 dollars, the trader is not guaranteed of his limit

order executing if he is behind in the queue to a large amount of limit order volume. The

visualization of how these limit orders sit in the exchange waiting to be executed is known

as the limit order book.

When a market buy order is sent to an exchange, assuming that there is no corresponding

matching market sell order arriving at that exact time, it is routed through that exchange’s

limit order book. The market order will take all volume of limit orders at the best available

price, and then move on to the next best price for the trader. For large values of |q0| this

means that the trader would purchase a significant number of shares at a price much higher

(q0 < 0) or much lower (q0 > 0) than the current best market price.

It is for this reason that such a strategy of placing an initial market order for the entirety

of q0 is not ideal. The trader runs a high risk of eating up all of the volume that the market

has to offer at the best bid or ask price. We can also condider the opposing extreme strategy,

namely, trading q0 in very small amounts, ensuring that the trader is never buying or selling

beyond the best best available price. This could be in fact a very advantageous situation

for our trader. For instance, in the case that the trader is purchasing shares, the price may,

between time 0 and time T actually fall, and he may over time get better and better best

offer prices as time goes on. On the other hand, he is opening himself up to a significant

2

amount of market risk in that there is a large chance that the price may actually increase in

that same time period to the point that he would have been much better off by just walking

the book with an initial market order than paying, over time what is a significantly higher

price per share.

The optimal execution problem takes note of the fact that both of the extreme ways

to solve this problem are suboptimal, so somewhere between minimizing the shielded risk

from walking the book (placing small orders over time) and minimizing the risk of price

fluctuations due to market risk (instantly placing a large limit order, one finds the actual

optimal trading process.

1.2 THE CLASSICAL OPTIMAL EXECUTION PROBLEM

As previously stated, the optimal execution problem asks, for large values of q0, what is the

best way to unwind this portfolio? The problem was first considered in 1998 by Bertsimas

and Lo in [4], yet due to the rudimentary nature of this model (it did not account for the

change in market price between 0 and T), the credit to the inception of optimal execution

research is often given to Almgren and Chriss for their framework given in [5] and [6] a few

years afterwards.

The classical mathematical setup is as follows from [2]. We seek an optimal control

process vt where

dqt = vtdt,

∫ T

0

vtdt = −q0 (1.1)

vt = argmax
v∈A

E[U(XT)]. (1.2)

Financially speaking vt represents the trading velocity; how much the trader buys or sells

at time t. Thus, the total volume of his trades must unwind his initial position q0. This

is illustrated in (1.1). qt represents the trader’s position at time t and is called the trading

curve. The trader’s cash account process is given by Xt. The optimal control process (1.2)

is given to maximize a chosen utility function U(x) amongst the set of admissible strategies

A.

3

A common utility function is the mean-variance critetion: U(x) = E[x] − γ
2
Var (x) for

some γ > 0. The key observation here is that the utility function’s input is the end time

cash process XT . Someone with a broader understanding of finance may find this odd since

it is often the case that one wishes to use their cash account process to purchase stocks

with high fundamental values to increase utility. We refer back to the nature of the optimal

execution problem in that the fundamental value of the asset itself is irrelevant, and we are

only concerned with how we can purchase or sell large volumes of shares of it in the best

possible manner for the trader. Thus, his cash account process at time T is where we will

derive our utility.

The initial attempts at this problem in [5] and [6] were done in the discrete time setting

and had the dynamics as described in [2]:

qn+1 = qn + vn+1∆t (1.3)

(vn)n ∈ A =

{
(v1, ..., vN) ∈ RN ,

N−1∑
n=0

vn+1∆t = −q0

}
(1.4)

XN = X0 −
N−1∑
n=0

vn+1Sn∆t−
N−1∑
n=0

L

(
vn+1

Vn+1

)
Vn+1∆t (1.5)

Sn+1 = Sn + σ
√

∆tεn+1 + kvn+1∆t, 0 ≤ n < N. (1.6)

U(XN) = E[− exp(−γXN)], γ > 0. (1.7)

As we can see the time horizon [0, T] has been split into N equally spaced time intervals.

In (1.5) the function L is an asymptotically super linear function satisfying L(0) = 0 and St

defines the stock price process for the desired stock. Vt represents the volume of the stock

that is being traded by other agents.

In (1.6) we note that ε1, ..., εN are independent, identically distributed standard normal

random variables. These conditions seek to emulate the random nature of the stock price

movement as close to the Brownian motion model as possible in order to retain the traditional

structure of the continuous time stock price models while remaining in discrete time.

The solution is found by obtaining the optimal discrete time trading curve (qn)n to be

q∗n = q0
sinh(α(T − tn))

sinh(αT)

4

such that α solves

2(cosh(α∆t)− 1) =
γσ2V

2η
∆t2.

The problem was later solved in continuous time by Almgren in [7] under the similar

dynamics:

A =

{
(vt)t∈[0,T] ∈ H0(R, (Ft)t),

∫ T

0

|vt|dt ∈ L∞(Ω)

}
dXt = −vt

(
St + L

(
vt
Vt

))
dt

dSt = σdWt + kvtdt.

The optimal trading velocity was found to be

v∗t = −q0

√
γσ2V

2η

cosh
(√

γσ2V
2η

(T − t)
)

sinh
(√

γσ2V
2η

T
) .

The parameter σ represents a constant, arithmetic volatility to the stock. In the above listed

models, the volatility is not permitted to change over the time horizon. The parameter k

is represents permanent market impact to serve as an indication of liquidity in the market.

This realization of liquidity through the lens of price impact is sensible, in that if the trader

knows what impact his trades will have on the market, he has a good indication of how much

volume is present on his preferred side of the order book. This impact parameter is assumed

to be linear so to avoid a pitfall known as dynamic arbitrage as defined in [8].

Almgren attempted in a mathematical approach to allow volatility and liquidity to take

on a more dynamic nature in [9]. In this model, liquidity (σt) and volatility (ηt) were defined

as stochastic processes:

η(t) = η exp(ξ(t)) (1.8)

σ(t) = σ exp

(
−ξ(t)

2

)
(1.9)

dξ = a(ξ)dt+ b(ξ)dWt. (1.10)

5

The problem is solved using the dynamic programming principle (DPP)

c(t, x, ξ) = min
v

[
λσ2x2dt+ ηv2dt+ Ec(t+ dt, x+ dx, ξ + dξ)

]
,

to obtain the Hamilton-Jacobi-Bellman (HJB) Equation

0 = ct + λσ2x2 + min
v

[ηv2 − vcx] + acξ +
1

2
b2cξξ,

where c(t, x, ξ) represents the value function.

We note that the paper does introduce a model with independent stochastic processes

governing both volatility and liquidity, yet a majority of the work in the paper focuses on

the above dynamics in which volatility and liquidity exist under the assumption that ησ2

must be constant. This is a coordinated variation assumption that we would like to lift.

As we moved to lift these assumptions, it became the goal of our research to remove even

the stochastic dynamics assumption of volatility and liquidity. Our goal became to model

the optimal execution problem from a perspective in which as few assumptions on dynamics

had to be made as possible. It is this motivation that inspired the chapters that follow. We

allow volatility and liquidity to be as close to their real values as we can by measuring them

via their statistical interpretations on real data. From here, we derive a statistical method

for the optimal execution problem via learning algorithms.

6

2.0 BACKROUND

2.1 ARTIFICAL NEURAL NETWORKS (ANN)

2.1.1 Motivation

Artificial Neural networks come from a field of machine learning known as “Deep Learning.”

We have already stated that our goal is to take input values known to the trader and build an

algorithm to predict ideal times to trade. Therefore, we are working with a type of machine

learning known as a classification problem.

Standard linear classification models (logistic regression) are fine for models whose inputs

do not have complex interactions:

log

(
p

1− p

)
= X · β (2.1)

Y = X · β (2.2)

For instance, if we had inputs to a model that was originally of the form 2.2, and the

goal of this model was to determine how much a golfer’s score lowered based on how much

they spent on equipment. Thus, the model would seek to find optimal β0, β1 such that

Y = β0 + β1 ∗X. (2.3)

Where Y is the average score, and X is the price spent on equipment. Such a univariate

analysis is not adequate as a golfer’s score is a product of far more parameters than the

amount they spend on equipment. Therefore we seek to add more variables to the equation.

Let’s start with skill. The USGA handicap index is a reputable measure of skill for golfers.

Now, our model becomes

7

Y = β0 + β1 ∗X + β2 ∗H (2.4)

where H is the golfer’s handicap. This will be a better model, but it’s missing something.

What it’s missing is the knowledge that a golfer’s handicap is very much related to his

ability to effectively use equipment. The lower the handicap, the better the golfer. The

most expensive golf equipment is equipment that is designed so that highly skilled players

can control the spin and trajectory of the golf shot to a higher degree of precision. Such shots

are advantageous to golfers as they have more options to navigate obstacles and place the

ball closer to the hole. This will produce lower scores. A less skilled golfer, one with a high

handicap could spend lots of money on equipment, but cannot actually put it to its intended

use because he lacks the necessary skill to take advantage of the equipment’s features. Due

to this being quite common knowledge, it is often the case that skilled players will spend

more than unskilled players on equipment, as it is known to improve their games.. Therefore,

a more appropriate model recognizes that there is an interaction between handicap (H) and

price spent on equipment (X) will effect the golfer’s score.

Y = β0 + β1 ∗X + β2 ∗Hβ3 ∗X ∗H (2.5)

The simple interaction term of X ∗ H is adquate for the purposes of a model like golf

scores. It could show a marketing team how to adequately sell to aggregations of large

categories of vaguely similar golfers. This model, is different from the one we are working

with in regards to how accurately we wish to explore the interactions. In financial data,

more specifically the optimal execution problem, we are concerned with high frequency data.

We will have second by second statistical realizations of things such as volatility, liquidity,

stock price, and derivative (trend) of the stock price. We know that there are for certain

interactions between things like volatility, liquidity, and price movements. However, these

aren’t simple interactions at the high frequency level. The most simple interaction would

likely be volatility as it is often calculated via historical (standard deviation), GARCH, or

8

implied volatility. However, as we see from each of those relationships, they are hardly as

simple as Price*Volatility.

We seek a machine learning model that is able to capture highly complex interactions

between variables. The ideal model for this is an artificial neural network, which grew out

of a desire to model regression problems with nonlinear structures.

2.1.2 Feed-Forward Sequential Neural Networks with Back-propogation

We will begin by explaining the simplest neural network model that would complete our

binary classification task as described in [10]. Neural networks are best understood via their

visual representation but we will begin, as a normal binary classification problem would. We

are given an input vector X that contains p inputs. The goal is for the model to output

{f1(X), f2(X), ..., fk(X)}

where fk represents the probability that the input vector X is of class k. A basic neural

network mode to carry out such a computation is done as follows:

Zm = σ(α0m + αTmX); m = 1, ...,M. (2.6)

Tk = β0k + βTk Z; k = 1, ..., K. (2.7)

fk(X) = gk(T); k = 1, ..., K. (2.8)

Described in (2.6) is what is known as the hidden layer of a neural network model. Each

Zm represents one node of the hidden layer. Each node Xi in the input layer interacts with

every node in the hidden layer. Consider for instance Z2.

Z2 = σ(α02 + αT2X).

Each line connecting Z2 to X represents α2i for some i ∈ {1, ..., p}. Each vector αm

is therefore a p − dimensional vector (since X is p-dimensional) and the term α02 refers

specifically to the bias term that acts much like the bias term in 2.2. We recall that the main

9

goal of neural network algorithms is to predict based on nonlinear functions of input. Clearly

modeling on only α0m + αTmX in the hidden layer would do damage to this purpose. This

is where σ comes in. σ is known as the activation function in the hidden layer. In original

conceptions of neural networks, these activation functions were step functions. However,

given the desire for smoothness in the optimization process, the sigmoid activation function

was adopted:

σ(v) = sigmoid(v) =
1

1 + e−v
.

The sigmoid function is no longer used as widely due to issues we will discuss when going

over the specifics of our plan to approach the optimal execution problem in this manner.

For now, one can think of the activation function as any smooth nonlinear function, such as

sigmoid.

We turn our attention now to (2.7). This layer is calculated much the same as the input

to σ in the hidden layer is calculated. For some k ∈ {1, ..., K},

Tk = β0k + βTk Z.

One thing to note here, is that as in the hidden layer where each αm was a p-dimensional

vector, βk is an M dimensional vector. This is because each node Tk will be a linear com-

bination of every single element from the hidden layer Zm, m = 1, ...M , where there are M

nodes. We once again have the bias term β0k.

After the Tk node is calculated for each k, the model is ready to produce its output.

This comes in the form of applying, for each class k the output function gk(T). The most

widely accepted output function for classification problems is what is called the “softmax”

activation function:

gk(T) =
eTk∑K
`=1 e

T`
. (2.9)

We specify here that gk(T) is the output, and thus fk(X) = gk(T) as is stated in 2.8. This

represents the prediction of Yk, the value of the probability that input X is predicted to be

10

a member of class k. Neural network models are fit to the training data via adjustment of

the weights. By weights, we mean the set θ where

θ = {α0m, ..., αm, β0k, ..., βk,m = 1, ...,M, k = 1, ..., K}. (2.10)

These weights are optimized by minimizing the loss function to the training output data

{yi}Ni=1. Consider the most common loss function of sum of squared errors:

R(θ) = −
N∑
i=1

K∑
k=1

(yik − fk(xi))2. (2.11)

Note that here xi represents a p-vector of observed input data and yik represents the observed

output for class k. If we think of this in the sense of classification problems, this value will

always be 0 or 1 because it is clear to the observer which class the observed output belongs

to. In classification neural networks these nodes will often have values within the interval

(0, 1), and the model tells the user that the tested input is in the class

G(x) = argmax kfk(x).

We seek to minimize R(θ) with our weights during training, but an approach towards the

global minimizer of R(θ) will tend to overfit the model to the training data. Instead we

seek other methods of optimization. The most standard optimization technique is known as

gradient descent back-propogation.

11

2.1.3 Gradient Descent Back-Propogation

We consider a technique to best train our data with respect to the loss function of (2.11) from

[10]. Assume that our neural network has been forward propogated to create the structure

described in (2.6) - (2.8). To observe this back-propogation technique over a single input

vector’s values, consider the hidden layer for node m of the i-th observed input vector;

zmi = σ(α0m + αTmxi). (2.12)

Consider the loss function for this input vector to be

Ri(θ) =
K∑
k=1

(yik − fk(xi))2. (2.13)

From 2.11, R(θ) =
N∑
i=1

Ri(θ). (2.14)

In order to perform an optimization with respect to R(θ), we need to calculate its gradient.

For this, we keep in mind the structure of (2.8) and (2.7) to recognize that for a single

observation

fk(xi) = gk(β0k + βTk zi). (2.15)

We will now proceed with the gradient calculation.

∂Ri

∂βkm
=

d

dβkm

K∑
k=1

(yik − fk(xi))2 (2.16)

= −2(yik − fk(xi) ∗ g′(β0k + βTk zi)zmi. (2.17)

We may also rewrite 2.15 to include the hidden layer so that

fk(xi) = gk
(
β0k + βTk (σ(αom + αTmxi))

)
(2.18)

⇒ ∂Ri

∂αm`
= −

K∑
k=1

2(yik − fk(xi)g′(β0k + βTk zi)βkmσ
′(α0m + αTmxi)xi`. (2.19)

12

From (2.17) and (2.19), we can now perform what is known as a gradient descent update

to our weight set. Given the value of the weights at the iterate r, we can obtain the r + 1

iterate of the weights via

β
(r+1)
km = β

(r)
km − γr

N∑
i=1

∂Ri

∂β
(r)
km

(2.20)

α
(r+1)
m` = α

(r)
m` − γr

N∑
i=1

∂Ri

∂α
(r)
m`

. (2.21)

Here, the term γr is known as the learning rate at iterate r. In order to make the process

more computable, we write (2.18) and (2.19) such that

∂Ri

∂βkm
= δkizmi (2.22)

∂Ri

∂αm`
= smixil, (2.23)

where δki and smi are observed errors that satisfy the so called “back-propagation” equations

smi = σ′(α0m + αTmxi)
K∑
k=1

βkmδki. (2.24)

The updates to the weights are computed in what is known as a two pass algorithm.

In the first pass, known as the “forward pass” the current weights in θ are fixed and the

predicted output values are calculated via (2.6) - (2.8). That is to say, with current weights,

go through the neural network to the output layer. In order to update, we go through the

“backward pass.” This begins with starting with computing the values δki from the output

layer using (2.17) in conjunction with the definition of δki given in (2.22). From here, we use

(2.24) to compute smi. This allows us to define the values of ∂Ri
∂βkm

and ∂Ri
∂αm`

via (2.22) and

(2.23) and finally get the updates to the weights as defined by (2.20)-(2.21).

This procedure is what is defined by the phrase “back-propogation.” It is carried out on

every piece of input data. One full sweep through the data is termed an “epoch.” We may,

as practitioners of the algorithm include as many or as few epochs as we wish into a neural

network. Often times, more are included until the accuracy of the model begins to converge.

13

2.1.4 Modernization of the Neural Network for our Model

We now take this basic concept of a neural network and extend it to the nureal network that

we will actually use. We will make the following changes to the neural network described in

the previous section.

1. We will add more hidden layers.

2. We will specify our activation function σ.

3. We will change the optimizer from gradient descent to an optimization algorithm known

as “Adam.”

4. We will optimize subject to a different loss function known as “categorical cross-entropy.”

Let’s first consider the possiblility of adding more hidden layers to the neural network.

This is not a difficult extension to envision. Looking to ??, assume we now have instead of

just one hidden layer Z, that we now have H hidden layers {Z1, Z2, ..., ZH}. These hidden

layers are generated much in the same fashion as before. The first hidden layer Z1 is defined

such that

Z1
m = σ1(α0m + α1T

m X), m = 1, ...M1.

Note that here α1T
m is a p-dimensional vector like X. This layer Z1 connects to the layer Z2

such that

Z2
m = σ2(α2

0m + α2T
m Z1), m = 1, ...M2.

In this case, we note that the size of the vector α2T
m will differ from that of α2T

m in the

sense that α2T
m now has M1 components in order to properly interact with Z1. This process

continues until the output layer, which is described as

Tk = β0k + βTk Z
H

where, as expected βk is a MH component vector. Thus, we see that it is not too big of an

extension on the original framework to add more hidden layers to a neural network. Adding

hidden layers can add to the model by extracting more complex features within the data.

14

We will seek to optimize the number of hidden layers using modern methods for tuning the

model as proposed in [11].

Moving on we find the task of choosing the correct activation functions. As we have stated

previously in this section, for a while the standard activation function by practitioners was

chosen to be the sigmoid activation function

σ(v) =
1

1 + e−v
.

We know that for optimization purposes, we have to employ the gradients of this function.

The gradient of the sigmoid activation function is

σ′(v) =
e−x

(1 + e−x)2
.

Nothing seems too out of the ordinary here, but imagine using this function for a neural

network that has quite a few hidden layers. Here, we reference from our initial walk throug

the neural network the function for the hidden layer weight derivative (2.19). As we add

more hidden layers to this algorithm, the initial layer Z1 will have weights such that ∂Ri
∂α1

m`
will

contain the product quite a few gradients of activation functions. Considering the maximum

value of σ′(x) in this case is .25, and for values of v > |5| the gradient decays to essentially

0, it isn’t advisable to use sigmoid as our activation function since as our gradients vanish,

our updates to the weights for these earlier hidden layer nodes (for example the updates

defined in (2.20)-(2.21)) will be minimal at best. Therefore, it is not in our best interest to

use sigmoid for our activation function nor, for that matter any function whose gradients

decay rapidly.

In order to rectify this problem we turn to what is known as the ReLU (rectified linear

unit) activation function. It was first used in [12] and was considered according to [13] to

be the most popular activation function for deep learning algorithms today. The function is

defined such that

ReLU(v) = v+ = max{0, v}.

Thus, the gradient of this activation function is either 0 or 1. This ensures that our

gradients do not die out as we add more hidden layers to our neural network model. This

15

activation function will be used at all of the nodes in our model’s hidden layers. For our

output layer, as defined by 2.7 and 2.8, we will use the function

gk(T) =
eTk∑K
`=1 e

T`
(2.25)

known as the ‘softmax’ function. This is the standard output function for classification

problems (such as the one we are doing with binary trade tick classification).

We now turn to the idea of optimizing our neural network weights θ where

θ =
{
α1,...H

1,,,Mh′
, β01, .., β0k, β1, .., βK

}
.

For our specific problem of classification, it is better to not use the sum of squares defined

loss function and to instead use the loss function known as “categorical cross-entropy” where

R(θ) = −
N∑
i=1

K∑
k=1

yikfk(xi). (2.26)

Our goal to optimize this presents us with a couple of options in terms of how we wish to

optimize this. We have the example of gradient descent, which can be stated in a more

general sense as

θ
(r+1)
j = θ

(r)
j − α

∂

∂θj
R(θ).

A weakness of this optimizer is that it generally requires the algorithm to loop over

quite a bit of data since it goes through each and every input. In general, deep learning

algorithms take quite a bit of data in order to converge on an good model. An extension of

this optimizer that rectifies this problem is known as stochastic gradient descent (SGD). In

this optimizer, we randomly choose an input direction so as to loop over less data in each

epoch. In this instance, the update given in (2.20) is changed to

β
(r+1)
km = β

(r)
km − γrN

K∑
k=1

2(yik − fk(xi))g′(β0k + βTk zi)βkmσ
′(αTmxi)xi`.

This method is a step in the right direction towards the optimizer that we wish to use. The

optimizer we employ is known as Adam introduced in [14]. It is named for its motivation of

“adaptive motive estimation.” The big difference between Adam and SGD is that SGD, when

16

implemented maintains a single learning rate γr among all weight updates per iterate. Adam

gets around this limitation by calculating an exponential moving average of the gradient and

squared gradients. It has two user inputted parameters β1 and β2 that control the decay

rates among the moving averages of these gradients. The reason we are employing the

Adam optimizer is because of its reputation for good performance. In [15], a lot of different

optimization techniques for deep learning neural networks were put to the test. Adam

performed the best in this examination, able to beat most methods in the most situations.

Data: Adam(α,β1,β2, f(θ),θ0)

Result: θt

initialization;

m0 = 0, v0 = 0, t = 0

while θt is not converged (‖θt − θt−1‖ > tolerance) do

t← t+ 1 ;

gt ← ∇θft(θt − 1) ;

mt ← β1 ∗mt−1 + (1− β1)gt ;

vt ← β2 ∗ vt−1 + (1− β2)g2
t ;

m̂t ← mt
1−β1 ;

v̂t ← vt
1−β2 ;

θt ← θt−1 − α m̂t√
v̂t+ε

;

end

Algorithm 1: The Adam optimization Algorithm

In the above algorithm, the paper puts forward initializing with α = 0.001, β1 = 0.9, β2 =

0.999, and ε = 10e− 8. We note that the function f , for the purposes of our problem will be

the categorical cross entropy function (loss function) defined with the activation functions

of ReLU in the hidden layer and softmax in the output.

17

2.2 REINFORCEMENT LEARNING

2.2.1 An overview of Reinfocement Learning

In this subsection, a basic overview inspired by [16] is given. In reinforcement learning tasks,

according to information learned from [16] , the agent interacts with his envrironment,

and in the various states of his environment, he makes actions. As a result of his actions

he is given a reward.

The structure of a reinforcement learning problem is such that an agent is performing a

task in an environment that can be defined by various states. At a set of discrete time steps

t = 0, 1, 2, 3, ...

the agent receives some representation of the environment’s state. The state at time t is

denoted by St:

St = s ∈ S,

where S represents the set of possible states for the environment. A simple example of this

is one where the agent is represented by a chess player’s control over a single pawn on a chess

board. The discrete times t represent an indexing on the moves that a player makes during

a chess match. As one who plays chess knows, pawns can move diagonally while attacking,

but not otherwise. Therefore it makes sense to model the movements of a pawn based on

whether or not they are in position to attack. The state the pawn is in is the set S such that

S = {Can Attack, Can’t Attack}

The agent then interacts with the environment and selects an action: At where:

At = a ∈ A(St)

18

where A(St) represents the set of actions that are available to the agent in the state St. In

our example of the pawn on a chess board, the action set differs based on state.

A(‘Can’t Attack’) = {Move Forward, Don’t Move}

A(‘Can Attack’) = {Move Forward, Don’t Move, Attack}.

One step later, as a consequence of the action that the agent took in time t, the agent is

given a reward Rt+1 ∈ R ⊂ R. He, at this time enters a new state, St+1. The way that he

chooses the actions that he takes at each state is called his policy. It is given as a mapping

from states to probabilities of selecting each possible action. We denote this by πt. This is

denoted by

πt(a|s) = The probability that action ’a’ is taken in state ’s’.

In our example, we can assume that a reward of 1 is given if the pawn is not killed by

our agent’s open before our next turn. A reward of −1 is given if the pawn is killed. If our

agent is an agressive chess player, we can expect that πt(’Attack’|’Can Attack’) is close to

one.

Most theories presented in reinforcement learning assume that the environment that is

being dealt with can be thought of as a Markov Decision Process or an MDP. This means that

instead of the path dependent case where the dynamics can only be defined by the complete

joint distribution, we only need knowledge of the current state and current action to predict

the resulting state and resulting reward probabilites to the same degree of accuracy as one

can expect using the full joint distribution. Thus

p(s′, r|s, a) = P {St+1 = s′, Rt+1 = r |S0, A0, R1, ..., St−1, At−1, Rt, St, At} ,

= P {St+1 = s′, Rt+1 = r|St = s, At = a} .

19

The key idea of reinforcement learning is that we use value functions in order to

structure the search for good policies. These are motivated by the following definition of

discounted return of rewards. We define

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

=
∞∑
k=0

γkRt+k+1

to be the discounted return at time t for the agent. We note that 0 < γ < 1. This restriction

on γ is crucial in the convergence of the algorithm, but also makes sense from an application

point of view. We want the actions we take at a given time to be most impacted by rewards

given in the more immediate future to his action at time t. This restriction on γ allows the

expected rewards at future times to be depressed a bit. This definition allows us to define

the optimization for the agent in the sense that

vπ(s) = Eπ[Gt|St = s]

= Eπ

[
∞∑
k=0

γkRt+k+1| St = S,

]

where here, we note that a policy π maps from each state s to the probability of taking

action a in state s. This is denoted by π(a|s). Therefore, the above value function is the

expected reward returned from following policy π starting at state S. Expanding further,

we obtain

vπ(s) = Eπ

[
∞∑
k=0

γkRt+k+1 : St = S,

]
(2.27)

= Eπ[Rt+1 + γGt+1|St = s] (2.28)

= Eπ[Rt+1 + γvπ(St+1)|St = s] (2.29)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] , ∀s ∈ S, (2.30)

where 2.30 is obtained via definition of expectation in a finite discrete probability space.

The equation (2.30) is known as the Bellman Equation for vπ. Solving a reinforcement

20

learning task is equivalent to finding a policy that out-performs all other policies over the

long run. We can order policies by saying that

π′ ≥ π ⇔ vπ′(s) ≥ vπ(s), ∀ s ∈ S.

Based on the MDP structure, there is always at least one policy that is greater than or

equal to all other policies. This is an optimal policy, and it is denoted by π∗. All optimal

policies share an optimal value function defined by

v∗(s) = max
π

vπ(s)

= max
a

E[Rt+1 + γv∗(St+1)|St = s, At = a]

= max
a∈A(s)

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)].

2.2.2 Policy Evaluation

We need to consider how to compute the value function vπ for any policy π. For any value

function v, for all s ∈ S, we have the Bellman equation 2.30 such that

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)].

Therefore if the environment’s dynamics are completely known, as in the agent is aware of

p(s′, r|s, a) then the equation (2.30) becomes a system of linear equations of size |S|, the

cardinality of the state space. The unknowns are therefore

vπ(s) : s ∈ S.

Therefore, we can employ an iterative numerical scheme. Consider choosing v0 arbitrarily.

By choosing this, we are choosing a value function, mapping S to R. We use the Bellman

equation (2.30) as an update rule.

vk+1(s) = Eπ[Rt+1 + γvk(St+1)|St = s] (2.31)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvk(s′)]. (2.32)

The magic of using the Bellman rule as an update scheme is that vπ is a fixed point of the

algorithm since it follows the Bellman equation so we are assured of equality. In order to

write an actual program to handle this, see below:

21

Data: Input π, the policy to be evaluated., Θ, the tolerance

initialization;

Initialize an array V (s) = 0 for all s ∈ S ;

Repeat;

∆ = 0 ;

for s ∈ S do

v ← V (s);

V (s)←
∑

a π(a|s)
∑

s′,r p(s
′, r|s, a)[r + γV (s′)];

∆← max(∆, |v − V (s)|)
end

if ∆ < Θ then
Output V ≈ vπ

end

Algorithm 2: Iterative Policy Evaluation

Once we have a value function for a policy, we want to know whether or not we should

change that policy to deterministically choose an action a 6= π(s) = argmax a∈A(s)p(a|s) .

This of course amounts to changing the policy. Therefore, we want to evaluate a change in

the policy at a single state to a particular action. It is a natural extension to consider chnages

at all states, and to all possible actions, selecting at each state the action that appears to

be the best. We call this a greedy policy that is defined as π′(s) :

π′(s) = argmax aE[Rt+1 + γvπ(St+1)|St = s, At = a] (2.33)

= argmax a

∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]. (2.34)

We want to update our policies in the following manner: Begin with an initial policy π0.

Then we seek to iteratively practice policy improvement:

π0
Evaluation−−−−−−→ vpi0

Improvement−−−−−−−→ π1
Evaluation−−−−−−→ vπ1

Improvement−−−−−−−→ π2
Evaluation−−−−−−→ · · · Improvement−−−−−−−→ π∗.

We now have the final algorithm to process this:

22

1)Data: Input V (s) ∈ R, and π(s) ∈ A(s), Θ.

2)Policy Evaluation (as before with a slight change);

while ∆ > Θ OR count < 1 do

∆ = 0 ;

count = count + 1 for s ∈ S do

v = V (s) ;

V (s) =
∑

s′,r p(s
′, r|s, π(s))[r + γV (s′)] ;

∆ = max(∆, |v − V (s)|)
end

end

3)Policy Improvement ;

policy-stable ← True ;

for s ∈ S do

old-action ← True ;

π(s)← argmax
a

∑
s′,r p(s

′, r|s, a)[r + γV (s′)] ;

if old-action 6= π(s) then
policy-stable ← False

end

end

if policy-stable ← True then
return V ≈ v∗, π ≈ π∗

end

Else: Return to 2
Algorithm 3: Policy Iteration

23

To conclude, we note that since we are working with a finite Markov Decision Process,

this policy improvement process will converge since eventually, as we cycle through the

policies in each state, we will arrive at a point where π(s) = π′(s), and thus the policy will

converge.

2.3 LOGISTIC REGRESSION

Logistic Regression is used for our limit order models. We give a brief setup of the model

with info from [10]. The logistic regression problem, despite having the word “regression” in

the name is actually by nature a classification problem. Given a predictor set X we which

to classify such a predictor with a member of a finite classification set

G = {1, 2, ..., K}.

A standard classification problem, much like the one we saw earlier with the artificial neu-

ral network is one of training an algorithm that will make a prediction as to which classifier

the input belongs to. Logistic regression works a bit differently in that a logistic regression

algorithm will output the probability that the input belongs to each class. Therefore, what

the logistic regression model outputs is its prediction of the posterior probabilities ;

P (G = K|X = x). (2.35)

In order to predict these, the standard logistic regression model uses linear functions of X

to act as decision boundaries.

log

(
P (G = 1|X = x)

P (G = K|X = x)

)
= β10 + βT1 x

log

(
P (G = 2|X = x)

P (G = K|X = x)

)
= β20 + βT2 x

·

·

·

log

(
P (G = K − 1|X = x)

P (G = K|X = x)

)
= β(K−1)0 + βTK−1x.

24

and thus for any given k ∈ G;

log

(
P (G = k|X = x)

P (G = K|X = x)

)
= βk0 + βTk x (2.36)

P (G = k|X = x) = exp(βk0 + βTk x)P (G = K|X = x) (2.37)

⇒ P (G = K|X = x) = 1−
K−1∑
`=1

P (G = K|X = x) exp(β`0 + βT` x) (2.38)

= 1− P (G = K|X = x)
K−1∑
`=1

exp(β`0 + βT` x) (2.39)

⇒ P (G = K|X = x)

(
1 +

K−1∑
`=1

exp(β`0 + βT` x)

)
= 1 (2.40)

P (G = K|X = x) =
1

1 +
∑K−1

`=1 exp(β`0 + βT` x)
(2.41)

(2.37)⇒ P (G = k|X = x) =
exp(βk0 + βTk x)

1 +
∑K−1

`=1 exp(β`0 + βT` x)
. (2.42)

We note that using the final class K as the denominator for all of the posterior proba-

bilities is arbitrary, and any individual class can be used.

2.3.1 ROC Curve

via [17], the Receiver Operating Characteristic curve or ROC curve is a good technique for

examining the performance of our logistic regression algorithm. Consider a binarty logistic

regression model suc that y = 0 or y = 1. Our model will have a “cutoff point” of probability

in which the model will predict class y = 1. Thus, if our cutoff is .5, then if our model labels

p ≥ 0.5, the input data will be labeled by our model as 1. What happens when we begin to

vary this threshold is what the ROC curve indicates.

The ROC curve plots the false positive rate of the model on test data vs the true positive

rate as the threshold changes. Therefore when the threshold is equal to one, the model

predicts zero for all of the data. Thus, buth true and false positive rates are 0. On the other

hand, when the threshold is 0, the model predicts 1 for all input, and thus the true and false

positive rates are both 1.

The gauge of how good a model is, is the area under the ROC curve. The closer it is to

one, the better the model. We will use this metric to gauge the performance of our model.

25

Figure 2.1: The Two different ROC curves are plotted here. The lines represent the ratio of

false positives to true positives when the threshold varies.

26

3.0 OPTIMAL EXECUTION FOR MARKET ORDERS IN LIT MARKETS

3.1 THE INITIAL DATA DRIVEN APPROACH

As discussed in the introduction, one of our goals for this research is to free the models

from structural assumptions on things such as volatility and liquidity. Given that volatility

(σ) and liquidity (η) are two vital parameters in the classical optimal execution models, it

is important for us to statistically realize them for the purposes of our model. We begin

with volatility. In later chapters, we have changed ways in which we measure volatility. For

this initial data driven approach, we use historical volatility. This statistic encompasses the

deviation of the price at a current time from some mean value. Here we consider that mean

value to be the mean over the past 30 time ticks.

σ =
√
N ∗

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2

xi = log

(
Closeti

Closeti−1

)
, x̄ =

∑n
i=1 xi
n

.

Here, N is the number of periods per year (in our case 390*252), and n is the number

of period observations that are used to calculate the average. In our case, the window is set

so that the previous 30 observations are used to calculate the average. In statistical terms

what we are calculating is the standard deviation of the current log return to its average

over the last 30 observations. Thus, after the first 30 ticks in a given stock’s data set, we

can obtain a volatility statistic based only on the historical close price. Using the previous

30 ticks was our choice. Making this number larger will give the trader a better indication

of the mean price, but we must also take note of the fact that there are only 390 minutes of

27

trading in a given day on the US market. Therefore, we will lose as many data points as we

add from the initialization of the model.

Regarding liquidity, we use a statistic known as LIX:

LIX =
1

10
∗ log10

(
Volume ∗ Close

(High− Low)

)
. (3.1)

The intuition for this statistic is that it takes the total amount of money spent on trading

in the market assuming that each trade was for at the close price for the whole interval in

the numerator of (3.1) and then divides it by the total amount that the price moved. The

intuition behind the statistic as listed in [18] is that

1010∗LIX

is the estimated amount of money needed to create a 1$ price change in the stock price.

Thus, for our problem’s sake when the LIX is higher, we have a better opportunity to make

a big buy without moving the market; so we can make a bigger trade without as much risk

of walking the limit order book and losing out on cash for the trader. We thus add ‘LIX’ to

our data set, noting that we have divided it by 10. This serves only to make the value of

LIX smaller. We will see once we get to the description of the neural network model that

we do not want statistics being too much larger than others or else they can potentially over

represent themselves in our limit order book model.

This concludes the data description for the parameters in the model. From these statistics

we will begin to make calculations that will lead us toward our trading curve.

3.2 THE CLASSIFICATION LEARNING PROBLEM

In this fist approach we consider the situation of q0 < 0. Thus, the trader must purchase

|q0| shares of the desired equity by time T . A lot of strategies in the classical literature, for

instance [19], revolve around a central idea that at the beginning of the execution window,

close to time 0, the trader should place a large market order for his desired outcome. In this

case, that means that he would place a large market buy order for a significant portion of the

28

shares |q0|. The idea behind this, is that the presence of a large buyer will excite the market.

Therefore, orders to sell will flow in because a large move to the market has occurred. This

flow of limit sell orders will happen in a comepetitive manner. That is to say that those

placing the limit sell orders will attempt to place them lower than one another to guarantee

execution of the sell order. It is believed that from this point on, our trader will be able to

keep their eye on the market, and “pick off” these incoming limit sell orders one by one in

order to get better prices. In a lit exchange, he is able to observe such trades and incoming

limit orders. This will allow him to buy up the stock as it becomes available. At the end

of the time horizon, near time T , the trader will place one hopefully small market order for

the remainder of |q0| that he has not yet managed to purchase. The goal is to structure his

trades in a manner so that he does not have to place this market order as he has been able

to make the entire purchase under the more ideal conditions of picking up market orders.

Our strategy is different from the beginning. This is not a result of us immediately

deviating from the classical literature. Our research instead had the goal from the very

beginning of using learning algorithms to do this problem. The idea that we developed is

an algorithm that can train itself on historical data, and then pick out when the market

conditions indicate that it is time to place a market order. From this perspective, the idea

of placing a large market order to initialize the strategy was not ideal in terms of the data

that we had to work with, that would serve as the basis for training our model.

The data that we are working with is data that was obtained from real markets. The

model that hinges on placing this initial large market order is optimized based on knowledge

of the type of price impact that the trader’s orders have. If we were to assume that we placed

a market order at the beginning of our time horizon so large that it moved the market, we

would be cheapening the product of the rest of our data as time moved forward. This is

because an order so large should in fact have far reaching consequences on the market from

volatility, to liquidity, to trading volume, to prices and trades. For example, considering

our imported data, if someone placed a considerably large market buy order for McDonalds’

during time 62; the price would definitely move, and the maximum price that the stock traded

on during the minute would be higher. Hence a higher price given for ‘High’. Simultaneously,

this trade would eat up all of the volume in the limit order book at lower prices. Thus the

29

open, and likely close prices for the stock at subsequent times would be higher. Since there

has been a change in price, this is going to have an effect on the historical volatility which

reflects deviations from a lognormal mean price. The ‘Volume’ statistic has been rendered

completely inaccurate as it does not reflect a large trade that we allegedly placed at the time.

Since volume plays a large role in our definition of LIX, this statistic too will be changed by

such a trade.

Observing how all of our vital statistics will be effected by a large market order, and

taking into account that a machine learning algorithm’s effectiveness will depends largely on

the accuracy of the data that it is trained on, we decided to forego the approach of an initial

large market order followed by subsequent ideal smaller ones.

Intead, we made our algorithm suited to the following goal: find times with optimal

market conditions to make a sizable market buy order. It should be noted in light of the

previous discussion, that by sizable market order we mean one that will not move the market

up very much if at all. We have the LIX statistic at our disposal which indicates how much

we will trade. In a post decimalization world, we would like to preserve the integrity of our

data by not purchasing more than what the LIX indicates will move the market by more

than one cent. Thus, a ‘large’ market order is an order defined to be the maximum amount

that LIX indicates can be traded and not move the market more than one cent.

When choosing ideal times to trade we decide that we are looking for the following

characteristics in a time tick.

1. The Close Price must be a minimum of the surrounding (±) 10 ticks.

2. The Volatility is less than the mean volatility for that day.

3. The Liquidity is greater than the mean liquidity for that day.

We of course note the reality that this criteria is impossible to check in real time. After

all, the trader does not have access to future information. Therefore, he cannot tell that the

stock price is at a local minimum, nor can he tell when the volatility or liquidity is truly

lower than the mean of that day since the full day hasn’t been played out yet. For now,

all that we are doing is labeling the data so that we can effectively train our algorithm to

locate what we are looking for. At this point, we have arrived at our first machine learning

30

Figure 3.1: The TradeTicks are labeled on the graph above as blue dots.

task; namely a classification learning problem. Its task will be to take as input, data that

the trader has access to at a given time, and decide whether or not it is smart, at that time

to make a trade. Therefore, the first step that we must take in solving this problem is to

effectively label the data. This is shown in in Figure 3.1. We note that in doing this, the

trader was allowed to look at the historical data going both backwards and forwards in time.

He will use this historical information to train his model, but that model, when used will

not allow him to use the same inputs used to classify the data as a ‘TradeTick’ (a time

in which to place a large market order). Now, our goal becomes to use data from only

previous ticks, to predict whether or not the current tick is a TradeTick. In order to do

this we employ an artificial neural network (ANN).

31

Date Close Open Volume LIX Volatility TradeTick

62 157.72 157.73 3700 .692 .152 1

63 157.76 157.73 13118 .747 .152 0

Figure 3.2: A glimpse of the statistics for the initial data driven approach.

Algorithm

Inputs (Predictors) Output (Predicted)

OFR at t− 1, t− 2, ..., t− 5 TradeTick

OFRSIZ at t− 1, t− 2, ..., t− 5 0 or 1

Volatility at t− 1, t− 2, ..., t− 3

BID at t− 1

BIDSIZ at t− 1

Figure 3.3: A neural network structure for the initial data driven approach.

32

3.3 NEURAL NETWORK MODEL FOR OPTIMAL EXECUTION

As seen in Figure 3.3, 15 total input nodes will predict whether our current tick is one to

trade at. This information is all available to the trader before he decides whether or not to

make a trade based on that tick. Our neural network model is made using keras [20].

Our algorithm takes the previous 20 ticks and predicts whether or not a trade should

be made at the current tick. Recall that the main goal is to determine how to purchase

q0 shares of stock within a finite time horizon [0, T]. So far, we only know when the ideal

points are to make our trades. We still need to know how much to trade at each tick. This

is accomplished via our reinforcement learning algorithm.

3.3.1 Reinforcement Learning Algorithm for Optimal Execution

A reinforcement learning algorithm will be used to determine how many shares to purchase

at each trade tick. We are limited, in that this requires us to transfer our problem into a

Markov Decision Process.

We note that we need the following completely defined:

1. S

2. A(s)

3. R

4. p(s′, r|s, a)

We begin with the state space S. We wish to define the state space based upon two things:

Amount left to trade, and time of the day. In a perfect world with infinite computing power,

we could make every minue of the day a possible state, and every dollar amount a possible

state. This is not within the confines of any reasonable computation. This is why we have

split the states into the following

S = {X,T} (3.2)

X = {X1, X2} (3.3)

T = {t1, t2, t3} (3.4)

33

• t1: Represents the time between the minutes [1,130)

• t2: Represents the time between the minutes [130,260)

• t3: Represents the time between the minutes [260,390)

• X1: Represents that there is between X and 1
2
X left to be purchased where X is an

inputted share amount that the trader desires to purchase

• X2: Represents that there is between 1
2
X and 0 left to be purchased where X is an

inputted share amount that the trader desires to purchase

Therefore, we can now fully define S, a set of cardinality 7. Recall, that this cardinality

plays majorly into the computation of our ideal value and policy function.

S = {(X1, t1), (X1, t2), (X1, t3), (X2, t1), (X2, t2), (X2, t3), } (3.5)

S+ = {(X1, t1), (X1, t2), (X1, t3), (X2, t1), (X2, t2), (X2, t3),TERMINAL} (3.6)

The TERMINAL state occurs if we have completed the optimal purchase amount.

From each state in the state space, our trader will perform an action. He selects his

action from the action set. Each action set is listed below

for s ∈ S A(s) = {Not Buy, Buy Half, Buy All}

for s = TERMINAL , A(s) = {Not Buy} .

We designate these as follows:

1. Not Buy: The agent does not purchase any shares

2. Buy Half: The agent buys half of the shares available at the best LOB level.

3. Buy All: The agent buys all of the shares available at the best LOB level.

As a result of his action in the current state the agent is given a reward. The reward set

is as follows:

R = {rmatch = +3, rslip = −1, rshock = −10} . (3.7)

• rmatch: This is the reward that our trader is given if his trade matches the LOB value

that he intended. This is the desired outcome for the trader.

34

• rslip: This is the reward that our trader is given if his trade walks the book. Thus, he is

given a negative reward if he doesn’t get the best price for his intended trade.

• rshock: Sometimes, the market can go crazy. A fire burns down all of the equity’s facto-

ries. A country commits an act of war, etc. The market can move horrifically in these

siutations, and the trader can fall victim. This is a massive negative reward representing

a market shock.

We now need to complete this Markov Decision Process. This means that we need

to assign all values to the probabilities p(s′, r|s, a). The ij-th entry of the matrix is the

probability that state-action pair i puts the trader in state s′ with reward r as stored in j.

The storage of state action and state reward pairs is done manually.

At this point the transition proabilities assigned above have been inputted based on

intuition. This will change with the advent of the new supervised learning model that we

will implement to learn both the size of the matrix and the transition probabilities.

The intuited proabilities, as well as this initial data driven approach described in this

section delivered vastly inferior results to future approaches. They are worth re-iterating in

order to see what the framework of our solution began with at the proposal phase, and what

is morphed into in the sections that follow.

35

4.0 HAWKES PROCESS APPROACH FOR MARKET ORDERS IN LIT

MARKETS

The TAQ approach is named for its use of TAQ data from the WRDS website. WRDS is

a financial database that the University of Pittsburgh subscribes to. It is maintained by

the University of Pennsylvania. The TAQ data is called TAQ data as it refers to data of

“Trades” and “Quotes.” We will use this data to build a limit order book model, build a

reinforcement transition matrix, and to build a neural network to find optimal trade times.

4.1 LIMIT ORDER BOOK MODEL AND PARAMETER REALIZATIONS

The first step in using the TAQ data is to build an adequate estimation model of the limit

order book at each second of the trading day. The ideal limit order book data would give

us, the trader the following knowledge at every tick:

36

1. The accurate spread between the bid and ask side of the limit order book.

2. The exact volume of limit orders at each price point on both the bid and ask side.

3. The volume should include not only the volume in the exchange, but the volume aggre-

gated amongst all exchanges that the exchange routes orders to. This is because certain

laws in [21] require orders to be re-routed in order to ensure that the consumer of the

market is given the best possible price. Thus, we would want to see this other volume in

a limit order book model because it is volume that will be given to the trader placing a

market order.

4. We would want to watch the prices and volume move in continuous time.

We lack access to such a perfect picture of the data we desire, so we build a model for it.

For the mid-price, we have a perfect snap-shot of the limit order book at each time as a

result of taking the weighted average of the quoted bid and offer price as well as the volume

listed there at each side. A simplified description of the limit order book model that we can

glean from the data is that we have the exact weighted average picture across each second

that the market that is limited only to the bid price, ask price, and volume available at each

tick. This is lacking in regards to the picture that we desire of a complete view of the limit

order book. We are lacking any data on liquidity from anywhere beyond the best bid and

offer prices. This may seem like quite a bit to lose out on, but in perspective of most HJB

models using a block shaped limit order book throughout the entire duration of the model,

we are doing a bit better (than most).

We also forego the LIX statistic here in favor of realizing the liquidity of the equity as

seen from simply the volume available at each bid and offer price. This is in the spirit of the

LIX which gave the trader an indication of how much volume needed to be traded to move

the market by one dollar. With the knowledge of the amount of volume at each side of the

book, this concept is much more illuminated, in that we know exactly how much one can

purchase or sell at the market without moving the market by a tick.

So far, the approach to the TAQ data has been rather similar to our initial data approach,

in that we gather some easy to observe statistics from the market and insert them into a

machine learning model. We make a large deviation from that with respect to how we

measure volatility.

37

4.1.1 Hawkes Process Model for Microstructure Noise

In the previous section, we realized volatility through the lens of historical volatility. As we

said in the previous section this meant that we were measuring the standard deviation from

the mean over the last 30 ticks in a moving window. We should note that this method, is

generally annualized by the number of trading days per year, not using our method which

involved annualizing it via the number of trading minutes in a given year. The reason for

this, which encompasses the weakness of measuring the volatility this way, is that when

the time scale gets too small, the standard deviation model for historical volatility ends up

measuring little more than microstructure noise.

Since microstructure noise is random and complicated, if we are to model it, then we

want to do so with a model equipped to handle it.

A modified GARCH model for the purpose of forecasting was considered, as was mea-

suring implied volatility. Similar to the issues with historical volatility, we found that

GARCH(1,1), which only looks back by one tick, was not a good model for such small

time scales. Extending it back further by means of GARCH(n,m) did not improve the ac-

curacy of the volatility forecast, and neither did modifications on the GARCH forecasting

for smaller time scales. Implied volatility was not an option for the reason that the TAQ

database for option prices was unavailable to us for all months of the year other than Febru-

ary 2014, while we had TAQ only up to 2011. Therefore, we could not find option prices

that adequately reflected the data for which we had stock quotes.

In order to solve the problem of measuring intraday volatility for our model, we turned

instead to a measure of realized volatility. Realized volatility (often called the signature plot)

is defined for an equity over a time period [0, T] with scale τ such that

Ĉ(τ) =
1

T

T
τ∑

n=0

[X((n+ 1)τ)−X(nτ)]2 . (4.1)

As Almgren points out in [22], a typical application of this is to assign the volatility for

T = 1 day and τ = 5 minutes. This gives a daily number that realizes intraday volatility for

that day. This is different from our earlier model where volatility was changing minute by

minute on each day. However, as we will see, this number being constant on the day is not

38

by any means an assumption of constant volatility. The realized volatility itself will change

every day, and by training MLE parameters for the prediction of this value, we will arrive at

a much more rich model for what we sought with the volatility statistic, namely a predictive

model as to when the stock price is expected to jump up or down.

In order to make a predictive model for 4.1, Bacry and others in [23] employed the

use of Hawkes Processes. Hawkes processes have been around since the 1970s by A.G.

Hawkes in [24] for research on earthquakes. The motivation for Hawkes processes in finance

is representative of the idea of modeling the flow of orders and price movements via the

Poisson counting process idea. Consider the standard Poisson counting process where in the

interval [0, δ], the arrival of an event such as a market order entering the market happens at

the random rate of λ. Then the expected number of arrivals of market orders in this equity

for the interval [0, δ] is given by the poisson random variable X with distribution Poisson(λδ)

and thus it is expected that E[X] = λδ orders will arrive.

This is a standard modeling technique for order flow that is often found in [3]. What a

Hawkes process does is incorcorate another layer to the model, namely, the idea of a “self-

exciting” Poisson process. In such a process, the intensity λ is no longer constant. This is

an advantage because in market microstructure, the rate of arrival of things such as order

flow and price movements will not remain constant. If we consider for instance, an event

throughout the trading day that increases demand for a stock, then this will be realized via

the arrival of more buy orders for the stock. Therefore, a sharp increase in arrival of buy

orders is associated with an increase in the expected number of orders to arrive per unit time.

Therefore, the Poisson process’s inensity should increase, not remain the same. Consider an

elementary Hawkes process example below.

In this Hawkes model, Nt is a point process (Poisson arrival process) with intensity λt

where λt is defined as

λt = λ0 +

∫
φ(t− s)dNs (4.2)

= λ0 +
∑
ti<t

φ(t− ti). (4.3)

39

where ti represent the arrival times of the point process N up to time t, and λ0 represents a

base intensity. If φ(x) = αe−βx where α β > 0, then 4.2 becomes

λt = λ0 +
∑
ti<t

αe−β(t−ti),

Now, we see that since β > 0, λt is larger depending on how near t is to a concentration of

arrival times, and depending on the size of β, decays back closer to λ0 the further one gets

away from a bunch of arrival times. The idea is that in this model, arrivals now imply more

arrivals in the near future.

The model for predicting 4.1 is defined by Bacry in [23] as follows. Consider the midprice

of a stock Xt that is defined by

Xt = X0 +N1
t −N2

t . (4.4)

Here, X0 represents the stock price at time 0, N1
t the arrival process of upward price move-

ments of $.01, and similarly N2
t is an arrival process for downward price movements of $.01.

The intensities for these point processes are given by

λ1
t = µ+

∫ t

−∞
φ(t− s)dN2(s). (4.5)

λ2
t = µ+

∫ t

−∞
φ(t− s)dN1(s), (4.6)

where φ(x) = αe−βx1R+(x), α, β > 0 and

‖φ‖1 =
α

β
< 1.

A key observation from 4.5 and 4.6 is that they are not self-exciting, but instead mutually

exciting. What we mean by this is that the jumps near time t in N1 will cause a stronger

intensity for N2 and vice-versa. Note that in the description above for Hawkes processes, we

were talking about market order arrivals. In this coupled Hawkes process, there is mutual

excitement instead of self excitement because of the mean reversion principle. This principle

of market microstructure states that over time, stock prices will tend towards their mean

price. This means, that if the model is showing more jumps up in price, it must have a larger

propensity to jump back down.

The model given in [23] showed that the realized volatility Ĉ(τ) can be predicted via the

following.

40

Theorem 4.1.1. If ‖φ‖1 < 1, then

C(τ) = Λ

(
κ2 + (1− κ2)

1− e−γ

γτ

)
(4.7)

Λ =
2µ

1− ‖φ‖1

(4.8)

κ =
1

1 + ‖φ‖1

(4.9)

γ = α + β. (4.10)

The TAQ data gives us a snap shot into what the jumps up and down of the midprice are,

as well as a very good realization of Ĉ(τ). Therefore, using maximum likelihood estimation

on Φ = {µ, α, β}, we have the capabilities to predict, based on the TAQ data the forecasted

realized volatility, as well as the parameters that will allow for a simulation of the upward and

downward jumps of the stock price. This gives our model an measure of intraday volatility

via 4.7 as well as a forecast of when to expect upward and downward jumps in the stock

price via the Hawkes process for Xt that can now be simulated.

4.1.2 Maximum Likelihood Estimation

Aside from 4.1.1, we also, given the full time series data for movements of stock across

the entire day, we know the exact arrival times for the up and down movements of the

midprice. Therefore, instead of using some regression technique that will fit the parameters

Θ = {µ, α, β} to the realized volatility as obtained by 4.1.1 in 4.7, we actually have a

complete snap short of the Hawkes processesN1, andN2, and we can use maximum likelihood

estimation to fit the parameters to the movements of the midprice.

This requires the use of the log likelihood function which is given for a stationary Poisson

process with intensity λΘ in [23] as

L(Θ) =

∫ T

0

log(λΘ(t))dNt +

∫ T

0

(1− λΘ(t))dt. (4.11)

41

For our situation where our Hawkes intensities with a fixed set of parameters Θ = {µ, α, β}

are given by 4.5 and 4.6, we see that 4.11 becomes (for 4.5)

L1(Θ) =

∫ T

0

log(λ1
Θ(t))dNt +

∫ T

0

(1− λ1
Θ(t))dt (4.12)

=

∫ T

0

log

µ+
∑
t
(2)
j <t

αe−β(t−t(2)j)

 dN1
t +

∫ T

0

1−

µ+
∑
t
(2)
j <t

αe−β(t−t(2)j)


 dt

(4.13)

=
∑
t
(1)
i <T

log

µ+
∑
t
(2)
j <T

αe−β(t
(1)
i −t

(2)
j)

+ T (1− µ)−
∑
t
(2)
j <T

α

β

(
1− e−β(T−t(2)j)

)
.

(4.14)

In 4.14, {t(1)
i } and {t(2)

j } represent arrival times of the events in N1 and N2 respectively. That

is, they define the times of upward and downward jumps of our price process. Similarly, for

N2, we can calculate from 4.11 that

L2(Θ) =
∑
t
(2)
i <T

log

µ+
∑
t
(1)
j <T

αe−β(t
(2)
i −t

(1)
j)

+ T (1− µ)−
∑
t
(1)
j <T

α

β

(
1− e−β(T−t(1)j)

)
.

(4.15)

Now, given that we have a lot of training data for {t(1)
i } and {t(2)

j }, we can use 4.14 and 4.15

to do maximum likelihood estimation on the compound process via finding Θ̂MLE such that

Θ̂MLE = argmin Θ − ((L1(Θ) + L2(Θ))) . (4.16)

Once here, we can simulate the Hawkes process for microstructure noise directly.

42

4.1.3 Simulation of the Hawkes Process

In order to simulate the Hawkes Process we follow Bacry in [23] and turn to a so-called

thinning algorithm proposed by Ogata in [25]. This algorithm can be modified to model for

Hawkes processes modeling arrival times once we have found Θ̂MLE. It rests on the central

proposition from the paper:

Proposition 4.1.1 (Ogata 1981 [25]). Consider a multivariate point process (Np, F, P), p =

1, 2, ...,m on an interval (0, T] with joint intensity (λ, F) = {λpt , Ft}, p = 1, ...,m. Suppose

we can find a one dimensional F−predictable process λ∗t which is defined pathwise satisfying

m∑
p=1

λp ≤ λ∗t , 0 < t ≤ T,

P-almost surely and set

λ0
t = λ∗t −

m∑
p=1

λpt .

Let t∗1, t
∗
2, ..., t

∗
N ∈ (0, T] be the points of the process (N∗, F, P) with intensity process λ∗t .

For each of the points, attach a mark p = 0, 1, ...,m with probability
λp
t∗
j

λ∗
t∗
j

. Then the points

with marks p = 1, 2, ...,m, provide a multivariate point process which is the same as that

given above.

We can then modify 4.1.1 from the algorithm for the simulation given in [25] for the

purposes of the Hawkes process that we are dealing with. This is given as Algorithm 4.

43

1)Data: Input Θ̂MLE

2)Initialize:;

N1 = {};

N2 = {};

3)Iteration: Below, U represents the uniform distribution.;

while s ≤ T do

λ̄ = 2µ+
∑2

n=1

∑
t∗∈Nn αe−β(s−t∗);

u ∼ U[0,1];

w = log(u)

λ̄
;

s = s+ w (s is the new time point candidate);

D ∼ U[0,1];

if Dλ̄ ≤
∑2

n=1 λ
n(s) = 2µ+

∑2
n=1

∑
t∗∈Nn αe−β(s−t∗) then

Find k ∈ {1, 2} such that
∑k−1

m=1 λ
m(s) < Dλ̄ ≤

∑k
m=1 λ

m(s) ;

Assign candidate s to dimension k if s ≤ T :;

Nk = Nk + s

end

end

Algorithm 4: Thinning Hawkes Simulation Algorithm (Ogata) via [1].

44

4.2 THE NEURAL NETWORK MODEL FOR LOCATING IDEAL TRADE

TIMES

As in the initial data driven approach, the goal of this technique is two-fold, to highlight the

best times at which to place market orders, and to decide for how much the market orders

should be for. In our previous neural network model, the hope was that by looking only

at past price ticks, that the neural network model could pick up on nuances in the market

and identify future local minimum values in the microstructure noise. We could then predict

future minimum values of the price. This proved to be a very lofty goal, and one that didn’t

quite come to form as we had hoped. Now, armed with the TAQ data, we are able to better

our model, and simplify our neural network.

Similar to the initial data driven approach, the goal of this learning method applied via

the ANN is to classify what we call ‘TRADETICKs’, using only past data. Consider our old

criteria for classifying the TRADETICKs:

1. The Close Price must be a minimum of the surrounding (±) 10 ticks.

2. The Volatility is less than the mean volatility for that day.

3. The Liquidity is greather than the mean liquidity for that day.

This criteria gave our learning model a disadvantage from the very beginning. Based

purely on financial intuition, it is not all that common for stocks with low volatility to

have such dramatic dips in their stock price. Therefore, when whatever measure of intraday

volatility is low, there isn’t likely to be a valley that implies a minimum across a twenty tick

span. Also it has been widely believed since Stoll’s work in 1978 in [26], that high volatility

coincided with large amounts of illiquidity. This means that when the price is moving to

the point where it creates a minimum across 20 ticks, it is difficult to have a low measure of

intraday volatility, which implies a low measure of liquidity at that time. What this difficult

criteria did was create quite a few number of ticks throughout the day being classified as

what we would call TRADETICKs.

This leads to a problem in the machine learning vernacular known as “class imbalance.”

When a model has class imbalance, it will often return a high degree of accuracy by simply

45

learning that can mark every single node as one class. For instance, with our model, this

would often mean marking every single point in a class of 0 or ‘not a TRADETICK.’ One can

try to remedy this by making the model treat every single marked TRADETICK as many

more instances of the model itself. This, though it fixes the problem of class imbalance,

gives the machine so many copies of a single time’s data that it often leads to the model

over-fitting.

Thus, when designing our new neural network model, we need to keep such things in

mind. Therefore we seek the following criteria for an ideal trading tick:

1. The MidPrice must be among the bottom K percent of mid-prices.

2. The Liquidity, as realized by ’OFRSIZ’ is greather than a user inputted liquidity thresh-

old.

This is a significant departure from our previous criteria. First take note that we are

using MidPrice. The reason that we are doing this is that the way in which we are forecasting

microstructure noise is with the Hawkes model as indicated above. This model is designed

to predict movements in the midprice. Therefore, we sacrifice an accuracy that may exist in

working only with the offer price, but so long as the bid and ask prices for the stock remain

consistently close to one another, we see no problem in modeling on the midprice.

Secondly, we see that volatility has been taken out of the ANN model completely. This

is for the simple reason that our measure of volatility is now one of realized volatility that

produces a metric of intraday volatility for the entire day instead of a unique measurement

for every tick. The realized volatility will appear in our ANN model as an input parameter

but will not be a criteria for identifying trading times. If was some type of threshold, our

model would not return any ideal trading times for days when the realized volatility was

forecasted to be too high.

As a note on liquidity, we want liquidity to by relatively high so that the trader can

comfortably place a large market order, but it is the understood that we will not impose too

high of a burden on liquidity. In doing elementary data analysis, the median seemed to be a

reasonable benchmark. This can be changed to be lessened a bit if the user of the algorithm

wishes to create less class imbalance. One should note however, that if the agent wishes

46

Algorithm

Inputs (Predictors) Output (Predicted)

-Time t in the trading day in the

interval [0, T]

TradeTick

-Ot (Offer Volume) 0 or 1

-RMt

-RMDt
-ODt
-Ht

-RV[0,T]

Table 4.1: Input parameters and desired output for the artificial neural network model to

predict optimal trading times.

to impose the threshold to be a numerical threshold instead of a global descriptive statistic

such as the median (i.e. there are at least 300 shares available at the best offer price), then

there is no actual need to place liquidity parameters into the neural network since liquidity

can be observed on a per second basis.

We now introduce the ANN model that we will use to classify these optimal trading

ticks. A table of the paramers is given in 4.2.

We measure the time from the beginning of the horizon that the trader has to make a

trade and include it as a parameter in the ANN as t ∈ [0, T]. This parameter is most useful

when the time interval is rather uniform across all of the trials of our model. What we mean

by this is that this statistic will help our algorithm more if time 0 is always the beginning

of the trading day, and time T is the close of the market. This is because trading activity

for any given equity has patterns of activity, with the most common being a large volume of

trades that occur at the beginning or the end of the trading day. This time index can help

our neural network model to recognize relationships between the time of the day and other

variables.

47

We include as Ot a continuous variable at time t defined as the average best offer volume

in the limit order book over the past five seconds.

Ot =
‘OFRSIZ’t + ‘OFRSIZ’t−1 + · · ·+ ‘OFRSIZ’t−4

5
(4.17)

Also included as a parameter in the ANN model is a boolean variable ODT , a boolean

variable that indicates whether or not the best offer volume is decreasing at time t.

ODt =

1, ‘OFRSIZ’t − ‘OFRSIZ’t−1 < 0

0, ‘OFRSIZ’t − ‘OFRSIZ’t−1 ≥ 0.

(4.18)

We include the variables Ot and ODt in order to give the ANN a signal of liquidity.

The structure of this was decided upon after doing a lot of data analysis on tick by tick

movements in the best offer size volume. We noticed that over the entire course of the day,

liquidity at the best ask price tended to vary a lot. Even in stocks with low volatility, it

was observed that the standard deviation in liquidity throughout the day would often be

well over one thousand shares of volume. What was also observed was that with a bit of

noise, the best offer volume in very small windows had a standard deviation of less than one

hundred shares. Therefore, we believe that an indication of the behavior of the dynamics

of the best offer volume around time t will give the ANN helpful information in terms of

making a prediction of the liquidity at time t.

Similar to Ot and ODt, we consider the variables RMt and RMDt. These variables are

defined as

RMt =
‘MidPrice’t + ‘MidPrice’t−1 + · · ·+ ‘MidPrice’t−4

5
(4.19)

RMDt =

1, ‘MidPrice’t − ‘MidPrice’t−1 < 0

0, ‘MidPrice’t − ‘MidPrice’t−1 ≥ 0.

(4.20)

The average midprice over the past five ticks, and whether or not that midprice is decreasing.

The variable 4.19 is far more useful for equities that have relatively low volatility. This is

because for equities with lower volatilities, the algorithm can begin to recognize a relationship

between low midprices similar to others that have been marked as trading ticks. We also

48

indicate in 4.20 as statistic so that the algorithm can learn that lower prices are more common

when the mid-price is decreasing.

The variable Ht is a boolean variable indicating whether or not the Hawkes forecast

of the midprice at time t as realized by the simulation of the process 4.4 using the Ogata

thinning algorithm 4 with ˆΘMLE is in the lower K-th percentile of midprices in the forecast.

To best realize this, consider {Xt}t=Tt=0 to be the sequence of the midprice of forecasts, and

let X represent the times t∗ such that Xt∗ is in the lower K−th percentile of prices in the

ordered sequence {Xt}t=Tt=0 . Now, we can define the variable Ht by

Ht =

1, t ∈ X

0, otherwise.

(4.21)

Finally, we include the realized volatility RVt 4.1 into the ANN, or for the day we are finally

using the trained model, the forecasted realized volatility as indicated by the Hawkes process

given by 4.7. Note that this volatility will be constant among trading days, but since the

ANN model will be trained on many months worth of data, the model will still be able to

react to changes in volatility.

This neural network will help our agent accurately identify ideal trading times without

using any past data. The next step is defining how much to trade when he arrives at an

ideal trade tick. This is done by the reinforcement learning algorithm.

49

4.3 THE REINFORCEMENT LEARNING ALGORITHM

The reinforcement learning phase of this process marks the final step for the trader to obtain

his ideal trading curve. In this step, we consider the actions of the trader in an optimal

execution setting to be as they were originally introduced. Namely, the trader begins at

time 0 with a goal of unwinding the portfolio position q0 by time T . The entire focus of the

problem is to find an optimal strategy vt where t ∈ [0, T] such that∫ T

0

vtdt = −q0.

We have considered in our models to approach the problem from the optimal purchase,

instead of optimal liquidation, meaning that q0 < 0 and we must therefore purchase q0

shares by time T . The position at time t is given by qt.

Our artificial neural network model from the previous section has, for our trader created

a finite set {t∗n}0≤n≤N of trading times. From where the trader is standing at the current

moment t∗ in time, he does not know when the next trading time will happen. Therefore,

N is not a known value at any given moment im time when the trader is making trades but

is sure to be finite (there are T seconds in the interval [0, T]). This discretizes the structure

of the trading curve for our model to be ∑
t∗n

vt∗n .

Reinforcement learning has been used for optimal execution problems in finance in [27]

and [28]. In [27], the authors tried to use reinforcement learning to locate the optimal

execution times by including spreads and volumes into the state space. This is a good idea,

but it greatly increases the number of states, as well as the state reward transition matrix’s

size and therefore computational expenditure to calculate it. Here, we do not need to include

when to trade in our state space, or any elements of the state space that would cause a trader

to make trades since our optimal trade times have already been captured by the ANN model.

In [28], the actions taken by the trader comprise moving entire blocks of limit orders to a

new price point over a very short time span. Our goal here with reinforcement learning is to

decide how much to trade at specific, neural network recognized trading ticks with market

50

orders. We build our own reinforcement algorithm below, keeping in sync with the general

theme of the few but present items in the literature, that the most important state aspects

of reinforcement learning for optimal execution are that the time remaining to trade, and

amount of inventory left to trade.

We recall that in a reinforcement learning task, the agent, in our case the trader finds

himself in a state st∗n . While in this state he performs an action A ∈ A(st∗n), which lands

him in a new state s(t∗n+1) at time t∗n+1 and gives the trader a reward rn+1.

We begin the description of this model for optimal execution by first defining the state

space S for the model. This requires two parameters, namely T , and q0.

We maintain a similar structure to the reinforcement learning algorithm as was done in

the initial data driven approach.

S = {X,T} (4.22)

X = {X1, X2} (4.23)

T = {t1, t2, t3} (4.24)

• t1: Represents the time interval
[
0, 1

3
T
)

• t2: Represents the time interval
[

1
3
T, 2

3
T
)

• t3: Represents the time interval
[

2
3
T, T

)
• X1: Amount remaining to be purchased |qt| ∈

(
1
2
|q0|, |q0|

]
• X2: Amount remaining to be purchased |qt| ∈

[
0, 1

2
|q0|
)

We now fully define S, a set of cardinality 7. Recall, that this cardinality plays majorly

into the computation of our ideal value and policy function, and determines the size of our

state/action to state/reward transition matrix.

S = {(X1, t1), (X1, t2), (X1, t3), (X2, t1), (X2, t2), (X2, t3), } (4.25)

S+ = {(X1, t1), (X1, t2), (X1, t3), (X2, t1), (X2, t2), (X2, t3),TERMINAL} (4.26)

The TERMINAL state occurs when the trader has reached qt = 0, and completed the total

purchase amount q0.

51

In previous builds of the model we allowed the trader’s action set to include an option

to not trade. In the rendition we present for this dissertation the agent is no longer allowed

to choose not to trade at the ANN discovered trade times t∗. The reasoning for this is that

the criteria for locating trading times are strong and the ANN model tells the trader exactly

when conditions are good to trade. We weigh whatever poor outcomes could occur as a

result of the trader being forced to trade and making poor trades here and there against the

penalty he incurs if he doesn’t make the full purchase by time T . In the sense of the optimal

execution framework, this means that the trader has to make a large market order at time

T − ε for the remainder of what he wishes to trade. This may well walk the book to a large

degree if the |qT−ε| is large.

What is not often intuitive about machine learning is that the algorithms will learn the

best strategy only in the context of their learning environment. In this case the learning is

the state space and reward cycle. In a market with high intraday volatility and activity, the

algorithm may notice that it is constantly receiving the negative reward for walking the limit

order book when the agent chooses a trading action. It is therefore not at all uncommon for

the algorithm to learn that not making trades is the best course of action in a majority of

the states. This would in turn cause the agent to do nothing at the given trading times t∗

and place a massive market order at the very end of his trading cycle T − ε to incur a large

loss. We thus define the agent’s action set to be

for t∗ ∈ {t∗n}0≤n≤N , A(st∗) = {Buy Low, Buy High} . (4.27)

Where these actions are defined as

1. Buy Low: Llow < vt∗ < Lhigh

2. Buy High: vt∗ > Lhigh.

This parameter Lhigh serves as an upper bound in the algorithm for the threshold of

making a “high” trade. The parameter Llow serves as a technical bound because without it,

the trader could essentially choose to not make a trade. Higher values of Llow will force the

agent into more aggressive trading curves. Lower values (more suited to larger values of T)

will allow the trader to be more conservative in trading.

52

We define the reward set for the trader as a finite set containing three basic rewards

R = {rmatch, rslip, rshock}. (4.28)

All values r ∈ R take values in Z and are given to the trader based on the following criteria:

• rmatch is given at time t∗n+1 if the action Buy Low was taken in time t∗n and the trade was

executed completely at the best price offer price available to the trader.

• rslip is given at time t∗n+1 if the trade resulting from the action Buy High or Buy Low at

time t∗n walked the limit order book.

• rshock is given at time t∗n+1 if the action Buy High was taken in time t∗n and the trade was

executed completely at the best price offer price available to the trader.

An example of such a reward set is

R = {rmatch = +3, rslip = −1, rshock = −10} . (4.29)

The reward set is an input parameter in the algorithm, but there are some stipulations on

the input of the parameters. Namely

rslip < 0, rmatch, rshock > 0, rmatch < rshock. (4.30)

We restrict rslip < 0 so that the algorithm punishes the trader for making trades that the

book. rmatch and rshock are positive rewards because the trader has executed his trade at

the best price avaialable to him in the limit order book at the time. We also wish to make

rmatch < rshock to ensure that the reward that the trader gets for executing a larger trade at

the best price is more than the reward for a smaller trade at the best price.

All in all, this entire model has three rewards, two actions, six non-terminal states, and

seven total states. Therefore, the adequate state/action - state/reward transition matrix is

a 12 by 21 matrix meaning we must calculate 252 individual transition probabilities:

p ({(Xj, tj), rj}|{(Xi, ti), ri}) . (4.31)

53

4.3.1 Using Trading Data to calculate the State/Action - State/Reward Tran-

sition Matrix

The calculation of the transition matrix depends on the availability of good data. If data

is extremely lacking in detail, one does have the ability to make educated guesses as to the

transition probability values. For instance, since the agent only has options to buy, then it

is not possible to transition from an X2 state to an X1 state, and since time increases from

0 to T , it is not possible to transition from a t2 state to a t1 state. Techniques such as this

are possible when all else fails, but not really feasible to get a good read on how an actual

equity behaves.

As a result of doing this research, we have access to the TAQ database which records

trades and quotes that take place throughout the market. From this database, we have

devised a simple algorithm to generate the state/action to state/reward transition matrix A

where Aij represents the probability of transition from state/action pair i to state/reward

pair j.

As mentioned earlier, this is the final stage in the process of building the trading curve.

Therefore, we will be using all of the data that has been used to train the ANN model to

train the reinforcement learning model. We begin the process by considering an arbitrary

state/action pair

SAi = {(Xi, ti), ai} (4.32)

where (Xi, ti) ∈ S as defined by 4.25 and ai ∈ A from 4.27. From the TAQ data that has been

used to train the ANN model, which we will call TQANN, we select a subset TQi
ANN ⊂ TQANN

where TQi
ANN represents all of the trades that take place at ideal trading times t∗ in the

TAQ data that is representative of the state/action pair SAi. For instance, if

SAi = {(X1, t1),Buy Low},

then TQi
ANN would consist on data for every trade from TQANN such that the time stamp

was in the range for t1 and the trade size was in the interval [Llow,Lhigh). This creates the

set TQi
ANN such that each trade T ∈ TQi

ANN, there is an associated array of values

Tvalues =
[
Tsize, Ttime, Tprice, Q

BO
T , XTU [0,1], Tt∗

]
. (4.33)

54

For these values, Tsize represents the size of the trade that was made (shares), Ttime represents

the time [0, T] that the trade was made, and Tprice is the price (per share) that was paid in

the trade. QBO
T represents the best offer price in the limit order book for at time t = Ttime.

Knowing that TQi
ANN has been marked via training for the ANN model, let Tt∗day represent

the largest time t∗ in the day that T takes place in the period ti. By day, what we mean

is the cycle of time [0, T] of training data that T is represented in that has been broken up

into the periods of t1, t2, t3. We will train the model on many months and possibly even

years worth of data. This means that there will be several intervals of time [0, T] that the

model is trained on. Each one of these intervals will have optimal trading times t∗ identified.

Therefore, since every trade T ∈ TQi
ANN exists in one of these ‘days’ of intervals [0, T], there

is a final optimal trading time in the period ti of that day. We call this Tt∗day . We want to

indicate whether or not T is this last trading time of the day and to do so we define the

boolean variable Tt∗ by

Tt∗ =

1 Ttime < Tt∗day

0 Ttime = Tt∗day
. (4.34)

The value XT
U [0,1] is unique in the sense that it is not readily extracted from the data that

is brought in from the ANN model training data. This value is actually assigned at this

point in the process. In order to turn the concept of the optimal execution problem into

one suitable for reinforcement learning we had to create a Markov decision process (MDP)

with finite states. This has restricted us to treating the amount of money that remains to be

traded |q0| into a two state space; {X1, X2}. In order to calculate the transition probabilities,

we want to simulate a position within each state Xi that the trader needs to trade in order

to get out of the state Xi and into either Xi+1 or TERMINAL. In order to do this, we assign

to each trade T a simulated position within the state Xi. We do this by simulating

uT ∼ U[0,1] (4.35)

XT
U [0,1] =

|q0|
2
∗ uT . (4.36)

and we allow XT
U [0,1] to represent the amount remaining to be traded to transition purchase

states from Xi to Xi+1 (where X3 = TERMINAL) before the trade T takes place.

55

The reason for the consideration of simulating this random variable is that the X−states

can theoretically occur at any time and at any trade in the trading data. The trader could

reach the TERMINAL purchase state in time interval t1 if he trades a lot at the beginning.

Therefore, we randomly assign this purchase position and will simulate whether trade T

takes it to the next step or not.

We are now in a position to calculate the prediction T̃SR for the state reward pair that

taking action ai at trade T in state (Xi, ti).

56

T̃SR(T) =



{(Xi, ti), rslip}, Tprice > QBO
T and XTU [0,1] > Tsize and Tt∗ = 1

{(Xi, ti), rmatch}, Tprice ≤ QBO
T and ai = Buy Low and XTU [0,1] > Tsize

and Tt∗ = 1

{(Xi, ti), rshock}, Tprice ≤ QBO
T and ai = Buy High and XTU [0,1] > Tsize

and Tt∗ = 1

{(Xi+1, ti), rslip}, Tprice > QBO
T and XTU [0,1] < Tsize and Tt∗ = 1

{(Xi+1, ti), rmatch}, Tprice ≤ QBO
T and ai = Buy Low and XTU [0,1] < Tsize

and Tt∗ = 1

{(Xi+1, ti), rshock}, Tprice ≤ QBO
T and ai = Buy High and XTU [0,1] < Tsize

and Tt∗ = 1

Additionally if ti = t1, t2 :

{(Xi, ti+1), rslip}, Tprice > QBO
T and XTU [0,1] > Tsize and Tt∗ = 0

{(Xi, ti+1), rmatch}, Tprice ≤ QBO
T and ai = Buy Low and XTU [0,1] > Tsize

and Tt∗ = 0

{(Xi, ti+1), rshock}, Tprice ≤ QBO
T and ai = Buy High and XTU [0,1] > Tsize

and Tt∗ = 0

{(Xi+1, ti+1), rslip}, Tprice > QBO
T and XTU [0,1] < Tsize and Tt∗ = 0

{(Xi+1, ti+1), rmatch}, Tprice ≤ QBO
T and ai = Buy Low and XTU [0,1] < Tsize

and Tt∗ = 0

{(Xi+1, ti+1), rshock}, Tprice ≤ QBO
T and ai = Buy High and XTU [0,1] < Tsize

and Tt∗ = 0

Additionally if Xi = X1 :

{TERM, rslip}, Tprice > QBO
T and

(
|q0|
2 +XTU [0,1]

)
< Tsize

{TERM, rmatch}, Tprice ≤ QBO
T and ai = BL and

(
|q0|
2 +XTU [0,1]

)
< Tsize

{(TERM, rshock}, Tprice ≤ QBO
T and ai = BH and

(
|q0|
2 +XTU [0,1]

)
< Tsize

.

(4.37)

We will perform the test for classification given by 4.37 for all trades T ∈ TQi
ANN. Let

|TQi
ANN| represent the cardinality of the set TQi

ANN, which tells us exactly how many trades

we have classified. For every state/reward pair {s, r} let

{s, r}SAi =
∑

T ∈TQiANN

1T̃SR(T)={s,r} (4.38)

57

In other words, 4.38 represents all of the trades in SAi that are predicted by 4.37 to be in

the given state reward pair {s, r}. We now have the element of the transition matrix A to

be

p (s, r|{(Xi, ti), ai}) =
{s, r}SAi
|TQi

ANN|
. (4.39)

4.3.2 Forward to the Optimal Trading Curve

Now that the state/action-state/reward transition matrix is defined all that we need to do

in order to obtain the optimal policy is to first put forward a starting policy, reward set,

high/low trading thresholds, and |q0| for instance:

πinitial =
{

(X1, t1) : Buy Low ,

(X1, t2) : Buy Low ,

(X1, t3) : Buy Low ,

(X2, t1) : Buy Low ,

(X2, t2) : Buy Low ,

(X2, t3) : Buy Low ,
}

R = {rmatch = +3, rslip = −1, rshock = −10} .

Lhigh =700

Llow =100.

|q0| =5000

Then building matrix A as defined by 4.37, we may perform 3 and obtain the optimal policy

π∗. Since the trader’s state space is mutually exclusive and exhaustive for all situations he

finds himself in throughout executing the purchase, he will perform the relevant action as

indicated by π∗ in the state that matches his optimal trading time t∗ and amount remaining

to be purchased |qt|.

58

4.4 THE COMPLETE ALGORITHM

Here we present the complete algorithm for the trader to unwind a portfolio position of −q0

in a given equity over a time interval [0, T].

We consider the interval we wish to train in as ‘Day’, and all of the previous time intervals

that we are using to train our model as ‘TrainDays.’

59

1)Data: Input T , |q0|, TrainDays, Day, K (percetile), TAQ Data

2)Tag ideal trading times in TAQ data: ;

for day in TrainDays do

for time in day do
if Midprice is in the bottom K-th percintile in day and offer volume is above

median in day: then
timet∗ = True

end

else
timet∗ = False

end

end

end

3)Simulate Hawkes Process for each day;

for day in TrainDays do

Use the ideal trading times marked t∗ to find Θ̂Day
MLE using 4.16;

Simulate the Hawkes Process Price Simulation XDay
t defined by Θ̂Day

MLE using 4.1.1

end

4) Train The Neural Network Model ;

for day in TrainDays do

Use XDay
t to train an Artificial Neural Network (sequential, 5 layers, 100 nodes

each to output, ReLu/Softmax-input/output Tensorflow Backend) as shown in 4.2

;

Save the final model as TrainedANN

end

5)Perform The Reinforcement Learning Algorithm;

for day in TrainDays do
Use 3 with the framework of 4.37 to produce the optimal policy π∗

end

6)Trade
Algorithm 5: Complete Optimal Execution for Market Orders

60

5.0 THE LIMIT ORDER MODEL

Up to this point, our algorithms have devised strategies for the trader to post market orders

at various optimal times to make them. We are now going to introduce the concept of

the trader placing a new type of order known as limit orders in the market. The optimal

execution framework however, stays the same. We recall that in the optimal execution

problem the trader is faced with the problem of purchasing or selling a given (large) amount

of shares q0 of a certain stock X by time T . Given the way that our limit order book market

model is set up, by doing such a task with market orders, the trader will always be buying

his stock from the offer side of the limit order book or selling from the ask side. Thus, no

matter how low the offer price goes, he is always making his purchases from the side of the

spread that is not to his advantage in the sense that at any given time, the other side of the

limit order book is showing better prices.

As we have explained before, when a market order is placed, it is routed through the

limit order book to find the best matching limit order. A market order placed to buy must

find the best limit order that has been placed by another player in the market, and execute.

Market orders to sell always match with limit orders placed on the bid side. In an arbitrage

free model, the best bid price is always lower than the mid-price and the best ask price.

Thinking in this manner, we know that if our goal is to sell a stock by time T , that there are

people in the market selling this stock for more money that us if we place a market order for

it, namely those who are placing limit orders to sell the stock that are executing whenever

an adequate market buy order enters the market.

The model we introduce here seeks to optimze the utility of the trader by placing adequate

limit orders in the market that he hopes will execute by time T . When he posts a limit order

in the market he specifies to the exchange a price point, and a size. He is given a position

61

in the limit order book according to the principal of FIFO (first in first out). Thus, if other

traders have posted limit orders in the limit order book at the same price level as our trader,

then our order will not execute until all of the other orders ahead of us have been executed.

In order to explore the trader’s interactions with limit order placement, we begin with the

model found in chapter 7 of [3].

5.1 THE TRADITIONAL LIMIT ORDER MODEL

In the traditional setup of the limit order book model as found in [3], the trader has to

execute the sale of q0 shares of a certain equity by time T . The mid-price of the equity

follows the standard SDE model of

St = S0 + σdWt (5.1)

where Wt is a standard Brownian motion. In this model, the limit orders are all of a standard

size (can be assumed to be of size 1), and the trader’s control process is where he places

the limit order at a given time t. Thus, the control process of the trader is denoted by the

variable δt = (δ)0≤t≤T . This depth is a depth based on the mid-price. Therefore, the limit

order is placed at the price point St + δt.

The model simulates the expected execution of the order by considering two processes

Mt and N δ
t .

• Mt denotes a Poisson process that corresponds to the number of market buy orders from

other traders that have arrived by time t.

• N δ
t denotes a counting process of the arrival of the number of market buy orders which

lift the order we have placed at St+δt. We note that this process is not a Poisson process

itself.

The limit order executes with expected probability P (δ) = e−Kδ. In order to make an

optimization problem for the trader that will result in a Hamilton-Jacobi-Bellman PDE we

62

consider the cash process of the trader who has placed a limit order at depth δ at time t to

be

Xδ = (Xδ
t)0<t<T

dXδ
t = (St + δt)dN

δ
t

Qδ
t = N −N δ

t .

Here Qδ
t represents the agent’s inventory to be liquidated. This yields the agent’s optimiza-

tion problem of

H(x, S) = sup
δ∈A

[
Xδ
τ +Qδ

τ (Sτ − αQδ
τ)| Xδ

0− = x, S0 = S,Qδ
0− = N

]
τ = min(T,min(t : Qδ

t = 0))

H(t, x, S, q) = sup
δ∈A

Et,x,S,q
[
Xδ
τ +Qδ

τ (Sτ − αQδ
τ

]
.

We take a markedly different approach to this problem. One that begins with a statistical

approach to the probability of execution function.

5.2 A LOGISTIC REGRESSION MODEL FOR THE PROBABILITY OF

EXECUTION FUNCTION

One of the aspects of the traditional model that we would like to improve upon is the

probability function for execution of a limit order at a certain depth. To build the framework,

consider a binary random variable Xt such that

Xt(ω) =

1 if the limit order placed at time t executes.

0 if the limit order placed at time t fails to execute.

(5.2)

In the traditional limit order model, the probability that a limit order executes given that

it is placed at a position δ from the spread is

P (Xt(ω) = 1|δ) = exp (−Kδ) (5.3)

63

for some parameter K. This model of probability allows for convenience in building an

adequate HJB model, and is very sensible in that the probability that a limit order executes

will decrease quickly as delta is increased since it will be placed deeper into the limit order

book. Every time the order is placed at a deeper price point, all of the limit order volume

preceding it must be taken out by market orders. However, once one starts to switch equities

for the optimal liquidation, so many market characteristics will be levied into the correct

choice of parameter K. Since our approach does not include an HBJ equation, we will free

ourselves from this structure of the model.

Since the traditional model as given in [3] considers the optimal liquidation problem, so

too will we. This is a departure from our work in the market order models when the goal

of the agent was to optimally purchase. Our probability function will take inputs consisting

not only of depth. This is becuase, at any current time, we can observe more characteristics

than just the price spread. Our probability function takes the form of

P (Xt(ω) = 1|δ,V , σ, η, τ) (5.4)

given by a a logistic regression model. The volatility, σ: As we have seen throughout this

research, volatilities can be measured in different ways such as historical, GARCH, implied,

and realized volatility. We again employ realized volatility here. Volatility is a measure

of the stock price’s propensity to change. Thus, given a blue chip stock like Johnson and

Johnson, considered in juxtaposition with a cryptocurrency stock like Bitcoin, we will see

a massive difference in how much the price will change in a given time period. Thus, the

chance that a limit order placed ten dollars below the spread, has, for Johnson and Johnson

virtually zero chance of execution by the end of the day. However, with Bitcoin, a stock

that in recent history has jumped and fallen thousands of dollars in a given trading day, the

chance of a limit buy order executing ten dollars below the spread is significantly higher.

We thus consider the input of an intraday volatility measure to be invaluable condition in

the computation of the probability of limit order execution.

We also condition on the liquidity, η. This statistic is important in that when we place

a limit order at a given price level, we will be put into the last place in the queue of limit

orders. Thus, in a stock with less liquidity (holding order flow to be constant) measured in

64

the sense of smaller volume of limit orders at each tick, a limit order will execute with higher

probability.

Depth, δ is considered as is the case in the original model. The depth at which a limit

order is placed is vital to its chances of being executed. A limit sell order placed ε below the

best ask price will theoretically execute instantly upon the next market sell order’s arrival.

A limit sell order placed ten dollars above the ten year high of the stock has almost no

chance to execute other than the event of a shock. An example would be a biotech stock

for a company that has just announced that they have found the cure for cancer. In less

extreme situations, the depth is still a vital input to condition on in that every cent further

the limit order is placed above the best ask price, an entire new stack of limit order volume

must be wiped out in order for the limit order to execute.

The size V of our limit plays a significant role here as well. A limit order placed with

large volume V requires more opposing market orders to come in, in order to make it fully

execute.

Time left to trade τ = T−t is a two faceted variable to condition on from our perspective.

In our problem specifically, we have to deal with the problem of the time horizon running out.

Thus, a limit order placed with less time left in the time horizon runs a greater risk of not

executing for the simple reason that there is not enough time to allow for price fluctuations

in the market that would cause the order to execute. On the other hand, as we have talked

about with respect to the limit order model, it is to the advantage of the practitioner in

these machine learning algorithms to traing the algorithm on intervals that possess a certain

sense of regularity. Thus, if we choose our time intervals to train the algorithm on in the

form of [0, T] where 0 and T represent the opening and close of the trading day respectively,

our algorithm will acquire some degree of the measure of average order flow for various times

throughout the day. Without a bit of order flow, the limit orders have little to no chance of

execution. This will be learned by the algorithm via training data which, as we will see is

tagged to show which orders executed and which did not.

65

5.3 STRUCTURE OF THE ALGORITHM

Our goal is to generate the probability function 5.4 via the machine learning technique

of logistic regression. To reiterate from the background section, despite logistic regression

having the word “regression” in the title it is in actuality a method for classification tasks.

What it does by regression is the formation of a decision boundary in order to choose which to

choose classifiers if they are above or below the boundary. We will perform such a regression

across four variables, namely the ones described above: δ, η, σ, and τ .

5.3.1 Building the Training Data

At each time t, where for our purposes t is measured in seconds, we observe the following

four statistics.

σt is realized as the realized volatility as defined by 4.1 at the current trading day.

Therefore, σt is constant throughout each trading day. In order to train the model, we will

use the realized volatility as it is calculated via 4.1. This is because when building the

training data, we can look both backwards, and forwards in time.

ηt is interpreted as the ‘OFRSIZ’ statistic at the current time series tick. We note that

this is the volume that is present at the best ask price in the limit order book at time t.

An ideal algorithm would include the volume present at the depth where the limit order is

placed. Unfortunately, we do not have such data at our disposal, so we will have to make

do with the ‘OFRSIZ’ statistic.

τt is realized as the current time tick’s difference with the final tick of the day. This one

day deadline is chosen to make our job computing it a bit easier. We note that the extension

to longer periods of time for the training of the algorithm is not difficult, just a bit more

computationally involved when one considers time series computations.

In order to calculate, the depth δt, the user of the algorithm would be wise to do some

exploratory data analysis first in order to appropriately set the variable ˆδmax, such that

ˆδmax > 0, which represents the maximum depth limit order that the trader would consider.

66

Following this, δt is given as

ut ∼ U[0,1] (5.5)

δt = ˆδmax. (5.6)

If the trader sets a ˆδmax value too high, then he is wasting quite a bit of of training data,

as a lot of these limit orders will never execute, and the ones that do will be placed into a

smaller window of viable 5.9. Similarly, choosing ˆδmax too low would cause situations in the

training data in which almost every limit order placed converges, leading the algorithm to

a situation in which it possesses quite a bit of class imbalance. We recommend choosing a

value of ˆδmax of

ˆδmax = max
t∈[0,T]

St −mediant∈[0,T](St). (5.7)

The variable Vt is also randombly selected, like depth via a uniformly distributed random

variable by

vt ∼ U[0,1] (5.8)

Vt = v ∗ ˆVmax. (5.9)

We recommend choosing ˆVmax to be the 75th percentile trade size from the TAQ data over

the interval. This will provide the simulated agent a degree of a familiarity with the market

from the data, and not make outrageously large trades.

In order to produce a logistic regression, we have to be able to classify whether or not

the limit order executed. So, in order to complete our training data we must define Xt(ω)

for each time t. This is an issue that is actually the most computationally expensive portion

of the process. We need to decide based on our trade data how we will realize the execution

of a limit order. We make the following observations.

We are dealing with second sampled time series data. This means that when we place

a limit order at that second based on the current spread at that second, that we will be in

the back of the queue of that price point. Therefore, as we look forward in time, we assume

that our limit order placed at point St + δt will execute if aggregated trades made at price

67

points strictly lower than the position of our limit order after our limit order is placed and

before the end of the trading day exceed the volume of our limit order.

The question of whether or not we could have our limit order execute at the given depth

of the limit order is a legitimate one. We decide that in our case, this is not possible because

the data that we are working with is a large, dense record of trades and quotes. Thus,

our limit order is not actually present in the market that it reflects. Therefore, we have

to consider the first trade executed at a lower level to be the first market order that could

have lifted our limit order and caused the desired trade to execute. Therefore, we search for

volume at lower values than our limit order. Let T(t,T] represent the volume of shares traded

in the market in the interval (t, T]. We can now define

Xt(ω) =

1 T(t,T]1price>St+δt ≥ Vt

0 otherwise

. (5.10)

We can now define the training data for the logistic regression algorithm for all times t in our

training set. Performing the logistic regression algorithm defined in the background chapter

on the trading set, we now obtain the definition of 5.4.

5.4 COMPLETING THE OPTIMAL EXECUTION PROBLEM FOR LIMIT

ORDERS

Now that we have the training data set, and a trained function for 5.4, we turn our sights

toward the actual goal of the optimal execution problem, which is to find the optimal trading

curve. In this consideration of the optimal execution problem, our trader is faced with the

problem of unwinding the position q0 such that q0 > 0 in the case of optimal liquidation.

His only actions in this model are the ability to place limit orders at every time t at depth

St + δt at size Vt. His action, at every time is to select the controls that maximize the utility

function

U(δt,Vt) = (St + δt)Vtp (Xt(ω) = 1|δt,Vt, σt, ηt, τt) +
qt
q0

(Vt) (5.11)

68

In 5.11, what we are asking the trader to do is to maximize the sale he would make with the

limit order at depth δt of size Vt while weighing the penalty as expressed by

qt
q0

(Vt). (5.12)

The penalty is something unique to the limit order model in that it represents the penalty

that would incur as a result of none of the limit orders the trader places executing, making

the trader have to place a market order to liquidate qt at time T − ε. α is what we refer

to as an impact parameter, and it represents how much a large order has the propensity to

walk the book. Naturally, the strategy taken of (δ∗t ,V∗t) such that

(δ∗t ,V∗t) = argmax (δt,Vt)U(δt,Vt)

will make the trader more agressive when there is more to trade (qt closer to q0), and more

conservative when qt is closer to zero. Maximization of this utility function defines the

trader’s action at each time. We are ready to introduce the optimal liquidation algorithm.

69

1)Data: Input Training TAQ Data, ˆδmax, ˆVmax

, q0 ;

2)Build the training data for the logistic regression function using 5.10. Use this to

define 5.4, p∗ ;

2)Use p∗ to place limit orders ;

for t in [0, T] do

place the limit order at ;

(δ∗t ,V∗t) = argmax (δt,Vt)U(δt,Vt) ;

where U is defined by p∗. ;

if in (0, t), any of the previous limit orders have executed then

qt = q0 − Volume Executed ;

end

if qt = 0 then
cease limit order placement

end

end

Algorithm 6: Optimal Limit Order Placement Algorithm

A note on the variables for p∗ = p∗ (Xt(ω) = 1|δt,Vt, σt, ηt, τt) in the algorithm above.

Both η and τ are readily observable. However, with regards to σ, it has been directly

calculated for all of the training data. This is not possible for the current problem that is

happening in real time. Therefore, it is computed via 4.7 given 4.16 from the training data.

70

6.0 COMPUTATIONAL SIMULATIONS

6.1 SIMULATIONS FOR THE HAWKES APPROACH

We will walk through the entire algorithm leading up to the optimal trading curve for the

Hawkes model in detail. We recall that at the beginning, we have the goal of the trader,

that is to unwind a position q0 by time T in an optimal fashion. In order to achieve this, we

employ the algorithm given in 5.

6.1.1 Building the TAQ based LOB data

The Trade and Quote (TAQ) data that we have available to us via the WRDS database

given by [29] is separated initially into two files; trades and quotes. The trades file contains

information on all trades made in the market at time t. This data is available to us as it

appears in 6.1. We see that the data, listed above for the trades in equity ’MCD’ appears

discretized by the second. Listed are the price and size of the trade. This price is the average

price paid per share. In market microstructure theory, we know that depending on things

like orders walking the book, the agent may pay different prices for different shares in each

order. The price statistic given is the average price in terms of

PRICE =
Amount Paid ($)

Number of Shares
.

The condition of the trade is listed in the TAQ user data in order to describe what type of

condition the trade occurred under. We are concerned with the microstructure of the limit

order book in a much more general sense than the detail that this statistic provides. We

therefore disregard it in our studies. The column ‘EX’ denotes the exchange that this trade

71

SYMBOL DATE TIME PRICE SIZE COND EX

MCD 20110103 7:32:26 71.28 19 T N

MCD 20110103 7:39:03 72.50 10 S N

MCD 20110103 7:45:23 73.23 400 K P

MCD 20110103 7:45:23 74.63 150 L P

MCD 20110103 7:46:35 75.13 700 F N

Table 6.1: This table represents trades for the stock ‘MCD’ on January 3rd, 2011. Due to

preservation of data integrity, the true values for these times have been changed from their

true values, and this figure is given only with the intent to show the reader the structure of

the data.

took place on. Despite trade re-routing being the standard practice as described in [3], we

find it best to isolate our studies to those in a single exchange so that we can best monitor

the price movements. Therefore we restrict our data to only the NYSE exchange indicated

as EX = ‘N’ and consider only times in which the NYSE is open; namely 9:30:00 a.m. until

4:30:00 p.m. EST. during non-holiday week days. Our data for quotes appears much in the

same manner. We see in 6.2 that multiple quotes of the equity can exist for any given time.

This is fine, but later we will need to isolate for the purposes of our studies the measure of

the best fit quote for each second. We also are given the BID and ASK statistics. These are

vital for our studies. We recall from a previous section that our goal is to build a model of

the limit order book, and that this complete limit order book model would serve as the ideal

data with which to train our model. This is not possible given the data but noting that a

common model given in both [19] as well as [3] is a block shaped limit order book model at

the best bid and ask price. We, at our disposal with the TAQ data are able to give a data

justified replica of this block shaped model. In order to respect the limitations of our data

we will place trading limitations on the trader to keep his activity around the best bid/ask

price volume. The data for both bid size and ask size is given in ‘round lots’ or units of 100

72

SYMBOL DATE TIME BID OFR BIDSIZE OFRSIZE MODE EX

MCD 20110301 4:00:00 72.20 73.05 3 3 12 P

MCD 20110301 4:00:05 72.30 73.05 5 5 12 P

MCD 20110301 4:00:05 72.90 73.05 7 7 12 P

MCD 20110301 4:00:05 72.95 73.05 2 2 12 P

MCD 20110301 4:00:05 72.95 73.05 2 2 12 P

Table 6.2: This table represents trades for the stock ‘MCD’ on January 3rd, 2011. Due to

preservation of data integrity, the true values for these times have been changed from their

true values, and this figure is given only with the intent to show the reader the structure of

the data.

shares. Similar to the ‘COND’ statistic, the ‘MODE’ statistic represents the type of quote.

Once again, this is too detailed of a statistic for the purposes of our model. Therefore, we

do not consider it in our work.

It falls to us to effectively aggregate and simplify this data into something that we wish

to work with in our model. We recall that our algorithm given in 5 is two-fold. First, it

decides at what times to trade, and then secondly, it defines how large of a trade to make

at that time. Therefore, we must put this data into a form that allows us to observe market

conditions at each second so that we can determine if that second is an ideal time in which

to trade (t∗). This is the structure of the neural network model as given in 4.2.

6.1.2 Building the Neural Network Training Data from TAQ

As a result of the initial TAQ data, we glean from the data the following that we will use

to build our neural network training data in order to properly locate ideal trading times.

We glean from the TAQ data just listed the following statistics given in 6.1.2. We consider

first the statistic given as ‘MidPrice.’ This is defined as the midpoint between the weighted

bid and offer prices for each second. By weighted average we mean that for each time t

73

DateTime MidPrice BIDSIZ OFRSIZ RV Price Sim Time Trade

2011-01-19 09:34:18 75.051739 11.647059 4.058824 0.000014 74.73 258.0 0
2011-01-19 09:34:19 75.050000 10.857143 6.142857 0.000014 74.73 259.0 0
2011-01-19 09:34:20 75.050000 10.857143 6.142857 0.000014 74.73 260.0 0
2011-01-19 09:34:21 75.035000 8.000000 9.000000 0.000014 74.73 261.0 1
2011-01-19 09:34:22 75.040000 10.285714 1.714286 0.000014 74.73 262.0 0

Table 6.3: The this raw training data is gleaned from the initial TAQ data.

(seconds), we consider

BID avgt =

∑
i∈It BIDi ∗ BIDSIZEi∑

i∈It BIDSIZEi

(6.1)

OFR avgt =

∑
i∈It OFRi ∗OFRSIZEi∑

i∈It OFRSIZEi

(6.2)

where It is an index set the size of the number of quotes given at each second. This allows

us to define the midprice as

MidPricet =
1

2
(BID avgt −OFR avgt) + BID avgt. (6.3)

We next consider both ‘BIDSIZ’ and ‘OFRSIZ’. In order to realize these statistics we have

to keep in mind that we are setting are midprice at time ti according to 6.3. Due to the

nature of using the weighted averaging idea, the midprice may be a price that we do not

have any quotes matching. Therefore, we cannot simply set the bid size and offer size via a

direct match to the midprice. It is also the case that (unfortunate for our problem) there is a

lot of intraday volatility with regards to the amount of volume available at the best bid and

offer prices. This is for many reasons; the best bid and offer price is constantly changing,

the volume available disappears when trades are made, and limit orders being canceled and

added to the book at any time. Therefore, we simply define BIDSIZ (and similarly OFRSIZ)

by the average bid size that is listed for time t.

BIDSIZt =

∑
i∈It BIDSIZi

|It|
(6.4)

OFRSIZt =

∑
i∈It OFRSIZi

|It|
(6.5)

74

The ‘RV’ statistic represents the realized volatility for the entire day that the model has

calculated via 4.1 with τ = 5 minutes (300 seconds) and T being the total amount of seconds

in the trading day (normally 23, 400). Therefore, it is to be expexted that ‘RV’ is constant

throughout the course of the entire training day. In order to fully utilize the definition given

in 4.1, we need to note that Xt is the process for the midprice, MidPricet defined here with

real data as 6.3,

RV(T,τ) =
1

T

T
τ∑

n=0

[MidPrice((n+ 1)τ)−MidPrice(nτ)]2 . (6.6)

The ‘Time’ statistic means that this time is Timet seconds from the beginning of the trading

day. Therefore, if the time stamp is 9 : 30 : 00 then this corresponnds to Timet = 0 and

9 : 30 : 10 implies that Timet = 10. This allows the eventual trading algorithm to have a

positional understanding of where the trader is according to the interval [0, T] where T , in

this case represents the end of the trading day.

The ‘Trade’ statistic is a binary indicator variable that represents from the 4.2, the

‘TradeTick.’ Thus, ‘Trade’ takes on a value of 1 if and only if The OFRSIZ statistic is

greater than the mdeian offer size for the day, and the mid-price is in the bottom quartile

of mid-prices for the day.

Of course, in a lot of the statistics just described, we had to look both backwards and

forwards in time. This, as stated before is fine for our purpsoes at this point because we

are still building adeqaute training data. We will see later on in this section, when we are

actually training our model, that all of the inputs would be conceivable available to the trader

using the algorithm at the time that the algorithm was implemented in real time. All of the

statistics observed in 6.1.2 have been discussed other than ‘Price Sim.’ This statistic is the

one that is derived from the implementation of the Ogata thinning algorithm for multivariate

Hawkes process simulations and is worthy of a more in depth discussion in order to see how

it is obtained.

75

DateTime RV t O RM OD RMD H TradeTick

2011-01-03 11:43:46 0.000017 7947.0 11.455556 76.880 0 0 0 0
2011-01-03 11:43:47 0.000017 7948.0 11.900000 76.880 0 0 0 0
2011-01-03 11:43:48 0.000017 7949.0 11.117391 76.880 0 0 0 1
2011-01-03 11:43:49 0.000017 7950.0 11.837391 76.878 1 1 0 1
2011-01-03 11:43:50 0.000017 7951.0 12.517391 76.874 0 1 0 1

Table 6.4: The initial calculations of the variables desired for neural network training in 4.2.

6.1.3 Using 4.1.1 to make ‘Price Sim’ and Building the Neural Network Train-

ing Variables 4.2

In this section, we discuss the arrival of the ‘Price Sim’ statistic from 6.1.2. Recalling how

4.1.1 functions, we need to obtain the MLE parameters Θ̂MLE for the day from the mi-

crostructure movements of the data as related to the MidPrice Statistic. In implementation,

we could use MLE’s from the previous day that were to be representative of a process that

lasts for two days in order to have a good indicator of the MLE’s to use as inputs once our

algorithm is trained and we are looking to implement it. However, our goal at the current

juncture is building training data to train the algorith, and not to use it. We want our

algorithm to be trained assuming that the thinning algorithm for multivariate Hawkes Pro-

cesses is as accurate as it can be. This compels us to the conclusion that, for the purposes

of training data, we wish to give Θ̂MLE as defined by 4.11 where 4.14 and 4.15 are defined

via N1 and N2 consisting of the actual arrivals of upward and downward movements of the

midprice for that day. Thus, in a data sense, both N1 and N2 contain the times that up-

ward and downward movements of the midprice take place, respectively during the day in

question. From this point, we can find Θ̂MLE via our constrained optimization method for

4.11 of choice. In order to achieve this, we use a technique known as “Sequential Quadratic

Programming” described in [30]. We choose such a method because we are dealing with

bounds in that for Θ̂MLE = (µ, α, β), we need all elements µ, α, β > 0, and we also need to

operate within the constraint that

α

β
> 1. (6.7)

76

The algorithm works via use of Lagrange multipliers to find an adequate search direction to

minimize the inputted function. After using this technique to obtain Θ̂MLE for N1 and N2,

we can use 4.1.1 to find the simulated arrival times of upward and downward movements of

the mid-price. Initializing the process and the opening midprice for the day’s data, we obtain

a simulation for the mid-price, that we call ‘Price Sim.’ This completes the description of

the raw statistics that we use to build the variables for our neural network. We are now

ready to build the statistics as they appear in the neural network training. We recall from

4.2, that the following variables need to be defined: t, Ot, ODt, RMt, RMDt, Ht, and

RV t. Using the data from 6.1.2, we build the variables above based on their definitions to

obtain the values found 6.1.3. These values are perfectly fine in terms of their calculations

for the desired variables. However, they will not be well suited for the purpose of our

artificial neural network model. The variables, in their current form require a bit of what

is called “pre-processing.” What we mean by “pre-processing” here is that we need to scale

and transform some of the variables so as to make them more suitable for the ANN model.

This is an important step when working with financial time series data (see [31], [32]). Pre

processing is an important part of data science in that we need to ensure that all of our

predictor data is equally weighted so that one data point does not carry so much weight

throughout the model training phase. In order to see if any work is to be done, we do some

exploratory data analysis on the variables as they are initially given in 6.1.3. The results

are given in 6.1, and we can see that ther is a significant issue with the size of the variables.

Realized volatility is much smaller than any other variable, while time and midprice are

significantly larger. We wish to scale all of the continuous variables so that they are taking

values in a similar window. We do this by upscaling smaller variables, and downscaling

larger ones. For the time variable, we consider scaling the entire trading day into one unit

77

of time. We make the following transformations to our continuous variables.

t→ 1

23401
t (6.8)

RMt →
1

100
RMt (6.9)

Ot →
1

100
Ot (6.10)

RV → RV ∗ 10000 (6.11)

Applying these transformations to the continuous neural network variables, we obtain the

distributions given in 6.2, which is far better in the sense that now our continuous features

all take most of their values in essentially the same areas, yet we note that average offer

size has some outlier values. In order to deal with the boolean variables, we use “one-hot

encoding” in order to transform them into variables that our learning package knows to treat

as categorical ones. At this point, it is time to fine tune our neural network, and choose the

model that gives us the best measure of accuracy.

6.1.4 Training The Neural Network

As we have stated previously, we have used keras to build our neural network model. This

allows us to train based on the rescaled values given in 6.1.3. We begin training the model

judging for three characteristics throughout the process in loss, training accuracy, and val-

idation accuracy. Loss, is the metric defined by the categorical cross entropy function that

we have discussed in 2.26. Accuracy is a measure of how accurate the model is performing

given as (via [33]) to be

A(y, ytrue)
n =

1

n

n−1∑
i=0

1yi=yitrue
. (6.12)

The reason that we separate our metrics into training accuracy and validation accuracy is

that we have split our data into two sets, training and test with the former being used to

train the model. Training accuracy is a good sign as the model progresses in that it is

learning based on its given data, but validation accuracy is an even better sign in that it

portrays accuracy on data that the model has never seen during the training process. As

78

Figure 6.1: Distributions of neural network variables as given in 6.1.3.

79

Figure 6.2: Distributions of neural network variables as given in 6.1.3.

80

Epoch Loss Training Accuracy Validation Accuracy

145 .3797 .8280 .8283

146 .3798 .8281 .8322

147 .3797 .8282 .8348

148 .3795 .8284 .8308

149 .3793 .8285 .8208

150 .3793 .8283 .8244

Table 6.5: Progression of a Neural Network Model for MCD data Trade Tick classification

discussed before, with neural network models, a complete sweep through the data to train

the model is called an “epoch.” We train the MCD data with the variables given as the

resampled values in 6.1.3 in a 3 layer artificial neural network using the ReLu activation

function with the “adam” optimizer over 150 epochs to obtain the results for loss, training

accuracy, and validation accuracy found in 6.5. This is a good sign that our neural network

model is performing well on the data, and it is time to put it into use once fine tuned. A

brief note on the training process itself is that in order to achieve this level of accuracy, we

had to “upsample” the training data that was marked as a TradeTick by a ratio of 8 to 1.

This is because initially, the Trade Ticks comprised only 12 percent of our data. This allows

a deep learning algorithm to obtain a high degree of accuracy (in this 88 percent) even if it

is marking every single entry as not a trade tick. Upsampling the training data was used

to remedy this problem, and therefore our model has actually been trained on significantly

more data points than we actually generated. We recognize that the scaling as indicated by

6.8 - 6.11 is a deviation from the standard method of standardizing and normalizing random

variable data. This was taken into consideration as well, and the above method with 6.8

- 6.11 worked better for this data. To illustrate this, we consider the exact same neural

network structure that produced the results given by 6.5, only this time, the continuous

variables were pre-processed by a different technique, namely the standardization technique

81

Epoch Loss Training Accuracy Validation Accuracy

195 .4986 .7427 .7437

196 .4988 .7427 .7491

197 .4985 .7428 .7438

198 .4983 .7428 .7405

199 .4986 .7426 .7454

200 .4986 .7427 .7451

Table 6.6: Progression of a Neural Network Model for MCD data Trade Tick classification

of

X → X − X̄
Xmax −Xmin

. (6.13)

This method, after 200 epochs in the same structure produced the results in 6.6. As one

can see, these results are quite inferior to those of 6.5. In both of these situations, the loss

is defined by the categorical cross-entropy loss function defined by 2.26.

6.1.5 The Reinforcement Learning Algorithm Implementation

We can tweak the Policy improvement algorithm 3 once we have calculated the transition

matrix based on the same data (appended with the trades) that has been used to train the

neural network model using 4.37. The parameters that we can use to tweak the transition

matrix towards different outcomes are q0, the number of shares that the trader must pur-

chase, and Lhigh, the number of shares that are purchased in order for the action of ‘Buy

High’ to be true. This will alter the course of the trader in that if Lhigh is low, then the

trader will often learn that making high volume market orders is not too much of a risk.

With different values of q0, the trader will find differing degrees of probability in terms of

leaving and entering the purchase remaining states X1, X2, and TERM. For instance, if q0

is very high, then it is the case that the probability of any given trade taking the trader

82

Lhigh |q0| Reward Optimal Policy

8000 100000 {rmatch = 3, rslip = −5, rshock = 10} (X1,t1): high, (X1,t2): high, (X1,t3): high,
(X2,t1): high, (X2,t2): high, (X2,t3): low

8000 100000 {rmatch = 3, rslip = −30, rshock = 8} (X1,t1): low, (X1,t2): high, (X1,t3): high,
(X2,t1): low, (X2,t2): high, (X2,t3): low

15000 50000 {rmatch = 8, rslip = −5, rshock = 4} (X1,t1): low, (X1,t2): low, (X1,t3): low,
(X2,t1): low, (X2,t2): low, (X2,t3): low

Table 6.7: Tuning of the reinforcement learning parameters giving different results for

to the next purchase state will be quite low. If q0 is rather low, this probability will be

higher. We also have at our disposal the ability to change the trader’s reward vector. A

low value of rslip and a high value of rshock will make the trader very aggressive with plac-

ing large market orders in that there won’t be much penalty for walking the book, and

the reward for matching a large trade is really high. We list some combinations in 6.7

that illustrate this. In order to run our final simulation, we choose the parameters to be

(X1,t1): low, (X1,t2): high, (X1,t3): high, (X2,t1): low,(X2,t2): high, (X2,t3): low in order

to provide a grounded nature of our trader by keeping the reward for walking the book large

and negative, as well as some incentive for being more aggressive by keeping the reward

for large orders high. This gives our simulated optimal policy as above. For the remaining

parameters, we set Lhigh = 8000 and |q0| = 100000.

6.1.6 Running the Complete Trading Algorithm

We use the optimal policy given by

(X1,t1): low, (X1,t2): high, (X1,t3): high, (X2,t1): low,(X2,t2): high, (X2,t3): low (6.14)

as calculated from a transition matrix defined by Lhigh = 8000 and |q0| = 100000. From

here, we run our trained neural network model to locate times that are good to trade, and

then trade based on the state and optimal policy. For a position in which |q0| = 100000,

and Llow = 1000,the algorithm performs the purchase market orders as indicated by 6.1.6.

83

One notices that since our trader can execute a trade uniquely at any second he wishes, that

with a relatively small amount that he must unwind, it is often done quickly. In order to

keep the threshold of accuracy for locating the trading ticks high, the probability threshold

of the model was increased. It remains to be seen how much money the trader has saved

as a result of using this model. In order to do this, we look to compare it with the HJB

approach.

6.1.7 Comparison with the HJB approach

In order to evaluate how well our model has performed, we need to consider its performance

against an established model. To this end, we consider the model given in section 6.3 of [3]

that is defined for the situation defined as “Optimal execution using market orders without

penalties and only temporary impact.”

The model makes the following assumptions. The first is that the agent’s own trades have

no effect on the midprice of the asset. This is consistent with our data based approach. If we

did not make this assumption, then both our neural network algorithm and reinforcement

learning algorithm would be in trouble. For instance, our neural network has scanned the

path of midprice movements to best predict optimal trading midprice points based on the

trades that were occurring in the market. If, our trades at the points it recognized were to

effect the midprice behavior of the market, then the path would be completely thrown off.

The neural network model did not account for this.

With respect to the reinforcement learning algorithm, it should be noted that the reward

structure of the reinforcement learning algorithm includes rewards for the the agent’s trades

matching, walking the book, and matching the book with a large volume. It is important to

recognize that if a result of our trades included moving the entire midprice of the market,

and not just walking the book, that any reincforcement learning model should account for

such an action. If this were possible, and our algorithm did not account for it, then our

trader could very easily find a strategy in which midprice movements were not taken into

account by his actions, leaving all subsequent trades after the first open open to a large

amount of price risk that had never been accounted for.

84

|qt| Time ([0, 1]) State Policy Amount Purchased |qt+1|

100000.000000 0.060425 (X1,t1) low 3315.925590 96684.074410

96684.074410 0.060510 (X1,t1) low 7303.094454 89380.979956

89380.979956 0.062690 (X1,t1) low 6231.379817 83149.600140

83149.600140 0.062732 (X1,t1) low 5073.066020 78076.534119

78076.534119 0.062775 (X1,t1) low 5620.387271 72456.146849

72456.146849 0.062818 (X1,t1) low 3622.916461 68833.230388

68833.230388 0.062861 (X1,t1) low 7905.611900 60927.618488

60927.618488 0.062903 (X1,t1) low 4286.294070 56641.324417

56641.324417 0.062946 (X1,t1) low 3912.717238 52728.607179

52728.607179 0.062989 (X1,t1) low 1358.877044 51369.730135

51369.730135 0.063031 (X1,t1) low 2078.037261 49291.692874

49291.692874 0.063074 (X2,t1) low 4055.030800 45236.662074

45236.662074 0.063117 (X2,t1) low 7226.242256 38010.419818

38010.419818 0.063160 (X2,t1) low 6976.396468 31034.023350

31034.023350 0.063202 (X2,t1) low 6455.801709 24578.221641

24578.221641 0.063245 (X2,t1) low 2277.579262 22300.642379

22300.642379 0.063288 (X2,t1) low 5648.680243 16651.962135

16651.962135 0.063331 (X2,t1) low 4701.718429 11950.243706

11950.243706 0.063373 (X2,t1) low 4557.722094 7392.521612

7392.521612 0.063416 (X2,t1) low 3320.080301 4072.441311

4072.441311 0.064869 (X2,t1) low 1192.690929 2879.750383

2879.750383 0.064912 (X2,t1) low 6000.985396 -3121.235013

-3121.235013 0.065467 (TERM,t1) NONE 0.000000 -3121.235013

-3121.235013 0.065510 (TERM,t1) NONE 0.000000 -3121.235013

-3121.235013 0.065553 (TERM,t1) NONE 0.000000 -3121.235013

Table 6.8: The Neural Network Reinforcement Trading Algorithm applied to MCD on

3/7/2011 data.

85

Another assumption from the the HJB model in [3] is that the agent’s trades have a

temporary price impact in their own execution. What is meant by this is that when the

agent trades, without effecting the midprice, his trades can walk the book and pay a worse

price based on walking the limit order book. This is perfectly in line with our reinforcement

learning algorithm which issues a negative reward to the trader for precisely this action.

Also, the neural network model is trained to recognize ‘TradeTicks’ that have high best

price volume avialable in order to recognize optimal times at which to trade.

The next assumption that this model makes, that at first will seem different from our

model is that the bid ask spread is equal to zero, and thus all trades are conducted assuming

the midprice will be the best point of execution. To this end, we note that our model,

though trained to find times where the offer price has high liquidity, is still tracking all of

the optimal trading times based purely on movements of the midprice. This is the case in

both the historical path of the price as well as the path of the Hawkes Process simulation

that have been inputted into the neural network model. Therefore, this assumption fits fine

within the confines of our model.

The final assumption of the HJB model is that all of the order is executed at the end of

the time limit, that is by time T . This has is a key assumption of the initial framework of

our model.

6.1.7.1 The HJB Model for Optimal Execution of Market Orders with Tempo-

rary Impact The HJB model from [3] is set up as follows. The goal is to acquire N shares

by time T . We consider the control process of the trader to be the trading curve (vt){0≤t≤T}.

This is the speed at which the agent is purchasing/liquidating shares per unit time. The

agent’s inventory is considered to be (Qv
t){0≤t≤T}. This inventory represents the number of

shares that are in the trader’s posession at time t. It is going down over the interval [0, T] in

a liquidation problem and increasing from [0, T] for an acquisition problem. The midprice

process is given such that the dynamics are

dSvt = ±g(vt)dt+ σdWt (6.15)

Sv0 = S0 (6.16)

86

We note that in 6.15, that ±g(vt) represents the permanent price impact of of the model.

In this instance, g(vt) = 0 due to the no permanent price impact via our trading process

(vt) assumption. Here, sigma represents a volatility parameter, and Wt a Brownian motion

process. S0 represents the initial midprice of the equity at time 0.

Two other processes considered are Ŝvt , and Xv
t , which represent the price paid by the

agent at time t, and the cash process of the agent at time t respectively. The dynamics of

the inventory are given by

dQv
t = ±vtdt (6.17)

Qv
0 = q0. (6.18)

Thus, the inventory is effected only by the trading activity, and the initial inventory is the

position that the trader is attempting to unwind. The dynamics of the trader’s price have

the most interesting dynamics in that

Ŝvt = Svt + (
1

2
∆ + f(vt) (6.19)

Ŝv0 = Ŝ0. (6.20)

In 6.19, f(vt) represents the temporary price impact based on the trader’s control process

at the time that the trade was made. This model assumes that such a temporary impact

function is linear in the sense that f = kvt for some constant k.

The expected cost for the trader acquiring these shares, given a terminal penalty α is

given by

ECv = E
[∫ T

t

Ŝvuvudu+ ((N)−Qv
T)ST + α(N −Qv

T)2

]
. (6.21)

This gives the value function defined to be

H(t, S, y) = inf
v∈A

Et,S,y
[∫ T

t

Ŝvuvudu+ yvTST + α(Y v
T)2

]
, (6.22)

where Y v
t = N −Qv

t . This gives the optimal acquisition rate to be

v∗t =
N

T + k
α

.

87

6.1.8 A comparison of our model and the HJB Model

As one can imagine, a key advantage of our model over the HJB model is that our model

can handle trading larger amounts since it has been trained to recognize when walking the

book is unlikely, and make large trades. Therefore, we expect that our model will handle

market risk (risk that the market changes) much better than the HJB model. This turns

out to be the case. Consider a day when the price gets higher throughout the day. The

HJB model will trade an equal number of shares every second, but our neural network based

reinforcement learning algorithm will locate better times to place large orders throughout

the day.

We ran this model on a day where the market shifted throughout the day, no doubt

exposing the trader to considerable market risk. The results can be seen in 6.1.8. In order

to compare our models the way that the HJB models do, using implementation shortfall,

we note that the benchmark price for this day was $72.41. The HJB strategy’s average

price came in at $73.63. The average price per share based on using the Neural Network

Reinforcement Learning model was $73.06. This result beats the HJB approach on the

implementation shortfall scale by about 57 cents per share.

6.1.9 Comparison With a More Advanced HJB Model

The linear HJB model is a rather simple one. We wish to see how our model performs

up against a model that is essentially designed for a situation in which the trader is facing

considerable market risk. To this end we consider the model from section 7.2 of [3] for

optimal acquisition with a price Limiter.

This model considers the case of a trader who wishes to acquire a number of shares N by

time T . This model considers the same overall market dynamics of the previous linear model,

namely 6.15, 6.17, and 6.19. However, we add a new layer to this model in that the trader

will stop trading not only if his inventory hits the terminal level (all desired shares have been

acquired); qt = N . Strategic trading also stops if the price hits an upper threshold. That

is, if at any time t ∈ [0, T], Svt = S̄, then the strategy will cease to be operational, and a

market order will be placed for the execution of the remaining inventory. The same action

88

Figure 6.3: This curve shows the difference betweeen the two strategies on a day where there

is considerable market risk. Here, α = 100k, and k = 10−4

89

also happens if time T is reached before the entire desired inventory has been acquired.

Therefore, this model has a stopping time τ for which

τ = T ∧ inf t : St = S̄ ∧ t : Qt = 0. (6.23)

At a stopping time τ , the agent pays

Sτ + α(N −Qv
τ) (6.24)

per share. The agent realizes the amount of inventory left to be purchased via the process

yvt = N −Qv
t . (6.25)

This gives rise to the value function for this problem of

Et,S,y
[∫ τ

t

(Su + kvu)vudu+ yτ (Sτ + αyτ) + φ

∫ τ

t

y2
udu

]
. (6.26)

In 6.26,
∫ τ
t

(Su+kvu)vudu represents the price paid per share before the strategy has reached

a stopping time. yτ (Sτ + αyτ) represents the amount paid per share at a stopping time,

with α representing the penalty that the trader will pay for executing a large market order.

φ
∫ τ
t
y2
udu represents the penalty imposed on a trader for not executing inventory positions in

a timely manner. Thus, a penalty is assessed at each moment in time based on the amount

of shares the agent still has to acquire. Given this framework, the problem becomes to find

an admissible strategy vt such that

H(t, S, y) = inf
v∈A

Hv(t, S, y). (6.27)

The dynamic programming equation for 6.27

∂tH +
1

2
σ2∂SSH + φy2 + min{−v∂yH + bv∂SH + (S + kv)v} = 0 (6.28)

H(T, S, y) = (S + αy)y (6.29)

H(t, S̄, y) = (S̄ + αy)y (6.30)

H(t, S, 0) = 0 (6.31)

90

Due to the nature of our assumptions, we once again do not include a model for permanent

price impact. Thus, we set b = 0, and after a dimensionality reduction (in y) this pde becomes

∂th+
1

2
σ2∂SSh−

1

k
h2 + φ = 0 (6.32)

h(T, S) = α S ≤ S̄ (6.33)

h(t, S̄) = α t ≤ T, (6.34)

where the optimal trading curve is then given as

v∗(t, S, y) =
1

k
yh(t, S). (6.35)

Lacking an explicity solution for 6.32, we resort to a Crank-Nicolson scheme as described in

[34] to solve it numerically. In order to do this, we need to place the problem onto a grid.

This requires us to impose a lower price boundary S, givin the grid [0, T]× [S, S̄]. Setting

χ(t) = h(t, S), (6.36)

then along this lower boundary condition, χ can be explicitly solved giving the solution

χ(t) =


√
kφ ζe

2γ(T−t)+1
ζe2γ(T−t)−1

φ > 0(
1
α

+ T−t
k

)−1
φ = 0

(6.37)

γ =

√
φ

k
(6.38)

ζ =
α +
√
kφ

α−
√
kφ
. (6.39)

The discretization of the equation 6.32 can now begin. We note that we have boundary

conditions present for all but the boundary h(0, S). Therefore, we wil discretize for the

purpose of the Crank-Nicolson algorithm going backwards in time beginning at the boundary

T . There is also the matter of the nonlinear term

1

k
h2.

91

In order to effectively discretize this term for the purposes of Crank-Nicolson, we will lag it

back one time step and treat it explicitly. Let h(tn, Si) = hni , and discretize with respect to

time and stock price via a centered difference scheme to obtain

hni − hn−1

∆t
+

1

2
σ2

(
1

2

(
hn−1
SSi

+ hnSSi
))
− 1

k
(hni)2 + φ = 0

hni − hn−1

∆t
+

σ2

4(∆x)2

[
hn−1
i+1 − 2hn−1

i + hn−1
i−1 + hni+1 − 2hni − 2hni + hni−1

]
− 1

k
(hni)2 + φ = 0.

Multiplything through by 4∆t(∆x)2k, we obtain

(hni − hn−1
i)4(∆x)2k + σ2∆tk

[
hn−1
i+1 − 2hn−1

i + hn−1
i−1 + hni+1 − 2hni + hni−1

]
− (6.40)

4∆t(∆x)2(hni)2 + 4∆t(∆x)2kφ = 0. (6.41)

From 6.40, we can put the problem into a tridiagonal matrix to solve, at each backward time

step: 

B0 C00 0 0 0

A1 B1 C1 0 0

0 · · · 0

0 0 · BI−1 CI−1

0 0 0 AI BI





hn−1
0

hn−1
1

·

·

hn−1
I


=



D0

D1

·

·

DI


(6.42)

Where, via rearranging 6.40, we obtain the coefficients

Ai = σ2∆tk (6.43)

Bi = −2σ2∆tk − 4(∆x)2k (6.44)

Ci = σ2∆tk. (6.45)

The right hand side of this equation is given by

Di = −4(∆x)2kuni − σ2∆tkuni+1 + 2σ2∆tkuni − σ2∆tkuni−1 + 4∆t(∆x)2(uni)2 − 4∆t(∆x)2kφ.

(6.46)

The boundary conditions are substitued for D0 and DI with B0 = 1, C0 = 0, AI = 0, BI = 0

to complete the matrix at each time step. Plugging in values for k, α, and σ, we can now

solve the problem.

92

Fitting the problem to our data and using the resources of [35], we can obtain the results

in 6.1.9, and see that our model performs worse overall, since the Crank-Nicolson model

obtains an average price per trade of $72.29. We do note that this model is designed for

precisely the situation as indicated in the data. Thus it remains to be seen how well machine

learning models can adequately be improved the beat the best model for each situation.

6.2 SIMULATIONS FOR THE LIMIT ORDER MODEL

6.2.1 An Adequate model for comparison

We seek to compare this model to a model from [3] for optimal execution using only limit

orders. In this model, we consider a trader who has N shares that need to be liquidated

by time T beginning at time t = 0. This model considers the price dynamics where (no

permanent impact from the trader) the midprice is driven by

St = S0 + σWt. (6.47)

The trader, at each moment in time t, is constantly canceling outstanding orders and placing

new limit orders at a position δt. δt defines the limit order in the sense that the limit order

is placed at the position

St ± δt. (6.48)

The position 6.48 is defined with a positive sign on δ if the goal of the problem is to liquidate,

and negative sign on δ if the goal is to acquire.

One thing to note here is that a limit order (of a reasonably small size in volume) that

is placed with too small of a deltat behaves essentially like a market order. To see this,

consider that in practice,

St < St < St,

where St and St are the price of the best bid, and best ask price respectfully at time t. This

means that if δt < (St−St), then the limit order will actually be placed at a better position

93

Figure 6.4: The inventory and price of each execution model. Here, α = 100k, and k = 10−4

for both HJB models.

94

than the currest best bid price. This, means that the second a matching size market buy

order enters the market, that it will execute the order placed at a small δt upon arrival.

When dealing with limit orders, a key difference from market order placement is that the

trader does not have as much control over the execution. He must wait until an opposing

market order (or in some rare cases a matching limit order) comes in to the market to

buy/sell his position. Since the trader does not have control of the overall order flow of the

market, such actions must be considered in a random process.

To this end, for the optimal liquidation problem, let Mt for 0 ≤ t ≤ T denote a Poisson

process (with intensity λ) corresponding to the counting process of market buy orders that

have arrived in the market by time t. This, though important is not the real process that

the agent is most interested in. The agent’s chief concern is the counting process defined by

N δ
t = (N δ

t)0≤t≤T .

This process N δ
t is the arrival process of market orders that lift the order placed at δt.

For instance, if δ = $.04, and is for a size of 400 shares, then Nt jumps if and only if a market

buy order enters the market for more than 400 shares (or what is remaining) and St + .04 is

now the best price in the book. The entrance of this market order will also make Mt jump,

but so will every single market buy order. The nature of these two processes motivates the

probability function

P (δ) = e−κδ. (6.49)

This linear execution function has been defined before as the probability that the next

incoming market order lifts the placed limit order. In other words, this is the probability

that the next arrival of Mt will also be an arrival of N δ
t .

The agent’s cash process Xt has different in a liquidation problem as opposed to an

acquisition problem in that he acquires cash at every step of the liquidiation as opposed to

using it to purchase shares. It therefore has the dynamics given by

dXδ
t = (St + δt)dN

δ
t . (6.50)

95

The final process considered in the model is given as the inventory. That is, the position

that remains to be liquidated:

Qδ
t = N −N δ

t . (6.51)

The trader then seeks the optimal solution for the optimization function

H(x, S) = sup
δ∈A

E
[
Xδ
τ +Qδ

τ (Sτ − αQδ
τ)|Xδ

0− = x, S0 = S,Qδ
0− = N

]
. (6.52)

In 6.52, τ = T ∧min{t : Qt = 0} and α represents a penalty parameter for holding inventory

at liquidation. The resulting DPE can be solved giving the optimal limit order placement

to be

δ∗(t, q) =
1

κ

[
1 + log

∑q
n=0

λ̃n

n!
e−κα(q−n)2(T − t)n∑q−1

n=0
λ̃n

n!
e−κα(q−1−n)2(T − t)n

]
. (6.53)

In 6.53, λ̃ = λe−1, and q represnents Qδ∗
t .

6.2.2 Algorithm 6 for the case of constant re-evaluation of outstanding orders

In the case of 6, it was the case that the orders would sit in the book, and the inventory

would simply be updated. We can also adjust 6 for the case that the orders are re-evaluated

every 5 seconds. In this case, the ‘Volume Executed’ will simply update assuming that the

orders are canceled, and this poses no major change. The only major change, is that the

structure of the training input τ for 5.4 is no longer really a variable. Intead it is fixed at this

interval in which we are constantly checking for cancellation (say τ = 5 seconds), and is no

longer a variable worth training on since it is now constant. Other than that, the algorithm

will run as it is written in 6.

96

Figure 6.5: The ROC curve for the probability function logistic regression method.

6.2.3 A comparison of the two models

The model in 6 is run on 60 seconds worth of data alongside the standard HJB model. The

goal of the trader in this case is to optimally liquidate 1000 shares. The HJB model operates

by placing 100 volume limit orders every second, and will re-evaluate the position and cancel

any outstanding orders every second. Our model, gives a little bit more leniency, and will

allow orders to remain in the limit order book for a total of five seconds. While training our

limit order probability function, we obtain a score of the model that is fair, one of a 76.25

roc-auc (area under the receiver operator characteristic curve). It is shown for this exact

model run in 6.2.3.

Once the probability function has been trained the optimal limit order placements are

calculated via optimizing the utility function. From here, we can calcuate our optimal trading

curve, as well as the optimal trading curve of the HJB model via 6.53 to obtain the results

shown in 6.6. We note that even though the price that the shares are sold for in the HJB

model is higher (about $77.015 cents as opposed to about $77.00), the HJB model is unable

to complete the trade. The logistic regression model makes its optimal placement at the

midprice because of the reasonably low intra-second volatility, we see in 6.6, and thus is able

97

to execute the entire volume in one minute, costing the trader little more than one cent per

share, and without having to deal with the large terminal time execution penalty, which for

the HJB model is that for terminally liquidating via a market sell order, 800 of the desired

1000 shares.

98

Figure 6.6: A comparison of the two models on 60 seconnds of MCD data. For the HJB

Model, λ = 158, T = 60, k = 100, α = .001, and N = 1000.

99

7.0 CONCLUSIONS

7.1 SUMMARY OF RESULTS

This research has given rise to a two stage optimal execution model for market orders. This

model, using historical market data is able to produce an optimal purchase trading curve via

locating times in stage one at which to trade via an artificial neural network model (ANN). In

stage two, the model decides how much to trade at these times via a reinforcement learning

algorithm.

This method could be redone to include multiple equities, and can be easily adjusted to

produce a trading curve for optimal liquidiation.

Our research also produced an optimal trading curve for optimal liquidation using only

limit orders using logistic regression to train the probability of limit order execution.

We hope that as the world enters into the exiting an innovative age that will show what

advancements can be made via machine learning, that there will be thought to how it can

be used in conjunction with established mathematics to produce further results in financial

market modeling.

7.2 FUTURE WORK

We most wish to improve the market order algorithm. This will begin with enhancing the

Hawkes process model so that it accounts for intraday volatility at various times of the day,

giving the trader a better idea of when to make a move.

100

Another aspect we wish to improve upon is the reinforcment learning algorithm itself to

make it incorporate more states, giving a more accurate picture of the market.

Towards the machine learning end of things, we wish to keep experimenting with more

advanced neural network structures in order to obtain the one best fit for financial time

series data.

101

8.0 BIBLIOGRAPHY

[1] Yuanda Chen. Multivariate hawkes processes and their simulations. 2016.

[2] Olivier Gu´eant. The Financial Mathematics of Market Liquidity: From optimal execu-

tion to market making, volume 33. CRC Press, 2016.

[3] ´Alvaro Cartea, Sebastian Jaimungal, and Jose´ Penalva. Algorithmic and high-frequency

trading. Cambridge University Press, 2015.

[4] Dimitris Bertsimas and Andrew W Lo. Optimal control of execution costs. Journal of

Financial Markets, 1(1):1–50, 1998.

[5] Robert Almgren and Neil Chriss. Value under liquidation. Risk, 12(12):61–63, 1999.

[6] Robert Almgren and Neil Chriss. Optimal execution of portfolio transactions. Journal

of Risk, 3:5–40, 2001.

[7] Robert F Almgren. Optimal execution with nonlinear impact functions and trading-

enhanced risk. Applied mathematical finance, 10(1):1–18, 2003.

[8] Jim Gatheral. No-dynamic-arbitrage and market impact. Quantitative finance,

10(7):749–759, 2010.

[9] Robert Almgren. Optimal trading with stochastic liquidity and volatility. SIAM Journal

on Financial Mathematics, 3(1):163–181, 2012.

[10] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning, volume 1. Springer series in statistics New York, 2001.

102

[11] D Stathakis. How many hidden layers and nodes? International Journal of Remote

Sensing, 30(8):2133–2147, 2009.

[12] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas, and

H Sebastian Seung. Digital selection and analogue amplification coexist in a cortex-

inspired silicon circuit. Nature, 405(6789):947, 2000.

[13] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436, 2015.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[15] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

[16] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,

volume 1. MIT press Cambridge, 1998.

[17] Wojtek J Krzanowski and David J Hand. ROC curves for continuous data. CRC Press,

2009.

[18] Oleh Danyliv, Bruce Bland, and Daniel Nicholass. Convenient liquidity measure for

financial markets. 2014.

[19] Aurélien Alfonsi and Pierre Blanc. Dynamic optimal execution in a mixed-market-

impact hawkes price model. Finance and Stochastics, 20(1):183–218, 2016.

[20] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[21] US Securities, Exchange Commission, et al. Final rule: Disclosure of order execution

and routing practices, 2000.

[22] Robert Almgren. High frequency volatility. New York University. Google Scholar, 2009.

103

https://github.com/fchollet/keras

[23] Emmanuel Bacry, Sylvain Delattre, Marc Hoffmann, and Jean-François Muzy. Mod-

elling microstructure noise with mutually exciting point processes. Quantitative Finance,

13(1):65–77, 2013.

[24] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes.

Biometrika, 58(1):83–90, 1971.

[25] Yosihiko Ogata. On lewis’ simulation method for point processes. IEEE Transactions

on Information Theory, 27(1):23–31, 1981.

[26] Hans R Stoll. The supply of dealer services in securities markets. The Journal of

Finance, 33(4):1133–1151, 1978.

[27] Dieter Hendricks and Diane Wilcox. A reinforcement learning extension to the almgren-

chriss framework for optimal trade execution. In Computational Intelligence for Finan-

cial Engineering & Economics (CIFEr), 2104 IEEE Conference on, pages 457–464.

IEEE, 2014.

[28] Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. Reinforcement learning for optimized

trade execution. In Proceedings of the 23rd international conference on Machine learn-

ing, pages 673–680. ACM, 2006.

[29] WRDS. Nyse trade and quote. https://wrds-web.wharton.upenn.edu/wrds/, 2011.

[30] Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-

68):7, 1999.

[31] Iebeling Kaastra and Milton Boyd. Designing a neural network for forecasting financial

and economic time series. Neurocomputing, 10(3):215–236, 1996.

[32] E Michael Azoff. Neural network time series forecasting of financial markets. John

Wiley & Sons, Inc., 1994.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

104

https://wrds-web.wharton.upenn.edu/wrds/

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[34] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics, volume 37.

Springer Science & Business Media, 2010.

[35] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts, 2010.

[36] Peter Malec. A semiparametric intraday garch model. Browser Download This Paper,

2016.

[37] Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes processes in

finance. Market Microstructure and Liquidity, 1(01):1550005, 2015.

[38] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[39] Rob Reider. Volatility forecasting i: Garch models. New York, 2009.

[40] Tohru Ozaki. Maximum likelihood estimation of hawkes’ self-exciting point processes.

Annals of the Institute of Statistical Mathematics, 31(1):145–155, 1979.

[41] Yuanda Chen. Thinning algorithms for simulating point processes. 2016.

[42] Szabolcs Mike and J Doyne Farmer. An empirical behavioral model of liquidity and

volatility. Journal of Economic Dynamics and Control, 32(1):200–234, 2008.

[43] Dan Amiram, Balazs Cserna, and Ariel Levy. Volatility, liquidity, and liquidity risk.

2016.

[44] Dave R Gargett. The link between stock prices and liquidity. Financial Analysts Journal,

34(1):50–54, 1978.

105

http://www.deeplearningbook.org

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	4.1. Input parameters and desired output for the artificial neural network model to predict optimal trading times.
	6.1. This table represents trades for the stock `MCD' on January 3rd, 2011. Due to preservation of data integrity, the true values for these times have been changed from their true values, and this figure is given only with the intent to show the reader the structure of the data.
	6.2. This table represents trades for the stock `MCD' on January 3rd, 2011. Due to preservation of data integrity, the true values for these times have been changed from their true values, and this figure is given only with the intent to show the reader the structure of the data.
	6.3. The this raw training data is gleaned from the initial TAQ data.
	6.4. The initial calculations of the variables desired for neural network training in 4.2.
	6.5. Progression of a Neural Network Model for MCD data Trade Tick classification
	6.6. Progression of a Neural Network Model for MCD data Trade Tick classification
	6.7. Tuning of the reinforcement learning parameters giving different results for
	6.8. The Neural Network Reinforcement Trading Algorithm applied to MCD on 3/7/2011 data.

	LIST OF FIGURES
	2.1. The Two different ROC curves are plotted here. The lines represent the ratio of false positives to true positives when the threshold varies.
	3.1. The TradeTicks are labeled on the graph above as blue dots.
	3.2. A glimpse of the statistics for the initial data driven approach.
	3.3. A neural network structure for the initial data driven approach.
	6.1. Distributions of neural network variables as given in 6.1.3.
	6.2. Distributions of neural network variables as given in 6.1.3.
	6.3. This curve shows the difference betweeen the two strategies on a day where there is considerable market risk. Here, = 100k, and k = 10-4
	6.4. The inventory and price of each execution model. Here, = 100k, and k = 10-4 for both HJB models.
	6.5. The ROC curve for the probability function logistic regression method.
	6.6. A comparison of the two models on 60 seconnds of MCD data. For the HJB Model, = 158, T = 60, k = 100, = .001, and N = 1000.

	LIST OF ALGORITHMS
	1.0 INTRODUCTION
	1.1 The Limit Order Book Model
	1.2 The Classical Optimal Execution Problem

	2.0 BACKROUND
	2.1 Artifical Neural Networks (ANN)
	2.1.1 Motivation
	2.1.2 Feed-Forward Sequential Neural Networks with Back-propogation
	2.1.3 Gradient Descent Back-Propogation
	2.1.4 Modernization of the Neural Network for our Model

	2.2 Reinforcement Learning
	2.2.1 An overview of Reinfocement Learning
	2.2.2 Policy Evaluation

	2.3 Logistic Regression
	2.3.1 ROC Curve

	3.0 OPTIMAL EXECUTION FOR MARKET ORDERS IN LIT MARKETS
	3.1 The Initial Data Driven Approach
	3.2 The Classification Learning Problem
	3.3 Neural Network Model For Optimal Execution
	3.3.1 Reinforcement Learning Algorithm for Optimal Execution

	4.0 HAWKES PROCESS APPROACH FOR MARKET ORDERS IN LIT MARKETS
	4.1 Limit Order Book Model and Parameter Realizations
	4.1.1 Hawkes Process Model for Microstructure Noise
	4.1.2 Maximum Likelihood Estimation
	4.1.3 Simulation of the Hawkes Process

	4.2 The Neural Network model for locating ideal trade times
	4.3 The Reinforcement Learning Algorithm
	4.3.1 Using Trading Data to calculate the State/Action - State/Reward Transition Matrix
	4.3.2 Forward to the Optimal Trading Curve

	4.4 The Complete Algorithm

	5.0 THE LIMIT ORDER MODEL
	5.1 The Traditional Limit Order Model
	5.2 A Logistic Regression Model for the Probability of Execution Function
	5.3 Structure of the Algorithm
	5.3.1 Building the Training Data

	5.4 Completing the Optimal Execution Problem for Limit Orders

	6.0 COMPUTATIONAL SIMULATIONS
	6.1 Simulations for the Hawkes Approach
	6.1.1 Building the TAQ based LOB data
	6.1.2 Building the Neural Network Training Data from TAQ
	6.1.3 Using 5.1.1 to make `Price_Sim' and Building the Neural Network Training Variables 5.2
	6.1.4 Training The Neural Network
	6.1.5 The Reinforcement Learning Algorithm Implementation
	6.1.6 Running the Complete Trading Algorithm
	6.1.7 Comparison with the HJB approach
	6.1.7.1 The HJB Model for Optimal Execution of Market Orders with Temporary Impact

	6.1.8 A comparison of our model and the HJB Model
	6.1.9 Comparison With a More Advanced HJB Model

	6.2 Simulations for the Limit Order Model
	6.2.1 An Adequate model for comparison
	6.2.2 Algorithm 6 for the case of constant re-evaluation of outstanding orders
	6.2.3 A comparison of the two models

	7.0 CONCLUSIONS
	7.1 Summary of Results
	7.2 Future Work

	8.0 BIBLIOGRAPHY

